aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2013-05-07 08:07:55 +0000
committerdos-reis <gdr@axiomatics.org>2013-05-07 08:07:55 +0000
commitfe37a8dc69fe54f48078fd893a7490555ce804ed (patch)
tree436d7b354cb522a74d81f0f4d4c1211470a04b9b
parent410c65a878026cb16dd5a3eece5271eb60b782b1 (diff)
downloadopen-axiom-fe37a8dc69fe54f48078fd893a7490555ce804ed.tar.gz
* algebra/indexedp.spad.pamphlet (IndexedProductTerm): New domain.
-rw-r--r--src/ChangeLog4
-rw-r--r--src/algebra/Makefile.am5
-rw-r--r--src/algebra/Makefile.in5
-rw-r--r--src/algebra/indexedp.spad.pamphlet30
-rw-r--r--src/hyper/pages/releaseNotes.ht14
-rw-r--r--src/share/algebra/browse.daase2712
-rw-r--r--src/share/algebra/category.daase5825
-rw-r--r--src/share/algebra/compress.daase11
-rw-r--r--src/share/algebra/interp.daase7897
-rw-r--r--src/share/algebra/operation.daase19722
10 files changed, 18145 insertions, 18080 deletions
diff --git a/src/ChangeLog b/src/ChangeLog
index 59b3b342..be8ec59f 100644
--- a/src/ChangeLog
+++ b/src/ChangeLog
@@ -1,3 +1,7 @@
+2013-05-07 Gabriel Dos Reis <gdr@integrable-solutions.net>
+
+ * algebra/indexedp.spad.pamphlet (IndexedProductTerm): New domain.
+
2013-04-07 Gabriel Dos Reis <gdr@integrable-solutions.net>
* gui/widget.h: Remove. Qt's meta object system does no play nice
diff --git a/src/algebra/Makefile.am b/src/algebra/Makefile.am
index d1b5cbae..181dedba 100644
--- a/src/algebra/Makefile.am
+++ b/src/algebra/Makefile.am
@@ -729,6 +729,7 @@ strap-1/IDPAG.$(FASLEXT): strap-1/ABELGRP.$(FASLEXT) \
strap-1/IDPAM.$(FASLEXT): strap-1/ABELMON.$(FASLEXT) \
strap-1/IDPC.$(FASLEXT) strap-1/IDPO.$(FASLEXT)
+strap-1/IDPT.$(FASLEXT): strap-1/PAIR.$(FASLEXT)
strap-1/IDPO.$(FASLEXT): strap-1/PAIR.$(FASLEXT)
strap-1/PAIR.$(FASLEXT): strap-1/KOERCE.$(FASLEXT) \
@@ -1559,8 +1560,10 @@ $(OUT)/STREAM.$(FASLEXT): $(OUT)/LZSTAGG.$(FASLEXT)
$(OUT)/MONOP.$(FASLEXT): $(OUT)/MONOPC.$(FASLEXT) $(OUT)/PAIR.$(FASLEXT) \
$(OUT)/SETCAT.$(FASLEXT)
+$(OUT)/IDPT.$(FASLEXT): $(OUT)/PAIR.$(FASLEXT)
+
oa_algebra_layer_1 = \
- ABELGRP ABELGRP- ABELMON ABELMON- ITUPLE \
+ ABELGRP ABELGRP- ABELMON ABELMON- ITUPLE IDPT \
CABMON MONOID MONOID- RING RING- COMRING \
DIFRING SRING ENTIRER INTDOM INTDOM- OINTDOM \
GCDDOM GCDDOM- UFD UFD- ES ES- \
diff --git a/src/algebra/Makefile.in b/src/algebra/Makefile.in
index dd1ce5a6..c66d563b 100644
--- a/src/algebra/Makefile.in
+++ b/src/algebra/Makefile.in
@@ -759,7 +759,7 @@ oa_algebra_layer_0_objects = \
$(addsuffix .$(FASLEXT),$(oa_algebra_layer_0)))
oa_algebra_layer_1 = \
- ABELGRP ABELGRP- ABELMON ABELMON- ITUPLE \
+ ABELGRP ABELGRP- ABELMON ABELMON- ITUPLE IDPT \
CABMON MONOID MONOID- RING RING- COMRING \
DIFRING SRING ENTIRER INTDOM INTDOM- OINTDOM \
GCDDOM GCDDOM- UFD UFD- ES ES- \
@@ -2219,6 +2219,7 @@ strap-1/IDPAG.$(FASLEXT): strap-1/ABELGRP.$(FASLEXT) \
strap-1/IDPAM.$(FASLEXT): strap-1/ABELMON.$(FASLEXT) \
strap-1/IDPC.$(FASLEXT) strap-1/IDPO.$(FASLEXT)
+strap-1/IDPT.$(FASLEXT): strap-1/PAIR.$(FASLEXT)
strap-1/IDPO.$(FASLEXT): strap-1/PAIR.$(FASLEXT)
strap-1/PAIR.$(FASLEXT): strap-1/KOERCE.$(FASLEXT) \
@@ -2858,6 +2859,8 @@ $(OUT)/STREAM.$(FASLEXT): $(OUT)/LZSTAGG.$(FASLEXT)
$(OUT)/MONOP.$(FASLEXT): $(OUT)/MONOPC.$(FASLEXT) $(OUT)/PAIR.$(FASLEXT) \
$(OUT)/SETCAT.$(FASLEXT)
+$(OUT)/IDPT.$(FASLEXT): $(OUT)/PAIR.$(FASLEXT)
+
$(OUT)/FNCAT.$(FASLEXT): $(OUT)/HOMOTOP.$(FASLEXT) $(OUT)/SETCAT.$(FASLEXT)
$(OUT)/SYNTAX.$(FASLEXT): $(OUT)/IDENT.$(FASLEXT)
$(OUT)/COMMONOP.$(FASLEXT): $(OUT)/BOP.$(FASLEXT)
diff --git a/src/algebra/indexedp.spad.pamphlet b/src/algebra/indexedp.spad.pamphlet
index d17d342c..dab47a6a 100644
--- a/src/algebra/indexedp.spad.pamphlet
+++ b/src/algebra/indexedp.spad.pamphlet
@@ -54,6 +54,33 @@ IndexedDirectProductCategory(A:BasicType,S:OrderedType): Category ==
@
+\section{domain IDPT IndexedProductTerm}
+
+<<domain IDPT IndexedProductTerm>>=
+)abbrev domain IDPT IndexedProductTerm
+++ Author: Gabriel Dos Reis
+++ Date Last Updated: May 7, 2013
+++ Description:
+++ An indexed product term is a utility domain used in the
+++ representation of indexed direct product objects.
+IndexedProductTerm(A,S): Public == Private where
+ A: BasicType
+ S: OrderedType
+ Public == Join(BasicType,CoercibleTo Pair(S,A)) with
+ term : (S, A) -> %
+ ++ \spad{term(s,a)} constructs a term with index \spad{s}
+ ++ and coefficient \spad{a}.
+ index : % -> S
+ ++ \spad{index t} returns the index of the term \spad{t}.
+ coefficient : % -> A
+ ++ \spad{coefficient t} returns the coefficient of the tern \spad{t}.
+ Private == Pair(S,A) add
+ term(s,a) == per [s,a]
+ index t == first rep t
+ coefficient t == second rep t
+ coerce(t: %): Pair(S,A) == rep t
+@
+
\section{domain IDPO IndexedDirectProductObject}
<<domain IDPO IndexedDirectProductObject>>=
)abbrev domain IDPO IndexedDirectProductObject
@@ -334,7 +361,7 @@ IndexedDirectProductAbelianGroup(A:AbelianGroup,S:OrderedType):
<<license>>=
--Copyright (C) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
---Copyright (C) 2007-2010, Gabriel Dos Reis.
+--Copyright (C) 2007-2013, Gabriel Dos Reis.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
@@ -369,6 +396,7 @@ IndexedDirectProductAbelianGroup(A:AbelianGroup,S:OrderedType):
<<license>>
<<category IDPC IndexedDirectProductCategory>>
+<<domain IDPT IndexedProductTerm>>
<<domain IDPO IndexedDirectProductObject>>
<<domain IDPAM IndexedDirectProductAbelianMonoid>>
<<domain IDPOAM IndexedDirectProductOrderedAbelianMonoid>>
diff --git a/src/hyper/pages/releaseNotes.ht b/src/hyper/pages/releaseNotes.ht
index 29a1749e..64aac845 100644
--- a/src/hyper/pages/releaseNotes.ht
+++ b/src/hyper/pages/releaseNotes.ht
@@ -4,6 +4,7 @@
\beginscroll
\beginmenu
\menudownlink{Online information}{onlineInformation}
+ \menudownlink{Version 1.5.0}{1502013}
\menudownlink{Version 1.4.2}{apr2013}
\menudownlink{Version 1.4.1}{jul2011}
\menudownlink{Version 1.4.0}{jun2011}
@@ -25,6 +26,19 @@
\end{page}
% =====================================================================
+\begin{page}{1502013}{OpenAxiom 1.5.0 release}
+% =====================================================================
+\beginscroll
+OpenAxiom-1.5.0 was released on XXX, 2013. It was the first major
+release of \Language{} system, in the 1.5.x series. It contains
+contains additions of new features and domains including:
+ IndexedProductTerm
+
+\endscroll
+\autobuttons
+\end{page}
+
+% =====================================================================
\begin{page}{apr2013}{OpenAxiom 1.4.2 release}
% =====================================================================
\beginscroll
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index 52405adb..887a25f4 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(1965419 . 3539125283)
+(1961804 . 3576902405)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-3990 . T) (-3989 . T))
+((-3992 . T) (-3991 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}")))
@@ -38,7 +38,7 @@ NIL
NIL
(-27)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
(-28 S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
@@ -46,24 +46,24 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-3986 . T) (-3984 . T) (-3983 . T) ((-3991 "*") . T) (-3982 . T) (-3987 . T) (-3981 . T))
+((-3988 . T) (-3986 . T) (-3985 . T) ((-3993 "*") . T) (-3984 . T) (-3989 . T) (-3983 . T))
NIL
(-30)
-((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
+((|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
NIL
NIL
(-31)
((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression `d'.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression.")))
NIL
NIL
-(-32 R -3088)
+(-32 R -3090)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-950 (-483)))))
+((|HasCategory| |#1| (QUOTE (-951 (-484)))))
(-33 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} := empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
-((|HasAttribute| |#1| (QUOTE -3989)))
+((|HasAttribute| |#1| (QUOTE -3991)))
(-34)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} := empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
@@ -74,7 +74,7 @@ NIL
NIL
(-36 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}.")))
-((-3989 . T) (-3990 . T))
+((-3991 . T) (-3992 . T))
NIL
(-37 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
@@ -82,20 +82,20 @@ NIL
NIL
(-38 R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
-((-3983 . T) (-3984 . T) (-3986 . T))
+((-3985 . T) (-3986 . T) (-3988 . T))
NIL
(-39 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and \\spad{a1},{}...,{}an.")))
NIL
NIL
-(-40 -3088 UP UPUP -2610)
+(-40 -3090 UP UPUP -2612)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-3982 |has| (-347 |#2|) (-311)) (-3987 |has| (-347 |#2|) (-311)) (-3981 |has| (-347 |#2|) (-311)) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| (-347 |#2|) (QUOTE (-118))) (|HasCategory| (-347 |#2|) (QUOTE (-120))) (|HasCategory| (-347 |#2|) (QUOTE (-298))) (OR (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-298)))) (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-317))) (OR (-12 (|HasCategory| (-347 |#2|) (QUOTE (-190))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (|HasCategory| (-347 |#2|) (QUOTE (-298)))) (OR (-12 (|HasCategory| (-347 |#2|) (QUOTE (-190))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-189))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (|HasCategory| (-347 |#2|) (QUOTE (-298)))) (OR (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-809 (-1088))))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-298))) (|HasCategory| (-347 |#2|) (QUOTE (-809 (-1088)))))) (OR (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-809 (-1088))))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-811 (-1088)))))) (|HasCategory| (-347 |#2|) (QUOTE (-580 (-483)))) (OR (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-950 (-347 (-483)))))) (|HasCategory| (-347 |#2|) (QUOTE (-950 (-347 (-483))))) (|HasCategory| (-347 |#2|) (QUOTE (-950 (-483)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-317))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-189))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-811 (-1088))))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-190))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-809 (-1088))))))
-(-41 R -3088)
+((-3984 |has| (-347 |#2|) (-311)) (-3989 |has| (-347 |#2|) (-311)) (-3983 |has| (-347 |#2|) (-311)) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| (-347 |#2|) (QUOTE (-118))) (|HasCategory| (-347 |#2|) (QUOTE (-120))) (|HasCategory| (-347 |#2|) (QUOTE (-298))) (OR (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-298)))) (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-317))) (OR (-12 (|HasCategory| (-347 |#2|) (QUOTE (-190))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (|HasCategory| (-347 |#2|) (QUOTE (-298)))) (OR (-12 (|HasCategory| (-347 |#2|) (QUOTE (-190))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-189))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (|HasCategory| (-347 |#2|) (QUOTE (-298)))) (OR (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-810 (-1089))))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-298))) (|HasCategory| (-347 |#2|) (QUOTE (-810 (-1089)))))) (OR (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-810 (-1089))))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-812 (-1089)))))) (|HasCategory| (-347 |#2|) (QUOTE (-581 (-484)))) (OR (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-951 (-347 (-484)))))) (|HasCategory| (-347 |#2|) (QUOTE (-951 (-347 (-484))))) (|HasCategory| (-347 |#2|) (QUOTE (-951 (-484)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-317))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-189))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-812 (-1089))))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-190))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-810 (-1089))))))
+(-41 R -3090)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))))
+((-12 (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))))
(-42 OV E P)
((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}.")))
NIL
@@ -106,31 +106,31 @@ NIL
((|HasCategory| |#1| (QUOTE (-257))))
(-44 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-3986 |has| |#1| (-494)) (-3984 . T) (-3983 . T))
-((|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494))))
+((-3988 |has| |#1| (-495)) (-3986 . T) (-3985 . T))
+((|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495))))
(-45 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
-((-3989 . T) (-3990 . T))
-((OR (-12 (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3854) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-756)))) (-12 (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3854) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012))))) (OR (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-472)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (OR (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-756))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-756))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-756))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-483) (QUOTE (-756))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012))) (OR (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (-12 (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3854) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))))
+((-3991 . T) (-3992 . T))
+((OR (-12 (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3856) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-757)))) (-12 (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3856) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))))) (OR (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-757))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-484) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (-12 (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3856) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))))
(-46 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-311))))
+((|HasCategory| |#2| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-311))))
(-47 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3983 . T) (-3984 . T) (-3986 . T))
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
(-48)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")))
-((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (QUOTE (-950 (-483)))))
+((-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| $ (QUOTE (-962))) (|HasCategory| $ (QUOTE (-951 (-484)))))
(-49)
((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function `f'.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by `f'.")))
NIL
NIL
(-50 R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-3986 . T))
+((-3988 . T))
NIL
(-51)
((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}. The original object can be recovered by `is-case' pattern matching as exemplified here and \\spad{AnyFunctions1}.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}.")))
@@ -144,7 +144,7 @@ NIL
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-54 |Base| R -3088)
+(-54 |Base| R -3090)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}rn is applicable to the expression.")))
NIL
NIL
@@ -158,28 +158,28 @@ NIL
NIL
(-57 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}'s")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-3989 . T) (-3990 . T))
+((-3991 . T) (-3992 . T))
NIL
(-58 S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-3990 . T) (-3989 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))))
+((-3992 . T) (-3991 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))))
(-59 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")))
NIL
NIL
(-60 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray's.")))
-((-3989 . T) (-3990 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
+((-3991 . T) (-3992 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
(-61 R L)
((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op, m)} returns \\spad{[w, eq, lw, lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,...,A_n]} such that if \\spad{y = [y_1,...,y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',y_j'',...,y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}'s.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op, m)} returns \\spad{[M,w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}.")))
NIL
((|HasCategory| |#1| (QUOTE (-311))))
(-62 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-3989 . T) (-3990 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
+((-3991 . T) (-3992 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
(-63 S)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
NIL
@@ -202,11 +202,11 @@ NIL
NIL
(-68)
((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements.")))
-((-3989 . T) ((-3991 "*") . T) (-3990 . T) (-3986 . T) (-3984 . T) (-3983 . T) (-3982 . T) (-3987 . T) (-3981 . T) (-3980 . T) (-3979 . T) (-3978 . T) (-3977 . T) (-3985 . T) (-3988 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-3976 . T))
+((-3991 . T) ((-3993 "*") . T) (-3992 . T) (-3988 . T) (-3986 . T) (-3985 . T) (-3984 . T) (-3989 . T) (-3983 . T) (-3982 . T) (-3981 . T) (-3980 . T) (-3979 . T) (-3987 . T) (-3990 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-3978 . T))
NIL
(-69 R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-3986 . T))
+((-3988 . T))
NIL
(-70 R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}.")))
@@ -222,24 +222,24 @@ NIL
NIL
(-73 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values pl and pr. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} := \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of ls.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
-((-3989 . T) (-3990 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
+((-3991 . T) (-3992 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
(-74 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-3991 "*"))))
+((|HasAttribute| |#1| (QUOTE (-3993 "*"))))
(-75 A S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
NIL
NIL
(-76 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-3990 . T))
+((-3992 . T))
NIL
(-77)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")))
-((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| (-483) (QUOTE (-821))) (|HasCategory| (-483) (QUOTE (-950 (-1088)))) (|HasCategory| (-483) (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-120))) (|HasCategory| (-483) (QUOTE (-553 (-472)))) (|HasCategory| (-483) (QUOTE (-933))) (|HasCategory| (-483) (QUOTE (-740))) (|HasCategory| (-483) (QUOTE (-756))) (OR (|HasCategory| (-483) (QUOTE (-740))) (|HasCategory| (-483) (QUOTE (-756)))) (|HasCategory| (-483) (QUOTE (-950 (-483)))) (|HasCategory| (-483) (QUOTE (-1064))) (|HasCategory| (-483) (QUOTE (-796 (-327)))) (|HasCategory| (-483) (QUOTE (-796 (-483)))) (|HasCategory| (-483) (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-483) (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-483) (QUOTE (-189))) (|HasCategory| (-483) (QUOTE (-811 (-1088)))) (|HasCategory| (-483) (QUOTE (-190))) (|HasCategory| (-483) (QUOTE (-809 (-1088)))) (|HasCategory| (-483) (QUOTE (-452 (-1088) (-483)))) (|HasCategory| (-483) (QUOTE (-259 (-483)))) (|HasCategory| (-483) (QUOTE (-241 (-483) (-483)))) (|HasCategory| (-483) (QUOTE (-257))) (|HasCategory| (-483) (QUOTE (-482))) (|HasCategory| (-483) (QUOTE (-580 (-483)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-821)))) (|HasCategory| (-483) (QUOTE (-118)))))
+((-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| (-484) (QUOTE (-822))) (|HasCategory| (-484) (QUOTE (-951 (-1089)))) (|HasCategory| (-484) (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-120))) (|HasCategory| (-484) (QUOTE (-554 (-473)))) (|HasCategory| (-484) (QUOTE (-934))) (|HasCategory| (-484) (QUOTE (-741))) (|HasCategory| (-484) (QUOTE (-757))) (OR (|HasCategory| (-484) (QUOTE (-741))) (|HasCategory| (-484) (QUOTE (-757)))) (|HasCategory| (-484) (QUOTE (-951 (-484)))) (|HasCategory| (-484) (QUOTE (-1065))) (|HasCategory| (-484) (QUOTE (-797 (-327)))) (|HasCategory| (-484) (QUOTE (-797 (-484)))) (|HasCategory| (-484) (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-484) (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-484) (QUOTE (-189))) (|HasCategory| (-484) (QUOTE (-812 (-1089)))) (|HasCategory| (-484) (QUOTE (-190))) (|HasCategory| (-484) (QUOTE (-810 (-1089)))) (|HasCategory| (-484) (QUOTE (-453 (-1089) (-484)))) (|HasCategory| (-484) (QUOTE (-259 (-484)))) (|HasCategory| (-484) (QUOTE (-241 (-484) (-484)))) (|HasCategory| (-484) (QUOTE (-257))) (|HasCategory| (-484) (QUOTE (-483))) (|HasCategory| (-484) (QUOTE (-581 (-484)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-822)))) (|HasCategory| (-484) (QUOTE (-118)))))
(-78)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name `n' and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
@@ -254,11 +254,11 @@ NIL
NIL
(-81)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}")))
-((-3990 . T) (-3989 . T))
-((-12 (|HasCategory| (-85) (QUOTE (-259 (-85)))) (|HasCategory| (-85) (QUOTE (-1012)))) (|HasCategory| (-85) (QUOTE (-553 (-472)))) (|HasCategory| (-85) (QUOTE (-756))) (|HasCategory| (-483) (QUOTE (-756))) (|HasCategory| (-85) (QUOTE (-1012))) (|HasCategory| (-85) (QUOTE (-552 (-772)))) (|HasCategory| (-85) (QUOTE (-72))))
+((-3992 . T) (-3991 . T))
+((-12 (|HasCategory| (-85) (QUOTE (-259 (-85)))) (|HasCategory| (-85) (QUOTE (-1013)))) (|HasCategory| (-85) (QUOTE (-554 (-473)))) (|HasCategory| (-85) (QUOTE (-757))) (|HasCategory| (-484) (QUOTE (-757))) (|HasCategory| (-85) (QUOTE (-1013))) (|HasCategory| (-85) (QUOTE (-553 (-773)))) (|HasCategory| (-85) (QUOTE (-72))))
(-82 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-3984 . T) (-3983 . T))
+((-3986 . T) (-3985 . T))
NIL
(-83 S)
((|constructor| (NIL "This is the category of Boolean logic structures.")) (|or| (($ $ $) "\\spad{x or y} returns the disjunction of \\spad{x} and \\spad{y}.")) (|and| (($ $ $) "\\spad{x and y} returns the conjunction of \\spad{x} and \\spad{y}.")) (|not| (($ $) "\\spad{not x} returns the complement or negation of \\spad{x}.")))
@@ -280,22 +280,22 @@ NIL
((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op, foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op, [foo1,...,foon])} attaches [\\spad{foo1},{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,...,fn]} then applying a derivation \\spad{D} to \\spad{op(a1,...,an)} returns \\spad{f1(a1,...,an) * D(a1) + ... + fn(a1,...,an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,...,an)} returns the result of \\spad{f(a1,...,an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op, [a1,...,an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,...,an)} is returned,{} and \"failed\" otherwise.")))
NIL
NIL
-(-88 -3088 UP)
+(-88 -3090 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
(-89 |p|)
((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
(-90 |p|)
((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| (-89 |#1|) (QUOTE (-821))) (|HasCategory| (-89 |#1|) (QUOTE (-950 (-1088)))) (|HasCategory| (-89 |#1|) (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-120))) (|HasCategory| (-89 |#1|) (QUOTE (-553 (-472)))) (|HasCategory| (-89 |#1|) (QUOTE (-933))) (|HasCategory| (-89 |#1|) (QUOTE (-740))) (|HasCategory| (-89 |#1|) (QUOTE (-756))) (OR (|HasCategory| (-89 |#1|) (QUOTE (-740))) (|HasCategory| (-89 |#1|) (QUOTE (-756)))) (|HasCategory| (-89 |#1|) (QUOTE (-950 (-483)))) (|HasCategory| (-89 |#1|) (QUOTE (-1064))) (|HasCategory| (-89 |#1|) (QUOTE (-796 (-327)))) (|HasCategory| (-89 |#1|) (QUOTE (-796 (-483)))) (|HasCategory| (-89 |#1|) (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-89 |#1|) (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-89 |#1|) (QUOTE (-580 (-483)))) (|HasCategory| (-89 |#1|) (QUOTE (-189))) (|HasCategory| (-89 |#1|) (QUOTE (-811 (-1088)))) (|HasCategory| (-89 |#1|) (QUOTE (-190))) (|HasCategory| (-89 |#1|) (QUOTE (-809 (-1088)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -452) (QUOTE (-1088)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -259) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -89) (|devaluate| |#1|)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (QUOTE (-257))) (|HasCategory| (-89 |#1|) (QUOTE (-482))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-821)))) (|HasCategory| (-89 |#1|) (QUOTE (-118)))))
+((-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| (-89 |#1|) (QUOTE (-822))) (|HasCategory| (-89 |#1|) (QUOTE (-951 (-1089)))) (|HasCategory| (-89 |#1|) (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-120))) (|HasCategory| (-89 |#1|) (QUOTE (-554 (-473)))) (|HasCategory| (-89 |#1|) (QUOTE (-934))) (|HasCategory| (-89 |#1|) (QUOTE (-741))) (|HasCategory| (-89 |#1|) (QUOTE (-757))) (OR (|HasCategory| (-89 |#1|) (QUOTE (-741))) (|HasCategory| (-89 |#1|) (QUOTE (-757)))) (|HasCategory| (-89 |#1|) (QUOTE (-951 (-484)))) (|HasCategory| (-89 |#1|) (QUOTE (-1065))) (|HasCategory| (-89 |#1|) (QUOTE (-797 (-327)))) (|HasCategory| (-89 |#1|) (QUOTE (-797 (-484)))) (|HasCategory| (-89 |#1|) (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-89 |#1|) (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-89 |#1|) (QUOTE (-581 (-484)))) (|HasCategory| (-89 |#1|) (QUOTE (-189))) (|HasCategory| (-89 |#1|) (QUOTE (-812 (-1089)))) (|HasCategory| (-89 |#1|) (QUOTE (-190))) (|HasCategory| (-89 |#1|) (QUOTE (-810 (-1089)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -453) (QUOTE (-1089)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -259) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -89) (|devaluate| |#1|)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (QUOTE (-257))) (|HasCategory| (-89 |#1|) (QUOTE (-483))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-822)))) (|HasCategory| (-89 |#1|) (QUOTE (-118)))))
(-91 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasAttribute| |#1| (QUOTE -3990)))
+((|HasAttribute| |#1| (QUOTE -3992)))
(-92 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
@@ -306,15 +306,15 @@ NIL
NIL
(-94 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
-((-3989 . T) (-3990 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
+((-3991 . T) (-3992 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
(-95 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")))
NIL
NIL
(-96)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")))
-((-3990 . T) (-3989 . T))
+((-3992 . T) (-3991 . T))
NIL
(-97 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
@@ -322,24 +322,24 @@ NIL
NIL
(-98 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-3989 . T) (-3990 . T))
+((-3991 . T) (-3992 . T))
NIL
(-99 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
-((-3989 . T) (-3990 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
+((-3991 . T) (-3992 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
(-100 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
-((-3989 . T) (-3990 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
+((-3991 . T) (-3992 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
(-101)
((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value `v' into the Byte algebra. `v' must be non-negative and less than 256.")))
NIL
NIL
(-102)
((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity `n'. The array can then store up to `n' bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if `n' is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0.")))
-((-3990 . T) (-3989 . T))
-((OR (-12 (|HasCategory| (-101) (QUOTE (-259 (-101)))) (|HasCategory| (-101) (QUOTE (-756)))) (-12 (|HasCategory| (-101) (QUOTE (-259 (-101)))) (|HasCategory| (-101) (QUOTE (-1012))))) (|HasCategory| (-101) (QUOTE (-552 (-772)))) (|HasCategory| (-101) (QUOTE (-553 (-472)))) (OR (|HasCategory| (-101) (QUOTE (-756))) (|HasCategory| (-101) (QUOTE (-1012)))) (|HasCategory| (-101) (QUOTE (-756))) (OR (|HasCategory| (-101) (QUOTE (-72))) (|HasCategory| (-101) (QUOTE (-756))) (|HasCategory| (-101) (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-756))) (|HasCategory| (-101) (QUOTE (-1012))) (|HasCategory| (-101) (QUOTE (-72))) (-12 (|HasCategory| (-101) (QUOTE (-259 (-101)))) (|HasCategory| (-101) (QUOTE (-1012)))))
+((-3992 . T) (-3991 . T))
+((OR (-12 (|HasCategory| (-101) (QUOTE (-259 (-101)))) (|HasCategory| (-101) (QUOTE (-757)))) (-12 (|HasCategory| (-101) (QUOTE (-259 (-101)))) (|HasCategory| (-101) (QUOTE (-1013))))) (|HasCategory| (-101) (QUOTE (-553 (-773)))) (|HasCategory| (-101) (QUOTE (-554 (-473)))) (OR (|HasCategory| (-101) (QUOTE (-757))) (|HasCategory| (-101) (QUOTE (-1013)))) (|HasCategory| (-101) (QUOTE (-757))) (OR (|HasCategory| (-101) (QUOTE (-72))) (|HasCategory| (-101) (QUOTE (-757))) (|HasCategory| (-101) (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-757))) (|HasCategory| (-101) (QUOTE (-1013))) (|HasCategory| (-101) (QUOTE (-72))) (-12 (|HasCategory| (-101) (QUOTE (-259 (-101)))) (|HasCategory| (-101) (QUOTE (-1013)))))
(-103)
((|constructor| (NIL "This datatype describes byte order of machine values stored memory.")) (|unknownEndian| (($) "\\spad{unknownEndian} for none of the above.")) (|bigEndian| (($) "\\spad{bigEndian} describes big endian host")) (|littleEndian| (($) "\\spad{littleEndian} describes little endian host")))
NIL
@@ -358,13 +358,13 @@ NIL
NIL
(-107)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")))
-(((-3991 "*") . T))
+(((-3993 "*") . T))
NIL
-(-108 |minix| -2617 R)
+(-108 |minix| -2619 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")))
NIL
NIL
-(-109 |minix| -2617 S T$)
+(-109 |minix| -2619 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
@@ -386,8 +386,8 @@ NIL
NIL
(-114)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-3989 . T) (-3979 . T) (-3990 . T))
-((OR (-12 (|HasCategory| (-117) (QUOTE (-259 (-117)))) (|HasCategory| (-117) (QUOTE (-317)))) (-12 (|HasCategory| (-117) (QUOTE (-259 (-117)))) (|HasCategory| (-117) (QUOTE (-1012))))) (|HasCategory| (-117) (QUOTE (-553 (-472)))) (|HasCategory| (-117) (QUOTE (-317))) (|HasCategory| (-117) (QUOTE (-756))) (|HasCategory| (-117) (QUOTE (-1012))) (|HasCategory| (-117) (QUOTE (-552 (-772)))) (|HasCategory| (-117) (QUOTE (-72))) (-12 (|HasCategory| (-117) (QUOTE (-259 (-117)))) (|HasCategory| (-117) (QUOTE (-1012)))))
+((-3991 . T) (-3981 . T) (-3992 . T))
+((OR (-12 (|HasCategory| (-117) (QUOTE (-259 (-117)))) (|HasCategory| (-117) (QUOTE (-317)))) (-12 (|HasCategory| (-117) (QUOTE (-259 (-117)))) (|HasCategory| (-117) (QUOTE (-1013))))) (|HasCategory| (-117) (QUOTE (-554 (-473)))) (|HasCategory| (-117) (QUOTE (-317))) (|HasCategory| (-117) (QUOTE (-757))) (|HasCategory| (-117) (QUOTE (-1013))) (|HasCategory| (-117) (QUOTE (-553 (-773)))) (|HasCategory| (-117) (QUOTE (-72))) (-12 (|HasCategory| (-117) (QUOTE (-259 (-117)))) (|HasCategory| (-117) (QUOTE (-1013)))))
(-115 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn.")))
NIL
@@ -402,7 +402,7 @@ NIL
NIL
(-118)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-3986 . T))
+((-3988 . T))
NIL
(-119 R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial 'x,{} then it returns the characteristic polynomial expressed as a polynomial in 'x.")))
@@ -410,9 +410,9 @@ NIL
NIL
(-120)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-3986 . T))
+((-3988 . T))
NIL
-(-121 -3088 UP UPUP)
+(-121 -3090 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}.")))
NIL
NIL
@@ -423,14 +423,14 @@ NIL
(-123 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (QUOTE (-553 (-472)))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasAttribute| |#1| (QUOTE -3989)))
+((|HasCategory| |#2| (QUOTE (-554 (-473)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasAttribute| |#1| (QUOTE -3991)))
(-124 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
NIL
(-125 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-3984 . T) (-3983 . T) (-3986 . T))
+((-3986 . T) (-3985 . T) (-3988 . T))
NIL
(-126)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
@@ -452,7 +452,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-131 R -3088)
+(-131 R -3090)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})/P(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} n!.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} n!/(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} n!/(r! * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -483,10 +483,10 @@ NIL
(-138 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-482))) (|HasCategory| |#2| (QUOTE (-915))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-972))) (|HasCategory| |#2| (QUOTE (-933))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-553 (-472)))) (|HasCategory| |#2| (QUOTE (-311))) (|HasAttribute| |#2| (QUOTE -3985)) (|HasAttribute| |#2| (QUOTE -3988)) (|HasCategory| |#2| (QUOTE (-257))) (|HasCategory| |#2| (QUOTE (-494))))
+((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-1114))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-473)))) (|HasCategory| |#2| (QUOTE (-311))) (|HasAttribute| |#2| (QUOTE -3987)) (|HasAttribute| |#2| (QUOTE -3990)) (|HasCategory| |#2| (QUOTE (-257))) (|HasCategory| |#2| (QUOTE (-495))))
(-139 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-3982 OR (|has| |#1| (-494)) (-12 (|has| |#1| (-257)) (|has| |#1| (-821)))) (-3987 |has| |#1| (-311)) (-3981 |has| |#1| (-311)) (-3985 |has| |#1| (-6 -3985)) (-3988 |has| |#1| (-6 -3988)) (-1373 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3984 OR (|has| |#1| (-495)) (-12 (|has| |#1| (-257)) (|has| |#1| (-822)))) (-3989 |has| |#1| (-311)) (-3983 |has| |#1| (-311)) (-3987 |has| |#1| (-6 -3987)) (-3990 |has| |#1| (-6 -3990)) (-1374 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
(-140 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
@@ -498,8 +498,8 @@ NIL
NIL
(-142 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-3982 OR (|has| |#1| (-494)) (-12 (|has| |#1| (-257)) (|has| |#1| (-821)))) (-3987 |has| |#1| (-311)) (-3981 |has| |#1| (-311)) (-3985 |has| |#1| (-6 -3985)) (-3988 |has| |#1| (-6 -3988)) (-1373 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-298))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-298)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-317))) (OR (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-298)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-298)))) (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-809 (-1088))))) (|HasCategory| |#1| (QUOTE (-811 (-1088))))) (|HasCategory| |#1| (QUOTE (-580 (-483)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-311)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-821))))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-298)))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-327))))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-483))))) (|HasCategory| |#1| (QUOTE (-796 (-327)))) (|HasCategory| |#1| (QUOTE (-796 (-483)))) (|HasCategory| |#1| (|%list| (QUOTE -452) (QUOTE (-1088)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-972))) (-12 (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-482))) (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-821))) (OR (-12 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-311)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-189)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1088)))) (|HasCategory| |#1| (QUOTE (-190))) (-12 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasAttribute| |#1| (QUOTE -3985)) (|HasAttribute| |#1| (QUOTE -3988)) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-311)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-811 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-311)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-809 (-1088))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-298)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+((-3984 OR (|has| |#1| (-495)) (-12 (|has| |#1| (-257)) (|has| |#1| (-822)))) (-3989 |has| |#1| (-311)) (-3983 |has| |#1| (-311)) (-3987 |has| |#1| (-6 -3987)) (-3990 |has| |#1| (-6 -3990)) (-1374 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-298))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-298)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-317))) (OR (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-298)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-298)))) (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-810 (-1089))))) (|HasCategory| |#1| (QUOTE (-812 (-1089))))) (|HasCategory| |#1| (QUOTE (-581 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-311)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-822))))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-1114)))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-298)))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-327))))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-484))))) (|HasCategory| |#1| (QUOTE (-797 (-327)))) (|HasCategory| |#1| (QUOTE (-797 (-484)))) (|HasCategory| |#1| (|%list| (QUOTE -453) (QUOTE (-1089)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-973))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1114)))) (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-822))) (OR (-12 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-311)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-189)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1089)))) (|HasCategory| |#1| (QUOTE (-190))) (-12 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasAttribute| |#1| (QUOTE -3987)) (|HasAttribute| |#1| (QUOTE -3990)) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-311)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-812 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-311)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-810 (-1089))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-298)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
(-143 R S)
((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}.")))
NIL
@@ -514,7 +514,7 @@ NIL
NIL
(-146)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+(((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
(-147)
((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations.")))
@@ -522,7 +522,7 @@ NIL
NIL
(-148 R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-3991 "*") . T) (-3982 . T) (-3987 . T) (-3981 . T) (-3983 . T) (-3984 . T) (-3986 . T))
+(((-3993 "*") . T) (-3984 . T) (-3989 . T) (-3983 . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
(-149)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with `n'. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding `b'.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}.")))
@@ -539,7 +539,7 @@ NIL
(-152 R S CS)
((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
-((|HasCategory| (-857 |#2|) (|%list| (QUOTE -796) (|devaluate| |#1|))))
+((|HasCategory| (-858 |#2|) (|%list| (QUOTE -797) (|devaluate| |#1|))))
(-153 R)
((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)*lm(2)*...*lm(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}")))
NIL
@@ -576,7 +576,7 @@ NIL
((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' is the kind of package constructors.")) (|domain| (($) "`domain' is the kind of domain constructors")) (|category| (($) "`category' is the kind of category constructors")))
NIL
NIL
-(-162 R -3088)
+(-162 R -3090)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -604,23 +604,23 @@ NIL
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a dual vector space basis,{} given by symbols.}")) (|dual| (($ (|LinearBasis| |#1|)) "\\spad{dual x} constructs the dual vector of a linear element which is part of a basis.")))
NIL
NIL
-(-169 -3088 UP UPUP R)
+(-169 -3090 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-170 -3088 FP)
+(-170 -3090 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and q= size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-171)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")))
-((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| (-483) (QUOTE (-821))) (|HasCategory| (-483) (QUOTE (-950 (-1088)))) (|HasCategory| (-483) (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-120))) (|HasCategory| (-483) (QUOTE (-553 (-472)))) (|HasCategory| (-483) (QUOTE (-933))) (|HasCategory| (-483) (QUOTE (-740))) (|HasCategory| (-483) (QUOTE (-756))) (OR (|HasCategory| (-483) (QUOTE (-740))) (|HasCategory| (-483) (QUOTE (-756)))) (|HasCategory| (-483) (QUOTE (-950 (-483)))) (|HasCategory| (-483) (QUOTE (-1064))) (|HasCategory| (-483) (QUOTE (-796 (-327)))) (|HasCategory| (-483) (QUOTE (-796 (-483)))) (|HasCategory| (-483) (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-483) (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-483) (QUOTE (-189))) (|HasCategory| (-483) (QUOTE (-811 (-1088)))) (|HasCategory| (-483) (QUOTE (-190))) (|HasCategory| (-483) (QUOTE (-809 (-1088)))) (|HasCategory| (-483) (QUOTE (-452 (-1088) (-483)))) (|HasCategory| (-483) (QUOTE (-259 (-483)))) (|HasCategory| (-483) (QUOTE (-241 (-483) (-483)))) (|HasCategory| (-483) (QUOTE (-257))) (|HasCategory| (-483) (QUOTE (-482))) (|HasCategory| (-483) (QUOTE (-580 (-483)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-821)))) (|HasCategory| (-483) (QUOTE (-118)))))
+((-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| (-484) (QUOTE (-822))) (|HasCategory| (-484) (QUOTE (-951 (-1089)))) (|HasCategory| (-484) (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-120))) (|HasCategory| (-484) (QUOTE (-554 (-473)))) (|HasCategory| (-484) (QUOTE (-934))) (|HasCategory| (-484) (QUOTE (-741))) (|HasCategory| (-484) (QUOTE (-757))) (OR (|HasCategory| (-484) (QUOTE (-741))) (|HasCategory| (-484) (QUOTE (-757)))) (|HasCategory| (-484) (QUOTE (-951 (-484)))) (|HasCategory| (-484) (QUOTE (-1065))) (|HasCategory| (-484) (QUOTE (-797 (-327)))) (|HasCategory| (-484) (QUOTE (-797 (-484)))) (|HasCategory| (-484) (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-484) (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-484) (QUOTE (-189))) (|HasCategory| (-484) (QUOTE (-812 (-1089)))) (|HasCategory| (-484) (QUOTE (-190))) (|HasCategory| (-484) (QUOTE (-810 (-1089)))) (|HasCategory| (-484) (QUOTE (-453 (-1089) (-484)))) (|HasCategory| (-484) (QUOTE (-259 (-484)))) (|HasCategory| (-484) (QUOTE (-241 (-484) (-484)))) (|HasCategory| (-484) (QUOTE (-257))) (|HasCategory| (-484) (QUOTE (-483))) (|HasCategory| (-484) (QUOTE (-581 (-484)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-822)))) (|HasCategory| (-484) (QUOTE (-118)))))
(-172)
((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition `d'.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition `d'. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-173 R -3088)
+(-173 R -3090)
((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
@@ -634,19 +634,19 @@ NIL
NIL
(-176 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
-((-3989 . T) (-3990 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
+((-3991 . T) (-3992 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
(-177 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-3986 . T))
+((-3988 . T))
NIL
-(-178 R -3088)
+(-178 R -3090)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-179)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|nan?| (((|Boolean|) $) "\\spad{nan? x} holds if \\spad{x} is a Not a Number floating point data in the IEEE 754 sense.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-3764 . T) (-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3766 . T) (-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
(-180)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}")))
@@ -654,19 +654,19 @@ NIL
NIL
(-181 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
-((-3989 . T) (-3990 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-494))) (|HasAttribute| |#1| (QUOTE (-3991 "*"))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-72))))
+((-3991 . T) (-3992 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-495))) (|HasAttribute| |#1| (QUOTE (-3993 "*"))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-72))))
(-182 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
(-183 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-3990 . T))
+((-3992 . T))
NIL
(-184 R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")))
-((-3986 . T))
+((-3988 . T))
NIL
(-185 S T$)
((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#2| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#2| $) "\\spad{differentiate x} compute the derivative of \\spad{x}.")))
@@ -678,7 +678,7 @@ NIL
NIL
(-187 R)
((|constructor| (NIL "An \\spad{R}-module equipped with a distinguised differential operator. If \\spad{R} is a differential ring,{} then differentiation on the module should extend differentiation on the differential ring \\spad{R}. The latter can be the null operator. In that case,{} the differentiation operator on the module is just an \\spad{R}-linear operator. For that reason,{} we do not require that the ring \\spad{R} be a DifferentialRing; \\blankline")))
-((-3984 . T) (-3983 . T))
+((-3986 . T) (-3985 . T))
NIL
(-188 S)
((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")))
@@ -690,7 +690,7 @@ NIL
NIL
(-190)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")))
-((-3986 . T))
+((-3988 . T))
NIL
(-191)
((|constructor| (NIL "Dioid is the class of semirings where the addition operation induces a canonical order relation.")))
@@ -699,28 +699,28 @@ NIL
(-192 A S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -3989)))
+((|HasAttribute| |#1| (QUOTE -3991)))
(-193 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-3990 . T))
+((-3992 . T))
NIL
(-194)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-195 S -2617 R)
+(-195 S -2619 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-756))) (|HasAttribute| |#3| (QUOTE -3986)) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-1012))))
-(-196 -2617 R)
+((|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757))) (|HasAttribute| |#3| (QUOTE -3988)) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-1013))))
+(-196 -2619 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
-((-3983 |has| |#2| (-961)) (-3984 |has| |#2| (-961)) (-3986 |has| |#2| (-6 -3986)) (-3989 . T))
+((-3985 |has| |#2| (-962)) (-3986 |has| |#2| (-962)) (-3988 |has| |#2| (-6 -3988)) (-3991 . T))
NIL
-(-197 -2617 R)
+(-197 -2619 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-3983 |has| |#2| (-961)) (-3984 |has| |#2| (-961)) (-3986 |has| |#2| (-6 -3986)) (-3989 . T))
-((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-311))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-311)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (OR (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756)))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-317))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (QUOTE (-809 (-1088))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-811 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-809 (-1088))))) (|HasCategory| |#2| (QUOTE (-1012))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-1012))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| (-483) (QUOTE (-756))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-1012)))) (|HasAttribute| |#2| (QUOTE -3986)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))))
-(-198 -2617 A B)
+((-3985 |has| |#2| (-962)) (-3986 |has| |#2| (-962)) (-3988 |has| |#2| (-6 -3988)) (-3991 . T))
+((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-311))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-311)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (OR (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-317))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (QUOTE (-810 (-1089))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-812 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-810 (-1089))))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| (-484) (QUOTE (-757))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-812 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasAttribute| |#2| (QUOTE -3988)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))))
+(-198 -2619 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
@@ -734,7 +734,7 @@ NIL
NIL
(-201)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-3982 . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3984 . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
(-202 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
@@ -742,20 +742,20 @@ NIL
NIL
(-203 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")))
-((-3990 . T) (-3989 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))))
+((-3992 . T) (-3991 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))))
(-204 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank's algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
(-205 R)
((|constructor| (NIL "Category of modules that extend differential rings. \\blankline")))
-((-3984 . T) (-3983 . T))
+((-3986 . T) (-3985 . T))
NIL
(-206 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-3991 "*") |has| |#2| (-146)) (-3982 |has| |#2| (-494)) (-3987 |has| |#2| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T))
-((|HasCategory| |#2| (QUOTE (-821))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-494)))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-327)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-327))))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-483)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-327)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-472)))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-472))))) (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-950 (-483)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-311))) (|HasAttribute| |#2| (QUOTE -3987)) (|HasCategory| |#2| (QUOTE (-389))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
+(((-3993 "*") |has| |#2| (-146)) (-3984 |has| |#2| (-495)) (-3989 |has| |#2| (-6 -3989)) (-3986 . T) (-3985 . T) (-3988 . T))
+((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-495)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-327)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-327))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-484)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-327)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-473)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-473))))) (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-951 (-484)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-311))) (|HasAttribute| |#2| (QUOTE -3989)) (|HasCategory| |#2| (QUOTE (-389))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
(-207)
((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain `d'.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain `x'.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object `d'.")))
NIL
@@ -770,23 +770,23 @@ NIL
NIL
(-210 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-3986 OR (-2558 (|has| |#4| (-961)) (|has| |#4| (-190))) (|has| |#4| (-6 -3986)) (-2558 (|has| |#4| (-961)) (|has| |#4| (-809 (-1088))))) (-3983 |has| |#4| (-961)) (-3984 |has| |#4| (-961)) (-3989 . T))
-((OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-317))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-663))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-756))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-809 (-1088)))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-311))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (QUOTE (-961)))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-311)))) (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (QUOTE (-663))) (|HasCategory| |#4| (QUOTE (-717))) (OR (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (QUOTE (-756)))) (|HasCategory| |#4| (QUOTE (-756))) (|HasCategory| |#4| (QUOTE (-317))) (OR (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-580 (-483)))) (|HasCategory| |#4| (QUOTE (-809 (-1088))))) (-12 (|HasCategory| |#4| (QUOTE (-580 (-483)))) (|HasCategory| |#4| (QUOTE (-961))))) (|HasCategory| |#4| (QUOTE (-809 (-1088)))) (OR (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-809 (-1088)))) (|HasCategory| |#4| (QUOTE (-961)))) (|HasCategory| |#4| (QUOTE (-190))) (OR (|HasCategory| |#4| (QUOTE (-190))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-811 (-1088)))) (|HasCategory| |#4| (QUOTE (-961)))) (|HasCategory| |#4| (QUOTE (-809 (-1088))))) (|HasCategory| |#4| (QUOTE (-1012))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#4| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#4| (QUOTE (-663))) (|HasCategory| |#4| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#4| (QUOTE (-756))) (|HasCategory| |#4| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#4| (QUOTE (-809 (-1088)))) (|HasCategory| |#4| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#4| (QUOTE (-1012))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-756))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-809 (-1088)))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-483)))) (|HasCategory| |#4| (QUOTE (-1012)))) (-12 (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-663))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (|HasCategory| |#4| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-756))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-809 (-1088)))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-483)))) (|HasCategory| |#4| (QUOTE (-1012)))) (-12 (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-663))) (|HasCategory| |#4| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-483)))) (|HasCategory| |#4| (QUOTE (-961))))) (|HasCategory| (-483) (QUOTE (-756))) (-12 (|HasCategory| |#4| (QUOTE (-580 (-483)))) (|HasCategory| |#4| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-809 (-1088)))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-811 (-1088)))) (|HasCategory| |#4| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-961))))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-483)))) (|HasCategory| |#4| (QUOTE (-1012)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-950 (-483)))) (|HasCategory| |#4| (QUOTE (-1012)))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#4| (QUOTE (-1012)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-809 (-1088)))) (|HasCategory| |#4| (QUOTE (-961)))) (|HasAttribute| |#4| (QUOTE -3986)) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-961))))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-811 (-1088)))) (|HasCategory| |#4| (QUOTE (-961)))) (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-104))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-72))) (-12 (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))))
+((-3988 OR (-2560 (|has| |#4| (-962)) (|has| |#4| (-190))) (|has| |#4| (-6 -3988)) (-2560 (|has| |#4| (-962)) (|has| |#4| (-810 (-1089))))) (-3985 |has| |#4| (-962)) (-3986 |has| |#4| (-962)) (-3991 . T))
+((OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-317))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1089)))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-962))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-311))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (QUOTE (-962)))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-311)))) (|HasCategory| |#4| (QUOTE (-962))) (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-718))) (OR (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-757)))) (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-317))) (OR (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-581 (-484)))) (|HasCategory| |#4| (QUOTE (-810 (-1089))))) (-12 (|HasCategory| |#4| (QUOTE (-581 (-484)))) (|HasCategory| |#4| (QUOTE (-962))))) (|HasCategory| |#4| (QUOTE (-810 (-1089)))) (OR (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-810 (-1089)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasCategory| |#4| (QUOTE (-190))) (OR (|HasCategory| |#4| (QUOTE (-190))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-812 (-1089)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasCategory| |#4| (QUOTE (-810 (-1089))))) (|HasCategory| |#4| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1089)))) (|HasCategory| |#4| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#4| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1089)))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-484)))) (|HasCategory| |#4| (QUOTE (-1013)))) (-12 (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (|HasCategory| |#4| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1089)))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-484)))) (|HasCategory| |#4| (QUOTE (-1013)))) (-12 (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-484)))) (|HasCategory| |#4| (QUOTE (-962))))) (|HasCategory| (-484) (QUOTE (-757))) (-12 (|HasCategory| |#4| (QUOTE (-581 (-484)))) (|HasCategory| |#4| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-810 (-1089)))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-812 (-1089)))) (|HasCategory| |#4| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-962))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-484)))) (|HasCategory| |#4| (QUOTE (-1013)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-951 (-484)))) (|HasCategory| |#4| (QUOTE (-1013)))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#4| (QUOTE (-1013)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-810 (-1089)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasAttribute| |#4| (QUOTE -3988)) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-962))))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-812 (-1089)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-104))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-72))) (-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))))
(-211 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-3986 OR (-2558 (|has| |#3| (-961)) (|has| |#3| (-190))) (|has| |#3| (-6 -3986)) (-2558 (|has| |#3| (-961)) (|has| |#3| (-809 (-1088))))) (-3983 |has| |#3| (-961)) (-3984 |has| |#3| (-961)) (-3989 . T))
-((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-311))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-311)))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-717))) (OR (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-756)))) (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-317))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-483)))) (|HasCategory| |#3| (QUOTE (-809 (-1088))))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-483)))) (|HasCategory| |#3| (QUOTE (-961))))) (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-811 (-1088)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-809 (-1088))))) (|HasCategory| |#3| (QUOTE (-1012))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#3| (QUOTE (-1012))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-483)))) (|HasCategory| |#3| (QUOTE (-1012)))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-483)))) (|HasCategory| |#3| (QUOTE (-1012)))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-483)))) (|HasCategory| |#3| (QUOTE (-961))))) (|HasCategory| (-483) (QUOTE (-756))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-483)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1088)))) (|HasCategory| |#3| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-961))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-483)))) (|HasCategory| |#3| (QUOTE (-1012)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-950 (-483)))) (|HasCategory| |#3| (QUOTE (-1012)))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#3| (QUOTE (-1012)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasAttribute| |#3| (QUOTE -3986)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-961))))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1088)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-552 (-772)))) (|HasCategory| |#3| (QUOTE (-72))) (-12 (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))))
+((-3988 OR (-2560 (|has| |#3| (-962)) (|has| |#3| (-190))) (|has| |#3| (-6 -3988)) (-2560 (|has| |#3| (-962)) (|has| |#3| (-810 (-1089))))) (-3985 |has| |#3| (-962)) (-3986 |has| |#3| (-962)) (-3991 . T))
+((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-311))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-311)))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (OR (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757)))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-317))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-484)))) (|HasCategory| |#3| (QUOTE (-810 (-1089))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-484)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-812 (-1089)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-810 (-1089))))) (|HasCategory| |#3| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#3| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-484)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| (-484) (QUOTE (-757))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-484)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-812 (-1089)))) (|HasCategory| |#3| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-951 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#3| (QUOTE (-1013)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasAttribute| |#3| (QUOTE -3988)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-962))))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-812 (-1089)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-553 (-773)))) (|HasCategory| |#3| (QUOTE (-72))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))))
(-212 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
((|HasCategory| |#2| (QUOTE (-190))))
(-213 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T))
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3989 |has| |#1| (-6 -3989)) (-3986 . T) (-3985 . T) (-3988 . T))
NIL
(-214 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-3989 . T) (-3990 . T))
+((-3991 . T) (-3992 . T))
NIL
(-215 |Ex|)
((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
@@ -827,15 +827,15 @@ NIL
(-224 S R)
((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-811 (-1088)))) (|HasCategory| |#2| (QUOTE (-189))))
+((|HasCategory| |#2| (QUOTE (-812 (-1089)))) (|HasCategory| |#2| (QUOTE (-189))))
(-225 R)
((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}.")))
NIL
NIL
(-226 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-327)))) (|HasCategory| |#3| (QUOTE (-796 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-483)))) (|HasCategory| |#3| (QUOTE (-796 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-327))))) (|HasCategory| |#3| (QUOTE (-553 (-800 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-483))))) (|HasCategory| |#3| (QUOTE (-553 (-800 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| |#3| (QUOTE (-553 (-472))))) (|HasCategory| |#1| (QUOTE (-580 (-483)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1088)))) (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasAttribute| |#1| (QUOTE -3987)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3989 |has| |#1| (-6 -3989)) (-3986 . T) (-3985 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-327)))) (|HasCategory| |#3| (QUOTE (-797 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-484)))) (|HasCategory| |#3| (QUOTE (-797 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-327))))) (|HasCategory| |#3| (QUOTE (-554 (-801 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-484))))) (|HasCategory| |#3| (QUOTE (-554 (-801 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| |#3| (QUOTE (-554 (-473))))) (|HasCategory| |#1| (QUOTE (-581 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1089)))) (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasAttribute| |#1| (QUOTE -3989)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
(-227 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
@@ -848,11 +848,11 @@ NIL
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1's in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0's and 1's into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-230 R -3088)
+(-230 R -3090)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-231 R -3088)
+(-231 R -3090)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
@@ -875,10 +875,10 @@ NIL
(-236 A S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1012))))
+((|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1013))))
(-237 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-3990 . T))
+((-3992 . T))
NIL
(-238 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
@@ -899,18 +899,18 @@ NIL
(-242 S |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasAttribute| |#1| (QUOTE -3990)))
+((|HasAttribute| |#1| (QUOTE -3992)))
(-243 |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-244 S R |Mod| -2033 -3512 |exactQuo|)
+(-244 S R |Mod| -2035 -3514 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
(-245)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-3982 . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3984 . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
(-246)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment")))
@@ -922,16 +922,16 @@ NIL
NIL
(-248 S)
((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the lhs of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations \\spad{e1} and \\spad{e2}.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-3986 OR (|has| |#1| (-961)) (|has| |#1| (-410))) (-3983 |has| |#1| (-961)) (-3984 |has| |#1| (-961)))
-((|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (OR (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#1| (QUOTE (-663)))) (|HasCategory| |#1| (QUOTE (-410))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-1012)))) (OR (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-1024)))) (|HasCategory| |#1| (|%list| (QUOTE -452) (QUOTE (-1088)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-253))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-410)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-663)))) (OR (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-663))))
+((-3988 OR (|has| |#1| (-962)) (|has| |#1| (-410))) (-3985 |has| |#1| (-962)) (-3986 |has| |#1| (-962)))
+((|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (OR (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#1| (QUOTE (-664)))) (|HasCategory| |#1| (QUOTE (-410))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-1013)))) (OR (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-1025)))) (|HasCategory| |#1| (|%list| (QUOTE -453) (QUOTE (-1089)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-253))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-410)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-664)))) (OR (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-664))))
(-249 S R)
((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}")))
NIL
NIL
(-250 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
-((-3989 . T) (-3990 . T))
-((-12 (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3854) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-472)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1012))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))))
+((-3991 . T) (-3992 . T))
+((-12 (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3856) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))))
(-251)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
@@ -939,16 +939,16 @@ NIL
(-252 S)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| |#1| (QUOTE (-961))))
+((|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| |#1| (QUOTE (-962))))
(-253)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
NIL
-(-254 -3088 S)
+(-254 -3090 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-255 E -3088)
+(-255 E -3090)
((|constructor| (NIL "This package allows a mapping \\spad{E} -> \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}.")))
NIL
NIL
@@ -958,7 +958,7 @@ NIL
NIL
(-257)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a gcd of \\spad{x} and \\spad{y}. The gcd is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
(-258 S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
@@ -968,7 +968,7 @@ NIL
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-260 -3088)
+(-260 -3090)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
@@ -982,12 +982,12 @@ NIL
NIL
(-263 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}.")))
-((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-821))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-950 (-1088)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-553 (-472)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-933))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-740))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-756))) (OR (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-740))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-756)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-950 (-483)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-1064))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-796 (-327)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-796 (-483)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-580 (-483)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-189))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-811 (-1088)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-190))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-809 (-1088)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -452) (QUOTE (-1088)) (|%list| (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -259) (|%list| (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -241) (|%list| (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-257))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-482))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-821)))) (|HasCategory| (-1164 |#1| |#2| |#3| |#4|) (QUOTE (-118)))))
+((-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-822))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-951 (-1089)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-554 (-473)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-934))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-741))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-757))) (OR (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-741))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-757)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-951 (-484)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-1065))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-797 (-327)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-797 (-484)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-581 (-484)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-189))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-812 (-1089)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-190))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-810 (-1089)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -453) (QUOTE (-1089)) (|%list| (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -259) (|%list| (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -241) (|%list| (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-257))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-483))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-822)))) (|HasCategory| (-1165 |#1| |#2| |#3| |#4|) (QUOTE (-118)))))
(-264 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-3986 OR (-12 (|has| |#1| (-494)) (OR (|has| |#1| (-961)) (|has| |#1| (-410)))) (|has| |#1| (-961)) (|has| |#1| (-410))) (-3984 |has| |#1| (-146)) (-3983 |has| |#1| (-146)) ((-3991 "*") |has| |#1| (-494)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-494)) (-3981 |has| |#1| (-494)))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-950 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#1| (QUOTE (-494))) (OR (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-580 (-483)))) (|HasCategory| |#1| (QUOTE (-961))))) (OR (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#1| (QUOTE (-1024)))) (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| |#1| (QUOTE (-796 (-327)))) (|HasCategory| |#1| (QUOTE (-796 (-483)))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-327))))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-950 (-483))))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-961)))) (-12 (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-580 (-483)))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-580 (-483)))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-580 (-483)))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1024)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-580 (-483)))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-25)))) (OR (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-950 (-483)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (QUOTE (-950 (-483)))))
+((-3988 OR (-12 (|has| |#1| (-495)) (OR (|has| |#1| (-962)) (|has| |#1| (-410)))) (|has| |#1| (-962)) (|has| |#1| (-410))) (-3986 |has| |#1| (-146)) (-3985 |has| |#1| (-146)) ((-3993 "*") |has| |#1| (-495)) (-3984 |has| |#1| (-495)) (-3989 |has| |#1| (-495)) (-3983 |has| |#1| (-495)))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-951 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-581 (-484)))) (|HasCategory| |#1| (QUOTE (-962))))) (OR (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#1| (QUOTE (-1025)))) (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| |#1| (QUOTE (-797 (-327)))) (|HasCategory| |#1| (QUOTE (-797 (-484)))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-327))))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-951 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-962)))) (-12 (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-581 (-484)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-581 (-484)))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-581 (-484)))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1025)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-581 (-484)))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-25)))) (OR (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-951 (-484)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| $ (QUOTE (-962))) (|HasCategory| $ (QUOTE (-951 (-484)))))
(-265 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
@@ -996,7 +996,7 @@ NIL
((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series.")))
NIL
NIL
-(-267 R -3088)
+(-267 R -3090)
((|constructor| (NIL "Taylor series solutions of explicit ODE's.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}.")))
NIL
NIL
@@ -1006,8 +1006,8 @@ NIL
NIL
(-269 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-311)) (-3981 |has| |#1| (-311)) (-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483))) (|devaluate| |#1|)))) (|HasCategory| (-347 (-483)) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483)))))) (|HasSignature| |#1| (|%list| (QUOTE -3940) (|%list| (|devaluate| |#1|) (QUOTE (-1088)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-29 (-483)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3806) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1088))))) (|HasSignature| |#1| (|%list| (QUOTE -3077) (|%list| (|%list| (QUOTE -583) (QUOTE (-1088))) (|devaluate| |#1|)))))))
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3989 |has| |#1| (-311)) (-3983 |has| |#1| (-311)) (-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484))) (|devaluate| |#1|)))) (|HasCategory| (-347 (-484)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484)))))) (|HasSignature| |#1| (|%list| (QUOTE -3942) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3808) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3079) (|%list| (|%list| (QUOTE -584) (QUOTE (-1089))) (|devaluate| |#1|)))))))
(-270 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}rm are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1018,8 +1018,8 @@ NIL
NIL
(-272 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The operation is commutative.")))
-((-3984 . T) (-3983 . T))
-((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| (-483) (QUOTE (-716))))
+((-3986 . T) (-3985 . T))
+((|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| (-484) (QUOTE (-717))))
(-273 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}'s.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} \\spad{a1}\\^\\spad{e1} ... an\\^en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
NIL
@@ -1027,26 +1027,26 @@ NIL
(-274 S)
((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are non-negative integers. The operation is commutative.")))
NIL
-((|HasCategory| (-694) (QUOTE (-716))))
+((|HasCategory| (-695) (QUOTE (-717))))
(-275 S R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the gcd of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
NIL
-((|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-146))))
+((|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))))
(-276 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the gcd of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3983 . T) (-3984 . T) (-3986 . T))
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
(-277 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
-((-3990 . T) (-3989 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))))
-(-278 S -3088)
+((-3992 . T) (-3991 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))))
+(-278 S -3090)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace.")))
NIL
((|HasCategory| |#2| (QUOTE (-317))))
-(-279 -3088)
+(-279 -3090)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace.")))
-((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
(-280 E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series")))
@@ -1056,7 +1056,7 @@ NIL
((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}.")))
NIL
NIL
-(-282 -3088 UP UPUP R)
+(-282 -3090 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
NIL
NIL
@@ -1064,33 +1064,33 @@ NIL
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}")))
NIL
NIL
-(-284 S -3088 UP UPUP R)
+(-284 S -3090 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-285 -3088 UP UPUP R)
+(-285 -3090 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
(-286 S R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
-((|HasCategory| |#2| (|%list| (QUOTE -452) (QUOTE (-1088)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|))))
+((|HasCategory| |#2| (|%list| (QUOTE -453) (QUOTE (-1089)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|))))
(-287 R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
NIL
(-288 |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
-((OR (|HasCategory| (-817 |#1|) (QUOTE (-118))) (|HasCategory| (-817 |#1|) (QUOTE (-317)))) (|HasCategory| (-817 |#1|) (QUOTE (-120))) (|HasCategory| (-817 |#1|) (QUOTE (-317))) (|HasCategory| (-817 |#1|) (QUOTE (-118))))
-(-289 S -3088 UP UPUP)
+((-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
+((OR (|HasCategory| (-818 |#1|) (QUOTE (-118))) (|HasCategory| (-818 |#1|) (QUOTE (-317)))) (|HasCategory| (-818 |#1|) (QUOTE (-120))) (|HasCategory| (-818 |#1|) (QUOTE (-317))) (|HasCategory| (-818 |#1|) (QUOTE (-118))))
+(-289 S -3090 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
((|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-311))))
-(-290 -3088 UP UPUP)
+(-290 -3090 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-3982 |has| (-347 |#2|) (-311)) (-3987 |has| (-347 |#2|) (-311)) (-3981 |has| (-347 |#2|) (-311)) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3984 |has| (-347 |#2|) (-311)) (-3989 |has| (-347 |#2|) (-311)) (-3983 |has| (-347 |#2|) (-311)) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
(-291 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
@@ -1098,15 +1098,15 @@ NIL
NIL
(-292 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
-((OR (|HasCategory| (-817 |#1|) (QUOTE (-118))) (|HasCategory| (-817 |#1|) (QUOTE (-317)))) (|HasCategory| (-817 |#1|) (QUOTE (-120))) (|HasCategory| (-817 |#1|) (QUOTE (-317))) (|HasCategory| (-817 |#1|) (QUOTE (-118))))
+((-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
+((OR (|HasCategory| (-818 |#1|) (QUOTE (-118))) (|HasCategory| (-818 |#1|) (QUOTE (-317)))) (|HasCategory| (-818 |#1|) (QUOTE (-120))) (|HasCategory| (-818 |#1|) (QUOTE (-317))) (|HasCategory| (-818 |#1|) (QUOTE (-118))))
(-293 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(GF,{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-118))))
(-294 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(GF,{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-118))))
(-295 GF)
((|constructor| (NIL "FiniteFieldFunctions(GF) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
@@ -1122,43 +1122,43 @@ NIL
NIL
(-298)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see ch.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-299 R UP -3088)
+(-299 R UP -3090)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-300 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
-((OR (|HasCategory| (-817 |#1|) (QUOTE (-118))) (|HasCategory| (-817 |#1|) (QUOTE (-317)))) (|HasCategory| (-817 |#1|) (QUOTE (-120))) (|HasCategory| (-817 |#1|) (QUOTE (-317))) (|HasCategory| (-817 |#1|) (QUOTE (-118))))
+((-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
+((OR (|HasCategory| (-818 |#1|) (QUOTE (-118))) (|HasCategory| (-818 |#1|) (QUOTE (-317)))) (|HasCategory| (-818 |#1|) (QUOTE (-120))) (|HasCategory| (-818 |#1|) (QUOTE (-317))) (|HasCategory| (-818 |#1|) (QUOTE (-118))))
(-301 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-118))))
(-302 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-118))))
(-303 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-118))))
(-304 GF)
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(GF) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(GF) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(GF) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(GF) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(GF) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(GF) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-305 -3088 GF)
+(-305 -3090 GF)
((|constructor| (NIL "\\spad{FiniteFieldPolynomialPackage2}(\\spad{F},{}GF) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-306 -3088 FP FPP)
+(-306 -3090 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")))
NIL
NIL
(-307 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-118))))
(-308 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{ls}.")))
@@ -1166,7 +1166,7 @@ NIL
NIL
(-309 S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-3986 . T))
+((-3988 . T))
NIL
(-310 S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
@@ -1174,7 +1174,7 @@ NIL
NIL
(-311)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
(-312 S)
((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result.")))
@@ -1187,10 +1187,10 @@ NIL
(-314 S R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
NIL
-((|HasCategory| |#2| (QUOTE (-494))))
+((|HasCategory| |#2| (QUOTE (-495))))
(-315 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-3986 |has| |#1| (-494)) (-3984 . T) (-3983 . T))
+((-3988 |has| |#1| (-495)) (-3986 . T) (-3985 . T))
NIL
(-316 S)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
@@ -1206,15 +1206,15 @@ NIL
((|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-311))))
(-319 R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( Tr(\\spad{vi} * vj) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}'s with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-3983 . T) (-3984 . T) (-3986 . T))
+((-3985 . T) (-3986 . T) (-3988 . T))
NIL
(-320 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -3990)) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1012))))
+((|HasAttribute| |#1| (QUOTE -3992)) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1013))))
(-321 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-3989 . T))
+((-3991 . T))
NIL
(-322 S A R B)
((|constructor| (NIL "\\spad{FiniteLinearAggregateFunctions2} provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
@@ -1222,7 +1222,7 @@ NIL
NIL
(-323 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.fr)")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}xn],{} [\\spad{v1},{}...,{}vn])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-3984 . T) (-3983 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-3986 . T) (-3985 . T))
NIL
(-324 S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
@@ -1231,14 +1231,14 @@ NIL
(-325 S R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
NIL
-((|HasCategory| |#2| (QUOTE (-580 (-483)))))
+((|HasCategory| |#2| (QUOTE (-581 (-484)))))
(-326 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
NIL
NIL
(-327)
-((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-3972 . T) (-3980 . T) (-3764 . T) (-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
+((-3974 . T) (-3982 . T) (-3766 . T) (-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
(-328 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in lp.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
@@ -1250,15 +1250,15 @@ NIL
NIL
(-330 R S)
((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-3984 . T) (-3983 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-1012)))))
+((-3986 . T) (-3985 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))))
(-331 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.fr)")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-3984 . T) (-3983 . T))
+((-3986 . T) (-3985 . T))
((|HasCategory| |#1| (QUOTE (-146))))
(-332 R |Basis|)
((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.fr)")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-3984 . T) (-3983 . T))
+((-3986 . T) (-3985 . T))
NIL
(-333 S)
((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
@@ -1267,7 +1267,7 @@ NIL
(-334 S)
((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are nonnegative integers. The multiplication is not commutative.")))
NIL
-((|HasCategory| |#1| (QUOTE (-756))))
+((|HasCategory| |#1| (QUOTE (-757))))
(-335)
((|constructor| (NIL "This domain provides an interface to names in the file system.")))
NIL
@@ -1278,13 +1278,13 @@ NIL
NIL
(-337 |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-3984 . T) (-3983 . T))
+((-3986 . T) (-3985 . T))
NIL
-(-338 -3088 UP UPUP R)
+(-338 -3090 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
-(-339 -3088 UP)
+(-339 -3090 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: June 18,{} 2010 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of \\spad{ISSAC'93},{} Kiev,{} ACM Press.}")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
@@ -1298,28 +1298,28 @@ NIL
NIL
(-342)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
(-343 S)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -3972)) (|HasAttribute| |#1| (QUOTE -3980)))
+((|HasAttribute| |#1| (QUOTE -3974)) (|HasAttribute| |#1| (QUOTE -3982)))
(-344)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-3764 . T) (-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3766 . T) (-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
(-345 R)
((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and gcd are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| #1# #2# #3# #4#) $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-452 (-1088) $))) (|HasCategory| |#1| (QUOTE (-259 $))) (|HasCategory| |#1| (QUOTE (-241 $ $))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| |#1| (QUOTE (-1132))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| |#1| (|%list| (QUOTE -452) (QUOTE (-1088)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1088)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasCategory| |#1| (QUOTE (-482))) (|HasCategory| |#1| (QUOTE (-389))))
+((-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-453 (-1089) $))) (|HasCategory| |#1| (QUOTE (-259 $))) (|HasCategory| |#1| (QUOTE (-241 $ $))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| |#1| (QUOTE (-1133))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| |#1| (|%list| (QUOTE -453) (QUOTE (-1089)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1089)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-389))))
(-346 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
NIL
NIL
(-347 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then gcd's between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-3976 -12 (|has| |#1| (-6 -3987)) (|has| |#1| (-389)) (|has| |#1| (-6 -3976))) (-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-950 (-1088)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-740))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-740))) (|HasCategory| |#1| (QUOTE (-756)))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (QUOTE (-796 (-327)))) (|HasCategory| |#1| (QUOTE (-796 (-483)))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-327))))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-483))))) (|HasCategory| |#1| (QUOTE (-580 (-483)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1088)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasCategory| |#1| (|%list| (QUOTE -452) (QUOTE (-1088)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-482))) (-12 (|HasAttribute| |#1| (QUOTE -3976)) (|HasAttribute| |#1| (QUOTE -3987)) (|HasCategory| |#1| (QUOTE (-389)))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+((-3978 -12 (|has| |#1| (-6 -3989)) (|has| |#1| (-389)) (|has| |#1| (-6 -3978))) (-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-951 (-1089)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#1| (QUOTE (-757)))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (QUOTE (-797 (-327)))) (|HasCategory| |#1| (QUOTE (-797 (-484)))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-327))))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-484))))) (|HasCategory| |#1| (QUOTE (-581 (-484)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1089)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasCategory| |#1| (|%list| (QUOTE -453) (QUOTE (-1089)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-483))) (-12 (|HasAttribute| |#1| (QUOTE -3978)) (|HasAttribute| |#1| (QUOTE -3989)) (|HasCategory| |#1| (QUOTE (-389)))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
(-348 A B)
((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}.")))
NIL
@@ -1330,28 +1330,28 @@ NIL
NIL
(-350 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-3983 . T) (-3984 . T) (-3986 . T))
+((-3985 . T) (-3986 . T) (-3988 . T))
NIL
(-351 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
-((|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-950 (-483)))))
+((|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-951 (-484)))))
(-352 S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
NIL
-(-353 R -3088 UP A)
+(-353 R -3090 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}.")))
-((-3986 . T))
+((-3988 . T))
NIL
(-354 R1 F1 U1 A1 R2 F2 U2 A2)
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}")))
NIL
NIL
-(-355 R -3088 UP A |ibasis|)
+(-355 R -3090 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")))
NIL
-((|HasCategory| |#4| (|%list| (QUOTE -950) (|devaluate| |#2|))))
+((|HasCategory| |#4| (|%list| (QUOTE -951) (|devaluate| |#2|))))
(-356 AR R AS S)
((|constructor| (NIL "\\spad{FramedNonAssociativeAlgebraFunctions2} implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}.")))
NIL
@@ -1362,7 +1362,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-311))))
(-358 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn't fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-3986 |has| |#1| (-494)) (-3984 . T) (-3983 . T))
+((-3988 |has| |#1| (-495)) (-3986 . T) (-3985 . T))
NIL
(-359 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}.")))
@@ -1371,10 +1371,10 @@ NIL
(-360 S R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-410))) (|HasCategory| |#2| (QUOTE (-1024))) (|HasCategory| |#2| (QUOTE (-553 (-472)))))
+((|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-410))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-554 (-473)))))
(-361 R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-3986 OR (|has| |#1| (-961)) (|has| |#1| (-410))) (-3984 |has| |#1| (-146)) (-3983 |has| |#1| (-146)) ((-3991 "*") |has| |#1| (-494)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-494)) (-3981 |has| |#1| (-494)))
+((-3988 OR (|has| |#1| (-962)) (|has| |#1| (-410))) (-3986 |has| |#1| (-146)) (-3985 |has| |#1| (-146)) ((-3993 "*") |has| |#1| (-495)) (-3984 |has| |#1| (-495)) (-3989 |has| |#1| (-495)) (-3983 |has| |#1| (-495)))
NIL
(-362 R A S B)
((|constructor| (NIL "This package allows a mapping \\spad{R} -> \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}.")))
@@ -1391,36 +1391,36 @@ NIL
(-365 A S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-317))))
+((|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-317))))
(-366 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-3989 . T) (-3979 . T) (-3990 . T))
+((-3991 . T) (-3981 . T) (-3992 . T))
NIL
(-367 S A R B)
((|constructor| (NIL "\\spad{FiniteSetAggregateFunctions2} provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain.")))
NIL
NIL
-(-368 R -3088)
+(-368 R -3090)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
(-369 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-3976 -12 (|has| |#1| (-6 -3976)) (|has| |#2| (-6 -3976))) (-3983 . T) (-3984 . T) (-3986 . T))
-((-12 (|HasAttribute| |#1| (QUOTE -3976)) (|HasAttribute| |#2| (QUOTE -3976))))
-(-370 R -3088)
+((-3978 -12 (|has| |#1| (-6 -3978)) (|has| |#2| (-6 -3978))) (-3985 . T) (-3986 . T) (-3988 . T))
+((-12 (|HasAttribute| |#1| (QUOTE -3978)) (|HasAttribute| |#2| (QUOTE -3978))))
+(-370 R -3090)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
-(-371 R -3088)
+(-371 R -3090)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-372 R -3088)
+(-372 R -3090)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for \\spad{a2} may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve \\spad{a2}; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-373 R -3088)
+(-373 R -3090)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
@@ -1428,10 +1428,10 @@ NIL
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-375 R -3088 UP)
+(-375 R -3090 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
-((|HasCategory| |#2| (QUOTE (-950 (-48)))))
+((|HasCategory| |#2| (QUOTE (-951 (-48)))))
(-376)
((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type")))
NIL
@@ -1448,7 +1448,7 @@ NIL
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein's criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein's criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein's criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-380 R UP -3088)
+(-380 R UP -3090)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the lp norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri's norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri's norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
@@ -1486,16 +1486,16 @@ NIL
NIL
(-389)
((|constructor| (NIL "This category describes domains where \\spadfun{gcd} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common gcd of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
(-390 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-3986 |has| (-347 (-857 |#1|)) (-494)) (-3984 . T) (-3983 . T))
-((|HasCategory| (-347 (-857 |#1|)) (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| (-347 (-857 |#1|)) (QUOTE (-494))))
+((-3988 |has| (-347 (-858 |#1|)) (-495)) (-3986 . T) (-3985 . T))
+((|HasCategory| (-347 (-858 |#1|)) (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| (-347 (-858 |#1|)) (QUOTE (-495))))
(-391 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-3991 "*") |has| |#2| (-146)) (-3982 |has| |#2| (-494)) (-3987 |has| |#2| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T))
-((|HasCategory| |#2| (QUOTE (-821))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-494)))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-327)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-327))))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-483)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-327)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-472)))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-472))))) (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-950 (-483)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-311))) (|HasAttribute| |#2| (QUOTE -3987)) (|HasCategory| |#2| (QUOTE (-389))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
+(((-3993 "*") |has| |#2| (-146)) (-3984 |has| |#2| (-495)) (-3989 |has| |#2| (-6 -3989)) (-3986 . T) (-3985 . T) (-3988 . T))
+((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-495)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-327)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-327))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-484)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-327)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-473)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-473))))) (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-951 (-484)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-311))) (|HasAttribute| |#2| (QUOTE -3989)) (|HasCategory| |#2| (QUOTE (-389))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
(-392 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it's conditional.")))
NIL
@@ -1522,7 +1522,7 @@ NIL
NIL
(-398 |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-3984 . T) (-3983 . T))
+((-3986 . T) (-3985 . T))
NIL
(-399 E V R P Q)
((|constructor| (NIL "Gosper's summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
@@ -1530,8 +1530,8 @@ NIL
NIL
(-400 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(lp)} returns the polynomial set whose members are the polynomials of \\axiom{lp}.")))
-((-3990 . T) (-3989 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-553 (-472)))) (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-72))))
+((-3992 . T) (-3991 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-473)))) (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-72))))
(-401 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra''. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) (|One| (($) "1 is the identity for \\spad{product}.")))
NIL
@@ -1560,7 +1560,7 @@ NIL
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module'',{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) (|Zero| (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-408 |lv| -3088 R)
+(-408 |lv| -3090 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
@@ -1570,23 +1570,23 @@ NIL
NIL
(-410)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-3986 . T))
+((-3988 . T))
NIL
(-411 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-311)) (-3981 |has| |#1| (-311)) (-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483))) (|devaluate| |#1|)))) (|HasCategory| (-347 (-483)) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483)))))) (|HasSignature| |#1| (|%list| (QUOTE -3940) (|%list| (|devaluate| |#1|) (QUOTE (-1088)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-29 (-483)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3806) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1088))))) (|HasSignature| |#1| (|%list| (QUOTE -3077) (|%list| (|%list| (QUOTE -583) (QUOTE (-1088))) (|devaluate| |#1|)))))))
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3989 |has| |#1| (-311)) (-3983 |has| |#1| (-311)) (-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484))) (|devaluate| |#1|)))) (|HasCategory| (-347 (-484)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484)))))) (|HasSignature| |#1| (|%list| (QUOTE -3942) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3808) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3079) (|%list| (|%list| (QUOTE -584) (QUOTE (-1089))) (|devaluate| |#1|)))))))
(-412 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-3990 . T))
-((-12 (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3854) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-472)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012))))
+((-3992 . T))
+((-12 (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3856) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))))
(-413 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
-((-3990 . T) (-3989 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-553 (-472)))) (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-72))))
+((-3992 . T) (-3991 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-473)))) (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-72))))
(-414)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}.")))
-((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
(-415)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'.")))
@@ -1594,29 +1594,29 @@ NIL
NIL
(-416 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
-((-3989 . T) (-3990 . T))
-((-12 (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3854) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-472)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1012))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))))
+((-3991 . T) (-3992 . T))
+((-12 (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3856) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))))
(-417)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre's book Lie Groups -- Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight <= \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
(-418 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-3991 "*") |has| |#2| (-146)) (-3982 |has| |#2| (-494)) (-3987 |has| |#2| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T))
-((|HasCategory| |#2| (QUOTE (-821))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-494)))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-327)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-327))))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-483)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-327)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-472)))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-472))))) (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-950 (-483)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-311))) (|HasAttribute| |#2| (QUOTE -3987)) (|HasCategory| |#2| (QUOTE (-389))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
-(-419 -2617 S)
+(((-3993 "*") |has| |#2| (-146)) (-3984 |has| |#2| (-495)) (-3989 |has| |#2| (-6 -3989)) (-3986 . T) (-3985 . T) (-3988 . T))
+((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-495)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-327)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-327))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-484)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-327)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-473)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-473))))) (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-951 (-484)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-311))) (|HasAttribute| |#2| (QUOTE -3989)) (|HasCategory| |#2| (QUOTE (-389))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
+(-419 -2619 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-3983 |has| |#2| (-961)) (-3984 |has| |#2| (-961)) (-3986 |has| |#2| (-6 -3986)) (-3989 . T))
-((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-311))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-311)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (OR (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756)))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-317))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (QUOTE (-809 (-1088))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-811 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-809 (-1088))))) (|HasCategory| |#2| (QUOTE (-1012))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-1012))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| (-483) (QUOTE (-756))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-1012)))) (|HasAttribute| |#2| (QUOTE -3986)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))))
+((-3985 |has| |#2| (-962)) (-3986 |has| |#2| (-962)) (-3988 |has| |#2| (-6 -3988)) (-3991 . T))
+((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-311))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-311)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (OR (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-317))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (QUOTE (-810 (-1089))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-812 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-810 (-1089))))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| (-484) (QUOTE (-757))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-812 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasAttribute| |#2| (QUOTE -3988)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))))
(-420)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header `h'.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header.")))
NIL
NIL
(-421 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
-((-3989 . T) (-3990 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
-(-422 -3088 UP UPUP R)
+((-3991 . T) (-3992 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
+(-422 -3090 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
@@ -1626,12 +1626,12 @@ NIL
NIL
(-424)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")))
-((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| (-483) (QUOTE (-821))) (|HasCategory| (-483) (QUOTE (-950 (-1088)))) (|HasCategory| (-483) (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-120))) (|HasCategory| (-483) (QUOTE (-553 (-472)))) (|HasCategory| (-483) (QUOTE (-933))) (|HasCategory| (-483) (QUOTE (-740))) (|HasCategory| (-483) (QUOTE (-756))) (OR (|HasCategory| (-483) (QUOTE (-740))) (|HasCategory| (-483) (QUOTE (-756)))) (|HasCategory| (-483) (QUOTE (-950 (-483)))) (|HasCategory| (-483) (QUOTE (-1064))) (|HasCategory| (-483) (QUOTE (-796 (-327)))) (|HasCategory| (-483) (QUOTE (-796 (-483)))) (|HasCategory| (-483) (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-483) (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-483) (QUOTE (-189))) (|HasCategory| (-483) (QUOTE (-811 (-1088)))) (|HasCategory| (-483) (QUOTE (-190))) (|HasCategory| (-483) (QUOTE (-809 (-1088)))) (|HasCategory| (-483) (QUOTE (-452 (-1088) (-483)))) (|HasCategory| (-483) (QUOTE (-259 (-483)))) (|HasCategory| (-483) (QUOTE (-241 (-483) (-483)))) (|HasCategory| (-483) (QUOTE (-257))) (|HasCategory| (-483) (QUOTE (-482))) (|HasCategory| (-483) (QUOTE (-580 (-483)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-821)))) (|HasCategory| (-483) (QUOTE (-118)))))
+((-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| (-484) (QUOTE (-822))) (|HasCategory| (-484) (QUOTE (-951 (-1089)))) (|HasCategory| (-484) (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-120))) (|HasCategory| (-484) (QUOTE (-554 (-473)))) (|HasCategory| (-484) (QUOTE (-934))) (|HasCategory| (-484) (QUOTE (-741))) (|HasCategory| (-484) (QUOTE (-757))) (OR (|HasCategory| (-484) (QUOTE (-741))) (|HasCategory| (-484) (QUOTE (-757)))) (|HasCategory| (-484) (QUOTE (-951 (-484)))) (|HasCategory| (-484) (QUOTE (-1065))) (|HasCategory| (-484) (QUOTE (-797 (-327)))) (|HasCategory| (-484) (QUOTE (-797 (-484)))) (|HasCategory| (-484) (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-484) (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-484) (QUOTE (-189))) (|HasCategory| (-484) (QUOTE (-812 (-1089)))) (|HasCategory| (-484) (QUOTE (-190))) (|HasCategory| (-484) (QUOTE (-810 (-1089)))) (|HasCategory| (-484) (QUOTE (-453 (-1089) (-484)))) (|HasCategory| (-484) (QUOTE (-259 (-484)))) (|HasCategory| (-484) (QUOTE (-241 (-484) (-484)))) (|HasCategory| (-484) (QUOTE (-257))) (|HasCategory| (-484) (QUOTE (-483))) (|HasCategory| (-484) (QUOTE (-581 (-484)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-822)))) (|HasCategory| (-484) (QUOTE (-118)))))
(-425 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -3989)) (|HasAttribute| |#1| (QUOTE -3990)) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-552 (-772)))))
+((|HasAttribute| |#1| (QUOTE -3991)) (|HasAttribute| |#1| (QUOTE -3992)) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-553 (-773)))))
(-426 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
@@ -1652,34 +1652,34 @@ NIL
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-431 -3088 UP |AlExt| |AlPol|)
+(-431 -3090 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP's.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
(-432)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")))
-((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (QUOTE (-950 (-483)))))
+((-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| $ (QUOTE (-962))) (|HasCategory| $ (QUOTE (-951 (-484)))))
(-433 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan \\spad{Aug/87}} This is the basic one dimensional array data type.")))
-((-3990 . T) (-3989 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))))
+((-3992 . T) (-3991 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))))
(-434 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray's with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
-((-3989 . T) (-3990 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
+((-3991 . T) (-3992 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
(-435 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented")))
NIL
NIL
-(-436 R UP -3088)
+(-436 R UP -3090)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the gcd of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-437 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")))
-((-3990 . T) (-3989 . T))
-((-12 (|HasCategory| (-85) (QUOTE (-259 (-85)))) (|HasCategory| (-85) (QUOTE (-1012)))) (|HasCategory| (-85) (QUOTE (-553 (-472)))) (|HasCategory| (-85) (QUOTE (-756))) (|HasCategory| (-483) (QUOTE (-756))) (|HasCategory| (-85) (QUOTE (-1012))) (|HasCategory| (-85) (QUOTE (-552 (-772)))) (|HasCategory| (-85) (QUOTE (-72))))
+((-3992 . T) (-3991 . T))
+((-12 (|HasCategory| (-85) (QUOTE (-259 (-85)))) (|HasCategory| (-85) (QUOTE (-1013)))) (|HasCategory| (-85) (QUOTE (-554 (-473)))) (|HasCategory| (-85) (QUOTE (-757))) (|HasCategory| (-484) (QUOTE (-757))) (|HasCategory| (-85) (QUOTE (-1013))) (|HasCategory| (-85) (QUOTE (-553 (-773)))) (|HasCategory| (-85) (QUOTE (-72))))
(-438 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
NIL
@@ -1692,17 +1692,17 @@ NIL
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn.")))
NIL
NIL
-(-441 -3088 |Expon| |VarSet| |DPoly|)
+(-441 -3090 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
-((|HasCategory| |#3| (QUOTE (-553 (-1088)))))
+((|HasCategory| |#3| (QUOTE (-554 (-1089)))))
(-442 |vl| |nv|)
((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime.")))
NIL
NIL
(-443 T$)
((|constructor| (NIL "This is the category of all domains that implement idempotent operations.")))
-(((|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (-3052 (|f| |x| |x|) |x|))) . T))
+(((|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (-3054 (|f| |x| |x|) |x|))) . T))
NIL
(-444)
((|constructor| (NIL "This domain provides representation for plain identifiers. It differs from Symbol in that it does not support any form of scripting. It is a plain basic data structure. \\blankline")) (|gensym| (($) "\\spad{gensym()} returns a new identifier,{} different from any other identifier in the running system")))
@@ -1711,11 +1711,11 @@ NIL
(-445 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-1012)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))))
(-446 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-1012)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))))
(-447 A S)
((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|terms| (((|List| (|Pair| |#2| |#1|)) $) "\\spad{terms x} returns the list of terms in \\spad{x}. Each term is a pair of a support (the first component) and the corresponding value (the second component).")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}.")))
NIL
@@ -1723,3042 +1723,3046 @@ NIL
(-448 A S)
((|constructor| (NIL "Indexed direct products of objects over a set \\spad{A} of generators indexed by an ordered set \\spad{S}. All items have finite support.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-1012)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))))
(-449 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-1012)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))))
(-450 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-1012)))))
-(-451 S A B)
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))))
+(-451 A S)
+((|constructor| (NIL "An indexed product term is a utility domain used in the representation of indexed direct product objects.")) (|coefficient| ((|#1| $) "\\spad{coefficient t} returns the coefficient of the tern \\spad{t}.")) (|index| ((|#2| $) "\\spad{index t} returns the index of the term \\spad{t}.")) (|term| (($ |#2| |#1|) "\\spad{term(s,a)} constructs a term with index \\spad{s} and coefficient \\spad{a}.")))
+NIL
+NIL
+(-452 S A B)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-452 A B)
+(-453 A B)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-453 S E |un|)
+(-454 S E |un|)
((|constructor| (NIL "Internal implementation of a free abelian monoid.")))
NIL
-((|HasCategory| |#2| (QUOTE (-716))))
-(-454 S |mn|)
+((|HasCategory| |#2| (QUOTE (-717))))
+(-455 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan \\spad{July/87},{} modified SMW \\spad{June/91}} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
-((-3990 . T) (-3989 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))))
-(-455)
+((-3992 . T) (-3991 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))))
+(-456)
((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'.")))
NIL
NIL
-(-456 |p| |n|)
+(-457 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
-((OR (|HasCategory| (-516 |#1|) (QUOTE (-118))) (|HasCategory| (-516 |#1|) (QUOTE (-317)))) (|HasCategory| (-516 |#1|) (QUOTE (-120))) (|HasCategory| (-516 |#1|) (QUOTE (-317))) (|HasCategory| (-516 |#1|) (QUOTE (-118))))
-(-457 R |mnRow| |mnCol| |Row| |Col|)
+((-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
+((OR (|HasCategory| (-517 |#1|) (QUOTE (-118))) (|HasCategory| (-517 |#1|) (QUOTE (-317)))) (|HasCategory| (-517 |#1|) (QUOTE (-120))) (|HasCategory| (-517 |#1|) (QUOTE (-317))) (|HasCategory| (-517 |#1|) (QUOTE (-118))))
+(-458 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray's of PrimitiveArray's.")))
-((-3989 . T) (-3990 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
-(-458 R |Row| |Col| M)
+((-3991 . T) (-3992 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
+(-459 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} m*h and h*m are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasAttribute| |#3| (QUOTE -3990)))
-(-459 R |Row| |Col| M QF |Row2| |Col2| M2)
+((|HasAttribute| |#3| (QUOTE -3992)))
+(-460 R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasAttribute| |#7| (QUOTE -3990)))
-(-460 R |mnRow| |mnCol|)
+((|HasAttribute| |#7| (QUOTE -3992)))
+(-461 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
-((-3989 . T) (-3990 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-494))) (|HasAttribute| |#1| (QUOTE (-3991 "*"))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-72))))
-(-461)
+((-3991 . T) (-3992 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-495))) (|HasAttribute| |#1| (QUOTE (-3993 "*"))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-72))))
+(-462)
((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'.")))
NIL
NIL
-(-462)
+(-463)
((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|SpadAst|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'")))
NIL
NIL
-(-463 S)
+(-464 S)
((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit `c' into the byte buffer `b'. The actual number of bytes written is returned,{} and the length of `b' is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a \\spad{UInt32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an \\spad{Int32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a \\spad{UInt16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an \\spad{Int16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a \\spad{UInt8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an \\spad{Int8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}.")))
NIL
NIL
-(-464)
+(-465)
((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit `c' into the byte buffer `b'. The actual number of bytes written is returned,{} and the length of `b' is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a \\spad{UInt32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an \\spad{Int32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a \\spad{UInt16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an \\spad{Int16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a \\spad{UInt8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an \\spad{Int8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}.")))
NIL
NIL
-(-465 GF)
+(-466 GF)
((|constructor| (NIL "InnerNormalBasisFieldFunctions(GF) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{**}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,e,d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in GF(2^m) using normal bases\",{} Information and Computation 78,{} pp.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,n,k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in GF(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} pp.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,...,vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field GF.")))
NIL
NIL
-(-466)
+(-467)
((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file `f'.")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(ifile)} holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by `f' as a binary file.")))
NIL
NIL
-(-467 R)
+(-468 R)
((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} := increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} := increment()} then \\spad{f x} is \\spad{x+1}.")))
NIL
NIL
-(-468 |Varset|)
+(-469 |Varset|)
((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| (-694) (QUOTE (-1012)))))
-(-469 K -3088 |Par|)
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| (-695) (QUOTE (-1013)))))
+(-470 K -3090 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to br used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
-(-470)
+(-471)
NIL
NIL
NIL
-(-471)
+(-472)
((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity.")))
NIL
NIL
-(-472)
+(-473)
((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}'s are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) (|One| (($) "\\spad{1} returns the input form corresponding to 1.")) (|Zero| (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], f)} returns the input form corresponding to \\spad{f(x1,...,xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter.")))
NIL
NIL
-(-473 R)
+(-474 R)
((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}.")))
NIL
NIL
-(-474 |Coef| UTS)
+(-475 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-475 K -3088 |Par|)
+(-476 K -3090 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
-(-476 R BP |pMod| |nextMod|)
+(-477 R BP |pMod| |nextMod|)
((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the gcd of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,f2)} computes the gcd of the two polynomials \\spad{f1} and \\spad{f2} by modular methods.")))
NIL
NIL
-(-477 OV E R P)
+(-478 OV E R P)
((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}.")))
NIL
NIL
-(-478 K UP |Coef| UTS)
+(-479 K UP |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-479 |Coef| UTS)
+(-480 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-480 R UP)
+(-481 R UP)
((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) #1="failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,i,f)} \\undocumented")))
NIL
NIL
-(-481 S)
+(-482 S)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
NIL
NIL
-(-482)
+(-483)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-3987 . T) (-3988 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3989 . T) (-3990 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-483)
+(-484)
((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-3977 . T) (-3981 . T) (-3976 . T) (-3987 . T) (-3988 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3979 . T) (-3983 . T) (-3978 . T) (-3989 . T) (-3990 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-484)
+(-485)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits.")))
NIL
NIL
-(-485)
+(-486)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 32 bits.")))
NIL
NIL
-(-486)
+(-487)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 64 bits.")))
NIL
NIL
-(-487)
+(-488)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 8 bits.")))
NIL
NIL
-(-488 |Key| |Entry| |addDom|)
+(-489 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
-((-3989 . T) (-3990 . T))
-((-12 (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3854) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-472)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1012))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))))
-(-489 R -3088)
+((-3991 . T) (-3992 . T))
+((-12 (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3856) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))))
+(-490 R -3090)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-490 R0 -3088 UP UPUP R)
+(-491 R0 -3090 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
-(-491)
+(-492)
((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})")))
NIL
NIL
-(-492 R)
+(-493 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} <= \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-3764 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3766 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-493 S)
+(-494 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
NIL
NIL
-(-494)
+(-495)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-495 R -3088)
+(-496 R -3090)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}kn (the \\spad{ki}'s must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1#) |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
-(-496 I)
+(-497 I)
((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra's eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}")))
NIL
NIL
-(-497 R -3088 L)
+(-498 R -3090 L)
((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| #1#)) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| #2="failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| #2#) |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
-((|HasCategory| |#3| (|%list| (QUOTE -600) (|devaluate| |#2|))))
-(-498)
+((|HasCategory| |#3| (|%list| (QUOTE -601) (|devaluate| |#2|))))
+(-499)
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-499 -3088 UP UPUP R)
+(-500 -3090 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-500 -3088 UP)
+(-501 -3090 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
-(-501 R -3088 L)
+(-502 R -3090 L)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| #1#) |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #1#) |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
-((|HasCategory| |#3| (|%list| (QUOTE -600) (|devaluate| |#2|))))
-(-502 R -3088)
+((|HasCategory| |#3| (|%list| (QUOTE -601) (|devaluate| |#2|))))
+(-503 R -3090)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-483))))) (|HasCategory| |#1| (QUOTE (-796 (-483)))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-483))))) (|HasCategory| |#1| (QUOTE (-796 (-483)))) (|HasCategory| |#2| (QUOTE (-569)))))
-(-503 -3088 UP)
+((-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-484))))) (|HasCategory| |#1| (QUOTE (-797 (-484)))) (|HasCategory| |#2| (QUOTE (-1052)))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-484))))) (|HasCategory| |#1| (QUOTE (-797 (-484)))) (|HasCategory| |#2| (QUOTE (-570)))))
+(-504 -3090 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
-(-504 S)
+(-505 S)
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-505 -3088)
+(-506 -3090)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
-(-506 R)
+(-507 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-3764 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3766 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-507)
+(-508)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")))
NIL
NIL
-(-508 R -3088)
+(-509 R -3090)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-483))))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-796 (-483)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-950 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-494))))
-(-509 -3088 UP)
+((-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-484))))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-797 (-484)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-951 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-495))))
+(-510 -3090 UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-510 R -3088)
+(-511 R -3090)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
-(-511)
+(-512)
((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations.")))
NIL
NIL
-(-512)
+(-513)
((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if `f' is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by `f' as a binary file.")))
NIL
NIL
-(-513)
+(-514)
((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|closed| (($) "\\spad{closed} indicates that the IO conduit has been closed.")) (|bothWays| (($) "\\spad{bothWays} indicates that an IO conduit is for both input and output.")) (|output| (($) "\\spad{output} indicates that an IO conduit is for output")) (|input| (($) "\\spad{input} indicates that an IO conduit is for input.")))
NIL
NIL
-(-514)
+(-515)
((|constructor| (NIL "This domain provides representation for ARPA Internet \\spad{IP4} addresses.")) (|resolve| (((|Maybe| $) (|Hostname|)) "\\spad{resolve(h)} returns the \\spad{IP4} address of host `h'.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address `x'.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'.")))
NIL
NIL
-(-515 |p| |unBalanced?|)
+(-516 |p| |unBalanced?|)
((|constructor| (NIL "This domain implements Zp,{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-516 |p|)
+(-517 |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
((|HasCategory| $ (QUOTE (-120))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-317))))
-(-517)
+(-518)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-518 -3088)
+(-519 -3090)
((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over F?")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-3984 . T) (-3983 . T))
-((|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasCategory| |#1| (QUOTE (-950 (-1088)))))
-(-519 E -3088)
+((-3986 . T) (-3985 . T))
+((|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasCategory| |#1| (QUOTE (-951 (-1089)))))
+(-520 E -3090)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented")))
NIL
NIL
-(-520 R -3088)
+(-521 R -3090)
((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}Pn are the factors of \\spad{P}.")))
NIL
NIL
-(-521)
+(-522)
((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}")))
NIL
NIL
-(-522 I)
+(-523 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
NIL
NIL
-(-523 GF)
+(-524 GF)
((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field.")))
NIL
NIL
-(-524 R)
+(-525 R)
((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}Pn are the factors of \\spad{P}.")))
NIL
((|HasCategory| |#1| (QUOTE (-120))))
-(-525)
+(-526)
((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,2,...,n}} in Young's natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,3,3,1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young's natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young's natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,2,...,n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,pi)} is the irreducible representation corresponding to partition {\\em lambda} in Young's natural form of the permutation {\\em pi} in the symmetric group,{} whose elements permute {\\em {1,2,...,n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|PositiveInteger|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented.")))
NIL
NIL
-(-526 R E V P TS)
+(-527 R E V P TS)
((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial.")))
NIL
NIL
-(-527)
+(-528)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'.")))
NIL
NIL
-(-528 E V R P)
+(-529 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
-(-529 |Coef|)
-((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|)))) (|HasCategory| (-483) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-311))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3940) (|%list| (|devaluate| |#1|) (QUOTE (-1088)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-483))))))
(-530 |Coef|)
+((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))) (|HasCategory| (-484) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-311))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3942) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))))
+(-531 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-(((-3991 "*") |has| |#1| (-494)) (-3982 |has| |#1| (-494)) (-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-494))))
-(-531)
+(((-3993 "*") |has| |#1| (-495)) (-3984 |has| |#1| (-495)) (-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-495))))
+(-532)
((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context")))
NIL
NIL
-(-532 A B)
+(-533 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,[x0,x1,x2,...])} returns \\spad{[f(x0),f(x1),f(x2),..]}.")))
NIL
NIL
-(-533 A B C)
+(-534 A B C)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented")))
NIL
NIL
-(-534 R -3088 FG)
+(-535 R -3090 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and FG should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
-(-535 S)
+(-536 S)
((|constructor| (NIL "This package implements 'infinite tuples' for the interpreter. The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,s)} returns \\spad{[s,f(s),f(f(s)),...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}.")))
NIL
NIL
-(-536 R |mn|)
+(-537 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
-((-3990 . T) (-3989 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-961))) (-12 (|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))))
-(-537 S |Index| |Entry|)
+((-3992 . T) (-3991 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-962))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))))
+(-538 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -3990)) (|HasCategory| |#2| (QUOTE (-756))) (|HasAttribute| |#1| (QUOTE -3989)) (|HasCategory| |#3| (QUOTE (-1012))))
-(-538 |Index| |Entry|)
+((|HasAttribute| |#1| (QUOTE -3992)) (|HasCategory| |#2| (QUOTE (-757))) (|HasAttribute| |#1| (QUOTE -3991)) (|HasCategory| |#3| (QUOTE (-1013))))
+(-539 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
NIL
-(-539)
+(-540)
((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join `x'.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'.")))
NIL
NIL
-(-540 R A)
+(-541 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-3986 OR (-2558 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) (-3984 . T) (-3983 . T))
-((OR (|HasCategory| |#2| (|%list| (QUOTE -315) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -358) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -358) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -358) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#2| (|%list| (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#2| (|%list| (QUOTE -358) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -315) (|devaluate| |#1|))))
-(-541)
+((-3988 OR (-2560 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) (-3986 . T) (-3985 . T))
+((OR (|HasCategory| |#2| (|%list| (QUOTE -315) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -358) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -358) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -358) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#2| (|%list| (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#2| (|%list| (QUOTE -358) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -315) (|devaluate| |#1|))))
+(-542)
((|constructor| (NIL "This is the datatype for the JVM bytecodes.")))
NIL
NIL
-(-542)
+(-543)
((|constructor| (NIL "JVM class file access bitmask and values.")) (|jvmAbstract| (($) "The class was declared abstract; therefore object of this class may not be created.")) (|jvmInterface| (($) "The class file represents an interface,{} not a class.")) (|jvmSuper| (($) "Instruct the JVM to treat base clss method invokation specially.")) (|jvmFinal| (($) "The class was declared final; therefore no derived class allowed.")) (|jvmPublic| (($) "The class was declared public,{} therefore may be accessed from outside its package")))
NIL
NIL
-(-543)
+(-544)
((|constructor| (NIL "JVM class file constant pool tags.")) (|jvmNameAndTypeConstantTag| (($) "The correspondong constant pool entry represents the name and type of a field or method info.")) (|jvmInterfaceMethodConstantTag| (($) "The correspondong constant pool entry represents an interface method info.")) (|jvmMethodrefConstantTag| (($) "The correspondong constant pool entry represents a class method info.")) (|jvmFieldrefConstantTag| (($) "The corresponding constant pool entry represents a class field info.")) (|jvmStringConstantTag| (($) "The corresponding constant pool entry is a string constant info.")) (|jvmClassConstantTag| (($) "The corresponding constant pool entry represents a class or and interface.")) (|jvmDoubleConstantTag| (($) "The corresponding constant pool entry is a double constant info.")) (|jvmLongConstantTag| (($) "The corresponding constant pool entry is a long constant info.")) (|jvmFloatConstantTag| (($) "The corresponding constant pool entry is a float constant info.")) (|jvmIntegerConstantTag| (($) "The corresponding constant pool entry is an integer constant info.")) (|jvmUTF8ConstantTag| (($) "The corresponding constant pool entry is sequence of bytes representing Java \\spad{UTF8} string constant.")))
NIL
NIL
-(-544)
+(-545)
((|constructor| (NIL "JVM class field access bitmask and values.")) (|jvmTransient| (($) "The field was declared transient.")) (|jvmVolatile| (($) "The field was declared volatile.")) (|jvmFinal| (($) "The field was declared final; therefore may not be modified after initialization.")) (|jvmStatic| (($) "The field was declared static.")) (|jvmProtected| (($) "The field was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The field was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The field was declared public; therefore mey accessed from outside its package.")))
NIL
NIL
-(-545)
+(-546)
((|constructor| (NIL "JVM class method access bitmask and values.")) (|jvmStrict| (($) "The method was declared fpstrict; therefore floating-point mode is FP-strict.")) (|jvmAbstract| (($) "The method was declared abstract; therefore no implementation is provided.")) (|jvmNative| (($) "The method was declared native; therefore implemented in a language other than Java.")) (|jvmSynchronized| (($) "The method was declared synchronized.")) (|jvmFinal| (($) "The method was declared final; therefore may not be overriden. in derived classes.")) (|jvmStatic| (($) "The method was declared static.")) (|jvmProtected| (($) "The method was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The method was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The method was declared public; therefore mey accessed from outside its package.")))
NIL
NIL
-(-546)
+(-547)
((|constructor| (NIL "This is the datatype for the JVM opcodes.")))
NIL
NIL
-(-547 |Entry|)
+(-548 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
-((-3989 . T) (-3990 . T))
-((-12 (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (QUOTE (|:| -3854 (-1071))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (QUOTE (-1012)))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (QUOTE (-553 (-472)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| (-1071) (QUOTE (-756))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (QUOTE (-72))))
-(-548 S |Key| |Entry|)
+((-3991 . T) (-3992 . T))
+((-12 (|HasCategory| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (QUOTE (|:| -3856 (-1072))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (QUOTE (-1013)))) (|HasCategory| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (QUOTE (-554 (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| (-1072) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (QUOTE (-72))))
+(-549 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
-(-549 |Key| |Entry|)
+(-550 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-3990 . T))
+((-3992 . T))
NIL
-(-550 S)
+(-551 S)
((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op.")))
NIL
-((|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-327))))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-483))))))
-(-551 R S)
+((|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-327))))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-484))))))
+(-552 R S)
((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
NIL
NIL
-(-552 S)
+(-553 S)
((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-553 S)
+(-554 S)
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-554 -3088 UP)
+(-555 -3090 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic's algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
-(-555 S)
+(-556 S)
((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms `s' into an element of `\\%'.")))
NIL
NIL
-(-556)
+(-557)
((|constructor| (NIL "This domain implements Kleene's 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of `x' is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of `x' is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of `x' is `false'")) (|unknown| (($) "the indefinite `unknown'")))
NIL
NIL
-(-557 S)
+(-558 S)
((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms `s' into an element of `\\%'.")))
NIL
NIL
-(-558 A R S)
+(-559 A R S)
((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-755))))
-(-559 S R)
+((-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-756))))
+(-560 S R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
NIL
NIL
-(-560 R)
+(-561 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-3986 . T))
+((-3988 . T))
NIL
-(-561 R -3088)
+(-562 R -3090)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform.")))
NIL
NIL
-(-562 R UP)
+(-563 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-3984 . T) (-3983 . T) ((-3991 "*") . T) (-3982 . T) (-3986 . T))
-((|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-811 (-1088)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))))
-(-563 R E V P TS ST)
+((-3986 . T) (-3985 . T) ((-3993 "*") . T) (-3984 . T) (-3988 . T))
+((|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-812 (-1089)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))))
+(-564 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(lp,{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(ts)} returns \\axiom{ts} in an normalized shape if \\axiom{ts} is zero-dimensional.")))
NIL
NIL
-(-564 OV E Z P)
+(-565 OV E Z P)
((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \"F\".")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,unilist,plead,vl,lvar,lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod, numFacts, evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation.")))
NIL
NIL
-(-565)
+(-566)
((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'.")))
NIL
NIL
-(-566 |VarSet| R |Order|)
+(-567 |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(lv)} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-3986 . T))
+((-3988 . T))
NIL
-(-567 R |ls|)
+(-568 R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(lp)} returns the lexicographical Groebner basis of \\axiom{lp}. If \\axiom{lp} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(lp)} returns the lexicographical Groebner basis of \\axiom{lp} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(lp)} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(lp)} returns \\spad{true} iff \\axiom{lp} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{lp}.")))
NIL
NIL
-(-568 R -3088)
+(-569 R -3090)
((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-569)
+(-570)
((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-570 |lv| -3088)
+(-571 |lv| -3090)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
-(-571)
+(-572)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
-((-3990 . T))
-((-12 (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (QUOTE (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (QUOTE (-1012)))) (OR (|HasCategory| (-51) (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (QUOTE (-1012)))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (QUOTE (-1012)))) (OR (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (QUOTE (-552 (-772)))) (|HasCategory| (-51) (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (QUOTE (-553 (-472)))) (-12 (|HasCategory| (-51) (QUOTE (-259 (-51)))) (|HasCategory| (-51) (QUOTE (-1012)))) (|HasCategory| (-1071) (QUOTE (-756))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (QUOTE (-72)))) (|HasCategory| (-51) (QUOTE (-1012))) (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (QUOTE (-1012))))
-(-572 R A)
+((-3992 . T))
+((-12 (|HasCategory| (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (QUOTE (-259 (-2 (|:| -3856 (-1072)) (|:| |entry| (-51)))))) (|HasCategory| (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (QUOTE (-1013)))) (OR (|HasCategory| (-51) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (QUOTE (-1013)))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (QUOTE (-553 (-773)))) (|HasCategory| (-51) (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (QUOTE (-554 (-473)))) (-12 (|HasCategory| (-51) (QUOTE (-259 (-51)))) (|HasCategory| (-51) (QUOTE (-1013)))) (|HasCategory| (-1072) (QUOTE (-757))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (QUOTE (-72)))) (|HasCategory| (-51) (QUOTE (-1013))) (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (QUOTE (-1013))))
+(-573 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-3986 OR (-2558 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) (-3984 . T) (-3983 . T))
-((OR (|HasCategory| |#2| (|%list| (QUOTE -315) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -358) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -358) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -358) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#2| (|%list| (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#2| (|%list| (QUOTE -358) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -315) (|devaluate| |#1|))))
-(-573 S R)
+((-3988 OR (-2560 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) (-3986 . T) (-3985 . T))
+((OR (|HasCategory| |#2| (|%list| (QUOTE -315) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -358) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -358) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -358) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#2| (|%list| (QUOTE -315) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#2| (|%list| (QUOTE -358) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -315) (|devaluate| |#1|))))
+(-574 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-311))))
-(-574 R)
+(-575 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-3984 . T) (-3983 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-3986 . T) (-3985 . T))
NIL
-(-575 R FE)
+(-576 R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) #1="failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}.")))
NIL
NIL
-(-576 R)
+(-577 R)
((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2#) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")))
NIL
NIL
-(-577 |vars|)
+(-578 |vars|)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a vector space basis,{} given by symbols.}")) (|dual| (($ (|DualBasis| |#1|)) "\\spad{dual f} constructs the dual vector of a linear form which is part of a basis.")))
NIL
NIL
-(-578 S R)
+(-579 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-2556 (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-311))))
-(-579 K B)
+((-2558 (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-311))))
+(-580 K B)
((|constructor| (NIL "A simple data structure for elements that form a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear element with respect to the basis \\spad{B}.")) (|linearElement| (($ (|List| |#1|)) "\\spad{linearElement [x1,..,xn]} returns a linear element \\indented{1}{with coordinates \\spad{[x1,..,xn]} with respect to} the basis elements \\spad{B}.")))
-((-3984 . T) (-3983 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| (-577 |#2|) (QUOTE (-1012)))))
-(-580 R)
+((-3986 . T) (-3985 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| (-578 |#2|) (QUOTE (-1013)))))
+(-581 R)
((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")) (|leftReducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Vector| $) $) "\\spad{reducedSystem([v1,...,vn],u)} returns a matrix \\spad{M} with coefficients in \\spad{R} and a vector \\spad{w} such that the system of equations \\spad{c1*v1 + ... + cn*vn = u} has the same solution as \\spad{c * M = w} where \\spad{c} is the row vector \\spad{[c1,...cn]}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftReducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}.")))
NIL
NIL
-(-581 K B)
+(-582 K B)
((|constructor| (NIL "A simple data structure for linear forms on a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear form with respect to the basis \\spad{DualBasis B}.")) (|linearForm| (($ (|List| |#1|)) "\\spad{linearForm [x1,..,xn]} constructs a linear form with coordinates \\spad{[x1,..,xn]} with respect to the basis elements \\spad{DualBasis B}.")))
-((-3984 . T) (-3983 . T))
+((-3986 . T) (-3985 . T))
NIL
-(-582 S)
+(-583 S)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-linear set if it is stable by dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet,{} RightLinearSet.")))
NIL
NIL
-(-583 S)
+(-584 S)
((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list.")))
-((-3990 . T) (-3989 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))))
-(-584 A B)
+((-3992 . T) (-3991 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))))
+(-585 A B)
((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}.")))
NIL
NIL
-(-585 A B)
+(-586 A B)
((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and lb of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index lb. Error: if \\spad{la} and lb are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
NIL
NIL
-(-586 A B C)
+(-587 A B C)
((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,list1, u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}.")))
NIL
NIL
-(-587 T$)
+(-588 T$)
((|constructor| (NIL "This domain represents AST for Spad literals.")))
NIL
NIL
-(-588 S)
+(-589 S)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-left linear set if it is stable by left-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: RightLinearSet.")) (* (($ |#1| $) "\\spad{s*x} is the left-dilation of \\spad{x} by \\spad{s}.")))
NIL
NIL
-(-589 S)
+(-590 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}'s with \\spad{y}'s in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
-((-3989 . T) (-3990 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| |#1| (QUOTE (-72))))
-(-590 R)
+((-3991 . T) (-3992 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| |#1| (QUOTE (-72))))
+(-591 R)
((|constructor| (NIL "The category of left modules over an rng (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the rng. \\blankline")))
NIL
NIL
-(-591 S E |un|)
+(-592 S E |un|)
((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x, y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s, e, x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s, a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a, s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l, n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l, n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s, e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l, fop, fexp, unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a, b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a, n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n}).")))
NIL
NIL
-(-592 A S)
+(-593 A S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -3990)))
-(-593 S)
+((|HasAttribute| |#1| (QUOTE -3992)))
+(-594 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
NIL
-(-594 M R S)
+(-595 M R S)
((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-3984 . T) (-3983 . T))
-((|HasCategory| |#1| (QUOTE (-714))))
-(-595 R -3088 L)
+((-3986 . T) (-3985 . T))
+((|HasCategory| |#1| (QUOTE (-715))))
+(-596 R -3090 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
-(-596 A -2488)
+(-597 A -2490)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-311))))
-(-597 A)
+((-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-311))))
+(-598 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-311))))
-(-598 A M)
+((-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-311))))
+(-599 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-311))))
-(-599 S A)
+((-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-311))))
+(-600 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
NIL
((|HasCategory| |#2| (QUOTE (-311))))
-(-600 A)
+(-601 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-3983 . T) (-3984 . T) (-3986 . T))
+((-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-601 -3088 UP)
+(-602 -3090 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-602 A L)
+(-603 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-603 S)
+(-604 S)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-604)
+(-605)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-605 R)
+(-606 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists.")))
NIL
NIL
-(-606 |VarSet| R)
+(-607 |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-3984 . T) (-3983 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-3986 . T) (-3985 . T))
((|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-146))))
-(-607 A S)
+(-608 A S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
NIL
NIL
-(-608 S)
+(-609 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-3990 . T) (-3989 . T))
+((-3992 . T) (-3991 . T))
NIL
-(-609 -3088 |Row| |Col| M)
+(-610 -3090 |Row| |Col| M)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| #1="failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-610 -3088)
+(-611 -3090)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package's existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) #1="failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-611 R E OV P)
+(-612 R E OV P)
((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}.")))
NIL
NIL
-(-612 |n| R)
+(-613 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-3986 . T) (-3989 . T) (-3983 . T) (-3984 . T))
-((|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-811 (-1088)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-3991 #1="*"))) (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-950 (-483)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-257))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-494))) (OR (|HasAttribute| |#2| (QUOTE (-3991 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1088))))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146))))
-(-613)
+((-3988 . T) (-3991 . T) (-3985 . T) (-3986 . T))
+((|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-812 (-1089)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-3993 #1="*"))) (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-951 (-484)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-257))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-495))) (OR (|HasAttribute| |#2| (QUOTE (-3993 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1089))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146))))
+(-614)
((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'.")))
NIL
NIL
-(-614 |VarSet|)
+(-615 |VarSet|)
((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} <= \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.fr).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(vl,{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{vl},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{\\spad{LyndonWordsList1}(vl,{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{vl},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")))
NIL
NIL
-(-615 A S)
+(-616 A S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least 'n' explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length <= \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}.")))
NIL
NIL
-(-616 S)
+(-617 S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least 'n' explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length <= \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}.")))
NIL
NIL
-(-617)
+(-618)
((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition `m'.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition `m'. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-618 |VarSet|)
+(-619 |VarSet|)
((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{y*z}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}.")))
NIL
NIL
-(-619 A)
+(-620 A)
((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,g,x)} is \\spad{g(n,g(n-1,..g(1,x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,n,x)} applies \\spad{f n} times to \\spad{x}.")))
NIL
NIL
-(-620 A C)
+(-621 A C)
((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,c)} selects its first argument.")))
NIL
NIL
-(-621 A B C)
+(-622 A B C)
((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,g,x)} is \\spad{f(g x)}.")))
NIL
NIL
-(-622)
+(-623)
((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for `s'.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of `s'.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,t)} builds the mapping AST \\spad{s} -> \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'.")))
NIL
NIL
-(-623 A)
+(-624 A)
((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,x)= g(n,g(n-1,..g(1,x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}")))
NIL
NIL
-(-624 A C)
+(-625 A C)
((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}")))
NIL
NIL
-(-625 A B C)
+(-626 A B C)
((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f(b,a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,b)}.}")))
NIL
NIL
-(-626 S R |Row| |Col|)
+(-627 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#2| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
-((|HasAttribute| |#2| (QUOTE (-3991 "*"))) (|HasCategory| |#2| (QUOTE (-257))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-494))))
-(-627 R |Row| |Col|)
+((|HasAttribute| |#2| (QUOTE (-3993 "*"))) (|HasCategory| |#2| (QUOTE (-257))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-495))))
+(-628 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#1| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
-((-3989 . T) (-3990 . T))
+((-3991 . T) (-3992 . T))
NIL
-(-628 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+(-629 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-629 R |Row| |Col| M)
+(-630 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that m*n = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} ~=j)")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} ~=j)")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
NIL
-((|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-494))))
-(-630 R)
-((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
-((-3989 . T) (-3990 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-494))) (|HasAttribute| |#1| (QUOTE (-3991 "*"))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))))
+((|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-495))))
(-631 R)
+((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
+((-3991 . T) (-3992 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| |#1| (QUOTE (-257))) (|HasCategory| |#1| (QUOTE (-495))) (|HasAttribute| |#1| (QUOTE (-3993 "*"))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))))
+(-632 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} ** \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
NIL
-(-632 T$)
+(-633 T$)
((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that `x' really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value `x' into \\%.")))
NIL
NIL
-(-633 R Q)
+(-634 R Q)
((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}.")))
NIL
NIL
-(-634 S)
+(-635 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-3990 . T))
+((-3992 . T))
NIL
-(-635 U)
+(-636 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the gcd of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
NIL
NIL
-(-636)
+(-637)
((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: ?? Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1="undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1#) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented")))
NIL
NIL
-(-637 OV E -3088 PG)
+(-638 OV E -3090 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
-(-638 R)
+(-639 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
NIL
NIL
-(-639 S D1 D2 I)
+(-640 S D1 D2 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function")))
NIL
NIL
-(-640 S)
+(-641 S)
((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr, x, y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr, x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}.")))
NIL
NIL
-(-641 S)
+(-642 S)
((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e, foo, [x1,...,xn])} creates a function \\spad{foo(x1,...,xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x, y)} creates a function \\spad{foo(x, y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e, foo)} creates a function \\spad{foo() == e}.")))
NIL
NIL
-(-642 S T$)
+(-643 S T$)
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where \\spad{part1} is \\spad{a} and \\spad{part2} is \\spad{b}.")))
NIL
NIL
-(-643 S -2665 I)
+(-644 S -2667 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
-(-644 E OV R P)
+(-645 E OV R P)
((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,lv,lu,lr,lp,lt,ln,t,r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,lv,lu,lr,lp,ln,r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,lv,lr,ln,lu,t,r)} \\undocumented")))
NIL
NIL
-(-645 R)
+(-646 R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
-((-3983 . T) (-3984 . T) (-3986 . T))
+((-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-646 R1 UP1 UPUP1 R2 UP2 UPUP2)
+(-647 R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
NIL
NIL
-(-647)
+(-648)
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-648 R |Mod| -2033 -3512 |exactQuo|)
+(-649 R |Mod| -2035 -3514 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-649 R P)
+(-650 R P)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3985 |has| |#1| (-311)) (-3987 |has| |#1| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-327)))) (|HasCategory| (-993) (QUOTE (-796 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-483)))) (|HasCategory| (-993) (QUOTE (-796 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-993) (QUOTE (-553 (-800 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-993) (QUOTE (-553 (-800 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| (-993) (QUOTE (-553 (-472))))) (|HasCategory| |#1| (QUOTE (-580 (-483)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (QUOTE (-811 (-1088)))) (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3987)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-650 IS E |ff|)
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3987 |has| |#1| (-311)) (-3989 |has| |#1| (-6 -3989)) (-3986 . T) (-3985 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-327)))) (|HasCategory| (-994) (QUOTE (-797 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-484)))) (|HasCategory| (-994) (QUOTE (-797 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-994) (QUOTE (-554 (-801 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-994) (QUOTE (-554 (-801 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| (-994) (QUOTE (-554 (-473))))) (|HasCategory| |#1| (QUOTE (-581 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (QUOTE (-812 (-1089)))) (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3989)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-651 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
-(-651 R M)
+(-652 R M)
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be \\spad{op2}. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-3984 |has| |#1| (-146)) (-3983 |has| |#1| (-146)) (-3986 . T))
+((-3986 |has| |#1| (-146)) (-3985 |has| |#1| (-146)) (-3988 . T))
((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))))
-(-652 R |Mod| -2033 -3512 |exactQuo|)
+(-653 R |Mod| -2035 -3514 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-3986 . T))
+((-3988 . T))
NIL
-(-653 S R)
+(-654 S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
NIL
NIL
-(-654 R)
+(-655 R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-3984 . T) (-3983 . T))
+((-3986 . T) (-3985 . T))
NIL
-(-655 -3088)
+(-656 -3090)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}.")))
-((-3986 . T))
+((-3988 . T))
NIL
-(-656 S)
+(-657 S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-657)
+(-658)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-658 S)
+(-659 S)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn't a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) (|One| (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-659)
+(-660)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn't a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) (|One| (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-660 S R UP)
+(-661 S R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
NIL
((|HasCategory| |#2| (QUOTE (-298))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-317))))
-(-661 R UP)
+(-662 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-3982 |has| |#1| (-311)) (-3987 |has| |#1| (-311)) (-3981 |has| |#1| (-311)) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3984 |has| |#1| (-311)) (-3989 |has| |#1| (-311)) (-3983 |has| |#1| (-311)) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-662 S)
+(-663 S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|One| (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-663)
+(-664)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|One| (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-664 T$)
+(-665 T$)
((|constructor| (NIL "This domain implements monoid operations.")) (|monoidOperation| (($ (|Mapping| |#1| |#1| |#1|) |#1|) "\\spad{monoidOperation(f,e)} constructs a operation from the binary mapping \\spad{f} with neutral value \\spad{e}.")))
-(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3052 (|f| |x| (-2408 |f|)) |x|) (|exit| 1 (-3052 (|f| (-2408 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3052 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T))
+(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3054 (|f| |x| (-2410 |f|)) |x|) (|exit| 1 (-3054 (|f| (-2410 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3054 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T))
NIL
-(-665 T$)
+(-666 T$)
((|constructor| (NIL "This is the category of all domains that implement monoid operations")) (|neutralValue| ((|#1| $) "\\spad{neutralValue f} returns the neutral value of the monoid operation \\spad{f}.")))
-(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3052 (|f| |x| (-2408 |f|)) |x|) (|exit| 1 (-3052 (|f| (-2408 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3052 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T))
+(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3054 (|f| |x| (-2410 |f|)) |x|) (|exit| 1 (-3054 (|f| (-2410 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3054 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T))
NIL
-(-666 -3088 UP)
+(-667 -3090 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-667 |VarSet| E1 E2 R S PR PS)
-((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (PG)")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented ")))
+(-668 |VarSet| E1 E2 R S PR PS)
+((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (PG)")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented")))
NIL
NIL
-(-668 |Vars1| |Vars2| E1 E2 R PR1 PR2)
+(-669 |Vars1| |Vars2| E1 E2 R PR1 PR2)
((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-669 E OV R PPR)
+(-670 E OV R PPR)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-670 |vl| R)
+(-671 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-3991 "*") |has| |#2| (-146)) (-3982 |has| |#2| (-494)) (-3987 |has| |#2| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T))
-((|HasCategory| |#2| (QUOTE (-821))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-494)))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-327)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-327))))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-483)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-327)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-472)))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-472))))) (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-950 (-483)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-311))) (|HasAttribute| |#2| (QUOTE -3987)) (|HasCategory| |#2| (QUOTE (-389))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
-(-671 E OV R PRF)
+(((-3993 "*") |has| |#2| (-146)) (-3984 |has| |#2| (-495)) (-3989 |has| |#2| (-6 -3989)) (-3986 . T) (-3985 . T) (-3988 . T))
+((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-495)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-327)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-327))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-484)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-327)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-473)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-473))))) (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-951 (-484)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-311))) (|HasAttribute| |#2| (QUOTE -3989)) (|HasCategory| |#2| (QUOTE (-389))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
+(-672 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-672 E OV R P)
+(-673 E OV R P)
((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}.")))
NIL
NIL
-(-673 R S M)
+(-674 R S M)
((|constructor| (NIL "\\spad{MonoidRingFunctions2} implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}.")))
NIL
NIL
-(-674 R M)
+(-675 R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-3984 |has| |#1| (-146)) (-3983 |has| |#1| (-146)) (-3986 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-756))))
-(-675 S)
-((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-3989 . T) (-3979 . T) (-3990 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
+((-3986 |has| |#1| (-146)) (-3985 |has| |#1| (-146)) (-3988 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-757))))
(-676 S)
+((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
+((-3991 . T) (-3981 . T) (-3992 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
+(-677 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-3979 . T) (-3990 . T))
+((-3981 . T) (-3992 . T))
NIL
-(-677)
+(-678)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
NIL
NIL
-(-678 S)
+(-679 S)
((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}.")))
NIL
NIL
-(-679 |Coef| |Var|)
+(-680 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3984 . T) (-3983 . T) (-3986 . T))
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3986 . T) (-3985 . T) (-3988 . T))
NIL
-(-680 OV E R P)
+(-681 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
NIL
NIL
-(-681 E OV R P)
+(-682 E OV R P)
((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}.")))
NIL
NIL
-(-682 S R)
+(-683 S R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{r*(a*b) = (r*a)*b = a*(r*b)}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
NIL
NIL
-(-683 R)
+(-684 R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{r*(a*b) = (r*a)*b = a*(r*b)}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-3984 . T) (-3983 . T))
+((-3986 . T) (-3985 . T))
NIL
-(-684 S)
+(-685 S)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{x*(y+z) = x*y + x*z} \\indented{2}{(x+y)*z = x*z + y*z} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 => \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
-(-685)
+(-686)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{x*(y+z) = x*y + x*z} \\indented{2}{(x+y)*z = x*z + y*z} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 => \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
-(-686 S)
+(-687 S)
((|constructor| (NIL "A NonAssociativeRing is a non associative rng which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-687)
+(-688)
((|constructor| (NIL "A NonAssociativeRing is a non associative rng which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-688 |Par|)
+(-689 |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-689 -3088)
+(-690 -3090)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-690 P -3088)
+(-691 P -3090)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")))
NIL
NIL
-(-691 T$)
+(-692 T$)
NIL
NIL
NIL
-(-692 UP -3088)
+(-693 UP -3090)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
-(-693 R)
+(-694 R)
((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-694)
+(-695)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-3991 "*") . T))
+(((-3993 "*") . T))
NIL
-(-695 R -3088)
+(-696 R -3090)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
-(-696)
+(-697)
((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code).")))
NIL
NIL
-(-697 S)
+(-698 S)
((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}.")))
NIL
NIL
-(-698 R |PolR| E |PolE|)
+(-699 R |PolR| E |PolE|)
((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}.")))
NIL
NIL
-(-699 R E V P TS)
+(-700 R E V P TS)
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}ts)} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}ts)} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}ts)} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-700 -3088 |ExtF| |SUEx| |ExtP| |n|)
+(-701 -3090 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
-(-701 BP E OV R P)
+(-702 BP E OV R P)
((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented")))
NIL
NIL
-(-702 |Par|)
+(-703 |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over RN with variable \\spad{x}. Fraction \\spad{P} RN.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over RN with a new symbol as variable.")))
NIL
NIL
-(-703 R |VarSet|)
+(-704 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{SMP} in order to speed up operations related to pseudo-division and gcd. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-327)))) (|HasCategory| |#2| (QUOTE (-796 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-483)))) (|HasCategory| |#2| (QUOTE (-796 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-327))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-483))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| |#2| (QUOTE (-553 (-472))))) (|HasCategory| |#1| (QUOTE (-580 (-483)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-553 (-1088))))) (|HasCategory| |#2| (QUOTE (-553 (-1088)))) (|HasCategory| |#1| (QUOTE (-311))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-553 (-1088))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-483)))) (|HasCategory| |#2| (QUOTE (-553 (-1088)))) (-2556 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-553 (-1088)))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-553 (-1088)))) (-2556 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483)))))) (-2556 (|HasCategory| |#1| (QUOTE (-38 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-483)))) (|HasCategory| |#2| (QUOTE (-553 (-1088)))) (-2556 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483)))))) (-2556 (|HasCategory| |#1| (QUOTE (-482))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-553 (-1088)))) (-2556 (|HasCategory| |#1| (QUOTE (-904 (-483))))))) (|HasAttribute| |#1| (QUOTE -3987)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-704 R)
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3989 |has| |#1| (-6 -3989)) (-3986 . T) (-3985 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-327)))) (|HasCategory| |#2| (QUOTE (-797 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-484)))) (|HasCategory| |#2| (QUOTE (-797 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-327))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-484))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| |#2| (QUOTE (-554 (-473))))) (|HasCategory| |#1| (QUOTE (-581 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-554 (-1089))))) (|HasCategory| |#2| (QUOTE (-554 (-1089)))) (|HasCategory| |#1| (QUOTE (-311))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-554 (-1089))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-484)))) (|HasCategory| |#2| (QUOTE (-554 (-1089)))) (-2558 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-554 (-1089)))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-554 (-1089)))) (-2558 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484)))))) (-2558 (|HasCategory| |#1| (QUOTE (-38 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-484)))) (|HasCategory| |#2| (QUOTE (-554 (-1089)))) (-2558 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484)))))) (-2558 (|HasCategory| |#1| (QUOTE (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-554 (-1089)))) (-2558 (|HasCategory| |#1| (QUOTE (-905 (-484))))))) (|HasAttribute| |#1| (QUOTE -3989)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-705 R)
((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and gcd for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedResultant2}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedResultant1}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}cb]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + cb * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]} such that \\axiom{\\spad{g}} is a gcd of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + cb * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial gcd in \\axiom{R^(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{c^n * a = q*b +r} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{c^n * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a -r} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3985 |has| |#1| (-311)) (-3987 |has| |#1| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-327)))) (|HasCategory| (-993) (QUOTE (-796 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-483)))) (|HasCategory| (-993) (QUOTE (-796 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-993) (QUOTE (-553 (-800 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-993) (QUOTE (-553 (-800 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| (-993) (QUOTE (-553 (-472))))) (|HasCategory| |#1| (QUOTE (-580 (-483)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (QUOTE (-811 (-1088)))) (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3987)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-705 R S)
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3987 |has| |#1| (-311)) (-3989 |has| |#1| (-6 -3989)) (-3986 . T) (-3985 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-327)))) (|HasCategory| (-994) (QUOTE (-797 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-484)))) (|HasCategory| (-994) (QUOTE (-797 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-994) (QUOTE (-554 (-801 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-994) (QUOTE (-554 (-801 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| (-994) (QUOTE (-554 (-473))))) (|HasCategory| |#1| (QUOTE (-581 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (QUOTE (-812 (-1089)))) (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3989)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-706 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-706 R)
+(-707 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented")))
NIL
-((|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))))
-(-707 R E V P)
+((|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))))
+(-708 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-3990 . T) (-3989 . T))
+((-3992 . T) (-3991 . T))
NIL
-(-708 S)
+(-709 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-756)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-146))))
-(-709)
+((-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-757)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-146))))
+(-710)
((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}.")))
NIL
NIL
-(-710)
+(-711)
((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,n,x1,x2,ns,derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})**(\\spad{-1/5})}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try , did , next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation's right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |tryValue| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |tryValue| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}.")))
NIL
NIL
-(-711)
+(-712)
((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")))
NIL
NIL
-(-712 |Curve|)
+(-713 |Curve|)
((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,r,n)} creates a tube of radius \\spad{r} around the curve \\spad{c}.")))
NIL
NIL
-(-713 S)
+(-714 S)
((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is \\spad{1} if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} and \\spad{0} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} holds when \\spad{x} is less than \\spad{0}.")))
NIL
NIL
-(-714)
+(-715)
((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is \\spad{1} if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} and \\spad{0} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} holds when \\spad{x} is less than \\spad{0}.")))
NIL
NIL
-(-715 S)
+(-716 S)
((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} holds when \\spad{x} is greater than \\spad{0}.")))
NIL
NIL
-(-716)
+(-717)
((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} holds when \\spad{x} is greater than \\spad{0}.")))
NIL
NIL
-(-717)
+(-718)
((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted.")))
NIL
NIL
-(-718)
+(-719)
((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}")))
NIL
NIL
-(-719 S R)
+(-720 S R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-482))) (|HasCategory| |#2| (QUOTE (-972))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-553 (-472)))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-317))))
-(-720 R)
+((|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-473)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-317))))
+(-721 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-3983 . T) (-3984 . T) (-3986 . T))
+((-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-721)
+(-722)
((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-722 R)
+(-723 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (|%list| (QUOTE -452) (QUOTE (-1088)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (OR (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| (-909 |#1|) (QUOTE (-950 (-347 (-483)))))) (OR (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| (-909 |#1|) (QUOTE (-950 (-483))))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-482))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-909 |#1|) (QUOTE (-950 (-347 (-483))))) (|HasCategory| (-909 |#1|) (QUOTE (-950 (-483)))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))))
-(-723 OR R OS S)
+((-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (|%list| (QUOTE -453) (QUOTE (-1089)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (OR (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-347 (-484)))))) (OR (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-484))))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-347 (-484))))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-484)))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))))
+(-724 OR R OS S)
((|constructor| (NIL "\\spad{OctonionCategoryFunctions2} implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
-(-724 R -3088 L)
+(-725 R -3090 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}'s form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-725 R -3088)
+(-726 R -3090)
((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| #1="failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| #1#) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2="failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2#) (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
-(-726 R -3088)
+(-727 R -3090)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
-(-727 -3088 UP UPUP R)
+(-728 -3090 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-728 -3088 UP L LQ)
+(-729 -3090 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
-(-729 -3088 UP L LQ)
+(-730 -3090 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}'s such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}'s in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree mj for some \\spad{j},{} and its leading coefficient is then a zero of pj. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {gcd(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-730 -3088 UP)
+(-731 -3090 UP)
((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1="failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1#)) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-731 -3088 L UP A LO)
+(-732 -3090 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-732 -3088 UP)
+(-733 -3090 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular ++ part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-733 -3088 LO)
+(-734 -3090 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-734 -3088 LODO)
+(-735 -3090 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.")))
NIL
NIL
-(-735 -2617 S |f|)
+(-736 -2619 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-3983 |has| |#2| (-961)) (-3984 |has| |#2| (-961)) (-3986 |has| |#2| (-6 -3986)) (-3989 . T))
-((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-311))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-311)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (OR (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756)))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-317))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (QUOTE (-809 (-1088))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-811 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-809 (-1088))))) (|HasCategory| |#2| (QUOTE (-1012))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-1012))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| (-483) (QUOTE (-756))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-1012)))) (|HasAttribute| |#2| (QUOTE -3986)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))))
-(-736 R)
+((-3985 |has| |#2| (-962)) (-3986 |has| |#2| (-962)) (-3988 |has| |#2| (-6 -3988)) (-3991 . T))
+((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-311))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-311)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (OR (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-317))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (QUOTE (-810 (-1089))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-812 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-810 (-1089))))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| (-484) (QUOTE (-757))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-812 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasAttribute| |#2| (QUOTE -3988)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))))
+(-737 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-327)))) (|HasCategory| (-738 (-1088)) (QUOTE (-796 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-483)))) (|HasCategory| (-738 (-1088)) (QUOTE (-796 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-738 (-1088)) (QUOTE (-553 (-800 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-738 (-1088)) (QUOTE (-553 (-800 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| (-738 (-1088)) (QUOTE (-553 (-472))))) (|HasCategory| |#1| (QUOTE (-580 (-483)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1088)))) (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasAttribute| |#1| (QUOTE -3987)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-737 |Kernels| R |var|)
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3989 |has| |#1| (-6 -3989)) (-3986 . T) (-3985 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-327)))) (|HasCategory| (-739 (-1089)) (QUOTE (-797 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-484)))) (|HasCategory| (-739 (-1089)) (QUOTE (-797 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-739 (-1089)) (QUOTE (-554 (-801 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-739 (-1089)) (QUOTE (-554 (-801 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| (-739 (-1089)) (QUOTE (-554 (-473))))) (|HasCategory| |#1| (QUOTE (-581 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1089)))) (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasAttribute| |#1| (QUOTE -3989)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-738 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")))
-(((-3991 "*") |has| |#2| (-311)) (-3982 |has| |#2| (-311)) (-3987 |has| |#2| (-311)) (-3981 |has| |#2| (-311)) (-3986 . T) (-3984 . T) (-3983 . T))
+(((-3993 "*") |has| |#2| (-311)) (-3984 |has| |#2| (-311)) (-3989 |has| |#2| (-311)) (-3983 |has| |#2| (-311)) (-3988 . T) (-3986 . T) (-3985 . T))
((|HasCategory| |#2| (QUOTE (-311))))
-(-738 S)
+(-739 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
NIL
NIL
-(-739 S)
+(-740 S)
((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l, r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}. monomial of \\spad{x}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, s)} returns the exact right quotient of \\spad{x} by \\spad{s}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, s)} returns the exact left quotient of \\spad{x} by \\spad{s}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-756))))
-(-740)
+((|HasCategory| |#1| (QUOTE (-757))))
+(-741)
((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-741 P R)
+(-742 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite'' in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-3983 . T) (-3984 . T) (-3986 . T))
+((-3985 . T) (-3986 . T) (-3988 . T))
((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-190))))
-(-742 S)
+(-743 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-3989 . T) (-3979 . T) (-3990 . T))
+((-3991 . T) (-3981 . T) (-3992 . T))
NIL
-(-743 R)
+(-744 R)
((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-3986 |has| |#1| (-755)))
-((|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-755)))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (OR (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-950 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| |#1| (QUOTE (-482))))
-(-744 R S)
+((-3988 |has| |#1| (-756)))
+((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-756)))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-951 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| |#1| (QUOTE (-483))))
+(-745 R S)
((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity.")))
NIL
NIL
-(-745 R)
+(-746 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-3984 |has| |#1| (-146)) (-3983 |has| |#1| (-146)) (-3986 . T))
+((-3986 |has| |#1| (-146)) (-3985 |has| |#1| (-146)) (-3988 . T))
((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))))
-(-746 A S)
+(-747 A S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}.")))
NIL
NIL
-(-747 S)
+(-748 S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}.")))
NIL
NIL
-(-748)
+(-749)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \"k\" (constructors),{} \"d\" (domains),{} \"c\" (categories) or \"p\" (packages).")))
NIL
NIL
-(-749)
+(-750)
((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of `x'.")))
NIL
NIL
-(-750 R)
+(-751 R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-3986 |has| |#1| (-755)))
-((|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-755)))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (OR (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-950 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| |#1| (QUOTE (-482))))
-(-751 R S)
+((-3988 |has| |#1| (-756)))
+((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-756)))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-951 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| |#1| (QUOTE (-483))))
+(-752 R S)
((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity.")))
NIL
NIL
-(-752)
+(-753)
((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%.")))
NIL
NIL
-(-753 -2617 S)
+(-754 -2619 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
-(-754)
+(-755)
((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline")))
NIL
NIL
-(-755)
+(-756)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")))
-((-3986 . T))
+((-3988 . T))
NIL
-(-756)
+(-757)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")))
NIL
NIL
-(-757 T$ |f|)
+(-758 T$ |f|)
((|constructor| (NIL "This domain turns any total ordering \\spad{f} on a type \\spad{T} into a model of the category \\spadtype{OrderedType}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-552 (-772)))))
-(-758 S)
+((|HasCategory| |#1| (QUOTE (-553 (-773)))))
+(-759 S)
((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain.")))
NIL
NIL
-(-759)
+(-760)
((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain.")))
NIL
NIL
-(-760 S R)
+(-761 S R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
NIL
-((|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-146))))
-(-761 R)
+((|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))))
+(-762 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
-((-3983 . T) (-3984 . T) (-3986 . T))
+((-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-762 R C)
+(-763 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
-((|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494))))
-(-763 R |sigma| -3239)
+((|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495))))
+(-764 R |sigma| -3241)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-311))))
-(-764 |x| R |sigma| -3239)
+((-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-311))))
+(-765 |x| R |sigma| -3241)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")))
-((-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-311))))
-(-765 R)
+((-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-311))))
+(-766 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))))
-(-766)
+((|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))))
+(-767)
((|constructor| (NIL "Semigroups with compatible ordering.")))
NIL
NIL
-(-767)
+(-768)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}")))
NIL
NIL
-(-768)
+(-769)
((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.")))
NIL
NIL
-(-769 S)
+(-770 S)
((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer `b' onto the conduit `c'. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte `b' on the conduit `c'. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-770)
+(-771)
((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer `b' onto the conduit `c'. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte `b' on the conduit `c'. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-771)
+(-772)
((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by `f' as a binary file.")))
NIL
NIL
-(-772)
+(-773)
((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \"x overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \"f super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
NIL
NIL
-(-773 |VariableList|)
+(-774 |VariableList|)
((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed")))
NIL
NIL
-(-774)
+(-775)
((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}.")))
NIL
NIL
-(-775 R |vl| |wl| |wtlevel|)
+(-776 R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-3984 |has| |#1| (-146)) (-3983 |has| |#1| (-146)) (-3986 . T))
+((-3986 |has| |#1| (-146)) (-3985 |has| |#1| (-146)) (-3988 . T))
((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))))
-(-776 R PS UP)
+(-777 R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-777 R |x| |pt|)
+(-778 R |x| |pt|)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-778 |p|)
+(-779 |p|)
((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-779 |p|)
+(-780 |p|)
((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-780 |p|)
+(-781 |p|)
((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| (-778 |#1|) (QUOTE (-821))) (|HasCategory| (-778 |#1|) (QUOTE (-950 (-1088)))) (|HasCategory| (-778 |#1|) (QUOTE (-118))) (|HasCategory| (-778 |#1|) (QUOTE (-120))) (|HasCategory| (-778 |#1|) (QUOTE (-553 (-472)))) (|HasCategory| (-778 |#1|) (QUOTE (-933))) (|HasCategory| (-778 |#1|) (QUOTE (-740))) (|HasCategory| (-778 |#1|) (QUOTE (-756))) (OR (|HasCategory| (-778 |#1|) (QUOTE (-740))) (|HasCategory| (-778 |#1|) (QUOTE (-756)))) (|HasCategory| (-778 |#1|) (QUOTE (-950 (-483)))) (|HasCategory| (-778 |#1|) (QUOTE (-1064))) (|HasCategory| (-778 |#1|) (QUOTE (-796 (-327)))) (|HasCategory| (-778 |#1|) (QUOTE (-796 (-483)))) (|HasCategory| (-778 |#1|) (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-778 |#1|) (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-778 |#1|) (QUOTE (-580 (-483)))) (|HasCategory| (-778 |#1|) (QUOTE (-189))) (|HasCategory| (-778 |#1|) (QUOTE (-811 (-1088)))) (|HasCategory| (-778 |#1|) (QUOTE (-190))) (|HasCategory| (-778 |#1|) (QUOTE (-809 (-1088)))) (|HasCategory| (-778 |#1|) (|%list| (QUOTE -452) (QUOTE (-1088)) (|%list| (QUOTE -778) (|devaluate| |#1|)))) (|HasCategory| (-778 |#1|) (|%list| (QUOTE -259) (|%list| (QUOTE -778) (|devaluate| |#1|)))) (|HasCategory| (-778 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -778) (|devaluate| |#1|)) (|%list| (QUOTE -778) (|devaluate| |#1|)))) (|HasCategory| (-778 |#1|) (QUOTE (-257))) (|HasCategory| (-778 |#1|) (QUOTE (-482))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-778 |#1|) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-778 |#1|) (QUOTE (-821)))) (|HasCategory| (-778 |#1|) (QUOTE (-118)))))
-(-781 |p| PADIC)
+((-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| (-779 |#1|) (QUOTE (-822))) (|HasCategory| (-779 |#1|) (QUOTE (-951 (-1089)))) (|HasCategory| (-779 |#1|) (QUOTE (-118))) (|HasCategory| (-779 |#1|) (QUOTE (-120))) (|HasCategory| (-779 |#1|) (QUOTE (-554 (-473)))) (|HasCategory| (-779 |#1|) (QUOTE (-934))) (|HasCategory| (-779 |#1|) (QUOTE (-741))) (|HasCategory| (-779 |#1|) (QUOTE (-757))) (OR (|HasCategory| (-779 |#1|) (QUOTE (-741))) (|HasCategory| (-779 |#1|) (QUOTE (-757)))) (|HasCategory| (-779 |#1|) (QUOTE (-951 (-484)))) (|HasCategory| (-779 |#1|) (QUOTE (-1065))) (|HasCategory| (-779 |#1|) (QUOTE (-797 (-327)))) (|HasCategory| (-779 |#1|) (QUOTE (-797 (-484)))) (|HasCategory| (-779 |#1|) (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-779 |#1|) (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-779 |#1|) (QUOTE (-581 (-484)))) (|HasCategory| (-779 |#1|) (QUOTE (-189))) (|HasCategory| (-779 |#1|) (QUOTE (-812 (-1089)))) (|HasCategory| (-779 |#1|) (QUOTE (-190))) (|HasCategory| (-779 |#1|) (QUOTE (-810 (-1089)))) (|HasCategory| (-779 |#1|) (|%list| (QUOTE -453) (QUOTE (-1089)) (|%list| (QUOTE -779) (|devaluate| |#1|)))) (|HasCategory| (-779 |#1|) (|%list| (QUOTE -259) (|%list| (QUOTE -779) (|devaluate| |#1|)))) (|HasCategory| (-779 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -779) (|devaluate| |#1|)) (|%list| (QUOTE -779) (|devaluate| |#1|)))) (|HasCategory| (-779 |#1|) (QUOTE (-257))) (|HasCategory| (-779 |#1|) (QUOTE (-483))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-779 |#1|) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-779 |#1|) (QUOTE (-822)))) (|HasCategory| (-779 |#1|) (QUOTE (-118)))))
+(-782 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of Qp.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-950 (-1088)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-553 (-472)))) (|HasCategory| |#2| (QUOTE (-933))) (|HasCategory| |#2| (QUOTE (-740))) (|HasCategory| |#2| (QUOTE (-756))) (OR (|HasCategory| |#2| (QUOTE (-740))) (|HasCategory| |#2| (QUOTE (-756)))) (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-796 (-327)))) (|HasCategory| |#2| (QUOTE (-796 (-483)))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-327))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-483))))) (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-811 (-1088)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (|%list| (QUOTE -452) (QUOTE (-1088)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-257))) (|HasCategory| |#2| (QUOTE (-482))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
-(-782 S T$)
+((-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-951 (-1089)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-473)))) (|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-757))) (OR (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (QUOTE (-797 (-327)))) (|HasCategory| |#2| (QUOTE (-797 (-484)))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-327))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-484))))) (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-812 (-1089)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (|%list| (QUOTE -453) (QUOTE (-1089)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-257))) (|HasCategory| |#2| (QUOTE (-483))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
+(-783 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of `p'.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of `p'.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of `s' and `t'.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-1012)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-1012))))) (-12 (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))))
-(-783)
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))))
+(-784)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it's highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it's lowest value.")))
NIL
NIL
-(-784)
+(-785)
((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.")))
NIL
NIL
-(-785)
+(-786)
((|constructor| (NIL "Representation of parameters to functions or constructors. For the most part,{} they are Identifiers. However,{} in very cases,{} they are \"flags\",{} \\spadignore{e.g.} string literals.")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(x)@String} implicitly coerce the object \\spad{x} to \\spadtype{String}. This function is left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(x)@Identifier} implicitly coerce the object \\spad{x} to \\spadtype{Identifier}. This function is left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} if the parameter AST object \\spad{x} designates a flag.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} if the parameter AST object \\spad{x} designates an \\spadtype{Identifier}.")))
NIL
NIL
-(-786 CF1 CF2)
+(-787 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-787 |ComponentFunction|)
+(-788 |ComponentFunction|)
((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}.")))
NIL
NIL
-(-788 CF1 CF2)
+(-789 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-789 |ComponentFunction|)
+(-790 |ComponentFunction|)
((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-790)
+(-791)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result.")))
NIL
NIL
-(-791 CF1 CF2)
+(-792 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-792 |ComponentFunction|)
+(-793 |ComponentFunction|)
((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-793)
+(-794)
((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0's,{}\\spad{l1} 1's,{}\\spad{l2} 2's,{}...,{}\\spad{ln} \\spad{n}'s.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}'s,{} and 4 \\spad{5}'s.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|PositiveInteger|))) (|Stream| (|List| (|PositiveInteger|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")))
NIL
NIL
-(-794 R)
+(-795 R)
((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself.")))
NIL
NIL
-(-795 R S L)
+(-796 R S L)
((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-796 S)
+(-797 S)
((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches.")))
NIL
NIL
-(-797 |Base| |Subject| |Pat|)
+(-798 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-2556 (|HasCategory| |#2| (QUOTE (-950 (-1088))))) (-2556 (|HasCategory| |#2| (QUOTE (-961))))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (-2556 (|HasCategory| |#2| (QUOTE (-950 (-1088)))))) (|HasCategory| |#2| (QUOTE (-950 (-1088)))))
-(-798 R S)
+((-12 (-2558 (|HasCategory| |#2| (QUOTE (-951 (-1089))))) (-2558 (|HasCategory| |#2| (QUOTE (-962))))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (-2558 (|HasCategory| |#2| (QUOTE (-951 (-1089)))))) (|HasCategory| |#2| (QUOTE (-951 (-1089)))))
+(-799 R S)
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don't,{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}\\spad{e1}),{}...,{}(vn,{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-799 R A B)
+(-800 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(\\spad{a1})),{}...,{}(vn,{}\\spad{f}(an))].")))
NIL
NIL
-(-800 R)
+(-801 R)
((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and pn to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and pn to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and pn.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form 's for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) (|One| (($) "1")) (|Zero| (($) "0")))
NIL
NIL
-(-801 R -2665)
+(-802 R -2667)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and fn to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
-(-802 R S)
+(-803 R S)
((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}.")))
NIL
NIL
-(-803 |VarSet|)
+(-804 |VarSet|)
((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) (|One| (($) "\\spad{1} returns the empty list.")))
NIL
NIL
-(-804 UP R)
+(-805 UP R)
((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented")))
NIL
NIL
-(-805 A T$ S)
+(-806 A T$ S)
((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#2| $ |#3|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#2| $ |#3|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
NIL
NIL
-(-806 T$ S)
+(-807 T$ S)
((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#1| $ |#2|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#1| $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
NIL
NIL
-(-807 UP -3088)
+(-808 UP -3090)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
-(-808 R S)
+(-809 R S)
((|constructor| (NIL "A partial differential \\spad{R}-module with differentiations indexed by a parameter type \\spad{S}. \\blankline")))
-((-3984 . T) (-3983 . T))
+((-3986 . T) (-3985 . T))
NIL
-(-809 S)
+(-810 S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")))
-((-3986 . T))
+((-3988 . T))
NIL
-(-810 A S)
+(-811 A S)
((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.")))
NIL
NIL
-(-811 S)
+(-812 S)
((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.")))
NIL
NIL
-(-812 S)
+(-813 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})'s")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
-(-813 S)
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
+(-814 S)
((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-3986 . T))
-((OR (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-756)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-756))))
-(-814 |n| R)
+((-3988 . T))
+((OR (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-757)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-757))))
+(-815 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} Ch. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of x:\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} ch.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
-(-815 S)
+(-816 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-3986 . T))
+((-3988 . T))
NIL
-(-816 S)
+(-817 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
NIL
NIL
-(-817 |p|)
+(-818 |p|)
((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
((|HasCategory| $ (QUOTE (-120))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-317))))
-(-818 R E |VarSet| S)
+(-819 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-819 R S)
+(-820 R S)
((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-820 S)
+(-821 S)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \\spad{nothing} if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
NIL
((|HasCategory| |#1| (QUOTE (-118))))
-(-821)
+(-822)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \\spad{nothing} if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-822 R0 -3088 UP UPUP R)
+(-823 R0 -3090 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-823 UP UPUP R)
+(-824 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-824 UP UPUP)
+(-825 UP UPUP)
((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}")))
NIL
NIL
-(-825 R)
+(-826 R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact'' form has only one fractional term per prime in the denominator,{} while the ``p-adic'' form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} ``p-adically'' in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-826 R)
+(-827 R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
NIL
NIL
-(-827 E OV R P)
+(-828 E OV R P)
((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the gcd of the list of primitive polynomials lp.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the gcd of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the gcd of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the gcd of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the gcd of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the gcd of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the gcd of the two polynomials \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-828)
+(-829)
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik's group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic's Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik's Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic's Cube acting on integers 10*i+j for 1 <= \\spad{i} <= 6,{} 1 <= \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}.")))
NIL
NIL
-(-829 -3088)
+(-830 -3090)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any gcd domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
-(-830)
+(-831)
((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = y*x")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-3991 "*") . T))
+(((-3993 "*") . T))
NIL
-(-831 R)
+(-832 R)
((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R}).")))
NIL
NIL
-(-832)
+(-833)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Maybe| (|List| $)) (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \\spad{nothing} if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-833 |xx| -3088)
+(-834 |xx| -3090)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented")))
NIL
NIL
-(-834 -3088 P)
+(-835 -3090 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented")))
NIL
NIL
-(-835 R |Var| |Expon| GR)
+(-836 R |Var| |Expon| GR)
((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(pl) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in pl is inconsistent. It is assumed that pl is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(pl) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in pl is inconsistent. It is assumed that pl is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank >= \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} ~= 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks >= \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks >= \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}")))
NIL
NIL
-(-836)
+(-837)
((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}.")))
NIL
NIL
-(-837 S)
+(-838 S)
((|constructor| (NIL "\\spad{PlotFunctions1} provides facilities for plotting curves where functions SF -> SF are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval")))
NIL
NIL
-(-838)
+(-839)
((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")))
NIL
NIL
-(-839)
+(-840)
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-840)
+(-841)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}.")))
NIL
NIL
-(-841 R -3088)
+(-842 R -3090)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
-(-842 S A B)
+(-843 S A B)
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-843 S R -3088)
+(-844 S R -3090)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-844 I)
+(-845 I)
((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-845 S E)
+(-846 S E)
((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-846 S R L)
+(-847 S R L)
((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-847 S E V R P)
+(-848 S E V R P)
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
-((|HasCategory| |#3| (|%list| (QUOTE -796) (|devaluate| |#1|))))
-(-848 -2665)
+((|HasCategory| |#3| (|%list| (QUOTE -797) (|devaluate| |#1|))))
+(-849 -2667)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
-(-849 R -3088 -2665)
+(-850 R -3090 -2667)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-850 S R Q)
+(-851 S R Q)
((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-851 S)
+(-852 S)
((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion).")))
NIL
NIL
-(-852 S R P)
+(-853 S R P)
((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}.")))
NIL
NIL
-(-853)
+(-854)
((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}.")))
NIL
NIL
-(-854 R)
+(-855 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
-((-3990 . T) (-3989 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-961))) (-12 (|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))))
-(-855 |lv| R)
+((-3992 . T) (-3991 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-962))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))))
+(-856 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
NIL
-(-856 |TheField| |ThePols|)
+(-857 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}sn)} is the number of sign variations in the list of non null numbers [s1::l]@sn,{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}p')}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term")))
NIL
-((|HasCategory| |#1| (QUOTE (-755))))
-(-857 R)
+((|HasCategory| |#1| (QUOTE (-756))))
+(-858 R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-327)))) (|HasCategory| (-1088) (QUOTE (-796 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-483)))) (|HasCategory| (-1088) (QUOTE (-796 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-1088) (QUOTE (-553 (-800 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-1088) (QUOTE (-553 (-800 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| (-1088) (QUOTE (-553 (-472))))) (|HasCategory| |#1| (QUOTE (-580 (-483)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-311))) (|HasAttribute| |#1| (QUOTE -3987)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-858 R S)
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3989 |has| |#1| (-6 -3989)) (-3986 . T) (-3985 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-327)))) (|HasCategory| (-1089) (QUOTE (-797 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-484)))) (|HasCategory| (-1089) (QUOTE (-797 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-1089) (QUOTE (-554 (-801 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-1089) (QUOTE (-554 (-801 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| (-1089) (QUOTE (-554 (-473))))) (|HasCategory| |#1| (QUOTE (-581 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-311))) (|HasAttribute| |#1| (QUOTE -3989)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-859 R S)
((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}.")))
NIL
NIL
-(-859 |x| R)
+(-860 |x| R)
((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}.")))
NIL
NIL
-(-860 S R E |VarSet|)
+(-861 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-821))) (|HasAttribute| |#2| (QUOTE -3987)) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-796 (-327)))) (|HasCategory| |#2| (QUOTE (-796 (-327)))) (|HasCategory| |#4| (QUOTE (-796 (-483)))) (|HasCategory| |#2| (QUOTE (-796 (-483)))) (|HasCategory| |#4| (QUOTE (-553 (-800 (-327))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-327))))) (|HasCategory| |#4| (QUOTE (-553 (-800 (-483))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-483))))) (|HasCategory| |#4| (QUOTE (-553 (-472)))) (|HasCategory| |#2| (QUOTE (-553 (-472)))))
-(-861 R E |VarSet|)
+((|HasCategory| |#2| (QUOTE (-822))) (|HasAttribute| |#2| (QUOTE -3989)) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-797 (-327)))) (|HasCategory| |#2| (QUOTE (-797 (-327)))) (|HasCategory| |#4| (QUOTE (-797 (-484)))) (|HasCategory| |#2| (QUOTE (-797 (-484)))) (|HasCategory| |#4| (QUOTE (-554 (-801 (-327))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-327))))) (|HasCategory| |#4| (QUOTE (-554 (-801 (-484))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-484))))) (|HasCategory| |#4| (QUOTE (-554 (-473)))) (|HasCategory| |#2| (QUOTE (-554 (-473)))))
+(-862 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T))
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3989 |has| |#1| (-6 -3989)) (-3986 . T) (-3985 . T) (-3988 . T))
NIL
-(-862 E V R P -3088)
+(-863 E V R P -3090)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}mn] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-863 E |Vars| R P S)
+(-864 E |Vars| R P S)
((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}")))
NIL
NIL
-(-864 E V R P -3088)
+(-865 E V R P -3090)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
((|HasCategory| |#3| (QUOTE (-389))))
-(-865)
+(-866)
((|constructor| (NIL "This domain represents network port numbers (notable TCP and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer `n'.")))
NIL
NIL
-(-866)
+(-867)
((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-867 R E)
+(-868 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-6 -3987)) (-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3987)))
-(-868 R L)
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3989 |has| |#1| (-6 -3989)) (-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3989)))
+(-869 R L)
((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}.")))
NIL
NIL
-(-869 S)
+(-870 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt's.} Minimum index is 0 in this type,{} cannot be changed")))
-((-3990 . T) (-3989 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))))
-(-870 A B)
+((-3992 . T) (-3991 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))))
+(-871 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")))
NIL
NIL
-(-871)
+(-872)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} dx for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} dx.")))
NIL
NIL
-(-872 -3088)
+(-873 -3090)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve \\spad{a2}. This operation uses \\spadfun{resultant}.")))
NIL
NIL
-(-873 I)
+(-874 I)
((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin's probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin's probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for \\spad{n<10**20}. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime")))
NIL
NIL
-(-874)
+(-875)
((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter.")))
NIL
NIL
-(-875 A B)
+(-876 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented")))
-((-3986 -12 (|has| |#2| (-410)) (|has| |#1| (-410))))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-756))))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#2| (QUOTE (-410)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#2| (QUOTE (-410)))) (-12 (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-663))))) (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-317)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#2| (QUOTE (-410)))) (-12 (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-663))))) (-12 (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-663)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-756)))))
-(-876)
+((-3988 -12 (|has| |#2| (-410)) (|has| |#1| (-410))))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-757))))) (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#2| (QUOTE (-410)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#2| (QUOTE (-410)))) (-12 (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-664))))) (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-317)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-410))) (|HasCategory| |#2| (QUOTE (-410)))) (-12 (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-664))))) (-12 (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-664)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-757)))))
+(-877)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name `n' and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
NIL
-(-877 T$)
+(-878 T$)
((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|disjunction| (($ $ $) "\\spad{disjunction(p,q)} returns a formula denoting the disjunction of \\spad{p} and \\spad{q}.")) (|conjunction| (($ $ $) "\\spad{conjunction(p,q)} returns a formula denoting the conjunction of \\spad{p} and \\spad{q}.")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isAtom| (((|Maybe| |#1|) $) "\\spad{isAtom f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term.")))
NIL
NIL
-(-878 T$)
+(-879 T$)
((|constructor| (NIL "This package collects unary functions operating on propositional formulae.")) (|simplify| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{simplify f} returns a formula logically equivalent to \\spad{f} where obvious tautologies have been removed.")) (|atoms| (((|Set| |#1|) (|PropositionalFormula| |#1|)) "\\spad{atoms f} ++ returns the set of atoms appearing in the formula \\spad{f}.")) (|dual| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{dual f} returns the dual of the proposition \\spad{f}.")))
NIL
NIL
-(-879 S T$)
+(-880 S T$)
((|constructor| (NIL "This package collects binary functions operating on propositional formulae.")) (|map| (((|PropositionalFormula| |#2|) (|Mapping| |#2| |#1|) (|PropositionalFormula| |#1|)) "\\spad{map(f,x)} returns a propositional formula where all atoms in \\spad{x} have been replaced by the result of applying the function \\spad{f} to them.")))
NIL
NIL
-(-880)
+(-881)
((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of `p',{} `q'.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of `q' by `p'.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
NIL
NIL
-(-881 S)
+(-882 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-3989 . T) (-3990 . T))
+((-3991 . T) (-3992 . T))
NIL
-(-882 R |polR|)
+(-883 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean1}}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean2}}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.fr}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{\\spad{nextsousResultant2}(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{S_{\\spad{e}-1}} where \\axiom{\\spad{P} ~ S_d,{} \\spad{Q} = S_{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = lc(S_d)}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{\\spad{Lazard2}(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)**(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{gcd(\\spad{P},{} \\spad{Q})} returns the gcd of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{\\spad{coef1} * \\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the gcd of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{\\spad{coef1}.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
NIL
((|HasCategory| |#1| (QUOTE (-389))))
-(-883)
+(-884)
((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-884)
+(-885)
((|constructor| (NIL "Partition is an OrderedCancellationAbelianMonoid which is used as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|PositiveInteger|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|Pair| (|PositiveInteger|) (|PositiveInteger|))) $) "\\spad{powers(x)} returns a list of pairs. The second component of each pair is the multiplicity with which the first component occurs in \\spad{li}.")) (|partitions| (((|Stream| $) (|NonNegativeInteger|)) "\\spad{partitions n} returns the stream of all partitions of size \\spad{n}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#x} returns the sum of all parts of the partition \\spad{x}.")) (|parts| (((|List| (|PositiveInteger|)) $) "\\spad{parts x} returns the list of decreasing integer sequence making up the partition \\spad{x}.")) (|partition| (($ (|List| (|PositiveInteger|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition")))
NIL
NIL
-(-885 S |Coef| |Expon| |Var|)
+(-886 S |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}.")))
NIL
NIL
-(-886 |Coef| |Expon| |Var|)
+(-887 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}.")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3983 . T) (-3984 . T) (-3986 . T))
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-887)
+(-888)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the x-,{} y-,{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-888 S R E |VarSet| P)
+(-889 S R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#4| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
NIL
-((|HasCategory| |#2| (QUOTE (-494))))
-(-889 R E |VarSet| P)
+((|HasCategory| |#2| (QUOTE (-495))))
+(-890 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#3| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-3989 . T))
+((-3991 . T))
NIL
-(-890 R E V P)
+(-891 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(lp,{}lq)} returns the same as \\axiom{irreducibleFactors(concat(lp,{}lq))} assuming that \\axiom{irreducibleFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of gcd techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{lp}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(lp,{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(lp)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(lp)} returns \\axiom{lg} where \\axiom{lg} is a list of the gcds of every pair in \\axiom{lp} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(lp,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} and \\axiom{lp} generate the same ideal in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{lq} has rank not higher than the one of \\axiom{lp}. Moreover,{} \\axiom{lq} is computed by reducing \\axiom{lp} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{lp}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(lp,{}pred?,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(lp)} returns \\axiom{lq} such that \\axiom{lp} and and \\axiom{lq} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{lq}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(lp)} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{lp}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(lp)} returns \\axiom{lq} such that \\axiom{lp} and \\axiom{lq} generate the same ideal and no polynomial in \\axiom{lq} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}lf)} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}lf,{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf,{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(lp)} returns \\axiom{bps,{}nbps} where \\axiom{bps} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(lp)} returns \\axiom{lps,{}nlps} where \\axiom{lps} is a list of the linear polynomials in lp,{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(lp)} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(lp)} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{lp} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{bps} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(lp)} returns \\spad{true} iff the number of polynomials in \\axiom{lp} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}llp)} returns \\spad{true} iff for every \\axiom{lp} in \\axiom{llp} certainlySubVariety?(newlp,{}lp) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}lp)} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{lp} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is gcd-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(lp)} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in lp]} if \\axiom{\\spad{R}} is gcd-domain else returns \\axiom{lp}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(lp,{}lq,{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(lp,{}lq)),{}lq)} assuming that \\axiom{remOp(lq)} returns \\axiom{lq} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp,{}lq)} returns the same as \\axiom{removeRedundantFactors(concat(lp,{}lq))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(lp,{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}lp))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp)} returns \\axiom{lq} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lq = [\\spad{q1},{}...,{}qm]} then the product \\axiom{p1*p2*...*pn} vanishes iff the product \\axiom{q1*q2*...*qm} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{pj},{} and no polynomial in \\axiom{lq} divides another polynomial in \\axiom{lq}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{lq} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is gcd-domain,{} the polynomials in \\axiom{lq} are pairwise without common non trivial factor.")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-257)))) (|HasCategory| |#1| (QUOTE (-389))))
-(-891 K)
+(-892 K)
((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation.")))
NIL
NIL
-(-892 |VarSet| E RC P)
+(-893 |VarSet| E RC P)
((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary gcd domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")))
NIL
NIL
-(-893 R)
+(-894 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-3990 . T) (-3989 . T))
+((-3992 . T) (-3991 . T))
NIL
-(-894 R1 R2)
+(-895 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented")))
NIL
NIL
-(-895 R)
+(-896 R)
((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")))
NIL
NIL
-(-896 K)
+(-897 K)
((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns csc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise.")))
NIL
NIL
-(-897 R E OV PPR)
+(-898 R E OV PPR)
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-898 K R UP -3088)
+(-899 K R UP -3090)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
-(-899 R |Var| |Expon| |Dpoly|)
+(-900 R |Var| |Expon| |Dpoly|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger's algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) #1="failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don't know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) #1#) $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} ~= 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-257)))))
-(-900 |vl| |nv|)
+(-901 |vl| |nv|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals")))
NIL
NIL
-(-901 R E V P TS)
+(-902 R E V P TS)
((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}ts,{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,{}lts,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,{}us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,{}us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,{}us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty,{} or \\axiom{ts} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,{}us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-902)
+(-903)
((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation.")))
NIL
NIL
-(-903 A S)
+(-904 A S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-482))) (|HasCategory| |#2| (QUOTE (-257))) (|HasCategory| |#2| (QUOTE (-950 (-1088)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-553 (-472)))) (|HasCategory| |#2| (QUOTE (-933))) (|HasCategory| |#2| (QUOTE (-740))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-1064))))
-(-904 S)
+((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-257))) (|HasCategory| |#2| (QUOTE (-951 (-1089)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-473)))) (|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-1065))))
+(-905 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-905 A B R S)
+(-906 A B R S)
((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
NIL
NIL
-(-906 |n| K)
+(-907 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
NIL
NIL
-(-907)
+(-908)
((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted.")))
NIL
NIL
-(-908 S)
+(-909 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\#q}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-3989 . T) (-3990 . T))
+((-3991 . T) (-3992 . T))
NIL
-(-909 R)
+(-910 R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-3982 |has| |#1| (-245)) (-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-245))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-245))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-580 (-483)))) (|HasCategory| |#1| (|%list| (QUOTE -452) (QUOTE (-1088)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1088)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| |#1| (QUOTE (-972))) (|HasCategory| |#1| (QUOTE (-482))))
-(-910 S R)
+((-3984 |has| |#1| (-245)) (-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-245))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-245))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-581 (-484)))) (|HasCategory| |#1| (|%list| (QUOTE -453) (QUOTE (-1089)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1089)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-483))))
+(-911 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-482))) (|HasCategory| |#2| (QUOTE (-972))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-553 (-472)))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-245))))
-(-911 R)
+((|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-473)))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-245))))
+(-912 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-3982 |has| |#1| (-245)) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3984 |has| |#1| (-245)) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-912 QR R QS S)
+(-913 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
NIL
NIL
-(-913 S)
-((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
-((-3989 . T) (-3990 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
(-914 S)
+((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
+((-3991 . T) (-3992 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
+(-915 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-915)
+(-916)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-916 -3088 UP UPUP |radicnd| |n|)
+(-917 -3090 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-3982 |has| (-347 |#2|) (-311)) (-3987 |has| (-347 |#2|) (-311)) (-3981 |has| (-347 |#2|) (-311)) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| (-347 |#2|) (QUOTE (-118))) (|HasCategory| (-347 |#2|) (QUOTE (-120))) (|HasCategory| (-347 |#2|) (QUOTE (-298))) (OR (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-298)))) (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-317))) (OR (-12 (|HasCategory| (-347 |#2|) (QUOTE (-190))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (|HasCategory| (-347 |#2|) (QUOTE (-298)))) (OR (-12 (|HasCategory| (-347 |#2|) (QUOTE (-190))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-189))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (|HasCategory| (-347 |#2|) (QUOTE (-298)))) (OR (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-809 (-1088))))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-298))) (|HasCategory| (-347 |#2|) (QUOTE (-809 (-1088)))))) (OR (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-809 (-1088))))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-811 (-1088)))))) (|HasCategory| (-347 |#2|) (QUOTE (-580 (-483)))) (OR (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-950 (-347 (-483)))))) (|HasCategory| (-347 |#2|) (QUOTE (-950 (-347 (-483))))) (|HasCategory| (-347 |#2|) (QUOTE (-950 (-483)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-317))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-189))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-811 (-1088))))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-190))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-809 (-1088))))))
-(-917 |bb|)
+((-3984 |has| (-347 |#2|) (-311)) (-3989 |has| (-347 |#2|) (-311)) (-3983 |has| (-347 |#2|) (-311)) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| (-347 |#2|) (QUOTE (-118))) (|HasCategory| (-347 |#2|) (QUOTE (-120))) (|HasCategory| (-347 |#2|) (QUOTE (-298))) (OR (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-298)))) (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-317))) (OR (-12 (|HasCategory| (-347 |#2|) (QUOTE (-190))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (|HasCategory| (-347 |#2|) (QUOTE (-298)))) (OR (-12 (|HasCategory| (-347 |#2|) (QUOTE (-190))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-189))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (|HasCategory| (-347 |#2|) (QUOTE (-298)))) (OR (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-810 (-1089))))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-298))) (|HasCategory| (-347 |#2|) (QUOTE (-810 (-1089)))))) (OR (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-810 (-1089))))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-812 (-1089)))))) (|HasCategory| (-347 |#2|) (QUOTE (-581 (-484)))) (OR (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-951 (-347 (-484)))))) (|HasCategory| (-347 |#2|) (QUOTE (-951 (-347 (-484))))) (|HasCategory| (-347 |#2|) (QUOTE (-951 (-484)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-317))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-189))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-812 (-1089))))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-190))) (|HasCategory| (-347 |#2|) (QUOTE (-311)))) (-12 (|HasCategory| (-347 |#2|) (QUOTE (-311))) (|HasCategory| (-347 |#2|) (QUOTE (-810 (-1089))))))
+(-918 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")))
-((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| (-483) (QUOTE (-821))) (|HasCategory| (-483) (QUOTE (-950 (-1088)))) (|HasCategory| (-483) (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-120))) (|HasCategory| (-483) (QUOTE (-553 (-472)))) (|HasCategory| (-483) (QUOTE (-933))) (|HasCategory| (-483) (QUOTE (-740))) (|HasCategory| (-483) (QUOTE (-756))) (OR (|HasCategory| (-483) (QUOTE (-740))) (|HasCategory| (-483) (QUOTE (-756)))) (|HasCategory| (-483) (QUOTE (-950 (-483)))) (|HasCategory| (-483) (QUOTE (-1064))) (|HasCategory| (-483) (QUOTE (-796 (-327)))) (|HasCategory| (-483) (QUOTE (-796 (-483)))) (|HasCategory| (-483) (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-483) (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-483) (QUOTE (-189))) (|HasCategory| (-483) (QUOTE (-811 (-1088)))) (|HasCategory| (-483) (QUOTE (-190))) (|HasCategory| (-483) (QUOTE (-809 (-1088)))) (|HasCategory| (-483) (QUOTE (-452 (-1088) (-483)))) (|HasCategory| (-483) (QUOTE (-259 (-483)))) (|HasCategory| (-483) (QUOTE (-241 (-483) (-483)))) (|HasCategory| (-483) (QUOTE (-257))) (|HasCategory| (-483) (QUOTE (-482))) (|HasCategory| (-483) (QUOTE (-580 (-483)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-483) (QUOTE (-821)))) (|HasCategory| (-483) (QUOTE (-118)))))
-(-918)
+((-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| (-484) (QUOTE (-822))) (|HasCategory| (-484) (QUOTE (-951 (-1089)))) (|HasCategory| (-484) (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-120))) (|HasCategory| (-484) (QUOTE (-554 (-473)))) (|HasCategory| (-484) (QUOTE (-934))) (|HasCategory| (-484) (QUOTE (-741))) (|HasCategory| (-484) (QUOTE (-757))) (OR (|HasCategory| (-484) (QUOTE (-741))) (|HasCategory| (-484) (QUOTE (-757)))) (|HasCategory| (-484) (QUOTE (-951 (-484)))) (|HasCategory| (-484) (QUOTE (-1065))) (|HasCategory| (-484) (QUOTE (-797 (-327)))) (|HasCategory| (-484) (QUOTE (-797 (-484)))) (|HasCategory| (-484) (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-484) (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-484) (QUOTE (-189))) (|HasCategory| (-484) (QUOTE (-812 (-1089)))) (|HasCategory| (-484) (QUOTE (-190))) (|HasCategory| (-484) (QUOTE (-810 (-1089)))) (|HasCategory| (-484) (QUOTE (-453 (-1089) (-484)))) (|HasCategory| (-484) (QUOTE (-259 (-484)))) (|HasCategory| (-484) (QUOTE (-241 (-484) (-484)))) (|HasCategory| (-484) (QUOTE (-257))) (|HasCategory| (-484) (QUOTE (-483))) (|HasCategory| (-484) (QUOTE (-581 (-484)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-822)))) (|HasCategory| (-484) (QUOTE (-118)))))
+(-919)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
NIL
-(-919)
+(-920)
((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size().")))
NIL
NIL
-(-920 RP)
+(-921 RP)
((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers.")))
NIL
NIL
-(-921 S)
+(-922 S)
((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number.")))
NIL
NIL
-(-922 A S)
+(-923 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -3990)) (|HasCategory| |#2| (QUOTE (-1012))))
-(-923 S)
+((|HasAttribute| |#1| (QUOTE -3992)) (|HasCategory| |#2| (QUOTE (-1013))))
+(-924 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
NIL
-(-924 S)
+(-925 S)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
NIL
NIL
-(-925)
+(-926)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-3982 . T) (-3987 . T) (-3981 . T) (-3984 . T) (-3983 . T) ((-3991 "*") . T) (-3986 . T))
+((-3984 . T) (-3989 . T) (-3983 . T) (-3986 . T) (-3985 . T) ((-3993 "*") . T) (-3988 . T))
NIL
-(-926 R -3088)
+(-927 R -3090)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-927 R -3088)
+(-928 R -3090)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-928 -3088 UP)
+(-929 -3090 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-929 -3088 UP)
+(-930 -3090 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
-(-930 S)
+(-931 S)
((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-931 F1 UP UPUP R F2)
+(-932 F1 UP UPUP R F2)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented")))
NIL
NIL
-(-932)
+(-933)
((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied.")))
NIL
NIL
-(-933)
+(-934)
((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
NIL
NIL
-(-934 |Pol|)
+(-935 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-935 |Pol|)
+(-936 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-936)
+(-937)
((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}.")))
NIL
NIL
-(-937 |TheField|)
+(-938 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-3982 . T) (-3987 . T) (-3981 . T) (-3984 . T) (-3983 . T) ((-3991 "*") . T) (-3986 . T))
-((OR (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| (-347 (-483)) (QUOTE (-950 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| (-347 (-483)) (QUOTE (-950 (-347 (-483))))) (|HasCategory| (-347 (-483)) (QUOTE (-950 (-483)))))
-(-938 -3088 L)
+((-3984 . T) (-3989 . T) (-3983 . T) (-3986 . T) (-3985 . T) ((-3993 "*") . T) (-3988 . T))
+((OR (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| (-347 (-484)) (QUOTE (-951 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| (-347 (-484)) (QUOTE (-951 (-347 (-484))))) (|HasCategory| (-347 (-484)) (QUOTE (-951 (-484)))))
+(-939 -3090 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
-(-939 S)
+(-940 S)
((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(r,s)} reset the reference \\spad{r} to refer to \\spad{s}")) (|deref| ((|#1| $) "\\spad{deref(r)} returns the object referenced by \\spad{r}")) (|ref| (($ |#1|) "\\spad{ref(s)} creates a reference to the object \\spad{s}.")))
NIL
NIL
-(-940 R E V P)
+(-941 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-3990 . T) (-3989 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-553 (-472)))) (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-72))))
-(-941)
+((-3992 . T) (-3991 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-473)))) (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-72))))
+(-942)
((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
NIL
NIL
-(-942 R)
+(-943 R)
((|constructor| (NIL "\\spad{RepresentationPackage1} provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 <= \\spad{i} <= \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 <= \\spad{i} <= \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-3991 "*"))))
-(-943 R)
+((|HasAttribute| |#1| (QUOTE (-3993 "*"))))
+(-944 R)
((|constructor| (NIL "\\spad{RepresentationPackage2} provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker's fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker's fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker's fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton's irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-257))))
-(-944 S)
+(-945 S)
((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-945 S)
+(-946 S)
((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-946 S)
+(-947 S)
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-947 -3088 |Expon| |VarSet| |FPol| |LFPol|)
+(-948 -3090 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+(((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-948)
+(-949)
((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'.")))
NIL
NIL
-(-949 A S)
+(-950 A S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")))
NIL
NIL
-(-950 S)
+(-951 S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")))
NIL
NIL
-(-951 Q R)
+(-952 Q R)
((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible.")))
NIL
NIL
-(-952 R)
+(-953 R)
((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}'s appearing inside the \\spad{gi}'s are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}'s appearing inside the \\spad{gi}'s are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-953)
+(-954)
((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented")))
NIL
NIL
-(-954 UP)
+(-955 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-955 R)
+(-956 R)
((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}.")))
NIL
NIL
-(-956 T$)
+(-957 T$)
((|constructor| (NIL "This category defines the common interface for RGB color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of `c'.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of `c'.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of `c'.")))
NIL
NIL
-(-957 T$)
+(-958 T$)
((|constructor| (NIL "This category defines the common interface for RGB color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space.")))
NIL
NIL
-(-958 R |ls|)
+(-959 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a Gcd-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
-((-3990 . T) (-3989 . T))
-((-12 (|HasCategory| (-703 |#1| (-773 |#2|)) (QUOTE (-1012))) (|HasCategory| (-703 |#1| (-773 |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -703) (|devaluate| |#1|) (|%list| (QUOTE -773) (|devaluate| |#2|)))))) (|HasCategory| (-703 |#1| (-773 |#2|)) (QUOTE (-553 (-472)))) (|HasCategory| (-703 |#1| (-773 |#2|)) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| (-773 |#2|) (QUOTE (-317))) (|HasCategory| (-703 |#1| (-773 |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-703 |#1| (-773 |#2|)) (QUOTE (-72))))
-(-959)
+((-3992 . T) (-3991 . T))
+((-12 (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-1013))) (|HasCategory| (-704 |#1| (-774 |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -704) (|devaluate| |#1|) (|%list| (QUOTE -774) (|devaluate| |#2|)))))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-554 (-473)))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| (-774 |#2|) (QUOTE (-317))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-72))))
+(-960)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-960 S)
+(-961 S)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
NIL
NIL
-(-961)
+(-962)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-3986 . T))
+((-3988 . T))
NIL
-(-962 |xx| -3088)
+(-963 |xx| -3090)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
-(-963 S)
+(-964 S)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{x*s} is the right-dilation of \\spad{x} by \\spad{s}.")))
NIL
NIL
-(-964 S |m| |n| R |Row| |Col|)
+(-965 S |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
NIL
-((|HasCategory| |#4| (QUOTE (-257))) (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (QUOTE (-494))) (|HasCategory| |#4| (QUOTE (-146))))
-(-965 |m| |n| R |Row| |Col|)
+((|HasCategory| |#4| (QUOTE (-257))) (|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (QUOTE (-495))) (|HasCategory| |#4| (QUOTE (-146))))
+(-966 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
-((-3989 . T) (-3984 . T) (-3983 . T))
+((-3991 . T) (-3986 . T) (-3985 . T))
NIL
-(-966 |m| |n| R)
+(-967 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-3989 . T) (-3984 . T) (-3983 . T))
-((|HasCategory| |#3| (QUOTE (-146))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-553 (-472)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-311)))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (QUOTE (-257))) (|HasCategory| |#3| (QUOTE (-494))) (-12 (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-552 (-772)))))
-(-967 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+((-3991 . T) (-3986 . T) (-3985 . T))
+((|HasCategory| |#3| (QUOTE (-146))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-554 (-473)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-311)))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (QUOTE (-257))) (|HasCategory| |#3| (QUOTE (-495))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-553 (-773)))))
+(-968 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-968 R)
+(-969 R)
((|constructor| (NIL "The category of right modules over an rng (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the rng. \\blankline")))
NIL
NIL
-(-969)
+(-970)
((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")))
NIL
NIL
-(-970 S T$)
+(-971 S T$)
((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1012))))
-(-971 S)
+((|HasCategory| |#1| (QUOTE (-1013))))
+(-972 S)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
NIL
NIL
-(-972)
+(-973)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-973 |TheField| |ThePolDom|)
+(-974 |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
NIL
NIL
-(-974)
+(-975)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-3977 . T) (-3981 . T) (-3976 . T) (-3987 . T) (-3988 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3979 . T) (-3983 . T) (-3978 . T) (-3989 . T) (-3990 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-975 S R E V)
+(-976 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-950 (-483)))) (|HasCategory| |#2| (QUOTE (-482))) (|HasCategory| |#2| (QUOTE (-38 (-483)))) (|HasCategory| |#2| (QUOTE (-904 (-483)))) (|HasCategory| |#2| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#4| (QUOTE (-553 (-1088)))))
-(-976 R E V)
+((|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-951 (-484)))) (|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-38 (-484)))) (|HasCategory| |#2| (QUOTE (-905 (-484)))) (|HasCategory| |#2| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#4| (QUOTE (-554 (-1089)))))
+(-977 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T))
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3989 |has| |#1| (-6 -3989)) (-3986 . T) (-3985 . T) (-3988 . T))
NIL
-(-977)
+(-978)
((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'.")))
NIL
NIL
-(-978 S |TheField| |ThePols|)
+(-979 S |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-979 |TheField| |ThePols|)
+(-980 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-980 R E V P TS)
+(-981 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}TS) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}TS). The same way it does not care about the way univariate polynomial gcd (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcd need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-981 S R E V P)
+(-982 S R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
NIL
NIL
-(-982 R E V P)
+(-983 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-3990 . T) (-3989 . T))
+((-3992 . T) (-3991 . T))
NIL
-(-983 R E V P TS)
+(-984 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}ts)} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts,{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-984)
+(-985)
((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-985)
+(-986)
((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory.")))
NIL
NIL
-(-986 |Base| R -3088)
+(-987 |Base| R -3090)
((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}fn are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-987 |f|)
+(-988 |f|)
((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-988 |Base| R -3088)
+(-989 |Base| R -3090)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}.")))
NIL
NIL
-(-989 R |ls|)
+(-990 R |ls|)
((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor.")))
NIL
NIL
-(-990 R UP M)
+(-991 R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-3982 |has| |#1| (-311)) (-3987 |has| |#1| (-311)) (-3981 |has| |#1| (-311)) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-298))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-298)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-317))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-298)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-311)))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-298)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-809 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-809 (-1088)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-809 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-811 (-1088)))))) (|HasCategory| |#1| (QUOTE (-580 (-483)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-298)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-811 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-311)))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-311)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-809 (-1088))))))
-(-991 UP SAE UPA)
+((-3984 |has| |#1| (-311)) (-3989 |has| |#1| (-311)) (-3983 |has| |#1| (-311)) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-298))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-298)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-317))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-298)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-311)))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-298)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-810 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-298))) (|HasCategory| |#1| (QUOTE (-810 (-1089)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-810 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-812 (-1089)))))) (|HasCategory| |#1| (QUOTE (-581 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-298)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-812 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-311)))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-311)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-810 (-1089))))))
+(-992 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-992 UP SAE UPA)
+(-993 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-993)
+(-994)
((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable")))
NIL
NIL
-(-994)
+(-995)
((|constructor| (NIL "This is the category of Spad syntax objects.")))
NIL
NIL
-(-995 S)
+(-996 S)
((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache.")))
NIL
NIL
-(-996)
+(-997)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding `b'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of `n' in `s'; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope.")))
NIL
NIL
-(-997 R)
+(-998 R)
((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}")))
NIL
NIL
-(-998 R)
+(-999 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-327)))) (|HasCategory| (-999 (-1088)) (QUOTE (-796 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-483)))) (|HasCategory| (-999 (-1088)) (QUOTE (-796 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-999 (-1088)) (QUOTE (-553 (-800 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-999 (-1088)) (QUOTE (-553 (-800 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| (-999 (-1088)) (QUOTE (-553 (-472))))) (|HasCategory| |#1| (QUOTE (-580 (-483)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1088)))) (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasAttribute| |#1| (QUOTE -3987)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-999 S)
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3989 |has| |#1| (-6 -3989)) (-3986 . T) (-3985 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-327)))) (|HasCategory| (-1000 (-1089)) (QUOTE (-797 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-484)))) (|HasCategory| (-1000 (-1089)) (QUOTE (-797 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-1000 (-1089)) (QUOTE (-554 (-801 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-1000 (-1089)) (QUOTE (-554 (-801 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| (-1000 (-1089)) (QUOTE (-554 (-473))))) (|HasCategory| |#1| (QUOTE (-581 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1089)))) (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasAttribute| |#1| (QUOTE -3989)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-1000 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
NIL
-(-1000 S)
+(-1001 S)
((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1012))))
-(-1001 R S)
+((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013))))
+(-1002 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-755))))
-(-1002)
+((|HasCategory| |#1| (QUOTE (-756))))
+(-1003)
((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment `s'. If `s' designates an infinite interval,{} then the returns list a singleton list.")))
NIL
NIL
-(-1003 S)
+(-1004 S)
((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")))
NIL
-((|HasCategory| (-1000 |#1|) (QUOTE (-1012))))
-(-1004 R S)
+((|HasCategory| (-1001 |#1|) (QUOTE (-1013))))
+(-1005 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
NIL
NIL
-(-1005 S)
+(-1006 S)
((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
NIL
NIL
-(-1006 S L)
+(-1007 S L)
((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}.")))
NIL
NIL
-(-1007)
+(-1008)
((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'.")))
NIL
NIL
-(-1008 S)
+(-1009 S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}")))
-((-3989 . T) (-3979 . T) (-3990 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))))
-(-1009 A S)
+((-3991 . T) (-3981 . T) (-3992 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))))
+(-1010 A S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
NIL
NIL
-(-1010 S)
+(-1011 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-3979 . T))
+((-3981 . T))
NIL
-(-1011 S)
+(-1012 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1012)
+(-1013)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1013 |m| |n|)
+(-1014 |m| |n|)
((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the k^{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {\\spad{a_1},{}...,{}a_m}. Error if {\\spad{a_1},{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ #1="failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the k^{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ #1#) $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the k^{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
NIL
NIL
-(-1014)
+(-1015)
((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
NIL
NIL
-(-1015 |Str| |Sym| |Int| |Flt| |Expr|)
+(-1016 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns \\spad{a1}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of Flt; Error: if \\spad{s} is not an atom that also belongs to Flt.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of Sym. Error: if \\spad{s} is not an atom that also belongs to Sym.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of Str. Error: if \\spad{s} is not an atom that also belongs to Str.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [\\spad{a1},{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Flt.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Sym.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Str.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if \\%peq(\\spad{s},{}\\spad{t}) is \\spad{true} for pointers.")))
NIL
NIL
-(-1016 |Str| |Sym| |Int| |Flt| |Expr|)
+(-1017 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types.")))
NIL
NIL
-(-1017 R E V P TS)
+(-1018 R E V P TS)
((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}ts,{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,{}lts,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,{}us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(ts,{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,{}us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,{}us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty,{} or \\axiom{ts} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,{}us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1018 R E V P TS)
+(-1019 R E V P TS)
((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1019 R E V P)
+(-1020 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the gcd of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(ts,{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-3990 . T) (-3989 . T))
+((-3992 . T) (-3991 . T))
NIL
-(-1020)
+(-1021)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
NIL
NIL
-(-1021 T$)
+(-1022 T$)
((|constructor| (NIL "This domain implements semigroup operations.")) (|semiGroupOperation| (($ (|Mapping| |#1| |#1| |#1|)) "\\spad{semiGroupOperation f} constructs a semigroup operation out of a binary homogeneous mapping known to be associative.")))
-(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3052 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T))
+(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3054 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T))
NIL
-(-1022 T$)
+(-1023 T$)
((|constructor| (NIL "This is the category of all domains that implement semigroup operations")))
-(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3052 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T))
+(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3054 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T))
NIL
-(-1023 S)
+(-1024 S)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1024)
+(-1025)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1025 |dimtot| |dim1| S)
+(-1026 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The \\spad{dim1} parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-3983 |has| |#3| (-961)) (-3984 |has| |#3| (-961)) (-3986 |has| |#3| (-6 -3986)) (-3989 . T))
-((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-552 (-772)))) (|HasCategory| |#3| (QUOTE (-311))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-311)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-717))) (OR (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-756)))) (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-317))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-483)))) (|HasCategory| |#3| (QUOTE (-809 (-1088))))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-483)))) (|HasCategory| |#3| (QUOTE (-961))))) (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-1012)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-1012)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-811 (-1088)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-809 (-1088))))) (|HasCategory| |#3| (QUOTE (-1012))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (QUOTE (-950 (-347 (-483)))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#3| (QUOTE (-1012))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-483)))) (|HasCategory| |#3| (QUOTE (-1012)))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-483)))) (|HasCategory| |#3| (QUOTE (-1012)))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-483)))) (|HasCategory| |#3| (QUOTE (-961))))) (|HasCategory| (-483) (QUOTE (-756))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-483)))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1088)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-950 (-483)))) (|HasCategory| |#3| (QUOTE (-1012)))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-483)))) (|HasCategory| |#3| (QUOTE (-1012)))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#3| (QUOTE (-1012)))) (|HasAttribute| |#3| (QUOTE -3986)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1088)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (-12 (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))))
-(-1026 R |x|)
+((-3985 |has| |#3| (-962)) (-3986 |has| |#3| (-962)) (-3988 |has| |#3| (-6 -3988)) (-3991 . T))
+((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-553 (-773)))) (|HasCategory| |#3| (QUOTE (-311))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-311)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (OR (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757)))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-317))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-484)))) (|HasCategory| |#3| (QUOTE (-810 (-1089))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-484)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-1013)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-1013)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-812 (-1089)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-810 (-1089))))) (|HasCategory| |#3| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (QUOTE (-951 (-347 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#3| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (-12 (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-484)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| (-484) (QUOTE (-757))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-484)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-812 (-1089)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-951 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#3| (QUOTE (-1013)))) (|HasAttribute| |#3| (QUOTE -3988)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1089)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -259) (|devaluate| |#3|)))))
+(-1027 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
((|HasCategory| |#1| (QUOTE (-389))))
-(-1027)
+(-1028)
((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of `s'.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature `s'.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by `s',{} and return type indicated by `t'.")))
NIL
NIL
-(-1028)
+(-1029)
((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for `s'.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature `s'.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST n: \\spad{s} -> \\spad{t}")))
NIL
NIL
-(-1029 R -3088)
+(-1030 R -3090)
((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) #1#) |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1030 R)
+(-1031 R)
((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1031)
+(-1032)
((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}")))
NIL
NIL
-(-1032)
+(-1033)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-3977 . T) (-3981 . T) (-3976 . T) (-3987 . T) (-3988 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3979 . T) (-3983 . T) (-3978 . T) (-3989 . T) (-3990 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-1033 S)
+(-1034 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\#s}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-3989 . T) (-3990 . T))
+((-3991 . T) (-3992 . T))
NIL
-(-1034 S |ndim| R |Row| |Col|)
+(-1035 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-311))) (|HasAttribute| |#3| (QUOTE (-3991 "*"))) (|HasCategory| |#3| (QUOTE (-146))))
-(-1035 |ndim| R |Row| |Col|)
+((|HasCategory| |#3| (QUOTE (-311))) (|HasAttribute| |#3| (QUOTE (-3993 "*"))) (|HasCategory| |#3| (QUOTE (-146))))
+(-1036 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")))
-((-3989 . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3991 . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-1036 R |Row| |Col| M)
+(-1037 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
NIL
NIL
-(-1037 R |VarSet|)
+(-1038 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-327)))) (|HasCategory| |#2| (QUOTE (-796 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-483)))) (|HasCategory| |#2| (QUOTE (-796 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-327))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-483))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| |#2| (QUOTE (-553 (-472))))) (|HasCategory| |#1| (QUOTE (-580 (-483)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-311))) (|HasAttribute| |#1| (QUOTE -3987)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-1038 |Coef| |Var| SMP)
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3989 |has| |#1| (-6 -3989)) (-3986 . T) (-3985 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-327)))) (|HasCategory| |#2| (QUOTE (-797 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-484)))) (|HasCategory| |#2| (QUOTE (-797 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-327))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-484))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| |#2| (QUOTE (-554 (-473))))) (|HasCategory| |#1| (QUOTE (-581 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-311))) (|HasAttribute| |#1| (QUOTE -3989)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-1039 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain SMP. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial SMP.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3984 . T) (-3983 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-311))))
-(-1039 R E V P)
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3986 . T) (-3985 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-311))))
+(-1040 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-3990 . T) (-3989 . T))
+((-3992 . T) (-3991 . T))
NIL
-(-1040 UP -3088)
+(-1041 UP -3090)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
-(-1041 R)
+(-1042 R)
((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function.")))
NIL
NIL
-(-1042 R)
+(-1043 R)
((|constructor| (NIL "This package finds the function \\spad{func3} where \\spad{func1} and \\spad{func2} \\indented{1}{are given and\\space{2}\\spad{func1} = \\spad{func3}(\\spad{func2}) .\\space{2}If there is no solution then} \\indented{1}{function \\spad{func1} will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function \\spad{func3} where \\spad{func1} = \\spad{func3}(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned.")))
NIL
NIL
-(-1043 R)
+(-1044 R)
((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq.")))
NIL
NIL
-(-1044 S A)
+(-1045 S A)
((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented")))
NIL
-((|HasCategory| |#1| (QUOTE (-756))))
-(-1045 R)
+((|HasCategory| |#1| (QUOTE (-757))))
+(-1046 R)
((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")))
NIL
NIL
-(-1046 R)
+(-1047 R)
((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through pn,{} which are lists of points; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); \\spad{close2} set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through pn,{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if \\spad{close2} is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and \\spad{close2} indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument \\spad{close2} equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through pn,{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught pn,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through pn defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through pn to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1047)
+(-1048)
((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}")))
NIL
NIL
-(-1048)
+(-1049)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful.")))
NIL
NIL
-(-1049)
+(-1050)
((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of `s'. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of `s'. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of `s'. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of `s'. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of `s'. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of `s'. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of `s'. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of `s'. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of `s'. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of `s'. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of `s'. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of `s'. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of `s'. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of `s'. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of `s'. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of `s'. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of `s'. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of `s'. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of `s'. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of `s'. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of `s'. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of `s'. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of `s'. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of `s'. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of `s'. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of `s'. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of `s'. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of `s'. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of `s'. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of `s'. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of `s'. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if `s' represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if `s' represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if `s' represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if `s' represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if `s' represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if `s' represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if `s' represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if `s' represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if `s' represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if `s' represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if `s' represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if `s' represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if `s' represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if `s' represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if `s' represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if `s' represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if `s' represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if `s' represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if `s' represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if `s' represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if `s' represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if `s' represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if `s' represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if `s' represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if `s' represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if `s' represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if `s' represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if `s' represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if `s' represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if `s' represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if `s' represents an `import' statement.")))
NIL
NIL
-(-1050)
+(-1051)
((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.")))
NIL
NIL
-(-1051)
+(-1052)
((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")))
NIL
NIL
-(-1052 V C)
+(-1053 V C)
((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}\\spad{o2})} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}\\spad{o1},{}\\spad{o2})} returns \\spad{true} iff \\axiom{\\spad{o1}(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}lt)} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in lt]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(lvt)} returns the same as \\axiom{[construct(vt.val,{}vt.tower) for vt in lvt]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(vt)} returns the same as \\axiom{construct(vt.val,{}vt.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}")))
NIL
NIL
-(-1053 V C)
+(-1054 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls,{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{ls} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$VT for \\spad{s} in ls]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}lt)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}ls)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
-((-3989 . T) (-3990 . T))
-((-12 (|HasCategory| (-1052 |#1| |#2|) (|%list| (QUOTE -259) (|%list| (QUOTE -1052) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1052 |#1| |#2|) (QUOTE (-1012)))) (|HasCategory| (-1052 |#1| |#2|) (QUOTE (-1012))) (OR (|HasCategory| (-1052 |#1| |#2|) (QUOTE (-72))) (|HasCategory| (-1052 |#1| |#2|) (QUOTE (-1012)))) (|HasCategory| (-1052 |#1| |#2|) (QUOTE (-552 (-772)))) (|HasCategory| (-1052 |#1| |#2|) (QUOTE (-72))))
-(-1054 |ndim| R)
+((-3991 . T) (-3992 . T))
+((-12 (|HasCategory| (-1053 |#1| |#2|) (|%list| (QUOTE -259) (|%list| (QUOTE -1053) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1053 |#1| |#2|) (QUOTE (-1013)))) (|HasCategory| (-1053 |#1| |#2|) (QUOTE (-1013))) (OR (|HasCategory| (-1053 |#1| |#2|) (QUOTE (-72))) (|HasCategory| (-1053 |#1| |#2|) (QUOTE (-1013)))) (|HasCategory| (-1053 |#1| |#2|) (QUOTE (-553 (-773)))) (|HasCategory| (-1053 |#1| |#2|) (QUOTE (-72))))
+(-1055 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}.")))
-((-3986 . T) (-3978 |has| |#2| (-6 (-3991 "*"))) (-3989 . T) (-3983 . T) (-3984 . T))
-((|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-811 (-1088)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-3991 #1="*"))) (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-950 (-483)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-472)))) (|HasCategory| |#2| (QUOTE (-257))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-311))) (OR (|HasAttribute| |#2| (QUOTE (-3991 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1088))))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146))))
-(-1055 S)
+((-3988 . T) (-3980 |has| |#2| (-6 (-3993 "*"))) (-3991 . T) (-3985 . T) (-3986 . T))
+((|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-812 (-1089)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-3993 #1="*"))) (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-951 (-484)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-554 (-473)))) (|HasCategory| |#2| (QUOTE (-257))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-311))) (OR (|HasAttribute| |#2| (QUOTE (-3993 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1089))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146))))
+(-1056 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
-(-1056)
+(-1057)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-3990 . T) (-3989 . T))
+((-3992 . T) (-3991 . T))
NIL
-(-1057 R E V P TS)
+(-1058 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1058 R E V P)
+(-1059 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-3990 . T) (-3989 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-553 (-472)))) (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-72))))
-(-1059)
+((-3992 . T) (-3991 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-473)))) (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-72))))
+(-1060)
((|constructor| (NIL "The category of all semiring structures,{} \\spadignore{e.g.} triples (\\spad{D},{}+,{}*) such that (\\spad{D},{}+) is an Abelian monoid and (\\spad{D},{}*) is a monoid with the following laws:")))
NIL
NIL
-(-1060 S)
+(-1061 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-3989 . T) (-3990 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
-(-1061 A S)
+((-3991 . T) (-3992 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
+(-1062 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1062 S)
+(-1063 S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1063 |Key| |Ent| |dent|)
+(-1064 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-3990 . T))
-((-12 (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3854) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-472)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012))))
-(-1064)
+((-3992 . T))
+((-12 (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3856) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))))
+(-1065)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For non-fiinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline")) (|nextItem| (((|Maybe| $) $) "\\spad{nextItem(x)} returns the next item,{} or \\spad{failed} if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
NIL
-(-1065)
+(-1066)
((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}.")))
NIL
NIL
-(-1066 |Coef|)
+(-1067 |Coef|)
((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-1067 S)
-((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-3990 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| (-483) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-72))))
(-1068 S)
+((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
+((-3992 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| (-484) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))))
+(-1069 S)
((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}.")))
NIL
NIL
-(-1069 A B)
+(-1070 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}.")))
NIL
NIL
-(-1070 A B C)
+(-1071 A B C)
((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}.")))
NIL
NIL
-(-1071)
+(-1072)
((|constructor| (NIL "This is the domain of character strings.")) (|string| (($ (|Identifier|)) "\\spad{string id} is the string representation of the identifier \\spad{id}") (($ (|DoubleFloat|)) "\\spad{string f} returns the decimal representation of \\spad{f} in a string") (($ (|Integer|)) "\\spad{string i} returns the decimal representation of \\spad{i} in a string")))
-((-3990 . T) (-3989 . T))
-((OR (-12 (|HasCategory| (-117) (QUOTE (-259 (-117)))) (|HasCategory| (-117) (QUOTE (-756)))) (-12 (|HasCategory| (-117) (QUOTE (-259 (-117)))) (|HasCategory| (-117) (QUOTE (-1012))))) (|HasCategory| (-117) (QUOTE (-552 (-772)))) (|HasCategory| (-117) (QUOTE (-553 (-472)))) (OR (|HasCategory| (-117) (QUOTE (-756))) (|HasCategory| (-117) (QUOTE (-1012)))) (|HasCategory| (-117) (QUOTE (-756))) (OR (|HasCategory| (-117) (QUOTE (-72))) (|HasCategory| (-117) (QUOTE (-756))) (|HasCategory| (-117) (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-756))) (|HasCategory| (-117) (QUOTE (-1012))) (|HasCategory| (-117) (QUOTE (-72))) (-12 (|HasCategory| (-117) (QUOTE (-259 (-117)))) (|HasCategory| (-117) (QUOTE (-1012)))))
-(-1072 |Entry|)
+((-3992 . T) (-3991 . T))
+((OR (-12 (|HasCategory| (-117) (QUOTE (-259 (-117)))) (|HasCategory| (-117) (QUOTE (-757)))) (-12 (|HasCategory| (-117) (QUOTE (-259 (-117)))) (|HasCategory| (-117) (QUOTE (-1013))))) (|HasCategory| (-117) (QUOTE (-553 (-773)))) (|HasCategory| (-117) (QUOTE (-554 (-473)))) (OR (|HasCategory| (-117) (QUOTE (-757))) (|HasCategory| (-117) (QUOTE (-1013)))) (|HasCategory| (-117) (QUOTE (-757))) (OR (|HasCategory| (-117) (QUOTE (-72))) (|HasCategory| (-117) (QUOTE (-757))) (|HasCategory| (-117) (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-757))) (|HasCategory| (-117) (QUOTE (-1013))) (|HasCategory| (-117) (QUOTE (-72))) (-12 (|HasCategory| (-117) (QUOTE (-259 (-117)))) (|HasCategory| (-117) (QUOTE (-1013)))))
+(-1073 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
-((-3989 . T) (-3990 . T))
-((-12 (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (QUOTE (|:| -3854 (-1071))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (QUOTE (-1012)))) (OR (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (QUOTE (-1012)))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (QUOTE (-1012)))) (OR (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (QUOTE (-553 (-472)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (QUOTE (-1012))) (|HasCategory| (-1071) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (QUOTE (-72)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (QUOTE (-72))))
-(-1073 A)
+((-3991 . T) (-3992 . T))
+((-12 (|HasCategory| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (QUOTE (|:| -3856 (-1072))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (QUOTE (-1013)))) (OR (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (QUOTE (-1013)))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (QUOTE (-554 (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (QUOTE (-1013))) (|HasCategory| (-1072) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (QUOTE (-72)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (QUOTE (-72))))
+(-1074 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by r: \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and b: \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}")))
NIL
-((|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))))
-(-1074 |Coef|)
+((|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))))
+(-1075 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1075 |Coef|)
+(-1076 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1076 R UP)
+(-1077 R UP)
((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}.")))
NIL
((|HasCategory| |#1| (QUOTE (-257))))
-(-1077 |n| R)
+(-1078 |n| R)
((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented")))
NIL
NIL
-(-1078 S1 S2)
+(-1079 S1 S2)
((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form s:t")))
NIL
NIL
-(-1079)
+(-1080)
((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'.")))
NIL
NIL
-(-1080 |Coef| |var| |cen|)
+(-1081 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-3991 "*") OR (-2558 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-740))) (|has| |#1| (-146)) (-2558 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-821)))) (-3982 OR (-2558 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-740))) (|has| |#1| (-494)) (-2558 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-821)))) (-3987 |has| |#1| (-311)) (-3981 |has| |#1| (-311)) (-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-809 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-809 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-811 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|))))) (|HasCategory| (-483) (QUOTE (-1024))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-311))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-950 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-553 (-472))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-933)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-740)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-740)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-756))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-950 (-483))))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-1064)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1087) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1087) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (|%list| (QUOTE -259) (|%list| (QUOTE -1087) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (|%list| (QUOTE -452) (QUOTE (-1088)) (|%list| (QUOTE -1087) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-553 (-800 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-553 (-800 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-796 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-796 (-327))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3940) (|%list| (|devaluate| |#1|) (QUOTE (-1088)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-483))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-29 (-483)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3806) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1088))))) (|HasSignature| |#1| (|%list| (QUOTE -3077) (|%list| (|%list| (QUOTE -583) (QUOTE (-1088))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-482)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-257)))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-740)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-740)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-811 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-756)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-821)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1087 |#1| |#2| |#3|) (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-1081 R -3088)
+(((-3993 "*") OR (-2560 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-741))) (|has| |#1| (-146)) (-2560 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-822)))) (-3984 OR (-2560 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-741))) (|has| |#1| (-495)) (-2560 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-822)))) (-3989 |has| |#1| (-311)) (-3983 |has| |#1| (-311)) (-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-810 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-810 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-812 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|))))) (|HasCategory| (-484) (QUOTE (-1025))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-311))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-951 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-554 (-473))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-934)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-741)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-757))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-951 (-484))))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-1065)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (|%list| (QUOTE -259) (|%list| (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (|%list| (QUOTE -453) (QUOTE (-1089)) (|%list| (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-797 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-797 (-327))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3942) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3808) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3079) (|%list| (|%list| (QUOTE -584) (QUOTE (-1089))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-483)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-257)))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-822))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-812 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-757)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-822)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-1082 R -3090)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(\\spad{a+1}) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
-(-1082 R)
+(-1083 R)
((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.")))
NIL
NIL
-(-1083 R)
+(-1084 R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3985 |has| |#1| (-311)) (-3987 |has| |#1| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-327)))) (|HasCategory| (-993) (QUOTE (-796 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-483)))) (|HasCategory| (-993) (QUOTE (-796 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-993) (QUOTE (-553 (-800 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-993) (QUOTE (-553 (-800 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-472)))) (|HasCategory| (-993) (QUOTE (-553 (-472))))) (|HasCategory| |#1| (QUOTE (-580 (-483)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-1064))) (|HasCategory| |#1| (QUOTE (-811 (-1088)))) (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3987)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-1084 R S)
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3987 |has| |#1| (-311)) (-3989 |has| |#1| (-6 -3989)) (-3986 . T) (-3985 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-327)))) (|HasCategory| (-994) (QUOTE (-797 (-327))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-484)))) (|HasCategory| (-994) (QUOTE (-797 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-994) (QUOTE (-554 (-801 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-994) (QUOTE (-554 (-801 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-473)))) (|HasCategory| (-994) (QUOTE (-554 (-473))))) (|HasCategory| |#1| (QUOTE (-581 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-1065))) (|HasCategory| |#1| (QUOTE (-812 (-1089)))) (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3989)) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-1085 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1085 E OV R P)
+(-1086 E OV R P)
((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}.")))
NIL
NIL
-(-1086 |Coef| |var| |cen|)
-((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-311)) (-3981 |has| |#1| (-311)) (-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483))) (|devaluate| |#1|)))) (|HasCategory| (-347 (-483)) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483)))))) (|HasSignature| |#1| (|%list| (QUOTE -3940) (|%list| (|devaluate| |#1|) (QUOTE (-1088)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-29 (-483)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3806) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1088))))) (|HasSignature| |#1| (|%list| (QUOTE -3077) (|%list| (|%list| (QUOTE -583) (QUOTE (-1088))) (|devaluate| |#1|)))))))
(-1087 |Coef| |var| |cen|)
+((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")))
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3989 |has| |#1| (-311)) (-3983 |has| |#1| (-311)) (-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484))) (|devaluate| |#1|)))) (|HasCategory| (-347 (-484)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484)))))) (|HasSignature| |#1| (|%list| (QUOTE -3942) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3808) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3079) (|%list| (|%list| (QUOTE -584) (QUOTE (-1089))) (|devaluate| |#1|)))))))
+(-1088 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-694)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-694)) (|devaluate| |#1|)))) (|HasCategory| (-694) (QUOTE (-1024))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-694))))) (|HasSignature| |#1| (|%list| (QUOTE -3940) (|%list| (|devaluate| |#1|) (QUOTE (-1088)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-694))))) (|HasCategory| |#1| (QUOTE (-311))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-29 (-483)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3806) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1088))))) (|HasSignature| |#1| (|%list| (QUOTE -3077) (|%list| (|%list| (QUOTE -583) (QUOTE (-1088))) (|devaluate| |#1|)))))))
-(-1088)
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|)))) (|HasCategory| (-695) (QUOTE (-1025))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasSignature| |#1| (|%list| (QUOTE -3942) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasCategory| |#1| (QUOTE (-311))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3808) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3079) (|%list| (|%list| (QUOTE -584) (QUOTE (-1089))) (|devaluate| |#1|)))))))
+(-1089)
((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([\\spad{a1},{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%.")))
NIL
NIL
-(-1089 R)
+(-1090 R)
((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}.")))
NIL
NIL
-(-1090 R)
+(-1091 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-6 -3987)) (-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#1| (QUOTE (-950 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-950 (-483)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| (-884) (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3987)))
-(-1091)
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3989 |has| |#1| (-6 -3989)) (-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#1| (QUOTE (-951 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-951 (-484)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-389))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| (-885) (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3989)))
+(-1092)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
NIL
-(-1092)
+(-1093)
((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}")))
NIL
NIL
-(-1093)
+(-1094)
((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if `x' really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if `x' really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if `x' really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if `x' really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when `x' is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in `x'.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax `x'. The value returned is itself a syntax if `x' really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when `s' is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain `s'; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax `s'; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax `s'.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax `s'.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax `s'.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax `s'")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when `s' is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax.")))
NIL
NIL
-(-1094 N)
+(-1095 N)
((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type.")))
NIL
NIL
-(-1095 N)
+(-1096 N)
((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "\\spad{bitior(x,y)} returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'.")))
NIL
NIL
-(-1096)
+(-1097)
((|constructor| (NIL "This domain is a datatype system-level pointer values.")))
NIL
NIL
-(-1097 R)
+(-1098 R)
((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-1098)
+(-1099)
((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system.")))
NIL
NIL
-(-1099 S)
+(-1100 S)
((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for mr")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{\\spad{ListFunctions3}}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{\\spad{tab1}}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation \\spad{bat1} is the inverse of \\spad{tab1}.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
NIL
NIL
-(-1100 |Key| |Entry|)
+(-1101 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-3989 . T) (-3990 . T))
-((-12 (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3854) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012)))) (OR (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-472)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-1012))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))))
-(-1101 S)
+((-3991 . T) (-3992 . T))
+((-12 (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -259) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3856) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))))
+(-1102 S)
((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau.")))
NIL
NIL
-(-1102 S)
+(-1103 S)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}.")))
NIL
NIL
-(-1103 R)
+(-1104 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}.")))
NIL
NIL
-(-1104 S |Key| |Entry|)
+(-1105 S |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} := \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
NIL
NIL
-(-1105 |Key| |Entry|)
+(-1106 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} := \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
-((-3990 . T))
+((-3992 . T))
NIL
-(-1106 |Key| |Entry|)
+(-1107 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key -> Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
NIL
NIL
-(-1107)
+(-1108)
((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain ``\\verb+\\[+'' and ``\\verb+\\]+'',{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
NIL
NIL
-(-1108 S)
+(-1109 S)
((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
NIL
NIL
-(-1109)
+(-1110)
((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned.")))
NIL
NIL
-(-1110 R)
+(-1111 R)
((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented")))
NIL
NIL
-(-1111)
+(-1112)
((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1112 S)
+(-1113 S)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1113)
+(-1114)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1114 S)
-((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
-((-3990 . T) (-3989 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1012))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
(-1115 S)
+((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
+((-3992 . T) (-3991 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
+(-1116 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1116)
+(-1117)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1117 R -3088)
+(-1118 R -3090)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
-(-1118 R |Row| |Col| M)
+(-1119 R |Row| |Col| M)
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1119 R -3088)
+(-1120 R -3090)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on f:\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on f:\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
-((-12 (|HasCategory| |#1| (|%list| (QUOTE -553) (|%list| (QUOTE -800) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -796) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -553) (|%list| (QUOTE -800) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -796) (|devaluate| |#1|)))))
-(-1120 |Coef|)
+((-12 (|HasCategory| |#1| (|%list| (QUOTE -554) (|%list| (QUOTE -801) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -797) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -554) (|%list| (QUOTE -801) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -797) (|devaluate| |#1|)))))
+(-1121 |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3984 . T) (-3983 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-311))))
-(-1121 S R E V P)
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3986 . T) (-3985 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-311))))
+(-1122 S R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#5|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
((|HasCategory| |#4| (QUOTE (-317))))
-(-1122 R E V P)
+(-1123 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#4|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-3990 . T) (-3989 . T))
+((-3992 . T) (-3991 . T))
NIL
-(-1123 |Curve|)
+(-1124 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
NIL
-(-1124)
+(-1125)
((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point.")))
NIL
NIL
-(-1125 S)
+(-1126 S)
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter's notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")))
NIL
-((|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-552 (-772)))))
-(-1126 -3088)
+((|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-553 (-773)))))
+(-1127 -3090)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
-(-1127)
+(-1128)
((|constructor| (NIL "The fundamental Type.")))
NIL
NIL
-(-1128)
+(-1129)
((|constructor| (NIL "This domain represents a type AST.")))
NIL
NIL
-(-1129 S)
+(-1130 S)
((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by fn.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}'s and bj's.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}'s,{}bj's.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}'s.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}'s.}")))
NIL
-((|HasCategory| |#1| (QUOTE (-756))))
-(-1130)
+((|HasCategory| |#1| (QUOTE (-757))))
+(-1131)
((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}.")))
NIL
NIL
-(-1131 S)
+(-1132 S)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
NIL
NIL
-(-1132)
+(-1133)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-1133)
+(-1134)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits.")))
NIL
NIL
-(-1134)
+(-1135)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits.")))
NIL
NIL
-(-1135)
+(-1136)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits.")))
NIL
NIL
-(-1136)
+(-1137)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits.")))
NIL
NIL
-(-1137 |Coef| |var| |cen|)
+(-1138 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-3991 "*") OR (-2558 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-740))) (|has| |#1| (-146)) (-2558 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-821)))) (-3982 OR (-2558 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-740))) (|has| |#1| (-494)) (-2558 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-821)))) (-3987 |has| |#1| (-311)) (-3981 |has| |#1| (-311)) (-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-809 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-809 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-811 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|))))) (|HasCategory| (-483) (QUOTE (-1024))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-311))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-950 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-553 (-472))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-933)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-740)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-740)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-756))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-950 (-483))))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-1064)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (|%list| (QUOTE -259) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (|%list| (QUOTE -452) (QUOTE (-1088)) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-553 (-800 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-553 (-800 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-796 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-796 (-327))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3940) (|%list| (|devaluate| |#1|) (QUOTE (-1088)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-483))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-29 (-483)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3806) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1088))))) (|HasSignature| |#1| (|%list| (QUOTE -3077) (|%list| (|%list| (QUOTE -583) (QUOTE (-1088))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-482)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-257)))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-740)))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-740)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-811 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-756)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-821)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-1138 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(((-3993 "*") OR (-2560 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-741))) (|has| |#1| (-146)) (-2560 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-822)))) (-3984 OR (-2560 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-741))) (|has| |#1| (-495)) (-2560 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-822)))) (-3989 |has| |#1| (-311)) (-3983 |has| |#1| (-311)) (-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-810 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-810 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-812 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|))))) (|HasCategory| (-484) (QUOTE (-1025))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-311))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-951 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-554 (-473))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-934)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-741)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-757))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-951 (-484))))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1065)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (|%list| (QUOTE -259) (|%list| (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (|%list| (QUOTE -453) (QUOTE (-1089)) (|%list| (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-797 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-797 (-327))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3942) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3808) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3079) (|%list| (|%list| (QUOTE -584) (QUOTE (-1089))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-483)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-257)))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-822))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-741)))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-741)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-812 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-757)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-822)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-1139 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
NIL
NIL
-(-1139 |Coef|)
+(-1140 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree <= \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-311)) (-3981 |has| |#1| (-311)) (-3983 . T) (-3984 . T) (-3986 . T))
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3989 |has| |#1| (-311)) (-3983 |has| |#1| (-311)) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-1140 S |Coef| UTS)
+(-1141 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}.")))
NIL
((|HasCategory| |#2| (QUOTE (-311))))
-(-1141 |Coef| UTS)
+(-1142 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}.")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-311)) (-3981 |has| |#1| (-311)) (-3983 . T) (-3984 . T) (-3986 . T))
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3989 |has| |#1| (-311)) (-3983 |has| |#1| (-311)) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-1142 |Coef| UTS)
+(-1143 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-311)) (-3981 |has| |#1| (-311)) (-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-118))))) (OR (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-120))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-809 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-809 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-811 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|)))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-190))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-189))))) (|HasCategory| (-483) (QUOTE (-1024))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-311))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-950 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-553 (-472))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-933)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-740)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-740)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-756))))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-950 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-950 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-1064)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -452) (QUOTE (-1088)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-580 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-483)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-796 (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-796 (-327))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3940) (|%list| (|devaluate| |#1|) (QUOTE (-1088)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-483))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-29 (-483)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3806) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1088))))) (|HasSignature| |#1| (|%list| (QUOTE -3077) (|%list| (|%list| (QUOTE -583) (QUOTE (-1088))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-756)))) (|HasCategory| |#2| (QUOTE (-821))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-482)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-257)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-118))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-189))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-811 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-483)) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-811 (-1088))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-118))))))
-(-1143 ZP)
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3989 |has| |#1| (-311)) (-3983 |has| |#1| (-311)) (-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-118))))) (OR (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-120))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-810 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-812 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-190))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-189))))) (|HasCategory| (-484) (QUOTE (-1025))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-311))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-554 (-473))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-934)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-741)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-757))))) (OR (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-951 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-1065)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -259) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (|%list| (QUOTE -453) (QUOTE (-1089)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-581 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-327)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-797 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-797 (-327))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3942) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3808) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3079) (|%list| (|%list| (QUOTE -584) (QUOTE (-1089))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-822))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-483)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-257)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-118))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-189))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-812 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-812 (-1089))))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-118))))))
+(-1144 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
NIL
-(-1144 S)
+(-1145 S)
((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
NIL
-((|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1012))))
-(-1145 R S)
+((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013))))
+(-1146 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-755))))
-(-1146 |x| R)
+((|HasCategory| |#1| (QUOTE (-756))))
+(-1147 |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-3991 "*") |has| |#2| (-146)) (-3982 |has| |#2| (-494)) (-3985 |has| |#2| (-311)) (-3987 |has| |#2| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T))
-((|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-494)))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-327)))) (|HasCategory| (-993) (QUOTE (-796 (-327))))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-483)))) (|HasCategory| (-993) (QUOTE (-796 (-483))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-327))))) (|HasCategory| (-993) (QUOTE (-553 (-800 (-327)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-483))))) (|HasCategory| (-993) (QUOTE (-553 (-800 (-483)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-472)))) (|HasCategory| (-993) (QUOTE (-553 (-472))))) (|HasCategory| |#2| (QUOTE (-580 (-483)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-950 (-483)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483)))))) (|HasCategory| |#2| (QUOTE (-950 (-347 (-483))))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-1064))) (|HasCategory| |#2| (QUOTE (-811 (-1088)))) (|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-190))) (|HasAttribute| |#2| (QUOTE -3987)) (|HasCategory| |#2| (QUOTE (-389))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
-(-1147 |x| R |y| S)
+(((-3993 "*") |has| |#2| (-146)) (-3984 |has| |#2| (-495)) (-3987 |has| |#2| (-311)) (-3989 |has| |#2| (-6 -3989)) (-3986 . T) (-3985 . T) (-3988 . T))
+((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-495)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-327)))) (|HasCategory| (-994) (QUOTE (-797 (-327))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-484)))) (|HasCategory| (-994) (QUOTE (-797 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-327))))) (|HasCategory| (-994) (QUOTE (-554 (-801 (-327)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-484))))) (|HasCategory| (-994) (QUOTE (-554 (-801 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-473)))) (|HasCategory| (-994) (QUOTE (-554 (-473))))) (|HasCategory| |#2| (QUOTE (-581 (-484)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-951 (-484)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484)))))) (|HasCategory| |#2| (QUOTE (-951 (-347 (-484))))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-1065))) (|HasCategory| |#2| (QUOTE (-812 (-1089)))) (|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-190))) (|HasAttribute| |#2| (QUOTE -3989)) (|HasCategory| |#2| (QUOTE (-389))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
+(-1148 |x| R |y| S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1148 R Q UP)
+(-1149 R Q UP)
((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a gcd domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}.")))
NIL
NIL
-(-1149 R UP)
+(-1150 R UP)
((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} fn ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} fn).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")))
NIL
NIL
-(-1150 R UP)
+(-1151 R UP)
((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded.")))
NIL
NIL
-(-1151 R U)
+(-1152 R U)
((|constructor| (NIL "This package implements Karatsuba's trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba's trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba's trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba's trick at all.")))
NIL
NIL
-(-1152 S R)
+(-1153 S R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-494))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-1064))))
-(-1153 R)
+((|HasCategory| |#2| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-389))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-1065))))
+(-1154 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3985 |has| |#1| (-311)) (-3987 |has| |#1| (-6 -3987)) (-3984 . T) (-3983 . T) (-3986 . T))
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3987 |has| |#1| (-311)) (-3989 |has| |#1| (-6 -3989)) (-3986 . T) (-3985 . T) (-3988 . T))
NIL
-(-1154 R PR S PS)
+(-1155 R PR S PS)
((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
NIL
-(-1155 S |Coef| |Expon|)
+(-1156 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (QUOTE (-809 (-1088)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1024))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%list| (QUOTE -3940) (|%list| (|devaluate| |#2|) (QUOTE (-1088))))))
-(-1156 |Coef| |Expon|)
+((|HasCategory| |#2| (QUOTE (-810 (-1089)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1025))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%list| (QUOTE -3942) (|%list| (|devaluate| |#2|) (QUOTE (-1089))))))
+(-1157 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3983 . T) (-3984 . T) (-3986 . T))
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-1157 RC P)
+(-1158 RC P)
((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-1158 |Coef| |var| |cen|)
+(-1159 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-311)) (-3981 |has| |#1| (-311)) (-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483))) (|devaluate| |#1|)))) (|HasCategory| (-347 (-483)) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483)))))) (|HasSignature| |#1| (|%list| (QUOTE -3940) (|%list| (|devaluate| |#1|) (QUOTE (-1088)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-29 (-483)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3806) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1088))))) (|HasSignature| |#1| (|%list| (QUOTE -3077) (|%list| (|%list| (QUOTE -583) (QUOTE (-1088))) (|devaluate| |#1|)))))))
-(-1159 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3989 |has| |#1| (-311)) (-3983 |has| |#1| (-311)) (-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484))) (|devaluate| |#1|)))) (|HasCategory| (-347 (-484)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484)))))) (|HasSignature| |#1| (|%list| (QUOTE -3942) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3808) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3079) (|%list| (|%list| (QUOTE -584) (QUOTE (-1089))) (|devaluate| |#1|)))))))
+(-1160 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}.")))
NIL
NIL
-(-1160 |Coef|)
+(-1161 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-311)) (-3981 |has| |#1| (-311)) (-3983 . T) (-3984 . T) (-3986 . T))
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3989 |has| |#1| (-311)) (-3983 |has| |#1| (-311)) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-1161 S |Coef| ULS)
+(-1162 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}.")))
NIL
NIL
-(-1162 |Coef| ULS)
+(-1163 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}.")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-311)) (-3981 |has| |#1| (-311)) (-3983 . T) (-3984 . T) (-3986 . T))
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3989 |has| |#1| (-311)) (-3983 |has| |#1| (-311)) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-1163 |Coef| ULS)
+(-1164 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3987 |has| |#1| (-311)) (-3981 |has| |#1| (-311)) (-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483))) (|devaluate| |#1|)))) (|HasCategory| (-347 (-483)) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-494)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483)))))) (|HasSignature| |#1| (|%list| (QUOTE -3940) (|%list| (|devaluate| |#1|) (QUOTE (-1088)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-483)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-29 (-483)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3806) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1088))))) (|HasSignature| |#1| (|%list| (QUOTE -3077) (|%list| (|%list| (QUOTE -583) (QUOTE (-1088))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))))
-(-1164 R FE |var| |cen|)
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3989 |has| |#1| (-311)) (-3983 |has| |#1| (-311)) (-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484))) (|devaluate| |#1|)))) (|HasCategory| (-347 (-484)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-311))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484)))))) (|HasSignature| |#1| (|%list| (QUOTE -3942) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -347) (QUOTE (-484)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3808) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3079) (|%list| (|%list| (QUOTE -584) (QUOTE (-1089))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))))
+(-1165 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}.")))
-(((-3991 "*") |has| (-1158 |#2| |#3| |#4|) (-146)) (-3982 |has| (-1158 |#2| |#3| |#4|) (-494)) (-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-38 (-347 (-483))))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-146))) (OR (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-38 (-347 (-483))))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-950 (-347 (-483)))))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-950 (-347 (-483))))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-950 (-483)))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-311))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-389))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-494))))
-(-1165 A S)
+(((-3993 "*") |has| (-1159 |#2| |#3| |#4|) (-146)) (-3984 |has| (-1159 |#2| |#3| |#4|) (-495)) (-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-38 (-347 (-484))))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-146))) (OR (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-38 (-347 (-484))))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-951 (-347 (-484)))))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-951 (-347 (-484))))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-951 (-484)))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-311))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-389))) (|HasCategory| (-1159 |#2| |#3| |#4|) (QUOTE (-495))))
+(-1166 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -3990)))
-(-1166 S)
+((|HasAttribute| |#1| (QUOTE -3992)))
+(-1167 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
NIL
-(-1167 |Coef| |var| |cen|)
+(-1168 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3983 . T) (-3984 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-494))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-494)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1088)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-694)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-694)) (|devaluate| |#1|)))) (|HasCategory| (-694) (QUOTE (-1024))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-694))))) (|HasSignature| |#1| (|%list| (QUOTE -3940) (|%list| (|devaluate| |#1|) (QUOTE (-1088)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-694))))) (|HasCategory| |#1| (QUOTE (-311))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#1| (QUOTE (-29 (-483)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-483))))) (|HasSignature| |#1| (|%list| (QUOTE -3806) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1088))))) (|HasSignature| |#1| (|%list| (QUOTE -3077) (|%list| (|%list| (QUOTE -583) (QUOTE (-1088))) (|devaluate| |#1|)))))))
-(-1168 |Coef1| |Coef2| UTS1 UTS2)
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3985 . T) (-3986 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1089)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|)))) (|HasCategory| (-695) (QUOTE (-1025))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasSignature| |#1| (|%list| (QUOTE -3942) (|%list| (|devaluate| |#1|) (QUOTE (-1089)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasCategory| |#1| (QUOTE (-311))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1114)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-347 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3808) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1089))))) (|HasSignature| |#1| (|%list| (QUOTE -3079) (|%list| (|%list| (QUOTE -584) (QUOTE (-1089))) (|devaluate| |#1|)))))))
+(-1169 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
NIL
NIL
-(-1169 S |Coef|)
+(-1170 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (QUOTE (-29 (-483)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasSignature| |#2| (|%list| (QUOTE -3077) (|%list| (|%list| (QUOTE -583) (QUOTE (-1088))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -3806) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1088))))) (|HasCategory| |#2| (QUOTE (-38 (-347 (-483))))) (|HasCategory| |#2| (QUOTE (-311))))
-(-1170 |Coef|)
+((|HasCategory| |#2| (QUOTE (-29 (-484)))) (|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (QUOTE (-1114))) (|HasSignature| |#2| (|%list| (QUOTE -3079) (|%list| (|%list| (QUOTE -584) (QUOTE (-1089))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -3808) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1089))))) (|HasCategory| |#2| (QUOTE (-38 (-347 (-484))))) (|HasCategory| |#2| (QUOTE (-311))))
+(-1171 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-3991 "*") |has| |#1| (-146)) (-3982 |has| |#1| (-494)) (-3983 . T) (-3984 . T) (-3986 . T))
+(((-3993 "*") |has| |#1| (-146)) (-3984 |has| |#1| (-495)) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-1171 |Coef| UTS)
+(-1172 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1172 -3088 UP L UTS)
+(-1173 -3090 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
-((|HasCategory| |#1| (QUOTE (-494))))
-(-1173)
+((|HasCategory| |#1| (QUOTE (-495))))
+(-1174)
((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators.")))
NIL
NIL
-(-1174 |sym|)
+(-1175 |sym|)
((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol")))
NIL
NIL
-(-1175 S R)
+(-1176 S R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
NIL
-((|HasCategory| |#2| (QUOTE (-915))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
-(-1176 R)
+((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
+(-1177 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-3990 . T) (-3989 . T))
+((-3992 . T) (-3991 . T))
NIL
-(-1177 R)
+(-1178 R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-3990 . T) (-3989 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-472)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| (-483) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-961))) (-12 (|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))))
-(-1178 A B)
+((-3992 . T) (-3991 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-962))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -259) (|devaluate| |#1|)))))
+(-1179 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-1179)
+(-1180)
((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through pn.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
NIL
NIL
-(-1180)
+(-1181)
((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it's draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
NIL
-(-1181)
+(-1182)
((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
NIL
NIL
-(-1182)
+(-1183)
((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
NIL
NIL
-(-1183)
+(-1184)
((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object.")))
NIL
NIL
-(-1184 A S)
+(-1185 A S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
NIL
NIL
-(-1185 S)
+(-1186 S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-3984 . T) (-3983 . T))
+((-3986 . T) (-3985 . T))
NIL
-(-1186 R)
+(-1187 R)
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]*v + A[2]\\spad{*v**2} + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1187 K R UP -3088)
+(-1188 K R UP -3090)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
-(-1188)
+(-1189)
((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'.")))
NIL
NIL
-(-1189)
+(-1190)
((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'.")))
NIL
NIL
-(-1190 R |VarSet| E P |vl| |wl| |wtlevel|)
+(-1191 R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-3984 |has| |#1| (-146)) (-3983 |has| |#1| (-146)) (-3986 . T))
+((-3986 |has| |#1| (-146)) (-3985 |has| |#1| (-146)) (-3988 . T))
((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))))
-(-1191 R E V P)
+(-1192 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{MM Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. \\spad{DISCO'92}. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(ps)} returns the same as \\axiom{characteristicSerie(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(ps,{}redOp?,{}redOp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{ps} is the union of the regular zero sets of the members of \\axiom{lts}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(ps,{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(ps)} returns the same as \\axiom{characteristicSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(ps,{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{ps} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(ps)} returns the same as \\axiom{medialSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(ps,{}redOp?,{}redOp)} returns \\axiom{bs} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{ps} (with rank not higher than any basic set of \\axiom{ps}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{bs} has to be understood as a candidate for being a characteristic set of \\axiom{ps}. In the original algorithm,{} \\axiom{bs} is simply a basic set of \\axiom{ps}.")))
-((-3990 . T) (-3989 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-553 (-472)))) (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-494))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-72))))
-(-1192 R)
+((-3992 . T) (-3991 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -259) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-473)))) (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-72))))
+(-1193 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.fr)")))
-((-3983 . T) (-3984 . T) (-3986 . T))
+((-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-1193 |vl| R)
+(-1194 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-3986 . T) (-3982 |has| |#2| (-6 -3982)) (-3984 . T) (-3983 . T))
-((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3982)))
-(-1194 R |VarSet| XPOLY)
+((-3988 . T) (-3984 |has| |#2| (-6 -3984)) (-3986 . T) (-3985 . T))
+((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3984)))
+(-1195 R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
-(-1195 S -3088)
+(-1196 S -3090)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
((|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))))
-(-1196 -3088)
+(-1197 -3090)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-3981 . T) (-3987 . T) (-3982 . T) ((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+((-3983 . T) (-3989 . T) (-3984 . T) ((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
-(-1197 |vl| R)
+(-1198 |vl| R)
((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-3982 |has| |#2| (-6 -3982)) (-3984 . T) (-3983 . T) (-3986 . T))
+((-3984 |has| |#2| (-6 -3984)) (-3986 . T) (-3985 . T) (-3988 . T))
NIL
-(-1198 |VarSet| R)
+(-1199 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-3982 |has| |#2| (-6 -3982)) (-3984 . T) (-3983 . T) (-3986 . T))
-((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-654 (-347 (-483))))) (|HasAttribute| |#2| (QUOTE -3982)))
-(-1199 R)
+((-3984 |has| |#2| (-6 -3984)) (-3986 . T) (-3985 . T) (-3988 . T))
+((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-655 (-347 (-484))))) (|HasAttribute| |#2| (QUOTE -3984)))
+(-1200 R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-3982 |has| |#1| (-6 -3982)) (-3984 . T) (-3983 . T) (-3986 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasAttribute| |#1| (QUOTE -3982)))
-(-1200 |vl| R)
+((-3984 |has| |#1| (-6 -3984)) (-3986 . T) (-3985 . T) (-3988 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasAttribute| |#1| (QUOTE -3984)))
+(-1201 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-3982 |has| |#2| (-6 -3982)) (-3984 . T) (-3983 . T) (-3986 . T))
+((-3984 |has| |#2| (-6 -3984)) (-3986 . T) (-3985 . T) (-3988 . T))
NIL
-(-1201 R E)
+(-1202 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-3986 . T) (-3987 |has| |#1| (-6 -3987)) (-3982 |has| |#1| (-6 -3982)) (-3984 . T) (-3983 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasAttribute| |#1| (QUOTE -3986)) (|HasAttribute| |#1| (QUOTE -3987)) (|HasAttribute| |#1| (QUOTE -3982)))
-(-1202 |VarSet| R)
+((-3988 . T) (-3989 |has| |#1| (-6 -3989)) (-3984 |has| |#1| (-6 -3984)) (-3986 . T) (-3985 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasAttribute| |#1| (QUOTE -3988)) (|HasAttribute| |#1| (QUOTE -3989)) (|HasAttribute| |#1| (QUOTE -3984)))
+(-1203 |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-3982 |has| |#2| (-6 -3982)) (-3984 . T) (-3983 . T) (-3986 . T))
-((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3982)))
-(-1203)
+((-3984 |has| |#2| (-6 -3984)) (-3986 . T) (-3985 . T) (-3988 . T))
+((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3984)))
+(-1204)
((|constructor| (NIL "This domain provides representations of Young diagrams.")) (|shape| (((|Partition|) $) "\\spad{shape x} returns the partition shaping \\spad{x}.")) (|youngDiagram| (($ (|List| (|PositiveInteger|))) "\\spad{youngDiagram l} returns an object representing a Young diagram with shape given by the list of integers \\spad{l}")))
NIL
NIL
-(-1204 A)
+(-1205 A)
((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}.")))
NIL
NIL
-(-1205 R |ls| |ls2|)
-((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}. ") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(lp,{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(lp,{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.")))
+(-1206 R |ls| |ls2|)
+((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(lp,{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(lp,{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.")))
NIL
NIL
-(-1206 R)
+(-1207 R)
((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}'s exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over the integers,{} \\spad{false} otherwise.")))
NIL
NIL
-(-1207 |p|)
+(-1208 |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-3991 "*") . T) (-3983 . T) (-3984 . T) (-3986 . T))
+(((-3993 "*") . T) (-3985 . T) (-3986 . T) (-3988 . T))
NIL
NIL
NIL
@@ -4776,4 +4780,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 1965399 1965404 1965409 1965414) (-2 NIL 1965379 1965384 1965389 1965394) (-1 NIL 1965359 1965364 1965369 1965374) (0 NIL 1965339 1965344 1965349 1965354) (-1207 "ZMOD.spad" 1965148 1965161 1965277 1965334) (-1206 "ZLINDEP.spad" 1964246 1964257 1965138 1965143) (-1205 "ZDSOLVE.spad" 1954206 1954228 1964236 1964241) (-1204 "YSTREAM.spad" 1953701 1953712 1954196 1954201) (-1203 "YDIAGRAM.spad" 1953335 1953344 1953691 1953696) (-1202 "XRPOLY.spad" 1952555 1952575 1953191 1953260) (-1201 "XPR.spad" 1950350 1950363 1952273 1952372) (-1200 "XPOLYC.spad" 1949669 1949685 1950276 1950345) (-1199 "XPOLY.spad" 1949224 1949235 1949525 1949594) (-1198 "XPBWPOLY.spad" 1947695 1947715 1949030 1949099) (-1197 "XFALG.spad" 1944743 1944759 1947621 1947690) (-1196 "XF.spad" 1943206 1943221 1944645 1944738) (-1195 "XF.spad" 1941649 1941666 1943090 1943095) (-1194 "XEXPPKG.spad" 1940908 1940934 1941639 1941644) (-1193 "XDPOLY.spad" 1940522 1940538 1940764 1940833) (-1192 "XALG.spad" 1940190 1940201 1940478 1940517) (-1191 "WUTSET.spad" 1936193 1936210 1939824 1939851) (-1190 "WP.spad" 1935400 1935444 1936051 1936118) (-1189 "WHILEAST.spad" 1935198 1935207 1935390 1935395) (-1188 "WHEREAST.spad" 1934869 1934878 1935188 1935193) (-1187 "WFFINTBS.spad" 1932532 1932554 1934859 1934864) (-1186 "WEIER.spad" 1930754 1930765 1932522 1932527) (-1185 "VSPACE.spad" 1930427 1930438 1930722 1930749) (-1184 "VSPACE.spad" 1930120 1930133 1930417 1930422) (-1183 "VOID.spad" 1929797 1929806 1930110 1930115) (-1182 "VIEWDEF.spad" 1924998 1925007 1929787 1929792) (-1181 "VIEW3D.spad" 1908959 1908968 1924988 1924993) (-1180 "VIEW2D.spad" 1896858 1896867 1908949 1908954) (-1179 "VIEW.spad" 1894578 1894587 1896848 1896853) (-1178 "VECTOR2.spad" 1893217 1893230 1894568 1894573) (-1177 "VECTOR.spad" 1891936 1891947 1892187 1892214) (-1176 "VECTCAT.spad" 1889848 1889859 1891904 1891931) (-1175 "VECTCAT.spad" 1887569 1887582 1889627 1889632) (-1174 "VARIABLE.spad" 1887349 1887364 1887559 1887564) (-1173 "UTYPE.spad" 1886993 1887002 1887339 1887344) (-1172 "UTSODETL.spad" 1886288 1886312 1886949 1886954) (-1171 "UTSODE.spad" 1884504 1884524 1886278 1886283) (-1170 "UTSCAT.spad" 1881983 1881999 1884402 1884499) (-1169 "UTSCAT.spad" 1879130 1879148 1881551 1881556) (-1168 "UTS2.spad" 1878725 1878760 1879120 1879125) (-1167 "UTS.spad" 1873737 1873765 1877257 1877354) (-1166 "URAGG.spad" 1868458 1868469 1873727 1873732) (-1165 "URAGG.spad" 1863143 1863156 1868414 1868419) (-1164 "UPXSSING.spad" 1860911 1860937 1862347 1862480) (-1163 "UPXSCONS.spad" 1858729 1858749 1859102 1859251) (-1162 "UPXSCCA.spad" 1857300 1857320 1858575 1858724) (-1161 "UPXSCCA.spad" 1856013 1856035 1857290 1857295) (-1160 "UPXSCAT.spad" 1854602 1854618 1855859 1856008) (-1159 "UPXS2.spad" 1854145 1854198 1854592 1854597) (-1158 "UPXS.spad" 1851500 1851528 1852336 1852485) (-1157 "UPSQFREE.spad" 1849915 1849929 1851490 1851495) (-1156 "UPSCAT.spad" 1847710 1847734 1849813 1849910) (-1155 "UPSCAT.spad" 1845206 1845232 1847311 1847316) (-1154 "UPOLYC2.spad" 1844677 1844696 1845196 1845201) (-1153 "UPOLYC.spad" 1839757 1839768 1844519 1844672) (-1152 "UPOLYC.spad" 1834755 1834768 1839519 1839524) (-1151 "UPMP.spad" 1833687 1833700 1834745 1834750) (-1150 "UPDIVP.spad" 1833252 1833266 1833677 1833682) (-1149 "UPDECOMP.spad" 1831513 1831527 1833242 1833247) (-1148 "UPCDEN.spad" 1830730 1830746 1831503 1831508) (-1147 "UP2.spad" 1830094 1830115 1830720 1830725) (-1146 "UP.spad" 1827564 1827579 1827951 1828104) (-1145 "UNISEG2.spad" 1827061 1827074 1827520 1827525) (-1144 "UNISEG.spad" 1826414 1826425 1826980 1826985) (-1143 "UNIFACT.spad" 1825517 1825529 1826404 1826409) (-1142 "ULSCONS.spad" 1819560 1819580 1819930 1820079) (-1141 "ULSCCAT.spad" 1817297 1817317 1819406 1819555) (-1140 "ULSCCAT.spad" 1815142 1815164 1817253 1817258) (-1139 "ULSCAT.spad" 1813382 1813398 1814988 1815137) (-1138 "ULS2.spad" 1812896 1812949 1813372 1813377) (-1137 "ULS.spad" 1805162 1805190 1806107 1806530) (-1136 "UINT8.spad" 1805039 1805048 1805152 1805157) (-1135 "UINT64.spad" 1804915 1804924 1805029 1805034) (-1134 "UINT32.spad" 1804791 1804800 1804905 1804910) (-1133 "UINT16.spad" 1804667 1804676 1804781 1804786) (-1132 "UFD.spad" 1803732 1803741 1804593 1804662) (-1131 "UFD.spad" 1802859 1802870 1803722 1803727) (-1130 "UDVO.spad" 1801740 1801749 1802849 1802854) (-1129 "UDPO.spad" 1799321 1799332 1801696 1801701) (-1128 "TYPEAST.spad" 1799240 1799249 1799311 1799316) (-1127 "TYPE.spad" 1799172 1799181 1799230 1799235) (-1126 "TWOFACT.spad" 1797824 1797839 1799162 1799167) (-1125 "TUPLE.spad" 1797331 1797342 1797736 1797741) (-1124 "TUBETOOL.spad" 1794198 1794207 1797321 1797326) (-1123 "TUBE.spad" 1792845 1792862 1794188 1794193) (-1122 "TSETCAT.spad" 1780916 1780933 1792813 1792840) (-1121 "TSETCAT.spad" 1768973 1768992 1780872 1780877) (-1120 "TS.spad" 1767601 1767617 1768567 1768664) (-1119 "TRMANIP.spad" 1761965 1761982 1767289 1767294) (-1118 "TRIMAT.spad" 1760928 1760953 1761955 1761960) (-1117 "TRIGMNIP.spad" 1759455 1759472 1760918 1760923) (-1116 "TRIGCAT.spad" 1758967 1758976 1759445 1759450) (-1115 "TRIGCAT.spad" 1758477 1758488 1758957 1758962) (-1114 "TREE.spad" 1757117 1757128 1758149 1758176) (-1113 "TRANFUN.spad" 1756956 1756965 1757107 1757112) (-1112 "TRANFUN.spad" 1756793 1756804 1756946 1756951) (-1111 "TOPSP.spad" 1756467 1756476 1756783 1756788) (-1110 "TOOLSIGN.spad" 1756130 1756141 1756457 1756462) (-1109 "TEXTFILE.spad" 1754691 1754700 1756120 1756125) (-1108 "TEX1.spad" 1754247 1754258 1754681 1754686) (-1107 "TEX.spad" 1751441 1751450 1754237 1754242) (-1106 "TBCMPPK.spad" 1749542 1749565 1751431 1751436) (-1105 "TBAGG.spad" 1748600 1748623 1749522 1749537) (-1104 "TBAGG.spad" 1747666 1747691 1748590 1748595) (-1103 "TANEXP.spad" 1747074 1747085 1747656 1747661) (-1102 "TALGOP.spad" 1746798 1746809 1747064 1747069) (-1101 "TABLEAU.spad" 1746279 1746290 1746788 1746793) (-1100 "TABLE.spad" 1744554 1744577 1744824 1744851) (-1099 "TABLBUMP.spad" 1741333 1741344 1744544 1744549) (-1098 "SYSTEM.spad" 1740561 1740570 1741323 1741328) (-1097 "SYSSOLP.spad" 1738044 1738055 1740551 1740556) (-1096 "SYSPTR.spad" 1737943 1737952 1738034 1738039) (-1095 "SYSNNI.spad" 1737166 1737177 1737933 1737938) (-1094 "SYSINT.spad" 1736570 1736581 1737156 1737161) (-1093 "SYNTAX.spad" 1732904 1732913 1736560 1736565) (-1092 "SYMTAB.spad" 1730972 1730981 1732894 1732899) (-1091 "SYMS.spad" 1727001 1727010 1730962 1730967) (-1090 "SYMPOLY.spad" 1726134 1726145 1726216 1726343) (-1089 "SYMFUNC.spad" 1725635 1725646 1726124 1726129) (-1088 "SYMBOL.spad" 1723130 1723139 1725625 1725630) (-1087 "SUTS.spad" 1720243 1720271 1721662 1721759) (-1086 "SUPXS.spad" 1717585 1717613 1718434 1718583) (-1085 "SUPFRACF.spad" 1716690 1716708 1717575 1717580) (-1084 "SUP2.spad" 1716082 1716095 1716680 1716685) (-1083 "SUP.spad" 1713166 1713177 1713939 1714092) (-1082 "SUMRF.spad" 1712140 1712151 1713156 1713161) (-1081 "SUMFS.spad" 1711769 1711786 1712130 1712135) (-1080 "SULS.spad" 1704022 1704050 1704980 1705403) (-1079 "syntax.spad" 1703791 1703800 1704012 1704017) (-1078 "SUCH.spad" 1703481 1703496 1703781 1703786) (-1077 "SUBSPACE.spad" 1695612 1695627 1703471 1703476) (-1076 "SUBRESP.spad" 1694782 1694796 1695568 1695573) (-1075 "STTFNC.spad" 1691250 1691266 1694772 1694777) (-1074 "STTF.spad" 1687349 1687365 1691240 1691245) (-1073 "STTAYLOR.spad" 1680026 1680037 1687256 1687261) (-1072 "STRTBL.spad" 1678413 1678430 1678562 1678589) (-1071 "STRING.spad" 1677281 1677290 1677666 1677693) (-1070 "STREAM3.spad" 1676854 1676869 1677271 1677276) (-1069 "STREAM2.spad" 1675982 1675995 1676844 1676849) (-1068 "STREAM1.spad" 1675688 1675699 1675972 1675977) (-1067 "STREAM.spad" 1672684 1672695 1675291 1675306) (-1066 "STINPROD.spad" 1671620 1671636 1672674 1672679) (-1065 "STEPAST.spad" 1670854 1670863 1671610 1671615) (-1064 "STEP.spad" 1670171 1670180 1670844 1670849) (-1063 "STBL.spad" 1668561 1668589 1668728 1668743) (-1062 "STAGG.spad" 1667260 1667271 1668551 1668556) (-1061 "STAGG.spad" 1665957 1665970 1667250 1667255) (-1060 "STACK.spad" 1665379 1665390 1665629 1665656) (-1059 "SRING.spad" 1665139 1665148 1665369 1665374) (-1058 "SREGSET.spad" 1662871 1662888 1664773 1664800) (-1057 "SRDCMPK.spad" 1661448 1661468 1662861 1662866) (-1056 "SRAGG.spad" 1656631 1656640 1661416 1661443) (-1055 "SRAGG.spad" 1651834 1651845 1656621 1656626) (-1054 "SQMATRIX.spad" 1649511 1649529 1650427 1650514) (-1053 "SPLTREE.spad" 1644253 1644266 1649049 1649076) (-1052 "SPLNODE.spad" 1640873 1640886 1644243 1644248) (-1051 "SPFCAT.spad" 1639682 1639691 1640863 1640868) (-1050 "SPECOUT.spad" 1638234 1638243 1639672 1639677) (-1049 "SPADXPT.spad" 1630325 1630334 1638224 1638229) (-1048 "spad-parser.spad" 1629790 1629799 1630315 1630320) (-1047 "SPADAST.spad" 1629491 1629500 1629780 1629785) (-1046 "SPACEC.spad" 1613706 1613717 1629481 1629486) (-1045 "SPACE3.spad" 1613482 1613493 1613696 1613701) (-1044 "SORTPAK.spad" 1613031 1613044 1613438 1613443) (-1043 "SOLVETRA.spad" 1610794 1610805 1613021 1613026) (-1042 "SOLVESER.spad" 1609250 1609261 1610784 1610789) (-1041 "SOLVERAD.spad" 1605276 1605287 1609240 1609245) (-1040 "SOLVEFOR.spad" 1603738 1603756 1605266 1605271) (-1039 "SNTSCAT.spad" 1603338 1603355 1603706 1603733) (-1038 "SMTS.spad" 1601655 1601681 1602932 1603029) (-1037 "SMP.spad" 1599463 1599483 1599853 1599980) (-1036 "SMITH.spad" 1598308 1598333 1599453 1599458) (-1035 "SMATCAT.spad" 1596426 1596456 1598252 1598303) (-1034 "SMATCAT.spad" 1594476 1594508 1596304 1596309) (-1033 "SKAGG.spad" 1593445 1593456 1594444 1594471) (-1032 "SINT.spad" 1592744 1592753 1593311 1593440) (-1031 "SIMPAN.spad" 1592472 1592481 1592734 1592739) (-1030 "SIGNRF.spad" 1591597 1591608 1592462 1592467) (-1029 "SIGNEF.spad" 1590883 1590900 1591587 1591592) (-1028 "syntax.spad" 1590300 1590309 1590873 1590878) (-1027 "SIG.spad" 1589662 1589671 1590290 1590295) (-1026 "SHP.spad" 1587606 1587621 1589618 1589623) (-1025 "SHDP.spad" 1577099 1577126 1577616 1577713) (-1024 "SGROUP.spad" 1576707 1576716 1577089 1577094) (-1023 "SGROUP.spad" 1576313 1576324 1576697 1576702) (-1022 "catdef.spad" 1576023 1576035 1576134 1576308) (-1021 "catdef.spad" 1575579 1575591 1575844 1576018) (-1020 "SGCF.spad" 1568718 1568727 1575569 1575574) (-1019 "SFRTCAT.spad" 1567664 1567681 1568686 1568713) (-1018 "SFRGCD.spad" 1566727 1566747 1567654 1567659) (-1017 "SFQCMPK.spad" 1561540 1561560 1566717 1566722) (-1016 "SEXOF.spad" 1561383 1561423 1561530 1561535) (-1015 "SEXCAT.spad" 1559211 1559251 1561373 1561378) (-1014 "SEX.spad" 1559103 1559112 1559201 1559206) (-1013 "SETMN.spad" 1557563 1557580 1559093 1559098) (-1012 "SETCAT.spad" 1557048 1557057 1557553 1557558) (-1011 "SETCAT.spad" 1556531 1556542 1557038 1557043) (-1010 "SETAGG.spad" 1553080 1553091 1556511 1556526) (-1009 "SETAGG.spad" 1549637 1549650 1553070 1553075) (-1008 "SET.spad" 1547946 1547957 1549043 1549082) (-1007 "syntax.spad" 1547649 1547658 1547936 1547941) (-1006 "SEGXCAT.spad" 1546805 1546818 1547639 1547644) (-1005 "SEGCAT.spad" 1545730 1545741 1546795 1546800) (-1004 "SEGBIND2.spad" 1545428 1545441 1545720 1545725) (-1003 "SEGBIND.spad" 1545186 1545197 1545375 1545380) (-1002 "SEGAST.spad" 1544916 1544925 1545176 1545181) (-1001 "SEG2.spad" 1544351 1544364 1544872 1544877) (-1000 "SEG.spad" 1544164 1544175 1544270 1544275) (-999 "SDVAR.spad" 1543441 1543451 1544154 1544159) (-998 "SDPOL.spad" 1541139 1541149 1541429 1541556) (-997 "SCPKG.spad" 1539229 1539239 1541129 1541134) (-996 "SCOPE.spad" 1538407 1538415 1539219 1539224) (-995 "SCACHE.spad" 1537104 1537114 1538397 1538402) (-994 "SASTCAT.spad" 1537014 1537022 1537094 1537099) (-993 "SAOS.spad" 1536887 1536895 1537004 1537009) (-992 "SAERFFC.spad" 1536601 1536620 1536877 1536882) (-991 "SAEFACT.spad" 1536303 1536322 1536591 1536596) (-990 "SAE.spad" 1533954 1533969 1534564 1534699) (-989 "RURPK.spad" 1531614 1531629 1533944 1533949) (-988 "RULESET.spad" 1531068 1531091 1531604 1531609) (-987 "RULECOLD.spad" 1530921 1530933 1531058 1531063) (-986 "RULE.spad" 1529170 1529193 1530911 1530916) (-985 "RTVALUE.spad" 1528906 1528914 1529160 1529165) (-984 "syntax.spad" 1528624 1528632 1528896 1528901) (-983 "RSETGCD.spad" 1525067 1525086 1528614 1528619) (-982 "RSETCAT.spad" 1515036 1515052 1525035 1525062) (-981 "RSETCAT.spad" 1505025 1505043 1515026 1515031) (-980 "RSDCMPK.spad" 1503526 1503545 1505015 1505020) (-979 "RRCC.spad" 1501911 1501940 1503516 1503521) (-978 "RRCC.spad" 1500294 1500325 1501901 1501906) (-977 "RPTAST.spad" 1499997 1500005 1500284 1500289) (-976 "RPOLCAT.spad" 1479502 1479516 1499865 1499992) (-975 "RPOLCAT.spad" 1458800 1458816 1479165 1479170) (-974 "ROMAN.spad" 1458129 1458137 1458666 1458795) (-973 "ROIRC.spad" 1457210 1457241 1458119 1458124) (-972 "RNS.spad" 1456187 1456195 1457112 1457205) (-971 "RNS.spad" 1455250 1455260 1456177 1456182) (-970 "RNGBIND.spad" 1454411 1454424 1455205 1455210) (-969 "RNG.spad" 1454147 1454155 1454401 1454406) (-968 "RMODULE.spad" 1453929 1453939 1454137 1454142) (-967 "RMCAT2.spad" 1453350 1453406 1453919 1453924) (-966 "RMATRIX.spad" 1452160 1452178 1452502 1452541) (-965 "RMATCAT.spad" 1447740 1447770 1452116 1452155) (-964 "RMATCAT.spad" 1443210 1443242 1447588 1447593) (-963 "RLINSET.spad" 1442915 1442925 1443200 1443205) (-962 "RINTERP.spad" 1442804 1442823 1442905 1442910) (-961 "RING.spad" 1442275 1442283 1442784 1442799) (-960 "RING.spad" 1441754 1441764 1442265 1442270) (-959 "RIDIST.spad" 1441147 1441155 1441744 1441749) (-958 "RGCHAIN.spad" 1439702 1439717 1440595 1440622) (-957 "RGBCSPC.spad" 1439492 1439503 1439692 1439697) (-956 "RGBCMDL.spad" 1439055 1439066 1439482 1439487) (-955 "RFFACTOR.spad" 1438518 1438528 1439045 1439050) (-954 "RFFACT.spad" 1438254 1438265 1438508 1438513) (-953 "RFDIST.spad" 1437251 1437259 1438244 1438249) (-952 "RF.spad" 1434926 1434936 1437241 1437246) (-951 "RETSOL.spad" 1434346 1434358 1434916 1434921) (-950 "RETRACT.spad" 1433775 1433785 1434336 1434341) (-949 "RETRACT.spad" 1433202 1433214 1433765 1433770) (-948 "RETAST.spad" 1433015 1433023 1433192 1433197) (-947 "RESRING.spad" 1432363 1432409 1432953 1433010) (-946 "RESLATC.spad" 1431688 1431698 1432353 1432358) (-945 "REPSQ.spad" 1431420 1431430 1431678 1431683) (-944 "REPDB.spad" 1431128 1431138 1431410 1431415) (-943 "REP2.spad" 1420843 1420853 1430970 1430975) (-942 "REP1.spad" 1415064 1415074 1420793 1420798) (-941 "REP.spad" 1412619 1412627 1415054 1415059) (-940 "REGSET.spad" 1410445 1410461 1412253 1412280) (-939 "REF.spad" 1409964 1409974 1410435 1410440) (-938 "REDORDER.spad" 1409171 1409187 1409954 1409959) (-937 "RECLOS.spad" 1408068 1408087 1408771 1408864) (-936 "REALSOLV.spad" 1407209 1407217 1408058 1408063) (-935 "REAL0Q.spad" 1404508 1404522 1407199 1407204) (-934 "REAL0.spad" 1401353 1401367 1404498 1404503) (-933 "REAL.spad" 1401226 1401234 1401343 1401348) (-932 "RDUCEAST.spad" 1400948 1400956 1401216 1401221) (-931 "RDIV.spad" 1400604 1400628 1400938 1400943) (-930 "RDIST.spad" 1400172 1400182 1400594 1400599) (-929 "RDETRS.spad" 1399037 1399054 1400162 1400167) (-928 "RDETR.spad" 1397177 1397194 1399027 1399032) (-927 "RDEEFS.spad" 1396277 1396293 1397167 1397172) (-926 "RDEEF.spad" 1395288 1395304 1396267 1396272) (-925 "RCFIELD.spad" 1392507 1392515 1395190 1395283) (-924 "RCFIELD.spad" 1389812 1389822 1392497 1392502) (-923 "RCAGG.spad" 1387749 1387759 1389802 1389807) (-922 "RCAGG.spad" 1385613 1385625 1387668 1387673) (-921 "RATRET.spad" 1384974 1384984 1385603 1385608) (-920 "RATFACT.spad" 1384667 1384678 1384964 1384969) (-919 "RANDSRC.spad" 1383987 1383995 1384657 1384662) (-918 "RADUTIL.spad" 1383744 1383752 1383977 1383982) (-917 "RADIX.spad" 1380789 1380802 1382334 1382427) (-916 "RADFF.spad" 1378706 1378742 1378824 1378980) (-915 "RADCAT.spad" 1378302 1378310 1378696 1378701) (-914 "RADCAT.spad" 1377896 1377906 1378292 1378297) (-913 "QUEUE.spad" 1377310 1377320 1377568 1377595) (-912 "QUATCT2.spad" 1376931 1376949 1377300 1377305) (-911 "QUATCAT.spad" 1375102 1375112 1376861 1376926) (-910 "QUATCAT.spad" 1373038 1373050 1374799 1374804) (-909 "QUAT.spad" 1371645 1371655 1371987 1372052) (-908 "QUAGG.spad" 1370479 1370489 1371613 1371640) (-907 "QQUTAST.spad" 1370248 1370256 1370469 1370474) (-906 "QFORM.spad" 1369867 1369881 1370238 1370243) (-905 "QFCAT2.spad" 1369560 1369576 1369857 1369862) (-904 "QFCAT.spad" 1368263 1368273 1369462 1369555) (-903 "QFCAT.spad" 1366599 1366611 1367800 1367805) (-902 "QEQUAT.spad" 1366158 1366166 1366589 1366594) (-901 "QCMPACK.spad" 1361073 1361092 1366148 1366153) (-900 "QALGSET2.spad" 1359069 1359087 1361063 1361068) (-899 "QALGSET.spad" 1355174 1355206 1358983 1358988) (-898 "PWFFINTB.spad" 1352590 1352611 1355164 1355169) (-897 "PUSHVAR.spad" 1351929 1351948 1352580 1352585) (-896 "PTRANFN.spad" 1348065 1348075 1351919 1351924) (-895 "PTPACK.spad" 1345153 1345163 1348055 1348060) (-894 "PTFUNC2.spad" 1344976 1344990 1345143 1345148) (-893 "PTCAT.spad" 1344231 1344241 1344944 1344971) (-892 "PSQFR.spad" 1343546 1343570 1344221 1344226) (-891 "PSEUDLIN.spad" 1342432 1342442 1343536 1343541) (-890 "PSETPK.spad" 1329137 1329153 1342310 1342315) (-889 "PSETCAT.spad" 1323537 1323560 1329117 1329132) (-888 "PSETCAT.spad" 1317911 1317936 1323493 1323498) (-887 "PSCURVE.spad" 1316910 1316918 1317901 1317906) (-886 "PSCAT.spad" 1315693 1315722 1316808 1316905) (-885 "PSCAT.spad" 1314566 1314597 1315683 1315688) (-884 "PRTITION.spad" 1313264 1313272 1314556 1314561) (-883 "PRTDAST.spad" 1312983 1312991 1313254 1313259) (-882 "PRS.spad" 1302601 1302618 1312939 1312944) (-881 "PRQAGG.spad" 1302036 1302046 1302569 1302596) (-880 "PROPLOG.spad" 1301640 1301648 1302026 1302031) (-879 "PROPFUN2.spad" 1301263 1301276 1301630 1301635) (-878 "PROPFUN1.spad" 1300669 1300680 1301253 1301258) (-877 "PROPFRML.spad" 1299237 1299248 1300659 1300664) (-876 "PROPERTY.spad" 1298733 1298741 1299227 1299232) (-875 "PRODUCT.spad" 1296430 1296442 1296714 1296769) (-874 "PRINT.spad" 1296182 1296190 1296420 1296425) (-873 "PRIMES.spad" 1294443 1294453 1296172 1296177) (-872 "PRIMELT.spad" 1292564 1292578 1294433 1294438) (-871 "PRIMCAT.spad" 1292207 1292215 1292554 1292559) (-870 "PRIMARR2.spad" 1290974 1290986 1292197 1292202) (-869 "PRIMARR.spad" 1290029 1290039 1290199 1290226) (-868 "PREASSOC.spad" 1289411 1289423 1290019 1290024) (-867 "PR.spad" 1287929 1287941 1288628 1288755) (-866 "PPCURVE.spad" 1287066 1287074 1287919 1287924) (-865 "PORTNUM.spad" 1286857 1286865 1287056 1287061) (-864 "POLYROOT.spad" 1285706 1285728 1286813 1286818) (-863 "POLYLIFT.spad" 1284971 1284994 1285696 1285701) (-862 "POLYCATQ.spad" 1283097 1283119 1284961 1284966) (-861 "POLYCAT.spad" 1276599 1276620 1282965 1283092) (-860 "POLYCAT.spad" 1269621 1269644 1275989 1275994) (-859 "POLY2UP.spad" 1269073 1269087 1269611 1269616) (-858 "POLY2.spad" 1268670 1268682 1269063 1269068) (-857 "POLY.spad" 1266338 1266348 1266853 1266980) (-856 "POLUTIL.spad" 1265303 1265332 1266294 1266299) (-855 "POLTOPOL.spad" 1264051 1264066 1265293 1265298) (-854 "POINT.spad" 1262934 1262944 1263021 1263048) (-853 "PNTHEORY.spad" 1259636 1259644 1262924 1262929) (-852 "PMTOOLS.spad" 1258411 1258425 1259626 1259631) (-851 "PMSYM.spad" 1257960 1257970 1258401 1258406) (-850 "PMQFCAT.spad" 1257551 1257565 1257950 1257955) (-849 "PMPREDFS.spad" 1257013 1257035 1257541 1257546) (-848 "PMPRED.spad" 1256500 1256514 1257003 1257008) (-847 "PMPLCAT.spad" 1255577 1255595 1256429 1256434) (-846 "PMLSAGG.spad" 1255162 1255176 1255567 1255572) (-845 "PMKERNEL.spad" 1254741 1254753 1255152 1255157) (-844 "PMINS.spad" 1254321 1254331 1254731 1254736) (-843 "PMFS.spad" 1253898 1253916 1254311 1254316) (-842 "PMDOWN.spad" 1253188 1253202 1253888 1253893) (-841 "PMASSFS.spad" 1252163 1252179 1253178 1253183) (-840 "PMASS.spad" 1251181 1251189 1252153 1252158) (-839 "PLOTTOOL.spad" 1250961 1250969 1251171 1251176) (-838 "PLOT3D.spad" 1247425 1247433 1250951 1250956) (-837 "PLOT1.spad" 1246598 1246608 1247415 1247420) (-836 "PLOT.spad" 1241521 1241529 1246588 1246593) (-835 "PLEQN.spad" 1228923 1228950 1241511 1241516) (-834 "PINTERPA.spad" 1228707 1228723 1228913 1228918) (-833 "PINTERP.spad" 1228329 1228348 1228697 1228702) (-832 "PID.spad" 1227303 1227311 1228255 1228324) (-831 "PICOERCE.spad" 1226960 1226970 1227293 1227298) (-830 "PI.spad" 1226577 1226585 1226934 1226955) (-829 "PGROEB.spad" 1225186 1225200 1226567 1226572) (-828 "PGE.spad" 1216859 1216867 1225176 1225181) (-827 "PGCD.spad" 1215813 1215830 1216849 1216854) (-826 "PFRPAC.spad" 1214962 1214972 1215803 1215808) (-825 "PFR.spad" 1211665 1211675 1214864 1214957) (-824 "PFOTOOLS.spad" 1210923 1210939 1211655 1211660) (-823 "PFOQ.spad" 1210293 1210311 1210913 1210918) (-822 "PFO.spad" 1209712 1209739 1210283 1210288) (-821 "PFECAT.spad" 1207422 1207430 1209638 1209707) (-820 "PFECAT.spad" 1205160 1205170 1207378 1207383) (-819 "PFBRU.spad" 1203048 1203060 1205150 1205155) (-818 "PFBR.spad" 1200608 1200631 1203038 1203043) (-817 "PF.spad" 1200182 1200194 1200413 1200506) (-816 "PERMGRP.spad" 1194952 1194962 1200172 1200177) (-815 "PERMCAT.spad" 1193613 1193623 1194932 1194947) (-814 "PERMAN.spad" 1192169 1192183 1193603 1193608) (-813 "PERM.spad" 1187979 1187989 1192002 1192017) (-812 "PENDTREE.spad" 1187393 1187403 1187673 1187678) (-811 "PDSPC.spad" 1186206 1186216 1187383 1187388) (-810 "PDSPC.spad" 1185017 1185029 1186196 1186201) (-809 "PDRING.spad" 1184859 1184869 1184997 1185012) (-808 "PDMOD.spad" 1184675 1184687 1184827 1184854) (-807 "PDECOMP.spad" 1184145 1184162 1184665 1184670) (-806 "PDDOM.spad" 1183583 1183596 1184135 1184140) (-805 "PDDOM.spad" 1183019 1183034 1183573 1183578) (-804 "PCOMP.spad" 1182872 1182885 1183009 1183014) (-803 "PBWLB.spad" 1181470 1181487 1182862 1182867) (-802 "PATTERN2.spad" 1181208 1181220 1181460 1181465) (-801 "PATTERN1.spad" 1179552 1179568 1181198 1181203) (-800 "PATTERN.spad" 1174127 1174137 1179542 1179547) (-799 "PATRES2.spad" 1173799 1173813 1174117 1174122) (-798 "PATRES.spad" 1171382 1171394 1173789 1173794) (-797 "PATMATCH.spad" 1169623 1169654 1171134 1171139) (-796 "PATMAB.spad" 1169052 1169062 1169613 1169618) (-795 "PATLRES.spad" 1168138 1168152 1169042 1169047) (-794 "PATAB.spad" 1167902 1167912 1168128 1168133) (-793 "PARTPERM.spad" 1165958 1165966 1167892 1167897) (-792 "PARSURF.spad" 1165392 1165420 1165948 1165953) (-791 "PARSU2.spad" 1165189 1165205 1165382 1165387) (-790 "script-parser.spad" 1164709 1164717 1165179 1165184) (-789 "PARSCURV.spad" 1164143 1164171 1164699 1164704) (-788 "PARSC2.spad" 1163934 1163950 1164133 1164138) (-787 "PARPCURV.spad" 1163396 1163424 1163924 1163929) (-786 "PARPC2.spad" 1163187 1163203 1163386 1163391) (-785 "PARAMAST.spad" 1162315 1162323 1163177 1163182) (-784 "PAN2EXPR.spad" 1161727 1161735 1162305 1162310) (-783 "PALETTE.spad" 1160841 1160849 1161717 1161722) (-782 "PAIR.spad" 1159915 1159928 1160484 1160489) (-781 "PADICRC.spad" 1157320 1157338 1158483 1158576) (-780 "PADICRAT.spad" 1155380 1155392 1155593 1155686) (-779 "PADICCT.spad" 1153929 1153941 1155306 1155375) (-778 "PADIC.spad" 1153632 1153644 1153855 1153924) (-777 "PADEPAC.spad" 1152321 1152340 1153622 1153627) (-776 "PADE.spad" 1151073 1151089 1152311 1152316) (-775 "OWP.spad" 1150321 1150351 1150931 1150998) (-774 "OVERSET.spad" 1149894 1149902 1150311 1150316) (-773 "OVAR.spad" 1149675 1149698 1149884 1149889) (-772 "OUTFORM.spad" 1139083 1139091 1149665 1149670) (-771 "OUTBFILE.spad" 1138517 1138525 1139073 1139078) (-770 "OUTBCON.spad" 1137587 1137595 1138507 1138512) (-769 "OUTBCON.spad" 1136655 1136665 1137577 1137582) (-768 "OUT.spad" 1135773 1135781 1136645 1136650) (-767 "OSI.spad" 1135248 1135256 1135763 1135768) (-766 "OSGROUP.spad" 1135166 1135174 1135238 1135243) (-765 "ORTHPOL.spad" 1133677 1133687 1135109 1135114) (-764 "OREUP.spad" 1133171 1133199 1133398 1133437) (-763 "ORESUP.spad" 1132513 1132537 1132892 1132931) (-762 "OREPCTO.spad" 1130402 1130414 1132433 1132438) (-761 "OREPCAT.spad" 1124589 1124599 1130358 1130397) (-760 "OREPCAT.spad" 1118666 1118678 1124437 1124442) (-759 "ORDTYPE.spad" 1117903 1117911 1118656 1118661) (-758 "ORDTYPE.spad" 1117138 1117148 1117893 1117898) (-757 "ORDSTRCT.spad" 1116924 1116939 1117087 1117092) (-756 "ORDSET.spad" 1116624 1116632 1116914 1116919) (-755 "ORDRING.spad" 1116441 1116449 1116604 1116619) (-754 "ORDMON.spad" 1116296 1116304 1116431 1116436) (-753 "ORDFUNS.spad" 1115428 1115444 1116286 1116291) (-752 "ORDFIN.spad" 1115248 1115256 1115418 1115423) (-751 "ORDCOMP2.spad" 1114541 1114553 1115238 1115243) (-750 "ORDCOMP.spad" 1113067 1113077 1114149 1114178) (-749 "OPSIG.spad" 1112729 1112737 1113057 1113062) (-748 "OPQUERY.spad" 1112310 1112318 1112719 1112724) (-747 "OPERCAT.spad" 1111776 1111786 1112300 1112305) (-746 "OPERCAT.spad" 1111240 1111252 1111766 1111771) (-745 "OP.spad" 1110982 1110992 1111062 1111129) (-744 "ONECOMP2.spad" 1110406 1110418 1110972 1110977) (-743 "ONECOMP.spad" 1109212 1109222 1110014 1110043) (-742 "OMSAGG.spad" 1109000 1109010 1109168 1109207) (-741 "OMLO.spad" 1108433 1108445 1108886 1108925) (-740 "OINTDOM.spad" 1108196 1108204 1108359 1108428) (-739 "OFMONOID.spad" 1106335 1106345 1108152 1108157) (-738 "ODVAR.spad" 1105596 1105606 1106325 1106330) (-737 "ODR.spad" 1105240 1105266 1105408 1105557) (-736 "ODPOL.spad" 1102888 1102898 1103228 1103355) (-735 "ODP.spad" 1092525 1092545 1092898 1092995) (-734 "ODETOOLS.spad" 1091174 1091193 1092515 1092520) (-733 "ODESYS.spad" 1088868 1088885 1091164 1091169) (-732 "ODERTRIC.spad" 1084901 1084918 1088825 1088830) (-731 "ODERED.spad" 1084300 1084324 1084891 1084896) (-730 "ODERAT.spad" 1081933 1081950 1084290 1084295) (-729 "ODEPRRIC.spad" 1079026 1079048 1081923 1081928) (-728 "ODEPRIM.spad" 1076424 1076446 1079016 1079021) (-727 "ODEPAL.spad" 1075810 1075834 1076414 1076419) (-726 "ODEINT.spad" 1075245 1075261 1075800 1075805) (-725 "ODEEF.spad" 1070740 1070756 1075235 1075240) (-724 "ODECONST.spad" 1070285 1070303 1070730 1070735) (-723 "OCTCT2.spad" 1069926 1069944 1070275 1070280) (-722 "OCT.spad" 1068241 1068251 1068955 1068994) (-721 "OCAMON.spad" 1068089 1068097 1068231 1068236) (-720 "OC.spad" 1065885 1065895 1068045 1068084) (-719 "OC.spad" 1063420 1063432 1065582 1065587) (-718 "OASGP.spad" 1063235 1063243 1063410 1063415) (-717 "OAMONS.spad" 1062757 1062765 1063225 1063230) (-716 "OAMON.spad" 1062515 1062523 1062747 1062752) (-715 "OAMON.spad" 1062271 1062281 1062505 1062510) (-714 "OAGROUP.spad" 1061809 1061817 1062261 1062266) (-713 "OAGROUP.spad" 1061345 1061355 1061799 1061804) (-712 "NUMTUBE.spad" 1060936 1060952 1061335 1061340) (-711 "NUMQUAD.spad" 1048912 1048920 1060926 1060931) (-710 "NUMODE.spad" 1040264 1040272 1048902 1048907) (-709 "NUMFMT.spad" 1039104 1039112 1040254 1040259) (-708 "NUMERIC.spad" 1031219 1031229 1038910 1038915) (-707 "NTSCAT.spad" 1029727 1029743 1031187 1031214) (-706 "NTPOLFN.spad" 1029304 1029314 1029670 1029675) (-705 "NSUP2.spad" 1028696 1028708 1029294 1029299) (-704 "NSUP.spad" 1022133 1022143 1026553 1026706) (-703 "NSMP.spad" 1019045 1019064 1019337 1019464) (-702 "NREP.spad" 1017447 1017461 1019035 1019040) (-701 "NPCOEF.spad" 1016693 1016713 1017437 1017442) (-700 "NORMRETR.spad" 1016291 1016330 1016683 1016688) (-699 "NORMPK.spad" 1014233 1014252 1016281 1016286) (-698 "NORMMA.spad" 1013921 1013947 1014223 1014228) (-697 "NONE1.spad" 1013597 1013607 1013911 1013916) (-696 "NONE.spad" 1013338 1013346 1013587 1013592) (-695 "NODE1.spad" 1012825 1012841 1013328 1013333) (-694 "NNI.spad" 1011720 1011728 1012799 1012820) (-693 "NLINSOL.spad" 1010346 1010356 1011710 1011715) (-692 "NFINTBAS.spad" 1007906 1007923 1010336 1010341) (-691 "NETCLT.spad" 1007880 1007891 1007896 1007901) (-690 "NCODIV.spad" 1006104 1006120 1007870 1007875) (-689 "NCNTFRAC.spad" 1005746 1005760 1006094 1006099) (-688 "NCEP.spad" 1003912 1003926 1005736 1005741) (-687 "NASRING.spad" 1003516 1003524 1003902 1003907) (-686 "NASRING.spad" 1003118 1003128 1003506 1003511) (-685 "NARNG.spad" 1002518 1002526 1003108 1003113) (-684 "NARNG.spad" 1001916 1001926 1002508 1002513) (-683 "NAALG.spad" 1001481 1001491 1001884 1001911) (-682 "NAALG.spad" 1001066 1001078 1001471 1001476) (-681 "MULTSQFR.spad" 998024 998041 1001056 1001061) (-680 "MULTFACT.spad" 997407 997424 998014 998019) (-679 "MTSCAT.spad" 995501 995522 997305 997402) (-678 "MTHING.spad" 995160 995170 995491 995496) (-677 "MSYSCMD.spad" 994594 994602 995150 995155) (-676 "MSETAGG.spad" 994439 994449 994562 994589) (-675 "MSET.spad" 992385 992395 994133 994172) (-674 "MRING.spad" 989362 989374 992093 992160) (-673 "MRF2.spad" 988924 988938 989352 989357) (-672 "MRATFAC.spad" 988470 988487 988914 988919) (-671 "MPRFF.spad" 986510 986529 988460 988465) (-670 "MPOLY.spad" 984314 984329 984673 984800) (-669 "MPCPF.spad" 983578 983597 984304 984309) (-668 "MPC3.spad" 983395 983435 983568 983573) (-667 "MPC2.spad" 983048 983081 983385 983390) (-666 "MONOTOOL.spad" 981399 981416 983038 983043) (-665 "catdef.spad" 980832 980843 981053 981394) (-664 "catdef.spad" 980230 980241 980486 980827) (-663 "MONOID.spad" 979551 979559 980220 980225) (-662 "MONOID.spad" 978870 978880 979541 979546) (-661 "MONOGEN.spad" 977618 977631 978730 978865) (-660 "MONOGEN.spad" 976388 976403 977502 977507) (-659 "MONADWU.spad" 974468 974476 976378 976383) (-658 "MONADWU.spad" 972546 972556 974458 974463) (-657 "MONAD.spad" 971706 971714 972536 972541) (-656 "MONAD.spad" 970864 970874 971696 971701) (-655 "MOEBIUS.spad" 969600 969614 970844 970859) (-654 "MODULE.spad" 969470 969480 969568 969595) (-653 "MODULE.spad" 969360 969372 969460 969465) (-652 "MODRING.spad" 968695 968734 969340 969355) (-651 "MODOP.spad" 967352 967364 968517 968584) (-650 "MODMONOM.spad" 967083 967101 967342 967347) (-649 "MODMON.spad" 964153 964165 964868 965021) (-648 "MODFIELD.spad" 963515 963554 964055 964148) (-647 "MMLFORM.spad" 962375 962383 963505 963510) (-646 "MMAP.spad" 962117 962151 962365 962370) (-645 "MLO.spad" 960576 960586 962073 962112) (-644 "MLIFT.spad" 959188 959205 960566 960571) (-643 "MKUCFUNC.spad" 958723 958741 959178 959183) (-642 "MKRECORD.spad" 958311 958324 958713 958718) (-641 "MKFUNC.spad" 957718 957728 958301 958306) (-640 "MKFLCFN.spad" 956686 956696 957708 957713) (-639 "MKBCFUNC.spad" 956181 956199 956676 956681) (-638 "MHROWRED.spad" 954692 954702 956171 956176) (-637 "MFINFACT.spad" 954092 954114 954682 954687) (-636 "MESH.spad" 951887 951895 954082 954087) (-635 "MDDFACT.spad" 950106 950116 951877 951882) (-634 "MDAGG.spad" 949397 949407 950086 950101) (-633 "MCDEN.spad" 948607 948619 949387 949392) (-632 "MAYBE.spad" 947907 947918 948597 948602) (-631 "MATSTOR.spad" 945223 945233 947897 947902) (-630 "MATRIX.spad" 944002 944012 944486 944513) (-629 "MATLIN.spad" 941370 941394 943886 943891) (-628 "MATCAT2.spad" 940652 940700 941360 941365) (-627 "MATCAT.spad" 932214 932236 940620 940647) (-626 "MATCAT.spad" 923648 923672 932056 932061) (-625 "MAPPKG3.spad" 922563 922577 923638 923643) (-624 "MAPPKG2.spad" 921901 921913 922553 922558) (-623 "MAPPKG1.spad" 920729 920739 921891 921896) (-622 "MAPPAST.spad" 920068 920076 920719 920724) (-621 "MAPHACK3.spad" 919880 919894 920058 920063) (-620 "MAPHACK2.spad" 919649 919661 919870 919875) (-619 "MAPHACK1.spad" 919293 919303 919639 919644) (-618 "MAGMA.spad" 917099 917116 919283 919288) (-617 "MACROAST.spad" 916694 916702 917089 917094) (-616 "LZSTAGG.spad" 913948 913958 916684 916689) (-615 "LZSTAGG.spad" 911200 911212 913938 913943) (-614 "LWORD.spad" 907945 907962 911190 911195) (-613 "LSTAST.spad" 907729 907737 907935 907940) (-612 "LSQM.spad" 906007 906021 906401 906452) (-611 "LSPP.spad" 905542 905559 905997 906002) (-610 "LSMP1.spad" 903385 903399 905532 905537) (-609 "LSMP.spad" 902242 902270 903375 903380) (-608 "LSAGG.spad" 901911 901921 902210 902237) (-607 "LSAGG.spad" 901600 901612 901901 901906) (-606 "LPOLY.spad" 900562 900581 901456 901525) (-605 "LPEFRAC.spad" 899833 899843 900552 900557) (-604 "LOGIC.spad" 899435 899443 899823 899828) (-603 "LOGIC.spad" 899035 899045 899425 899430) (-602 "LODOOPS.spad" 897965 897977 899025 899030) (-601 "LODOF.spad" 897011 897028 897922 897927) (-600 "LODOCAT.spad" 895677 895687 896967 897006) (-599 "LODOCAT.spad" 894341 894353 895633 895638) (-598 "LODO2.spad" 893655 893667 894062 894101) (-597 "LODO1.spad" 893096 893106 893376 893415) (-596 "LODO.spad" 892521 892537 892817 892856) (-595 "LODEEF.spad" 891323 891341 892511 892516) (-594 "LO.spad" 890724 890738 891257 891284) (-593 "LNAGG.spad" 886911 886921 890714 890719) (-592 "LNAGG.spad" 883062 883074 886867 886872) (-591 "LMOPS.spad" 879830 879847 883052 883057) (-590 "LMODULE.spad" 879614 879624 879820 879825) (-589 "LMDICT.spad" 878995 879005 879243 879270) (-588 "LLINSET.spad" 878702 878712 878985 878990) (-587 "LITERAL.spad" 878608 878619 878692 878697) (-586 "LIST3.spad" 877919 877933 878598 878603) (-585 "LIST2MAP.spad" 874846 874858 877909 877914) (-584 "LIST2.spad" 873548 873560 874836 874841) (-583 "LIST.spad" 871430 871440 872773 872800) (-582 "LINSET.spad" 871209 871219 871420 871425) (-581 "LINFORM.spad" 870672 870684 871177 871204) (-580 "LINEXP.spad" 869415 869425 870662 870667) (-579 "LINELT.spad" 868786 868798 869298 869325) (-578 "LINDEP.spad" 867635 867647 868698 868703) (-577 "LINBASIS.spad" 867271 867286 867625 867630) (-576 "LIMITRF.spad" 865218 865228 867261 867266) (-575 "LIMITPS.spad" 864128 864141 865208 865213) (-574 "LIECAT.spad" 863612 863622 864054 864123) (-573 "LIECAT.spad" 863124 863136 863568 863573) (-572 "LIE.spad" 861128 861140 862402 862544) (-571 "LIB.spad" 859299 859307 859745 859760) (-570 "LGROBP.spad" 856652 856671 859289 859294) (-569 "LFCAT.spad" 855711 855719 856642 856647) (-568 "LF.spad" 854666 854682 855701 855706) (-567 "LEXTRIPK.spad" 850289 850304 854656 854661) (-566 "LEXP.spad" 848308 848335 850269 850284) (-565 "LETAST.spad" 848007 848015 848298 848303) (-564 "LEADCDET.spad" 846413 846430 847997 848002) (-563 "LAZM3PK.spad" 845157 845179 846403 846408) (-562 "LAUPOL.spad" 843824 843837 844724 844793) (-561 "LAPLACE.spad" 843407 843423 843814 843819) (-560 "LALG.spad" 843183 843193 843387 843402) (-559 "LALG.spad" 842967 842979 843173 843178) (-558 "LA.spad" 842407 842421 842889 842928) (-557 "KVTFROM.spad" 842150 842160 842397 842402) (-556 "KTVLOGIC.spad" 841694 841702 842140 842145) (-555 "KRCFROM.spad" 841440 841450 841684 841689) (-554 "KOVACIC.spad" 840171 840188 841430 841435) (-553 "KONVERT.spad" 839893 839903 840161 840166) (-552 "KOERCE.spad" 839630 839640 839883 839888) (-551 "KERNEL2.spad" 839333 839345 839620 839625) (-550 "KERNEL.spad" 838053 838063 839182 839187) (-549 "KDAGG.spad" 837162 837184 838033 838048) (-548 "KDAGG.spad" 836279 836303 837152 837157) (-547 "KAFILE.spad" 835169 835185 835404 835431) (-546 "JVMOP.spad" 835082 835090 835159 835164) (-545 "JVMMDACC.spad" 834136 834144 835072 835077) (-544 "JVMFDACC.spad" 833452 833460 834126 834131) (-543 "JVMCSTTG.spad" 832181 832189 833442 833447) (-542 "JVMCFACC.spad" 831627 831635 832171 832176) (-541 "JVMBCODE.spad" 831538 831546 831617 831622) (-540 "JORDAN.spad" 829355 829367 830816 830958) (-539 "JOINAST.spad" 829057 829065 829345 829350) (-538 "IXAGG.spad" 827190 827214 829047 829052) (-537 "IXAGG.spad" 825178 825204 827037 827042) (-536 "IVECTOR.spad" 823993 824008 824148 824175) (-535 "ITUPLE.spad" 823169 823179 823983 823988) (-534 "ITRIGMNP.spad" 822016 822035 823159 823164) (-533 "ITFUN3.spad" 821522 821536 822006 822011) (-532 "ITFUN2.spad" 821266 821278 821512 821517) (-531 "ITFORM.spad" 820621 820629 821256 821261) (-530 "ITAYLOR.spad" 818615 818630 820485 820582) (-529 "ISUPS.spad" 811064 811079 817601 817698) (-528 "ISUMP.spad" 810565 810581 811054 811059) (-527 "ISAST.spad" 810284 810292 810555 810560) (-526 "IRURPK.spad" 809001 809020 810274 810279) (-525 "IRSN.spad" 807005 807013 808991 808996) (-524 "IRRF2F.spad" 805498 805508 806961 806966) (-523 "IRREDFFX.spad" 805099 805110 805488 805493) (-522 "IROOT.spad" 803438 803448 805089 805094) (-521 "IRFORM.spad" 802762 802770 803428 803433) (-520 "IR2F.spad" 801976 801992 802752 802757) (-519 "IR2.spad" 801004 801020 801966 801971) (-518 "IR.spad" 798840 798854 800886 800913) (-517 "IPRNTPK.spad" 798600 798608 798830 798835) (-516 "IPF.spad" 798165 798177 798405 798498) (-515 "IPADIC.spad" 797934 797960 798091 798160) (-514 "IP4ADDR.spad" 797491 797499 797924 797929) (-513 "IOMODE.spad" 797013 797021 797481 797486) (-512 "IOBFILE.spad" 796398 796406 797003 797008) (-511 "IOBCON.spad" 796263 796271 796388 796393) (-510 "INVLAPLA.spad" 795912 795928 796253 796258) (-509 "INTTR.spad" 789306 789323 795902 795907) (-508 "INTTOOLS.spad" 787114 787130 788933 788938) (-507 "INTSLPE.spad" 786442 786450 787104 787109) (-506 "INTRVL.spad" 786008 786018 786356 786437) (-505 "INTRF.spad" 784440 784454 785998 786003) (-504 "INTRET.spad" 783872 783882 784430 784435) (-503 "INTRAT.spad" 782607 782624 783862 783867) (-502 "INTPM.spad" 781070 781086 782328 782333) (-501 "INTPAF.spad" 778946 778964 780999 781004) (-500 "INTHERTR.spad" 778220 778237 778936 778941) (-499 "INTHERAL.spad" 777890 777914 778210 778215) (-498 "INTHEORY.spad" 774329 774337 777880 777885) (-497 "INTG0.spad" 768093 768111 774258 774263) (-496 "INTFACT.spad" 767160 767170 768083 768088) (-495 "INTEF.spad" 765571 765587 767150 767155) (-494 "INTDOM.spad" 764194 764202 765497 765566) (-493 "INTDOM.spad" 762879 762889 764184 764189) (-492 "INTCAT.spad" 761146 761156 762793 762874) (-491 "INTBIT.spad" 760653 760661 761136 761141) (-490 "INTALG.spad" 759841 759868 760643 760648) (-489 "INTAF.spad" 759341 759357 759831 759836) (-488 "INTABL.spad" 757723 757754 757886 757913) (-487 "INT8.spad" 757603 757611 757713 757718) (-486 "INT64.spad" 757482 757490 757593 757598) (-485 "INT32.spad" 757361 757369 757472 757477) (-484 "INT16.spad" 757240 757248 757351 757356) (-483 "INT.spad" 756766 756774 757106 757235) (-482 "INS.spad" 754269 754277 756668 756761) (-481 "INS.spad" 751858 751868 754259 754264) (-480 "INPSIGN.spad" 751328 751341 751848 751853) (-479 "INPRODPF.spad" 750424 750443 751318 751323) (-478 "INPRODFF.spad" 749512 749536 750414 750419) (-477 "INNMFACT.spad" 748487 748504 749502 749507) (-476 "INMODGCD.spad" 747991 748021 748477 748482) (-475 "INFSP.spad" 746288 746310 747981 747986) (-474 "INFPROD0.spad" 745368 745387 746278 746283) (-473 "INFORM1.spad" 744993 745003 745358 745363) (-472 "INFORM.spad" 742204 742212 744983 744988) (-471 "INFINITY.spad" 741756 741764 742194 742199) (-470 "INETCLTS.spad" 741733 741741 741746 741751) (-469 "INEP.spad" 740279 740301 741723 741728) (-468 "INDE.spad" 739928 739945 740189 740194) (-467 "INCRMAPS.spad" 739365 739375 739918 739923) (-466 "INBFILE.spad" 738461 738469 739355 739360) (-465 "INBFF.spad" 734311 734322 738451 738456) (-464 "INBCON.spad" 732577 732585 734301 734306) (-463 "INBCON.spad" 730841 730851 732567 732572) (-462 "INAST.spad" 730502 730510 730831 730836) (-461 "IMPTAST.spad" 730210 730218 730492 730497) (-460 "IMATRIX.spad" 729220 729246 729732 729759) (-459 "IMATQF.spad" 728314 728358 729176 729181) (-458 "IMATLIN.spad" 726935 726959 728270 728275) (-457 "IIARRAY2.spad" 726404 726442 726607 726634) (-456 "IFF.spad" 725817 725833 726088 726181) (-455 "IFAST.spad" 725431 725439 725807 725812) (-454 "IFARRAY.spad" 722958 722973 724656 724683) (-453 "IFAMON.spad" 722820 722837 722914 722919) (-452 "IEVALAB.spad" 722233 722245 722810 722815) (-451 "IEVALAB.spad" 721644 721658 722223 722228) (-450 "IDPOAMS.spad" 721322 721334 721556 721561) (-449 "IDPOAM.spad" 720964 720976 721234 721239) (-448 "IDPO.spad" 720699 720711 720876 720881) (-447 "IDPC.spad" 719428 719440 720689 720694) (-446 "IDPAM.spad" 719095 719107 719340 719345) (-445 "IDPAG.spad" 718764 718776 719007 719012) (-444 "IDENT.spad" 718416 718424 718754 718759) (-443 "catdef.spad" 718187 718198 718299 718411) (-442 "IDECOMP.spad" 715426 715444 718177 718182) (-441 "IDEAL.spad" 710388 710427 715374 715379) (-440 "ICDEN.spad" 709601 709617 710378 710383) (-439 "ICARD.spad" 708994 709002 709591 709596) (-438 "IBPTOOLS.spad" 707601 707618 708984 708989) (-437 "IBITS.spad" 707114 707127 707247 707274) (-436 "IBATOOL.spad" 704099 704118 707104 707109) (-435 "IBACHIN.spad" 702606 702621 704089 704094) (-434 "IARRAY2.spad" 701667 701693 702278 702305) (-433 "IARRAY1.spad" 700746 700761 700892 700919) (-432 "IAN.spad" 699128 699136 700577 700670) (-431 "IALGFACT.spad" 698739 698772 699118 699123) (-430 "HYPCAT.spad" 698163 698171 698729 698734) (-429 "HYPCAT.spad" 697585 697595 698153 698158) (-428 "HOSTNAME.spad" 697401 697409 697575 697580) (-427 "HOMOTOP.spad" 697144 697154 697391 697396) (-426 "HOAGG.spad" 694426 694436 697134 697139) (-425 "HOAGG.spad" 691458 691470 694168 694173) (-424 "HEXADEC.spad" 689683 689691 690048 690141) (-423 "HEUGCD.spad" 688774 688785 689673 689678) (-422 "HELLFDIV.spad" 688380 688404 688764 688769) (-421 "HEAP.spad" 687837 687847 688052 688079) (-420 "HEADAST.spad" 687378 687386 687827 687832) (-419 "HDP.spad" 677011 677027 677388 677485) (-418 "HDMP.spad" 674558 674573 675174 675301) (-417 "HB.spad" 672833 672841 674548 674553) (-416 "HASHTBL.spad" 671167 671198 671378 671405) (-415 "HASAST.spad" 670883 670891 671157 671162) (-414 "HACKPI.spad" 670374 670382 670785 670878) (-413 "GTSET.spad" 669301 669317 670008 670035) (-412 "GSTBL.spad" 667684 667719 667858 667873) (-411 "GSERIES.spad" 665056 665083 665875 666024) (-410 "GROUP.spad" 664329 664337 665036 665051) (-409 "GROUP.spad" 663610 663620 664319 664324) (-408 "GROEBSOL.spad" 662104 662125 663600 663605) (-407 "GRMOD.spad" 660685 660697 662094 662099) (-406 "GRMOD.spad" 659264 659278 660675 660680) (-405 "GRIMAGE.spad" 652177 652185 659254 659259) (-404 "GRDEF.spad" 650556 650564 652167 652172) (-403 "GRAY.spad" 649027 649035 650546 650551) (-402 "GRALG.spad" 648122 648134 649017 649022) (-401 "GRALG.spad" 647215 647229 648112 648117) (-400 "GPOLSET.spad" 646673 646696 646885 646912) (-399 "GOSPER.spad" 645950 645968 646663 646668) (-398 "GMODPOL.spad" 645098 645125 645918 645945) (-397 "GHENSEL.spad" 644181 644195 645088 645093) (-396 "GENUPS.spad" 640474 640487 644171 644176) (-395 "GENUFACT.spad" 640051 640061 640464 640469) (-394 "GENPGCD.spad" 639653 639670 640041 640046) (-393 "GENMFACT.spad" 639105 639124 639643 639648) (-392 "GENEEZ.spad" 637064 637077 639095 639100) (-391 "GDMP.spad" 634453 634470 635227 635354) (-390 "GCNAALG.spad" 628376 628403 634247 634314) (-389 "GCDDOM.spad" 627568 627576 628302 628371) (-388 "GCDDOM.spad" 626822 626832 627558 627563) (-387 "GBINTERN.spad" 622842 622880 626812 626817) (-386 "GBF.spad" 618625 618663 622832 622837) (-385 "GBEUCLID.spad" 616507 616545 618615 618620) (-384 "GB.spad" 614033 614071 616463 616468) (-383 "GAUSSFAC.spad" 613346 613354 614023 614028) (-382 "GALUTIL.spad" 611672 611682 613302 613307) (-381 "GALPOLYU.spad" 610126 610139 611662 611667) (-380 "GALFACTU.spad" 608339 608358 610116 610121) (-379 "GALFACT.spad" 598552 598563 608329 608334) (-378 "FUNDESC.spad" 598230 598238 598542 598547) (-377 "FUNCTION.spad" 598079 598091 598220 598225) (-376 "FT.spad" 596379 596387 598069 598074) (-375 "FSUPFACT.spad" 595293 595312 596329 596334) (-374 "FST.spad" 593379 593387 595283 595288) (-373 "FSRED.spad" 592859 592875 593369 593374) (-372 "FSPRMELT.spad" 591725 591741 592816 592821) (-371 "FSPECF.spad" 589816 589832 591715 591720) (-370 "FSINT.spad" 589476 589492 589806 589811) (-369 "FSERIES.spad" 588667 588679 589296 589395) (-368 "FSCINT.spad" 587984 588000 588657 588662) (-367 "FSAGG2.spad" 586719 586735 587974 587979) (-366 "FSAGG.spad" 585836 585846 586675 586714) (-365 "FSAGG.spad" 584915 584927 585756 585761) (-364 "FS2UPS.spad" 579430 579464 584905 584910) (-363 "FS2EXPXP.spad" 578571 578594 579420 579425) (-362 "FS2.spad" 578226 578242 578561 578566) (-361 "FS.spad" 572498 572508 578005 578221) (-360 "FS.spad" 566572 566584 572081 572086) (-359 "FRUTIL.spad" 565526 565536 566562 566567) (-358 "FRNAALG.spad" 560803 560813 565468 565521) (-357 "FRNAALG.spad" 556092 556104 560759 560764) (-356 "FRNAAF2.spad" 555540 555558 556082 556087) (-355 "FRMOD.spad" 554948 554978 555469 555474) (-354 "FRIDEAL2.spad" 554552 554584 554938 554943) (-353 "FRIDEAL.spad" 553777 553798 554532 554547) (-352 "FRETRCT.spad" 553296 553306 553767 553772) (-351 "FRETRCT.spad" 552722 552734 553195 553200) (-350 "FRAMALG.spad" 551102 551115 552678 552717) (-349 "FRAMALG.spad" 549514 549529 551092 551097) (-348 "FRAC2.spad" 549119 549131 549504 549509) (-347 "FRAC.spad" 547106 547116 547493 547666) (-346 "FR2.spad" 546442 546454 547096 547101) (-345 "FR.spad" 540230 540240 545503 545572) (-344 "FPS.spad" 537069 537077 540120 540225) (-343 "FPS.spad" 533936 533946 536989 536994) (-342 "FPC.spad" 532982 532990 533838 533931) (-341 "FPC.spad" 532114 532124 532972 532977) (-340 "FPATMAB.spad" 531876 531886 532104 532109) (-339 "FPARFRAC.spad" 530718 530735 531866 531871) (-338 "FORDER.spad" 530409 530433 530708 530713) (-337 "FNLA.spad" 529833 529855 530377 530404) (-336 "FNCAT.spad" 528428 528436 529823 529828) (-335 "FNAME.spad" 528320 528328 528418 528423) (-334 "FMONOID.spad" 528001 528011 528276 528281) (-333 "FMONCAT.spad" 525170 525180 527991 527996) (-332 "FMCAT.spad" 522846 522864 525138 525165) (-331 "FM1.spad" 522211 522223 522780 522807) (-330 "FM.spad" 521826 521838 522065 522092) (-329 "FLOATRP.spad" 519569 519583 521816 521821) (-328 "FLOATCP.spad" 517008 517022 519559 519564) (-327 "FLOAT.spad" 510322 510330 516874 517003) (-326 "FLINEXP.spad" 510044 510054 510312 510317) (-325 "FLINEXP.spad" 509723 509735 509993 509998) (-324 "FLASORT.spad" 509049 509061 509713 509718) (-323 "FLALG.spad" 506719 506738 508975 509044) (-322 "FLAGG2.spad" 505436 505452 506709 506714) (-321 "FLAGG.spad" 502502 502512 505416 505431) (-320 "FLAGG.spad" 499469 499481 502385 502390) (-319 "FINRALG.spad" 497554 497567 499425 499464) (-318 "FINRALG.spad" 495565 495580 497438 497443) (-317 "FINITE.spad" 494717 494725 495555 495560) (-316 "FINITE.spad" 493867 493877 494707 494712) (-315 "FINAALG.spad" 483052 483062 493809 493862) (-314 "FINAALG.spad" 472249 472261 483008 483013) (-313 "FILECAT.spad" 470783 470800 472239 472244) (-312 "FILE.spad" 470366 470376 470773 470778) (-311 "FIELD.spad" 469772 469780 470268 470361) (-310 "FIELD.spad" 469264 469274 469762 469767) (-309 "FGROUP.spad" 467927 467937 469244 469259) (-308 "FGLMICPK.spad" 466722 466737 467917 467922) (-307 "FFX.spad" 466108 466123 466441 466534) (-306 "FFSLPE.spad" 465619 465640 466098 466103) (-305 "FFPOLY2.spad" 464679 464696 465609 465614) (-304 "FFPOLY.spad" 456021 456032 464669 464674) (-303 "FFP.spad" 455429 455449 455740 455833) (-302 "FFNBX.spad" 453952 453972 455148 455241) (-301 "FFNBP.spad" 452476 452493 453671 453764) (-300 "FFNB.spad" 450944 450965 452160 452253) (-299 "FFINTBAS.spad" 448458 448477 450934 450939) (-298 "FFIELDC.spad" 446043 446051 448360 448453) (-297 "FFIELDC.spad" 443714 443724 446033 446038) (-296 "FFHOM.spad" 442486 442503 443704 443709) (-295 "FFF.spad" 439929 439940 442476 442481) (-294 "FFCGX.spad" 438787 438807 439648 439741) (-293 "FFCGP.spad" 437687 437707 438506 438599) (-292 "FFCG.spad" 436482 436503 437371 437464) (-291 "FFCAT2.spad" 436229 436269 436472 436477) (-290 "FFCAT.spad" 429394 429416 436068 436224) (-289 "FFCAT.spad" 422638 422662 429314 429319) (-288 "FF.spad" 422089 422105 422322 422415) (-287 "FEVALAB.spad" 421797 421807 422079 422084) (-286 "FEVALAB.spad" 421281 421293 421565 421570) (-285 "FDIVCAT.spad" 419377 419401 421271 421276) (-284 "FDIVCAT.spad" 417471 417497 419367 419372) (-283 "FDIV2.spad" 417127 417167 417461 417466) (-282 "FDIV.spad" 416585 416609 417117 417122) (-281 "FCTRDATA.spad" 415593 415601 416575 416580) (-280 "FCOMP.spad" 414972 414982 415583 415588) (-279 "FAXF.spad" 408007 408021 414874 414967) (-278 "FAXF.spad" 401094 401110 407963 407968) (-277 "FARRAY.spad" 399286 399296 400319 400346) (-276 "FAMR.spad" 397430 397442 399184 399281) (-275 "FAMR.spad" 395558 395572 397314 397319) (-274 "FAMONOID.spad" 395242 395252 395512 395517) (-273 "FAMONC.spad" 393562 393574 395232 395237) (-272 "FAGROUP.spad" 393202 393212 393458 393485) (-271 "FACUTIL.spad" 391414 391431 393192 393197) (-270 "FACTFUNC.spad" 390616 390626 391404 391409) (-269 "EXPUPXS.spad" 387508 387531 388807 388956) (-268 "EXPRTUBE.spad" 384796 384804 387498 387503) (-267 "EXPRODE.spad" 381964 381980 384786 384791) (-266 "EXPR2UPS.spad" 378086 378099 381954 381959) (-265 "EXPR2.spad" 377791 377803 378076 378081) (-264 "EXPR.spad" 373436 373446 374150 374437) (-263 "EXPEXPAN.spad" 370381 370406 371013 371106) (-262 "EXITAST.spad" 370117 370125 370371 370376) (-261 "EXIT.spad" 369788 369796 370107 370112) (-260 "EVALCYC.spad" 369248 369262 369778 369783) (-259 "EVALAB.spad" 368828 368838 369238 369243) (-258 "EVALAB.spad" 368406 368418 368818 368823) (-257 "EUCDOM.spad" 365996 366004 368332 368401) (-256 "EUCDOM.spad" 363648 363658 365986 365991) (-255 "ES2.spad" 363161 363177 363638 363643) (-254 "ES1.spad" 362731 362747 363151 363156) (-253 "ES.spad" 355602 355610 362721 362726) (-252 "ES.spad" 348394 348404 355515 355520) (-251 "ERROR.spad" 345721 345729 348384 348389) (-250 "EQTBL.spad" 344057 344079 344266 344293) (-249 "EQ2.spad" 343775 343787 344047 344052) (-248 "EQ.spad" 338681 338691 341476 341582) (-247 "EP.spad" 335007 335017 338671 338676) (-246 "ENV.spad" 333685 333693 334997 335002) (-245 "ENTIRER.spad" 333353 333361 333629 333680) (-244 "EMR.spad" 332641 332682 333279 333348) (-243 "ELTAGG.spad" 330895 330914 332631 332636) (-242 "ELTAGG.spad" 329113 329134 330851 330856) (-241 "ELTAB.spad" 328588 328601 329103 329108) (-240 "ELFUTS.spad" 328023 328042 328578 328583) (-239 "ELEMFUN.spad" 327712 327720 328013 328018) (-238 "ELEMFUN.spad" 327399 327409 327702 327707) (-237 "ELAGG.spad" 325370 325380 327379 327394) (-236 "ELAGG.spad" 323278 323290 325289 325294) (-235 "ELABOR.spad" 322624 322632 323268 323273) (-234 "ELABEXPR.spad" 321556 321564 322614 322619) (-233 "EFUPXS.spad" 318332 318362 321512 321517) (-232 "EFULS.spad" 315168 315191 318288 318293) (-231 "EFSTRUC.spad" 313183 313199 315158 315163) (-230 "EF.spad" 307959 307975 313173 313178) (-229 "EAB.spad" 306259 306267 307949 307954) (-228 "DVARCAT.spad" 303265 303275 306249 306254) (-227 "DVARCAT.spad" 300269 300281 303255 303260) (-226 "DSMP.spad" 298002 298016 298307 298434) (-225 "DSEXT.spad" 297304 297314 297992 297997) (-224 "DSEXT.spad" 296526 296538 297216 297221) (-223 "DROPT1.spad" 296191 296201 296516 296521) (-222 "DROPT0.spad" 291056 291064 296181 296186) (-221 "DROPT.spad" 285015 285023 291046 291051) (-220 "DRAWPT.spad" 283188 283196 285005 285010) (-219 "DRAWHACK.spad" 282496 282506 283178 283183) (-218 "DRAWCX.spad" 279974 279982 282486 282491) (-217 "DRAWCURV.spad" 279521 279536 279964 279969) (-216 "DRAWCFUN.spad" 269053 269061 279511 279516) (-215 "DRAW.spad" 261929 261942 269043 269048) (-214 "DQAGG.spad" 260107 260117 261897 261924) (-213 "DPOLCAT.spad" 255464 255480 259975 260102) (-212 "DPOLCAT.spad" 250907 250925 255420 255425) (-211 "DPMO.spad" 243610 243626 243748 243954) (-210 "DPMM.spad" 236326 236344 236451 236657) (-209 "DOMTMPLT.spad" 236097 236105 236316 236321) (-208 "DOMCTOR.spad" 235852 235860 236087 236092) (-207 "DOMAIN.spad" 234963 234971 235842 235847) (-206 "DMP.spad" 232556 232571 233126 233253) (-205 "DMEXT.spad" 232423 232433 232524 232551) (-204 "DLP.spad" 231783 231793 232413 232418) (-203 "DLIST.spad" 230404 230414 231008 231035) (-202 "DLAGG.spad" 228821 228831 230394 230399) (-201 "DIVRING.spad" 228363 228371 228765 228816) (-200 "DIVRING.spad" 227949 227959 228353 228358) (-199 "DISPLAY.spad" 226139 226147 227939 227944) (-198 "DIRPROD2.spad" 224957 224975 226129 226134) (-197 "DIRPROD.spad" 214327 214343 214967 215064) (-196 "DIRPCAT.spad" 213522 213538 214225 214322) (-195 "DIRPCAT.spad" 212343 212361 213048 213053) (-194 "DIOSP.spad" 211168 211176 212333 212338) (-193 "DIOPS.spad" 210164 210174 211148 211163) (-192 "DIOPS.spad" 209134 209146 210120 210125) (-191 "catdef.spad" 208992 209000 209124 209129) (-190 "DIFRING.spad" 208830 208838 208972 208987) (-189 "DIFFSPC.spad" 208409 208417 208820 208825) (-188 "DIFFSPC.spad" 207986 207996 208399 208404) (-187 "DIFFMOD.spad" 207475 207485 207954 207981) (-186 "DIFFDOM.spad" 206640 206651 207465 207470) (-185 "DIFFDOM.spad" 205803 205816 206630 206635) (-184 "DIFEXT.spad" 205622 205632 205783 205798) (-183 "DIAGG.spad" 205252 205262 205602 205617) (-182 "DIAGG.spad" 204890 204902 205242 205247) (-181 "DHMATRIX.spad" 203267 203277 204412 204439) (-180 "DFSFUN.spad" 196907 196915 203257 203262) (-179 "DFLOAT.spad" 193514 193522 196797 196902) (-178 "DFINTTLS.spad" 191745 191761 193504 193509) (-177 "DERHAM.spad" 189659 189691 191725 191740) (-176 "DEQUEUE.spad" 189048 189058 189331 189358) (-175 "DEGRED.spad" 188665 188679 189038 189043) (-174 "DEFINTRF.spad" 186247 186257 188655 188660) (-173 "DEFINTEF.spad" 184785 184801 186237 186242) (-172 "DEFAST.spad" 184169 184177 184775 184780) (-171 "DECIMAL.spad" 182398 182406 182759 182852) (-170 "DDFACT.spad" 180219 180236 182388 182393) (-169 "DBLRESP.spad" 179819 179843 180209 180214) (-168 "DBASIS.spad" 179445 179460 179809 179814) (-167 "DBASE.spad" 178109 178119 179435 179440) (-166 "DATAARY.spad" 177595 177608 178099 178104) (-165 "CYCLOTOM.spad" 177101 177109 177585 177590) (-164 "CYCLES.spad" 173893 173901 177091 177096) (-163 "CVMP.spad" 173310 173320 173883 173888) (-162 "CTRIGMNP.spad" 171810 171826 173300 173305) (-161 "CTORKIND.spad" 171413 171421 171800 171805) (-160 "CTORCAT.spad" 170654 170662 171403 171408) (-159 "CTORCAT.spad" 169893 169903 170644 170649) (-158 "CTORCALL.spad" 169482 169492 169883 169888) (-157 "CTOR.spad" 169173 169181 169472 169477) (-156 "CSTTOOLS.spad" 168418 168431 169163 169168) (-155 "CRFP.spad" 162190 162203 168408 168413) (-154 "CRCEAST.spad" 161910 161918 162180 162185) (-153 "CRAPACK.spad" 160977 160987 161900 161905) (-152 "CPMATCH.spad" 160478 160493 160899 160904) (-151 "CPIMA.spad" 160183 160202 160468 160473) (-150 "COORDSYS.spad" 155192 155202 160173 160178) (-149 "CONTOUR.spad" 154619 154627 155182 155187) (-148 "CONTFRAC.spad" 150369 150379 154521 154614) (-147 "CONDUIT.spad" 150127 150135 150359 150364) (-146 "COMRING.spad" 149801 149809 150065 150122) (-145 "COMPPROP.spad" 149319 149327 149791 149796) (-144 "COMPLPAT.spad" 149086 149101 149309 149314) (-143 "COMPLEX2.spad" 148801 148813 149076 149081) (-142 "COMPLEX.spad" 144507 144517 144751 145009) (-141 "COMPILER.spad" 144056 144064 144497 144502) (-140 "COMPFACT.spad" 143658 143672 144046 144051) (-139 "COMPCAT.spad" 141733 141743 143395 143653) (-138 "COMPCAT.spad" 139549 139561 141213 141218) (-137 "COMMUPC.spad" 139297 139315 139539 139544) (-136 "COMMONOP.spad" 138830 138838 139287 139292) (-135 "COMMAAST.spad" 138593 138601 138820 138825) (-134 "COMM.spad" 138404 138412 138583 138588) (-133 "COMBOPC.spad" 137327 137335 138394 138399) (-132 "COMBINAT.spad" 136094 136104 137317 137322) (-131 "COMBF.spad" 133516 133532 136084 136089) (-130 "COLOR.spad" 132353 132361 133506 133511) (-129 "COLONAST.spad" 132019 132027 132343 132348) (-128 "CMPLXRT.spad" 131730 131747 132009 132014) (-127 "CLLCTAST.spad" 131392 131400 131720 131725) (-126 "CLIP.spad" 127500 127508 131382 131387) (-125 "CLIF.spad" 126155 126171 127456 127495) (-124 "CLAGG.spad" 122692 122702 126145 126150) (-123 "CLAGG.spad" 119113 119125 122568 122573) (-122 "CINTSLPE.spad" 118468 118481 119103 119108) (-121 "CHVAR.spad" 116606 116628 118458 118463) (-120 "CHARZ.spad" 116521 116529 116586 116601) (-119 "CHARPOL.spad" 116047 116057 116511 116516) (-118 "CHARNZ.spad" 115809 115817 116027 116042) (-117 "CHAR.spad" 113177 113185 115799 115804) (-116 "CFCAT.spad" 112505 112513 113167 113172) (-115 "CDEN.spad" 111725 111739 112495 112500) (-114 "CCLASS.spad" 109905 109913 111167 111206) (-113 "CATEGORY.spad" 108979 108987 109895 109900) (-112 "CATCTOR.spad" 108870 108878 108969 108974) (-111 "CATAST.spad" 108496 108504 108860 108865) (-110 "CASEAST.spad" 108210 108218 108486 108491) (-109 "CARTEN2.spad" 107600 107627 108200 108205) (-108 "CARTEN.spad" 103352 103376 107590 107595) (-107 "CARD.spad" 100647 100655 103326 103347) (-106 "CAPSLAST.spad" 100429 100437 100637 100642) (-105 "CACHSET.spad" 100053 100061 100419 100424) (-104 "CABMON.spad" 99608 99616 100043 100048) (-103 "BYTEORD.spad" 99283 99291 99598 99603) (-102 "BYTEBUF.spad" 97250 97258 98536 98563) (-101 "BYTE.spad" 96725 96733 97240 97245) (-100 "BTREE.spad" 95863 95873 96397 96424) (-99 "BTOURN.spad" 94934 94943 95535 95562) (-98 "BTCAT.spad" 94327 94336 94902 94929) (-97 "BTCAT.spad" 93740 93751 94317 94322) (-96 "BTAGG.spad" 93207 93214 93708 93735) (-95 "BTAGG.spad" 92694 92703 93197 93202) (-94 "BSTREE.spad" 91501 91510 92366 92393) (-93 "BRILL.spad" 89707 89717 91491 91496) (-92 "BRAGG.spad" 88664 88673 89697 89702) (-91 "BRAGG.spad" 87585 87596 88620 88625) (-90 "BPADICRT.spad" 85645 85656 85891 85984) (-89 "BPADIC.spad" 85318 85329 85571 85640) (-88 "BOUNDZRO.spad" 84975 84991 85308 85313) (-87 "BOP1.spad" 82434 82443 84965 84970) (-86 "BOP.spad" 77577 77584 82424 82429) (-85 "BOOLEAN.spad" 77126 77133 77567 77572) (-84 "BOOLE.spad" 76777 76784 77116 77121) (-83 "BOOLE.spad" 76426 76435 76767 76772) (-82 "BMODULE.spad" 76139 76150 76394 76421) (-81 "BITS.spad" 75571 75578 75785 75812) (-80 "catdef.spad" 75454 75464 75561 75566) (-79 "catdef.spad" 75205 75215 75444 75449) (-78 "BINDING.spad" 74627 74634 75195 75200) (-77 "BINARY.spad" 72862 72869 73217 73310) (-76 "BGAGG.spad" 72068 72077 72842 72857) (-75 "BGAGG.spad" 71282 71293 72058 72063) (-74 "BEZOUT.spad" 70423 70449 71232 71237) (-73 "BBTREE.spad" 67366 67375 70095 70122) (-72 "BASTYPE.spad" 66866 66873 67356 67361) (-71 "BASTYPE.spad" 66364 66373 66856 66861) (-70 "BALFACT.spad" 65824 65836 66354 66359) (-69 "AUTOMOR.spad" 65275 65284 65804 65819) (-68 "ATTREG.spad" 61998 62005 65027 65270) (-67 "ATTRAST.spad" 61715 61722 61988 61993) (-66 "ATRIG.spad" 61185 61192 61705 61710) (-65 "ATRIG.spad" 60653 60662 61175 61180) (-64 "ASTCAT.spad" 60557 60564 60643 60648) (-63 "ASTCAT.spad" 60459 60468 60547 60552) (-62 "ASTACK.spad" 59863 59872 60131 60158) (-61 "ASSOCEQ.spad" 58697 58708 59819 59824) (-60 "ARRAY2.spad" 58130 58139 58369 58396) (-59 "ARRAY12.spad" 56843 56854 58120 58125) (-58 "ARRAY1.spad" 55722 55731 56068 56095) (-57 "ARR2CAT.spad" 51504 51525 55690 55717) (-56 "ARR2CAT.spad" 47306 47329 51494 51499) (-55 "ARITY.spad" 46678 46685 47296 47301) (-54 "APPRULE.spad" 45962 45984 46668 46673) (-53 "APPLYORE.spad" 45581 45594 45952 45957) (-52 "ANY1.spad" 44652 44661 45571 45576) (-51 "ANY.spad" 43503 43510 44642 44647) (-50 "ANTISYM.spad" 41948 41964 43483 43498) (-49 "ANON.spad" 41657 41664 41938 41943) (-48 "AN.spad" 40125 40132 41488 41581) (-47 "AMR.spad" 38310 38321 40023 40120) (-46 "AMR.spad" 36358 36371 38073 38078) (-45 "ALIST.spad" 33596 33617 33946 33973) (-44 "ALGSC.spad" 32731 32757 33468 33521) (-43 "ALGPKG.spad" 28514 28525 32687 32692) (-42 "ALGMFACT.spad" 27707 27721 28504 28509) (-41 "ALGMANIP.spad" 25208 25223 27551 27556) (-40 "ALGFF.spad" 23026 23053 23243 23399) (-39 "ALGFACT.spad" 22145 22155 23016 23021) (-38 "ALGEBRA.spad" 21978 21987 22101 22140) (-37 "ALGEBRA.spad" 21843 21854 21968 21973) (-36 "ALAGG.spad" 21355 21376 21811 21838) (-35 "AHYP.spad" 20736 20743 21345 21350) (-34 "AGG.spad" 19445 19452 20726 20731) (-33 "AGG.spad" 18118 18127 19401 19406) (-32 "AF.spad" 16563 16578 18067 18072) (-31 "ADDAST.spad" 16249 16256 16553 16558) (-30 "ACPLOT.spad" 14840 14847 16239 16244) (-29 "ACFS.spad" 12697 12706 14742 14835) (-28 "ACFS.spad" 10640 10651 12687 12692) (-27 "ACF.spad" 7394 7401 10542 10635) (-26 "ACF.spad" 4234 4243 7384 7389) (-25 "ABELSG.spad" 3775 3782 4224 4229) (-24 "ABELSG.spad" 3314 3323 3765 3770) (-23 "ABELMON.spad" 2859 2866 3304 3309) (-22 "ABELMON.spad" 2402 2411 2849 2854) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 1961784 1961789 1961794 1961799) (-2 NIL 1961764 1961769 1961774 1961779) (-1 NIL 1961744 1961749 1961754 1961759) (0 NIL 1961724 1961729 1961734 1961739) (-1208 "ZMOD.spad" 1961533 1961546 1961662 1961719) (-1207 "ZLINDEP.spad" 1960631 1960642 1961523 1961528) (-1206 "ZDSOLVE.spad" 1950592 1950614 1960621 1960626) (-1205 "YSTREAM.spad" 1950087 1950098 1950582 1950587) (-1204 "YDIAGRAM.spad" 1949721 1949730 1950077 1950082) (-1203 "XRPOLY.spad" 1948941 1948961 1949577 1949646) (-1202 "XPR.spad" 1946736 1946749 1948659 1948758) (-1201 "XPOLYC.spad" 1946055 1946071 1946662 1946731) (-1200 "XPOLY.spad" 1945610 1945621 1945911 1945980) (-1199 "XPBWPOLY.spad" 1944081 1944101 1945416 1945485) (-1198 "XFALG.spad" 1941129 1941145 1944007 1944076) (-1197 "XF.spad" 1939592 1939607 1941031 1941124) (-1196 "XF.spad" 1938035 1938052 1939476 1939481) (-1195 "XEXPPKG.spad" 1937294 1937320 1938025 1938030) (-1194 "XDPOLY.spad" 1936908 1936924 1937150 1937219) (-1193 "XALG.spad" 1936576 1936587 1936864 1936903) (-1192 "WUTSET.spad" 1932579 1932596 1936210 1936237) (-1191 "WP.spad" 1931786 1931830 1932437 1932504) (-1190 "WHILEAST.spad" 1931584 1931593 1931776 1931781) (-1189 "WHEREAST.spad" 1931255 1931264 1931574 1931579) (-1188 "WFFINTBS.spad" 1928918 1928940 1931245 1931250) (-1187 "WEIER.spad" 1927140 1927151 1928908 1928913) (-1186 "VSPACE.spad" 1926813 1926824 1927108 1927135) (-1185 "VSPACE.spad" 1926506 1926519 1926803 1926808) (-1184 "VOID.spad" 1926183 1926192 1926496 1926501) (-1183 "VIEWDEF.spad" 1921384 1921393 1926173 1926178) (-1182 "VIEW3D.spad" 1905345 1905354 1921374 1921379) (-1181 "VIEW2D.spad" 1893244 1893253 1905335 1905340) (-1180 "VIEW.spad" 1890964 1890973 1893234 1893239) (-1179 "VECTOR2.spad" 1889603 1889616 1890954 1890959) (-1178 "VECTOR.spad" 1888322 1888333 1888573 1888600) (-1177 "VECTCAT.spad" 1886234 1886245 1888290 1888317) (-1176 "VECTCAT.spad" 1883955 1883968 1886013 1886018) (-1175 "VARIABLE.spad" 1883735 1883750 1883945 1883950) (-1174 "UTYPE.spad" 1883379 1883388 1883725 1883730) (-1173 "UTSODETL.spad" 1882674 1882698 1883335 1883340) (-1172 "UTSODE.spad" 1880890 1880910 1882664 1882669) (-1171 "UTSCAT.spad" 1878369 1878385 1880788 1880885) (-1170 "UTSCAT.spad" 1875516 1875534 1877937 1877942) (-1169 "UTS2.spad" 1875111 1875146 1875506 1875511) (-1168 "UTS.spad" 1870123 1870151 1873643 1873740) (-1167 "URAGG.spad" 1864844 1864855 1870113 1870118) (-1166 "URAGG.spad" 1859529 1859542 1864800 1864805) (-1165 "UPXSSING.spad" 1857297 1857323 1858733 1858866) (-1164 "UPXSCONS.spad" 1855115 1855135 1855488 1855637) (-1163 "UPXSCCA.spad" 1853686 1853706 1854961 1855110) (-1162 "UPXSCCA.spad" 1852399 1852421 1853676 1853681) (-1161 "UPXSCAT.spad" 1850988 1851004 1852245 1852394) (-1160 "UPXS2.spad" 1850531 1850584 1850978 1850983) (-1159 "UPXS.spad" 1847886 1847914 1848722 1848871) (-1158 "UPSQFREE.spad" 1846301 1846315 1847876 1847881) (-1157 "UPSCAT.spad" 1844096 1844120 1846199 1846296) (-1156 "UPSCAT.spad" 1841592 1841618 1843697 1843702) (-1155 "UPOLYC2.spad" 1841063 1841082 1841582 1841587) (-1154 "UPOLYC.spad" 1836143 1836154 1840905 1841058) (-1153 "UPOLYC.spad" 1831141 1831154 1835905 1835910) (-1152 "UPMP.spad" 1830073 1830086 1831131 1831136) (-1151 "UPDIVP.spad" 1829638 1829652 1830063 1830068) (-1150 "UPDECOMP.spad" 1827899 1827913 1829628 1829633) (-1149 "UPCDEN.spad" 1827116 1827132 1827889 1827894) (-1148 "UP2.spad" 1826480 1826501 1827106 1827111) (-1147 "UP.spad" 1823950 1823965 1824337 1824490) (-1146 "UNISEG2.spad" 1823447 1823460 1823906 1823911) (-1145 "UNISEG.spad" 1822800 1822811 1823366 1823371) (-1144 "UNIFACT.spad" 1821903 1821915 1822790 1822795) (-1143 "ULSCONS.spad" 1815946 1815966 1816316 1816465) (-1142 "ULSCCAT.spad" 1813683 1813703 1815792 1815941) (-1141 "ULSCCAT.spad" 1811528 1811550 1813639 1813644) (-1140 "ULSCAT.spad" 1809768 1809784 1811374 1811523) (-1139 "ULS2.spad" 1809282 1809335 1809758 1809763) (-1138 "ULS.spad" 1801548 1801576 1802493 1802916) (-1137 "UINT8.spad" 1801425 1801434 1801538 1801543) (-1136 "UINT64.spad" 1801301 1801310 1801415 1801420) (-1135 "UINT32.spad" 1801177 1801186 1801291 1801296) (-1134 "UINT16.spad" 1801053 1801062 1801167 1801172) (-1133 "UFD.spad" 1800118 1800127 1800979 1801048) (-1132 "UFD.spad" 1799245 1799256 1800108 1800113) (-1131 "UDVO.spad" 1798126 1798135 1799235 1799240) (-1130 "UDPO.spad" 1795707 1795718 1798082 1798087) (-1129 "TYPEAST.spad" 1795626 1795635 1795697 1795702) (-1128 "TYPE.spad" 1795558 1795567 1795616 1795621) (-1127 "TWOFACT.spad" 1794210 1794225 1795548 1795553) (-1126 "TUPLE.spad" 1793717 1793728 1794122 1794127) (-1125 "TUBETOOL.spad" 1790584 1790593 1793707 1793712) (-1124 "TUBE.spad" 1789231 1789248 1790574 1790579) (-1123 "TSETCAT.spad" 1777302 1777319 1789199 1789226) (-1122 "TSETCAT.spad" 1765359 1765378 1777258 1777263) (-1121 "TS.spad" 1763987 1764003 1764953 1765050) (-1120 "TRMANIP.spad" 1758351 1758368 1763675 1763680) (-1119 "TRIMAT.spad" 1757314 1757339 1758341 1758346) (-1118 "TRIGMNIP.spad" 1755841 1755858 1757304 1757309) (-1117 "TRIGCAT.spad" 1755353 1755362 1755831 1755836) (-1116 "TRIGCAT.spad" 1754863 1754874 1755343 1755348) (-1115 "TREE.spad" 1753503 1753514 1754535 1754562) (-1114 "TRANFUN.spad" 1753342 1753351 1753493 1753498) (-1113 "TRANFUN.spad" 1753179 1753190 1753332 1753337) (-1112 "TOPSP.spad" 1752853 1752862 1753169 1753174) (-1111 "TOOLSIGN.spad" 1752516 1752527 1752843 1752848) (-1110 "TEXTFILE.spad" 1751077 1751086 1752506 1752511) (-1109 "TEX1.spad" 1750633 1750644 1751067 1751072) (-1108 "TEX.spad" 1747827 1747836 1750623 1750628) (-1107 "TBCMPPK.spad" 1745928 1745951 1747817 1747822) (-1106 "TBAGG.spad" 1744986 1745009 1745908 1745923) (-1105 "TBAGG.spad" 1744052 1744077 1744976 1744981) (-1104 "TANEXP.spad" 1743460 1743471 1744042 1744047) (-1103 "TALGOP.spad" 1743184 1743195 1743450 1743455) (-1102 "TABLEAU.spad" 1742665 1742676 1743174 1743179) (-1101 "TABLE.spad" 1740940 1740963 1741210 1741237) (-1100 "TABLBUMP.spad" 1737719 1737730 1740930 1740935) (-1099 "SYSTEM.spad" 1736947 1736956 1737709 1737714) (-1098 "SYSSOLP.spad" 1734430 1734441 1736937 1736942) (-1097 "SYSPTR.spad" 1734329 1734338 1734420 1734425) (-1096 "SYSNNI.spad" 1733552 1733563 1734319 1734324) (-1095 "SYSINT.spad" 1732956 1732967 1733542 1733547) (-1094 "SYNTAX.spad" 1729290 1729299 1732946 1732951) (-1093 "SYMTAB.spad" 1727358 1727367 1729280 1729285) (-1092 "SYMS.spad" 1723387 1723396 1727348 1727353) (-1091 "SYMPOLY.spad" 1722520 1722531 1722602 1722729) (-1090 "SYMFUNC.spad" 1722021 1722032 1722510 1722515) (-1089 "SYMBOL.spad" 1719516 1719525 1722011 1722016) (-1088 "SUTS.spad" 1716629 1716657 1718048 1718145) (-1087 "SUPXS.spad" 1713971 1713999 1714820 1714969) (-1086 "SUPFRACF.spad" 1713076 1713094 1713961 1713966) (-1085 "SUP2.spad" 1712468 1712481 1713066 1713071) (-1084 "SUP.spad" 1709552 1709563 1710325 1710478) (-1083 "SUMRF.spad" 1708526 1708537 1709542 1709547) (-1082 "SUMFS.spad" 1708155 1708172 1708516 1708521) (-1081 "SULS.spad" 1700408 1700436 1701366 1701789) (-1080 "syntax.spad" 1700177 1700186 1700398 1700403) (-1079 "SUCH.spad" 1699867 1699882 1700167 1700172) (-1078 "SUBSPACE.spad" 1691998 1692013 1699857 1699862) (-1077 "SUBRESP.spad" 1691168 1691182 1691954 1691959) (-1076 "STTFNC.spad" 1687636 1687652 1691158 1691163) (-1075 "STTF.spad" 1683735 1683751 1687626 1687631) (-1074 "STTAYLOR.spad" 1676412 1676423 1683642 1683647) (-1073 "STRTBL.spad" 1674799 1674816 1674948 1674975) (-1072 "STRING.spad" 1673667 1673676 1674052 1674079) (-1071 "STREAM3.spad" 1673240 1673255 1673657 1673662) (-1070 "STREAM2.spad" 1672368 1672381 1673230 1673235) (-1069 "STREAM1.spad" 1672074 1672085 1672358 1672363) (-1068 "STREAM.spad" 1669070 1669081 1671677 1671692) (-1067 "STINPROD.spad" 1668006 1668022 1669060 1669065) (-1066 "STEPAST.spad" 1667240 1667249 1667996 1668001) (-1065 "STEP.spad" 1666557 1666566 1667230 1667235) (-1064 "STBL.spad" 1664947 1664975 1665114 1665129) (-1063 "STAGG.spad" 1663646 1663657 1664937 1664942) (-1062 "STAGG.spad" 1662343 1662356 1663636 1663641) (-1061 "STACK.spad" 1661765 1661776 1662015 1662042) (-1060 "SRING.spad" 1661525 1661534 1661755 1661760) (-1059 "SREGSET.spad" 1659257 1659274 1661159 1661186) (-1058 "SRDCMPK.spad" 1657834 1657854 1659247 1659252) (-1057 "SRAGG.spad" 1653017 1653026 1657802 1657829) (-1056 "SRAGG.spad" 1648220 1648231 1653007 1653012) (-1055 "SQMATRIX.spad" 1645897 1645915 1646813 1646900) (-1054 "SPLTREE.spad" 1640639 1640652 1645435 1645462) (-1053 "SPLNODE.spad" 1637259 1637272 1640629 1640634) (-1052 "SPFCAT.spad" 1636068 1636077 1637249 1637254) (-1051 "SPECOUT.spad" 1634620 1634629 1636058 1636063) (-1050 "SPADXPT.spad" 1626711 1626720 1634610 1634615) (-1049 "spad-parser.spad" 1626176 1626185 1626701 1626706) (-1048 "SPADAST.spad" 1625877 1625886 1626166 1626171) (-1047 "SPACEC.spad" 1610092 1610103 1625867 1625872) (-1046 "SPACE3.spad" 1609868 1609879 1610082 1610087) (-1045 "SORTPAK.spad" 1609417 1609430 1609824 1609829) (-1044 "SOLVETRA.spad" 1607180 1607191 1609407 1609412) (-1043 "SOLVESER.spad" 1605636 1605647 1607170 1607175) (-1042 "SOLVERAD.spad" 1601662 1601673 1605626 1605631) (-1041 "SOLVEFOR.spad" 1600124 1600142 1601652 1601657) (-1040 "SNTSCAT.spad" 1599724 1599741 1600092 1600119) (-1039 "SMTS.spad" 1598041 1598067 1599318 1599415) (-1038 "SMP.spad" 1595849 1595869 1596239 1596366) (-1037 "SMITH.spad" 1594694 1594719 1595839 1595844) (-1036 "SMATCAT.spad" 1592812 1592842 1594638 1594689) (-1035 "SMATCAT.spad" 1590862 1590894 1592690 1592695) (-1034 "SKAGG.spad" 1589831 1589842 1590830 1590857) (-1033 "SINT.spad" 1589130 1589139 1589697 1589826) (-1032 "SIMPAN.spad" 1588858 1588867 1589120 1589125) (-1031 "SIGNRF.spad" 1587983 1587994 1588848 1588853) (-1030 "SIGNEF.spad" 1587269 1587286 1587973 1587978) (-1029 "syntax.spad" 1586686 1586695 1587259 1587264) (-1028 "SIG.spad" 1586048 1586057 1586676 1586681) (-1027 "SHP.spad" 1583992 1584007 1586004 1586009) (-1026 "SHDP.spad" 1573485 1573512 1574002 1574099) (-1025 "SGROUP.spad" 1573093 1573102 1573475 1573480) (-1024 "SGROUP.spad" 1572699 1572710 1573083 1573088) (-1023 "catdef.spad" 1572409 1572421 1572520 1572694) (-1022 "catdef.spad" 1571965 1571977 1572230 1572404) (-1021 "SGCF.spad" 1565104 1565113 1571955 1571960) (-1020 "SFRTCAT.spad" 1564050 1564067 1565072 1565099) (-1019 "SFRGCD.spad" 1563113 1563133 1564040 1564045) (-1018 "SFQCMPK.spad" 1557926 1557946 1563103 1563108) (-1017 "SEXOF.spad" 1557769 1557809 1557916 1557921) (-1016 "SEXCAT.spad" 1555597 1555637 1557759 1557764) (-1015 "SEX.spad" 1555489 1555498 1555587 1555592) (-1014 "SETMN.spad" 1553949 1553966 1555479 1555484) (-1013 "SETCAT.spad" 1553434 1553443 1553939 1553944) (-1012 "SETCAT.spad" 1552917 1552928 1553424 1553429) (-1011 "SETAGG.spad" 1549466 1549477 1552897 1552912) (-1010 "SETAGG.spad" 1546023 1546036 1549456 1549461) (-1009 "SET.spad" 1544332 1544343 1545429 1545468) (-1008 "syntax.spad" 1544035 1544044 1544322 1544327) (-1007 "SEGXCAT.spad" 1543191 1543204 1544025 1544030) (-1006 "SEGCAT.spad" 1542116 1542127 1543181 1543186) (-1005 "SEGBIND2.spad" 1541814 1541827 1542106 1542111) (-1004 "SEGBIND.spad" 1541572 1541583 1541761 1541766) (-1003 "SEGAST.spad" 1541302 1541311 1541562 1541567) (-1002 "SEG2.spad" 1540737 1540750 1541258 1541263) (-1001 "SEG.spad" 1540550 1540561 1540656 1540661) (-1000 "SDVAR.spad" 1539826 1539837 1540540 1540545) (-999 "SDPOL.spad" 1537519 1537529 1537809 1537936) (-998 "SCPKG.spad" 1535609 1535619 1537509 1537514) (-997 "SCOPE.spad" 1534787 1534795 1535599 1535604) (-996 "SCACHE.spad" 1533484 1533494 1534777 1534782) (-995 "SASTCAT.spad" 1533394 1533402 1533474 1533479) (-994 "SAOS.spad" 1533267 1533275 1533384 1533389) (-993 "SAERFFC.spad" 1532981 1533000 1533257 1533262) (-992 "SAEFACT.spad" 1532683 1532702 1532971 1532976) (-991 "SAE.spad" 1530334 1530349 1530944 1531079) (-990 "RURPK.spad" 1527994 1528009 1530324 1530329) (-989 "RULESET.spad" 1527448 1527471 1527984 1527989) (-988 "RULECOLD.spad" 1527301 1527313 1527438 1527443) (-987 "RULE.spad" 1525550 1525573 1527291 1527296) (-986 "RTVALUE.spad" 1525286 1525294 1525540 1525545) (-985 "syntax.spad" 1525004 1525012 1525276 1525281) (-984 "RSETGCD.spad" 1521447 1521466 1524994 1524999) (-983 "RSETCAT.spad" 1511416 1511432 1521415 1521442) (-982 "RSETCAT.spad" 1501405 1501423 1511406 1511411) (-981 "RSDCMPK.spad" 1499906 1499925 1501395 1501400) (-980 "RRCC.spad" 1498291 1498320 1499896 1499901) (-979 "RRCC.spad" 1496674 1496705 1498281 1498286) (-978 "RPTAST.spad" 1496377 1496385 1496664 1496669) (-977 "RPOLCAT.spad" 1475882 1475896 1496245 1496372) (-976 "RPOLCAT.spad" 1455180 1455196 1475545 1475550) (-975 "ROMAN.spad" 1454509 1454517 1455046 1455175) (-974 "ROIRC.spad" 1453590 1453621 1454499 1454504) (-973 "RNS.spad" 1452567 1452575 1453492 1453585) (-972 "RNS.spad" 1451630 1451640 1452557 1452562) (-971 "RNGBIND.spad" 1450791 1450804 1451585 1451590) (-970 "RNG.spad" 1450527 1450535 1450781 1450786) (-969 "RMODULE.spad" 1450309 1450319 1450517 1450522) (-968 "RMCAT2.spad" 1449730 1449786 1450299 1450304) (-967 "RMATRIX.spad" 1448540 1448558 1448882 1448921) (-966 "RMATCAT.spad" 1444120 1444150 1448496 1448535) (-965 "RMATCAT.spad" 1439590 1439622 1443968 1443973) (-964 "RLINSET.spad" 1439295 1439305 1439580 1439585) (-963 "RINTERP.spad" 1439184 1439203 1439285 1439290) (-962 "RING.spad" 1438655 1438663 1439164 1439179) (-961 "RING.spad" 1438134 1438144 1438645 1438650) (-960 "RIDIST.spad" 1437527 1437535 1438124 1438129) (-959 "RGCHAIN.spad" 1436082 1436097 1436975 1437002) (-958 "RGBCSPC.spad" 1435872 1435883 1436072 1436077) (-957 "RGBCMDL.spad" 1435435 1435446 1435862 1435867) (-956 "RFFACTOR.spad" 1434898 1434908 1435425 1435430) (-955 "RFFACT.spad" 1434634 1434645 1434888 1434893) (-954 "RFDIST.spad" 1433631 1433639 1434624 1434629) (-953 "RF.spad" 1431306 1431316 1433621 1433626) (-952 "RETSOL.spad" 1430726 1430738 1431296 1431301) (-951 "RETRACT.spad" 1430155 1430165 1430716 1430721) (-950 "RETRACT.spad" 1429582 1429594 1430145 1430150) (-949 "RETAST.spad" 1429395 1429403 1429572 1429577) (-948 "RESRING.spad" 1428743 1428789 1429333 1429390) (-947 "RESLATC.spad" 1428068 1428078 1428733 1428738) (-946 "REPSQ.spad" 1427800 1427810 1428058 1428063) (-945 "REPDB.spad" 1427508 1427518 1427790 1427795) (-944 "REP2.spad" 1417223 1417233 1427350 1427355) (-943 "REP1.spad" 1411444 1411454 1417173 1417178) (-942 "REP.spad" 1408999 1409007 1411434 1411439) (-941 "REGSET.spad" 1406825 1406841 1408633 1408660) (-940 "REF.spad" 1406344 1406354 1406815 1406820) (-939 "REDORDER.spad" 1405551 1405567 1406334 1406339) (-938 "RECLOS.spad" 1404448 1404467 1405151 1405244) (-937 "REALSOLV.spad" 1403589 1403597 1404438 1404443) (-936 "REAL0Q.spad" 1400888 1400902 1403579 1403584) (-935 "REAL0.spad" 1397733 1397747 1400878 1400883) (-934 "REAL.spad" 1397606 1397614 1397723 1397728) (-933 "RDUCEAST.spad" 1397328 1397336 1397596 1397601) (-932 "RDIV.spad" 1396984 1397008 1397318 1397323) (-931 "RDIST.spad" 1396552 1396562 1396974 1396979) (-930 "RDETRS.spad" 1395417 1395434 1396542 1396547) (-929 "RDETR.spad" 1393557 1393574 1395407 1395412) (-928 "RDEEFS.spad" 1392657 1392673 1393547 1393552) (-927 "RDEEF.spad" 1391668 1391684 1392647 1392652) (-926 "RCFIELD.spad" 1388887 1388895 1391570 1391663) (-925 "RCFIELD.spad" 1386192 1386202 1388877 1388882) (-924 "RCAGG.spad" 1384129 1384139 1386182 1386187) (-923 "RCAGG.spad" 1381993 1382005 1384048 1384053) (-922 "RATRET.spad" 1381354 1381364 1381983 1381988) (-921 "RATFACT.spad" 1381047 1381058 1381344 1381349) (-920 "RANDSRC.spad" 1380367 1380375 1381037 1381042) (-919 "RADUTIL.spad" 1380124 1380132 1380357 1380362) (-918 "RADIX.spad" 1377169 1377182 1378714 1378807) (-917 "RADFF.spad" 1375086 1375122 1375204 1375360) (-916 "RADCAT.spad" 1374682 1374690 1375076 1375081) (-915 "RADCAT.spad" 1374276 1374286 1374672 1374677) (-914 "QUEUE.spad" 1373690 1373700 1373948 1373975) (-913 "QUATCT2.spad" 1373311 1373329 1373680 1373685) (-912 "QUATCAT.spad" 1371482 1371492 1373241 1373306) (-911 "QUATCAT.spad" 1369418 1369430 1371179 1371184) (-910 "QUAT.spad" 1368025 1368035 1368367 1368432) (-909 "QUAGG.spad" 1366859 1366869 1367993 1368020) (-908 "QQUTAST.spad" 1366628 1366636 1366849 1366854) (-907 "QFORM.spad" 1366247 1366261 1366618 1366623) (-906 "QFCAT2.spad" 1365940 1365956 1366237 1366242) (-905 "QFCAT.spad" 1364643 1364653 1365842 1365935) (-904 "QFCAT.spad" 1362979 1362991 1364180 1364185) (-903 "QEQUAT.spad" 1362538 1362546 1362969 1362974) (-902 "QCMPACK.spad" 1357453 1357472 1362528 1362533) (-901 "QALGSET2.spad" 1355449 1355467 1357443 1357448) (-900 "QALGSET.spad" 1351554 1351586 1355363 1355368) (-899 "PWFFINTB.spad" 1348970 1348991 1351544 1351549) (-898 "PUSHVAR.spad" 1348309 1348328 1348960 1348965) (-897 "PTRANFN.spad" 1344445 1344455 1348299 1348304) (-896 "PTPACK.spad" 1341533 1341543 1344435 1344440) (-895 "PTFUNC2.spad" 1341356 1341370 1341523 1341528) (-894 "PTCAT.spad" 1340611 1340621 1341324 1341351) (-893 "PSQFR.spad" 1339926 1339950 1340601 1340606) (-892 "PSEUDLIN.spad" 1338812 1338822 1339916 1339921) (-891 "PSETPK.spad" 1325517 1325533 1338690 1338695) (-890 "PSETCAT.spad" 1319917 1319940 1325497 1325512) (-889 "PSETCAT.spad" 1314291 1314316 1319873 1319878) (-888 "PSCURVE.spad" 1313290 1313298 1314281 1314286) (-887 "PSCAT.spad" 1312073 1312102 1313188 1313285) (-886 "PSCAT.spad" 1310946 1310977 1312063 1312068) (-885 "PRTITION.spad" 1309644 1309652 1310936 1310941) (-884 "PRTDAST.spad" 1309363 1309371 1309634 1309639) (-883 "PRS.spad" 1298981 1298998 1309319 1309324) (-882 "PRQAGG.spad" 1298416 1298426 1298949 1298976) (-881 "PROPLOG.spad" 1298020 1298028 1298406 1298411) (-880 "PROPFUN2.spad" 1297643 1297656 1298010 1298015) (-879 "PROPFUN1.spad" 1297049 1297060 1297633 1297638) (-878 "PROPFRML.spad" 1295617 1295628 1297039 1297044) (-877 "PROPERTY.spad" 1295113 1295121 1295607 1295612) (-876 "PRODUCT.spad" 1292810 1292822 1293094 1293149) (-875 "PRINT.spad" 1292562 1292570 1292800 1292805) (-874 "PRIMES.spad" 1290823 1290833 1292552 1292557) (-873 "PRIMELT.spad" 1288944 1288958 1290813 1290818) (-872 "PRIMCAT.spad" 1288587 1288595 1288934 1288939) (-871 "PRIMARR2.spad" 1287354 1287366 1288577 1288582) (-870 "PRIMARR.spad" 1286409 1286419 1286579 1286606) (-869 "PREASSOC.spad" 1285791 1285803 1286399 1286404) (-868 "PR.spad" 1284309 1284321 1285008 1285135) (-867 "PPCURVE.spad" 1283446 1283454 1284299 1284304) (-866 "PORTNUM.spad" 1283237 1283245 1283436 1283441) (-865 "POLYROOT.spad" 1282086 1282108 1283193 1283198) (-864 "POLYLIFT.spad" 1281351 1281374 1282076 1282081) (-863 "POLYCATQ.spad" 1279477 1279499 1281341 1281346) (-862 "POLYCAT.spad" 1272979 1273000 1279345 1279472) (-861 "POLYCAT.spad" 1266001 1266024 1272369 1272374) (-860 "POLY2UP.spad" 1265453 1265467 1265991 1265996) (-859 "POLY2.spad" 1265050 1265062 1265443 1265448) (-858 "POLY.spad" 1262718 1262728 1263233 1263360) (-857 "POLUTIL.spad" 1261683 1261712 1262674 1262679) (-856 "POLTOPOL.spad" 1260431 1260446 1261673 1261678) (-855 "POINT.spad" 1259314 1259324 1259401 1259428) (-854 "PNTHEORY.spad" 1256016 1256024 1259304 1259309) (-853 "PMTOOLS.spad" 1254791 1254805 1256006 1256011) (-852 "PMSYM.spad" 1254340 1254350 1254781 1254786) (-851 "PMQFCAT.spad" 1253931 1253945 1254330 1254335) (-850 "PMPREDFS.spad" 1253393 1253415 1253921 1253926) (-849 "PMPRED.spad" 1252880 1252894 1253383 1253388) (-848 "PMPLCAT.spad" 1251957 1251975 1252809 1252814) (-847 "PMLSAGG.spad" 1251542 1251556 1251947 1251952) (-846 "PMKERNEL.spad" 1251121 1251133 1251532 1251537) (-845 "PMINS.spad" 1250701 1250711 1251111 1251116) (-844 "PMFS.spad" 1250278 1250296 1250691 1250696) (-843 "PMDOWN.spad" 1249568 1249582 1250268 1250273) (-842 "PMASSFS.spad" 1248543 1248559 1249558 1249563) (-841 "PMASS.spad" 1247561 1247569 1248533 1248538) (-840 "PLOTTOOL.spad" 1247341 1247349 1247551 1247556) (-839 "PLOT3D.spad" 1243805 1243813 1247331 1247336) (-838 "PLOT1.spad" 1242978 1242988 1243795 1243800) (-837 "PLOT.spad" 1237901 1237909 1242968 1242973) (-836 "PLEQN.spad" 1225303 1225330 1237891 1237896) (-835 "PINTERPA.spad" 1225087 1225103 1225293 1225298) (-834 "PINTERP.spad" 1224709 1224728 1225077 1225082) (-833 "PID.spad" 1223683 1223691 1224635 1224704) (-832 "PICOERCE.spad" 1223340 1223350 1223673 1223678) (-831 "PI.spad" 1222957 1222965 1223314 1223335) (-830 "PGROEB.spad" 1221566 1221580 1222947 1222952) (-829 "PGE.spad" 1213239 1213247 1221556 1221561) (-828 "PGCD.spad" 1212193 1212210 1213229 1213234) (-827 "PFRPAC.spad" 1211342 1211352 1212183 1212188) (-826 "PFR.spad" 1208045 1208055 1211244 1211337) (-825 "PFOTOOLS.spad" 1207303 1207319 1208035 1208040) (-824 "PFOQ.spad" 1206673 1206691 1207293 1207298) (-823 "PFO.spad" 1206092 1206119 1206663 1206668) (-822 "PFECAT.spad" 1203802 1203810 1206018 1206087) (-821 "PFECAT.spad" 1201540 1201550 1203758 1203763) (-820 "PFBRU.spad" 1199428 1199440 1201530 1201535) (-819 "PFBR.spad" 1196988 1197011 1199418 1199423) (-818 "PF.spad" 1196562 1196574 1196793 1196886) (-817 "PERMGRP.spad" 1191332 1191342 1196552 1196557) (-816 "PERMCAT.spad" 1189993 1190003 1191312 1191327) (-815 "PERMAN.spad" 1188549 1188563 1189983 1189988) (-814 "PERM.spad" 1184359 1184369 1188382 1188397) (-813 "PENDTREE.spad" 1183773 1183783 1184053 1184058) (-812 "PDSPC.spad" 1182586 1182596 1183763 1183768) (-811 "PDSPC.spad" 1181397 1181409 1182576 1182581) (-810 "PDRING.spad" 1181239 1181249 1181377 1181392) (-809 "PDMOD.spad" 1181055 1181067 1181207 1181234) (-808 "PDECOMP.spad" 1180525 1180542 1181045 1181050) (-807 "PDDOM.spad" 1179963 1179976 1180515 1180520) (-806 "PDDOM.spad" 1179399 1179414 1179953 1179958) (-805 "PCOMP.spad" 1179252 1179265 1179389 1179394) (-804 "PBWLB.spad" 1177850 1177867 1179242 1179247) (-803 "PATTERN2.spad" 1177588 1177600 1177840 1177845) (-802 "PATTERN1.spad" 1175932 1175948 1177578 1177583) (-801 "PATTERN.spad" 1170507 1170517 1175922 1175927) (-800 "PATRES2.spad" 1170179 1170193 1170497 1170502) (-799 "PATRES.spad" 1167762 1167774 1170169 1170174) (-798 "PATMATCH.spad" 1166003 1166034 1167514 1167519) (-797 "PATMAB.spad" 1165432 1165442 1165993 1165998) (-796 "PATLRES.spad" 1164518 1164532 1165422 1165427) (-795 "PATAB.spad" 1164282 1164292 1164508 1164513) (-794 "PARTPERM.spad" 1162338 1162346 1164272 1164277) (-793 "PARSURF.spad" 1161772 1161800 1162328 1162333) (-792 "PARSU2.spad" 1161569 1161585 1161762 1161767) (-791 "script-parser.spad" 1161089 1161097 1161559 1161564) (-790 "PARSCURV.spad" 1160523 1160551 1161079 1161084) (-789 "PARSC2.spad" 1160314 1160330 1160513 1160518) (-788 "PARPCURV.spad" 1159776 1159804 1160304 1160309) (-787 "PARPC2.spad" 1159567 1159583 1159766 1159771) (-786 "PARAMAST.spad" 1158695 1158703 1159557 1159562) (-785 "PAN2EXPR.spad" 1158107 1158115 1158685 1158690) (-784 "PALETTE.spad" 1157221 1157229 1158097 1158102) (-783 "PAIR.spad" 1156295 1156308 1156864 1156869) (-782 "PADICRC.spad" 1153700 1153718 1154863 1154956) (-781 "PADICRAT.spad" 1151760 1151772 1151973 1152066) (-780 "PADICCT.spad" 1150309 1150321 1151686 1151755) (-779 "PADIC.spad" 1150012 1150024 1150235 1150304) (-778 "PADEPAC.spad" 1148701 1148720 1150002 1150007) (-777 "PADE.spad" 1147453 1147469 1148691 1148696) (-776 "OWP.spad" 1146701 1146731 1147311 1147378) (-775 "OVERSET.spad" 1146274 1146282 1146691 1146696) (-774 "OVAR.spad" 1146055 1146078 1146264 1146269) (-773 "OUTFORM.spad" 1135463 1135471 1146045 1146050) (-772 "OUTBFILE.spad" 1134897 1134905 1135453 1135458) (-771 "OUTBCON.spad" 1133967 1133975 1134887 1134892) (-770 "OUTBCON.spad" 1133035 1133045 1133957 1133962) (-769 "OUT.spad" 1132153 1132161 1133025 1133030) (-768 "OSI.spad" 1131628 1131636 1132143 1132148) (-767 "OSGROUP.spad" 1131546 1131554 1131618 1131623) (-766 "ORTHPOL.spad" 1130057 1130067 1131489 1131494) (-765 "OREUP.spad" 1129551 1129579 1129778 1129817) (-764 "ORESUP.spad" 1128893 1128917 1129272 1129311) (-763 "OREPCTO.spad" 1126782 1126794 1128813 1128818) (-762 "OREPCAT.spad" 1120969 1120979 1126738 1126777) (-761 "OREPCAT.spad" 1115046 1115058 1120817 1120822) (-760 "ORDTYPE.spad" 1114283 1114291 1115036 1115041) (-759 "ORDTYPE.spad" 1113518 1113528 1114273 1114278) (-758 "ORDSTRCT.spad" 1113304 1113319 1113467 1113472) (-757 "ORDSET.spad" 1113004 1113012 1113294 1113299) (-756 "ORDRING.spad" 1112821 1112829 1112984 1112999) (-755 "ORDMON.spad" 1112676 1112684 1112811 1112816) (-754 "ORDFUNS.spad" 1111808 1111824 1112666 1112671) (-753 "ORDFIN.spad" 1111628 1111636 1111798 1111803) (-752 "ORDCOMP2.spad" 1110921 1110933 1111618 1111623) (-751 "ORDCOMP.spad" 1109447 1109457 1110529 1110558) (-750 "OPSIG.spad" 1109109 1109117 1109437 1109442) (-749 "OPQUERY.spad" 1108690 1108698 1109099 1109104) (-748 "OPERCAT.spad" 1108156 1108166 1108680 1108685) (-747 "OPERCAT.spad" 1107620 1107632 1108146 1108151) (-746 "OP.spad" 1107362 1107372 1107442 1107509) (-745 "ONECOMP2.spad" 1106786 1106798 1107352 1107357) (-744 "ONECOMP.spad" 1105592 1105602 1106394 1106423) (-743 "OMSAGG.spad" 1105380 1105390 1105548 1105587) (-742 "OMLO.spad" 1104813 1104825 1105266 1105305) (-741 "OINTDOM.spad" 1104576 1104584 1104739 1104808) (-740 "OFMONOID.spad" 1102715 1102725 1104532 1104537) (-739 "ODVAR.spad" 1101976 1101986 1102705 1102710) (-738 "ODR.spad" 1101620 1101646 1101788 1101937) (-737 "ODPOL.spad" 1099268 1099278 1099608 1099735) (-736 "ODP.spad" 1088905 1088925 1089278 1089375) (-735 "ODETOOLS.spad" 1087554 1087573 1088895 1088900) (-734 "ODESYS.spad" 1085248 1085265 1087544 1087549) (-733 "ODERTRIC.spad" 1081281 1081298 1085205 1085210) (-732 "ODERED.spad" 1080680 1080704 1081271 1081276) (-731 "ODERAT.spad" 1078313 1078330 1080670 1080675) (-730 "ODEPRRIC.spad" 1075406 1075428 1078303 1078308) (-729 "ODEPRIM.spad" 1072804 1072826 1075396 1075401) (-728 "ODEPAL.spad" 1072190 1072214 1072794 1072799) (-727 "ODEINT.spad" 1071625 1071641 1072180 1072185) (-726 "ODEEF.spad" 1067120 1067136 1071615 1071620) (-725 "ODECONST.spad" 1066665 1066683 1067110 1067115) (-724 "OCTCT2.spad" 1066306 1066324 1066655 1066660) (-723 "OCT.spad" 1064621 1064631 1065335 1065374) (-722 "OCAMON.spad" 1064469 1064477 1064611 1064616) (-721 "OC.spad" 1062265 1062275 1064425 1064464) (-720 "OC.spad" 1059800 1059812 1061962 1061967) (-719 "OASGP.spad" 1059615 1059623 1059790 1059795) (-718 "OAMONS.spad" 1059137 1059145 1059605 1059610) (-717 "OAMON.spad" 1058895 1058903 1059127 1059132) (-716 "OAMON.spad" 1058651 1058661 1058885 1058890) (-715 "OAGROUP.spad" 1058189 1058197 1058641 1058646) (-714 "OAGROUP.spad" 1057725 1057735 1058179 1058184) (-713 "NUMTUBE.spad" 1057316 1057332 1057715 1057720) (-712 "NUMQUAD.spad" 1045292 1045300 1057306 1057311) (-711 "NUMODE.spad" 1036644 1036652 1045282 1045287) (-710 "NUMFMT.spad" 1035484 1035492 1036634 1036639) (-709 "NUMERIC.spad" 1027599 1027609 1035290 1035295) (-708 "NTSCAT.spad" 1026107 1026123 1027567 1027594) (-707 "NTPOLFN.spad" 1025684 1025694 1026050 1026055) (-706 "NSUP2.spad" 1025076 1025088 1025674 1025679) (-705 "NSUP.spad" 1018513 1018523 1022933 1023086) (-704 "NSMP.spad" 1015425 1015444 1015717 1015844) (-703 "NREP.spad" 1013827 1013841 1015415 1015420) (-702 "NPCOEF.spad" 1013073 1013093 1013817 1013822) (-701 "NORMRETR.spad" 1012671 1012710 1013063 1013068) (-700 "NORMPK.spad" 1010613 1010632 1012661 1012666) (-699 "NORMMA.spad" 1010301 1010327 1010603 1010608) (-698 "NONE1.spad" 1009977 1009987 1010291 1010296) (-697 "NONE.spad" 1009718 1009726 1009967 1009972) (-696 "NODE1.spad" 1009205 1009221 1009708 1009713) (-695 "NNI.spad" 1008100 1008108 1009179 1009200) (-694 "NLINSOL.spad" 1006726 1006736 1008090 1008095) (-693 "NFINTBAS.spad" 1004286 1004303 1006716 1006721) (-692 "NETCLT.spad" 1004260 1004271 1004276 1004281) (-691 "NCODIV.spad" 1002484 1002500 1004250 1004255) (-690 "NCNTFRAC.spad" 1002126 1002140 1002474 1002479) (-689 "NCEP.spad" 1000292 1000306 1002116 1002121) (-688 "NASRING.spad" 999896 999904 1000282 1000287) (-687 "NASRING.spad" 999498 999508 999886 999891) (-686 "NARNG.spad" 998898 998906 999488 999493) (-685 "NARNG.spad" 998296 998306 998888 998893) (-684 "NAALG.spad" 997861 997871 998264 998291) (-683 "NAALG.spad" 997446 997458 997851 997856) (-682 "MULTSQFR.spad" 994404 994421 997436 997441) (-681 "MULTFACT.spad" 993787 993804 994394 994399) (-680 "MTSCAT.spad" 991881 991902 993685 993782) (-679 "MTHING.spad" 991540 991550 991871 991876) (-678 "MSYSCMD.spad" 990974 990982 991530 991535) (-677 "MSETAGG.spad" 990819 990829 990942 990969) (-676 "MSET.spad" 988765 988775 990513 990552) (-675 "MRING.spad" 985742 985754 988473 988540) (-674 "MRF2.spad" 985304 985318 985732 985737) (-673 "MRATFAC.spad" 984850 984867 985294 985299) (-672 "MPRFF.spad" 982890 982909 984840 984845) (-671 "MPOLY.spad" 980694 980709 981053 981180) (-670 "MPCPF.spad" 979958 979977 980684 980689) (-669 "MPC3.spad" 979775 979815 979948 979953) (-668 "MPC2.spad" 979429 979462 979765 979770) (-667 "MONOTOOL.spad" 977780 977797 979419 979424) (-666 "catdef.spad" 977213 977224 977434 977775) (-665 "catdef.spad" 976611 976622 976867 977208) (-664 "MONOID.spad" 975932 975940 976601 976606) (-663 "MONOID.spad" 975251 975261 975922 975927) (-662 "MONOGEN.spad" 973999 974012 975111 975246) (-661 "MONOGEN.spad" 972769 972784 973883 973888) (-660 "MONADWU.spad" 970849 970857 972759 972764) (-659 "MONADWU.spad" 968927 968937 970839 970844) (-658 "MONAD.spad" 968087 968095 968917 968922) (-657 "MONAD.spad" 967245 967255 968077 968082) (-656 "MOEBIUS.spad" 965981 965995 967225 967240) (-655 "MODULE.spad" 965851 965861 965949 965976) (-654 "MODULE.spad" 965741 965753 965841 965846) (-653 "MODRING.spad" 965076 965115 965721 965736) (-652 "MODOP.spad" 963733 963745 964898 964965) (-651 "MODMONOM.spad" 963464 963482 963723 963728) (-650 "MODMON.spad" 960534 960546 961249 961402) (-649 "MODFIELD.spad" 959896 959935 960436 960529) (-648 "MMLFORM.spad" 958756 958764 959886 959891) (-647 "MMAP.spad" 958498 958532 958746 958751) (-646 "MLO.spad" 956957 956967 958454 958493) (-645 "MLIFT.spad" 955569 955586 956947 956952) (-644 "MKUCFUNC.spad" 955104 955122 955559 955564) (-643 "MKRECORD.spad" 954692 954705 955094 955099) (-642 "MKFUNC.spad" 954099 954109 954682 954687) (-641 "MKFLCFN.spad" 953067 953077 954089 954094) (-640 "MKBCFUNC.spad" 952562 952580 953057 953062) (-639 "MHROWRED.spad" 951073 951083 952552 952557) (-638 "MFINFACT.spad" 950473 950495 951063 951068) (-637 "MESH.spad" 948268 948276 950463 950468) (-636 "MDDFACT.spad" 946487 946497 948258 948263) (-635 "MDAGG.spad" 945778 945788 946467 946482) (-634 "MCDEN.spad" 944988 945000 945768 945773) (-633 "MAYBE.spad" 944288 944299 944978 944983) (-632 "MATSTOR.spad" 941604 941614 944278 944283) (-631 "MATRIX.spad" 940383 940393 940867 940894) (-630 "MATLIN.spad" 937751 937775 940267 940272) (-629 "MATCAT2.spad" 937033 937081 937741 937746) (-628 "MATCAT.spad" 928595 928617 937001 937028) (-627 "MATCAT.spad" 920029 920053 928437 928442) (-626 "MAPPKG3.spad" 918944 918958 920019 920024) (-625 "MAPPKG2.spad" 918282 918294 918934 918939) (-624 "MAPPKG1.spad" 917110 917120 918272 918277) (-623 "MAPPAST.spad" 916449 916457 917100 917105) (-622 "MAPHACK3.spad" 916261 916275 916439 916444) (-621 "MAPHACK2.spad" 916030 916042 916251 916256) (-620 "MAPHACK1.spad" 915674 915684 916020 916025) (-619 "MAGMA.spad" 913480 913497 915664 915669) (-618 "MACROAST.spad" 913075 913083 913470 913475) (-617 "LZSTAGG.spad" 910329 910339 913065 913070) (-616 "LZSTAGG.spad" 907581 907593 910319 910324) (-615 "LWORD.spad" 904326 904343 907571 907576) (-614 "LSTAST.spad" 904110 904118 904316 904321) (-613 "LSQM.spad" 902388 902402 902782 902833) (-612 "LSPP.spad" 901923 901940 902378 902383) (-611 "LSMP1.spad" 899766 899780 901913 901918) (-610 "LSMP.spad" 898623 898651 899756 899761) (-609 "LSAGG.spad" 898292 898302 898591 898618) (-608 "LSAGG.spad" 897981 897993 898282 898287) (-607 "LPOLY.spad" 896943 896962 897837 897906) (-606 "LPEFRAC.spad" 896214 896224 896933 896938) (-605 "LOGIC.spad" 895816 895824 896204 896209) (-604 "LOGIC.spad" 895416 895426 895806 895811) (-603 "LODOOPS.spad" 894346 894358 895406 895411) (-602 "LODOF.spad" 893392 893409 894303 894308) (-601 "LODOCAT.spad" 892058 892068 893348 893387) (-600 "LODOCAT.spad" 890722 890734 892014 892019) (-599 "LODO2.spad" 890036 890048 890443 890482) (-598 "LODO1.spad" 889477 889487 889757 889796) (-597 "LODO.spad" 888902 888918 889198 889237) (-596 "LODEEF.spad" 887704 887722 888892 888897) (-595 "LO.spad" 887105 887119 887638 887665) (-594 "LNAGG.spad" 883292 883302 887095 887100) (-593 "LNAGG.spad" 879443 879455 883248 883253) (-592 "LMOPS.spad" 876211 876228 879433 879438) (-591 "LMODULE.spad" 875995 876005 876201 876206) (-590 "LMDICT.spad" 875376 875386 875624 875651) (-589 "LLINSET.spad" 875083 875093 875366 875371) (-588 "LITERAL.spad" 874989 875000 875073 875078) (-587 "LIST3.spad" 874300 874314 874979 874984) (-586 "LIST2MAP.spad" 871227 871239 874290 874295) (-585 "LIST2.spad" 869929 869941 871217 871222) (-584 "LIST.spad" 867811 867821 869154 869181) (-583 "LINSET.spad" 867590 867600 867801 867806) (-582 "LINFORM.spad" 867053 867065 867558 867585) (-581 "LINEXP.spad" 865796 865806 867043 867048) (-580 "LINELT.spad" 865167 865179 865679 865706) (-579 "LINDEP.spad" 864016 864028 865079 865084) (-578 "LINBASIS.spad" 863652 863667 864006 864011) (-577 "LIMITRF.spad" 861599 861609 863642 863647) (-576 "LIMITPS.spad" 860509 860522 861589 861594) (-575 "LIECAT.spad" 859993 860003 860435 860504) (-574 "LIECAT.spad" 859505 859517 859949 859954) (-573 "LIE.spad" 857509 857521 858783 858925) (-572 "LIB.spad" 855680 855688 856126 856141) (-571 "LGROBP.spad" 853033 853052 855670 855675) (-570 "LFCAT.spad" 852092 852100 853023 853028) (-569 "LF.spad" 851047 851063 852082 852087) (-568 "LEXTRIPK.spad" 846670 846685 851037 851042) (-567 "LEXP.spad" 844689 844716 846650 846665) (-566 "LETAST.spad" 844388 844396 844679 844684) (-565 "LEADCDET.spad" 842794 842811 844378 844383) (-564 "LAZM3PK.spad" 841538 841560 842784 842789) (-563 "LAUPOL.spad" 840205 840218 841105 841174) (-562 "LAPLACE.spad" 839788 839804 840195 840200) (-561 "LALG.spad" 839564 839574 839768 839783) (-560 "LALG.spad" 839348 839360 839554 839559) (-559 "LA.spad" 838788 838802 839270 839309) (-558 "KVTFROM.spad" 838531 838541 838778 838783) (-557 "KTVLOGIC.spad" 838075 838083 838521 838526) (-556 "KRCFROM.spad" 837821 837831 838065 838070) (-555 "KOVACIC.spad" 836552 836569 837811 837816) (-554 "KONVERT.spad" 836274 836284 836542 836547) (-553 "KOERCE.spad" 836011 836021 836264 836269) (-552 "KERNEL2.spad" 835714 835726 836001 836006) (-551 "KERNEL.spad" 834434 834444 835563 835568) (-550 "KDAGG.spad" 833543 833565 834414 834429) (-549 "KDAGG.spad" 832660 832684 833533 833538) (-548 "KAFILE.spad" 831550 831566 831785 831812) (-547 "JVMOP.spad" 831463 831471 831540 831545) (-546 "JVMMDACC.spad" 830517 830525 831453 831458) (-545 "JVMFDACC.spad" 829833 829841 830507 830512) (-544 "JVMCSTTG.spad" 828562 828570 829823 829828) (-543 "JVMCFACC.spad" 828008 828016 828552 828557) (-542 "JVMBCODE.spad" 827919 827927 827998 828003) (-541 "JORDAN.spad" 825736 825748 827197 827339) (-540 "JOINAST.spad" 825438 825446 825726 825731) (-539 "IXAGG.spad" 823571 823595 825428 825433) (-538 "IXAGG.spad" 821559 821585 823418 823423) (-537 "IVECTOR.spad" 820374 820389 820529 820556) (-536 "ITUPLE.spad" 819550 819560 820364 820369) (-535 "ITRIGMNP.spad" 818397 818416 819540 819545) (-534 "ITFUN3.spad" 817903 817917 818387 818392) (-533 "ITFUN2.spad" 817647 817659 817893 817898) (-532 "ITFORM.spad" 817002 817010 817637 817642) (-531 "ITAYLOR.spad" 814996 815011 816866 816963) (-530 "ISUPS.spad" 807445 807460 813982 814079) (-529 "ISUMP.spad" 806946 806962 807435 807440) (-528 "ISAST.spad" 806665 806673 806936 806941) (-527 "IRURPK.spad" 805382 805401 806655 806660) (-526 "IRSN.spad" 803386 803394 805372 805377) (-525 "IRRF2F.spad" 801879 801889 803342 803347) (-524 "IRREDFFX.spad" 801480 801491 801869 801874) (-523 "IROOT.spad" 799819 799829 801470 801475) (-522 "IRFORM.spad" 799143 799151 799809 799814) (-521 "IR2F.spad" 798357 798373 799133 799138) (-520 "IR2.spad" 797385 797401 798347 798352) (-519 "IR.spad" 795221 795235 797267 797294) (-518 "IPRNTPK.spad" 794981 794989 795211 795216) (-517 "IPF.spad" 794546 794558 794786 794879) (-516 "IPADIC.spad" 794315 794341 794472 794541) (-515 "IP4ADDR.spad" 793872 793880 794305 794310) (-514 "IOMODE.spad" 793394 793402 793862 793867) (-513 "IOBFILE.spad" 792779 792787 793384 793389) (-512 "IOBCON.spad" 792644 792652 792769 792774) (-511 "INVLAPLA.spad" 792293 792309 792634 792639) (-510 "INTTR.spad" 785687 785704 792283 792288) (-509 "INTTOOLS.spad" 783495 783511 785314 785319) (-508 "INTSLPE.spad" 782823 782831 783485 783490) (-507 "INTRVL.spad" 782389 782399 782737 782818) (-506 "INTRF.spad" 780821 780835 782379 782384) (-505 "INTRET.spad" 780253 780263 780811 780816) (-504 "INTRAT.spad" 778988 779005 780243 780248) (-503 "INTPM.spad" 777451 777467 778709 778714) (-502 "INTPAF.spad" 775327 775345 777380 777385) (-501 "INTHERTR.spad" 774601 774618 775317 775322) (-500 "INTHERAL.spad" 774271 774295 774591 774596) (-499 "INTHEORY.spad" 770710 770718 774261 774266) (-498 "INTG0.spad" 764474 764492 770639 770644) (-497 "INTFACT.spad" 763541 763551 764464 764469) (-496 "INTEF.spad" 761952 761968 763531 763536) (-495 "INTDOM.spad" 760575 760583 761878 761947) (-494 "INTDOM.spad" 759260 759270 760565 760570) (-493 "INTCAT.spad" 757527 757537 759174 759255) (-492 "INTBIT.spad" 757034 757042 757517 757522) (-491 "INTALG.spad" 756222 756249 757024 757029) (-490 "INTAF.spad" 755722 755738 756212 756217) (-489 "INTABL.spad" 754104 754135 754267 754294) (-488 "INT8.spad" 753984 753992 754094 754099) (-487 "INT64.spad" 753863 753871 753974 753979) (-486 "INT32.spad" 753742 753750 753853 753858) (-485 "INT16.spad" 753621 753629 753732 753737) (-484 "INT.spad" 753147 753155 753487 753616) (-483 "INS.spad" 750650 750658 753049 753142) (-482 "INS.spad" 748239 748249 750640 750645) (-481 "INPSIGN.spad" 747709 747722 748229 748234) (-480 "INPRODPF.spad" 746805 746824 747699 747704) (-479 "INPRODFF.spad" 745893 745917 746795 746800) (-478 "INNMFACT.spad" 744868 744885 745883 745888) (-477 "INMODGCD.spad" 744372 744402 744858 744863) (-476 "INFSP.spad" 742669 742691 744362 744367) (-475 "INFPROD0.spad" 741749 741768 742659 742664) (-474 "INFORM1.spad" 741374 741384 741739 741744) (-473 "INFORM.spad" 738585 738593 741364 741369) (-472 "INFINITY.spad" 738137 738145 738575 738580) (-471 "INETCLTS.spad" 738114 738122 738127 738132) (-470 "INEP.spad" 736660 736682 738104 738109) (-469 "INDE.spad" 736309 736326 736570 736575) (-468 "INCRMAPS.spad" 735746 735756 736299 736304) (-467 "INBFILE.spad" 734842 734850 735736 735741) (-466 "INBFF.spad" 730692 730703 734832 734837) (-465 "INBCON.spad" 728958 728966 730682 730687) (-464 "INBCON.spad" 727222 727232 728948 728953) (-463 "INAST.spad" 726883 726891 727212 727217) (-462 "IMPTAST.spad" 726591 726599 726873 726878) (-461 "IMATRIX.spad" 725601 725627 726113 726140) (-460 "IMATQF.spad" 724695 724739 725557 725562) (-459 "IMATLIN.spad" 723316 723340 724651 724656) (-458 "IIARRAY2.spad" 722785 722823 722988 723015) (-457 "IFF.spad" 722198 722214 722469 722562) (-456 "IFAST.spad" 721812 721820 722188 722193) (-455 "IFARRAY.spad" 719339 719354 721037 721064) (-454 "IFAMON.spad" 719201 719218 719295 719300) (-453 "IEVALAB.spad" 718614 718626 719191 719196) (-452 "IEVALAB.spad" 718025 718039 718604 718609) (-451 "indexedp.spad" 717581 717593 718015 718020) (-450 "IDPOAMS.spad" 717259 717271 717493 717498) (-449 "IDPOAM.spad" 716901 716913 717171 717176) (-448 "IDPO.spad" 716636 716648 716813 716818) (-447 "IDPC.spad" 715365 715377 716626 716631) (-446 "IDPAM.spad" 715032 715044 715277 715282) (-445 "IDPAG.spad" 714701 714713 714944 714949) (-444 "IDENT.spad" 714353 714361 714691 714696) (-443 "catdef.spad" 714124 714135 714236 714348) (-442 "IDECOMP.spad" 711363 711381 714114 714119) (-441 "IDEAL.spad" 706325 706364 711311 711316) (-440 "ICDEN.spad" 705538 705554 706315 706320) (-439 "ICARD.spad" 704931 704939 705528 705533) (-438 "IBPTOOLS.spad" 703538 703555 704921 704926) (-437 "IBITS.spad" 703051 703064 703184 703211) (-436 "IBATOOL.spad" 700036 700055 703041 703046) (-435 "IBACHIN.spad" 698543 698558 700026 700031) (-434 "IARRAY2.spad" 697604 697630 698215 698242) (-433 "IARRAY1.spad" 696683 696698 696829 696856) (-432 "IAN.spad" 695065 695073 696514 696607) (-431 "IALGFACT.spad" 694676 694709 695055 695060) (-430 "HYPCAT.spad" 694100 694108 694666 694671) (-429 "HYPCAT.spad" 693522 693532 694090 694095) (-428 "HOSTNAME.spad" 693338 693346 693512 693517) (-427 "HOMOTOP.spad" 693081 693091 693328 693333) (-426 "HOAGG.spad" 690363 690373 693071 693076) (-425 "HOAGG.spad" 687395 687407 690105 690110) (-424 "HEXADEC.spad" 685620 685628 685985 686078) (-423 "HEUGCD.spad" 684711 684722 685610 685615) (-422 "HELLFDIV.spad" 684317 684341 684701 684706) (-421 "HEAP.spad" 683774 683784 683989 684016) (-420 "HEADAST.spad" 683315 683323 683764 683769) (-419 "HDP.spad" 672948 672964 673325 673422) (-418 "HDMP.spad" 670495 670510 671111 671238) (-417 "HB.spad" 668770 668778 670485 670490) (-416 "HASHTBL.spad" 667104 667135 667315 667342) (-415 "HASAST.spad" 666820 666828 667094 667099) (-414 "HACKPI.spad" 666311 666319 666722 666815) (-413 "GTSET.spad" 665238 665254 665945 665972) (-412 "GSTBL.spad" 663621 663656 663795 663810) (-411 "GSERIES.spad" 660993 661020 661812 661961) (-410 "GROUP.spad" 660266 660274 660973 660988) (-409 "GROUP.spad" 659547 659557 660256 660261) (-408 "GROEBSOL.spad" 658041 658062 659537 659542) (-407 "GRMOD.spad" 656622 656634 658031 658036) (-406 "GRMOD.spad" 655201 655215 656612 656617) (-405 "GRIMAGE.spad" 648114 648122 655191 655196) (-404 "GRDEF.spad" 646493 646501 648104 648109) (-403 "GRAY.spad" 644964 644972 646483 646488) (-402 "GRALG.spad" 644059 644071 644954 644959) (-401 "GRALG.spad" 643152 643166 644049 644054) (-400 "GPOLSET.spad" 642610 642633 642822 642849) (-399 "GOSPER.spad" 641887 641905 642600 642605) (-398 "GMODPOL.spad" 641035 641062 641855 641882) (-397 "GHENSEL.spad" 640118 640132 641025 641030) (-396 "GENUPS.spad" 636411 636424 640108 640113) (-395 "GENUFACT.spad" 635988 635998 636401 636406) (-394 "GENPGCD.spad" 635590 635607 635978 635983) (-393 "GENMFACT.spad" 635042 635061 635580 635585) (-392 "GENEEZ.spad" 633001 633014 635032 635037) (-391 "GDMP.spad" 630390 630407 631164 631291) (-390 "GCNAALG.spad" 624313 624340 630184 630251) (-389 "GCDDOM.spad" 623505 623513 624239 624308) (-388 "GCDDOM.spad" 622759 622769 623495 623500) (-387 "GBINTERN.spad" 618779 618817 622749 622754) (-386 "GBF.spad" 614562 614600 618769 618774) (-385 "GBEUCLID.spad" 612444 612482 614552 614557) (-384 "GB.spad" 609970 610008 612400 612405) (-383 "GAUSSFAC.spad" 609283 609291 609960 609965) (-382 "GALUTIL.spad" 607609 607619 609239 609244) (-381 "GALPOLYU.spad" 606063 606076 607599 607604) (-380 "GALFACTU.spad" 604276 604295 606053 606058) (-379 "GALFACT.spad" 594489 594500 604266 604271) (-378 "FUNDESC.spad" 594167 594175 594479 594484) (-377 "FUNCTION.spad" 594016 594028 594157 594162) (-376 "FT.spad" 592316 592324 594006 594011) (-375 "FSUPFACT.spad" 591230 591249 592266 592271) (-374 "FST.spad" 589316 589324 591220 591225) (-373 "FSRED.spad" 588796 588812 589306 589311) (-372 "FSPRMELT.spad" 587662 587678 588753 588758) (-371 "FSPECF.spad" 585753 585769 587652 587657) (-370 "FSINT.spad" 585413 585429 585743 585748) (-369 "FSERIES.spad" 584604 584616 585233 585332) (-368 "FSCINT.spad" 583921 583937 584594 584599) (-367 "FSAGG2.spad" 582656 582672 583911 583916) (-366 "FSAGG.spad" 581773 581783 582612 582651) (-365 "FSAGG.spad" 580852 580864 581693 581698) (-364 "FS2UPS.spad" 575367 575401 580842 580847) (-363 "FS2EXPXP.spad" 574508 574531 575357 575362) (-362 "FS2.spad" 574163 574179 574498 574503) (-361 "FS.spad" 568435 568445 573942 574158) (-360 "FS.spad" 562509 562521 568018 568023) (-359 "FRUTIL.spad" 561463 561473 562499 562504) (-358 "FRNAALG.spad" 556740 556750 561405 561458) (-357 "FRNAALG.spad" 552029 552041 556696 556701) (-356 "FRNAAF2.spad" 551477 551495 552019 552024) (-355 "FRMOD.spad" 550885 550915 551406 551411) (-354 "FRIDEAL2.spad" 550489 550521 550875 550880) (-353 "FRIDEAL.spad" 549714 549735 550469 550484) (-352 "FRETRCT.spad" 549233 549243 549704 549709) (-351 "FRETRCT.spad" 548659 548671 549132 549137) (-350 "FRAMALG.spad" 547039 547052 548615 548654) (-349 "FRAMALG.spad" 545451 545466 547029 547034) (-348 "FRAC2.spad" 545056 545068 545441 545446) (-347 "FRAC.spad" 543043 543053 543430 543603) (-346 "FR2.spad" 542379 542391 543033 543038) (-345 "FR.spad" 536167 536177 541440 541509) (-344 "FPS.spad" 533006 533014 536057 536162) (-343 "FPS.spad" 529873 529883 532926 532931) (-342 "FPC.spad" 528919 528927 529775 529868) (-341 "FPC.spad" 528051 528061 528909 528914) (-340 "FPATMAB.spad" 527813 527823 528041 528046) (-339 "FPARFRAC.spad" 526655 526672 527803 527808) (-338 "FORDER.spad" 526346 526370 526645 526650) (-337 "FNLA.spad" 525770 525792 526314 526341) (-336 "FNCAT.spad" 524365 524373 525760 525765) (-335 "FNAME.spad" 524257 524265 524355 524360) (-334 "FMONOID.spad" 523938 523948 524213 524218) (-333 "FMONCAT.spad" 521107 521117 523928 523933) (-332 "FMCAT.spad" 518783 518801 521075 521102) (-331 "FM1.spad" 518148 518160 518717 518744) (-330 "FM.spad" 517763 517775 518002 518029) (-329 "FLOATRP.spad" 515506 515520 517753 517758) (-328 "FLOATCP.spad" 512945 512959 515496 515501) (-327 "FLOAT.spad" 510036 510044 512811 512940) (-326 "FLINEXP.spad" 509758 509768 510026 510031) (-325 "FLINEXP.spad" 509437 509449 509707 509712) (-324 "FLASORT.spad" 508763 508775 509427 509432) (-323 "FLALG.spad" 506433 506452 508689 508758) (-322 "FLAGG2.spad" 505150 505166 506423 506428) (-321 "FLAGG.spad" 502216 502226 505130 505145) (-320 "FLAGG.spad" 499183 499195 502099 502104) (-319 "FINRALG.spad" 497268 497281 499139 499178) (-318 "FINRALG.spad" 495279 495294 497152 497157) (-317 "FINITE.spad" 494431 494439 495269 495274) (-316 "FINITE.spad" 493581 493591 494421 494426) (-315 "FINAALG.spad" 482766 482776 493523 493576) (-314 "FINAALG.spad" 471963 471975 482722 482727) (-313 "FILECAT.spad" 470497 470514 471953 471958) (-312 "FILE.spad" 470080 470090 470487 470492) (-311 "FIELD.spad" 469486 469494 469982 470075) (-310 "FIELD.spad" 468978 468988 469476 469481) (-309 "FGROUP.spad" 467641 467651 468958 468973) (-308 "FGLMICPK.spad" 466436 466451 467631 467636) (-307 "FFX.spad" 465822 465837 466155 466248) (-306 "FFSLPE.spad" 465333 465354 465812 465817) (-305 "FFPOLY2.spad" 464393 464410 465323 465328) (-304 "FFPOLY.spad" 455735 455746 464383 464388) (-303 "FFP.spad" 455143 455163 455454 455547) (-302 "FFNBX.spad" 453666 453686 454862 454955) (-301 "FFNBP.spad" 452190 452207 453385 453478) (-300 "FFNB.spad" 450658 450679 451874 451967) (-299 "FFINTBAS.spad" 448172 448191 450648 450653) (-298 "FFIELDC.spad" 445757 445765 448074 448167) (-297 "FFIELDC.spad" 443428 443438 445747 445752) (-296 "FFHOM.spad" 442200 442217 443418 443423) (-295 "FFF.spad" 439643 439654 442190 442195) (-294 "FFCGX.spad" 438501 438521 439362 439455) (-293 "FFCGP.spad" 437401 437421 438220 438313) (-292 "FFCG.spad" 436196 436217 437085 437178) (-291 "FFCAT2.spad" 435943 435983 436186 436191) (-290 "FFCAT.spad" 429108 429130 435782 435938) (-289 "FFCAT.spad" 422352 422376 429028 429033) (-288 "FF.spad" 421803 421819 422036 422129) (-287 "FEVALAB.spad" 421511 421521 421793 421798) (-286 "FEVALAB.spad" 420995 421007 421279 421284) (-285 "FDIVCAT.spad" 419091 419115 420985 420990) (-284 "FDIVCAT.spad" 417185 417211 419081 419086) (-283 "FDIV2.spad" 416841 416881 417175 417180) (-282 "FDIV.spad" 416299 416323 416831 416836) (-281 "FCTRDATA.spad" 415307 415315 416289 416294) (-280 "FCOMP.spad" 414686 414696 415297 415302) (-279 "FAXF.spad" 407721 407735 414588 414681) (-278 "FAXF.spad" 400808 400824 407677 407682) (-277 "FARRAY.spad" 399000 399010 400033 400060) (-276 "FAMR.spad" 397144 397156 398898 398995) (-275 "FAMR.spad" 395272 395286 397028 397033) (-274 "FAMONOID.spad" 394956 394966 395226 395231) (-273 "FAMONC.spad" 393276 393288 394946 394951) (-272 "FAGROUP.spad" 392916 392926 393172 393199) (-271 "FACUTIL.spad" 391128 391145 392906 392911) (-270 "FACTFUNC.spad" 390330 390340 391118 391123) (-269 "EXPUPXS.spad" 387222 387245 388521 388670) (-268 "EXPRTUBE.spad" 384510 384518 387212 387217) (-267 "EXPRODE.spad" 381678 381694 384500 384505) (-266 "EXPR2UPS.spad" 377800 377813 381668 381673) (-265 "EXPR2.spad" 377505 377517 377790 377795) (-264 "EXPR.spad" 373150 373160 373864 374151) (-263 "EXPEXPAN.spad" 370095 370120 370727 370820) (-262 "EXITAST.spad" 369831 369839 370085 370090) (-261 "EXIT.spad" 369502 369510 369821 369826) (-260 "EVALCYC.spad" 368962 368976 369492 369497) (-259 "EVALAB.spad" 368542 368552 368952 368957) (-258 "EVALAB.spad" 368120 368132 368532 368537) (-257 "EUCDOM.spad" 365710 365718 368046 368115) (-256 "EUCDOM.spad" 363362 363372 365700 365705) (-255 "ES2.spad" 362875 362891 363352 363357) (-254 "ES1.spad" 362445 362461 362865 362870) (-253 "ES.spad" 355316 355324 362435 362440) (-252 "ES.spad" 348108 348118 355229 355234) (-251 "ERROR.spad" 345435 345443 348098 348103) (-250 "EQTBL.spad" 343771 343793 343980 344007) (-249 "EQ2.spad" 343489 343501 343761 343766) (-248 "EQ.spad" 338395 338405 341190 341296) (-247 "EP.spad" 334721 334731 338385 338390) (-246 "ENV.spad" 333399 333407 334711 334716) (-245 "ENTIRER.spad" 333067 333075 333343 333394) (-244 "EMR.spad" 332355 332396 332993 333062) (-243 "ELTAGG.spad" 330609 330628 332345 332350) (-242 "ELTAGG.spad" 328827 328848 330565 330570) (-241 "ELTAB.spad" 328302 328315 328817 328822) (-240 "ELFUTS.spad" 327737 327756 328292 328297) (-239 "ELEMFUN.spad" 327426 327434 327727 327732) (-238 "ELEMFUN.spad" 327113 327123 327416 327421) (-237 "ELAGG.spad" 325084 325094 327093 327108) (-236 "ELAGG.spad" 322992 323004 325003 325008) (-235 "ELABOR.spad" 322338 322346 322982 322987) (-234 "ELABEXPR.spad" 321270 321278 322328 322333) (-233 "EFUPXS.spad" 318046 318076 321226 321231) (-232 "EFULS.spad" 314882 314905 318002 318007) (-231 "EFSTRUC.spad" 312897 312913 314872 314877) (-230 "EF.spad" 307673 307689 312887 312892) (-229 "EAB.spad" 305973 305981 307663 307668) (-228 "DVARCAT.spad" 302979 302989 305963 305968) (-227 "DVARCAT.spad" 299983 299995 302969 302974) (-226 "DSMP.spad" 297716 297730 298021 298148) (-225 "DSEXT.spad" 297018 297028 297706 297711) (-224 "DSEXT.spad" 296240 296252 296930 296935) (-223 "DROPT1.spad" 295905 295915 296230 296235) (-222 "DROPT0.spad" 290770 290778 295895 295900) (-221 "DROPT.spad" 284729 284737 290760 290765) (-220 "DRAWPT.spad" 282902 282910 284719 284724) (-219 "DRAWHACK.spad" 282210 282220 282892 282897) (-218 "DRAWCX.spad" 279688 279696 282200 282205) (-217 "DRAWCURV.spad" 279235 279250 279678 279683) (-216 "DRAWCFUN.spad" 268767 268775 279225 279230) (-215 "DRAW.spad" 261643 261656 268757 268762) (-214 "DQAGG.spad" 259821 259831 261611 261638) (-213 "DPOLCAT.spad" 255178 255194 259689 259816) (-212 "DPOLCAT.spad" 250621 250639 255134 255139) (-211 "DPMO.spad" 243324 243340 243462 243668) (-210 "DPMM.spad" 236040 236058 236165 236371) (-209 "DOMTMPLT.spad" 235811 235819 236030 236035) (-208 "DOMCTOR.spad" 235566 235574 235801 235806) (-207 "DOMAIN.spad" 234677 234685 235556 235561) (-206 "DMP.spad" 232270 232285 232840 232967) (-205 "DMEXT.spad" 232137 232147 232238 232265) (-204 "DLP.spad" 231497 231507 232127 232132) (-203 "DLIST.spad" 230118 230128 230722 230749) (-202 "DLAGG.spad" 228535 228545 230108 230113) (-201 "DIVRING.spad" 228077 228085 228479 228530) (-200 "DIVRING.spad" 227663 227673 228067 228072) (-199 "DISPLAY.spad" 225853 225861 227653 227658) (-198 "DIRPROD2.spad" 224671 224689 225843 225848) (-197 "DIRPROD.spad" 214041 214057 214681 214778) (-196 "DIRPCAT.spad" 213236 213252 213939 214036) (-195 "DIRPCAT.spad" 212057 212075 212762 212767) (-194 "DIOSP.spad" 210882 210890 212047 212052) (-193 "DIOPS.spad" 209878 209888 210862 210877) (-192 "DIOPS.spad" 208848 208860 209834 209839) (-191 "catdef.spad" 208706 208714 208838 208843) (-190 "DIFRING.spad" 208544 208552 208686 208701) (-189 "DIFFSPC.spad" 208123 208131 208534 208539) (-188 "DIFFSPC.spad" 207700 207710 208113 208118) (-187 "DIFFMOD.spad" 207189 207199 207668 207695) (-186 "DIFFDOM.spad" 206354 206365 207179 207184) (-185 "DIFFDOM.spad" 205517 205530 206344 206349) (-184 "DIFEXT.spad" 205336 205346 205497 205512) (-183 "DIAGG.spad" 204966 204976 205316 205331) (-182 "DIAGG.spad" 204604 204616 204956 204961) (-181 "DHMATRIX.spad" 202981 202991 204126 204153) (-180 "DFSFUN.spad" 196621 196629 202971 202976) (-179 "DFLOAT.spad" 193228 193236 196511 196616) (-178 "DFINTTLS.spad" 191459 191475 193218 193223) (-177 "DERHAM.spad" 189373 189405 191439 191454) (-176 "DEQUEUE.spad" 188762 188772 189045 189072) (-175 "DEGRED.spad" 188379 188393 188752 188757) (-174 "DEFINTRF.spad" 185961 185971 188369 188374) (-173 "DEFINTEF.spad" 184499 184515 185951 185956) (-172 "DEFAST.spad" 183883 183891 184489 184494) (-171 "DECIMAL.spad" 182112 182120 182473 182566) (-170 "DDFACT.spad" 179933 179950 182102 182107) (-169 "DBLRESP.spad" 179533 179557 179923 179928) (-168 "DBASIS.spad" 179159 179174 179523 179528) (-167 "DBASE.spad" 177823 177833 179149 179154) (-166 "DATAARY.spad" 177309 177322 177813 177818) (-165 "CYCLOTOM.spad" 176815 176823 177299 177304) (-164 "CYCLES.spad" 173607 173615 176805 176810) (-163 "CVMP.spad" 173024 173034 173597 173602) (-162 "CTRIGMNP.spad" 171524 171540 173014 173019) (-161 "CTORKIND.spad" 171127 171135 171514 171519) (-160 "CTORCAT.spad" 170368 170376 171117 171122) (-159 "CTORCAT.spad" 169607 169617 170358 170363) (-158 "CTORCALL.spad" 169196 169206 169597 169602) (-157 "CTOR.spad" 168887 168895 169186 169191) (-156 "CSTTOOLS.spad" 168132 168145 168877 168882) (-155 "CRFP.spad" 161904 161917 168122 168127) (-154 "CRCEAST.spad" 161624 161632 161894 161899) (-153 "CRAPACK.spad" 160691 160701 161614 161619) (-152 "CPMATCH.spad" 160192 160207 160613 160618) (-151 "CPIMA.spad" 159897 159916 160182 160187) (-150 "COORDSYS.spad" 154906 154916 159887 159892) (-149 "CONTOUR.spad" 154333 154341 154896 154901) (-148 "CONTFRAC.spad" 150083 150093 154235 154328) (-147 "CONDUIT.spad" 149841 149849 150073 150078) (-146 "COMRING.spad" 149515 149523 149779 149836) (-145 "COMPPROP.spad" 149033 149041 149505 149510) (-144 "COMPLPAT.spad" 148800 148815 149023 149028) (-143 "COMPLEX2.spad" 148515 148527 148790 148795) (-142 "COMPLEX.spad" 144221 144231 144465 144723) (-141 "COMPILER.spad" 143770 143778 144211 144216) (-140 "COMPFACT.spad" 143372 143386 143760 143765) (-139 "COMPCAT.spad" 141447 141457 143109 143367) (-138 "COMPCAT.spad" 139263 139275 140927 140932) (-137 "COMMUPC.spad" 139011 139029 139253 139258) (-136 "COMMONOP.spad" 138544 138552 139001 139006) (-135 "COMMAAST.spad" 138307 138315 138534 138539) (-134 "COMM.spad" 138118 138126 138297 138302) (-133 "COMBOPC.spad" 137041 137049 138108 138113) (-132 "COMBINAT.spad" 135808 135818 137031 137036) (-131 "COMBF.spad" 133230 133246 135798 135803) (-130 "COLOR.spad" 132067 132075 133220 133225) (-129 "COLONAST.spad" 131733 131741 132057 132062) (-128 "CMPLXRT.spad" 131444 131461 131723 131728) (-127 "CLLCTAST.spad" 131106 131114 131434 131439) (-126 "CLIP.spad" 127214 127222 131096 131101) (-125 "CLIF.spad" 125869 125885 127170 127209) (-124 "CLAGG.spad" 122406 122416 125859 125864) (-123 "CLAGG.spad" 118827 118839 122282 122287) (-122 "CINTSLPE.spad" 118182 118195 118817 118822) (-121 "CHVAR.spad" 116320 116342 118172 118177) (-120 "CHARZ.spad" 116235 116243 116300 116315) (-119 "CHARPOL.spad" 115761 115771 116225 116230) (-118 "CHARNZ.spad" 115523 115531 115741 115756) (-117 "CHAR.spad" 112891 112899 115513 115518) (-116 "CFCAT.spad" 112219 112227 112881 112886) (-115 "CDEN.spad" 111439 111453 112209 112214) (-114 "CCLASS.spad" 109619 109627 110881 110920) (-113 "CATEGORY.spad" 108693 108701 109609 109614) (-112 "CATCTOR.spad" 108584 108592 108683 108688) (-111 "CATAST.spad" 108210 108218 108574 108579) (-110 "CASEAST.spad" 107924 107932 108200 108205) (-109 "CARTEN2.spad" 107314 107341 107914 107919) (-108 "CARTEN.spad" 103066 103090 107304 107309) (-107 "CARD.spad" 100361 100369 103040 103061) (-106 "CAPSLAST.spad" 100143 100151 100351 100356) (-105 "CACHSET.spad" 99767 99775 100133 100138) (-104 "CABMON.spad" 99322 99330 99757 99762) (-103 "BYTEORD.spad" 98997 99005 99312 99317) (-102 "BYTEBUF.spad" 96964 96972 98250 98277) (-101 "BYTE.spad" 96439 96447 96954 96959) (-100 "BTREE.spad" 95577 95587 96111 96138) (-99 "BTOURN.spad" 94648 94657 95249 95276) (-98 "BTCAT.spad" 94041 94050 94616 94643) (-97 "BTCAT.spad" 93454 93465 94031 94036) (-96 "BTAGG.spad" 92921 92928 93422 93449) (-95 "BTAGG.spad" 92408 92417 92911 92916) (-94 "BSTREE.spad" 91215 91224 92080 92107) (-93 "BRILL.spad" 89421 89431 91205 91210) (-92 "BRAGG.spad" 88378 88387 89411 89416) (-91 "BRAGG.spad" 87299 87310 88334 88339) (-90 "BPADICRT.spad" 85359 85370 85605 85698) (-89 "BPADIC.spad" 85032 85043 85285 85354) (-88 "BOUNDZRO.spad" 84689 84705 85022 85027) (-87 "BOP1.spad" 82148 82157 84679 84684) (-86 "BOP.spad" 77291 77298 82138 82143) (-85 "BOOLEAN.spad" 76840 76847 77281 77286) (-84 "BOOLE.spad" 76491 76498 76830 76835) (-83 "BOOLE.spad" 76140 76149 76481 76486) (-82 "BMODULE.spad" 75853 75864 76108 76135) (-81 "BITS.spad" 75285 75292 75499 75526) (-80 "catdef.spad" 75168 75178 75275 75280) (-79 "catdef.spad" 74919 74929 75158 75163) (-78 "BINDING.spad" 74341 74348 74909 74914) (-77 "BINARY.spad" 72576 72583 72931 73024) (-76 "BGAGG.spad" 71782 71791 72556 72571) (-75 "BGAGG.spad" 70996 71007 71772 71777) (-74 "BEZOUT.spad" 70137 70163 70946 70951) (-73 "BBTREE.spad" 67080 67089 69809 69836) (-72 "BASTYPE.spad" 66580 66587 67070 67075) (-71 "BASTYPE.spad" 66078 66087 66570 66575) (-70 "BALFACT.spad" 65538 65550 66068 66073) (-69 "AUTOMOR.spad" 64989 64998 65518 65533) (-68 "ATTREG.spad" 61712 61719 64741 64984) (-67 "ATTRAST.spad" 61429 61436 61702 61707) (-66 "ATRIG.spad" 60899 60906 61419 61424) (-65 "ATRIG.spad" 60367 60376 60889 60894) (-64 "ASTCAT.spad" 60271 60278 60357 60362) (-63 "ASTCAT.spad" 60173 60182 60261 60266) (-62 "ASTACK.spad" 59577 59586 59845 59872) (-61 "ASSOCEQ.spad" 58411 58422 59533 59538) (-60 "ARRAY2.spad" 57844 57853 58083 58110) (-59 "ARRAY12.spad" 56557 56568 57834 57839) (-58 "ARRAY1.spad" 55436 55445 55782 55809) (-57 "ARR2CAT.spad" 51218 51239 55404 55431) (-56 "ARR2CAT.spad" 47020 47043 51208 51213) (-55 "ARITY.spad" 46392 46399 47010 47015) (-54 "APPRULE.spad" 45676 45698 46382 46387) (-53 "APPLYORE.spad" 45295 45308 45666 45671) (-52 "ANY1.spad" 44366 44375 45285 45290) (-51 "ANY.spad" 43217 43224 44356 44361) (-50 "ANTISYM.spad" 41662 41678 43197 43212) (-49 "ANON.spad" 41371 41378 41652 41657) (-48 "AN.spad" 39839 39846 41202 41295) (-47 "AMR.spad" 38024 38035 39737 39834) (-46 "AMR.spad" 36072 36085 37787 37792) (-45 "ALIST.spad" 33310 33331 33660 33687) (-44 "ALGSC.spad" 32445 32471 33182 33235) (-43 "ALGPKG.spad" 28228 28239 32401 32406) (-42 "ALGMFACT.spad" 27421 27435 28218 28223) (-41 "ALGMANIP.spad" 24922 24937 27265 27270) (-40 "ALGFF.spad" 22740 22767 22957 23113) (-39 "ALGFACT.spad" 21859 21869 22730 22735) (-38 "ALGEBRA.spad" 21692 21701 21815 21854) (-37 "ALGEBRA.spad" 21557 21568 21682 21687) (-36 "ALAGG.spad" 21069 21090 21525 21552) (-35 "AHYP.spad" 20450 20457 21059 21064) (-34 "AGG.spad" 19159 19166 20440 20445) (-33 "AGG.spad" 17832 17841 19115 19120) (-32 "AF.spad" 16277 16292 17781 17786) (-31 "ADDAST.spad" 15963 15970 16267 16272) (-30 "ACPLOT.spad" 14840 14847 15953 15958) (-29 "ACFS.spad" 12697 12706 14742 14835) (-28 "ACFS.spad" 10640 10651 12687 12692) (-27 "ACF.spad" 7394 7401 10542 10635) (-26 "ACF.spad" 4234 4243 7384 7389) (-25 "ABELSG.spad" 3775 3782 4224 4229) (-24 "ABELSG.spad" 3314 3323 3765 3770) (-23 "ABELMON.spad" 2859 2866 3304 3309) (-22 "ABELMON.spad" 2402 2411 2849 2854) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase
index 6163ed50..e42ee62d 100644
--- a/src/share/algebra/category.daase
+++ b/src/share/algebra/category.daase
@@ -1,279 +1,279 @@
-(199259 . 3539125287)
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
+(199321 . 3576902408)
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
((((-347 |#2|) |#3|) . T))
-((((-347 (-483))) |has| (-347 |#2|) (-950 (-347 (-483)))) (((-483)) |has| (-347 |#2|) (-950 (-483))) (((-347 |#2|)) . T))
+((((-347 (-484))) |has| (-347 |#2|) (-951 (-347 (-484)))) (((-484)) |has| (-347 |#2|) (-951 (-484))) (((-347 |#2|)) . T))
((((-347 |#2|)) . T))
-((((-483)) |has| (-347 |#2|) (-580 (-483))) (((-347 |#2|)) . T))
+((((-484)) |has| (-347 |#2|) (-581 (-484))) (((-347 |#2|)) . T))
((((-347 |#2|)) . T))
((((-347 |#2|) |#3|) . T))
(|has| (-347 |#2|) (-120))
((((-347 |#2|) |#3|) . T))
(|has| (-347 |#2|) (-118))
-((((-347 |#2|)) . T) (((-347 (-483))) . T) (($) . T))
-((((-347 |#2|)) . T) (((-347 (-483))) . T) (($) . T))
-((((-347 |#2|)) . T) (((-347 (-483))) . T) (($) . T))
+((((-347 |#2|)) . T) (((-347 (-484))) . T) (($) . T))
+((((-347 |#2|)) . T) (((-347 (-484))) . T) (($) . T))
+((((-347 |#2|)) . T) (((-347 (-484))) . T) (($) . T))
(|has| (-347 |#2|) (-190))
((($) OR (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-189))))
(OR (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-189)))
((((-347 |#2|)) . T))
-((($ (-1088)) OR (|has| (-347 |#2|) (-809 (-1088))) (|has| (-347 |#2|) (-811 (-1088)))))
-((((-1088)) OR (|has| (-347 |#2|) (-809 (-1088))) (|has| (-347 |#2|) (-811 (-1088)))))
-((((-1088)) |has| (-347 |#2|) (-809 (-1088))))
+((($ (-1089)) OR (|has| (-347 |#2|) (-810 (-1089))) (|has| (-347 |#2|) (-812 (-1089)))))
+((((-1089)) OR (|has| (-347 |#2|) (-810 (-1089))) (|has| (-347 |#2|) (-812 (-1089)))))
+((((-1089)) |has| (-347 |#2|) (-810 (-1089))))
((((-347 |#2|)) . T))
(((|#3|) . T))
-((((-347 |#2|) (-347 |#2|)) . T) (((-347 (-483)) (-347 (-483))) . T) (($ $) . T))
-((((-347 |#2|)) . T) (((-347 (-483))) . T) (($) . T))
-((((-347 |#2|)) . T) (((-347 (-483))) . T) (($) . T))
-((((-772)) . T))
-((((-347 |#2|)) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T))
-((((-483)) |has| (-347 |#2|) (-580 (-483))) (((-347 |#2|)) . T) (((-347 (-483))) . T) (($) . T))
-((((-347 |#2|)) . T) (((-347 (-483))) . T) (($) . T) (((-483)) . T))
+((((-347 |#2|) (-347 |#2|)) . T) (((-347 (-484)) (-347 (-484))) . T) (($ $) . T))
+((((-347 |#2|)) . T) (((-347 (-484))) . T) (($) . T))
+((((-347 |#2|)) . T) (((-347 (-484))) . T) (($) . T))
+((((-773)) . T))
+((((-347 |#2|)) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T))
+((((-484)) |has| (-347 |#2|) (-581 (-484))) (((-347 |#2|)) . T) (((-347 (-484))) . T) (($) . T))
+((((-347 |#2|)) . T) (((-347 (-484))) . T) (($) . T) (((-484)) . T))
(((|#1| |#2| |#3|) . T))
-((((-483) |#1|) . T))
+((((-484) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1054 |#2| |#1|)) . T) ((|#1|) . T))
-((((-772)) . T))
-((((-1054 |#2| |#1|)) . T) ((|#1|) . T) (((-483)) . T))
+((((-1055 |#2| |#1|)) . T) ((|#1|) . T))
+((((-773)) . T))
+((((-1055 |#2| |#1|)) . T) ((|#1|) . T) (((-484)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
-((((-772)) . T))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
+((((-773)) . T))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
(((|#1| |#2|) . T))
-((((-483) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T))
-((((-483) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) (((-1144 (-483)) $) . T) ((|#1| |#2|) . T))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))))
-((((-483) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T))
+((((-484) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T))
+((((-484) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T) (((-1145 (-484)) $) . T) ((|#1| |#2|) . T))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))))
+((((-484) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T))
(((|#1| |#2|) . T))
((($) . T))
((((-142 (-327))) . T) (((-179)) . T) (((-327)) . T))
-((((-347 (-483))) . T) (((-483)) . T))
-((($) . T) (((-347 (-483))) . T))
-((($) . T) (((-483)) . T) (((-347 (-483))) . T))
-((((-483)) . T) (($) . T) (((-347 (-483))) . T))
-((($) . T) (((-347 (-483))) . T))
-((($) . T) (((-347 (-483))) . T))
-((((-347 (-483))) . T) (($) . T))
-((((-347 (-483))) . T) (($) . T))
-((((-347 (-483)) (-347 (-483))) . T) (($ $) . T))
-((($) . T))
-((($ $) . T) (((-550 $) $) . T))
-((((-347 (-483))) . T) (((-483)) . T) (((-550 $)) . T))
-((((-1037 (-483) (-550 $))) . T) (($) . T) (((-483)) . T) (((-347 (-483))) . T) (((-550 $)) . T))
-((((-772)) . T))
-((((-772)) . T))
-(((|#1|) . T))
-((((-772)) . T))
-(((|#1|) . T) (((-483)) . T) (($) . T))
+((((-347 (-484))) . T) (((-484)) . T))
+((($) . T) (((-347 (-484))) . T))
+((($) . T) (((-484)) . T) (((-347 (-484))) . T))
+((((-484)) . T) (($) . T) (((-347 (-484))) . T))
+((($) . T) (((-347 (-484))) . T))
+((($) . T) (((-347 (-484))) . T))
+((((-347 (-484))) . T) (($) . T))
+((((-347 (-484))) . T) (($) . T))
+((((-347 (-484)) (-347 (-484))) . T) (($ $) . T))
+((($) . T))
+((($ $) . T) (((-551 $) $) . T))
+((((-347 (-484))) . T) (((-484)) . T) (((-551 $)) . T))
+((((-1038 (-484) (-551 $))) . T) (($) . T) (((-484)) . T) (((-347 (-484))) . T) (((-551 $)) . T))
+((((-773)) . T))
+((((-773)) . T))
+(((|#1|) . T))
+((((-773)) . T))
+(((|#1|) . T) (((-484)) . T) (($) . T))
(((|#1|) . T) (($) . T))
-(((|#1|) . T) (((-483)) . T))
+(((|#1|) . T) (((-484)) . T))
(((|#1|) . T))
-((((-772)) . T))
-((((-694)) . T))
-((((-694)) . T))
-((((-772)) . T))
+((((-773)) . T))
+((((-695)) . T))
+((((-695)) . T))
+((((-773)) . T))
(((|#1|) . T))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
+(|has| |#1| (-757))
+(|has| |#1| (-757))
(((|#1|) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1012)))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1012))))
-(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(OR (|has| |#1| (-756)) (|has| |#1| (-1012)))
+(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1013)))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-757)) (|has| |#1| (-1013)))
(((|#1|) . T))
-((((-472)) |has| |#1| (-553 (-472))))
-((((-483) |#1|) . T))
-((((-1144 (-483)) $) . T) (((-483) |#1|) . T))
-((((-483) |#1|) . T))
+((((-473)) |has| |#1| (-554 (-473))))
+((((-484) |#1|) . T))
+((((-1145 (-484)) $) . T) (((-484) |#1|) . T))
+((((-484) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1012))
-(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1012)))
+(|has| |#1| (-1013))
+(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
(((|#1| (-58 |#1|) (-58 |#1|)) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1012)))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012))))
-(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(|has| |#1| (-1012))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(|has| |#1| (-1013))
(((|#1|) . T))
(((|#1|) . T))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
(((|#1| |#1|) . T))
-((((-772)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#1| (-1012))
-(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1012)))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-917 2)) . T) (((-347 (-483))) . T) (((-772)) . T))
-((((-483)) . T))
-((((-483)) . T))
-((($) . T))
-((((-483)) . T) (($) . T) (((-347 (-483))) . T))
-((($) . T) (((-483)) . T) (((-347 (-483))) . T))
-((($) . T) (((-483)) . T) (((-347 (-483))) . T))
-((((-483)) . T) (($) . T) (((-347 (-483))) . T))
-((((-483)) . T) (($) . T) (((-347 (-483))) . T))
-((((-483)) . T) (((-347 (-483))) . T) (($) . T))
-((((-483)) . T) (((-347 (-483))) . T) (($) . T))
-((((-483) (-483)) . T) (((-347 (-483)) (-347 (-483))) . T) (($ $) . T))
-((((-483)) . T))
-((((-483)) . T))
-((((-483)) . T))
-((((-483)) . T))
-((((-483)) . T))
-((((-483)) . T))
-((((-472)) . T) (((-800 (-483))) . T) (((-327)) . T) (((-179)) . T))
-((((-347 (-483))) . T) (((-483)) . T))
-((((-483)) . T) (($) . T) (((-347 (-483))) . T))
-((((-483)) . T))
-((((-772)) . T))
-((((-772)) . T))
+((((-773)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-1013))
+(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-918 2)) . T) (((-347 (-484))) . T) (((-773)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((($) . T))
+((((-484)) . T) (($) . T) (((-347 (-484))) . T))
+((($) . T) (((-484)) . T) (((-347 (-484))) . T))
+((($) . T) (((-484)) . T) (((-347 (-484))) . T))
+((((-484)) . T) (($) . T) (((-347 (-484))) . T))
+((((-484)) . T) (($) . T) (((-347 (-484))) . T))
+((((-484)) . T) (((-347 (-484))) . T) (($) . T))
+((((-484)) . T) (((-347 (-484))) . T) (($) . T))
+((((-484) (-484)) . T) (((-347 (-484)) (-347 (-484))) . T) (($ $) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-473)) . T) (((-801 (-484))) . T) (((-327)) . T) (((-179)) . T))
+((((-347 (-484))) . T) (((-484)) . T))
+((((-484)) . T) (($) . T) (((-347 (-484))) . T))
+((((-484)) . T))
+((((-773)) . T))
+((((-773)) . T))
(((|#1| |#1| |#1|) . T))
(((|#1|) . T))
((((-85)) . T))
((((-85)) . T))
-((((-483) (-85)) . T))
-((((-483) (-85)) . T))
-((((-483) (-85)) . T) (((-1144 (-483)) $) . T))
-((((-472)) . T))
+((((-484) (-85)) . T))
+((((-484) (-85)) . T))
+((((-484) (-85)) . T) (((-1145 (-484)) $) . T))
+((((-473)) . T))
((((-85)) . T))
-((((-772)) . T))
+((((-773)) . T))
((((-85)) . T))
((((-85)) . T))
-((((-472)) . T))
-((((-772)) . T))
-((((-1088)) . T))
-((((-772)) . T))
+((((-473)) . T))
+((((-773)) . T))
+((((-1089)) . T))
+((((-773)) . T))
((($) . T))
-((((-772)) . T))
-((($) . T) (((-483)) . T))
+((((-773)) . T))
+((($) . T) (((-484)) . T))
((($) . T))
((($ $) . T))
((($) . T))
((($) . T))
((($) . T))
((($) . T))
-((((-483)) . T) (($) . T))
+((((-484)) . T) (($) . T))
(((|#1|) . T))
-((((-772)) . T))
+((((-773)) . T))
((((-89 |#1|)) . T))
((((-89 |#1|)) . T))
-((((-89 |#1|)) . T) (($) . T) (((-347 (-483))) . T))
-((($) . T) (((-483)) . T) (((-89 |#1|)) . T) (((-347 (-483))) . T))
-((((-89 |#1|)) . T) (($) . T) (((-347 (-483))) . T))
-((((-89 |#1|)) . T) (($) . T) (((-347 (-483))) . T))
-((((-89 |#1|)) . T) (((-347 (-483))) . T) (($) . T))
-((((-89 |#1|)) . T) (((-347 (-483))) . T) (($) . T))
-((((-89 |#1|) (-89 |#1|)) . T) (((-347 (-483)) (-347 (-483))) . T) (($ $) . T))
+((((-89 |#1|)) . T) (($) . T) (((-347 (-484))) . T))
+((($) . T) (((-484)) . T) (((-89 |#1|)) . T) (((-347 (-484))) . T))
+((((-89 |#1|)) . T) (($) . T) (((-347 (-484))) . T))
+((((-89 |#1|)) . T) (($) . T) (((-347 (-484))) . T))
+((((-89 |#1|)) . T) (((-347 (-484))) . T) (($) . T))
+((((-89 |#1|)) . T) (((-347 (-484))) . T) (($) . T))
+((((-89 |#1|) (-89 |#1|)) . T) (((-347 (-484)) (-347 (-484))) . T) (($ $) . T))
((((-89 |#1|)) . T))
-((((-1088) (-89 |#1|)) |has| (-89 |#1|) (-452 (-1088) (-89 |#1|))) (((-89 |#1|) (-89 |#1|)) |has| (-89 |#1|) (-259 (-89 |#1|))))
+((((-1089) (-89 |#1|)) |has| (-89 |#1|) (-453 (-1089) (-89 |#1|))) (((-89 |#1|) (-89 |#1|)) |has| (-89 |#1|) (-259 (-89 |#1|))))
((((-89 |#1|)) |has| (-89 |#1|) (-259 (-89 |#1|))))
((((-89 |#1|) $) |has| (-89 |#1|) (-241 (-89 |#1|) (-89 |#1|))))
((((-89 |#1|)) . T))
-((($) . T) (((-89 |#1|)) . T) (((-347 (-483))) . T))
+((($) . T) (((-89 |#1|)) . T) (((-347 (-484))) . T))
((((-89 |#1|)) . T))
((((-89 |#1|)) . T))
((((-89 |#1|)) . T))
-((((-483)) . T) (((-89 |#1|)) . T) (($) . T) (((-347 (-483))) . T))
+((((-484)) . T) (((-89 |#1|)) . T) (($) . T) (((-347 (-484))) . T))
((((-89 |#1|)) . T))
((((-89 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1012))
-(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1012)))
+(|has| |#1| (-1013))
+(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1012))
-(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1012)))
+(|has| |#1| (-1013))
+(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1012))
-(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1012)))
+(|has| |#1| (-1013))
+(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
(((|#1|) . T))
(((|#1|) . T))
-((((-772)) . T))
+((((-773)) . T))
((((-101)) . T))
((((-101)) . T))
-((((-1071)) . T) (((-869 (-101))) . T) (((-772)) . T))
+((((-1072)) . T) (((-870 (-101))) . T) (((-773)) . T))
((((-101)) . T))
-((((-483) (-101)) . T))
-((((-1144 (-483)) $) . T) (((-483) (-101)) . T))
-((((-483) (-101)) . T))
+((((-484) (-101)) . T))
+((((-1145 (-484)) $) . T) (((-484) (-101)) . T))
+((((-484) (-101)) . T))
((((-101)) . T))
((((-101)) . T))
-((((-772)) . T))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
-((((-694)) . T))
-((((-694)) . T))
-((((-772)) . T))
-((((-483) |#3|) . T))
-((((-483) (-694)) . T) ((|#3| (-694)) . T))
-((((-772)) . T))
+((((-773)) . T))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
+((((-695)) . T))
+((((-695)) . T))
+((((-773)) . T))
+((((-484) |#3|) . T))
+((((-484) (-695)) . T) ((|#3| (-695)) . T))
+((((-773)) . T))
(((|#3|) . T))
-((((-583 $)) . T) (((-583 |#3|)) . T) (((-1054 |#2| |#3|)) . T) (((-197 |#2| |#3|)) . T) ((|#3|) . T))
-(((|#3| (-694)) . T))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
+((((-584 $)) . T) (((-584 |#3|)) . T) (((-1055 |#2| |#3|)) . T) (((-197 |#2| |#3|)) . T) ((|#3|) . T))
+(((|#3| (-695)) . T))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
((((-444)) . T))
-((((-157)) . T) (((-772)) . T))
-((((-772)) . T))
+((((-157)) . T) (((-773)) . T))
+((((-773)) . T))
((((-117)) . T))
((((-117)) . T))
((((-117)) . T))
@@ -281,9 +281,9 @@
((((-117)) . T))
((((-117)) . T))
((((-117)) . T))
-((((-583 (-117))) . T) (((-1071)) . T))
-((((-772)) . T))
-((((-772)) . T))
+((((-584 (-117))) . T) (((-1072)) . T))
+((((-773)) . T))
+((((-773)) . T))
(((|#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
@@ -291,655 +291,655 @@
(((|#2|) . T))
(((|#2| |#2|) . T))
(((|#2|) . T))
-(((|#2|) . T) (((-483)) . T))
+(((|#2|) . T) (((-484)) . T))
(((|#2|) . T) (($) . T))
-((((-772)) . T))
-(((|#2|) . T) (($) . T) (((-483)) . T))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
+((((-773)) . T))
+(((|#2|) . T) (($) . T) (((-484)) . T))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
(OR (|has| |#1| (-118)) (|has| |#1| (-298)))
-((((-772)) . T))
+((((-773)) . T))
(|has| |#1| (-120))
(((|#1|) . T))
-((((-1088)) |has| |#1| (-809 (-1088))))
-((((-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088)))))
-((($ (-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088)))))
+((((-1089)) |has| |#1| (-810 (-1089))))
+((((-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089)))))
+((($ (-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089)))))
(((|#1|) . T))
(OR (|has| |#1| (-190)) (|has| |#1| (-189)) (|has| |#1| (-298)))
((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)) (|has| |#1| (-298))))
(OR (|has| |#1| (-190)) (|has| |#1| (-298)))
(OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)))
(OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)))
-(OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-494)))
-(OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-494)))
+(OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-495)))
+(OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-495)))
(OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)))
(OR (|has| |#1| (-311)) (|has| |#1| (-298)))
-(OR (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) (|has| |#1| (-311)) (|has| |#1| (-298)))
+(OR (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-311)) (|has| |#1| (-298)))
(OR (|has| |#1| (-311)) (|has| |#1| (-298)))
(((|#1|) . T))
-((((-1088) |#1|) |has| |#1| (-452 (-1088) |#1|)) ((|#1| |#1|) |has| |#1| (-259 |#1|)))
+((((-1089) |#1|) |has| |#1| (-453 (-1089) |#1|)) ((|#1| |#1|) |has| |#1| (-259 |#1|)))
(((|#1|) |has| |#1| (-259 |#1|)))
(((|#1| $) |has| |#1| (-241 |#1| |#1|)))
(((|#1|) . T))
-((($) . T) (((-483)) . T) (((-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
-((($) . T) (((-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T) (((-483)) |has| |#1| (-580 (-483))))
-(((|#1|) . T) (((-483)) |has| |#1| (-580 (-483))))
-(((|#1|) . T))
-((((-483)) |has| |#1| (-796 (-483))) (((-327)) |has| |#1| (-796 (-327))))
-(((|#1|) . T))
-((((-483)) . T) (($) OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-950 (-347 (-483))))) ((|#1|) . T))
-(((|#1|) . T) (((-483)) |has| |#1| (-950 (-483))) (((-347 (-483))) |has| |#1| (-950 (-347 (-483)))))
-(((|#1| (-1083 |#1|)) . T))
-(((|#1| (-1083 |#1|)) . T))
-((($) OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
-((($) OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
-((($) . T) (((-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
-((($) . T) (((-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
-((($ $) . T) (((-347 (-483)) (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1| |#1|) . T))
-((($) OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
-(((|#1| (-1083 |#1|)) . T))
+((($) . T) (((-484)) . T) (((-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
+((($) . T) (((-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T) (((-484)) |has| |#1| (-581 (-484))))
+(((|#1|) . T) (((-484)) |has| |#1| (-581 (-484))))
+(((|#1|) . T))
+((((-484)) |has| |#1| (-797 (-484))) (((-327)) |has| |#1| (-797 (-327))))
+(((|#1|) . T))
+((((-484)) . T) (($) OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-951 (-347 (-484))))) ((|#1|) . T))
+(((|#1|) . T) (((-484)) |has| |#1| (-951 (-484))) (((-347 (-484))) |has| |#1| (-951 (-347 (-484)))))
+(((|#1| (-1084 |#1|)) . T))
+(((|#1| (-1084 |#1|)) . T))
+((($) OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
+((($) OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
+((($) . T) (((-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
+((($) . T) (((-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
+((($ $) . T) (((-347 (-484)) (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1| |#1|) . T))
+((($) OR (|has| |#1| (-257)) (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
+(((|#1| (-1084 |#1|)) . T))
(|has| |#1| (-298))
(|has| |#1| (-298))
(|has| |#1| (-298))
(OR (|has| |#1| (-317)) (|has| |#1| (-298)))
(((|#1|) . T))
-((((-142 (-179))) |has| |#1| (-933)) (((-142 (-327))) |has| |#1| (-933)) (((-472)) |has| |#1| (-553 (-472))) (((-1083 |#1|)) . T) (((-800 (-483))) |has| |#1| (-553 (-800 (-483)))) (((-800 (-327))) |has| |#1| (-553 (-800 (-327)))))
-(-12 (|has| |#1| (-257)) (|has| |#1| (-821)))
-(-12 (|has| |#1| (-915)) (|has| |#1| (-1113)))
-(|has| |#1| (-1113))
-(|has| |#1| (-1113))
-(|has| |#1| (-1113))
-(|has| |#1| (-1113))
-(|has| |#1| (-1113))
-(|has| |#1| (-1113))
-(((|#1|) . T))
-((((-772)) . T))
-((((-347 (-483))) . T) (($) . T) (((-347 |#1|)) . T) ((|#1|) . T))
-((((-347 (-483))) . T) (($) . T) (((-347 |#1|)) . T) ((|#1|) . T))
-((((-772)) . T))
-((($) . T) (((-347 (-483))) . T) (((-347 |#1|)) . T) ((|#1|) . T))
-((($) . T) (((-347 (-483))) . T) (((-347 |#1|)) . T) ((|#1|) . T))
-((($ $) . T) (((-347 (-483)) (-347 (-483))) . T) (((-347 |#1|) (-347 |#1|)) . T) ((|#1| |#1|) . T))
-((((-347 (-483))) . T) (((-347 |#1|)) . T) ((|#1|) . T) (((-483)) . T) (($) . T))
-((((-347 (-483))) . T) (((-347 |#1|)) . T) ((|#1|) . T) (($) . T))
-((((-347 (-483))) . T) (($) . T) (((-347 |#1|)) . T) ((|#1|) . T) (((-483)) . T))
-((((-347 (-483))) . T) (($) . T) (((-347 |#1|)) . T) ((|#1|) . T))
-((((-772)) . T))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
+((((-142 (-179))) |has| |#1| (-934)) (((-142 (-327))) |has| |#1| (-934)) (((-473)) |has| |#1| (-554 (-473))) (((-1084 |#1|)) . T) (((-801 (-484))) |has| |#1| (-554 (-801 (-484)))) (((-801 (-327))) |has| |#1| (-554 (-801 (-327)))))
+(-12 (|has| |#1| (-257)) (|has| |#1| (-822)))
+(-12 (|has| |#1| (-916)) (|has| |#1| (-1114)))
+(|has| |#1| (-1114))
+(|has| |#1| (-1114))
+(|has| |#1| (-1114))
+(|has| |#1| (-1114))
+(|has| |#1| (-1114))
+(|has| |#1| (-1114))
+(((|#1|) . T))
+((((-773)) . T))
+((((-347 (-484))) . T) (($) . T) (((-347 |#1|)) . T) ((|#1|) . T))
+((((-347 (-484))) . T) (($) . T) (((-347 |#1|)) . T) ((|#1|) . T))
+((((-773)) . T))
+((($) . T) (((-347 (-484))) . T) (((-347 |#1|)) . T) ((|#1|) . T))
+((($) . T) (((-347 (-484))) . T) (((-347 |#1|)) . T) ((|#1|) . T))
+((($ $) . T) (((-347 (-484)) (-347 (-484))) . T) (((-347 |#1|) (-347 |#1|)) . T) ((|#1| |#1|) . T))
+((((-347 (-484))) . T) (((-347 |#1|)) . T) ((|#1|) . T) (((-484)) . T) (($) . T))
+((((-347 (-484))) . T) (((-347 |#1|)) . T) ((|#1|) . T) (($) . T))
+((((-347 (-484))) . T) (($) . T) (((-347 |#1|)) . T) ((|#1|) . T) (((-484)) . T))
+((((-347 (-484))) . T) (($) . T) (((-347 |#1|)) . T) ((|#1|) . T))
+((((-773)) . T))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
((((-444)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-583 |#1|)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-917 10)) . T) (((-347 (-483))) . T) (((-772)) . T))
-((((-483)) . T))
-((((-483)) . T))
-((($) . T))
-((((-483)) . T) (($) . T) (((-347 (-483))) . T))
-((($) . T) (((-483)) . T) (((-347 (-483))) . T))
-((($) . T) (((-483)) . T) (((-347 (-483))) . T))
-((((-483)) . T) (($) . T) (((-347 (-483))) . T))
-((((-483)) . T) (($) . T) (((-347 (-483))) . T))
-((((-483)) . T) (((-347 (-483))) . T) (($) . T))
-((((-483)) . T) (((-347 (-483))) . T) (($) . T))
-((((-483) (-483)) . T) (((-347 (-483)) (-347 (-483))) . T) (($ $) . T))
-((((-483)) . T))
-((((-483)) . T))
-((((-483)) . T))
-((((-483)) . T))
-((((-483)) . T))
-((((-483)) . T))
-((((-472)) . T) (((-800 (-483))) . T) (((-327)) . T) (((-179)) . T))
-((((-347 (-483))) . T) (((-483)) . T))
-((((-483)) . T) (($) . T) (((-347 (-483))) . T))
-((((-483)) . T))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#1| (-1012))
-(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1012)))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-584 |#1|)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-918 10)) . T) (((-347 (-484))) . T) (((-773)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((($) . T))
+((((-484)) . T) (($) . T) (((-347 (-484))) . T))
+((($) . T) (((-484)) . T) (((-347 (-484))) . T))
+((($) . T) (((-484)) . T) (((-347 (-484))) . T))
+((((-484)) . T) (($) . T) (((-347 (-484))) . T))
+((((-484)) . T) (($) . T) (((-347 (-484))) . T))
+((((-484)) . T) (((-347 (-484))) . T) (($) . T))
+((((-484)) . T) (((-347 (-484))) . T) (($) . T))
+((((-484) (-484)) . T) (((-347 (-484)) (-347 (-484))) . T) (($ $) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-473)) . T) (((-801 (-484))) . T) (((-327)) . T) (((-179)) . T))
+((((-347 (-484))) . T) (((-484)) . T))
+((((-484)) . T) (($) . T) (((-347 (-484))) . T))
+((((-484)) . T))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-1013))
+(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-264 |#1|)) . T))
-((((-772)) . T))
-((((-264 |#1|)) . T) (((-483)) . T) (($) . T))
+((((-773)) . T))
+((((-264 |#1|)) . T) (((-484)) . T) (($) . T))
((((-264 |#1|)) . T) (($) . T))
-((((-264 |#1|)) . T) (((-483)) . T))
+((((-264 |#1|)) . T) (((-484)) . T))
((((-264 |#1|)) . T))
((($) . T))
-((((-483)) . T) (((-347 (-483))) . T))
+((((-484)) . T) (((-347 (-484))) . T))
((((-327)) . T))
-((($) . T) (((-347 (-483))) . T))
-((($) . T) (((-347 (-483))) . T))
-((($ $) . T) (((-347 (-483)) (-347 (-483))) . T))
-((((-347 (-483))) . T) (($) . T))
-((((-347 (-483))) . T) (($) . T))
-((((-347 (-483))) . T) (($) . T))
-((((-472)) . T) (((-179)) . T) (((-327)) . T) (((-800 (-327))) . T))
-((((-772)) . T))
-((((-347 (-483))) . T) (((-483)) . T) (($) . T))
-((((-347 (-483))) . T) (($) . T))
-((((-347 (-483))) . T) (($) . T) (((-483)) . T))
-(((|#1| (-1177 |#1|) (-1177 |#1|)) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1012)))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012))))
-(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(|has| |#1| (-1012))
-(((|#1|) . T))
-(((|#1| (-1177 |#1|) (-1177 |#1|)) . T))
-(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-961)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-717)) (|has| |#2| (-961)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1012)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1012)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-717)) (|has| |#2| (-961)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-717)) (|has| |#2| (-961)))
-(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-961))))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-663)) (|has| |#2| (-961))))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-961))))
-((((-772)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-552 (-772))) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1012))) (((-1177 |#2|)) . T))
-(((|#2|) |has| |#2| (-961)))
-((((-1088)) -12 (|has| |#2| (-809 (-1088))) (|has| |#2| (-961))))
-((((-1088)) OR (-12 (|has| |#2| (-809 (-1088))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961)))))
-((($ (-1088)) OR (-12 (|has| |#2| (-809 (-1088))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961)))))
-(((|#2|) |has| |#2| (-961)))
-(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961))))
-((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961)))))
-(|has| |#2| (-961))
-(|has| |#2| (-961))
-(|has| |#2| (-961))
-(|has| |#2| (-961))
-(|has| |#2| (-961))
-((((-483)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-961))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-663)) (|has| |#2| (-961))) (($) |has| |#2| (-961)))
-(-12 (|has| |#2| (-190)) (|has| |#2| (-961)))
+((($) . T) (((-347 (-484))) . T))
+((($) . T) (((-347 (-484))) . T))
+((($ $) . T) (((-347 (-484)) (-347 (-484))) . T))
+((((-347 (-484))) . T) (($) . T))
+((((-347 (-484))) . T) (($) . T))
+((((-347 (-484))) . T) (($) . T))
+((((-473)) . T) (((-179)) . T) (((-327)) . T) (((-801 (-327))) . T))
+((((-773)) . T))
+((((-347 (-484))) . T) (((-484)) . T) (($) . T))
+((((-347 (-484))) . T) (($) . T))
+((((-347 (-484))) . T) (($) . T) (((-484)) . T))
+(((|#1| (-1178 |#1|) (-1178 |#1|)) . T))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(|has| |#1| (-1013))
+(((|#1|) . T))
+(((|#1| (-1178 |#1|) (-1178 |#1|)) . T))
+(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-962)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-718)) (|has| |#2| (-962)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1013)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1013)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-718)) (|has| |#2| (-962)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-718)) (|has| |#2| (-962)))
+(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-962))))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-664)) (|has| |#2| (-962))))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-962))))
+((((-773)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-553 (-773))) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1013))) (((-1178 |#2|)) . T))
+(((|#2|) |has| |#2| (-962)))
+((((-1089)) -12 (|has| |#2| (-810 (-1089))) (|has| |#2| (-962))))
+((((-1089)) OR (-12 (|has| |#2| (-810 (-1089))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962)))))
+((($ (-1089)) OR (-12 (|has| |#2| (-810 (-1089))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962)))))
+(((|#2|) |has| |#2| (-962)))
+(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962))))
+((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962)))))
+(|has| |#2| (-962))
+(|has| |#2| (-962))
+(|has| |#2| (-962))
+(|has| |#2| (-962))
+(|has| |#2| (-962))
+((((-484)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-962))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-664)) (|has| |#2| (-962))) (($) |has| |#2| (-962)))
+(-12 (|has| |#2| (-190)) (|has| |#2| (-962)))
(|has| |#2| (-317))
-(((|#2|) |has| |#2| (-961)))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-961))) (($) |has| |#2| (-961)) (((-483)) -12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))))
-(((|#2|) |has| |#2| (-961)) (((-483)) -12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))))
-(((|#2|) |has| |#2| (-1012)))
-((((-483)) OR (-12 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) (|has| |#2| (-961))) ((|#2|) |has| |#2| (-1012)) (((-347 (-483))) -12 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012))))
-(((|#2|) |has| |#2| (-1012)) (((-483)) -12 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) (((-347 (-483))) -12 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012))))
-((((-483) |#2|) . T))
-(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))))
-(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))))
-(((|#2|) . T))
-((((-483) |#2|) . T))
-((((-483) |#2|) . T))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-663))))
+(((|#2|) |has| |#2| (-962)))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-962))) (($) |has| |#2| (-962)) (((-484)) -12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))))
+(((|#2|) |has| |#2| (-962)) (((-484)) -12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))))
+(((|#2|) |has| |#2| (-1013)))
+((((-484)) OR (-12 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-962))) ((|#2|) |has| |#2| (-1013)) (((-347 (-484))) -12 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013))))
+(((|#2|) |has| |#2| (-1013)) (((-484)) -12 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) (((-347 (-484))) -12 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013))))
+((((-484) |#2|) . T))
+(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))))
+(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))))
+(((|#2|) . T))
+((((-484) |#2|) . T))
+((((-484) |#2|) . T))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-664))))
(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311))))
-(|has| |#2| (-717))
-(|has| |#2| (-717))
-(OR (|has| |#2| (-717)) (|has| |#2| (-756)))
-(OR (|has| |#2| (-717)) (|has| |#2| (-756)))
-(|has| |#2| (-717))
-(|has| |#2| (-717))
+(|has| |#2| (-718))
+(|has| |#2| (-718))
+(OR (|has| |#2| (-718)) (|has| |#2| (-757)))
+(OR (|has| |#2| (-718)) (|has| |#2| (-757)))
+(|has| |#2| (-718))
+(|has| |#2| (-718))
(((|#2|) |has| |#2| (-311)))
(((|#1| |#2|) . T))
-((((-583 |#1|)) . T))
-((((-583 |#1|)) . T))
+((((-584 |#1|)) . T))
+((((-584 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1012)))
-((((-583 |#1|)) . T) (((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1012))))
-(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(OR (|has| |#1| (-756)) (|has| |#1| (-1012)))
+(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1013)))
+((((-584 |#1|)) . T) (((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-757)) (|has| |#1| (-1013)))
(((|#1|) . T))
-((((-472)) |has| |#1| (-553 (-472))))
-((((-483) |#1|) . T))
-((((-1144 (-483)) $) . T) (((-483) |#1|) . T))
-((((-483) |#1|) . T))
+((((-473)) |has| |#1| (-554 (-473))))
+((((-484) |#1|) . T))
+((((-1145 (-484)) $) . T) (((-484) |#1|) . T))
+((((-484) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
+(|has| |#1| (-757))
+(|has| |#1| (-757))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-472)) |has| |#2| (-553 (-472))) (((-800 (-327))) |has| |#2| (-553 (-800 (-327)))) (((-800 (-483))) |has| |#2| (-553 (-800 (-483)))))
+((((-473)) |has| |#2| (-554 (-473))) (((-801 (-327))) |has| |#2| (-554 (-801 (-327)))) (((-801 (-484))) |has| |#2| (-554 (-801 (-484)))))
((($) . T))
-(((|#2| (-197 (-3951 |#1|) (-694))) . T))
+(((|#2| (-197 (-3953 |#1|) (-695))) . T))
(((|#2|) . T))
-((((-772)) . T))
-((($) . T) (((-483)) . T) (((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) . T))
+((((-773)) . T))
+((($) . T) (((-484)) . T) (((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) . T))
(|has| |#2| (-118))
(|has| |#2| (-120))
-(OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))
-((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))))
-((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))))
-((((-347 (-483)) (-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))))
-(OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))
-(OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))
-((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))))
-((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))))
-((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))))
-(((|#2| (-197 (-3951 |#1|) (-694))) . T))
-(((|#2|) . T))
-((($) . T) (((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) . T) (((-483)) |has| |#2| (-580 (-483))))
-(((|#2|) . T) (((-483)) |has| |#2| (-580 (-483))))
-(OR (|has| |#2| (-389)) (|has| |#2| (-821)))
-((($ $) . T) (((-773 |#1|) $) . T) (((-773 |#1|) |#2|) . T))
-((((-773 |#1|)) . T))
-((($ (-773 |#1|)) . T))
-((((-773 |#1|)) . T))
-(|has| |#2| (-821))
-(|has| |#2| (-821))
-((((-347 (-483))) |has| |#2| (-950 (-347 (-483)))) (((-483)) |has| |#2| (-950 (-483))) ((|#2|) . T) (((-773 |#1|)) . T))
-((((-483)) . T) (((-347 (-483))) OR (|has| |#2| (-38 (-347 (-483)))) (|has| |#2| (-950 (-347 (-483))))) ((|#2|) . T) (($) OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) (((-773 |#1|)) . T))
-(((|#2| (-197 (-3951 |#1|) (-694)) (-773 |#1|)) . T))
-((((-772)) . T))
+(OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))
+((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))))
+((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))))
+((((-347 (-484)) (-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))))
+(OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))
+(OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))
+((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))))
+((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))))
+((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))))
+(((|#2| (-197 (-3953 |#1|) (-695))) . T))
+(((|#2|) . T))
+((($) . T) (((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) . T) (((-484)) |has| |#2| (-581 (-484))))
+(((|#2|) . T) (((-484)) |has| |#2| (-581 (-484))))
+(OR (|has| |#2| (-389)) (|has| |#2| (-822)))
+((($ $) . T) (((-774 |#1|) $) . T) (((-774 |#1|) |#2|) . T))
+((((-774 |#1|)) . T))
+((($ (-774 |#1|)) . T))
+((((-774 |#1|)) . T))
+(|has| |#2| (-822))
+(|has| |#2| (-822))
+((((-347 (-484))) |has| |#2| (-951 (-347 (-484)))) (((-484)) |has| |#2| (-951 (-484))) ((|#2|) . T) (((-774 |#1|)) . T))
+((((-484)) . T) (((-347 (-484))) OR (|has| |#2| (-38 (-347 (-484)))) (|has| |#2| (-951 (-347 (-484))))) ((|#2|) . T) (($) OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) (((-774 |#1|)) . T))
+(((|#2| (-197 (-3953 |#1|) (-695)) (-774 |#1|)) . T))
+((((-773)) . T))
((((-444)) . T))
-((((-157)) . T) (((-772)) . T))
-((((-694) (-1093)) . T))
-((((-772)) . T))
-(((|#4| |#4|) OR (|has| |#4| (-146)) (|has| |#4| (-311)) (|has| |#4| (-961))))
-(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-311)) (|has| |#4| (-663)) (|has| |#4| (-961))))
-(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-311)) (|has| |#4| (-961))))
-((((-772)) . T) (((-1177 |#4|)) . T))
-(((|#4|) |has| |#4| (-961)))
-((((-1088)) -12 (|has| |#4| (-809 (-1088))) (|has| |#4| (-961))))
-((((-1088)) OR (-12 (|has| |#4| (-809 (-1088))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1088))) (|has| |#4| (-961)))))
-((($ (-1088)) OR (-12 (|has| |#4| (-809 (-1088))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1088))) (|has| |#4| (-961)))))
-(((|#4|) |has| |#4| (-961)))
-(OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961))))
-((($) OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961)))))
-(|has| |#4| (-961))
-(|has| |#4| (-961))
-(|has| |#4| (-961))
-(|has| |#4| (-961))
-(|has| |#4| (-961))
-(((|#3|) . T) ((|#2|) . T) (((-483)) . T) ((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-311)) (|has| |#4| (-663)) (|has| |#4| (-961))) (($) |has| |#4| (-961)))
-(-12 (|has| |#4| (-190)) (|has| |#4| (-961)))
+((((-157)) . T) (((-773)) . T))
+((((-695) (-1094)) . T))
+((((-773)) . T))
+(((|#4| |#4|) OR (|has| |#4| (-146)) (|has| |#4| (-311)) (|has| |#4| (-962))))
+(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-311)) (|has| |#4| (-664)) (|has| |#4| (-962))))
+(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-311)) (|has| |#4| (-962))))
+((((-773)) . T) (((-1178 |#4|)) . T))
+(((|#4|) |has| |#4| (-962)))
+((((-1089)) -12 (|has| |#4| (-810 (-1089))) (|has| |#4| (-962))))
+((((-1089)) OR (-12 (|has| |#4| (-810 (-1089))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1089))) (|has| |#4| (-962)))))
+((($ (-1089)) OR (-12 (|has| |#4| (-810 (-1089))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1089))) (|has| |#4| (-962)))))
+(((|#4|) |has| |#4| (-962)))
+(OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962))))
+((($) OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962)))))
+(|has| |#4| (-962))
+(|has| |#4| (-962))
+(|has| |#4| (-962))
+(|has| |#4| (-962))
+(|has| |#4| (-962))
+(((|#3|) . T) ((|#2|) . T) (((-484)) . T) ((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-311)) (|has| |#4| (-664)) (|has| |#4| (-962))) (($) |has| |#4| (-962)))
+(-12 (|has| |#4| (-190)) (|has| |#4| (-962)))
(|has| |#4| (-317))
-(((|#4|) |has| |#4| (-961)))
-(((|#3|) . T) ((|#2|) . T) ((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-311)) (|has| |#4| (-961))) (($) |has| |#4| (-961)) (((-483)) -12 (|has| |#4| (-580 (-483))) (|has| |#4| (-961))))
-(((|#4|) |has| |#4| (-961)) (((-483)) -12 (|has| |#4| (-580 (-483))) (|has| |#4| (-961))))
-(((|#4|) |has| |#4| (-1012)))
-((((-483)) OR (-12 (|has| |#4| (-950 (-483))) (|has| |#4| (-1012))) (|has| |#4| (-961))) ((|#4|) |has| |#4| (-1012)) (((-347 (-483))) -12 (|has| |#4| (-950 (-347 (-483)))) (|has| |#4| (-1012))))
-(((|#4|) |has| |#4| (-1012)) (((-483)) -12 (|has| |#4| (-950 (-483))) (|has| |#4| (-1012))) (((-347 (-483))) -12 (|has| |#4| (-950 (-347 (-483)))) (|has| |#4| (-1012))))
-((((-483) |#4|) . T))
-(((|#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))))
-(((|#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))))
+(((|#4|) |has| |#4| (-962)))
+(((|#3|) . T) ((|#2|) . T) ((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-311)) (|has| |#4| (-962))) (($) |has| |#4| (-962)) (((-484)) -12 (|has| |#4| (-581 (-484))) (|has| |#4| (-962))))
+(((|#4|) |has| |#4| (-962)) (((-484)) -12 (|has| |#4| (-581 (-484))) (|has| |#4| (-962))))
+(((|#4|) |has| |#4| (-1013)))
+((((-484)) OR (-12 (|has| |#4| (-951 (-484))) (|has| |#4| (-1013))) (|has| |#4| (-962))) ((|#4|) |has| |#4| (-1013)) (((-347 (-484))) -12 (|has| |#4| (-951 (-347 (-484)))) (|has| |#4| (-1013))))
+(((|#4|) |has| |#4| (-1013)) (((-484)) -12 (|has| |#4| (-951 (-484))) (|has| |#4| (-1013))) (((-347 (-484))) -12 (|has| |#4| (-951 (-347 (-484)))) (|has| |#4| (-1013))))
+((((-484) |#4|) . T))
+(((|#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))))
+(((|#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))))
(((|#4|) . T))
-((((-483) |#4|) . T))
-((((-483) |#4|) . T))
-(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-311)) (|has| |#4| (-663))))
+((((-484) |#4|) . T))
+((((-484) |#4|) . T))
+(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-311)) (|has| |#4| (-664))))
(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-311))))
-(|has| |#4| (-717))
-(|has| |#4| (-717))
-(OR (|has| |#4| (-717)) (|has| |#4| (-756)))
-(OR (|has| |#4| (-717)) (|has| |#4| (-756)))
-(|has| |#4| (-717))
-(|has| |#4| (-717))
+(|has| |#4| (-718))
+(|has| |#4| (-718))
+(OR (|has| |#4| (-718)) (|has| |#4| (-757)))
+(OR (|has| |#4| (-718)) (|has| |#4| (-757)))
+(|has| |#4| (-718))
+(|has| |#4| (-718))
(((|#4|) |has| |#4| (-311)))
(((|#1| |#4|) . T))
-(((|#3| |#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-961))))
-(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-663)) (|has| |#3| (-961))))
-(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-961))))
-((((-772)) . T) (((-1177 |#3|)) . T))
-(((|#3|) |has| |#3| (-961)))
-((((-1088)) -12 (|has| |#3| (-809 (-1088))) (|has| |#3| (-961))))
-((((-1088)) OR (-12 (|has| |#3| (-809 (-1088))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961)))))
-((($ (-1088)) OR (-12 (|has| |#3| (-809 (-1088))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961)))))
-(((|#3|) |has| |#3| (-961)))
-(OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961))))
-((($) OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))))
-(|has| |#3| (-961))
-(|has| |#3| (-961))
-(|has| |#3| (-961))
-(|has| |#3| (-961))
-(|has| |#3| (-961))
-(((|#2|) . T) (((-483)) . T) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-663)) (|has| |#3| (-961))) (($) |has| |#3| (-961)))
-(-12 (|has| |#3| (-190)) (|has| |#3| (-961)))
+(((|#3| |#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-962))))
+(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-664)) (|has| |#3| (-962))))
+(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-962))))
+((((-773)) . T) (((-1178 |#3|)) . T))
+(((|#3|) |has| |#3| (-962)))
+((((-1089)) -12 (|has| |#3| (-810 (-1089))) (|has| |#3| (-962))))
+((((-1089)) OR (-12 (|has| |#3| (-810 (-1089))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962)))))
+((($ (-1089)) OR (-12 (|has| |#3| (-810 (-1089))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962)))))
+(((|#3|) |has| |#3| (-962)))
+(OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962))))
+((($) OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))))
+(|has| |#3| (-962))
+(|has| |#3| (-962))
+(|has| |#3| (-962))
+(|has| |#3| (-962))
+(|has| |#3| (-962))
+(((|#2|) . T) (((-484)) . T) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-664)) (|has| |#3| (-962))) (($) |has| |#3| (-962)))
+(-12 (|has| |#3| (-190)) (|has| |#3| (-962)))
(|has| |#3| (-317))
-(((|#3|) |has| |#3| (-961)))
-(((|#2|) . T) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-961))) (($) |has| |#3| (-961)) (((-483)) -12 (|has| |#3| (-580 (-483))) (|has| |#3| (-961))))
-(((|#3|) |has| |#3| (-961)) (((-483)) -12 (|has| |#3| (-580 (-483))) (|has| |#3| (-961))))
-(((|#3|) |has| |#3| (-1012)))
-((((-483)) OR (-12 (|has| |#3| (-950 (-483))) (|has| |#3| (-1012))) (|has| |#3| (-961))) ((|#3|) |has| |#3| (-1012)) (((-347 (-483))) -12 (|has| |#3| (-950 (-347 (-483)))) (|has| |#3| (-1012))))
-(((|#3|) |has| |#3| (-1012)) (((-483)) -12 (|has| |#3| (-950 (-483))) (|has| |#3| (-1012))) (((-347 (-483))) -12 (|has| |#3| (-950 (-347 (-483)))) (|has| |#3| (-1012))))
-((((-483) |#3|) . T))
-(((|#3|) -12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))))
-(((|#3| |#3|) -12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))))
+(((|#3|) |has| |#3| (-962)))
+(((|#2|) . T) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-962))) (($) |has| |#3| (-962)) (((-484)) -12 (|has| |#3| (-581 (-484))) (|has| |#3| (-962))))
+(((|#3|) |has| |#3| (-962)) (((-484)) -12 (|has| |#3| (-581 (-484))) (|has| |#3| (-962))))
+(((|#3|) |has| |#3| (-1013)))
+((((-484)) OR (-12 (|has| |#3| (-951 (-484))) (|has| |#3| (-1013))) (|has| |#3| (-962))) ((|#3|) |has| |#3| (-1013)) (((-347 (-484))) -12 (|has| |#3| (-951 (-347 (-484)))) (|has| |#3| (-1013))))
+(((|#3|) |has| |#3| (-1013)) (((-484)) -12 (|has| |#3| (-951 (-484))) (|has| |#3| (-1013))) (((-347 (-484))) -12 (|has| |#3| (-951 (-347 (-484)))) (|has| |#3| (-1013))))
+((((-484) |#3|) . T))
+(((|#3|) -12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))))
+(((|#3| |#3|) -12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))))
(((|#3|) . T))
-((((-483) |#3|) . T))
-((((-483) |#3|) . T))
-(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-663))))
+((((-484) |#3|) . T))
+((((-484) |#3|) . T))
+(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-664))))
(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311))))
-(|has| |#3| (-717))
-(|has| |#3| (-717))
-(OR (|has| |#3| (-717)) (|has| |#3| (-756)))
-(OR (|has| |#3| (-717)) (|has| |#3| (-756)))
-(|has| |#3| (-717))
-(|has| |#3| (-717))
+(|has| |#3| (-718))
+(|has| |#3| (-718))
+(OR (|has| |#3| (-718)) (|has| |#3| (-757)))
+(OR (|has| |#3| (-718)) (|has| |#3| (-757)))
+(|has| |#3| (-718))
+(|has| |#3| (-718))
(((|#3|) |has| |#3| (-311)))
(((|#1| |#3|) . T))
-((((-772)) . T))
+((((-773)) . T))
(((|#1|) . T))
(((|#1|) . T))
(OR (|has| |#1| (-190)) (|has| |#1| (-189)))
((($) OR (|has| |#1| (-190)) (|has| |#1| (-189))))
-((((-772)) . T))
+((((-773)) . T))
(|has| |#1| (-190))
((($) . T))
-(((|#1| (-468 |#3|) |#3|) . T))
-(|has| |#1| (-821))
-(|has| |#1| (-821))
-((((-483)) -12 (|has| |#1| (-796 (-483))) (|has| |#3| (-796 (-483)))) (((-327)) -12 (|has| |#1| (-796 (-327))) (|has| |#3| (-796 (-327)))))
-((((-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088)))) ((|#3|) . T))
-((($ (-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088)))) (($ |#3|) . T))
-((((-1088)) |has| |#1| (-809 (-1088))) ((|#3|) . T))
+(((|#1| (-469 |#3|) |#3|) . T))
+(|has| |#1| (-822))
+(|has| |#1| (-822))
+((((-484)) -12 (|has| |#1| (-797 (-484))) (|has| |#3| (-797 (-484)))) (((-327)) -12 (|has| |#1| (-797 (-327))) (|has| |#3| (-797 (-327)))))
+((((-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089)))) ((|#3|) . T))
+((($ (-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089)))) (($ |#3|) . T))
+((((-1089)) |has| |#1| (-810 (-1089))) ((|#3|) . T))
((($ $) . T) ((|#2| $) |has| |#1| (-190)) ((|#2| |#1|) |has| |#1| (-190)) ((|#3| |#1|) . T) ((|#3| $) . T))
-(OR (|has| |#1| (-389)) (|has| |#1| (-821)))
-((((-483)) |has| |#1| (-580 (-483))) ((|#1|) . T))
+(OR (|has| |#1| (-389)) (|has| |#1| (-822)))
+((((-484)) |has| |#1| (-581 (-484))) ((|#1|) . T))
(((|#1|) . T))
-(((|#1| (-468 |#3|)) . T))
-(OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))
+(((|#1| (-469 |#3|)) . T))
+(OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) . T) (((-483)) |has| |#1| (-580 (-483))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((((-483)) . T) (($) . T) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-(((|#1|) . T))
-(((|#1| (-468 |#3|)) . T))
-((((-800 (-483))) -12 (|has| |#1| (-553 (-800 (-483)))) (|has| |#3| (-553 (-800 (-483))))) (((-800 (-327))) -12 (|has| |#1| (-553 (-800 (-327)))) (|has| |#3| (-553 (-800 (-327))))) (((-472)) -12 (|has| |#1| (-553 (-472))) (|has| |#3| (-553 (-472)))))
-((((-1037 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-483)) |has| |#1| (-950 (-483))) (((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((|#2|) . T))
-((((-1037 |#1| |#2|)) . T) (((-483)) . T) ((|#3|) . T) (($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ((|#2|) . T))
-(((|#1| |#2| |#3| (-468 |#3|)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
+((($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) . T) (((-484)) |has| |#1| (-581 (-484))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((((-484)) . T) (($) . T) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+(((|#1|) . T))
+(((|#1| (-469 |#3|)) . T))
+((((-801 (-484))) -12 (|has| |#1| (-554 (-801 (-484)))) (|has| |#3| (-554 (-801 (-484))))) (((-801 (-327))) -12 (|has| |#1| (-554 (-801 (-327)))) (|has| |#3| (-554 (-801 (-327))))) (((-473)) -12 (|has| |#1| (-554 (-473))) (|has| |#3| (-554 (-473)))))
+((((-1038 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-484)) |has| |#1| (-951 (-484))) (((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((|#2|) . T))
+((((-1038 |#1| |#2|)) . T) (((-484)) . T) ((|#3|) . T) (($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ((|#2|) . T))
+(((|#1| |#2| |#3| (-469 |#3|)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
(((|#2| |#2|) . T))
((($) . T))
((($) . T))
((($) . T))
-((((-772)) . T))
-((($) . T) (((-483)) . T))
+((((-773)) . T))
+((($) . T) (((-484)) . T))
((($) . T))
((($) . T))
((($ $) . T))
-((($) . T) (((-483)) . T))
+((($) . T) (((-484)) . T))
((($) . T))
-((((-772)) . T))
+((((-773)) . T))
(((|#1|) |has| |#1| (-311)))
-((((-1088)) |has| |#1| (-809 (-1088))))
-((($ (-1088)) |has| |#1| (-809 (-1088))))
-((((-1088)) |has| |#1| (-809 (-1088))))
+((((-1089)) |has| |#1| (-810 (-1089))))
+((($ (-1089)) |has| |#1| (-810 (-1089))))
+((((-1089)) |has| |#1| (-810 (-1089))))
(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-311))))
(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-311))))
-(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-961))))
-(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-961))))
-(((|#1| |#1|) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-961))))
-((((-483)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-961))))
-(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-961))) (($) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-961))))
-(OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-961)))
-(OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-961)))
-(OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-961)))
+(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-962))))
+(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-962))))
+(((|#1| |#1|) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-962))))
+((((-484)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-962))))
+(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-962))) (($) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-962))))
+(OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-962)))
+(OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-962)))
+(OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-962)))
(|has| |#1| (-410))
-(OR (|has| |#1| (-410)) (|has| |#1| (-663)) (|has| |#1| (-809 (-1088))) (|has| |#1| (-961)))
-(OR (|has| |#1| (-410)) (|has| |#1| (-663)) (|has| |#1| (-809 (-1088))) (|has| |#1| (-961)) (|has| |#1| (-1024)))
-(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-809 (-1088))) (|has| |#1| (-961)))
-(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-809 (-1088))) (|has| |#1| (-961)))
-(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-961))) (($) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-961))) (((-483)) OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-809 (-1088))) (|has| |#1| (-961))))
-(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-809 (-1088))) (|has| |#1| (-961)))
-(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-809 (-1088))) (|has| |#1| (-961)))
-(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-410)) (|has| |#1| (-663)) (|has| |#1| (-809 (-1088))) (|has| |#1| (-961)) (|has| |#1| (-1024)) (|has| |#1| (-1012)))
-((((-85)) |has| |#1| (-1012)) (((-772)) OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-410)) (|has| |#1| (-663)) (|has| |#1| (-809 (-1088))) (|has| |#1| (-961)) (|has| |#1| (-1024)) (|has| |#1| (-1012))))
-(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-410)) (|has| |#1| (-663)) (|has| |#1| (-809 (-1088))) (|has| |#1| (-961)) (|has| |#1| (-1024)) (|has| |#1| (-1012)))
-((((-1088) |#1|) |has| |#1| (-452 (-1088) |#1|)))
+(OR (|has| |#1| (-410)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1089))) (|has| |#1| (-962)))
+(OR (|has| |#1| (-410)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1089))) (|has| |#1| (-962)) (|has| |#1| (-1025)))
+(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-810 (-1089))) (|has| |#1| (-962)))
+(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-810 (-1089))) (|has| |#1| (-962)))
+(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-962))) (($) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-962))) (((-484)) OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-810 (-1089))) (|has| |#1| (-962))))
+(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-810 (-1089))) (|has| |#1| (-962)))
+(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-810 (-1089))) (|has| |#1| (-962)))
+(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-410)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1089))) (|has| |#1| (-962)) (|has| |#1| (-1025)) (|has| |#1| (-1013)))
+((((-85)) |has| |#1| (-1013)) (((-773)) OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-410)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1089))) (|has| |#1| (-962)) (|has| |#1| (-1025)) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-410)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1089))) (|has| |#1| (-962)) (|has| |#1| (-1025)) (|has| |#1| (-1013)))
+((((-1089) |#1|) |has| |#1| (-453 (-1089) |#1|)))
(((|#1| |#2|) . T))
-((((-772)) . T))
+((((-773)) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
-(((|#2|) . T) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))))
-(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))))
+(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
(((|#1| |#2|) . T))
-((((-772)) . T))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
-((((-772)) . T))
-(|has| (-1164 |#1| |#2| |#3| |#4|) (-118))
-(|has| (-1164 |#1| |#2| |#3| |#4|) (-120))
-((((-1164 |#1| |#2| |#3| |#4|)) . T))
-((((-1164 |#1| |#2| |#3| |#4|)) . T))
-((((-1164 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-347 (-483))) . T))
-((($) . T) (((-483)) . T) (((-1164 |#1| |#2| |#3| |#4|)) . T) (((-347 (-483))) . T))
-((((-1164 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-347 (-483))) . T))
-((((-1164 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-347 (-483))) . T))
-((((-1164 |#1| |#2| |#3| |#4|)) . T) (((-347 (-483))) . T) (($) . T))
-((((-1164 |#1| |#2| |#3| |#4|)) . T) (((-347 (-483))) . T) (($) . T))
-((((-1164 |#1| |#2| |#3| |#4|) (-1164 |#1| |#2| |#3| |#4|)) . T) (((-347 (-483)) (-347 (-483))) . T) (($ $) . T))
-((((-1164 |#1| |#2| |#3| |#4|)) . T))
-((((-1088) (-1164 |#1| |#2| |#3| |#4|)) |has| (-1164 |#1| |#2| |#3| |#4|) (-452 (-1088) (-1164 |#1| |#2| |#3| |#4|))) (((-1164 |#1| |#2| |#3| |#4|) (-1164 |#1| |#2| |#3| |#4|)) |has| (-1164 |#1| |#2| |#3| |#4|) (-259 (-1164 |#1| |#2| |#3| |#4|))))
-((((-1164 |#1| |#2| |#3| |#4|)) |has| (-1164 |#1| |#2| |#3| |#4|) (-259 (-1164 |#1| |#2| |#3| |#4|))))
-((((-1164 |#1| |#2| |#3| |#4|) $) |has| (-1164 |#1| |#2| |#3| |#4|) (-241 (-1164 |#1| |#2| |#3| |#4|) (-1164 |#1| |#2| |#3| |#4|))))
-((((-1164 |#1| |#2| |#3| |#4|)) . T))
-((($) . T) (((-1164 |#1| |#2| |#3| |#4|)) . T) (((-347 (-483))) . T))
-((((-1164 |#1| |#2| |#3| |#4|)) . T))
-((((-1164 |#1| |#2| |#3| |#4|)) . T))
-((((-1164 |#1| |#2| |#3| |#4|)) . T))
-((((-1158 |#2| |#3| |#4|)) . T) (((-483)) . T) (((-1164 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-347 (-483))) . T))
-((((-1158 |#2| |#3| |#4|)) . T) (((-1164 |#1| |#2| |#3| |#4|)) . T))
-((((-1164 |#1| |#2| |#3| |#4|)) . T))
-(|has| |#1| (-494))
-(|has| |#1| (-494))
-(|has| |#1| (-494))
-(|has| |#1| (-494))
-(|has| |#1| (-494))
-(|has| |#1| (-494))
-(|has| |#1| (-494))
-(|has| |#1| (-494))
-(|has| |#1| (-494))
-(|has| |#1| (-494))
-(|has| |#1| (-494))
-(|has| |#1| (-494))
-(|has| |#1| (-494))
-(((|#1|) |has| |#1| (-494)))
-(OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-494)) (|has| |#1| (-961)))
-(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-494)) (|has| |#1| (-961)))
-((((-772)) . T))
-(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-494)) (|has| |#1| (-961)))
-(OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-494)) (|has| |#1| (-961)))
-(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-494)) (|has| |#1| (-961)))
-(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-410)) (|has| |#1| (-494)) (|has| |#1| (-961)) (|has| |#1| (-1024)))
-(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-494)) (|has| |#1| (-961)))
-(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-410)) (|has| |#1| (-494)) (|has| |#1| (-961)) (|has| |#1| (-1024)))
-(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-494)) (|has| |#1| (-961)))
+((((-773)) . T))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
+((((-773)) . T))
+(|has| (-1165 |#1| |#2| |#3| |#4|) (-118))
+(|has| (-1165 |#1| |#2| |#3| |#4|) (-120))
+((((-1165 |#1| |#2| |#3| |#4|)) . T))
+((((-1165 |#1| |#2| |#3| |#4|)) . T))
+((((-1165 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-347 (-484))) . T))
+((($) . T) (((-484)) . T) (((-1165 |#1| |#2| |#3| |#4|)) . T) (((-347 (-484))) . T))
+((((-1165 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-347 (-484))) . T))
+((((-1165 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-347 (-484))) . T))
+((((-1165 |#1| |#2| |#3| |#4|)) . T) (((-347 (-484))) . T) (($) . T))
+((((-1165 |#1| |#2| |#3| |#4|)) . T) (((-347 (-484))) . T) (($) . T))
+((((-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|)) . T) (((-347 (-484)) (-347 (-484))) . T) (($ $) . T))
+((((-1165 |#1| |#2| |#3| |#4|)) . T))
+((((-1089) (-1165 |#1| |#2| |#3| |#4|)) |has| (-1165 |#1| |#2| |#3| |#4|) (-453 (-1089) (-1165 |#1| |#2| |#3| |#4|))) (((-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|)) |has| (-1165 |#1| |#2| |#3| |#4|) (-259 (-1165 |#1| |#2| |#3| |#4|))))
+((((-1165 |#1| |#2| |#3| |#4|)) |has| (-1165 |#1| |#2| |#3| |#4|) (-259 (-1165 |#1| |#2| |#3| |#4|))))
+((((-1165 |#1| |#2| |#3| |#4|) $) |has| (-1165 |#1| |#2| |#3| |#4|) (-241 (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|))))
+((((-1165 |#1| |#2| |#3| |#4|)) . T))
+((($) . T) (((-1165 |#1| |#2| |#3| |#4|)) . T) (((-347 (-484))) . T))
+((((-1165 |#1| |#2| |#3| |#4|)) . T))
+((((-1165 |#1| |#2| |#3| |#4|)) . T))
+((((-1165 |#1| |#2| |#3| |#4|)) . T))
+((((-1159 |#2| |#3| |#4|)) . T) (((-484)) . T) (((-1165 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-347 (-484))) . T))
+((((-1159 |#2| |#3| |#4|)) . T) (((-1165 |#1| |#2| |#3| |#4|)) . T))
+((((-1165 |#1| |#2| |#3| |#4|)) . T))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(((|#1|) |has| |#1| (-495)))
+(OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-962)))
+(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-962)))
+((((-773)) . T))
+(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-962)))
+(OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-962)))
+(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-962)))
+(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-410)) (|has| |#1| (-495)) (|has| |#1| (-962)) (|has| |#1| (-1025)))
+(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-962)))
+(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-410)) (|has| |#1| (-495)) (|has| |#1| (-962)) (|has| |#1| (-1025)))
+(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-962)))
(|has| |#1| (-118))
(|has| |#1| (-120))
-((((-550 $) $) . T) (($ $) . T))
-((($) . T))
-(|has| |#1| (-494))
-(|has| |#1| (-494))
-(|has| |#1| (-494))
-(|has| |#1| (-494))
-(|has| |#1| (-494))
-(|has| |#1| (-494))
-(|has| |#1| (-494))
-(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494)) (((-347 (-483))) |has| |#1| (-494)))
-((((-483)) OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-494)) (|has| |#1| (-961))) (($) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-494)) (|has| |#1| (-961))) ((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-961))) (((-347 (-483))) |has| |#1| (-494)))
-(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494)) (((-347 (-483))) |has| |#1| (-494)))
-(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494)) (((-347 (-483))) |has| |#1| (-494)))
-(|has| |#1| (-494))
-(((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-494)) (($) |has| |#1| (-494)))
-(((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-494)) (($) |has| |#1| (-494)))
-(((|#1| |#1|) |has| |#1| (-146)) (((-347 (-483)) (-347 (-483))) |has| |#1| (-494)) (($ $) |has| |#1| (-494)))
-(|has| |#1| (-494))
-(((|#1|) |has| |#1| (-961)))
-((($) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-494)) (|has| |#1| (-961))) ((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-961))) (((-347 (-483))) |has| |#1| (-494)) (((-483)) -12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961))))
-(((|#1|) |has| |#1| (-961)) (((-483)) -12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961))))
-(((|#1|) . T))
-((((-483)) |has| |#1| (-796 (-483))) (((-327)) |has| |#1| (-796 (-327))))
+((((-551 $) $) . T) (($ $) . T))
+((($) . T))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)) (((-347 (-484))) |has| |#1| (-495)))
+((((-484)) OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-962))) (($) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-962))) ((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-962))) (((-347 (-484))) |has| |#1| (-495)))
+(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)) (((-347 (-484))) |has| |#1| (-495)))
+(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)) (((-347 (-484))) |has| |#1| (-495)))
+(|has| |#1| (-495))
+(((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-495)) (($) |has| |#1| (-495)))
+(((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-495)) (($) |has| |#1| (-495)))
+(((|#1| |#1|) |has| |#1| (-146)) (((-347 (-484)) (-347 (-484))) |has| |#1| (-495)) (($ $) |has| |#1| (-495)))
+(|has| |#1| (-495))
+(((|#1|) |has| |#1| (-962)))
+((($) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-962))) ((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-962))) (((-347 (-484))) |has| |#1| (-495)) (((-484)) -12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962))))
+(((|#1|) |has| |#1| (-962)) (((-484)) -12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962))))
+(((|#1|) . T))
+((((-484)) |has| |#1| (-797 (-484))) (((-327)) |has| |#1| (-797 (-327))))
(((|#1|) . T))
(|has| |#1| (-410))
-((((-1088)) |has| |#1| (-961)))
-((($ (-1088)) |has| |#1| (-961)))
-((((-1088)) |has| |#1| (-961)))
+((((-1089)) |has| |#1| (-962)))
+((($ (-1089)) |has| |#1| (-962)))
+((((-1089)) |has| |#1| (-962)))
(((|#1|) . T))
-((((-472)) |has| |#1| (-553 (-472))) (((-800 (-483))) |has| |#1| (-553 (-800 (-483)))) (((-800 (-327))) |has| |#1| (-553 (-800 (-327)))))
-((((-48)) -12 (|has| |#1| (-494)) (|has| |#1| (-950 (-483)))) (((-550 $)) . T) ((|#1|) . T) (((-483)) |has| |#1| (-950 (-483))) (((-347 (-483))) OR (-12 (|has| |#1| (-494)) (|has| |#1| (-950 (-483)))) (|has| |#1| (-950 (-347 (-483))))) (((-347 (-857 |#1|))) |has| |#1| (-494)) (((-857 |#1|)) |has| |#1| (-961)) (((-1088)) . T))
-((((-48)) -12 (|has| |#1| (-494)) (|has| |#1| (-950 (-483)))) (((-483)) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-494)) (|has| |#1| (-950 (-483))) (|has| |#1| (-961))) ((|#1|) . T) (((-550 $)) . T) (($) |has| |#1| (-494)) (((-347 (-483))) OR (|has| |#1| (-494)) (|has| |#1| (-950 (-347 (-483))))) (((-347 (-857 |#1|))) |has| |#1| (-494)) (((-857 |#1|)) |has| |#1| (-961)) (((-1088)) . T))
+((((-473)) |has| |#1| (-554 (-473))) (((-801 (-484))) |has| |#1| (-554 (-801 (-484)))) (((-801 (-327))) |has| |#1| (-554 (-801 (-327)))))
+((((-48)) -12 (|has| |#1| (-495)) (|has| |#1| (-951 (-484)))) (((-551 $)) . T) ((|#1|) . T) (((-484)) |has| |#1| (-951 (-484))) (((-347 (-484))) OR (-12 (|has| |#1| (-495)) (|has| |#1| (-951 (-484)))) (|has| |#1| (-951 (-347 (-484))))) (((-347 (-858 |#1|))) |has| |#1| (-495)) (((-858 |#1|)) |has| |#1| (-962)) (((-1089)) . T))
+((((-48)) -12 (|has| |#1| (-495)) (|has| |#1| (-951 (-484)))) (((-484)) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-951 (-484))) (|has| |#1| (-962))) ((|#1|) . T) (((-551 $)) . T) (($) |has| |#1| (-495)) (((-347 (-484))) OR (|has| |#1| (-495)) (|has| |#1| (-951 (-347 (-484))))) (((-347 (-858 |#1|))) |has| |#1| (-495)) (((-858 |#1|)) |has| |#1| (-962)) (((-1089)) . T))
(((|#1|) . T))
(|has| |#1| (-311))
(|has| |#1| (-311))
(|has| |#1| (-311))
-(OR (|has| |#1| (-311)) (|has| |#1| (-494)))
-(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494)))
+(OR (|has| |#1| (-311)) (|has| |#1| (-495)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495)))
(|has| |#1| (-311))
(|has| |#1| (-311))
-((((-772)) . T))
-(OR (|has| |#1| (-311)) (|has| |#1| (-494)))
+((((-773)) . T))
+(OR (|has| |#1| (-311)) (|has| |#1| (-495)))
(|has| |#1| (-311))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(((|#1| (-347 (-483))) . T))
-(((|#1| (-347 (-483))) . T))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(((|#1| (-347 (-484))) . T))
+(((|#1| (-347 (-484))) . T))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) (((-483)) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-146)))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-146)))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-146)))
-((($) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) ((|#1|) . T))
-((($) . T) (((-483)) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) ((|#1|) . T))
-((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) ((|#1|) . T))
-((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) ((|#1|) . T))
-((((-347 (-483)) (-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) ((|#1| |#1|) . T))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-146)))
-(((|#1| (-347 (-483)) (-993)) . T))
-((((-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))))
-((($ (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))))
-((((-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))))
-((((-347 (-483)) |#1|) . T) (($ $) . T))
-(|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))
-((($) |has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))))
-(|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))
-(((|#1|) . T))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1| (-483)) . T))
-((((-483) (-483)) . T))
-((((-483)) . T))
-((((-483)) . T))
-((((-483)) . T))
-((((-483)) . T))
-((((-483)) . T))
-((((-772)) . T))
-((((-483)) . T))
-((((-772)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1| (-694)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(((|#1|) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1012)))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1012))))
-(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(OR (|has| |#1| (-756)) (|has| |#1| (-1012)))
-(((|#1|) . T))
-((((-472)) |has| |#1| (-553 (-472))))
-((((-483) |#1|) . T))
-((((-1144 (-483)) $) . T) (((-483) |#1|) . T))
-((((-483) |#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-483)) . T))
-((((-772)) . T))
+((($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) (((-484)) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-146)))
+((($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-146)))
+((($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-146)))
+((($) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) ((|#1|) . T))
+((($) . T) (((-484)) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) ((|#1|) . T))
+((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) ((|#1|) . T))
+((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) ((|#1|) . T))
+((((-347 (-484)) (-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) ((|#1| |#1|) . T))
+((($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-146)))
+(((|#1| (-347 (-484)) (-994)) . T))
+((((-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))))
+((($ (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))))
+((((-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))))
+((((-347 (-484)) |#1|) . T) (($ $) . T))
+(|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))
+((($) |has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))))
+(|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))
+(((|#1|) . T))
+(|has| |#1| (-757))
+(|has| |#1| (-757))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (-484)) . T))
+((((-484) (-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-773)) . T))
+((((-484)) . T))
+((((-773)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (-695)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-757))
+(|has| |#1| (-757))
+(((|#1|) . T))
+(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1013)))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-757)) (|has| |#1| (-1013)))
+(((|#1|) . T))
+((((-473)) |has| |#1| (-554 (-473))))
+((((-484) |#1|) . T))
+((((-1145 (-484)) $) . T) (((-484) |#1|) . T))
+((((-484) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-484)) . T))
+((((-773)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-817 |#1|)) . T))
-((((-817 |#1|)) . T))
-((((-817 |#1|)) . T))
-((((-817 |#1|)) . T) (($) . T) (((-347 (-483))) . T))
-((((-817 |#1|)) . T) (($) . T) (((-347 (-483))) . T))
-((((-817 |#1|) (-817 |#1|)) . T) (($ $) . T) (((-347 (-483)) (-347 (-483))) . T))
-((((-347 (-483))) . T) (($) . T))
-((((-817 |#1|)) . T) (((-347 (-483))) . T) (($) . T))
-((((-817 |#1|)) . T) (((-347 (-483))) . T) (($) . T))
-((((-772)) . T))
-((((-817 |#1|)) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T))
-((((-817 |#1|)) . T) (((-347 (-483))) . T) (($) . T))
-((((-817 |#1|)) . T) (((-347 (-483))) . T) (($) . T) (((-483)) . T))
+((((-818 |#1|)) . T))
+((((-818 |#1|)) . T))
+((((-818 |#1|)) . T))
+((((-818 |#1|)) . T) (($) . T) (((-347 (-484))) . T))
+((((-818 |#1|)) . T) (($) . T) (((-347 (-484))) . T))
+((((-818 |#1|) (-818 |#1|)) . T) (($ $) . T) (((-347 (-484)) (-347 (-484))) . T))
+((((-347 (-484))) . T) (($) . T))
+((((-818 |#1|)) . T) (((-347 (-484))) . T) (($) . T))
+((((-818 |#1|)) . T) (((-347 (-484))) . T) (($) . T))
+((((-773)) . T))
+((((-818 |#1|)) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T))
+((((-818 |#1|)) . T) (((-347 (-484))) . T) (($) . T))
+((((-818 |#1|)) . T) (((-347 (-484))) . T) (($) . T) (((-484)) . T))
(|has| $ (-120))
((($) . T))
-((((-817 |#1|)) . T))
-((((-817 |#1|)) . T))
-((((-817 |#1|)) . T))
-((((-817 |#1|)) . T))
-((((-817 |#1|)) . T) (($) . T) (((-347 (-483))) . T))
-((((-817 |#1|)) . T) (($) . T) (((-347 (-483))) . T))
-((((-817 |#1|) (-817 |#1|)) . T) (($ $) . T) (((-347 (-483)) (-347 (-483))) . T))
-((((-347 (-483))) . T) (($) . T))
-((((-817 |#1|)) . T) (((-347 (-483))) . T) (($) . T))
-((((-817 |#1|)) . T) (((-347 (-483))) . T) (($) . T))
-((((-772)) . T))
-((((-817 |#1|)) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T))
-((((-817 |#1|)) . T) (((-347 (-483))) . T) (($) . T))
-((((-817 |#1|)) . T) (((-347 (-483))) . T) (($) . T) (((-483)) . T))
+((((-818 |#1|)) . T))
+((((-818 |#1|)) . T))
+((((-818 |#1|)) . T))
+((((-818 |#1|)) . T))
+((((-818 |#1|)) . T) (($) . T) (((-347 (-484))) . T))
+((((-818 |#1|)) . T) (($) . T) (((-347 (-484))) . T))
+((((-818 |#1|) (-818 |#1|)) . T) (($ $) . T) (((-347 (-484)) (-347 (-484))) . T))
+((((-347 (-484))) . T) (($) . T))
+((((-818 |#1|)) . T) (((-347 (-484))) . T) (($) . T))
+((((-818 |#1|)) . T) (((-347 (-484))) . T) (($) . T))
+((((-773)) . T))
+((((-818 |#1|)) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T))
+((((-818 |#1|)) . T) (((-347 (-484))) . T) (($) . T))
+((((-818 |#1|)) . T) (((-347 (-484))) . T) (($) . T) (((-484)) . T))
(|has| $ (-120))
((($) . T))
-((((-817 |#1|)) . T))
+((((-818 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(OR (|has| |#1| (-118)) (|has| |#1| (-317)))
(OR (|has| |#1| (-118)) (|has| |#1| (-317)))
-(((|#1|) . T) (($) . T) (((-347 (-483))) . T))
-(((|#1|) . T) (($) . T) (((-347 (-483))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-347 (-483)) (-347 (-483))) . T))
-((((-347 (-483))) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (($) . T))
-((((-772)) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (($) . T) (((-483)) . T))
+(((|#1|) . T) (($) . T) (((-347 (-484))) . T))
+(((|#1|) . T) (($) . T) (((-347 (-484))) . T))
+(((|#1| |#1|) . T) (($ $) . T) (((-347 (-484)) (-347 (-484))) . T))
+((((-347 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (($) . T))
+((((-773)) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (($) . T) (((-484)) . T))
(|has| |#1| (-120))
(|has| |#1| (-317))
(|has| |#1| (-317))
@@ -953,16 +953,16 @@
(((|#1|) . T))
(OR (|has| |#1| (-118)) (|has| |#1| (-317)))
(OR (|has| |#1| (-118)) (|has| |#1| (-317)))
-(((|#1|) . T) (($) . T) (((-347 (-483))) . T))
-(((|#1|) . T) (($) . T) (((-347 (-483))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-347 (-483)) (-347 (-483))) . T))
-((((-347 (-483))) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (($) . T))
-((((-772)) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (($) . T) (((-483)) . T))
+(((|#1|) . T) (($) . T) (((-347 (-484))) . T))
+(((|#1|) . T) (($) . T) (((-347 (-484))) . T))
+(((|#1| |#1|) . T) (($ $) . T) (((-347 (-484)) (-347 (-484))) . T))
+((((-347 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (($) . T))
+((((-773)) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (($) . T) (((-484)) . T))
(|has| |#1| (-120))
(|has| |#1| (-317))
(|has| |#1| (-317))
@@ -971,37 +971,37 @@
((($) |has| |#1| (-317)))
(|has| |#1| (-317))
(((|#1|) . T))
-((((-817 |#1|)) . T))
-((((-817 |#1|)) . T))
-((((-817 |#1|)) . T))
-((((-817 |#1|)) . T) (($) . T) (((-347 (-483))) . T))
-((((-817 |#1|)) . T) (($) . T) (((-347 (-483))) . T))
-((((-817 |#1|) (-817 |#1|)) . T) (($ $) . T) (((-347 (-483)) (-347 (-483))) . T))
-((((-347 (-483))) . T) (($) . T))
-((((-817 |#1|)) . T) (((-347 (-483))) . T) (($) . T))
-((((-817 |#1|)) . T) (((-347 (-483))) . T) (($) . T))
-((((-772)) . T))
-((((-817 |#1|)) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T))
-((((-817 |#1|)) . T) (((-347 (-483))) . T) (($) . T))
-((((-817 |#1|)) . T) (((-347 (-483))) . T) (($) . T) (((-483)) . T))
+((((-818 |#1|)) . T))
+((((-818 |#1|)) . T))
+((((-818 |#1|)) . T))
+((((-818 |#1|)) . T) (($) . T) (((-347 (-484))) . T))
+((((-818 |#1|)) . T) (($) . T) (((-347 (-484))) . T))
+((((-818 |#1|) (-818 |#1|)) . T) (($ $) . T) (((-347 (-484)) (-347 (-484))) . T))
+((((-347 (-484))) . T) (($) . T))
+((((-818 |#1|)) . T) (((-347 (-484))) . T) (($) . T))
+((((-818 |#1|)) . T) (((-347 (-484))) . T) (($) . T))
+((((-773)) . T))
+((((-818 |#1|)) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T))
+((((-818 |#1|)) . T) (((-347 (-484))) . T) (($) . T))
+((((-818 |#1|)) . T) (((-347 (-484))) . T) (($) . T) (((-484)) . T))
(|has| $ (-120))
((($) . T))
-((((-817 |#1|)) . T))
+((((-818 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(OR (|has| |#1| (-118)) (|has| |#1| (-317)))
(OR (|has| |#1| (-118)) (|has| |#1| (-317)))
-(((|#1|) . T) (($) . T) (((-347 (-483))) . T))
-(((|#1|) . T) (($) . T) (((-347 (-483))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-347 (-483)) (-347 (-483))) . T))
-((((-347 (-483))) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (($) . T))
-((((-772)) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (($) . T) (((-483)) . T))
+(((|#1|) . T) (($) . T) (((-347 (-484))) . T))
+(((|#1|) . T) (($) . T) (((-347 (-484))) . T))
+(((|#1| |#1|) . T) (($ $) . T) (((-347 (-484)) (-347 (-484))) . T))
+((((-347 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (($) . T))
+((((-773)) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (($) . T) (((-484)) . T))
(|has| |#1| (-120))
(|has| |#1| (-317))
(|has| |#1| (-317))
@@ -1015,16 +1015,16 @@
(((|#1|) . T))
(OR (|has| |#1| (-118)) (|has| |#1| (-317)))
(OR (|has| |#1| (-118)) (|has| |#1| (-317)))
-(((|#1|) . T) (($) . T) (((-347 (-483))) . T))
-(((|#1|) . T) (($) . T) (((-347 (-483))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-347 (-483)) (-347 (-483))) . T))
-((((-347 (-483))) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (($) . T))
-((((-772)) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (($) . T) (((-483)) . T))
+(((|#1|) . T) (($) . T) (((-347 (-484))) . T))
+(((|#1|) . T) (($) . T) (((-347 (-484))) . T))
+(((|#1| |#1|) . T) (($ $) . T) (((-347 (-484)) (-347 (-484))) . T))
+((((-347 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (($) . T))
+((((-773)) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (($) . T) (((-484)) . T))
(|has| |#1| (-120))
(|has| |#1| (-317))
(|has| |#1| (-317))
@@ -1038,16 +1038,16 @@
(((|#1|) . T))
(OR (|has| |#1| (-118)) (|has| |#1| (-317)))
(OR (|has| |#1| (-118)) (|has| |#1| (-317)))
-(((|#1|) . T) (($) . T) (((-347 (-483))) . T))
-(((|#1|) . T) (($) . T) (((-347 (-483))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-347 (-483)) (-347 (-483))) . T))
-((((-347 (-483))) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (($) . T))
-((((-772)) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (($) . T) (((-483)) . T))
+(((|#1|) . T) (($) . T) (((-347 (-484))) . T))
+(((|#1|) . T) (($) . T) (((-347 (-484))) . T))
+(((|#1| |#1|) . T) (($ $) . T) (((-347 (-484)) (-347 (-484))) . T))
+((((-347 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (($) . T))
+((((-773)) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (($) . T) (((-484)) . T))
(|has| |#1| (-120))
(|has| |#1| (-317))
(|has| |#1| (-317))
@@ -1061,16 +1061,16 @@
(((|#1|) . T))
(OR (|has| |#1| (-118)) (|has| |#1| (-317)))
(OR (|has| |#1| (-118)) (|has| |#1| (-317)))
-(((|#1|) . T) (($) . T) (((-347 (-483))) . T))
-(((|#1|) . T) (($) . T) (((-347 (-483))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-347 (-483)) (-347 (-483))) . T))
-((((-347 (-483))) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (($) . T))
-((((-772)) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (($) . T) (((-483)) . T))
+(((|#1|) . T) (($) . T) (((-347 (-484))) . T))
+(((|#1|) . T) (($) . T) (((-347 (-484))) . T))
+(((|#1| |#1|) . T) (($ $) . T) (((-347 (-484)) (-347 (-484))) . T))
+((((-347 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (($) . T))
+((((-773)) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (($) . T) (((-484)) . T))
(|has| |#1| (-120))
(|has| |#1| (-317))
(|has| |#1| (-317))
@@ -1081,552 +1081,553 @@
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-772)) . T))
-((((-772)) . T))
+((((-773)) . T))
+((((-773)) . T))
((((-335) |#1|) . T))
((((-179)) . T))
((($) . T))
-((((-483)) . T) (((-347 (-483))) . T))
+((((-484)) . T) (((-347 (-484))) . T))
((((-327)) . T))
-((($) . T) (((-347 (-483))) . T))
-((($) . T) (((-347 (-483))) . T))
-((($ $) . T) (((-347 (-483)) (-347 (-483))) . T))
-((((-347 (-483))) . T) (($) . T))
-((((-347 (-483))) . T) (($) . T))
-((((-347 (-483))) . T) (($) . T))
-((((-472)) . T) (((-1071)) . T) (((-179)) . T) (((-327)) . T) (((-800 (-327))) . T))
-((((-179)) . T) (((-772)) . T))
-((((-347 (-483))) . T) (((-483)) . T) (($) . T))
-((((-347 (-483))) . T) (($) . T))
-((((-347 (-483))) . T) (($) . T) (((-483)) . T))
+((($) . T) (((-347 (-484))) . T))
+((($) . T) (((-347 (-484))) . T))
+((($ $) . T) (((-347 (-484)) (-347 (-484))) . T))
+((((-347 (-484))) . T) (($) . T))
+((((-347 (-484))) . T) (($) . T))
+((((-347 (-484))) . T) (($) . T))
+((((-473)) . T) (((-1072)) . T) (((-179)) . T) (((-327)) . T) (((-801 (-327))) . T))
+((((-179)) . T) (((-773)) . T))
+((((-347 (-484))) . T) (((-484)) . T) (($) . T))
+((((-347 (-484))) . T) (($) . T))
+((((-347 (-484))) . T) (($) . T) (((-484)) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
(((|#1| |#2|) . T))
(((|#1|) . T))
-((((-772)) . T))
-(((|#1|) . T) (((-483)) . T))
+((((-773)) . T))
+(((|#1|) . T) (((-484)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-772)) . T))
-((((-483)) . T) ((|#1|) . T))
+((((-773)) . T))
+((((-484)) . T) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
(((|#2|) . T))
(((|#2|) . T))
(((|#1| |#2|) . T))
-((((-772)) . T))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
+((((-773)) . T))
+(|has| |#1| (-757))
+(|has| |#1| (-757))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1071)) . T))
-((((-1071)) . T))
-((((-1071)) . T) (((-772)) . T))
+((((-1072)) . T))
+((((-1072)) . T))
+((((-1072)) . T) (((-773)) . T))
(((|#3|) . T))
(((|#3|) . T))
(((|#3|) . T))
-((((-772)) . T))
-(((|#3|) . T) (((-483)) . T))
+((((-773)) . T))
+(((|#3|) . T) (((-484)) . T))
(((|#3|) . T))
(((|#3|) . T))
(((|#3| |#3|) . T))
(((|#3|) . T))
((((-347 |#2|)) . T))
((($) . T))
-((((-772)) . T))
-(|has| |#1| (-1132))
-((((-472)) |has| |#1| (-553 (-472))) (((-179)) |has| |#1| (-933)) (((-327)) |has| |#1| (-933)))
-(|has| |#1| (-933))
-(OR (|has| |#1| (-389)) (|has| |#1| (-1132)))
-((((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) (((-483)) |has| |#1| (-950 (-483))) ((|#1|) . T))
+((((-773)) . T))
+(|has| |#1| (-1133))
+((((-473)) |has| |#1| (-554 (-473))) (((-179)) |has| |#1| (-934)) (((-327)) |has| |#1| (-934)))
+(|has| |#1| (-934))
+(OR (|has| |#1| (-389)) (|has| |#1| (-1133)))
+((((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) (((-484)) |has| |#1| (-951 (-484))) ((|#1|) . T))
(((|#1|) . T))
((($ $) |has| |#1| (-241 $ $)) ((|#1| $) |has| |#1| (-241 |#1| |#1|)))
((($) |has| |#1| (-259 $)) ((|#1|) |has| |#1| (-259 |#1|)))
-((((-1088) $) |has| |#1| (-452 (-1088) $)) (($ $) |has| |#1| (-259 $)) ((|#1| |#1|) |has| |#1| (-259 |#1|)) (((-1088) |#1|) |has| |#1| (-452 (-1088) |#1|)))
+((((-1089) $) |has| |#1| (-453 (-1089) $)) (($ $) |has| |#1| (-259 $)) ((|#1| |#1|) |has| |#1| (-259 |#1|)) (((-1089) |#1|) |has| |#1| (-453 (-1089) |#1|)))
(((|#1|) . T))
(|has| |#1| (-190))
((($) OR (|has| |#1| (-190)) (|has| |#1| (-189))))
(OR (|has| |#1| (-190)) (|has| |#1| (-189)))
(((|#1|) . T))
-((($ (-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088)))))
-((((-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088)))))
-((((-1088)) |has| |#1| (-809 (-1088))))
+((($ (-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089)))))
+((((-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089)))))
+((((-1089)) |has| |#1| (-810 (-1089))))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
(((|#1| |#1|) . T) (($ $) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T) (($) . T))
-((((-772)) . T))
-(((|#1|) . T) (((-483)) . T) (($) . T))
+((((-773)) . T))
+(((|#1|) . T) (((-484)) . T) (($) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T) (($) . T))
-((((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((|#1|) . T) (((-483)) . T) (($) . T))
-((((-772)) . T))
+((((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((|#1|) . T) (((-484)) . T) (($) . T))
+((((-773)) . T))
(|has| |#1| (-118))
(|has| |#1| (-120))
(((|#1|) . T))
-((((-1088)) |has| |#1| (-809 (-1088))))
-((((-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088)))))
-((($ (-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088)))))
+((((-1089)) |has| |#1| (-810 (-1089))))
+((((-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089)))))
+((($ (-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089)))))
(((|#1|) . T))
(OR (|has| |#1| (-190)) (|has| |#1| (-189)))
((($) OR (|has| |#1| (-190)) (|has| |#1| (-189))))
(|has| |#1| (-190))
-(((|#1|) . T) (($) . T) (((-347 (-483))) . T))
-((($) . T) (((-483)) . T) ((|#1|) . T) (((-347 (-483))) . T))
-(((|#1|) . T) (($) . T) (((-347 (-483))) . T))
-(((|#1|) . T) (($) . T) (((-347 (-483))) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (($) . T))
-(((|#1| |#1|) . T) (((-347 (-483)) (-347 (-483))) . T) (($ $) . T))
-(((|#1|) . T))
-((((-1088) |#1|) |has| |#1| (-452 (-1088) |#1|)) ((|#1| |#1|) |has| |#1| (-259 |#1|)))
+(((|#1|) . T) (($) . T) (((-347 (-484))) . T))
+((($) . T) (((-484)) . T) ((|#1|) . T) (((-347 (-484))) . T))
+(((|#1|) . T) (($) . T) (((-347 (-484))) . T))
+(((|#1|) . T) (($) . T) (((-347 (-484))) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (($) . T))
+(((|#1| |#1|) . T) (((-347 (-484)) (-347 (-484))) . T) (($ $) . T))
+(((|#1|) . T))
+((((-1089) |#1|) |has| |#1| (-453 (-1089) |#1|)) ((|#1| |#1|) |has| |#1| (-259 |#1|)))
(((|#1|) |has| |#1| (-259 |#1|)))
(((|#1| $) |has| |#1| (-241 |#1| |#1|)))
(((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-347 (-483))) . T) (((-483)) |has| |#1| (-580 (-483))))
-(((|#1|) . T) (((-483)) |has| |#1| (-580 (-483))))
+((($) . T) ((|#1|) . T) (((-347 (-484))) . T) (((-484)) |has| |#1| (-581 (-484))))
+(((|#1|) . T) (((-484)) |has| |#1| (-581 (-484))))
(((|#1|) . T))
-((((-483)) |has| |#1| (-796 (-483))) (((-327)) |has| |#1| (-796 (-327))))
-(|has| |#1| (-740))
-(|has| |#1| (-740))
-(|has| |#1| (-740))
-(OR (|has| |#1| (-740)) (|has| |#1| (-756)))
-(OR (|has| |#1| (-740)) (|has| |#1| (-756)))
-(|has| |#1| (-740))
-(|has| |#1| (-740))
-(|has| |#1| (-740))
+((((-484)) |has| |#1| (-797 (-484))) (((-327)) |has| |#1| (-797 (-327))))
+(|has| |#1| (-741))
+(|has| |#1| (-741))
+(|has| |#1| (-741))
+(OR (|has| |#1| (-741)) (|has| |#1| (-757)))
+(OR (|has| |#1| (-741)) (|has| |#1| (-757)))
+(|has| |#1| (-741))
+(|has| |#1| (-741))
+(|has| |#1| (-741))
(((|#1|) . T))
-(|has| |#1| (-821))
-(|has| |#1| (-933))
-((((-472)) |has| |#1| (-553 (-472))) (((-800 (-483))) |has| |#1| (-553 (-800 (-483)))) (((-800 (-327))) |has| |#1| (-553 (-800 (-327)))) (((-327)) |has| |#1| (-933)) (((-179)) |has| |#1| (-933)))
-((((-483)) . T) ((|#1|) . T) (($) . T) (((-347 (-483))) . T) (((-1088)) |has| |#1| (-950 (-1088))))
-((((-347 (-483))) |has| |#1| (-950 (-483))) (((-483)) |has| |#1| (-950 (-483))) (((-1088)) |has| |#1| (-950 (-1088))) ((|#1|) . T))
-(|has| |#1| (-1064))
+(|has| |#1| (-822))
+(|has| |#1| (-934))
+((((-473)) |has| |#1| (-554 (-473))) (((-801 (-484))) |has| |#1| (-554 (-801 (-484)))) (((-801 (-327))) |has| |#1| (-554 (-801 (-327)))) (((-327)) |has| |#1| (-934)) (((-179)) |has| |#1| (-934)))
+((((-484)) . T) ((|#1|) . T) (($) . T) (((-347 (-484))) . T) (((-1089)) |has| |#1| (-951 (-1089))))
+((((-347 (-484))) |has| |#1| (-951 (-484))) (((-484)) |has| |#1| (-951 (-484))) (((-1089)) |has| |#1| (-951 (-1089))) ((|#1|) . T))
+(|has| |#1| (-1065))
(((|#1|) . T))
-((((-772)) . T))
-((((-772)) . T))
+((((-773)) . T))
+((((-773)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-772)) . T))
+((((-773)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
-(((|#1|) . T) (((-483)) . T) (($) . T))
+(((|#1|) . T) (((-484)) . T) (($) . T))
(((|#1|) . T) (($) . T))
-(((|#1|) . T) (((-483)) . T))
-(((|#1|) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-483) (-347 (-857 |#1|))) . T))
-((((-347 (-857 |#1|))) . T))
-((((-347 (-857 |#1|))) . T))
-((((-347 (-857 |#1|))) . T))
-((((-1054 |#2| (-347 (-857 |#1|)))) . T) (((-347 (-857 |#1|))) . T))
-((((-772)) . T))
-((((-1054 |#2| (-347 (-857 |#1|)))) . T) (((-347 (-857 |#1|))) . T) (((-483)) . T))
-((((-347 (-857 |#1|))) . T))
-((((-347 (-857 |#1|))) . T))
-((((-347 (-857 |#1|)) (-347 (-857 |#1|))) . T))
-((((-347 (-857 |#1|))) . T))
-((((-347 (-857 |#1|))) . T))
-((((-472)) |has| |#2| (-553 (-472))) (((-800 (-327))) |has| |#2| (-553 (-800 (-327)))) (((-800 (-483))) |has| |#2| (-553 (-800 (-483)))))
+(((|#1|) . T) (((-484)) . T))
+(((|#1|) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-484) (-347 (-858 |#1|))) . T))
+((((-347 (-858 |#1|))) . T))
+((((-347 (-858 |#1|))) . T))
+((((-347 (-858 |#1|))) . T))
+((((-1055 |#2| (-347 (-858 |#1|)))) . T) (((-347 (-858 |#1|))) . T))
+((((-773)) . T))
+((((-1055 |#2| (-347 (-858 |#1|)))) . T) (((-347 (-858 |#1|))) . T) (((-484)) . T))
+((((-347 (-858 |#1|))) . T))
+((((-347 (-858 |#1|))) . T))
+((((-347 (-858 |#1|)) (-347 (-858 |#1|))) . T))
+((((-347 (-858 |#1|))) . T))
+((((-347 (-858 |#1|))) . T))
+((((-473)) |has| |#2| (-554 (-473))) (((-801 (-327))) |has| |#2| (-554 (-801 (-327)))) (((-801 (-484))) |has| |#2| (-554 (-801 (-484)))))
((($) . T))
(((|#2| |#3|) . T))
(((|#2|) . T))
-((((-772)) . T))
-((($) . T) (((-483)) . T) (((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) . T))
+((((-773)) . T))
+((($) . T) (((-484)) . T) (((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) . T))
(|has| |#2| (-118))
(|has| |#2| (-120))
-(OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))
-((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))))
-((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))))
-((((-347 (-483)) (-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))))
-(OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))
-(OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))
-((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))))
-((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))))
-((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))))
+(OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))
+((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))))
+((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))))
+((((-347 (-484)) (-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))))
+(OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))
+(OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))
+((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))))
+((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))))
+((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))))
(((|#2| |#3|) . T))
(((|#2|) . T))
-((($) . T) (((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) . T) (((-483)) |has| |#2| (-580 (-483))))
-(((|#2|) . T) (((-483)) |has| |#2| (-580 (-483))))
-(OR (|has| |#2| (-389)) (|has| |#2| (-821)))
-((($ $) . T) (((-773 |#1|) $) . T) (((-773 |#1|) |#2|) . T))
-((((-773 |#1|)) . T))
-((($ (-773 |#1|)) . T))
-((((-773 |#1|)) . T))
-(|has| |#2| (-821))
-(|has| |#2| (-821))
-((((-347 (-483))) |has| |#2| (-950 (-347 (-483)))) (((-483)) |has| |#2| (-950 (-483))) ((|#2|) . T) (((-773 |#1|)) . T))
-((((-483)) . T) (((-347 (-483))) OR (|has| |#2| (-38 (-347 (-483)))) (|has| |#2| (-950 (-347 (-483))))) ((|#2|) . T) (($) OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) (((-773 |#1|)) . T))
-(((|#2| |#3| (-773 |#1|)) . T))
+((($) . T) (((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) . T) (((-484)) |has| |#2| (-581 (-484))))
+(((|#2|) . T) (((-484)) |has| |#2| (-581 (-484))))
+(OR (|has| |#2| (-389)) (|has| |#2| (-822)))
+((($ $) . T) (((-774 |#1|) $) . T) (((-774 |#1|) |#2|) . T))
+((((-774 |#1|)) . T))
+((($ (-774 |#1|)) . T))
+((((-774 |#1|)) . T))
+(|has| |#2| (-822))
+(|has| |#2| (-822))
+((((-347 (-484))) |has| |#2| (-951 (-347 (-484)))) (((-484)) |has| |#2| (-951 (-484))) ((|#2|) . T) (((-774 |#1|)) . T))
+((((-484)) . T) (((-347 (-484))) OR (|has| |#2| (-38 (-347 (-484)))) (|has| |#2| (-951 (-347 (-484))))) ((|#2|) . T) (($) OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) (((-774 |#1|)) . T))
+(((|#2| |#3| (-774 |#1|)) . T))
(((|#2| |#2|) . T) ((|#6| |#6|) . T))
(((|#2|) . T) ((|#6|) . T))
(((|#2|) . T) ((|#6|) . T))
-((((-772)) . T))
-(((|#2|) . T) (((-483)) . T) ((|#6|) . T))
+((((-773)) . T))
+(((|#2|) . T) (((-484)) . T) ((|#6|) . T))
(((|#2|) . T) ((|#6|) . T))
(((|#2|) . T) ((|#6|) . T))
(((|#2|) . T) ((|#6|) . T))
(((|#4|) . T))
-((((-583 |#4|)) . T) (((-772)) . T))
-(((|#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))))
-(((|#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))))
+((((-584 |#4|)) . T) (((-773)) . T))
+(((|#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))))
+(((|#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))))
(((|#4|) . T))
-((((-472)) |has| |#4| (-553 (-472))))
+((((-473)) |has| |#4| (-554 (-473))))
(((|#1| |#2| |#3| |#4|) . T))
-((((-772)) . T))
+((((-773)) . T))
(|has| |#1| (-311))
(|has| |#1| (-311))
(|has| |#1| (-311))
-(OR (|has| |#1| (-311)) (|has| |#1| (-494)))
-(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494)))
+(OR (|has| |#1| (-311)) (|has| |#1| (-495)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495)))
(|has| |#1| (-311))
(|has| |#1| (-311))
-((((-772)) . T))
-(OR (|has| |#1| (-311)) (|has| |#1| (-494)))
+((((-773)) . T))
+(OR (|has| |#1| (-311)) (|has| |#1| (-495)))
(|has| |#1| (-311))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(((|#1| (-347 (-483))) . T))
-(((|#1| (-347 (-483))) . T))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(((|#1| (-347 (-484))) . T))
+(((|#1| (-347 (-484))) . T))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) (((-483)) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-146)))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-146)))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-146)))
-((($) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) ((|#1|) . T))
-((($) . T) (((-483)) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) ((|#1|) . T))
-((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) ((|#1|) . T))
-((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) ((|#1|) . T))
-((((-347 (-483)) (-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) ((|#1| |#1|) . T))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-146)))
-(((|#1| (-347 (-483)) (-993)) . T))
-((((-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))))
-((($ (-1174 |#2|)) . T) (($ (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))))
-((((-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))))
-((((-347 (-483)) |#1|) . T) (($ $) . T))
-(|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))
-((($) |has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))))
-(|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))
+((($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) (((-484)) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-146)))
+((($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-146)))
+((($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-146)))
+((($) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) ((|#1|) . T))
+((($) . T) (((-484)) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) ((|#1|) . T))
+((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) ((|#1|) . T))
+((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) ((|#1|) . T))
+((((-347 (-484)) (-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) ((|#1| |#1|) . T))
+((($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) ((|#1|) |has| |#1| (-146)))
+(((|#1| (-347 (-484)) (-994)) . T))
+((((-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))))
+((($ (-1175 |#2|)) . T) (($ (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))))
+((((-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))))
+((((-347 (-484)) |#1|) . T) (($ $) . T))
+(|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))
+((($) |has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))))
+(|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-772)) . T))
+((((-773)) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
-(((|#2|) . T) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))))
-(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))))
+(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
(((|#1| |#2|) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-472)) |has| |#4| (-553 (-472))))
+((((-473)) |has| |#4| (-554 (-473))))
(((|#4|) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))))
-(((|#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))))
+(((|#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))))
+(((|#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))))
(((|#4|) . T))
-((((-772)) . T) (((-583 |#4|)) . T))
+((((-773)) . T) (((-584 |#4|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-472)) . T) (((-347 (-1083 (-483)))) . T) (((-179)) . T) (((-327)) . T))
-((((-347 (-483))) . T) (((-483)) . T))
-((((-327)) . T) (((-179)) . T) (((-772)) . T))
-((($) . T) (((-347 (-483))) . T))
-((($) . T) (((-347 (-483))) . T))
-((($ $) . T) (((-347 (-483)) (-347 (-483))) . T))
-((((-347 (-483))) . T) (((-483)) . T) (($) . T))
-((((-347 (-483))) . T) (($) . T))
-((((-347 (-483))) . T) (($) . T))
-((((-347 (-483))) . T) (($) . T))
-((((-347 (-483))) . T) (($) . T))
-((((-347 (-483))) . T) (((-483)) . T) (($) . T))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
+((((-473)) . T) (((-347 (-1084 (-484)))) . T) (((-179)) . T) (((-327)) . T))
+((((-347 (-484))) . T) (((-484)) . T))
+((((-327)) . T) (((-179)) . T) (((-773)) . T))
+((($) . T) (((-347 (-484))) . T))
+((($) . T) (((-347 (-484))) . T))
+((($ $) . T) (((-347 (-484)) (-347 (-484))) . T))
+((((-347 (-484))) . T) (((-484)) . T) (($) . T))
+((((-347 (-484))) . T) (($) . T))
+((((-347 (-484))) . T) (($) . T))
+((((-347 (-484))) . T) (($) . T))
+((((-347 (-484))) . T) (($) . T))
+((((-347 (-484))) . T) (((-484)) . T) (($) . T))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
(((|#1| |#2|) . T))
-((((-772)) . T))
+((((-773)) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
-(((|#2|) . T) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))))
-(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))))
+(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
(((|#1| |#2|) . T))
-((((-472)) |has| |#2| (-553 (-472))) (((-800 (-327))) |has| |#2| (-553 (-800 (-327)))) (((-800 (-483))) |has| |#2| (-553 (-800 (-483)))))
+((((-473)) |has| |#2| (-554 (-473))) (((-801 (-327))) |has| |#2| (-554 (-801 (-327)))) (((-801 (-484))) |has| |#2| (-554 (-801 (-484)))))
((($) . T))
-(((|#2| (-419 (-3951 |#1|) (-694))) . T))
+(((|#2| (-419 (-3953 |#1|) (-695))) . T))
(((|#2|) . T))
-((((-772)) . T))
-((($) . T) (((-483)) . T) (((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) . T))
+((((-773)) . T))
+((($) . T) (((-484)) . T) (((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) . T))
(|has| |#2| (-118))
(|has| |#2| (-120))
-(OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))
-((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))))
-((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))))
-((((-347 (-483)) (-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))))
-(OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))
-(OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))
-((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))))
-((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))))
-((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))))
-(((|#2| (-419 (-3951 |#1|) (-694))) . T))
-(((|#2|) . T))
-((($) . T) (((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) . T) (((-483)) |has| |#2| (-580 (-483))))
-(((|#2|) . T) (((-483)) |has| |#2| (-580 (-483))))
-(OR (|has| |#2| (-389)) (|has| |#2| (-821)))
-((($ $) . T) (((-773 |#1|) $) . T) (((-773 |#1|) |#2|) . T))
-((((-773 |#1|)) . T))
-((($ (-773 |#1|)) . T))
-((((-773 |#1|)) . T))
-(|has| |#2| (-821))
-(|has| |#2| (-821))
-((((-347 (-483))) |has| |#2| (-950 (-347 (-483)))) (((-483)) |has| |#2| (-950 (-483))) ((|#2|) . T) (((-773 |#1|)) . T))
-((((-483)) . T) (((-347 (-483))) OR (|has| |#2| (-38 (-347 (-483)))) (|has| |#2| (-950 (-347 (-483))))) ((|#2|) . T) (($) OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) (((-773 |#1|)) . T))
-(((|#2| (-419 (-3951 |#1|) (-694)) (-773 |#1|)) . T))
-(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-961)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-717)) (|has| |#2| (-961)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1012)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1012)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-717)) (|has| |#2| (-961)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-717)) (|has| |#2| (-961)))
-(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-961))))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-663)) (|has| |#2| (-961))))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-961))))
-((((-772)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-552 (-772))) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1012))) (((-1177 |#2|)) . T))
-(((|#2|) |has| |#2| (-961)))
-((((-1088)) -12 (|has| |#2| (-809 (-1088))) (|has| |#2| (-961))))
-((((-1088)) OR (-12 (|has| |#2| (-809 (-1088))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961)))))
-((($ (-1088)) OR (-12 (|has| |#2| (-809 (-1088))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961)))))
-(((|#2|) |has| |#2| (-961)))
-(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961))))
-((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961)))))
-(|has| |#2| (-961))
-(|has| |#2| (-961))
-(|has| |#2| (-961))
-(|has| |#2| (-961))
-(|has| |#2| (-961))
-((((-483)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-961))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-663)) (|has| |#2| (-961))) (($) |has| |#2| (-961)))
-(-12 (|has| |#2| (-190)) (|has| |#2| (-961)))
+(OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))
+((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))))
+((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))))
+((((-347 (-484)) (-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))))
+(OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))
+(OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))
+((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))))
+((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))))
+((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))))
+(((|#2| (-419 (-3953 |#1|) (-695))) . T))
+(((|#2|) . T))
+((($) . T) (((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) . T) (((-484)) |has| |#2| (-581 (-484))))
+(((|#2|) . T) (((-484)) |has| |#2| (-581 (-484))))
+(OR (|has| |#2| (-389)) (|has| |#2| (-822)))
+((($ $) . T) (((-774 |#1|) $) . T) (((-774 |#1|) |#2|) . T))
+((((-774 |#1|)) . T))
+((($ (-774 |#1|)) . T))
+((((-774 |#1|)) . T))
+(|has| |#2| (-822))
+(|has| |#2| (-822))
+((((-347 (-484))) |has| |#2| (-951 (-347 (-484)))) (((-484)) |has| |#2| (-951 (-484))) ((|#2|) . T) (((-774 |#1|)) . T))
+((((-484)) . T) (((-347 (-484))) OR (|has| |#2| (-38 (-347 (-484)))) (|has| |#2| (-951 (-347 (-484))))) ((|#2|) . T) (($) OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) (((-774 |#1|)) . T))
+(((|#2| (-419 (-3953 |#1|) (-695)) (-774 |#1|)) . T))
+(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-962)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-718)) (|has| |#2| (-962)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1013)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1013)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-718)) (|has| |#2| (-962)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-718)) (|has| |#2| (-962)))
+(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-962))))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-664)) (|has| |#2| (-962))))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-962))))
+((((-773)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-553 (-773))) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1013))) (((-1178 |#2|)) . T))
+(((|#2|) |has| |#2| (-962)))
+((((-1089)) -12 (|has| |#2| (-810 (-1089))) (|has| |#2| (-962))))
+((((-1089)) OR (-12 (|has| |#2| (-810 (-1089))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962)))))
+((($ (-1089)) OR (-12 (|has| |#2| (-810 (-1089))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962)))))
+(((|#2|) |has| |#2| (-962)))
+(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962))))
+((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962)))))
+(|has| |#2| (-962))
+(|has| |#2| (-962))
+(|has| |#2| (-962))
+(|has| |#2| (-962))
+(|has| |#2| (-962))
+((((-484)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-962))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-664)) (|has| |#2| (-962))) (($) |has| |#2| (-962)))
+(-12 (|has| |#2| (-190)) (|has| |#2| (-962)))
(|has| |#2| (-317))
-(((|#2|) |has| |#2| (-961)))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-961))) (($) |has| |#2| (-961)) (((-483)) -12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))))
-(((|#2|) |has| |#2| (-961)) (((-483)) -12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))))
-(((|#2|) |has| |#2| (-1012)))
-((((-483)) OR (-12 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) (|has| |#2| (-961))) ((|#2|) |has| |#2| (-1012)) (((-347 (-483))) -12 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012))))
-(((|#2|) |has| |#2| (-1012)) (((-483)) -12 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) (((-347 (-483))) -12 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012))))
-((((-483) |#2|) . T))
-(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))))
-(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))))
-(((|#2|) . T))
-((((-483) |#2|) . T))
-((((-483) |#2|) . T))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-663))))
+(((|#2|) |has| |#2| (-962)))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-962))) (($) |has| |#2| (-962)) (((-484)) -12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))))
+(((|#2|) |has| |#2| (-962)) (((-484)) -12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))))
+(((|#2|) |has| |#2| (-1013)))
+((((-484)) OR (-12 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-962))) ((|#2|) |has| |#2| (-1013)) (((-347 (-484))) -12 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013))))
+(((|#2|) |has| |#2| (-1013)) (((-484)) -12 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) (((-347 (-484))) -12 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013))))
+((((-484) |#2|) . T))
+(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))))
+(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))))
+(((|#2|) . T))
+((((-484) |#2|) . T))
+((((-484) |#2|) . T))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-664))))
(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311))))
-(|has| |#2| (-717))
-(|has| |#2| (-717))
-(OR (|has| |#2| (-717)) (|has| |#2| (-756)))
-(OR (|has| |#2| (-717)) (|has| |#2| (-756)))
-(|has| |#2| (-717))
-(|has| |#2| (-717))
+(|has| |#2| (-718))
+(|has| |#2| (-718))
+(OR (|has| |#2| (-718)) (|has| |#2| (-757)))
+(OR (|has| |#2| (-718)) (|has| |#2| (-757)))
+(|has| |#2| (-718))
+(|has| |#2| (-718))
(((|#2|) |has| |#2| (-311)))
(((|#1| |#2|) . T))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1012)))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012))))
-(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(|has| |#1| (-1012))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(|has| |#1| (-1013))
(((|#1|) . T))
(((|#1|) . T))
-((((-483)) . T))
-((((-772)) . T))
+((((-484)) . T))
+((((-773)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-917 16)) . T) (((-347 (-483))) . T) (((-772)) . T))
-((((-483)) . T))
-((((-483)) . T))
-((($) . T))
-((((-483)) . T) (($) . T) (((-347 (-483))) . T))
-((($) . T) (((-483)) . T) (((-347 (-483))) . T))
-((($) . T) (((-483)) . T) (((-347 (-483))) . T))
-((((-483)) . T) (($) . T) (((-347 (-483))) . T))
-((((-483)) . T) (($) . T) (((-347 (-483))) . T))
-((((-483)) . T) (((-347 (-483))) . T) (($) . T))
-((((-483)) . T) (((-347 (-483))) . T) (($) . T))
-((((-483) (-483)) . T) (((-347 (-483)) (-347 (-483))) . T) (($ $) . T))
-((((-483)) . T))
-((((-483)) . T))
-((((-483)) . T))
-((((-483)) . T))
-((((-483)) . T))
-((((-483)) . T))
-((((-472)) . T) (((-800 (-483))) . T) (((-327)) . T) (((-179)) . T))
-((((-347 (-483))) . T) (((-483)) . T))
-((((-483)) . T) (($) . T) (((-347 (-483))) . T))
-((((-483)) . T))
-((((-1071)) . T) (((-772)) . T))
+((((-918 16)) . T) (((-347 (-484))) . T) (((-773)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((($) . T))
+((((-484)) . T) (($) . T) (((-347 (-484))) . T))
+((($) . T) (((-484)) . T) (((-347 (-484))) . T))
+((($) . T) (((-484)) . T) (((-347 (-484))) . T))
+((((-484)) . T) (($) . T) (((-347 (-484))) . T))
+((((-484)) . T) (($) . T) (((-347 (-484))) . T))
+((((-484)) . T) (((-347 (-484))) . T) (($) . T))
+((((-484)) . T) (((-347 (-484))) . T) (($) . T))
+((((-484) (-484)) . T) (((-347 (-484)) (-347 (-484))) . T) (($ $) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-473)) . T) (((-801 (-484))) . T) (((-327)) . T) (((-179)) . T))
+((((-347 (-484))) . T) (((-484)) . T))
+((((-484)) . T) (($) . T) (((-347 (-484))) . T))
+((((-484)) . T))
+((((-1072)) . T) (((-773)) . T))
((($) . T))
((((-142 (-327))) . T) (((-179)) . T) (((-327)) . T))
-((((-347 (-483))) . T) (((-483)) . T))
-((($) . T) (((-347 (-483))) . T))
-((($) . T) (((-483)) . T) (((-347 (-483))) . T))
-((((-483)) . T) (($) . T) (((-347 (-483))) . T))
-((($) . T) (((-347 (-483))) . T))
-((($) . T) (((-347 (-483))) . T))
-((((-347 (-483))) . T) (($) . T))
-((((-347 (-483))) . T) (($) . T))
-((((-347 (-483)) (-347 (-483))) . T) (($ $) . T))
-((($) . T))
-((($ $) . T) (((-550 $) $) . T))
-((((-347 (-483))) . T) (((-483)) . T) (((-550 $)) . T))
-((((-1037 (-483) (-550 $))) . T) (($) . T) (((-483)) . T) (((-347 (-483))) . T) (((-550 $)) . T))
-((((-772)) . T))
-(((|#1|) . T))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(((|#1|) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1012)))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1012))))
-(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(OR (|has| |#1| (-756)) (|has| |#1| (-1012)))
-(((|#1|) . T))
-((((-472)) |has| |#1| (-553 (-472))))
-((((-483) |#1|) . T))
-((((-1144 (-483)) $) . T) (((-483) |#1|) . T))
-((((-483) |#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#1| (-1012))
-(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1012)))
+((((-347 (-484))) . T) (((-484)) . T))
+((($) . T) (((-347 (-484))) . T))
+((($) . T) (((-484)) . T) (((-347 (-484))) . T))
+((((-484)) . T) (($) . T) (((-347 (-484))) . T))
+((($) . T) (((-347 (-484))) . T))
+((($) . T) (((-347 (-484))) . T))
+((((-347 (-484))) . T) (($) . T))
+((((-347 (-484))) . T) (($) . T))
+((((-347 (-484)) (-347 (-484))) . T) (($ $) . T))
+((($) . T))
+((($ $) . T) (((-551 $) $) . T))
+((((-347 (-484))) . T) (((-484)) . T) (((-551 $)) . T))
+((((-1038 (-484) (-551 $))) . T) (($) . T) (((-484)) . T) (((-347 (-484))) . T) (((-551 $)) . T))
+((((-773)) . T))
+(((|#1|) . T))
+(|has| |#1| (-757))
+(|has| |#1| (-757))
+(((|#1|) . T))
+(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1013)))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-757)) (|has| |#1| (-1013)))
+(((|#1|) . T))
+((((-473)) |has| |#1| (-554 (-473))))
+((((-484) |#1|) . T))
+((((-1145 (-484)) $) . T) (((-484) |#1|) . T))
+((((-484) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-1013))
+(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
(((|#1| (-433 |#1| |#3|) (-433 |#1| |#2|)) . T))
((((-85)) . T))
((((-85)) . T))
-((((-483) (-85)) . T))
-((((-483) (-85)) . T))
-((((-483) (-85)) . T) (((-1144 (-483)) $) . T))
-((((-472)) . T))
+((((-484) (-85)) . T))
+((((-484) (-85)) . T))
+((((-484) (-85)) . T) (((-1145 (-484)) $) . T))
+((((-473)) . T))
((((-85)) . T))
-((((-772)) . T))
+((((-773)) . T))
((((-85)) . T))
((((-85)) . T))
-((((-1071)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
+((((-1072)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
(((|#1| |#2|) . T))
-((((-772)) . T))
-((((-483)) . T))
+((((-773)) . T))
+((((-484)) . T))
(((|#1| |#2|) . T))
-((((-772)) . T))
-(-12 (|has| |#1| (-1012)) (|has| |#2| (-1012)))
-((((-772)) -12 (|has| |#1| (-1012)) (|has| |#2| (-1012))))
+((((-773)) . T))
+(-12 (|has| |#1| (-1013)) (|has| |#2| (-1013)))
+((((-773)) -12 (|has| |#1| (-1013)) (|has| |#2| (-1013))))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-772)) . T))
+((((-773)) . T))
(((|#1| |#2|) . T))
-((((-772)) . T))
-((((-772)) . T))
+((((-773)) . T))
+((((-783 |#2| |#1|)) . T))
+((((-773)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(((|#1|) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1012)))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1012))))
-(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(OR (|has| |#1| (-756)) (|has| |#1| (-1012)))
-(((|#1|) . T))
-((((-472)) |has| |#1| (-553 (-472))))
-((((-483) |#1|) . T))
-((((-1144 (-483)) $) . T) (((-483) |#1|) . T))
-((((-483) |#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
-((((-516 |#1|)) . T))
-((((-516 |#1|)) . T))
-((((-516 |#1|)) . T))
-((((-516 |#1|)) . T) (($) . T) (((-347 (-483))) . T))
-((((-516 |#1|)) . T) (($) . T) (((-347 (-483))) . T))
-((((-516 |#1|) (-516 |#1|)) . T) (($ $) . T) (((-347 (-483)) (-347 (-483))) . T))
-((((-347 (-483))) . T) (($) . T))
-((((-516 |#1|)) . T) (((-347 (-483))) . T) (($) . T))
-((((-516 |#1|)) . T) (((-347 (-483))) . T) (($) . T))
-((((-772)) . T))
-((((-516 |#1|)) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T))
-((((-516 |#1|)) . T) (((-347 (-483))) . T) (($) . T))
-((((-516 |#1|)) . T) (((-347 (-483))) . T) (($) . T) (((-483)) . T))
+(|has| |#1| (-757))
+(|has| |#1| (-757))
+(((|#1|) . T))
+(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1013)))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-757)) (|has| |#1| (-1013)))
+(((|#1|) . T))
+((((-473)) |has| |#1| (-554 (-473))))
+((((-484) |#1|) . T))
+((((-1145 (-484)) $) . T) (((-484) |#1|) . T))
+((((-484) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
+((((-517 |#1|)) . T))
+((((-517 |#1|)) . T))
+((((-517 |#1|)) . T))
+((((-517 |#1|)) . T) (($) . T) (((-347 (-484))) . T))
+((((-517 |#1|)) . T) (($) . T) (((-347 (-484))) . T))
+((((-517 |#1|) (-517 |#1|)) . T) (($ $) . T) (((-347 (-484)) (-347 (-484))) . T))
+((((-347 (-484))) . T) (($) . T))
+((((-517 |#1|)) . T) (((-347 (-484))) . T) (($) . T))
+((((-517 |#1|)) . T) (((-347 (-484))) . T) (($) . T))
+((((-773)) . T))
+((((-517 |#1|)) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T))
+((((-517 |#1|)) . T) (((-347 (-484))) . T) (($) . T))
+((((-517 |#1|)) . T) (((-347 (-484))) . T) (($) . T) (((-484)) . T))
(|has| $ (-120))
((($) . T))
-((((-516 |#1|)) . T))
+((((-517 |#1|)) . T))
(((|#1|) . T))
-(|has| |#1| (-1012))
-(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1012)))
+(|has| |#1| (-1013))
+(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
(((|#1| |#4| |#5|) . T))
-(((|#1| (-536 |#1| |#3|) (-536 |#1| |#2|)) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1012)))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012))))
-(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(|has| |#1| (-1012))
-(((|#1|) . T))
-(((|#1| (-536 |#1| |#3|) (-536 |#1| |#2|)) . T))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
-((((-772)) . T))
-((((-694) |#1|) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-514)) . T))
-((((-1014)) . T))
-((((-583 $)) . T) (((-1071)) . T) (((-1088)) . T) (((-483)) . T) (((-179)) . T) (((-772)) . T))
-((((-483) $) . T) (((-583 (-483)) $) . T))
-((((-772)) . T))
-((((-1071) (-1088) (-483) (-179) (-772)) . T))
-((((-772)) . T))
-((($) . T) (((-483)) . T))
+(((|#1| (-537 |#1| |#3|) (-537 |#1| |#2|)) . T))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(|has| |#1| (-1013))
+(((|#1|) . T))
+(((|#1| (-537 |#1| |#3|) (-537 |#1| |#2|)) . T))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
+((((-773)) . T))
+((((-695) |#1|) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-515)) . T))
+((((-1015)) . T))
+((((-584 $)) . T) (((-1072)) . T) (((-1089)) . T) (((-484)) . T) (((-179)) . T) (((-773)) . T))
+((((-484) $) . T) (((-584 (-484)) $) . T))
+((((-773)) . T))
+((((-1072) (-1089) (-484) (-179) (-773)) . T))
+((((-773)) . T))
+((($) . T) (((-484)) . T))
((($) . T))
((($) . T))
((($ $) . T))
@@ -1634,213 +1635,213 @@
((($) . T))
((($) . T))
((($) . T))
-((((-483)) . T) (($) . T))
-((((-483)) . T))
-((($) . T) (((-483)) . T))
-((((-483)) . T))
-((((-472)) . T) (((-483)) . T) (((-800 (-483))) . T) (((-327)) . T) (((-179)) . T))
-((((-483)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
+((((-484)) . T) (($) . T))
+((((-484)) . T))
+((($) . T) (((-484)) . T))
+((((-484)) . T))
+((((-473)) . T) (((-484)) . T) (((-801 (-484))) . T) (((-327)) . T) (((-179)) . T))
+((((-484)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
(((|#1| |#2|) . T))
-((((-772)) . T))
+((((-773)) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
-(((|#2|) . T) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))))
-(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))))
+(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
(((|#1| |#2|) . T))
((($) . T))
((($ $) . T))
((($) . T))
((($) . T))
-((((-772)) . T))
-((((-483)) . T) (($) . T))
+((((-773)) . T))
+((((-484)) . T) (($) . T))
((($) . T))
((($) . T))
((($) . T))
-((((-483)) . T) (($) . T))
-((((-483)) . T))
+((((-484)) . T) (($) . T))
+((((-484)) . T))
(((|#1|) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
((($) . T))
-((((-772)) . T))
-((($) . T) (((-483)) . T))
+((((-773)) . T))
+((($) . T) (((-484)) . T))
((($) . T))
((($ $) . T))
((($) . T))
((($) . T))
((($) . T))
((($) . T))
-((((-483)) . T) (($) . T))
+((((-484)) . T) (($) . T))
(((|#1|) . T))
-((((-483)) . T))
+((((-484)) . T))
((($) . T))
((($) . T))
((($) . T))
(|has| $ (-120))
((($) . T))
-((((-772)) . T))
-((($) . T))
-((($) . T) (((-347 (-483))) . T))
-((($) . T) (((-483)) . T) (((-347 (-483))) . T))
-((($) . T) (((-347 (-483))) . T))
-((($) . T) (((-347 (-483))) . T))
-((($ $) . T) (((-347 (-483)) (-347 (-483))) . T))
-((((-347 (-483))) . T) (($) . T))
-((((-347 (-483))) . T) (($) . T))
-((((-347 (-483))) . T) (($) . T))
-((((-483)) . T) (((-347 (-483))) . T) (($) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-347 (-483)) (-347 (-483))) . T))
-((((-347 (-483))) . T))
-((((-347 (-483))) . T))
-((((-772)) . T))
-((((-483)) . T) (((-347 (-483))) . T))
-((((-347 (-483))) . T))
-((((-347 (-483))) . T))
-((((-347 (-483))) . T))
-((((-1093)) . T))
-((((-1093)) . T))
-((((-1093)) . T) (((-772)) . T))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
-(|has| |#1| (-15 * (|#1| (-483) |#1|)))
-((((-772)) . T))
-((($) |has| |#1| (-15 * (|#1| (-483) |#1|))))
-(|has| |#1| (-15 * (|#1| (-483) |#1|)))
-((($ $) . T) (((-483) |#1|) . T))
-((((-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))))
-((($ (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))))
-((((-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))))
-(((|#1| (-483) (-993)) . T))
-((($) . T) (((-483)) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T))
-((($) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T))
+((((-773)) . T))
+((($) . T))
+((($) . T) (((-347 (-484))) . T))
+((($) . T) (((-484)) . T) (((-347 (-484))) . T))
+((($) . T) (((-347 (-484))) . T))
+((($) . T) (((-347 (-484))) . T))
+((($ $) . T) (((-347 (-484)) (-347 (-484))) . T))
+((((-347 (-484))) . T) (($) . T))
+((((-347 (-484))) . T) (($) . T))
+((((-347 (-484))) . T) (($) . T))
+((((-484)) . T) (((-347 (-484))) . T) (($) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-347 (-484)) (-347 (-484))) . T))
+((((-347 (-484))) . T))
+((((-347 (-484))) . T))
+((((-773)) . T))
+((((-484)) . T) (((-347 (-484))) . T))
+((((-347 (-484))) . T))
+((((-347 (-484))) . T))
+((((-347 (-484))) . T))
+((((-1094)) . T))
+((((-1094)) . T))
+((((-1094)) . T) (((-773)) . T))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
+(|has| |#1| (-15 * (|#1| (-484) |#1|)))
+((((-773)) . T))
+((($) |has| |#1| (-15 * (|#1| (-484) |#1|))))
+(|has| |#1| (-15 * (|#1| (-484) |#1|)))
+((($ $) . T) (((-484) |#1|) . T))
+((((-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))
+((($ (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))
+((((-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))
+(((|#1| (-484) (-994)) . T))
+((($) . T) (((-484)) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T))
+((($) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T))
(|has| |#1| (-118))
(|has| |#1| (-120))
-(OR (|has| |#1| (-146)) (|has| |#1| (-494)))
-((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-494))))
-((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-494))))
-((((-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-494))))
-(|has| |#1| (-494))
-(|has| |#1| (-494))
-((((-483)) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494)))
-((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494)))
-((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494)))
-((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494)))
-(((|#1| (-483)) . T))
-(((|#1| (-483)) . T))
-((($) |has| |#1| (-494)))
-((($) |has| |#1| (-494)))
-((($) |has| |#1| (-494)))
-(|has| |#1| (-494))
-(|has| |#1| (-494))
-(|has| |#1| (-494))
-((($) |has| |#1| (-494)) ((|#1|) . T))
-((($) |has| |#1| (-494)) ((|#1|) . T))
-((($ $) |has| |#1| (-494)) ((|#1| |#1|) . T))
-((($) |has| |#1| (-494)) (((-483)) . T))
+(OR (|has| |#1| (-146)) (|has| |#1| (-495)))
+((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495))))
+((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495))))
+((((-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495))))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+((((-484)) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
+((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
+((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
+((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
+(((|#1| (-484)) . T))
+(((|#1| (-484)) . T))
+((($) |has| |#1| (-495)))
+((($) |has| |#1| (-495)))
+((($) |has| |#1| (-495)))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+((($) |has| |#1| (-495)) ((|#1|) . T))
+((($) |has| |#1| (-495)) ((|#1|) . T))
+((($ $) |has| |#1| (-495)) ((|#1| |#1|) . T))
+((($) |has| |#1| (-495)) (((-484)) . T))
(((|#1|) . T) (($) . T))
-((((-772)) . T))
-(((|#1|) . T) (($) . T) (((-483)) . T))
-((((-1093)) . T))
-((((-1093)) . T))
-((((-1093)) . T) (((-772)) . T))
-((((-772)) . T))
+((((-773)) . T))
+(((|#1|) . T) (($) . T) (((-484)) . T))
+((((-1094)) . T))
+((((-1094)) . T))
+((((-1094)) . T) (((-773)) . T))
+((((-773)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-483) |#1|) . T))
-((((-483) |#1|) . T))
-((((-483) |#1|) . T) (((-1144 (-483)) $) . T))
-((((-472)) |has| |#1| (-553 (-472))))
+((((-484) |#1|) . T))
+((((-484) |#1|) . T))
+((((-484) |#1|) . T) (((-1145 (-484)) $) . T))
+((((-473)) |has| |#1| (-554 (-473))))
(((|#1|) . T))
-(OR (|has| |#1| (-756)) (|has| |#1| (-1012)))
-(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1012))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1012)))
+(OR (|has| |#1| (-757)) (|has| |#1| (-1013)))
+(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1013)))
(((|#1|) . T))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
+(|has| |#1| (-757))
+(|has| |#1| (-757))
(((|#1|) . T))
(((|#1|) . T))
-((((-1093)) . T))
-((((-1128)) . T) (((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
-((((-483) |#1|) |has| |#2| (-358 |#1|)))
+((((-1094)) . T))
+((((-1129)) . T) (((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
+((((-484) |#1|) |has| |#2| (-358 |#1|)))
(((|#1|) OR (|has| |#2| (-315 |#1|)) (|has| |#2| (-358 |#1|))))
(((|#1|) |has| |#2| (-358 |#1|)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#2|) . T) (((-772)) . T))
-(((|#1|) . T) (((-483)) . T))
+(((|#2|) . T) (((-773)) . T))
+(((|#1|) . T) (((-484)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
((((-101)) . T))
((((-101)) . T))
-((((-101)) . T) (((-772)) . T))
-((((-772)) . T))
-((((-101)) . T) (((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-101)) . T) (((-541)) . T))
-((((-101)) . T) (((-541)) . T))
-((((-101)) . T) (((-541)) . T) (((-772)) . T))
-((((-1071) |#1|) . T))
-((((-1071) |#1|) . T))
-((((-1071) |#1|) . T))
-((((-1071) |#1|) . T))
-((((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) . T))
-((((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) . T))
-(((|#1|) . T) (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) |has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))))
-(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) |has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))))
-((((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) . T))
-((((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) . T))
-((((-1071) |#1|) . T))
-((((-772)) . T))
-((((-335) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) . T))
-((((-472)) |has| |#1| (-553 (-472))) (((-800 (-327))) |has| |#1| (-553 (-800 (-327)))) (((-800 (-483))) |has| |#1| (-553 (-800 (-483)))))
-(((|#1|) . T))
-((((-772)) . T))
-((((-772)) . T))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(((|#2|) . T))
-(((|#2|) . T))
-((((-772)) . T))
+((((-101)) . T) (((-773)) . T))
+((((-773)) . T))
+((((-101)) . T) (((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-101)) . T) (((-542)) . T))
+((((-101)) . T) (((-542)) . T))
+((((-101)) . T) (((-542)) . T) (((-773)) . T))
+((((-1072) |#1|) . T))
+((((-1072) |#1|) . T))
+((((-1072) |#1|) . T))
+((((-1072) |#1|) . T))
+((((-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) . T))
+((((-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) . T))
+(((|#1|) . T) (((-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) (((-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) |has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)))))
+(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) (((-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) |has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)))))
+((((-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) . T))
+((((-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) . T))
+((((-1072) |#1|) . T))
+((((-773)) . T))
+((((-335) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) . T))
+((((-473)) |has| |#1| (-554 (-473))) (((-801 (-327))) |has| |#1| (-554 (-801 (-327)))) (((-801 (-484))) |has| |#1| (-554 (-801 (-484)))))
+(((|#1|) . T))
+((((-773)) . T))
+((((-773)) . T))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(((|#2|) . T))
+(((|#2|) . T))
+((((-773)) . T))
(((|#2|) . T))
(((|#2|) . T))
(((|#2| |#2|) . T))
-(((|#2|) . T) (((-483)) . T) (($) . T))
+(((|#2|) . T) (((-484)) . T) (($) . T))
(((|#2|) . T) (($) . T))
-(((|#2|) . T) (((-483)) . T))
+(((|#2|) . T) (((-484)) . T))
(((|#2|) . T))
(|has| |#1| (-311))
(|has| |#1| (-311))
(|has| |#1| (-311))
(|has| |#1| (-118))
(|has| |#1| (-120))
-(((|#2|) . T) (((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) (((-483)) |has| |#1| (-950 (-483))) ((|#1|) . T))
+(((|#2|) . T) (((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) (((-484)) |has| |#1| (-951 (-484))) ((|#1|) . T))
(((|#1|) . T))
((((-347 |#2|)) . T))
((($) . T))
@@ -1850,289 +1851,289 @@
((($) . T))
((($) . T))
(|has| |#2| (-190))
-(((|#2|) . T) (((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((|#1|) . T) (($) . T) (((-483)) . T))
+(((|#2|) . T) (((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((|#1|) . T) (($) . T) (((-484)) . T))
((($) . T))
-((((-772)) . T))
-((($) . T) (((-483)) . T))
+((((-773)) . T))
+((($) . T) (((-484)) . T))
((($) OR (|has| |#2| (-190)) (|has| |#2| (-189))))
(OR (|has| |#2| (-190)) (|has| |#2| (-189)))
(((|#2|) . T))
-((($ (-1088)) OR (|has| |#2| (-809 (-1088))) (|has| |#2| (-811 (-1088)))))
-((((-1088)) OR (|has| |#2| (-809 (-1088))) (|has| |#2| (-811 (-1088)))))
-((((-1088)) |has| |#2| (-809 (-1088))))
-(((|#2|) . T))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
-((((-772)) . T))
-((((-1071) (-51)) . T))
-((((-772)) . T))
-((((-1088) (-51)) . T) (((-1071) (-51)) . T))
-((((-1071) (-51)) . T))
-((((-1071) (-51)) . T))
-((((-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) . T))
-((((-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) . T))
-((((-51)) . T) (((-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) . T))
-((((-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) |has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))))))
-((((-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) |has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))))))
-((((-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) . T))
-((((-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) . T))
-((((-1071) (-51)) . T))
-((((-483) |#1|) |has| |#2| (-358 |#1|)))
+((($ (-1089)) OR (|has| |#2| (-810 (-1089))) (|has| |#2| (-812 (-1089)))))
+((((-1089)) OR (|has| |#2| (-810 (-1089))) (|has| |#2| (-812 (-1089)))))
+((((-1089)) |has| |#2| (-810 (-1089))))
+(((|#2|) . T))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
+((((-773)) . T))
+((((-1072) (-51)) . T))
+((((-773)) . T))
+((((-1089) (-51)) . T) (((-1072) (-51)) . T))
+((((-1072) (-51)) . T))
+((((-1072) (-51)) . T))
+((((-2 (|:| -3856 (-1072)) (|:| |entry| (-51)))) . T))
+((((-2 (|:| -3856 (-1072)) (|:| |entry| (-51)))) . T))
+((((-51)) . T) (((-2 (|:| -3856 (-1072)) (|:| |entry| (-51)))) . T))
+((((-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3856 (-1072)) (|:| |entry| (-51)))) |has| (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-259 (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))))))
+((((-2 (|:| -3856 (-1072)) (|:| |entry| (-51)))) |has| (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-259 (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))))))
+((((-2 (|:| -3856 (-1072)) (|:| |entry| (-51)))) . T))
+((((-2 (|:| -3856 (-1072)) (|:| |entry| (-51)))) . T))
+((((-1072) (-51)) . T))
+((((-484) |#1|) |has| |#2| (-358 |#1|)))
(((|#1|) OR (|has| |#2| (-315 |#1|)) (|has| |#2| (-358 |#1|))))
(((|#1|) |has| |#2| (-358 |#1|)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#2|) . T) (((-772)) . T))
-(((|#1|) . T) (((-483)) . T))
+(((|#2|) . T) (((-773)) . T))
+(((|#1|) . T) (((-484)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-((((-773 |#1|)) . T))
-((((-772)) . T))
-(((|#1| (-577 |#2|)) . T))
-((((-577 |#2|)) . T))
+((((-774 |#1|)) . T))
+((((-773)) . T))
+(((|#1| (-578 |#2|)) . T))
+((((-578 |#2|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-772)) . T))
-(((|#1|) . T) (((-483)) . T))
+((((-773)) . T))
+(((|#1|) . T) (((-484)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-((((-579 |#1| |#2|) |#1|) . T))
+((((-580 |#1| |#2|) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-772)) . T))
-(((|#1|) . T) (((-483)) . T))
+((((-773)) . T))
+(((|#1|) . T) (((-484)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1012)))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1012))))
-(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(OR (|has| |#1| (-756)) (|has| |#1| (-1012)))
+(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1013)))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-757)) (|has| |#1| (-1013)))
(((|#1|) . T))
-((((-472)) |has| |#1| (-553 (-472))))
-((((-483) |#1|) . T))
-((((-1144 (-483)) $) . T) (((-483) |#1|) . T))
-((((-483) |#1|) . T))
+((((-473)) |has| |#1| (-554 (-473))))
+((((-484) |#1|) . T))
+((((-1145 (-484)) $) . T) (((-484) |#1|) . T))
+((((-484) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
+(|has| |#1| (-757))
+(|has| |#1| (-757))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1093)) . T))
-(((|#1|) . T) (((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
+((((-1094)) . T))
+(((|#1|) . T) (((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
(((|#1|) . T))
-((((-472)) |has| |#1| (-553 (-472))))
+((((-473)) |has| |#1| (-554 (-473))))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1012))
-(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1012)))
+(|has| |#1| (-1013))
+(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-772)) . T))
-(|has| |#1| (-714))
-(|has| |#1| (-714))
-(|has| |#1| (-714))
-(|has| |#1| (-714))
-(|has| |#1| (-714))
-(|has| |#1| (-714))
+((((-773)) . T))
+(|has| |#1| (-715))
+(|has| |#1| (-715))
+(|has| |#1| (-715))
+(|has| |#1| (-715))
+(|has| |#1| (-715))
+(|has| |#1| (-715))
(((|#2| |#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-772)) . T))
-((((-483)) . T) ((|#2|) . T))
+((((-773)) . T))
+((((-484)) . T) ((|#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-((((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) (((-483)) |has| |#1| (-950 (-483))) ((|#1|) . T))
+((((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) (((-484)) |has| |#1| (-951 (-484))) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
-((((-772)) . T))
+((((-773)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
-(((|#1|) . T) (((-483)) . T) (($) . T))
+(((|#1|) . T) (((-484)) . T) (($) . T))
(((|#1|) . T) (($) . T))
-((((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((|#1|) . T) (((-483)) . T))
+((((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((|#1|) . T) (((-484)) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-((((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) (((-483)) |has| |#1| (-950 (-483))) ((|#1|) . T))
+((((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) (((-484)) |has| |#1| (-951 (-484))) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
-((((-772)) . T))
+((((-773)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
-(((|#1|) . T) (((-483)) . T) (($) . T))
+(((|#1|) . T) (((-484)) . T) (($) . T))
(((|#1|) . T) (($) . T))
-((((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((|#1|) . T) (((-483)) . T))
+((((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((|#1|) . T) (((-484)) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) . T))
(((|#2| |#2|) . T) ((|#1| |#1|) . T))
(((|#1|) . T))
-((((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) (((-483)) |has| |#1| (-950 (-483))) ((|#1|) . T))
+((((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) (((-484)) |has| |#1| (-951 (-484))) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
-((((-772)) . T))
+((((-773)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
-(((|#1|) . T) (((-483)) . T) (($) . T))
+(((|#1|) . T) (((-484)) . T) (($) . T))
(((|#1|) . T) (($) . T))
-((((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((|#1|) . T) (((-483)) . T))
+((((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((|#1|) . T) (((-484)) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) . T))
-((((-614 |#1|)) . T))
-((((-614 |#1|)) . T))
-(((|#2| (-614 |#1|)) . T))
+((((-615 |#1|)) . T))
+((((-615 |#1|)) . T))
+(((|#2| (-615 |#1|)) . T))
(((|#2|) . T))
(((|#2| |#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-772)) . T))
-((((-483)) . T) ((|#2|) . T))
+((((-773)) . T))
+((((-484)) . T) ((|#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
(((|#1| |#2|) . T))
-((((-483) |#2|) . T))
+((((-484) |#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-(((|#2|) |has| |#2| (-6 (-3991 "*"))))
+(((|#2|) |has| |#2| (-6 (-3993 "*"))))
(((|#2| |#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-630 |#2|)) . T) (((-772)) . T))
-((($) . T) (((-483)) . T) ((|#2|) . T))
+((((-631 |#2|)) . T) (((-773)) . T))
+((($) . T) (((-484)) . T) ((|#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-1088)) |has| |#2| (-809 (-1088))))
-((((-1088)) OR (|has| |#2| (-809 (-1088))) (|has| |#2| (-811 (-1088)))))
-((($ (-1088)) OR (|has| |#2| (-809 (-1088))) (|has| |#2| (-811 (-1088)))))
+((((-1089)) |has| |#2| (-810 (-1089))))
+((((-1089)) OR (|has| |#2| (-810 (-1089))) (|has| |#2| (-812 (-1089)))))
+((($ (-1089)) OR (|has| |#2| (-810 (-1089))) (|has| |#2| (-812 (-1089)))))
(((|#2|) . T))
(OR (|has| |#2| (-190)) (|has| |#2| (-189)))
((($) OR (|has| |#2| (-190)) (|has| |#2| (-189))))
(|has| |#2| (-190))
(((|#2|) . T))
-((($) . T) ((|#2|) . T) (((-483)) |has| |#2| (-580 (-483))))
-(((|#2|) . T) (((-483)) |has| |#2| (-580 (-483))))
+((($) . T) ((|#2|) . T) (((-484)) |has| |#2| (-581 (-484))))
+(((|#2|) . T) (((-484)) |has| |#2| (-581 (-484))))
(((|#2|) . T))
-((((-483)) . T) ((|#2|) . T) (((-347 (-483))) |has| |#2| (-950 (-347 (-483)))))
-(((|#2|) . T) (((-483)) |has| |#2| (-950 (-483))) (((-347 (-483))) |has| |#2| (-950 (-347 (-483)))))
+((((-484)) . T) ((|#2|) . T) (((-347 (-484))) |has| |#2| (-951 (-347 (-484)))))
+(((|#2|) . T) (((-484)) |has| |#2| (-951 (-484))) (((-347 (-484))) |has| |#2| (-951 (-347 (-484)))))
(((|#1| |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T))
-(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))))
-(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))))
+(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))))
+(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))))
(((|#2|) . T))
(((|#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-772)) . T))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-772)) . T))
-((((-1093)) . T))
-((((-1128)) . T) (((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
-((((-472)) |has| |#1| (-553 (-472))))
-(((|#1| (-1177 |#1|) (-1177 |#1|)) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1012)))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012))))
-(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(|has| |#1| (-1012))
-(((|#1|) . T))
-(((|#1| (-1177 |#1|) (-1177 |#1|)) . T))
-((((-772)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-772)) . T))
-((((-772)) . T))
-((($) . T) (((-347 (-483))) . T))
-((($) . T) (((-347 (-483))) . T))
-((($ $) . T) (((-347 (-483)) (-347 (-483))) . T))
-((((-347 (-483))) . T) (((-483)) . T) (($) . T))
-((((-347 (-483))) . T) (($) . T))
-((((-347 (-483))) . T) (($) . T))
-((((-347 (-483))) . T) (($) . T))
-((((-347 (-483))) . T) (($) . T))
-((((-347 (-483))) . T) (((-483)) . T) (($) . T))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-773)) . T))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-773)) . T))
+((((-1094)) . T))
+((((-1129)) . T) (((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
+((((-473)) |has| |#1| (-554 (-473))))
+(((|#1| (-1178 |#1|) (-1178 |#1|)) . T))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(|has| |#1| (-1013))
+(((|#1|) . T))
+(((|#1| (-1178 |#1|) (-1178 |#1|)) . T))
+((((-773)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-773)) . T))
+((((-773)) . T))
+((($) . T) (((-347 (-484))) . T))
+((($) . T) (((-347 (-484))) . T))
+((($ $) . T) (((-347 (-484)) (-347 (-484))) . T))
+((((-347 (-484))) . T) (((-484)) . T) (($) . T))
+((((-347 (-484))) . T) (($) . T))
+((((-347 (-484))) . T) (($) . T))
+((((-347 (-484))) . T) (($) . T))
+((((-347 (-484))) . T) (($) . T))
+((((-347 (-484))) . T) (((-484)) . T) (($) . T))
(|has| |#1| (-317))
(((|#1|) . T))
(((|#1|) . T))
((($) . T))
-((((-772)) . T))
-((((-347 $) (-347 $)) |has| |#1| (-494)) (($ $) . T) ((|#1| |#1|) . T))
+((((-773)) . T))
+((((-347 $) (-347 $)) |has| |#1| (-495)) (($ $) . T) ((|#1| |#1|) . T))
(|has| |#1| (-311))
-(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))
+(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))
(|has| |#1| (-311))
-(((|#1| (-694) (-993)) . T))
-(|has| |#1| (-821))
-(|has| |#1| (-821))
-((((-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088)))) (((-993)) . T))
-((($ (-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088)))) (($ (-993)) . T))
-((((-1088)) |has| |#1| (-809 (-1088))) (((-993)) . T))
-((((-483)) |has| |#1| (-580 (-483))) ((|#1|) . T))
-(((|#1|) . T))
-(((|#1| (-694)) . T))
+(((|#1| (-695) (-994)) . T))
+(|has| |#1| (-822))
+(|has| |#1| (-822))
+((((-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089)))) (((-994)) . T))
+((($ (-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089)))) (($ (-994)) . T))
+((((-1089)) |has| |#1| (-810 (-1089))) (((-994)) . T))
+((((-484)) |has| |#1| (-581 (-484))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (-695)) . T))
(|has| |#1| (-120))
(|has| |#1| (-118))
-(((|#2|) . T) (((-483)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) (((-993)) . T) ((|#1|) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) . T) (((-483)) |has| |#1| (-580 (-483))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((((-483)) . T) (($) . T) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-(((|#1|) . T))
-((((-993)) . T) ((|#1|) . T) (((-483)) |has| |#1| (-950 (-483))) (((-347 (-483))) |has| |#1| (-950 (-347 (-483)))))
-(((|#1| (-694)) . T))
-((((-993) |#1|) . T) (((-993) $) . T) (($ $) . T))
-((($) . T))
-(|has| |#1| (-1064))
-(((|#1|) . T))
-((((-2 (|:| -2396 |#1|) (|:| -2397 |#2|))) . T))
-((((-2 (|:| -2396 |#1|) (|:| -2397 |#2|))) . T))
-((((-2 (|:| -2396 |#1|) (|:| -2397 |#2|))) . T) (((-772)) . T))
+(((|#2|) . T) (((-484)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) (((-994)) . T) ((|#1|) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))))
+((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) . T) (((-484)) |has| |#1| (-581 (-484))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((((-484)) . T) (($) . T) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+(((|#1|) . T))
+((((-994)) . T) ((|#1|) . T) (((-484)) |has| |#1| (-951 (-484))) (((-347 (-484))) |has| |#1| (-951 (-347 (-484)))))
+(((|#1| (-695)) . T))
+((((-994) |#1|) . T) (((-994) $) . T) (($ $) . T))
+((($) . T))
+(|has| |#1| (-1065))
+(((|#1|) . T))
+((((-2 (|:| -2398 |#1|) (|:| -2399 |#2|))) . T))
+((((-2 (|:| -2398 |#1|) (|:| -2399 |#2|))) . T))
+((((-2 (|:| -2398 |#1|) (|:| -2399 |#2|))) . T) (((-773)) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
@@ -2143,51 +2144,51 @@
(|has| |#1| (-120))
(((|#2| |#2|) . T))
((((-86)) . T) ((|#1|) . T))
-((((-86)) . T) ((|#1|) . T) (((-483)) . T))
+((((-86)) . T) ((|#1|) . T) (((-484)) . T))
(((|#1|) |has| |#1| (-146)) (($) . T))
-((((-772)) . T))
-(((|#1|) |has| |#1| (-146)) (($) . T) (((-483)) . T))
-((((-483)) . T))
+((((-773)) . T))
+(((|#1|) |has| |#1| (-146)) (($) . T) (((-484)) . T))
+((((-484)) . T))
((($) . T))
-((((-772)) . T))
-((($) . T) (((-483)) . T))
-((((-772)) . T))
-((((-772)) . T))
+((((-773)) . T))
+((($) . T) (((-484)) . T))
+((((-773)) . T))
+((((-1022 |#1|)) . T) (((-773)) . T))
(((|#1|) . T))
(((|#1| |#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-472)) |has| |#2| (-553 (-472))) (((-800 (-327))) |has| |#2| (-553 (-800 (-327)))) (((-800 (-483))) |has| |#2| (-553 (-800 (-483)))))
+((((-473)) |has| |#2| (-554 (-473))) (((-801 (-327))) |has| |#2| (-554 (-801 (-327)))) (((-801 (-484))) |has| |#2| (-554 (-801 (-484)))))
((($) . T))
-(((|#2| (-468 (-773 |#1|))) . T))
+(((|#2| (-469 (-774 |#1|))) . T))
(((|#2|) . T))
-((((-772)) . T))
-((($) . T) (((-483)) . T) (((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) . T))
+((((-773)) . T))
+((($) . T) (((-484)) . T) (((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) . T))
(|has| |#2| (-118))
(|has| |#2| (-120))
-(OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))
-((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))))
-((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))))
-((((-347 (-483)) (-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))))
-(OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))
-(OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))
-((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))))
-((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))))
-((((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))))
-(((|#2| (-468 (-773 |#1|))) . T))
-(((|#2|) . T))
-((($) . T) (((-347 (-483))) |has| |#2| (-38 (-347 (-483)))) ((|#2|) . T) (((-483)) |has| |#2| (-580 (-483))))
-(((|#2|) . T) (((-483)) |has| |#2| (-580 (-483))))
-(OR (|has| |#2| (-389)) (|has| |#2| (-821)))
-((($ $) . T) (((-773 |#1|) $) . T) (((-773 |#1|) |#2|) . T))
-((((-773 |#1|)) . T))
-((($ (-773 |#1|)) . T))
-((((-773 |#1|)) . T))
-(|has| |#2| (-821))
-(|has| |#2| (-821))
-((((-347 (-483))) |has| |#2| (-950 (-347 (-483)))) (((-483)) |has| |#2| (-950 (-483))) ((|#2|) . T) (((-773 |#1|)) . T))
-((((-483)) . T) (((-347 (-483))) OR (|has| |#2| (-38 (-347 (-483)))) (|has| |#2| (-950 (-347 (-483))))) ((|#2|) . T) (($) OR (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) (((-773 |#1|)) . T))
-(((|#2| (-468 (-773 |#1|)) (-773 |#1|)) . T))
+(OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))
+((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))))
+((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))))
+((((-347 (-484)) (-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))))
+(OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))
+(OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))
+((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))))
+((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))))
+((((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))))
+(((|#2| (-469 (-774 |#1|))) . T))
+(((|#2|) . T))
+((($) . T) (((-347 (-484))) |has| |#2| (-38 (-347 (-484)))) ((|#2|) . T) (((-484)) |has| |#2| (-581 (-484))))
+(((|#2|) . T) (((-484)) |has| |#2| (-581 (-484))))
+(OR (|has| |#2| (-389)) (|has| |#2| (-822)))
+((($ $) . T) (((-774 |#1|) $) . T) (((-774 |#1|) |#2|) . T))
+((((-774 |#1|)) . T))
+((($ (-774 |#1|)) . T))
+((((-774 |#1|)) . T))
+(|has| |#2| (-822))
+(|has| |#2| (-822))
+((((-347 (-484))) |has| |#2| (-951 (-347 (-484)))) (((-484)) |has| |#2| (-951 (-484))) ((|#2|) . T) (((-774 |#1|)) . T))
+((((-484)) . T) (((-347 (-484))) OR (|has| |#2| (-38 (-347 (-484)))) (|has| |#2| (-951 (-347 (-484))))) ((|#2|) . T) (($) OR (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) (((-774 |#1|)) . T))
+(((|#2| (-469 (-774 |#1|)) (-774 |#1|)) . T))
(-12 (|has| |#1| (-317)) (|has| |#2| (-317)))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
@@ -2198,207 +2199,207 @@
(|has| |#1| (-118))
(|has| |#1| (-120))
(((|#1|) . T) ((|#2|) . T))
-(((|#1|) . T) ((|#2|) . T) (((-483)) . T))
+(((|#1|) . T) ((|#2|) . T) (((-484)) . T))
(((|#1|) |has| |#1| (-146)) (($) . T))
-((((-772)) . T))
-(((|#1|) |has| |#1| (-146)) (($) . T) (((-483)) . T))
+((((-773)) . T))
+(((|#1|) |has| |#1| (-146)) (($) . T) (((-484)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-772)) . T))
-(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
+((((-773)) . T))
+(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
(((|#1|) . T))
(((|#1|) . T))
-((((-472)) |has| |#1| (-553 (-472))))
+((((-473)) |has| |#1| (-554 (-473))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-772)) . T))
-((((-772)) . T))
-(((|#1| (-468 |#2|) |#2|) . T))
-(|has| |#1| (-821))
-(|has| |#1| (-821))
-((((-483)) -12 (|has| |#1| (-796 (-483))) (|has| |#2| (-796 (-483)))) (((-327)) -12 (|has| |#1| (-796 (-327))) (|has| |#2| (-796 (-327)))))
+((((-773)) . T))
+((((-773)) . T))
+(((|#1| (-469 |#2|) |#2|) . T))
+(|has| |#1| (-822))
+(|has| |#1| (-822))
+((((-484)) -12 (|has| |#1| (-797 (-484))) (|has| |#2| (-797 (-484)))) (((-327)) -12 (|has| |#1| (-797 (-327))) (|has| |#2| (-797 (-327)))))
(((|#2|) . T))
((($ |#2|) . T))
(((|#2|) . T))
-(OR (|has| |#1| (-389)) (|has| |#1| (-821)))
-((((-483)) |has| |#1| (-580 (-483))) ((|#1|) . T))
+(OR (|has| |#1| (-389)) (|has| |#1| (-822)))
+((((-484)) |has| |#1| (-581 (-484))) ((|#1|) . T))
(((|#1|) . T))
-(((|#1| (-468 |#2|)) . T))
-(OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))
+(((|#1| (-469 |#2|)) . T))
+(OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((((-1037 |#1| |#2|)) . T) (((-857 |#1|)) |has| |#2| (-553 (-1088))) (((-772)) . T))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-(((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) (((-483)) . T) (($) . T))
-((((-483)) |has| |#1| (-580 (-483))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) (($) . T))
-((((-1037 |#1| |#2|)) . T) ((|#2|) . T) (($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) (((-483)) . T))
-((($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-(((|#1|) . T))
-((((-1037 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-483)) |has| |#1| (-950 (-483))) (((-347 (-483))) |has| |#1| (-950 (-347 (-483)))))
-(((|#1| (-468 |#2|)) . T))
+((($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((((-1038 |#1| |#2|)) . T) (((-858 |#1|)) |has| |#2| (-554 (-1089))) (((-773)) . T))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+(((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) (((-484)) . T) (($) . T))
+((((-484)) |has| |#1| (-581 (-484))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) (($) . T))
+((((-1038 |#1| |#2|)) . T) ((|#2|) . T) (($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) (((-484)) . T))
+((($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+(((|#1|) . T))
+((((-1038 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-484)) |has| |#1| (-951 (-484))) (((-347 (-484))) |has| |#1| (-951 (-347 (-484)))))
+(((|#1| (-469 |#2|)) . T))
(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
((($) . T))
-((((-857 |#1|)) |has| |#2| (-553 (-1088))) (((-1071)) -12 (|has| |#1| (-950 (-483))) (|has| |#2| (-553 (-1088)))) (((-800 (-483))) -12 (|has| |#1| (-553 (-800 (-483)))) (|has| |#2| (-553 (-800 (-483))))) (((-800 (-327))) -12 (|has| |#1| (-553 (-800 (-327)))) (|has| |#2| (-553 (-800 (-327))))) (((-472)) -12 (|has| |#1| (-553 (-472))) (|has| |#2| (-553 (-472)))))
-(((|#1| (-468 |#2|) |#2|) . T))
+((((-858 |#1|)) |has| |#2| (-554 (-1089))) (((-1072)) -12 (|has| |#1| (-951 (-484))) (|has| |#2| (-554 (-1089)))) (((-801 (-484))) -12 (|has| |#1| (-554 (-801 (-484)))) (|has| |#2| (-554 (-801 (-484))))) (((-801 (-327))) -12 (|has| |#1| (-554 (-801 (-327)))) (|has| |#2| (-554 (-801 (-327))))) (((-473)) -12 (|has| |#1| (-554 (-473))) (|has| |#2| (-554 (-473)))))
+(((|#1| (-469 |#2|) |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
((($) . T))
-((((-1083 |#1|)) . T) (((-772)) . T))
-((((-347 $) (-347 $)) |has| |#1| (-494)) (($ $) . T) ((|#1| |#1|) . T))
+((((-1084 |#1|)) . T) (((-773)) . T))
+((((-347 $) (-347 $)) |has| |#1| (-495)) (($ $) . T) ((|#1| |#1|) . T))
(|has| |#1| (-311))
-(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))
+(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))
(|has| |#1| (-311))
-(((|#1| (-694) (-993)) . T))
-(|has| |#1| (-821))
-(|has| |#1| (-821))
-((((-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088)))) (((-993)) . T))
-((($ (-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088)))) (($ (-993)) . T))
-((((-1088)) |has| |#1| (-809 (-1088))) (((-993)) . T))
-((((-483)) |has| |#1| (-580 (-483))) ((|#1|) . T))
-(((|#1|) . T))
-(((|#1| (-694)) . T))
+(((|#1| (-695) (-994)) . T))
+(|has| |#1| (-822))
+(|has| |#1| (-822))
+((((-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089)))) (((-994)) . T))
+((($ (-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089)))) (($ (-994)) . T))
+((((-1089)) |has| |#1| (-810 (-1089))) (((-994)) . T))
+((((-484)) |has| |#1| (-581 (-484))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (-695)) . T))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((((-1083 |#1|)) . T) (((-483)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) (((-993)) . T) ((|#1|) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) . T) (((-483)) |has| |#1| (-580 (-483))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((((-483)) . T) (($) . T) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
+((((-1084 |#1|)) . T) (((-484)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) (((-994)) . T) ((|#1|) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))))
+((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) . T) (((-484)) |has| |#1| (-581 (-484))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((((-484)) . T) (($) . T) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
(((|#1|) . T))
-((((-1083 |#1|)) . T) (((-993)) . T) ((|#1|) . T) (((-483)) |has| |#1| (-950 (-483))) (((-347 (-483))) |has| |#1| (-950 (-347 (-483)))))
-(((|#1| (-694)) . T))
-((((-993) |#1|) . T) (((-993) $) . T) (($ $) . T))
+((((-1084 |#1|)) . T) (((-994)) . T) ((|#1|) . T) (((-484)) |has| |#1| (-951 (-484))) (((-347 (-484))) |has| |#1| (-951 (-347 (-484)))))
+(((|#1| (-695)) . T))
+((((-994) |#1|) . T) (((-994) $) . T) (($ $) . T))
((($) . T))
-(|has| |#1| (-1064))
+(|has| |#1| (-1065))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-772)) . T))
-((($) . T) (((-483)) . T) ((|#1|) . T))
+((((-773)) . T))
+((($) . T) (((-484)) . T) ((|#1|) . T))
((($) . T) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-118))
(|has| |#1| (-120))
-((((-472)) |has| |#1| (-553 (-472))))
+((((-473)) |has| |#1| (-554 (-473))))
(|has| |#1| (-317))
(((|#1|) . T))
-((((-1088) |#1|) |has| |#1| (-452 (-1088) |#1|)) ((|#1| |#1|) |has| |#1| (-259 |#1|)))
+((((-1089) |#1|) |has| |#1| (-453 (-1089) |#1|)) ((|#1| |#1|) |has| |#1| (-259 |#1|)))
(((|#1|) |has| |#1| (-259 |#1|)))
(((|#1| $) |has| |#1| (-241 |#1| |#1|)))
-((((-909 |#1|)) . T) ((|#1|) . T))
-((((-909 |#1|)) . T) (((-483)) . T) ((|#1|) . T) (((-347 (-483))) OR (|has| |#1| (-950 (-347 (-483)))) (|has| (-909 |#1|) (-950 (-347 (-483))))))
-((((-909 |#1|)) . T) ((|#1|) . T) (((-483)) OR (|has| |#1| (-950 (-483))) (|has| (-909 |#1|) (-950 (-483)))) (((-347 (-483))) OR (|has| |#1| (-950 (-347 (-483)))) (|has| (-909 |#1|) (-950 (-347 (-483))))))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(((|#1|) . T))
-(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-961)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-717)) (|has| |#2| (-961)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1012)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1012)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-717)) (|has| |#2| (-961)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-717)) (|has| |#2| (-961)))
-(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-961))))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-663)) (|has| |#2| (-961))))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-961))))
-((((-772)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-552 (-772))) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1012))) (((-1177 |#2|)) . T))
-(((|#2|) |has| |#2| (-961)))
-((((-1088)) -12 (|has| |#2| (-809 (-1088))) (|has| |#2| (-961))))
-((((-1088)) OR (-12 (|has| |#2| (-809 (-1088))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961)))))
-((($ (-1088)) OR (-12 (|has| |#2| (-809 (-1088))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961)))))
-(((|#2|) |has| |#2| (-961)))
-(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961))))
-((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961)))))
-(|has| |#2| (-961))
-(|has| |#2| (-961))
-(|has| |#2| (-961))
-(|has| |#2| (-961))
-(|has| |#2| (-961))
-((((-483)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-961))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-663)) (|has| |#2| (-961))) (($) |has| |#2| (-961)))
-(-12 (|has| |#2| (-190)) (|has| |#2| (-961)))
+((((-910 |#1|)) . T) ((|#1|) . T))
+((((-910 |#1|)) . T) (((-484)) . T) ((|#1|) . T) (((-347 (-484))) OR (|has| |#1| (-951 (-347 (-484)))) (|has| (-910 |#1|) (-951 (-347 (-484))))))
+((((-910 |#1|)) . T) ((|#1|) . T) (((-484)) OR (|has| |#1| (-951 (-484))) (|has| (-910 |#1|) (-951 (-484)))) (((-347 (-484))) OR (|has| |#1| (-951 (-347 (-484)))) (|has| (-910 |#1|) (-951 (-347 (-484))))))
+(|has| |#1| (-757))
+(|has| |#1| (-757))
+(((|#1|) . T))
+(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-962)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-718)) (|has| |#2| (-962)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1013)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1013)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-718)) (|has| |#2| (-962)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-718)) (|has| |#2| (-962)))
+(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-962))))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-664)) (|has| |#2| (-962))))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-962))))
+((((-773)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-553 (-773))) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-317)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1013))) (((-1178 |#2|)) . T))
+(((|#2|) |has| |#2| (-962)))
+((((-1089)) -12 (|has| |#2| (-810 (-1089))) (|has| |#2| (-962))))
+((((-1089)) OR (-12 (|has| |#2| (-810 (-1089))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962)))))
+((($ (-1089)) OR (-12 (|has| |#2| (-810 (-1089))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962)))))
+(((|#2|) |has| |#2| (-962)))
+(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962))))
+((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962)))))
+(|has| |#2| (-962))
+(|has| |#2| (-962))
+(|has| |#2| (-962))
+(|has| |#2| (-962))
+(|has| |#2| (-962))
+((((-484)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-962))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-664)) (|has| |#2| (-962))) (($) |has| |#2| (-962)))
+(-12 (|has| |#2| (-190)) (|has| |#2| (-962)))
(|has| |#2| (-317))
-(((|#2|) |has| |#2| (-961)))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-961))) (($) |has| |#2| (-961)) (((-483)) -12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))))
-(((|#2|) |has| |#2| (-961)) (((-483)) -12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))))
-(((|#2|) |has| |#2| (-1012)))
-((((-483)) OR (-12 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) (|has| |#2| (-961))) ((|#2|) |has| |#2| (-1012)) (((-347 (-483))) -12 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012))))
-(((|#2|) |has| |#2| (-1012)) (((-483)) -12 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) (((-347 (-483))) -12 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012))))
-((((-483) |#2|) . T))
-(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))))
-(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))))
-(((|#2|) . T))
-((((-483) |#2|) . T))
-((((-483) |#2|) . T))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-663))))
+(((|#2|) |has| |#2| (-962)))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-962))) (($) |has| |#2| (-962)) (((-484)) -12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))))
+(((|#2|) |has| |#2| (-962)) (((-484)) -12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))))
+(((|#2|) |has| |#2| (-1013)))
+((((-484)) OR (-12 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-962))) ((|#2|) |has| |#2| (-1013)) (((-347 (-484))) -12 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013))))
+(((|#2|) |has| |#2| (-1013)) (((-484)) -12 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) (((-347 (-484))) -12 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013))))
+((((-484) |#2|) . T))
+(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))))
+(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))))
+(((|#2|) . T))
+((((-484) |#2|) . T))
+((((-484) |#2|) . T))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-664))))
(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-311))))
-(|has| |#2| (-717))
-(|has| |#2| (-717))
-(OR (|has| |#2| (-717)) (|has| |#2| (-756)))
-(OR (|has| |#2| (-717)) (|has| |#2| (-756)))
-(|has| |#2| (-717))
-(|has| |#2| (-717))
+(|has| |#2| (-718))
+(|has| |#2| (-718))
+(OR (|has| |#2| (-718)) (|has| |#2| (-757)))
+(OR (|has| |#2| (-718)) (|has| |#2| (-757)))
+(|has| |#2| (-718))
+(|has| |#2| (-718))
(((|#2|) |has| |#2| (-311)))
(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(OR (|has| |#1| (-190)) (|has| |#1| (-189)))
((($) OR (|has| |#1| (-190)) (|has| |#1| (-189))))
-((((-772)) . T))
+((((-773)) . T))
(|has| |#1| (-190))
((($) . T))
-(((|#1| (-468 (-738 (-1088))) (-738 (-1088))) . T))
-(|has| |#1| (-821))
-(|has| |#1| (-821))
-((((-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088)))) (((-738 (-1088))) . T))
-((($ (-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088)))) (($ (-738 (-1088))) . T))
-((((-1088)) |has| |#1| (-809 (-1088))) (((-738 (-1088))) . T))
-((($ $) . T) (((-1088) $) |has| |#1| (-190)) (((-1088) |#1|) |has| |#1| (-190)) (((-738 (-1088)) |#1|) . T) (((-738 (-1088)) $) . T))
-(OR (|has| |#1| (-389)) (|has| |#1| (-821)))
-((((-483)) |has| |#1| (-580 (-483))) ((|#1|) . T))
-(((|#1|) . T))
-(((|#1| (-468 (-738 (-1088)))) . T))
-(OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))
+(((|#1| (-469 (-739 (-1089))) (-739 (-1089))) . T))
+(|has| |#1| (-822))
+(|has| |#1| (-822))
+((((-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089)))) (((-739 (-1089))) . T))
+((($ (-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089)))) (($ (-739 (-1089))) . T))
+((((-1089)) |has| |#1| (-810 (-1089))) (((-739 (-1089))) . T))
+((($ $) . T) (((-1089) $) |has| |#1| (-190)) (((-1089) |#1|) |has| |#1| (-190)) (((-739 (-1089)) |#1|) . T) (((-739 (-1089)) $) . T))
+(OR (|has| |#1| (-389)) (|has| |#1| (-822)))
+((((-484)) |has| |#1| (-581 (-484))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (-469 (-739 (-1089)))) . T))
+(OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) . T) (((-483)) |has| |#1| (-580 (-483))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((((-483)) . T) (($) . T) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-(((|#1|) . T))
-(((|#1| (-468 (-738 (-1088)))) . T))
-((((-1037 |#1| (-1088))) . T) (((-738 (-1088))) . T) ((|#1|) . T) (((-483)) |has| |#1| (-950 (-483))) (((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) (((-1088)) . T))
-((((-1037 |#1| (-1088))) . T) (((-483)) . T) (((-738 (-1088))) . T) (($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) (((-1088)) . T))
-(((|#1| (-1088) (-738 (-1088)) (-468 (-738 (-1088)))) . T))
+((($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) . T) (((-484)) |has| |#1| (-581 (-484))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((((-484)) . T) (($) . T) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+(((|#1|) . T))
+(((|#1| (-469 (-739 (-1089)))) . T))
+((((-1038 |#1| (-1089))) . T) (((-739 (-1089))) . T) ((|#1|) . T) (((-484)) |has| |#1| (-951 (-484))) (((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) (((-1089)) . T))
+((((-1038 |#1| (-1089))) . T) (((-484)) . T) (((-739 (-1089))) . T) (($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) (((-1089)) . T))
+(((|#1| (-1089) (-739 (-1089)) (-469 (-739 (-1089)))) . T))
(|has| |#2| (-311))
(|has| |#2| (-311))
(|has| |#2| (-311))
(|has| |#2| (-311))
-((((-347 (-483))) |has| |#2| (-311)) (($) |has| |#2| (-311)))
-((((-347 (-483))) |has| |#2| (-311)) (($) |has| |#2| (-311)))
-((((-347 (-483))) |has| |#2| (-311)) (($) |has| |#2| (-311)))
+((((-347 (-484))) |has| |#2| (-311)) (($) |has| |#2| (-311)))
+((((-347 (-484))) |has| |#2| (-311)) (($) |has| |#2| (-311)))
+((((-347 (-484))) |has| |#2| (-311)) (($) |has| |#2| (-311)))
(|has| |#2| (-311))
(|has| |#2| (-311))
(|has| |#2| (-311))
@@ -2406,19 +2407,19 @@
(|has| |#2| (-311))
(((|#2|) . T))
((($) . T))
-((((-347 (-483))) |has| |#2| (-311)) (($) |has| |#2| (-311)) ((|#2|) . T) (((-483)) . T))
-((((-347 (-483))) |has| |#2| (-311)) (($) . T))
-(((|#2|) . T) (((-772)) . T))
-((((-347 (-483))) |has| |#2| (-311)) (($) . T) (((-483)) . T))
-((((-347 (-483))) |has| |#2| (-311)) (($) . T))
-((((-347 (-483))) |has| |#2| (-311)) (($) . T))
-((((-347 (-483)) (-347 (-483))) |has| |#2| (-311)) (($ $) . T))
+((((-347 (-484))) |has| |#2| (-311)) (($) |has| |#2| (-311)) ((|#2|) . T) (((-484)) . T))
+((((-347 (-484))) |has| |#2| (-311)) (($) . T))
+(((|#2|) . T) (((-773)) . T))
+((((-347 (-484))) |has| |#2| (-311)) (($) . T) (((-484)) . T))
+((((-347 (-484))) |has| |#2| (-311)) (($) . T))
+((((-347 (-484))) |has| |#2| (-311)) (($) . T))
+((((-347 (-484)) (-347 (-484))) |has| |#2| (-311)) (($ $) . T))
((($) . T))
-((((-772)) . T))
+((((-773)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-772)) . T))
+((((-773)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -2429,35 +2430,35 @@
(((|#2| |#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-772)) . T))
-((($) . T) (((-483)) . T) ((|#2|) . T))
+((((-773)) . T))
+((($) . T) (((-484)) . T) ((|#2|) . T))
((($) . T) ((|#2|) . T))
(((|#2|) |has| |#2| (-146)))
(((|#2|) |has| |#2| (-146)))
-((((-483)) . T) ((|#2|) |has| |#2| (-146)))
-(((|#2|) . T))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-((($) |has| |#1| (-755)))
-(|has| |#1| (-755))
-(OR (|has| |#1| (-21)) (|has| |#1| (-755)))
-(OR (|has| |#1| (-21)) (|has| |#1| (-755)))
-(OR (|has| |#1| (-21)) (|has| |#1| (-755)))
-((($) |has| |#1| (-755)) (((-483)) OR (|has| |#1| (-21)) (|has| |#1| (-755))))
-(OR (|has| |#1| (-21)) (|has| |#1| (-755)))
-((((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) (((-483)) |has| |#1| (-950 (-483))) ((|#1|) . T))
-((((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) (((-483)) OR (|has| |#1| (-755)) (|has| |#1| (-950 (-483)))) ((|#1|) . T))
-(((|#1|) . T))
-((((-772)) . T))
+((((-484)) . T) ((|#2|) |has| |#2| (-146)))
+(((|#2|) . T))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+((($) |has| |#1| (-756)))
+(|has| |#1| (-756))
+(OR (|has| |#1| (-21)) (|has| |#1| (-756)))
+(OR (|has| |#1| (-21)) (|has| |#1| (-756)))
+(OR (|has| |#1| (-21)) (|has| |#1| (-756)))
+((($) |has| |#1| (-756)) (((-484)) OR (|has| |#1| (-21)) (|has| |#1| (-756))))
+(OR (|has| |#1| (-21)) (|has| |#1| (-756)))
+((((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) (((-484)) |has| |#1| (-951 (-484))) ((|#1|) . T))
+((((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) (((-484)) OR (|has| |#1| (-756)) (|has| |#1| (-951 (-484)))) ((|#1|) . T))
+(((|#1|) . T))
+((((-773)) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
@@ -2468,450 +2469,450 @@
(|has| |#1| (-120))
(((|#1| |#1|) . T))
((((-86)) . T) ((|#1|) . T))
-((((-86)) . T) ((|#1|) . T) (((-483)) . T))
+((((-86)) . T) ((|#1|) . T) (((-484)) . T))
(((|#1|) |has| |#1| (-146)) (($) . T))
-((((-772)) . T))
-(((|#1|) |has| |#1| (-146)) (($) . T) (((-483)) . T))
-((((-772)) . T))
+((((-773)) . T))
+(((|#1|) |has| |#1| (-146)) (($) . T) (((-484)) . T))
+((((-773)) . T))
((((-444)) . T))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-(|has| |#1| (-755))
-((($) |has| |#1| (-755)))
-(|has| |#1| (-755))
-(OR (|has| |#1| (-21)) (|has| |#1| (-755)))
-(OR (|has| |#1| (-21)) (|has| |#1| (-755)))
-(OR (|has| |#1| (-21)) (|has| |#1| (-755)))
-((($) |has| |#1| (-755)) (((-483)) OR (|has| |#1| (-21)) (|has| |#1| (-755))))
-(OR (|has| |#1| (-21)) (|has| |#1| (-755)))
-((((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) (((-483)) |has| |#1| (-950 (-483))) ((|#1|) . T))
-((((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) (((-483)) OR (|has| |#1| (-755)) (|has| |#1| (-950 (-483)))) ((|#1|) . T))
-(((|#1|) . T))
-((((-772)) . T))
-(((|#1|) . T))
-((((-772)) |has| |#1| (-552 (-772))) ((|#1|) . T))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+((($) |has| |#1| (-756)))
+(|has| |#1| (-756))
+(OR (|has| |#1| (-21)) (|has| |#1| (-756)))
+(OR (|has| |#1| (-21)) (|has| |#1| (-756)))
+(OR (|has| |#1| (-21)) (|has| |#1| (-756)))
+((($) |has| |#1| (-756)) (((-484)) OR (|has| |#1| (-21)) (|has| |#1| (-756))))
+(OR (|has| |#1| (-21)) (|has| |#1| (-756)))
+((((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) (((-484)) |has| |#1| (-951 (-484))) ((|#1|) . T))
+((((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) (((-484)) OR (|has| |#1| (-756)) (|has| |#1| (-951 (-484)))) ((|#1|) . T))
+(((|#1|) . T))
+((((-773)) . T))
+(((|#1|) . T))
+((((-773)) |has| |#1| (-553 (-773))) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-772)) . T))
-((($) . T) (((-483)) . T) ((|#1|) . T))
+((((-773)) . T))
+((($) . T) (((-484)) . T) ((|#1|) . T))
((($) . T) ((|#1|) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
(((|#1|) . T))
-((((-483)) . T) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-950 (-347 (-483)))))
-(((|#1|) . T) (((-483)) |has| |#1| (-950 (-483))) (((-347 (-483))) |has| |#1| (-950 (-347 (-483)))))
+((((-484)) . T) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-951 (-347 (-484)))))
+(((|#1|) . T) (((-484)) |has| |#1| (-951 (-484))) (((-347 (-484))) |has| |#1| (-951 (-347 (-484)))))
(((|#1|) . T))
(((|#2|) |has| |#2| (-146)))
(((|#2| |#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-772)) . T))
-((($) . T) (((-483)) . T) ((|#2|) . T))
+((((-773)) . T))
+((($) . T) (((-484)) . T) ((|#2|) . T))
((($) . T) ((|#2|) . T))
(((|#2|) |has| |#2| (-146)))
(((|#2|) |has| |#2| (-146)))
(((|#2|) . T))
-((((-1174 |#1|)) . T) (((-483)) . T) ((|#2|) . T) (((-347 (-483))) |has| |#2| (-950 (-347 (-483)))))
-(((|#2|) . T) (((-483)) |has| |#2| (-950 (-483))) (((-347 (-483))) |has| |#2| (-950 (-347 (-483)))))
+((((-1175 |#1|)) . T) (((-484)) . T) ((|#2|) . T) (((-347 (-484))) |has| |#2| (-951 (-347 (-484)))))
+(((|#2|) . T) (((-484)) |has| |#2| (-951 (-484))) (((-347 (-484))) |has| |#2| (-951 (-347 (-484)))))
(((|#2|) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-800 (-483))) . T) (((-800 (-327))) . T) (((-472)) . T) (((-1088)) . T))
-((((-772)) . T))
-((((-772)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-801 (-484))) . T) (((-801 (-327))) . T) (((-473)) . T) (((-1089)) . T))
+((((-773)) . T))
+((((-773)) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
(((|#1| |#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
-((((-857 |#1|)) . T))
-(((|#1|) |has| |#1| (-146)) (((-857 |#1|)) . T) (((-483)) . T))
+((((-858 |#1|)) . T))
+(((|#1|) |has| |#1| (-146)) (((-858 |#1|)) . T) (((-484)) . T))
(((|#1|) |has| |#1| (-146)) (($) . T))
-((((-857 |#1|)) . T) (((-772)) . T))
-(((|#1|) |has| |#1| (-146)) (($) . T) (((-483)) . T))
+((((-858 |#1|)) . T) (((-773)) . T))
+(((|#1|) |has| |#1| (-146)) (($) . T) (((-484)) . T))
((($) . T))
-((((-772)) . T))
-((($) . T) (((-483)) . T))
+((((-773)) . T))
+((($) . T) (((-484)) . T))
((($) . T))
((($ $) . T))
((($) . T))
((($) . T))
((($) . T))
((($) . T))
-((((-483)) . T) (($) . T))
-(((|#1|) . T))
-((((-772)) . T))
-((((-778 |#1|)) . T))
-((((-778 |#1|)) . T))
-((((-778 |#1|)) . T) (($) . T) (((-347 (-483))) . T))
-((($) . T) (((-483)) . T) (((-778 |#1|)) . T) (((-347 (-483))) . T))
-((((-778 |#1|)) . T) (($) . T) (((-347 (-483))) . T))
-((((-778 |#1|)) . T) (($) . T) (((-347 (-483))) . T))
-((((-778 |#1|)) . T) (((-347 (-483))) . T) (($) . T))
-((((-778 |#1|)) . T) (((-347 (-483))) . T) (($) . T))
-((((-778 |#1|) (-778 |#1|)) . T) (((-347 (-483)) (-347 (-483))) . T) (($ $) . T))
-((((-778 |#1|)) . T))
-((((-1088) (-778 |#1|)) |has| (-778 |#1|) (-452 (-1088) (-778 |#1|))) (((-778 |#1|) (-778 |#1|)) |has| (-778 |#1|) (-259 (-778 |#1|))))
-((((-778 |#1|)) |has| (-778 |#1|) (-259 (-778 |#1|))))
-((((-778 |#1|) $) |has| (-778 |#1|) (-241 (-778 |#1|) (-778 |#1|))))
-((((-778 |#1|)) . T))
-((($) . T) (((-778 |#1|)) . T) (((-347 (-483))) . T))
-((((-778 |#1|)) . T))
-((((-778 |#1|)) . T))
-((((-778 |#1|)) . T))
-((((-483)) . T) (((-778 |#1|)) . T) (($) . T) (((-347 (-483))) . T))
-((((-778 |#1|)) . T))
-((((-778 |#1|)) . T))
-((((-772)) . T))
+((((-484)) . T) (($) . T))
+(((|#1|) . T))
+((((-773)) . T))
+((((-779 |#1|)) . T))
+((((-779 |#1|)) . T))
+((((-779 |#1|)) . T) (($) . T) (((-347 (-484))) . T))
+((($) . T) (((-484)) . T) (((-779 |#1|)) . T) (((-347 (-484))) . T))
+((((-779 |#1|)) . T) (($) . T) (((-347 (-484))) . T))
+((((-779 |#1|)) . T) (($) . T) (((-347 (-484))) . T))
+((((-779 |#1|)) . T) (((-347 (-484))) . T) (($) . T))
+((((-779 |#1|)) . T) (((-347 (-484))) . T) (($) . T))
+((((-779 |#1|) (-779 |#1|)) . T) (((-347 (-484)) (-347 (-484))) . T) (($ $) . T))
+((((-779 |#1|)) . T))
+((((-1089) (-779 |#1|)) |has| (-779 |#1|) (-453 (-1089) (-779 |#1|))) (((-779 |#1|) (-779 |#1|)) |has| (-779 |#1|) (-259 (-779 |#1|))))
+((((-779 |#1|)) |has| (-779 |#1|) (-259 (-779 |#1|))))
+((((-779 |#1|) $) |has| (-779 |#1|) (-241 (-779 |#1|) (-779 |#1|))))
+((((-779 |#1|)) . T))
+((($) . T) (((-779 |#1|)) . T) (((-347 (-484))) . T))
+((((-779 |#1|)) . T))
+((((-779 |#1|)) . T))
+((((-779 |#1|)) . T))
+((((-484)) . T) (((-779 |#1|)) . T) (($) . T) (((-347 (-484))) . T))
+((((-779 |#1|)) . T))
+((((-779 |#1|)) . T))
+((((-773)) . T))
(|has| |#2| (-118))
(|has| |#2| (-120))
(((|#2|) . T))
-((((-1088)) |has| |#2| (-809 (-1088))))
-((((-1088)) OR (|has| |#2| (-809 (-1088))) (|has| |#2| (-811 (-1088)))))
-((($ (-1088)) OR (|has| |#2| (-809 (-1088))) (|has| |#2| (-811 (-1088)))))
+((((-1089)) |has| |#2| (-810 (-1089))))
+((((-1089)) OR (|has| |#2| (-810 (-1089))) (|has| |#2| (-812 (-1089)))))
+((($ (-1089)) OR (|has| |#2| (-810 (-1089))) (|has| |#2| (-812 (-1089)))))
(((|#2|) . T))
(OR (|has| |#2| (-190)) (|has| |#2| (-189)))
((($) OR (|has| |#2| (-190)) (|has| |#2| (-189))))
(|has| |#2| (-190))
-(((|#2|) . T) (($) . T) (((-347 (-483))) . T))
-((($) . T) (((-483)) . T) ((|#2|) . T) (((-347 (-483))) . T))
-(((|#2|) . T) (($) . T) (((-347 (-483))) . T))
-(((|#2|) . T) (($) . T) (((-347 (-483))) . T))
-(((|#2|) . T) (((-347 (-483))) . T) (($) . T))
-(((|#2|) . T) (((-347 (-483))) . T) (($) . T))
-(((|#2| |#2|) . T) (((-347 (-483)) (-347 (-483))) . T) (($ $) . T))
-(((|#2|) . T))
-((((-1088) |#2|) |has| |#2| (-452 (-1088) |#2|)) ((|#2| |#2|) |has| |#2| (-259 |#2|)))
+(((|#2|) . T) (($) . T) (((-347 (-484))) . T))
+((($) . T) (((-484)) . T) ((|#2|) . T) (((-347 (-484))) . T))
+(((|#2|) . T) (($) . T) (((-347 (-484))) . T))
+(((|#2|) . T) (($) . T) (((-347 (-484))) . T))
+(((|#2|) . T) (((-347 (-484))) . T) (($) . T))
+(((|#2|) . T) (((-347 (-484))) . T) (($) . T))
+(((|#2| |#2|) . T) (((-347 (-484)) (-347 (-484))) . T) (($ $) . T))
+(((|#2|) . T))
+((((-1089) |#2|) |has| |#2| (-453 (-1089) |#2|)) ((|#2| |#2|) |has| |#2| (-259 |#2|)))
(((|#2|) |has| |#2| (-259 |#2|)))
(((|#2| $) |has| |#2| (-241 |#2| |#2|)))
(((|#2|) . T))
-((($) . T) ((|#2|) . T) (((-347 (-483))) . T) (((-483)) |has| |#2| (-580 (-483))))
-(((|#2|) . T) (((-483)) |has| |#2| (-580 (-483))))
-(((|#2|) . T))
-((((-483)) |has| |#2| (-796 (-483))) (((-327)) |has| |#2| (-796 (-327))))
-(|has| |#2| (-740))
-(|has| |#2| (-740))
-(|has| |#2| (-740))
-(OR (|has| |#2| (-740)) (|has| |#2| (-756)))
-(OR (|has| |#2| (-740)) (|has| |#2| (-756)))
-(|has| |#2| (-740))
-(|has| |#2| (-740))
-(|has| |#2| (-740))
-(((|#2|) . T))
-(|has| |#2| (-821))
-(|has| |#2| (-933))
-((((-472)) |has| |#2| (-553 (-472))) (((-800 (-483))) |has| |#2| (-553 (-800 (-483)))) (((-800 (-327))) |has| |#2| (-553 (-800 (-327)))) (((-327)) |has| |#2| (-933)) (((-179)) |has| |#2| (-933)))
-((((-483)) . T) ((|#2|) . T) (($) . T) (((-347 (-483))) . T) (((-1088)) |has| |#2| (-950 (-1088))))
-((((-347 (-483))) |has| |#2| (-950 (-483))) (((-483)) |has| |#2| (-950 (-483))) (((-1088)) |has| |#2| (-950 (-1088))) ((|#2|) . T))
-(|has| |#2| (-1064))
-(((|#2|) . T))
-(-12 (|has| |#1| (-1012)) (|has| |#2| (-1012)))
-(-12 (|has| |#1| (-1012)) (|has| |#2| (-1012)))
-((((-772)) OR (-12 (|has| |#1| (-552 (-772))) (|has| |#2| (-552 (-772)))) (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012)))))
+((($) . T) ((|#2|) . T) (((-347 (-484))) . T) (((-484)) |has| |#2| (-581 (-484))))
+(((|#2|) . T) (((-484)) |has| |#2| (-581 (-484))))
+(((|#2|) . T))
+((((-484)) |has| |#2| (-797 (-484))) (((-327)) |has| |#2| (-797 (-327))))
+(|has| |#2| (-741))
+(|has| |#2| (-741))
+(|has| |#2| (-741))
+(OR (|has| |#2| (-741)) (|has| |#2| (-757)))
+(OR (|has| |#2| (-741)) (|has| |#2| (-757)))
+(|has| |#2| (-741))
+(|has| |#2| (-741))
+(|has| |#2| (-741))
+(((|#2|) . T))
+(|has| |#2| (-822))
+(|has| |#2| (-934))
+((((-473)) |has| |#2| (-554 (-473))) (((-801 (-484))) |has| |#2| (-554 (-801 (-484)))) (((-801 (-327))) |has| |#2| (-554 (-801 (-327)))) (((-327)) |has| |#2| (-934)) (((-179)) |has| |#2| (-934)))
+((((-484)) . T) ((|#2|) . T) (($) . T) (((-347 (-484))) . T) (((-1089)) |has| |#2| (-951 (-1089))))
+((((-347 (-484))) |has| |#2| (-951 (-484))) (((-484)) |has| |#2| (-951 (-484))) (((-1089)) |has| |#2| (-951 (-1089))) ((|#2|) . T))
+(|has| |#2| (-1065))
+(((|#2|) . T))
+(-12 (|has| |#1| (-1013)) (|has| |#2| (-1013)))
+(-12 (|has| |#1| (-1013)) (|has| |#2| (-1013)))
+((((-773)) OR (-12 (|has| |#1| (-553 (-773))) (|has| |#2| (-553 (-773)))) (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013)))))
((((-130)) . T))
-((((-772)) . T))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-1088)) . T) ((|#1|) . T))
-((((-1088)) . T) ((|#1|) . T))
-((((-772)) . T))
-((((-614 |#1|)) . T))
-((((-614 |#1|)) . T))
-((((-772)) . T))
-(((|#1|) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1012)))
-((((-1114 |#1|)) . T) (((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012))))
-(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(|has| |#1| (-1012))
+((((-773)) . T))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-1089)) . T) ((|#1|) . T))
+((((-1089)) . T) ((|#1|) . T))
+((((-773)) . T))
+((((-615 |#1|)) . T))
+((((-615 |#1|)) . T))
+((((-773)) . T))
+(((|#1|) . T))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
+((((-1115 |#1|)) . T) (((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(|has| |#1| (-1013))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
-((((-772)) . T))
-(OR (|has| |#1| (-317)) (|has| |#1| (-756)))
-(OR (|has| |#1| (-317)) (|has| |#1| (-756)))
+((((-773)) . T))
+(OR (|has| |#1| (-317)) (|has| |#1| (-757)))
+(OR (|has| |#1| (-317)) (|has| |#1| (-757)))
(((|#1|) . T))
-((((-772)) . T))
-((((-483)) . T))
+((((-773)) . T))
+((((-484)) . T))
((($) . T))
((($) . T))
((($) . T))
(|has| $ (-120))
((($) . T))
-((((-772)) . T))
-((($) . T))
-((($) . T) (((-347 (-483))) . T))
-((($) . T) (((-483)) . T) (((-347 (-483))) . T))
-((($) . T) (((-347 (-483))) . T))
-((($) . T) (((-347 (-483))) . T))
-((($ $) . T) (((-347 (-483)) (-347 (-483))) . T))
-((((-347 (-483))) . T) (($) . T))
-((((-347 (-483))) . T) (($) . T))
-((((-347 (-483))) . T) (($) . T))
-((((-483)) . T) (((-347 (-483))) . T) (($) . T))
-((((-772)) . T))
-(((|#1|) . T) (($) . T) (((-347 (-483))) . T))
-(((|#1|) . T) (($) . T) (((-347 (-483))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-347 (-483)) (-347 (-483))) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-583 |#1|)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(((|#1|) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1012)))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1012))))
-(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(OR (|has| |#1| (-756)) (|has| |#1| (-1012)))
-(((|#1|) . T))
-((((-472)) |has| |#1| (-553 (-472))))
-((((-483) |#1|) . T))
-((((-1144 (-483)) $) . T) (((-483) |#1|) . T))
-((((-483) |#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-472)) |has| |#1| (-553 (-472))) (((-800 (-327))) |has| |#1| (-553 (-800 (-327)))) (((-800 (-483))) |has| |#1| (-553 (-800 (-483)))))
-((($) . T))
-(((|#1| (-468 (-1088))) . T))
-(((|#1|) . T))
-((((-772)) . T))
-((($) . T) (((-483)) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T))
+((((-773)) . T))
+((($) . T))
+((($) . T) (((-347 (-484))) . T))
+((($) . T) (((-484)) . T) (((-347 (-484))) . T))
+((($) . T) (((-347 (-484))) . T))
+((($) . T) (((-347 (-484))) . T))
+((($ $) . T) (((-347 (-484)) (-347 (-484))) . T))
+((((-347 (-484))) . T) (($) . T))
+((((-347 (-484))) . T) (($) . T))
+((((-347 (-484))) . T) (($) . T))
+((((-484)) . T) (((-347 (-484))) . T) (($) . T))
+((((-773)) . T))
+(((|#1|) . T) (($) . T) (((-347 (-484))) . T))
+(((|#1|) . T) (($) . T) (((-347 (-484))) . T))
+(((|#1| |#1|) . T) (($ $) . T) (((-347 (-484)) (-347 (-484))) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-584 |#1|)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-757))
+(|has| |#1| (-757))
+(((|#1|) . T))
+(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1013)))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-757)) (|has| |#1| (-1013)))
+(((|#1|) . T))
+((((-473)) |has| |#1| (-554 (-473))))
+((((-484) |#1|) . T))
+((((-1145 (-484)) $) . T) (((-484) |#1|) . T))
+((((-484) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-473)) |has| |#1| (-554 (-473))) (((-801 (-327))) |has| |#1| (-554 (-801 (-327)))) (((-801 (-484))) |has| |#1| (-554 (-801 (-484)))))
+((($) . T))
+(((|#1| (-469 (-1089))) . T))
+(((|#1|) . T))
+((((-773)) . T))
+((($) . T) (((-484)) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T))
(|has| |#1| (-118))
(|has| |#1| (-120))
-(OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))
-((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))))
-((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))))
-((((-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))))
-(OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))
-((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))))
-((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))))
-((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))))
-(((|#1| (-468 (-1088))) . T))
-(((|#1|) . T))
-((($) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T) (((-483)) |has| |#1| (-580 (-483))))
-(((|#1|) . T) (((-483)) |has| |#1| (-580 (-483))))
-(OR (|has| |#1| (-389)) (|has| |#1| (-821)))
-((($ $) . T) (((-1088) $) . T) (((-1088) |#1|) . T))
-((((-1088)) . T))
-((($ (-1088)) . T))
-((((-1088)) . T))
-((((-327)) |has| |#1| (-796 (-327))) (((-483)) |has| |#1| (-796 (-483))))
-(|has| |#1| (-821))
-(|has| |#1| (-821))
-((((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) (((-483)) |has| |#1| (-950 (-483))) ((|#1|) . T) (((-1088)) . T))
-((((-483)) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ((|#1|) . T) (($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) (((-1088)) . T))
-(((|#1| (-468 (-1088)) (-1088)) . T))
-((((-1032)) . T) (((-772)) . T))
+(OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))
+((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))))
+((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))))
+((((-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))))
+(OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))
+((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))))
+((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))))
+((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))))
+(((|#1| (-469 (-1089))) . T))
+(((|#1|) . T))
+((($) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T) (((-484)) |has| |#1| (-581 (-484))))
+(((|#1|) . T) (((-484)) |has| |#1| (-581 (-484))))
+(OR (|has| |#1| (-389)) (|has| |#1| (-822)))
+((($ $) . T) (((-1089) $) . T) (((-1089) |#1|) . T))
+((((-1089)) . T))
+((($ (-1089)) . T))
+((((-1089)) . T))
+((((-327)) |has| |#1| (-797 (-327))) (((-484)) |has| |#1| (-797 (-484))))
+(|has| |#1| (-822))
+(|has| |#1| (-822))
+((((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) (((-484)) |has| |#1| (-951 (-484))) ((|#1|) . T) (((-1089)) . T))
+((((-484)) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ((|#1|) . T) (($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) (((-1089)) . T))
+(((|#1| (-469 (-1089)) (-1089)) . T))
+((((-1033)) . T) (((-773)) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-494))
-(|has| |#1| (-494))
-(OR (|has| |#1| (-146)) (|has| |#1| (-494)))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(OR (|has| |#1| (-146)) (|has| |#1| (-495)))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((((-772)) . T))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1| |#1|) . T) (((-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-(((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) (((-483)) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) (($) . T))
-((($) |has| |#1| (-494)) ((|#1|) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) (((-483)) . T))
-((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-(((|#1|) . T))
-(((|#1|) . T) (((-483)) |has| |#1| (-950 (-483))) (((-347 (-483))) |has| |#1| (-950 (-347 (-483)))))
+((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((((-773)) . T))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1| |#1|) . T) (((-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+(((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) (($) . T))
+((($) |has| |#1| (-495)) ((|#1|) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) (((-484)) . T))
+((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+(((|#1|) . T))
+(((|#1|) . T) (((-484)) |has| |#1| (-951 (-484))) (((-347 (-484))) |has| |#1| (-951 (-347 (-484)))))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
+(|has| |#1| (-757))
+(|has| |#1| (-757))
+(((|#1|) . T))
+(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1013)))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-757)) (|has| |#1| (-1013)))
(((|#1|) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1012)))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1012))))
-(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(OR (|has| |#1| (-756)) (|has| |#1| (-1012)))
-(((|#1|) . T))
-((((-472)) |has| |#1| (-553 (-472))))
-((((-483) |#1|) . T))
-((((-1144 (-483)) $) . T) (((-483) |#1|) . T))
-((((-483) |#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(-12 (|has| |#1| (-717)) (|has| |#2| (-717)))
-(-12 (|has| |#1| (-717)) (|has| |#2| (-717)))
-(OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756))))
-(OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756))))
-(-12 (|has| |#1| (-717)) (|has| |#2| (-717)))
-(-12 (|has| |#1| (-717)) (|has| |#2| (-717)))
-((((-483)) -12 (|has| |#1| (-21)) (|has| |#2| (-21))))
+((((-473)) |has| |#1| (-554 (-473))))
+((((-484) |#1|) . T))
+((((-1145 (-484)) $) . T) (((-484) |#1|) . T))
+((((-484) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(-12 (|has| |#1| (-718)) (|has| |#2| (-718)))
+(-12 (|has| |#1| (-718)) (|has| |#2| (-718)))
+(OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757))))
+(OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757))))
+(-12 (|has| |#1| (-718)) (|has| |#2| (-718)))
+(-12 (|has| |#1| (-718)) (|has| |#2| (-718)))
+((((-484)) -12 (|has| |#1| (-21)) (|has| |#2| (-21))))
(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
(-12 (|has| |#1| (-410)) (|has| |#2| (-410)))
-(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717))))
-(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717))))
-(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717))))
-(OR (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663))))
-(OR (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663))))
+(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718))))
+(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718))))
+(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718))))
+(OR (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664))))
+(OR (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664))))
(-12 (|has| |#1| (-317)) (|has| |#2| (-317)))
-((((-772)) . T))
-((((-772)) . T))
-(((|#1|) . T))
-((((-772)) . T))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
-((((-583 (-830))) . T) (((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
+((((-773)) . T))
+((((-773)) . T))
+(((|#1|) . T))
+((((-773)) . T))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
+((((-584 (-831))) . T) (((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
((((-197 |#1| |#2|) |#2|) . T))
-((((-772)) . T))
-((((-483)) . T))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
-((((-772)) . T))
+((((-773)) . T))
+((((-484)) . T))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
+((((-773)) . T))
(|has| |#1| (-118))
(|has| |#1| (-120))
-((((-472)) |has| |#1| (-553 (-472))))
+((((-473)) |has| |#1| (-554 (-473))))
(((|#1|) . T))
-((((-1088)) |has| |#1| (-809 (-1088))))
-((((-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088)))))
-((($ (-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088)))))
+((((-1089)) |has| |#1| (-810 (-1089))))
+((((-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089)))))
+((($ (-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089)))))
(((|#1|) . T))
(OR (|has| |#1| (-190)) (|has| |#1| (-189)))
((($) OR (|has| |#1| (-190)) (|has| |#1| (-189))))
(|has| |#1| (-190))
(|has| |#1| (-311))
(OR (|has| |#1| (-245)) (|has| |#1| (-311)))
-((((-483)) . T) ((|#1|) . T) (((-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-950 (-347 (-483))))))
-(((|#1|) . T) (((-347 (-483))) |has| |#1| (-311)))
-(((|#1|) . T) (((-347 (-483))) |has| |#1| (-311)))
-((($) . T) (((-483)) . T) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-311)))
-(((|#1|) . T) (($) OR (|has| |#1| (-245)) (|has| |#1| (-311))) (((-347 (-483))) |has| |#1| (-311)))
-(((|#1|) . T) (($) OR (|has| |#1| (-245)) (|has| |#1| (-311))) (((-347 (-483))) |has| |#1| (-311)))
-(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-245)) (|has| |#1| (-311))) (((-347 (-483)) (-347 (-483))) |has| |#1| (-311)))
-(((|#1|) . T) (((-347 (-483))) |has| |#1| (-311)))
-(((|#1|) . T))
-((((-1088) |#1|) |has| |#1| (-452 (-1088) |#1|)) ((|#1| |#1|) |has| |#1| (-259 |#1|)))
+((((-484)) . T) ((|#1|) . T) (((-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-951 (-347 (-484))))))
+(((|#1|) . T) (((-347 (-484))) |has| |#1| (-311)))
+(((|#1|) . T) (((-347 (-484))) |has| |#1| (-311)))
+((($) . T) (((-484)) . T) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-311)))
+(((|#1|) . T) (($) OR (|has| |#1| (-245)) (|has| |#1| (-311))) (((-347 (-484))) |has| |#1| (-311)))
+(((|#1|) . T) (($) OR (|has| |#1| (-245)) (|has| |#1| (-311))) (((-347 (-484))) |has| |#1| (-311)))
+(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-245)) (|has| |#1| (-311))) (((-347 (-484)) (-347 (-484))) |has| |#1| (-311)))
+(((|#1|) . T) (((-347 (-484))) |has| |#1| (-311)))
+(((|#1|) . T))
+((((-1089) |#1|) |has| |#1| (-453 (-1089) |#1|)) ((|#1| |#1|) |has| |#1| (-259 |#1|)))
(((|#1|) |has| |#1| (-259 |#1|)))
(((|#1| $) |has| |#1| (-241 |#1| |#1|)))
(((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-311)) (((-483)) |has| |#1| (-580 (-483))))
-(((|#1|) . T) (((-483)) |has| |#1| (-580 (-483))))
+((($) . T) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-311)) (((-484)) |has| |#1| (-581 (-484))))
+(((|#1|) . T) (((-484)) |has| |#1| (-581 (-484))))
(((|#1|) . T))
-(((|#1|) . T) (((-483)) |has| |#1| (-950 (-483))) (((-347 (-483))) |has| |#1| (-950 (-347 (-483)))))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
+(((|#1|) . T) (((-484)) |has| |#1| (-951 (-484))) (((-347 (-484))) |has| |#1| (-951 (-347 (-484)))))
+(|has| |#1| (-757))
+(|has| |#1| (-757))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1012)))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012))))
-(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(|has| |#1| (-1012))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(|has| |#1| (-1013))
(((|#1|) . T))
(((|#1|) . T))
((((-347 |#2|) |#3|) . T))
-((((-347 (-483))) |has| (-347 |#2|) (-950 (-347 (-483)))) (((-483)) |has| (-347 |#2|) (-950 (-483))) (((-347 |#2|)) . T))
+((((-347 (-484))) |has| (-347 |#2|) (-951 (-347 (-484)))) (((-484)) |has| (-347 |#2|) (-951 (-484))) (((-347 |#2|)) . T))
((((-347 |#2|)) . T))
-((((-483)) |has| (-347 |#2|) (-580 (-483))) (((-347 |#2|)) . T))
+((((-484)) |has| (-347 |#2|) (-581 (-484))) (((-347 |#2|)) . T))
((((-347 |#2|)) . T))
((((-347 |#2|) |#3|) . T))
(|has| (-347 |#2|) (-120))
((((-347 |#2|) |#3|) . T))
(|has| (-347 |#2|) (-118))
-((((-347 |#2|)) . T) (((-347 (-483))) . T) (($) . T))
-((((-347 |#2|)) . T) (((-347 (-483))) . T) (($) . T))
-((((-347 |#2|)) . T) (((-347 (-483))) . T) (($) . T))
+((((-347 |#2|)) . T) (((-347 (-484))) . T) (($) . T))
+((((-347 |#2|)) . T) (((-347 (-484))) . T) (($) . T))
+((((-347 |#2|)) . T) (((-347 (-484))) . T) (($) . T))
(|has| (-347 |#2|) (-190))
((($) OR (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-189))))
(OR (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-189)))
((((-347 |#2|)) . T))
-((($ (-1088)) OR (|has| (-347 |#2|) (-809 (-1088))) (|has| (-347 |#2|) (-811 (-1088)))))
-((((-1088)) OR (|has| (-347 |#2|) (-809 (-1088))) (|has| (-347 |#2|) (-811 (-1088)))))
-((((-1088)) |has| (-347 |#2|) (-809 (-1088))))
+((($ (-1089)) OR (|has| (-347 |#2|) (-810 (-1089))) (|has| (-347 |#2|) (-812 (-1089)))))
+((((-1089)) OR (|has| (-347 |#2|) (-810 (-1089))) (|has| (-347 |#2|) (-812 (-1089)))))
+((((-1089)) |has| (-347 |#2|) (-810 (-1089))))
((((-347 |#2|)) . T))
(((|#3|) . T))
-((((-347 |#2|) (-347 |#2|)) . T) (((-347 (-483)) (-347 (-483))) . T) (($ $) . T))
-((((-347 |#2|)) . T) (((-347 (-483))) . T) (($) . T))
-((((-347 |#2|)) . T) (((-347 (-483))) . T) (($) . T))
-((((-772)) . T))
-((((-347 |#2|)) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T))
-((((-483)) |has| (-347 |#2|) (-580 (-483))) (((-347 |#2|)) . T) (((-347 (-483))) . T) (($) . T))
-((((-347 |#2|)) . T) (((-347 (-483))) . T) (($) . T) (((-483)) . T))
+((((-347 |#2|) (-347 |#2|)) . T) (((-347 (-484)) (-347 (-484))) . T) (($ $) . T))
+((((-347 |#2|)) . T) (((-347 (-484))) . T) (($) . T))
+((((-347 |#2|)) . T) (((-347 (-484))) . T) (($) . T))
+((((-773)) . T))
+((((-347 |#2|)) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T))
+((((-484)) |has| (-347 |#2|) (-581 (-484))) (((-347 |#2|)) . T) (((-347 (-484))) . T) (($) . T))
+((((-347 |#2|)) . T) (((-347 (-484))) . T) (($) . T) (((-484)) . T))
(((|#1| |#2| |#3|) . T))
-((((-347 (-483))) . T) (((-772)) . T))
-((((-483)) . T))
-((((-483)) . T))
-((($) . T))
-((((-483)) . T) (($) . T) (((-347 (-483))) . T))
-((($) . T) (((-483)) . T) (((-347 (-483))) . T))
-((($) . T) (((-483)) . T) (((-347 (-483))) . T))
-((((-483)) . T) (($) . T) (((-347 (-483))) . T))
-((((-483)) . T) (($) . T) (((-347 (-483))) . T))
-((((-483)) . T) (((-347 (-483))) . T) (($) . T))
-((((-483)) . T) (((-347 (-483))) . T) (($) . T))
-((((-483) (-483)) . T) (((-347 (-483)) (-347 (-483))) . T) (($ $) . T))
-((((-483)) . T))
-((((-483)) . T))
-((((-483)) . T))
-((((-483)) . T))
-((((-483)) . T))
-((((-483)) . T))
-((((-472)) . T) (((-800 (-483))) . T) (((-327)) . T) (((-179)) . T))
-((((-347 (-483))) . T) (((-483)) . T))
-((((-483)) . T) (($) . T) (((-347 (-483))) . T))
-((((-483)) . T))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
-((((-772)) . T))
-(((|#1|) . T) (($) . T) (((-483)) . T) (((-347 (-483))) . T))
-(((|#1|) . T) (($) . T) (((-347 (-483))) . T) (((-483)) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T))
-(((|#1| |#1|) . T) (((-347 (-483)) (-347 (-483))) . T) (((-483) (-483)) . T) (($ $) . T))
-(((|#1|) . T) (((-483)) . T) (((-347 (-483))) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T) (((-483)) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) . T))
-(((|#1|) . T) (((-483)) OR (|has| |#1| (-950 (-483))) (|has| (-347 (-483)) (-950 (-483)))) (((-347 (-483))) . T))
-((((-772)) . T))
+((((-347 (-484))) . T) (((-773)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((($) . T))
+((((-484)) . T) (($) . T) (((-347 (-484))) . T))
+((($) . T) (((-484)) . T) (((-347 (-484))) . T))
+((($) . T) (((-484)) . T) (((-347 (-484))) . T))
+((((-484)) . T) (($) . T) (((-347 (-484))) . T))
+((((-484)) . T) (($) . T) (((-347 (-484))) . T))
+((((-484)) . T) (((-347 (-484))) . T) (($) . T))
+((((-484)) . T) (((-347 (-484))) . T) (($) . T))
+((((-484) (-484)) . T) (((-347 (-484)) (-347 (-484))) . T) (($ $) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-473)) . T) (((-801 (-484))) . T) (((-327)) . T) (((-179)) . T))
+((((-347 (-484))) . T) (((-484)) . T))
+((((-484)) . T) (($) . T) (((-347 (-484))) . T))
+((((-484)) . T))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
+((((-773)) . T))
+(((|#1|) . T) (($) . T) (((-484)) . T) (((-347 (-484))) . T))
+(((|#1|) . T) (($) . T) (((-347 (-484))) . T) (((-484)) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T))
+(((|#1| |#1|) . T) (((-347 (-484)) (-347 (-484))) . T) (((-484) (-484)) . T) (($ $) . T))
+(((|#1|) . T) (((-484)) . T) (((-347 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) . T))
+(((|#1|) . T) (((-484)) OR (|has| |#1| (-951 (-484))) (|has| (-347 (-484)) (-951 (-484)))) (((-347 (-484))) . T))
+((((-773)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#4|) . T))
-((((-583 |#4|)) . T) (((-772)) . T))
-(((|#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))))
-(((|#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))))
+((((-584 |#4|)) . T) (((-773)) . T))
+(((|#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))))
+(((|#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))))
(((|#4|) . T))
-((((-472)) |has| |#4| (-553 (-472))))
+((((-473)) |has| |#4| (-554 (-473))))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
@@ -2920,44 +2921,44 @@
(((|#1| |#1|) . T) (($ $) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T) (($) . T))
-((((-772)) . T))
-(((|#1|) . T) (((-483)) . T) (($) . T))
+((((-773)) . T))
+(((|#1|) . T) (((-484)) . T) (($) . T))
(((|#1|) . T) (($) . T))
-(((|#1|) . T) (((-483)) . T))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
-(((|#1| (-468 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|))) . T))
-((((-703 |#1| (-773 |#2|))) . T))
-((((-583 (-703 |#1| (-773 |#2|)))) . T) (((-772)) . T))
-((((-703 |#1| (-773 |#2|))) |has| (-703 |#1| (-773 |#2|)) (-259 (-703 |#1| (-773 |#2|)))))
-((((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) |has| (-703 |#1| (-773 |#2|)) (-259 (-703 |#1| (-773 |#2|)))))
-((((-703 |#1| (-773 |#2|))) . T))
-((((-472)) |has| (-703 |#1| (-773 |#2|)) (-553 (-472))))
-(((|#1| (-468 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|))) . T))
-(((|#1| (-468 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|))) . T))
-((((-472)) |has| |#3| (-553 (-472))))
+(((|#1|) . T) (((-484)) . T))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
+(((|#1| (-469 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|))) . T))
+((((-704 |#1| (-774 |#2|))) . T))
+((((-584 (-704 |#1| (-774 |#2|)))) . T) (((-773)) . T))
+((((-704 |#1| (-774 |#2|))) |has| (-704 |#1| (-774 |#2|)) (-259 (-704 |#1| (-774 |#2|)))))
+((((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) |has| (-704 |#1| (-774 |#2|)) (-259 (-704 |#1| (-774 |#2|)))))
+((((-704 |#1| (-774 |#2|))) . T))
+((((-473)) |has| (-704 |#1| (-774 |#2|)) (-554 (-473))))
+(((|#1| (-469 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|))) . T))
+(((|#1| (-469 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|))) . T))
+((((-473)) |has| |#3| (-554 (-473))))
(((|#3|) |has| |#3| (-311)))
(((|#3| |#3|) . T))
(((|#3|) . T))
(((|#3|) . T))
-((((-630 |#3|)) . T) (((-772)) . T))
-((((-483)) . T) ((|#3|) . T))
+((((-631 |#3|)) . T) (((-773)) . T))
+((((-484)) . T) ((|#3|) . T))
(((|#3|) . T))
(((|#3|) . T))
-(((|#3| |#3|) -12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))))
-(((|#3|) -12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))))
+(((|#3| |#3|) -12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))))
+(((|#3|) -12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))))
(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311))))
(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311))))
(((|#1| |#2| |#3| (-197 |#2| |#3|) (-197 |#1| |#3|)) . T))
-(|has| |#1| (-1012))
-((((-772)) |has| |#1| (-1012)))
-(|has| |#1| (-1012))
-((((-772)) . T))
+(|has| |#1| (-1013))
+((((-773)) |has| |#1| (-1013)))
+(|has| |#1| (-1013))
+((((-773)) . T))
(((|#1| |#2|) . T))
-((((-1088)) . T))
-((((-772)) . T))
-((($) . T) (((-483)) . T))
+((((-1089)) . T))
+((((-773)) . T))
+((($) . T) (((-484)) . T))
((($) . T))
((($) . T))
((($ $) . T))
@@ -2965,31 +2966,31 @@
((($) . T))
((($) . T))
((($) . T))
-((((-483)) . T) (($) . T))
-((((-483)) . T))
-((($) . T) (((-483)) . T))
-((((-483)) . T))
-((((-472)) . T) (((-483)) . T) (((-800 (-483))) . T) (((-327)) . T) (((-179)) . T))
-((((-483)) . T))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
+((((-484)) . T) (($) . T))
+((((-484)) . T))
+((($) . T) (((-484)) . T))
+((((-484)) . T))
+((((-473)) . T) (((-484)) . T) (((-801 (-484))) . T) (((-327)) . T) (((-179)) . T))
+((((-484)) . T))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
((((-248 |#3|)) . T))
((((-248 |#3|)) . T))
(((|#3| |#3|) . T))
-((((-772)) . T))
-((((-772)) . T))
+((((-773)) . T))
+((((-773)) . T))
(((|#3| |#3|) . T))
-((((-772)) . T))
-((((-772)) . T))
+((((-773)) . T))
+((((-773)) . T))
(((|#2|) . T))
(((|#1|) |has| |#1| (-311)))
-((((-1088)) -12 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))))
-((((-1088)) OR (-12 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (-12 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088))))))
-((($ (-1088)) OR (-12 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (-12 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088))))))
+((((-1089)) -12 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))))
+((((-1089)) OR (-12 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (-12 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089))))))
+((($ (-1089)) OR (-12 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (-12 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089))))))
(((|#1|) |has| |#1| (-311)))
(OR (-12 (|has| |#1| (-190)) (|has| |#1| (-311))) (-12 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298)))
((($) OR (-12 (|has| |#1| (-190)) (|has| |#1| (-311))) (-12 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))))
@@ -3008,161 +3009,161 @@
(OR (|has| |#1| (-118)) (|has| |#1| (-298)))
(|has| |#1| (-298))
(((|#1| |#2|) . T))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-298))) (((-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
-((($ $) . T) (((-347 (-483)) (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1| |#1|) . T))
-((($) . T) (((-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
-((($) . T) (((-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
-((($) . T) (((-483)) . T) (((-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-298))) (((-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-298))) (((-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
-((((-483)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-298))) (((-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-950 (-347 (-483))))) ((|#1|) . T))
+((($) OR (|has| |#1| (-311)) (|has| |#1| (-298))) (((-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
+((($ $) . T) (((-347 (-484)) (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1| |#1|) . T))
+((($) . T) (((-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
+((($) . T) (((-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
+((($) . T) (((-484)) . T) (((-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
+((($) OR (|has| |#1| (-311)) (|has| |#1| (-298))) (((-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
+((($) OR (|has| |#1| (-311)) (|has| |#1| (-298))) (((-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T))
+((((-484)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-298))) (((-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298)) (|has| |#1| (-951 (-347 (-484))))) ((|#1|) . T))
(|has| |#1| (-120))
(((|#1| |#2|) . T))
(((|#1|) . T))
-((($) . T) (((-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T) (((-483)) |has| |#1| (-580 (-483))))
-(((|#1|) . T) (((-483)) |has| |#1| (-580 (-483))))
+((($) . T) (((-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-298))) ((|#1|) . T) (((-484)) |has| |#1| (-581 (-484))))
+(((|#1|) . T) (((-484)) |has| |#1| (-581 (-484))))
(((|#1|) . T))
-(((|#1|) . T) (((-483)) |has| |#1| (-950 (-483))) (((-347 (-483))) |has| |#1| (-950 (-347 (-483)))))
+(((|#1|) . T) (((-484)) |has| |#1| (-951 (-484))) (((-347 (-484))) |has| |#1| (-951 (-347 (-484)))))
(((|#1| |#2|) . T))
-((((-1088)) . T))
-((((-772)) . T))
-((((-772)) . T))
+((((-1089)) . T))
+((((-773)) . T))
+((((-773)) . T))
(((|#1|) . T))
(((|#1|) . T))
(OR (|has| |#1| (-190)) (|has| |#1| (-189)))
((($) OR (|has| |#1| (-190)) (|has| |#1| (-189))))
-((((-772)) . T))
+((((-773)) . T))
(|has| |#1| (-190))
((($) . T))
-(((|#1| (-468 (-999 (-1088))) (-999 (-1088))) . T))
-(|has| |#1| (-821))
-(|has| |#1| (-821))
-((((-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088)))) (((-999 (-1088))) . T))
-((($ (-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088)))) (($ (-999 (-1088))) . T))
-((((-1088)) |has| |#1| (-809 (-1088))) (((-999 (-1088))) . T))
-((($ $) . T) (((-1088) $) |has| |#1| (-190)) (((-1088) |#1|) |has| |#1| (-190)) (((-999 (-1088)) |#1|) . T) (((-999 (-1088)) $) . T))
-(OR (|has| |#1| (-389)) (|has| |#1| (-821)))
-((((-483)) |has| |#1| (-580 (-483))) ((|#1|) . T))
-(((|#1|) . T))
-(((|#1| (-468 (-999 (-1088)))) . T))
-(OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))
+(((|#1| (-469 (-1000 (-1089))) (-1000 (-1089))) . T))
+(|has| |#1| (-822))
+(|has| |#1| (-822))
+((((-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089)))) (((-1000 (-1089))) . T))
+((($ (-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089)))) (($ (-1000 (-1089))) . T))
+((((-1089)) |has| |#1| (-810 (-1089))) (((-1000 (-1089))) . T))
+((($ $) . T) (((-1089) $) |has| |#1| (-190)) (((-1089) |#1|) |has| |#1| (-190)) (((-1000 (-1089)) |#1|) . T) (((-1000 (-1089)) $) . T))
+(OR (|has| |#1| (-389)) (|has| |#1| (-822)))
+((((-484)) |has| |#1| (-581 (-484))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (-469 (-1000 (-1089)))) . T))
+(OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) . T) (((-483)) |has| |#1| (-580 (-483))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((((-483)) . T) (($) . T) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
+((($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) . T) (((-484)) |has| |#1| (-581 (-484))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((((-484)) . T) (($) . T) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
(((|#1|) . T))
-(((|#1| (-468 (-999 (-1088)))) . T))
-((((-1037 |#1| (-1088))) . T) (((-999 (-1088))) . T) ((|#1|) . T) (((-483)) |has| |#1| (-950 (-483))) (((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) (((-1088)) . T))
-((((-1037 |#1| (-1088))) . T) (((-483)) . T) (((-999 (-1088))) . T) (($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) (((-1088)) . T))
-(((|#1| (-1088) (-999 (-1088)) (-468 (-999 (-1088)))) . T))
+(((|#1| (-469 (-1000 (-1089)))) . T))
+((((-1038 |#1| (-1089))) . T) (((-1000 (-1089))) . T) ((|#1|) . T) (((-484)) |has| |#1| (-951 (-484))) (((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) (((-1089)) . T))
+((((-1038 |#1| (-1089))) . T) (((-484)) . T) (((-1000 (-1089))) . T) (($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) (((-1089)) . T))
+(((|#1| (-1089) (-1000 (-1089)) (-469 (-1000 (-1089)))) . T))
((($) . T))
-((((-772)) . T))
+((((-773)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#1| (-583 |#1|)) |has| |#1| (-755)))
-(|has| |#1| (-1012))
-(|has| |#1| (-1012))
-(|has| |#1| (-1012))
-((((-772)) |has| |#1| (-1012)))
-(|has| |#1| (-1012))
+(((|#1| (-584 |#1|)) |has| |#1| (-756)))
+(|has| |#1| (-1013))
+(|has| |#1| (-1013))
+(|has| |#1| (-1013))
+((((-773)) |has| |#1| (-1013)))
+(|has| |#1| (-1013))
(((|#1|) . T))
(((|#1|) . T))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
-(|has| (-1000 |#1|) (-1012))
-((((-772)) |has| (-1000 |#1|) (-1012)))
-(|has| (-1000 |#1|) (-1012))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
+(|has| (-1001 |#1|) (-1013))
+((((-773)) |has| (-1001 |#1|) (-1013)))
+(|has| (-1001 |#1|) (-1013))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-772)) . T))
-(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
+((((-773)) . T))
+(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
(((|#1|) . T))
(((|#1|) . T))
-((((-472)) |has| |#1| (-553 (-472))))
+((((-473)) |has| |#1| (-554 (-473))))
(((|#1|) . T))
(|has| |#1| (-317))
(((|#1|) . T))
(((|#1|) . T))
-((((-772)) . T))
-((((-583 $)) . T) (((-1071)) . T) (((-1088)) . T) (((-483)) . T) (((-179)) . T) (((-772)) . T))
-((((-483) $) . T) (((-583 (-483)) $) . T))
-((((-772)) . T))
-((((-1071) (-1088) (-483) (-179) (-772)) . T))
-((((-583 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T))
-((((-483) $) . T) (((-583 (-483)) $) . T))
-((((-772)) . T))
+((((-773)) . T))
+((((-584 $)) . T) (((-1072)) . T) (((-1089)) . T) (((-484)) . T) (((-179)) . T) (((-773)) . T))
+((((-484) $) . T) (((-584 (-484)) $) . T))
+((((-773)) . T))
+((((-1072) (-1089) (-484) (-179) (-773)) . T))
+((((-584 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T))
+((((-484) $) . T) (((-584 (-484)) $) . T))
+((((-773)) . T))
(((|#1| |#2| |#3| |#4| |#5|) . T))
-((((-772)) . T))
+((((-773)) . T))
(((|#1|) . T))
(((|#1| |#1| |#1|) . T))
(((|#1|) . T))
-(OR (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-961)))
-(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-717)) (|has| |#3| (-961)))
-(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-317)) (|has| |#3| (-663)) (|has| |#3| (-717)) (|has| |#3| (-756)) (|has| |#3| (-961)) (|has| |#3| (-1012)))
-(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-72)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-317)) (|has| |#3| (-663)) (|has| |#3| (-717)) (|has| |#3| (-756)) (|has| |#3| (-961)) (|has| |#3| (-1012)))
-(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-717)) (|has| |#3| (-961)))
-(OR (|has| |#3| (-21)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-717)) (|has| |#3| (-961)))
-(((|#3| |#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-961))))
-(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-663)) (|has| |#3| (-961))))
-(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-961))))
-((((-772)) OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-552 (-772))) (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-317)) (|has| |#3| (-663)) (|has| |#3| (-717)) (|has| |#3| (-756)) (|has| |#3| (-961)) (|has| |#3| (-1012))) (((-1177 |#3|)) . T))
-(((|#3|) |has| |#3| (-961)))
-((((-1088)) -12 (|has| |#3| (-809 (-1088))) (|has| |#3| (-961))))
-((((-1088)) OR (-12 (|has| |#3| (-809 (-1088))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961)))))
-((($ (-1088)) OR (-12 (|has| |#3| (-809 (-1088))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961)))))
-(((|#3|) |has| |#3| (-961)))
-(OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961))))
-((($) OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))))
-(|has| |#3| (-961))
-(|has| |#3| (-961))
-(|has| |#3| (-961))
-(|has| |#3| (-961))
-(|has| |#3| (-961))
-((((-483)) OR (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-961))) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-663)) (|has| |#3| (-961))) (($) |has| |#3| (-961)))
-(-12 (|has| |#3| (-190)) (|has| |#3| (-961)))
+(OR (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-962)))
+(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-718)) (|has| |#3| (-962)))
+(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-317)) (|has| |#3| (-664)) (|has| |#3| (-718)) (|has| |#3| (-757)) (|has| |#3| (-962)) (|has| |#3| (-1013)))
+(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-72)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-317)) (|has| |#3| (-664)) (|has| |#3| (-718)) (|has| |#3| (-757)) (|has| |#3| (-962)) (|has| |#3| (-1013)))
+(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-718)) (|has| |#3| (-962)))
+(OR (|has| |#3| (-21)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-718)) (|has| |#3| (-962)))
+(((|#3| |#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-962))))
+(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-664)) (|has| |#3| (-962))))
+(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-962))))
+((((-773)) OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-553 (-773))) (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-317)) (|has| |#3| (-664)) (|has| |#3| (-718)) (|has| |#3| (-757)) (|has| |#3| (-962)) (|has| |#3| (-1013))) (((-1178 |#3|)) . T))
+(((|#3|) |has| |#3| (-962)))
+((((-1089)) -12 (|has| |#3| (-810 (-1089))) (|has| |#3| (-962))))
+((((-1089)) OR (-12 (|has| |#3| (-810 (-1089))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962)))))
+((($ (-1089)) OR (-12 (|has| |#3| (-810 (-1089))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962)))))
+(((|#3|) |has| |#3| (-962)))
+(OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962))))
+((($) OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))))
+(|has| |#3| (-962))
+(|has| |#3| (-962))
+(|has| |#3| (-962))
+(|has| |#3| (-962))
+(|has| |#3| (-962))
+((((-484)) OR (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-962))) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-664)) (|has| |#3| (-962))) (($) |has| |#3| (-962)))
+(-12 (|has| |#3| (-190)) (|has| |#3| (-962)))
(|has| |#3| (-317))
-(((|#3|) |has| |#3| (-961)))
-(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-961))) (($) |has| |#3| (-961)) (((-483)) -12 (|has| |#3| (-580 (-483))) (|has| |#3| (-961))))
-(((|#3|) |has| |#3| (-961)) (((-483)) -12 (|has| |#3| (-580 (-483))) (|has| |#3| (-961))))
-(((|#3|) |has| |#3| (-1012)))
-((((-483)) OR (-12 (|has| |#3| (-950 (-483))) (|has| |#3| (-1012))) (|has| |#3| (-961))) ((|#3|) |has| |#3| (-1012)) (((-347 (-483))) -12 (|has| |#3| (-950 (-347 (-483)))) (|has| |#3| (-1012))))
-(((|#3|) |has| |#3| (-1012)) (((-483)) -12 (|has| |#3| (-950 (-483))) (|has| |#3| (-1012))) (((-347 (-483))) -12 (|has| |#3| (-950 (-347 (-483)))) (|has| |#3| (-1012))))
-((((-483) |#3|) . T))
-(((|#3|) -12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))))
-(((|#3| |#3|) -12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))))
+(((|#3|) |has| |#3| (-962)))
+(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-962))) (($) |has| |#3| (-962)) (((-484)) -12 (|has| |#3| (-581 (-484))) (|has| |#3| (-962))))
+(((|#3|) |has| |#3| (-962)) (((-484)) -12 (|has| |#3| (-581 (-484))) (|has| |#3| (-962))))
+(((|#3|) |has| |#3| (-1013)))
+((((-484)) OR (-12 (|has| |#3| (-951 (-484))) (|has| |#3| (-1013))) (|has| |#3| (-962))) ((|#3|) |has| |#3| (-1013)) (((-347 (-484))) -12 (|has| |#3| (-951 (-347 (-484)))) (|has| |#3| (-1013))))
+(((|#3|) |has| |#3| (-1013)) (((-484)) -12 (|has| |#3| (-951 (-484))) (|has| |#3| (-1013))) (((-347 (-484))) -12 (|has| |#3| (-951 (-347 (-484)))) (|has| |#3| (-1013))))
+((((-484) |#3|) . T))
+(((|#3|) -12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))))
+(((|#3| |#3|) -12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))))
(((|#3|) . T))
-((((-483) |#3|) . T))
-((((-483) |#3|) . T))
-(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-663))))
+((((-484) |#3|) . T))
+((((-484) |#3|) . T))
+(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311)) (|has| |#3| (-664))))
(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-311))))
-(|has| |#3| (-717))
-(|has| |#3| (-717))
-(OR (|has| |#3| (-717)) (|has| |#3| (-756)))
-(OR (|has| |#3| (-717)) (|has| |#3| (-756)))
-(|has| |#3| (-717))
-(|has| |#3| (-717))
+(|has| |#3| (-718))
+(|has| |#3| (-718))
+(OR (|has| |#3| (-718)) (|has| |#3| (-757)))
+(OR (|has| |#3| (-718)) (|has| |#3| (-757)))
+(|has| |#3| (-718))
+(|has| |#3| (-718))
(((|#3|) |has| |#3| (-311)))
(((|#1| |#3|) . T))
-((((-772)) . T))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
-((((-772)) . T))
-((($) . T) (((-483)) . T))
+((((-773)) . T))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
+((((-773)) . T))
+((($) . T) (((-484)) . T))
((($) . T))
((($) . T))
((($ $) . T))
@@ -3170,775 +3171,775 @@
((($) . T))
((($) . T))
((($) . T))
-((((-483)) . T) (($) . T))
-((((-483)) . T))
-((($) . T) (((-483)) . T))
-((((-483)) . T))
-((((-472)) . T) (((-483)) . T) (((-800 (-483))) . T) (((-327)) . T) (((-179)) . T))
-((((-483)) . T))
-((((-472)) -12 (|has| |#1| (-553 (-472))) (|has| |#2| (-553 (-472)))) (((-800 (-327))) -12 (|has| |#1| (-553 (-800 (-327)))) (|has| |#2| (-553 (-800 (-327))))) (((-800 (-483))) -12 (|has| |#1| (-553 (-800 (-483)))) (|has| |#2| (-553 (-800 (-483))))))
+((((-484)) . T) (($) . T))
+((((-484)) . T))
+((($) . T) (((-484)) . T))
+((((-484)) . T))
+((((-473)) . T) (((-484)) . T) (((-801 (-484))) . T) (((-327)) . T) (((-179)) . T))
+((((-484)) . T))
+((((-473)) -12 (|has| |#1| (-554 (-473))) (|has| |#2| (-554 (-473)))) (((-801 (-327))) -12 (|has| |#1| (-554 (-801 (-327)))) (|has| |#2| (-554 (-801 (-327))))) (((-801 (-484))) -12 (|has| |#1| (-554 (-801 (-484)))) (|has| |#2| (-554 (-801 (-484))))))
((($) . T))
-(((|#1| (-468 |#2|)) . T))
+(((|#1| (-469 |#2|)) . T))
(((|#1|) . T))
-((((-772)) . T))
-((($) . T) (((-483)) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T))
+((((-773)) . T))
+((($) . T) (((-484)) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T))
(|has| |#1| (-118))
(|has| |#1| (-120))
-(OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))
-((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))))
-((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))))
-((((-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))))
-(OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))
-((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))))
-((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))))
-((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))))
-(((|#1| (-468 |#2|)) . T))
-(((|#1|) . T))
-((($) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T) (((-483)) |has| |#1| (-580 (-483))))
-(((|#1|) . T) (((-483)) |has| |#1| (-580 (-483))))
-(OR (|has| |#1| (-389)) (|has| |#1| (-821)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))
+((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))))
+((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))))
+((((-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))))
+(OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))
+((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))))
+((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))))
+((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))))
+(((|#1| (-469 |#2|)) . T))
+(((|#1|) . T))
+((($) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T) (((-484)) |has| |#1| (-581 (-484))))
+(((|#1|) . T) (((-484)) |has| |#1| (-581 (-484))))
+(OR (|has| |#1| (-389)) (|has| |#1| (-822)))
((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
(((|#2|) . T))
((($ |#2|) . T))
(((|#2|) . T))
-((((-327)) -12 (|has| |#1| (-796 (-327))) (|has| |#2| (-796 (-327)))) (((-483)) -12 (|has| |#1| (-796 (-483))) (|has| |#2| (-796 (-483)))))
-(|has| |#1| (-821))
-(|has| |#1| (-821))
-((((-347 (-483))) |has| |#1| (-950 (-347 (-483)))) (((-483)) |has| |#1| (-950 (-483))) ((|#1|) . T) ((|#2|) . T))
-((((-483)) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ((|#1|) . T) (($) OR (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#2|) . T))
-(((|#1| (-468 |#2|) |#2|) . T))
+((((-327)) -12 (|has| |#1| (-797 (-327))) (|has| |#2| (-797 (-327)))) (((-484)) -12 (|has| |#1| (-797 (-484))) (|has| |#2| (-797 (-484)))))
+(|has| |#1| (-822))
+(|has| |#1| (-822))
+((((-347 (-484))) |has| |#1| (-951 (-347 (-484)))) (((-484)) |has| |#1| (-951 (-484))) ((|#1|) . T) ((|#2|) . T))
+((((-484)) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ((|#1|) . T) (($) OR (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#2|) . T))
+(((|#1| (-469 |#2|) |#2|) . T))
((($) . T))
((($ $) . T) ((|#2| $) . T))
(((|#2|) . T))
-((((-772)) . T))
+((((-773)) . T))
((($ |#2|) . T))
(((|#2|) . T))
-(((|#1| (-468 |#2|) |#2|) . T))
-((($) . T) (((-483)) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T))
-((($) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T))
+(((|#1| (-469 |#2|) |#2|) . T))
+((($) . T) (((-484)) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T))
+((($) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T))
(|has| |#1| (-118))
(|has| |#1| (-120))
-(OR (|has| |#1| (-146)) (|has| |#1| (-494)))
-((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-494))))
-((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-494))))
-((((-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-494))))
-(|has| |#1| (-494))
-(|has| |#1| (-494))
-((((-483)) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494)))
-((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494)))
-((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494)))
-((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494)))
-(((|#1| (-468 |#2|)) . T))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
+(OR (|has| |#1| (-146)) (|has| |#1| (-495)))
+((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495))))
+((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495))))
+((((-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495))))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+((((-484)) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
+((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
+((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
+((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
+(((|#1| (-469 |#2|)) . T))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
(((|#1| |#2|) . T))
-((((-772)) . T))
-(((|#1|) . T))
-((((-1093)) . T))
-((((-1093)) . T))
-((((-1093)) . T) (((-772)) . T))
-((((-772)) . T))
-((((-1052 |#1| |#2|)) . T))
-((((-1052 |#1| |#2|) (-1052 |#1| |#2|)) |has| (-1052 |#1| |#2|) (-259 (-1052 |#1| |#2|))))
-((((-1052 |#1| |#2|)) |has| (-1052 |#1| |#2|) (-259 (-1052 |#1| |#2|))))
-((((-772)) . T))
-((((-1052 |#1| |#2|)) . T))
-((((-472)) |has| |#2| (-553 (-472))))
-(((|#2|) |has| |#2| (-6 (-3991 "*"))))
+((((-773)) . T))
+(((|#1|) . T))
+((((-1094)) . T))
+((((-1094)) . T))
+((((-1094)) . T) (((-773)) . T))
+((((-773)) . T))
+((((-1053 |#1| |#2|)) . T))
+((((-1053 |#1| |#2|) (-1053 |#1| |#2|)) |has| (-1053 |#1| |#2|) (-259 (-1053 |#1| |#2|))))
+((((-1053 |#1| |#2|)) |has| (-1053 |#1| |#2|) (-259 (-1053 |#1| |#2|))))
+((((-773)) . T))
+((((-1053 |#1| |#2|)) . T))
+((((-473)) |has| |#2| (-554 (-473))))
+(((|#2|) |has| |#2| (-6 (-3993 "*"))))
(((|#2| |#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-630 |#2|)) . T) (((-772)) . T))
-((($) . T) (((-483)) . T) ((|#2|) . T))
-(((|#2|) OR (|has| |#2| (-6 (-3991 "*"))) (|has| |#2| (-146))))
-(((|#2|) OR (|has| |#2| (-6 (-3991 "*"))) (|has| |#2| (-146))))
+((((-631 |#2|)) . T) (((-773)) . T))
+((($) . T) (((-484)) . T) ((|#2|) . T))
+(((|#2|) OR (|has| |#2| (-6 (-3993 "*"))) (|has| |#2| (-146))))
+(((|#2|) OR (|has| |#2| (-6 (-3993 "*"))) (|has| |#2| (-146))))
(((|#2|) . T))
-((((-1088)) |has| |#2| (-809 (-1088))))
-((((-1088)) OR (|has| |#2| (-809 (-1088))) (|has| |#2| (-811 (-1088)))))
-((($ (-1088)) OR (|has| |#2| (-809 (-1088))) (|has| |#2| (-811 (-1088)))))
+((((-1089)) |has| |#2| (-810 (-1089))))
+((((-1089)) OR (|has| |#2| (-810 (-1089))) (|has| |#2| (-812 (-1089)))))
+((($ (-1089)) OR (|has| |#2| (-810 (-1089))) (|has| |#2| (-812 (-1089)))))
(((|#2|) . T))
(OR (|has| |#2| (-190)) (|has| |#2| (-189)))
((($) OR (|has| |#2| (-190)) (|has| |#2| (-189))))
(|has| |#2| (-190))
(((|#2|) . T))
-((($) . T) ((|#2|) . T) (((-483)) |has| |#2| (-580 (-483))))
-(((|#2|) . T) (((-483)) |has| |#2| (-580 (-483))))
+((($) . T) ((|#2|) . T) (((-484)) |has| |#2| (-581 (-484))))
+(((|#2|) . T) (((-484)) |has| |#2| (-581 (-484))))
(((|#2|) . T))
-((((-483)) . T) ((|#2|) . T) (((-347 (-483))) |has| |#2| (-950 (-347 (-483)))))
-(((|#2|) . T) (((-483)) |has| |#2| (-950 (-483))) (((-347 (-483))) |has| |#2| (-950 (-347 (-483)))))
+((((-484)) . T) ((|#2|) . T) (((-347 (-484))) |has| |#2| (-951 (-347 (-484)))))
+(((|#2|) . T) (((-484)) |has| |#2| (-951 (-484))) (((-347 (-484))) |has| |#2| (-951 (-347 (-484)))))
(((|#1| |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T))
-(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))))
-(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))))
+(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))))
+(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))))
(((|#2|) . T))
(((|#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-472)) |has| |#4| (-553 (-472))))
+((((-473)) |has| |#4| (-554 (-473))))
(((|#4|) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))))
-(((|#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))))
+(((|#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))))
+(((|#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))))
(((|#4|) . T))
-((((-772)) . T) (((-583 |#4|)) . T))
+((((-773)) . T) (((-584 |#4|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1012)))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012))))
-(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(|has| |#1| (-1012))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(|has| |#1| (-1013))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-772)) . T))
+((((-773)) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
-(((|#2|) . T) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))))
-(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))))
+(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
(((|#1| |#2|) . T))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
-((((-583 |#1|)) . T))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
+((((-584 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1012)))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012))))
-(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(|has| |#1| (-1012))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(|has| |#1| (-1013))
(((|#1|) . T))
-((((-472)) |has| |#1| (-553 (-472))))
-((((-483) |#1|) . T))
-((((-1144 (-483)) $) . T) (((-483) |#1|) . T))
-((((-483) |#1|) . T))
+((((-473)) |has| |#1| (-554 (-473))))
+((((-484) |#1|) . T))
+((((-1145 (-484)) $) . T) (((-484) |#1|) . T))
+((((-484) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-117)) . T))
((((-117)) . T))
-((((-483) (-117)) . T))
-((((-483) (-117)) . T))
-((((-483) (-117)) . T) (((-1144 (-483)) $) . T))
+((((-484) (-117)) . T))
+((((-484) (-117)) . T))
+((((-484) (-117)) . T) (((-1145 (-484)) $) . T))
((((-117)) . T))
-((((-772)) . T))
+((((-773)) . T))
((((-117)) . T))
((((-117)) . T))
-((((-1071) |#1|) . T))
-((((-772)) . T))
-((((-1071) |#1|) . T))
-((((-1071) |#1|) . T))
-((((-1071) |#1|) . T))
-((((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) . T))
-((((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) . T))
-(((|#1|) . T) (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) |has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))))
-(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) |has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))))
-((((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) . T))
-((((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) . T))
-((((-1071) |#1|) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
-((((-1087 |#1| |#2| |#3|)) |has| |#1| (-311)))
-((((-1087 |#1| |#2| |#3|)) . T))
-((((-1087 |#1| |#2| |#3|)) |has| |#1| (-311)))
-((((-1087 |#1| |#2| |#3|)) |has| |#1| (-311)))
-((((-1087 |#1| |#2| |#3|)) |has| |#1| (-311)))
-((((-1087 |#1| |#2| |#3|)) |has| |#1| (-311)))
-((((-1087 |#1| |#2| |#3|)) -12 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-259 (-1087 |#1| |#2| |#3|)))))
-((((-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|)) -12 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-259 (-1087 |#1| |#2| |#3|)))) (((-1088) (-1087 |#1| |#2| |#3|)) -12 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-452 (-1088) (-1087 |#1| |#2| |#3|)))))
-((((-1087 |#1| |#2| |#3|)) |has| |#1| (-311)))
+((((-1072) |#1|) . T))
+((((-773)) . T))
+((((-1072) |#1|) . T))
+((((-1072) |#1|) . T))
+((((-1072) |#1|) . T))
+((((-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) . T))
+((((-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) . T))
+(((|#1|) . T) (((-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) (((-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) |has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)))))
+(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) (((-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) |has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)))))
+((((-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) . T))
+((((-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) . T))
+((((-1072) |#1|) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
+((((-1088 |#1| |#2| |#3|)) |has| |#1| (-311)))
+((((-1088 |#1| |#2| |#3|)) . T))
+((((-1088 |#1| |#2| |#3|)) |has| |#1| (-311)))
+((((-1088 |#1| |#2| |#3|)) |has| |#1| (-311)))
+((((-1088 |#1| |#2| |#3|)) |has| |#1| (-311)))
+((((-1088 |#1| |#2| |#3|)) |has| |#1| (-311)))
+((((-1088 |#1| |#2| |#3|)) -12 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-259 (-1088 |#1| |#2| |#3|)))))
+((((-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) -12 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-259 (-1088 |#1| |#2| |#3|)))) (((-1089) (-1088 |#1| |#2| |#3|)) -12 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-453 (-1089) (-1088 |#1| |#2| |#3|)))))
+((((-1088 |#1| |#2| |#3|)) |has| |#1| (-311)))
(|has| |#1| (-311))
-(OR (|has| |#1| (-311)) (|has| |#1| (-494)))
+(OR (|has| |#1| (-311)) (|has| |#1| (-495)))
(|has| |#1| (-311))
(|has| |#1| (-311))
-(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494)))
-(OR (|has| |#1| (-311)) (|has| |#1| (-494)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495)))
+(OR (|has| |#1| (-311)) (|has| |#1| (-495)))
(|has| |#1| (-311))
(|has| |#1| (-311))
(|has| |#1| (-311))
-(OR (-12 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))
-((($) OR (-12 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))))
-(OR (-12 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))
-((((-1087 |#1| |#2| |#3|)) |has| |#1| (-311)))
-((($ (-1174 |#2|)) . T) (($ (-1088)) OR (-12 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-809 (-1088)))) (-12 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-811 (-1088)))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))))
-((((-1088)) OR (-12 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-809 (-1088)))) (-12 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-811 (-1088)))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))))
-((((-1088)) OR (-12 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-809 (-1088)))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))))
-((((-1087 |#1| |#2| |#3|)) |has| |#1| (-311)))
-(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-120))))
-(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-118))))
-((((-772)) . T))
-(((|#1|) . T))
-((((-1087 |#1| |#2| |#3|) $) -12 (|has| |#1| (-311)) (|has| (-1087 |#1| |#2| |#3|) (-241 (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|)))) (($ $) . T) (((-483) |#1|) . T))
-(((|#1| (-483) (-993)) . T))
-((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) (((-1087 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146)))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483)) (-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (((-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1| |#1|) . T))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (((-1087 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) . T))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (((-1087 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) . T))
-((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (((-1087 |#1| |#2| |#3|)) |has| |#1| (-311)) (((-483)) . T) (($) . T) ((|#1|) . T))
-((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (((-1087 |#1| |#2| |#3|)) |has| |#1| (-311)) (($) . T) ((|#1|) . T))
-((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) (((-1087 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146)))
-((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) (((-1087 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146)))
-((((-1087 |#1| |#2| |#3|)) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) (((-483)) . T) ((|#1|) |has| |#1| (-146)))
-(((|#1| (-483)) . T))
-(((|#1| (-483)) . T))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(((|#1| (-1087 |#1| |#2| |#3|)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((($) . T))
-((((-772)) . T))
-((((-347 $) (-347 $)) |has| |#1| (-494)) (($ $) . T) ((|#1| |#1|) . T))
+(OR (-12 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))
+((($) OR (-12 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))
+(OR (-12 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))
+((((-1088 |#1| |#2| |#3|)) |has| |#1| (-311)))
+((($ (-1175 |#2|)) . T) (($ (-1089)) OR (-12 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-810 (-1089)))) (-12 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-812 (-1089)))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))))
+((((-1089)) OR (-12 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-810 (-1089)))) (-12 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-812 (-1089)))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))))
+((((-1089)) OR (-12 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-810 (-1089)))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))))
+((((-1088 |#1| |#2| |#3|)) |has| |#1| (-311)))
+(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-120))))
+(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-118))))
+((((-773)) . T))
+(((|#1|) . T))
+((((-1088 |#1| |#2| |#3|) $) -12 (|has| |#1| (-311)) (|has| (-1088 |#1| |#2| |#3|) (-241 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)))) (($ $) . T) (((-484) |#1|) . T))
+(((|#1| (-484) (-994)) . T))
+((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146)))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484)) (-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (((-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1| |#1|) . T))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) . T))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) . T))
+((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-311)) (((-484)) . T) (($) . T) ((|#1|) . T))
+((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-311)) (($) . T) ((|#1|) . T))
+((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146)))
+((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146)))
+((((-1088 |#1| |#2| |#3|)) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) (((-484)) . T) ((|#1|) |has| |#1| (-146)))
+(((|#1| (-484)) . T))
+(((|#1| (-484)) . T))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(((|#1| (-1088 |#1| |#2| |#3|)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((($) . T))
+((((-773)) . T))
+((((-347 $) (-347 $)) |has| |#1| (-495)) (($ $) . T) ((|#1| |#1|) . T))
(|has| |#1| (-311))
-(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))
-(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821)))
+(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822)))
(|has| |#1| (-311))
-(((|#1| (-694) (-993)) . T))
-(|has| |#1| (-821))
-(|has| |#1| (-821))
-((((-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088)))) (((-993)) . T))
-((($ (-1088)) OR (|has| |#1| (-809 (-1088))) (|has| |#1| (-811 (-1088)))) (($ (-993)) . T))
-((((-1088)) |has| |#1| (-809 (-1088))) (((-993)) . T))
-((((-483)) |has| |#1| (-580 (-483))) ((|#1|) . T))
-(((|#1|) . T))
-(((|#1| (-694)) . T))
+(((|#1| (-695) (-994)) . T))
+(|has| |#1| (-822))
+(|has| |#1| (-822))
+((((-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089)))) (((-994)) . T))
+((($ (-1089)) OR (|has| |#1| (-810 (-1089))) (|has| |#1| (-812 (-1089)))) (($ (-994)) . T))
+((((-1089)) |has| |#1| (-810 (-1089))) (((-994)) . T))
+((((-484)) |has| |#1| (-581 (-484))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (-695)) . T))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((((-483)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) (((-993)) . T) ((|#1|) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) . T) (((-483)) |has| |#1| (-580 (-483))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((((-483)) . T) (($) . T) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-494)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-(((|#1|) . T))
-((((-993)) . T) ((|#1|) . T) (((-483)) |has| |#1| (-950 (-483))) (((-347 (-483))) |has| |#1| (-950 (-347 (-483)))))
-(((|#1| (-694)) . T))
-((((-993) |#1|) . T) (((-993) $) . T) (($ $) . T))
-((($) . T))
-(|has| |#1| (-1064))
-(((|#1|) . T))
-((((-1087 |#1| |#2| |#3|)) . T) (((-1080 |#1| |#2| |#3|)) . T))
-(((|#1|) . T))
-(|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))
-((($) |has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))))
-(|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))
-((($ $) . T) (((-347 (-483)) |#1|) . T))
-((((-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))))
-((($ (-1174 |#2|)) . T) (($ (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))))
-((((-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))))
-(((|#1| (-347 (-483)) (-993)) . T))
+((((-484)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) (((-994)) . T) ((|#1|) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))))
+((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) . T) (((-484)) |has| |#1| (-581 (-484))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((((-484)) . T) (($) . T) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) OR (|has| |#1| (-311)) (|has| |#1| (-389)) (|has| |#1| (-495)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+(((|#1|) . T))
+((((-994)) . T) ((|#1|) . T) (((-484)) |has| |#1| (-951 (-484))) (((-347 (-484))) |has| |#1| (-951 (-347 (-484)))))
+(((|#1| (-695)) . T))
+((((-994) |#1|) . T) (((-994) $) . T) (($ $) . T))
+((($) . T))
+(|has| |#1| (-1065))
+(((|#1|) . T))
+((((-1088 |#1| |#2| |#3|)) . T) (((-1081 |#1| |#2| |#3|)) . T))
+(((|#1|) . T))
+(|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))
+((($) |has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))))
+(|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))
+((($ $) . T) (((-347 (-484)) |#1|) . T))
+((((-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))))
+((($ (-1175 |#2|)) . T) (($ (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))))
+((((-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))))
+(((|#1| (-347 (-484)) (-994)) . T))
(|has| |#1| (-118))
(|has| |#1| (-120))
-(((|#1| (-347 (-483))) . T))
-(((|#1| (-347 (-483))) . T))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
+(((|#1| (-347 (-484))) . T))
+(((|#1| (-347 (-484))) . T))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
(|has| |#1| (-311))
-(OR (|has| |#1| (-311)) (|has| |#1| (-494)))
-((((-772)) . T))
-(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))))
-(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))))
-(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483)) (-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))))
-(((|#1|) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (((-483)) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) . T))
+(OR (|has| |#1| (-311)) (|has| |#1| (-495)))
+((((-773)) . T))
+(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))))
+(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))))
+(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484)) (-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))))
+(((|#1|) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) . T))
(|has| |#1| (-311))
(|has| |#1| (-311))
-(((|#1|) |has| |#1| (-146)) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))))
-(((|#1|) |has| |#1| (-146)) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))))
-(((|#1|) |has| |#1| (-146)) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))))
-((((-1174 |#2|)) . T) (((-1087 |#1| |#2| |#3|)) . T) (((-1080 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (((-483)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))))
-(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494)))
-(OR (|has| |#1| (-311)) (|has| |#1| (-494)))
+(((|#1|) |has| |#1| (-146)) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))))
+(((|#1|) |has| |#1| (-146)) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))))
+(((|#1|) |has| |#1| (-146)) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))))
+((((-1175 |#2|)) . T) (((-1088 |#1| |#2| |#3|)) . T) (((-1081 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (((-484)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))))
+(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495)))
+(OR (|has| |#1| (-311)) (|has| |#1| (-495)))
(|has| |#1| (-311))
(|has| |#1| (-311))
(|has| |#1| (-311))
-(((|#1| (-1080 |#1| |#2| |#3|)) . T))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(((|#1| (-694)) . T))
-(((|#1| (-694)) . T))
-(|has| |#1| (-494))
-(|has| |#1| (-494))
-(OR (|has| |#1| (-146)) (|has| |#1| (-494)))
+(((|#1| (-1081 |#1| |#2| |#3|)) . T))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(((|#1| (-695)) . T))
+(((|#1| (-695)) . T))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(OR (|has| |#1| (-146)) (|has| |#1| (-495)))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1| |#1|) . T) (((-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-(((|#1| (-694) (-993)) . T))
-((((-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))))
-((($ (-1174 |#2|)) . T) (($ (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))))
-((((-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))))
-((((-694) |#1|) . T) (($ $) . T))
-(|has| |#1| (-15 * (|#1| (-694) |#1|)))
-((($) |has| |#1| (-15 * (|#1| (-694) |#1|))))
-((((-772)) . T))
-(((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) (((-483)) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) (($) . T))
-((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) (((-483)) . T))
-(|has| |#1| (-15 * (|#1| (-694) |#1|)))
-(((|#1|) . T))
-((((-327)) . T) (((-483)) . T))
+((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1| |#1|) . T) (((-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+(((|#1| (-695) (-994)) . T))
+((((-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))))
+((($ (-1175 |#2|)) . T) (($ (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))))
+((((-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))))
+((((-695) |#1|) . T) (($ $) . T))
+(|has| |#1| (-15 * (|#1| (-695) |#1|)))
+((($) |has| |#1| (-15 * (|#1| (-695) |#1|))))
+((((-773)) . T))
+(((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) (($) . T))
+((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) (((-484)) . T))
+(|has| |#1| (-15 * (|#1| (-695) |#1|)))
+(((|#1|) . T))
+((((-327)) . T) (((-484)) . T))
((((-444)) . T))
-((((-444)) . T) (((-1071)) . T))
-((((-800 (-327))) . T) (((-800 (-483))) . T) (((-1088)) . T) (((-472)) . T))
-((((-772)) . T))
-(((|#1| (-884)) . T))
-(|has| |#1| (-494))
-(|has| |#1| (-494))
-(OR (|has| |#1| (-146)) (|has| |#1| (-494)))
+((((-444)) . T) (((-1072)) . T))
+((((-801 (-327))) . T) (((-801 (-484))) . T) (((-1089)) . T) (((-473)) . T))
+((((-773)) . T))
+(((|#1| (-885)) . T))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(OR (|has| |#1| (-146)) (|has| |#1| (-495)))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((((-772)) . T))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1| |#1|) . T) (((-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-(((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) (((-483)) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) (($) . T))
-((($) |has| |#1| (-494)) ((|#1|) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) (((-483)) . T))
-((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-(((|#1|) . T))
-(((|#1|) . T) (((-483)) |has| |#1| (-950 (-483))) (((-347 (-483))) |has| |#1| (-950 (-347 (-483)))))
-(((|#1| (-884)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-1071)) . T) (((-444)) . T) (((-179)) . T) (((-483)) . T))
-((((-1071)) . T) (((-444)) . T) (((-179)) . T) (((-483)) . T))
-((((-472)) . T) (((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
+((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((((-773)) . T))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1| |#1|) . T) (((-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+(((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) (($) . T))
+((($) |has| |#1| (-495)) ((|#1|) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) (((-484)) . T))
+((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+(((|#1|) . T))
+(((|#1|) . T) (((-484)) |has| |#1| (-951 (-484))) (((-347 (-484))) |has| |#1| (-951 (-347 (-484)))))
+(((|#1| (-885)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-1072)) . T) (((-444)) . T) (((-179)) . T) (((-484)) . T))
+((((-1072)) . T) (((-444)) . T) (((-179)) . T) (((-484)) . T))
+((((-473)) . T) (((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
(((|#1| |#2|) . T))
-((((-772)) . T))
+((((-773)) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
-(((|#2|) . T) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))))
-(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))))
+(((|#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
(((|#1| |#2|) . T))
-((((-772)) . T))
-(((|#1|) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-335) (-1071)) . T))
-(((|#1|) . T))
-(|has| |#1| (-1012))
-(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1012))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1012)))
-(((|#1|) . T))
-((($) . T))
-((($ $) . T) (((-1088) $) . T))
-((((-1088)) . T))
-((((-772)) . T))
-((($ (-1088)) . T))
-((((-1088)) . T))
-(((|#1| (-468 (-1088)) (-1088)) . T))
-((($) . T) (((-483)) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T))
-((($) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T))
+((((-773)) . T))
+(((|#1|) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-335) (-1072)) . T))
+(((|#1|) . T))
+(|has| |#1| (-1013))
+(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
+(((|#1|) . T))
+((($) . T))
+((($ $) . T) (((-1089) $) . T))
+((((-1089)) . T))
+((((-773)) . T))
+((($ (-1089)) . T))
+((((-1089)) . T))
+(((|#1| (-469 (-1089)) (-1089)) . T))
+((($) . T) (((-484)) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T))
+((($) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T))
(|has| |#1| (-118))
(|has| |#1| (-120))
-(OR (|has| |#1| (-146)) (|has| |#1| (-494)))
-((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-494))))
-((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-494))))
-((((-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-494))))
-(|has| |#1| (-494))
-(|has| |#1| (-494))
-((((-483)) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494)))
-((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494)))
-((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494)))
-((((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-494)))
-(((|#1| (-468 (-1088))) . T))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(((|#1| (-1088)) . T))
-(|has| |#1| (-1012))
-(|has| |#1| (-1012))
-(|has| |#1| (-1012))
-(|has| |#1| (-1012))
-((((-869 |#1|)) . T))
-((((-772)) |has| |#1| (-552 (-772))) (((-869 |#1|)) . T))
-((((-869 |#1|)) . T))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-1167 |#1| |#2| |#3|)) |has| |#1| (-311)))
-((((-1167 |#1| |#2| |#3|)) . T))
-((((-1167 |#1| |#2| |#3|)) |has| |#1| (-311)))
-((((-1167 |#1| |#2| |#3|)) |has| |#1| (-311)))
-((((-1167 |#1| |#2| |#3|)) |has| |#1| (-311)))
-((((-1167 |#1| |#2| |#3|)) |has| |#1| (-311)))
-((((-1167 |#1| |#2| |#3|)) -12 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-259 (-1167 |#1| |#2| |#3|)))))
-((((-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) -12 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-259 (-1167 |#1| |#2| |#3|)))) (((-1088) (-1167 |#1| |#2| |#3|)) -12 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-452 (-1088) (-1167 |#1| |#2| |#3|)))))
-((((-1167 |#1| |#2| |#3|)) |has| |#1| (-311)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-495)))
+((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495))))
+((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495))))
+((((-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495))))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+((((-484)) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
+((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
+((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
+((((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
+(((|#1| (-469 (-1089))) . T))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(((|#1| (-1089)) . T))
+(|has| |#1| (-1013))
+(|has| |#1| (-1013))
+(|has| |#1| (-1013))
+(|has| |#1| (-1013))
+((((-870 |#1|)) . T))
+((((-773)) |has| |#1| (-553 (-773))) (((-870 |#1|)) . T))
+((((-870 |#1|)) . T))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-1168 |#1| |#2| |#3|)) |has| |#1| (-311)))
+((((-1168 |#1| |#2| |#3|)) . T))
+((((-1168 |#1| |#2| |#3|)) |has| |#1| (-311)))
+((((-1168 |#1| |#2| |#3|)) |has| |#1| (-311)))
+((((-1168 |#1| |#2| |#3|)) |has| |#1| (-311)))
+((((-1168 |#1| |#2| |#3|)) |has| |#1| (-311)))
+((((-1168 |#1| |#2| |#3|)) -12 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-259 (-1168 |#1| |#2| |#3|)))))
+((((-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) -12 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-259 (-1168 |#1| |#2| |#3|)))) (((-1089) (-1168 |#1| |#2| |#3|)) -12 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-453 (-1089) (-1168 |#1| |#2| |#3|)))))
+((((-1168 |#1| |#2| |#3|)) |has| |#1| (-311)))
(|has| |#1| (-311))
-(OR (|has| |#1| (-311)) (|has| |#1| (-494)))
+(OR (|has| |#1| (-311)) (|has| |#1| (-495)))
(|has| |#1| (-311))
(|has| |#1| (-311))
-(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494)))
-(OR (|has| |#1| (-311)) (|has| |#1| (-494)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495)))
+(OR (|has| |#1| (-311)) (|has| |#1| (-495)))
(|has| |#1| (-311))
(|has| |#1| (-311))
(|has| |#1| (-311))
-(OR (-12 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))
-((($) OR (-12 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))))
-(OR (-12 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))
-((((-1167 |#1| |#2| |#3|)) |has| |#1| (-311)))
-((($ (-1174 |#2|)) . T) (($ (-1088)) OR (-12 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-809 (-1088)))) (-12 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-811 (-1088)))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))))
-((((-1088)) OR (-12 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-809 (-1088)))) (-12 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-811 (-1088)))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))))
-((((-1088)) OR (-12 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-809 (-1088)))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))))
-((((-1167 |#1| |#2| |#3|)) |has| |#1| (-311)))
-(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-120))))
-(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-118))))
-((((-772)) . T))
-(((|#1|) . T))
-((((-1167 |#1| |#2| |#3|) $) -12 (|has| |#1| (-311)) (|has| (-1167 |#1| |#2| |#3|) (-241 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)))) (($ $) . T) (((-483) |#1|) . T))
-(((|#1| (-483) (-993)) . T))
-((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146)))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483)) (-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (((-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1| |#1|) . T))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) . T))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) . T))
-((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-311)) (((-483)) . T) (($) . T) ((|#1|) . T))
-((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-311)) (($) . T) ((|#1|) . T))
-((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146)))
-((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146)))
-((((-1167 |#1| |#2| |#3|)) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) (((-483)) . T) ((|#1|) |has| |#1| (-146)))
-(((|#1| (-483)) . T))
-(((|#1| (-483)) . T))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(((|#1| (-1167 |#1| |#2| |#3|)) . T))
+(OR (-12 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))
+((($) OR (-12 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))
+(OR (-12 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))
+((((-1168 |#1| |#2| |#3|)) |has| |#1| (-311)))
+((($ (-1175 |#2|)) . T) (($ (-1089)) OR (-12 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-810 (-1089)))) (-12 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-812 (-1089)))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))))
+((((-1089)) OR (-12 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-810 (-1089)))) (-12 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-812 (-1089)))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))))
+((((-1089)) OR (-12 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-810 (-1089)))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))))
+((((-1168 |#1| |#2| |#3|)) |has| |#1| (-311)))
+(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-120))))
+(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-118))))
+((((-773)) . T))
+(((|#1|) . T))
+((((-1168 |#1| |#2| |#3|) $) -12 (|has| |#1| (-311)) (|has| (-1168 |#1| |#2| |#3|) (-241 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)))) (($ $) . T) (((-484) |#1|) . T))
+(((|#1| (-484) (-994)) . T))
+((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146)))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484)) (-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (((-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1| |#1|) . T))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) . T))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) . T))
+((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-311)) (((-484)) . T) (($) . T) ((|#1|) . T))
+((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-311)) (($) . T) ((|#1|) . T))
+((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146)))
+((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146)))
+((((-1168 |#1| |#2| |#3|)) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) (((-484)) . T) ((|#1|) |has| |#1| (-146)))
+(((|#1| (-484)) . T))
+(((|#1| (-484)) . T))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(((|#1| (-1168 |#1| |#2| |#3|)) . T))
(((|#2|) |has| |#1| (-311)))
-(-12 (|has| |#1| (-311)) (|has| |#2| (-1064)))
-(((|#2|) . T) (((-1088)) -12 (|has| |#1| (-311)) (|has| |#2| (-950 (-1088)))) (((-483)) -12 (|has| |#1| (-311)) (|has| |#2| (-950 (-483)))) (((-347 (-483))) -12 (|has| |#1| (-311)) (|has| |#2| (-950 (-483)))))
-(-12 (|has| |#1| (-311)) (|has| |#2| (-933)))
-(-12 (|has| |#1| (-311)) (|has| |#2| (-821)))
+(-12 (|has| |#1| (-311)) (|has| |#2| (-1065)))
+(((|#2|) . T) (((-1089)) -12 (|has| |#1| (-311)) (|has| |#2| (-951 (-1089)))) (((-484)) -12 (|has| |#1| (-311)) (|has| |#2| (-951 (-484)))) (((-347 (-484))) -12 (|has| |#1| (-311)) (|has| |#2| (-951 (-484)))))
+(-12 (|has| |#1| (-311)) (|has| |#2| (-934)))
+(-12 (|has| |#1| (-311)) (|has| |#2| (-822)))
(((|#2|) |has| |#1| (-311)))
-(-12 (|has| |#1| (-311)) (|has| |#2| (-740)))
-(-12 (|has| |#1| (-311)) (|has| |#2| (-740)))
-(-12 (|has| |#1| (-311)) (|has| |#2| (-740)))
-(OR (-12 (|has| |#1| (-311)) (|has| |#2| (-740))) (-12 (|has| |#1| (-311)) (|has| |#2| (-756))))
-(OR (-12 (|has| |#1| (-311)) (|has| |#2| (-740))) (-12 (|has| |#1| (-311)) (|has| |#2| (-756))))
-(-12 (|has| |#1| (-311)) (|has| |#2| (-740)))
-(-12 (|has| |#1| (-311)) (|has| |#2| (-740)))
-(-12 (|has| |#1| (-311)) (|has| |#2| (-740)))
-((((-327)) -12 (|has| |#1| (-311)) (|has| |#2| (-796 (-327)))) (((-483)) -12 (|has| |#1| (-311)) (|has| |#2| (-796 (-483)))))
+(-12 (|has| |#1| (-311)) (|has| |#2| (-741)))
+(-12 (|has| |#1| (-311)) (|has| |#2| (-741)))
+(-12 (|has| |#1| (-311)) (|has| |#2| (-741)))
+(OR (-12 (|has| |#1| (-311)) (|has| |#2| (-741))) (-12 (|has| |#1| (-311)) (|has| |#2| (-757))))
+(OR (-12 (|has| |#1| (-311)) (|has| |#2| (-741))) (-12 (|has| |#1| (-311)) (|has| |#2| (-757))))
+(-12 (|has| |#1| (-311)) (|has| |#2| (-741)))
+(-12 (|has| |#1| (-311)) (|has| |#2| (-741)))
+(-12 (|has| |#1| (-311)) (|has| |#2| (-741)))
+((((-327)) -12 (|has| |#1| (-311)) (|has| |#2| (-797 (-327)))) (((-484)) -12 (|has| |#1| (-311)) (|has| |#2| (-797 (-484)))))
(((|#2|) |has| |#1| (-311)))
-((((-483)) -12 (|has| |#1| (-311)) (|has| |#2| (-580 (-483)))) ((|#2|) |has| |#1| (-311)))
+((((-484)) -12 (|has| |#1| (-311)) (|has| |#2| (-581 (-484)))) ((|#2|) |has| |#1| (-311)))
(((|#2|) |has| |#1| (-311)))
(((|#2|) -12 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))))
-(((|#2| |#2|) -12 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) (((-1088) |#2|) -12 (|has| |#1| (-311)) (|has| |#2| (-452 (-1088) |#2|))))
+(((|#2| |#2|) -12 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) (((-1089) |#2|) -12 (|has| |#1| (-311)) (|has| |#2| (-453 (-1089) |#2|))))
(((|#2|) |has| |#1| (-311)))
(|has| |#1| (-311))
-(OR (|has| |#1| (-311)) (|has| |#1| (-494)))
+(OR (|has| |#1| (-311)) (|has| |#1| (-495)))
(|has| |#1| (-311))
(|has| |#1| (-311))
-(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494)))
-(OR (|has| |#1| (-311)) (|has| |#1| (-494)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495)))
+(OR (|has| |#1| (-311)) (|has| |#1| (-495)))
(|has| |#1| (-311))
(|has| |#1| (-311))
(|has| |#1| (-311))
-(OR (-12 (|has| |#1| (-311)) (|has| |#2| (-190))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))
-((($) OR (-12 (|has| |#1| (-311)) (|has| |#2| (-190))) (-12 (|has| |#1| (-311)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))))
-(OR (-12 (|has| |#1| (-311)) (|has| |#2| (-190))) (-12 (|has| |#1| (-311)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))
+(OR (-12 (|has| |#1| (-311)) (|has| |#2| (-190))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))
+((($) OR (-12 (|has| |#1| (-311)) (|has| |#2| (-190))) (-12 (|has| |#1| (-311)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))
+(OR (-12 (|has| |#1| (-311)) (|has| |#2| (-190))) (-12 (|has| |#1| (-311)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))
(((|#2|) |has| |#1| (-311)))
-((($ (-1088)) OR (-12 (|has| |#1| (-311)) (|has| |#2| (-809 (-1088)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-811 (-1088)))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))))
-((((-1088)) OR (-12 (|has| |#1| (-311)) (|has| |#2| (-809 (-1088)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-811 (-1088)))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))))
-((((-1088)) OR (-12 (|has| |#1| (-311)) (|has| |#2| (-809 (-1088)))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))))
+((($ (-1089)) OR (-12 (|has| |#1| (-311)) (|has| |#2| (-810 (-1089)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-812 (-1089)))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))))
+((((-1089)) OR (-12 (|has| |#1| (-311)) (|has| |#2| (-810 (-1089)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-812 (-1089)))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))))
+((((-1089)) OR (-12 (|has| |#1| (-311)) (|has| |#2| (-810 (-1089)))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))))
(((|#2|) |has| |#1| (-311)))
-((((-179)) -12 (|has| |#1| (-311)) (|has| |#2| (-933))) (((-327)) -12 (|has| |#1| (-311)) (|has| |#2| (-933))) (((-800 (-327))) -12 (|has| |#1| (-311)) (|has| |#2| (-553 (-800 (-327))))) (((-800 (-483))) -12 (|has| |#1| (-311)) (|has| |#2| (-553 (-800 (-483))))) (((-472)) -12 (|has| |#1| (-311)) (|has| |#2| (-553 (-472)))))
+((((-179)) -12 (|has| |#1| (-311)) (|has| |#2| (-934))) (((-327)) -12 (|has| |#1| (-311)) (|has| |#2| (-934))) (((-801 (-327))) -12 (|has| |#1| (-311)) (|has| |#2| (-554 (-801 (-327))))) (((-801 (-484))) -12 (|has| |#1| (-311)) (|has| |#2| (-554 (-801 (-484))))) (((-473)) -12 (|has| |#1| (-311)) (|has| |#2| (-554 (-473)))))
(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-311)) (|has| |#2| (-120))))
(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-311)) (|has| |#2| (-118))))
-((((-772)) . T))
-(((|#1|) . T))
-(((|#2| $) -12 (|has| |#1| (-311)) (|has| |#2| (-241 |#2| |#2|))) (($ $) . T) (((-483) |#1|) . T))
-(((|#1| (-483) (-993)) . T))
-((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) ((|#2|) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146)))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483)) (-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) ((|#2| |#2|) |has| |#1| (-311)) ((|#1| |#1|) . T))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) ((|#2|) |has| |#1| (-311)) ((|#1|) . T))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) ((|#2|) |has| |#1| (-311)) ((|#1|) . T))
-((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) ((|#2|) |has| |#1| (-311)) (((-483)) . T) (($) . T) ((|#1|) . T))
-((((-483)) -12 (|has| |#1| (-311)) (|has| |#2| (-580 (-483)))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) ((|#2|) |has| |#1| (-311)) (($) . T) ((|#1|) . T))
-((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) ((|#2|) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146)))
-((((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) ((|#2|) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146)))
-(((|#2|) . T) (((-1088)) -12 (|has| |#1| (-311)) (|has| |#2| (-950 (-1088)))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))) (((-483)) . T) ((|#1|) |has| |#1| (-146)))
-(((|#1| (-483)) . T))
-(((|#1| (-483)) . T))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
+((((-773)) . T))
+(((|#1|) . T))
+(((|#2| $) -12 (|has| |#1| (-311)) (|has| |#2| (-241 |#2| |#2|))) (($ $) . T) (((-484) |#1|) . T))
+(((|#1| (-484) (-994)) . T))
+((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) ((|#2|) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146)))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484)) (-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) ((|#2| |#2|) |has| |#1| (-311)) ((|#1| |#1|) . T))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) ((|#2|) |has| |#1| (-311)) ((|#1|) . T))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) ((|#2|) |has| |#1| (-311)) ((|#1|) . T))
+((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) ((|#2|) |has| |#1| (-311)) (((-484)) . T) (($) . T) ((|#1|) . T))
+((((-484)) -12 (|has| |#1| (-311)) (|has| |#2| (-581 (-484)))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) ((|#2|) |has| |#1| (-311)) (($) . T) ((|#1|) . T))
+((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) ((|#2|) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146)))
+((((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) ((|#2|) |has| |#1| (-311)) ((|#1|) |has| |#1| (-146)))
+(((|#2|) . T) (((-1089)) -12 (|has| |#1| (-311)) (|has| |#2| (-951 (-1089)))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))) (((-484)) . T) ((|#1|) |has| |#1| (-146)))
+(((|#1| (-484)) . T))
+(((|#1| (-484)) . T))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
(((|#1| |#2|) . T))
-(((|#1| (-1067 |#1|)) |has| |#1| (-755)))
-(|has| |#1| (-1012))
-(|has| |#1| (-1012))
-(|has| |#1| (-1012))
-((((-772)) |has| |#1| (-1012)))
-(|has| |#1| (-1012))
+(((|#1| (-1068 |#1|)) |has| |#1| (-756)))
+(|has| |#1| (-1013))
+(|has| |#1| (-1013))
+(|has| |#1| (-1013))
+((((-773)) |has| |#1| (-1013)))
+(|has| |#1| (-1013))
(((|#1|) . T))
(((|#1|) . T))
(((|#2|) . T))
(((|#2|) . T))
((($) . T))
-((((-772)) . T))
-((((-347 $) (-347 $)) |has| |#2| (-494)) (($ $) . T) ((|#2| |#2|) . T))
+((((-773)) . T))
+((((-347 $) (-347 $)) |has| |#2| (-495)) (($ $) . T) ((|#2| |#2|) . T))
(|has| |#2| (-311))
-(OR (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-821)))
-(OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))
-(OR (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))
-(OR (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821)))
+(OR (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-822)))
+(OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))
+(OR (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))
+(OR (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822)))
(|has| |#2| (-311))
-(((|#2| (-694) (-993)) . T))
-(|has| |#2| (-821))
-(|has| |#2| (-821))
-((((-1088)) OR (|has| |#2| (-809 (-1088))) (|has| |#2| (-811 (-1088)))) (((-993)) . T))
-((($ (-1088)) OR (|has| |#2| (-809 (-1088))) (|has| |#2| (-811 (-1088)))) (($ (-993)) . T))
-((((-1088)) |has| |#2| (-809 (-1088))) (((-993)) . T))
-((((-483)) |has| |#2| (-580 (-483))) ((|#2|) . T))
-(((|#2|) . T))
-(((|#2| (-694)) . T))
+(((|#2| (-695) (-994)) . T))
+(|has| |#2| (-822))
+(|has| |#2| (-822))
+((((-1089)) OR (|has| |#2| (-810 (-1089))) (|has| |#2| (-812 (-1089)))) (((-994)) . T))
+((($ (-1089)) OR (|has| |#2| (-810 (-1089))) (|has| |#2| (-812 (-1089)))) (($ (-994)) . T))
+((((-1089)) |has| |#2| (-810 (-1089))) (((-994)) . T))
+((((-484)) |has| |#2| (-581 (-484))) ((|#2|) . T))
+(((|#2|) . T))
+(((|#2| (-695)) . T))
(|has| |#2| (-120))
(|has| |#2| (-118))
-((((-1174 |#1|)) . T) (((-483)) . T) (($) OR (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) (((-993)) . T) ((|#2|) . T) (((-347 (-483))) OR (|has| |#2| (-38 (-347 (-483)))) (|has| |#2| (-950 (-347 (-483))))))
-((($) OR (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) ((|#2|) |has| |#2| (-146)) (((-347 (-483))) |has| |#2| (-38 (-347 (-483)))))
-((($) OR (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) ((|#2|) |has| |#2| (-146)) (((-347 (-483))) |has| |#2| (-38 (-347 (-483)))))
-((($) . T) (((-483)) |has| |#2| (-580 (-483))) ((|#2|) . T) (((-347 (-483))) |has| |#2| (-38 (-347 (-483)))))
-((((-483)) . T) (($) . T) ((|#2|) . T) (((-347 (-483))) |has| |#2| (-38 (-347 (-483)))))
-((($) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) ((|#2|) . T) (((-347 (-483))) |has| |#2| (-38 (-347 (-483)))))
-((($) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) ((|#2|) . T) (((-347 (-483))) |has| |#2| (-38 (-347 (-483)))))
-((($ $) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) ((|#2| |#2|) . T) (((-347 (-483)) (-347 (-483))) |has| |#2| (-38 (-347 (-483)))))
-((($) OR (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-494)) (|has| |#2| (-821))) ((|#2|) |has| |#2| (-146)) (((-347 (-483))) |has| |#2| (-38 (-347 (-483)))))
-(((|#2|) . T))
-((((-993)) . T) ((|#2|) . T) (((-483)) |has| |#2| (-950 (-483))) (((-347 (-483))) |has| |#2| (-950 (-347 (-483)))))
-(((|#2| (-694)) . T))
-((((-993) |#2|) . T) (((-993) $) . T) (($ $) . T))
-((($) . T))
-(|has| |#2| (-1064))
-(((|#2|) . T))
-((((-1167 |#1| |#2| |#3|)) . T) (((-1137 |#1| |#2| |#3|)) . T))
-(((|#1|) . T))
-(|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))
-((($) |has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))))
-(|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))
-((($ $) . T) (((-347 (-483)) |#1|) . T))
-((((-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))))
-((($ (-1174 |#2|)) . T) (($ (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))))
-((((-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))))
-(((|#1| (-347 (-483)) (-993)) . T))
+((((-1175 |#1|)) . T) (((-484)) . T) (($) OR (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) (((-994)) . T) ((|#2|) . T) (((-347 (-484))) OR (|has| |#2| (-38 (-347 (-484)))) (|has| |#2| (-951 (-347 (-484))))))
+((($) OR (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) ((|#2|) |has| |#2| (-146)) (((-347 (-484))) |has| |#2| (-38 (-347 (-484)))))
+((($) OR (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) ((|#2|) |has| |#2| (-146)) (((-347 (-484))) |has| |#2| (-38 (-347 (-484)))))
+((($) . T) (((-484)) |has| |#2| (-581 (-484))) ((|#2|) . T) (((-347 (-484))) |has| |#2| (-38 (-347 (-484)))))
+((((-484)) . T) (($) . T) ((|#2|) . T) (((-347 (-484))) |has| |#2| (-38 (-347 (-484)))))
+((($) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) ((|#2|) . T) (((-347 (-484))) |has| |#2| (-38 (-347 (-484)))))
+((($) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) ((|#2|) . T) (((-347 (-484))) |has| |#2| (-38 (-347 (-484)))))
+((($ $) OR (|has| |#2| (-146)) (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) ((|#2| |#2|) . T) (((-347 (-484)) (-347 (-484))) |has| |#2| (-38 (-347 (-484)))))
+((($) OR (|has| |#2| (-311)) (|has| |#2| (-389)) (|has| |#2| (-495)) (|has| |#2| (-822))) ((|#2|) |has| |#2| (-146)) (((-347 (-484))) |has| |#2| (-38 (-347 (-484)))))
+(((|#2|) . T))
+((((-994)) . T) ((|#2|) . T) (((-484)) |has| |#2| (-951 (-484))) (((-347 (-484))) |has| |#2| (-951 (-347 (-484)))))
+(((|#2| (-695)) . T))
+((((-994) |#2|) . T) (((-994) $) . T) (($ $) . T))
+((($) . T))
+(|has| |#2| (-1065))
+(((|#2|) . T))
+((((-1168 |#1| |#2| |#3|)) . T) (((-1138 |#1| |#2| |#3|)) . T))
+(((|#1|) . T))
+(|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))
+((($) |has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))))
+(|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))
+((($ $) . T) (((-347 (-484)) |#1|) . T))
+((((-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))))
+((($ (-1175 |#2|)) . T) (($ (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))))
+((((-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))))
+(((|#1| (-347 (-484)) (-994)) . T))
(|has| |#1| (-118))
(|has| |#1| (-120))
-(((|#1| (-347 (-483))) . T))
-(((|#1| (-347 (-483))) . T))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
+(((|#1| (-347 (-484))) . T))
+(((|#1| (-347 (-484))) . T))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
(|has| |#1| (-311))
-(OR (|has| |#1| (-311)) (|has| |#1| (-494)))
-((((-772)) . T))
-(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))))
-(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))))
-(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483)) (-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))))
-(((|#1|) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (((-483)) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) . T))
+(OR (|has| |#1| (-311)) (|has| |#1| (-495)))
+((((-773)) . T))
+(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))))
+(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))))
+(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484)) (-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))))
+(((|#1|) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) . T))
(|has| |#1| (-311))
(|has| |#1| (-311))
-(((|#1|) |has| |#1| (-146)) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))))
-(((|#1|) |has| |#1| (-146)) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))))
-(((|#1|) |has| |#1| (-146)) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))))
-((((-1174 |#2|)) . T) (((-1167 |#1| |#2| |#3|)) . T) (((-1137 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (((-483)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))))
-(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494)))
-(OR (|has| |#1| (-311)) (|has| |#1| (-494)))
+(((|#1|) |has| |#1| (-146)) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))))
+(((|#1|) |has| |#1| (-146)) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))))
+(((|#1|) |has| |#1| (-146)) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))))
+((((-1175 |#2|)) . T) (((-1168 |#1| |#2| |#3|)) . T) (((-1138 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (((-484)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))))
+(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495)))
+(OR (|has| |#1| (-311)) (|has| |#1| (-495)))
(|has| |#1| (-311))
(|has| |#1| (-311))
(|has| |#1| (-311))
-(((|#1| (-1137 |#1| |#2| |#3|)) . T))
+(((|#1| (-1138 |#1| |#2| |#3|)) . T))
(((|#2|) . T))
(((|#1|) . T))
-(|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))
-((($) |has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))))
-(|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))
-((($ $) . T) (((-347 (-483)) |#1|) . T))
-((((-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))))
-((($ (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))))
-((((-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))))
-(((|#1| (-347 (-483)) (-993)) . T))
+(|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))
+((($) |has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))))
+(|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))
+((($ $) . T) (((-347 (-484)) |#1|) . T))
+((((-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))))
+((($ (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))))
+((((-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))))
+(((|#1| (-347 (-484)) (-994)) . T))
(|has| |#1| (-118))
(|has| |#1| (-120))
-(((|#1| (-347 (-483))) . T))
-(((|#1| (-347 (-483))) . T))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
+(((|#1| (-347 (-484))) . T))
+(((|#1| (-347 (-484))) . T))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
(|has| |#1| (-311))
-(OR (|has| |#1| (-311)) (|has| |#1| (-494)))
-((((-772)) . T))
-(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))))
-(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))))
-(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494))) (((-347 (-483)) (-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))))
-(((|#1|) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (((-483)) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) . T))
+(OR (|has| |#1| (-311)) (|has| |#1| (-495)))
+((((-773)) . T))
+(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))))
+(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))))
+(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495))) (((-347 (-484)) (-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))))
+(((|#1|) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) . T))
(|has| |#1| (-311))
(|has| |#1| (-311))
-(((|#1|) |has| |#1| (-146)) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))))
-(((|#1|) |has| |#1| (-146)) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))))
-(((|#1|) |has| |#1| (-146)) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))))
-(((|#2|) . T) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-311))) (((-483)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-494))))
-(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-494)))
-(OR (|has| |#1| (-311)) (|has| |#1| (-494)))
+(((|#1|) |has| |#1| (-146)) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))))
+(((|#1|) |has| |#1| (-146)) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))))
+(((|#1|) |has| |#1| (-146)) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))))
+(((|#2|) . T) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-311))) (((-484)) . T) (($) OR (|has| |#1| (-311)) (|has| |#1| (-495))))
+(OR (|has| |#1| (-146)) (|has| |#1| (-311)) (|has| |#1| (-495)))
+(OR (|has| |#1| (-311)) (|has| |#1| (-495)))
(|has| |#1| (-311))
(|has| |#1| (-311))
(|has| |#1| (-311))
(((|#1| |#2|) . T))
-((((-1158 |#2| |#3| |#4|) (-269 |#2| |#3| |#4|)) . T))
-(|has| (-1158 |#2| |#3| |#4|) (-120))
-(|has| (-1158 |#2| |#3| |#4|) (-118))
-((($) . T) (((-1158 |#2| |#3| |#4|)) |has| (-1158 |#2| |#3| |#4|) (-146)) (((-347 (-483))) |has| (-1158 |#2| |#3| |#4|) (-38 (-347 (-483)))))
-((($) . T) (((-1158 |#2| |#3| |#4|)) |has| (-1158 |#2| |#3| |#4|) (-146)) (((-347 (-483))) |has| (-1158 |#2| |#3| |#4|) (-38 (-347 (-483)))))
-((((-772)) . T))
-((($) . T) (((-1158 |#2| |#3| |#4|)) . T) (((-347 (-483))) |has| (-1158 |#2| |#3| |#4|) (-38 (-347 (-483)))))
-((($) . T) (((-1158 |#2| |#3| |#4|)) . T) (((-347 (-483))) |has| (-1158 |#2| |#3| |#4|) (-38 (-347 (-483)))))
-((($ $) . T) (((-1158 |#2| |#3| |#4|) (-1158 |#2| |#3| |#4|)) . T) (((-347 (-483)) (-347 (-483))) |has| (-1158 |#2| |#3| |#4|) (-38 (-347 (-483)))))
-((((-1158 |#2| |#3| |#4|)) . T) (((-347 (-483))) |has| (-1158 |#2| |#3| |#4|) (-38 (-347 (-483)))) (((-483)) . T) (($) . T))
-((((-1158 |#2| |#3| |#4|)) . T) (((-347 (-483))) |has| (-1158 |#2| |#3| |#4|) (-38 (-347 (-483)))) (($) . T))
-((($) . T) (((-1158 |#2| |#3| |#4|)) . T) (((-347 (-483))) |has| (-1158 |#2| |#3| |#4|) (-38 (-347 (-483)))) (((-483)) . T))
-((($) . T) (((-1158 |#2| |#3| |#4|)) |has| (-1158 |#2| |#3| |#4|) (-146)) (((-347 (-483))) |has| (-1158 |#2| |#3| |#4|) (-38 (-347 (-483)))))
-((((-1158 |#2| |#3| |#4|)) . T))
-((((-1158 |#2| |#3| |#4|)) . T))
-((((-1158 |#2| |#3| |#4|) (-269 |#2| |#3| |#4|)) . T))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(|has| |#1| (-38 (-347 (-483))))
-(((|#1| (-694)) . T))
-(((|#1| (-694)) . T))
-(|has| |#1| (-494))
-(|has| |#1| (-494))
-(OR (|has| |#1| (-146)) (|has| |#1| (-494)))
+((((-1159 |#2| |#3| |#4|) (-269 |#2| |#3| |#4|)) . T))
+(|has| (-1159 |#2| |#3| |#4|) (-120))
+(|has| (-1159 |#2| |#3| |#4|) (-118))
+((($) . T) (((-1159 |#2| |#3| |#4|)) |has| (-1159 |#2| |#3| |#4|) (-146)) (((-347 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-347 (-484)))))
+((($) . T) (((-1159 |#2| |#3| |#4|)) |has| (-1159 |#2| |#3| |#4|) (-146)) (((-347 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-347 (-484)))))
+((((-773)) . T))
+((($) . T) (((-1159 |#2| |#3| |#4|)) . T) (((-347 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-347 (-484)))))
+((($) . T) (((-1159 |#2| |#3| |#4|)) . T) (((-347 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-347 (-484)))))
+((($ $) . T) (((-1159 |#2| |#3| |#4|) (-1159 |#2| |#3| |#4|)) . T) (((-347 (-484)) (-347 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-347 (-484)))))
+((((-1159 |#2| |#3| |#4|)) . T) (((-347 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-347 (-484)))) (((-484)) . T) (($) . T))
+((((-1159 |#2| |#3| |#4|)) . T) (((-347 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-347 (-484)))) (($) . T))
+((($) . T) (((-1159 |#2| |#3| |#4|)) . T) (((-347 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-347 (-484)))) (((-484)) . T))
+((($) . T) (((-1159 |#2| |#3| |#4|)) |has| (-1159 |#2| |#3| |#4|) (-146)) (((-347 (-484))) |has| (-1159 |#2| |#3| |#4|) (-38 (-347 (-484)))))
+((((-1159 |#2| |#3| |#4|)) . T))
+((((-1159 |#2| |#3| |#4|)) . T))
+((((-1159 |#2| |#3| |#4|) (-269 |#2| |#3| |#4|)) . T))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(|has| |#1| (-38 (-347 (-484))))
+(((|#1| (-695)) . T))
+(((|#1| (-695)) . T))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(OR (|has| |#1| (-146)) (|has| |#1| (-495)))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-494))) ((|#1| |#1|) . T) (((-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))))
-(((|#1| (-694) (-993)) . T))
-((((-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))))
-((($ (-1174 |#2|)) . T) (($ (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))))
-((((-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))))
-((((-694) |#1|) . T) (($ $) . T))
-(|has| |#1| (-15 * (|#1| (-694) |#1|)))
-((($) |has| |#1| (-15 * (|#1| (-694) |#1|))))
-((((-772)) . T))
-(((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) (((-483)) . T) (($) . T))
-(((|#1|) . T) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) (($) . T))
-((($) |has| |#1| (-494)) ((|#1|) |has| |#1| (-146)) (((-347 (-483))) |has| |#1| (-38 (-347 (-483)))) (((-483)) . T))
-(|has| |#1| (-15 * (|#1| (-694) |#1|)))
-(((|#1|) . T))
-((((-1088)) . T) (((-772)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-483) |#1|) . T))
-((((-483) |#1|) . T))
-((((-483) |#1|) . T) (((-1144 (-483)) $) . T))
-((((-472)) |has| |#1| (-553 (-472))))
-(((|#1|) . T))
-(OR (|has| |#1| (-756)) (|has| |#1| (-1012)))
-(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))))
-((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1012))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1012)))
-(((|#1|) . T))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-772)) . T))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
-((((-1093)) . T))
-((((-772)) . T) (((-1093)) . T))
-((((-1093)) . T))
+((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1| |#1|) . T) (((-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))))
+(((|#1| (-695) (-994)) . T))
+((((-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))))
+((($ (-1175 |#2|)) . T) (($ (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))))
+((((-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))))
+((((-695) |#1|) . T) (($ $) . T))
+(|has| |#1| (-15 * (|#1| (-695) |#1|)))
+((($) |has| |#1| (-15 * (|#1| (-695) |#1|))))
+((((-773)) . T))
+(((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) (($) . T))
+((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-347 (-484))) |has| |#1| (-38 (-347 (-484)))) (((-484)) . T))
+(|has| |#1| (-15 * (|#1| (-695) |#1|)))
+(((|#1|) . T))
+((((-1089)) . T) (((-773)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-484) |#1|) . T))
+((((-484) |#1|) . T))
+((((-484) |#1|) . T) (((-1145 (-484)) $) . T))
+((((-473)) |has| |#1| (-554 (-473))))
+(((|#1|) . T))
+(OR (|has| |#1| (-757)) (|has| |#1| (-1013)))
+(((|#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))))
+((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1013)))
+(((|#1|) . T))
+(|has| |#1| (-757))
+(|has| |#1| (-757))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-773)) . T))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
+((((-1094)) . T))
+((((-773)) . T) (((-1094)) . T))
+((((-1094)) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
@@ -3946,17 +3947,17 @@
(((|#1| |#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
(((|#4|) . T))
-(((|#1|) |has| |#1| (-146)) ((|#4|) . T) (((-483)) . T))
+(((|#1|) |has| |#1| (-146)) ((|#4|) . T) (((-484)) . T))
(((|#1|) |has| |#1| (-146)) (($) . T))
-(((|#4|) . T) (((-772)) . T))
-(((|#1|) |has| |#1| (-146)) (($) . T) (((-483)) . T))
+(((|#4|) . T) (((-773)) . T))
+(((|#1|) |has| |#1| (-146)) (($) . T) (((-484)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-472)) |has| |#4| (-553 (-472))))
+((((-473)) |has| |#4| (-554 (-473))))
(((|#4|) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))))
-(((|#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))))
+(((|#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))))
+(((|#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))))
(((|#4|) . T))
-((((-772)) . T) (((-583 |#4|)) . T))
+((((-773)) . T) (((-584 |#4|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
(((|#2|) |has| |#2| (-146)))
@@ -3965,15 +3966,15 @@
(((|#2| |#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-772)) . T))
-((($) . T) (((-483)) . T) ((|#2|) . T))
+((((-773)) . T))
+((($) . T) (((-484)) . T) ((|#2|) . T))
((($) . T) ((|#2|) . T))
(((|#2|) |has| |#2| (-146)))
(((|#2|) |has| |#2| (-146)))
-((((-739 |#1|)) . T))
-(((|#2|) . T) (((-483)) . T) (((-739 |#1|)) . T))
-(((|#2| (-739 |#1|)) . T))
-(((|#2| (-803 |#1|)) . T))
+((((-740 |#1|)) . T))
+(((|#2|) . T) (((-484)) . T) (((-740 |#1|)) . T))
+(((|#2| (-740 |#1|)) . T))
+(((|#2| (-804 |#1|)) . T))
(((|#1| |#2|) . T))
(((|#2|) |has| |#2| (-146)))
(((|#2| |#2|) . T))
@@ -3983,12 +3984,12 @@
(((|#2|) |has| |#2| (-146)))
(((|#2|) . T))
(((|#2|) . T) (($) . T))
-((((-772)) . T))
-(((|#2|) . T) (($) . T) (((-483)) . T))
-((((-803 |#1|)) . T) ((|#2|) . T) (((-483)) . T) (((-739 |#1|)) . T))
-((((-803 |#1|)) . T) (((-739 |#1|)) . T))
+((((-773)) . T))
+(((|#2|) . T) (($) . T) (((-484)) . T))
+((((-804 |#1|)) . T) ((|#2|) . T) (((-484)) . T) (((-740 |#1|)) . T))
+((((-804 |#1|)) . T) (((-740 |#1|)) . T))
(((|#1| |#2|) . T))
-((((-1088) |#1|) . T))
+((((-1089) |#1|) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1| |#1|) . T))
(((|#1|) . T))
@@ -3997,11 +3998,11 @@
(((|#1|) |has| |#1| (-146)))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
-((((-772)) . T))
-(((|#1|) . T) (($) . T) (((-483)) . T))
-(((|#1|) . T) (((-483)) . T) (((-739 (-1088))) . T))
-((((-739 (-1088))) . T))
-((((-1088) |#1|) . T))
+((((-773)) . T))
+(((|#1|) . T) (($) . T) (((-484)) . T))
+(((|#1|) . T) (((-484)) . T) (((-740 (-1089))) . T))
+((((-740 (-1089))) . T))
+((((-1089) |#1|) . T))
(((|#2|) . T))
(((|#1| |#2|) . T))
(((|#1|) |has| |#1| (-146)))
@@ -4011,10 +4012,10 @@
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
(((|#1|) . T))
-(((|#2|) . T) ((|#1|) . T) (((-483)) . T))
+(((|#2|) . T) ((|#1|) . T) (((-484)) . T))
(((|#1|) . T) (($) . T))
-((((-772)) . T))
-(((|#1|) . T) (($) . T) (((-483)) . T))
+((((-773)) . T))
+(((|#1|) . T) (($) . T) (((-484)) . T))
(((|#1| |#2|) . T))
(((|#2|) |has| |#2| (-146)))
(((|#2| |#2|) . T))
@@ -4024,20 +4025,20 @@
(((|#2|) |has| |#2| (-146)))
(((|#2|) . T))
(((|#2|) . T) (($) . T))
-((((-772)) . T))
-(((|#2|) . T) (($) . T) (((-483)) . T))
-(((|#2|) . T) (((-483)) . T) (((-739 |#1|)) . T))
-((((-739 |#1|)) . T))
+((((-773)) . T))
+(((|#2|) . T) (($) . T) (((-484)) . T))
+(((|#2|) . T) (((-484)) . T) (((-740 |#1|)) . T))
+((((-740 |#1|)) . T))
(((|#1| |#2|) . T))
-((((-884)) . T))
-((((-884)) . T))
-((((-884)) . T) (((-772)) . T))
-((((-483)) . T))
+((((-885)) . T))
+((((-885)) . T))
+((((-885)) . T) (((-773)) . T))
+((((-484)) . T))
((($ $) . T))
((($) . T))
((($) . T))
-((((-772)) . T))
-((((-483)) . T) (($) . T))
+((((-773)) . T))
+((((-484)) . T) (($) . T))
((($) . T))
-((((-483)) . T))
-(((-1207 . -146) T) ((-1207 . -555) 199241) ((-1207 . -969) T) ((-1207 . -1024) T) ((-1207 . -1059) T) ((-1207 . -663) T) ((-1207 . -961) T) ((-1207 . -590) 199228) ((-1207 . -588) 199200) ((-1207 . -104) T) ((-1207 . -25) T) ((-1207 . -72) T) ((-1207 . -13) T) ((-1207 . -1127) T) ((-1207 . -552) 199182) ((-1207 . -1012) T) ((-1207 . -23) T) ((-1207 . -21) T) ((-1207 . -968) 199169) ((-1207 . -963) 199156) ((-1207 . -82) 199141) ((-1207 . -317) T) ((-1207 . -553) 199123) ((-1207 . -1064) T) ((-1203 . -1012) T) ((-1203 . -552) 199090) ((-1203 . -1127) T) ((-1203 . -13) T) ((-1203 . -72) T) ((-1203 . -427) 199072) ((-1203 . -555) 199054) ((-1202 . -1200) 199033) ((-1202 . -950) 199010) ((-1202 . -555) 198959) ((-1202 . -961) T) ((-1202 . -663) T) ((-1202 . -1059) T) ((-1202 . -1024) T) ((-1202 . -969) T) ((-1202 . -21) T) ((-1202 . -588) 198918) ((-1202 . -23) T) ((-1202 . -1012) T) ((-1202 . -552) 198900) ((-1202 . -1127) T) ((-1202 . -13) T) ((-1202 . -72) T) ((-1202 . -25) T) ((-1202 . -104) T) ((-1202 . -590) 198874) ((-1202 . -1192) 198858) ((-1202 . -654) 198828) ((-1202 . -582) 198798) ((-1202 . -968) 198782) ((-1202 . -963) 198766) ((-1202 . -82) 198745) ((-1202 . -38) 198715) ((-1202 . -1197) 198694) ((-1201 . -961) T) ((-1201 . -663) T) ((-1201 . -1059) T) ((-1201 . -1024) T) ((-1201 . -969) T) ((-1201 . -21) T) ((-1201 . -588) 198653) ((-1201 . -23) T) ((-1201 . -1012) T) ((-1201 . -552) 198635) ((-1201 . -1127) T) ((-1201 . -13) T) ((-1201 . -72) T) ((-1201 . -25) T) ((-1201 . -104) T) ((-1201 . -590) 198609) ((-1201 . -555) 198565) ((-1201 . -1192) 198549) ((-1201 . -654) 198519) ((-1201 . -582) 198489) ((-1201 . -968) 198473) ((-1201 . -963) 198457) ((-1201 . -82) 198436) ((-1201 . -38) 198406) ((-1201 . -332) 198385) ((-1201 . -950) 198369) ((-1199 . -1200) 198345) ((-1199 . -950) 198319) ((-1199 . -555) 198265) ((-1199 . -961) T) ((-1199 . -663) T) ((-1199 . -1059) T) ((-1199 . -1024) T) ((-1199 . -969) T) ((-1199 . -21) T) ((-1199 . -588) 198224) ((-1199 . -23) T) ((-1199 . -1012) T) ((-1199 . -552) 198206) ((-1199 . -1127) T) ((-1199 . -13) T) ((-1199 . -72) T) ((-1199 . -25) T) ((-1199 . -104) T) ((-1199 . -590) 198180) ((-1199 . -1192) 198164) ((-1199 . -654) 198134) ((-1199 . -582) 198104) ((-1199 . -968) 198088) ((-1199 . -963) 198072) ((-1199 . -82) 198051) ((-1199 . -38) 198021) ((-1199 . -1197) 197997) ((-1198 . -1200) 197976) ((-1198 . -950) 197933) ((-1198 . -555) 197862) ((-1198 . -961) T) ((-1198 . -663) T) ((-1198 . -1059) T) ((-1198 . -1024) T) ((-1198 . -969) T) ((-1198 . -21) T) ((-1198 . -588) 197821) ((-1198 . -23) T) ((-1198 . -1012) T) ((-1198 . -552) 197803) ((-1198 . -1127) T) ((-1198 . -13) T) ((-1198 . -72) T) ((-1198 . -25) T) ((-1198 . -104) T) ((-1198 . -590) 197777) ((-1198 . -1192) 197761) ((-1198 . -654) 197731) ((-1198 . -582) 197701) ((-1198 . -968) 197685) ((-1198 . -963) 197669) ((-1198 . -82) 197648) ((-1198 . -38) 197618) ((-1198 . -1197) 197597) ((-1198 . -332) 197569) ((-1193 . -332) 197541) ((-1193 . -555) 197490) ((-1193 . -950) 197467) ((-1193 . -582) 197437) ((-1193 . -654) 197407) ((-1193 . -590) 197381) ((-1193 . -588) 197340) ((-1193 . -104) T) ((-1193 . -25) T) ((-1193 . -72) T) ((-1193 . -13) T) ((-1193 . -1127) T) ((-1193 . -552) 197322) ((-1193 . -1012) T) ((-1193 . -23) T) ((-1193 . -21) T) ((-1193 . -968) 197306) ((-1193 . -963) 197290) ((-1193 . -82) 197269) ((-1193 . -1200) 197248) ((-1193 . -961) T) ((-1193 . -663) T) ((-1193 . -1059) T) ((-1193 . -1024) T) ((-1193 . -969) T) ((-1193 . -1192) 197232) ((-1193 . -38) 197202) ((-1193 . -1197) 197181) ((-1191 . -1122) 197150) ((-1191 . -552) 197112) ((-1191 . -124) 197096) ((-1191 . -34) T) ((-1191 . -13) T) ((-1191 . -1127) T) ((-1191 . -72) T) ((-1191 . -259) 197034) ((-1191 . -452) 196967) ((-1191 . -1012) T) ((-1191 . -426) 196951) ((-1191 . -553) 196912) ((-1191 . -889) 196881) ((-1190 . -961) T) ((-1190 . -663) T) ((-1190 . -1059) T) ((-1190 . -1024) T) ((-1190 . -969) T) ((-1190 . -21) T) ((-1190 . -588) 196826) ((-1190 . -23) T) ((-1190 . -1012) T) ((-1190 . -552) 196795) ((-1190 . -1127) T) ((-1190 . -13) T) ((-1190 . -72) T) ((-1190 . -25) T) ((-1190 . -104) T) ((-1190 . -590) 196755) ((-1190 . -555) 196697) ((-1190 . -427) 196681) ((-1190 . -38) 196651) ((-1190 . -82) 196616) ((-1190 . -963) 196586) ((-1190 . -968) 196556) ((-1190 . -582) 196526) ((-1190 . -654) 196496) ((-1189 . -994) T) ((-1189 . -427) 196477) ((-1189 . -552) 196443) ((-1189 . -555) 196424) ((-1189 . -1012) T) ((-1189 . -1127) T) ((-1189 . -13) T) ((-1189 . -72) T) ((-1189 . -64) T) ((-1188 . -994) T) ((-1188 . -427) 196405) ((-1188 . -552) 196371) ((-1188 . -555) 196352) ((-1188 . -1012) T) ((-1188 . -1127) T) ((-1188 . -13) T) ((-1188 . -72) T) ((-1188 . -64) T) ((-1183 . -552) 196334) ((-1181 . -1012) T) ((-1181 . -552) 196316) ((-1181 . -1127) T) ((-1181 . -13) T) ((-1181 . -72) T) ((-1180 . -1012) T) ((-1180 . -552) 196298) ((-1180 . -1127) T) ((-1180 . -13) T) ((-1180 . -72) T) ((-1177 . -1176) 196282) ((-1177 . -321) 196266) ((-1177 . -759) 196245) ((-1177 . -756) 196224) ((-1177 . -124) 196208) ((-1177 . -34) T) ((-1177 . -13) T) ((-1177 . -1127) T) ((-1177 . -72) 196142) ((-1177 . -552) 196057) ((-1177 . -259) 195995) ((-1177 . -452) 195928) ((-1177 . -1012) 195881) ((-1177 . -426) 195865) ((-1177 . -553) 195826) ((-1177 . -241) 195778) ((-1177 . -538) 195755) ((-1177 . -243) 195732) ((-1177 . -593) 195716) ((-1177 . -19) 195700) ((-1174 . -1012) T) ((-1174 . -552) 195666) ((-1174 . -1127) T) ((-1174 . -13) T) ((-1174 . -72) T) ((-1167 . -1170) 195650) ((-1167 . -190) 195609) ((-1167 . -555) 195491) ((-1167 . -590) 195416) ((-1167 . -588) 195326) ((-1167 . -104) T) ((-1167 . -25) T) ((-1167 . -72) T) ((-1167 . -552) 195308) ((-1167 . -1012) T) ((-1167 . -23) T) ((-1167 . -21) T) ((-1167 . -969) T) ((-1167 . -1024) T) ((-1167 . -1059) T) ((-1167 . -663) T) ((-1167 . -961) T) ((-1167 . -186) 195261) ((-1167 . -13) T) ((-1167 . -1127) T) ((-1167 . -189) 195220) ((-1167 . -241) 195185) ((-1167 . -809) 195098) ((-1167 . -806) 194986) ((-1167 . -811) 194899) ((-1167 . -886) 194869) ((-1167 . -38) 194766) ((-1167 . -82) 194631) ((-1167 . -963) 194517) ((-1167 . -968) 194403) ((-1167 . -582) 194300) ((-1167 . -654) 194197) ((-1167 . -118) 194176) ((-1167 . -120) 194155) ((-1167 . -146) 194109) ((-1167 . -494) 194088) ((-1167 . -245) 194067) ((-1167 . -47) 194044) ((-1167 . -1156) 194021) ((-1167 . -35) 193987) ((-1167 . -66) 193953) ((-1167 . -239) 193919) ((-1167 . -430) 193885) ((-1167 . -1116) 193851) ((-1167 . -1113) 193817) ((-1167 . -915) 193783) ((-1164 . -276) 193727) ((-1164 . -950) 193693) ((-1164 . -352) 193659) ((-1164 . -38) 193516) ((-1164 . -555) 193390) ((-1164 . -590) 193279) ((-1164 . -588) 193153) ((-1164 . -969) T) ((-1164 . -1024) T) ((-1164 . -1059) T) ((-1164 . -663) T) ((-1164 . -961) T) ((-1164 . -82) 193003) ((-1164 . -963) 192892) ((-1164 . -968) 192781) ((-1164 . -21) T) ((-1164 . -23) T) ((-1164 . -1012) T) ((-1164 . -552) 192763) ((-1164 . -1127) T) ((-1164 . -13) T) ((-1164 . -72) T) ((-1164 . -25) T) ((-1164 . -104) T) ((-1164 . -582) 192620) ((-1164 . -654) 192477) ((-1164 . -118) 192438) ((-1164 . -120) 192399) ((-1164 . -146) T) ((-1164 . -494) T) ((-1164 . -245) T) ((-1164 . -47) 192343) ((-1163 . -1162) 192322) ((-1163 . -311) 192301) ((-1163 . -1132) 192280) ((-1163 . -832) 192259) ((-1163 . -494) 192213) ((-1163 . -146) 192147) ((-1163 . -555) 191966) ((-1163 . -654) 191813) ((-1163 . -582) 191660) ((-1163 . -38) 191507) ((-1163 . -389) 191486) ((-1163 . -257) 191465) ((-1163 . -590) 191365) ((-1163 . -588) 191250) ((-1163 . -969) T) ((-1163 . -1024) T) ((-1163 . -1059) T) ((-1163 . -663) T) ((-1163 . -961) T) ((-1163 . -82) 191070) ((-1163 . -963) 190911) ((-1163 . -968) 190752) ((-1163 . -21) T) ((-1163 . -23) T) ((-1163 . -1012) T) ((-1163 . -552) 190734) ((-1163 . -1127) T) ((-1163 . -13) T) ((-1163 . -72) T) ((-1163 . -25) T) ((-1163 . -104) T) ((-1163 . -245) 190688) ((-1163 . -201) 190667) ((-1163 . -915) 190633) ((-1163 . -1113) 190599) ((-1163 . -1116) 190565) ((-1163 . -430) 190531) ((-1163 . -239) 190497) ((-1163 . -66) 190463) ((-1163 . -35) 190429) ((-1163 . -1156) 190399) ((-1163 . -47) 190369) ((-1163 . -120) 190348) ((-1163 . -118) 190327) ((-1163 . -886) 190290) ((-1163 . -811) 190196) ((-1163 . -806) 190100) ((-1163 . -809) 190006) ((-1163 . -241) 189964) ((-1163 . -189) 189916) ((-1163 . -186) 189862) ((-1163 . -190) 189814) ((-1163 . -1160) 189798) ((-1163 . -950) 189782) ((-1158 . -1162) 189743) ((-1158 . -311) 189722) ((-1158 . -1132) 189701) ((-1158 . -832) 189680) ((-1158 . -494) 189634) ((-1158 . -146) 189568) ((-1158 . -555) 189317) ((-1158 . -654) 189164) ((-1158 . -582) 189011) ((-1158 . -38) 188858) ((-1158 . -389) 188837) ((-1158 . -257) 188816) ((-1158 . -590) 188716) ((-1158 . -588) 188601) ((-1158 . -969) T) ((-1158 . -1024) T) ((-1158 . -1059) T) ((-1158 . -663) T) ((-1158 . -961) T) ((-1158 . -82) 188421) ((-1158 . -963) 188262) ((-1158 . -968) 188103) ((-1158 . -21) T) ((-1158 . -23) T) ((-1158 . -1012) T) ((-1158 . -552) 188085) ((-1158 . -1127) T) ((-1158 . -13) T) ((-1158 . -72) T) ((-1158 . -25) T) ((-1158 . -104) T) ((-1158 . -245) 188039) ((-1158 . -201) 188018) ((-1158 . -915) 187984) ((-1158 . -1113) 187950) ((-1158 . -1116) 187916) ((-1158 . -430) 187882) ((-1158 . -239) 187848) ((-1158 . -66) 187814) ((-1158 . -35) 187780) ((-1158 . -1156) 187750) ((-1158 . -47) 187720) ((-1158 . -120) 187699) ((-1158 . -118) 187678) ((-1158 . -886) 187641) ((-1158 . -811) 187547) ((-1158 . -806) 187428) ((-1158 . -809) 187334) ((-1158 . -241) 187292) ((-1158 . -189) 187244) ((-1158 . -186) 187190) ((-1158 . -190) 187142) ((-1158 . -1160) 187126) ((-1158 . -950) 187061) ((-1146 . -1153) 187045) ((-1146 . -1064) 187023) ((-1146 . -553) NIL) ((-1146 . -259) 187010) ((-1146 . -452) 186958) ((-1146 . -276) 186935) ((-1146 . -950) 186818) ((-1146 . -352) 186802) ((-1146 . -38) 186634) ((-1146 . -82) 186439) ((-1146 . -963) 186265) ((-1146 . -968) 186091) ((-1146 . -588) 186001) ((-1146 . -590) 185890) ((-1146 . -582) 185722) ((-1146 . -654) 185554) ((-1146 . -555) 185310) ((-1146 . -118) 185289) ((-1146 . -120) 185268) ((-1146 . -47) 185245) ((-1146 . -326) 185229) ((-1146 . -580) 185177) ((-1146 . -809) 185121) ((-1146 . -806) 185028) ((-1146 . -811) 184939) ((-1146 . -796) NIL) ((-1146 . -821) 184918) ((-1146 . -1132) 184897) ((-1146 . -861) 184867) ((-1146 . -832) 184846) ((-1146 . -494) 184760) ((-1146 . -245) 184674) ((-1146 . -146) 184568) ((-1146 . -389) 184502) ((-1146 . -257) 184481) ((-1146 . -241) 184408) ((-1146 . -190) T) ((-1146 . -104) T) ((-1146 . -25) T) ((-1146 . -72) T) ((-1146 . -552) 184390) ((-1146 . -1012) T) ((-1146 . -23) T) ((-1146 . -21) T) ((-1146 . -969) T) ((-1146 . -1024) T) ((-1146 . -1059) T) ((-1146 . -663) T) ((-1146 . -961) T) ((-1146 . -186) 184377) ((-1146 . -13) T) ((-1146 . -1127) T) ((-1146 . -189) T) ((-1146 . -225) 184361) ((-1146 . -184) 184345) ((-1144 . -1005) 184329) ((-1144 . -557) 184313) ((-1144 . -1012) 184291) ((-1144 . -552) 184258) ((-1144 . -1127) 184236) ((-1144 . -13) 184214) ((-1144 . -72) 184192) ((-1144 . -1006) 184149) ((-1142 . -1141) 184128) ((-1142 . -915) 184094) ((-1142 . -1113) 184060) ((-1142 . -1116) 184026) ((-1142 . -430) 183992) ((-1142 . -239) 183958) ((-1142 . -66) 183924) ((-1142 . -35) 183890) ((-1142 . -1156) 183867) ((-1142 . -47) 183844) ((-1142 . -555) 183599) ((-1142 . -654) 183419) ((-1142 . -582) 183239) ((-1142 . -590) 183050) ((-1142 . -588) 182908) ((-1142 . -968) 182722) ((-1142 . -963) 182536) ((-1142 . -82) 182324) ((-1142 . -38) 182144) ((-1142 . -886) 182114) ((-1142 . -241) 182014) ((-1142 . -1139) 181998) ((-1142 . -969) T) ((-1142 . -1024) T) ((-1142 . -1059) T) ((-1142 . -663) T) ((-1142 . -961) T) ((-1142 . -21) T) ((-1142 . -23) T) ((-1142 . -1012) T) ((-1142 . -552) 181980) ((-1142 . -1127) T) ((-1142 . -13) T) ((-1142 . -72) T) ((-1142 . -25) T) ((-1142 . -104) T) ((-1142 . -118) 181908) ((-1142 . -120) 181836) ((-1142 . -553) 181509) ((-1142 . -184) 181479) ((-1142 . -809) 181333) ((-1142 . -811) 181133) ((-1142 . -806) 180931) ((-1142 . -225) 180901) ((-1142 . -189) 180763) ((-1142 . -186) 180619) ((-1142 . -190) 180527) ((-1142 . -311) 180506) ((-1142 . -1132) 180485) ((-1142 . -832) 180464) ((-1142 . -494) 180418) ((-1142 . -146) 180352) ((-1142 . -389) 180331) ((-1142 . -257) 180310) ((-1142 . -245) 180264) ((-1142 . -201) 180243) ((-1142 . -287) 180213) ((-1142 . -452) 180073) ((-1142 . -259) 180012) ((-1142 . -326) 179982) ((-1142 . -580) 179890) ((-1142 . -340) 179860) ((-1142 . -796) 179733) ((-1142 . -740) 179686) ((-1142 . -714) 179639) ((-1142 . -716) 179592) ((-1142 . -756) 179494) ((-1142 . -759) 179396) ((-1142 . -718) 179349) ((-1142 . -721) 179302) ((-1142 . -755) 179255) ((-1142 . -794) 179225) ((-1142 . -821) 179178) ((-1142 . -933) 179131) ((-1142 . -950) 178920) ((-1142 . -1064) 178872) ((-1142 . -904) 178842) ((-1137 . -1141) 178803) ((-1137 . -915) 178769) ((-1137 . -1113) 178735) ((-1137 . -1116) 178701) ((-1137 . -430) 178667) ((-1137 . -239) 178633) ((-1137 . -66) 178599) ((-1137 . -35) 178565) ((-1137 . -1156) 178542) ((-1137 . -47) 178519) ((-1137 . -555) 178320) ((-1137 . -654) 178122) ((-1137 . -582) 177924) ((-1137 . -590) 177779) ((-1137 . -588) 177619) ((-1137 . -968) 177415) ((-1137 . -963) 177211) ((-1137 . -82) 176963) ((-1137 . -38) 176765) ((-1137 . -886) 176735) ((-1137 . -241) 176563) ((-1137 . -1139) 176547) ((-1137 . -969) T) ((-1137 . -1024) T) ((-1137 . -1059) T) ((-1137 . -663) T) ((-1137 . -961) T) ((-1137 . -21) T) ((-1137 . -23) T) ((-1137 . -1012) T) ((-1137 . -552) 176529) ((-1137 . -1127) T) ((-1137 . -13) T) ((-1137 . -72) T) ((-1137 . -25) T) ((-1137 . -104) T) ((-1137 . -118) 176439) ((-1137 . -120) 176349) ((-1137 . -553) NIL) ((-1137 . -184) 176301) ((-1137 . -809) 176137) ((-1137 . -811) 175901) ((-1137 . -806) 175640) ((-1137 . -225) 175592) ((-1137 . -189) 175418) ((-1137 . -186) 175238) ((-1137 . -190) 175128) ((-1137 . -311) 175107) ((-1137 . -1132) 175086) ((-1137 . -832) 175065) ((-1137 . -494) 175019) ((-1137 . -146) 174953) ((-1137 . -389) 174932) ((-1137 . -257) 174911) ((-1137 . -245) 174865) ((-1137 . -201) 174844) ((-1137 . -287) 174796) ((-1137 . -452) 174530) ((-1137 . -259) 174415) ((-1137 . -326) 174367) ((-1137 . -580) 174319) ((-1137 . -340) 174271) ((-1137 . -796) NIL) ((-1137 . -740) NIL) ((-1137 . -714) NIL) ((-1137 . -716) NIL) ((-1137 . -756) NIL) ((-1137 . -759) NIL) ((-1137 . -718) NIL) ((-1137 . -721) NIL) ((-1137 . -755) NIL) ((-1137 . -794) 174223) ((-1137 . -821) NIL) ((-1137 . -933) NIL) ((-1137 . -950) 174189) ((-1137 . -1064) NIL) ((-1137 . -904) 174141) ((-1136 . -752) T) ((-1136 . -759) T) ((-1136 . -756) T) ((-1136 . -1012) T) ((-1136 . -552) 174123) ((-1136 . -1127) T) ((-1136 . -13) T) ((-1136 . -72) T) ((-1136 . -317) T) ((-1136 . -604) T) ((-1135 . -752) T) ((-1135 . -759) T) ((-1135 . -756) T) ((-1135 . -1012) T) ((-1135 . -552) 174105) ((-1135 . -1127) T) ((-1135 . -13) T) ((-1135 . -72) T) ((-1135 . -317) T) ((-1135 . -604) T) ((-1134 . -752) T) ((-1134 . -759) T) ((-1134 . -756) T) ((-1134 . -1012) T) ((-1134 . -552) 174087) ((-1134 . -1127) T) ((-1134 . -13) T) ((-1134 . -72) T) ((-1134 . -317) T) ((-1134 . -604) T) ((-1133 . -752) T) ((-1133 . -759) T) ((-1133 . -756) T) ((-1133 . -1012) T) ((-1133 . -552) 174069) ((-1133 . -1127) T) ((-1133 . -13) T) ((-1133 . -72) T) ((-1133 . -317) T) ((-1133 . -604) T) ((-1128 . -994) T) ((-1128 . -427) 174050) ((-1128 . -552) 174016) ((-1128 . -555) 173997) ((-1128 . -1012) T) ((-1128 . -1127) T) ((-1128 . -13) T) ((-1128 . -72) T) ((-1128 . -64) T) ((-1125 . -427) 173974) ((-1125 . -552) 173915) ((-1125 . -555) 173892) ((-1125 . -1012) 173870) ((-1125 . -1127) 173848) ((-1125 . -13) 173826) ((-1125 . -72) 173804) ((-1120 . -679) 173780) ((-1120 . -35) 173746) ((-1120 . -66) 173712) ((-1120 . -239) 173678) ((-1120 . -430) 173644) ((-1120 . -1116) 173610) ((-1120 . -1113) 173576) ((-1120 . -915) 173542) ((-1120 . -47) 173511) ((-1120 . -38) 173408) ((-1120 . -582) 173305) ((-1120 . -654) 173202) ((-1120 . -555) 173084) ((-1120 . -245) 173063) ((-1120 . -494) 173042) ((-1120 . -82) 172907) ((-1120 . -963) 172793) ((-1120 . -968) 172679) ((-1120 . -146) 172633) ((-1120 . -120) 172612) ((-1120 . -118) 172591) ((-1120 . -590) 172516) ((-1120 . -588) 172426) ((-1120 . -886) 172387) ((-1120 . -811) 172368) ((-1120 . -1127) T) ((-1120 . -13) T) ((-1120 . -806) 172347) ((-1120 . -961) T) ((-1120 . -663) T) ((-1120 . -1059) T) ((-1120 . -1024) T) ((-1120 . -969) T) ((-1120 . -21) T) ((-1120 . -23) T) ((-1120 . -1012) T) ((-1120 . -552) 172329) ((-1120 . -72) T) ((-1120 . -25) T) ((-1120 . -104) T) ((-1120 . -809) 172310) ((-1120 . -452) 172277) ((-1120 . -259) 172264) ((-1114 . -923) 172248) ((-1114 . -34) T) ((-1114 . -13) T) ((-1114 . -1127) T) ((-1114 . -72) 172202) ((-1114 . -552) 172137) ((-1114 . -259) 172075) ((-1114 . -452) 172008) ((-1114 . -1012) 171986) ((-1114 . -426) 171970) ((-1109 . -313) 171944) ((-1109 . -72) T) ((-1109 . -13) T) ((-1109 . -1127) T) ((-1109 . -552) 171926) ((-1109 . -1012) T) ((-1107 . -1012) T) ((-1107 . -552) 171908) ((-1107 . -1127) T) ((-1107 . -13) T) ((-1107 . -72) T) ((-1107 . -555) 171890) ((-1102 . -747) 171874) ((-1102 . -72) T) ((-1102 . -13) T) ((-1102 . -1127) T) ((-1102 . -552) 171856) ((-1102 . -1012) T) ((-1100 . -1105) 171835) ((-1100 . -183) 171783) ((-1100 . -76) 171731) ((-1100 . -259) 171529) ((-1100 . -452) 171281) ((-1100 . -426) 171216) ((-1100 . -124) 171164) ((-1100 . -553) NIL) ((-1100 . -193) 171112) ((-1100 . -549) 171091) ((-1100 . -243) 171070) ((-1100 . -1127) T) ((-1100 . -13) T) ((-1100 . -241) 171049) ((-1100 . -1012) T) ((-1100 . -552) 171031) ((-1100 . -72) T) ((-1100 . -34) T) ((-1100 . -538) 171010) ((-1096 . -1012) T) ((-1096 . -552) 170992) ((-1096 . -1127) T) ((-1096 . -13) T) ((-1096 . -72) T) ((-1095 . -752) T) ((-1095 . -759) T) ((-1095 . -756) T) ((-1095 . -1012) T) ((-1095 . -552) 170974) ((-1095 . -1127) T) ((-1095 . -13) T) ((-1095 . -72) T) ((-1095 . -317) T) ((-1095 . -604) T) ((-1094 . -752) T) ((-1094 . -759) T) ((-1094 . -756) T) ((-1094 . -1012) T) ((-1094 . -552) 170956) ((-1094 . -1127) T) ((-1094 . -13) T) ((-1094 . -72) T) ((-1094 . -317) T) ((-1093 . -1173) T) ((-1093 . -1012) T) ((-1093 . -552) 170923) ((-1093 . -1127) T) ((-1093 . -13) T) ((-1093 . -72) T) ((-1093 . -950) 170859) ((-1093 . -555) 170795) ((-1092 . -552) 170777) ((-1091 . -552) 170759) ((-1090 . -276) 170736) ((-1090 . -950) 170634) ((-1090 . -352) 170618) ((-1090 . -38) 170515) ((-1090 . -555) 170372) ((-1090 . -590) 170297) ((-1090 . -588) 170207) ((-1090 . -969) T) ((-1090 . -1024) T) ((-1090 . -1059) T) ((-1090 . -663) T) ((-1090 . -961) T) ((-1090 . -82) 170072) ((-1090 . -963) 169958) ((-1090 . -968) 169844) ((-1090 . -21) T) ((-1090 . -23) T) ((-1090 . -1012) T) ((-1090 . -552) 169826) ((-1090 . -1127) T) ((-1090 . -13) T) ((-1090 . -72) T) ((-1090 . -25) T) ((-1090 . -104) T) ((-1090 . -582) 169723) ((-1090 . -654) 169620) ((-1090 . -118) 169599) ((-1090 . -120) 169578) ((-1090 . -146) 169532) ((-1090 . -494) 169511) ((-1090 . -245) 169490) ((-1090 . -47) 169467) ((-1088 . -756) T) ((-1088 . -552) 169449) ((-1088 . -1012) T) ((-1088 . -72) T) ((-1088 . -13) T) ((-1088 . -1127) T) ((-1088 . -759) T) ((-1088 . -553) 169371) ((-1088 . -555) 169337) ((-1088 . -950) 169319) ((-1088 . -796) 169286) ((-1087 . -1170) 169270) ((-1087 . -190) 169229) ((-1087 . -555) 169111) ((-1087 . -590) 169036) ((-1087 . -588) 168946) ((-1087 . -104) T) ((-1087 . -25) T) ((-1087 . -72) T) ((-1087 . -552) 168928) ((-1087 . -1012) T) ((-1087 . -23) T) ((-1087 . -21) T) ((-1087 . -969) T) ((-1087 . -1024) T) ((-1087 . -1059) T) ((-1087 . -663) T) ((-1087 . -961) T) ((-1087 . -186) 168881) ((-1087 . -13) T) ((-1087 . -1127) T) ((-1087 . -189) 168840) ((-1087 . -241) 168805) ((-1087 . -809) 168718) ((-1087 . -806) 168606) ((-1087 . -811) 168519) ((-1087 . -886) 168489) ((-1087 . -38) 168386) ((-1087 . -82) 168251) ((-1087 . -963) 168137) ((-1087 . -968) 168023) ((-1087 . -582) 167920) ((-1087 . -654) 167817) ((-1087 . -118) 167796) ((-1087 . -120) 167775) ((-1087 . -146) 167729) ((-1087 . -494) 167708) ((-1087 . -245) 167687) ((-1087 . -47) 167664) ((-1087 . -1156) 167641) ((-1087 . -35) 167607) ((-1087 . -66) 167573) ((-1087 . -239) 167539) ((-1087 . -430) 167505) ((-1087 . -1116) 167471) ((-1087 . -1113) 167437) ((-1087 . -915) 167403) ((-1086 . -1162) 167364) ((-1086 . -311) 167343) ((-1086 . -1132) 167322) ((-1086 . -832) 167301) ((-1086 . -494) 167255) ((-1086 . -146) 167189) ((-1086 . -555) 166938) ((-1086 . -654) 166785) ((-1086 . -582) 166632) ((-1086 . -38) 166479) ((-1086 . -389) 166458) ((-1086 . -257) 166437) ((-1086 . -590) 166337) ((-1086 . -588) 166222) ((-1086 . -969) T) ((-1086 . -1024) T) ((-1086 . -1059) T) ((-1086 . -663) T) ((-1086 . -961) T) ((-1086 . -82) 166042) ((-1086 . -963) 165883) ((-1086 . -968) 165724) ((-1086 . -21) T) ((-1086 . -23) T) ((-1086 . -1012) T) ((-1086 . -552) 165706) ((-1086 . -1127) T) ((-1086 . -13) T) ((-1086 . -72) T) ((-1086 . -25) T) ((-1086 . -104) T) ((-1086 . -245) 165660) ((-1086 . -201) 165639) ((-1086 . -915) 165605) ((-1086 . -1113) 165571) ((-1086 . -1116) 165537) ((-1086 . -430) 165503) ((-1086 . -239) 165469) ((-1086 . -66) 165435) ((-1086 . -35) 165401) ((-1086 . -1156) 165371) ((-1086 . -47) 165341) ((-1086 . -120) 165320) ((-1086 . -118) 165299) ((-1086 . -886) 165262) ((-1086 . -811) 165168) ((-1086 . -806) 165049) ((-1086 . -809) 164955) ((-1086 . -241) 164913) ((-1086 . -189) 164865) ((-1086 . -186) 164811) ((-1086 . -190) 164763) ((-1086 . -1160) 164747) ((-1086 . -950) 164682) ((-1083 . -1153) 164666) ((-1083 . -1064) 164644) ((-1083 . -553) NIL) ((-1083 . -259) 164631) ((-1083 . -452) 164579) ((-1083 . -276) 164556) ((-1083 . -950) 164439) ((-1083 . -352) 164423) ((-1083 . -38) 164255) ((-1083 . -82) 164060) ((-1083 . -963) 163886) ((-1083 . -968) 163712) ((-1083 . -588) 163622) ((-1083 . -590) 163511) ((-1083 . -582) 163343) ((-1083 . -654) 163175) ((-1083 . -555) 162952) ((-1083 . -118) 162931) ((-1083 . -120) 162910) ((-1083 . -47) 162887) ((-1083 . -326) 162871) ((-1083 . -580) 162819) ((-1083 . -809) 162763) ((-1083 . -806) 162670) ((-1083 . -811) 162581) ((-1083 . -796) NIL) ((-1083 . -821) 162560) ((-1083 . -1132) 162539) ((-1083 . -861) 162509) ((-1083 . -832) 162488) ((-1083 . -494) 162402) ((-1083 . -245) 162316) ((-1083 . -146) 162210) ((-1083 . -389) 162144) ((-1083 . -257) 162123) ((-1083 . -241) 162050) ((-1083 . -190) T) ((-1083 . -104) T) ((-1083 . -25) T) ((-1083 . -72) T) ((-1083 . -552) 162032) ((-1083 . -1012) T) ((-1083 . -23) T) ((-1083 . -21) T) ((-1083 . -969) T) ((-1083 . -1024) T) ((-1083 . -1059) T) ((-1083 . -663) T) ((-1083 . -961) T) ((-1083 . -186) 162019) ((-1083 . -13) T) ((-1083 . -1127) T) ((-1083 . -189) T) ((-1083 . -225) 162003) ((-1083 . -184) 161987) ((-1080 . -1141) 161948) ((-1080 . -915) 161914) ((-1080 . -1113) 161880) ((-1080 . -1116) 161846) ((-1080 . -430) 161812) ((-1080 . -239) 161778) ((-1080 . -66) 161744) ((-1080 . -35) 161710) ((-1080 . -1156) 161687) ((-1080 . -47) 161664) ((-1080 . -555) 161465) ((-1080 . -654) 161267) ((-1080 . -582) 161069) ((-1080 . -590) 160924) ((-1080 . -588) 160764) ((-1080 . -968) 160560) ((-1080 . -963) 160356) ((-1080 . -82) 160108) ((-1080 . -38) 159910) ((-1080 . -886) 159880) ((-1080 . -241) 159708) ((-1080 . -1139) 159692) ((-1080 . -969) T) ((-1080 . -1024) T) ((-1080 . -1059) T) ((-1080 . -663) T) ((-1080 . -961) T) ((-1080 . -21) T) ((-1080 . -23) T) ((-1080 . -1012) T) ((-1080 . -552) 159674) ((-1080 . -1127) T) ((-1080 . -13) T) ((-1080 . -72) T) ((-1080 . -25) T) ((-1080 . -104) T) ((-1080 . -118) 159584) ((-1080 . -120) 159494) ((-1080 . -553) NIL) ((-1080 . -184) 159446) ((-1080 . -809) 159282) ((-1080 . -811) 159046) ((-1080 . -806) 158785) ((-1080 . -225) 158737) ((-1080 . -189) 158563) ((-1080 . -186) 158383) ((-1080 . -190) 158273) ((-1080 . -311) 158252) ((-1080 . -1132) 158231) ((-1080 . -832) 158210) ((-1080 . -494) 158164) ((-1080 . -146) 158098) ((-1080 . -389) 158077) ((-1080 . -257) 158056) ((-1080 . -245) 158010) ((-1080 . -201) 157989) ((-1080 . -287) 157941) ((-1080 . -452) 157675) ((-1080 . -259) 157560) ((-1080 . -326) 157512) ((-1080 . -580) 157464) ((-1080 . -340) 157416) ((-1080 . -796) NIL) ((-1080 . -740) NIL) ((-1080 . -714) NIL) ((-1080 . -716) NIL) ((-1080 . -756) NIL) ((-1080 . -759) NIL) ((-1080 . -718) NIL) ((-1080 . -721) NIL) ((-1080 . -755) NIL) ((-1080 . -794) 157368) ((-1080 . -821) NIL) ((-1080 . -933) NIL) ((-1080 . -950) 157334) ((-1080 . -1064) NIL) ((-1080 . -904) 157286) ((-1079 . -994) T) ((-1079 . -427) 157267) ((-1079 . -552) 157233) ((-1079 . -555) 157214) ((-1079 . -1012) T) ((-1079 . -1127) T) ((-1079 . -13) T) ((-1079 . -72) T) ((-1079 . -64) T) ((-1078 . -1012) T) ((-1078 . -552) 157196) ((-1078 . -1127) T) ((-1078 . -13) T) ((-1078 . -72) T) ((-1077 . -1012) T) ((-1077 . -552) 157178) ((-1077 . -1127) T) ((-1077 . -13) T) ((-1077 . -72) T) ((-1072 . -1105) 157154) ((-1072 . -183) 157099) ((-1072 . -76) 157044) ((-1072 . -259) 156833) ((-1072 . -452) 156573) ((-1072 . -426) 156505) ((-1072 . -124) 156450) ((-1072 . -553) NIL) ((-1072 . -193) 156395) ((-1072 . -549) 156371) ((-1072 . -243) 156347) ((-1072 . -1127) T) ((-1072 . -13) T) ((-1072 . -241) 156323) ((-1072 . -1012) T) ((-1072 . -552) 156305) ((-1072 . -72) T) ((-1072 . -34) T) ((-1072 . -538) 156281) ((-1071 . -1056) T) ((-1071 . -321) 156263) ((-1071 . -759) T) ((-1071 . -756) T) ((-1071 . -124) 156245) ((-1071 . -34) T) ((-1071 . -13) T) ((-1071 . -1127) T) ((-1071 . -72) T) ((-1071 . -552) 156227) ((-1071 . -259) NIL) ((-1071 . -452) NIL) ((-1071 . -1012) T) ((-1071 . -426) 156209) ((-1071 . -553) NIL) ((-1071 . -241) 156159) ((-1071 . -538) 156134) ((-1071 . -243) 156109) ((-1071 . -593) 156091) ((-1071 . -19) 156073) ((-1067 . -616) 156057) ((-1067 . -593) 156041) ((-1067 . -243) 156018) ((-1067 . -241) 155970) ((-1067 . -538) 155947) ((-1067 . -553) 155908) ((-1067 . -426) 155892) ((-1067 . -1012) 155870) ((-1067 . -452) 155803) ((-1067 . -259) 155741) ((-1067 . -552) 155676) ((-1067 . -72) 155630) ((-1067 . -1127) T) ((-1067 . -13) T) ((-1067 . -34) T) ((-1067 . -124) 155614) ((-1067 . -1166) 155598) ((-1067 . -923) 155582) ((-1067 . -1062) 155566) ((-1067 . -555) 155543) ((-1065 . -994) T) ((-1065 . -427) 155524) ((-1065 . -552) 155490) ((-1065 . -555) 155471) ((-1065 . -1012) T) ((-1065 . -1127) T) ((-1065 . -13) T) ((-1065 . -72) T) ((-1065 . -64) T) ((-1063 . -1105) 155450) ((-1063 . -183) 155398) ((-1063 . -76) 155346) ((-1063 . -259) 155144) ((-1063 . -452) 154896) ((-1063 . -426) 154831) ((-1063 . -124) 154779) ((-1063 . -553) NIL) ((-1063 . -193) 154727) ((-1063 . -549) 154706) ((-1063 . -243) 154685) ((-1063 . -1127) T) ((-1063 . -13) T) ((-1063 . -241) 154664) ((-1063 . -1012) T) ((-1063 . -552) 154646) ((-1063 . -72) T) ((-1063 . -34) T) ((-1063 . -538) 154625) ((-1060 . -1033) 154609) ((-1060 . -426) 154593) ((-1060 . -1012) 154571) ((-1060 . -452) 154504) ((-1060 . -259) 154442) ((-1060 . -552) 154377) ((-1060 . -72) 154331) ((-1060 . -1127) T) ((-1060 . -13) T) ((-1060 . -34) T) ((-1060 . -76) 154315) ((-1058 . -1019) 154284) ((-1058 . -1122) 154253) ((-1058 . -552) 154215) ((-1058 . -124) 154199) ((-1058 . -34) T) ((-1058 . -13) T) ((-1058 . -1127) T) ((-1058 . -72) T) ((-1058 . -259) 154137) ((-1058 . -452) 154070) ((-1058 . -1012) T) ((-1058 . -426) 154054) ((-1058 . -553) 154015) ((-1058 . -889) 153984) ((-1058 . -982) 153953) ((-1054 . -1035) 153898) ((-1054 . -426) 153882) ((-1054 . -452) 153815) ((-1054 . -259) 153753) ((-1054 . -34) T) ((-1054 . -965) 153693) ((-1054 . -950) 153591) ((-1054 . -555) 153510) ((-1054 . -352) 153494) ((-1054 . -580) 153442) ((-1054 . -590) 153380) ((-1054 . -326) 153364) ((-1054 . -190) 153343) ((-1054 . -186) 153291) ((-1054 . -189) 153245) ((-1054 . -225) 153229) ((-1054 . -806) 153153) ((-1054 . -811) 153079) ((-1054 . -809) 153038) ((-1054 . -184) 153022) ((-1054 . -654) 152957) ((-1054 . -582) 152892) ((-1054 . -588) 152851) ((-1054 . -104) T) ((-1054 . -25) T) ((-1054 . -72) T) ((-1054 . -13) T) ((-1054 . -1127) T) ((-1054 . -552) 152813) ((-1054 . -1012) T) ((-1054 . -23) T) ((-1054 . -21) T) ((-1054 . -968) 152797) ((-1054 . -963) 152781) ((-1054 . -82) 152760) ((-1054 . -961) T) ((-1054 . -663) T) ((-1054 . -1059) T) ((-1054 . -1024) T) ((-1054 . -969) T) ((-1054 . -38) 152720) ((-1054 . -553) 152681) ((-1053 . -923) 152652) ((-1053 . -34) T) ((-1053 . -13) T) ((-1053 . -1127) T) ((-1053 . -72) T) ((-1053 . -552) 152634) ((-1053 . -259) 152560) ((-1053 . -452) 152468) ((-1053 . -1012) T) ((-1053 . -426) 152439) ((-1052 . -1012) T) ((-1052 . -552) 152421) ((-1052 . -1127) T) ((-1052 . -13) T) ((-1052 . -72) T) ((-1047 . -1049) T) ((-1047 . -1173) T) ((-1047 . -64) T) ((-1047 . -72) T) ((-1047 . -13) T) ((-1047 . -1127) T) ((-1047 . -552) 152387) ((-1047 . -1012) T) ((-1047 . -555) 152368) ((-1047 . -427) 152349) ((-1047 . -994) T) ((-1045 . -1046) 152333) ((-1045 . -72) T) ((-1045 . -13) T) ((-1045 . -1127) T) ((-1045 . -552) 152315) ((-1045 . -1012) T) ((-1038 . -679) 152294) ((-1038 . -35) 152260) ((-1038 . -66) 152226) ((-1038 . -239) 152192) ((-1038 . -430) 152158) ((-1038 . -1116) 152124) ((-1038 . -1113) 152090) ((-1038 . -915) 152056) ((-1038 . -47) 152028) ((-1038 . -38) 151925) ((-1038 . -582) 151822) ((-1038 . -654) 151719) ((-1038 . -555) 151601) ((-1038 . -245) 151580) ((-1038 . -494) 151559) ((-1038 . -82) 151424) ((-1038 . -963) 151310) ((-1038 . -968) 151196) ((-1038 . -146) 151150) ((-1038 . -120) 151129) ((-1038 . -118) 151108) ((-1038 . -590) 151033) ((-1038 . -588) 150943) ((-1038 . -886) 150910) ((-1038 . -811) 150894) ((-1038 . -1127) T) ((-1038 . -13) T) ((-1038 . -806) 150876) ((-1038 . -961) T) ((-1038 . -663) T) ((-1038 . -1059) T) ((-1038 . -1024) T) ((-1038 . -969) T) ((-1038 . -21) T) ((-1038 . -23) T) ((-1038 . -1012) T) ((-1038 . -552) 150858) ((-1038 . -72) T) ((-1038 . -25) T) ((-1038 . -104) T) ((-1038 . -809) 150842) ((-1038 . -452) 150812) ((-1038 . -259) 150799) ((-1037 . -861) 150766) ((-1037 . -555) 150565) ((-1037 . -950) 150450) ((-1037 . -1132) 150429) ((-1037 . -821) 150408) ((-1037 . -796) 150267) ((-1037 . -811) 150251) ((-1037 . -806) 150233) ((-1037 . -809) 150217) ((-1037 . -452) 150169) ((-1037 . -389) 150123) ((-1037 . -580) 150071) ((-1037 . -590) 149960) ((-1037 . -326) 149944) ((-1037 . -47) 149916) ((-1037 . -38) 149768) ((-1037 . -582) 149620) ((-1037 . -654) 149472) ((-1037 . -245) 149406) ((-1037 . -494) 149340) ((-1037 . -82) 149165) ((-1037 . -963) 149011) ((-1037 . -968) 148857) ((-1037 . -146) 148771) ((-1037 . -120) 148750) ((-1037 . -118) 148729) ((-1037 . -588) 148639) ((-1037 . -104) T) ((-1037 . -25) T) ((-1037 . -72) T) ((-1037 . -13) T) ((-1037 . -1127) T) ((-1037 . -552) 148621) ((-1037 . -1012) T) ((-1037 . -23) T) ((-1037 . -21) T) ((-1037 . -961) T) ((-1037 . -663) T) ((-1037 . -1059) T) ((-1037 . -1024) T) ((-1037 . -969) T) ((-1037 . -352) 148605) ((-1037 . -276) 148577) ((-1037 . -259) 148564) ((-1037 . -553) 148312) ((-1032 . -482) T) ((-1032 . -1132) T) ((-1032 . -1064) T) ((-1032 . -950) 148294) ((-1032 . -553) 148209) ((-1032 . -933) T) ((-1032 . -796) 148191) ((-1032 . -755) T) ((-1032 . -721) T) ((-1032 . -718) T) ((-1032 . -759) T) ((-1032 . -756) T) ((-1032 . -716) T) ((-1032 . -714) T) ((-1032 . -740) T) ((-1032 . -590) 148163) ((-1032 . -580) 148145) ((-1032 . -832) T) ((-1032 . -494) T) ((-1032 . -245) T) ((-1032 . -146) T) ((-1032 . -555) 148117) ((-1032 . -654) 148104) ((-1032 . -582) 148091) ((-1032 . -968) 148078) ((-1032 . -963) 148065) ((-1032 . -82) 148050) ((-1032 . -38) 148037) ((-1032 . -389) T) ((-1032 . -257) T) ((-1032 . -189) T) ((-1032 . -186) 148024) ((-1032 . -190) T) ((-1032 . -116) T) ((-1032 . -961) T) ((-1032 . -663) T) ((-1032 . -1059) T) ((-1032 . -1024) T) ((-1032 . -969) T) ((-1032 . -21) T) ((-1032 . -588) 147996) ((-1032 . -23) T) ((-1032 . -1012) T) ((-1032 . -552) 147978) ((-1032 . -1127) T) ((-1032 . -13) T) ((-1032 . -72) T) ((-1032 . -25) T) ((-1032 . -104) T) ((-1032 . -120) T) ((-1032 . -752) T) ((-1032 . -317) T) ((-1032 . -84) T) ((-1032 . -604) T) ((-1028 . -994) T) ((-1028 . -427) 147959) ((-1028 . -552) 147925) ((-1028 . -555) 147906) ((-1028 . -1012) T) ((-1028 . -1127) T) ((-1028 . -13) T) ((-1028 . -72) T) ((-1028 . -64) T) ((-1027 . -1012) T) ((-1027 . -552) 147888) ((-1027 . -1127) T) ((-1027 . -13) T) ((-1027 . -72) T) ((-1025 . -196) 147867) ((-1025 . -1185) 147837) ((-1025 . -721) 147816) ((-1025 . -718) 147795) ((-1025 . -759) 147749) ((-1025 . -756) 147703) ((-1025 . -716) 147682) ((-1025 . -717) 147661) ((-1025 . -654) 147606) ((-1025 . -582) 147531) ((-1025 . -243) 147508) ((-1025 . -241) 147485) ((-1025 . -426) 147469) ((-1025 . -452) 147402) ((-1025 . -259) 147340) ((-1025 . -34) T) ((-1025 . -538) 147317) ((-1025 . -950) 147146) ((-1025 . -555) 146950) ((-1025 . -352) 146919) ((-1025 . -580) 146827) ((-1025 . -590) 146666) ((-1025 . -326) 146636) ((-1025 . -317) 146615) ((-1025 . -190) 146568) ((-1025 . -588) 146356) ((-1025 . -969) 146335) ((-1025 . -1024) 146314) ((-1025 . -1059) 146293) ((-1025 . -663) 146272) ((-1025 . -961) 146251) ((-1025 . -186) 146147) ((-1025 . -189) 146049) ((-1025 . -225) 146019) ((-1025 . -806) 145891) ((-1025 . -811) 145765) ((-1025 . -809) 145698) ((-1025 . -184) 145668) ((-1025 . -552) 145365) ((-1025 . -968) 145290) ((-1025 . -963) 145195) ((-1025 . -82) 145115) ((-1025 . -104) 144990) ((-1025 . -25) 144827) ((-1025 . -72) 144564) ((-1025 . -13) T) ((-1025 . -1127) T) ((-1025 . -1012) 144320) ((-1025 . -23) 144176) ((-1025 . -21) 144091) ((-1021 . -1022) 144075) ((-1021 . |MappingCategory|) 144049) ((-1021 . -1127) T) ((-1021 . -80) 144033) ((-1021 . -1012) T) ((-1021 . -552) 144015) ((-1021 . -13) T) ((-1021 . -72) T) ((-1016 . -1015) 143979) ((-1016 . -72) T) ((-1016 . -552) 143961) ((-1016 . -1012) T) ((-1016 . -241) 143917) ((-1016 . -1127) T) ((-1016 . -13) T) ((-1016 . -557) 143832) ((-1014 . -1015) 143784) ((-1014 . -72) T) ((-1014 . -552) 143766) ((-1014 . -1012) T) ((-1014 . -241) 143722) ((-1014 . -1127) T) ((-1014 . -13) T) ((-1014 . -557) 143625) ((-1013 . -317) T) ((-1013 . -72) T) ((-1013 . -13) T) ((-1013 . -1127) T) ((-1013 . -552) 143607) ((-1013 . -1012) T) ((-1008 . -366) 143591) ((-1008 . -1010) 143575) ((-1008 . -317) 143554) ((-1008 . -193) 143538) ((-1008 . -553) 143499) ((-1008 . -124) 143483) ((-1008 . -426) 143467) ((-1008 . -1012) T) ((-1008 . -452) 143400) ((-1008 . -259) 143338) ((-1008 . -552) 143320) ((-1008 . -72) T) ((-1008 . -1127) T) ((-1008 . -13) T) ((-1008 . -34) T) ((-1008 . -76) 143304) ((-1008 . -183) 143288) ((-1007 . -994) T) ((-1007 . -427) 143269) ((-1007 . -552) 143235) ((-1007 . -555) 143216) ((-1007 . -1012) T) ((-1007 . -1127) T) ((-1007 . -13) T) ((-1007 . -72) T) ((-1007 . -64) T) ((-1003 . -1127) T) ((-1003 . -13) T) ((-1003 . -1012) 143186) ((-1003 . -552) 143145) ((-1003 . -72) 143115) ((-1002 . -994) T) ((-1002 . -427) 143096) ((-1002 . -552) 143062) ((-1002 . -555) 143043) ((-1002 . -1012) T) ((-1002 . -1127) T) ((-1002 . -13) T) ((-1002 . -72) T) ((-1002 . -64) T) ((-1000 . -1005) 143027) ((-1000 . -557) 143011) ((-1000 . -1012) 142989) ((-1000 . -552) 142956) ((-1000 . -1127) 142934) ((-1000 . -13) 142912) ((-1000 . -72) 142890) ((-1000 . -1006) 142848) ((-999 . -228) 142832) ((-999 . -555) 142816) ((-999 . -950) 142800) ((-999 . -759) T) ((-999 . -72) T) ((-999 . -1012) T) ((-999 . -552) 142782) ((-999 . -756) T) ((-999 . -186) 142769) ((-999 . -13) T) ((-999 . -1127) T) ((-999 . -189) T) ((-998 . -213) 142708) ((-998 . -555) 142452) ((-998 . -950) 142282) ((-998 . -553) NIL) ((-998 . -276) 142244) ((-998 . -352) 142228) ((-998 . -38) 142080) ((-998 . -82) 141905) ((-998 . -963) 141751) ((-998 . -968) 141597) ((-998 . -588) 141507) ((-998 . -590) 141396) ((-998 . -582) 141248) ((-998 . -654) 141100) ((-998 . -118) 141079) ((-998 . -120) 141058) ((-998 . -146) 140972) ((-998 . -494) 140906) ((-998 . -245) 140840) ((-998 . -47) 140802) ((-998 . -326) 140786) ((-998 . -580) 140734) ((-998 . -389) 140688) ((-998 . -452) 140553) ((-998 . -809) 140489) ((-998 . -806) 140388) ((-998 . -811) 140291) ((-998 . -796) NIL) ((-998 . -821) 140270) ((-998 . -1132) 140249) ((-998 . -861) 140196) ((-998 . -259) 140183) ((-998 . -190) 140162) ((-998 . -104) T) ((-998 . -25) T) ((-998 . -72) T) ((-998 . -552) 140144) ((-998 . -1012) T) ((-998 . -23) T) ((-998 . -21) T) ((-998 . -969) T) ((-998 . -1024) T) ((-998 . -1059) T) ((-998 . -663) T) ((-998 . -961) T) ((-998 . -186) 140092) ((-998 . -13) T) ((-998 . -1127) T) ((-998 . -189) 140046) ((-998 . -225) 140030) ((-998 . -184) 140014) ((-996 . -552) 139996) ((-993 . -756) T) ((-993 . -552) 139978) ((-993 . -1012) T) ((-993 . -72) T) ((-993 . -13) T) ((-993 . -1127) T) ((-993 . -759) T) ((-993 . -553) 139959) ((-990 . -661) 139938) ((-990 . -950) 139836) ((-990 . -352) 139820) ((-990 . -580) 139768) ((-990 . -590) 139645) ((-990 . -326) 139629) ((-990 . -319) 139608) ((-990 . -120) 139587) ((-990 . -555) 139412) ((-990 . -654) 139286) ((-990 . -582) 139160) ((-990 . -588) 139058) ((-990 . -968) 138971) ((-990 . -963) 138884) ((-990 . -82) 138776) ((-990 . -38) 138650) ((-990 . -350) 138629) ((-990 . -342) 138608) ((-990 . -118) 138562) ((-990 . -1064) 138541) ((-990 . -298) 138520) ((-990 . -317) 138474) ((-990 . -201) 138428) ((-990 . -245) 138382) ((-990 . -257) 138336) ((-990 . -389) 138290) ((-990 . -494) 138244) ((-990 . -832) 138198) ((-990 . -1132) 138152) ((-990 . -311) 138106) ((-990 . -190) 138034) ((-990 . -186) 137910) ((-990 . -189) 137792) ((-990 . -225) 137762) ((-990 . -806) 137634) ((-990 . -811) 137508) ((-990 . -809) 137441) ((-990 . -184) 137411) ((-990 . -553) 137395) ((-990 . -21) T) ((-990 . -23) T) ((-990 . -1012) T) ((-990 . -552) 137377) ((-990 . -1127) T) ((-990 . -13) T) ((-990 . -72) T) ((-990 . -25) T) ((-990 . -104) T) ((-990 . -961) T) ((-990 . -663) T) ((-990 . -1059) T) ((-990 . -1024) T) ((-990 . -969) T) ((-990 . -146) T) ((-988 . -1012) T) ((-988 . -552) 137359) ((-988 . -1127) T) ((-988 . -13) T) ((-988 . -72) T) ((-988 . -241) 137338) ((-987 . -1012) T) ((-987 . -552) 137320) ((-987 . -1127) T) ((-987 . -13) T) ((-987 . -72) T) ((-986 . -1012) T) ((-986 . -552) 137302) ((-986 . -1127) T) ((-986 . -13) T) ((-986 . -72) T) ((-986 . -241) 137281) ((-986 . -950) 137258) ((-986 . -555) 137235) ((-985 . -1127) T) ((-985 . -13) T) ((-984 . -994) T) ((-984 . -427) 137216) ((-984 . -552) 137182) ((-984 . -555) 137163) ((-984 . -1012) T) ((-984 . -1127) T) ((-984 . -13) T) ((-984 . -72) T) ((-984 . -64) T) ((-977 . -994) T) ((-977 . -427) 137144) ((-977 . -552) 137110) ((-977 . -555) 137091) ((-977 . -1012) T) ((-977 . -1127) T) ((-977 . -13) T) ((-977 . -72) T) ((-977 . -64) T) ((-974 . -482) T) ((-974 . -1132) T) ((-974 . -1064) T) ((-974 . -950) 137073) ((-974 . -553) 136988) ((-974 . -933) T) ((-974 . -796) 136970) ((-974 . -755) T) ((-974 . -721) T) ((-974 . -718) T) ((-974 . -759) T) ((-974 . -756) T) ((-974 . -716) T) ((-974 . -714) T) ((-974 . -740) T) ((-974 . -590) 136942) ((-974 . -580) 136924) ((-974 . -832) T) ((-974 . -494) T) ((-974 . -245) T) ((-974 . -146) T) ((-974 . -555) 136896) ((-974 . -654) 136883) ((-974 . -582) 136870) ((-974 . -968) 136857) ((-974 . -963) 136844) ((-974 . -82) 136829) ((-974 . -38) 136816) ((-974 . -389) T) ((-974 . -257) T) ((-974 . -189) T) ((-974 . -186) 136803) ((-974 . -190) T) ((-974 . -116) T) ((-974 . -961) T) ((-974 . -663) T) ((-974 . -1059) T) ((-974 . -1024) T) ((-974 . -969) T) ((-974 . -21) T) ((-974 . -588) 136775) ((-974 . -23) T) ((-974 . -1012) T) ((-974 . -552) 136757) ((-974 . -1127) T) ((-974 . -13) T) ((-974 . -72) T) ((-974 . -25) T) ((-974 . -104) T) ((-974 . -120) T) ((-974 . -557) 136738) ((-973 . -979) 136717) ((-973 . -72) T) ((-973 . -13) T) ((-973 . -1127) T) ((-973 . -552) 136699) ((-973 . -1012) T) ((-970 . -1127) T) ((-970 . -13) T) ((-970 . -1012) 136677) ((-970 . -552) 136644) ((-970 . -72) 136622) ((-966 . -965) 136562) ((-966 . -582) 136507) ((-966 . -654) 136452) ((-966 . -34) T) ((-966 . -259) 136390) ((-966 . -452) 136323) ((-966 . -426) 136307) ((-966 . -590) 136291) ((-966 . -588) 136260) ((-966 . -104) T) ((-966 . -25) T) ((-966 . -72) T) ((-966 . -13) T) ((-966 . -1127) T) ((-966 . -552) 136222) ((-966 . -1012) T) ((-966 . -23) T) ((-966 . -21) T) ((-966 . -968) 136206) ((-966 . -963) 136190) ((-966 . -82) 136169) ((-966 . -1185) 136139) ((-966 . -553) 136100) ((-958 . -982) 136029) ((-958 . -889) 135958) ((-958 . -553) 135900) ((-958 . -426) 135865) ((-958 . -1012) T) ((-958 . -452) 135749) ((-958 . -259) 135657) ((-958 . -552) 135600) ((-958 . -72) T) ((-958 . -1127) T) ((-958 . -13) T) ((-958 . -34) T) ((-958 . -124) 135565) ((-958 . -1122) 135494) ((-948 . -994) T) ((-948 . -427) 135475) ((-948 . -552) 135441) ((-948 . -555) 135422) ((-948 . -1012) T) ((-948 . -1127) T) ((-948 . -13) T) ((-948 . -72) T) ((-948 . -64) T) ((-947 . -146) T) ((-947 . -555) 135391) ((-947 . -969) T) ((-947 . -1024) T) ((-947 . -1059) T) ((-947 . -663) T) ((-947 . -961) T) ((-947 . -590) 135365) ((-947 . -588) 135324) ((-947 . -104) T) ((-947 . -25) T) ((-947 . -72) T) ((-947 . -13) T) ((-947 . -1127) T) ((-947 . -552) 135306) ((-947 . -1012) T) ((-947 . -23) T) ((-947 . -21) T) ((-947 . -968) 135280) ((-947 . -963) 135254) ((-947 . -82) 135221) ((-947 . -38) 135205) ((-947 . -582) 135189) ((-947 . -654) 135173) ((-940 . -982) 135142) ((-940 . -889) 135111) ((-940 . -553) 135072) ((-940 . -426) 135056) ((-940 . -1012) T) ((-940 . -452) 134989) ((-940 . -259) 134927) ((-940 . -552) 134889) ((-940 . -72) T) ((-940 . -1127) T) ((-940 . -13) T) ((-940 . -34) T) ((-940 . -124) 134873) ((-940 . -1122) 134842) ((-939 . -1012) T) ((-939 . -552) 134824) ((-939 . -1127) T) ((-939 . -13) T) ((-939 . -72) T) ((-937 . -925) T) ((-937 . -915) T) ((-937 . -714) T) ((-937 . -716) T) ((-937 . -756) T) ((-937 . -759) T) ((-937 . -718) T) ((-937 . -721) T) ((-937 . -755) T) ((-937 . -950) 134709) ((-937 . -352) 134671) ((-937 . -201) T) ((-937 . -245) T) ((-937 . -257) T) ((-937 . -389) T) ((-937 . -38) 134608) ((-937 . -582) 134545) ((-937 . -654) 134482) ((-937 . -555) 134419) ((-937 . -494) T) ((-937 . -832) T) ((-937 . -1132) T) ((-937 . -311) T) ((-937 . -82) 134328) ((-937 . -963) 134265) ((-937 . -968) 134202) ((-937 . -146) T) ((-937 . -120) T) ((-937 . -590) 134139) ((-937 . -588) 134076) ((-937 . -104) T) ((-937 . -25) T) ((-937 . -72) T) ((-937 . -13) T) ((-937 . -1127) T) ((-937 . -552) 134058) ((-937 . -1012) T) ((-937 . -23) T) ((-937 . -21) T) ((-937 . -961) T) ((-937 . -663) T) ((-937 . -1059) T) ((-937 . -1024) T) ((-937 . -969) T) ((-932 . -994) T) ((-932 . -427) 134039) ((-932 . -552) 134005) ((-932 . -555) 133986) ((-932 . -1012) T) ((-932 . -1127) T) ((-932 . -13) T) ((-932 . -72) T) ((-932 . -64) T) ((-917 . -904) 133968) ((-917 . -1064) T) ((-917 . -555) 133918) ((-917 . -950) 133878) ((-917 . -553) 133808) ((-917 . -933) T) ((-917 . -821) NIL) ((-917 . -794) 133790) ((-917 . -755) T) ((-917 . -721) T) ((-917 . -718) T) ((-917 . -759) T) ((-917 . -756) T) ((-917 . -716) T) ((-917 . -714) T) ((-917 . -740) T) ((-917 . -796) 133772) ((-917 . -340) 133754) ((-917 . -580) 133736) ((-917 . -326) 133718) ((-917 . -241) NIL) ((-917 . -259) NIL) ((-917 . -452) NIL) ((-917 . -287) 133700) ((-917 . -201) T) ((-917 . -82) 133627) ((-917 . -963) 133577) ((-917 . -968) 133527) ((-917 . -245) T) ((-917 . -654) 133477) ((-917 . -582) 133427) ((-917 . -590) 133377) ((-917 . -588) 133327) ((-917 . -38) 133277) ((-917 . -257) T) ((-917 . -389) T) ((-917 . -146) T) ((-917 . -494) T) ((-917 . -832) T) ((-917 . -1132) T) ((-917 . -311) T) ((-917 . -190) T) ((-917 . -186) 133264) ((-917 . -189) T) ((-917 . -225) 133246) ((-917 . -806) NIL) ((-917 . -811) NIL) ((-917 . -809) NIL) ((-917 . -184) 133228) ((-917 . -120) T) ((-917 . -118) NIL) ((-917 . -104) T) ((-917 . -25) T) ((-917 . -72) T) ((-917 . -13) T) ((-917 . -1127) T) ((-917 . -552) 133188) ((-917 . -1012) T) ((-917 . -23) T) ((-917 . -21) T) ((-917 . -961) T) ((-917 . -663) T) ((-917 . -1059) T) ((-917 . -1024) T) ((-917 . -969) T) ((-916 . -290) 133162) ((-916 . -146) T) ((-916 . -555) 133092) ((-916 . -969) T) ((-916 . -1024) T) ((-916 . -1059) T) ((-916 . -663) T) ((-916 . -961) T) ((-916 . -590) 132994) ((-916 . -588) 132924) ((-916 . -104) T) ((-916 . -25) T) ((-916 . -72) T) ((-916 . -13) T) ((-916 . -1127) T) ((-916 . -552) 132906) ((-916 . -1012) T) ((-916 . -23) T) ((-916 . -21) T) ((-916 . -968) 132851) ((-916 . -963) 132796) ((-916 . -82) 132713) ((-916 . -553) 132697) ((-916 . -184) 132674) ((-916 . -809) 132626) ((-916 . -811) 132538) ((-916 . -806) 132448) ((-916 . -225) 132425) ((-916 . -189) 132365) ((-916 . -186) 132299) ((-916 . -190) 132271) ((-916 . -311) T) ((-916 . -1132) T) ((-916 . -832) T) ((-916 . -494) T) ((-916 . -654) 132216) ((-916 . -582) 132161) ((-916 . -38) 132106) ((-916 . -389) T) ((-916 . -257) T) ((-916 . -245) T) ((-916 . -201) T) ((-916 . -317) NIL) ((-916 . -298) NIL) ((-916 . -1064) NIL) ((-916 . -118) 132078) ((-916 . -342) NIL) ((-916 . -350) 132050) ((-916 . -120) 132022) ((-916 . -319) 131994) ((-916 . -326) 131971) ((-916 . -580) 131905) ((-916 . -352) 131882) ((-916 . -950) 131759) ((-916 . -661) 131731) ((-913 . -908) 131715) ((-913 . -426) 131699) ((-913 . -1012) 131677) ((-913 . -452) 131610) ((-913 . -259) 131548) ((-913 . -552) 131483) ((-913 . -72) 131437) ((-913 . -1127) T) ((-913 . -13) T) ((-913 . -34) T) ((-913 . -76) 131421) ((-909 . -911) 131405) ((-909 . -759) 131384) ((-909 . -756) 131363) ((-909 . -950) 131261) ((-909 . -352) 131245) ((-909 . -580) 131193) ((-909 . -590) 131095) ((-909 . -326) 131079) ((-909 . -241) 131037) ((-909 . -259) 131002) ((-909 . -452) 130914) ((-909 . -287) 130898) ((-909 . -38) 130846) ((-909 . -82) 130724) ((-909 . -963) 130623) ((-909 . -968) 130522) ((-909 . -588) 130445) ((-909 . -582) 130393) ((-909 . -654) 130341) ((-909 . -555) 130235) ((-909 . -245) 130189) ((-909 . -201) 130168) ((-909 . -190) 130147) ((-909 . -186) 130095) ((-909 . -189) 130049) ((-909 . -225) 130033) ((-909 . -806) 129957) ((-909 . -811) 129883) ((-909 . -809) 129842) ((-909 . -184) 129826) ((-909 . -553) 129787) ((-909 . -120) 129766) ((-909 . -118) 129745) ((-909 . -104) T) ((-909 . -25) T) ((-909 . -72) T) ((-909 . -13) T) ((-909 . -1127) T) ((-909 . -552) 129727) ((-909 . -1012) T) ((-909 . -23) T) ((-909 . -21) T) ((-909 . -961) T) ((-909 . -663) T) ((-909 . -1059) T) ((-909 . -1024) T) ((-909 . -969) T) ((-907 . -994) T) ((-907 . -427) 129708) ((-907 . -552) 129674) ((-907 . -555) 129655) ((-907 . -1012) T) ((-907 . -1127) T) ((-907 . -13) T) ((-907 . -72) T) ((-907 . -64) T) ((-906 . -21) T) ((-906 . -588) 129637) ((-906 . -23) T) ((-906 . -1012) T) ((-906 . -552) 129619) ((-906 . -1127) T) ((-906 . -13) T) ((-906 . -72) T) ((-906 . -25) T) ((-906 . -104) T) ((-906 . -241) 129586) ((-902 . -552) 129568) ((-899 . -1012) T) ((-899 . -552) 129550) ((-899 . -1127) T) ((-899 . -13) T) ((-899 . -72) T) ((-884 . -721) T) ((-884 . -718) T) ((-884 . -759) T) ((-884 . -756) T) ((-884 . -716) T) ((-884 . -23) T) ((-884 . -1012) T) ((-884 . -552) 129510) ((-884 . -1127) T) ((-884 . -13) T) ((-884 . -72) T) ((-884 . -25) T) ((-884 . -104) T) ((-883 . -994) T) ((-883 . -427) 129491) ((-883 . -552) 129457) ((-883 . -555) 129438) ((-883 . -1012) T) ((-883 . -1127) T) ((-883 . -13) T) ((-883 . -72) T) ((-883 . -64) T) ((-877 . -880) T) ((-877 . -72) T) ((-877 . -552) 129420) ((-877 . -1012) T) ((-877 . -604) T) ((-877 . -13) T) ((-877 . -1127) T) ((-877 . -84) T) ((-877 . -555) 129404) ((-876 . -552) 129386) ((-875 . -1012) T) ((-875 . -552) 129368) ((-875 . -1127) T) ((-875 . -13) T) ((-875 . -72) T) ((-875 . -317) 129321) ((-875 . -663) 129223) ((-875 . -1024) 129125) ((-875 . -23) 128939) ((-875 . -25) 128753) ((-875 . -104) 128611) ((-875 . -410) 128564) ((-875 . -21) 128519) ((-875 . -588) 128463) ((-875 . -717) 128416) ((-875 . -716) 128369) ((-875 . -756) 128271) ((-875 . -759) 128173) ((-875 . -718) 128126) ((-875 . -721) 128079) ((-869 . -19) 128063) ((-869 . -593) 128047) ((-869 . -243) 128024) ((-869 . -241) 127976) ((-869 . -538) 127953) ((-869 . -553) 127914) ((-869 . -426) 127898) ((-869 . -1012) 127851) ((-869 . -452) 127784) ((-869 . -259) 127722) ((-869 . -552) 127637) ((-869 . -72) 127571) ((-869 . -1127) T) ((-869 . -13) T) ((-869 . -34) T) ((-869 . -124) 127555) ((-869 . -756) 127534) ((-869 . -759) 127513) ((-869 . -321) 127497) ((-867 . -276) 127476) ((-867 . -950) 127374) ((-867 . -352) 127358) ((-867 . -38) 127255) ((-867 . -555) 127112) ((-867 . -590) 127037) ((-867 . -588) 126947) ((-867 . -969) T) ((-867 . -1024) T) ((-867 . -1059) T) ((-867 . -663) T) ((-867 . -961) T) ((-867 . -82) 126812) ((-867 . -963) 126698) ((-867 . -968) 126584) ((-867 . -21) T) ((-867 . -23) T) ((-867 . -1012) T) ((-867 . -552) 126566) ((-867 . -1127) T) ((-867 . -13) T) ((-867 . -72) T) ((-867 . -25) T) ((-867 . -104) T) ((-867 . -582) 126463) ((-867 . -654) 126360) ((-867 . -118) 126339) ((-867 . -120) 126318) ((-867 . -146) 126272) ((-867 . -494) 126251) ((-867 . -245) 126230) ((-867 . -47) 126209) ((-865 . -1012) T) ((-865 . -552) 126175) ((-865 . -1127) T) ((-865 . -13) T) ((-865 . -72) T) ((-857 . -861) 126136) ((-857 . -555) 125932) ((-857 . -950) 125814) ((-857 . -1132) 125793) ((-857 . -821) 125772) ((-857 . -796) 125697) ((-857 . -811) 125678) ((-857 . -806) 125657) ((-857 . -809) 125638) ((-857 . -452) 125584) ((-857 . -389) 125538) ((-857 . -580) 125486) ((-857 . -590) 125375) ((-857 . -326) 125359) ((-857 . -47) 125328) ((-857 . -38) 125180) ((-857 . -582) 125032) ((-857 . -654) 124884) ((-857 . -245) 124818) ((-857 . -494) 124752) ((-857 . -82) 124577) ((-857 . -963) 124423) ((-857 . -968) 124269) ((-857 . -146) 124183) ((-857 . -120) 124162) ((-857 . -118) 124141) ((-857 . -588) 124051) ((-857 . -104) T) ((-857 . -25) T) ((-857 . -72) T) ((-857 . -13) T) ((-857 . -1127) T) ((-857 . -552) 124033) ((-857 . -1012) T) ((-857 . -23) T) ((-857 . -21) T) ((-857 . -961) T) ((-857 . -663) T) ((-857 . -1059) T) ((-857 . -1024) T) ((-857 . -969) T) ((-857 . -352) 124017) ((-857 . -276) 123986) ((-857 . -259) 123973) ((-857 . -553) 123834) ((-854 . -893) 123818) ((-854 . -19) 123802) ((-854 . -593) 123786) ((-854 . -243) 123763) ((-854 . -241) 123715) ((-854 . -538) 123692) ((-854 . -553) 123653) ((-854 . -426) 123637) ((-854 . -1012) 123590) ((-854 . -452) 123523) ((-854 . -259) 123461) ((-854 . -552) 123376) ((-854 . -72) 123310) ((-854 . -1127) T) ((-854 . -13) T) ((-854 . -34) T) ((-854 . -124) 123294) ((-854 . -756) 123273) ((-854 . -759) 123252) ((-854 . -321) 123236) ((-854 . -1176) 123220) ((-854 . -557) 123197) ((-838 . -887) T) ((-838 . -552) 123179) ((-836 . -866) T) ((-836 . -552) 123161) ((-830 . -718) T) ((-830 . -759) T) ((-830 . -756) T) ((-830 . -1012) T) ((-830 . -552) 123143) ((-830 . -1127) T) ((-830 . -13) T) ((-830 . -72) T) ((-830 . -25) T) ((-830 . -663) T) ((-830 . -1024) T) ((-825 . -311) T) ((-825 . -1132) T) ((-825 . -832) T) ((-825 . -494) T) ((-825 . -146) T) ((-825 . -555) 123080) ((-825 . -654) 123032) ((-825 . -582) 122984) ((-825 . -38) 122936) ((-825 . -389) T) ((-825 . -257) T) ((-825 . -590) 122888) ((-825 . -588) 122825) ((-825 . -969) T) ((-825 . -1024) T) ((-825 . -1059) T) ((-825 . -663) T) ((-825 . -961) T) ((-825 . -82) 122756) ((-825 . -963) 122708) ((-825 . -968) 122660) ((-825 . -21) T) ((-825 . -23) T) ((-825 . -1012) T) ((-825 . -552) 122642) ((-825 . -1127) T) ((-825 . -13) T) ((-825 . -72) T) ((-825 . -25) T) ((-825 . -104) T) ((-825 . -245) T) ((-825 . -201) T) ((-817 . -298) T) ((-817 . -1064) T) ((-817 . -317) T) ((-817 . -118) T) ((-817 . -311) T) ((-817 . -1132) T) ((-817 . -832) T) ((-817 . -494) T) ((-817 . -146) T) ((-817 . -555) 122592) ((-817 . -654) 122557) ((-817 . -582) 122522) ((-817 . -38) 122487) ((-817 . -389) T) ((-817 . -257) T) ((-817 . -82) 122436) ((-817 . -963) 122401) ((-817 . -968) 122366) ((-817 . -588) 122316) ((-817 . -590) 122281) ((-817 . -245) T) ((-817 . -201) T) ((-817 . -342) T) ((-817 . -189) T) ((-817 . -1127) T) ((-817 . -13) T) ((-817 . -186) 122268) ((-817 . -961) T) ((-817 . -663) T) ((-817 . -1059) T) ((-817 . -1024) T) ((-817 . -969) T) ((-817 . -21) T) ((-817 . -23) T) ((-817 . -1012) T) ((-817 . -552) 122250) ((-817 . -72) T) ((-817 . -25) T) ((-817 . -104) T) ((-817 . -190) T) ((-817 . -279) 122237) ((-817 . -120) 122219) ((-817 . -950) 122206) ((-817 . -1185) 122193) ((-817 . -1196) 122180) ((-817 . -553) 122162) ((-816 . -1012) T) ((-816 . -552) 122144) ((-816 . -1127) T) ((-816 . -13) T) ((-816 . -72) T) ((-813 . -815) 122128) ((-813 . -759) 122082) ((-813 . -756) 122036) ((-813 . -663) T) ((-813 . -1012) T) ((-813 . -552) 122018) ((-813 . -72) T) ((-813 . -1024) T) ((-813 . -410) T) ((-813 . -1127) T) ((-813 . -13) T) ((-813 . -241) 121997) ((-812 . -92) 121981) ((-812 . -426) 121965) ((-812 . -1012) 121943) ((-812 . -452) 121876) ((-812 . -259) 121814) ((-812 . -552) 121728) ((-812 . -72) 121682) ((-812 . -1127) T) ((-812 . -13) T) ((-812 . -34) T) ((-812 . -923) 121666) ((-803 . -756) T) ((-803 . -552) 121648) ((-803 . -1012) T) ((-803 . -72) T) ((-803 . -13) T) ((-803 . -1127) T) ((-803 . -759) T) ((-803 . -950) 121625) ((-803 . -555) 121602) ((-800 . -1012) T) ((-800 . -552) 121584) ((-800 . -1127) T) ((-800 . -13) T) ((-800 . -72) T) ((-800 . -950) 121552) ((-800 . -555) 121520) ((-798 . -1012) T) ((-798 . -552) 121502) ((-798 . -1127) T) ((-798 . -13) T) ((-798 . -72) T) ((-795 . -1012) T) ((-795 . -552) 121484) ((-795 . -1127) T) ((-795 . -13) T) ((-795 . -72) T) ((-785 . -994) T) ((-785 . -427) 121465) ((-785 . -552) 121431) ((-785 . -555) 121412) ((-785 . -1012) T) ((-785 . -1127) T) ((-785 . -13) T) ((-785 . -72) T) ((-785 . -64) T) ((-785 . -1173) T) ((-783 . -1012) T) ((-783 . -552) 121394) ((-783 . -1127) T) ((-783 . -13) T) ((-783 . -72) T) ((-783 . -555) 121376) ((-782 . -1127) T) ((-782 . -13) T) ((-782 . -552) 121251) ((-782 . -1012) 121202) ((-782 . -72) 121153) ((-781 . -904) 121137) ((-781 . -1064) 121115) ((-781 . -950) 120982) ((-781 . -555) 120881) ((-781 . -553) 120684) ((-781 . -933) 120663) ((-781 . -821) 120642) ((-781 . -794) 120626) ((-781 . -755) 120605) ((-781 . -721) 120584) ((-781 . -718) 120563) ((-781 . -759) 120517) ((-781 . -756) 120471) ((-781 . -716) 120450) ((-781 . -714) 120429) ((-781 . -740) 120408) ((-781 . -796) 120333) ((-781 . -340) 120317) ((-781 . -580) 120265) ((-781 . -590) 120181) ((-781 . -326) 120165) ((-781 . -241) 120123) ((-781 . -259) 120088) ((-781 . -452) 120000) ((-781 . -287) 119984) ((-781 . -201) T) ((-781 . -82) 119915) ((-781 . -963) 119867) ((-781 . -968) 119819) ((-781 . -245) T) ((-781 . -654) 119771) ((-781 . -582) 119723) ((-781 . -588) 119660) ((-781 . -38) 119612) ((-781 . -257) T) ((-781 . -389) T) ((-781 . -146) T) ((-781 . -494) T) ((-781 . -832) T) ((-781 . -1132) T) ((-781 . -311) T) ((-781 . -190) 119591) ((-781 . -186) 119539) ((-781 . -189) 119493) ((-781 . -225) 119477) ((-781 . -806) 119401) ((-781 . -811) 119327) ((-781 . -809) 119286) ((-781 . -184) 119270) ((-781 . -120) 119249) ((-781 . -118) 119228) ((-781 . -104) T) ((-781 . -25) T) ((-781 . -72) T) ((-781 . -13) T) ((-781 . -1127) T) ((-781 . -552) 119210) ((-781 . -1012) T) ((-781 . -23) T) ((-781 . -21) T) ((-781 . -961) T) ((-781 . -663) T) ((-781 . -1059) T) ((-781 . -1024) T) ((-781 . -969) T) ((-780 . -904) 119187) ((-780 . -1064) NIL) ((-780 . -950) 119164) ((-780 . -555) 119094) ((-780 . -553) NIL) ((-780 . -933) NIL) ((-780 . -821) NIL) ((-780 . -794) 119071) ((-780 . -755) NIL) ((-780 . -721) NIL) ((-780 . -718) NIL) ((-780 . -759) NIL) ((-780 . -756) NIL) ((-780 . -716) NIL) ((-780 . -714) NIL) ((-780 . -740) NIL) ((-780 . -796) NIL) ((-780 . -340) 119048) ((-780 . -580) 119025) ((-780 . -590) 118970) ((-780 . -326) 118947) ((-780 . -241) 118877) ((-780 . -259) 118821) ((-780 . -452) 118684) ((-780 . -287) 118661) ((-780 . -201) T) ((-780 . -82) 118578) ((-780 . -963) 118523) ((-780 . -968) 118468) ((-780 . -245) T) ((-780 . -654) 118413) ((-780 . -582) 118358) ((-780 . -588) 118288) ((-780 . -38) 118233) ((-780 . -257) T) ((-780 . -389) T) ((-780 . -146) T) ((-780 . -494) T) ((-780 . -832) T) ((-780 . -1132) T) ((-780 . -311) T) ((-780 . -190) NIL) ((-780 . -186) NIL) ((-780 . -189) NIL) ((-780 . -225) 118210) ((-780 . -806) NIL) ((-780 . -811) NIL) ((-780 . -809) NIL) ((-780 . -184) 118187) ((-780 . -120) T) ((-780 . -118) NIL) ((-780 . -104) T) ((-780 . -25) T) ((-780 . -72) T) ((-780 . -13) T) ((-780 . -1127) T) ((-780 . -552) 118169) ((-780 . -1012) T) ((-780 . -23) T) ((-780 . -21) T) ((-780 . -961) T) ((-780 . -663) T) ((-780 . -1059) T) ((-780 . -1024) T) ((-780 . -969) T) ((-778 . -779) 118153) ((-778 . -832) T) ((-778 . -494) T) ((-778 . -245) T) ((-778 . -146) T) ((-778 . -555) 118125) ((-778 . -654) 118112) ((-778 . -582) 118099) ((-778 . -968) 118086) ((-778 . -963) 118073) ((-778 . -82) 118058) ((-778 . -38) 118045) ((-778 . -389) T) ((-778 . -257) T) ((-778 . -961) T) ((-778 . -663) T) ((-778 . -1059) T) ((-778 . -1024) T) ((-778 . -969) T) ((-778 . -21) T) ((-778 . -588) 118017) ((-778 . -23) T) ((-778 . -1012) T) ((-778 . -552) 117999) ((-778 . -1127) T) ((-778 . -13) T) ((-778 . -72) T) ((-778 . -25) T) ((-778 . -104) T) ((-778 . -590) 117986) ((-778 . -120) T) ((-775 . -961) T) ((-775 . -663) T) ((-775 . -1059) T) ((-775 . -1024) T) ((-775 . -969) T) ((-775 . -21) T) ((-775 . -588) 117931) ((-775 . -23) T) ((-775 . -1012) T) ((-775 . -552) 117893) ((-775 . -1127) T) ((-775 . -13) T) ((-775 . -72) T) ((-775 . -25) T) ((-775 . -104) T) ((-775 . -590) 117853) ((-775 . -555) 117788) ((-775 . -427) 117765) ((-775 . -38) 117735) ((-775 . -82) 117700) ((-775 . -963) 117670) ((-775 . -968) 117640) ((-775 . -582) 117610) ((-775 . -654) 117580) ((-774 . -1012) T) ((-774 . -552) 117562) ((-774 . -1127) T) ((-774 . -13) T) ((-774 . -72) T) ((-773 . -752) T) ((-773 . -759) T) ((-773 . -756) T) ((-773 . -1012) T) ((-773 . -552) 117544) ((-773 . -1127) T) ((-773 . -13) T) ((-773 . -72) T) ((-773 . -317) T) ((-773 . -553) 117466) ((-772 . -1012) T) ((-772 . -552) 117448) ((-772 . -1127) T) ((-772 . -13) T) ((-772 . -72) T) ((-771 . -770) T) ((-771 . -147) T) ((-771 . -552) 117430) ((-767 . -756) T) ((-767 . -552) 117412) ((-767 . -1012) T) ((-767 . -72) T) ((-767 . -13) T) ((-767 . -1127) T) ((-767 . -759) T) ((-764 . -761) 117396) ((-764 . -950) 117294) ((-764 . -555) 117192) ((-764 . -352) 117176) ((-764 . -654) 117146) ((-764 . -582) 117116) ((-764 . -590) 117090) ((-764 . -588) 117049) ((-764 . -104) T) ((-764 . -25) T) ((-764 . -72) T) ((-764 . -13) T) ((-764 . -1127) T) ((-764 . -552) 117031) ((-764 . -1012) T) ((-764 . -23) T) ((-764 . -21) T) ((-764 . -968) 117015) ((-764 . -963) 116999) ((-764 . -82) 116978) ((-764 . -961) T) ((-764 . -663) T) ((-764 . -1059) T) ((-764 . -1024) T) ((-764 . -969) T) ((-764 . -38) 116948) ((-763 . -761) 116932) ((-763 . -950) 116830) ((-763 . -555) 116749) ((-763 . -352) 116733) ((-763 . -654) 116703) ((-763 . -582) 116673) ((-763 . -590) 116647) ((-763 . -588) 116606) ((-763 . -104) T) ((-763 . -25) T) ((-763 . -72) T) ((-763 . -13) T) ((-763 . -1127) T) ((-763 . -552) 116588) ((-763 . -1012) T) ((-763 . -23) T) ((-763 . -21) T) ((-763 . -968) 116572) ((-763 . -963) 116556) ((-763 . -82) 116535) ((-763 . -961) T) ((-763 . -663) T) ((-763 . -1059) T) ((-763 . -1024) T) ((-763 . -969) T) ((-763 . -38) 116505) ((-757 . -759) T) ((-757 . -1127) T) ((-757 . -13) T) ((-757 . -72) T) ((-757 . -427) 116489) ((-757 . -552) 116437) ((-757 . -555) 116421) ((-750 . -1012) T) ((-750 . -552) 116403) ((-750 . -1127) T) ((-750 . -13) T) ((-750 . -72) T) ((-750 . -352) 116387) ((-750 . -555) 116260) ((-750 . -950) 116158) ((-750 . -21) 116113) ((-750 . -588) 116033) ((-750 . -23) 115988) ((-750 . -25) 115943) ((-750 . -104) 115898) ((-750 . -755) 115877) ((-750 . -590) 115850) ((-750 . -969) 115829) ((-750 . -1059) 115808) ((-750 . -961) 115787) ((-750 . -721) 115766) ((-750 . -718) 115745) ((-750 . -759) 115724) ((-750 . -756) 115703) ((-750 . -716) 115682) ((-750 . -714) 115661) ((-750 . -1024) 115640) ((-750 . -663) 115619) ((-749 . -747) 115601) ((-749 . -72) T) ((-749 . -13) T) ((-749 . -1127) T) ((-749 . -552) 115583) ((-749 . -1012) T) ((-745 . -961) T) ((-745 . -663) T) ((-745 . -1059) T) ((-745 . -1024) T) ((-745 . -969) T) ((-745 . -21) T) ((-745 . -588) 115528) ((-745 . -23) T) ((-745 . -1012) T) ((-745 . -552) 115510) ((-745 . -1127) T) ((-745 . -13) T) ((-745 . -72) T) ((-745 . -25) T) ((-745 . -104) T) ((-745 . -590) 115470) ((-745 . -555) 115425) ((-745 . -950) 115395) ((-745 . -241) 115374) ((-745 . -120) 115353) ((-745 . -118) 115332) ((-745 . -38) 115302) ((-745 . -82) 115267) ((-745 . -963) 115237) ((-745 . -968) 115207) ((-745 . -582) 115177) ((-745 . -654) 115147) ((-743 . -1012) T) ((-743 . -552) 115129) ((-743 . -1127) T) ((-743 . -13) T) ((-743 . -72) T) ((-743 . -352) 115113) ((-743 . -555) 114986) ((-743 . -950) 114884) ((-743 . -21) 114839) ((-743 . -588) 114759) ((-743 . -23) 114714) ((-743 . -25) 114669) ((-743 . -104) 114624) ((-743 . -755) 114603) ((-743 . -590) 114576) ((-743 . -969) 114555) ((-743 . -1059) 114534) ((-743 . -961) 114513) ((-743 . -721) 114492) ((-743 . -718) 114471) ((-743 . -759) 114450) ((-743 . -756) 114429) ((-743 . -716) 114408) ((-743 . -714) 114387) ((-743 . -1024) 114366) ((-743 . -663) 114345) ((-741 . -645) 114329) ((-741 . -555) 114284) ((-741 . -654) 114254) ((-741 . -582) 114224) ((-741 . -590) 114198) ((-741 . -588) 114157) ((-741 . -104) T) ((-741 . -25) T) ((-741 . -72) T) ((-741 . -13) T) ((-741 . -1127) T) ((-741 . -552) 114139) ((-741 . -1012) T) ((-741 . -23) T) ((-741 . -21) T) ((-741 . -968) 114123) ((-741 . -963) 114107) ((-741 . -82) 114086) ((-741 . -961) T) ((-741 . -663) T) ((-741 . -1059) T) ((-741 . -1024) T) ((-741 . -969) T) ((-741 . -38) 114056) ((-741 . -190) 114035) ((-741 . -186) 114008) ((-741 . -189) 113987) ((-739 . -333) 113971) ((-739 . -555) 113955) ((-739 . -950) 113939) ((-739 . -759) T) ((-739 . -756) T) ((-739 . -1024) T) ((-739 . -72) T) ((-739 . -13) T) ((-739 . -1127) T) ((-739 . -552) 113921) ((-739 . -1012) T) ((-739 . -663) T) ((-739 . -754) T) ((-739 . -766) T) ((-738 . -228) 113905) ((-738 . -555) 113889) ((-738 . -950) 113873) ((-738 . -759) T) ((-738 . -72) T) ((-738 . -1012) T) ((-738 . -552) 113855) ((-738 . -756) T) ((-738 . -186) 113842) ((-738 . -13) T) ((-738 . -1127) T) ((-738 . -189) T) ((-737 . -82) 113777) ((-737 . -963) 113728) ((-737 . -968) 113679) ((-737 . -21) T) ((-737 . -588) 113615) ((-737 . -23) T) ((-737 . -1012) T) ((-737 . -552) 113584) ((-737 . -1127) T) ((-737 . -13) T) ((-737 . -72) T) ((-737 . -25) T) ((-737 . -104) T) ((-737 . -590) 113535) ((-737 . -190) T) ((-737 . -555) 113444) ((-737 . -969) T) ((-737 . -1024) T) ((-737 . -1059) T) ((-737 . -663) T) ((-737 . -961) T) ((-737 . -186) 113431) ((-737 . -189) T) ((-737 . -427) 113415) ((-737 . -311) 113394) ((-737 . -1132) 113373) ((-737 . -832) 113352) ((-737 . -494) 113331) ((-737 . -146) 113310) ((-737 . -654) 113247) ((-737 . -582) 113184) ((-737 . -38) 113121) ((-737 . -389) 113100) ((-737 . -257) 113079) ((-737 . -245) 113058) ((-737 . -201) 113037) ((-736 . -213) 112976) ((-736 . -555) 112720) ((-736 . -950) 112550) ((-736 . -553) NIL) ((-736 . -276) 112512) ((-736 . -352) 112496) ((-736 . -38) 112348) ((-736 . -82) 112173) ((-736 . -963) 112019) ((-736 . -968) 111865) ((-736 . -588) 111775) ((-736 . -590) 111664) ((-736 . -582) 111516) ((-736 . -654) 111368) ((-736 . -118) 111347) ((-736 . -120) 111326) ((-736 . -146) 111240) ((-736 . -494) 111174) ((-736 . -245) 111108) ((-736 . -47) 111070) ((-736 . -326) 111054) ((-736 . -580) 111002) ((-736 . -389) 110956) ((-736 . -452) 110821) ((-736 . -809) 110757) ((-736 . -806) 110656) ((-736 . -811) 110559) ((-736 . -796) NIL) ((-736 . -821) 110538) ((-736 . -1132) 110517) ((-736 . -861) 110464) ((-736 . -259) 110451) ((-736 . -190) 110430) ((-736 . -104) T) ((-736 . -25) T) ((-736 . -72) T) ((-736 . -552) 110412) ((-736 . -1012) T) ((-736 . -23) T) ((-736 . -21) T) ((-736 . -969) T) ((-736 . -1024) T) ((-736 . -1059) T) ((-736 . -663) T) ((-736 . -961) T) ((-736 . -186) 110360) ((-736 . -13) T) ((-736 . -1127) T) ((-736 . -189) 110314) ((-736 . -225) 110298) ((-736 . -184) 110282) ((-735 . -196) 110261) ((-735 . -1185) 110231) ((-735 . -721) 110210) ((-735 . -718) 110189) ((-735 . -759) 110143) ((-735 . -756) 110097) ((-735 . -716) 110076) ((-735 . -717) 110055) ((-735 . -654) 110000) ((-735 . -582) 109925) ((-735 . -243) 109902) ((-735 . -241) 109879) ((-735 . -426) 109863) ((-735 . -452) 109796) ((-735 . -259) 109734) ((-735 . -34) T) ((-735 . -538) 109711) ((-735 . -950) 109540) ((-735 . -555) 109344) ((-735 . -352) 109313) ((-735 . -580) 109221) ((-735 . -590) 109060) ((-735 . -326) 109030) ((-735 . -317) 109009) ((-735 . -190) 108962) ((-735 . -588) 108750) ((-735 . -969) 108729) ((-735 . -1024) 108708) ((-735 . -1059) 108687) ((-735 . -663) 108666) ((-735 . -961) 108645) ((-735 . -186) 108541) ((-735 . -189) 108443) ((-735 . -225) 108413) ((-735 . -806) 108285) ((-735 . -811) 108159) ((-735 . -809) 108092) ((-735 . -184) 108062) ((-735 . -552) 107759) ((-735 . -968) 107684) ((-735 . -963) 107589) ((-735 . -82) 107509) ((-735 . -104) 107384) ((-735 . -25) 107221) ((-735 . -72) 106958) ((-735 . -13) T) ((-735 . -1127) T) ((-735 . -1012) 106714) ((-735 . -23) 106570) ((-735 . -21) 106485) ((-722 . -720) 106469) ((-722 . -759) 106448) ((-722 . -756) 106427) ((-722 . -950) 106220) ((-722 . -555) 106073) ((-722 . -352) 106037) ((-722 . -241) 105995) ((-722 . -259) 105960) ((-722 . -452) 105872) ((-722 . -287) 105856) ((-722 . -317) 105835) ((-722 . -553) 105796) ((-722 . -120) 105775) ((-722 . -118) 105754) ((-722 . -654) 105738) ((-722 . -582) 105722) ((-722 . -590) 105696) ((-722 . -588) 105655) ((-722 . -104) T) ((-722 . -25) T) ((-722 . -72) T) ((-722 . -13) T) ((-722 . -1127) T) ((-722 . -552) 105637) ((-722 . -1012) T) ((-722 . -23) T) ((-722 . -21) T) ((-722 . -968) 105621) ((-722 . -963) 105605) ((-722 . -82) 105584) ((-722 . -961) T) ((-722 . -663) T) ((-722 . -1059) T) ((-722 . -1024) T) ((-722 . -969) T) ((-722 . -38) 105568) ((-704 . -1153) 105552) ((-704 . -1064) 105530) ((-704 . -553) NIL) ((-704 . -259) 105517) ((-704 . -452) 105465) ((-704 . -276) 105442) ((-704 . -950) 105304) ((-704 . -352) 105288) ((-704 . -38) 105120) ((-704 . -82) 104925) ((-704 . -963) 104751) ((-704 . -968) 104577) ((-704 . -588) 104487) ((-704 . -590) 104376) ((-704 . -582) 104208) ((-704 . -654) 104040) ((-704 . -555) 103796) ((-704 . -118) 103775) ((-704 . -120) 103754) ((-704 . -47) 103731) ((-704 . -326) 103715) ((-704 . -580) 103663) ((-704 . -809) 103607) ((-704 . -806) 103514) ((-704 . -811) 103425) ((-704 . -796) NIL) ((-704 . -821) 103404) ((-704 . -1132) 103383) ((-704 . -861) 103353) ((-704 . -832) 103332) ((-704 . -494) 103246) ((-704 . -245) 103160) ((-704 . -146) 103054) ((-704 . -389) 102988) ((-704 . -257) 102967) ((-704 . -241) 102894) ((-704 . -190) T) ((-704 . -104) T) ((-704 . -25) T) ((-704 . -72) T) ((-704 . -552) 102855) ((-704 . -1012) T) ((-704 . -23) T) ((-704 . -21) T) ((-704 . -969) T) ((-704 . -1024) T) ((-704 . -1059) T) ((-704 . -663) T) ((-704 . -961) T) ((-704 . -186) 102842) ((-704 . -13) T) ((-704 . -1127) T) ((-704 . -189) T) ((-704 . -225) 102826) ((-704 . -184) 102810) ((-703 . -976) 102777) ((-703 . -553) 102412) ((-703 . -259) 102399) ((-703 . -452) 102351) ((-703 . -276) 102323) ((-703 . -950) 102182) ((-703 . -352) 102166) ((-703 . -38) 102018) ((-703 . -555) 101791) ((-703 . -590) 101680) ((-703 . -588) 101590) ((-703 . -969) T) ((-703 . -1024) T) ((-703 . -1059) T) ((-703 . -663) T) ((-703 . -961) T) ((-703 . -82) 101415) ((-703 . -963) 101261) ((-703 . -968) 101107) ((-703 . -21) T) ((-703 . -23) T) ((-703 . -1012) T) ((-703 . -552) 101021) ((-703 . -1127) T) ((-703 . -13) T) ((-703 . -72) T) ((-703 . -25) T) ((-703 . -104) T) ((-703 . -582) 100873) ((-703 . -654) 100725) ((-703 . -118) 100704) ((-703 . -120) 100683) ((-703 . -146) 100597) ((-703 . -494) 100531) ((-703 . -245) 100465) ((-703 . -47) 100437) ((-703 . -326) 100421) ((-703 . -580) 100369) ((-703 . -389) 100323) ((-703 . -809) 100307) ((-703 . -806) 100289) ((-703 . -811) 100273) ((-703 . -796) 100132) ((-703 . -821) 100111) ((-703 . -1132) 100090) ((-703 . -861) 100057) ((-696 . -1012) T) ((-696 . -552) 100039) ((-696 . -1127) T) ((-696 . -13) T) ((-696 . -72) T) ((-694 . -717) T) ((-694 . -104) T) ((-694 . -25) T) ((-694 . -72) T) ((-694 . -13) T) ((-694 . -1127) T) ((-694 . -552) 100021) ((-694 . -1012) T) ((-694 . -23) T) ((-694 . -716) T) ((-694 . -756) T) ((-694 . -759) T) ((-694 . -718) T) ((-694 . -721) T) ((-694 . -663) T) ((-694 . -1024) T) ((-675 . -676) 100005) ((-675 . -1010) 99989) ((-675 . -193) 99973) ((-675 . -553) 99934) ((-675 . -124) 99918) ((-675 . -426) 99902) ((-675 . -1012) T) ((-675 . -452) 99835) ((-675 . -259) 99773) ((-675 . -552) 99755) ((-675 . -72) T) ((-675 . -1127) T) ((-675 . -13) T) ((-675 . -34) T) ((-675 . -76) 99739) ((-675 . -634) 99723) ((-674 . -961) T) ((-674 . -663) T) ((-674 . -1059) T) ((-674 . -1024) T) ((-674 . -969) T) ((-674 . -21) T) ((-674 . -588) 99668) ((-674 . -23) T) ((-674 . -1012) T) ((-674 . -552) 99650) ((-674 . -1127) T) ((-674 . -13) T) ((-674 . -72) T) ((-674 . -25) T) ((-674 . -104) T) ((-674 . -590) 99610) ((-674 . -555) 99566) ((-674 . -950) 99537) ((-674 . -120) 99516) ((-674 . -118) 99495) ((-674 . -38) 99465) ((-674 . -82) 99430) ((-674 . -963) 99400) ((-674 . -968) 99370) ((-674 . -582) 99340) ((-674 . -654) 99310) ((-674 . -317) 99263) ((-670 . -861) 99216) ((-670 . -555) 99008) ((-670 . -950) 98886) ((-670 . -1132) 98865) ((-670 . -821) 98844) ((-670 . -796) NIL) ((-670 . -811) 98821) ((-670 . -806) 98796) ((-670 . -809) 98773) ((-670 . -452) 98711) ((-670 . -389) 98665) ((-670 . -580) 98613) ((-670 . -590) 98502) ((-670 . -326) 98486) ((-670 . -47) 98451) ((-670 . -38) 98303) ((-670 . -582) 98155) ((-670 . -654) 98007) ((-670 . -245) 97941) ((-670 . -494) 97875) ((-670 . -82) 97700) ((-670 . -963) 97546) ((-670 . -968) 97392) ((-670 . -146) 97306) ((-670 . -120) 97285) ((-670 . -118) 97264) ((-670 . -588) 97174) ((-670 . -104) T) ((-670 . -25) T) ((-670 . -72) T) ((-670 . -13) T) ((-670 . -1127) T) ((-670 . -552) 97156) ((-670 . -1012) T) ((-670 . -23) T) ((-670 . -21) T) ((-670 . -961) T) ((-670 . -663) T) ((-670 . -1059) T) ((-670 . -1024) T) ((-670 . -969) T) ((-670 . -352) 97140) ((-670 . -276) 97105) ((-670 . -259) 97092) ((-670 . -553) 96953) ((-664 . -665) 96937) ((-664 . -80) 96921) ((-664 . -1127) T) ((-664 . |MappingCategory|) 96895) ((-664 . -1022) 96879) ((-664 . -1012) T) ((-664 . -552) 96861) ((-664 . -13) T) ((-664 . -72) T) ((-655 . -410) T) ((-655 . -1024) T) ((-655 . -72) T) ((-655 . -13) T) ((-655 . -1127) T) ((-655 . -552) 96843) ((-655 . -1012) T) ((-655 . -663) T) ((-652 . -961) T) ((-652 . -663) T) ((-652 . -1059) T) ((-652 . -1024) T) ((-652 . -969) T) ((-652 . -21) T) ((-652 . -588) 96815) ((-652 . -23) T) ((-652 . -1012) T) ((-652 . -552) 96797) ((-652 . -1127) T) ((-652 . -13) T) ((-652 . -72) T) ((-652 . -25) T) ((-652 . -104) T) ((-652 . -590) 96784) ((-652 . -555) 96766) ((-651 . -961) T) ((-651 . -663) T) ((-651 . -1059) T) ((-651 . -1024) T) ((-651 . -969) T) ((-651 . -21) T) ((-651 . -588) 96711) ((-651 . -23) T) ((-651 . -1012) T) ((-651 . -552) 96693) ((-651 . -1127) T) ((-651 . -13) T) ((-651 . -72) T) ((-651 . -25) T) ((-651 . -104) T) ((-651 . -590) 96653) ((-651 . -555) 96608) ((-651 . -950) 96578) ((-651 . -241) 96557) ((-651 . -120) 96536) ((-651 . -118) 96515) ((-651 . -38) 96485) ((-651 . -82) 96450) ((-651 . -963) 96420) ((-651 . -968) 96390) ((-651 . -582) 96360) ((-651 . -654) 96330) ((-650 . -756) T) ((-650 . -552) 96265) ((-650 . -1012) T) ((-650 . -72) T) ((-650 . -13) T) ((-650 . -1127) T) ((-650 . -759) T) ((-650 . -427) 96215) ((-650 . -555) 96165) ((-649 . -1153) 96149) ((-649 . -1064) 96127) ((-649 . -553) NIL) ((-649 . -259) 96114) ((-649 . -452) 96062) ((-649 . -276) 96039) ((-649 . -950) 95922) ((-649 . -352) 95906) ((-649 . -38) 95738) ((-649 . -82) 95543) ((-649 . -963) 95369) ((-649 . -968) 95195) ((-649 . -588) 95105) ((-649 . -590) 94994) ((-649 . -582) 94826) ((-649 . -654) 94658) ((-649 . -555) 94422) ((-649 . -118) 94401) ((-649 . -120) 94380) ((-649 . -47) 94357) ((-649 . -326) 94341) ((-649 . -580) 94289) ((-649 . -809) 94233) ((-649 . -806) 94140) ((-649 . -811) 94051) ((-649 . -796) NIL) ((-649 . -821) 94030) ((-649 . -1132) 94009) ((-649 . -861) 93979) ((-649 . -832) 93958) ((-649 . -494) 93872) ((-649 . -245) 93786) ((-649 . -146) 93680) ((-649 . -389) 93614) ((-649 . -257) 93593) ((-649 . -241) 93520) ((-649 . -190) T) ((-649 . -104) T) ((-649 . -25) T) ((-649 . -72) T) ((-649 . -552) 93502) ((-649 . -1012) T) ((-649 . -23) T) ((-649 . -21) T) ((-649 . -969) T) ((-649 . -1024) T) ((-649 . -1059) T) ((-649 . -663) T) ((-649 . -961) T) ((-649 . -186) 93489) ((-649 . -13) T) ((-649 . -1127) T) ((-649 . -189) T) ((-649 . -225) 93473) ((-649 . -184) 93457) ((-649 . -317) 93436) ((-648 . -311) T) ((-648 . -1132) T) ((-648 . -832) T) ((-648 . -494) T) ((-648 . -146) T) ((-648 . -555) 93386) ((-648 . -654) 93351) ((-648 . -582) 93316) ((-648 . -38) 93281) ((-648 . -389) T) ((-648 . -257) T) ((-648 . -590) 93246) ((-648 . -588) 93196) ((-648 . -969) T) ((-648 . -1024) T) ((-648 . -1059) T) ((-648 . -663) T) ((-648 . -961) T) ((-648 . -82) 93145) ((-648 . -963) 93110) ((-648 . -968) 93075) ((-648 . -21) T) ((-648 . -23) T) ((-648 . -1012) T) ((-648 . -552) 93057) ((-648 . -1127) T) ((-648 . -13) T) ((-648 . -72) T) ((-648 . -25) T) ((-648 . -104) T) ((-648 . -245) T) ((-648 . -201) T) ((-647 . -1012) T) ((-647 . -552) 93039) ((-647 . -1127) T) ((-647 . -13) T) ((-647 . -72) T) ((-632 . -1173) T) ((-632 . -950) 93023) ((-632 . -555) 93007) ((-632 . -552) 92989) ((-630 . -627) 92947) ((-630 . -426) 92931) ((-630 . -1012) 92909) ((-630 . -452) 92842) ((-630 . -259) 92780) ((-630 . -552) 92715) ((-630 . -72) 92669) ((-630 . -1127) T) ((-630 . -13) T) ((-630 . -34) T) ((-630 . -57) 92627) ((-630 . -553) 92588) ((-622 . -994) T) ((-622 . -427) 92569) ((-622 . -552) 92519) ((-622 . -555) 92500) ((-622 . -1012) T) ((-622 . -1127) T) ((-622 . -13) T) ((-622 . -72) T) ((-622 . -64) T) ((-618 . -756) T) ((-618 . -552) 92482) ((-618 . -1012) T) ((-618 . -72) T) ((-618 . -13) T) ((-618 . -1127) T) ((-618 . -759) T) ((-618 . -950) 92466) ((-618 . -555) 92450) ((-617 . -994) T) ((-617 . -427) 92431) ((-617 . -552) 92397) ((-617 . -555) 92378) ((-617 . -1012) T) ((-617 . -1127) T) ((-617 . -13) T) ((-617 . -72) T) ((-617 . -64) T) ((-614 . -756) T) ((-614 . -552) 92360) ((-614 . -1012) T) ((-614 . -72) T) ((-614 . -13) T) ((-614 . -1127) T) ((-614 . -759) T) ((-614 . -950) 92344) ((-614 . -555) 92328) ((-613 . -994) T) ((-613 . -427) 92309) ((-613 . -552) 92275) ((-613 . -555) 92256) ((-613 . -1012) T) ((-613 . -1127) T) ((-613 . -13) T) ((-613 . -72) T) ((-613 . -64) T) ((-612 . -1035) 92201) ((-612 . -426) 92185) ((-612 . -452) 92118) ((-612 . -259) 92056) ((-612 . -34) T) ((-612 . -965) 91996) ((-612 . -950) 91894) ((-612 . -555) 91813) ((-612 . -352) 91797) ((-612 . -580) 91745) ((-612 . -590) 91683) ((-612 . -326) 91667) ((-612 . -190) 91646) ((-612 . -186) 91594) ((-612 . -189) 91548) ((-612 . -225) 91532) ((-612 . -806) 91456) ((-612 . -811) 91382) ((-612 . -809) 91341) ((-612 . -184) 91325) ((-612 . -654) 91309) ((-612 . -582) 91293) ((-612 . -588) 91252) ((-612 . -104) T) ((-612 . -25) T) ((-612 . -72) T) ((-612 . -13) T) ((-612 . -1127) T) ((-612 . -552) 91214) ((-612 . -1012) T) ((-612 . -23) T) ((-612 . -21) T) ((-612 . -968) 91198) ((-612 . -963) 91182) ((-612 . -82) 91161) ((-612 . -961) T) ((-612 . -663) T) ((-612 . -1059) T) ((-612 . -1024) T) ((-612 . -969) T) ((-612 . -38) 91121) ((-612 . -358) 91105) ((-612 . -683) 91089) ((-612 . -657) T) ((-612 . -685) T) ((-612 . -315) 91073) ((-612 . -241) 91050) ((-606 . -323) 91029) ((-606 . -654) 91013) ((-606 . -582) 90997) ((-606 . -590) 90981) ((-606 . -588) 90950) ((-606 . -104) T) ((-606 . -25) T) ((-606 . -72) T) ((-606 . -13) T) ((-606 . -1127) T) ((-606 . -552) 90932) ((-606 . -1012) T) ((-606 . -23) T) ((-606 . -21) T) ((-606 . -968) 90916) ((-606 . -963) 90900) ((-606 . -82) 90879) ((-606 . -574) 90863) ((-606 . -332) 90835) ((-606 . -555) 90812) ((-606 . -950) 90789) ((-598 . -600) 90773) ((-598 . -38) 90743) ((-598 . -555) 90662) ((-598 . -590) 90636) ((-598 . -588) 90595) ((-598 . -969) T) ((-598 . -1024) T) ((-598 . -1059) T) ((-598 . -663) T) ((-598 . -961) T) ((-598 . -82) 90574) ((-598 . -963) 90558) ((-598 . -968) 90542) ((-598 . -21) T) ((-598 . -23) T) ((-598 . -1012) T) ((-598 . -552) 90524) ((-598 . -72) T) ((-598 . -25) T) ((-598 . -104) T) ((-598 . -582) 90494) ((-598 . -654) 90464) ((-598 . -352) 90448) ((-598 . -950) 90346) ((-598 . -761) 90330) ((-598 . -1127) T) ((-598 . -13) T) ((-598 . -241) 90291) ((-597 . -600) 90275) ((-597 . -38) 90245) ((-597 . -555) 90164) ((-597 . -590) 90138) ((-597 . -588) 90097) ((-597 . -969) T) ((-597 . -1024) T) ((-597 . -1059) T) ((-597 . -663) T) ((-597 . -961) T) ((-597 . -82) 90076) ((-597 . -963) 90060) ((-597 . -968) 90044) ((-597 . -21) T) ((-597 . -23) T) ((-597 . -1012) T) ((-597 . -552) 90026) ((-597 . -72) T) ((-597 . -25) T) ((-597 . -104) T) ((-597 . -582) 89996) ((-597 . -654) 89966) ((-597 . -352) 89950) ((-597 . -950) 89848) ((-597 . -761) 89832) ((-597 . -1127) T) ((-597 . -13) T) ((-597 . -241) 89811) ((-596 . -600) 89795) ((-596 . -38) 89765) ((-596 . -555) 89684) ((-596 . -590) 89658) ((-596 . -588) 89617) ((-596 . -969) T) ((-596 . -1024) T) ((-596 . -1059) T) ((-596 . -663) T) ((-596 . -961) T) ((-596 . -82) 89596) ((-596 . -963) 89580) ((-596 . -968) 89564) ((-596 . -21) T) ((-596 . -23) T) ((-596 . -1012) T) ((-596 . -552) 89546) ((-596 . -72) T) ((-596 . -25) T) ((-596 . -104) T) ((-596 . -582) 89516) ((-596 . -654) 89486) ((-596 . -352) 89470) ((-596 . -950) 89368) ((-596 . -761) 89352) ((-596 . -1127) T) ((-596 . -13) T) ((-596 . -241) 89331) ((-594 . -654) 89315) ((-594 . -582) 89299) ((-594 . -590) 89283) ((-594 . -588) 89252) ((-594 . -104) T) ((-594 . -25) T) ((-594 . -72) T) ((-594 . -13) T) ((-594 . -1127) T) ((-594 . -552) 89234) ((-594 . -1012) T) ((-594 . -23) T) ((-594 . -21) T) ((-594 . -968) 89218) ((-594 . -963) 89202) ((-594 . -82) 89181) ((-594 . -714) 89160) ((-594 . -716) 89139) ((-594 . -756) 89118) ((-594 . -759) 89097) ((-594 . -718) 89076) ((-594 . -721) 89055) ((-591 . -1012) T) ((-591 . -552) 89037) ((-591 . -1127) T) ((-591 . -13) T) ((-591 . -72) T) ((-591 . -950) 89021) ((-591 . -555) 89005) ((-589 . -634) 88989) ((-589 . -76) 88973) ((-589 . -34) T) ((-589 . -13) T) ((-589 . -1127) T) ((-589 . -72) 88927) ((-589 . -552) 88862) ((-589 . -259) 88800) ((-589 . -452) 88733) ((-589 . -1012) 88711) ((-589 . -426) 88695) ((-589 . -124) 88679) ((-589 . -553) 88640) ((-589 . -193) 88624) ((-587 . -994) T) ((-587 . -427) 88605) ((-587 . -552) 88558) ((-587 . -555) 88539) ((-587 . -1012) T) ((-587 . -1127) T) ((-587 . -13) T) ((-587 . -72) T) ((-587 . -64) T) ((-583 . -608) 88523) ((-583 . -1166) 88507) ((-583 . -923) 88491) ((-583 . -1062) 88475) ((-583 . -756) 88454) ((-583 . -759) 88433) ((-583 . -321) 88417) ((-583 . -593) 88401) ((-583 . -243) 88378) ((-583 . -241) 88330) ((-583 . -538) 88307) ((-583 . -553) 88268) ((-583 . -426) 88252) ((-583 . -1012) 88205) ((-583 . -452) 88138) ((-583 . -259) 88076) ((-583 . -552) 87991) ((-583 . -72) 87925) ((-583 . -1127) T) ((-583 . -13) T) ((-583 . -34) T) ((-583 . -124) 87909) ((-583 . -237) 87893) ((-581 . -1185) 87877) ((-581 . -82) 87856) ((-581 . -963) 87840) ((-581 . -968) 87824) ((-581 . -21) T) ((-581 . -588) 87793) ((-581 . -23) T) ((-581 . -1012) T) ((-581 . -552) 87775) ((-581 . -1127) T) ((-581 . -13) T) ((-581 . -72) T) ((-581 . -25) T) ((-581 . -104) T) ((-581 . -590) 87759) ((-581 . -582) 87743) ((-581 . -654) 87727) ((-581 . -241) 87694) ((-579 . -1185) 87678) ((-579 . -82) 87657) ((-579 . -963) 87641) ((-579 . -968) 87625) ((-579 . -21) T) ((-579 . -588) 87594) ((-579 . -23) T) ((-579 . -1012) T) ((-579 . -552) 87576) ((-579 . -1127) T) ((-579 . -13) T) ((-579 . -72) T) ((-579 . -25) T) ((-579 . -104) T) ((-579 . -590) 87560) ((-579 . -582) 87544) ((-579 . -654) 87528) ((-579 . -555) 87505) ((-579 . -447) 87477) ((-577 . -752) T) ((-577 . -759) T) ((-577 . -756) T) ((-577 . -1012) T) ((-577 . -552) 87459) ((-577 . -1127) T) ((-577 . -13) T) ((-577 . -72) T) ((-577 . -317) T) ((-577 . -555) 87436) ((-572 . -683) 87420) ((-572 . -657) T) ((-572 . -685) T) ((-572 . -82) 87399) ((-572 . -963) 87383) ((-572 . -968) 87367) ((-572 . -21) T) ((-572 . -588) 87336) ((-572 . -23) T) ((-572 . -1012) T) ((-572 . -552) 87305) ((-572 . -1127) T) ((-572 . -13) T) ((-572 . -72) T) ((-572 . -25) T) ((-572 . -104) T) ((-572 . -590) 87289) ((-572 . -582) 87273) ((-572 . -654) 87257) ((-572 . -358) 87222) ((-572 . -315) 87157) ((-572 . -241) 87115) ((-571 . -1105) 87090) ((-571 . -183) 87034) ((-571 . -76) 86978) ((-571 . -259) 86823) ((-571 . -452) 86623) ((-571 . -426) 86553) ((-571 . -124) 86497) ((-571 . -553) NIL) ((-571 . -193) 86441) ((-571 . -549) 86416) ((-571 . -243) 86391) ((-571 . -1127) T) ((-571 . -13) T) ((-571 . -241) 86344) ((-571 . -1012) T) ((-571 . -552) 86326) ((-571 . -72) T) ((-571 . -34) T) ((-571 . -538) 86301) ((-566 . -410) T) ((-566 . -1024) T) ((-566 . -72) T) ((-566 . -13) T) ((-566 . -1127) T) ((-566 . -552) 86283) ((-566 . -1012) T) ((-566 . -663) T) ((-565 . -994) T) ((-565 . -427) 86264) ((-565 . -552) 86230) ((-565 . -555) 86211) ((-565 . -1012) T) ((-565 . -1127) T) ((-565 . -13) T) ((-565 . -72) T) ((-565 . -64) T) ((-562 . -184) 86195) ((-562 . -809) 86154) ((-562 . -811) 86080) ((-562 . -806) 86004) ((-562 . -225) 85988) ((-562 . -189) 85942) ((-562 . -1127) T) ((-562 . -13) T) ((-562 . -186) 85890) ((-562 . -961) T) ((-562 . -663) T) ((-562 . -1059) T) ((-562 . -1024) T) ((-562 . -969) T) ((-562 . -21) T) ((-562 . -588) 85862) ((-562 . -23) T) ((-562 . -1012) T) ((-562 . -552) 85844) ((-562 . -72) T) ((-562 . -25) T) ((-562 . -104) T) ((-562 . -590) 85831) ((-562 . -555) 85727) ((-562 . -190) 85706) ((-562 . -494) T) ((-562 . -245) T) ((-562 . -146) T) ((-562 . -654) 85693) ((-562 . -582) 85680) ((-562 . -968) 85667) ((-562 . -963) 85654) ((-562 . -82) 85639) ((-562 . -38) 85626) ((-562 . -553) 85603) ((-562 . -352) 85587) ((-562 . -950) 85472) ((-562 . -120) 85451) ((-562 . -118) 85430) ((-562 . -257) 85409) ((-562 . -389) 85388) ((-562 . -832) 85367) ((-558 . -38) 85351) ((-558 . -555) 85320) ((-558 . -590) 85294) ((-558 . -588) 85253) ((-558 . -969) T) ((-558 . -1024) T) ((-558 . -1059) T) ((-558 . -663) T) ((-558 . -961) T) ((-558 . -82) 85232) ((-558 . -963) 85216) ((-558 . -968) 85200) ((-558 . -21) T) ((-558 . -23) T) ((-558 . -1012) T) ((-558 . -552) 85182) ((-558 . -1127) T) ((-558 . -13) T) ((-558 . -72) T) ((-558 . -25) T) ((-558 . -104) T) ((-558 . -582) 85166) ((-558 . -654) 85150) ((-558 . -755) 85129) ((-558 . -721) 85108) ((-558 . -718) 85087) ((-558 . -759) 85066) ((-558 . -756) 85045) ((-558 . -716) 85024) ((-558 . -714) 85003) ((-556 . -880) T) ((-556 . -72) T) ((-556 . -552) 84985) ((-556 . -1012) T) ((-556 . -604) T) ((-556 . -13) T) ((-556 . -1127) T) ((-556 . -84) T) ((-556 . -317) T) ((-550 . -105) T) ((-550 . -72) T) ((-550 . -13) T) ((-550 . -1127) T) ((-550 . -552) 84967) ((-550 . -1012) T) ((-550 . -756) T) ((-550 . -759) T) ((-550 . -794) 84951) ((-550 . -553) 84812) ((-547 . -313) 84750) ((-547 . -72) T) ((-547 . -13) T) ((-547 . -1127) T) ((-547 . -552) 84732) ((-547 . -1012) T) ((-547 . -1105) 84708) ((-547 . -183) 84653) ((-547 . -76) 84598) ((-547 . -259) 84387) ((-547 . -452) 84127) ((-547 . -426) 84059) ((-547 . -124) 84004) ((-547 . -553) NIL) ((-547 . -193) 83949) ((-547 . -549) 83925) ((-547 . -243) 83901) ((-547 . -241) 83877) ((-547 . -34) T) ((-547 . -538) 83853) ((-546 . -1012) T) ((-546 . -552) 83805) ((-546 . -1127) T) ((-546 . -13) T) ((-546 . -72) T) ((-546 . -427) 83772) ((-546 . -555) 83739) ((-545 . -1012) T) ((-545 . -552) 83721) ((-545 . -1127) T) ((-545 . -13) T) ((-545 . -72) T) ((-545 . -604) T) ((-544 . -1012) T) ((-544 . -552) 83703) ((-544 . -1127) T) ((-544 . -13) T) ((-544 . -72) T) ((-544 . -604) T) ((-543 . -1012) T) ((-543 . -552) 83670) ((-543 . -1127) T) ((-543 . -13) T) ((-543 . -72) T) ((-542 . -1012) T) ((-542 . -552) 83652) ((-542 . -1127) T) ((-542 . -13) T) ((-542 . -72) T) ((-542 . -604) T) ((-541 . -1012) T) ((-541 . -552) 83619) ((-541 . -1127) T) ((-541 . -13) T) ((-541 . -72) T) ((-541 . -427) 83601) ((-541 . -555) 83583) ((-540 . -683) 83567) ((-540 . -657) T) ((-540 . -685) T) ((-540 . -82) 83546) ((-540 . -963) 83530) ((-540 . -968) 83514) ((-540 . -21) T) ((-540 . -588) 83483) ((-540 . -23) T) ((-540 . -1012) T) ((-540 . -552) 83452) ((-540 . -1127) T) ((-540 . -13) T) ((-540 . -72) T) ((-540 . -25) T) ((-540 . -104) T) ((-540 . -590) 83436) ((-540 . -582) 83420) ((-540 . -654) 83404) ((-540 . -358) 83369) ((-540 . -315) 83304) ((-540 . -241) 83262) ((-539 . -994) T) ((-539 . -427) 83243) ((-539 . -552) 83193) ((-539 . -555) 83174) ((-539 . -1012) T) ((-539 . -1127) T) ((-539 . -13) T) ((-539 . -72) T) ((-539 . -64) T) ((-536 . -1176) 83158) ((-536 . -321) 83142) ((-536 . -759) 83121) ((-536 . -756) 83100) ((-536 . -124) 83084) ((-536 . -34) T) ((-536 . -13) T) ((-536 . -1127) T) ((-536 . -72) 83018) ((-536 . -552) 82933) ((-536 . -259) 82871) ((-536 . -452) 82804) ((-536 . -1012) 82757) ((-536 . -426) 82741) ((-536 . -553) 82702) ((-536 . -241) 82654) ((-536 . -538) 82631) ((-536 . -243) 82608) ((-536 . -593) 82592) ((-536 . -19) 82576) ((-535 . -552) 82558) ((-531 . -1012) T) ((-531 . -552) 82524) ((-531 . -1127) T) ((-531 . -13) T) ((-531 . -72) T) ((-531 . -427) 82505) ((-531 . -555) 82486) ((-530 . -961) T) ((-530 . -663) T) ((-530 . -1059) T) ((-530 . -1024) T) ((-530 . -969) T) ((-530 . -21) T) ((-530 . -588) 82445) ((-530 . -23) T) ((-530 . -1012) T) ((-530 . -552) 82427) ((-530 . -1127) T) ((-530 . -13) T) ((-530 . -72) T) ((-530 . -25) T) ((-530 . -104) T) ((-530 . -590) 82401) ((-530 . -555) 82359) ((-530 . -82) 82312) ((-530 . -963) 82272) ((-530 . -968) 82232) ((-530 . -494) 82211) ((-530 . -245) 82190) ((-530 . -146) 82169) ((-530 . -654) 82142) ((-530 . -582) 82115) ((-530 . -38) 82088) ((-529 . -1156) 82065) ((-529 . -47) 82042) ((-529 . -38) 81939) ((-529 . -582) 81836) ((-529 . -654) 81733) ((-529 . -555) 81615) ((-529 . -245) 81594) ((-529 . -494) 81573) ((-529 . -82) 81438) ((-529 . -963) 81324) ((-529 . -968) 81210) ((-529 . -146) 81164) ((-529 . -120) 81143) ((-529 . -118) 81122) ((-529 . -590) 81047) ((-529 . -588) 80957) ((-529 . -886) 80927) ((-529 . -811) 80840) ((-529 . -806) 80751) ((-529 . -809) 80664) ((-529 . -241) 80629) ((-529 . -189) 80588) ((-529 . -1127) T) ((-529 . -13) T) ((-529 . -186) 80541) ((-529 . -961) T) ((-529 . -663) T) ((-529 . -1059) T) ((-529 . -1024) T) ((-529 . -969) T) ((-529 . -21) T) ((-529 . -23) T) ((-529 . -1012) T) ((-529 . -552) 80523) ((-529 . -72) T) ((-529 . -25) T) ((-529 . -104) T) ((-529 . -190) 80482) ((-527 . -994) T) ((-527 . -427) 80463) ((-527 . -552) 80429) ((-527 . -555) 80410) ((-527 . -1012) T) ((-527 . -1127) T) ((-527 . -13) T) ((-527 . -72) T) ((-527 . -64) T) ((-521 . -1012) T) ((-521 . -552) 80376) ((-521 . -1127) T) ((-521 . -13) T) ((-521 . -72) T) ((-521 . -427) 80357) ((-521 . -555) 80338) ((-518 . -654) 80313) ((-518 . -582) 80288) ((-518 . -590) 80263) ((-518 . -588) 80223) ((-518 . -104) T) ((-518 . -25) T) ((-518 . -72) T) ((-518 . -13) T) ((-518 . -1127) T) ((-518 . -552) 80205) ((-518 . -1012) T) ((-518 . -23) T) ((-518 . -21) T) ((-518 . -968) 80180) ((-518 . -963) 80155) ((-518 . -82) 80116) ((-518 . -950) 80100) ((-518 . -555) 80084) ((-516 . -298) T) ((-516 . -1064) T) ((-516 . -317) T) ((-516 . -118) T) ((-516 . -311) T) ((-516 . -1132) T) ((-516 . -832) T) ((-516 . -494) T) ((-516 . -146) T) ((-516 . -555) 80034) ((-516 . -654) 79999) ((-516 . -582) 79964) ((-516 . -38) 79929) ((-516 . -389) T) ((-516 . -257) T) ((-516 . -82) 79878) ((-516 . -963) 79843) ((-516 . -968) 79808) ((-516 . -588) 79758) ((-516 . -590) 79723) ((-516 . -245) T) ((-516 . -201) T) ((-516 . -342) T) ((-516 . -189) T) ((-516 . -1127) T) ((-516 . -13) T) ((-516 . -186) 79710) ((-516 . -961) T) ((-516 . -663) T) ((-516 . -1059) T) ((-516 . -1024) T) ((-516 . -969) T) ((-516 . -21) T) ((-516 . -23) T) ((-516 . -1012) T) ((-516 . -552) 79692) ((-516 . -72) T) ((-516 . -25) T) ((-516 . -104) T) ((-516 . -190) T) ((-516 . -279) 79679) ((-516 . -120) 79661) ((-516 . -950) 79648) ((-516 . -1185) 79635) ((-516 . -1196) 79622) ((-516 . -553) 79604) ((-515 . -779) 79588) ((-515 . -832) T) ((-515 . -494) T) ((-515 . -245) T) ((-515 . -146) T) ((-515 . -555) 79560) ((-515 . -654) 79547) ((-515 . -582) 79534) ((-515 . -968) 79521) ((-515 . -963) 79508) ((-515 . -82) 79493) ((-515 . -38) 79480) ((-515 . -389) T) ((-515 . -257) T) ((-515 . -961) T) ((-515 . -663) T) ((-515 . -1059) T) ((-515 . -1024) T) ((-515 . -969) T) ((-515 . -21) T) ((-515 . -588) 79452) ((-515 . -23) T) ((-515 . -1012) T) ((-515 . -552) 79434) ((-515 . -1127) T) ((-515 . -13) T) ((-515 . -72) T) ((-515 . -25) T) ((-515 . -104) T) ((-515 . -590) 79421) ((-515 . -120) T) ((-514 . -1012) T) ((-514 . -552) 79403) ((-514 . -1127) T) ((-514 . -13) T) ((-514 . -72) T) ((-513 . -1012) T) ((-513 . -552) 79385) ((-513 . -1127) T) ((-513 . -13) T) ((-513 . -72) T) ((-512 . -511) T) ((-512 . -770) T) ((-512 . -147) T) ((-512 . -464) T) ((-512 . -552) 79367) ((-506 . -492) 79351) ((-506 . -35) T) ((-506 . -66) T) ((-506 . -239) T) ((-506 . -430) T) ((-506 . -1116) T) ((-506 . -1113) T) ((-506 . -950) 79333) ((-506 . -915) T) ((-506 . -759) T) ((-506 . -756) T) ((-506 . -494) T) ((-506 . -245) T) ((-506 . -146) T) ((-506 . -555) 79305) ((-506 . -654) 79292) ((-506 . -582) 79279) ((-506 . -590) 79266) ((-506 . -588) 79238) ((-506 . -104) T) ((-506 . -25) T) ((-506 . -72) T) ((-506 . -13) T) ((-506 . -1127) T) ((-506 . -552) 79220) ((-506 . -1012) T) ((-506 . -23) T) ((-506 . -21) T) ((-506 . -968) 79207) ((-506 . -963) 79194) ((-506 . -82) 79179) ((-506 . -961) T) ((-506 . -663) T) ((-506 . -1059) T) ((-506 . -1024) T) ((-506 . -969) T) ((-506 . -38) 79166) ((-506 . -389) T) ((-488 . -1105) 79145) ((-488 . -183) 79093) ((-488 . -76) 79041) ((-488 . -259) 78839) ((-488 . -452) 78591) ((-488 . -426) 78526) ((-488 . -124) 78474) ((-488 . -553) NIL) ((-488 . -193) 78422) ((-488 . -549) 78401) ((-488 . -243) 78380) ((-488 . -1127) T) ((-488 . -13) T) ((-488 . -241) 78359) ((-488 . -1012) T) ((-488 . -552) 78341) ((-488 . -72) T) ((-488 . -34) T) ((-488 . -538) 78320) ((-487 . -752) T) ((-487 . -759) T) ((-487 . -756) T) ((-487 . -1012) T) ((-487 . -552) 78302) ((-487 . -1127) T) ((-487 . -13) T) ((-487 . -72) T) ((-487 . -317) T) ((-486 . -752) T) ((-486 . -759) T) ((-486 . -756) T) ((-486 . -1012) T) ((-486 . -552) 78284) ((-486 . -1127) T) ((-486 . -13) T) ((-486 . -72) T) ((-486 . -317) T) ((-485 . -752) T) ((-485 . -759) T) ((-485 . -756) T) ((-485 . -1012) T) ((-485 . -552) 78266) ((-485 . -1127) T) ((-485 . -13) T) ((-485 . -72) T) ((-485 . -317) T) ((-484 . -752) T) ((-484 . -759) T) ((-484 . -756) T) ((-484 . -1012) T) ((-484 . -552) 78248) ((-484 . -1127) T) ((-484 . -13) T) ((-484 . -72) T) ((-484 . -317) T) ((-483 . -482) T) ((-483 . -1132) T) ((-483 . -1064) T) ((-483 . -950) 78230) ((-483 . -553) 78145) ((-483 . -933) T) ((-483 . -796) 78127) ((-483 . -755) T) ((-483 . -721) T) ((-483 . -718) T) ((-483 . -759) T) ((-483 . -756) T) ((-483 . -716) T) ((-483 . -714) T) ((-483 . -740) T) ((-483 . -590) 78099) ((-483 . -580) 78081) ((-483 . -832) T) ((-483 . -494) T) ((-483 . -245) T) ((-483 . -146) T) ((-483 . -555) 78053) ((-483 . -654) 78040) ((-483 . -582) 78027) ((-483 . -968) 78014) ((-483 . -963) 78001) ((-483 . -82) 77986) ((-483 . -38) 77973) ((-483 . -389) T) ((-483 . -257) T) ((-483 . -189) T) ((-483 . -186) 77960) ((-483 . -190) T) ((-483 . -116) T) ((-483 . -961) T) ((-483 . -663) T) ((-483 . -1059) T) ((-483 . -1024) T) ((-483 . -969) T) ((-483 . -21) T) ((-483 . -588) 77932) ((-483 . -23) T) ((-483 . -1012) T) ((-483 . -552) 77914) ((-483 . -1127) T) ((-483 . -13) T) ((-483 . -72) T) ((-483 . -25) T) ((-483 . -104) T) ((-483 . -120) T) ((-472 . -1015) 77866) ((-472 . -72) T) ((-472 . -552) 77848) ((-472 . -1012) T) ((-472 . -241) 77804) ((-472 . -1127) T) ((-472 . -13) T) ((-472 . -557) 77707) ((-472 . -553) 77688) ((-470 . -691) 77670) ((-470 . -464) T) ((-470 . -147) T) ((-470 . -770) T) ((-470 . -511) T) ((-470 . -552) 77652) ((-468 . -717) T) ((-468 . -104) T) ((-468 . -25) T) ((-468 . -72) T) ((-468 . -13) T) ((-468 . -1127) T) ((-468 . -552) 77634) ((-468 . -1012) T) ((-468 . -23) T) ((-468 . -716) T) ((-468 . -756) T) ((-468 . -759) T) ((-468 . -718) T) ((-468 . -721) T) ((-468 . -447) 77611) ((-466 . -464) T) ((-466 . -147) T) ((-466 . -552) 77593) ((-462 . -994) T) ((-462 . -427) 77574) ((-462 . -552) 77540) ((-462 . -555) 77521) ((-462 . -1012) T) ((-462 . -1127) T) ((-462 . -13) T) ((-462 . -72) T) ((-462 . -64) T) ((-461 . -994) T) ((-461 . -427) 77502) ((-461 . -552) 77468) ((-461 . -555) 77449) ((-461 . -1012) T) ((-461 . -1127) T) ((-461 . -13) T) ((-461 . -72) T) ((-461 . -64) T) ((-460 . -627) 77399) ((-460 . -426) 77383) ((-460 . -1012) 77361) ((-460 . -452) 77294) ((-460 . -259) 77232) ((-460 . -552) 77167) ((-460 . -72) 77121) ((-460 . -1127) T) ((-460 . -13) T) ((-460 . -34) T) ((-460 . -57) 77071) ((-457 . -57) 77045) ((-457 . -34) T) ((-457 . -13) T) ((-457 . -1127) T) ((-457 . -72) 76999) ((-457 . -552) 76934) ((-457 . -259) 76872) ((-457 . -452) 76805) ((-457 . -1012) 76783) ((-457 . -426) 76767) ((-456 . -279) 76744) ((-456 . -190) T) ((-456 . -186) 76731) ((-456 . -189) T) ((-456 . -317) T) ((-456 . -1064) T) ((-456 . -298) T) ((-456 . -120) 76713) ((-456 . -555) 76643) ((-456 . -590) 76588) ((-456 . -588) 76518) ((-456 . -104) T) ((-456 . -25) T) ((-456 . -72) T) ((-456 . -13) T) ((-456 . -1127) T) ((-456 . -552) 76500) ((-456 . -1012) T) ((-456 . -23) T) ((-456 . -21) T) ((-456 . -969) T) ((-456 . -1024) T) ((-456 . -1059) T) ((-456 . -663) T) ((-456 . -961) T) ((-456 . -311) T) ((-456 . -1132) T) ((-456 . -832) T) ((-456 . -494) T) ((-456 . -146) T) ((-456 . -654) 76445) ((-456 . -582) 76390) ((-456 . -38) 76355) ((-456 . -389) T) ((-456 . -257) T) ((-456 . -82) 76272) ((-456 . -963) 76217) ((-456 . -968) 76162) ((-456 . -245) T) ((-456 . -201) T) ((-456 . -342) T) ((-456 . -118) T) ((-456 . -950) 76139) ((-456 . -1185) 76116) ((-456 . -1196) 76093) ((-455 . -994) T) ((-455 . -427) 76074) ((-455 . -552) 76040) ((-455 . -555) 76021) ((-455 . -1012) T) ((-455 . -1127) T) ((-455 . -13) T) ((-455 . -72) T) ((-455 . -64) T) ((-454 . -19) 76005) ((-454 . -593) 75989) ((-454 . -243) 75966) ((-454 . -241) 75918) ((-454 . -538) 75895) ((-454 . -553) 75856) ((-454 . -426) 75840) ((-454 . -1012) 75793) ((-454 . -452) 75726) ((-454 . -259) 75664) ((-454 . -552) 75579) ((-454 . -72) 75513) ((-454 . -1127) T) ((-454 . -13) T) ((-454 . -34) T) ((-454 . -124) 75497) ((-454 . -756) 75476) ((-454 . -759) 75455) ((-454 . -321) 75439) ((-454 . -237) 75423) ((-453 . -273) 75402) ((-453 . -555) 75386) ((-453 . -950) 75370) ((-453 . -23) T) ((-453 . -1012) T) ((-453 . -552) 75352) ((-453 . -1127) T) ((-453 . -13) T) ((-453 . -72) T) ((-453 . -25) T) ((-453 . -104) T) ((-450 . -717) T) ((-450 . -104) T) ((-450 . -25) T) ((-450 . -72) T) ((-450 . -13) T) ((-450 . -1127) T) ((-450 . -552) 75334) ((-450 . -1012) T) ((-450 . -23) T) ((-450 . -716) T) ((-450 . -756) T) ((-450 . -759) T) ((-450 . -718) T) ((-450 . -721) T) ((-450 . -447) 75313) ((-449 . -716) T) ((-449 . -756) T) ((-449 . -759) T) ((-449 . -718) T) ((-449 . -25) T) ((-449 . -72) T) ((-449 . -13) T) ((-449 . -1127) T) ((-449 . -552) 75295) ((-449 . -1012) T) ((-449 . -23) T) ((-449 . -447) 75274) ((-448 . -447) 75253) ((-448 . -552) 75193) ((-448 . -1012) 75144) ((-448 . -1127) T) ((-448 . -13) T) ((-448 . -72) T) ((-446 . -23) T) ((-446 . -1012) T) ((-446 . -552) 75126) ((-446 . -1127) T) ((-446 . -13) T) ((-446 . -72) T) ((-446 . -25) T) ((-446 . -447) 75105) ((-445 . -21) T) ((-445 . -588) 75087) ((-445 . -23) T) ((-445 . -1012) T) ((-445 . -552) 75069) ((-445 . -1127) T) ((-445 . -13) T) ((-445 . -72) T) ((-445 . -25) T) ((-445 . -104) T) ((-445 . -447) 75048) ((-444 . -1012) T) ((-444 . -552) 75030) ((-444 . -1127) T) ((-444 . -13) T) ((-444 . -72) T) ((-441 . -1012) T) ((-441 . -552) 75012) ((-441 . -1127) T) ((-441 . -13) T) ((-441 . -72) T) ((-439 . -756) T) ((-439 . -552) 74994) ((-439 . -1012) T) ((-439 . -72) T) ((-439 . -13) T) ((-439 . -1127) T) ((-439 . -759) T) ((-439 . -555) 74975) ((-437 . -96) T) ((-437 . -321) 74958) ((-437 . -759) T) ((-437 . -756) T) ((-437 . -124) 74941) ((-437 . -34) T) ((-437 . -72) T) ((-437 . -552) 74923) ((-437 . -259) NIL) ((-437 . -452) NIL) ((-437 . -1012) T) ((-437 . -426) 74906) ((-437 . -553) 74888) ((-437 . -241) 74839) ((-437 . -538) 74815) ((-437 . -243) 74791) ((-437 . -593) 74774) ((-437 . -19) 74757) ((-437 . -604) T) ((-437 . -13) T) ((-437 . -1127) T) ((-437 . -84) T) ((-434 . -57) 74707) ((-434 . -34) T) ((-434 . -13) T) ((-434 . -1127) T) ((-434 . -72) 74661) ((-434 . -552) 74596) ((-434 . -259) 74534) ((-434 . -452) 74467) ((-434 . -1012) 74445) ((-434 . -426) 74429) ((-433 . -19) 74413) ((-433 . -593) 74397) ((-433 . -243) 74374) ((-433 . -241) 74326) ((-433 . -538) 74303) ((-433 . -553) 74264) ((-433 . -426) 74248) ((-433 . -1012) 74201) ((-433 . -452) 74134) ((-433 . -259) 74072) ((-433 . -552) 73987) ((-433 . -72) 73921) ((-433 . -1127) T) ((-433 . -13) T) ((-433 . -34) T) ((-433 . -124) 73905) ((-433 . -756) 73884) ((-433 . -759) 73863) ((-433 . -321) 73847) ((-432 . -253) T) ((-432 . -72) T) ((-432 . -13) T) ((-432 . -1127) T) ((-432 . -552) 73829) ((-432 . -1012) T) ((-432 . -555) 73730) ((-432 . -950) 73673) ((-432 . -452) 73639) ((-432 . -259) 73626) ((-432 . -27) T) ((-432 . -915) T) ((-432 . -201) T) ((-432 . -82) 73575) ((-432 . -963) 73540) ((-432 . -968) 73505) ((-432 . -245) T) ((-432 . -654) 73470) ((-432 . -582) 73435) ((-432 . -590) 73385) ((-432 . -588) 73335) ((-432 . -104) T) ((-432 . -25) T) ((-432 . -23) T) ((-432 . -21) T) ((-432 . -961) T) ((-432 . -663) T) ((-432 . -1059) T) ((-432 . -1024) T) ((-432 . -969) T) ((-432 . -38) 73300) ((-432 . -257) T) ((-432 . -389) T) ((-432 . -146) T) ((-432 . -494) T) ((-432 . -832) T) ((-432 . -1132) T) ((-432 . -311) T) ((-432 . -580) 73260) ((-432 . -933) T) ((-432 . -553) 73205) ((-432 . -120) T) ((-432 . -190) T) ((-432 . -186) 73192) ((-432 . -189) T) ((-428 . -1012) T) ((-428 . -552) 73158) ((-428 . -1127) T) ((-428 . -13) T) ((-428 . -72) T) ((-424 . -904) 73140) ((-424 . -1064) T) ((-424 . -555) 73090) ((-424 . -950) 73050) ((-424 . -553) 72980) ((-424 . -933) T) ((-424 . -821) NIL) ((-424 . -794) 72962) ((-424 . -755) T) ((-424 . -721) T) ((-424 . -718) T) ((-424 . -759) T) ((-424 . -756) T) ((-424 . -716) T) ((-424 . -714) T) ((-424 . -740) T) ((-424 . -796) 72944) ((-424 . -340) 72926) ((-424 . -580) 72908) ((-424 . -326) 72890) ((-424 . -241) NIL) ((-424 . -259) NIL) ((-424 . -452) NIL) ((-424 . -287) 72872) ((-424 . -201) T) ((-424 . -82) 72799) ((-424 . -963) 72749) ((-424 . -968) 72699) ((-424 . -245) T) ((-424 . -654) 72649) ((-424 . -582) 72599) ((-424 . -590) 72549) ((-424 . -588) 72499) ((-424 . -38) 72449) ((-424 . -257) T) ((-424 . -389) T) ((-424 . -146) T) ((-424 . -494) T) ((-424 . -832) T) ((-424 . -1132) T) ((-424 . -311) T) ((-424 . -190) T) ((-424 . -186) 72436) ((-424 . -189) T) ((-424 . -225) 72418) ((-424 . -806) NIL) ((-424 . -811) NIL) ((-424 . -809) NIL) ((-424 . -184) 72400) ((-424 . -120) T) ((-424 . -118) NIL) ((-424 . -104) T) ((-424 . -25) T) ((-424 . -72) T) ((-424 . -13) T) ((-424 . -1127) T) ((-424 . -552) 72342) ((-424 . -1012) T) ((-424 . -23) T) ((-424 . -21) T) ((-424 . -961) T) ((-424 . -663) T) ((-424 . -1059) T) ((-424 . -1024) T) ((-424 . -969) T) ((-422 . -285) 72311) ((-422 . -104) T) ((-422 . -25) T) ((-422 . -72) T) ((-422 . -13) T) ((-422 . -1127) T) ((-422 . -552) 72293) ((-422 . -1012) T) ((-422 . -23) T) ((-422 . -588) 72275) ((-422 . -21) T) ((-421 . -881) 72259) ((-421 . -426) 72243) ((-421 . -1012) 72221) ((-421 . -452) 72154) ((-421 . -259) 72092) ((-421 . -552) 72027) ((-421 . -72) 71981) ((-421 . -1127) T) ((-421 . -13) T) ((-421 . -34) T) ((-421 . -76) 71965) ((-420 . -994) T) ((-420 . -427) 71946) ((-420 . -552) 71912) ((-420 . -555) 71893) ((-420 . -1012) T) ((-420 . -1127) T) ((-420 . -13) T) ((-420 . -72) T) ((-420 . -64) T) ((-419 . -196) 71872) ((-419 . -1185) 71842) ((-419 . -721) 71821) ((-419 . -718) 71800) ((-419 . -759) 71754) ((-419 . -756) 71708) ((-419 . -716) 71687) ((-419 . -717) 71666) ((-419 . -654) 71611) ((-419 . -582) 71536) ((-419 . -243) 71513) ((-419 . -241) 71490) ((-419 . -426) 71474) ((-419 . -452) 71407) ((-419 . -259) 71345) ((-419 . -34) T) ((-419 . -538) 71322) ((-419 . -950) 71151) ((-419 . -555) 70955) ((-419 . -352) 70924) ((-419 . -580) 70832) ((-419 . -590) 70671) ((-419 . -326) 70641) ((-419 . -317) 70620) ((-419 . -190) 70573) ((-419 . -588) 70361) ((-419 . -969) 70340) ((-419 . -1024) 70319) ((-419 . -1059) 70298) ((-419 . -663) 70277) ((-419 . -961) 70256) ((-419 . -186) 70152) ((-419 . -189) 70054) ((-419 . -225) 70024) ((-419 . -806) 69896) ((-419 . -811) 69770) ((-419 . -809) 69703) ((-419 . -184) 69673) ((-419 . -552) 69370) ((-419 . -968) 69295) ((-419 . -963) 69200) ((-419 . -82) 69120) ((-419 . -104) 68995) ((-419 . -25) 68832) ((-419 . -72) 68569) ((-419 . -13) T) ((-419 . -1127) T) ((-419 . -1012) 68325) ((-419 . -23) 68181) ((-419 . -21) 68096) ((-418 . -861) 68041) ((-418 . -555) 67833) ((-418 . -950) 67711) ((-418 . -1132) 67690) ((-418 . -821) 67669) ((-418 . -796) NIL) ((-418 . -811) 67646) ((-418 . -806) 67621) ((-418 . -809) 67598) ((-418 . -452) 67536) ((-418 . -389) 67490) ((-418 . -580) 67438) ((-418 . -590) 67327) ((-418 . -326) 67311) ((-418 . -47) 67268) ((-418 . -38) 67120) ((-418 . -582) 66972) ((-418 . -654) 66824) ((-418 . -245) 66758) ((-418 . -494) 66692) ((-418 . -82) 66517) ((-418 . -963) 66363) ((-418 . -968) 66209) ((-418 . -146) 66123) ((-418 . -120) 66102) ((-418 . -118) 66081) ((-418 . -588) 65991) ((-418 . -104) T) ((-418 . -25) T) ((-418 . -72) T) ((-418 . -13) T) ((-418 . -1127) T) ((-418 . -552) 65973) ((-418 . -1012) T) ((-418 . -23) T) ((-418 . -21) T) ((-418 . -961) T) ((-418 . -663) T) ((-418 . -1059) T) ((-418 . -1024) T) ((-418 . -969) T) ((-418 . -352) 65957) ((-418 . -276) 65914) ((-418 . -259) 65901) ((-418 . -553) 65762) ((-416 . -1105) 65741) ((-416 . -183) 65689) ((-416 . -76) 65637) ((-416 . -259) 65435) ((-416 . -452) 65187) ((-416 . -426) 65122) ((-416 . -124) 65070) ((-416 . -553) NIL) ((-416 . -193) 65018) ((-416 . -549) 64997) ((-416 . -243) 64976) ((-416 . -1127) T) ((-416 . -13) T) ((-416 . -241) 64955) ((-416 . -1012) T) ((-416 . -552) 64937) ((-416 . -72) T) ((-416 . -34) T) ((-416 . -538) 64916) ((-415 . -994) T) ((-415 . -427) 64897) ((-415 . -552) 64863) ((-415 . -555) 64844) ((-415 . -1012) T) ((-415 . -1127) T) ((-415 . -13) T) ((-415 . -72) T) ((-415 . -64) T) ((-414 . -311) T) ((-414 . -1132) T) ((-414 . -832) T) ((-414 . -494) T) ((-414 . -146) T) ((-414 . -555) 64794) ((-414 . -654) 64759) ((-414 . -582) 64724) ((-414 . -38) 64689) ((-414 . -389) T) ((-414 . -257) T) ((-414 . -590) 64654) ((-414 . -588) 64604) ((-414 . -969) T) ((-414 . -1024) T) ((-414 . -1059) T) ((-414 . -663) T) ((-414 . -961) T) ((-414 . -82) 64553) ((-414 . -963) 64518) ((-414 . -968) 64483) ((-414 . -21) T) ((-414 . -23) T) ((-414 . -1012) T) ((-414 . -552) 64435) ((-414 . -1127) T) ((-414 . -13) T) ((-414 . -72) T) ((-414 . -25) T) ((-414 . -104) T) ((-414 . -245) T) ((-414 . -201) T) ((-414 . -120) T) ((-414 . -950) 64395) ((-414 . -933) T) ((-414 . -553) 64317) ((-413 . -1122) 64286) ((-413 . -552) 64248) ((-413 . -124) 64232) ((-413 . -34) T) ((-413 . -13) T) ((-413 . -1127) T) ((-413 . -72) T) ((-413 . -259) 64170) ((-413 . -452) 64103) ((-413 . -1012) T) ((-413 . -426) 64087) ((-413 . -553) 64048) ((-413 . -889) 64017) ((-412 . -1105) 63996) ((-412 . -183) 63944) ((-412 . -76) 63892) ((-412 . -259) 63690) ((-412 . -452) 63442) ((-412 . -426) 63377) ((-412 . -124) 63325) ((-412 . -553) NIL) ((-412 . -193) 63273) ((-412 . -549) 63252) ((-412 . -243) 63231) ((-412 . -1127) T) ((-412 . -13) T) ((-412 . -241) 63210) ((-412 . -1012) T) ((-412 . -552) 63192) ((-412 . -72) T) ((-412 . -34) T) ((-412 . -538) 63171) ((-411 . -1160) 63155) ((-411 . -190) 63107) ((-411 . -186) 63053) ((-411 . -189) 63005) ((-411 . -241) 62963) ((-411 . -809) 62869) ((-411 . -806) 62750) ((-411 . -811) 62656) ((-411 . -886) 62619) ((-411 . -38) 62466) ((-411 . -82) 62286) ((-411 . -963) 62127) ((-411 . -968) 61968) ((-411 . -588) 61853) ((-411 . -590) 61753) ((-411 . -582) 61600) ((-411 . -654) 61447) ((-411 . -555) 61279) ((-411 . -118) 61258) ((-411 . -120) 61237) ((-411 . -47) 61207) ((-411 . -1156) 61177) ((-411 . -35) 61143) ((-411 . -66) 61109) ((-411 . -239) 61075) ((-411 . -430) 61041) ((-411 . -1116) 61007) ((-411 . -1113) 60973) ((-411 . -915) 60939) ((-411 . -201) 60918) ((-411 . -245) 60872) ((-411 . -104) T) ((-411 . -25) T) ((-411 . -72) T) ((-411 . -13) T) ((-411 . -1127) T) ((-411 . -552) 60854) ((-411 . -1012) T) ((-411 . -23) T) ((-411 . -21) T) ((-411 . -961) T) ((-411 . -663) T) ((-411 . -1059) T) ((-411 . -1024) T) ((-411 . -969) T) ((-411 . -257) 60833) ((-411 . -389) 60812) ((-411 . -146) 60746) ((-411 . -494) 60700) ((-411 . -832) 60679) ((-411 . -1132) 60658) ((-411 . -311) 60637) ((-405 . -1012) T) ((-405 . -552) 60619) ((-405 . -1127) T) ((-405 . -13) T) ((-405 . -72) T) ((-400 . -889) 60588) ((-400 . -553) 60549) ((-400 . -426) 60533) ((-400 . -1012) T) ((-400 . -452) 60466) ((-400 . -259) 60404) ((-400 . -552) 60366) ((-400 . -72) T) ((-400 . -1127) T) ((-400 . -13) T) ((-400 . -34) T) ((-400 . -124) 60350) ((-398 . -654) 60321) ((-398 . -582) 60292) ((-398 . -590) 60263) ((-398 . -588) 60219) ((-398 . -104) T) ((-398 . -25) T) ((-398 . -72) T) ((-398 . -13) T) ((-398 . -1127) T) ((-398 . -552) 60201) ((-398 . -1012) T) ((-398 . -23) T) ((-398 . -21) T) ((-398 . -968) 60172) ((-398 . -963) 60143) ((-398 . -82) 60104) ((-391 . -861) 60071) ((-391 . -555) 59863) ((-391 . -950) 59741) ((-391 . -1132) 59720) ((-391 . -821) 59699) ((-391 . -796) NIL) ((-391 . -811) 59676) ((-391 . -806) 59651) ((-391 . -809) 59628) ((-391 . -452) 59566) ((-391 . -389) 59520) ((-391 . -580) 59468) ((-391 . -590) 59357) ((-391 . -326) 59341) ((-391 . -47) 59320) ((-391 . -38) 59172) ((-391 . -582) 59024) ((-391 . -654) 58876) ((-391 . -245) 58810) ((-391 . -494) 58744) ((-391 . -82) 58569) ((-391 . -963) 58415) ((-391 . -968) 58261) ((-391 . -146) 58175) ((-391 . -120) 58154) ((-391 . -118) 58133) ((-391 . -588) 58043) ((-391 . -104) T) ((-391 . -25) T) ((-391 . -72) T) ((-391 . -13) T) ((-391 . -1127) T) ((-391 . -552) 58025) ((-391 . -1012) T) ((-391 . -23) T) ((-391 . -21) T) ((-391 . -961) T) ((-391 . -663) T) ((-391 . -1059) T) ((-391 . -1024) T) ((-391 . -969) T) ((-391 . -352) 58009) ((-391 . -276) 57988) ((-391 . -259) 57975) ((-391 . -553) 57836) ((-390 . -358) 57806) ((-390 . -683) 57776) ((-390 . -657) T) ((-390 . -685) T) ((-390 . -82) 57727) ((-390 . -963) 57697) ((-390 . -968) 57667) ((-390 . -21) T) ((-390 . -588) 57582) ((-390 . -23) T) ((-390 . -1012) T) ((-390 . -552) 57564) ((-390 . -72) T) ((-390 . -25) T) ((-390 . -104) T) ((-390 . -590) 57494) ((-390 . -582) 57464) ((-390 . -654) 57434) ((-390 . -315) 57404) ((-390 . -1127) T) ((-390 . -13) T) ((-390 . -241) 57367) ((-378 . -1012) T) ((-378 . -552) 57349) ((-378 . -1127) T) ((-378 . -13) T) ((-378 . -72) T) ((-377 . -1012) T) ((-377 . -552) 57331) ((-377 . -1127) T) ((-377 . -13) T) ((-377 . -72) T) ((-376 . -1012) T) ((-376 . -552) 57313) ((-376 . -1127) T) ((-376 . -13) T) ((-376 . -72) T) ((-374 . -552) 57295) ((-369 . -38) 57279) ((-369 . -555) 57248) ((-369 . -590) 57222) ((-369 . -588) 57181) ((-369 . -969) T) ((-369 . -1024) T) ((-369 . -1059) T) ((-369 . -663) T) ((-369 . -961) T) ((-369 . -82) 57160) ((-369 . -963) 57144) ((-369 . -968) 57128) ((-369 . -21) T) ((-369 . -23) T) ((-369 . -1012) T) ((-369 . -552) 57110) ((-369 . -1127) T) ((-369 . -13) T) ((-369 . -72) T) ((-369 . -25) T) ((-369 . -104) T) ((-369 . -582) 57094) ((-369 . -654) 57078) ((-355 . -663) T) ((-355 . -1012) T) ((-355 . -552) 57060) ((-355 . -1127) T) ((-355 . -13) T) ((-355 . -72) T) ((-355 . -1024) T) ((-353 . -410) T) ((-353 . -1024) T) ((-353 . -72) T) ((-353 . -13) T) ((-353 . -1127) T) ((-353 . -552) 57042) ((-353 . -1012) T) ((-353 . -663) T) ((-347 . -904) 57026) ((-347 . -1064) 57004) ((-347 . -950) 56871) ((-347 . -555) 56770) ((-347 . -553) 56573) ((-347 . -933) 56552) ((-347 . -821) 56531) ((-347 . -794) 56515) ((-347 . -755) 56494) ((-347 . -721) 56473) ((-347 . -718) 56452) ((-347 . -759) 56406) ((-347 . -756) 56360) ((-347 . -716) 56339) ((-347 . -714) 56318) ((-347 . -740) 56297) ((-347 . -796) 56222) ((-347 . -340) 56206) ((-347 . -580) 56154) ((-347 . -590) 56070) ((-347 . -326) 56054) ((-347 . -241) 56012) ((-347 . -259) 55977) ((-347 . -452) 55889) ((-347 . -287) 55873) ((-347 . -201) T) ((-347 . -82) 55804) ((-347 . -963) 55756) ((-347 . -968) 55708) ((-347 . -245) T) ((-347 . -654) 55660) ((-347 . -582) 55612) ((-347 . -588) 55549) ((-347 . -38) 55501) ((-347 . -257) T) ((-347 . -389) T) ((-347 . -146) T) ((-347 . -494) T) ((-347 . -832) T) ((-347 . -1132) T) ((-347 . -311) T) ((-347 . -190) 55480) ((-347 . -186) 55428) ((-347 . -189) 55382) ((-347 . -225) 55366) ((-347 . -806) 55290) ((-347 . -811) 55216) ((-347 . -809) 55175) ((-347 . -184) 55159) ((-347 . -120) 55138) ((-347 . -118) 55117) ((-347 . -104) T) ((-347 . -25) T) ((-347 . -72) T) ((-347 . -13) T) ((-347 . -1127) T) ((-347 . -552) 55099) ((-347 . -1012) T) ((-347 . -23) T) ((-347 . -21) T) ((-347 . -961) T) ((-347 . -663) T) ((-347 . -1059) T) ((-347 . -1024) T) ((-347 . -969) T) ((-345 . -494) T) ((-345 . -245) T) ((-345 . -146) T) ((-345 . -555) 55008) ((-345 . -654) 54982) ((-345 . -582) 54956) ((-345 . -590) 54930) ((-345 . -588) 54889) ((-345 . -104) T) ((-345 . -25) T) ((-345 . -72) T) ((-345 . -13) T) ((-345 . -1127) T) ((-345 . -552) 54871) ((-345 . -1012) T) ((-345 . -23) T) ((-345 . -21) T) ((-345 . -968) 54845) ((-345 . -963) 54819) ((-345 . -82) 54786) ((-345 . -961) T) ((-345 . -663) T) ((-345 . -1059) T) ((-345 . -1024) T) ((-345 . -969) T) ((-345 . -38) 54760) ((-345 . -184) 54744) ((-345 . -809) 54703) ((-345 . -811) 54629) ((-345 . -806) 54553) ((-345 . -225) 54537) ((-345 . -189) 54491) ((-345 . -186) 54439) ((-345 . -190) 54418) ((-345 . -287) 54402) ((-345 . -452) 54244) ((-345 . -259) 54183) ((-345 . -241) 54111) ((-345 . -352) 54095) ((-345 . -950) 53993) ((-345 . -389) 53946) ((-345 . -933) 53925) ((-345 . -553) 53828) ((-345 . -1132) 53806) ((-339 . -1012) T) ((-339 . -552) 53788) ((-339 . -1127) T) ((-339 . -13) T) ((-339 . -72) T) ((-339 . -189) T) ((-339 . -186) 53775) ((-339 . -553) 53752) ((-337 . -683) 53736) ((-337 . -657) T) ((-337 . -685) T) ((-337 . -82) 53715) ((-337 . -963) 53699) ((-337 . -968) 53683) ((-337 . -21) T) ((-337 . -588) 53652) ((-337 . -23) T) ((-337 . -1012) T) ((-337 . -552) 53634) ((-337 . -1127) T) ((-337 . -13) T) ((-337 . -72) T) ((-337 . -25) T) ((-337 . -104) T) ((-337 . -590) 53618) ((-337 . -582) 53602) ((-337 . -654) 53586) ((-335 . -336) T) ((-335 . -72) T) ((-335 . -13) T) ((-335 . -1127) T) ((-335 . -552) 53552) ((-335 . -1012) T) ((-335 . -555) 53533) ((-335 . -427) 53514) ((-334 . -333) 53498) ((-334 . -555) 53482) ((-334 . -950) 53466) ((-334 . -759) 53445) ((-334 . -756) 53424) ((-334 . -1024) T) ((-334 . -72) T) ((-334 . -13) T) ((-334 . -1127) T) ((-334 . -552) 53406) ((-334 . -1012) T) ((-334 . -663) T) ((-331 . -332) 53385) ((-331 . -555) 53369) ((-331 . -950) 53353) ((-331 . -582) 53323) ((-331 . -654) 53293) ((-331 . -590) 53277) ((-331 . -588) 53246) ((-331 . -104) T) ((-331 . -25) T) ((-331 . -72) T) ((-331 . -13) T) ((-331 . -1127) T) ((-331 . -552) 53228) ((-331 . -1012) T) ((-331 . -23) T) ((-331 . -21) T) ((-331 . -968) 53212) ((-331 . -963) 53196) ((-331 . -82) 53175) ((-330 . -82) 53154) ((-330 . -963) 53138) ((-330 . -968) 53122) ((-330 . -21) T) ((-330 . -588) 53091) ((-330 . -23) T) ((-330 . -1012) T) ((-330 . -552) 53073) ((-330 . -1127) T) ((-330 . -13) T) ((-330 . -72) T) ((-330 . -25) T) ((-330 . -104) T) ((-330 . -590) 53057) ((-330 . -447) 53036) ((-330 . -654) 53006) ((-330 . -582) 52976) ((-327 . -344) T) ((-327 . -120) T) ((-327 . -555) 52926) ((-327 . -590) 52891) ((-327 . -588) 52841) ((-327 . -104) T) ((-327 . -25) T) ((-327 . -72) T) ((-327 . -13) T) ((-327 . -1127) T) ((-327 . -552) 52808) ((-327 . -1012) T) ((-327 . -23) T) ((-327 . -21) T) ((-327 . -969) T) ((-327 . -1024) T) ((-327 . -1059) T) ((-327 . -663) T) ((-327 . -961) T) ((-327 . -553) 52722) ((-327 . -311) T) ((-327 . -1132) T) ((-327 . -832) T) ((-327 . -494) T) ((-327 . -146) T) ((-327 . -654) 52687) ((-327 . -582) 52652) ((-327 . -38) 52617) ((-327 . -389) T) ((-327 . -257) T) ((-327 . -82) 52566) ((-327 . -963) 52531) ((-327 . -968) 52496) ((-327 . -245) T) ((-327 . -201) T) ((-327 . -755) T) ((-327 . -721) T) ((-327 . -718) T) ((-327 . -759) T) ((-327 . -756) T) ((-327 . -716) T) ((-327 . -714) T) ((-327 . -796) 52478) ((-327 . -915) T) ((-327 . -933) T) ((-327 . -950) 52438) ((-327 . -972) T) ((-327 . -190) T) ((-327 . -186) 52425) ((-327 . -189) T) ((-327 . -1113) T) ((-327 . -1116) T) ((-327 . -430) T) ((-327 . -239) T) ((-327 . -66) T) ((-327 . -35) T) ((-327 . -557) 52407) ((-312 . -313) 52384) ((-312 . -72) T) ((-312 . -13) T) ((-312 . -1127) T) ((-312 . -552) 52366) ((-312 . -1012) T) ((-309 . -410) T) ((-309 . -1024) T) ((-309 . -72) T) ((-309 . -13) T) ((-309 . -1127) T) ((-309 . -552) 52348) ((-309 . -1012) T) ((-309 . -663) T) ((-309 . -950) 52332) ((-309 . -555) 52316) ((-307 . -279) 52300) ((-307 . -190) 52279) ((-307 . -186) 52252) ((-307 . -189) 52231) ((-307 . -317) 52210) ((-307 . -1064) 52189) ((-307 . -298) 52168) ((-307 . -120) 52147) ((-307 . -555) 52084) ((-307 . -590) 52036) ((-307 . -588) 51973) ((-307 . -104) T) ((-307 . -25) T) ((-307 . -72) T) ((-307 . -13) T) ((-307 . -1127) T) ((-307 . -552) 51955) ((-307 . -1012) T) ((-307 . -23) T) ((-307 . -21) T) ((-307 . -969) T) ((-307 . -1024) T) ((-307 . -1059) T) ((-307 . -663) T) ((-307 . -961) T) ((-307 . -311) T) ((-307 . -1132) T) ((-307 . -832) T) ((-307 . -494) T) ((-307 . -146) T) ((-307 . -654) 51907) ((-307 . -582) 51859) ((-307 . -38) 51824) ((-307 . -389) T) ((-307 . -257) T) ((-307 . -82) 51755) ((-307 . -963) 51707) ((-307 . -968) 51659) ((-307 . -245) T) ((-307 . -201) T) ((-307 . -342) 51613) ((-307 . -118) 51567) ((-307 . -950) 51551) ((-307 . -1185) 51535) ((-307 . -1196) 51519) ((-303 . -279) 51503) ((-303 . -190) 51482) ((-303 . -186) 51455) ((-303 . -189) 51434) ((-303 . -317) 51413) ((-303 . -1064) 51392) ((-303 . -298) 51371) ((-303 . -120) 51350) ((-303 . -555) 51287) ((-303 . -590) 51239) ((-303 . -588) 51176) ((-303 . -104) T) ((-303 . -25) T) ((-303 . -72) T) ((-303 . -13) T) ((-303 . -1127) T) ((-303 . -552) 51158) ((-303 . -1012) T) ((-303 . -23) T) ((-303 . -21) T) ((-303 . -969) T) ((-303 . -1024) T) ((-303 . -1059) T) ((-303 . -663) T) ((-303 . -961) T) ((-303 . -311) T) ((-303 . -1132) T) ((-303 . -832) T) ((-303 . -494) T) ((-303 . -146) T) ((-303 . -654) 51110) ((-303 . -582) 51062) ((-303 . -38) 51027) ((-303 . -389) T) ((-303 . -257) T) ((-303 . -82) 50958) ((-303 . -963) 50910) ((-303 . -968) 50862) ((-303 . -245) T) ((-303 . -201) T) ((-303 . -342) 50816) ((-303 . -118) 50770) ((-303 . -950) 50754) ((-303 . -1185) 50738) ((-303 . -1196) 50722) ((-302 . -279) 50706) ((-302 . -190) 50685) ((-302 . -186) 50658) ((-302 . -189) 50637) ((-302 . -317) 50616) ((-302 . -1064) 50595) ((-302 . -298) 50574) ((-302 . -120) 50553) ((-302 . -555) 50490) ((-302 . -590) 50442) ((-302 . -588) 50379) ((-302 . -104) T) ((-302 . -25) T) ((-302 . -72) T) ((-302 . -13) T) ((-302 . -1127) T) ((-302 . -552) 50361) ((-302 . -1012) T) ((-302 . -23) T) ((-302 . -21) T) ((-302 . -969) T) ((-302 . -1024) T) ((-302 . -1059) T) ((-302 . -663) T) ((-302 . -961) T) ((-302 . -311) T) ((-302 . -1132) T) ((-302 . -832) T) ((-302 . -494) T) ((-302 . -146) T) ((-302 . -654) 50313) ((-302 . -582) 50265) ((-302 . -38) 50230) ((-302 . -389) T) ((-302 . -257) T) ((-302 . -82) 50161) ((-302 . -963) 50113) ((-302 . -968) 50065) ((-302 . -245) T) ((-302 . -201) T) ((-302 . -342) 50019) ((-302 . -118) 49973) ((-302 . -950) 49957) ((-302 . -1185) 49941) ((-302 . -1196) 49925) ((-301 . -279) 49909) ((-301 . -190) 49888) ((-301 . -186) 49861) ((-301 . -189) 49840) ((-301 . -317) 49819) ((-301 . -1064) 49798) ((-301 . -298) 49777) ((-301 . -120) 49756) ((-301 . -555) 49693) ((-301 . -590) 49645) ((-301 . -588) 49582) ((-301 . -104) T) ((-301 . -25) T) ((-301 . -72) T) ((-301 . -13) T) ((-301 . -1127) T) ((-301 . -552) 49564) ((-301 . -1012) T) ((-301 . -23) T) ((-301 . -21) T) ((-301 . -969) T) ((-301 . -1024) T) ((-301 . -1059) T) ((-301 . -663) T) ((-301 . -961) T) ((-301 . -311) T) ((-301 . -1132) T) ((-301 . -832) T) ((-301 . -494) T) ((-301 . -146) T) ((-301 . -654) 49516) ((-301 . -582) 49468) ((-301 . -38) 49433) ((-301 . -389) T) ((-301 . -257) T) ((-301 . -82) 49364) ((-301 . -963) 49316) ((-301 . -968) 49268) ((-301 . -245) T) ((-301 . -201) T) ((-301 . -342) 49222) ((-301 . -118) 49176) ((-301 . -950) 49160) ((-301 . -1185) 49144) ((-301 . -1196) 49128) ((-300 . -279) 49105) ((-300 . -190) T) ((-300 . -186) 49092) ((-300 . -189) T) ((-300 . -317) T) ((-300 . -1064) T) ((-300 . -298) T) ((-300 . -120) 49074) ((-300 . -555) 49004) ((-300 . -590) 48949) ((-300 . -588) 48879) ((-300 . -104) T) ((-300 . -25) T) ((-300 . -72) T) ((-300 . -13) T) ((-300 . -1127) T) ((-300 . -552) 48861) ((-300 . -1012) T) ((-300 . -23) T) ((-300 . -21) T) ((-300 . -969) T) ((-300 . -1024) T) ((-300 . -1059) T) ((-300 . -663) T) ((-300 . -961) T) ((-300 . -311) T) ((-300 . -1132) T) ((-300 . -832) T) ((-300 . -494) T) ((-300 . -146) T) ((-300 . -654) 48806) ((-300 . -582) 48751) ((-300 . -38) 48716) ((-300 . -389) T) ((-300 . -257) T) ((-300 . -82) 48633) ((-300 . -963) 48578) ((-300 . -968) 48523) ((-300 . -245) T) ((-300 . -201) T) ((-300 . -342) T) ((-300 . -118) T) ((-300 . -950) 48500) ((-300 . -1185) 48477) ((-300 . -1196) 48454) ((-294 . -279) 48438) ((-294 . -190) 48417) ((-294 . -186) 48390) ((-294 . -189) 48369) ((-294 . -317) 48348) ((-294 . -1064) 48327) ((-294 . -298) 48306) ((-294 . -120) 48285) ((-294 . -555) 48222) ((-294 . -590) 48174) ((-294 . -588) 48111) ((-294 . -104) T) ((-294 . -25) T) ((-294 . -72) T) ((-294 . -13) T) ((-294 . -1127) T) ((-294 . -552) 48093) ((-294 . -1012) T) ((-294 . -23) T) ((-294 . -21) T) ((-294 . -969) T) ((-294 . -1024) T) ((-294 . -1059) T) ((-294 . -663) T) ((-294 . -961) T) ((-294 . -311) T) ((-294 . -1132) T) ((-294 . -832) T) ((-294 . -494) T) ((-294 . -146) T) ((-294 . -654) 48045) ((-294 . -582) 47997) ((-294 . -38) 47962) ((-294 . -389) T) ((-294 . -257) T) ((-294 . -82) 47893) ((-294 . -963) 47845) ((-294 . -968) 47797) ((-294 . -245) T) ((-294 . -201) T) ((-294 . -342) 47751) ((-294 . -118) 47705) ((-294 . -950) 47689) ((-294 . -1185) 47673) ((-294 . -1196) 47657) ((-293 . -279) 47641) ((-293 . -190) 47620) ((-293 . -186) 47593) ((-293 . -189) 47572) ((-293 . -317) 47551) ((-293 . -1064) 47530) ((-293 . -298) 47509) ((-293 . -120) 47488) ((-293 . -555) 47425) ((-293 . -590) 47377) ((-293 . -588) 47314) ((-293 . -104) T) ((-293 . -25) T) ((-293 . -72) T) ((-293 . -13) T) ((-293 . -1127) T) ((-293 . -552) 47296) ((-293 . -1012) T) ((-293 . -23) T) ((-293 . -21) T) ((-293 . -969) T) ((-293 . -1024) T) ((-293 . -1059) T) ((-293 . -663) T) ((-293 . -961) T) ((-293 . -311) T) ((-293 . -1132) T) ((-293 . -832) T) ((-293 . -494) T) ((-293 . -146) T) ((-293 . -654) 47248) ((-293 . -582) 47200) ((-293 . -38) 47165) ((-293 . -389) T) ((-293 . -257) T) ((-293 . -82) 47096) ((-293 . -963) 47048) ((-293 . -968) 47000) ((-293 . -245) T) ((-293 . -201) T) ((-293 . -342) 46954) ((-293 . -118) 46908) ((-293 . -950) 46892) ((-293 . -1185) 46876) ((-293 . -1196) 46860) ((-292 . -279) 46837) ((-292 . -190) T) ((-292 . -186) 46824) ((-292 . -189) T) ((-292 . -317) T) ((-292 . -1064) T) ((-292 . -298) T) ((-292 . -120) 46806) ((-292 . -555) 46736) ((-292 . -590) 46681) ((-292 . -588) 46611) ((-292 . -104) T) ((-292 . -25) T) ((-292 . -72) T) ((-292 . -13) T) ((-292 . -1127) T) ((-292 . -552) 46593) ((-292 . -1012) T) ((-292 . -23) T) ((-292 . -21) T) ((-292 . -969) T) ((-292 . -1024) T) ((-292 . -1059) T) ((-292 . -663) T) ((-292 . -961) T) ((-292 . -311) T) ((-292 . -1132) T) ((-292 . -832) T) ((-292 . -494) T) ((-292 . -146) T) ((-292 . -654) 46538) ((-292 . -582) 46483) ((-292 . -38) 46448) ((-292 . -389) T) ((-292 . -257) T) ((-292 . -82) 46365) ((-292 . -963) 46310) ((-292 . -968) 46255) ((-292 . -245) T) ((-292 . -201) T) ((-292 . -342) T) ((-292 . -118) T) ((-292 . -950) 46232) ((-292 . -1185) 46209) ((-292 . -1196) 46186) ((-288 . -279) 46163) ((-288 . -190) T) ((-288 . -186) 46150) ((-288 . -189) T) ((-288 . -317) T) ((-288 . -1064) T) ((-288 . -298) T) ((-288 . -120) 46132) ((-288 . -555) 46062) ((-288 . -590) 46007) ((-288 . -588) 45937) ((-288 . -104) T) ((-288 . -25) T) ((-288 . -72) T) ((-288 . -13) T) ((-288 . -1127) T) ((-288 . -552) 45919) ((-288 . -1012) T) ((-288 . -23) T) ((-288 . -21) T) ((-288 . -969) T) ((-288 . -1024) T) ((-288 . -1059) T) ((-288 . -663) T) ((-288 . -961) T) ((-288 . -311) T) ((-288 . -1132) T) ((-288 . -832) T) ((-288 . -494) T) ((-288 . -146) T) ((-288 . -654) 45864) ((-288 . -582) 45809) ((-288 . -38) 45774) ((-288 . -389) T) ((-288 . -257) T) ((-288 . -82) 45691) ((-288 . -963) 45636) ((-288 . -968) 45581) ((-288 . -245) T) ((-288 . -201) T) ((-288 . -342) T) ((-288 . -118) T) ((-288 . -950) 45558) ((-288 . -1185) 45535) ((-288 . -1196) 45512) ((-282 . -285) 45481) ((-282 . -104) T) ((-282 . -25) T) ((-282 . -72) T) ((-282 . -13) T) ((-282 . -1127) T) ((-282 . -552) 45463) ((-282 . -1012) T) ((-282 . -23) T) ((-282 . -588) 45445) ((-282 . -21) T) ((-281 . -1012) T) ((-281 . -552) 45427) ((-281 . -1127) T) ((-281 . -13) T) ((-281 . -72) T) ((-280 . -756) T) ((-280 . -552) 45409) ((-280 . -1012) T) ((-280 . -72) T) ((-280 . -13) T) ((-280 . -1127) T) ((-280 . -759) T) ((-277 . -19) 45393) ((-277 . -593) 45377) ((-277 . -243) 45354) ((-277 . -241) 45306) ((-277 . -538) 45283) ((-277 . -553) 45244) ((-277 . -426) 45228) ((-277 . -1012) 45181) ((-277 . -452) 45114) ((-277 . -259) 45052) ((-277 . -552) 44967) ((-277 . -72) 44901) ((-277 . -1127) T) ((-277 . -13) T) ((-277 . -34) T) ((-277 . -124) 44885) ((-277 . -756) 44864) ((-277 . -759) 44843) ((-277 . -321) 44827) ((-277 . -237) 44811) ((-274 . -273) 44788) ((-274 . -555) 44772) ((-274 . -950) 44756) ((-274 . -23) T) ((-274 . -1012) T) ((-274 . -552) 44738) ((-274 . -1127) T) ((-274 . -13) T) ((-274 . -72) T) ((-274 . -25) T) ((-274 . -104) T) ((-272 . -21) T) ((-272 . -588) 44720) ((-272 . -23) T) ((-272 . -1012) T) ((-272 . -552) 44702) ((-272 . -1127) T) ((-272 . -13) T) ((-272 . -72) T) ((-272 . -25) T) ((-272 . -104) T) ((-272 . -654) 44684) ((-272 . -582) 44666) ((-272 . -590) 44648) ((-272 . -968) 44630) ((-272 . -963) 44612) ((-272 . -82) 44587) ((-272 . -273) 44564) ((-272 . -555) 44548) ((-272 . -950) 44532) ((-272 . -756) 44511) ((-272 . -759) 44490) ((-269 . -1160) 44474) ((-269 . -190) 44426) ((-269 . -186) 44372) ((-269 . -189) 44324) ((-269 . -241) 44282) ((-269 . -809) 44188) ((-269 . -806) 44092) ((-269 . -811) 43998) ((-269 . -886) 43961) ((-269 . -38) 43808) ((-269 . -82) 43628) ((-269 . -963) 43469) ((-269 . -968) 43310) ((-269 . -588) 43195) ((-269 . -590) 43095) ((-269 . -582) 42942) ((-269 . -654) 42789) ((-269 . -555) 42621) ((-269 . -118) 42600) ((-269 . -120) 42579) ((-269 . -47) 42549) ((-269 . -1156) 42519) ((-269 . -35) 42485) ((-269 . -66) 42451) ((-269 . -239) 42417) ((-269 . -430) 42383) ((-269 . -1116) 42349) ((-269 . -1113) 42315) ((-269 . -915) 42281) ((-269 . -201) 42260) ((-269 . -245) 42214) ((-269 . -104) T) ((-269 . -25) T) ((-269 . -72) T) ((-269 . -13) T) ((-269 . -1127) T) ((-269 . -552) 42196) ((-269 . -1012) T) ((-269 . -23) T) ((-269 . -21) T) ((-269 . -961) T) ((-269 . -663) T) ((-269 . -1059) T) ((-269 . -1024) T) ((-269 . -969) T) ((-269 . -257) 42175) ((-269 . -389) 42154) ((-269 . -146) 42088) ((-269 . -494) 42042) ((-269 . -832) 42021) ((-269 . -1132) 42000) ((-269 . -311) 41979) ((-269 . -716) T) ((-269 . -756) T) ((-269 . -759) T) ((-269 . -718) T) ((-264 . -361) 41963) ((-264 . -555) 41538) ((-264 . -950) 41209) ((-264 . -553) 41070) ((-264 . -794) 41054) ((-264 . -811) 41021) ((-264 . -806) 40986) ((-264 . -809) 40953) ((-264 . -410) 40932) ((-264 . -352) 40916) ((-264 . -796) 40841) ((-264 . -340) 40825) ((-264 . -580) 40733) ((-264 . -590) 40471) ((-264 . -326) 40441) ((-264 . -201) 40420) ((-264 . -82) 40309) ((-264 . -963) 40219) ((-264 . -968) 40129) ((-264 . -245) 40108) ((-264 . -654) 40018) ((-264 . -582) 39928) ((-264 . -588) 39595) ((-264 . -38) 39505) ((-264 . -257) 39484) ((-264 . -389) 39463) ((-264 . -146) 39442) ((-264 . -494) 39421) ((-264 . -832) 39400) ((-264 . -1132) 39379) ((-264 . -311) 39358) ((-264 . -259) 39345) ((-264 . -452) 39311) ((-264 . -253) T) ((-264 . -120) 39290) ((-264 . -118) 39269) ((-264 . -961) 39163) ((-264 . -663) 39016) ((-264 . -1059) 38910) ((-264 . -1024) 38763) ((-264 . -969) 38657) ((-264 . -104) 38532) ((-264 . -25) 38388) ((-264 . -72) T) ((-264 . -13) T) ((-264 . -1127) T) ((-264 . -552) 38370) ((-264 . -1012) T) ((-264 . -23) 38226) ((-264 . -21) 38101) ((-264 . -29) 38071) ((-264 . -915) 38050) ((-264 . -27) 38029) ((-264 . -1113) 38008) ((-264 . -1116) 37987) ((-264 . -430) 37966) ((-264 . -239) 37945) ((-264 . -66) 37924) ((-264 . -35) 37903) ((-264 . -133) 37882) ((-264 . -116) 37861) ((-264 . -569) 37840) ((-264 . -871) 37819) ((-264 . -1051) 37798) ((-263 . -904) 37759) ((-263 . -1064) NIL) ((-263 . -950) 37689) ((-263 . -555) 37572) ((-263 . -553) NIL) ((-263 . -933) NIL) ((-263 . -821) NIL) ((-263 . -794) 37533) ((-263 . -755) NIL) ((-263 . -721) NIL) ((-263 . -718) NIL) ((-263 . -759) NIL) ((-263 . -756) NIL) ((-263 . -716) NIL) ((-263 . -714) NIL) ((-263 . -740) NIL) ((-263 . -796) NIL) ((-263 . -340) 37494) ((-263 . -580) 37455) ((-263 . -590) 37384) ((-263 . -326) 37345) ((-263 . -241) 37211) ((-263 . -259) 37107) ((-263 . -452) 36858) ((-263 . -287) 36819) ((-263 . -201) T) ((-263 . -82) 36704) ((-263 . -963) 36633) ((-263 . -968) 36562) ((-263 . -245) T) ((-263 . -654) 36491) ((-263 . -582) 36420) ((-263 . -588) 36334) ((-263 . -38) 36263) ((-263 . -257) T) ((-263 . -389) T) ((-263 . -146) T) ((-263 . -494) T) ((-263 . -832) T) ((-263 . -1132) T) ((-263 . -311) T) ((-263 . -190) NIL) ((-263 . -186) NIL) ((-263 . -189) NIL) ((-263 . -225) 36224) ((-263 . -806) NIL) ((-263 . -811) NIL) ((-263 . -809) NIL) ((-263 . -184) 36185) ((-263 . -120) 36141) ((-263 . -118) 36097) ((-263 . -104) T) ((-263 . -25) T) ((-263 . -72) T) ((-263 . -13) T) ((-263 . -1127) T) ((-263 . -552) 36079) ((-263 . -1012) T) ((-263 . -23) T) ((-263 . -21) T) ((-263 . -961) T) ((-263 . -663) T) ((-263 . -1059) T) ((-263 . -1024) T) ((-263 . -969) T) ((-262 . -994) T) ((-262 . -427) 36060) ((-262 . -552) 36026) ((-262 . -555) 36007) ((-262 . -1012) T) ((-262 . -1127) T) ((-262 . -13) T) ((-262 . -72) T) ((-262 . -64) T) ((-261 . -1012) T) ((-261 . -552) 35989) ((-261 . -1127) T) ((-261 . -13) T) ((-261 . -72) T) ((-250 . -1105) 35968) ((-250 . -183) 35916) ((-250 . -76) 35864) ((-250 . -259) 35662) ((-250 . -452) 35414) ((-250 . -426) 35349) ((-250 . -124) 35297) ((-250 . -553) NIL) ((-250 . -193) 35245) ((-250 . -549) 35224) ((-250 . -243) 35203) ((-250 . -1127) T) ((-250 . -13) T) ((-250 . -241) 35182) ((-250 . -1012) T) ((-250 . -552) 35164) ((-250 . -72) T) ((-250 . -34) T) ((-250 . -538) 35143) ((-248 . -1127) T) ((-248 . -13) T) ((-248 . -452) 35092) ((-248 . -1012) 34878) ((-248 . -552) 34624) ((-248 . -72) 34410) ((-248 . -25) 34278) ((-248 . -21) 34165) ((-248 . -588) 33912) ((-248 . -23) 33799) ((-248 . -104) 33686) ((-248 . -1024) 33571) ((-248 . -663) 33477) ((-248 . -410) 33456) ((-248 . -961) 33402) ((-248 . -1059) 33348) ((-248 . -969) 33294) ((-248 . -590) 33162) ((-248 . -555) 33097) ((-248 . -82) 33017) ((-248 . -963) 32942) ((-248 . -968) 32867) ((-248 . -654) 32812) ((-248 . -582) 32757) ((-248 . -809) 32716) ((-248 . -806) 32673) ((-248 . -811) 32632) ((-248 . -1185) 32602) ((-246 . -552) 32584) ((-244 . -257) T) ((-244 . -389) T) ((-244 . -38) 32571) ((-244 . -555) 32543) ((-244 . -969) T) ((-244 . -1024) T) ((-244 . -1059) T) ((-244 . -663) T) ((-244 . -961) T) ((-244 . -82) 32528) ((-244 . -963) 32515) ((-244 . -968) 32502) ((-244 . -21) T) ((-244 . -588) 32474) ((-244 . -23) T) ((-244 . -1012) T) ((-244 . -552) 32456) ((-244 . -1127) T) ((-244 . -13) T) ((-244 . -72) T) ((-244 . -25) T) ((-244 . -104) T) ((-244 . -590) 32443) ((-244 . -582) 32430) ((-244 . -654) 32417) ((-244 . -146) T) ((-244 . -245) T) ((-244 . -494) T) ((-244 . -832) T) ((-244 . -241) 32396) ((-235 . -552) 32378) ((-234 . -552) 32360) ((-229 . -756) T) ((-229 . -552) 32342) ((-229 . -1012) T) ((-229 . -72) T) ((-229 . -13) T) ((-229 . -1127) T) ((-229 . -759) T) ((-226 . -213) 32304) ((-226 . -555) 32064) ((-226 . -950) 31910) ((-226 . -553) 31658) ((-226 . -276) 31630) ((-226 . -352) 31614) ((-226 . -38) 31466) ((-226 . -82) 31291) ((-226 . -963) 31137) ((-226 . -968) 30983) ((-226 . -588) 30893) ((-226 . -590) 30782) ((-226 . -582) 30634) ((-226 . -654) 30486) ((-226 . -118) 30465) ((-226 . -120) 30444) ((-226 . -146) 30358) ((-226 . -494) 30292) ((-226 . -245) 30226) ((-226 . -47) 30198) ((-226 . -326) 30182) ((-226 . -580) 30130) ((-226 . -389) 30084) ((-226 . -452) 29975) ((-226 . -809) 29921) ((-226 . -806) 29830) ((-226 . -811) 29743) ((-226 . -796) 29602) ((-226 . -821) 29581) ((-226 . -1132) 29560) ((-226 . -861) 29527) ((-226 . -259) 29514) ((-226 . -190) 29493) ((-226 . -104) T) ((-226 . -25) T) ((-226 . -72) T) ((-226 . -552) 29475) ((-226 . -1012) T) ((-226 . -23) T) ((-226 . -21) T) ((-226 . -969) T) ((-226 . -1024) T) ((-226 . -1059) T) ((-226 . -663) T) ((-226 . -961) T) ((-226 . -186) 29423) ((-226 . -13) T) ((-226 . -1127) T) ((-226 . -189) 29377) ((-226 . -225) 29361) ((-226 . -184) 29345) ((-221 . -1012) T) ((-221 . -552) 29327) ((-221 . -1127) T) ((-221 . -13) T) ((-221 . -72) T) ((-211 . -196) 29306) ((-211 . -1185) 29276) ((-211 . -721) 29255) ((-211 . -718) 29234) ((-211 . -759) 29188) ((-211 . -756) 29142) ((-211 . -716) 29121) ((-211 . -717) 29100) ((-211 . -654) 29045) ((-211 . -582) 28970) ((-211 . -243) 28947) ((-211 . -241) 28924) ((-211 . -426) 28908) ((-211 . -452) 28841) ((-211 . -259) 28779) ((-211 . -34) T) ((-211 . -538) 28756) ((-211 . -950) 28585) ((-211 . -555) 28389) ((-211 . -352) 28358) ((-211 . -580) 28266) ((-211 . -590) 28092) ((-211 . -326) 28062) ((-211 . -317) 28041) ((-211 . -190) 27994) ((-211 . -588) 27847) ((-211 . -969) 27826) ((-211 . -1024) 27805) ((-211 . -1059) 27784) ((-211 . -663) 27763) ((-211 . -961) 27742) ((-211 . -186) 27638) ((-211 . -189) 27540) ((-211 . -225) 27510) ((-211 . -806) 27382) ((-211 . -811) 27256) ((-211 . -809) 27189) ((-211 . -184) 27159) ((-211 . -552) 27120) ((-211 . -968) 27045) ((-211 . -963) 26950) ((-211 . -82) 26870) ((-211 . -104) T) ((-211 . -25) T) ((-211 . -72) T) ((-211 . -13) T) ((-211 . -1127) T) ((-211 . -1012) T) ((-211 . -23) T) ((-211 . -21) T) ((-210 . -196) 26849) ((-210 . -1185) 26819) ((-210 . -721) 26798) ((-210 . -718) 26777) ((-210 . -759) 26731) ((-210 . -756) 26685) ((-210 . -716) 26664) ((-210 . -717) 26643) ((-210 . -654) 26588) ((-210 . -582) 26513) ((-210 . -243) 26490) ((-210 . -241) 26467) ((-210 . -426) 26451) ((-210 . -452) 26384) ((-210 . -259) 26322) ((-210 . -34) T) ((-210 . -538) 26299) ((-210 . -950) 26128) ((-210 . -555) 25932) ((-210 . -352) 25901) ((-210 . -580) 25809) ((-210 . -590) 25622) ((-210 . -326) 25592) ((-210 . -317) 25571) ((-210 . -190) 25524) ((-210 . -588) 25364) ((-210 . -969) 25343) ((-210 . -1024) 25322) ((-210 . -1059) 25301) ((-210 . -663) 25280) ((-210 . -961) 25259) ((-210 . -186) 25155) ((-210 . -189) 25057) ((-210 . -225) 25027) ((-210 . -806) 24899) ((-210 . -811) 24773) ((-210 . -809) 24706) ((-210 . -184) 24676) ((-210 . -552) 24637) ((-210 . -968) 24562) ((-210 . -963) 24467) ((-210 . -82) 24387) ((-210 . -104) T) ((-210 . -25) T) ((-210 . -72) T) ((-210 . -13) T) ((-210 . -1127) T) ((-210 . -1012) T) ((-210 . -23) T) ((-210 . -21) T) ((-209 . -1012) T) ((-209 . -552) 24369) ((-209 . -1127) T) ((-209 . -13) T) ((-209 . -72) T) ((-209 . -241) 24343) ((-208 . -160) T) ((-208 . -1012) T) ((-208 . -552) 24310) ((-208 . -1127) T) ((-208 . -13) T) ((-208 . -72) T) ((-208 . -747) 24292) ((-207 . -1012) T) ((-207 . -552) 24274) ((-207 . -1127) T) ((-207 . -13) T) ((-207 . -72) T) ((-206 . -861) 24219) ((-206 . -555) 24011) ((-206 . -950) 23889) ((-206 . -1132) 23868) ((-206 . -821) 23847) ((-206 . -796) NIL) ((-206 . -811) 23824) ((-206 . -806) 23799) ((-206 . -809) 23776) ((-206 . -452) 23714) ((-206 . -389) 23668) ((-206 . -580) 23616) ((-206 . -590) 23505) ((-206 . -326) 23489) ((-206 . -47) 23446) ((-206 . -38) 23298) ((-206 . -582) 23150) ((-206 . -654) 23002) ((-206 . -245) 22936) ((-206 . -494) 22870) ((-206 . -82) 22695) ((-206 . -963) 22541) ((-206 . -968) 22387) ((-206 . -146) 22301) ((-206 . -120) 22280) ((-206 . -118) 22259) ((-206 . -588) 22169) ((-206 . -104) T) ((-206 . -25) T) ((-206 . -72) T) ((-206 . -13) T) ((-206 . -1127) T) ((-206 . -552) 22151) ((-206 . -1012) T) ((-206 . -23) T) ((-206 . -21) T) ((-206 . -961) T) ((-206 . -663) T) ((-206 . -1059) T) ((-206 . -1024) T) ((-206 . -969) T) ((-206 . -352) 22135) ((-206 . -276) 22092) ((-206 . -259) 22079) ((-206 . -553) 21940) ((-203 . -608) 21924) ((-203 . -1166) 21908) ((-203 . -923) 21892) ((-203 . -1062) 21876) ((-203 . -756) 21855) ((-203 . -759) 21834) ((-203 . -321) 21818) ((-203 . -593) 21802) ((-203 . -243) 21779) ((-203 . -241) 21731) ((-203 . -538) 21708) ((-203 . -553) 21669) ((-203 . -426) 21653) ((-203 . -1012) 21606) ((-203 . -452) 21539) ((-203 . -259) 21477) ((-203 . -552) 21372) ((-203 . -72) 21306) ((-203 . -1127) T) ((-203 . -13) T) ((-203 . -34) T) ((-203 . -124) 21290) ((-203 . -237) 21274) ((-203 . -427) 21251) ((-203 . -555) 21228) ((-197 . -196) 21207) ((-197 . -1185) 21177) ((-197 . -721) 21156) ((-197 . -718) 21135) ((-197 . -759) 21089) ((-197 . -756) 21043) ((-197 . -716) 21022) ((-197 . -717) 21001) ((-197 . -654) 20946) ((-197 . -582) 20871) ((-197 . -243) 20848) ((-197 . -241) 20825) ((-197 . -426) 20809) ((-197 . -452) 20742) ((-197 . -259) 20680) ((-197 . -34) T) ((-197 . -538) 20657) ((-197 . -950) 20486) ((-197 . -555) 20290) ((-197 . -352) 20259) ((-197 . -580) 20167) ((-197 . -590) 20006) ((-197 . -326) 19976) ((-197 . -317) 19955) ((-197 . -190) 19908) ((-197 . -588) 19696) ((-197 . -969) 19675) ((-197 . -1024) 19654) ((-197 . -1059) 19633) ((-197 . -663) 19612) ((-197 . -961) 19591) ((-197 . -186) 19487) ((-197 . -189) 19389) ((-197 . -225) 19359) ((-197 . -806) 19231) ((-197 . -811) 19105) ((-197 . -809) 19038) ((-197 . -184) 19008) ((-197 . -552) 18705) ((-197 . -968) 18630) ((-197 . -963) 18535) ((-197 . -82) 18455) ((-197 . -104) 18330) ((-197 . -25) 18167) ((-197 . -72) 17904) ((-197 . -13) T) ((-197 . -1127) T) ((-197 . -1012) 17660) ((-197 . -23) 17516) ((-197 . -21) 17431) ((-181 . -627) 17389) ((-181 . -426) 17373) ((-181 . -1012) 17351) ((-181 . -452) 17284) ((-181 . -259) 17222) ((-181 . -552) 17157) ((-181 . -72) 17111) ((-181 . -1127) T) ((-181 . -13) T) ((-181 . -34) T) ((-181 . -57) 17069) ((-179 . -344) T) ((-179 . -120) T) ((-179 . -555) 17019) ((-179 . -590) 16984) ((-179 . -588) 16934) ((-179 . -104) T) ((-179 . -25) T) ((-179 . -72) T) ((-179 . -13) T) ((-179 . -1127) T) ((-179 . -552) 16916) ((-179 . -1012) T) ((-179 . -23) T) ((-179 . -21) T) ((-179 . -969) T) ((-179 . -1024) T) ((-179 . -1059) T) ((-179 . -663) T) ((-179 . -961) T) ((-179 . -553) 16846) ((-179 . -311) T) ((-179 . -1132) T) ((-179 . -832) T) ((-179 . -494) T) ((-179 . -146) T) ((-179 . -654) 16811) ((-179 . -582) 16776) ((-179 . -38) 16741) ((-179 . -389) T) ((-179 . -257) T) ((-179 . -82) 16690) ((-179 . -963) 16655) ((-179 . -968) 16620) ((-179 . -245) T) ((-179 . -201) T) ((-179 . -755) T) ((-179 . -721) T) ((-179 . -718) T) ((-179 . -759) T) ((-179 . -756) T) ((-179 . -716) T) ((-179 . -714) T) ((-179 . -796) 16602) ((-179 . -915) T) ((-179 . -933) T) ((-179 . -950) 16562) ((-179 . -972) T) ((-179 . -190) T) ((-179 . -186) 16549) ((-179 . -189) T) ((-179 . -1113) T) ((-179 . -1116) T) ((-179 . -430) T) ((-179 . -239) T) ((-179 . -66) T) ((-179 . -35) T) ((-177 . -560) 16526) ((-177 . -555) 16488) ((-177 . -590) 16455) ((-177 . -588) 16407) ((-177 . -969) T) ((-177 . -1024) T) ((-177 . -1059) T) ((-177 . -663) T) ((-177 . -961) T) ((-177 . -21) T) ((-177 . -23) T) ((-177 . -1012) T) ((-177 . -552) 16389) ((-177 . -1127) T) ((-177 . -13) T) ((-177 . -72) T) ((-177 . -25) T) ((-177 . -104) T) ((-177 . -950) 16366) ((-176 . -214) 16350) ((-176 . -1033) 16334) ((-176 . -76) 16318) ((-176 . -34) T) ((-176 . -13) T) ((-176 . -1127) T) ((-176 . -72) 16272) ((-176 . -552) 16207) ((-176 . -259) 16145) ((-176 . -452) 16078) ((-176 . -1012) 16056) ((-176 . -426) 16040) ((-176 . -908) 16024) ((-172 . -994) T) ((-172 . -427) 16005) ((-172 . -552) 15971) ((-172 . -555) 15952) ((-172 . -1012) T) ((-172 . -1127) T) ((-172 . -13) T) ((-172 . -72) T) ((-172 . -64) T) ((-171 . -904) 15934) ((-171 . -1064) T) ((-171 . -555) 15884) ((-171 . -950) 15844) ((-171 . -553) 15774) ((-171 . -933) T) ((-171 . -821) NIL) ((-171 . -794) 15756) ((-171 . -755) T) ((-171 . -721) T) ((-171 . -718) T) ((-171 . -759) T) ((-171 . -756) T) ((-171 . -716) T) ((-171 . -714) T) ((-171 . -740) T) ((-171 . -796) 15738) ((-171 . -340) 15720) ((-171 . -580) 15702) ((-171 . -326) 15684) ((-171 . -241) NIL) ((-171 . -259) NIL) ((-171 . -452) NIL) ((-171 . -287) 15666) ((-171 . -201) T) ((-171 . -82) 15593) ((-171 . -963) 15543) ((-171 . -968) 15493) ((-171 . -245) T) ((-171 . -654) 15443) ((-171 . -582) 15393) ((-171 . -590) 15343) ((-171 . -588) 15293) ((-171 . -38) 15243) ((-171 . -257) T) ((-171 . -389) T) ((-171 . -146) T) ((-171 . -494) T) ((-171 . -832) T) ((-171 . -1132) T) ((-171 . -311) T) ((-171 . -190) T) ((-171 . -186) 15230) ((-171 . -189) T) ((-171 . -225) 15212) ((-171 . -806) NIL) ((-171 . -811) NIL) ((-171 . -809) NIL) ((-171 . -184) 15194) ((-171 . -120) T) ((-171 . -118) NIL) ((-171 . -104) T) ((-171 . -25) T) ((-171 . -72) T) ((-171 . -13) T) ((-171 . -1127) T) ((-171 . -552) 15136) ((-171 . -1012) T) ((-171 . -23) T) ((-171 . -21) T) ((-171 . -961) T) ((-171 . -663) T) ((-171 . -1059) T) ((-171 . -1024) T) ((-171 . -969) T) ((-168 . -752) T) ((-168 . -759) T) ((-168 . -756) T) ((-168 . -1012) T) ((-168 . -552) 15118) ((-168 . -1127) T) ((-168 . -13) T) ((-168 . -72) T) ((-168 . -317) T) ((-167 . -1012) T) ((-167 . -552) 15100) ((-167 . -1127) T) ((-167 . -13) T) ((-167 . -72) T) ((-167 . -555) 15077) ((-166 . -1012) T) ((-166 . -552) 15059) ((-166 . -1127) T) ((-166 . -13) T) ((-166 . -72) T) ((-161 . -1012) T) ((-161 . -552) 15041) ((-161 . -1127) T) ((-161 . -13) T) ((-161 . -72) T) ((-158 . -1012) T) ((-158 . -552) 15023) ((-158 . -1127) T) ((-158 . -13) T) ((-158 . -72) T) ((-157 . -160) T) ((-157 . -1012) T) ((-157 . -552) 15005) ((-157 . -1127) T) ((-157 . -13) T) ((-157 . -72) T) ((-157 . -747) 14987) ((-154 . -994) T) ((-154 . -427) 14968) ((-154 . -552) 14934) ((-154 . -555) 14915) ((-154 . -1012) T) ((-154 . -1127) T) ((-154 . -13) T) ((-154 . -72) T) ((-154 . -64) T) ((-149 . -552) 14897) ((-148 . -38) 14829) ((-148 . -555) 14746) ((-148 . -590) 14678) ((-148 . -588) 14595) ((-148 . -969) T) ((-148 . -1024) T) ((-148 . -1059) T) ((-148 . -663) T) ((-148 . -961) T) ((-148 . -82) 14494) ((-148 . -963) 14426) ((-148 . -968) 14358) ((-148 . -21) T) ((-148 . -23) T) ((-148 . -1012) T) ((-148 . -552) 14340) ((-148 . -1127) T) ((-148 . -13) T) ((-148 . -72) T) ((-148 . -25) T) ((-148 . -104) T) ((-148 . -582) 14272) ((-148 . -654) 14204) ((-148 . -311) T) ((-148 . -1132) T) ((-148 . -832) T) ((-148 . -494) T) ((-148 . -146) T) ((-148 . -389) T) ((-148 . -257) T) ((-148 . -245) T) ((-148 . -201) T) ((-145 . -1012) T) ((-145 . -552) 14186) ((-145 . -1127) T) ((-145 . -13) T) ((-145 . -72) T) ((-142 . -139) 14170) ((-142 . -35) 14148) ((-142 . -66) 14126) ((-142 . -239) 14104) ((-142 . -430) 14082) ((-142 . -1116) 14060) ((-142 . -1113) 14038) ((-142 . -915) 13990) ((-142 . -821) 13943) ((-142 . -553) 13711) ((-142 . -794) 13695) ((-142 . -317) 13649) ((-142 . -298) 13628) ((-142 . -1064) 13607) ((-142 . -342) 13586) ((-142 . -350) 13557) ((-142 . -38) 13391) ((-142 . -82) 13283) ((-142 . -963) 13196) ((-142 . -968) 13109) ((-142 . -582) 12943) ((-142 . -654) 12777) ((-142 . -319) 12748) ((-142 . -661) 12719) ((-142 . -950) 12617) ((-142 . -555) 12402) ((-142 . -352) 12386) ((-142 . -796) 12311) ((-142 . -340) 12295) ((-142 . -580) 12243) ((-142 . -590) 12120) ((-142 . -588) 12018) ((-142 . -326) 12002) ((-142 . -241) 11960) ((-142 . -259) 11925) ((-142 . -452) 11837) ((-142 . -287) 11821) ((-142 . -201) 11775) ((-142 . -1132) 11683) ((-142 . -311) 11637) ((-142 . -832) 11571) ((-142 . -494) 11485) ((-142 . -245) 11399) ((-142 . -389) 11333) ((-142 . -257) 11267) ((-142 . -190) 11221) ((-142 . -186) 11149) ((-142 . -189) 11083) ((-142 . -225) 11067) ((-142 . -806) 10991) ((-142 . -811) 10917) ((-142 . -809) 10876) ((-142 . -184) 10860) ((-142 . -146) T) ((-142 . -120) 10839) ((-142 . -961) T) ((-142 . -663) T) ((-142 . -1059) T) ((-142 . -1024) T) ((-142 . -969) T) ((-142 . -21) T) ((-142 . -23) T) ((-142 . -1012) T) ((-142 . -552) 10821) ((-142 . -1127) T) ((-142 . -13) T) ((-142 . -72) T) ((-142 . -25) T) ((-142 . -104) T) ((-142 . -118) 10775) ((-135 . -994) T) ((-135 . -427) 10756) ((-135 . -552) 10722) ((-135 . -555) 10703) ((-135 . -1012) T) ((-135 . -1127) T) ((-135 . -13) T) ((-135 . -72) T) ((-135 . -64) T) ((-134 . -1012) T) ((-134 . -552) 10685) ((-134 . -1127) T) ((-134 . -13) T) ((-134 . -72) T) ((-130 . -25) T) ((-130 . -72) T) ((-130 . -13) T) ((-130 . -1127) T) ((-130 . -552) 10667) ((-130 . -1012) T) ((-129 . -994) T) ((-129 . -427) 10648) ((-129 . -552) 10614) ((-129 . -555) 10595) ((-129 . -1012) T) ((-129 . -1127) T) ((-129 . -13) T) ((-129 . -72) T) ((-129 . -64) T) ((-127 . -994) T) ((-127 . -427) 10576) ((-127 . -552) 10542) ((-127 . -555) 10523) ((-127 . -1012) T) ((-127 . -1127) T) ((-127 . -13) T) ((-127 . -72) T) ((-127 . -64) T) ((-125 . -961) T) ((-125 . -663) T) ((-125 . -1059) T) ((-125 . -1024) T) ((-125 . -969) T) ((-125 . -21) T) ((-125 . -588) 10482) ((-125 . -23) T) ((-125 . -1012) T) ((-125 . -552) 10464) ((-125 . -1127) T) ((-125 . -13) T) ((-125 . -72) T) ((-125 . -25) T) ((-125 . -104) T) ((-125 . -590) 10438) ((-125 . -555) 10407) ((-125 . -38) 10391) ((-125 . -82) 10370) ((-125 . -963) 10354) ((-125 . -968) 10338) ((-125 . -582) 10322) ((-125 . -654) 10306) ((-125 . -1185) 10290) ((-117 . -752) T) ((-117 . -759) T) ((-117 . -756) T) ((-117 . -1012) T) ((-117 . -552) 10272) ((-117 . -1127) T) ((-117 . -13) T) ((-117 . -72) T) ((-117 . -317) T) ((-114 . -1012) T) ((-114 . -552) 10254) ((-114 . -1127) T) ((-114 . -13) T) ((-114 . -72) T) ((-114 . -553) 10213) ((-114 . -366) 10195) ((-114 . -1010) 10177) ((-114 . -317) T) ((-114 . -193) 10159) ((-114 . -124) 10141) ((-114 . -426) 10123) ((-114 . -452) NIL) ((-114 . -259) NIL) ((-114 . -34) T) ((-114 . -76) 10105) ((-114 . -183) 10087) ((-113 . -552) 10069) ((-112 . -160) T) ((-112 . -1012) T) ((-112 . -552) 10036) ((-112 . -1127) T) ((-112 . -13) T) ((-112 . -72) T) ((-112 . -747) 10018) ((-111 . -994) T) ((-111 . -427) 9999) ((-111 . -552) 9965) ((-111 . -555) 9946) ((-111 . -1012) T) ((-111 . -1127) T) ((-111 . -13) T) ((-111 . -72) T) ((-111 . -64) T) ((-110 . -994) T) ((-110 . -427) 9927) ((-110 . -552) 9893) ((-110 . -555) 9874) ((-110 . -1012) T) ((-110 . -1127) T) ((-110 . -13) T) ((-110 . -72) T) ((-110 . -64) T) ((-108 . -402) 9851) ((-108 . -555) 9747) ((-108 . -950) 9731) ((-108 . -1012) T) ((-108 . -552) 9713) ((-108 . -1127) T) ((-108 . -13) T) ((-108 . -72) T) ((-108 . -407) 9668) ((-108 . -241) 9645) ((-107 . -756) T) ((-107 . -552) 9627) ((-107 . -1012) T) ((-107 . -72) T) ((-107 . -13) T) ((-107 . -1127) T) ((-107 . -759) T) ((-107 . -23) T) ((-107 . -25) T) ((-107 . -663) T) ((-107 . -1024) T) ((-107 . -950) 9609) ((-107 . -555) 9591) ((-106 . -994) T) ((-106 . -427) 9572) ((-106 . -552) 9538) ((-106 . -555) 9519) ((-106 . -1012) T) ((-106 . -1127) T) ((-106 . -13) T) ((-106 . -72) T) ((-106 . -64) T) ((-103 . -1012) T) ((-103 . -552) 9501) ((-103 . -1127) T) ((-103 . -13) T) ((-103 . -72) T) ((-102 . -19) 9483) ((-102 . -593) 9465) ((-102 . -243) 9440) ((-102 . -241) 9390) ((-102 . -538) 9365) ((-102 . -553) NIL) ((-102 . -426) 9347) ((-102 . -1012) T) ((-102 . -452) NIL) ((-102 . -259) NIL) ((-102 . -552) 9291) ((-102 . -72) T) ((-102 . -1127) T) ((-102 . -13) T) ((-102 . -34) T) ((-102 . -124) 9273) ((-102 . -756) T) ((-102 . -759) T) ((-102 . -321) 9255) ((-101 . -752) T) ((-101 . -759) T) ((-101 . -756) T) ((-101 . -1012) T) ((-101 . -552) 9237) ((-101 . -1127) T) ((-101 . -13) T) ((-101 . -72) T) ((-101 . -317) T) ((-101 . -604) T) ((-100 . -98) 9221) ((-100 . -923) 9205) ((-100 . -34) T) ((-100 . -13) T) ((-100 . -1127) T) ((-100 . -72) 9159) ((-100 . -552) 9094) ((-100 . -259) 9032) ((-100 . -452) 8965) ((-100 . -1012) 8943) ((-100 . -426) 8927) ((-100 . -92) 8911) ((-99 . -98) 8895) ((-99 . -923) 8879) ((-99 . -34) T) ((-99 . -13) T) ((-99 . -1127) T) ((-99 . -72) 8833) ((-99 . -552) 8768) ((-99 . -259) 8706) ((-99 . -452) 8639) ((-99 . -1012) 8617) ((-99 . -426) 8601) ((-99 . -92) 8585) ((-94 . -98) 8569) ((-94 . -923) 8553) ((-94 . -34) T) ((-94 . -13) T) ((-94 . -1127) T) ((-94 . -72) 8507) ((-94 . -552) 8442) ((-94 . -259) 8380) ((-94 . -452) 8313) ((-94 . -1012) 8291) ((-94 . -426) 8275) ((-94 . -92) 8259) ((-90 . -904) 8237) ((-90 . -1064) NIL) ((-90 . -950) 8215) ((-90 . -555) 8146) ((-90 . -553) NIL) ((-90 . -933) NIL) ((-90 . -821) NIL) ((-90 . -794) 8124) ((-90 . -755) NIL) ((-90 . -721) NIL) ((-90 . -718) NIL) ((-90 . -759) NIL) ((-90 . -756) NIL) ((-90 . -716) NIL) ((-90 . -714) NIL) ((-90 . -740) NIL) ((-90 . -796) NIL) ((-90 . -340) 8102) ((-90 . -580) 8080) ((-90 . -590) 8026) ((-90 . -326) 8004) ((-90 . -241) 7938) ((-90 . -259) 7885) ((-90 . -452) 7755) ((-90 . -287) 7733) ((-90 . -201) T) ((-90 . -82) 7652) ((-90 . -963) 7598) ((-90 . -968) 7544) ((-90 . -245) T) ((-90 . -654) 7490) ((-90 . -582) 7436) ((-90 . -588) 7367) ((-90 . -38) 7313) ((-90 . -257) T) ((-90 . -389) T) ((-90 . -146) T) ((-90 . -494) T) ((-90 . -832) T) ((-90 . -1132) T) ((-90 . -311) T) ((-90 . -190) NIL) ((-90 . -186) NIL) ((-90 . -189) NIL) ((-90 . -225) 7291) ((-90 . -806) NIL) ((-90 . -811) NIL) ((-90 . -809) NIL) ((-90 . -184) 7269) ((-90 . -120) T) ((-90 . -118) NIL) ((-90 . -104) T) ((-90 . -25) T) ((-90 . -72) T) ((-90 . -13) T) ((-90 . -1127) T) ((-90 . -552) 7251) ((-90 . -1012) T) ((-90 . -23) T) ((-90 . -21) T) ((-90 . -961) T) ((-90 . -663) T) ((-90 . -1059) T) ((-90 . -1024) T) ((-90 . -969) T) ((-89 . -779) 7235) ((-89 . -832) T) ((-89 . -494) T) ((-89 . -245) T) ((-89 . -146) T) ((-89 . -555) 7207) ((-89 . -654) 7194) ((-89 . -582) 7181) ((-89 . -968) 7168) ((-89 . -963) 7155) ((-89 . -82) 7140) ((-89 . -38) 7127) ((-89 . -389) T) ((-89 . -257) T) ((-89 . -961) T) ((-89 . -663) T) ((-89 . -1059) T) ((-89 . -1024) T) ((-89 . -969) T) ((-89 . -21) T) ((-89 . -588) 7099) ((-89 . -23) T) ((-89 . -1012) T) ((-89 . -552) 7081) ((-89 . -1127) T) ((-89 . -13) T) ((-89 . -72) T) ((-89 . -25) T) ((-89 . -104) T) ((-89 . -590) 7068) ((-89 . -120) T) ((-86 . -756) T) ((-86 . -552) 7050) ((-86 . -1012) T) ((-86 . -72) T) ((-86 . -13) T) ((-86 . -1127) T) ((-86 . -759) T) ((-86 . -747) 7031) ((-85 . -752) T) ((-85 . -759) T) ((-85 . -756) T) ((-85 . -1012) T) ((-85 . -552) 7013) ((-85 . -1127) T) ((-85 . -13) T) ((-85 . -72) T) ((-85 . -317) T) ((-85 . -880) T) ((-85 . -604) T) ((-85 . -84) T) ((-85 . -553) 6995) ((-81 . -96) T) ((-81 . -321) 6978) ((-81 . -759) T) ((-81 . -756) T) ((-81 . -124) 6961) ((-81 . -34) T) ((-81 . -72) T) ((-81 . -552) 6943) ((-81 . -259) NIL) ((-81 . -452) NIL) ((-81 . -1012) T) ((-81 . -426) 6926) ((-81 . -553) 6908) ((-81 . -241) 6859) ((-81 . -538) 6835) ((-81 . -243) 6811) ((-81 . -593) 6794) ((-81 . -19) 6777) ((-81 . -604) T) ((-81 . -13) T) ((-81 . -1127) T) ((-81 . -84) T) ((-79 . -80) 6761) ((-79 . -1127) T) ((-79 . |MappingCategory|) 6735) ((-79 . -1012) T) ((-79 . -552) 6717) ((-79 . -13) T) ((-79 . -72) T) ((-78 . -552) 6699) ((-77 . -904) 6681) ((-77 . -1064) T) ((-77 . -555) 6631) ((-77 . -950) 6591) ((-77 . -553) 6521) ((-77 . -933) T) ((-77 . -821) NIL) ((-77 . -794) 6503) ((-77 . -755) T) ((-77 . -721) T) ((-77 . -718) T) ((-77 . -759) T) ((-77 . -756) T) ((-77 . -716) T) ((-77 . -714) T) ((-77 . -740) T) ((-77 . -796) 6485) ((-77 . -340) 6467) ((-77 . -580) 6449) ((-77 . -326) 6431) ((-77 . -241) NIL) ((-77 . -259) NIL) ((-77 . -452) NIL) ((-77 . -287) 6413) ((-77 . -201) T) ((-77 . -82) 6340) ((-77 . -963) 6290) ((-77 . -968) 6240) ((-77 . -245) T) ((-77 . -654) 6190) ((-77 . -582) 6140) ((-77 . -590) 6090) ((-77 . -588) 6040) ((-77 . -38) 5990) ((-77 . -257) T) ((-77 . -389) T) ((-77 . -146) T) ((-77 . -494) T) ((-77 . -832) T) ((-77 . -1132) T) ((-77 . -311) T) ((-77 . -190) T) ((-77 . -186) 5977) ((-77 . -189) T) ((-77 . -225) 5959) ((-77 . -806) NIL) ((-77 . -811) NIL) ((-77 . -809) NIL) ((-77 . -184) 5941) ((-77 . -120) T) ((-77 . -118) NIL) ((-77 . -104) T) ((-77 . -25) T) ((-77 . -72) T) ((-77 . -13) T) ((-77 . -1127) T) ((-77 . -552) 5884) ((-77 . -1012) T) ((-77 . -23) T) ((-77 . -21) T) ((-77 . -961) T) ((-77 . -663) T) ((-77 . -1059) T) ((-77 . -1024) T) ((-77 . -969) T) ((-73 . -98) 5868) ((-73 . -923) 5852) ((-73 . -34) T) ((-73 . -13) T) ((-73 . -1127) T) ((-73 . -72) 5806) ((-73 . -552) 5741) ((-73 . -259) 5679) ((-73 . -452) 5612) ((-73 . -1012) 5590) ((-73 . -426) 5574) ((-73 . -92) 5558) ((-69 . -410) T) ((-69 . -1024) T) ((-69 . -72) T) ((-69 . -13) T) ((-69 . -1127) T) ((-69 . -552) 5540) ((-69 . -1012) T) ((-69 . -663) T) ((-69 . -241) 5519) ((-67 . -994) T) ((-67 . -427) 5500) ((-67 . -552) 5466) ((-67 . -555) 5447) ((-67 . -1012) T) ((-67 . -1127) T) ((-67 . -13) T) ((-67 . -72) T) ((-67 . -64) T) ((-62 . -1033) 5431) ((-62 . -426) 5415) ((-62 . -1012) 5393) ((-62 . -452) 5326) ((-62 . -259) 5264) ((-62 . -552) 5199) ((-62 . -72) 5153) ((-62 . -1127) T) ((-62 . -13) T) ((-62 . -34) T) ((-62 . -76) 5137) ((-60 . -57) 5099) ((-60 . -34) T) ((-60 . -13) T) ((-60 . -1127) T) ((-60 . -72) 5053) ((-60 . -552) 4988) ((-60 . -259) 4926) ((-60 . -452) 4859) ((-60 . -1012) 4837) ((-60 . -426) 4821) ((-58 . -19) 4805) ((-58 . -593) 4789) ((-58 . -243) 4766) ((-58 . -241) 4718) ((-58 . -538) 4695) ((-58 . -553) 4656) ((-58 . -426) 4640) ((-58 . -1012) 4593) ((-58 . -452) 4526) ((-58 . -259) 4464) ((-58 . -552) 4379) ((-58 . -72) 4313) ((-58 . -1127) T) ((-58 . -13) T) ((-58 . -34) T) ((-58 . -124) 4297) ((-58 . -756) 4276) ((-58 . -759) 4255) ((-58 . -321) 4239) ((-55 . -1012) T) ((-55 . -552) 4221) ((-55 . -1127) T) ((-55 . -13) T) ((-55 . -72) T) ((-55 . -950) 4203) ((-55 . -555) 4185) ((-51 . -1012) T) ((-51 . -552) 4167) ((-51 . -1127) T) ((-51 . -13) T) ((-51 . -72) T) ((-50 . -560) 4151) ((-50 . -555) 4120) ((-50 . -590) 4094) ((-50 . -588) 4053) ((-50 . -969) T) ((-50 . -1024) T) ((-50 . -1059) T) ((-50 . -663) T) ((-50 . -961) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1012) T) ((-50 . -552) 4035) ((-50 . -1127) T) ((-50 . -13) T) ((-50 . -72) T) ((-50 . -25) T) ((-50 . -104) T) ((-50 . -950) 4019) ((-49 . -1012) T) ((-49 . -552) 4001) ((-49 . -1127) T) ((-49 . -13) T) ((-49 . -72) T) ((-48 . -253) T) ((-48 . -72) T) ((-48 . -13) T) ((-48 . -1127) T) ((-48 . -552) 3983) ((-48 . -1012) T) ((-48 . -555) 3884) ((-48 . -950) 3827) ((-48 . -452) 3793) ((-48 . -259) 3780) ((-48 . -27) T) ((-48 . -915) T) ((-48 . -201) T) ((-48 . -82) 3729) ((-48 . -963) 3694) ((-48 . -968) 3659) ((-48 . -245) T) ((-48 . -654) 3624) ((-48 . -582) 3589) ((-48 . -590) 3539) ((-48 . -588) 3489) ((-48 . -104) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -961) T) ((-48 . -663) T) ((-48 . -1059) T) ((-48 . -1024) T) ((-48 . -969) T) ((-48 . -38) 3454) ((-48 . -257) T) ((-48 . -389) T) ((-48 . -146) T) ((-48 . -494) T) ((-48 . -832) T) ((-48 . -1132) T) ((-48 . -311) T) ((-48 . -580) 3414) ((-48 . -933) T) ((-48 . -553) 3359) ((-48 . -120) T) ((-48 . -190) T) ((-48 . -186) 3346) ((-48 . -189) T) ((-45 . -36) 3325) ((-45 . -538) 3248) ((-45 . -259) 3046) ((-45 . -452) 2798) ((-45 . -426) 2733) ((-45 . -241) 2631) ((-45 . -243) 2554) ((-45 . -549) 2533) ((-45 . -193) 2481) ((-45 . -76) 2429) ((-45 . -183) 2377) ((-45 . -1105) 2356) ((-45 . -237) 2304) ((-45 . -124) 2252) ((-45 . -34) T) ((-45 . -13) T) ((-45 . -1127) T) ((-45 . -72) T) ((-45 . -552) 2234) ((-45 . -1012) T) ((-45 . -553) NIL) ((-45 . -593) 2182) ((-45 . -321) 2130) ((-45 . -759) NIL) ((-45 . -756) NIL) ((-45 . -1062) 2078) ((-45 . -923) 2026) ((-45 . -1166) 1974) ((-45 . -608) 1922) ((-44 . -358) 1906) ((-44 . -683) 1890) ((-44 . -657) T) ((-44 . -685) T) ((-44 . -82) 1869) ((-44 . -963) 1853) ((-44 . -968) 1837) ((-44 . -21) T) ((-44 . -588) 1780) ((-44 . -23) T) ((-44 . -1012) T) ((-44 . -552) 1762) ((-44 . -72) T) ((-44 . -25) T) ((-44 . -104) T) ((-44 . -590) 1720) ((-44 . -582) 1704) ((-44 . -654) 1688) ((-44 . -315) 1672) ((-44 . -1127) T) ((-44 . -13) T) ((-44 . -241) 1649) ((-40 . -290) 1623) ((-40 . -146) T) ((-40 . -555) 1553) ((-40 . -969) T) ((-40 . -1024) T) ((-40 . -1059) T) ((-40 . -663) T) ((-40 . -961) T) ((-40 . -590) 1455) ((-40 . -588) 1385) ((-40 . -104) T) ((-40 . -25) T) ((-40 . -72) T) ((-40 . -13) T) ((-40 . -1127) T) ((-40 . -552) 1367) ((-40 . -1012) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -968) 1312) ((-40 . -963) 1257) ((-40 . -82) 1174) ((-40 . -553) 1158) ((-40 . -184) 1135) ((-40 . -809) 1087) ((-40 . -811) 999) ((-40 . -806) 909) ((-40 . -225) 886) ((-40 . -189) 826) ((-40 . -186) 760) ((-40 . -190) 732) ((-40 . -311) T) ((-40 . -1132) T) ((-40 . -832) T) ((-40 . -494) T) ((-40 . -654) 677) ((-40 . -582) 622) ((-40 . -38) 567) ((-40 . -389) T) ((-40 . -257) T) ((-40 . -245) T) ((-40 . -201) T) ((-40 . -317) NIL) ((-40 . -298) NIL) ((-40 . -1064) NIL) ((-40 . -118) 539) ((-40 . -342) NIL) ((-40 . -350) 511) ((-40 . -120) 483) ((-40 . -319) 455) ((-40 . -326) 432) ((-40 . -580) 366) ((-40 . -352) 343) ((-40 . -950) 220) ((-40 . -661) 192) ((-31 . -994) T) ((-31 . -427) 173) ((-31 . -552) 139) ((-31 . -555) 120) ((-31 . -1012) T) ((-31 . -1127) T) ((-31 . -13) T) ((-31 . -72) T) ((-31 . -64) T) ((-30 . -866) T) ((-30 . -552) 102) ((0 . |EnumerationCategory|) T) ((0 . -552) 84) ((0 . -1012) T) ((0 . -72) T) ((0 . -1127) T) ((-2 . |RecordCategory|) T) ((-2 . -552) 66) ((-2 . -1012) T) ((-2 . -72) T) ((-2 . -1127) T) ((-3 . |UnionCategory|) T) ((-3 . -552) 48) ((-3 . -1012) T) ((-3 . -72) T) ((-3 . -1127) T) ((-1 . -1012) T) ((-1 . -552) 30) ((-1 . -1127) T) ((-1 . -13) T) ((-1 . -72) T)) \ No newline at end of file
+((((-484)) . T))
+(((-1208 . -146) T) ((-1208 . -556) 199303) ((-1208 . -970) T) ((-1208 . -1025) T) ((-1208 . -1060) T) ((-1208 . -664) T) ((-1208 . -962) T) ((-1208 . -591) 199290) ((-1208 . -589) 199262) ((-1208 . -104) T) ((-1208 . -25) T) ((-1208 . -72) T) ((-1208 . -13) T) ((-1208 . -1128) T) ((-1208 . -553) 199244) ((-1208 . -1013) T) ((-1208 . -23) T) ((-1208 . -21) T) ((-1208 . -969) 199231) ((-1208 . -964) 199218) ((-1208 . -82) 199203) ((-1208 . -317) T) ((-1208 . -554) 199185) ((-1208 . -1065) T) ((-1204 . -1013) T) ((-1204 . -553) 199152) ((-1204 . -1128) T) ((-1204 . -13) T) ((-1204 . -72) T) ((-1204 . -427) 199134) ((-1204 . -556) 199116) ((-1203 . -1201) 199095) ((-1203 . -951) 199072) ((-1203 . -556) 199021) ((-1203 . -962) T) ((-1203 . -664) T) ((-1203 . -1060) T) ((-1203 . -1025) T) ((-1203 . -970) T) ((-1203 . -21) T) ((-1203 . -589) 198980) ((-1203 . -23) T) ((-1203 . -1013) T) ((-1203 . -553) 198962) ((-1203 . -1128) T) ((-1203 . -13) T) ((-1203 . -72) T) ((-1203 . -25) T) ((-1203 . -104) T) ((-1203 . -591) 198936) ((-1203 . -1193) 198920) ((-1203 . -655) 198890) ((-1203 . -583) 198860) ((-1203 . -969) 198844) ((-1203 . -964) 198828) ((-1203 . -82) 198807) ((-1203 . -38) 198777) ((-1203 . -1198) 198756) ((-1202 . -962) T) ((-1202 . -664) T) ((-1202 . -1060) T) ((-1202 . -1025) T) ((-1202 . -970) T) ((-1202 . -21) T) ((-1202 . -589) 198715) ((-1202 . -23) T) ((-1202 . -1013) T) ((-1202 . -553) 198697) ((-1202 . -1128) T) ((-1202 . -13) T) ((-1202 . -72) T) ((-1202 . -25) T) ((-1202 . -104) T) ((-1202 . -591) 198671) ((-1202 . -556) 198627) ((-1202 . -1193) 198611) ((-1202 . -655) 198581) ((-1202 . -583) 198551) ((-1202 . -969) 198535) ((-1202 . -964) 198519) ((-1202 . -82) 198498) ((-1202 . -38) 198468) ((-1202 . -332) 198447) ((-1202 . -951) 198431) ((-1200 . -1201) 198407) ((-1200 . -951) 198381) ((-1200 . -556) 198327) ((-1200 . -962) T) ((-1200 . -664) T) ((-1200 . -1060) T) ((-1200 . -1025) T) ((-1200 . -970) T) ((-1200 . -21) T) ((-1200 . -589) 198286) ((-1200 . -23) T) ((-1200 . -1013) T) ((-1200 . -553) 198268) ((-1200 . -1128) T) ((-1200 . -13) T) ((-1200 . -72) T) ((-1200 . -25) T) ((-1200 . -104) T) ((-1200 . -591) 198242) ((-1200 . -1193) 198226) ((-1200 . -655) 198196) ((-1200 . -583) 198166) ((-1200 . -969) 198150) ((-1200 . -964) 198134) ((-1200 . -82) 198113) ((-1200 . -38) 198083) ((-1200 . -1198) 198059) ((-1199 . -1201) 198038) ((-1199 . -951) 197995) ((-1199 . -556) 197924) ((-1199 . -962) T) ((-1199 . -664) T) ((-1199 . -1060) T) ((-1199 . -1025) T) ((-1199 . -970) T) ((-1199 . -21) T) ((-1199 . -589) 197883) ((-1199 . -23) T) ((-1199 . -1013) T) ((-1199 . -553) 197865) ((-1199 . -1128) T) ((-1199 . -13) T) ((-1199 . -72) T) ((-1199 . -25) T) ((-1199 . -104) T) ((-1199 . -591) 197839) ((-1199 . -1193) 197823) ((-1199 . -655) 197793) ((-1199 . -583) 197763) ((-1199 . -969) 197747) ((-1199 . -964) 197731) ((-1199 . -82) 197710) ((-1199 . -38) 197680) ((-1199 . -1198) 197659) ((-1199 . -332) 197631) ((-1194 . -332) 197603) ((-1194 . -556) 197552) ((-1194 . -951) 197529) ((-1194 . -583) 197499) ((-1194 . -655) 197469) ((-1194 . -591) 197443) ((-1194 . -589) 197402) ((-1194 . -104) T) ((-1194 . -25) T) ((-1194 . -72) T) ((-1194 . -13) T) ((-1194 . -1128) T) ((-1194 . -553) 197384) ((-1194 . -1013) T) ((-1194 . -23) T) ((-1194 . -21) T) ((-1194 . -969) 197368) ((-1194 . -964) 197352) ((-1194 . -82) 197331) ((-1194 . -1201) 197310) ((-1194 . -962) T) ((-1194 . -664) T) ((-1194 . -1060) T) ((-1194 . -1025) T) ((-1194 . -970) T) ((-1194 . -1193) 197294) ((-1194 . -38) 197264) ((-1194 . -1198) 197243) ((-1192 . -1123) 197212) ((-1192 . -553) 197174) ((-1192 . -124) 197158) ((-1192 . -34) T) ((-1192 . -13) T) ((-1192 . -1128) T) ((-1192 . -72) T) ((-1192 . -259) 197096) ((-1192 . -453) 197029) ((-1192 . -1013) T) ((-1192 . -426) 197013) ((-1192 . -554) 196974) ((-1192 . -890) 196943) ((-1191 . -962) T) ((-1191 . -664) T) ((-1191 . -1060) T) ((-1191 . -1025) T) ((-1191 . -970) T) ((-1191 . -21) T) ((-1191 . -589) 196888) ((-1191 . -23) T) ((-1191 . -1013) T) ((-1191 . -553) 196857) ((-1191 . -1128) T) ((-1191 . -13) T) ((-1191 . -72) T) ((-1191 . -25) T) ((-1191 . -104) T) ((-1191 . -591) 196817) ((-1191 . -556) 196759) ((-1191 . -427) 196743) ((-1191 . -38) 196713) ((-1191 . -82) 196678) ((-1191 . -964) 196648) ((-1191 . -969) 196618) ((-1191 . -583) 196588) ((-1191 . -655) 196558) ((-1190 . -995) T) ((-1190 . -427) 196539) ((-1190 . -553) 196505) ((-1190 . -556) 196486) ((-1190 . -1013) T) ((-1190 . -1128) T) ((-1190 . -13) T) ((-1190 . -72) T) ((-1190 . -64) T) ((-1189 . -995) T) ((-1189 . -427) 196467) ((-1189 . -553) 196433) ((-1189 . -556) 196414) ((-1189 . -1013) T) ((-1189 . -1128) T) ((-1189 . -13) T) ((-1189 . -72) T) ((-1189 . -64) T) ((-1184 . -553) 196396) ((-1182 . -1013) T) ((-1182 . -553) 196378) ((-1182 . -1128) T) ((-1182 . -13) T) ((-1182 . -72) T) ((-1181 . -1013) T) ((-1181 . -553) 196360) ((-1181 . -1128) T) ((-1181 . -13) T) ((-1181 . -72) T) ((-1178 . -1177) 196344) ((-1178 . -321) 196328) ((-1178 . -760) 196307) ((-1178 . -757) 196286) ((-1178 . -124) 196270) ((-1178 . -34) T) ((-1178 . -13) T) ((-1178 . -1128) T) ((-1178 . -72) 196204) ((-1178 . -553) 196119) ((-1178 . -259) 196057) ((-1178 . -453) 195990) ((-1178 . -1013) 195943) ((-1178 . -426) 195927) ((-1178 . -554) 195888) ((-1178 . -241) 195840) ((-1178 . -539) 195817) ((-1178 . -243) 195794) ((-1178 . -594) 195778) ((-1178 . -19) 195762) ((-1175 . -1013) T) ((-1175 . -553) 195728) ((-1175 . -1128) T) ((-1175 . -13) T) ((-1175 . -72) T) ((-1168 . -1171) 195712) ((-1168 . -190) 195671) ((-1168 . -556) 195553) ((-1168 . -591) 195478) ((-1168 . -589) 195388) ((-1168 . -104) T) ((-1168 . -25) T) ((-1168 . -72) T) ((-1168 . -553) 195370) ((-1168 . -1013) T) ((-1168 . -23) T) ((-1168 . -21) T) ((-1168 . -970) T) ((-1168 . -1025) T) ((-1168 . -1060) T) ((-1168 . -664) T) ((-1168 . -962) T) ((-1168 . -186) 195323) ((-1168 . -13) T) ((-1168 . -1128) T) ((-1168 . -189) 195282) ((-1168 . -241) 195247) ((-1168 . -810) 195160) ((-1168 . -807) 195048) ((-1168 . -812) 194961) ((-1168 . -887) 194931) ((-1168 . -38) 194828) ((-1168 . -82) 194693) ((-1168 . -964) 194579) ((-1168 . -969) 194465) ((-1168 . -583) 194362) ((-1168 . -655) 194259) ((-1168 . -118) 194238) ((-1168 . -120) 194217) ((-1168 . -146) 194171) ((-1168 . -495) 194150) ((-1168 . -245) 194129) ((-1168 . -47) 194106) ((-1168 . -1157) 194083) ((-1168 . -35) 194049) ((-1168 . -66) 194015) ((-1168 . -239) 193981) ((-1168 . -430) 193947) ((-1168 . -1117) 193913) ((-1168 . -1114) 193879) ((-1168 . -916) 193845) ((-1165 . -276) 193789) ((-1165 . -951) 193755) ((-1165 . -352) 193721) ((-1165 . -38) 193578) ((-1165 . -556) 193452) ((-1165 . -591) 193341) ((-1165 . -589) 193215) ((-1165 . -970) T) ((-1165 . -1025) T) ((-1165 . -1060) T) ((-1165 . -664) T) ((-1165 . -962) T) ((-1165 . -82) 193065) ((-1165 . -964) 192954) ((-1165 . -969) 192843) ((-1165 . -21) T) ((-1165 . -23) T) ((-1165 . -1013) T) ((-1165 . -553) 192825) ((-1165 . -1128) T) ((-1165 . -13) T) ((-1165 . -72) T) ((-1165 . -25) T) ((-1165 . -104) T) ((-1165 . -583) 192682) ((-1165 . -655) 192539) ((-1165 . -118) 192500) ((-1165 . -120) 192461) ((-1165 . -146) T) ((-1165 . -495) T) ((-1165 . -245) T) ((-1165 . -47) 192405) ((-1164 . -1163) 192384) ((-1164 . -311) 192363) ((-1164 . -1133) 192342) ((-1164 . -833) 192321) ((-1164 . -495) 192275) ((-1164 . -146) 192209) ((-1164 . -556) 192028) ((-1164 . -655) 191875) ((-1164 . -583) 191722) ((-1164 . -38) 191569) ((-1164 . -389) 191548) ((-1164 . -257) 191527) ((-1164 . -591) 191427) ((-1164 . -589) 191312) ((-1164 . -970) T) ((-1164 . -1025) T) ((-1164 . -1060) T) ((-1164 . -664) T) ((-1164 . -962) T) ((-1164 . -82) 191132) ((-1164 . -964) 190973) ((-1164 . -969) 190814) ((-1164 . -21) T) ((-1164 . -23) T) ((-1164 . -1013) T) ((-1164 . -553) 190796) ((-1164 . -1128) T) ((-1164 . -13) T) ((-1164 . -72) T) ((-1164 . -25) T) ((-1164 . -104) T) ((-1164 . -245) 190750) ((-1164 . -201) 190729) ((-1164 . -916) 190695) ((-1164 . -1114) 190661) ((-1164 . -1117) 190627) ((-1164 . -430) 190593) ((-1164 . -239) 190559) ((-1164 . -66) 190525) ((-1164 . -35) 190491) ((-1164 . -1157) 190461) ((-1164 . -47) 190431) ((-1164 . -120) 190410) ((-1164 . -118) 190389) ((-1164 . -887) 190352) ((-1164 . -812) 190258) ((-1164 . -807) 190162) ((-1164 . -810) 190068) ((-1164 . -241) 190026) ((-1164 . -189) 189978) ((-1164 . -186) 189924) ((-1164 . -190) 189876) ((-1164 . -1161) 189860) ((-1164 . -951) 189844) ((-1159 . -1163) 189805) ((-1159 . -311) 189784) ((-1159 . -1133) 189763) ((-1159 . -833) 189742) ((-1159 . -495) 189696) ((-1159 . -146) 189630) ((-1159 . -556) 189379) ((-1159 . -655) 189226) ((-1159 . -583) 189073) ((-1159 . -38) 188920) ((-1159 . -389) 188899) ((-1159 . -257) 188878) ((-1159 . -591) 188778) ((-1159 . -589) 188663) ((-1159 . -970) T) ((-1159 . -1025) T) ((-1159 . -1060) T) ((-1159 . -664) T) ((-1159 . -962) T) ((-1159 . -82) 188483) ((-1159 . -964) 188324) ((-1159 . -969) 188165) ((-1159 . -21) T) ((-1159 . -23) T) ((-1159 . -1013) T) ((-1159 . -553) 188147) ((-1159 . -1128) T) ((-1159 . -13) T) ((-1159 . -72) T) ((-1159 . -25) T) ((-1159 . -104) T) ((-1159 . -245) 188101) ((-1159 . -201) 188080) ((-1159 . -916) 188046) ((-1159 . -1114) 188012) ((-1159 . -1117) 187978) ((-1159 . -430) 187944) ((-1159 . -239) 187910) ((-1159 . -66) 187876) ((-1159 . -35) 187842) ((-1159 . -1157) 187812) ((-1159 . -47) 187782) ((-1159 . -120) 187761) ((-1159 . -118) 187740) ((-1159 . -887) 187703) ((-1159 . -812) 187609) ((-1159 . -807) 187490) ((-1159 . -810) 187396) ((-1159 . -241) 187354) ((-1159 . -189) 187306) ((-1159 . -186) 187252) ((-1159 . -190) 187204) ((-1159 . -1161) 187188) ((-1159 . -951) 187123) ((-1147 . -1154) 187107) ((-1147 . -1065) 187085) ((-1147 . -554) NIL) ((-1147 . -259) 187072) ((-1147 . -453) 187020) ((-1147 . -276) 186997) ((-1147 . -951) 186880) ((-1147 . -352) 186864) ((-1147 . -38) 186696) ((-1147 . -82) 186501) ((-1147 . -964) 186327) ((-1147 . -969) 186153) ((-1147 . -589) 186063) ((-1147 . -591) 185952) ((-1147 . -583) 185784) ((-1147 . -655) 185616) ((-1147 . -556) 185372) ((-1147 . -118) 185351) ((-1147 . -120) 185330) ((-1147 . -47) 185307) ((-1147 . -326) 185291) ((-1147 . -581) 185239) ((-1147 . -810) 185183) ((-1147 . -807) 185090) ((-1147 . -812) 185001) ((-1147 . -797) NIL) ((-1147 . -822) 184980) ((-1147 . -1133) 184959) ((-1147 . -862) 184929) ((-1147 . -833) 184908) ((-1147 . -495) 184822) ((-1147 . -245) 184736) ((-1147 . -146) 184630) ((-1147 . -389) 184564) ((-1147 . -257) 184543) ((-1147 . -241) 184470) ((-1147 . -190) T) ((-1147 . -104) T) ((-1147 . -25) T) ((-1147 . -72) T) ((-1147 . -553) 184452) ((-1147 . -1013) T) ((-1147 . -23) T) ((-1147 . -21) T) ((-1147 . -970) T) ((-1147 . -1025) T) ((-1147 . -1060) T) ((-1147 . -664) T) ((-1147 . -962) T) ((-1147 . -186) 184439) ((-1147 . -13) T) ((-1147 . -1128) T) ((-1147 . -189) T) ((-1147 . -225) 184423) ((-1147 . -184) 184407) ((-1145 . -1006) 184391) ((-1145 . -558) 184375) ((-1145 . -1013) 184353) ((-1145 . -553) 184320) ((-1145 . -1128) 184298) ((-1145 . -13) 184276) ((-1145 . -72) 184254) ((-1145 . -1007) 184211) ((-1143 . -1142) 184190) ((-1143 . -916) 184156) ((-1143 . -1114) 184122) ((-1143 . -1117) 184088) ((-1143 . -430) 184054) ((-1143 . -239) 184020) ((-1143 . -66) 183986) ((-1143 . -35) 183952) ((-1143 . -1157) 183929) ((-1143 . -47) 183906) ((-1143 . -556) 183661) ((-1143 . -655) 183481) ((-1143 . -583) 183301) ((-1143 . -591) 183112) ((-1143 . -589) 182970) ((-1143 . -969) 182784) ((-1143 . -964) 182598) ((-1143 . -82) 182386) ((-1143 . -38) 182206) ((-1143 . -887) 182176) ((-1143 . -241) 182076) ((-1143 . -1140) 182060) ((-1143 . -970) T) ((-1143 . -1025) T) ((-1143 . -1060) T) ((-1143 . -664) T) ((-1143 . -962) T) ((-1143 . -21) T) ((-1143 . -23) T) ((-1143 . -1013) T) ((-1143 . -553) 182042) ((-1143 . -1128) T) ((-1143 . -13) T) ((-1143 . -72) T) ((-1143 . -25) T) ((-1143 . -104) T) ((-1143 . -118) 181970) ((-1143 . -120) 181898) ((-1143 . -554) 181571) ((-1143 . -184) 181541) ((-1143 . -810) 181395) ((-1143 . -812) 181195) ((-1143 . -807) 180993) ((-1143 . -225) 180963) ((-1143 . -189) 180825) ((-1143 . -186) 180681) ((-1143 . -190) 180589) ((-1143 . -311) 180568) ((-1143 . -1133) 180547) ((-1143 . -833) 180526) ((-1143 . -495) 180480) ((-1143 . -146) 180414) ((-1143 . -389) 180393) ((-1143 . -257) 180372) ((-1143 . -245) 180326) ((-1143 . -201) 180305) ((-1143 . -287) 180275) ((-1143 . -453) 180135) ((-1143 . -259) 180074) ((-1143 . -326) 180044) ((-1143 . -581) 179952) ((-1143 . -340) 179922) ((-1143 . -797) 179795) ((-1143 . -741) 179748) ((-1143 . -715) 179701) ((-1143 . -717) 179654) ((-1143 . -757) 179556) ((-1143 . -760) 179458) ((-1143 . -719) 179411) ((-1143 . -722) 179364) ((-1143 . -756) 179317) ((-1143 . -795) 179287) ((-1143 . -822) 179240) ((-1143 . -934) 179193) ((-1143 . -951) 178982) ((-1143 . -1065) 178934) ((-1143 . -905) 178904) ((-1138 . -1142) 178865) ((-1138 . -916) 178831) ((-1138 . -1114) 178797) ((-1138 . -1117) 178763) ((-1138 . -430) 178729) ((-1138 . -239) 178695) ((-1138 . -66) 178661) ((-1138 . -35) 178627) ((-1138 . -1157) 178604) ((-1138 . -47) 178581) ((-1138 . -556) 178382) ((-1138 . -655) 178184) ((-1138 . -583) 177986) ((-1138 . -591) 177841) ((-1138 . -589) 177681) ((-1138 . -969) 177477) ((-1138 . -964) 177273) ((-1138 . -82) 177025) ((-1138 . -38) 176827) ((-1138 . -887) 176797) ((-1138 . -241) 176625) ((-1138 . -1140) 176609) ((-1138 . -970) T) ((-1138 . -1025) T) ((-1138 . -1060) T) ((-1138 . -664) T) ((-1138 . -962) T) ((-1138 . -21) T) ((-1138 . -23) T) ((-1138 . -1013) T) ((-1138 . -553) 176591) ((-1138 . -1128) T) ((-1138 . -13) T) ((-1138 . -72) T) ((-1138 . -25) T) ((-1138 . -104) T) ((-1138 . -118) 176501) ((-1138 . -120) 176411) ((-1138 . -554) NIL) ((-1138 . -184) 176363) ((-1138 . -810) 176199) ((-1138 . -812) 175963) ((-1138 . -807) 175702) ((-1138 . -225) 175654) ((-1138 . -189) 175480) ((-1138 . -186) 175300) ((-1138 . -190) 175190) ((-1138 . -311) 175169) ((-1138 . -1133) 175148) ((-1138 . -833) 175127) ((-1138 . -495) 175081) ((-1138 . -146) 175015) ((-1138 . -389) 174994) ((-1138 . -257) 174973) ((-1138 . -245) 174927) ((-1138 . -201) 174906) ((-1138 . -287) 174858) ((-1138 . -453) 174592) ((-1138 . -259) 174477) ((-1138 . -326) 174429) ((-1138 . -581) 174381) ((-1138 . -340) 174333) ((-1138 . -797) NIL) ((-1138 . -741) NIL) ((-1138 . -715) NIL) ((-1138 . -717) NIL) ((-1138 . -757) NIL) ((-1138 . -760) NIL) ((-1138 . -719) NIL) ((-1138 . -722) NIL) ((-1138 . -756) NIL) ((-1138 . -795) 174285) ((-1138 . -822) NIL) ((-1138 . -934) NIL) ((-1138 . -951) 174251) ((-1138 . -1065) NIL) ((-1138 . -905) 174203) ((-1137 . -753) T) ((-1137 . -760) T) ((-1137 . -757) T) ((-1137 . -1013) T) ((-1137 . -553) 174185) ((-1137 . -1128) T) ((-1137 . -13) T) ((-1137 . -72) T) ((-1137 . -317) T) ((-1137 . -605) T) ((-1136 . -753) T) ((-1136 . -760) T) ((-1136 . -757) T) ((-1136 . -1013) T) ((-1136 . -553) 174167) ((-1136 . -1128) T) ((-1136 . -13) T) ((-1136 . -72) T) ((-1136 . -317) T) ((-1136 . -605) T) ((-1135 . -753) T) ((-1135 . -760) T) ((-1135 . -757) T) ((-1135 . -1013) T) ((-1135 . -553) 174149) ((-1135 . -1128) T) ((-1135 . -13) T) ((-1135 . -72) T) ((-1135 . -317) T) ((-1135 . -605) T) ((-1134 . -753) T) ((-1134 . -760) T) ((-1134 . -757) T) ((-1134 . -1013) T) ((-1134 . -553) 174131) ((-1134 . -1128) T) ((-1134 . -13) T) ((-1134 . -72) T) ((-1134 . -317) T) ((-1134 . -605) T) ((-1129 . -995) T) ((-1129 . -427) 174112) ((-1129 . -553) 174078) ((-1129 . -556) 174059) ((-1129 . -1013) T) ((-1129 . -1128) T) ((-1129 . -13) T) ((-1129 . -72) T) ((-1129 . -64) T) ((-1126 . -427) 174036) ((-1126 . -553) 173977) ((-1126 . -556) 173954) ((-1126 . -1013) 173932) ((-1126 . -1128) 173910) ((-1126 . -13) 173888) ((-1126 . -72) 173866) ((-1121 . -680) 173842) ((-1121 . -35) 173808) ((-1121 . -66) 173774) ((-1121 . -239) 173740) ((-1121 . -430) 173706) ((-1121 . -1117) 173672) ((-1121 . -1114) 173638) ((-1121 . -916) 173604) ((-1121 . -47) 173573) ((-1121 . -38) 173470) ((-1121 . -583) 173367) ((-1121 . -655) 173264) ((-1121 . -556) 173146) ((-1121 . -245) 173125) ((-1121 . -495) 173104) ((-1121 . -82) 172969) ((-1121 . -964) 172855) ((-1121 . -969) 172741) ((-1121 . -146) 172695) ((-1121 . -120) 172674) ((-1121 . -118) 172653) ((-1121 . -591) 172578) ((-1121 . -589) 172488) ((-1121 . -887) 172449) ((-1121 . -812) 172430) ((-1121 . -1128) T) ((-1121 . -13) T) ((-1121 . -807) 172409) ((-1121 . -962) T) ((-1121 . -664) T) ((-1121 . -1060) T) ((-1121 . -1025) T) ((-1121 . -970) T) ((-1121 . -21) T) ((-1121 . -23) T) ((-1121 . -1013) T) ((-1121 . -553) 172391) ((-1121 . -72) T) ((-1121 . -25) T) ((-1121 . -104) T) ((-1121 . -810) 172372) ((-1121 . -453) 172339) ((-1121 . -259) 172326) ((-1115 . -924) 172310) ((-1115 . -34) T) ((-1115 . -13) T) ((-1115 . -1128) T) ((-1115 . -72) 172264) ((-1115 . -553) 172199) ((-1115 . -259) 172137) ((-1115 . -453) 172070) ((-1115 . -1013) 172048) ((-1115 . -426) 172032) ((-1110 . -313) 172006) ((-1110 . -72) T) ((-1110 . -13) T) ((-1110 . -1128) T) ((-1110 . -553) 171988) ((-1110 . -1013) T) ((-1108 . -1013) T) ((-1108 . -553) 171970) ((-1108 . -1128) T) ((-1108 . -13) T) ((-1108 . -72) T) ((-1108 . -556) 171952) ((-1103 . -748) 171936) ((-1103 . -72) T) ((-1103 . -13) T) ((-1103 . -1128) T) ((-1103 . -553) 171918) ((-1103 . -1013) T) ((-1101 . -1106) 171897) ((-1101 . -183) 171845) ((-1101 . -76) 171793) ((-1101 . -259) 171591) ((-1101 . -453) 171343) ((-1101 . -426) 171278) ((-1101 . -124) 171226) ((-1101 . -554) NIL) ((-1101 . -193) 171174) ((-1101 . -550) 171153) ((-1101 . -243) 171132) ((-1101 . -1128) T) ((-1101 . -13) T) ((-1101 . -241) 171111) ((-1101 . -1013) T) ((-1101 . -553) 171093) ((-1101 . -72) T) ((-1101 . -34) T) ((-1101 . -539) 171072) ((-1097 . -1013) T) ((-1097 . -553) 171054) ((-1097 . -1128) T) ((-1097 . -13) T) ((-1097 . -72) T) ((-1096 . -753) T) ((-1096 . -760) T) ((-1096 . -757) T) ((-1096 . -1013) T) ((-1096 . -553) 171036) ((-1096 . -1128) T) ((-1096 . -13) T) ((-1096 . -72) T) ((-1096 . -317) T) ((-1096 . -605) T) ((-1095 . -753) T) ((-1095 . -760) T) ((-1095 . -757) T) ((-1095 . -1013) T) ((-1095 . -553) 171018) ((-1095 . -1128) T) ((-1095 . -13) T) ((-1095 . -72) T) ((-1095 . -317) T) ((-1094 . -1174) T) ((-1094 . -1013) T) ((-1094 . -553) 170985) ((-1094 . -1128) T) ((-1094 . -13) T) ((-1094 . -72) T) ((-1094 . -951) 170921) ((-1094 . -556) 170857) ((-1093 . -553) 170839) ((-1092 . -553) 170821) ((-1091 . -276) 170798) ((-1091 . -951) 170696) ((-1091 . -352) 170680) ((-1091 . -38) 170577) ((-1091 . -556) 170434) ((-1091 . -591) 170359) ((-1091 . -589) 170269) ((-1091 . -970) T) ((-1091 . -1025) T) ((-1091 . -1060) T) ((-1091 . -664) T) ((-1091 . -962) T) ((-1091 . -82) 170134) ((-1091 . -964) 170020) ((-1091 . -969) 169906) ((-1091 . -21) T) ((-1091 . -23) T) ((-1091 . -1013) T) ((-1091 . -553) 169888) ((-1091 . -1128) T) ((-1091 . -13) T) ((-1091 . -72) T) ((-1091 . -25) T) ((-1091 . -104) T) ((-1091 . -583) 169785) ((-1091 . -655) 169682) ((-1091 . -118) 169661) ((-1091 . -120) 169640) ((-1091 . -146) 169594) ((-1091 . -495) 169573) ((-1091 . -245) 169552) ((-1091 . -47) 169529) ((-1089 . -757) T) ((-1089 . -553) 169511) ((-1089 . -1013) T) ((-1089 . -72) T) ((-1089 . -13) T) ((-1089 . -1128) T) ((-1089 . -760) T) ((-1089 . -554) 169433) ((-1089 . -556) 169399) ((-1089 . -951) 169381) ((-1089 . -797) 169348) ((-1088 . -1171) 169332) ((-1088 . -190) 169291) ((-1088 . -556) 169173) ((-1088 . -591) 169098) ((-1088 . -589) 169008) ((-1088 . -104) T) ((-1088 . -25) T) ((-1088 . -72) T) ((-1088 . -553) 168990) ((-1088 . -1013) T) ((-1088 . -23) T) ((-1088 . -21) T) ((-1088 . -970) T) ((-1088 . -1025) T) ((-1088 . -1060) T) ((-1088 . -664) T) ((-1088 . -962) T) ((-1088 . -186) 168943) ((-1088 . -13) T) ((-1088 . -1128) T) ((-1088 . -189) 168902) ((-1088 . -241) 168867) ((-1088 . -810) 168780) ((-1088 . -807) 168668) ((-1088 . -812) 168581) ((-1088 . -887) 168551) ((-1088 . -38) 168448) ((-1088 . -82) 168313) ((-1088 . -964) 168199) ((-1088 . -969) 168085) ((-1088 . -583) 167982) ((-1088 . -655) 167879) ((-1088 . -118) 167858) ((-1088 . -120) 167837) ((-1088 . -146) 167791) ((-1088 . -495) 167770) ((-1088 . -245) 167749) ((-1088 . -47) 167726) ((-1088 . -1157) 167703) ((-1088 . -35) 167669) ((-1088 . -66) 167635) ((-1088 . -239) 167601) ((-1088 . -430) 167567) ((-1088 . -1117) 167533) ((-1088 . -1114) 167499) ((-1088 . -916) 167465) ((-1087 . -1163) 167426) ((-1087 . -311) 167405) ((-1087 . -1133) 167384) ((-1087 . -833) 167363) ((-1087 . -495) 167317) ((-1087 . -146) 167251) ((-1087 . -556) 167000) ((-1087 . -655) 166847) ((-1087 . -583) 166694) ((-1087 . -38) 166541) ((-1087 . -389) 166520) ((-1087 . -257) 166499) ((-1087 . -591) 166399) ((-1087 . -589) 166284) ((-1087 . -970) T) ((-1087 . -1025) T) ((-1087 . -1060) T) ((-1087 . -664) T) ((-1087 . -962) T) ((-1087 . -82) 166104) ((-1087 . -964) 165945) ((-1087 . -969) 165786) ((-1087 . -21) T) ((-1087 . -23) T) ((-1087 . -1013) T) ((-1087 . -553) 165768) ((-1087 . -1128) T) ((-1087 . -13) T) ((-1087 . -72) T) ((-1087 . -25) T) ((-1087 . -104) T) ((-1087 . -245) 165722) ((-1087 . -201) 165701) ((-1087 . -916) 165667) ((-1087 . -1114) 165633) ((-1087 . -1117) 165599) ((-1087 . -430) 165565) ((-1087 . -239) 165531) ((-1087 . -66) 165497) ((-1087 . -35) 165463) ((-1087 . -1157) 165433) ((-1087 . -47) 165403) ((-1087 . -120) 165382) ((-1087 . -118) 165361) ((-1087 . -887) 165324) ((-1087 . -812) 165230) ((-1087 . -807) 165111) ((-1087 . -810) 165017) ((-1087 . -241) 164975) ((-1087 . -189) 164927) ((-1087 . -186) 164873) ((-1087 . -190) 164825) ((-1087 . -1161) 164809) ((-1087 . -951) 164744) ((-1084 . -1154) 164728) ((-1084 . -1065) 164706) ((-1084 . -554) NIL) ((-1084 . -259) 164693) ((-1084 . -453) 164641) ((-1084 . -276) 164618) ((-1084 . -951) 164501) ((-1084 . -352) 164485) ((-1084 . -38) 164317) ((-1084 . -82) 164122) ((-1084 . -964) 163948) ((-1084 . -969) 163774) ((-1084 . -589) 163684) ((-1084 . -591) 163573) ((-1084 . -583) 163405) ((-1084 . -655) 163237) ((-1084 . -556) 163014) ((-1084 . -118) 162993) ((-1084 . -120) 162972) ((-1084 . -47) 162949) ((-1084 . -326) 162933) ((-1084 . -581) 162881) ((-1084 . -810) 162825) ((-1084 . -807) 162732) ((-1084 . -812) 162643) ((-1084 . -797) NIL) ((-1084 . -822) 162622) ((-1084 . -1133) 162601) ((-1084 . -862) 162571) ((-1084 . -833) 162550) ((-1084 . -495) 162464) ((-1084 . -245) 162378) ((-1084 . -146) 162272) ((-1084 . -389) 162206) ((-1084 . -257) 162185) ((-1084 . -241) 162112) ((-1084 . -190) T) ((-1084 . -104) T) ((-1084 . -25) T) ((-1084 . -72) T) ((-1084 . -553) 162094) ((-1084 . -1013) T) ((-1084 . -23) T) ((-1084 . -21) T) ((-1084 . -970) T) ((-1084 . -1025) T) ((-1084 . -1060) T) ((-1084 . -664) T) ((-1084 . -962) T) ((-1084 . -186) 162081) ((-1084 . -13) T) ((-1084 . -1128) T) ((-1084 . -189) T) ((-1084 . -225) 162065) ((-1084 . -184) 162049) ((-1081 . -1142) 162010) ((-1081 . -916) 161976) ((-1081 . -1114) 161942) ((-1081 . -1117) 161908) ((-1081 . -430) 161874) ((-1081 . -239) 161840) ((-1081 . -66) 161806) ((-1081 . -35) 161772) ((-1081 . -1157) 161749) ((-1081 . -47) 161726) ((-1081 . -556) 161527) ((-1081 . -655) 161329) ((-1081 . -583) 161131) ((-1081 . -591) 160986) ((-1081 . -589) 160826) ((-1081 . -969) 160622) ((-1081 . -964) 160418) ((-1081 . -82) 160170) ((-1081 . -38) 159972) ((-1081 . -887) 159942) ((-1081 . -241) 159770) ((-1081 . -1140) 159754) ((-1081 . -970) T) ((-1081 . -1025) T) ((-1081 . -1060) T) ((-1081 . -664) T) ((-1081 . -962) T) ((-1081 . -21) T) ((-1081 . -23) T) ((-1081 . -1013) T) ((-1081 . -553) 159736) ((-1081 . -1128) T) ((-1081 . -13) T) ((-1081 . -72) T) ((-1081 . -25) T) ((-1081 . -104) T) ((-1081 . -118) 159646) ((-1081 . -120) 159556) ((-1081 . -554) NIL) ((-1081 . -184) 159508) ((-1081 . -810) 159344) ((-1081 . -812) 159108) ((-1081 . -807) 158847) ((-1081 . -225) 158799) ((-1081 . -189) 158625) ((-1081 . -186) 158445) ((-1081 . -190) 158335) ((-1081 . -311) 158314) ((-1081 . -1133) 158293) ((-1081 . -833) 158272) ((-1081 . -495) 158226) ((-1081 . -146) 158160) ((-1081 . -389) 158139) ((-1081 . -257) 158118) ((-1081 . -245) 158072) ((-1081 . -201) 158051) ((-1081 . -287) 158003) ((-1081 . -453) 157737) ((-1081 . -259) 157622) ((-1081 . -326) 157574) ((-1081 . -581) 157526) ((-1081 . -340) 157478) ((-1081 . -797) NIL) ((-1081 . -741) NIL) ((-1081 . -715) NIL) ((-1081 . -717) NIL) ((-1081 . -757) NIL) ((-1081 . -760) NIL) ((-1081 . -719) NIL) ((-1081 . -722) NIL) ((-1081 . -756) NIL) ((-1081 . -795) 157430) ((-1081 . -822) NIL) ((-1081 . -934) NIL) ((-1081 . -951) 157396) ((-1081 . -1065) NIL) ((-1081 . -905) 157348) ((-1080 . -995) T) ((-1080 . -427) 157329) ((-1080 . -553) 157295) ((-1080 . -556) 157276) ((-1080 . -1013) T) ((-1080 . -1128) T) ((-1080 . -13) T) ((-1080 . -72) T) ((-1080 . -64) T) ((-1079 . -1013) T) ((-1079 . -553) 157258) ((-1079 . -1128) T) ((-1079 . -13) T) ((-1079 . -72) T) ((-1078 . -1013) T) ((-1078 . -553) 157240) ((-1078 . -1128) T) ((-1078 . -13) T) ((-1078 . -72) T) ((-1073 . -1106) 157216) ((-1073 . -183) 157161) ((-1073 . -76) 157106) ((-1073 . -259) 156895) ((-1073 . -453) 156635) ((-1073 . -426) 156567) ((-1073 . -124) 156512) ((-1073 . -554) NIL) ((-1073 . -193) 156457) ((-1073 . -550) 156433) ((-1073 . -243) 156409) ((-1073 . -1128) T) ((-1073 . -13) T) ((-1073 . -241) 156385) ((-1073 . -1013) T) ((-1073 . -553) 156367) ((-1073 . -72) T) ((-1073 . -34) T) ((-1073 . -539) 156343) ((-1072 . -1057) T) ((-1072 . -321) 156325) ((-1072 . -760) T) ((-1072 . -757) T) ((-1072 . -124) 156307) ((-1072 . -34) T) ((-1072 . -13) T) ((-1072 . -1128) T) ((-1072 . -72) T) ((-1072 . -553) 156289) ((-1072 . -259) NIL) ((-1072 . -453) NIL) ((-1072 . -1013) T) ((-1072 . -426) 156271) ((-1072 . -554) NIL) ((-1072 . -241) 156221) ((-1072 . -539) 156196) ((-1072 . -243) 156171) ((-1072 . -594) 156153) ((-1072 . -19) 156135) ((-1068 . -617) 156119) ((-1068 . -594) 156103) ((-1068 . -243) 156080) ((-1068 . -241) 156032) ((-1068 . -539) 156009) ((-1068 . -554) 155970) ((-1068 . -426) 155954) ((-1068 . -1013) 155932) ((-1068 . -453) 155865) ((-1068 . -259) 155803) ((-1068 . -553) 155738) ((-1068 . -72) 155692) ((-1068 . -1128) T) ((-1068 . -13) T) ((-1068 . -34) T) ((-1068 . -124) 155676) ((-1068 . -1167) 155660) ((-1068 . -924) 155644) ((-1068 . -1063) 155628) ((-1068 . -556) 155605) ((-1066 . -995) T) ((-1066 . -427) 155586) ((-1066 . -553) 155552) ((-1066 . -556) 155533) ((-1066 . -1013) T) ((-1066 . -1128) T) ((-1066 . -13) T) ((-1066 . -72) T) ((-1066 . -64) T) ((-1064 . -1106) 155512) ((-1064 . -183) 155460) ((-1064 . -76) 155408) ((-1064 . -259) 155206) ((-1064 . -453) 154958) ((-1064 . -426) 154893) ((-1064 . -124) 154841) ((-1064 . -554) NIL) ((-1064 . -193) 154789) ((-1064 . -550) 154768) ((-1064 . -243) 154747) ((-1064 . -1128) T) ((-1064 . -13) T) ((-1064 . -241) 154726) ((-1064 . -1013) T) ((-1064 . -553) 154708) ((-1064 . -72) T) ((-1064 . -34) T) ((-1064 . -539) 154687) ((-1061 . -1034) 154671) ((-1061 . -426) 154655) ((-1061 . -1013) 154633) ((-1061 . -453) 154566) ((-1061 . -259) 154504) ((-1061 . -553) 154439) ((-1061 . -72) 154393) ((-1061 . -1128) T) ((-1061 . -13) T) ((-1061 . -34) T) ((-1061 . -76) 154377) ((-1059 . -1020) 154346) ((-1059 . -1123) 154315) ((-1059 . -553) 154277) ((-1059 . -124) 154261) ((-1059 . -34) T) ((-1059 . -13) T) ((-1059 . -1128) T) ((-1059 . -72) T) ((-1059 . -259) 154199) ((-1059 . -453) 154132) ((-1059 . -1013) T) ((-1059 . -426) 154116) ((-1059 . -554) 154077) ((-1059 . -890) 154046) ((-1059 . -983) 154015) ((-1055 . -1036) 153960) ((-1055 . -426) 153944) ((-1055 . -453) 153877) ((-1055 . -259) 153815) ((-1055 . -34) T) ((-1055 . -966) 153755) ((-1055 . -951) 153653) ((-1055 . -556) 153572) ((-1055 . -352) 153556) ((-1055 . -581) 153504) ((-1055 . -591) 153442) ((-1055 . -326) 153426) ((-1055 . -190) 153405) ((-1055 . -186) 153353) ((-1055 . -189) 153307) ((-1055 . -225) 153291) ((-1055 . -807) 153215) ((-1055 . -812) 153141) ((-1055 . -810) 153100) ((-1055 . -184) 153084) ((-1055 . -655) 153019) ((-1055 . -583) 152954) ((-1055 . -589) 152913) ((-1055 . -104) T) ((-1055 . -25) T) ((-1055 . -72) T) ((-1055 . -13) T) ((-1055 . -1128) T) ((-1055 . -553) 152875) ((-1055 . -1013) T) ((-1055 . -23) T) ((-1055 . -21) T) ((-1055 . -969) 152859) ((-1055 . -964) 152843) ((-1055 . -82) 152822) ((-1055 . -962) T) ((-1055 . -664) T) ((-1055 . -1060) T) ((-1055 . -1025) T) ((-1055 . -970) T) ((-1055 . -38) 152782) ((-1055 . -554) 152743) ((-1054 . -924) 152714) ((-1054 . -34) T) ((-1054 . -13) T) ((-1054 . -1128) T) ((-1054 . -72) T) ((-1054 . -553) 152696) ((-1054 . -259) 152622) ((-1054 . -453) 152530) ((-1054 . -1013) T) ((-1054 . -426) 152501) ((-1053 . -1013) T) ((-1053 . -553) 152483) ((-1053 . -1128) T) ((-1053 . -13) T) ((-1053 . -72) T) ((-1048 . -1050) T) ((-1048 . -1174) T) ((-1048 . -64) T) ((-1048 . -72) T) ((-1048 . -13) T) ((-1048 . -1128) T) ((-1048 . -553) 152449) ((-1048 . -1013) T) ((-1048 . -556) 152430) ((-1048 . -427) 152411) ((-1048 . -995) T) ((-1046 . -1047) 152395) ((-1046 . -72) T) ((-1046 . -13) T) ((-1046 . -1128) T) ((-1046 . -553) 152377) ((-1046 . -1013) T) ((-1039 . -680) 152356) ((-1039 . -35) 152322) ((-1039 . -66) 152288) ((-1039 . -239) 152254) ((-1039 . -430) 152220) ((-1039 . -1117) 152186) ((-1039 . -1114) 152152) ((-1039 . -916) 152118) ((-1039 . -47) 152090) ((-1039 . -38) 151987) ((-1039 . -583) 151884) ((-1039 . -655) 151781) ((-1039 . -556) 151663) ((-1039 . -245) 151642) ((-1039 . -495) 151621) ((-1039 . -82) 151486) ((-1039 . -964) 151372) ((-1039 . -969) 151258) ((-1039 . -146) 151212) ((-1039 . -120) 151191) ((-1039 . -118) 151170) ((-1039 . -591) 151095) ((-1039 . -589) 151005) ((-1039 . -887) 150972) ((-1039 . -812) 150956) ((-1039 . -1128) T) ((-1039 . -13) T) ((-1039 . -807) 150938) ((-1039 . -962) T) ((-1039 . -664) T) ((-1039 . -1060) T) ((-1039 . -1025) T) ((-1039 . -970) T) ((-1039 . -21) T) ((-1039 . -23) T) ((-1039 . -1013) T) ((-1039 . -553) 150920) ((-1039 . -72) T) ((-1039 . -25) T) ((-1039 . -104) T) ((-1039 . -810) 150904) ((-1039 . -453) 150874) ((-1039 . -259) 150861) ((-1038 . -862) 150828) ((-1038 . -556) 150627) ((-1038 . -951) 150512) ((-1038 . -1133) 150491) ((-1038 . -822) 150470) ((-1038 . -797) 150329) ((-1038 . -812) 150313) ((-1038 . -807) 150295) ((-1038 . -810) 150279) ((-1038 . -453) 150231) ((-1038 . -389) 150185) ((-1038 . -581) 150133) ((-1038 . -591) 150022) ((-1038 . -326) 150006) ((-1038 . -47) 149978) ((-1038 . -38) 149830) ((-1038 . -583) 149682) ((-1038 . -655) 149534) ((-1038 . -245) 149468) ((-1038 . -495) 149402) ((-1038 . -82) 149227) ((-1038 . -964) 149073) ((-1038 . -969) 148919) ((-1038 . -146) 148833) ((-1038 . -120) 148812) ((-1038 . -118) 148791) ((-1038 . -589) 148701) ((-1038 . -104) T) ((-1038 . -25) T) ((-1038 . -72) T) ((-1038 . -13) T) ((-1038 . -1128) T) ((-1038 . -553) 148683) ((-1038 . -1013) T) ((-1038 . -23) T) ((-1038 . -21) T) ((-1038 . -962) T) ((-1038 . -664) T) ((-1038 . -1060) T) ((-1038 . -1025) T) ((-1038 . -970) T) ((-1038 . -352) 148667) ((-1038 . -276) 148639) ((-1038 . -259) 148626) ((-1038 . -554) 148374) ((-1033 . -483) T) ((-1033 . -1133) T) ((-1033 . -1065) T) ((-1033 . -951) 148356) ((-1033 . -554) 148271) ((-1033 . -934) T) ((-1033 . -797) 148253) ((-1033 . -756) T) ((-1033 . -722) T) ((-1033 . -719) T) ((-1033 . -760) T) ((-1033 . -757) T) ((-1033 . -717) T) ((-1033 . -715) T) ((-1033 . -741) T) ((-1033 . -591) 148225) ((-1033 . -581) 148207) ((-1033 . -833) T) ((-1033 . -495) T) ((-1033 . -245) T) ((-1033 . -146) T) ((-1033 . -556) 148179) ((-1033 . -655) 148166) ((-1033 . -583) 148153) ((-1033 . -969) 148140) ((-1033 . -964) 148127) ((-1033 . -82) 148112) ((-1033 . -38) 148099) ((-1033 . -389) T) ((-1033 . -257) T) ((-1033 . -189) T) ((-1033 . -186) 148086) ((-1033 . -190) T) ((-1033 . -116) T) ((-1033 . -962) T) ((-1033 . -664) T) ((-1033 . -1060) T) ((-1033 . -1025) T) ((-1033 . -970) T) ((-1033 . -21) T) ((-1033 . -589) 148058) ((-1033 . -23) T) ((-1033 . -1013) T) ((-1033 . -553) 148040) ((-1033 . -1128) T) ((-1033 . -13) T) ((-1033 . -72) T) ((-1033 . -25) T) ((-1033 . -104) T) ((-1033 . -120) T) ((-1033 . -753) T) ((-1033 . -317) T) ((-1033 . -84) T) ((-1033 . -605) T) ((-1029 . -995) T) ((-1029 . -427) 148021) ((-1029 . -553) 147987) ((-1029 . -556) 147968) ((-1029 . -1013) T) ((-1029 . -1128) T) ((-1029 . -13) T) ((-1029 . -72) T) ((-1029 . -64) T) ((-1028 . -1013) T) ((-1028 . -553) 147950) ((-1028 . -1128) T) ((-1028 . -13) T) ((-1028 . -72) T) ((-1026 . -196) 147929) ((-1026 . -1186) 147899) ((-1026 . -722) 147878) ((-1026 . -719) 147857) ((-1026 . -760) 147811) ((-1026 . -757) 147765) ((-1026 . -717) 147744) ((-1026 . -718) 147723) ((-1026 . -655) 147668) ((-1026 . -583) 147593) ((-1026 . -243) 147570) ((-1026 . -241) 147547) ((-1026 . -426) 147531) ((-1026 . -453) 147464) ((-1026 . -259) 147402) ((-1026 . -34) T) ((-1026 . -539) 147379) ((-1026 . -951) 147208) ((-1026 . -556) 147012) ((-1026 . -352) 146981) ((-1026 . -581) 146889) ((-1026 . -591) 146728) ((-1026 . -326) 146698) ((-1026 . -317) 146677) ((-1026 . -190) 146630) ((-1026 . -589) 146418) ((-1026 . -970) 146397) ((-1026 . -1025) 146376) ((-1026 . -1060) 146355) ((-1026 . -664) 146334) ((-1026 . -962) 146313) ((-1026 . -186) 146209) ((-1026 . -189) 146111) ((-1026 . -225) 146081) ((-1026 . -807) 145953) ((-1026 . -812) 145827) ((-1026 . -810) 145760) ((-1026 . -184) 145730) ((-1026 . -553) 145427) ((-1026 . -969) 145352) ((-1026 . -964) 145257) ((-1026 . -82) 145177) ((-1026 . -104) 145052) ((-1026 . -25) 144889) ((-1026 . -72) 144626) ((-1026 . -13) T) ((-1026 . -1128) T) ((-1026 . -1013) 144382) ((-1026 . -23) 144238) ((-1026 . -21) 144153) ((-1022 . -1023) 144137) ((-1022 . |MappingCategory|) 144111) ((-1022 . -1128) T) ((-1022 . -80) 144095) ((-1022 . -1013) T) ((-1022 . -553) 144077) ((-1022 . -13) T) ((-1022 . -72) T) ((-1017 . -1016) 144041) ((-1017 . -72) T) ((-1017 . -553) 144023) ((-1017 . -1013) T) ((-1017 . -241) 143979) ((-1017 . -1128) T) ((-1017 . -13) T) ((-1017 . -558) 143894) ((-1015 . -1016) 143846) ((-1015 . -72) T) ((-1015 . -553) 143828) ((-1015 . -1013) T) ((-1015 . -241) 143784) ((-1015 . -1128) T) ((-1015 . -13) T) ((-1015 . -558) 143687) ((-1014 . -317) T) ((-1014 . -72) T) ((-1014 . -13) T) ((-1014 . -1128) T) ((-1014 . -553) 143669) ((-1014 . -1013) T) ((-1009 . -366) 143653) ((-1009 . -1011) 143637) ((-1009 . -317) 143616) ((-1009 . -193) 143600) ((-1009 . -554) 143561) ((-1009 . -124) 143545) ((-1009 . -426) 143529) ((-1009 . -1013) T) ((-1009 . -453) 143462) ((-1009 . -259) 143400) ((-1009 . -553) 143382) ((-1009 . -72) T) ((-1009 . -1128) T) ((-1009 . -13) T) ((-1009 . -34) T) ((-1009 . -76) 143366) ((-1009 . -183) 143350) ((-1008 . -995) T) ((-1008 . -427) 143331) ((-1008 . -553) 143297) ((-1008 . -556) 143278) ((-1008 . -1013) T) ((-1008 . -1128) T) ((-1008 . -13) T) ((-1008 . -72) T) ((-1008 . -64) T) ((-1004 . -1128) T) ((-1004 . -13) T) ((-1004 . -1013) 143248) ((-1004 . -553) 143207) ((-1004 . -72) 143177) ((-1003 . -995) T) ((-1003 . -427) 143158) ((-1003 . -553) 143124) ((-1003 . -556) 143105) ((-1003 . -1013) T) ((-1003 . -1128) T) ((-1003 . -13) T) ((-1003 . -72) T) ((-1003 . -64) T) ((-1001 . -1006) 143089) ((-1001 . -558) 143073) ((-1001 . -1013) 143051) ((-1001 . -553) 143018) ((-1001 . -1128) 142996) ((-1001 . -13) 142974) ((-1001 . -72) 142952) ((-1001 . -1007) 142910) ((-1000 . -228) 142894) ((-1000 . -556) 142878) ((-1000 . -951) 142862) ((-1000 . -760) T) ((-1000 . -72) T) ((-1000 . -1013) T) ((-1000 . -553) 142844) ((-1000 . -757) T) ((-1000 . -186) 142831) ((-1000 . -13) T) ((-1000 . -1128) T) ((-1000 . -189) T) ((-999 . -213) 142768) ((-999 . -556) 142511) ((-999 . -951) 142340) ((-999 . -554) NIL) ((-999 . -276) 142301) ((-999 . -352) 142285) ((-999 . -38) 142137) ((-999 . -82) 141962) ((-999 . -964) 141808) ((-999 . -969) 141654) ((-999 . -589) 141564) ((-999 . -591) 141453) ((-999 . -583) 141305) ((-999 . -655) 141157) ((-999 . -118) 141136) ((-999 . -120) 141115) ((-999 . -146) 141029) ((-999 . -495) 140963) ((-999 . -245) 140897) ((-999 . -47) 140858) ((-999 . -326) 140842) ((-999 . -581) 140790) ((-999 . -389) 140744) ((-999 . -453) 140607) ((-999 . -810) 140542) ((-999 . -807) 140440) ((-999 . -812) 140342) ((-999 . -797) NIL) ((-999 . -822) 140321) ((-999 . -1133) 140300) ((-999 . -862) 140245) ((-999 . -259) 140232) ((-999 . -190) 140211) ((-999 . -104) T) ((-999 . -25) T) ((-999 . -72) T) ((-999 . -553) 140193) ((-999 . -1013) T) ((-999 . -23) T) ((-999 . -21) T) ((-999 . -970) T) ((-999 . -1025) T) ((-999 . -1060) T) ((-999 . -664) T) ((-999 . -962) T) ((-999 . -186) 140141) ((-999 . -13) T) ((-999 . -1128) T) ((-999 . -189) 140095) ((-999 . -225) 140079) ((-999 . -184) 140063) ((-997 . -553) 140045) ((-994 . -757) T) ((-994 . -553) 140027) ((-994 . -1013) T) ((-994 . -72) T) ((-994 . -13) T) ((-994 . -1128) T) ((-994 . -760) T) ((-994 . -554) 140008) ((-991 . -662) 139987) ((-991 . -951) 139885) ((-991 . -352) 139869) ((-991 . -581) 139817) ((-991 . -591) 139694) ((-991 . -326) 139678) ((-991 . -319) 139657) ((-991 . -120) 139636) ((-991 . -556) 139461) ((-991 . -655) 139335) ((-991 . -583) 139209) ((-991 . -589) 139107) ((-991 . -969) 139020) ((-991 . -964) 138933) ((-991 . -82) 138825) ((-991 . -38) 138699) ((-991 . -350) 138678) ((-991 . -342) 138657) ((-991 . -118) 138611) ((-991 . -1065) 138590) ((-991 . -298) 138569) ((-991 . -317) 138523) ((-991 . -201) 138477) ((-991 . -245) 138431) ((-991 . -257) 138385) ((-991 . -389) 138339) ((-991 . -495) 138293) ((-991 . -833) 138247) ((-991 . -1133) 138201) ((-991 . -311) 138155) ((-991 . -190) 138083) ((-991 . -186) 137959) ((-991 . -189) 137841) ((-991 . -225) 137811) ((-991 . -807) 137683) ((-991 . -812) 137557) ((-991 . -810) 137490) ((-991 . -184) 137460) ((-991 . -554) 137444) ((-991 . -21) T) ((-991 . -23) T) ((-991 . -1013) T) ((-991 . -553) 137426) ((-991 . -1128) T) ((-991 . -13) T) ((-991 . -72) T) ((-991 . -25) T) ((-991 . -104) T) ((-991 . -962) T) ((-991 . -664) T) ((-991 . -1060) T) ((-991 . -1025) T) ((-991 . -970) T) ((-991 . -146) T) ((-989 . -1013) T) ((-989 . -553) 137408) ((-989 . -1128) T) ((-989 . -13) T) ((-989 . -72) T) ((-989 . -241) 137387) ((-988 . -1013) T) ((-988 . -553) 137369) ((-988 . -1128) T) ((-988 . -13) T) ((-988 . -72) T) ((-987 . -1013) T) ((-987 . -553) 137351) ((-987 . -1128) T) ((-987 . -13) T) ((-987 . -72) T) ((-987 . -241) 137330) ((-987 . -951) 137307) ((-987 . -556) 137284) ((-986 . -1128) T) ((-986 . -13) T) ((-985 . -995) T) ((-985 . -427) 137265) ((-985 . -553) 137231) ((-985 . -556) 137212) ((-985 . -1013) T) ((-985 . -1128) T) ((-985 . -13) T) ((-985 . -72) T) ((-985 . -64) T) ((-978 . -995) T) ((-978 . -427) 137193) ((-978 . -553) 137159) ((-978 . -556) 137140) ((-978 . -1013) T) ((-978 . -1128) T) ((-978 . -13) T) ((-978 . -72) T) ((-978 . -64) T) ((-975 . -483) T) ((-975 . -1133) T) ((-975 . -1065) T) ((-975 . -951) 137122) ((-975 . -554) 137037) ((-975 . -934) T) ((-975 . -797) 137019) ((-975 . -756) T) ((-975 . -722) T) ((-975 . -719) T) ((-975 . -760) T) ((-975 . -757) T) ((-975 . -717) T) ((-975 . -715) T) ((-975 . -741) T) ((-975 . -591) 136991) ((-975 . -581) 136973) ((-975 . -833) T) ((-975 . -495) T) ((-975 . -245) T) ((-975 . -146) T) ((-975 . -556) 136945) ((-975 . -655) 136932) ((-975 . -583) 136919) ((-975 . -969) 136906) ((-975 . -964) 136893) ((-975 . -82) 136878) ((-975 . -38) 136865) ((-975 . -389) T) ((-975 . -257) T) ((-975 . -189) T) ((-975 . -186) 136852) ((-975 . -190) T) ((-975 . -116) T) ((-975 . -962) T) ((-975 . -664) T) ((-975 . -1060) T) ((-975 . -1025) T) ((-975 . -970) T) ((-975 . -21) T) ((-975 . -589) 136824) ((-975 . -23) T) ((-975 . -1013) T) ((-975 . -553) 136806) ((-975 . -1128) T) ((-975 . -13) T) ((-975 . -72) T) ((-975 . -25) T) ((-975 . -104) T) ((-975 . -120) T) ((-975 . -558) 136787) ((-974 . -980) 136766) ((-974 . -72) T) ((-974 . -13) T) ((-974 . -1128) T) ((-974 . -553) 136748) ((-974 . -1013) T) ((-971 . -1128) T) ((-971 . -13) T) ((-971 . -1013) 136726) ((-971 . -553) 136693) ((-971 . -72) 136671) ((-967 . -966) 136611) ((-967 . -583) 136556) ((-967 . -655) 136501) ((-967 . -34) T) ((-967 . -259) 136439) ((-967 . -453) 136372) ((-967 . -426) 136356) ((-967 . -591) 136340) ((-967 . -589) 136309) ((-967 . -104) T) ((-967 . -25) T) ((-967 . -72) T) ((-967 . -13) T) ((-967 . -1128) T) ((-967 . -553) 136271) ((-967 . -1013) T) ((-967 . -23) T) ((-967 . -21) T) ((-967 . -969) 136255) ((-967 . -964) 136239) ((-967 . -82) 136218) ((-967 . -1186) 136188) ((-967 . -554) 136149) ((-959 . -983) 136078) ((-959 . -890) 136007) ((-959 . -554) 135949) ((-959 . -426) 135914) ((-959 . -1013) T) ((-959 . -453) 135798) ((-959 . -259) 135706) ((-959 . -553) 135649) ((-959 . -72) T) ((-959 . -1128) T) ((-959 . -13) T) ((-959 . -34) T) ((-959 . -124) 135614) ((-959 . -1123) 135543) ((-949 . -995) T) ((-949 . -427) 135524) ((-949 . -553) 135490) ((-949 . -556) 135471) ((-949 . -1013) T) ((-949 . -1128) T) ((-949 . -13) T) ((-949 . -72) T) ((-949 . -64) T) ((-948 . -146) T) ((-948 . -556) 135440) ((-948 . -970) T) ((-948 . -1025) T) ((-948 . -1060) T) ((-948 . -664) T) ((-948 . -962) T) ((-948 . -591) 135414) ((-948 . -589) 135373) ((-948 . -104) T) ((-948 . -25) T) ((-948 . -72) T) ((-948 . -13) T) ((-948 . -1128) T) ((-948 . -553) 135355) ((-948 . -1013) T) ((-948 . -23) T) ((-948 . -21) T) ((-948 . -969) 135329) ((-948 . -964) 135303) ((-948 . -82) 135270) ((-948 . -38) 135254) ((-948 . -583) 135238) ((-948 . -655) 135222) ((-941 . -983) 135191) ((-941 . -890) 135160) ((-941 . -554) 135121) ((-941 . -426) 135105) ((-941 . -1013) T) ((-941 . -453) 135038) ((-941 . -259) 134976) ((-941 . -553) 134938) ((-941 . -72) T) ((-941 . -1128) T) ((-941 . -13) T) ((-941 . -34) T) ((-941 . -124) 134922) ((-941 . -1123) 134891) ((-940 . -1013) T) ((-940 . -553) 134873) ((-940 . -1128) T) ((-940 . -13) T) ((-940 . -72) T) ((-938 . -926) T) ((-938 . -916) T) ((-938 . -715) T) ((-938 . -717) T) ((-938 . -757) T) ((-938 . -760) T) ((-938 . -719) T) ((-938 . -722) T) ((-938 . -756) T) ((-938 . -951) 134758) ((-938 . -352) 134720) ((-938 . -201) T) ((-938 . -245) T) ((-938 . -257) T) ((-938 . -389) T) ((-938 . -38) 134657) ((-938 . -583) 134594) ((-938 . -655) 134531) ((-938 . -556) 134468) ((-938 . -495) T) ((-938 . -833) T) ((-938 . -1133) T) ((-938 . -311) T) ((-938 . -82) 134377) ((-938 . -964) 134314) ((-938 . -969) 134251) ((-938 . -146) T) ((-938 . -120) T) ((-938 . -591) 134188) ((-938 . -589) 134125) ((-938 . -104) T) ((-938 . -25) T) ((-938 . -72) T) ((-938 . -13) T) ((-938 . -1128) T) ((-938 . -553) 134107) ((-938 . -1013) T) ((-938 . -23) T) ((-938 . -21) T) ((-938 . -962) T) ((-938 . -664) T) ((-938 . -1060) T) ((-938 . -1025) T) ((-938 . -970) T) ((-933 . -995) T) ((-933 . -427) 134088) ((-933 . -553) 134054) ((-933 . -556) 134035) ((-933 . -1013) T) ((-933 . -1128) T) ((-933 . -13) T) ((-933 . -72) T) ((-933 . -64) T) ((-918 . -905) 134017) ((-918 . -1065) T) ((-918 . -556) 133967) ((-918 . -951) 133927) ((-918 . -554) 133857) ((-918 . -934) T) ((-918 . -822) NIL) ((-918 . -795) 133839) ((-918 . -756) T) ((-918 . -722) T) ((-918 . -719) T) ((-918 . -760) T) ((-918 . -757) T) ((-918 . -717) T) ((-918 . -715) T) ((-918 . -741) T) ((-918 . -797) 133821) ((-918 . -340) 133803) ((-918 . -581) 133785) ((-918 . -326) 133767) ((-918 . -241) NIL) ((-918 . -259) NIL) ((-918 . -453) NIL) ((-918 . -287) 133749) ((-918 . -201) T) ((-918 . -82) 133676) ((-918 . -964) 133626) ((-918 . -969) 133576) ((-918 . -245) T) ((-918 . -655) 133526) ((-918 . -583) 133476) ((-918 . -591) 133426) ((-918 . -589) 133376) ((-918 . -38) 133326) ((-918 . -257) T) ((-918 . -389) T) ((-918 . -146) T) ((-918 . -495) T) ((-918 . -833) T) ((-918 . -1133) T) ((-918 . -311) T) ((-918 . -190) T) ((-918 . -186) 133313) ((-918 . -189) T) ((-918 . -225) 133295) ((-918 . -807) NIL) ((-918 . -812) NIL) ((-918 . -810) NIL) ((-918 . -184) 133277) ((-918 . -120) T) ((-918 . -118) NIL) ((-918 . -104) T) ((-918 . -25) T) ((-918 . -72) T) ((-918 . -13) T) ((-918 . -1128) T) ((-918 . -553) 133237) ((-918 . -1013) T) ((-918 . -23) T) ((-918 . -21) T) ((-918 . -962) T) ((-918 . -664) T) ((-918 . -1060) T) ((-918 . -1025) T) ((-918 . -970) T) ((-917 . -290) 133211) ((-917 . -146) T) ((-917 . -556) 133141) ((-917 . -970) T) ((-917 . -1025) T) ((-917 . -1060) T) ((-917 . -664) T) ((-917 . -962) T) ((-917 . -591) 133043) ((-917 . -589) 132973) ((-917 . -104) T) ((-917 . -25) T) ((-917 . -72) T) ((-917 . -13) T) ((-917 . -1128) T) ((-917 . -553) 132955) ((-917 . -1013) T) ((-917 . -23) T) ((-917 . -21) T) ((-917 . -969) 132900) ((-917 . -964) 132845) ((-917 . -82) 132762) ((-917 . -554) 132746) ((-917 . -184) 132723) ((-917 . -810) 132675) ((-917 . -812) 132587) ((-917 . -807) 132497) ((-917 . -225) 132474) ((-917 . -189) 132414) ((-917 . -186) 132348) ((-917 . -190) 132320) ((-917 . -311) T) ((-917 . -1133) T) ((-917 . -833) T) ((-917 . -495) T) ((-917 . -655) 132265) ((-917 . -583) 132210) ((-917 . -38) 132155) ((-917 . -389) T) ((-917 . -257) T) ((-917 . -245) T) ((-917 . -201) T) ((-917 . -317) NIL) ((-917 . -298) NIL) ((-917 . -1065) NIL) ((-917 . -118) 132127) ((-917 . -342) NIL) ((-917 . -350) 132099) ((-917 . -120) 132071) ((-917 . -319) 132043) ((-917 . -326) 132020) ((-917 . -581) 131954) ((-917 . -352) 131931) ((-917 . -951) 131808) ((-917 . -662) 131780) ((-914 . -909) 131764) ((-914 . -426) 131748) ((-914 . -1013) 131726) ((-914 . -453) 131659) ((-914 . -259) 131597) ((-914 . -553) 131532) ((-914 . -72) 131486) ((-914 . -1128) T) ((-914 . -13) T) ((-914 . -34) T) ((-914 . -76) 131470) ((-910 . -912) 131454) ((-910 . -760) 131433) ((-910 . -757) 131412) ((-910 . -951) 131310) ((-910 . -352) 131294) ((-910 . -581) 131242) ((-910 . -591) 131144) ((-910 . -326) 131128) ((-910 . -241) 131086) ((-910 . -259) 131051) ((-910 . -453) 130963) ((-910 . -287) 130947) ((-910 . -38) 130895) ((-910 . -82) 130773) ((-910 . -964) 130672) ((-910 . -969) 130571) ((-910 . -589) 130494) ((-910 . -583) 130442) ((-910 . -655) 130390) ((-910 . -556) 130284) ((-910 . -245) 130238) ((-910 . -201) 130217) ((-910 . -190) 130196) ((-910 . -186) 130144) ((-910 . -189) 130098) ((-910 . -225) 130082) ((-910 . -807) 130006) ((-910 . -812) 129932) ((-910 . -810) 129891) ((-910 . -184) 129875) ((-910 . -554) 129836) ((-910 . -120) 129815) ((-910 . -118) 129794) ((-910 . -104) T) ((-910 . -25) T) ((-910 . -72) T) ((-910 . -13) T) ((-910 . -1128) T) ((-910 . -553) 129776) ((-910 . -1013) T) ((-910 . -23) T) ((-910 . -21) T) ((-910 . -962) T) ((-910 . -664) T) ((-910 . -1060) T) ((-910 . -1025) T) ((-910 . -970) T) ((-908 . -995) T) ((-908 . -427) 129757) ((-908 . -553) 129723) ((-908 . -556) 129704) ((-908 . -1013) T) ((-908 . -1128) T) ((-908 . -13) T) ((-908 . -72) T) ((-908 . -64) T) ((-907 . -21) T) ((-907 . -589) 129686) ((-907 . -23) T) ((-907 . -1013) T) ((-907 . -553) 129668) ((-907 . -1128) T) ((-907 . -13) T) ((-907 . -72) T) ((-907 . -25) T) ((-907 . -104) T) ((-907 . -241) 129635) ((-903 . -553) 129617) ((-900 . -1013) T) ((-900 . -553) 129599) ((-900 . -1128) T) ((-900 . -13) T) ((-900 . -72) T) ((-885 . -722) T) ((-885 . -719) T) ((-885 . -760) T) ((-885 . -757) T) ((-885 . -717) T) ((-885 . -23) T) ((-885 . -1013) T) ((-885 . -553) 129559) ((-885 . -1128) T) ((-885 . -13) T) ((-885 . -72) T) ((-885 . -25) T) ((-885 . -104) T) ((-884 . -995) T) ((-884 . -427) 129540) ((-884 . -553) 129506) ((-884 . -556) 129487) ((-884 . -1013) T) ((-884 . -1128) T) ((-884 . -13) T) ((-884 . -72) T) ((-884 . -64) T) ((-878 . -881) T) ((-878 . -72) T) ((-878 . -553) 129469) ((-878 . -1013) T) ((-878 . -605) T) ((-878 . -13) T) ((-878 . -1128) T) ((-878 . -84) T) ((-878 . -556) 129453) ((-877 . -553) 129435) ((-876 . -1013) T) ((-876 . -553) 129417) ((-876 . -1128) T) ((-876 . -13) T) ((-876 . -72) T) ((-876 . -317) 129370) ((-876 . -664) 129272) ((-876 . -1025) 129174) ((-876 . -23) 128988) ((-876 . -25) 128802) ((-876 . -104) 128660) ((-876 . -410) 128613) ((-876 . -21) 128568) ((-876 . -589) 128512) ((-876 . -718) 128465) ((-876 . -717) 128418) ((-876 . -757) 128320) ((-876 . -760) 128222) ((-876 . -719) 128175) ((-876 . -722) 128128) ((-870 . -19) 128112) ((-870 . -594) 128096) ((-870 . -243) 128073) ((-870 . -241) 128025) ((-870 . -539) 128002) ((-870 . -554) 127963) ((-870 . -426) 127947) ((-870 . -1013) 127900) ((-870 . -453) 127833) ((-870 . -259) 127771) ((-870 . -553) 127686) ((-870 . -72) 127620) ((-870 . -1128) T) ((-870 . -13) T) ((-870 . -34) T) ((-870 . -124) 127604) ((-870 . -757) 127583) ((-870 . -760) 127562) ((-870 . -321) 127546) ((-868 . -276) 127525) ((-868 . -951) 127423) ((-868 . -352) 127407) ((-868 . -38) 127304) ((-868 . -556) 127161) ((-868 . -591) 127086) ((-868 . -589) 126996) ((-868 . -970) T) ((-868 . -1025) T) ((-868 . -1060) T) ((-868 . -664) T) ((-868 . -962) T) ((-868 . -82) 126861) ((-868 . -964) 126747) ((-868 . -969) 126633) ((-868 . -21) T) ((-868 . -23) T) ((-868 . -1013) T) ((-868 . -553) 126615) ((-868 . -1128) T) ((-868 . -13) T) ((-868 . -72) T) ((-868 . -25) T) ((-868 . -104) T) ((-868 . -583) 126512) ((-868 . -655) 126409) ((-868 . -118) 126388) ((-868 . -120) 126367) ((-868 . -146) 126321) ((-868 . -495) 126300) ((-868 . -245) 126279) ((-868 . -47) 126258) ((-866 . -1013) T) ((-866 . -553) 126224) ((-866 . -1128) T) ((-866 . -13) T) ((-866 . -72) T) ((-858 . -862) 126185) ((-858 . -556) 125981) ((-858 . -951) 125863) ((-858 . -1133) 125842) ((-858 . -822) 125821) ((-858 . -797) 125746) ((-858 . -812) 125727) ((-858 . -807) 125706) ((-858 . -810) 125687) ((-858 . -453) 125633) ((-858 . -389) 125587) ((-858 . -581) 125535) ((-858 . -591) 125424) ((-858 . -326) 125408) ((-858 . -47) 125377) ((-858 . -38) 125229) ((-858 . -583) 125081) ((-858 . -655) 124933) ((-858 . -245) 124867) ((-858 . -495) 124801) ((-858 . -82) 124626) ((-858 . -964) 124472) ((-858 . -969) 124318) ((-858 . -146) 124232) ((-858 . -120) 124211) ((-858 . -118) 124190) ((-858 . -589) 124100) ((-858 . -104) T) ((-858 . -25) T) ((-858 . -72) T) ((-858 . -13) T) ((-858 . -1128) T) ((-858 . -553) 124082) ((-858 . -1013) T) ((-858 . -23) T) ((-858 . -21) T) ((-858 . -962) T) ((-858 . -664) T) ((-858 . -1060) T) ((-858 . -1025) T) ((-858 . -970) T) ((-858 . -352) 124066) ((-858 . -276) 124035) ((-858 . -259) 124022) ((-858 . -554) 123883) ((-855 . -894) 123867) ((-855 . -19) 123851) ((-855 . -594) 123835) ((-855 . -243) 123812) ((-855 . -241) 123764) ((-855 . -539) 123741) ((-855 . -554) 123702) ((-855 . -426) 123686) ((-855 . -1013) 123639) ((-855 . -453) 123572) ((-855 . -259) 123510) ((-855 . -553) 123425) ((-855 . -72) 123359) ((-855 . -1128) T) ((-855 . -13) T) ((-855 . -34) T) ((-855 . -124) 123343) ((-855 . -757) 123322) ((-855 . -760) 123301) ((-855 . -321) 123285) ((-855 . -1177) 123269) ((-855 . -558) 123246) ((-839 . -888) T) ((-839 . -553) 123228) ((-837 . -867) T) ((-837 . -553) 123210) ((-831 . -719) T) ((-831 . -760) T) ((-831 . -757) T) ((-831 . -1013) T) ((-831 . -553) 123192) ((-831 . -1128) T) ((-831 . -13) T) ((-831 . -72) T) ((-831 . -25) T) ((-831 . -664) T) ((-831 . -1025) T) ((-826 . -311) T) ((-826 . -1133) T) ((-826 . -833) T) ((-826 . -495) T) ((-826 . -146) T) ((-826 . -556) 123129) ((-826 . -655) 123081) ((-826 . -583) 123033) ((-826 . -38) 122985) ((-826 . -389) T) ((-826 . -257) T) ((-826 . -591) 122937) ((-826 . -589) 122874) ((-826 . -970) T) ((-826 . -1025) T) ((-826 . -1060) T) ((-826 . -664) T) ((-826 . -962) T) ((-826 . -82) 122805) ((-826 . -964) 122757) ((-826 . -969) 122709) ((-826 . -21) T) ((-826 . -23) T) ((-826 . -1013) T) ((-826 . -553) 122691) ((-826 . -1128) T) ((-826 . -13) T) ((-826 . -72) T) ((-826 . -25) T) ((-826 . -104) T) ((-826 . -245) T) ((-826 . -201) T) ((-818 . -298) T) ((-818 . -1065) T) ((-818 . -317) T) ((-818 . -118) T) ((-818 . -311) T) ((-818 . -1133) T) ((-818 . -833) T) ((-818 . -495) T) ((-818 . -146) T) ((-818 . -556) 122641) ((-818 . -655) 122606) ((-818 . -583) 122571) ((-818 . -38) 122536) ((-818 . -389) T) ((-818 . -257) T) ((-818 . -82) 122485) ((-818 . -964) 122450) ((-818 . -969) 122415) ((-818 . -589) 122365) ((-818 . -591) 122330) ((-818 . -245) T) ((-818 . -201) T) ((-818 . -342) T) ((-818 . -189) T) ((-818 . -1128) T) ((-818 . -13) T) ((-818 . -186) 122317) ((-818 . -962) T) ((-818 . -664) T) ((-818 . -1060) T) ((-818 . -1025) T) ((-818 . -970) T) ((-818 . -21) T) ((-818 . -23) T) ((-818 . -1013) T) ((-818 . -553) 122299) ((-818 . -72) T) ((-818 . -25) T) ((-818 . -104) T) ((-818 . -190) T) ((-818 . -279) 122286) ((-818 . -120) 122268) ((-818 . -951) 122255) ((-818 . -1186) 122242) ((-818 . -1197) 122229) ((-818 . -554) 122211) ((-817 . -1013) T) ((-817 . -553) 122193) ((-817 . -1128) T) ((-817 . -13) T) ((-817 . -72) T) ((-814 . -816) 122177) ((-814 . -760) 122131) ((-814 . -757) 122085) ((-814 . -664) T) ((-814 . -1013) T) ((-814 . -553) 122067) ((-814 . -72) T) ((-814 . -1025) T) ((-814 . -410) T) ((-814 . -1128) T) ((-814 . -13) T) ((-814 . -241) 122046) ((-813 . -92) 122030) ((-813 . -426) 122014) ((-813 . -1013) 121992) ((-813 . -453) 121925) ((-813 . -259) 121863) ((-813 . -553) 121777) ((-813 . -72) 121731) ((-813 . -1128) T) ((-813 . -13) T) ((-813 . -34) T) ((-813 . -924) 121715) ((-804 . -757) T) ((-804 . -553) 121697) ((-804 . -1013) T) ((-804 . -72) T) ((-804 . -13) T) ((-804 . -1128) T) ((-804 . -760) T) ((-804 . -951) 121674) ((-804 . -556) 121651) ((-801 . -1013) T) ((-801 . -553) 121633) ((-801 . -1128) T) ((-801 . -13) T) ((-801 . -72) T) ((-801 . -951) 121601) ((-801 . -556) 121569) ((-799 . -1013) T) ((-799 . -553) 121551) ((-799 . -1128) T) ((-799 . -13) T) ((-799 . -72) T) ((-796 . -1013) T) ((-796 . -553) 121533) ((-796 . -1128) T) ((-796 . -13) T) ((-796 . -72) T) ((-786 . -995) T) ((-786 . -427) 121514) ((-786 . -553) 121480) ((-786 . -556) 121461) ((-786 . -1013) T) ((-786 . -1128) T) ((-786 . -13) T) ((-786 . -72) T) ((-786 . -64) T) ((-786 . -1174) T) ((-784 . -1013) T) ((-784 . -553) 121443) ((-784 . -1128) T) ((-784 . -13) T) ((-784 . -72) T) ((-784 . -556) 121425) ((-783 . -1128) T) ((-783 . -13) T) ((-783 . -553) 121300) ((-783 . -1013) 121251) ((-783 . -72) 121202) ((-782 . -905) 121186) ((-782 . -1065) 121164) ((-782 . -951) 121031) ((-782 . -556) 120930) ((-782 . -554) 120733) ((-782 . -934) 120712) ((-782 . -822) 120691) ((-782 . -795) 120675) ((-782 . -756) 120654) ((-782 . -722) 120633) ((-782 . -719) 120612) ((-782 . -760) 120566) ((-782 . -757) 120520) ((-782 . -717) 120499) ((-782 . -715) 120478) ((-782 . -741) 120457) ((-782 . -797) 120382) ((-782 . -340) 120366) ((-782 . -581) 120314) ((-782 . -591) 120230) ((-782 . -326) 120214) ((-782 . -241) 120172) ((-782 . -259) 120137) ((-782 . -453) 120049) ((-782 . -287) 120033) ((-782 . -201) T) ((-782 . -82) 119964) ((-782 . -964) 119916) ((-782 . -969) 119868) ((-782 . -245) T) ((-782 . -655) 119820) ((-782 . -583) 119772) ((-782 . -589) 119709) ((-782 . -38) 119661) ((-782 . -257) T) ((-782 . -389) T) ((-782 . -146) T) ((-782 . -495) T) ((-782 . -833) T) ((-782 . -1133) T) ((-782 . -311) T) ((-782 . -190) 119640) ((-782 . -186) 119588) ((-782 . -189) 119542) ((-782 . -225) 119526) ((-782 . -807) 119450) ((-782 . -812) 119376) ((-782 . -810) 119335) ((-782 . -184) 119319) ((-782 . -120) 119298) ((-782 . -118) 119277) ((-782 . -104) T) ((-782 . -25) T) ((-782 . -72) T) ((-782 . -13) T) ((-782 . -1128) T) ((-782 . -553) 119259) ((-782 . -1013) T) ((-782 . -23) T) ((-782 . -21) T) ((-782 . -962) T) ((-782 . -664) T) ((-782 . -1060) T) ((-782 . -1025) T) ((-782 . -970) T) ((-781 . -905) 119236) ((-781 . -1065) NIL) ((-781 . -951) 119213) ((-781 . -556) 119143) ((-781 . -554) NIL) ((-781 . -934) NIL) ((-781 . -822) NIL) ((-781 . -795) 119120) ((-781 . -756) NIL) ((-781 . -722) NIL) ((-781 . -719) NIL) ((-781 . -760) NIL) ((-781 . -757) NIL) ((-781 . -717) NIL) ((-781 . -715) NIL) ((-781 . -741) NIL) ((-781 . -797) NIL) ((-781 . -340) 119097) ((-781 . -581) 119074) ((-781 . -591) 119019) ((-781 . -326) 118996) ((-781 . -241) 118926) ((-781 . -259) 118870) ((-781 . -453) 118733) ((-781 . -287) 118710) ((-781 . -201) T) ((-781 . -82) 118627) ((-781 . -964) 118572) ((-781 . -969) 118517) ((-781 . -245) T) ((-781 . -655) 118462) ((-781 . -583) 118407) ((-781 . -589) 118337) ((-781 . -38) 118282) ((-781 . -257) T) ((-781 . -389) T) ((-781 . -146) T) ((-781 . -495) T) ((-781 . -833) T) ((-781 . -1133) T) ((-781 . -311) T) ((-781 . -190) NIL) ((-781 . -186) NIL) ((-781 . -189) NIL) ((-781 . -225) 118259) ((-781 . -807) NIL) ((-781 . -812) NIL) ((-781 . -810) NIL) ((-781 . -184) 118236) ((-781 . -120) T) ((-781 . -118) NIL) ((-781 . -104) T) ((-781 . -25) T) ((-781 . -72) T) ((-781 . -13) T) ((-781 . -1128) T) ((-781 . -553) 118218) ((-781 . -1013) T) ((-781 . -23) T) ((-781 . -21) T) ((-781 . -962) T) ((-781 . -664) T) ((-781 . -1060) T) ((-781 . -1025) T) ((-781 . -970) T) ((-779 . -780) 118202) ((-779 . -833) T) ((-779 . -495) T) ((-779 . -245) T) ((-779 . -146) T) ((-779 . -556) 118174) ((-779 . -655) 118161) ((-779 . -583) 118148) ((-779 . -969) 118135) ((-779 . -964) 118122) ((-779 . -82) 118107) ((-779 . -38) 118094) ((-779 . -389) T) ((-779 . -257) T) ((-779 . -962) T) ((-779 . -664) T) ((-779 . -1060) T) ((-779 . -1025) T) ((-779 . -970) T) ((-779 . -21) T) ((-779 . -589) 118066) ((-779 . -23) T) ((-779 . -1013) T) ((-779 . -553) 118048) ((-779 . -1128) T) ((-779 . -13) T) ((-779 . -72) T) ((-779 . -25) T) ((-779 . -104) T) ((-779 . -591) 118035) ((-779 . -120) T) ((-776 . -962) T) ((-776 . -664) T) ((-776 . -1060) T) ((-776 . -1025) T) ((-776 . -970) T) ((-776 . -21) T) ((-776 . -589) 117980) ((-776 . -23) T) ((-776 . -1013) T) ((-776 . -553) 117942) ((-776 . -1128) T) ((-776 . -13) T) ((-776 . -72) T) ((-776 . -25) T) ((-776 . -104) T) ((-776 . -591) 117902) ((-776 . -556) 117837) ((-776 . -427) 117814) ((-776 . -38) 117784) ((-776 . -82) 117749) ((-776 . -964) 117719) ((-776 . -969) 117689) ((-776 . -583) 117659) ((-776 . -655) 117629) ((-775 . -1013) T) ((-775 . -553) 117611) ((-775 . -1128) T) ((-775 . -13) T) ((-775 . -72) T) ((-774 . -753) T) ((-774 . -760) T) ((-774 . -757) T) ((-774 . -1013) T) ((-774 . -553) 117593) ((-774 . -1128) T) ((-774 . -13) T) ((-774 . -72) T) ((-774 . -317) T) ((-774 . -554) 117515) ((-773 . -1013) T) ((-773 . -553) 117497) ((-773 . -1128) T) ((-773 . -13) T) ((-773 . -72) T) ((-772 . -771) T) ((-772 . -147) T) ((-772 . -553) 117479) ((-768 . -757) T) ((-768 . -553) 117461) ((-768 . -1013) T) ((-768 . -72) T) ((-768 . -13) T) ((-768 . -1128) T) ((-768 . -760) T) ((-765 . -762) 117445) ((-765 . -951) 117343) ((-765 . -556) 117241) ((-765 . -352) 117225) ((-765 . -655) 117195) ((-765 . -583) 117165) ((-765 . -591) 117139) ((-765 . -589) 117098) ((-765 . -104) T) ((-765 . -25) T) ((-765 . -72) T) ((-765 . -13) T) ((-765 . -1128) T) ((-765 . -553) 117080) ((-765 . -1013) T) ((-765 . -23) T) ((-765 . -21) T) ((-765 . -969) 117064) ((-765 . -964) 117048) ((-765 . -82) 117027) ((-765 . -962) T) ((-765 . -664) T) ((-765 . -1060) T) ((-765 . -1025) T) ((-765 . -970) T) ((-765 . -38) 116997) ((-764 . -762) 116981) ((-764 . -951) 116879) ((-764 . -556) 116798) ((-764 . -352) 116782) ((-764 . -655) 116752) ((-764 . -583) 116722) ((-764 . -591) 116696) ((-764 . -589) 116655) ((-764 . -104) T) ((-764 . -25) T) ((-764 . -72) T) ((-764 . -13) T) ((-764 . -1128) T) ((-764 . -553) 116637) ((-764 . -1013) T) ((-764 . -23) T) ((-764 . -21) T) ((-764 . -969) 116621) ((-764 . -964) 116605) ((-764 . -82) 116584) ((-764 . -962) T) ((-764 . -664) T) ((-764 . -1060) T) ((-764 . -1025) T) ((-764 . -970) T) ((-764 . -38) 116554) ((-758 . -760) T) ((-758 . -1128) T) ((-758 . -13) T) ((-758 . -72) T) ((-758 . -427) 116538) ((-758 . -553) 116486) ((-758 . -556) 116470) ((-751 . -1013) T) ((-751 . -553) 116452) ((-751 . -1128) T) ((-751 . -13) T) ((-751 . -72) T) ((-751 . -352) 116436) ((-751 . -556) 116309) ((-751 . -951) 116207) ((-751 . -21) 116162) ((-751 . -589) 116082) ((-751 . -23) 116037) ((-751 . -25) 115992) ((-751 . -104) 115947) ((-751 . -756) 115926) ((-751 . -591) 115899) ((-751 . -970) 115878) ((-751 . -1060) 115857) ((-751 . -962) 115836) ((-751 . -722) 115815) ((-751 . -719) 115794) ((-751 . -760) 115773) ((-751 . -757) 115752) ((-751 . -717) 115731) ((-751 . -715) 115710) ((-751 . -1025) 115689) ((-751 . -664) 115668) ((-750 . -748) 115650) ((-750 . -72) T) ((-750 . -13) T) ((-750 . -1128) T) ((-750 . -553) 115632) ((-750 . -1013) T) ((-746 . -962) T) ((-746 . -664) T) ((-746 . -1060) T) ((-746 . -1025) T) ((-746 . -970) T) ((-746 . -21) T) ((-746 . -589) 115577) ((-746 . -23) T) ((-746 . -1013) T) ((-746 . -553) 115559) ((-746 . -1128) T) ((-746 . -13) T) ((-746 . -72) T) ((-746 . -25) T) ((-746 . -104) T) ((-746 . -591) 115519) ((-746 . -556) 115474) ((-746 . -951) 115444) ((-746 . -241) 115423) ((-746 . -120) 115402) ((-746 . -118) 115381) ((-746 . -38) 115351) ((-746 . -82) 115316) ((-746 . -964) 115286) ((-746 . -969) 115256) ((-746 . -583) 115226) ((-746 . -655) 115196) ((-744 . -1013) T) ((-744 . -553) 115178) ((-744 . -1128) T) ((-744 . -13) T) ((-744 . -72) T) ((-744 . -352) 115162) ((-744 . -556) 115035) ((-744 . -951) 114933) ((-744 . -21) 114888) ((-744 . -589) 114808) ((-744 . -23) 114763) ((-744 . -25) 114718) ((-744 . -104) 114673) ((-744 . -756) 114652) ((-744 . -591) 114625) ((-744 . -970) 114604) ((-744 . -1060) 114583) ((-744 . -962) 114562) ((-744 . -722) 114541) ((-744 . -719) 114520) ((-744 . -760) 114499) ((-744 . -757) 114478) ((-744 . -717) 114457) ((-744 . -715) 114436) ((-744 . -1025) 114415) ((-744 . -664) 114394) ((-742 . -646) 114378) ((-742 . -556) 114333) ((-742 . -655) 114303) ((-742 . -583) 114273) ((-742 . -591) 114247) ((-742 . -589) 114206) ((-742 . -104) T) ((-742 . -25) T) ((-742 . -72) T) ((-742 . -13) T) ((-742 . -1128) T) ((-742 . -553) 114188) ((-742 . -1013) T) ((-742 . -23) T) ((-742 . -21) T) ((-742 . -969) 114172) ((-742 . -964) 114156) ((-742 . -82) 114135) ((-742 . -962) T) ((-742 . -664) T) ((-742 . -1060) T) ((-742 . -1025) T) ((-742 . -970) T) ((-742 . -38) 114105) ((-742 . -190) 114084) ((-742 . -186) 114057) ((-742 . -189) 114036) ((-740 . -333) 114020) ((-740 . -556) 114004) ((-740 . -951) 113988) ((-740 . -760) T) ((-740 . -757) T) ((-740 . -1025) T) ((-740 . -72) T) ((-740 . -13) T) ((-740 . -1128) T) ((-740 . -553) 113970) ((-740 . -1013) T) ((-740 . -664) T) ((-740 . -755) T) ((-740 . -767) T) ((-739 . -228) 113954) ((-739 . -556) 113938) ((-739 . -951) 113922) ((-739 . -760) T) ((-739 . -72) T) ((-739 . -1013) T) ((-739 . -553) 113904) ((-739 . -757) T) ((-739 . -186) 113891) ((-739 . -13) T) ((-739 . -1128) T) ((-739 . -189) T) ((-738 . -82) 113826) ((-738 . -964) 113777) ((-738 . -969) 113728) ((-738 . -21) T) ((-738 . -589) 113664) ((-738 . -23) T) ((-738 . -1013) T) ((-738 . -553) 113633) ((-738 . -1128) T) ((-738 . -13) T) ((-738 . -72) T) ((-738 . -25) T) ((-738 . -104) T) ((-738 . -591) 113584) ((-738 . -190) T) ((-738 . -556) 113493) ((-738 . -970) T) ((-738 . -1025) T) ((-738 . -1060) T) ((-738 . -664) T) ((-738 . -962) T) ((-738 . -186) 113480) ((-738 . -189) T) ((-738 . -427) 113464) ((-738 . -311) 113443) ((-738 . -1133) 113422) ((-738 . -833) 113401) ((-738 . -495) 113380) ((-738 . -146) 113359) ((-738 . -655) 113296) ((-738 . -583) 113233) ((-738 . -38) 113170) ((-738 . -389) 113149) ((-738 . -257) 113128) ((-738 . -245) 113107) ((-738 . -201) 113086) ((-737 . -213) 113025) ((-737 . -556) 112769) ((-737 . -951) 112599) ((-737 . -554) NIL) ((-737 . -276) 112561) ((-737 . -352) 112545) ((-737 . -38) 112397) ((-737 . -82) 112222) ((-737 . -964) 112068) ((-737 . -969) 111914) ((-737 . -589) 111824) ((-737 . -591) 111713) ((-737 . -583) 111565) ((-737 . -655) 111417) ((-737 . -118) 111396) ((-737 . -120) 111375) ((-737 . -146) 111289) ((-737 . -495) 111223) ((-737 . -245) 111157) ((-737 . -47) 111119) ((-737 . -326) 111103) ((-737 . -581) 111051) ((-737 . -389) 111005) ((-737 . -453) 110870) ((-737 . -810) 110806) ((-737 . -807) 110705) ((-737 . -812) 110608) ((-737 . -797) NIL) ((-737 . -822) 110587) ((-737 . -1133) 110566) ((-737 . -862) 110513) ((-737 . -259) 110500) ((-737 . -190) 110479) ((-737 . -104) T) ((-737 . -25) T) ((-737 . -72) T) ((-737 . -553) 110461) ((-737 . -1013) T) ((-737 . -23) T) ((-737 . -21) T) ((-737 . -970) T) ((-737 . -1025) T) ((-737 . -1060) T) ((-737 . -664) T) ((-737 . -962) T) ((-737 . -186) 110409) ((-737 . -13) T) ((-737 . -1128) T) ((-737 . -189) 110363) ((-737 . -225) 110347) ((-737 . -184) 110331) ((-736 . -196) 110310) ((-736 . -1186) 110280) ((-736 . -722) 110259) ((-736 . -719) 110238) ((-736 . -760) 110192) ((-736 . -757) 110146) ((-736 . -717) 110125) ((-736 . -718) 110104) ((-736 . -655) 110049) ((-736 . -583) 109974) ((-736 . -243) 109951) ((-736 . -241) 109928) ((-736 . -426) 109912) ((-736 . -453) 109845) ((-736 . -259) 109783) ((-736 . -34) T) ((-736 . -539) 109760) ((-736 . -951) 109589) ((-736 . -556) 109393) ((-736 . -352) 109362) ((-736 . -581) 109270) ((-736 . -591) 109109) ((-736 . -326) 109079) ((-736 . -317) 109058) ((-736 . -190) 109011) ((-736 . -589) 108799) ((-736 . -970) 108778) ((-736 . -1025) 108757) ((-736 . -1060) 108736) ((-736 . -664) 108715) ((-736 . -962) 108694) ((-736 . -186) 108590) ((-736 . -189) 108492) ((-736 . -225) 108462) ((-736 . -807) 108334) ((-736 . -812) 108208) ((-736 . -810) 108141) ((-736 . -184) 108111) ((-736 . -553) 107808) ((-736 . -969) 107733) ((-736 . -964) 107638) ((-736 . -82) 107558) ((-736 . -104) 107433) ((-736 . -25) 107270) ((-736 . -72) 107007) ((-736 . -13) T) ((-736 . -1128) T) ((-736 . -1013) 106763) ((-736 . -23) 106619) ((-736 . -21) 106534) ((-723 . -721) 106518) ((-723 . -760) 106497) ((-723 . -757) 106476) ((-723 . -951) 106269) ((-723 . -556) 106122) ((-723 . -352) 106086) ((-723 . -241) 106044) ((-723 . -259) 106009) ((-723 . -453) 105921) ((-723 . -287) 105905) ((-723 . -317) 105884) ((-723 . -554) 105845) ((-723 . -120) 105824) ((-723 . -118) 105803) ((-723 . -655) 105787) ((-723 . -583) 105771) ((-723 . -591) 105745) ((-723 . -589) 105704) ((-723 . -104) T) ((-723 . -25) T) ((-723 . -72) T) ((-723 . -13) T) ((-723 . -1128) T) ((-723 . -553) 105686) ((-723 . -1013) T) ((-723 . -23) T) ((-723 . -21) T) ((-723 . -969) 105670) ((-723 . -964) 105654) ((-723 . -82) 105633) ((-723 . -962) T) ((-723 . -664) T) ((-723 . -1060) T) ((-723 . -1025) T) ((-723 . -970) T) ((-723 . -38) 105617) ((-705 . -1154) 105601) ((-705 . -1065) 105579) ((-705 . -554) NIL) ((-705 . -259) 105566) ((-705 . -453) 105514) ((-705 . -276) 105491) ((-705 . -951) 105353) ((-705 . -352) 105337) ((-705 . -38) 105169) ((-705 . -82) 104974) ((-705 . -964) 104800) ((-705 . -969) 104626) ((-705 . -589) 104536) ((-705 . -591) 104425) ((-705 . -583) 104257) ((-705 . -655) 104089) ((-705 . -556) 103845) ((-705 . -118) 103824) ((-705 . -120) 103803) ((-705 . -47) 103780) ((-705 . -326) 103764) ((-705 . -581) 103712) ((-705 . -810) 103656) ((-705 . -807) 103563) ((-705 . -812) 103474) ((-705 . -797) NIL) ((-705 . -822) 103453) ((-705 . -1133) 103432) ((-705 . -862) 103402) ((-705 . -833) 103381) ((-705 . -495) 103295) ((-705 . -245) 103209) ((-705 . -146) 103103) ((-705 . -389) 103037) ((-705 . -257) 103016) ((-705 . -241) 102943) ((-705 . -190) T) ((-705 . -104) T) ((-705 . -25) T) ((-705 . -72) T) ((-705 . -553) 102904) ((-705 . -1013) T) ((-705 . -23) T) ((-705 . -21) T) ((-705 . -970) T) ((-705 . -1025) T) ((-705 . -1060) T) ((-705 . -664) T) ((-705 . -962) T) ((-705 . -186) 102891) ((-705 . -13) T) ((-705 . -1128) T) ((-705 . -189) T) ((-705 . -225) 102875) ((-705 . -184) 102859) ((-704 . -977) 102826) ((-704 . -554) 102461) ((-704 . -259) 102448) ((-704 . -453) 102400) ((-704 . -276) 102372) ((-704 . -951) 102231) ((-704 . -352) 102215) ((-704 . -38) 102067) ((-704 . -556) 101840) ((-704 . -591) 101729) ((-704 . -589) 101639) ((-704 . -970) T) ((-704 . -1025) T) ((-704 . -1060) T) ((-704 . -664) T) ((-704 . -962) T) ((-704 . -82) 101464) ((-704 . -964) 101310) ((-704 . -969) 101156) ((-704 . -21) T) ((-704 . -23) T) ((-704 . -1013) T) ((-704 . -553) 101070) ((-704 . -1128) T) ((-704 . -13) T) ((-704 . -72) T) ((-704 . -25) T) ((-704 . -104) T) ((-704 . -583) 100922) ((-704 . -655) 100774) ((-704 . -118) 100753) ((-704 . -120) 100732) ((-704 . -146) 100646) ((-704 . -495) 100580) ((-704 . -245) 100514) ((-704 . -47) 100486) ((-704 . -326) 100470) ((-704 . -581) 100418) ((-704 . -389) 100372) ((-704 . -810) 100356) ((-704 . -807) 100338) ((-704 . -812) 100322) ((-704 . -797) 100181) ((-704 . -822) 100160) ((-704 . -1133) 100139) ((-704 . -862) 100106) ((-697 . -1013) T) ((-697 . -553) 100088) ((-697 . -1128) T) ((-697 . -13) T) ((-697 . -72) T) ((-695 . -718) T) ((-695 . -104) T) ((-695 . -25) T) ((-695 . -72) T) ((-695 . -13) T) ((-695 . -1128) T) ((-695 . -553) 100070) ((-695 . -1013) T) ((-695 . -23) T) ((-695 . -717) T) ((-695 . -757) T) ((-695 . -760) T) ((-695 . -719) T) ((-695 . -722) T) ((-695 . -664) T) ((-695 . -1025) T) ((-676 . -677) 100054) ((-676 . -1011) 100038) ((-676 . -193) 100022) ((-676 . -554) 99983) ((-676 . -124) 99967) ((-676 . -426) 99951) ((-676 . -1013) T) ((-676 . -453) 99884) ((-676 . -259) 99822) ((-676 . -553) 99804) ((-676 . -72) T) ((-676 . -1128) T) ((-676 . -13) T) ((-676 . -34) T) ((-676 . -76) 99788) ((-676 . -635) 99772) ((-675 . -962) T) ((-675 . -664) T) ((-675 . -1060) T) ((-675 . -1025) T) ((-675 . -970) T) ((-675 . -21) T) ((-675 . -589) 99717) ((-675 . -23) T) ((-675 . -1013) T) ((-675 . -553) 99699) ((-675 . -1128) T) ((-675 . -13) T) ((-675 . -72) T) ((-675 . -25) T) ((-675 . -104) T) ((-675 . -591) 99659) ((-675 . -556) 99615) ((-675 . -951) 99586) ((-675 . -120) 99565) ((-675 . -118) 99544) ((-675 . -38) 99514) ((-675 . -82) 99479) ((-675 . -964) 99449) ((-675 . -969) 99419) ((-675 . -583) 99389) ((-675 . -655) 99359) ((-675 . -317) 99312) ((-671 . -862) 99265) ((-671 . -556) 99057) ((-671 . -951) 98935) ((-671 . -1133) 98914) ((-671 . -822) 98893) ((-671 . -797) NIL) ((-671 . -812) 98870) ((-671 . -807) 98845) ((-671 . -810) 98822) ((-671 . -453) 98760) ((-671 . -389) 98714) ((-671 . -581) 98662) ((-671 . -591) 98551) ((-671 . -326) 98535) ((-671 . -47) 98500) ((-671 . -38) 98352) ((-671 . -583) 98204) ((-671 . -655) 98056) ((-671 . -245) 97990) ((-671 . -495) 97924) ((-671 . -82) 97749) ((-671 . -964) 97595) ((-671 . -969) 97441) ((-671 . -146) 97355) ((-671 . -120) 97334) ((-671 . -118) 97313) ((-671 . -589) 97223) ((-671 . -104) T) ((-671 . -25) T) ((-671 . -72) T) ((-671 . -13) T) ((-671 . -1128) T) ((-671 . -553) 97205) ((-671 . -1013) T) ((-671 . -23) T) ((-671 . -21) T) ((-671 . -962) T) ((-671 . -664) T) ((-671 . -1060) T) ((-671 . -1025) T) ((-671 . -970) T) ((-671 . -352) 97189) ((-671 . -276) 97154) ((-671 . -259) 97141) ((-671 . -554) 97002) ((-665 . -666) 96986) ((-665 . -80) 96970) ((-665 . -1128) T) ((-665 . |MappingCategory|) 96944) ((-665 . -1023) 96928) ((-665 . -1013) T) ((-665 . -553) 96889) ((-665 . -13) T) ((-665 . -72) T) ((-656 . -410) T) ((-656 . -1025) T) ((-656 . -72) T) ((-656 . -13) T) ((-656 . -1128) T) ((-656 . -553) 96871) ((-656 . -1013) T) ((-656 . -664) T) ((-653 . -962) T) ((-653 . -664) T) ((-653 . -1060) T) ((-653 . -1025) T) ((-653 . -970) T) ((-653 . -21) T) ((-653 . -589) 96843) ((-653 . -23) T) ((-653 . -1013) T) ((-653 . -553) 96825) ((-653 . -1128) T) ((-653 . -13) T) ((-653 . -72) T) ((-653 . -25) T) ((-653 . -104) T) ((-653 . -591) 96812) ((-653 . -556) 96794) ((-652 . -962) T) ((-652 . -664) T) ((-652 . -1060) T) ((-652 . -1025) T) ((-652 . -970) T) ((-652 . -21) T) ((-652 . -589) 96739) ((-652 . -23) T) ((-652 . -1013) T) ((-652 . -553) 96721) ((-652 . -1128) T) ((-652 . -13) T) ((-652 . -72) T) ((-652 . -25) T) ((-652 . -104) T) ((-652 . -591) 96681) ((-652 . -556) 96636) ((-652 . -951) 96606) ((-652 . -241) 96585) ((-652 . -120) 96564) ((-652 . -118) 96543) ((-652 . -38) 96513) ((-652 . -82) 96478) ((-652 . -964) 96448) ((-652 . -969) 96418) ((-652 . -583) 96388) ((-652 . -655) 96358) ((-651 . -757) T) ((-651 . -553) 96293) ((-651 . -1013) T) ((-651 . -72) T) ((-651 . -13) T) ((-651 . -1128) T) ((-651 . -760) T) ((-651 . -427) 96243) ((-651 . -556) 96193) ((-650 . -1154) 96177) ((-650 . -1065) 96155) ((-650 . -554) NIL) ((-650 . -259) 96142) ((-650 . -453) 96090) ((-650 . -276) 96067) ((-650 . -951) 95950) ((-650 . -352) 95934) ((-650 . -38) 95766) ((-650 . -82) 95571) ((-650 . -964) 95397) ((-650 . -969) 95223) ((-650 . -589) 95133) ((-650 . -591) 95022) ((-650 . -583) 94854) ((-650 . -655) 94686) ((-650 . -556) 94450) ((-650 . -118) 94429) ((-650 . -120) 94408) ((-650 . -47) 94385) ((-650 . -326) 94369) ((-650 . -581) 94317) ((-650 . -810) 94261) ((-650 . -807) 94168) ((-650 . -812) 94079) ((-650 . -797) NIL) ((-650 . -822) 94058) ((-650 . -1133) 94037) ((-650 . -862) 94007) ((-650 . -833) 93986) ((-650 . -495) 93900) ((-650 . -245) 93814) ((-650 . -146) 93708) ((-650 . -389) 93642) ((-650 . -257) 93621) ((-650 . -241) 93548) ((-650 . -190) T) ((-650 . -104) T) ((-650 . -25) T) ((-650 . -72) T) ((-650 . -553) 93530) ((-650 . -1013) T) ((-650 . -23) T) ((-650 . -21) T) ((-650 . -970) T) ((-650 . -1025) T) ((-650 . -1060) T) ((-650 . -664) T) ((-650 . -962) T) ((-650 . -186) 93517) ((-650 . -13) T) ((-650 . -1128) T) ((-650 . -189) T) ((-650 . -225) 93501) ((-650 . -184) 93485) ((-650 . -317) 93464) ((-649 . -311) T) ((-649 . -1133) T) ((-649 . -833) T) ((-649 . -495) T) ((-649 . -146) T) ((-649 . -556) 93414) ((-649 . -655) 93379) ((-649 . -583) 93344) ((-649 . -38) 93309) ((-649 . -389) T) ((-649 . -257) T) ((-649 . -591) 93274) ((-649 . -589) 93224) ((-649 . -970) T) ((-649 . -1025) T) ((-649 . -1060) T) ((-649 . -664) T) ((-649 . -962) T) ((-649 . -82) 93173) ((-649 . -964) 93138) ((-649 . -969) 93103) ((-649 . -21) T) ((-649 . -23) T) ((-649 . -1013) T) ((-649 . -553) 93085) ((-649 . -1128) T) ((-649 . -13) T) ((-649 . -72) T) ((-649 . -25) T) ((-649 . -104) T) ((-649 . -245) T) ((-649 . -201) T) ((-648 . -1013) T) ((-648 . -553) 93067) ((-648 . -1128) T) ((-648 . -13) T) ((-648 . -72) T) ((-633 . -1174) T) ((-633 . -951) 93051) ((-633 . -556) 93035) ((-633 . -553) 93017) ((-631 . -628) 92975) ((-631 . -426) 92959) ((-631 . -1013) 92937) ((-631 . -453) 92870) ((-631 . -259) 92808) ((-631 . -553) 92743) ((-631 . -72) 92697) ((-631 . -1128) T) ((-631 . -13) T) ((-631 . -34) T) ((-631 . -57) 92655) ((-631 . -554) 92616) ((-623 . -995) T) ((-623 . -427) 92597) ((-623 . -553) 92547) ((-623 . -556) 92528) ((-623 . -1013) T) ((-623 . -1128) T) ((-623 . -13) T) ((-623 . -72) T) ((-623 . -64) T) ((-619 . -757) T) ((-619 . -553) 92510) ((-619 . -1013) T) ((-619 . -72) T) ((-619 . -13) T) ((-619 . -1128) T) ((-619 . -760) T) ((-619 . -951) 92494) ((-619 . -556) 92478) ((-618 . -995) T) ((-618 . -427) 92459) ((-618 . -553) 92425) ((-618 . -556) 92406) ((-618 . -1013) T) ((-618 . -1128) T) ((-618 . -13) T) ((-618 . -72) T) ((-618 . -64) T) ((-615 . -757) T) ((-615 . -553) 92388) ((-615 . -1013) T) ((-615 . -72) T) ((-615 . -13) T) ((-615 . -1128) T) ((-615 . -760) T) ((-615 . -951) 92372) ((-615 . -556) 92356) ((-614 . -995) T) ((-614 . -427) 92337) ((-614 . -553) 92303) ((-614 . -556) 92284) ((-614 . -1013) T) ((-614 . -1128) T) ((-614 . -13) T) ((-614 . -72) T) ((-614 . -64) T) ((-613 . -1036) 92229) ((-613 . -426) 92213) ((-613 . -453) 92146) ((-613 . -259) 92084) ((-613 . -34) T) ((-613 . -966) 92024) ((-613 . -951) 91922) ((-613 . -556) 91841) ((-613 . -352) 91825) ((-613 . -581) 91773) ((-613 . -591) 91711) ((-613 . -326) 91695) ((-613 . -190) 91674) ((-613 . -186) 91622) ((-613 . -189) 91576) ((-613 . -225) 91560) ((-613 . -807) 91484) ((-613 . -812) 91410) ((-613 . -810) 91369) ((-613 . -184) 91353) ((-613 . -655) 91337) ((-613 . -583) 91321) ((-613 . -589) 91280) ((-613 . -104) T) ((-613 . -25) T) ((-613 . -72) T) ((-613 . -13) T) ((-613 . -1128) T) ((-613 . -553) 91242) ((-613 . -1013) T) ((-613 . -23) T) ((-613 . -21) T) ((-613 . -969) 91226) ((-613 . -964) 91210) ((-613 . -82) 91189) ((-613 . -962) T) ((-613 . -664) T) ((-613 . -1060) T) ((-613 . -1025) T) ((-613 . -970) T) ((-613 . -38) 91149) ((-613 . -358) 91133) ((-613 . -684) 91117) ((-613 . -658) T) ((-613 . -686) T) ((-613 . -315) 91101) ((-613 . -241) 91078) ((-607 . -323) 91057) ((-607 . -655) 91041) ((-607 . -583) 91025) ((-607 . -591) 91009) ((-607 . -589) 90978) ((-607 . -104) T) ((-607 . -25) T) ((-607 . -72) T) ((-607 . -13) T) ((-607 . -1128) T) ((-607 . -553) 90960) ((-607 . -1013) T) ((-607 . -23) T) ((-607 . -21) T) ((-607 . -969) 90944) ((-607 . -964) 90928) ((-607 . -82) 90907) ((-607 . -575) 90891) ((-607 . -332) 90863) ((-607 . -556) 90840) ((-607 . -951) 90817) ((-599 . -601) 90801) ((-599 . -38) 90771) ((-599 . -556) 90690) ((-599 . -591) 90664) ((-599 . -589) 90623) ((-599 . -970) T) ((-599 . -1025) T) ((-599 . -1060) T) ((-599 . -664) T) ((-599 . -962) T) ((-599 . -82) 90602) ((-599 . -964) 90586) ((-599 . -969) 90570) ((-599 . -21) T) ((-599 . -23) T) ((-599 . -1013) T) ((-599 . -553) 90552) ((-599 . -72) T) ((-599 . -25) T) ((-599 . -104) T) ((-599 . -583) 90522) ((-599 . -655) 90492) ((-599 . -352) 90476) ((-599 . -951) 90374) ((-599 . -762) 90358) ((-599 . -1128) T) ((-599 . -13) T) ((-599 . -241) 90319) ((-598 . -601) 90303) ((-598 . -38) 90273) ((-598 . -556) 90192) ((-598 . -591) 90166) ((-598 . -589) 90125) ((-598 . -970) T) ((-598 . -1025) T) ((-598 . -1060) T) ((-598 . -664) T) ((-598 . -962) T) ((-598 . -82) 90104) ((-598 . -964) 90088) ((-598 . -969) 90072) ((-598 . -21) T) ((-598 . -23) T) ((-598 . -1013) T) ((-598 . -553) 90054) ((-598 . -72) T) ((-598 . -25) T) ((-598 . -104) T) ((-598 . -583) 90024) ((-598 . -655) 89994) ((-598 . -352) 89978) ((-598 . -951) 89876) ((-598 . -762) 89860) ((-598 . -1128) T) ((-598 . -13) T) ((-598 . -241) 89839) ((-597 . -601) 89823) ((-597 . -38) 89793) ((-597 . -556) 89712) ((-597 . -591) 89686) ((-597 . -589) 89645) ((-597 . -970) T) ((-597 . -1025) T) ((-597 . -1060) T) ((-597 . -664) T) ((-597 . -962) T) ((-597 . -82) 89624) ((-597 . -964) 89608) ((-597 . -969) 89592) ((-597 . -21) T) ((-597 . -23) T) ((-597 . -1013) T) ((-597 . -553) 89574) ((-597 . -72) T) ((-597 . -25) T) ((-597 . -104) T) ((-597 . -583) 89544) ((-597 . -655) 89514) ((-597 . -352) 89498) ((-597 . -951) 89396) ((-597 . -762) 89380) ((-597 . -1128) T) ((-597 . -13) T) ((-597 . -241) 89359) ((-595 . -655) 89343) ((-595 . -583) 89327) ((-595 . -591) 89311) ((-595 . -589) 89280) ((-595 . -104) T) ((-595 . -25) T) ((-595 . -72) T) ((-595 . -13) T) ((-595 . -1128) T) ((-595 . -553) 89262) ((-595 . -1013) T) ((-595 . -23) T) ((-595 . -21) T) ((-595 . -969) 89246) ((-595 . -964) 89230) ((-595 . -82) 89209) ((-595 . -715) 89188) ((-595 . -717) 89167) ((-595 . -757) 89146) ((-595 . -760) 89125) ((-595 . -719) 89104) ((-595 . -722) 89083) ((-592 . -1013) T) ((-592 . -553) 89065) ((-592 . -1128) T) ((-592 . -13) T) ((-592 . -72) T) ((-592 . -951) 89049) ((-592 . -556) 89033) ((-590 . -635) 89017) ((-590 . -76) 89001) ((-590 . -34) T) ((-590 . -13) T) ((-590 . -1128) T) ((-590 . -72) 88955) ((-590 . -553) 88890) ((-590 . -259) 88828) ((-590 . -453) 88761) ((-590 . -1013) 88739) ((-590 . -426) 88723) ((-590 . -124) 88707) ((-590 . -554) 88668) ((-590 . -193) 88652) ((-588 . -995) T) ((-588 . -427) 88633) ((-588 . -553) 88586) ((-588 . -556) 88567) ((-588 . -1013) T) ((-588 . -1128) T) ((-588 . -13) T) ((-588 . -72) T) ((-588 . -64) T) ((-584 . -609) 88551) ((-584 . -1167) 88535) ((-584 . -924) 88519) ((-584 . -1063) 88503) ((-584 . -757) 88482) ((-584 . -760) 88461) ((-584 . -321) 88445) ((-584 . -594) 88429) ((-584 . -243) 88406) ((-584 . -241) 88358) ((-584 . -539) 88335) ((-584 . -554) 88296) ((-584 . -426) 88280) ((-584 . -1013) 88233) ((-584 . -453) 88166) ((-584 . -259) 88104) ((-584 . -553) 88019) ((-584 . -72) 87953) ((-584 . -1128) T) ((-584 . -13) T) ((-584 . -34) T) ((-584 . -124) 87937) ((-584 . -237) 87921) ((-582 . -1186) 87905) ((-582 . -82) 87884) ((-582 . -964) 87868) ((-582 . -969) 87852) ((-582 . -21) T) ((-582 . -589) 87821) ((-582 . -23) T) ((-582 . -1013) T) ((-582 . -553) 87803) ((-582 . -1128) T) ((-582 . -13) T) ((-582 . -72) T) ((-582 . -25) T) ((-582 . -104) T) ((-582 . -591) 87787) ((-582 . -583) 87771) ((-582 . -655) 87755) ((-582 . -241) 87722) ((-580 . -1186) 87706) ((-580 . -82) 87685) ((-580 . -964) 87669) ((-580 . -969) 87653) ((-580 . -21) T) ((-580 . -589) 87622) ((-580 . -23) T) ((-580 . -1013) T) ((-580 . -553) 87604) ((-580 . -1128) T) ((-580 . -13) T) ((-580 . -72) T) ((-580 . -25) T) ((-580 . -104) T) ((-580 . -591) 87588) ((-580 . -583) 87572) ((-580 . -655) 87556) ((-580 . -556) 87533) ((-580 . -447) 87505) ((-578 . -753) T) ((-578 . -760) T) ((-578 . -757) T) ((-578 . -1013) T) ((-578 . -553) 87487) ((-578 . -1128) T) ((-578 . -13) T) ((-578 . -72) T) ((-578 . -317) T) ((-578 . -556) 87464) ((-573 . -684) 87448) ((-573 . -658) T) ((-573 . -686) T) ((-573 . -82) 87427) ((-573 . -964) 87411) ((-573 . -969) 87395) ((-573 . -21) T) ((-573 . -589) 87364) ((-573 . -23) T) ((-573 . -1013) T) ((-573 . -553) 87333) ((-573 . -1128) T) ((-573 . -13) T) ((-573 . -72) T) ((-573 . -25) T) ((-573 . -104) T) ((-573 . -591) 87317) ((-573 . -583) 87301) ((-573 . -655) 87285) ((-573 . -358) 87250) ((-573 . -315) 87185) ((-573 . -241) 87143) ((-572 . -1106) 87118) ((-572 . -183) 87062) ((-572 . -76) 87006) ((-572 . -259) 86851) ((-572 . -453) 86651) ((-572 . -426) 86581) ((-572 . -124) 86525) ((-572 . -554) NIL) ((-572 . -193) 86469) ((-572 . -550) 86444) ((-572 . -243) 86419) ((-572 . -1128) T) ((-572 . -13) T) ((-572 . -241) 86372) ((-572 . -1013) T) ((-572 . -553) 86354) ((-572 . -72) T) ((-572 . -34) T) ((-572 . -539) 86329) ((-567 . -410) T) ((-567 . -1025) T) ((-567 . -72) T) ((-567 . -13) T) ((-567 . -1128) T) ((-567 . -553) 86311) ((-567 . -1013) T) ((-567 . -664) T) ((-566 . -995) T) ((-566 . -427) 86292) ((-566 . -553) 86258) ((-566 . -556) 86239) ((-566 . -1013) T) ((-566 . -1128) T) ((-566 . -13) T) ((-566 . -72) T) ((-566 . -64) T) ((-563 . -184) 86223) ((-563 . -810) 86182) ((-563 . -812) 86108) ((-563 . -807) 86032) ((-563 . -225) 86016) ((-563 . -189) 85970) ((-563 . -1128) T) ((-563 . -13) T) ((-563 . -186) 85918) ((-563 . -962) T) ((-563 . -664) T) ((-563 . -1060) T) ((-563 . -1025) T) ((-563 . -970) T) ((-563 . -21) T) ((-563 . -589) 85890) ((-563 . -23) T) ((-563 . -1013) T) ((-563 . -553) 85872) ((-563 . -72) T) ((-563 . -25) T) ((-563 . -104) T) ((-563 . -591) 85859) ((-563 . -556) 85755) ((-563 . -190) 85734) ((-563 . -495) T) ((-563 . -245) T) ((-563 . -146) T) ((-563 . -655) 85721) ((-563 . -583) 85708) ((-563 . -969) 85695) ((-563 . -964) 85682) ((-563 . -82) 85667) ((-563 . -38) 85654) ((-563 . -554) 85631) ((-563 . -352) 85615) ((-563 . -951) 85500) ((-563 . -120) 85479) ((-563 . -118) 85458) ((-563 . -257) 85437) ((-563 . -389) 85416) ((-563 . -833) 85395) ((-559 . -38) 85379) ((-559 . -556) 85348) ((-559 . -591) 85322) ((-559 . -589) 85281) ((-559 . -970) T) ((-559 . -1025) T) ((-559 . -1060) T) ((-559 . -664) T) ((-559 . -962) T) ((-559 . -82) 85260) ((-559 . -964) 85244) ((-559 . -969) 85228) ((-559 . -21) T) ((-559 . -23) T) ((-559 . -1013) T) ((-559 . -553) 85210) ((-559 . -1128) T) ((-559 . -13) T) ((-559 . -72) T) ((-559 . -25) T) ((-559 . -104) T) ((-559 . -583) 85194) ((-559 . -655) 85178) ((-559 . -756) 85157) ((-559 . -722) 85136) ((-559 . -719) 85115) ((-559 . -760) 85094) ((-559 . -757) 85073) ((-559 . -717) 85052) ((-559 . -715) 85031) ((-557 . -881) T) ((-557 . -72) T) ((-557 . -553) 85013) ((-557 . -1013) T) ((-557 . -605) T) ((-557 . -13) T) ((-557 . -1128) T) ((-557 . -84) T) ((-557 . -317) T) ((-551 . -105) T) ((-551 . -72) T) ((-551 . -13) T) ((-551 . -1128) T) ((-551 . -553) 84995) ((-551 . -1013) T) ((-551 . -757) T) ((-551 . -760) T) ((-551 . -795) 84979) ((-551 . -554) 84840) ((-548 . -313) 84778) ((-548 . -72) T) ((-548 . -13) T) ((-548 . -1128) T) ((-548 . -553) 84760) ((-548 . -1013) T) ((-548 . -1106) 84736) ((-548 . -183) 84681) ((-548 . -76) 84626) ((-548 . -259) 84415) ((-548 . -453) 84155) ((-548 . -426) 84087) ((-548 . -124) 84032) ((-548 . -554) NIL) ((-548 . -193) 83977) ((-548 . -550) 83953) ((-548 . -243) 83929) ((-548 . -241) 83905) ((-548 . -34) T) ((-548 . -539) 83881) ((-547 . -1013) T) ((-547 . -553) 83833) ((-547 . -1128) T) ((-547 . -13) T) ((-547 . -72) T) ((-547 . -427) 83800) ((-547 . -556) 83767) ((-546 . -1013) T) ((-546 . -553) 83749) ((-546 . -1128) T) ((-546 . -13) T) ((-546 . -72) T) ((-546 . -605) T) ((-545 . -1013) T) ((-545 . -553) 83731) ((-545 . -1128) T) ((-545 . -13) T) ((-545 . -72) T) ((-545 . -605) T) ((-544 . -1013) T) ((-544 . -553) 83698) ((-544 . -1128) T) ((-544 . -13) T) ((-544 . -72) T) ((-543 . -1013) T) ((-543 . -553) 83680) ((-543 . -1128) T) ((-543 . -13) T) ((-543 . -72) T) ((-543 . -605) T) ((-542 . -1013) T) ((-542 . -553) 83647) ((-542 . -1128) T) ((-542 . -13) T) ((-542 . -72) T) ((-542 . -427) 83629) ((-542 . -556) 83611) ((-541 . -684) 83595) ((-541 . -658) T) ((-541 . -686) T) ((-541 . -82) 83574) ((-541 . -964) 83558) ((-541 . -969) 83542) ((-541 . -21) T) ((-541 . -589) 83511) ((-541 . -23) T) ((-541 . -1013) T) ((-541 . -553) 83480) ((-541 . -1128) T) ((-541 . -13) T) ((-541 . -72) T) ((-541 . -25) T) ((-541 . -104) T) ((-541 . -591) 83464) ((-541 . -583) 83448) ((-541 . -655) 83432) ((-541 . -358) 83397) ((-541 . -315) 83332) ((-541 . -241) 83290) ((-540 . -995) T) ((-540 . -427) 83271) ((-540 . -553) 83221) ((-540 . -556) 83202) ((-540 . -1013) T) ((-540 . -1128) T) ((-540 . -13) T) ((-540 . -72) T) ((-540 . -64) T) ((-537 . -1177) 83186) ((-537 . -321) 83170) ((-537 . -760) 83149) ((-537 . -757) 83128) ((-537 . -124) 83112) ((-537 . -34) T) ((-537 . -13) T) ((-537 . -1128) T) ((-537 . -72) 83046) ((-537 . -553) 82961) ((-537 . -259) 82899) ((-537 . -453) 82832) ((-537 . -1013) 82785) ((-537 . -426) 82769) ((-537 . -554) 82730) ((-537 . -241) 82682) ((-537 . -539) 82659) ((-537 . -243) 82636) ((-537 . -594) 82620) ((-537 . -19) 82604) ((-536 . -553) 82586) ((-532 . -1013) T) ((-532 . -553) 82552) ((-532 . -1128) T) ((-532 . -13) T) ((-532 . -72) T) ((-532 . -427) 82533) ((-532 . -556) 82514) ((-531 . -962) T) ((-531 . -664) T) ((-531 . -1060) T) ((-531 . -1025) T) ((-531 . -970) T) ((-531 . -21) T) ((-531 . -589) 82473) ((-531 . -23) T) ((-531 . -1013) T) ((-531 . -553) 82455) ((-531 . -1128) T) ((-531 . -13) T) ((-531 . -72) T) ((-531 . -25) T) ((-531 . -104) T) ((-531 . -591) 82429) ((-531 . -556) 82387) ((-531 . -82) 82340) ((-531 . -964) 82300) ((-531 . -969) 82260) ((-531 . -495) 82239) ((-531 . -245) 82218) ((-531 . -146) 82197) ((-531 . -655) 82170) ((-531 . -583) 82143) ((-531 . -38) 82116) ((-530 . -1157) 82093) ((-530 . -47) 82070) ((-530 . -38) 81967) ((-530 . -583) 81864) ((-530 . -655) 81761) ((-530 . -556) 81643) ((-530 . -245) 81622) ((-530 . -495) 81601) ((-530 . -82) 81466) ((-530 . -964) 81352) ((-530 . -969) 81238) ((-530 . -146) 81192) ((-530 . -120) 81171) ((-530 . -118) 81150) ((-530 . -591) 81075) ((-530 . -589) 80985) ((-530 . -887) 80955) ((-530 . -812) 80868) ((-530 . -807) 80779) ((-530 . -810) 80692) ((-530 . -241) 80657) ((-530 . -189) 80616) ((-530 . -1128) T) ((-530 . -13) T) ((-530 . -186) 80569) ((-530 . -962) T) ((-530 . -664) T) ((-530 . -1060) T) ((-530 . -1025) T) ((-530 . -970) T) ((-530 . -21) T) ((-530 . -23) T) ((-530 . -1013) T) ((-530 . -553) 80551) ((-530 . -72) T) ((-530 . -25) T) ((-530 . -104) T) ((-530 . -190) 80510) ((-528 . -995) T) ((-528 . -427) 80491) ((-528 . -553) 80457) ((-528 . -556) 80438) ((-528 . -1013) T) ((-528 . -1128) T) ((-528 . -13) T) ((-528 . -72) T) ((-528 . -64) T) ((-522 . -1013) T) ((-522 . -553) 80404) ((-522 . -1128) T) ((-522 . -13) T) ((-522 . -72) T) ((-522 . -427) 80385) ((-522 . -556) 80366) ((-519 . -655) 80341) ((-519 . -583) 80316) ((-519 . -591) 80291) ((-519 . -589) 80251) ((-519 . -104) T) ((-519 . -25) T) ((-519 . -72) T) ((-519 . -13) T) ((-519 . -1128) T) ((-519 . -553) 80233) ((-519 . -1013) T) ((-519 . -23) T) ((-519 . -21) T) ((-519 . -969) 80208) ((-519 . -964) 80183) ((-519 . -82) 80144) ((-519 . -951) 80128) ((-519 . -556) 80112) ((-517 . -298) T) ((-517 . -1065) T) ((-517 . -317) T) ((-517 . -118) T) ((-517 . -311) T) ((-517 . -1133) T) ((-517 . -833) T) ((-517 . -495) T) ((-517 . -146) T) ((-517 . -556) 80062) ((-517 . -655) 80027) ((-517 . -583) 79992) ((-517 . -38) 79957) ((-517 . -389) T) ((-517 . -257) T) ((-517 . -82) 79906) ((-517 . -964) 79871) ((-517 . -969) 79836) ((-517 . -589) 79786) ((-517 . -591) 79751) ((-517 . -245) T) ((-517 . -201) T) ((-517 . -342) T) ((-517 . -189) T) ((-517 . -1128) T) ((-517 . -13) T) ((-517 . -186) 79738) ((-517 . -962) T) ((-517 . -664) T) ((-517 . -1060) T) ((-517 . -1025) T) ((-517 . -970) T) ((-517 . -21) T) ((-517 . -23) T) ((-517 . -1013) T) ((-517 . -553) 79720) ((-517 . -72) T) ((-517 . -25) T) ((-517 . -104) T) ((-517 . -190) T) ((-517 . -279) 79707) ((-517 . -120) 79689) ((-517 . -951) 79676) ((-517 . -1186) 79663) ((-517 . -1197) 79650) ((-517 . -554) 79632) ((-516 . -780) 79616) ((-516 . -833) T) ((-516 . -495) T) ((-516 . -245) T) ((-516 . -146) T) ((-516 . -556) 79588) ((-516 . -655) 79575) ((-516 . -583) 79562) ((-516 . -969) 79549) ((-516 . -964) 79536) ((-516 . -82) 79521) ((-516 . -38) 79508) ((-516 . -389) T) ((-516 . -257) T) ((-516 . -962) T) ((-516 . -664) T) ((-516 . -1060) T) ((-516 . -1025) T) ((-516 . -970) T) ((-516 . -21) T) ((-516 . -589) 79480) ((-516 . -23) T) ((-516 . -1013) T) ((-516 . -553) 79462) ((-516 . -1128) T) ((-516 . -13) T) ((-516 . -72) T) ((-516 . -25) T) ((-516 . -104) T) ((-516 . -591) 79449) ((-516 . -120) T) ((-515 . -1013) T) ((-515 . -553) 79431) ((-515 . -1128) T) ((-515 . -13) T) ((-515 . -72) T) ((-514 . -1013) T) ((-514 . -553) 79413) ((-514 . -1128) T) ((-514 . -13) T) ((-514 . -72) T) ((-513 . -512) T) ((-513 . -771) T) ((-513 . -147) T) ((-513 . -465) T) ((-513 . -553) 79395) ((-507 . -493) 79379) ((-507 . -35) T) ((-507 . -66) T) ((-507 . -239) T) ((-507 . -430) T) ((-507 . -1117) T) ((-507 . -1114) T) ((-507 . -951) 79361) ((-507 . -916) T) ((-507 . -760) T) ((-507 . -757) T) ((-507 . -495) T) ((-507 . -245) T) ((-507 . -146) T) ((-507 . -556) 79333) ((-507 . -655) 79320) ((-507 . -583) 79307) ((-507 . -591) 79294) ((-507 . -589) 79266) ((-507 . -104) T) ((-507 . -25) T) ((-507 . -72) T) ((-507 . -13) T) ((-507 . -1128) T) ((-507 . -553) 79248) ((-507 . -1013) T) ((-507 . -23) T) ((-507 . -21) T) ((-507 . -969) 79235) ((-507 . -964) 79222) ((-507 . -82) 79207) ((-507 . -962) T) ((-507 . -664) T) ((-507 . -1060) T) ((-507 . -1025) T) ((-507 . -970) T) ((-507 . -38) 79194) ((-507 . -389) T) ((-489 . -1106) 79173) ((-489 . -183) 79121) ((-489 . -76) 79069) ((-489 . -259) 78867) ((-489 . -453) 78619) ((-489 . -426) 78554) ((-489 . -124) 78502) ((-489 . -554) NIL) ((-489 . -193) 78450) ((-489 . -550) 78429) ((-489 . -243) 78408) ((-489 . -1128) T) ((-489 . -13) T) ((-489 . -241) 78387) ((-489 . -1013) T) ((-489 . -553) 78369) ((-489 . -72) T) ((-489 . -34) T) ((-489 . -539) 78348) ((-488 . -753) T) ((-488 . -760) T) ((-488 . -757) T) ((-488 . -1013) T) ((-488 . -553) 78330) ((-488 . -1128) T) ((-488 . -13) T) ((-488 . -72) T) ((-488 . -317) T) ((-487 . -753) T) ((-487 . -760) T) ((-487 . -757) T) ((-487 . -1013) T) ((-487 . -553) 78312) ((-487 . -1128) T) ((-487 . -13) T) ((-487 . -72) T) ((-487 . -317) T) ((-486 . -753) T) ((-486 . -760) T) ((-486 . -757) T) ((-486 . -1013) T) ((-486 . -553) 78294) ((-486 . -1128) T) ((-486 . -13) T) ((-486 . -72) T) ((-486 . -317) T) ((-485 . -753) T) ((-485 . -760) T) ((-485 . -757) T) ((-485 . -1013) T) ((-485 . -553) 78276) ((-485 . -1128) T) ((-485 . -13) T) ((-485 . -72) T) ((-485 . -317) T) ((-484 . -483) T) ((-484 . -1133) T) ((-484 . -1065) T) ((-484 . -951) 78258) ((-484 . -554) 78173) ((-484 . -934) T) ((-484 . -797) 78155) ((-484 . -756) T) ((-484 . -722) T) ((-484 . -719) T) ((-484 . -760) T) ((-484 . -757) T) ((-484 . -717) T) ((-484 . -715) T) ((-484 . -741) T) ((-484 . -591) 78127) ((-484 . -581) 78109) ((-484 . -833) T) ((-484 . -495) T) ((-484 . -245) T) ((-484 . -146) T) ((-484 . -556) 78081) ((-484 . -655) 78068) ((-484 . -583) 78055) ((-484 . -969) 78042) ((-484 . -964) 78029) ((-484 . -82) 78014) ((-484 . -38) 78001) ((-484 . -389) T) ((-484 . -257) T) ((-484 . -189) T) ((-484 . -186) 77988) ((-484 . -190) T) ((-484 . -116) T) ((-484 . -962) T) ((-484 . -664) T) ((-484 . -1060) T) ((-484 . -1025) T) ((-484 . -970) T) ((-484 . -21) T) ((-484 . -589) 77960) ((-484 . -23) T) ((-484 . -1013) T) ((-484 . -553) 77942) ((-484 . -1128) T) ((-484 . -13) T) ((-484 . -72) T) ((-484 . -25) T) ((-484 . -104) T) ((-484 . -120) T) ((-473 . -1016) 77894) ((-473 . -72) T) ((-473 . -553) 77876) ((-473 . -1013) T) ((-473 . -241) 77832) ((-473 . -1128) T) ((-473 . -13) T) ((-473 . -558) 77735) ((-473 . -554) 77716) ((-471 . -692) 77698) ((-471 . -465) T) ((-471 . -147) T) ((-471 . -771) T) ((-471 . -512) T) ((-471 . -553) 77680) ((-469 . -718) T) ((-469 . -104) T) ((-469 . -25) T) ((-469 . -72) T) ((-469 . -13) T) ((-469 . -1128) T) ((-469 . -553) 77662) ((-469 . -1013) T) ((-469 . -23) T) ((-469 . -717) T) ((-469 . -757) T) ((-469 . -760) T) ((-469 . -719) T) ((-469 . -722) T) ((-469 . -447) 77639) ((-467 . -465) T) ((-467 . -147) T) ((-467 . -553) 77621) ((-463 . -995) T) ((-463 . -427) 77602) ((-463 . -553) 77568) ((-463 . -556) 77549) ((-463 . -1013) T) ((-463 . -1128) T) ((-463 . -13) T) ((-463 . -72) T) ((-463 . -64) T) ((-462 . -995) T) ((-462 . -427) 77530) ((-462 . -553) 77496) ((-462 . -556) 77477) ((-462 . -1013) T) ((-462 . -1128) T) ((-462 . -13) T) ((-462 . -72) T) ((-462 . -64) T) ((-461 . -628) 77427) ((-461 . -426) 77411) ((-461 . -1013) 77389) ((-461 . -453) 77322) ((-461 . -259) 77260) ((-461 . -553) 77195) ((-461 . -72) 77149) ((-461 . -1128) T) ((-461 . -13) T) ((-461 . -34) T) ((-461 . -57) 77099) ((-458 . -57) 77073) ((-458 . -34) T) ((-458 . -13) T) ((-458 . -1128) T) ((-458 . -72) 77027) ((-458 . -553) 76962) ((-458 . -259) 76900) ((-458 . -453) 76833) ((-458 . -1013) 76811) ((-458 . -426) 76795) ((-457 . -279) 76772) ((-457 . -190) T) ((-457 . -186) 76759) ((-457 . -189) T) ((-457 . -317) T) ((-457 . -1065) T) ((-457 . -298) T) ((-457 . -120) 76741) ((-457 . -556) 76671) ((-457 . -591) 76616) ((-457 . -589) 76546) ((-457 . -104) T) ((-457 . -25) T) ((-457 . -72) T) ((-457 . -13) T) ((-457 . -1128) T) ((-457 . -553) 76528) ((-457 . -1013) T) ((-457 . -23) T) ((-457 . -21) T) ((-457 . -970) T) ((-457 . -1025) T) ((-457 . -1060) T) ((-457 . -664) T) ((-457 . -962) T) ((-457 . -311) T) ((-457 . -1133) T) ((-457 . -833) T) ((-457 . -495) T) ((-457 . -146) T) ((-457 . -655) 76473) ((-457 . -583) 76418) ((-457 . -38) 76383) ((-457 . -389) T) ((-457 . -257) T) ((-457 . -82) 76300) ((-457 . -964) 76245) ((-457 . -969) 76190) ((-457 . -245) T) ((-457 . -201) T) ((-457 . -342) T) ((-457 . -118) T) ((-457 . -951) 76167) ((-457 . -1186) 76144) ((-457 . -1197) 76121) ((-456 . -995) T) ((-456 . -427) 76102) ((-456 . -553) 76068) ((-456 . -556) 76049) ((-456 . -1013) T) ((-456 . -1128) T) ((-456 . -13) T) ((-456 . -72) T) ((-456 . -64) T) ((-455 . -19) 76033) ((-455 . -594) 76017) ((-455 . -243) 75994) ((-455 . -241) 75946) ((-455 . -539) 75923) ((-455 . -554) 75884) ((-455 . -426) 75868) ((-455 . -1013) 75821) ((-455 . -453) 75754) ((-455 . -259) 75692) ((-455 . -553) 75607) ((-455 . -72) 75541) ((-455 . -1128) T) ((-455 . -13) T) ((-455 . -34) T) ((-455 . -124) 75525) ((-455 . -757) 75504) ((-455 . -760) 75483) ((-455 . -321) 75467) ((-455 . -237) 75451) ((-454 . -273) 75430) ((-454 . -556) 75414) ((-454 . -951) 75398) ((-454 . -23) T) ((-454 . -1013) T) ((-454 . -553) 75380) ((-454 . -1128) T) ((-454 . -13) T) ((-454 . -72) T) ((-454 . -25) T) ((-454 . -104) T) ((-451 . -72) T) ((-451 . -13) T) ((-451 . -1128) T) ((-451 . -553) 75352) ((-450 . -718) T) ((-450 . -104) T) ((-450 . -25) T) ((-450 . -72) T) ((-450 . -13) T) ((-450 . -1128) T) ((-450 . -553) 75334) ((-450 . -1013) T) ((-450 . -23) T) ((-450 . -717) T) ((-450 . -757) T) ((-450 . -760) T) ((-450 . -719) T) ((-450 . -722) T) ((-450 . -447) 75313) ((-449 . -717) T) ((-449 . -757) T) ((-449 . -760) T) ((-449 . -719) T) ((-449 . -25) T) ((-449 . -72) T) ((-449 . -13) T) ((-449 . -1128) T) ((-449 . -553) 75295) ((-449 . -1013) T) ((-449 . -23) T) ((-449 . -447) 75274) ((-448 . -447) 75253) ((-448 . -553) 75193) ((-448 . -1013) 75144) ((-448 . -1128) T) ((-448 . -13) T) ((-448 . -72) T) ((-446 . -23) T) ((-446 . -1013) T) ((-446 . -553) 75126) ((-446 . -1128) T) ((-446 . -13) T) ((-446 . -72) T) ((-446 . -25) T) ((-446 . -447) 75105) ((-445 . -21) T) ((-445 . -589) 75087) ((-445 . -23) T) ((-445 . -1013) T) ((-445 . -553) 75069) ((-445 . -1128) T) ((-445 . -13) T) ((-445 . -72) T) ((-445 . -25) T) ((-445 . -104) T) ((-445 . -447) 75048) ((-444 . -1013) T) ((-444 . -553) 75030) ((-444 . -1128) T) ((-444 . -13) T) ((-444 . -72) T) ((-441 . -1013) T) ((-441 . -553) 75012) ((-441 . -1128) T) ((-441 . -13) T) ((-441 . -72) T) ((-439 . -757) T) ((-439 . -553) 74994) ((-439 . -1013) T) ((-439 . -72) T) ((-439 . -13) T) ((-439 . -1128) T) ((-439 . -760) T) ((-439 . -556) 74975) ((-437 . -96) T) ((-437 . -321) 74958) ((-437 . -760) T) ((-437 . -757) T) ((-437 . -124) 74941) ((-437 . -34) T) ((-437 . -72) T) ((-437 . -553) 74923) ((-437 . -259) NIL) ((-437 . -453) NIL) ((-437 . -1013) T) ((-437 . -426) 74906) ((-437 . -554) 74888) ((-437 . -241) 74839) ((-437 . -539) 74815) ((-437 . -243) 74791) ((-437 . -594) 74774) ((-437 . -19) 74757) ((-437 . -605) T) ((-437 . -13) T) ((-437 . -1128) T) ((-437 . -84) T) ((-434 . -57) 74707) ((-434 . -34) T) ((-434 . -13) T) ((-434 . -1128) T) ((-434 . -72) 74661) ((-434 . -553) 74596) ((-434 . -259) 74534) ((-434 . -453) 74467) ((-434 . -1013) 74445) ((-434 . -426) 74429) ((-433 . -19) 74413) ((-433 . -594) 74397) ((-433 . -243) 74374) ((-433 . -241) 74326) ((-433 . -539) 74303) ((-433 . -554) 74264) ((-433 . -426) 74248) ((-433 . -1013) 74201) ((-433 . -453) 74134) ((-433 . -259) 74072) ((-433 . -553) 73987) ((-433 . -72) 73921) ((-433 . -1128) T) ((-433 . -13) T) ((-433 . -34) T) ((-433 . -124) 73905) ((-433 . -757) 73884) ((-433 . -760) 73863) ((-433 . -321) 73847) ((-432 . -253) T) ((-432 . -72) T) ((-432 . -13) T) ((-432 . -1128) T) ((-432 . -553) 73829) ((-432 . -1013) T) ((-432 . -556) 73730) ((-432 . -951) 73673) ((-432 . -453) 73639) ((-432 . -259) 73626) ((-432 . -27) T) ((-432 . -916) T) ((-432 . -201) T) ((-432 . -82) 73575) ((-432 . -964) 73540) ((-432 . -969) 73505) ((-432 . -245) T) ((-432 . -655) 73470) ((-432 . -583) 73435) ((-432 . -591) 73385) ((-432 . -589) 73335) ((-432 . -104) T) ((-432 . -25) T) ((-432 . -23) T) ((-432 . -21) T) ((-432 . -962) T) ((-432 . -664) T) ((-432 . -1060) T) ((-432 . -1025) T) ((-432 . -970) T) ((-432 . -38) 73300) ((-432 . -257) T) ((-432 . -389) T) ((-432 . -146) T) ((-432 . -495) T) ((-432 . -833) T) ((-432 . -1133) T) ((-432 . -311) T) ((-432 . -581) 73260) ((-432 . -934) T) ((-432 . -554) 73205) ((-432 . -120) T) ((-432 . -190) T) ((-432 . -186) 73192) ((-432 . -189) T) ((-428 . -1013) T) ((-428 . -553) 73158) ((-428 . -1128) T) ((-428 . -13) T) ((-428 . -72) T) ((-424 . -905) 73140) ((-424 . -1065) T) ((-424 . -556) 73090) ((-424 . -951) 73050) ((-424 . -554) 72980) ((-424 . -934) T) ((-424 . -822) NIL) ((-424 . -795) 72962) ((-424 . -756) T) ((-424 . -722) T) ((-424 . -719) T) ((-424 . -760) T) ((-424 . -757) T) ((-424 . -717) T) ((-424 . -715) T) ((-424 . -741) T) ((-424 . -797) 72944) ((-424 . -340) 72926) ((-424 . -581) 72908) ((-424 . -326) 72890) ((-424 . -241) NIL) ((-424 . -259) NIL) ((-424 . -453) NIL) ((-424 . -287) 72872) ((-424 . -201) T) ((-424 . -82) 72799) ((-424 . -964) 72749) ((-424 . -969) 72699) ((-424 . -245) T) ((-424 . -655) 72649) ((-424 . -583) 72599) ((-424 . -591) 72549) ((-424 . -589) 72499) ((-424 . -38) 72449) ((-424 . -257) T) ((-424 . -389) T) ((-424 . -146) T) ((-424 . -495) T) ((-424 . -833) T) ((-424 . -1133) T) ((-424 . -311) T) ((-424 . -190) T) ((-424 . -186) 72436) ((-424 . -189) T) ((-424 . -225) 72418) ((-424 . -807) NIL) ((-424 . -812) NIL) ((-424 . -810) NIL) ((-424 . -184) 72400) ((-424 . -120) T) ((-424 . -118) NIL) ((-424 . -104) T) ((-424 . -25) T) ((-424 . -72) T) ((-424 . -13) T) ((-424 . -1128) T) ((-424 . -553) 72342) ((-424 . -1013) T) ((-424 . -23) T) ((-424 . -21) T) ((-424 . -962) T) ((-424 . -664) T) ((-424 . -1060) T) ((-424 . -1025) T) ((-424 . -970) T) ((-422 . -285) 72311) ((-422 . -104) T) ((-422 . -25) T) ((-422 . -72) T) ((-422 . -13) T) ((-422 . -1128) T) ((-422 . -553) 72293) ((-422 . -1013) T) ((-422 . -23) T) ((-422 . -589) 72275) ((-422 . -21) T) ((-421 . -882) 72259) ((-421 . -426) 72243) ((-421 . -1013) 72221) ((-421 . -453) 72154) ((-421 . -259) 72092) ((-421 . -553) 72027) ((-421 . -72) 71981) ((-421 . -1128) T) ((-421 . -13) T) ((-421 . -34) T) ((-421 . -76) 71965) ((-420 . -995) T) ((-420 . -427) 71946) ((-420 . -553) 71912) ((-420 . -556) 71893) ((-420 . -1013) T) ((-420 . -1128) T) ((-420 . -13) T) ((-420 . -72) T) ((-420 . -64) T) ((-419 . -196) 71872) ((-419 . -1186) 71842) ((-419 . -722) 71821) ((-419 . -719) 71800) ((-419 . -760) 71754) ((-419 . -757) 71708) ((-419 . -717) 71687) ((-419 . -718) 71666) ((-419 . -655) 71611) ((-419 . -583) 71536) ((-419 . -243) 71513) ((-419 . -241) 71490) ((-419 . -426) 71474) ((-419 . -453) 71407) ((-419 . -259) 71345) ((-419 . -34) T) ((-419 . -539) 71322) ((-419 . -951) 71151) ((-419 . -556) 70955) ((-419 . -352) 70924) ((-419 . -581) 70832) ((-419 . -591) 70671) ((-419 . -326) 70641) ((-419 . -317) 70620) ((-419 . -190) 70573) ((-419 . -589) 70361) ((-419 . -970) 70340) ((-419 . -1025) 70319) ((-419 . -1060) 70298) ((-419 . -664) 70277) ((-419 . -962) 70256) ((-419 . -186) 70152) ((-419 . -189) 70054) ((-419 . -225) 70024) ((-419 . -807) 69896) ((-419 . -812) 69770) ((-419 . -810) 69703) ((-419 . -184) 69673) ((-419 . -553) 69370) ((-419 . -969) 69295) ((-419 . -964) 69200) ((-419 . -82) 69120) ((-419 . -104) 68995) ((-419 . -25) 68832) ((-419 . -72) 68569) ((-419 . -13) T) ((-419 . -1128) T) ((-419 . -1013) 68325) ((-419 . -23) 68181) ((-419 . -21) 68096) ((-418 . -862) 68041) ((-418 . -556) 67833) ((-418 . -951) 67711) ((-418 . -1133) 67690) ((-418 . -822) 67669) ((-418 . -797) NIL) ((-418 . -812) 67646) ((-418 . -807) 67621) ((-418 . -810) 67598) ((-418 . -453) 67536) ((-418 . -389) 67490) ((-418 . -581) 67438) ((-418 . -591) 67327) ((-418 . -326) 67311) ((-418 . -47) 67268) ((-418 . -38) 67120) ((-418 . -583) 66972) ((-418 . -655) 66824) ((-418 . -245) 66758) ((-418 . -495) 66692) ((-418 . -82) 66517) ((-418 . -964) 66363) ((-418 . -969) 66209) ((-418 . -146) 66123) ((-418 . -120) 66102) ((-418 . -118) 66081) ((-418 . -589) 65991) ((-418 . -104) T) ((-418 . -25) T) ((-418 . -72) T) ((-418 . -13) T) ((-418 . -1128) T) ((-418 . -553) 65973) ((-418 . -1013) T) ((-418 . -23) T) ((-418 . -21) T) ((-418 . -962) T) ((-418 . -664) T) ((-418 . -1060) T) ((-418 . -1025) T) ((-418 . -970) T) ((-418 . -352) 65957) ((-418 . -276) 65914) ((-418 . -259) 65901) ((-418 . -554) 65762) ((-416 . -1106) 65741) ((-416 . -183) 65689) ((-416 . -76) 65637) ((-416 . -259) 65435) ((-416 . -453) 65187) ((-416 . -426) 65122) ((-416 . -124) 65070) ((-416 . -554) NIL) ((-416 . -193) 65018) ((-416 . -550) 64997) ((-416 . -243) 64976) ((-416 . -1128) T) ((-416 . -13) T) ((-416 . -241) 64955) ((-416 . -1013) T) ((-416 . -553) 64937) ((-416 . -72) T) ((-416 . -34) T) ((-416 . -539) 64916) ((-415 . -995) T) ((-415 . -427) 64897) ((-415 . -553) 64863) ((-415 . -556) 64844) ((-415 . -1013) T) ((-415 . -1128) T) ((-415 . -13) T) ((-415 . -72) T) ((-415 . -64) T) ((-414 . -311) T) ((-414 . -1133) T) ((-414 . -833) T) ((-414 . -495) T) ((-414 . -146) T) ((-414 . -556) 64794) ((-414 . -655) 64759) ((-414 . -583) 64724) ((-414 . -38) 64689) ((-414 . -389) T) ((-414 . -257) T) ((-414 . -591) 64654) ((-414 . -589) 64604) ((-414 . -970) T) ((-414 . -1025) T) ((-414 . -1060) T) ((-414 . -664) T) ((-414 . -962) T) ((-414 . -82) 64553) ((-414 . -964) 64518) ((-414 . -969) 64483) ((-414 . -21) T) ((-414 . -23) T) ((-414 . -1013) T) ((-414 . -553) 64435) ((-414 . -1128) T) ((-414 . -13) T) ((-414 . -72) T) ((-414 . -25) T) ((-414 . -104) T) ((-414 . -245) T) ((-414 . -201) T) ((-414 . -120) T) ((-414 . -951) 64395) ((-414 . -934) T) ((-414 . -554) 64317) ((-413 . -1123) 64286) ((-413 . -553) 64248) ((-413 . -124) 64232) ((-413 . -34) T) ((-413 . -13) T) ((-413 . -1128) T) ((-413 . -72) T) ((-413 . -259) 64170) ((-413 . -453) 64103) ((-413 . -1013) T) ((-413 . -426) 64087) ((-413 . -554) 64048) ((-413 . -890) 64017) ((-412 . -1106) 63996) ((-412 . -183) 63944) ((-412 . -76) 63892) ((-412 . -259) 63690) ((-412 . -453) 63442) ((-412 . -426) 63377) ((-412 . -124) 63325) ((-412 . -554) NIL) ((-412 . -193) 63273) ((-412 . -550) 63252) ((-412 . -243) 63231) ((-412 . -1128) T) ((-412 . -13) T) ((-412 . -241) 63210) ((-412 . -1013) T) ((-412 . -553) 63192) ((-412 . -72) T) ((-412 . -34) T) ((-412 . -539) 63171) ((-411 . -1161) 63155) ((-411 . -190) 63107) ((-411 . -186) 63053) ((-411 . -189) 63005) ((-411 . -241) 62963) ((-411 . -810) 62869) ((-411 . -807) 62750) ((-411 . -812) 62656) ((-411 . -887) 62619) ((-411 . -38) 62466) ((-411 . -82) 62286) ((-411 . -964) 62127) ((-411 . -969) 61968) ((-411 . -589) 61853) ((-411 . -591) 61753) ((-411 . -583) 61600) ((-411 . -655) 61447) ((-411 . -556) 61279) ((-411 . -118) 61258) ((-411 . -120) 61237) ((-411 . -47) 61207) ((-411 . -1157) 61177) ((-411 . -35) 61143) ((-411 . -66) 61109) ((-411 . -239) 61075) ((-411 . -430) 61041) ((-411 . -1117) 61007) ((-411 . -1114) 60973) ((-411 . -916) 60939) ((-411 . -201) 60918) ((-411 . -245) 60872) ((-411 . -104) T) ((-411 . -25) T) ((-411 . -72) T) ((-411 . -13) T) ((-411 . -1128) T) ((-411 . -553) 60854) ((-411 . -1013) T) ((-411 . -23) T) ((-411 . -21) T) ((-411 . -962) T) ((-411 . -664) T) ((-411 . -1060) T) ((-411 . -1025) T) ((-411 . -970) T) ((-411 . -257) 60833) ((-411 . -389) 60812) ((-411 . -146) 60746) ((-411 . -495) 60700) ((-411 . -833) 60679) ((-411 . -1133) 60658) ((-411 . -311) 60637) ((-405 . -1013) T) ((-405 . -553) 60619) ((-405 . -1128) T) ((-405 . -13) T) ((-405 . -72) T) ((-400 . -890) 60588) ((-400 . -554) 60549) ((-400 . -426) 60533) ((-400 . -1013) T) ((-400 . -453) 60466) ((-400 . -259) 60404) ((-400 . -553) 60366) ((-400 . -72) T) ((-400 . -1128) T) ((-400 . -13) T) ((-400 . -34) T) ((-400 . -124) 60350) ((-398 . -655) 60321) ((-398 . -583) 60292) ((-398 . -591) 60263) ((-398 . -589) 60219) ((-398 . -104) T) ((-398 . -25) T) ((-398 . -72) T) ((-398 . -13) T) ((-398 . -1128) T) ((-398 . -553) 60201) ((-398 . -1013) T) ((-398 . -23) T) ((-398 . -21) T) ((-398 . -969) 60172) ((-398 . -964) 60143) ((-398 . -82) 60104) ((-391 . -862) 60071) ((-391 . -556) 59863) ((-391 . -951) 59741) ((-391 . -1133) 59720) ((-391 . -822) 59699) ((-391 . -797) NIL) ((-391 . -812) 59676) ((-391 . -807) 59651) ((-391 . -810) 59628) ((-391 . -453) 59566) ((-391 . -389) 59520) ((-391 . -581) 59468) ((-391 . -591) 59357) ((-391 . -326) 59341) ((-391 . -47) 59320) ((-391 . -38) 59172) ((-391 . -583) 59024) ((-391 . -655) 58876) ((-391 . -245) 58810) ((-391 . -495) 58744) ((-391 . -82) 58569) ((-391 . -964) 58415) ((-391 . -969) 58261) ((-391 . -146) 58175) ((-391 . -120) 58154) ((-391 . -118) 58133) ((-391 . -589) 58043) ((-391 . -104) T) ((-391 . -25) T) ((-391 . -72) T) ((-391 . -13) T) ((-391 . -1128) T) ((-391 . -553) 58025) ((-391 . -1013) T) ((-391 . -23) T) ((-391 . -21) T) ((-391 . -962) T) ((-391 . -664) T) ((-391 . -1060) T) ((-391 . -1025) T) ((-391 . -970) T) ((-391 . -352) 58009) ((-391 . -276) 57988) ((-391 . -259) 57975) ((-391 . -554) 57836) ((-390 . -358) 57806) ((-390 . -684) 57776) ((-390 . -658) T) ((-390 . -686) T) ((-390 . -82) 57727) ((-390 . -964) 57697) ((-390 . -969) 57667) ((-390 . -21) T) ((-390 . -589) 57582) ((-390 . -23) T) ((-390 . -1013) T) ((-390 . -553) 57564) ((-390 . -72) T) ((-390 . -25) T) ((-390 . -104) T) ((-390 . -591) 57494) ((-390 . -583) 57464) ((-390 . -655) 57434) ((-390 . -315) 57404) ((-390 . -1128) T) ((-390 . -13) T) ((-390 . -241) 57367) ((-378 . -1013) T) ((-378 . -553) 57349) ((-378 . -1128) T) ((-378 . -13) T) ((-378 . -72) T) ((-377 . -1013) T) ((-377 . -553) 57331) ((-377 . -1128) T) ((-377 . -13) T) ((-377 . -72) T) ((-376 . -1013) T) ((-376 . -553) 57313) ((-376 . -1128) T) ((-376 . -13) T) ((-376 . -72) T) ((-374 . -553) 57295) ((-369 . -38) 57279) ((-369 . -556) 57248) ((-369 . -591) 57222) ((-369 . -589) 57181) ((-369 . -970) T) ((-369 . -1025) T) ((-369 . -1060) T) ((-369 . -664) T) ((-369 . -962) T) ((-369 . -82) 57160) ((-369 . -964) 57144) ((-369 . -969) 57128) ((-369 . -21) T) ((-369 . -23) T) ((-369 . -1013) T) ((-369 . -553) 57110) ((-369 . -1128) T) ((-369 . -13) T) ((-369 . -72) T) ((-369 . -25) T) ((-369 . -104) T) ((-369 . -583) 57094) ((-369 . -655) 57078) ((-355 . -664) T) ((-355 . -1013) T) ((-355 . -553) 57060) ((-355 . -1128) T) ((-355 . -13) T) ((-355 . -72) T) ((-355 . -1025) T) ((-353 . -410) T) ((-353 . -1025) T) ((-353 . -72) T) ((-353 . -13) T) ((-353 . -1128) T) ((-353 . -553) 57042) ((-353 . -1013) T) ((-353 . -664) T) ((-347 . -905) 57026) ((-347 . -1065) 57004) ((-347 . -951) 56871) ((-347 . -556) 56770) ((-347 . -554) 56573) ((-347 . -934) 56552) ((-347 . -822) 56531) ((-347 . -795) 56515) ((-347 . -756) 56494) ((-347 . -722) 56473) ((-347 . -719) 56452) ((-347 . -760) 56406) ((-347 . -757) 56360) ((-347 . -717) 56339) ((-347 . -715) 56318) ((-347 . -741) 56297) ((-347 . -797) 56222) ((-347 . -340) 56206) ((-347 . -581) 56154) ((-347 . -591) 56070) ((-347 . -326) 56054) ((-347 . -241) 56012) ((-347 . -259) 55977) ((-347 . -453) 55889) ((-347 . -287) 55873) ((-347 . -201) T) ((-347 . -82) 55804) ((-347 . -964) 55756) ((-347 . -969) 55708) ((-347 . -245) T) ((-347 . -655) 55660) ((-347 . -583) 55612) ((-347 . -589) 55549) ((-347 . -38) 55501) ((-347 . -257) T) ((-347 . -389) T) ((-347 . -146) T) ((-347 . -495) T) ((-347 . -833) T) ((-347 . -1133) T) ((-347 . -311) T) ((-347 . -190) 55480) ((-347 . -186) 55428) ((-347 . -189) 55382) ((-347 . -225) 55366) ((-347 . -807) 55290) ((-347 . -812) 55216) ((-347 . -810) 55175) ((-347 . -184) 55159) ((-347 . -120) 55138) ((-347 . -118) 55117) ((-347 . -104) T) ((-347 . -25) T) ((-347 . -72) T) ((-347 . -13) T) ((-347 . -1128) T) ((-347 . -553) 55099) ((-347 . -1013) T) ((-347 . -23) T) ((-347 . -21) T) ((-347 . -962) T) ((-347 . -664) T) ((-347 . -1060) T) ((-347 . -1025) T) ((-347 . -970) T) ((-345 . -495) T) ((-345 . -245) T) ((-345 . -146) T) ((-345 . -556) 55008) ((-345 . -655) 54982) ((-345 . -583) 54956) ((-345 . -591) 54930) ((-345 . -589) 54889) ((-345 . -104) T) ((-345 . -25) T) ((-345 . -72) T) ((-345 . -13) T) ((-345 . -1128) T) ((-345 . -553) 54871) ((-345 . -1013) T) ((-345 . -23) T) ((-345 . -21) T) ((-345 . -969) 54845) ((-345 . -964) 54819) ((-345 . -82) 54786) ((-345 . -962) T) ((-345 . -664) T) ((-345 . -1060) T) ((-345 . -1025) T) ((-345 . -970) T) ((-345 . -38) 54760) ((-345 . -184) 54744) ((-345 . -810) 54703) ((-345 . -812) 54629) ((-345 . -807) 54553) ((-345 . -225) 54537) ((-345 . -189) 54491) ((-345 . -186) 54439) ((-345 . -190) 54418) ((-345 . -287) 54402) ((-345 . -453) 54244) ((-345 . -259) 54183) ((-345 . -241) 54111) ((-345 . -352) 54095) ((-345 . -951) 53993) ((-345 . -389) 53946) ((-345 . -934) 53925) ((-345 . -554) 53828) ((-345 . -1133) 53806) ((-339 . -1013) T) ((-339 . -553) 53788) ((-339 . -1128) T) ((-339 . -13) T) ((-339 . -72) T) ((-339 . -189) T) ((-339 . -186) 53775) ((-339 . -554) 53752) ((-337 . -684) 53736) ((-337 . -658) T) ((-337 . -686) T) ((-337 . -82) 53715) ((-337 . -964) 53699) ((-337 . -969) 53683) ((-337 . -21) T) ((-337 . -589) 53652) ((-337 . -23) T) ((-337 . -1013) T) ((-337 . -553) 53634) ((-337 . -1128) T) ((-337 . -13) T) ((-337 . -72) T) ((-337 . -25) T) ((-337 . -104) T) ((-337 . -591) 53618) ((-337 . -583) 53602) ((-337 . -655) 53586) ((-335 . -336) T) ((-335 . -72) T) ((-335 . -13) T) ((-335 . -1128) T) ((-335 . -553) 53552) ((-335 . -1013) T) ((-335 . -556) 53533) ((-335 . -427) 53514) ((-334 . -333) 53498) ((-334 . -556) 53482) ((-334 . -951) 53466) ((-334 . -760) 53445) ((-334 . -757) 53424) ((-334 . -1025) T) ((-334 . -72) T) ((-334 . -13) T) ((-334 . -1128) T) ((-334 . -553) 53406) ((-334 . -1013) T) ((-334 . -664) T) ((-331 . -332) 53385) ((-331 . -556) 53369) ((-331 . -951) 53353) ((-331 . -583) 53323) ((-331 . -655) 53293) ((-331 . -591) 53277) ((-331 . -589) 53246) ((-331 . -104) T) ((-331 . -25) T) ((-331 . -72) T) ((-331 . -13) T) ((-331 . -1128) T) ((-331 . -553) 53228) ((-331 . -1013) T) ((-331 . -23) T) ((-331 . -21) T) ((-331 . -969) 53212) ((-331 . -964) 53196) ((-331 . -82) 53175) ((-330 . -82) 53154) ((-330 . -964) 53138) ((-330 . -969) 53122) ((-330 . -21) T) ((-330 . -589) 53091) ((-330 . -23) T) ((-330 . -1013) T) ((-330 . -553) 53073) ((-330 . -1128) T) ((-330 . -13) T) ((-330 . -72) T) ((-330 . -25) T) ((-330 . -104) T) ((-330 . -591) 53057) ((-330 . -447) 53036) ((-330 . -655) 53006) ((-330 . -583) 52976) ((-327 . -344) T) ((-327 . -120) T) ((-327 . -556) 52926) ((-327 . -591) 52891) ((-327 . -589) 52841) ((-327 . -104) T) ((-327 . -25) T) ((-327 . -72) T) ((-327 . -13) T) ((-327 . -1128) T) ((-327 . -553) 52808) ((-327 . -1013) T) ((-327 . -23) T) ((-327 . -21) T) ((-327 . -970) T) ((-327 . -1025) T) ((-327 . -1060) T) ((-327 . -664) T) ((-327 . -962) T) ((-327 . -554) 52722) ((-327 . -311) T) ((-327 . -1133) T) ((-327 . -833) T) ((-327 . -495) T) ((-327 . -146) T) ((-327 . -655) 52687) ((-327 . -583) 52652) ((-327 . -38) 52617) ((-327 . -389) T) ((-327 . -257) T) ((-327 . -82) 52566) ((-327 . -964) 52531) ((-327 . -969) 52496) ((-327 . -245) T) ((-327 . -201) T) ((-327 . -756) T) ((-327 . -722) T) ((-327 . -719) T) ((-327 . -760) T) ((-327 . -757) T) ((-327 . -717) T) ((-327 . -715) T) ((-327 . -797) 52478) ((-327 . -916) T) ((-327 . -934) T) ((-327 . -951) 52438) ((-327 . -973) T) ((-327 . -190) T) ((-327 . -186) 52425) ((-327 . -189) T) ((-327 . -1114) T) ((-327 . -1117) T) ((-327 . -430) T) ((-327 . -239) T) ((-327 . -66) T) ((-327 . -35) T) ((-327 . -558) 52407) ((-312 . -313) 52384) ((-312 . -72) T) ((-312 . -13) T) ((-312 . -1128) T) ((-312 . -553) 52366) ((-312 . -1013) T) ((-309 . -410) T) ((-309 . -1025) T) ((-309 . -72) T) ((-309 . -13) T) ((-309 . -1128) T) ((-309 . -553) 52348) ((-309 . -1013) T) ((-309 . -664) T) ((-309 . -951) 52332) ((-309 . -556) 52316) ((-307 . -279) 52300) ((-307 . -190) 52279) ((-307 . -186) 52252) ((-307 . -189) 52231) ((-307 . -317) 52210) ((-307 . -1065) 52189) ((-307 . -298) 52168) ((-307 . -120) 52147) ((-307 . -556) 52084) ((-307 . -591) 52036) ((-307 . -589) 51973) ((-307 . -104) T) ((-307 . -25) T) ((-307 . -72) T) ((-307 . -13) T) ((-307 . -1128) T) ((-307 . -553) 51955) ((-307 . -1013) T) ((-307 . -23) T) ((-307 . -21) T) ((-307 . -970) T) ((-307 . -1025) T) ((-307 . -1060) T) ((-307 . -664) T) ((-307 . -962) T) ((-307 . -311) T) ((-307 . -1133) T) ((-307 . -833) T) ((-307 . -495) T) ((-307 . -146) T) ((-307 . -655) 51907) ((-307 . -583) 51859) ((-307 . -38) 51824) ((-307 . -389) T) ((-307 . -257) T) ((-307 . -82) 51755) ((-307 . -964) 51707) ((-307 . -969) 51659) ((-307 . -245) T) ((-307 . -201) T) ((-307 . -342) 51613) ((-307 . -118) 51567) ((-307 . -951) 51551) ((-307 . -1186) 51535) ((-307 . -1197) 51519) ((-303 . -279) 51503) ((-303 . -190) 51482) ((-303 . -186) 51455) ((-303 . -189) 51434) ((-303 . -317) 51413) ((-303 . -1065) 51392) ((-303 . -298) 51371) ((-303 . -120) 51350) ((-303 . -556) 51287) ((-303 . -591) 51239) ((-303 . -589) 51176) ((-303 . -104) T) ((-303 . -25) T) ((-303 . -72) T) ((-303 . -13) T) ((-303 . -1128) T) ((-303 . -553) 51158) ((-303 . -1013) T) ((-303 . -23) T) ((-303 . -21) T) ((-303 . -970) T) ((-303 . -1025) T) ((-303 . -1060) T) ((-303 . -664) T) ((-303 . -962) T) ((-303 . -311) T) ((-303 . -1133) T) ((-303 . -833) T) ((-303 . -495) T) ((-303 . -146) T) ((-303 . -655) 51110) ((-303 . -583) 51062) ((-303 . -38) 51027) ((-303 . -389) T) ((-303 . -257) T) ((-303 . -82) 50958) ((-303 . -964) 50910) ((-303 . -969) 50862) ((-303 . -245) T) ((-303 . -201) T) ((-303 . -342) 50816) ((-303 . -118) 50770) ((-303 . -951) 50754) ((-303 . -1186) 50738) ((-303 . -1197) 50722) ((-302 . -279) 50706) ((-302 . -190) 50685) ((-302 . -186) 50658) ((-302 . -189) 50637) ((-302 . -317) 50616) ((-302 . -1065) 50595) ((-302 . -298) 50574) ((-302 . -120) 50553) ((-302 . -556) 50490) ((-302 . -591) 50442) ((-302 . -589) 50379) ((-302 . -104) T) ((-302 . -25) T) ((-302 . -72) T) ((-302 . -13) T) ((-302 . -1128) T) ((-302 . -553) 50361) ((-302 . -1013) T) ((-302 . -23) T) ((-302 . -21) T) ((-302 . -970) T) ((-302 . -1025) T) ((-302 . -1060) T) ((-302 . -664) T) ((-302 . -962) T) ((-302 . -311) T) ((-302 . -1133) T) ((-302 . -833) T) ((-302 . -495) T) ((-302 . -146) T) ((-302 . -655) 50313) ((-302 . -583) 50265) ((-302 . -38) 50230) ((-302 . -389) T) ((-302 . -257) T) ((-302 . -82) 50161) ((-302 . -964) 50113) ((-302 . -969) 50065) ((-302 . -245) T) ((-302 . -201) T) ((-302 . -342) 50019) ((-302 . -118) 49973) ((-302 . -951) 49957) ((-302 . -1186) 49941) ((-302 . -1197) 49925) ((-301 . -279) 49909) ((-301 . -190) 49888) ((-301 . -186) 49861) ((-301 . -189) 49840) ((-301 . -317) 49819) ((-301 . -1065) 49798) ((-301 . -298) 49777) ((-301 . -120) 49756) ((-301 . -556) 49693) ((-301 . -591) 49645) ((-301 . -589) 49582) ((-301 . -104) T) ((-301 . -25) T) ((-301 . -72) T) ((-301 . -13) T) ((-301 . -1128) T) ((-301 . -553) 49564) ((-301 . -1013) T) ((-301 . -23) T) ((-301 . -21) T) ((-301 . -970) T) ((-301 . -1025) T) ((-301 . -1060) T) ((-301 . -664) T) ((-301 . -962) T) ((-301 . -311) T) ((-301 . -1133) T) ((-301 . -833) T) ((-301 . -495) T) ((-301 . -146) T) ((-301 . -655) 49516) ((-301 . -583) 49468) ((-301 . -38) 49433) ((-301 . -389) T) ((-301 . -257) T) ((-301 . -82) 49364) ((-301 . -964) 49316) ((-301 . -969) 49268) ((-301 . -245) T) ((-301 . -201) T) ((-301 . -342) 49222) ((-301 . -118) 49176) ((-301 . -951) 49160) ((-301 . -1186) 49144) ((-301 . -1197) 49128) ((-300 . -279) 49105) ((-300 . -190) T) ((-300 . -186) 49092) ((-300 . -189) T) ((-300 . -317) T) ((-300 . -1065) T) ((-300 . -298) T) ((-300 . -120) 49074) ((-300 . -556) 49004) ((-300 . -591) 48949) ((-300 . -589) 48879) ((-300 . -104) T) ((-300 . -25) T) ((-300 . -72) T) ((-300 . -13) T) ((-300 . -1128) T) ((-300 . -553) 48861) ((-300 . -1013) T) ((-300 . -23) T) ((-300 . -21) T) ((-300 . -970) T) ((-300 . -1025) T) ((-300 . -1060) T) ((-300 . -664) T) ((-300 . -962) T) ((-300 . -311) T) ((-300 . -1133) T) ((-300 . -833) T) ((-300 . -495) T) ((-300 . -146) T) ((-300 . -655) 48806) ((-300 . -583) 48751) ((-300 . -38) 48716) ((-300 . -389) T) ((-300 . -257) T) ((-300 . -82) 48633) ((-300 . -964) 48578) ((-300 . -969) 48523) ((-300 . -245) T) ((-300 . -201) T) ((-300 . -342) T) ((-300 . -118) T) ((-300 . -951) 48500) ((-300 . -1186) 48477) ((-300 . -1197) 48454) ((-294 . -279) 48438) ((-294 . -190) 48417) ((-294 . -186) 48390) ((-294 . -189) 48369) ((-294 . -317) 48348) ((-294 . -1065) 48327) ((-294 . -298) 48306) ((-294 . -120) 48285) ((-294 . -556) 48222) ((-294 . -591) 48174) ((-294 . -589) 48111) ((-294 . -104) T) ((-294 . -25) T) ((-294 . -72) T) ((-294 . -13) T) ((-294 . -1128) T) ((-294 . -553) 48093) ((-294 . -1013) T) ((-294 . -23) T) ((-294 . -21) T) ((-294 . -970) T) ((-294 . -1025) T) ((-294 . -1060) T) ((-294 . -664) T) ((-294 . -962) T) ((-294 . -311) T) ((-294 . -1133) T) ((-294 . -833) T) ((-294 . -495) T) ((-294 . -146) T) ((-294 . -655) 48045) ((-294 . -583) 47997) ((-294 . -38) 47962) ((-294 . -389) T) ((-294 . -257) T) ((-294 . -82) 47893) ((-294 . -964) 47845) ((-294 . -969) 47797) ((-294 . -245) T) ((-294 . -201) T) ((-294 . -342) 47751) ((-294 . -118) 47705) ((-294 . -951) 47689) ((-294 . -1186) 47673) ((-294 . -1197) 47657) ((-293 . -279) 47641) ((-293 . -190) 47620) ((-293 . -186) 47593) ((-293 . -189) 47572) ((-293 . -317) 47551) ((-293 . -1065) 47530) ((-293 . -298) 47509) ((-293 . -120) 47488) ((-293 . -556) 47425) ((-293 . -591) 47377) ((-293 . -589) 47314) ((-293 . -104) T) ((-293 . -25) T) ((-293 . -72) T) ((-293 . -13) T) ((-293 . -1128) T) ((-293 . -553) 47296) ((-293 . -1013) T) ((-293 . -23) T) ((-293 . -21) T) ((-293 . -970) T) ((-293 . -1025) T) ((-293 . -1060) T) ((-293 . -664) T) ((-293 . -962) T) ((-293 . -311) T) ((-293 . -1133) T) ((-293 . -833) T) ((-293 . -495) T) ((-293 . -146) T) ((-293 . -655) 47248) ((-293 . -583) 47200) ((-293 . -38) 47165) ((-293 . -389) T) ((-293 . -257) T) ((-293 . -82) 47096) ((-293 . -964) 47048) ((-293 . -969) 47000) ((-293 . -245) T) ((-293 . -201) T) ((-293 . -342) 46954) ((-293 . -118) 46908) ((-293 . -951) 46892) ((-293 . -1186) 46876) ((-293 . -1197) 46860) ((-292 . -279) 46837) ((-292 . -190) T) ((-292 . -186) 46824) ((-292 . -189) T) ((-292 . -317) T) ((-292 . -1065) T) ((-292 . -298) T) ((-292 . -120) 46806) ((-292 . -556) 46736) ((-292 . -591) 46681) ((-292 . -589) 46611) ((-292 . -104) T) ((-292 . -25) T) ((-292 . -72) T) ((-292 . -13) T) ((-292 . -1128) T) ((-292 . -553) 46593) ((-292 . -1013) T) ((-292 . -23) T) ((-292 . -21) T) ((-292 . -970) T) ((-292 . -1025) T) ((-292 . -1060) T) ((-292 . -664) T) ((-292 . -962) T) ((-292 . -311) T) ((-292 . -1133) T) ((-292 . -833) T) ((-292 . -495) T) ((-292 . -146) T) ((-292 . -655) 46538) ((-292 . -583) 46483) ((-292 . -38) 46448) ((-292 . -389) T) ((-292 . -257) T) ((-292 . -82) 46365) ((-292 . -964) 46310) ((-292 . -969) 46255) ((-292 . -245) T) ((-292 . -201) T) ((-292 . -342) T) ((-292 . -118) T) ((-292 . -951) 46232) ((-292 . -1186) 46209) ((-292 . -1197) 46186) ((-288 . -279) 46163) ((-288 . -190) T) ((-288 . -186) 46150) ((-288 . -189) T) ((-288 . -317) T) ((-288 . -1065) T) ((-288 . -298) T) ((-288 . -120) 46132) ((-288 . -556) 46062) ((-288 . -591) 46007) ((-288 . -589) 45937) ((-288 . -104) T) ((-288 . -25) T) ((-288 . -72) T) ((-288 . -13) T) ((-288 . -1128) T) ((-288 . -553) 45919) ((-288 . -1013) T) ((-288 . -23) T) ((-288 . -21) T) ((-288 . -970) T) ((-288 . -1025) T) ((-288 . -1060) T) ((-288 . -664) T) ((-288 . -962) T) ((-288 . -311) T) ((-288 . -1133) T) ((-288 . -833) T) ((-288 . -495) T) ((-288 . -146) T) ((-288 . -655) 45864) ((-288 . -583) 45809) ((-288 . -38) 45774) ((-288 . -389) T) ((-288 . -257) T) ((-288 . -82) 45691) ((-288 . -964) 45636) ((-288 . -969) 45581) ((-288 . -245) T) ((-288 . -201) T) ((-288 . -342) T) ((-288 . -118) T) ((-288 . -951) 45558) ((-288 . -1186) 45535) ((-288 . -1197) 45512) ((-282 . -285) 45481) ((-282 . -104) T) ((-282 . -25) T) ((-282 . -72) T) ((-282 . -13) T) ((-282 . -1128) T) ((-282 . -553) 45463) ((-282 . -1013) T) ((-282 . -23) T) ((-282 . -589) 45445) ((-282 . -21) T) ((-281 . -1013) T) ((-281 . -553) 45427) ((-281 . -1128) T) ((-281 . -13) T) ((-281 . -72) T) ((-280 . -757) T) ((-280 . -553) 45409) ((-280 . -1013) T) ((-280 . -72) T) ((-280 . -13) T) ((-280 . -1128) T) ((-280 . -760) T) ((-277 . -19) 45393) ((-277 . -594) 45377) ((-277 . -243) 45354) ((-277 . -241) 45306) ((-277 . -539) 45283) ((-277 . -554) 45244) ((-277 . -426) 45228) ((-277 . -1013) 45181) ((-277 . -453) 45114) ((-277 . -259) 45052) ((-277 . -553) 44967) ((-277 . -72) 44901) ((-277 . -1128) T) ((-277 . -13) T) ((-277 . -34) T) ((-277 . -124) 44885) ((-277 . -757) 44864) ((-277 . -760) 44843) ((-277 . -321) 44827) ((-277 . -237) 44811) ((-274 . -273) 44788) ((-274 . -556) 44772) ((-274 . -951) 44756) ((-274 . -23) T) ((-274 . -1013) T) ((-274 . -553) 44738) ((-274 . -1128) T) ((-274 . -13) T) ((-274 . -72) T) ((-274 . -25) T) ((-274 . -104) T) ((-272 . -21) T) ((-272 . -589) 44720) ((-272 . -23) T) ((-272 . -1013) T) ((-272 . -553) 44702) ((-272 . -1128) T) ((-272 . -13) T) ((-272 . -72) T) ((-272 . -25) T) ((-272 . -104) T) ((-272 . -655) 44684) ((-272 . -583) 44666) ((-272 . -591) 44648) ((-272 . -969) 44630) ((-272 . -964) 44612) ((-272 . -82) 44587) ((-272 . -273) 44564) ((-272 . -556) 44548) ((-272 . -951) 44532) ((-272 . -757) 44511) ((-272 . -760) 44490) ((-269 . -1161) 44474) ((-269 . -190) 44426) ((-269 . -186) 44372) ((-269 . -189) 44324) ((-269 . -241) 44282) ((-269 . -810) 44188) ((-269 . -807) 44092) ((-269 . -812) 43998) ((-269 . -887) 43961) ((-269 . -38) 43808) ((-269 . -82) 43628) ((-269 . -964) 43469) ((-269 . -969) 43310) ((-269 . -589) 43195) ((-269 . -591) 43095) ((-269 . -583) 42942) ((-269 . -655) 42789) ((-269 . -556) 42621) ((-269 . -118) 42600) ((-269 . -120) 42579) ((-269 . -47) 42549) ((-269 . -1157) 42519) ((-269 . -35) 42485) ((-269 . -66) 42451) ((-269 . -239) 42417) ((-269 . -430) 42383) ((-269 . -1117) 42349) ((-269 . -1114) 42315) ((-269 . -916) 42281) ((-269 . -201) 42260) ((-269 . -245) 42214) ((-269 . -104) T) ((-269 . -25) T) ((-269 . -72) T) ((-269 . -13) T) ((-269 . -1128) T) ((-269 . -553) 42196) ((-269 . -1013) T) ((-269 . -23) T) ((-269 . -21) T) ((-269 . -962) T) ((-269 . -664) T) ((-269 . -1060) T) ((-269 . -1025) T) ((-269 . -970) T) ((-269 . -257) 42175) ((-269 . -389) 42154) ((-269 . -146) 42088) ((-269 . -495) 42042) ((-269 . -833) 42021) ((-269 . -1133) 42000) ((-269 . -311) 41979) ((-269 . -717) T) ((-269 . -757) T) ((-269 . -760) T) ((-269 . -719) T) ((-264 . -361) 41963) ((-264 . -556) 41538) ((-264 . -951) 41209) ((-264 . -554) 41070) ((-264 . -795) 41054) ((-264 . -812) 41021) ((-264 . -807) 40986) ((-264 . -810) 40953) ((-264 . -410) 40932) ((-264 . -352) 40916) ((-264 . -797) 40841) ((-264 . -340) 40825) ((-264 . -581) 40733) ((-264 . -591) 40471) ((-264 . -326) 40441) ((-264 . -201) 40420) ((-264 . -82) 40309) ((-264 . -964) 40219) ((-264 . -969) 40129) ((-264 . -245) 40108) ((-264 . -655) 40018) ((-264 . -583) 39928) ((-264 . -589) 39595) ((-264 . -38) 39505) ((-264 . -257) 39484) ((-264 . -389) 39463) ((-264 . -146) 39442) ((-264 . -495) 39421) ((-264 . -833) 39400) ((-264 . -1133) 39379) ((-264 . -311) 39358) ((-264 . -259) 39345) ((-264 . -453) 39311) ((-264 . -253) T) ((-264 . -120) 39290) ((-264 . -118) 39269) ((-264 . -962) 39163) ((-264 . -664) 39016) ((-264 . -1060) 38910) ((-264 . -1025) 38763) ((-264 . -970) 38657) ((-264 . -104) 38532) ((-264 . -25) 38388) ((-264 . -72) T) ((-264 . -13) T) ((-264 . -1128) T) ((-264 . -553) 38370) ((-264 . -1013) T) ((-264 . -23) 38226) ((-264 . -21) 38101) ((-264 . -29) 38071) ((-264 . -916) 38050) ((-264 . -27) 38029) ((-264 . -1114) 38008) ((-264 . -1117) 37987) ((-264 . -430) 37966) ((-264 . -239) 37945) ((-264 . -66) 37924) ((-264 . -35) 37903) ((-264 . -133) 37882) ((-264 . -116) 37861) ((-264 . -570) 37840) ((-264 . -872) 37819) ((-264 . -1052) 37798) ((-263 . -905) 37759) ((-263 . -1065) NIL) ((-263 . -951) 37689) ((-263 . -556) 37572) ((-263 . -554) NIL) ((-263 . -934) NIL) ((-263 . -822) NIL) ((-263 . -795) 37533) ((-263 . -756) NIL) ((-263 . -722) NIL) ((-263 . -719) NIL) ((-263 . -760) NIL) ((-263 . -757) NIL) ((-263 . -717) NIL) ((-263 . -715) NIL) ((-263 . -741) NIL) ((-263 . -797) NIL) ((-263 . -340) 37494) ((-263 . -581) 37455) ((-263 . -591) 37384) ((-263 . -326) 37345) ((-263 . -241) 37211) ((-263 . -259) 37107) ((-263 . -453) 36858) ((-263 . -287) 36819) ((-263 . -201) T) ((-263 . -82) 36704) ((-263 . -964) 36633) ((-263 . -969) 36562) ((-263 . -245) T) ((-263 . -655) 36491) ((-263 . -583) 36420) ((-263 . -589) 36334) ((-263 . -38) 36263) ((-263 . -257) T) ((-263 . -389) T) ((-263 . -146) T) ((-263 . -495) T) ((-263 . -833) T) ((-263 . -1133) T) ((-263 . -311) T) ((-263 . -190) NIL) ((-263 . -186) NIL) ((-263 . -189) NIL) ((-263 . -225) 36224) ((-263 . -807) NIL) ((-263 . -812) NIL) ((-263 . -810) NIL) ((-263 . -184) 36185) ((-263 . -120) 36141) ((-263 . -118) 36097) ((-263 . -104) T) ((-263 . -25) T) ((-263 . -72) T) ((-263 . -13) T) ((-263 . -1128) T) ((-263 . -553) 36079) ((-263 . -1013) T) ((-263 . -23) T) ((-263 . -21) T) ((-263 . -962) T) ((-263 . -664) T) ((-263 . -1060) T) ((-263 . -1025) T) ((-263 . -970) T) ((-262 . -995) T) ((-262 . -427) 36060) ((-262 . -553) 36026) ((-262 . -556) 36007) ((-262 . -1013) T) ((-262 . -1128) T) ((-262 . -13) T) ((-262 . -72) T) ((-262 . -64) T) ((-261 . -1013) T) ((-261 . -553) 35989) ((-261 . -1128) T) ((-261 . -13) T) ((-261 . -72) T) ((-250 . -1106) 35968) ((-250 . -183) 35916) ((-250 . -76) 35864) ((-250 . -259) 35662) ((-250 . -453) 35414) ((-250 . -426) 35349) ((-250 . -124) 35297) ((-250 . -554) NIL) ((-250 . -193) 35245) ((-250 . -550) 35224) ((-250 . -243) 35203) ((-250 . -1128) T) ((-250 . -13) T) ((-250 . -241) 35182) ((-250 . -1013) T) ((-250 . -553) 35164) ((-250 . -72) T) ((-250 . -34) T) ((-250 . -539) 35143) ((-248 . -1128) T) ((-248 . -13) T) ((-248 . -453) 35092) ((-248 . -1013) 34878) ((-248 . -553) 34624) ((-248 . -72) 34410) ((-248 . -25) 34278) ((-248 . -21) 34165) ((-248 . -589) 33912) ((-248 . -23) 33799) ((-248 . -104) 33686) ((-248 . -1025) 33571) ((-248 . -664) 33477) ((-248 . -410) 33456) ((-248 . -962) 33402) ((-248 . -1060) 33348) ((-248 . -970) 33294) ((-248 . -591) 33162) ((-248 . -556) 33097) ((-248 . -82) 33017) ((-248 . -964) 32942) ((-248 . -969) 32867) ((-248 . -655) 32812) ((-248 . -583) 32757) ((-248 . -810) 32716) ((-248 . -807) 32673) ((-248 . -812) 32632) ((-248 . -1186) 32602) ((-246 . -553) 32584) ((-244 . -257) T) ((-244 . -389) T) ((-244 . -38) 32571) ((-244 . -556) 32543) ((-244 . -970) T) ((-244 . -1025) T) ((-244 . -1060) T) ((-244 . -664) T) ((-244 . -962) T) ((-244 . -82) 32528) ((-244 . -964) 32515) ((-244 . -969) 32502) ((-244 . -21) T) ((-244 . -589) 32474) ((-244 . -23) T) ((-244 . -1013) T) ((-244 . -553) 32456) ((-244 . -1128) T) ((-244 . -13) T) ((-244 . -72) T) ((-244 . -25) T) ((-244 . -104) T) ((-244 . -591) 32443) ((-244 . -583) 32430) ((-244 . -655) 32417) ((-244 . -146) T) ((-244 . -245) T) ((-244 . -495) T) ((-244 . -833) T) ((-244 . -241) 32396) ((-235 . -553) 32378) ((-234 . -553) 32360) ((-229 . -757) T) ((-229 . -553) 32342) ((-229 . -1013) T) ((-229 . -72) T) ((-229 . -13) T) ((-229 . -1128) T) ((-229 . -760) T) ((-226 . -213) 32304) ((-226 . -556) 32064) ((-226 . -951) 31910) ((-226 . -554) 31658) ((-226 . -276) 31630) ((-226 . -352) 31614) ((-226 . -38) 31466) ((-226 . -82) 31291) ((-226 . -964) 31137) ((-226 . -969) 30983) ((-226 . -589) 30893) ((-226 . -591) 30782) ((-226 . -583) 30634) ((-226 . -655) 30486) ((-226 . -118) 30465) ((-226 . -120) 30444) ((-226 . -146) 30358) ((-226 . -495) 30292) ((-226 . -245) 30226) ((-226 . -47) 30198) ((-226 . -326) 30182) ((-226 . -581) 30130) ((-226 . -389) 30084) ((-226 . -453) 29975) ((-226 . -810) 29921) ((-226 . -807) 29830) ((-226 . -812) 29743) ((-226 . -797) 29602) ((-226 . -822) 29581) ((-226 . -1133) 29560) ((-226 . -862) 29527) ((-226 . -259) 29514) ((-226 . -190) 29493) ((-226 . -104) T) ((-226 . -25) T) ((-226 . -72) T) ((-226 . -553) 29475) ((-226 . -1013) T) ((-226 . -23) T) ((-226 . -21) T) ((-226 . -970) T) ((-226 . -1025) T) ((-226 . -1060) T) ((-226 . -664) T) ((-226 . -962) T) ((-226 . -186) 29423) ((-226 . -13) T) ((-226 . -1128) T) ((-226 . -189) 29377) ((-226 . -225) 29361) ((-226 . -184) 29345) ((-221 . -1013) T) ((-221 . -553) 29327) ((-221 . -1128) T) ((-221 . -13) T) ((-221 . -72) T) ((-211 . -196) 29306) ((-211 . -1186) 29276) ((-211 . -722) 29255) ((-211 . -719) 29234) ((-211 . -760) 29188) ((-211 . -757) 29142) ((-211 . -717) 29121) ((-211 . -718) 29100) ((-211 . -655) 29045) ((-211 . -583) 28970) ((-211 . -243) 28947) ((-211 . -241) 28924) ((-211 . -426) 28908) ((-211 . -453) 28841) ((-211 . -259) 28779) ((-211 . -34) T) ((-211 . -539) 28756) ((-211 . -951) 28585) ((-211 . -556) 28389) ((-211 . -352) 28358) ((-211 . -581) 28266) ((-211 . -591) 28092) ((-211 . -326) 28062) ((-211 . -317) 28041) ((-211 . -190) 27994) ((-211 . -589) 27847) ((-211 . -970) 27826) ((-211 . -1025) 27805) ((-211 . -1060) 27784) ((-211 . -664) 27763) ((-211 . -962) 27742) ((-211 . -186) 27638) ((-211 . -189) 27540) ((-211 . -225) 27510) ((-211 . -807) 27382) ((-211 . -812) 27256) ((-211 . -810) 27189) ((-211 . -184) 27159) ((-211 . -553) 27120) ((-211 . -969) 27045) ((-211 . -964) 26950) ((-211 . -82) 26870) ((-211 . -104) T) ((-211 . -25) T) ((-211 . -72) T) ((-211 . -13) T) ((-211 . -1128) T) ((-211 . -1013) T) ((-211 . -23) T) ((-211 . -21) T) ((-210 . -196) 26849) ((-210 . -1186) 26819) ((-210 . -722) 26798) ((-210 . -719) 26777) ((-210 . -760) 26731) ((-210 . -757) 26685) ((-210 . -717) 26664) ((-210 . -718) 26643) ((-210 . -655) 26588) ((-210 . -583) 26513) ((-210 . -243) 26490) ((-210 . -241) 26467) ((-210 . -426) 26451) ((-210 . -453) 26384) ((-210 . -259) 26322) ((-210 . -34) T) ((-210 . -539) 26299) ((-210 . -951) 26128) ((-210 . -556) 25932) ((-210 . -352) 25901) ((-210 . -581) 25809) ((-210 . -591) 25622) ((-210 . -326) 25592) ((-210 . -317) 25571) ((-210 . -190) 25524) ((-210 . -589) 25364) ((-210 . -970) 25343) ((-210 . -1025) 25322) ((-210 . -1060) 25301) ((-210 . -664) 25280) ((-210 . -962) 25259) ((-210 . -186) 25155) ((-210 . -189) 25057) ((-210 . -225) 25027) ((-210 . -807) 24899) ((-210 . -812) 24773) ((-210 . -810) 24706) ((-210 . -184) 24676) ((-210 . -553) 24637) ((-210 . -969) 24562) ((-210 . -964) 24467) ((-210 . -82) 24387) ((-210 . -104) T) ((-210 . -25) T) ((-210 . -72) T) ((-210 . -13) T) ((-210 . -1128) T) ((-210 . -1013) T) ((-210 . -23) T) ((-210 . -21) T) ((-209 . -1013) T) ((-209 . -553) 24369) ((-209 . -1128) T) ((-209 . -13) T) ((-209 . -72) T) ((-209 . -241) 24343) ((-208 . -160) T) ((-208 . -1013) T) ((-208 . -553) 24310) ((-208 . -1128) T) ((-208 . -13) T) ((-208 . -72) T) ((-208 . -748) 24292) ((-207 . -1013) T) ((-207 . -553) 24274) ((-207 . -1128) T) ((-207 . -13) T) ((-207 . -72) T) ((-206 . -862) 24219) ((-206 . -556) 24011) ((-206 . -951) 23889) ((-206 . -1133) 23868) ((-206 . -822) 23847) ((-206 . -797) NIL) ((-206 . -812) 23824) ((-206 . -807) 23799) ((-206 . -810) 23776) ((-206 . -453) 23714) ((-206 . -389) 23668) ((-206 . -581) 23616) ((-206 . -591) 23505) ((-206 . -326) 23489) ((-206 . -47) 23446) ((-206 . -38) 23298) ((-206 . -583) 23150) ((-206 . -655) 23002) ((-206 . -245) 22936) ((-206 . -495) 22870) ((-206 . -82) 22695) ((-206 . -964) 22541) ((-206 . -969) 22387) ((-206 . -146) 22301) ((-206 . -120) 22280) ((-206 . -118) 22259) ((-206 . -589) 22169) ((-206 . -104) T) ((-206 . -25) T) ((-206 . -72) T) ((-206 . -13) T) ((-206 . -1128) T) ((-206 . -553) 22151) ((-206 . -1013) T) ((-206 . -23) T) ((-206 . -21) T) ((-206 . -962) T) ((-206 . -664) T) ((-206 . -1060) T) ((-206 . -1025) T) ((-206 . -970) T) ((-206 . -352) 22135) ((-206 . -276) 22092) ((-206 . -259) 22079) ((-206 . -554) 21940) ((-203 . -609) 21924) ((-203 . -1167) 21908) ((-203 . -924) 21892) ((-203 . -1063) 21876) ((-203 . -757) 21855) ((-203 . -760) 21834) ((-203 . -321) 21818) ((-203 . -594) 21802) ((-203 . -243) 21779) ((-203 . -241) 21731) ((-203 . -539) 21708) ((-203 . -554) 21669) ((-203 . -426) 21653) ((-203 . -1013) 21606) ((-203 . -453) 21539) ((-203 . -259) 21477) ((-203 . -553) 21372) ((-203 . -72) 21306) ((-203 . -1128) T) ((-203 . -13) T) ((-203 . -34) T) ((-203 . -124) 21290) ((-203 . -237) 21274) ((-203 . -427) 21251) ((-203 . -556) 21228) ((-197 . -196) 21207) ((-197 . -1186) 21177) ((-197 . -722) 21156) ((-197 . -719) 21135) ((-197 . -760) 21089) ((-197 . -757) 21043) ((-197 . -717) 21022) ((-197 . -718) 21001) ((-197 . -655) 20946) ((-197 . -583) 20871) ((-197 . -243) 20848) ((-197 . -241) 20825) ((-197 . -426) 20809) ((-197 . -453) 20742) ((-197 . -259) 20680) ((-197 . -34) T) ((-197 . -539) 20657) ((-197 . -951) 20486) ((-197 . -556) 20290) ((-197 . -352) 20259) ((-197 . -581) 20167) ((-197 . -591) 20006) ((-197 . -326) 19976) ((-197 . -317) 19955) ((-197 . -190) 19908) ((-197 . -589) 19696) ((-197 . -970) 19675) ((-197 . -1025) 19654) ((-197 . -1060) 19633) ((-197 . -664) 19612) ((-197 . -962) 19591) ((-197 . -186) 19487) ((-197 . -189) 19389) ((-197 . -225) 19359) ((-197 . -807) 19231) ((-197 . -812) 19105) ((-197 . -810) 19038) ((-197 . -184) 19008) ((-197 . -553) 18705) ((-197 . -969) 18630) ((-197 . -964) 18535) ((-197 . -82) 18455) ((-197 . -104) 18330) ((-197 . -25) 18167) ((-197 . -72) 17904) ((-197 . -13) T) ((-197 . -1128) T) ((-197 . -1013) 17660) ((-197 . -23) 17516) ((-197 . -21) 17431) ((-181 . -628) 17389) ((-181 . -426) 17373) ((-181 . -1013) 17351) ((-181 . -453) 17284) ((-181 . -259) 17222) ((-181 . -553) 17157) ((-181 . -72) 17111) ((-181 . -1128) T) ((-181 . -13) T) ((-181 . -34) T) ((-181 . -57) 17069) ((-179 . -344) T) ((-179 . -120) T) ((-179 . -556) 17019) ((-179 . -591) 16984) ((-179 . -589) 16934) ((-179 . -104) T) ((-179 . -25) T) ((-179 . -72) T) ((-179 . -13) T) ((-179 . -1128) T) ((-179 . -553) 16916) ((-179 . -1013) T) ((-179 . -23) T) ((-179 . -21) T) ((-179 . -970) T) ((-179 . -1025) T) ((-179 . -1060) T) ((-179 . -664) T) ((-179 . -962) T) ((-179 . -554) 16846) ((-179 . -311) T) ((-179 . -1133) T) ((-179 . -833) T) ((-179 . -495) T) ((-179 . -146) T) ((-179 . -655) 16811) ((-179 . -583) 16776) ((-179 . -38) 16741) ((-179 . -389) T) ((-179 . -257) T) ((-179 . -82) 16690) ((-179 . -964) 16655) ((-179 . -969) 16620) ((-179 . -245) T) ((-179 . -201) T) ((-179 . -756) T) ((-179 . -722) T) ((-179 . -719) T) ((-179 . -760) T) ((-179 . -757) T) ((-179 . -717) T) ((-179 . -715) T) ((-179 . -797) 16602) ((-179 . -916) T) ((-179 . -934) T) ((-179 . -951) 16562) ((-179 . -973) T) ((-179 . -190) T) ((-179 . -186) 16549) ((-179 . -189) T) ((-179 . -1114) T) ((-179 . -1117) T) ((-179 . -430) T) ((-179 . -239) T) ((-179 . -66) T) ((-179 . -35) T) ((-177 . -561) 16526) ((-177 . -556) 16488) ((-177 . -591) 16455) ((-177 . -589) 16407) ((-177 . -970) T) ((-177 . -1025) T) ((-177 . -1060) T) ((-177 . -664) T) ((-177 . -962) T) ((-177 . -21) T) ((-177 . -23) T) ((-177 . -1013) T) ((-177 . -553) 16389) ((-177 . -1128) T) ((-177 . -13) T) ((-177 . -72) T) ((-177 . -25) T) ((-177 . -104) T) ((-177 . -951) 16366) ((-176 . -214) 16350) ((-176 . -1034) 16334) ((-176 . -76) 16318) ((-176 . -34) T) ((-176 . -13) T) ((-176 . -1128) T) ((-176 . -72) 16272) ((-176 . -553) 16207) ((-176 . -259) 16145) ((-176 . -453) 16078) ((-176 . -1013) 16056) ((-176 . -426) 16040) ((-176 . -909) 16024) ((-172 . -995) T) ((-172 . -427) 16005) ((-172 . -553) 15971) ((-172 . -556) 15952) ((-172 . -1013) T) ((-172 . -1128) T) ((-172 . -13) T) ((-172 . -72) T) ((-172 . -64) T) ((-171 . -905) 15934) ((-171 . -1065) T) ((-171 . -556) 15884) ((-171 . -951) 15844) ((-171 . -554) 15774) ((-171 . -934) T) ((-171 . -822) NIL) ((-171 . -795) 15756) ((-171 . -756) T) ((-171 . -722) T) ((-171 . -719) T) ((-171 . -760) T) ((-171 . -757) T) ((-171 . -717) T) ((-171 . -715) T) ((-171 . -741) T) ((-171 . -797) 15738) ((-171 . -340) 15720) ((-171 . -581) 15702) ((-171 . -326) 15684) ((-171 . -241) NIL) ((-171 . -259) NIL) ((-171 . -453) NIL) ((-171 . -287) 15666) ((-171 . -201) T) ((-171 . -82) 15593) ((-171 . -964) 15543) ((-171 . -969) 15493) ((-171 . -245) T) ((-171 . -655) 15443) ((-171 . -583) 15393) ((-171 . -591) 15343) ((-171 . -589) 15293) ((-171 . -38) 15243) ((-171 . -257) T) ((-171 . -389) T) ((-171 . -146) T) ((-171 . -495) T) ((-171 . -833) T) ((-171 . -1133) T) ((-171 . -311) T) ((-171 . -190) T) ((-171 . -186) 15230) ((-171 . -189) T) ((-171 . -225) 15212) ((-171 . -807) NIL) ((-171 . -812) NIL) ((-171 . -810) NIL) ((-171 . -184) 15194) ((-171 . -120) T) ((-171 . -118) NIL) ((-171 . -104) T) ((-171 . -25) T) ((-171 . -72) T) ((-171 . -13) T) ((-171 . -1128) T) ((-171 . -553) 15136) ((-171 . -1013) T) ((-171 . -23) T) ((-171 . -21) T) ((-171 . -962) T) ((-171 . -664) T) ((-171 . -1060) T) ((-171 . -1025) T) ((-171 . -970) T) ((-168 . -753) T) ((-168 . -760) T) ((-168 . -757) T) ((-168 . -1013) T) ((-168 . -553) 15118) ((-168 . -1128) T) ((-168 . -13) T) ((-168 . -72) T) ((-168 . -317) T) ((-167 . -1013) T) ((-167 . -553) 15100) ((-167 . -1128) T) ((-167 . -13) T) ((-167 . -72) T) ((-167 . -556) 15077) ((-166 . -1013) T) ((-166 . -553) 15059) ((-166 . -1128) T) ((-166 . -13) T) ((-166 . -72) T) ((-161 . -1013) T) ((-161 . -553) 15041) ((-161 . -1128) T) ((-161 . -13) T) ((-161 . -72) T) ((-158 . -1013) T) ((-158 . -553) 15023) ((-158 . -1128) T) ((-158 . -13) T) ((-158 . -72) T) ((-157 . -160) T) ((-157 . -1013) T) ((-157 . -553) 15005) ((-157 . -1128) T) ((-157 . -13) T) ((-157 . -72) T) ((-157 . -748) 14987) ((-154 . -995) T) ((-154 . -427) 14968) ((-154 . -553) 14934) ((-154 . -556) 14915) ((-154 . -1013) T) ((-154 . -1128) T) ((-154 . -13) T) ((-154 . -72) T) ((-154 . -64) T) ((-149 . -553) 14897) ((-148 . -38) 14829) ((-148 . -556) 14746) ((-148 . -591) 14678) ((-148 . -589) 14595) ((-148 . -970) T) ((-148 . -1025) T) ((-148 . -1060) T) ((-148 . -664) T) ((-148 . -962) T) ((-148 . -82) 14494) ((-148 . -964) 14426) ((-148 . -969) 14358) ((-148 . -21) T) ((-148 . -23) T) ((-148 . -1013) T) ((-148 . -553) 14340) ((-148 . -1128) T) ((-148 . -13) T) ((-148 . -72) T) ((-148 . -25) T) ((-148 . -104) T) ((-148 . -583) 14272) ((-148 . -655) 14204) ((-148 . -311) T) ((-148 . -1133) T) ((-148 . -833) T) ((-148 . -495) T) ((-148 . -146) T) ((-148 . -389) T) ((-148 . -257) T) ((-148 . -245) T) ((-148 . -201) T) ((-145 . -1013) T) ((-145 . -553) 14186) ((-145 . -1128) T) ((-145 . -13) T) ((-145 . -72) T) ((-142 . -139) 14170) ((-142 . -35) 14148) ((-142 . -66) 14126) ((-142 . -239) 14104) ((-142 . -430) 14082) ((-142 . -1117) 14060) ((-142 . -1114) 14038) ((-142 . -916) 13990) ((-142 . -822) 13943) ((-142 . -554) 13711) ((-142 . -795) 13695) ((-142 . -317) 13649) ((-142 . -298) 13628) ((-142 . -1065) 13607) ((-142 . -342) 13586) ((-142 . -350) 13557) ((-142 . -38) 13391) ((-142 . -82) 13283) ((-142 . -964) 13196) ((-142 . -969) 13109) ((-142 . -583) 12943) ((-142 . -655) 12777) ((-142 . -319) 12748) ((-142 . -662) 12719) ((-142 . -951) 12617) ((-142 . -556) 12402) ((-142 . -352) 12386) ((-142 . -797) 12311) ((-142 . -340) 12295) ((-142 . -581) 12243) ((-142 . -591) 12120) ((-142 . -589) 12018) ((-142 . -326) 12002) ((-142 . -241) 11960) ((-142 . -259) 11925) ((-142 . -453) 11837) ((-142 . -287) 11821) ((-142 . -201) 11775) ((-142 . -1133) 11683) ((-142 . -311) 11637) ((-142 . -833) 11571) ((-142 . -495) 11485) ((-142 . -245) 11399) ((-142 . -389) 11333) ((-142 . -257) 11267) ((-142 . -190) 11221) ((-142 . -186) 11149) ((-142 . -189) 11083) ((-142 . -225) 11067) ((-142 . -807) 10991) ((-142 . -812) 10917) ((-142 . -810) 10876) ((-142 . -184) 10860) ((-142 . -146) T) ((-142 . -120) 10839) ((-142 . -962) T) ((-142 . -664) T) ((-142 . -1060) T) ((-142 . -1025) T) ((-142 . -970) T) ((-142 . -21) T) ((-142 . -23) T) ((-142 . -1013) T) ((-142 . -553) 10821) ((-142 . -1128) T) ((-142 . -13) T) ((-142 . -72) T) ((-142 . -25) T) ((-142 . -104) T) ((-142 . -118) 10775) ((-135 . -995) T) ((-135 . -427) 10756) ((-135 . -553) 10722) ((-135 . -556) 10703) ((-135 . -1013) T) ((-135 . -1128) T) ((-135 . -13) T) ((-135 . -72) T) ((-135 . -64) T) ((-134 . -1013) T) ((-134 . -553) 10685) ((-134 . -1128) T) ((-134 . -13) T) ((-134 . -72) T) ((-130 . -25) T) ((-130 . -72) T) ((-130 . -13) T) ((-130 . -1128) T) ((-130 . -553) 10667) ((-130 . -1013) T) ((-129 . -995) T) ((-129 . -427) 10648) ((-129 . -553) 10614) ((-129 . -556) 10595) ((-129 . -1013) T) ((-129 . -1128) T) ((-129 . -13) T) ((-129 . -72) T) ((-129 . -64) T) ((-127 . -995) T) ((-127 . -427) 10576) ((-127 . -553) 10542) ((-127 . -556) 10523) ((-127 . -1013) T) ((-127 . -1128) T) ((-127 . -13) T) ((-127 . -72) T) ((-127 . -64) T) ((-125 . -962) T) ((-125 . -664) T) ((-125 . -1060) T) ((-125 . -1025) T) ((-125 . -970) T) ((-125 . -21) T) ((-125 . -589) 10482) ((-125 . -23) T) ((-125 . -1013) T) ((-125 . -553) 10464) ((-125 . -1128) T) ((-125 . -13) T) ((-125 . -72) T) ((-125 . -25) T) ((-125 . -104) T) ((-125 . -591) 10438) ((-125 . -556) 10407) ((-125 . -38) 10391) ((-125 . -82) 10370) ((-125 . -964) 10354) ((-125 . -969) 10338) ((-125 . -583) 10322) ((-125 . -655) 10306) ((-125 . -1186) 10290) ((-117 . -753) T) ((-117 . -760) T) ((-117 . -757) T) ((-117 . -1013) T) ((-117 . -553) 10272) ((-117 . -1128) T) ((-117 . -13) T) ((-117 . -72) T) ((-117 . -317) T) ((-114 . -1013) T) ((-114 . -553) 10254) ((-114 . -1128) T) ((-114 . -13) T) ((-114 . -72) T) ((-114 . -554) 10213) ((-114 . -366) 10195) ((-114 . -1011) 10177) ((-114 . -317) T) ((-114 . -193) 10159) ((-114 . -124) 10141) ((-114 . -426) 10123) ((-114 . -453) NIL) ((-114 . -259) NIL) ((-114 . -34) T) ((-114 . -76) 10105) ((-114 . -183) 10087) ((-113 . -553) 10069) ((-112 . -160) T) ((-112 . -1013) T) ((-112 . -553) 10036) ((-112 . -1128) T) ((-112 . -13) T) ((-112 . -72) T) ((-112 . -748) 10018) ((-111 . -995) T) ((-111 . -427) 9999) ((-111 . -553) 9965) ((-111 . -556) 9946) ((-111 . -1013) T) ((-111 . -1128) T) ((-111 . -13) T) ((-111 . -72) T) ((-111 . -64) T) ((-110 . -995) T) ((-110 . -427) 9927) ((-110 . -553) 9893) ((-110 . -556) 9874) ((-110 . -1013) T) ((-110 . -1128) T) ((-110 . -13) T) ((-110 . -72) T) ((-110 . -64) T) ((-108 . -402) 9851) ((-108 . -556) 9747) ((-108 . -951) 9731) ((-108 . -1013) T) ((-108 . -553) 9713) ((-108 . -1128) T) ((-108 . -13) T) ((-108 . -72) T) ((-108 . -407) 9668) ((-108 . -241) 9645) ((-107 . -757) T) ((-107 . -553) 9627) ((-107 . -1013) T) ((-107 . -72) T) ((-107 . -13) T) ((-107 . -1128) T) ((-107 . -760) T) ((-107 . -23) T) ((-107 . -25) T) ((-107 . -664) T) ((-107 . -1025) T) ((-107 . -951) 9609) ((-107 . -556) 9591) ((-106 . -995) T) ((-106 . -427) 9572) ((-106 . -553) 9538) ((-106 . -556) 9519) ((-106 . -1013) T) ((-106 . -1128) T) ((-106 . -13) T) ((-106 . -72) T) ((-106 . -64) T) ((-103 . -1013) T) ((-103 . -553) 9501) ((-103 . -1128) T) ((-103 . -13) T) ((-103 . -72) T) ((-102 . -19) 9483) ((-102 . -594) 9465) ((-102 . -243) 9440) ((-102 . -241) 9390) ((-102 . -539) 9365) ((-102 . -554) NIL) ((-102 . -426) 9347) ((-102 . -1013) T) ((-102 . -453) NIL) ((-102 . -259) NIL) ((-102 . -553) 9291) ((-102 . -72) T) ((-102 . -1128) T) ((-102 . -13) T) ((-102 . -34) T) ((-102 . -124) 9273) ((-102 . -757) T) ((-102 . -760) T) ((-102 . -321) 9255) ((-101 . -753) T) ((-101 . -760) T) ((-101 . -757) T) ((-101 . -1013) T) ((-101 . -553) 9237) ((-101 . -1128) T) ((-101 . -13) T) ((-101 . -72) T) ((-101 . -317) T) ((-101 . -605) T) ((-100 . -98) 9221) ((-100 . -924) 9205) ((-100 . -34) T) ((-100 . -13) T) ((-100 . -1128) T) ((-100 . -72) 9159) ((-100 . -553) 9094) ((-100 . -259) 9032) ((-100 . -453) 8965) ((-100 . -1013) 8943) ((-100 . -426) 8927) ((-100 . -92) 8911) ((-99 . -98) 8895) ((-99 . -924) 8879) ((-99 . -34) T) ((-99 . -13) T) ((-99 . -1128) T) ((-99 . -72) 8833) ((-99 . -553) 8768) ((-99 . -259) 8706) ((-99 . -453) 8639) ((-99 . -1013) 8617) ((-99 . -426) 8601) ((-99 . -92) 8585) ((-94 . -98) 8569) ((-94 . -924) 8553) ((-94 . -34) T) ((-94 . -13) T) ((-94 . -1128) T) ((-94 . -72) 8507) ((-94 . -553) 8442) ((-94 . -259) 8380) ((-94 . -453) 8313) ((-94 . -1013) 8291) ((-94 . -426) 8275) ((-94 . -92) 8259) ((-90 . -905) 8237) ((-90 . -1065) NIL) ((-90 . -951) 8215) ((-90 . -556) 8146) ((-90 . -554) NIL) ((-90 . -934) NIL) ((-90 . -822) NIL) ((-90 . -795) 8124) ((-90 . -756) NIL) ((-90 . -722) NIL) ((-90 . -719) NIL) ((-90 . -760) NIL) ((-90 . -757) NIL) ((-90 . -717) NIL) ((-90 . -715) NIL) ((-90 . -741) NIL) ((-90 . -797) NIL) ((-90 . -340) 8102) ((-90 . -581) 8080) ((-90 . -591) 8026) ((-90 . -326) 8004) ((-90 . -241) 7938) ((-90 . -259) 7885) ((-90 . -453) 7755) ((-90 . -287) 7733) ((-90 . -201) T) ((-90 . -82) 7652) ((-90 . -964) 7598) ((-90 . -969) 7544) ((-90 . -245) T) ((-90 . -655) 7490) ((-90 . -583) 7436) ((-90 . -589) 7367) ((-90 . -38) 7313) ((-90 . -257) T) ((-90 . -389) T) ((-90 . -146) T) ((-90 . -495) T) ((-90 . -833) T) ((-90 . -1133) T) ((-90 . -311) T) ((-90 . -190) NIL) ((-90 . -186) NIL) ((-90 . -189) NIL) ((-90 . -225) 7291) ((-90 . -807) NIL) ((-90 . -812) NIL) ((-90 . -810) NIL) ((-90 . -184) 7269) ((-90 . -120) T) ((-90 . -118) NIL) ((-90 . -104) T) ((-90 . -25) T) ((-90 . -72) T) ((-90 . -13) T) ((-90 . -1128) T) ((-90 . -553) 7251) ((-90 . -1013) T) ((-90 . -23) T) ((-90 . -21) T) ((-90 . -962) T) ((-90 . -664) T) ((-90 . -1060) T) ((-90 . -1025) T) ((-90 . -970) T) ((-89 . -780) 7235) ((-89 . -833) T) ((-89 . -495) T) ((-89 . -245) T) ((-89 . -146) T) ((-89 . -556) 7207) ((-89 . -655) 7194) ((-89 . -583) 7181) ((-89 . -969) 7168) ((-89 . -964) 7155) ((-89 . -82) 7140) ((-89 . -38) 7127) ((-89 . -389) T) ((-89 . -257) T) ((-89 . -962) T) ((-89 . -664) T) ((-89 . -1060) T) ((-89 . -1025) T) ((-89 . -970) T) ((-89 . -21) T) ((-89 . -589) 7099) ((-89 . -23) T) ((-89 . -1013) T) ((-89 . -553) 7081) ((-89 . -1128) T) ((-89 . -13) T) ((-89 . -72) T) ((-89 . -25) T) ((-89 . -104) T) ((-89 . -591) 7068) ((-89 . -120) T) ((-86 . -757) T) ((-86 . -553) 7050) ((-86 . -1013) T) ((-86 . -72) T) ((-86 . -13) T) ((-86 . -1128) T) ((-86 . -760) T) ((-86 . -748) 7031) ((-85 . -753) T) ((-85 . -760) T) ((-85 . -757) T) ((-85 . -1013) T) ((-85 . -553) 7013) ((-85 . -1128) T) ((-85 . -13) T) ((-85 . -72) T) ((-85 . -317) T) ((-85 . -881) T) ((-85 . -605) T) ((-85 . -84) T) ((-85 . -554) 6995) ((-81 . -96) T) ((-81 . -321) 6978) ((-81 . -760) T) ((-81 . -757) T) ((-81 . -124) 6961) ((-81 . -34) T) ((-81 . -72) T) ((-81 . -553) 6943) ((-81 . -259) NIL) ((-81 . -453) NIL) ((-81 . -1013) T) ((-81 . -426) 6926) ((-81 . -554) 6908) ((-81 . -241) 6859) ((-81 . -539) 6835) ((-81 . -243) 6811) ((-81 . -594) 6794) ((-81 . -19) 6777) ((-81 . -605) T) ((-81 . -13) T) ((-81 . -1128) T) ((-81 . -84) T) ((-79 . -80) 6761) ((-79 . -1128) T) ((-79 . |MappingCategory|) 6735) ((-79 . -1013) T) ((-79 . -553) 6717) ((-79 . -13) T) ((-79 . -72) T) ((-78 . -553) 6699) ((-77 . -905) 6681) ((-77 . -1065) T) ((-77 . -556) 6631) ((-77 . -951) 6591) ((-77 . -554) 6521) ((-77 . -934) T) ((-77 . -822) NIL) ((-77 . -795) 6503) ((-77 . -756) T) ((-77 . -722) T) ((-77 . -719) T) ((-77 . -760) T) ((-77 . -757) T) ((-77 . -717) T) ((-77 . -715) T) ((-77 . -741) T) ((-77 . -797) 6485) ((-77 . -340) 6467) ((-77 . -581) 6449) ((-77 . -326) 6431) ((-77 . -241) NIL) ((-77 . -259) NIL) ((-77 . -453) NIL) ((-77 . -287) 6413) ((-77 . -201) T) ((-77 . -82) 6340) ((-77 . -964) 6290) ((-77 . -969) 6240) ((-77 . -245) T) ((-77 . -655) 6190) ((-77 . -583) 6140) ((-77 . -591) 6090) ((-77 . -589) 6040) ((-77 . -38) 5990) ((-77 . -257) T) ((-77 . -389) T) ((-77 . -146) T) ((-77 . -495) T) ((-77 . -833) T) ((-77 . -1133) T) ((-77 . -311) T) ((-77 . -190) T) ((-77 . -186) 5977) ((-77 . -189) T) ((-77 . -225) 5959) ((-77 . -807) NIL) ((-77 . -812) NIL) ((-77 . -810) NIL) ((-77 . -184) 5941) ((-77 . -120) T) ((-77 . -118) NIL) ((-77 . -104) T) ((-77 . -25) T) ((-77 . -72) T) ((-77 . -13) T) ((-77 . -1128) T) ((-77 . -553) 5884) ((-77 . -1013) T) ((-77 . -23) T) ((-77 . -21) T) ((-77 . -962) T) ((-77 . -664) T) ((-77 . -1060) T) ((-77 . -1025) T) ((-77 . -970) T) ((-73 . -98) 5868) ((-73 . -924) 5852) ((-73 . -34) T) ((-73 . -13) T) ((-73 . -1128) T) ((-73 . -72) 5806) ((-73 . -553) 5741) ((-73 . -259) 5679) ((-73 . -453) 5612) ((-73 . -1013) 5590) ((-73 . -426) 5574) ((-73 . -92) 5558) ((-69 . -410) T) ((-69 . -1025) T) ((-69 . -72) T) ((-69 . -13) T) ((-69 . -1128) T) ((-69 . -553) 5540) ((-69 . -1013) T) ((-69 . -664) T) ((-69 . -241) 5519) ((-67 . -995) T) ((-67 . -427) 5500) ((-67 . -553) 5466) ((-67 . -556) 5447) ((-67 . -1013) T) ((-67 . -1128) T) ((-67 . -13) T) ((-67 . -72) T) ((-67 . -64) T) ((-62 . -1034) 5431) ((-62 . -426) 5415) ((-62 . -1013) 5393) ((-62 . -453) 5326) ((-62 . -259) 5264) ((-62 . -553) 5199) ((-62 . -72) 5153) ((-62 . -1128) T) ((-62 . -13) T) ((-62 . -34) T) ((-62 . -76) 5137) ((-60 . -57) 5099) ((-60 . -34) T) ((-60 . -13) T) ((-60 . -1128) T) ((-60 . -72) 5053) ((-60 . -553) 4988) ((-60 . -259) 4926) ((-60 . -453) 4859) ((-60 . -1013) 4837) ((-60 . -426) 4821) ((-58 . -19) 4805) ((-58 . -594) 4789) ((-58 . -243) 4766) ((-58 . -241) 4718) ((-58 . -539) 4695) ((-58 . -554) 4656) ((-58 . -426) 4640) ((-58 . -1013) 4593) ((-58 . -453) 4526) ((-58 . -259) 4464) ((-58 . -553) 4379) ((-58 . -72) 4313) ((-58 . -1128) T) ((-58 . -13) T) ((-58 . -34) T) ((-58 . -124) 4297) ((-58 . -757) 4276) ((-58 . -760) 4255) ((-58 . -321) 4239) ((-55 . -1013) T) ((-55 . -553) 4221) ((-55 . -1128) T) ((-55 . -13) T) ((-55 . -72) T) ((-55 . -951) 4203) ((-55 . -556) 4185) ((-51 . -1013) T) ((-51 . -553) 4167) ((-51 . -1128) T) ((-51 . -13) T) ((-51 . -72) T) ((-50 . -561) 4151) ((-50 . -556) 4120) ((-50 . -591) 4094) ((-50 . -589) 4053) ((-50 . -970) T) ((-50 . -1025) T) ((-50 . -1060) T) ((-50 . -664) T) ((-50 . -962) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1013) T) ((-50 . -553) 4035) ((-50 . -1128) T) ((-50 . -13) T) ((-50 . -72) T) ((-50 . -25) T) ((-50 . -104) T) ((-50 . -951) 4019) ((-49 . -1013) T) ((-49 . -553) 4001) ((-49 . -1128) T) ((-49 . -13) T) ((-49 . -72) T) ((-48 . -253) T) ((-48 . -72) T) ((-48 . -13) T) ((-48 . -1128) T) ((-48 . -553) 3983) ((-48 . -1013) T) ((-48 . -556) 3884) ((-48 . -951) 3827) ((-48 . -453) 3793) ((-48 . -259) 3780) ((-48 . -27) T) ((-48 . -916) T) ((-48 . -201) T) ((-48 . -82) 3729) ((-48 . -964) 3694) ((-48 . -969) 3659) ((-48 . -245) T) ((-48 . -655) 3624) ((-48 . -583) 3589) ((-48 . -591) 3539) ((-48 . -589) 3489) ((-48 . -104) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -962) T) ((-48 . -664) T) ((-48 . -1060) T) ((-48 . -1025) T) ((-48 . -970) T) ((-48 . -38) 3454) ((-48 . -257) T) ((-48 . -389) T) ((-48 . -146) T) ((-48 . -495) T) ((-48 . -833) T) ((-48 . -1133) T) ((-48 . -311) T) ((-48 . -581) 3414) ((-48 . -934) T) ((-48 . -554) 3359) ((-48 . -120) T) ((-48 . -190) T) ((-48 . -186) 3346) ((-48 . -189) T) ((-45 . -36) 3325) ((-45 . -539) 3248) ((-45 . -259) 3046) ((-45 . -453) 2798) ((-45 . -426) 2733) ((-45 . -241) 2631) ((-45 . -243) 2554) ((-45 . -550) 2533) ((-45 . -193) 2481) ((-45 . -76) 2429) ((-45 . -183) 2377) ((-45 . -1106) 2356) ((-45 . -237) 2304) ((-45 . -124) 2252) ((-45 . -34) T) ((-45 . -13) T) ((-45 . -1128) T) ((-45 . -72) T) ((-45 . -553) 2234) ((-45 . -1013) T) ((-45 . -554) NIL) ((-45 . -594) 2182) ((-45 . -321) 2130) ((-45 . -760) NIL) ((-45 . -757) NIL) ((-45 . -1063) 2078) ((-45 . -924) 2026) ((-45 . -1167) 1974) ((-45 . -609) 1922) ((-44 . -358) 1906) ((-44 . -684) 1890) ((-44 . -658) T) ((-44 . -686) T) ((-44 . -82) 1869) ((-44 . -964) 1853) ((-44 . -969) 1837) ((-44 . -21) T) ((-44 . -589) 1780) ((-44 . -23) T) ((-44 . -1013) T) ((-44 . -553) 1762) ((-44 . -72) T) ((-44 . -25) T) ((-44 . -104) T) ((-44 . -591) 1720) ((-44 . -583) 1704) ((-44 . -655) 1688) ((-44 . -315) 1672) ((-44 . -1128) T) ((-44 . -13) T) ((-44 . -241) 1649) ((-40 . -290) 1623) ((-40 . -146) T) ((-40 . -556) 1553) ((-40 . -970) T) ((-40 . -1025) T) ((-40 . -1060) T) ((-40 . -664) T) ((-40 . -962) T) ((-40 . -591) 1455) ((-40 . -589) 1385) ((-40 . -104) T) ((-40 . -25) T) ((-40 . -72) T) ((-40 . -13) T) ((-40 . -1128) T) ((-40 . -553) 1367) ((-40 . -1013) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -969) 1312) ((-40 . -964) 1257) ((-40 . -82) 1174) ((-40 . -554) 1158) ((-40 . -184) 1135) ((-40 . -810) 1087) ((-40 . -812) 999) ((-40 . -807) 909) ((-40 . -225) 886) ((-40 . -189) 826) ((-40 . -186) 760) ((-40 . -190) 732) ((-40 . -311) T) ((-40 . -1133) T) ((-40 . -833) T) ((-40 . -495) T) ((-40 . -655) 677) ((-40 . -583) 622) ((-40 . -38) 567) ((-40 . -389) T) ((-40 . -257) T) ((-40 . -245) T) ((-40 . -201) T) ((-40 . -317) NIL) ((-40 . -298) NIL) ((-40 . -1065) NIL) ((-40 . -118) 539) ((-40 . -342) NIL) ((-40 . -350) 511) ((-40 . -120) 483) ((-40 . -319) 455) ((-40 . -326) 432) ((-40 . -581) 366) ((-40 . -352) 343) ((-40 . -951) 220) ((-40 . -662) 192) ((-31 . -995) T) ((-31 . -427) 173) ((-31 . -553) 139) ((-31 . -556) 120) ((-31 . -1013) T) ((-31 . -1128) T) ((-31 . -13) T) ((-31 . -72) T) ((-31 . -64) T) ((-30 . -867) T) ((-30 . -553) 102) ((0 . |EnumerationCategory|) T) ((0 . -553) 84) ((0 . -1013) T) ((0 . -72) T) ((0 . -1128) T) ((-2 . |RecordCategory|) T) ((-2 . -553) 66) ((-2 . -1013) T) ((-2 . -72) T) ((-2 . -1128) T) ((-3 . |UnionCategory|) T) ((-3 . -553) 48) ((-3 . -1013) T) ((-3 . -72) T) ((-3 . -1128) T) ((-1 . -1013) T) ((-1 . -553) 30) ((-1 . -1128) T) ((-1 . -13) T) ((-1 . -72) T)) \ No newline at end of file
diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase
index 45e17117..a6e9ceb1 100644
--- a/src/share/algebra/compress.daase
+++ b/src/share/algebra/compress.daase
@@ -1,6 +1,6 @@
-(30 . 3539125282)
-(3992 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
+(30 . 3576902404)
+(3994 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join|
|ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&|
|OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&|
@@ -144,8 +144,9 @@
|IdempotentOperatorCategory| |Identifier| |IndexedDirectProductAbelianGroup|
|IndexedDirectProductAbelianMonoid| |IndexedDirectProductCategory|
|IndexedDirectProductObject| |IndexedDirectProductOrderedAbelianMonoid|
- |IndexedDirectProductOrderedAbelianMonoidSup| |InnerEvalable&| |InnerEvalable|
- |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |IfAst| |InnerFiniteField|
+ |IndexedDirectProductOrderedAbelianMonoidSup| |IndexedProductTerm|
+ |InnerEvalable&| |InnerEvalable| |InnerFreeAbelianMonoid|
+ |IndexedFlexibleArray| |IfAst| |InnerFiniteField|
|InnerIndexedTwoDimensionalArray| |InnerMatrixLinearAlgebraFunctions|
|InnerMatrixQuotientFieldFunctions| |IndexedMatrix| |ImportAst| |InAst|
|InputByteConduit&| |InputByteConduit| |InnerNormalBasisFieldFunctions|
@@ -551,7 +552,7 @@
|relationsIdeal| |saturate| |groebner?| |groebnerIdeal| |ideal| |leadingIdeal|
|backOldPos| |generalPosition| |quotient| |zeroDim?| |inRadical?| |in?|
|element?| |zeroDimPrime?| |zeroDimPrimary?| |radical| |primaryDecomp|
- |contract| |gensym| |leadingSupport| |shrinkable| |physicalLength!|
+ |contract| |gensym| |leadingSupport| |term| |shrinkable| |physicalLength!|
|physicalLength| |flexibleArray| |elseBranch| |thenBranch|
|generalizedInverse| |imports| |sequence| |readBytes!| |readUInt32!|
|readInt32!| |readUInt16!| |readInt16!| |readUInt8!| |readInt8!| |readByte!|
diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase
index 02d7945e..29132c62 100644
--- a/src/share/algebra/interp.daase
+++ b/src/share/algebra/interp.daase
@@ -1,4039 +1,4042 @@
-(2804812 . 3539125292)
-((-1729 (((-85) (-1 (-85) |#2| |#2|) $) 86 T ELT) (((-85) $) NIL T ELT)) (-1727 (($ (-1 (-85) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-3782 ((|#2| $ (-483) |#2|) NIL T ELT) ((|#2| $ (-1144 (-483)) |#2|) 44 T ELT)) (-2293 (($ $) 80 T ELT)) (-3836 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-3413 (((-483) (-1 (-85) |#2|) $) 27 T ELT) (((-483) |#2| $) NIL T ELT) (((-483) |#2| $ (-483)) 96 T ELT)) (-2885 (((-583 |#2|) $) 13 T ELT)) (-3512 (($ (-1 (-85) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-1946 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-3952 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-2300 (($ |#2| $ (-483)) NIL T ELT) (($ $ $ (-483)) 67 T ELT)) (-1351 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 29 T ELT)) (-1944 (((-85) (-1 (-85) |#2|) $) 23 T ELT)) (-3794 ((|#2| $ (-483) |#2|) NIL T ELT) ((|#2| $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) 66 T ELT)) (-2301 (($ $ (-483)) 76 T ELT) (($ $ (-1144 (-483))) 75 T ELT)) (-1943 (((-694) (-1 (-85) |#2|) $) 34 T ELT) (((-694) |#2| $) NIL T ELT)) (-1728 (($ $ $ (-483)) 69 T ELT)) (-3394 (($ $) 68 T ELT)) (-3524 (($ (-583 |#2|)) 73 T ELT)) (-3796 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-583 $)) 85 T ELT)) (-3940 (((-772) $) 92 T ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 22 T ELT)) (-3052 (((-85) $ $) 95 T ELT)) (-2681 (((-85) $ $) 99 T ELT)))
-(((-18 |#1| |#2|) (-10 -7 (-15 -3052 ((-85) |#1| |#1|)) (-15 -3940 ((-772) |#1|)) (-15 -2681 ((-85) |#1| |#1|)) (-15 -1727 (|#1| |#1|)) (-15 -1727 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2293 (|#1| |#1|)) (-15 -1728 (|#1| |#1| |#1| (-483))) (-15 -1729 ((-85) |#1|)) (-15 -3512 (|#1| |#1| |#1|)) (-15 -3413 ((-483) |#2| |#1| (-483))) (-15 -3413 ((-483) |#2| |#1|)) (-15 -3413 ((-483) (-1 (-85) |#2|) |#1|)) (-15 -1729 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3512 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -3782 (|#2| |#1| (-1144 (-483)) |#2|)) (-15 -2300 (|#1| |#1| |#1| (-483))) (-15 -2300 (|#1| |#2| |#1| (-483))) (-15 -2301 (|#1| |#1| (-1144 (-483)))) (-15 -2301 (|#1| |#1| (-483))) (-15 -3952 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3796 (|#1| (-583 |#1|))) (-15 -3796 (|#1| |#1| |#1|)) (-15 -3796 (|#1| |#2| |#1|)) (-15 -3796 (|#1| |#1| |#2|)) (-15 -3794 (|#1| |#1| (-1144 (-483)))) (-15 -3524 (|#1| (-583 |#2|))) (-15 -1351 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3836 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3836 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3836 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3794 (|#2| |#1| (-483))) (-15 -3794 (|#2| |#1| (-483) |#2|)) (-15 -3782 (|#2| |#1| (-483) |#2|)) (-15 -1943 ((-694) |#2| |#1|)) (-15 -2885 ((-583 |#2|) |#1|)) (-15 -1943 ((-694) (-1 (-85) |#2|) |#1|)) (-15 -1944 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1945 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1946 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3952 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3394 (|#1| |#1|))) (-19 |#2|) (-1127)) (T -18))
+(2805528 . 3576902413)
+((-1730 (((-85) (-1 (-85) |#2| |#2|) $) 86 T ELT) (((-85) $) NIL T ELT)) (-1728 (($ (-1 (-85) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-3784 ((|#2| $ (-484) |#2|) NIL T ELT) ((|#2| $ (-1145 (-484)) |#2|) 44 T ELT)) (-2295 (($ $) 80 T ELT)) (-3838 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-3415 (((-484) (-1 (-85) |#2|) $) 27 T ELT) (((-484) |#2| $) NIL T ELT) (((-484) |#2| $ (-484)) 96 T ELT)) (-2887 (((-584 |#2|) $) 13 T ELT)) (-3514 (($ (-1 (-85) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-1947 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-3954 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-2302 (($ |#2| $ (-484)) NIL T ELT) (($ $ $ (-484)) 67 T ELT)) (-1352 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 29 T ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 23 T ELT)) (-3796 ((|#2| $ (-484) |#2|) NIL T ELT) ((|#2| $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) 66 T ELT)) (-2303 (($ $ (-484)) 76 T ELT) (($ $ (-1145 (-484))) 75 T ELT)) (-1944 (((-695) (-1 (-85) |#2|) $) 34 T ELT) (((-695) |#2| $) NIL T ELT)) (-1729 (($ $ $ (-484)) 69 T ELT)) (-3396 (($ $) 68 T ELT)) (-3526 (($ (-584 |#2|)) 73 T ELT)) (-3798 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-584 $)) 85 T ELT)) (-3942 (((-773) $) 92 T ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 22 T ELT)) (-3054 (((-85) $ $) 95 T ELT)) (-2683 (((-85) $ $) 99 T ELT)))
+(((-18 |#1| |#2|) (-10 -7 (-15 -3054 ((-85) |#1| |#1|)) (-15 -3942 ((-773) |#1|)) (-15 -2683 ((-85) |#1| |#1|)) (-15 -1728 (|#1| |#1|)) (-15 -1728 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2295 (|#1| |#1|)) (-15 -1729 (|#1| |#1| |#1| (-484))) (-15 -1730 ((-85) |#1|)) (-15 -3514 (|#1| |#1| |#1|)) (-15 -3415 ((-484) |#2| |#1| (-484))) (-15 -3415 ((-484) |#2| |#1|)) (-15 -3415 ((-484) (-1 (-85) |#2|) |#1|)) (-15 -1730 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3514 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -3784 (|#2| |#1| (-1145 (-484)) |#2|)) (-15 -2302 (|#1| |#1| |#1| (-484))) (-15 -2302 (|#1| |#2| |#1| (-484))) (-15 -2303 (|#1| |#1| (-1145 (-484)))) (-15 -2303 (|#1| |#1| (-484))) (-15 -3954 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3798 (|#1| (-584 |#1|))) (-15 -3798 (|#1| |#1| |#1|)) (-15 -3798 (|#1| |#2| |#1|)) (-15 -3798 (|#1| |#1| |#2|)) (-15 -3796 (|#1| |#1| (-1145 (-484)))) (-15 -3526 (|#1| (-584 |#2|))) (-15 -1352 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3838 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3838 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3838 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3796 (|#2| |#1| (-484))) (-15 -3796 (|#2| |#1| (-484) |#2|)) (-15 -3784 (|#2| |#1| (-484) |#2|)) (-15 -1944 ((-695) |#2| |#1|)) (-15 -2887 ((-584 |#2|) |#1|)) (-15 -1944 ((-695) (-1 (-85) |#2|) |#1|)) (-15 -1945 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1946 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1947 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3954 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3396 (|#1| |#1|))) (-19 |#2|) (-1128)) (T -18))
NIL
-((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2194 (((-1183) $ (-483) (-483)) 44 (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-756)) ELT)) (-1727 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -3990)) ELT) (($ $) 97 (-12 (|has| |#1| (-756)) (|has| $ (-6 -3990))) ELT)) (-2905 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-756)) ELT)) (-3782 ((|#1| $ (-483) |#1|) 56 (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) 64 (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3989)) ELT)) (-3718 (($) 7 T CONST)) (-2293 (($ $) 99 (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) 109 T ELT)) (-1350 (($ $) 84 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3400 (($ |#1| $) 83 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3989)) ELT)) (-1573 ((|#1| $ (-483) |#1|) 57 (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) 55 T ELT)) (-3413 (((-483) (-1 (-85) |#1|) $) 106 T ELT) (((-483) |#1| $) 105 (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) 104 (|has| |#1| (-1012)) ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-3608 (($ (-694) |#1|) 74 T ELT)) (-2196 (((-483) $) 47 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) 91 (|has| |#1| (-756)) ELT)) (-3512 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-756)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-2197 (((-483) $) 48 (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) 92 (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-2300 (($ |#1| $ (-483)) 66 T ELT) (($ $ $ (-483)) 65 T ELT)) (-2199 (((-583 (-483)) $) 50 T ELT)) (-2200 (((-85) (-483) $) 51 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-3795 ((|#1| $) 46 (|has| (-483) (-756)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2195 (($ $ |#1|) 45 (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-2198 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) 52 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#1| $ (-483) |#1|) 54 T ELT) ((|#1| $ (-483)) 53 T ELT) (($ $ (-1144 (-483))) 75 T ELT)) (-2301 (($ $ (-483)) 68 T ELT) (($ $ (-1144 (-483))) 67 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1728 (($ $ $ (-483)) 100 (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 85 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 76 T ELT)) (-3796 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) 93 (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) 95 (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2680 (((-85) $ $) 94 (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) 96 (|has| |#1| (-756)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-19 |#1|) (-113) (-1127)) (T -19))
+((-2566 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2196 (((-1184) $ (-484) (-484)) 44 (|has| $ (-6 -3992)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-757)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -3992)) ELT) (($ $) 97 (-12 (|has| |#1| (-757)) (|has| $ (-6 -3992))) ELT)) (-2907 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-757)) ELT)) (-3784 ((|#1| $ (-484) |#1|) 56 (|has| $ (-6 -3992)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 64 (|has| $ (-6 -3992)) ELT)) (-3706 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3991)) ELT)) (-3720 (($) 7 T CONST)) (-2295 (($ $) 99 (|has| $ (-6 -3992)) ELT)) (-2296 (($ $) 109 T ELT)) (-1351 (($ $) 84 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3402 (($ |#1| $) 83 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3991)) ELT)) (-3838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3991)) ELT)) (-1574 ((|#1| $ (-484) |#1|) 57 (|has| $ (-6 -3992)) ELT)) (-3110 ((|#1| $ (-484)) 55 T ELT)) (-3415 (((-484) (-1 (-85) |#1|) $) 106 T ELT) (((-484) |#1| $) 105 (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) 104 (|has| |#1| (-1013)) ELT)) (-2887 (((-584 |#1|) $) 30 (|has| $ (-6 -3991)) ELT)) (-3610 (($ (-695) |#1|) 74 T ELT)) (-2198 (((-484) $) 47 (|has| (-484) (-757)) ELT)) (-2529 (($ $ $) 91 (|has| |#1| (-757)) ELT)) (-3514 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-757)) ELT)) (-2606 (((-584 |#1|) $) 29 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-2199 (((-484) $) 48 (|has| (-484) (-757)) ELT)) (-2855 (($ $ $) 92 (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3239 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-2302 (($ |#1| $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2201 (((-584 (-484)) $) 50 T ELT)) (-2202 (((-85) (-484) $) 51 T ELT)) (-3240 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3797 ((|#1| $) 46 (|has| (-484) (-757)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2197 (($ $ |#1|) 45 (|has| $ (-6 -3992)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2200 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2203 (((-584 |#1|) $) 52 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-3796 ((|#1| $ (-484) |#1|) 54 T ELT) ((|#1| $ (-484)) 53 T ELT) (($ $ (-1145 (-484))) 75 T ELT)) (-2303 (($ $ (-484)) 68 T ELT) (($ $ (-1145 (-484))) 67 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-1729 (($ $ $ (-484)) 100 (|has| $ (-6 -3992)) ELT)) (-3396 (($ $) 10 T ELT)) (-3968 (((-473) $) 85 (|has| |#1| (-554 (-473))) ELT)) (-3526 (($ (-584 |#1|)) 76 T ELT)) (-3798 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-584 $)) 70 T ELT)) (-3942 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3991)) ELT)) (-2564 (((-85) $ $) 93 (|has| |#1| (-757)) ELT)) (-2565 (((-85) $ $) 95 (|has| |#1| (-757)) ELT)) (-3054 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2682 (((-85) $ $) 94 (|has| |#1| (-757)) ELT)) (-2683 (((-85) $ $) 96 (|has| |#1| (-757)) ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-19 |#1|) (-113) (-1128)) (T -19))
NIL
-(-13 (-321 |t#1|) (-10 -7 (-6 -3990)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-756)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-756)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-241 (-483) |#1|) . T) ((-241 (-1144 (-483)) $) . T) ((-243 (-483) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-321 |#1|) . T) ((-426 |#1|) . T) ((-538 (-483) |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-593 |#1|) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-1012) OR (|has| |#1| (-1012)) (|has| |#1| (-756))) ((-1127) . T))
-((-1309 (((-3 $ "failed") $ $) 12 T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) 16 T ELT) (($ (-483) $) 25 T ELT)))
-(((-20 |#1|) (-10 -7 (-15 -3831 (|#1| |#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 * (|#1| (-483) |#1|)) (-15 -1309 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|))) (-21)) (T -20))
+(-13 (-321 |t#1|) (-10 -7 (-6 -3992)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-757)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-321 |#1|) . T) ((-426 |#1|) . T) ((-539 (-484) |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-594 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-1013) OR (|has| |#1| (-1013)) (|has| |#1| (-757))) ((-1128) . T))
+((-1310 (((-3 $ "failed") $ $) 12 T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 16 T ELT) (($ (-484) $) 25 T ELT)))
+(((-20 |#1|) (-10 -7 (-15 -3833 (|#1| |#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 -1310 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|))) (-21)) (T -20))
NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT)))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT)))
(((-21) (-113)) (T -21))
-((-3831 (*1 *1 *1) (-4 *1 (-21))) (-3831 (*1 *1 *1 *1) (-4 *1 (-21))))
-(-13 (-104) (-588 (-483)) (-10 -8 (-15 -3831 ($ $)) (-15 -3831 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-1012) . T) ((-1127) . T))
-((-3183 (((-85) $) 10 T ELT)) (-3718 (($) 15 T CONST)) (* (($ (-830) $) 14 T ELT) (($ (-694) $) 19 T ELT)))
-(((-22 |#1|) (-10 -7 (-15 * (|#1| (-694) |#1|)) (-15 -3183 ((-85) |#1|)) (-15 -3718 (|#1|) -3946) (-15 * (|#1| (-830) |#1|))) (-23)) (T -22))
+((-3833 (*1 *1 *1) (-4 *1 (-21))) (-3833 (*1 *1 *1 *1) (-4 *1 (-21))))
+(-13 (-104) (-589 (-484)) (-10 -8 (-15 -3833 ($ $)) (-15 -3833 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-1013) . T) ((-1128) . T))
+((-3185 (((-85) $) 10 T ELT)) (-3720 (($) 15 T CONST)) (* (($ (-831) $) 14 T ELT) (($ (-695) $) 19 T ELT)))
+(((-22 |#1|) (-10 -7 (-15 * (|#1| (-695) |#1|)) (-15 -3185 ((-85) |#1|)) (-15 -3720 (|#1|) -3948) (-15 * (|#1| (-831) |#1|))) (-23)) (T -22))
NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3718 (($) 22 T CONST)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT)))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-3720 (($) 22 T CONST)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3835 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT)))
(((-23) (-113)) (T -23))
-((-2656 (*1 *1) (-4 *1 (-23))) (-3718 (*1 *1) (-4 *1 (-23))) (-3183 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-694)))))
-(-13 (-25) (-10 -8 (-15 -2656 ($) -3946) (-15 -3718 ($) -3946) (-15 -3183 ((-85) $)) (-15 * ($ (-694) $))))
-(((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T))
-((* (($ (-830) $) 10 T ELT)))
-(((-24 |#1|) (-10 -7 (-15 * (|#1| (-830) |#1|))) (-25)) (T -24))
+((-2658 (*1 *1) (-4 *1 (-23))) (-3720 (*1 *1) (-4 *1 (-23))) (-3185 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-695)))))
+(-13 (-25) (-10 -8 (-15 -2658 ($) -3948) (-15 -3720 ($) -3948) (-15 -3185 ((-85) $)) (-15 * ($ (-695) $))))
+(((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
+((* (($ (-831) $) 10 T ELT)))
+(((-24 |#1|) (-10 -7 (-15 * (|#1| (-831) |#1|))) (-25)) (T -24))
NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT)))
+((-2566 (((-85) $ $) 7 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3835 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT)))
(((-25) (-113)) (T -25))
-((-3833 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-830)))))
-(-13 (-1012) (-10 -8 (-15 -3833 ($ $ $)) (-15 * ($ (-830) $))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T))
-((-1212 (((-583 $) (-857 $)) 32 T ELT) (((-583 $) (-1083 $)) 16 T ELT) (((-583 $) (-1083 $) (-1088)) 20 T ELT)) (-1213 (($ (-857 $)) 30 T ELT) (($ (-1083 $)) 11 T ELT) (($ (-1083 $) (-1088)) 60 T ELT)) (-1214 (((-583 $) (-857 $)) 33 T ELT) (((-583 $) (-1083 $)) 18 T ELT) (((-583 $) (-1083 $) (-1088)) 19 T ELT)) (-3178 (($ (-857 $)) 31 T ELT) (($ (-1083 $)) 13 T ELT) (($ (-1083 $) (-1088)) NIL T ELT)))
-(((-26 |#1|) (-10 -7 (-15 -1212 ((-583 |#1|) (-1083 |#1|) (-1088))) (-15 -1212 ((-583 |#1|) (-1083 |#1|))) (-15 -1212 ((-583 |#1|) (-857 |#1|))) (-15 -1213 (|#1| (-1083 |#1|) (-1088))) (-15 -1213 (|#1| (-1083 |#1|))) (-15 -1213 (|#1| (-857 |#1|))) (-15 -1214 ((-583 |#1|) (-1083 |#1|) (-1088))) (-15 -1214 ((-583 |#1|) (-1083 |#1|))) (-15 -1214 ((-583 |#1|) (-857 |#1|))) (-15 -3178 (|#1| (-1083 |#1|) (-1088))) (-15 -3178 (|#1| (-1083 |#1|))) (-15 -3178 (|#1| (-857 |#1|)))) (-27)) (T -26))
+((-3835 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-831)))))
+(-13 (-1013) (-10 -8 (-15 -3835 ($ $ $)) (-15 * ($ (-831) $))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
+((-1213 (((-584 $) (-858 $)) 32 T ELT) (((-584 $) (-1084 $)) 16 T ELT) (((-584 $) (-1084 $) (-1089)) 20 T ELT)) (-1214 (($ (-858 $)) 30 T ELT) (($ (-1084 $)) 11 T ELT) (($ (-1084 $) (-1089)) 60 T ELT)) (-1215 (((-584 $) (-858 $)) 33 T ELT) (((-584 $) (-1084 $)) 18 T ELT) (((-584 $) (-1084 $) (-1089)) 19 T ELT)) (-3180 (($ (-858 $)) 31 T ELT) (($ (-1084 $)) 13 T ELT) (($ (-1084 $) (-1089)) NIL T ELT)))
+(((-26 |#1|) (-10 -7 (-15 -1213 ((-584 |#1|) (-1084 |#1|) (-1089))) (-15 -1213 ((-584 |#1|) (-1084 |#1|))) (-15 -1213 ((-584 |#1|) (-858 |#1|))) (-15 -1214 (|#1| (-1084 |#1|) (-1089))) (-15 -1214 (|#1| (-1084 |#1|))) (-15 -1214 (|#1| (-858 |#1|))) (-15 -1215 ((-584 |#1|) (-1084 |#1|) (-1089))) (-15 -1215 ((-584 |#1|) (-1084 |#1|))) (-15 -1215 ((-584 |#1|) (-858 |#1|))) (-15 -3180 (|#1| (-1084 |#1|) (-1089))) (-15 -3180 (|#1| (-1084 |#1|))) (-15 -3180 (|#1| (-858 |#1|)))) (-27)) (T -26))
NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-1212 (((-583 $) (-857 $)) 96 T ELT) (((-583 $) (-1083 $)) 95 T ELT) (((-583 $) (-1083 $) (-1088)) 94 T ELT)) (-1213 (($ (-857 $)) 99 T ELT) (($ (-1083 $)) 98 T ELT) (($ (-1083 $) (-1088)) 97 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3769 (($ $) 89 T ELT)) (-3965 (((-345 $) $) 88 T ELT)) (-3033 (($ $) 108 T ELT)) (-1605 (((-85) $ $) 73 T ELT)) (-3718 (($) 22 T CONST)) (-1214 (((-583 $) (-857 $)) 102 T ELT) (((-583 $) (-1083 $)) 101 T ELT) (((-583 $) (-1083 $) (-1088)) 100 T ELT)) (-3178 (($ (-857 $)) 105 T ELT) (($ (-1083 $)) 104 T ELT) (($ (-1083 $) (-1088)) 103 T ELT)) (-2560 (($ $ $) 69 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2559 (($ $ $) 70 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 64 T ELT)) (-3717 (((-85) $) 87 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3007 (($ $ (-483)) 107 T ELT)) (-1602 (((-3 (-583 $) #1="failed") (-583 $) $) 66 T ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 86 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3726 (((-345 $) $) 90 T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 63 T ELT)) (-1604 (((-694) $) 72 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 71 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-483))) 82 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ $) 81 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 85 T ELT) (($ $ (-347 (-483))) 106 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-483))) 84 T ELT) (($ (-347 (-483)) $) 83 T ELT)))
+((-2566 (((-85) $ $) 7 T ELT)) (-1213 (((-584 $) (-858 $)) 96 T ELT) (((-584 $) (-1084 $)) 95 T ELT) (((-584 $) (-1084 $) (-1089)) 94 T ELT)) (-1214 (($ (-858 $)) 99 T ELT) (($ (-1084 $)) 98 T ELT) (($ (-1084 $) (-1089)) 97 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 53 T ELT)) (-2061 (($ $) 52 T ELT)) (-2059 (((-85) $) 50 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3771 (($ $) 89 T ELT)) (-3967 (((-345 $) $) 88 T ELT)) (-3035 (($ $) 108 T ELT)) (-1606 (((-85) $ $) 73 T ELT)) (-3720 (($) 22 T CONST)) (-1215 (((-584 $) (-858 $)) 102 T ELT) (((-584 $) (-1084 $)) 101 T ELT) (((-584 $) (-1084 $) (-1089)) 100 T ELT)) (-3180 (($ (-858 $)) 105 T ELT) (($ (-1084 $)) 104 T ELT) (($ (-1084 $) (-1089)) 103 T ELT)) (-2562 (($ $ $) 69 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2561 (($ $ $) 70 T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) 64 T ELT)) (-3719 (((-85) $) 87 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-3009 (($ $ (-484)) 107 T ELT)) (-1603 (((-3 (-584 $) #1="failed") (-584 $) $) 66 T ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-2482 (($ $) 86 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3141 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3728 (((-345 $) $) 90 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3462 (((-3 $ "failed") $ $) 54 T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) 63 T ELT)) (-1605 (((-695) $) 72 T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 71 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-484))) 82 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2060 (((-85) $ $) 51 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3945 (($ $ $) 81 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 85 T ELT) (($ $ (-347 (-484))) 106 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-484))) 84 T ELT) (($ (-347 (-484)) $) 83 T ELT)))
(((-27) (-113)) (T -27))
-((-3178 (*1 *1 *2) (-12 (-5 *2 (-857 *1)) (-4 *1 (-27)))) (-3178 (*1 *1 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-27)))) (-3178 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 *1)) (-5 *3 (-1088)) (-4 *1 (-27)))) (-1214 (*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1214 (*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1214 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *1)) (-5 *4 (-1088)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1213 (*1 *1 *2) (-12 (-5 *2 (-857 *1)) (-4 *1 (-27)))) (-1213 (*1 *1 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-27)))) (-1213 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 *1)) (-5 *3 (-1088)) (-4 *1 (-27)))) (-1212 (*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1212 (*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *1)) (-5 *4 (-1088)) (-4 *1 (-27)) (-5 *2 (-583 *1)))))
-(-13 (-311) (-915) (-10 -8 (-15 -3178 ($ (-857 $))) (-15 -3178 ($ (-1083 $))) (-15 -3178 ($ (-1083 $) (-1088))) (-15 -1214 ((-583 $) (-857 $))) (-15 -1214 ((-583 $) (-1083 $))) (-15 -1214 ((-583 $) (-1083 $) (-1088))) (-15 -1213 ($ (-857 $))) (-15 -1213 ($ (-1083 $))) (-15 -1213 ($ (-1083 $) (-1088))) (-15 -1212 ((-583 $) (-857 $))) (-15 -1212 ((-583 $) (-1083 $))) (-15 -1212 ((-583 $) (-1083 $) (-1088)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-483))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-347 (-483))) . T) ((-555 (-483)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-201) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-389) . T) ((-494) . T) ((-13) . T) ((-588 (-347 (-483))) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 (-347 (-483))) . T) ((-590 $) . T) ((-582 (-347 (-483))) . T) ((-582 $) . T) ((-654 (-347 (-483))) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-915) . T) ((-963 (-347 (-483))) . T) ((-963 $) . T) ((-968 (-347 (-483))) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) . T))
-((-1212 (((-583 $) (-857 $)) NIL T ELT) (((-583 $) (-1083 $)) NIL T ELT) (((-583 $) (-1083 $) (-1088)) 54 T ELT) (((-583 $) $) 22 T ELT) (((-583 $) $ (-1088)) 45 T ELT)) (-1213 (($ (-857 $)) NIL T ELT) (($ (-1083 $)) NIL T ELT) (($ (-1083 $) (-1088)) 56 T ELT) (($ $) 20 T ELT) (($ $ (-1088)) 39 T ELT)) (-1214 (((-583 $) (-857 $)) NIL T ELT) (((-583 $) (-1083 $)) NIL T ELT) (((-583 $) (-1083 $) (-1088)) 52 T ELT) (((-583 $) $) 18 T ELT) (((-583 $) $ (-1088)) 47 T ELT)) (-3178 (($ (-857 $)) NIL T ELT) (($ (-1083 $)) NIL T ELT) (($ (-1083 $) (-1088)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1088)) 41 T ELT)))
-(((-28 |#1| |#2|) (-10 -7 (-15 -1212 ((-583 |#1|) |#1| (-1088))) (-15 -1213 (|#1| |#1| (-1088))) (-15 -1212 ((-583 |#1|) |#1|)) (-15 -1213 (|#1| |#1|)) (-15 -1214 ((-583 |#1|) |#1| (-1088))) (-15 -3178 (|#1| |#1| (-1088))) (-15 -1214 ((-583 |#1|) |#1|)) (-15 -3178 (|#1| |#1|)) (-15 -1212 ((-583 |#1|) (-1083 |#1|) (-1088))) (-15 -1212 ((-583 |#1|) (-1083 |#1|))) (-15 -1212 ((-583 |#1|) (-857 |#1|))) (-15 -1213 (|#1| (-1083 |#1|) (-1088))) (-15 -1213 (|#1| (-1083 |#1|))) (-15 -1213 (|#1| (-857 |#1|))) (-15 -1214 ((-583 |#1|) (-1083 |#1|) (-1088))) (-15 -1214 ((-583 |#1|) (-1083 |#1|))) (-15 -1214 ((-583 |#1|) (-857 |#1|))) (-15 -3178 (|#1| (-1083 |#1|) (-1088))) (-15 -3178 (|#1| (-1083 |#1|))) (-15 -3178 (|#1| (-857 |#1|)))) (-29 |#2|) (-494)) (T -28))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-1212 (((-583 $) (-857 $)) 96 T ELT) (((-583 $) (-1083 $)) 95 T ELT) (((-583 $) (-1083 $) (-1088)) 94 T ELT) (((-583 $) $) 146 T ELT) (((-583 $) $ (-1088)) 144 T ELT)) (-1213 (($ (-857 $)) 99 T ELT) (($ (-1083 $)) 98 T ELT) (($ (-1083 $) (-1088)) 97 T ELT) (($ $) 147 T ELT) (($ $ (-1088)) 145 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3077 (((-583 (-1088)) $) 215 T ELT)) (-3079 (((-347 (-1083 $)) $ (-550 $)) 247 (|has| |#1| (-494)) ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-1597 (((-583 (-550 $)) $) 178 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-1601 (($ $ (-583 (-550 $)) (-583 $)) 168 T ELT) (($ $ (-583 (-248 $))) 167 T ELT) (($ $ (-248 $)) 166 T ELT)) (-3769 (($ $) 89 T ELT)) (-3965 (((-345 $) $) 88 T ELT)) (-3033 (($ $) 108 T ELT)) (-1605 (((-85) $ $) 73 T ELT)) (-3718 (($) 22 T CONST)) (-1214 (((-583 $) (-857 $)) 102 T ELT) (((-583 $) (-1083 $)) 101 T ELT) (((-583 $) (-1083 $) (-1088)) 100 T ELT) (((-583 $) $) 150 T ELT) (((-583 $) $ (-1088)) 148 T ELT)) (-3178 (($ (-857 $)) 105 T ELT) (($ (-1083 $)) 104 T ELT) (($ (-1083 $) (-1088)) 103 T ELT) (($ $) 151 T ELT) (($ $ (-1088)) 149 T ELT)) (-3152 (((-3 (-857 |#1|) #1="failed") $) 266 (|has| |#1| (-961)) ELT) (((-3 (-347 (-857 |#1|)) #1#) $) 249 (|has| |#1| (-494)) ELT) (((-3 |#1| #1#) $) 211 T ELT) (((-3 (-483) #1#) $) 208 (|has| |#1| (-950 (-483))) ELT) (((-3 (-1088) #1#) $) 202 T ELT) (((-3 (-550 $) #1#) $) 153 T ELT) (((-3 (-347 (-483)) #1#) $) 141 (OR (-12 (|has| |#1| (-950 (-483))) (|has| |#1| (-494))) (|has| |#1| (-950 (-347 (-483))))) ELT)) (-3151 (((-857 |#1|) $) 265 (|has| |#1| (-961)) ELT) (((-347 (-857 |#1|)) $) 248 (|has| |#1| (-494)) ELT) ((|#1| $) 210 T ELT) (((-483) $) 209 (|has| |#1| (-950 (-483))) ELT) (((-1088) $) 201 T ELT) (((-550 $) $) 152 T ELT) (((-347 (-483)) $) 142 (OR (-12 (|has| |#1| (-950 (-483))) (|has| |#1| (-494))) (|has| |#1| (-950 (-347 (-483))))) ELT)) (-2560 (($ $ $) 69 T ELT)) (-2275 (((-630 |#1|) (-630 $)) 254 (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) 253 (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 140 (OR (-2558 (|has| |#1| (-961)) (|has| |#1| (-580 (-483)))) (-2558 (|has| |#1| (-580 (-483))) (|has| |#1| (-961)))) ELT) (((-630 (-483)) (-630 $)) 139 (OR (-2558 (|has| |#1| (-961)) (|has| |#1| (-580 (-483)))) (-2558 (|has| |#1| (-580 (-483))) (|has| |#1| (-961)))) ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2559 (($ $ $) 70 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 64 T ELT)) (-3717 (((-85) $) 87 T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 207 (|has| |#1| (-796 (-327))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) 206 (|has| |#1| (-796 (-483))) ELT)) (-2569 (($ (-583 $)) 172 T ELT) (($ $) 171 T ELT)) (-1596 (((-583 (-86)) $) 179 T ELT)) (-3589 (((-86) (-86)) 180 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-2669 (((-85) $) 200 (|has| $ (-950 (-483))) ELT)) (-2992 (($ $) 232 (|has| |#1| (-961)) ELT)) (-2994 (((-1037 |#1| (-550 $)) $) 231 (|has| |#1| (-961)) ELT)) (-3007 (($ $ (-483)) 107 T ELT)) (-1602 (((-3 (-583 $) #2="failed") (-583 $) $) 66 T ELT)) (-1594 (((-1083 $) (-550 $)) 197 (|has| $ (-961)) ELT)) (-3952 (($ (-1 $ $) (-550 $)) 186 T ELT)) (-1599 (((-3 (-550 $) "failed") $) 176 T ELT)) (-2276 (((-630 |#1|) (-1177 $)) 256 (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 255 (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 138 (OR (-2558 (|has| |#1| (-961)) (|has| |#1| (-580 (-483)))) (-2558 (|has| |#1| (-580 (-483))) (|has| |#1| (-961)))) ELT) (((-630 (-483)) (-1177 $)) 137 (OR (-2558 (|has| |#1| (-961)) (|has| |#1| (-580 (-483)))) (-2558 (|has| |#1| (-580 (-483))) (|has| |#1| (-961)))) ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-1598 (((-583 (-550 $)) $) 177 T ELT)) (-2231 (($ (-86) (-583 $)) 185 T ELT) (($ (-86) $) 184 T ELT)) (-2819 (((-3 (-583 $) #3="failed") $) 226 (|has| |#1| (-1024)) ELT)) (-2821 (((-3 (-2 (|:| |val| $) (|:| -2397 (-483))) #3#) $) 235 (|has| |#1| (-961)) ELT)) (-2818 (((-3 (-583 $) #3#) $) 228 (|has| |#1| (-25)) ELT)) (-1791 (((-3 (-2 (|:| -3948 (-483)) (|:| |var| (-550 $))) #3#) $) 229 (|has| |#1| (-25)) ELT)) (-2820 (((-3 (-2 (|:| |var| (-550 $)) (|:| -2397 (-483))) #3#) $ (-1088)) 234 (|has| |#1| (-961)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2397 (-483))) #3#) $ (-86)) 233 (|has| |#1| (-961)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2397 (-483))) #3#) $) 227 (|has| |#1| (-1024)) ELT)) (-2629 (((-85) $ (-1088)) 183 T ELT) (((-85) $ (-86)) 182 T ELT)) (-2480 (($ $) 86 T ELT)) (-2599 (((-694) $) 175 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-1794 (((-85) $) 213 T ELT)) (-1793 ((|#1| $) 214 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-1595 (((-85) $ (-1088)) 188 T ELT) (((-85) $ $) 187 T ELT)) (-3726 (((-345 $) $) 90 T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 67 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 63 T ELT)) (-2670 (((-85) $) 199 (|has| $ (-950 (-483))) ELT)) (-3762 (($ $ (-1088) (-694) (-1 $ $)) 239 (|has| |#1| (-961)) ELT) (($ $ (-1088) (-694) (-1 $ (-583 $))) 238 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1088)) (-583 (-694)) (-583 (-1 $ (-583 $)))) 237 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1088)) (-583 (-694)) (-583 (-1 $ $))) 236 (|has| |#1| (-961)) ELT) (($ $ (-583 (-86)) (-583 $) (-1088)) 225 (|has| |#1| (-553 (-472))) ELT) (($ $ (-86) $ (-1088)) 224 (|has| |#1| (-553 (-472))) ELT) (($ $) 223 (|has| |#1| (-553 (-472))) ELT) (($ $ (-583 (-1088))) 222 (|has| |#1| (-553 (-472))) ELT) (($ $ (-1088)) 221 (|has| |#1| (-553 (-472))) ELT) (($ $ (-86) (-1 $ $)) 196 T ELT) (($ $ (-86) (-1 $ (-583 $))) 195 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) 194 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) 193 T ELT) (($ $ (-1088) (-1 $ $)) 192 T ELT) (($ $ (-1088) (-1 $ (-583 $))) 191 T ELT) (($ $ (-583 (-1088)) (-583 (-1 $ (-583 $)))) 190 T ELT) (($ $ (-583 (-1088)) (-583 (-1 $ $))) 189 T ELT) (($ $ (-583 $) (-583 $)) 160 T ELT) (($ $ $ $) 159 T ELT) (($ $ (-248 $)) 158 T ELT) (($ $ (-583 (-248 $))) 157 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 156 T ELT) (($ $ (-550 $) $) 155 T ELT)) (-1604 (((-694) $) 72 T ELT)) (-3794 (($ (-86) (-583 $)) 165 T ELT) (($ (-86) $ $ $ $) 164 T ELT) (($ (-86) $ $ $) 163 T ELT) (($ (-86) $ $) 162 T ELT) (($ (-86) $) 161 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 71 T ELT)) (-1600 (($ $ $) 174 T ELT) (($ $) 173 T ELT)) (-3752 (($ $ (-583 (-1088)) (-583 (-694))) 261 (|has| |#1| (-961)) ELT) (($ $ (-1088) (-694)) 260 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1088))) 259 (|has| |#1| (-961)) ELT) (($ $ (-1088)) 257 (|has| |#1| (-961)) ELT)) (-2991 (($ $) 242 (|has| |#1| (-494)) ELT)) (-2993 (((-1037 |#1| (-550 $)) $) 241 (|has| |#1| (-494)) ELT)) (-3180 (($ $) 198 (|has| $ (-961)) ELT)) (-3966 (((-472) $) 270 (|has| |#1| (-553 (-472))) ELT) (($ (-345 $)) 240 (|has| |#1| (-494)) ELT) (((-800 (-327)) $) 205 (|has| |#1| (-553 (-800 (-327)))) ELT) (((-800 (-483)) $) 204 (|has| |#1| (-553 (-800 (-483)))) ELT)) (-3005 (($ $ $) 269 (|has| |#1| (-410)) ELT)) (-2431 (($ $ $) 268 (|has| |#1| (-410)) ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-483))) 82 T ELT) (($ (-857 |#1|)) 267 (|has| |#1| (-961)) ELT) (($ (-347 (-857 |#1|))) 250 (|has| |#1| (-494)) ELT) (($ (-347 (-857 (-347 |#1|)))) 246 (|has| |#1| (-494)) ELT) (($ (-857 (-347 |#1|))) 245 (|has| |#1| (-494)) ELT) (($ (-347 |#1|)) 244 (|has| |#1| (-494)) ELT) (($ (-1037 |#1| (-550 $))) 230 (|has| |#1| (-961)) ELT) (($ |#1|) 212 T ELT) (($ (-1088)) 203 T ELT) (($ (-550 $)) 154 T ELT)) (-2698 (((-632 $) $) 252 (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 38 T CONST)) (-2586 (($ (-583 $)) 170 T ELT) (($ $) 169 T ELT)) (-2250 (((-85) (-86)) 181 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-1792 (($ (-1088) (-583 $)) 220 T ELT) (($ (-1088) $ $ $ $) 219 T ELT) (($ (-1088) $ $ $) 218 T ELT) (($ (-1088) $ $) 217 T ELT) (($ (-1088) $) 216 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-583 (-1088)) (-583 (-694))) 264 (|has| |#1| (-961)) ELT) (($ $ (-1088) (-694)) 263 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1088))) 262 (|has| |#1| (-961)) ELT) (($ $ (-1088)) 258 (|has| |#1| (-961)) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ $) 81 T ELT) (($ (-1037 |#1| (-550 $)) (-1037 |#1| (-550 $))) 243 (|has| |#1| (-494)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 85 T ELT) (($ $ (-347 (-483))) 106 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-483))) 84 T ELT) (($ (-347 (-483)) $) 83 T ELT) (($ $ |#1|) 251 (|has| |#1| (-146)) ELT) (($ |#1| $) 143 (|has| |#1| (-961)) ELT)))
-(((-29 |#1|) (-113) (-494)) (T -29))
-((-3178 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-494)))) (-1214 (*1 *2 *1) (-12 (-4 *3 (-494)) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) (-3178 (*1 *1 *1 *2) (-12 (-5 *2 (-1088)) (-4 *1 (-29 *3)) (-4 *3 (-494)))) (-1214 (*1 *2 *1 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))) (-1213 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-494)))) (-1212 (*1 *2 *1) (-12 (-4 *3 (-494)) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) (-1213 (*1 *1 *1 *2) (-12 (-5 *2 (-1088)) (-4 *1 (-29 *3)) (-4 *3 (-494)))) (-1212 (*1 *2 *1 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))))
-(-13 (-27) (-361 |t#1|) (-10 -8 (-15 -3178 ($ $)) (-15 -1214 ((-583 $) $)) (-15 -3178 ($ $ (-1088))) (-15 -1214 ((-583 $) $ (-1088))) (-15 -1213 ($ $)) (-15 -1212 ((-583 $) $)) (-15 -1213 ($ $ (-1088))) (-15 -1212 ((-583 $) $ (-1088)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-483))) . T) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) . T) ((-27) . T) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) . T) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) . T) ((-555 (-347 (-857 |#1|))) |has| |#1| (-494)) ((-555 (-483)) . T) ((-555 (-550 $)) . T) ((-555 (-857 |#1|)) |has| |#1| (-961)) ((-555 (-1088)) . T) ((-555 |#1|) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-553 (-800 (-327))) |has| |#1| (-553 (-800 (-327)))) ((-553 (-800 (-483))) |has| |#1| (-553 (-800 (-483)))) ((-201) . T) ((-245) . T) ((-257) . T) ((-259 $) . T) ((-253) . T) ((-311) . T) ((-326 |#1|) |has| |#1| (-961)) ((-340 |#1|) . T) ((-352 |#1|) . T) ((-361 |#1|) . T) ((-389) . T) ((-410) |has| |#1| (-410)) ((-452 (-550 $) $) . T) ((-452 $ $) . T) ((-494) . T) ((-13) . T) ((-588 (-347 (-483))) . T) ((-588 (-483)) . T) ((-588 |#1|) OR (|has| |#1| (-961)) (|has| |#1| (-146))) ((-588 $) . T) ((-590 (-347 (-483))) . T) ((-590 (-483)) -12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961))) ((-590 |#1|) OR (|has| |#1| (-961)) (|has| |#1| (-146))) ((-590 $) . T) ((-582 (-347 (-483))) . T) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) . T) ((-580 (-483)) -12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961))) ((-580 |#1|) |has| |#1| (-961)) ((-654 (-347 (-483))) . T) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) . T) ((-663) . T) ((-806 $ (-1088)) |has| |#1| (-961)) ((-809 (-1088)) |has| |#1| (-961)) ((-811 (-1088)) |has| |#1| (-961)) ((-796 (-327)) |has| |#1| (-796 (-327))) ((-796 (-483)) |has| |#1| (-796 (-483))) ((-794 |#1|) . T) ((-832) . T) ((-915) . T) ((-950 (-347 (-483))) OR (|has| |#1| (-950 (-347 (-483)))) (-12 (|has| |#1| (-494)) (|has| |#1| (-950 (-483))))) ((-950 (-347 (-857 |#1|))) |has| |#1| (-494)) ((-950 (-483)) |has| |#1| (-950 (-483))) ((-950 (-550 $)) . T) ((-950 (-857 |#1|)) |has| |#1| (-961)) ((-950 (-1088)) . T) ((-950 |#1|) . T) ((-963 (-347 (-483))) . T) ((-963 |#1|) |has| |#1| (-146)) ((-963 $) . T) ((-968 (-347 (-483))) . T) ((-968 |#1|) |has| |#1| (-146)) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) . T))
-((-2892 (((-1000 (-179)) $) NIL T ELT)) (-2893 (((-1000 (-179)) $) NIL T ELT)) (-3129 (($ $ (-179)) 164 T ELT)) (-1215 (($ (-857 (-483)) (-1088) (-1088) (-1000 (-347 (-483))) (-1000 (-347 (-483)))) 103 T ELT)) (-2894 (((-583 (-583 (-854 (-179)))) $) 181 T ELT)) (-3940 (((-772) $) 195 T ELT)))
-(((-30) (-13 (-866) (-10 -8 (-15 -1215 ($ (-857 (-483)) (-1088) (-1088) (-1000 (-347 (-483))) (-1000 (-347 (-483))))) (-15 -3129 ($ $ (-179)))))) (T -30))
-((-1215 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-857 (-483))) (-5 *3 (-1088)) (-5 *4 (-1000 (-347 (-483)))) (-5 *1 (-30)))) (-3129 (*1 *1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-30)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 18 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3228 (((-1047) $) 12 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2690 (((-1047) $) 10 T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-31) (-13 (-994) (-10 -8 (-15 -2690 ((-1047) $)) (-15 -3228 ((-1047) $))))) (T -31))
-((-2690 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-31)))) (-3228 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-31)))))
-((-3178 ((|#2| (-1083 |#2|) (-1088)) 39 T ELT)) (-3589 (((-86) (-86)) 53 T ELT)) (-1594 (((-1083 |#2|) (-550 |#2|)) 148 (|has| |#1| (-950 (-483))) ELT)) (-1218 ((|#2| |#1| (-483)) 120 (|has| |#1| (-950 (-483))) ELT)) (-1216 ((|#2| (-1083 |#2|) |#2|) 29 T ELT)) (-1217 (((-772) (-583 |#2|)) 87 T ELT)) (-3180 ((|#2| |#2|) 143 (|has| |#1| (-950 (-483))) ELT)) (-2250 (((-85) (-86)) 17 T ELT)) (** ((|#2| |#2| (-347 (-483))) 96 (|has| |#1| (-950 (-483))) ELT)))
-(((-32 |#1| |#2|) (-10 -7 (-15 -3178 (|#2| (-1083 |#2|) (-1088))) (-15 -3589 ((-86) (-86))) (-15 -2250 ((-85) (-86))) (-15 -1216 (|#2| (-1083 |#2|) |#2|)) (-15 -1217 ((-772) (-583 |#2|))) (IF (|has| |#1| (-950 (-483))) (PROGN (-15 ** (|#2| |#2| (-347 (-483)))) (-15 -1594 ((-1083 |#2|) (-550 |#2|))) (-15 -3180 (|#2| |#2|)) (-15 -1218 (|#2| |#1| (-483)))) |%noBranch|)) (-494) (-361 |#1|)) (T -32))
-((-1218 (*1 *2 *3 *4) (-12 (-5 *4 (-483)) (-4 *2 (-361 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-950 *4)) (-4 *3 (-494)))) (-3180 (*1 *2 *2) (-12 (-4 *3 (-950 (-483))) (-4 *3 (-494)) (-5 *1 (-32 *3 *2)) (-4 *2 (-361 *3)))) (-1594 (*1 *2 *3) (-12 (-5 *3 (-550 *5)) (-4 *5 (-361 *4)) (-4 *4 (-950 (-483))) (-4 *4 (-494)) (-5 *2 (-1083 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-347 (-483))) (-4 *4 (-950 (-483))) (-4 *4 (-494)) (-5 *1 (-32 *4 *2)) (-4 *2 (-361 *4)))) (-1217 (*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-361 *4)) (-4 *4 (-494)) (-5 *2 (-772)) (-5 *1 (-32 *4 *5)))) (-1216 (*1 *2 *3 *2) (-12 (-5 *3 (-1083 *2)) (-4 *2 (-361 *4)) (-4 *4 (-494)) (-5 *1 (-32 *4 *2)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5)) (-4 *5 (-361 *4)))) (-3589 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-494)) (-5 *1 (-32 *3 *4)) (-4 *4 (-361 *3)))) (-3178 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *2)) (-5 *4 (-1088)) (-4 *2 (-361 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-494)))))
-((-3718 (($) 10 T CONST)) (-1219 (((-85) $ $) 8 T ELT)) (-3397 (((-85) $) 15 T ELT)))
-(((-33 |#1|) (-10 -7 (-15 -3718 (|#1|) -3946) (-15 -3397 ((-85) |#1|)) (-15 -1219 ((-85) |#1| |#1|))) (-34)) (T -33))
-NIL
-((-3718 (($) 7 T CONST)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3394 (($ $) 10 T ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
+((-3180 (*1 *1 *2) (-12 (-5 *2 (-858 *1)) (-4 *1 (-27)))) (-3180 (*1 *1 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-27)))) (-3180 (*1 *1 *2 *3) (-12 (-5 *2 (-1084 *1)) (-5 *3 (-1089)) (-4 *1 (-27)))) (-1215 (*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) (-1215 (*1 *2 *3) (-12 (-5 *3 (-1084 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) (-1215 (*1 *2 *3 *4) (-12 (-5 *3 (-1084 *1)) (-5 *4 (-1089)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) (-1214 (*1 *1 *2) (-12 (-5 *2 (-858 *1)) (-4 *1 (-27)))) (-1214 (*1 *1 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-27)))) (-1214 (*1 *1 *2 *3) (-12 (-5 *2 (-1084 *1)) (-5 *3 (-1089)) (-4 *1 (-27)))) (-1213 (*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) (-1213 (*1 *2 *3) (-12 (-5 *3 (-1084 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) (-1213 (*1 *2 *3 *4) (-12 (-5 *3 (-1084 *1)) (-5 *4 (-1089)) (-4 *1 (-27)) (-5 *2 (-584 *1)))))
+(-13 (-311) (-916) (-10 -8 (-15 -3180 ($ (-858 $))) (-15 -3180 ($ (-1084 $))) (-15 -3180 ($ (-1084 $) (-1089))) (-15 -1215 ((-584 $) (-858 $))) (-15 -1215 ((-584 $) (-1084 $))) (-15 -1215 ((-584 $) (-1084 $) (-1089))) (-15 -1214 ($ (-858 $))) (-15 -1214 ($ (-1084 $))) (-15 -1214 ($ (-1084 $) (-1089))) (-15 -1213 ((-584 $) (-858 $))) (-15 -1213 ((-584 $) (-1084 $))) (-15 -1213 ((-584 $) (-1084 $) (-1089)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-347 (-484))) . T) ((-556 (-484)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-201) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-389) . T) ((-495) . T) ((-13) . T) ((-589 (-347 (-484))) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 (-347 (-484))) . T) ((-591 $) . T) ((-583 (-347 (-484))) . T) ((-583 $) . T) ((-655 (-347 (-484))) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-916) . T) ((-964 (-347 (-484))) . T) ((-964 $) . T) ((-969 (-347 (-484))) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T))
+((-1213 (((-584 $) (-858 $)) NIL T ELT) (((-584 $) (-1084 $)) NIL T ELT) (((-584 $) (-1084 $) (-1089)) 54 T ELT) (((-584 $) $) 22 T ELT) (((-584 $) $ (-1089)) 45 T ELT)) (-1214 (($ (-858 $)) NIL T ELT) (($ (-1084 $)) NIL T ELT) (($ (-1084 $) (-1089)) 56 T ELT) (($ $) 20 T ELT) (($ $ (-1089)) 39 T ELT)) (-1215 (((-584 $) (-858 $)) NIL T ELT) (((-584 $) (-1084 $)) NIL T ELT) (((-584 $) (-1084 $) (-1089)) 52 T ELT) (((-584 $) $) 18 T ELT) (((-584 $) $ (-1089)) 47 T ELT)) (-3180 (($ (-858 $)) NIL T ELT) (($ (-1084 $)) NIL T ELT) (($ (-1084 $) (-1089)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1089)) 41 T ELT)))
+(((-28 |#1| |#2|) (-10 -7 (-15 -1213 ((-584 |#1|) |#1| (-1089))) (-15 -1214 (|#1| |#1| (-1089))) (-15 -1213 ((-584 |#1|) |#1|)) (-15 -1214 (|#1| |#1|)) (-15 -1215 ((-584 |#1|) |#1| (-1089))) (-15 -3180 (|#1| |#1| (-1089))) (-15 -1215 ((-584 |#1|) |#1|)) (-15 -3180 (|#1| |#1|)) (-15 -1213 ((-584 |#1|) (-1084 |#1|) (-1089))) (-15 -1213 ((-584 |#1|) (-1084 |#1|))) (-15 -1213 ((-584 |#1|) (-858 |#1|))) (-15 -1214 (|#1| (-1084 |#1|) (-1089))) (-15 -1214 (|#1| (-1084 |#1|))) (-15 -1214 (|#1| (-858 |#1|))) (-15 -1215 ((-584 |#1|) (-1084 |#1|) (-1089))) (-15 -1215 ((-584 |#1|) (-1084 |#1|))) (-15 -1215 ((-584 |#1|) (-858 |#1|))) (-15 -3180 (|#1| (-1084 |#1|) (-1089))) (-15 -3180 (|#1| (-1084 |#1|))) (-15 -3180 (|#1| (-858 |#1|)))) (-29 |#2|) (-495)) (T -28))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-1213 (((-584 $) (-858 $)) 96 T ELT) (((-584 $) (-1084 $)) 95 T ELT) (((-584 $) (-1084 $) (-1089)) 94 T ELT) (((-584 $) $) 146 T ELT) (((-584 $) $ (-1089)) 144 T ELT)) (-1214 (($ (-858 $)) 99 T ELT) (($ (-1084 $)) 98 T ELT) (($ (-1084 $) (-1089)) 97 T ELT) (($ $) 147 T ELT) (($ $ (-1089)) 145 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-3079 (((-584 (-1089)) $) 215 T ELT)) (-3081 (((-347 (-1084 $)) $ (-551 $)) 247 (|has| |#1| (-495)) ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 53 T ELT)) (-2061 (($ $) 52 T ELT)) (-2059 (((-85) $) 50 T ELT)) (-1598 (((-584 (-551 $)) $) 178 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-1602 (($ $ (-584 (-551 $)) (-584 $)) 168 T ELT) (($ $ (-584 (-248 $))) 167 T ELT) (($ $ (-248 $)) 166 T ELT)) (-3771 (($ $) 89 T ELT)) (-3967 (((-345 $) $) 88 T ELT)) (-3035 (($ $) 108 T ELT)) (-1606 (((-85) $ $) 73 T ELT)) (-3720 (($) 22 T CONST)) (-1215 (((-584 $) (-858 $)) 102 T ELT) (((-584 $) (-1084 $)) 101 T ELT) (((-584 $) (-1084 $) (-1089)) 100 T ELT) (((-584 $) $) 150 T ELT) (((-584 $) $ (-1089)) 148 T ELT)) (-3180 (($ (-858 $)) 105 T ELT) (($ (-1084 $)) 104 T ELT) (($ (-1084 $) (-1089)) 103 T ELT) (($ $) 151 T ELT) (($ $ (-1089)) 149 T ELT)) (-3154 (((-3 (-858 |#1|) #1="failed") $) 266 (|has| |#1| (-962)) ELT) (((-3 (-347 (-858 |#1|)) #1#) $) 249 (|has| |#1| (-495)) ELT) (((-3 |#1| #1#) $) 211 T ELT) (((-3 (-484) #1#) $) 208 (|has| |#1| (-951 (-484))) ELT) (((-3 (-1089) #1#) $) 202 T ELT) (((-3 (-551 $) #1#) $) 153 T ELT) (((-3 (-347 (-484)) #1#) $) 141 (OR (-12 (|has| |#1| (-951 (-484))) (|has| |#1| (-495))) (|has| |#1| (-951 (-347 (-484))))) ELT)) (-3153 (((-858 |#1|) $) 265 (|has| |#1| (-962)) ELT) (((-347 (-858 |#1|)) $) 248 (|has| |#1| (-495)) ELT) ((|#1| $) 210 T ELT) (((-484) $) 209 (|has| |#1| (-951 (-484))) ELT) (((-1089) $) 201 T ELT) (((-551 $) $) 152 T ELT) (((-347 (-484)) $) 142 (OR (-12 (|has| |#1| (-951 (-484))) (|has| |#1| (-495))) (|has| |#1| (-951 (-347 (-484))))) ELT)) (-2562 (($ $ $) 69 T ELT)) (-2277 (((-631 |#1|) (-631 $)) 254 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) 253 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 140 (OR (-2560 (|has| |#1| (-962)) (|has| |#1| (-581 (-484)))) (-2560 (|has| |#1| (-581 (-484))) (|has| |#1| (-962)))) ELT) (((-631 (-484)) (-631 $)) 139 (OR (-2560 (|has| |#1| (-962)) (|has| |#1| (-581 (-484)))) (-2560 (|has| |#1| (-581 (-484))) (|has| |#1| (-962)))) ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2561 (($ $ $) 70 T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) 64 T ELT)) (-3719 (((-85) $) 87 T ELT)) (-2794 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 207 (|has| |#1| (-797 (-327))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) 206 (|has| |#1| (-797 (-484))) ELT)) (-2571 (($ (-584 $)) 172 T ELT) (($ $) 171 T ELT)) (-1597 (((-584 (-86)) $) 179 T ELT)) (-3591 (((-86) (-86)) 180 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-2671 (((-85) $) 200 (|has| $ (-951 (-484))) ELT)) (-2994 (($ $) 232 (|has| |#1| (-962)) ELT)) (-2996 (((-1038 |#1| (-551 $)) $) 231 (|has| |#1| (-962)) ELT)) (-3009 (($ $ (-484)) 107 T ELT)) (-1603 (((-3 (-584 $) #2="failed") (-584 $) $) 66 T ELT)) (-1595 (((-1084 $) (-551 $)) 197 (|has| $ (-962)) ELT)) (-3954 (($ (-1 $ $) (-551 $)) 186 T ELT)) (-1600 (((-3 (-551 $) "failed") $) 176 T ELT)) (-2278 (((-631 |#1|) (-1178 $)) 256 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 255 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 138 (OR (-2560 (|has| |#1| (-962)) (|has| |#1| (-581 (-484)))) (-2560 (|has| |#1| (-581 (-484))) (|has| |#1| (-962)))) ELT) (((-631 (-484)) (-1178 $)) 137 (OR (-2560 (|has| |#1| (-962)) (|has| |#1| (-581 (-484)))) (-2560 (|has| |#1| (-581 (-484))) (|has| |#1| (-962)))) ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-1599 (((-584 (-551 $)) $) 177 T ELT)) (-2233 (($ (-86) (-584 $)) 185 T ELT) (($ (-86) $) 184 T ELT)) (-2821 (((-3 (-584 $) #3="failed") $) 226 (|has| |#1| (-1025)) ELT)) (-2823 (((-3 (-2 (|:| |val| $) (|:| -2399 (-484))) #3#) $) 235 (|has| |#1| (-962)) ELT)) (-2820 (((-3 (-584 $) #3#) $) 228 (|has| |#1| (-25)) ELT)) (-1792 (((-3 (-2 (|:| -3950 (-484)) (|:| |var| (-551 $))) #3#) $) 229 (|has| |#1| (-25)) ELT)) (-2822 (((-3 (-2 (|:| |var| (-551 $)) (|:| -2399 (-484))) #3#) $ (-1089)) 234 (|has| |#1| (-962)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2399 (-484))) #3#) $ (-86)) 233 (|has| |#1| (-962)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2399 (-484))) #3#) $) 227 (|has| |#1| (-1025)) ELT)) (-2631 (((-85) $ (-1089)) 183 T ELT) (((-85) $ (-86)) 182 T ELT)) (-2482 (($ $) 86 T ELT)) (-2601 (((-695) $) 175 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-1795 (((-85) $) 213 T ELT)) (-1794 ((|#1| $) 214 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3141 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-1596 (((-85) $ (-1089)) 188 T ELT) (((-85) $ $) 187 T ELT)) (-3728 (((-345 $) $) 90 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 67 T ELT)) (-3462 (((-3 $ "failed") $ $) 54 T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) 63 T ELT)) (-2672 (((-85) $) 199 (|has| $ (-951 (-484))) ELT)) (-3764 (($ $ (-1089) (-695) (-1 $ $)) 239 (|has| |#1| (-962)) ELT) (($ $ (-1089) (-695) (-1 $ (-584 $))) 238 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1089)) (-584 (-695)) (-584 (-1 $ (-584 $)))) 237 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1089)) (-584 (-695)) (-584 (-1 $ $))) 236 (|has| |#1| (-962)) ELT) (($ $ (-584 (-86)) (-584 $) (-1089)) 225 (|has| |#1| (-554 (-473))) ELT) (($ $ (-86) $ (-1089)) 224 (|has| |#1| (-554 (-473))) ELT) (($ $) 223 (|has| |#1| (-554 (-473))) ELT) (($ $ (-584 (-1089))) 222 (|has| |#1| (-554 (-473))) ELT) (($ $ (-1089)) 221 (|has| |#1| (-554 (-473))) ELT) (($ $ (-86) (-1 $ $)) 196 T ELT) (($ $ (-86) (-1 $ (-584 $))) 195 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) 194 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) 193 T ELT) (($ $ (-1089) (-1 $ $)) 192 T ELT) (($ $ (-1089) (-1 $ (-584 $))) 191 T ELT) (($ $ (-584 (-1089)) (-584 (-1 $ (-584 $)))) 190 T ELT) (($ $ (-584 (-1089)) (-584 (-1 $ $))) 189 T ELT) (($ $ (-584 $) (-584 $)) 160 T ELT) (($ $ $ $) 159 T ELT) (($ $ (-248 $)) 158 T ELT) (($ $ (-584 (-248 $))) 157 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 156 T ELT) (($ $ (-551 $) $) 155 T ELT)) (-1605 (((-695) $) 72 T ELT)) (-3796 (($ (-86) (-584 $)) 165 T ELT) (($ (-86) $ $ $ $) 164 T ELT) (($ (-86) $ $ $) 163 T ELT) (($ (-86) $ $) 162 T ELT) (($ (-86) $) 161 T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 71 T ELT)) (-1601 (($ $ $) 174 T ELT) (($ $) 173 T ELT)) (-3754 (($ $ (-584 (-1089)) (-584 (-695))) 261 (|has| |#1| (-962)) ELT) (($ $ (-1089) (-695)) 260 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1089))) 259 (|has| |#1| (-962)) ELT) (($ $ (-1089)) 257 (|has| |#1| (-962)) ELT)) (-2993 (($ $) 242 (|has| |#1| (-495)) ELT)) (-2995 (((-1038 |#1| (-551 $)) $) 241 (|has| |#1| (-495)) ELT)) (-3182 (($ $) 198 (|has| $ (-962)) ELT)) (-3968 (((-473) $) 270 (|has| |#1| (-554 (-473))) ELT) (($ (-345 $)) 240 (|has| |#1| (-495)) ELT) (((-801 (-327)) $) 205 (|has| |#1| (-554 (-801 (-327)))) ELT) (((-801 (-484)) $) 204 (|has| |#1| (-554 (-801 (-484)))) ELT)) (-3007 (($ $ $) 269 (|has| |#1| (-410)) ELT)) (-2433 (($ $ $) 268 (|has| |#1| (-410)) ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-484))) 82 T ELT) (($ (-858 |#1|)) 267 (|has| |#1| (-962)) ELT) (($ (-347 (-858 |#1|))) 250 (|has| |#1| (-495)) ELT) (($ (-347 (-858 (-347 |#1|)))) 246 (|has| |#1| (-495)) ELT) (($ (-858 (-347 |#1|))) 245 (|has| |#1| (-495)) ELT) (($ (-347 |#1|)) 244 (|has| |#1| (-495)) ELT) (($ (-1038 |#1| (-551 $))) 230 (|has| |#1| (-962)) ELT) (($ |#1|) 212 T ELT) (($ (-1089)) 203 T ELT) (($ (-551 $)) 154 T ELT)) (-2700 (((-633 $) $) 252 (|has| |#1| (-118)) ELT)) (-3123 (((-695)) 38 T CONST)) (-2588 (($ (-584 $)) 170 T ELT) (($ $) 169 T ELT)) (-2252 (((-85) (-86)) 181 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2060 (((-85) $ $) 51 T ELT)) (-1793 (($ (-1089) (-584 $)) 220 T ELT) (($ (-1089) $ $ $ $) 219 T ELT) (($ (-1089) $ $ $) 218 T ELT) (($ (-1089) $ $) 217 T ELT) (($ (-1089) $) 216 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-2667 (($ $ (-584 (-1089)) (-584 (-695))) 264 (|has| |#1| (-962)) ELT) (($ $ (-1089) (-695)) 263 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1089))) 262 (|has| |#1| (-962)) ELT) (($ $ (-1089)) 258 (|has| |#1| (-962)) ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3945 (($ $ $) 81 T ELT) (($ (-1038 |#1| (-551 $)) (-1038 |#1| (-551 $))) 243 (|has| |#1| (-495)) ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 85 T ELT) (($ $ (-347 (-484))) 106 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-484))) 84 T ELT) (($ (-347 (-484)) $) 83 T ELT) (($ $ |#1|) 251 (|has| |#1| (-146)) ELT) (($ |#1| $) 143 (|has| |#1| (-962)) ELT)))
+(((-29 |#1|) (-113) (-495)) (T -29))
+((-3180 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-495)))) (-1215 (*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-584 *1)) (-4 *1 (-29 *3)))) (-3180 (*1 *1 *1 *2) (-12 (-5 *2 (-1089)) (-4 *1 (-29 *3)) (-4 *3 (-495)))) (-1215 (*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *2 (-584 *1)) (-4 *1 (-29 *4)))) (-1214 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-495)))) (-1213 (*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-584 *1)) (-4 *1 (-29 *3)))) (-1214 (*1 *1 *1 *2) (-12 (-5 *2 (-1089)) (-4 *1 (-29 *3)) (-4 *3 (-495)))) (-1213 (*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *2 (-584 *1)) (-4 *1 (-29 *4)))))
+(-13 (-27) (-361 |t#1|) (-10 -8 (-15 -3180 ($ $)) (-15 -1215 ((-584 $) $)) (-15 -3180 ($ $ (-1089))) (-15 -1215 ((-584 $) $ (-1089))) (-15 -1214 ($ $)) (-15 -1213 ((-584 $) $)) (-15 -1214 ($ $ (-1089))) (-15 -1213 ((-584 $) $ (-1089)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-484))) . T) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) . T) ((-27) . T) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) . T) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) . T) ((-556 (-347 (-858 |#1|))) |has| |#1| (-495)) ((-556 (-484)) . T) ((-556 (-551 $)) . T) ((-556 (-858 |#1|)) |has| |#1| (-962)) ((-556 (-1089)) . T) ((-556 |#1|) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-554 (-801 (-327))) |has| |#1| (-554 (-801 (-327)))) ((-554 (-801 (-484))) |has| |#1| (-554 (-801 (-484)))) ((-201) . T) ((-245) . T) ((-257) . T) ((-259 $) . T) ((-253) . T) ((-311) . T) ((-326 |#1|) |has| |#1| (-962)) ((-340 |#1|) . T) ((-352 |#1|) . T) ((-361 |#1|) . T) ((-389) . T) ((-410) |has| |#1| (-410)) ((-453 (-551 $) $) . T) ((-453 $ $) . T) ((-495) . T) ((-13) . T) ((-589 (-347 (-484))) . T) ((-589 (-484)) . T) ((-589 |#1|) OR (|has| |#1| (-962)) (|has| |#1| (-146))) ((-589 $) . T) ((-591 (-347 (-484))) . T) ((-591 (-484)) -12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962))) ((-591 |#1|) OR (|has| |#1| (-962)) (|has| |#1| (-146))) ((-591 $) . T) ((-583 (-347 (-484))) . T) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) . T) ((-581 (-484)) -12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962))) ((-581 |#1|) |has| |#1| (-962)) ((-655 (-347 (-484))) . T) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) . T) ((-664) . T) ((-807 $ (-1089)) |has| |#1| (-962)) ((-810 (-1089)) |has| |#1| (-962)) ((-812 (-1089)) |has| |#1| (-962)) ((-797 (-327)) |has| |#1| (-797 (-327))) ((-797 (-484)) |has| |#1| (-797 (-484))) ((-795 |#1|) . T) ((-833) . T) ((-916) . T) ((-951 (-347 (-484))) OR (|has| |#1| (-951 (-347 (-484)))) (-12 (|has| |#1| (-495)) (|has| |#1| (-951 (-484))))) ((-951 (-347 (-858 |#1|))) |has| |#1| (-495)) ((-951 (-484)) |has| |#1| (-951 (-484))) ((-951 (-551 $)) . T) ((-951 (-858 |#1|)) |has| |#1| (-962)) ((-951 (-1089)) . T) ((-951 |#1|) . T) ((-964 (-347 (-484))) . T) ((-964 |#1|) |has| |#1| (-146)) ((-964 $) . T) ((-969 (-347 (-484))) . T) ((-969 |#1|) |has| |#1| (-146)) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T))
+((-2894 (((-1001 (-179)) $) NIL T ELT)) (-2895 (((-1001 (-179)) $) NIL T ELT)) (-3131 (($ $ (-179)) 164 T ELT)) (-1216 (($ (-858 (-484)) (-1089) (-1089) (-1001 (-347 (-484))) (-1001 (-347 (-484)))) 103 T ELT)) (-2896 (((-584 (-584 (-855 (-179)))) $) 181 T ELT)) (-3942 (((-773) $) 195 T ELT)))
+(((-30) (-13 (-867) (-10 -8 (-15 -1216 ($ (-858 (-484)) (-1089) (-1089) (-1001 (-347 (-484))) (-1001 (-347 (-484))))) (-15 -3131 ($ $ (-179)))))) (T -30))
+((-1216 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-858 (-484))) (-5 *3 (-1089)) (-5 *4 (-1001 (-347 (-484)))) (-5 *1 (-30)))) (-3131 (*1 *1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-30)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3230 (((-1048) $) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2692 (((-1048) $) 10 T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-31) (-13 (-995) (-10 -8 (-15 -2692 ((-1048) $)) (-15 -3230 ((-1048) $))))) (T -31))
+((-2692 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-31)))) (-3230 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-31)))))
+((-3180 ((|#2| (-1084 |#2|) (-1089)) 39 T ELT)) (-3591 (((-86) (-86)) 53 T ELT)) (-1595 (((-1084 |#2|) (-551 |#2|)) 148 (|has| |#1| (-951 (-484))) ELT)) (-1219 ((|#2| |#1| (-484)) 120 (|has| |#1| (-951 (-484))) ELT)) (-1217 ((|#2| (-1084 |#2|) |#2|) 29 T ELT)) (-1218 (((-773) (-584 |#2|)) 87 T ELT)) (-3182 ((|#2| |#2|) 143 (|has| |#1| (-951 (-484))) ELT)) (-2252 (((-85) (-86)) 17 T ELT)) (** ((|#2| |#2| (-347 (-484))) 96 (|has| |#1| (-951 (-484))) ELT)))
+(((-32 |#1| |#2|) (-10 -7 (-15 -3180 (|#2| (-1084 |#2|) (-1089))) (-15 -3591 ((-86) (-86))) (-15 -2252 ((-85) (-86))) (-15 -1217 (|#2| (-1084 |#2|) |#2|)) (-15 -1218 ((-773) (-584 |#2|))) (IF (|has| |#1| (-951 (-484))) (PROGN (-15 ** (|#2| |#2| (-347 (-484)))) (-15 -1595 ((-1084 |#2|) (-551 |#2|))) (-15 -3182 (|#2| |#2|)) (-15 -1219 (|#2| |#1| (-484)))) |%noBranch|)) (-495) (-361 |#1|)) (T -32))
+((-1219 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-4 *2 (-361 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-951 *4)) (-4 *3 (-495)))) (-3182 (*1 *2 *2) (-12 (-4 *3 (-951 (-484))) (-4 *3 (-495)) (-5 *1 (-32 *3 *2)) (-4 *2 (-361 *3)))) (-1595 (*1 *2 *3) (-12 (-5 *3 (-551 *5)) (-4 *5 (-361 *4)) (-4 *4 (-951 (-484))) (-4 *4 (-495)) (-5 *2 (-1084 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-347 (-484))) (-4 *4 (-951 (-484))) (-4 *4 (-495)) (-5 *1 (-32 *4 *2)) (-4 *2 (-361 *4)))) (-1218 (*1 *2 *3) (-12 (-5 *3 (-584 *5)) (-4 *5 (-361 *4)) (-4 *4 (-495)) (-5 *2 (-773)) (-5 *1 (-32 *4 *5)))) (-1217 (*1 *2 *3 *2) (-12 (-5 *3 (-1084 *2)) (-4 *2 (-361 *4)) (-4 *4 (-495)) (-5 *1 (-32 *4 *2)))) (-2252 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5)) (-4 *5 (-361 *4)))) (-3591 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-32 *3 *4)) (-4 *4 (-361 *3)))) (-3180 (*1 *2 *3 *4) (-12 (-5 *3 (-1084 *2)) (-5 *4 (-1089)) (-4 *2 (-361 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-495)))))
+((-3720 (($) 10 T CONST)) (-1220 (((-85) $ $) 8 T ELT)) (-3399 (((-85) $) 15 T ELT)))
+(((-33 |#1|) (-10 -7 (-15 -3720 (|#1|) -3948) (-15 -3399 ((-85) |#1|)) (-15 -1220 ((-85) |#1| |#1|))) (-34)) (T -33))
+NIL
+((-3720 (($) 7 T CONST)) (-1220 (((-85) $ $) 11 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-3396 (($ $) 10 T ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
(((-34) (-113)) (T -34))
-((-1219 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3394 (*1 *1 *1) (-4 *1 (-34))) (-3559 (*1 *1) (-4 *1 (-34))) (-3397 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3718 (*1 *1) (-4 *1 (-34))) (-3951 (*1 *2 *1) (-12 (|has| *1 (-6 -3989)) (-4 *1 (-34)) (-5 *2 (-694)))))
-(-13 (-1127) (-10 -8 (-15 -1219 ((-85) $ $)) (-15 -3394 ($ $)) (-15 -3559 ($)) (-15 -3397 ((-85) $)) (-15 -3718 ($) -3946) (IF (|has| $ (-6 -3989)) (-15 -3951 ((-694) $)) |%noBranch|)))
-(((-13) . T) ((-1127) . T))
-((-3492 (($ $) 11 T ELT)) (-3490 (($ $) 10 T ELT)) (-3494 (($ $) 9 T ELT)) (-3495 (($ $) 8 T ELT)) (-3493 (($ $) 7 T ELT)) (-3491 (($ $) 6 T ELT)))
+((-1220 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3396 (*1 *1 *1) (-4 *1 (-34))) (-3561 (*1 *1) (-4 *1 (-34))) (-3399 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3720 (*1 *1) (-4 *1 (-34))) (-3953 (*1 *2 *1) (-12 (|has| *1 (-6 -3991)) (-4 *1 (-34)) (-5 *2 (-695)))))
+(-13 (-1128) (-10 -8 (-15 -1220 ((-85) $ $)) (-15 -3396 ($ $)) (-15 -3561 ($)) (-15 -3399 ((-85) $)) (-15 -3720 ($) -3948) (IF (|has| $ (-6 -3991)) (-15 -3953 ((-695) $)) |%noBranch|)))
+(((-13) . T) ((-1128) . T))
+((-3494 (($ $) 11 T ELT)) (-3492 (($ $) 10 T ELT)) (-3496 (($ $) 9 T ELT)) (-3497 (($ $) 8 T ELT)) (-3495 (($ $) 7 T ELT)) (-3493 (($ $) 6 T ELT)))
(((-35) (-113)) (T -35))
-((-3492 (*1 *1 *1) (-4 *1 (-35))) (-3490 (*1 *1 *1) (-4 *1 (-35))) (-3494 (*1 *1 *1) (-4 *1 (-35))) (-3495 (*1 *1 *1) (-4 *1 (-35))) (-3493 (*1 *1 *1) (-4 *1 (-35))) (-3491 (*1 *1 *1) (-4 *1 (-35))))
-(-13 (-10 -8 (-15 -3491 ($ $)) (-15 -3493 ($ $)) (-15 -3495 ($ $)) (-15 -3494 ($ $)) (-15 -3490 ($ $)) (-15 -3492 ($ $))))
-((-2564 (((-85) $ $) 19 (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3396 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 133 T ELT)) (-3789 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 156 T ELT)) (-3791 (($ $) 154 T ELT)) (-3593 (($) 77 T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 76 T ELT)) (-2194 (((-1183) $ |#1| |#1|) 104 (|has| $ (-6 -3990)) ELT) (((-1183) $ (-483) (-483)) 186 (|has| $ (-6 -3990)) ELT)) (-3779 (($ $ (-483)) 167 (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 220 T ELT) (((-85) $) 214 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-1727 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 211 (|has| $ (-6 -3990)) ELT) (($ $) 210 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) (|has| $ (-6 -3990))) ELT)) (-2905 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 221 T ELT) (($ $) 215 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3436 (((-85) $ (-694)) 203 T ELT)) (-3021 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 142 (|has| $ (-6 -3990)) ELT)) (-3781 (($ $ $) 163 (|has| $ (-6 -3990)) ELT)) (-3780 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 165 (|has| $ (-6 -3990)) ELT)) (-3783 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 161 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#2| $ |#1| |#2|) 78 T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-483) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 197 (|has| $ (-6 -3990)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-1144 (-483)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 168 (|has| $ (-6 -3990)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 166 (|has| $ (-6 -3990)) ELT) (($ $ #2="rest" $) 164 (|has| $ (-6 -3990)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 162 (|has| $ (-6 -3990)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 141 (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) 140 (|has| $ (-6 -3990)) ELT)) (-1567 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 227 T ELT)) (-3704 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 183 (|has| $ (-6 -3989)) ELT)) (-3790 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 155 T ELT)) (-2227 (((-3 |#2| #5="failed") |#1| $) 65 T ELT)) (-3718 (($) 7 T CONST)) (-2293 (($ $) 212 (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) 222 T ELT)) (-3793 (($ $ (-694)) 150 T ELT) (($ $) 148 T ELT)) (-2364 (($ $) 225 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-1350 (($ $) 62 (OR (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989)))) ELT)) (-3399 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3989)) ELT) (((-3 |#2| #5#) |#1| $) 66 T ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 231 T ELT) (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 226 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-3400 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3989)) ELT) (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 185 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 182 (|has| $ (-6 -3989)) ELT)) (-3836 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 184 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 181 (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 180 (|has| $ (-6 -3989)) ELT)) (-1573 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -3990)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-483) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 198 (|has| $ (-6 -3990)) ELT)) (-3108 ((|#2| $ |#1|) 93 T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-483)) 196 T ELT)) (-3437 (((-85) $) 200 T ELT)) (-3413 (((-483) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 219 T ELT) (((-483) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 218 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) ELT) (((-483) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-483)) 217 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-2885 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) 84 (|has| $ (-6 -3989)) ELT) (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 122 (|has| $ (-6 -3989)) ELT)) (-3027 (((-583 $) $) 131 T ELT)) (-3023 (((-85) $ $) 139 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-3608 (($ (-694) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 176 T ELT)) (-3713 (((-85) $ (-694)) 202 T ELT)) (-2196 ((|#1| $) 101 (|has| |#1| (-756)) ELT) (((-483) $) 188 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) 204 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2852 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ $) 228 T ELT) (($ $ $) 224 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3512 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ $) 223 T ELT) (($ $ $) 216 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2604 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) 85 (|has| $ (-6 -3989)) ELT) (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 123 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT) (((-85) |#2| $) 87 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -3989))) ELT) (((-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 125 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT)) (-2197 ((|#1| $) 100 (|has| |#1| (-756)) ELT) (((-483) $) 189 (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) 205 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-1946 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3990)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -3990)) ELT) (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 118 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT) (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ $) 173 T ELT) (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 117 T ELT)) (-3528 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 236 T ELT)) (-3710 (((-85) $ (-694)) 201 T ELT)) (-3026 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 136 T ELT)) (-3521 (((-85) $) 132 T ELT)) (-3237 (((-1071) $) 22 (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-3792 (($ $ (-694)) 153 T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 151 T ELT)) (-2228 (((-583 |#1|) $) 67 T ELT)) (-2229 (((-85) |#1| $) 68 T ELT)) (-1271 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3603 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 44 T ELT) (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-483)) 230 T ELT) (($ $ $ (-483)) 229 T ELT)) (-2300 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-483)) 170 T ELT) (($ $ $ (-483)) 169 T ELT)) (-2199 (((-583 |#1|) $) 98 T ELT) (((-583 (-483)) $) 191 T ELT)) (-2200 (((-85) |#1| $) 97 T ELT) (((-85) (-483) $) 192 T ELT)) (-3238 (((-1032) $) 21 (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-3795 ((|#2| $) 102 (|has| |#1| (-756)) ELT) (($ $ (-694)) 147 T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 145 T ELT)) (-1351 (((-3 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) #6="failed") (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 55 T ELT) (((-3 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) #6#) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 179 T ELT)) (-2195 (($ $ |#2|) 103 (|has| $ (-6 -3990)) ELT) (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 187 (|has| $ (-6 -3990)) ELT)) (-1272 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-3438 (((-85) $) 199 T ELT)) (-1944 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) 82 (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 120 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 91 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-248 |#2|)) 89 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 (-248 |#2|))) 88 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 129 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 128 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 127 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) 126 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-2198 (((-85) |#2| $) 99 (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT) (((-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 190 (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-2201 (((-583 |#2|) $) 96 T ELT) (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 193 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-483) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 195 T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-483)) 194 T ELT) (($ $ (-1144 (-483))) 177 T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ #1#) 152 T ELT) (($ $ #2#) 149 T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ #3#) 146 T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ #4#) 134 T ELT)) (-3025 (((-483) $ $) 137 T ELT)) (-1463 (($) 53 T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1568 (($ $ (-483)) 233 T ELT) (($ $ (-1144 (-483))) 232 T ELT)) (-2301 (($ $ (-483)) 172 T ELT) (($ $ (-1144 (-483))) 171 T ELT)) (-3627 (((-85) $) 135 T ELT)) (-3786 (($ $) 159 T ELT)) (-3784 (($ $) 160 (|has| $ (-6 -3990)) ELT)) (-3787 (((-694) $) 158 T ELT)) (-3788 (($ $) 157 T ELT)) (-1943 (((-694) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT) (((-694) |#2| $) 86 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -3989))) ELT) (((-694) (-1 (-85) |#2|) $) 83 (|has| $ (-6 -3989)) ELT) (((-694) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 124 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT) (((-694) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 121 (|has| $ (-6 -3989)) ELT)) (-1728 (($ $ $ (-483)) 213 (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 63 (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-553 (-472))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-553 (-472)))) ELT)) (-3524 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 54 T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 178 T ELT)) (-3785 (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 235 T ELT) (($ $ $) 234 T ELT)) (-3796 (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 175 T ELT) (($ (-583 $)) 174 T ELT) (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 144 T ELT) (($ $ $) 143 T ELT)) (-3940 (((-772) $) 17 (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-552 (-772)))) ELT)) (-3516 (((-583 $) $) 130 T ELT)) (-3024 (((-85) $ $) 138 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-1262 (((-85) $ $) 20 (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1273 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1220 (((-3 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) "failed") |#1| $) 116 T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) 81 (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 119 (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) 206 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2563 (((-85) $ $) 208 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3052 (((-85) $ $) 18 (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2680 (((-85) $ $) 207 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2681 (((-85) $ $) 209 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-36 |#1| |#2|) (-113) (-1012) (-1012)) (T -36))
-((-1220 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-5 *2 (-2 (|:| -3854 *3) (|:| |entry| *4))))))
-(-13 (-1105 |t#1| |t#2|) (-608 (-2 (|:| -3854 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -1220 ((-3 (-2 (|:| -3854 |t#1|) (|:| |entry| |t#2|)) "failed") |t#1| $))))
-(((-34) . T) ((-76 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1012)) (|has| |#2| (-72))) ((-552 (-772)) OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-1012)) (|has| |#2| (-552 (-772)))) ((-124 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-553 (-472)) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-553 (-472))) ((-183 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-241 (-483) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-241 (-1144 (-483)) $) . T) ((-241 |#1| |#2|) . T) ((-243 (-483) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-243 |#1| |#2|) . T) ((-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ((-259 |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ((-237 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-321 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-426 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-426 |#2|) . T) ((-538 (-483) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-538 |#1| |#2|) . T) ((-452 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ((-452 |#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ((-13) . T) ((-549 |#1| |#2|) . T) ((-593 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-608 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-756) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ((-759) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ((-923 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-1012) OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) (|has| |#2| (-1012))) ((-1062 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-1105 |#1| |#2|) . T) ((-1127) . T) ((-1166 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T))
-((-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#2|) 10 T ELT)))
-(((-37 |#1| |#2|) (-10 -7 (-15 -3940 (|#1| |#2|)) (-15 -3940 (|#1| (-483))) (-15 -3940 ((-772) |#1|))) (-38 |#2|) (-146)) (T -37))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 50 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT)))
+((-3494 (*1 *1 *1) (-4 *1 (-35))) (-3492 (*1 *1 *1) (-4 *1 (-35))) (-3496 (*1 *1 *1) (-4 *1 (-35))) (-3497 (*1 *1 *1) (-4 *1 (-35))) (-3495 (*1 *1 *1) (-4 *1 (-35))) (-3493 (*1 *1 *1) (-4 *1 (-35))))
+(-13 (-10 -8 (-15 -3493 ($ $)) (-15 -3495 ($ $)) (-15 -3497 ($ $)) (-15 -3496 ($ $)) (-15 -3492 ($ $)) (-15 -3494 ($ $))))
+((-2566 (((-85) $ $) 19 (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3398 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 133 T ELT)) (-3791 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 156 T ELT)) (-3793 (($ $) 154 T ELT)) (-3595 (($) 77 T ELT) (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) 76 T ELT)) (-2196 (((-1184) $ |#1| |#1|) 104 (|has| $ (-6 -3992)) ELT) (((-1184) $ (-484) (-484)) 186 (|has| $ (-6 -3992)) ELT)) (-3781 (($ $ (-484)) 167 (|has| $ (-6 -3992)) ELT)) (-1730 (((-85) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 220 T ELT) (((-85) $) 214 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-1728 (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 211 (|has| $ (-6 -3992)) ELT) (($ $) 210 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-757)) (|has| $ (-6 -3992))) ELT)) (-2907 (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 221 T ELT) (($ $) 215 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3438 (((-85) $ (-695)) 203 T ELT)) (-3023 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) 142 (|has| $ (-6 -3992)) ELT)) (-3783 (($ $ $) 163 (|has| $ (-6 -3992)) ELT)) (-3782 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) 165 (|has| $ (-6 -3992)) ELT)) (-3785 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) 161 (|has| $ (-6 -3992)) ELT)) (-3784 ((|#2| $ |#1| |#2|) 78 T ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) 197 (|has| $ (-6 -3992)) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ (-1145 (-484)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) 168 (|has| $ (-6 -3992)) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) 166 (|has| $ (-6 -3992)) ELT) (($ $ #2="rest" $) 164 (|has| $ (-6 -3992)) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) 162 (|has| $ (-6 -3992)) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) 141 (|has| $ (-6 -3992)) ELT)) (-3024 (($ $ (-584 $)) 140 (|has| $ (-6 -3992)) ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3991)) ELT) (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 227 T ELT)) (-3706 (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3991)) ELT) (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 183 (|has| $ (-6 -3991)) ELT)) (-3792 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 155 T ELT)) (-2229 (((-3 |#2| #5="failed") |#1| $) 65 T ELT)) (-3720 (($) 7 T CONST)) (-2295 (($ $) 212 (|has| $ (-6 -3992)) ELT)) (-2296 (($ $) 222 T ELT)) (-3795 (($ $ (-695)) 150 T ELT) (($ $) 148 T ELT)) (-2366 (($ $) 225 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-1351 (($ $) 62 (OR (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3991))) (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3991)))) ELT)) (-3401 (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3991)) ELT) (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3991)) ELT) (((-3 |#2| #5#) |#1| $) 66 T ELT) (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 231 T ELT) (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 226 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-3402 (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3991))) ELT) (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3991)) ELT) (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 185 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3991))) ELT) (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 182 (|has| $ (-6 -3991)) ELT)) (-3838 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3991))) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3991)) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3991)) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) 184 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3991))) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) 181 (|has| $ (-6 -3991)) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 180 (|has| $ (-6 -3991)) ELT)) (-1574 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -3992)) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) 198 (|has| $ (-6 -3992)) ELT)) (-3110 ((|#2| $ |#1|) 93 T ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ (-484)) 196 T ELT)) (-3439 (((-85) $) 200 T ELT)) (-3415 (((-484) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 219 T ELT) (((-484) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 218 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) ELT) (((-484) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ (-484)) 217 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-2887 (((-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3991)) ELT) (((-584 |#2|) $) 84 (|has| $ (-6 -3991)) ELT) (((-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 122 (|has| $ (-6 -3991)) ELT)) (-3029 (((-584 $) $) 131 T ELT)) (-3025 (((-85) $ $) 139 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-3610 (($ (-695) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) 176 T ELT)) (-3715 (((-85) $ (-695)) 202 T ELT)) (-2198 ((|#1| $) 101 (|has| |#1| (-757)) ELT) (((-484) $) 188 (|has| (-484) (-757)) ELT)) (-2529 (($ $ $) 204 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2854 (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $ $) 228 T ELT) (($ $ $) 224 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3514 (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $ $) 223 T ELT) (($ $ $) 216 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2606 (((-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3991)) ELT) (((-584 |#2|) $) 85 (|has| $ (-6 -3991)) ELT) (((-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 123 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3991))) ELT) (((-85) |#2| $) 87 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3991))) ELT) (((-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 125 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3991))) ELT)) (-2199 ((|#1| $) 100 (|has| |#1| (-757)) ELT) (((-484) $) 189 (|has| (-484) (-757)) ELT)) (-2855 (($ $ $) 205 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-1947 (($ (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3992)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -3992)) ELT) (($ (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 118 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT) (($ (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $ $) 173 T ELT) (($ (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 117 T ELT)) (-3530 (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) 236 T ELT)) (-3712 (((-85) $ (-695)) 201 T ELT)) (-3028 (((-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 136 T ELT)) (-3523 (((-85) $) 132 T ELT)) (-3239 (((-1072) $) 22 (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3794 (($ $ (-695)) 153 T ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 151 T ELT)) (-2230 (((-584 |#1|) $) 67 T ELT)) (-2231 (((-85) |#1| $) 68 T ELT)) (-1272 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3605 (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 44 T ELT) (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ (-484)) 230 T ELT) (($ $ $ (-484)) 229 T ELT)) (-2302 (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ (-484)) 170 T ELT) (($ $ $ (-484)) 169 T ELT)) (-2201 (((-584 |#1|) $) 98 T ELT) (((-584 (-484)) $) 191 T ELT)) (-2202 (((-85) |#1| $) 97 T ELT) (((-85) (-484) $) 192 T ELT)) (-3240 (((-1033) $) 21 (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3797 ((|#2| $) 102 (|has| |#1| (-757)) ELT) (($ $ (-695)) 147 T ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 145 T ELT)) (-1352 (((-3 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) #6="failed") (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 55 T ELT) (((-3 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) #6#) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 179 T ELT)) (-2197 (($ $ |#2|) 103 (|has| $ (-6 -3992)) ELT) (($ $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) 187 (|has| $ (-6 -3992)) ELT)) (-1273 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-3440 (((-85) $) 199 T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3991)) ELT) (((-85) (-1 (-85) |#2|) $) 82 (|has| $ (-6 -3991)) ELT) (((-85) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 120 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-248 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 91 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-248 |#2|)) 89 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 (-248 |#2|))) 88 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) 129 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) 128 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-248 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) 127 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 (-248 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))))) 126 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2200 (((-85) |#2| $) 99 (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT) (((-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 190 (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-2203 (((-584 |#2|) $) 96 T ELT) (((-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 193 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-3796 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) 195 T ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ (-484)) 194 T ELT) (($ $ (-1145 (-484))) 177 T ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ #1#) 152 T ELT) (($ $ #2#) 149 T ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ #3#) 146 T ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ #4#) 134 T ELT)) (-3027 (((-484) $ $) 137 T ELT)) (-1464 (($) 53 T ELT) (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1569 (($ $ (-484)) 233 T ELT) (($ $ (-1145 (-484))) 232 T ELT)) (-2303 (($ $ (-484)) 172 T ELT) (($ $ (-1145 (-484))) 171 T ELT)) (-3629 (((-85) $) 135 T ELT)) (-3788 (($ $) 159 T ELT)) (-3786 (($ $) 160 (|has| $ (-6 -3992)) ELT)) (-3789 (((-695) $) 158 T ELT)) (-3790 (($ $) 157 T ELT)) (-1944 (((-695) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3991))) ELT) (((-695) |#2| $) 86 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3991))) ELT) (((-695) (-1 (-85) |#2|) $) 83 (|has| $ (-6 -3991)) ELT) (((-695) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 124 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3991))) ELT) (((-695) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 121 (|has| $ (-6 -3991)) ELT)) (-1729 (($ $ $ (-484)) 213 (|has| $ (-6 -3992)) ELT)) (-3396 (($ $) 10 T ELT)) (-3968 (((-473) $) 63 (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-554 (-473))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-554 (-473)))) ELT)) (-3526 (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) 54 T ELT) (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) 178 T ELT)) (-3787 (($ $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) 235 T ELT) (($ $ $) 234 T ELT)) (-3798 (($ $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) 175 T ELT) (($ (-584 $)) 174 T ELT) (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 144 T ELT) (($ $ $) 143 T ELT)) (-3942 (((-773) $) 17 (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-553 (-773)))) ELT)) (-3518 (((-584 $) $) 130 T ELT)) (-3026 (((-85) $ $) 138 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-1263 (((-85) $ $) 20 (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1274 (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1221 (((-3 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) "failed") |#1| $) 116 T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3991)) ELT) (((-85) (-1 (-85) |#2|) $) 81 (|has| $ (-6 -3991)) ELT) (((-85) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 119 (|has| $ (-6 -3991)) ELT)) (-2564 (((-85) $ $) 206 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2565 (((-85) $ $) 208 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3054 (((-85) $ $) 18 (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2682 (((-85) $ $) 207 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2683 (((-85) $ $) 209 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-36 |#1| |#2|) (-113) (-1013) (-1013)) (T -36))
+((-1221 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-2 (|:| -3856 *3) (|:| |entry| *4))))))
+(-13 (-1106 |t#1| |t#2|) (-609 (-2 (|:| -3856 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -1221 ((-3 (-2 (|:| -3856 |t#1|) (|:| |entry| |t#2|)) "failed") |t#1| $))))
+(((-34) . T) ((-76 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-757)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1013)) (|has| |#2| (-72))) ((-553 (-773)) OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-757)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-1013)) (|has| |#2| (-553 (-773)))) ((-124 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T) ((-554 (-473)) |has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-554 (-473))) ((-183 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T) ((-241 (-484) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T) ((-241 (-1145 (-484)) $) . T) ((-241 |#1| |#2|) . T) ((-243 (-484) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T) ((-243 |#1| |#2|) . T) ((-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ((-259 |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ((-237 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T) ((-321 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T) ((-426 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T) ((-426 |#2|) . T) ((-539 (-484) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T) ((-539 |#1| |#2|) . T) ((-453 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ((-453 |#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ((-13) . T) ((-550 |#1| |#2|) . T) ((-594 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T) ((-609 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T) ((-757) |has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-757)) ((-760) |has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-757)) ((-924 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T) ((-1013) OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-757)) (|has| |#2| (-1013))) ((-1063 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T) ((-1106 |#1| |#2|) . T) ((-1128) . T) ((-1167 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T))
+((-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) 10 T ELT)))
+(((-37 |#1| |#2|) (-10 -7 (-15 -3942 (|#1| |#2|)) (-15 -3942 (|#1| (-484))) (-15 -3942 ((-773) |#1|))) (-38 |#2|) (-146)) (T -37))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 50 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT)))
(((-38 |#1|) (-113) (-146)) (T -38))
NIL
-(-13 (-961) (-654 |t#1|) (-555 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 (-483)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-663) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T))
-((-3412 (((-345 |#1|) |#1|) 41 T ELT)) (-3726 (((-345 |#1|) |#1|) 30 T ELT) (((-345 |#1|) |#1| (-583 (-48))) 33 T ELT)) (-1221 (((-85) |#1|) 59 T ELT)))
-(((-39 |#1|) (-10 -7 (-15 -3726 ((-345 |#1|) |#1| (-583 (-48)))) (-15 -3726 ((-345 |#1|) |#1|)) (-15 -3412 ((-345 |#1|) |#1|)) (-15 -1221 ((-85) |#1|))) (-1153 (-48))) (T -39))
-((-1221 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1153 (-48))))) (-3412 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1153 (-48))))) (-3726 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1153 (-48))))) (-3726 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-48))) (-5 *2 (-345 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1153 (-48))))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1644 (((-2 (|:| |num| (-1177 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2059 (($ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2057 (((-85) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1779 (((-630 (-347 |#2|)) (-1177 $)) NIL T ELT) (((-630 (-347 |#2|))) NIL T ELT)) (-3324 (((-347 |#2|) $) NIL T ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3965 (((-345 $) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1605 (((-85) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3131 (((-694)) NIL (|has| (-347 |#2|) (-317)) ELT)) (-1658 (((-85)) NIL T ELT)) (-1657 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL (|has| (-347 |#2|) (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| (-347 |#2|) (-950 (-347 (-483)))) ELT) (((-3 (-347 |#2|) #1#) $) NIL T ELT)) (-3151 (((-483) $) NIL (|has| (-347 |#2|) (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| (-347 |#2|) (-950 (-347 (-483)))) ELT) (((-347 |#2|) $) NIL T ELT)) (-1789 (($ (-1177 (-347 |#2|)) (-1177 $)) NIL T ELT) (($ (-1177 (-347 |#2|))) 60 T ELT) (($ (-1177 |#2|) |#2|) 130 T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-347 |#2|) (-298)) ELT)) (-2560 (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1778 (((-630 (-347 |#2|)) $ (-1177 $)) NIL T ELT) (((-630 (-347 |#2|)) $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| (-347 |#2|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| (-347 |#2|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-347 |#2|))) (|:| |vec| (-1177 (-347 |#2|)))) (-630 $) (-1177 $)) NIL T ELT) (((-630 (-347 |#2|)) (-630 $)) NIL T ELT)) (-1649 (((-1177 $) (-1177 $)) NIL T ELT)) (-3836 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-347 |#3|)) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-1636 (((-583 (-583 |#1|))) NIL (|has| |#1| (-317)) ELT)) (-1661 (((-85) |#1| |#1|) NIL T ELT)) (-3104 (((-830)) NIL T ELT)) (-2990 (($) NIL (|has| (-347 |#2|) (-317)) ELT)) (-1656 (((-85)) NIL T ELT)) (-1655 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-2559 (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3497 (($ $) NIL T ELT)) (-2829 (($) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1677 (((-85) $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1761 (($ $ (-694)) NIL (|has| (-347 |#2|) (-298)) ELT) (($ $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-3717 (((-85) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3766 (((-830) $) NIL (|has| (-347 |#2|) (-298)) ELT) (((-743 (-830)) $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-2406 (((-85) $) NIL T ELT)) (-3371 (((-694)) NIL T ELT)) (-1650 (((-1177 $) (-1177 $)) 105 T ELT)) (-3127 (((-347 |#2|) $) NIL T ELT)) (-1637 (((-583 (-857 |#1|)) (-1088)) NIL (|has| |#1| (-311)) ELT)) (-3439 (((-632 $) $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2010 ((|#3| $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2006 (((-830) $) NIL (|has| (-347 |#2|) (-317)) ELT)) (-3075 ((|#3| $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| (-347 |#2|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| (-347 |#2|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-347 |#2|))) (|:| |vec| (-1177 (-347 |#2|)))) (-1177 $) $) NIL T ELT) (((-630 (-347 |#2|)) (-1177 $)) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1222 (((-1183) (-694)) 83 T ELT)) (-1645 (((-630 (-347 |#2|))) 55 T ELT)) (-1647 (((-630 (-347 |#2|))) 48 T ELT)) (-2480 (($ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1642 (($ (-1177 |#2|) |#2|) 131 T ELT)) (-1646 (((-630 (-347 |#2|))) 49 T ELT)) (-1648 (((-630 (-347 |#2|))) 47 T ELT)) (-1641 (((-2 (|:| |num| (-630 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 129 T ELT)) (-1643 (((-2 (|:| |num| (-1177 |#2|)) (|:| |den| |#2|)) $) 67 T ELT)) (-1654 (((-1177 $)) 46 T ELT)) (-3912 (((-1177 $)) 45 T ELT)) (-1653 (((-85) $) NIL T ELT)) (-1652 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3440 (($) NIL (|has| (-347 |#2|) (-298)) CONST)) (-2396 (($ (-830)) NIL (|has| (-347 |#2|) (-317)) ELT)) (-1639 (((-3 |#2| #1#)) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1663 (((-694)) NIL T ELT)) (-2405 (($) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3139 (($ (-583 $)) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) NIL (|has| (-347 |#2|) (-298)) ELT)) (-3726 (((-345 $) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-347 |#2|) (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3460 (((-3 $ #1#) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1604 (((-694) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3794 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1640 (((-3 |#2| #1#)) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3751 (((-347 |#2|) (-1177 $)) NIL T ELT) (((-347 |#2|)) 43 T ELT)) (-1762 (((-694) $) NIL (|has| (-347 |#2|) (-298)) ELT) (((-3 (-694) #1#) $ $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-3752 (($ $ (-1 (-347 |#2|) (-347 |#2|))) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 (-347 |#2|) (-347 |#2|)) (-694)) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 |#2| |#2|)) 125 T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088))))) ELT) (($ $ (-1088) (-694)) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088))))) ELT) (($ $ (-583 (-1088))) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088))))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088))))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT) (($ $) NIL (OR (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT)) (-2404 (((-630 (-347 |#2|)) (-1177 $) (-1 (-347 |#2|) (-347 |#2|))) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3180 ((|#3|) 54 T ELT)) (-1671 (($) NIL (|has| (-347 |#2|) (-298)) ELT)) (-3219 (((-1177 (-347 |#2|)) $ (-1177 $)) NIL T ELT) (((-630 (-347 |#2|)) (-1177 $) (-1177 $)) NIL T ELT) (((-1177 (-347 |#2|)) $) 61 T ELT) (((-630 (-347 |#2|)) (-1177 $)) 106 T ELT)) (-3966 (((-1177 (-347 |#2|)) $) NIL T ELT) (($ (-1177 (-347 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1651 (((-1177 $) (-1177 $)) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-347 |#2|)) NIL T ELT) (($ (-347 (-483))) NIL (OR (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-950 (-347 (-483))))) ELT) (($ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2698 (($ $) NIL (|has| (-347 |#2|) (-298)) ELT) (((-632 $) $) NIL (|has| (-347 |#2|) (-118)) ELT)) (-2445 ((|#3| $) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1660 (((-85)) 41 T ELT)) (-1659 (((-85) |#1|) 53 T ELT) (((-85) |#2|) 137 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1638 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1662 (((-85)) NIL T ELT)) (-2656 (($) 17 T CONST)) (-2662 (($) 27 T CONST)) (-2665 (($ $ (-1 (-347 |#2|) (-347 |#2|))) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 (-347 |#2|) (-347 |#2|)) (-694)) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088))))) ELT) (($ $ (-1088) (-694)) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088))))) ELT) (($ $ (-583 (-1088))) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088))))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088))))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT) (($ $) NIL (OR (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL (|has| (-347 |#2|) (-311)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 |#2|)) NIL T ELT) (($ (-347 |#2|) $) NIL T ELT) (($ (-347 (-483)) $) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-347 (-483))) NIL (|has| (-347 |#2|) (-311)) ELT)))
-(((-40 |#1| |#2| |#3| |#4|) (-13 (-290 |#1| |#2| |#3|) (-10 -7 (-15 -1222 ((-1183) (-694))))) (-311) (-1153 |#1|) (-1153 (-347 |#2|)) |#3|) (T -40))
-((-1222 (*1 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-311)) (-4 *5 (-1153 *4)) (-5 *2 (-1183)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1153 (-347 *5))) (-14 *7 *6))))
-((-1223 ((|#2| |#2|) 47 T ELT)) (-1228 ((|#2| |#2|) 136 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-13 (-389) (-950 (-483))))) ELT)) (-1227 ((|#2| |#2|) 100 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-13 (-389) (-950 (-483))))) ELT)) (-1226 ((|#2| |#2|) 101 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-13 (-389) (-950 (-483))))) ELT)) (-1229 ((|#2| (-86) |#2| (-694)) 80 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-13 (-389) (-950 (-483))))) ELT)) (-1225 (((-1083 |#2|) |#2|) 44 T ELT)) (-1224 ((|#2| |#2| (-583 (-550 |#2|))) 18 T ELT) ((|#2| |#2| (-583 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT)))
-(((-41 |#1| |#2|) (-10 -7 (-15 -1223 (|#2| |#2|)) (-15 -1224 (|#2| |#2|)) (-15 -1224 (|#2| |#2| |#2|)) (-15 -1224 (|#2| |#2| (-583 |#2|))) (-15 -1224 (|#2| |#2| (-583 (-550 |#2|)))) (-15 -1225 ((-1083 |#2|) |#2|)) (IF (|has| |#1| (-13 (-389) (-950 (-483)))) (IF (|has| |#2| (-361 |#1|)) (PROGN (-15 -1226 (|#2| |#2|)) (-15 -1227 (|#2| |#2|)) (-15 -1228 (|#2| |#2|)) (-15 -1229 (|#2| (-86) |#2| (-694)))) |%noBranch|) |%noBranch|)) (-494) (-13 (-311) (-253) (-10 -8 (-15 -2994 ((-1037 |#1| (-550 $)) $)) (-15 -2993 ((-1037 |#1| (-550 $)) $)) (-15 -3940 ($ (-1037 |#1| (-550 $))))))) (T -41))
-((-1229 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-86)) (-5 *4 (-694)) (-4 *5 (-13 (-389) (-950 (-483)))) (-4 *5 (-494)) (-5 *1 (-41 *5 *2)) (-4 *2 (-361 *5)) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2994 ((-1037 *5 (-550 $)) $)) (-15 -2993 ((-1037 *5 (-550 $)) $)) (-15 -3940 ($ (-1037 *5 (-550 $))))))))) (-1228 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-950 (-483)))) (-4 *3 (-494)) (-5 *1 (-41 *3 *2)) (-4 *2 (-361 *3)) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2994 ((-1037 *3 (-550 $)) $)) (-15 -2993 ((-1037 *3 (-550 $)) $)) (-15 -3940 ($ (-1037 *3 (-550 $))))))))) (-1227 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-950 (-483)))) (-4 *3 (-494)) (-5 *1 (-41 *3 *2)) (-4 *2 (-361 *3)) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2994 ((-1037 *3 (-550 $)) $)) (-15 -2993 ((-1037 *3 (-550 $)) $)) (-15 -3940 ($ (-1037 *3 (-550 $))))))))) (-1226 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-950 (-483)))) (-4 *3 (-494)) (-5 *1 (-41 *3 *2)) (-4 *2 (-361 *3)) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2994 ((-1037 *3 (-550 $)) $)) (-15 -2993 ((-1037 *3 (-550 $)) $)) (-15 -3940 ($ (-1037 *3 (-550 $))))))))) (-1225 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-1083 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-311) (-253) (-10 -8 (-15 -2994 ((-1037 *4 (-550 $)) $)) (-15 -2993 ((-1037 *4 (-550 $)) $)) (-15 -3940 ($ (-1037 *4 (-550 $))))))))) (-1224 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-550 *2))) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2994 ((-1037 *4 (-550 $)) $)) (-15 -2993 ((-1037 *4 (-550 $)) $)) (-15 -3940 ($ (-1037 *4 (-550 $))))))) (-4 *4 (-494)) (-5 *1 (-41 *4 *2)))) (-1224 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2994 ((-1037 *4 (-550 $)) $)) (-15 -2993 ((-1037 *4 (-550 $)) $)) (-15 -3940 ($ (-1037 *4 (-550 $))))))) (-4 *4 (-494)) (-5 *1 (-41 *4 *2)))) (-1224 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2994 ((-1037 *3 (-550 $)) $)) (-15 -2993 ((-1037 *3 (-550 $)) $)) (-15 -3940 ($ (-1037 *3 (-550 $))))))))) (-1224 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2994 ((-1037 *3 (-550 $)) $)) (-15 -2993 ((-1037 *3 (-550 $)) $)) (-15 -3940 ($ (-1037 *3 (-550 $))))))))) (-1223 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2994 ((-1037 *3 (-550 $)) $)) (-15 -2993 ((-1037 *3 (-550 $)) $)) (-15 -3940 ($ (-1037 *3 (-550 $))))))))))
-((-3726 (((-345 (-1083 |#3|)) (-1083 |#3|) (-583 (-48))) 23 T ELT) (((-345 |#3|) |#3| (-583 (-48))) 19 T ELT)))
-(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3726 ((-345 |#3|) |#3| (-583 (-48)))) (-15 -3726 ((-345 (-1083 |#3|)) (-1083 |#3|) (-583 (-48))))) (-756) (-717) (-861 (-48) |#2| |#1|)) (T -42))
-((-3726 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-48))) (-4 *5 (-756)) (-4 *6 (-717)) (-4 *7 (-861 (-48) *6 *5)) (-5 *2 (-345 (-1083 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-3726 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-48))) (-4 *5 (-756)) (-4 *6 (-717)) (-5 *2 (-345 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-861 (-48) *6 *5)))))
-((-1233 (((-694) |#2|) 70 T ELT)) (-1231 (((-694) |#2|) 74 T ELT)) (-1246 (((-583 |#2|)) 37 T ELT)) (-1230 (((-694) |#2|) 73 T ELT)) (-1232 (((-694) |#2|) 69 T ELT)) (-1234 (((-694) |#2|) 72 T ELT)) (-1244 (((-583 (-630 |#1|))) 65 T ELT)) (-1239 (((-583 |#2|)) 60 T ELT)) (-1237 (((-583 |#2|) |#2|) 48 T ELT)) (-1241 (((-583 |#2|)) 62 T ELT)) (-1240 (((-583 |#2|)) 61 T ELT)) (-1243 (((-583 (-630 |#1|))) 53 T ELT)) (-1238 (((-583 |#2|)) 59 T ELT)) (-1236 (((-583 |#2|) |#2|) 47 T ELT)) (-1235 (((-583 |#2|)) 55 T ELT)) (-1245 (((-583 (-630 |#1|))) 66 T ELT)) (-1242 (((-583 |#2|)) 64 T ELT)) (-2008 (((-1177 |#2|) (-1177 |#2|)) 99 (|has| |#1| (-257)) ELT)))
-(((-43 |#1| |#2|) (-10 -7 (-15 -1230 ((-694) |#2|)) (-15 -1231 ((-694) |#2|)) (-15 -1232 ((-694) |#2|)) (-15 -1233 ((-694) |#2|)) (-15 -1234 ((-694) |#2|)) (-15 -1235 ((-583 |#2|))) (-15 -1236 ((-583 |#2|) |#2|)) (-15 -1237 ((-583 |#2|) |#2|)) (-15 -1238 ((-583 |#2|))) (-15 -1239 ((-583 |#2|))) (-15 -1240 ((-583 |#2|))) (-15 -1241 ((-583 |#2|))) (-15 -1242 ((-583 |#2|))) (-15 -1243 ((-583 (-630 |#1|)))) (-15 -1244 ((-583 (-630 |#1|)))) (-15 -1245 ((-583 (-630 |#1|)))) (-15 -1246 ((-583 |#2|))) (IF (|has| |#1| (-257)) (-15 -2008 ((-1177 |#2|) (-1177 |#2|))) |%noBranch|)) (-494) (-358 |#1|)) (T -43))
-((-2008 (*1 *2 *2) (-12 (-5 *2 (-1177 *4)) (-4 *4 (-358 *3)) (-4 *3 (-257)) (-4 *3 (-494)) (-5 *1 (-43 *3 *4)))) (-1246 (*1 *2) (-12 (-4 *3 (-494)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1245 (*1 *2) (-12 (-4 *3 (-494)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1244 (*1 *2) (-12 (-4 *3 (-494)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1243 (*1 *2) (-12 (-4 *3 (-494)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1242 (*1 *2) (-12 (-4 *3 (-494)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1241 (*1 *2) (-12 (-4 *3 (-494)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1240 (*1 *2) (-12 (-4 *3 (-494)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1239 (*1 *2) (-12 (-4 *3 (-494)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1238 (*1 *2) (-12 (-4 *3 (-494)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1237 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-583 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))) (-1236 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-583 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))) (-1235 (*1 *2) (-12 (-4 *3 (-494)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1234 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))) (-1233 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))) (-1232 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))) (-1231 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))) (-1230 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1769 (((-3 $ #1="failed")) NIL (|has| |#1| (-494)) ELT)) (-1309 (((-3 $ #1#) $ $) NIL T ELT)) (-3218 (((-1177 (-630 |#1|)) (-1177 $)) NIL T ELT) (((-1177 (-630 |#1|))) 24 T ELT)) (-1726 (((-1177 $)) 52 T ELT)) (-3718 (($) NIL T CONST)) (-1903 (((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) #1#)) NIL (|has| |#1| (-494)) ELT)) (-1700 (((-3 $ #1#)) NIL (|has| |#1| (-494)) ELT)) (-1785 (((-630 |#1|) (-1177 $)) NIL T ELT) (((-630 |#1|)) NIL T ELT)) (-1724 ((|#1| $) NIL T ELT)) (-1783 (((-630 |#1|) $ (-1177 $)) NIL T ELT) (((-630 |#1|) $) NIL T ELT)) (-2400 (((-3 $ #1#) $) NIL (|has| |#1| (-494)) ELT)) (-1897 (((-1083 (-857 |#1|))) NIL (|has| |#1| (-311)) ELT)) (-2403 (($ $ (-830)) NIL T ELT)) (-1722 ((|#1| $) NIL T ELT)) (-1702 (((-1083 |#1|) $) NIL (|has| |#1| (-494)) ELT)) (-1787 ((|#1| (-1177 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1720 (((-1083 |#1|) $) NIL T ELT)) (-1714 (((-85)) 99 T ELT)) (-1789 (($ (-1177 |#1|) (-1177 $)) NIL T ELT) (($ (-1177 |#1|)) NIL T ELT)) (-3461 (((-3 $ #1#) $) 14 (|has| |#1| (-494)) ELT)) (-3104 (((-830)) 53 T ELT)) (-1711 (((-85)) NIL T ELT)) (-2429 (($ $ (-830)) NIL T ELT)) (-1707 (((-85)) NIL T ELT)) (-1705 (((-85)) NIL T ELT)) (-1709 (((-85)) 101 T ELT)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) #1#)) NIL (|has| |#1| (-494)) ELT)) (-1701 (((-3 $ #1#)) NIL (|has| |#1| (-494)) ELT)) (-1786 (((-630 |#1|) (-1177 $)) NIL T ELT) (((-630 |#1|)) NIL T ELT)) (-1725 ((|#1| $) NIL T ELT)) (-1784 (((-630 |#1|) $ (-1177 $)) NIL T ELT) (((-630 |#1|) $) NIL T ELT)) (-2401 (((-3 $ #1#) $) NIL (|has| |#1| (-494)) ELT)) (-1901 (((-1083 (-857 |#1|))) NIL (|has| |#1| (-311)) ELT)) (-2402 (($ $ (-830)) NIL T ELT)) (-1723 ((|#1| $) NIL T ELT)) (-1703 (((-1083 |#1|) $) NIL (|has| |#1| (-494)) ELT)) (-1788 ((|#1| (-1177 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1721 (((-1083 |#1|) $) NIL T ELT)) (-1715 (((-85)) 98 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1706 (((-85)) 106 T ELT)) (-1708 (((-85)) 105 T ELT)) (-1710 (((-85)) 107 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1713 (((-85)) 100 T ELT)) (-3794 ((|#1| $ (-483)) 55 T ELT)) (-3219 (((-1177 |#1|) $ (-1177 $)) 48 T ELT) (((-630 |#1|) (-1177 $) (-1177 $)) NIL T ELT) (((-1177 |#1|) $) 28 T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-3966 (((-1177 |#1|) $) NIL T ELT) (($ (-1177 |#1|)) NIL T ELT)) (-1889 (((-583 (-857 |#1|)) (-1177 $)) NIL T ELT) (((-583 (-857 |#1|))) NIL T ELT)) (-2431 (($ $ $) NIL T ELT)) (-1719 (((-85)) 95 T ELT)) (-3940 (((-772) $) 71 T ELT) (($ (-1177 |#1|)) 22 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) 51 T ELT)) (-1704 (((-583 (-1177 |#1|))) NIL (|has| |#1| (-494)) ELT)) (-2432 (($ $ $ $) NIL T ELT)) (-1717 (((-85)) 91 T ELT)) (-2541 (($ (-630 |#1|) $) 18 T ELT)) (-2430 (($ $ $) NIL T ELT)) (-1718 (((-85)) 97 T ELT)) (-1716 (((-85)) 92 T ELT)) (-1712 (((-85)) 90 T ELT)) (-2656 (($) NIL T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1054 |#2| |#1|) $) 19 T ELT)))
-(((-44 |#1| |#2| |#3| |#4|) (-13 (-358 |#1|) (-590 (-1054 |#2| |#1|)) (-10 -8 (-15 -3940 ($ (-1177 |#1|))))) (-311) (-830) (-583 (-1088)) (-1177 (-630 |#1|))) (T -44))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-311)) (-14 *6 (-1177 (-630 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))))))
-((-2564 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3396 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3789 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3791 (($ $) NIL T ELT)) (-3593 (($) NIL T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2194 (((-1183) $ |#1| |#1|) NIL (|has| $ (-6 -3990)) ELT) (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-3779 (($ $ (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-1727 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3990)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3990)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756))) ELT)) (-2905 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3436 (((-85) $ (-694)) NIL T ELT)) (-3021 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3990)) ELT)) (-3781 (($ $ $) 34 (|has| $ (-6 -3990)) ELT)) (-3780 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3990)) ELT)) (-3783 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 36 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#2| $ |#1| |#2|) 54 T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-483) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3990)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-1144 (-483)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3990)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3990)) ELT) (($ $ #2="rest" $) NIL (|has| $ (-6 -3990)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3990)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) NIL (|has| $ (-6 -3990)) ELT)) (-1567 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3704 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3790 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2227 (((-3 |#2| #5="failed") |#1| $) 44 T ELT)) (-3718 (($) NIL T CONST)) (-2293 (($ $) NIL (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) NIL T ELT)) (-3793 (($ $ (-694)) NIL T ELT) (($ $) 30 T ELT)) (-2364 (($ $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-3399 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-3 |#2| #5#) |#1| $) 57 T ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-3400 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3990)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-483) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-483)) NIL T ELT)) (-3437 (((-85) $) NIL T ELT)) (-3413 (((-483) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-483) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) ELT) (((-483) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-483)) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-2885 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 21 (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 21 (|has| $ (-6 -3989)) ELT)) (-3027 (((-583 $) $) NIL T ELT)) (-3023 (((-85) $ $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-3608 (($ (-694) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3713 (((-85) $ (-694)) NIL T ELT)) (-2196 ((|#1| $) NIL (|has| |#1| (-756)) ELT) (((-483) $) 39 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2852 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3512 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2604 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT) (((-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-2197 ((|#1| $) NIL (|has| |#1| (-756)) ELT) (((-483) $) 41 (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-1946 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3990)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3990)) ELT) (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3528 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3710 (((-85) $ (-694)) NIL T ELT)) (-3026 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3521 (((-85) $) NIL T ELT)) (-3237 (((-1071) $) 50 (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-3792 (($ $ (-694)) NIL T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2228 (((-583 |#1|) $) 23 T ELT)) (-2229 (((-85) |#1| $) NIL T ELT)) (-1271 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3603 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT) (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-483)) NIL T ELT) (($ $ $ (-483)) NIL T ELT)) (-2300 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-483)) NIL T ELT) (($ $ $ (-483)) NIL T ELT)) (-2199 (((-583 |#1|) $) NIL T ELT) (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) |#1| $) NIL T ELT) (((-85) (-483) $) NIL T ELT)) (-3238 (((-1032) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-3795 ((|#2| $) NIL (|has| |#1| (-756)) ELT) (($ $ (-694)) NIL T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 28 T ELT)) (-1351 (((-3 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2195 (($ $ |#2|) NIL (|has| $ (-6 -3990)) ELT) (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3990)) ELT)) (-1272 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3438 (((-85) $) NIL T ELT)) (-1944 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT) (((-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-2201 (((-583 |#2|) $) NIL T ELT) (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 20 T ELT)) (-3397 (((-85) $) 19 T ELT)) (-3559 (($) 15 T ELT)) (-3794 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-483) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ #3#) NIL T ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $ #4#) NIL T ELT)) (-3025 (((-483) $ $) NIL T ELT)) (-1463 (($) 14 T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1568 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-2301 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-3627 (((-85) $) NIL T ELT)) (-3786 (($ $) NIL T ELT)) (-3784 (($ $) NIL (|has| $ (-6 -3990)) ELT)) (-3787 (((-694) $) NIL T ELT)) (-3788 (($ $) NIL T ELT)) (-1943 (((-694) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-694) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-1728 (($ $ $ (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-553 (-472))) ELT)) (-3524 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3785 (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-3796 (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ (-583 $)) NIL T ELT) (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 32 T ELT) (($ $ $) NIL T ELT)) (-3940 (((-772) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-3516 (((-583 $) $) NIL T ELT)) (-3024 (((-85) $ $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-1262 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1273 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1220 (((-3 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) #5#) |#1| $) 52 T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3052 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-2680 (((-85) $ $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3951 (((-694) $) 26 (|has| $ (-6 -3989)) ELT)))
-(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1012) (-1012)) (T -45))
-NIL
-((-3931 (((-85) $) 12 T ELT)) (-3952 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-347 (-483)) $) 25 T ELT) (($ $ (-347 (-483))) NIL T ELT)))
-(((-46 |#1| |#2| |#3|) (-10 -7 (-15 * (|#1| |#1| (-347 (-483)))) (-15 * (|#1| (-347 (-483)) |#1|)) (-15 -3931 ((-85) |#1|)) (-15 -3952 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-483) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|))) (-47 |#2| |#3|) (-961) (-716)) (T -46))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 69 (|has| |#1| (-494)) ELT)) (-2059 (($ $) 70 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) 72 (|has| |#1| (-494)) ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3953 (($ $) 78 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3931 (((-85) $) 80 T ELT)) (-2889 (($ |#1| |#2|) 79 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-2890 (($ $) 83 T ELT)) (-3169 ((|#1| $) 84 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3460 (((-3 $ "failed") $ $) 68 (|has| |#1| (-494)) ELT)) (-3942 ((|#2| $) 82 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ (-347 (-483))) 75 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $) 67 (|has| |#1| (-494)) ELT) (($ |#1|) 65 (|has| |#1| (-146)) ELT)) (-3671 ((|#1| $ |#2|) 77 T ELT)) (-2698 (((-632 $) $) 66 (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 71 (|has| |#1| (-494)) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-347 (-483)) $) 74 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 73 (|has| |#1| (-38 (-347 (-483)))) ELT)))
-(((-47 |#1| |#2|) (-113) (-961) (-716)) (T -47))
-((-3169 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))) (-2890 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3952 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)))) (-3931 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-85)))) (-2889 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))) (-3953 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))) (-3671 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))) (-3943 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *2 (-311)))))
-(-13 (-961) (-82 |t#1| |t#1|) (-10 -8 (-15 -3169 (|t#1| $)) (-15 -2890 ($ $)) (-15 -3942 (|t#2| $)) (-15 -3952 ($ (-1 |t#1| |t#1|) $)) (-15 -3931 ((-85) $)) (-15 -2889 ($ |t#1| |t#2|)) (-15 -3953 ($ $)) (-15 -3671 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-311)) (-15 -3943 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-6 (-146)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-494)) (-6 (-494)) |%noBranch|) (IF (|has| |t#1| (-38 (-347 (-483)))) (-6 (-38 (-347 (-483)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-494)) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-555 (-483)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) |has| |#1| (-494)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-245) |has| |#1| (-494)) ((-494) |has| |#1| (-494)) ((-13) . T) ((-588 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-494)) ((-654 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-494)) ((-663) . T) ((-963 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-968 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-1212 (((-583 $) (-1083 $) (-1088)) NIL T ELT) (((-583 $) (-1083 $)) NIL T ELT) (((-583 $) (-857 $)) NIL T ELT)) (-1213 (($ (-1083 $) (-1088)) NIL T ELT) (($ (-1083 $)) NIL T ELT) (($ (-857 $)) NIL T ELT)) (-3183 (((-85) $) 9 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1597 (((-583 (-550 $)) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1601 (($ $ (-248 $)) NIL T ELT) (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-3033 (($ $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-1214 (((-583 $) (-1083 $) (-1088)) NIL T ELT) (((-583 $) (-1083 $)) NIL T ELT) (((-583 $) (-857 $)) NIL T ELT)) (-3178 (($ (-1083 $) (-1088)) NIL T ELT) (($ (-1083 $)) NIL T ELT) (($ (-857 $)) NIL T ELT)) (-3152 (((-3 (-550 $) #1#) $) NIL T ELT) (((-3 (-483) #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL T ELT)) (-3151 (((-550 $) $) NIL T ELT) (((-483) $) NIL T ELT) (((-347 (-483)) $) NIL T ELT)) (-2560 (($ $ $) NIL T ELT)) (-2275 (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL T ELT) (((-630 (-483)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-347 (-483)))) (|:| |vec| (-1177 (-347 (-483))))) (-630 $) (-1177 $)) NIL T ELT) (((-630 (-347 (-483))) (-630 $)) NIL T ELT)) (-3836 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-2569 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1596 (((-583 (-86)) $) NIL T ELT)) (-3589 (((-86) (-86)) NIL T ELT)) (-2406 (((-85) $) 11 T ELT)) (-2669 (((-85) $) NIL (|has| $ (-950 (-483))) ELT)) (-2994 (((-1037 (-483) (-550 $)) $) NIL T ELT)) (-3007 (($ $ (-483)) NIL T ELT)) (-3127 (((-1083 $) (-1083 $) (-550 $)) NIL T ELT) (((-1083 $) (-1083 $) (-583 (-550 $))) NIL T ELT) (($ $ (-550 $)) NIL T ELT) (($ $ (-583 (-550 $))) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-1594 (((-1083 $) (-550 $)) NIL (|has| $ (-961)) ELT)) (-3952 (($ (-1 $ $) (-550 $)) NIL T ELT)) (-1599 (((-3 (-550 $) #1#) $) NIL T ELT)) (-2276 (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL T ELT) (((-630 (-483)) (-1177 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-347 (-483)))) (|:| |vec| (-1177 (-347 (-483))))) (-1177 $) $) NIL T ELT) (((-630 (-347 (-483))) (-1177 $)) NIL T ELT)) (-1888 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1598 (((-583 (-550 $)) $) NIL T ELT)) (-2231 (($ (-86) $) NIL T ELT) (($ (-86) (-583 $)) NIL T ELT)) (-2629 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1088)) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-2599 (((-694) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1595 (((-85) $ $) NIL T ELT) (((-85) $ (-1088)) NIL T ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2670 (((-85) $) NIL (|has| $ (-950 (-483))) ELT)) (-3762 (($ $ (-550 $) $) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT) (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-1088) (-1 $ (-583 $))) NIL T ELT) (($ $ (-1088) (-1 $ $)) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-583 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-3794 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-583 $)) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-1600 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3752 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2993 (((-1037 (-483) (-550 $)) $) NIL T ELT)) (-3180 (($ $) NIL (|has| $ (-961)) ELT)) (-3966 (((-327) $) NIL T ELT) (((-179) $) NIL T ELT) (((-142 (-327)) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-550 $)) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-1037 (-483) (-550 $))) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-2586 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-2250 (((-85) (-86)) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-2656 (($) 6 T CONST)) (-2662 (($) 10 T CONST)) (-2665 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3052 (((-85) $ $) 13 T ELT)) (-3943 (($ $ $) NIL T ELT)) (-3831 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-347 (-483))) NIL T ELT) (($ $ (-483)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT)) (* (($ (-347 (-483)) $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-830) $) NIL T ELT)))
-(((-48) (-13 (-253) (-27) (-950 (-483)) (-950 (-347 (-483))) (-580 (-483)) (-933) (-580 (-347 (-483))) (-120) (-553 (-142 (-327))) (-190) (-555 (-1037 (-483) (-550 $))) (-10 -8 (-15 -2994 ((-1037 (-483) (-550 $)) $)) (-15 -2993 ((-1037 (-483) (-550 $)) $)) (-15 -3836 ($ $)) (-15 -3127 ((-1083 $) (-1083 $) (-550 $))) (-15 -3127 ((-1083 $) (-1083 $) (-583 (-550 $)))) (-15 -3127 ($ $ (-550 $))) (-15 -3127 ($ $ (-583 (-550 $))))))) (T -48))
-((-2994 (*1 *2 *1) (-12 (-5 *2 (-1037 (-483) (-550 (-48)))) (-5 *1 (-48)))) (-2993 (*1 *2 *1) (-12 (-5 *2 (-1037 (-483) (-550 (-48)))) (-5 *1 (-48)))) (-3836 (*1 *1 *1) (-5 *1 (-48))) (-3127 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 (-48))) (-5 *3 (-550 (-48))) (-5 *1 (-48)))) (-3127 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 (-48))) (-5 *3 (-583 (-550 (-48)))) (-5 *1 (-48)))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-550 (-48))) (-5 *1 (-48)))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-550 (-48)))) (-5 *1 (-48)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-1935 (((-583 (-444)) $) 17 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 7 T ELT)) (-3228 (((-1093) $) 18 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-49) (-13 (-1012) (-10 -8 (-15 -1935 ((-583 (-444)) $)) (-15 -3228 ((-1093) $))))) (T -49))
-((-1935 (*1 *2 *1) (-12 (-5 *2 (-583 (-444))) (-5 *1 (-49)))) (-3228 (*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-49)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 86 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2660 (((-85) $) 31 T ELT)) (-3152 (((-3 |#1| #1#) $) 34 T ELT)) (-3151 ((|#1| $) 35 T ELT)) (-3953 (($ $) 41 T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3169 ((|#1| $) 32 T ELT)) (-1452 (($ $) 75 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1451 (((-85) $) 44 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2405 (($ (-694)) 73 T ELT)) (-3937 (($ (-583 (-483))) 74 T ELT)) (-3942 (((-694) $) 45 T ELT)) (-3940 (((-772) $) 92 T ELT) (($ (-483)) 70 T ELT) (($ |#1|) 68 T ELT)) (-3671 ((|#1| $ $) 29 T ELT)) (-3121 (((-694)) 72 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 46 T CONST)) (-2662 (($) 17 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 65 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 66 T ELT) (($ |#1| $) 59 T ELT)))
-(((-50 |#1| |#2|) (-13 (-560 |#1|) (-950 |#1|) (-10 -8 (-15 -3169 (|#1| $)) (-15 -1452 ($ $)) (-15 -3953 ($ $)) (-15 -3671 (|#1| $ $)) (-15 -2405 ($ (-694))) (-15 -3937 ($ (-583 (-483)))) (-15 -1451 ((-85) $)) (-15 -2660 ((-85) $)) (-15 -3942 ((-694) $)) (-15 -3952 ($ (-1 |#1| |#1|) $)))) (-961) (-583 (-1088))) (T -50))
-((-3169 (*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-50 *2 *3)) (-14 *3 (-583 (-1088))))) (-1452 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1088))))) (-3953 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1088))))) (-3671 (*1 *2 *1 *1) (-12 (-4 *2 (-961)) (-5 *1 (-50 *2 *3)) (-14 *3 (-583 (-1088))))) (-2405 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1088))))) (-3937 (*1 *1 *2) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1088))))) (-1451 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1088))))) (-2660 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1088))))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1088))))) (-3952 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-50 *3 *4)) (-14 *4 (-583 (-1088))))))
-((-2564 (((-85) $ $) NIL T ELT)) (-1247 (((-696) $) 8 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1248 (((-1014) $) 10 T ELT)) (-3940 (((-772) $) 15 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-1249 (($ (-1014) (-696)) 16 T ELT)) (-3052 (((-85) $ $) 12 T ELT)))
-(((-51) (-13 (-1012) (-10 -8 (-15 -1249 ($ (-1014) (-696))) (-15 -1248 ((-1014) $)) (-15 -1247 ((-696) $))))) (T -51))
-((-1249 (*1 *1 *2 *3) (-12 (-5 *2 (-1014)) (-5 *3 (-696)) (-5 *1 (-51)))) (-1248 (*1 *2 *1) (-12 (-5 *2 (-1014)) (-5 *1 (-51)))) (-1247 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-51)))))
-((-2660 (((-85) (-51)) 18 T ELT)) (-3152 (((-3 |#1| "failed") (-51)) 20 T ELT)) (-3151 ((|#1| (-51)) 21 T ELT)) (-3940 (((-51) |#1|) 14 T ELT)))
-(((-52 |#1|) (-10 -7 (-15 -3940 ((-51) |#1|)) (-15 -3152 ((-3 |#1| "failed") (-51))) (-15 -2660 ((-85) (-51))) (-15 -3151 (|#1| (-51)))) (-1127)) (T -52))
-((-3151 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1127)))) (-2660 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1127)))) (-3152 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1127)))) (-3940 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1127)))))
-((-2541 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT)))
-(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2541 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-961) (-590 |#1|) (-761 |#1|)) (T -53))
-((-2541 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-590 *5)) (-4 *5 (-961)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-761 *5)))))
-((-1251 ((|#3| |#3| (-583 (-1088))) 44 T ELT)) (-1250 ((|#3| (-583 (-986 |#1| |#2| |#3|)) |#3| (-830)) 32 T ELT) ((|#3| (-583 (-986 |#1| |#2| |#3|)) |#3|) 31 T ELT)))
-(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1250 (|#3| (-583 (-986 |#1| |#2| |#3|)) |#3|)) (-15 -1250 (|#3| (-583 (-986 |#1| |#2| |#3|)) |#3| (-830))) (-15 -1251 (|#3| |#3| (-583 (-1088))))) (-1012) (-13 (-961) (-796 |#1|) (-553 (-800 |#1|))) (-13 (-361 |#2|) (-796 |#1|) (-553 (-800 |#1|)))) (T -54))
-((-1251 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1088))) (-4 *4 (-1012)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-361 *5) (-796 *4) (-553 (-800 *4)))))) (-1250 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 (-986 *5 *6 *2))) (-5 *4 (-830)) (-4 *5 (-1012)) (-4 *6 (-13 (-961) (-796 *5) (-553 (-800 *5)))) (-4 *2 (-13 (-361 *6) (-796 *5) (-553 (-800 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1250 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-986 *4 *5 *2))) (-4 *4 (-1012)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-4 *2 (-13 (-361 *5) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-54 *4 *5 *2)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 13 T ELT)) (-3152 (((-3 (-694) "failed") $) 31 T ELT)) (-3151 (((-694) $) NIL T ELT)) (-2406 (((-85) $) 15 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) 17 T ELT)) (-3940 (((-772) $) 22 T ELT) (($ (-694)) 28 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-1252 (($) 10 T CONST)) (-3052 (((-85) $ $) 19 T ELT)))
-(((-55) (-13 (-1012) (-950 (-694)) (-10 -8 (-15 -1252 ($) -3946) (-15 -3183 ((-85) $)) (-15 -2406 ((-85) $))))) (T -55))
-((-1252 (*1 *1) (-5 *1 (-55))) (-3183 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) (-2406 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))))
-((-1254 (($ $ (-483) |#3|) 60 T ELT)) (-1253 (($ $ (-483) |#4|) 64 T ELT)) (-3107 ((|#3| $ (-483)) 73 T ELT)) (-2885 (((-583 |#2|) $) 41 T ELT)) (-3240 (((-85) |#2| $) 68 T ELT)) (-1946 (($ (-1 |#2| |#2|) $) 49 T ELT)) (-3952 (($ (-1 |#2| |#2|) $) 48 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 52 T ELT) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 56 T ELT)) (-2195 (($ $ |#2|) 46 T ELT)) (-1944 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3794 ((|#2| $ (-483) (-483)) NIL T ELT) ((|#2| $ (-483) (-483) |#2|) 29 T ELT)) (-1943 (((-694) (-1 (-85) |#2|) $) 35 T ELT) (((-694) |#2| $) 70 T ELT)) (-3394 (($ $) 45 T ELT)) (-3106 ((|#4| $ (-483)) 76 T ELT)) (-3940 (((-772) $) 82 T ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 20 T ELT)) (-3052 (((-85) $ $) 67 T ELT)) (-3951 (((-694) $) 26 T ELT)))
-(((-56 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3052 ((-85) |#1| |#1|)) (-15 -3940 ((-772) |#1|)) (-15 -3952 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3952 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1946 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1253 (|#1| |#1| (-483) |#4|)) (-15 -1254 (|#1| |#1| (-483) |#3|)) (-15 -2885 ((-583 |#2|) |#1|)) (-15 -3106 (|#4| |#1| (-483))) (-15 -3107 (|#3| |#1| (-483))) (-15 -3794 (|#2| |#1| (-483) (-483) |#2|)) (-15 -3794 (|#2| |#1| (-483) (-483))) (-15 -2195 (|#1| |#1| |#2|)) (-15 -3240 ((-85) |#2| |#1|)) (-15 -1943 ((-694) |#2| |#1|)) (-15 -1943 ((-694) (-1 (-85) |#2|) |#1|)) (-15 -1944 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1945 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3952 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3951 ((-694) |#1|)) (-15 -3394 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1127) (-321 |#2|) (-321 |#2|)) (T -56))
-NIL
-((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3782 ((|#1| $ (-483) (-483) |#1|) 48 T ELT)) (-1254 (($ $ (-483) |#2|) 46 T ELT)) (-1253 (($ $ (-483) |#3|) 45 T ELT)) (-3718 (($) 7 T CONST)) (-3107 ((|#2| $ (-483)) 50 T ELT)) (-1573 ((|#1| $ (-483) (-483) |#1|) 47 T ELT)) (-3108 ((|#1| $ (-483) (-483)) 52 T ELT)) (-2885 (((-583 |#1|) $) 30 T ELT)) (-3110 (((-694) $) 55 T ELT)) (-3608 (($ (-694) (-694) |#1|) 61 T ELT)) (-3109 (((-694) $) 54 T ELT)) (-3114 (((-483) $) 59 T ELT)) (-3112 (((-483) $) 57 T ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3113 (((-483) $) 58 T ELT)) (-3111 (((-483) $) 56 T ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-2195 (($ $ |#1|) 60 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#1| $ (-483) (-483)) 53 T ELT) ((|#1| $ (-483) (-483) |#1|) 51 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3106 ((|#3| $ (-483)) 49 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-57 |#1| |#2| |#3|) (-113) (-1127) (-321 |t#1|) (-321 |t#1|)) (T -57))
-((-3952 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3608 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-694)) (-4 *3 (-1127)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-2195 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1127)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-483)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-483)))) (-3112 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-483)))) (-3111 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-483)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-694)))) (-3109 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-694)))) (-3794 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-483)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-321 *2)) (-4 *5 (-321 *2)) (-4 *2 (-1127)))) (-3108 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-483)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-321 *2)) (-4 *5 (-321 *2)) (-4 *2 (-1127)))) (-3794 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-483)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1127)) (-4 *4 (-321 *2)) (-4 *5 (-321 *2)))) (-3107 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1127)) (-4 *5 (-321 *4)) (-4 *2 (-321 *4)))) (-3106 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1127)) (-4 *5 (-321 *4)) (-4 *2 (-321 *4)))) (-2885 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-583 *3)))) (-3782 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-483)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1127)) (-4 *4 (-321 *2)) (-4 *5 (-321 *2)))) (-1573 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-483)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1127)) (-4 *4 (-321 *2)) (-4 *5 (-321 *2)))) (-1254 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-483)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1127)) (-4 *3 (-321 *4)) (-4 *5 (-321 *4)))) (-1253 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-483)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1127)) (-4 *5 (-321 *4)) (-4 *3 (-321 *4)))) (-1946 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3952 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3952 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))))
-(-13 (-426 |t#1|) (-10 -8 (-6 -3990) (-6 -3989) (-15 -3608 ($ (-694) (-694) |t#1|)) (-15 -2195 ($ $ |t#1|)) (-15 -3114 ((-483) $)) (-15 -3113 ((-483) $)) (-15 -3112 ((-483) $)) (-15 -3111 ((-483) $)) (-15 -3110 ((-694) $)) (-15 -3109 ((-694) $)) (-15 -3794 (|t#1| $ (-483) (-483))) (-15 -3108 (|t#1| $ (-483) (-483))) (-15 -3794 (|t#1| $ (-483) (-483) |t#1|)) (-15 -3107 (|t#2| $ (-483))) (-15 -3106 (|t#3| $ (-483))) (-15 -2885 ((-583 |t#1|) $)) (-15 -3782 (|t#1| $ (-483) (-483) |t#1|)) (-15 -1573 (|t#1| $ (-483) (-483) |t#1|)) (-15 -1254 ($ $ (-483) |t#2|)) (-15 -1253 ($ $ (-483) |t#3|)) (-15 -3952 ($ (-1 |t#1| |t#1|) $)) (-15 -1946 ($ (-1 |t#1| |t#1|) $)) (-15 -3952 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3952 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
-(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T))
-((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1727 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3990)) (|has| |#1| (-756))) ELT)) (-2905 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-3782 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3718 (($) NIL T CONST)) (-2293 (($ $) NIL (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) NIL T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3400 (($ |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) NIL T ELT)) (-3413 (((-483) (-1 (-85) |#1|) $) NIL T ELT) (((-483) |#1| $) NIL (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) NIL (|has| |#1| (-1012)) ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-1255 (($ (-583 |#1|)) 11 T ELT) (($ (-694) |#1|) 14 T ELT)) (-3608 (($ (-694) |#1|) 13 T ELT)) (-2196 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3512 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2197 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-2300 (($ |#1| $ (-483)) NIL T ELT) (($ $ $ (-483)) NIL T ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3795 ((|#1| $) NIL (|has| (-483) (-756)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2195 (($ $ |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#1| $ (-483) |#1|) NIL T ELT) ((|#1| $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-2301 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1728 (($ $ $ (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 10 T ELT)) (-3796 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1255 ($ (-583 |#1|))) (-15 -1255 ($ (-694) |#1|)))) (-1127)) (T -58))
-((-1255 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-5 *1 (-58 *3)))) (-1255 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *1 (-58 *3)) (-4 *3 (-1127)))))
-((-3835 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16 T ELT)) (-3836 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18 T ELT)) (-3952 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13 T ELT)))
-(((-59 |#1| |#2|) (-10 -7 (-15 -3835 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3836 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3952 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1127) (-1127)) (T -59))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-3836 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1127)) (-4 *2 (-1127)) (-5 *1 (-59 *5 *2)))) (-3835 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1127)) (-4 *5 (-1127)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5)))))
-((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3782 ((|#1| $ (-483) (-483) |#1|) NIL T ELT)) (-1254 (($ $ (-483) (-58 |#1|)) NIL T ELT)) (-1253 (($ $ (-483) (-58 |#1|)) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3107 (((-58 |#1|) $ (-483)) NIL T ELT)) (-1573 ((|#1| $ (-483) (-483) |#1|) NIL T ELT)) (-3108 ((|#1| $ (-483) (-483)) NIL T ELT)) (-2885 (((-583 |#1|) $) NIL T ELT)) (-3110 (((-694) $) NIL T ELT)) (-3608 (($ (-694) (-694) |#1|) NIL T ELT)) (-3109 (((-694) $) NIL T ELT)) (-3114 (((-483) $) NIL T ELT)) (-3112 (((-483) $) NIL T ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3113 (((-483) $) NIL T ELT)) (-3111 (((-483) $) NIL T ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-2195 (($ $ |#1|) NIL T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#1| $ (-483) (-483)) NIL T ELT) ((|#1| $ (-483) (-483) |#1|) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3106 (((-58 |#1|) $ (-483)) NIL T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-60 |#1|) (-13 (-57 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -3990))) (-1127)) (T -60))
-NIL
-((-1257 (((-1177 (-630 |#1|)) (-630 |#1|)) 61 T ELT)) (-1256 (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 (-583 (-830))))) |#2| (-830)) 49 T ELT)) (-1258 (((-2 (|:| |minor| (-583 (-830))) (|:| -3261 |#2|) (|:| |minors| (-583 (-583 (-830)))) (|:| |ops| (-583 |#2|))) |#2| (-830)) 72 (|has| |#1| (-311)) ELT)))
-(((-61 |#1| |#2|) (-10 -7 (-15 -1256 ((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 (-583 (-830))))) |#2| (-830))) (-15 -1257 ((-1177 (-630 |#1|)) (-630 |#1|))) (IF (|has| |#1| (-311)) (-15 -1258 ((-2 (|:| |minor| (-583 (-830))) (|:| -3261 |#2|) (|:| |minors| (-583 (-583 (-830)))) (|:| |ops| (-583 |#2|))) |#2| (-830))) |%noBranch|)) (-494) (-600 |#1|)) (T -61))
-((-1258 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-4 *5 (-494)) (-5 *2 (-2 (|:| |minor| (-583 (-830))) (|:| -3261 *3) (|:| |minors| (-583 (-583 (-830)))) (|:| |ops| (-583 *3)))) (-5 *1 (-61 *5 *3)) (-5 *4 (-830)) (-4 *3 (-600 *5)))) (-1257 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-1177 (-630 *4))) (-5 *1 (-61 *4 *5)) (-5 *3 (-630 *4)) (-4 *5 (-600 *4)))) (-1256 (*1 *2 *3 *4) (-12 (-4 *5 (-494)) (-5 *2 (-2 (|:| |mat| (-630 *5)) (|:| |vec| (-1177 (-583 (-830)))))) (-5 *1 (-61 *5 *3)) (-5 *4 (-830)) (-4 *3 (-600 *5)))))
-((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3318 ((|#1| $) 42 T ELT)) (-3718 (($) NIL T CONST)) (-3320 ((|#1| |#1| $) 37 T ELT)) (-3319 ((|#1| $) 35 T ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-1271 ((|#1| $) NIL T ELT)) (-3603 (($ |#1| $) 38 T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1272 ((|#1| $) 36 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) 20 T ELT)) (-3559 (($) 46 T ELT)) (-3317 (((-694) $) 33 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) 19 T ELT)) (-3940 (((-772) $) 32 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1273 (($ (-583 |#1|)) NIL T ELT)) (-1259 (($ (-583 |#1|)) 44 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 14 (|has| $ (-6 -3989)) ELT)))
-(((-62 |#1|) (-13 (-1033 |#1|) (-10 -8 (-15 -1259 ($ (-583 |#1|))))) (-1012)) (T -62))
-((-1259 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-5 *1 (-62 *3)))))
-((-3940 (((-772) $) 13 T ELT) (($ (-1093)) 9 T ELT) (((-1093) $) 8 T ELT)))
-(((-63 |#1|) (-10 -7 (-15 -3940 ((-1093) |#1|)) (-15 -3940 (|#1| (-1093))) (-15 -3940 ((-772) |#1|))) (-64)) (T -63))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-1093)) 20 T ELT) (((-1093) $) 19 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT)))
+(-13 (-962) (-655 |t#1|) (-556 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-484)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
+((-3414 (((-345 |#1|) |#1|) 41 T ELT)) (-3728 (((-345 |#1|) |#1|) 30 T ELT) (((-345 |#1|) |#1| (-584 (-48))) 33 T ELT)) (-1222 (((-85) |#1|) 59 T ELT)))
+(((-39 |#1|) (-10 -7 (-15 -3728 ((-345 |#1|) |#1| (-584 (-48)))) (-15 -3728 ((-345 |#1|) |#1|)) (-15 -3414 ((-345 |#1|) |#1|)) (-15 -1222 ((-85) |#1|))) (-1154 (-48))) (T -39))
+((-1222 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1154 (-48))))) (-3414 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1154 (-48))))) (-3728 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1154 (-48))))) (-3728 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-48))) (-5 *2 (-345 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1154 (-48))))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1645 (((-2 (|:| |num| (-1178 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2061 (($ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2059 (((-85) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1780 (((-631 (-347 |#2|)) (-1178 $)) NIL T ELT) (((-631 (-347 |#2|))) NIL T ELT)) (-3326 (((-347 |#2|) $) NIL T ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3771 (($ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3967 (((-345 $) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1606 (((-85) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3133 (((-695)) NIL (|has| (-347 |#2|) (-317)) ELT)) (-1659 (((-85)) NIL T ELT)) (-1658 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 (-484) #1#) $) NIL (|has| (-347 |#2|) (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| (-347 |#2|) (-951 (-347 (-484)))) ELT) (((-3 (-347 |#2|) #1#) $) NIL T ELT)) (-3153 (((-484) $) NIL (|has| (-347 |#2|) (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| (-347 |#2|) (-951 (-347 (-484)))) ELT) (((-347 |#2|) $) NIL T ELT)) (-1790 (($ (-1178 (-347 |#2|)) (-1178 $)) NIL T ELT) (($ (-1178 (-347 |#2|))) 60 T ELT) (($ (-1178 |#2|) |#2|) 130 T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-347 |#2|) (-298)) ELT)) (-2562 (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1779 (((-631 (-347 |#2|)) $ (-1178 $)) NIL T ELT) (((-631 (-347 |#2|)) $) NIL T ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL (|has| (-347 |#2|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| (-347 |#2|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-347 |#2|))) (|:| |vec| (-1178 (-347 |#2|)))) (-631 $) (-1178 $)) NIL T ELT) (((-631 (-347 |#2|)) (-631 $)) NIL T ELT)) (-1650 (((-1178 $) (-1178 $)) NIL T ELT)) (-3838 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-347 |#3|)) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-1637 (((-584 (-584 |#1|))) NIL (|has| |#1| (-317)) ELT)) (-1662 (((-85) |#1| |#1|) NIL T ELT)) (-3106 (((-831)) NIL T ELT)) (-2992 (($) NIL (|has| (-347 |#2|) (-317)) ELT)) (-1657 (((-85)) NIL T ELT)) (-1656 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-2561 (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3499 (($ $) NIL T ELT)) (-2831 (($) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1678 (((-85) $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1762 (($ $ (-695)) NIL (|has| (-347 |#2|) (-298)) ELT) (($ $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-3719 (((-85) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3768 (((-831) $) NIL (|has| (-347 |#2|) (-298)) ELT) (((-744 (-831)) $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-2408 (((-85) $) NIL T ELT)) (-3373 (((-695)) NIL T ELT)) (-1651 (((-1178 $) (-1178 $)) 105 T ELT)) (-3129 (((-347 |#2|) $) NIL T ELT)) (-1638 (((-584 (-858 |#1|)) (-1089)) NIL (|has| |#1| (-311)) ELT)) (-3441 (((-633 $) $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2012 ((|#3| $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2008 (((-831) $) NIL (|has| (-347 |#2|) (-317)) ELT)) (-3077 ((|#3| $) NIL T ELT)) (-2278 (((-631 (-484)) (-1178 $)) NIL (|has| (-347 |#2|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-347 |#2|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-347 |#2|))) (|:| |vec| (-1178 (-347 |#2|)))) (-1178 $) $) NIL T ELT) (((-631 (-347 |#2|)) (-1178 $)) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-1223 (((-1184) (-695)) 83 T ELT)) (-1646 (((-631 (-347 |#2|))) 55 T ELT)) (-1648 (((-631 (-347 |#2|))) 48 T ELT)) (-2482 (($ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1643 (($ (-1178 |#2|) |#2|) 131 T ELT)) (-1647 (((-631 (-347 |#2|))) 49 T ELT)) (-1649 (((-631 (-347 |#2|))) 47 T ELT)) (-1642 (((-2 (|:| |num| (-631 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 129 T ELT)) (-1644 (((-2 (|:| |num| (-1178 |#2|)) (|:| |den| |#2|)) $) 67 T ELT)) (-1655 (((-1178 $)) 46 T ELT)) (-3914 (((-1178 $)) 45 T ELT)) (-1654 (((-85) $) NIL T ELT)) (-1653 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3442 (($) NIL (|has| (-347 |#2|) (-298)) CONST)) (-2398 (($ (-831)) NIL (|has| (-347 |#2|) (-317)) ELT)) (-1640 (((-3 |#2| #1#)) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1664 (((-695)) NIL T ELT)) (-2407 (($) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3141 (($ (-584 $)) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1674 (((-584 (-2 (|:| -3728 (-484)) (|:| -2399 (-484))))) NIL (|has| (-347 |#2|) (-298)) ELT)) (-3728 (((-345 $) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-347 |#2|) (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3462 (((-3 $ #1#) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1605 (((-695) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3796 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1641 (((-3 |#2| #1#)) NIL T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3753 (((-347 |#2|) (-1178 $)) NIL T ELT) (((-347 |#2|)) 43 T ELT)) (-1763 (((-695) $) NIL (|has| (-347 |#2|) (-298)) ELT) (((-3 (-695) #1#) $ $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-3754 (($ $ (-1 (-347 |#2|) (-347 |#2|))) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 (-347 |#2|) (-347 |#2|)) (-695)) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 |#2| |#2|)) 125 T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089))))) ELT) (($ $ (-1089) (-695)) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089))))) ELT) (($ $ (-584 (-1089))) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089))))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089))))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT) (($ $) NIL (OR (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT)) (-2406 (((-631 (-347 |#2|)) (-1178 $) (-1 (-347 |#2|) (-347 |#2|))) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3182 ((|#3|) 54 T ELT)) (-1672 (($) NIL (|has| (-347 |#2|) (-298)) ELT)) (-3221 (((-1178 (-347 |#2|)) $ (-1178 $)) NIL T ELT) (((-631 (-347 |#2|)) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 (-347 |#2|)) $) 61 T ELT) (((-631 (-347 |#2|)) (-1178 $)) 106 T ELT)) (-3968 (((-1178 (-347 |#2|)) $) NIL T ELT) (($ (-1178 (-347 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1652 (((-1178 $) (-1178 $)) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-347 |#2|)) NIL T ELT) (($ (-347 (-484))) NIL (OR (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-951 (-347 (-484))))) ELT) (($ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2700 (($ $) NIL (|has| (-347 |#2|) (-298)) ELT) (((-633 $) $) NIL (|has| (-347 |#2|) (-118)) ELT)) (-2447 ((|#3| $) NIL T ELT)) (-3123 (((-695)) NIL T CONST)) (-1661 (((-85)) 41 T ELT)) (-1660 (((-85) |#1|) 53 T ELT) (((-85) |#2|) 137 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2010 (((-1178 $)) NIL T ELT)) (-2060 (((-85) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1639 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1663 (((-85)) NIL T ELT)) (-2658 (($) 17 T CONST)) (-2664 (($) 27 T CONST)) (-2667 (($ $ (-1 (-347 |#2|) (-347 |#2|))) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 (-347 |#2|) (-347 |#2|)) (-695)) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089))))) ELT) (($ $ (-1089) (-695)) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089))))) ELT) (($ $ (-584 (-1089))) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089))))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089))))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT) (($ $) NIL (OR (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL (|has| (-347 |#2|) (-311)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 |#2|)) NIL T ELT) (($ (-347 |#2|) $) NIL T ELT) (($ (-347 (-484)) $) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-347 (-484))) NIL (|has| (-347 |#2|) (-311)) ELT)))
+(((-40 |#1| |#2| |#3| |#4|) (-13 (-290 |#1| |#2| |#3|) (-10 -7 (-15 -1223 ((-1184) (-695))))) (-311) (-1154 |#1|) (-1154 (-347 |#2|)) |#3|) (T -40))
+((-1223 (*1 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-311)) (-4 *5 (-1154 *4)) (-5 *2 (-1184)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1154 (-347 *5))) (-14 *7 *6))))
+((-1224 ((|#2| |#2|) 47 T ELT)) (-1229 ((|#2| |#2|) 136 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-13 (-389) (-951 (-484))))) ELT)) (-1228 ((|#2| |#2|) 100 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-13 (-389) (-951 (-484))))) ELT)) (-1227 ((|#2| |#2|) 101 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-13 (-389) (-951 (-484))))) ELT)) (-1230 ((|#2| (-86) |#2| (-695)) 80 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-13 (-389) (-951 (-484))))) ELT)) (-1226 (((-1084 |#2|) |#2|) 44 T ELT)) (-1225 ((|#2| |#2| (-584 (-551 |#2|))) 18 T ELT) ((|#2| |#2| (-584 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT)))
+(((-41 |#1| |#2|) (-10 -7 (-15 -1224 (|#2| |#2|)) (-15 -1225 (|#2| |#2|)) (-15 -1225 (|#2| |#2| |#2|)) (-15 -1225 (|#2| |#2| (-584 |#2|))) (-15 -1225 (|#2| |#2| (-584 (-551 |#2|)))) (-15 -1226 ((-1084 |#2|) |#2|)) (IF (|has| |#1| (-13 (-389) (-951 (-484)))) (IF (|has| |#2| (-361 |#1|)) (PROGN (-15 -1227 (|#2| |#2|)) (-15 -1228 (|#2| |#2|)) (-15 -1229 (|#2| |#2|)) (-15 -1230 (|#2| (-86) |#2| (-695)))) |%noBranch|) |%noBranch|)) (-495) (-13 (-311) (-253) (-10 -8 (-15 -2996 ((-1038 |#1| (-551 $)) $)) (-15 -2995 ((-1038 |#1| (-551 $)) $)) (-15 -3942 ($ (-1038 |#1| (-551 $))))))) (T -41))
+((-1230 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-86)) (-5 *4 (-695)) (-4 *5 (-13 (-389) (-951 (-484)))) (-4 *5 (-495)) (-5 *1 (-41 *5 *2)) (-4 *2 (-361 *5)) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2996 ((-1038 *5 (-551 $)) $)) (-15 -2995 ((-1038 *5 (-551 $)) $)) (-15 -3942 ($ (-1038 *5 (-551 $))))))))) (-1229 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-951 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-361 *3)) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2996 ((-1038 *3 (-551 $)) $)) (-15 -2995 ((-1038 *3 (-551 $)) $)) (-15 -3942 ($ (-1038 *3 (-551 $))))))))) (-1228 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-951 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-361 *3)) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2996 ((-1038 *3 (-551 $)) $)) (-15 -2995 ((-1038 *3 (-551 $)) $)) (-15 -3942 ($ (-1038 *3 (-551 $))))))))) (-1227 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-951 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-361 *3)) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2996 ((-1038 *3 (-551 $)) $)) (-15 -2995 ((-1038 *3 (-551 $)) $)) (-15 -3942 ($ (-1038 *3 (-551 $))))))))) (-1226 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-1084 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-311) (-253) (-10 -8 (-15 -2996 ((-1038 *4 (-551 $)) $)) (-15 -2995 ((-1038 *4 (-551 $)) $)) (-15 -3942 ($ (-1038 *4 (-551 $))))))))) (-1225 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-551 *2))) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2996 ((-1038 *4 (-551 $)) $)) (-15 -2995 ((-1038 *4 (-551 $)) $)) (-15 -3942 ($ (-1038 *4 (-551 $))))))) (-4 *4 (-495)) (-5 *1 (-41 *4 *2)))) (-1225 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2996 ((-1038 *4 (-551 $)) $)) (-15 -2995 ((-1038 *4 (-551 $)) $)) (-15 -3942 ($ (-1038 *4 (-551 $))))))) (-4 *4 (-495)) (-5 *1 (-41 *4 *2)))) (-1225 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2996 ((-1038 *3 (-551 $)) $)) (-15 -2995 ((-1038 *3 (-551 $)) $)) (-15 -3942 ($ (-1038 *3 (-551 $))))))))) (-1225 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2996 ((-1038 *3 (-551 $)) $)) (-15 -2995 ((-1038 *3 (-551 $)) $)) (-15 -3942 ($ (-1038 *3 (-551 $))))))))) (-1224 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-311) (-253) (-10 -8 (-15 -2996 ((-1038 *3 (-551 $)) $)) (-15 -2995 ((-1038 *3 (-551 $)) $)) (-15 -3942 ($ (-1038 *3 (-551 $))))))))))
+((-3728 (((-345 (-1084 |#3|)) (-1084 |#3|) (-584 (-48))) 23 T ELT) (((-345 |#3|) |#3| (-584 (-48))) 19 T ELT)))
+(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3728 ((-345 |#3|) |#3| (-584 (-48)))) (-15 -3728 ((-345 (-1084 |#3|)) (-1084 |#3|) (-584 (-48))))) (-757) (-718) (-862 (-48) |#2| |#1|)) (T -42))
+((-3728 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-48))) (-4 *5 (-757)) (-4 *6 (-718)) (-4 *7 (-862 (-48) *6 *5)) (-5 *2 (-345 (-1084 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1084 *7)))) (-3728 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-48))) (-4 *5 (-757)) (-4 *6 (-718)) (-5 *2 (-345 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-862 (-48) *6 *5)))))
+((-1234 (((-695) |#2|) 70 T ELT)) (-1232 (((-695) |#2|) 74 T ELT)) (-1247 (((-584 |#2|)) 37 T ELT)) (-1231 (((-695) |#2|) 73 T ELT)) (-1233 (((-695) |#2|) 69 T ELT)) (-1235 (((-695) |#2|) 72 T ELT)) (-1245 (((-584 (-631 |#1|))) 65 T ELT)) (-1240 (((-584 |#2|)) 60 T ELT)) (-1238 (((-584 |#2|) |#2|) 48 T ELT)) (-1242 (((-584 |#2|)) 62 T ELT)) (-1241 (((-584 |#2|)) 61 T ELT)) (-1244 (((-584 (-631 |#1|))) 53 T ELT)) (-1239 (((-584 |#2|)) 59 T ELT)) (-1237 (((-584 |#2|) |#2|) 47 T ELT)) (-1236 (((-584 |#2|)) 55 T ELT)) (-1246 (((-584 (-631 |#1|))) 66 T ELT)) (-1243 (((-584 |#2|)) 64 T ELT)) (-2010 (((-1178 |#2|) (-1178 |#2|)) 99 (|has| |#1| (-257)) ELT)))
+(((-43 |#1| |#2|) (-10 -7 (-15 -1231 ((-695) |#2|)) (-15 -1232 ((-695) |#2|)) (-15 -1233 ((-695) |#2|)) (-15 -1234 ((-695) |#2|)) (-15 -1235 ((-695) |#2|)) (-15 -1236 ((-584 |#2|))) (-15 -1237 ((-584 |#2|) |#2|)) (-15 -1238 ((-584 |#2|) |#2|)) (-15 -1239 ((-584 |#2|))) (-15 -1240 ((-584 |#2|))) (-15 -1241 ((-584 |#2|))) (-15 -1242 ((-584 |#2|))) (-15 -1243 ((-584 |#2|))) (-15 -1244 ((-584 (-631 |#1|)))) (-15 -1245 ((-584 (-631 |#1|)))) (-15 -1246 ((-584 (-631 |#1|)))) (-15 -1247 ((-584 |#2|))) (IF (|has| |#1| (-257)) (-15 -2010 ((-1178 |#2|) (-1178 |#2|))) |%noBranch|)) (-495) (-358 |#1|)) (T -43))
+((-2010 (*1 *2 *2) (-12 (-5 *2 (-1178 *4)) (-4 *4 (-358 *3)) (-4 *3 (-257)) (-4 *3 (-495)) (-5 *1 (-43 *3 *4)))) (-1247 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1246 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1245 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1244 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1243 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1242 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1241 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1240 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1239 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1238 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-584 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))) (-1237 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-584 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))) (-1236 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))) (-1235 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))) (-1234 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))) (-1233 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))) (-1232 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))) (-1231 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1770 (((-3 $ #1="failed")) NIL (|has| |#1| (-495)) ELT)) (-1310 (((-3 $ #1#) $ $) NIL T ELT)) (-3220 (((-1178 (-631 |#1|)) (-1178 $)) NIL T ELT) (((-1178 (-631 |#1|))) 24 T ELT)) (-1727 (((-1178 $)) 52 T ELT)) (-3720 (($) NIL T CONST)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2010 (-584 $))) #1#)) NIL (|has| |#1| (-495)) ELT)) (-1701 (((-3 $ #1#)) NIL (|has| |#1| (-495)) ELT)) (-1786 (((-631 |#1|) (-1178 $)) NIL T ELT) (((-631 |#1|)) NIL T ELT)) (-1725 ((|#1| $) NIL T ELT)) (-1784 (((-631 |#1|) $ (-1178 $)) NIL T ELT) (((-631 |#1|) $) NIL T ELT)) (-2402 (((-3 $ #1#) $) NIL (|has| |#1| (-495)) ELT)) (-1898 (((-1084 (-858 |#1|))) NIL (|has| |#1| (-311)) ELT)) (-2405 (($ $ (-831)) NIL T ELT)) (-1723 ((|#1| $) NIL T ELT)) (-1703 (((-1084 |#1|) $) NIL (|has| |#1| (-495)) ELT)) (-1788 ((|#1| (-1178 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1721 (((-1084 |#1|) $) NIL T ELT)) (-1715 (((-85)) 99 T ELT)) (-1790 (($ (-1178 |#1|) (-1178 $)) NIL T ELT) (($ (-1178 |#1|)) NIL T ELT)) (-3463 (((-3 $ #1#) $) 14 (|has| |#1| (-495)) ELT)) (-3106 (((-831)) 53 T ELT)) (-1712 (((-85)) NIL T ELT)) (-2431 (($ $ (-831)) NIL T ELT)) (-1708 (((-85)) NIL T ELT)) (-1706 (((-85)) NIL T ELT)) (-1710 (((-85)) 101 T ELT)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2010 (-584 $))) #1#)) NIL (|has| |#1| (-495)) ELT)) (-1702 (((-3 $ #1#)) NIL (|has| |#1| (-495)) ELT)) (-1787 (((-631 |#1|) (-1178 $)) NIL T ELT) (((-631 |#1|)) NIL T ELT)) (-1726 ((|#1| $) NIL T ELT)) (-1785 (((-631 |#1|) $ (-1178 $)) NIL T ELT) (((-631 |#1|) $) NIL T ELT)) (-2403 (((-3 $ #1#) $) NIL (|has| |#1| (-495)) ELT)) (-1902 (((-1084 (-858 |#1|))) NIL (|has| |#1| (-311)) ELT)) (-2404 (($ $ (-831)) NIL T ELT)) (-1724 ((|#1| $) NIL T ELT)) (-1704 (((-1084 |#1|) $) NIL (|has| |#1| (-495)) ELT)) (-1789 ((|#1| (-1178 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1722 (((-1084 |#1|) $) NIL T ELT)) (-1716 (((-85)) 98 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-1707 (((-85)) 106 T ELT)) (-1709 (((-85)) 105 T ELT)) (-1711 (((-85)) 107 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1714 (((-85)) 100 T ELT)) (-3796 ((|#1| $ (-484)) 55 T ELT)) (-3221 (((-1178 |#1|) $ (-1178 $)) 48 T ELT) (((-631 |#1|) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 |#1|) $) 28 T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-3968 (((-1178 |#1|) $) NIL T ELT) (($ (-1178 |#1|)) NIL T ELT)) (-1890 (((-584 (-858 |#1|)) (-1178 $)) NIL T ELT) (((-584 (-858 |#1|))) NIL T ELT)) (-2433 (($ $ $) NIL T ELT)) (-1720 (((-85)) 95 T ELT)) (-3942 (((-773) $) 71 T ELT) (($ (-1178 |#1|)) 22 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2010 (((-1178 $)) 51 T ELT)) (-1705 (((-584 (-1178 |#1|))) NIL (|has| |#1| (-495)) ELT)) (-2434 (($ $ $ $) NIL T ELT)) (-1718 (((-85)) 91 T ELT)) (-2543 (($ (-631 |#1|) $) 18 T ELT)) (-2432 (($ $ $) NIL T ELT)) (-1719 (((-85)) 97 T ELT)) (-1717 (((-85)) 92 T ELT)) (-1713 (((-85)) 90 T ELT)) (-2658 (($) NIL T CONST)) (-3054 (((-85) $ $) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1055 |#2| |#1|) $) 19 T ELT)))
+(((-44 |#1| |#2| |#3| |#4|) (-13 (-358 |#1|) (-591 (-1055 |#2| |#1|)) (-10 -8 (-15 -3942 ($ (-1178 |#1|))))) (-311) (-831) (-584 (-1089)) (-1178 (-631 |#1|))) (T -44))
+((-3942 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-311)) (-14 *6 (-1178 (-631 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))))))
+((-2566 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3398 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3791 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3793 (($ $) NIL T ELT)) (-3595 (($) NIL T ELT) (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2196 (((-1184) $ |#1| |#1|) NIL (|has| $ (-6 -3992)) ELT) (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-3781 (($ $ (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-1730 (((-85) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) $) NIL (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-1728 (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-757))) ELT)) (-2907 (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3438 (((-85) $ (-695)) NIL T ELT)) (-3023 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3992)) ELT)) (-3783 (($ $ $) 34 (|has| $ (-6 -3992)) ELT)) (-3782 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3992)) ELT)) (-3785 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) 36 (|has| $ (-6 -3992)) ELT)) (-3784 ((|#2| $ |#1| |#2|) 54 T ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3992)) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ (-1145 (-484)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3992)) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3992)) ELT) (($ $ #2="rest" $) NIL (|has| $ (-6 -3992)) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3992)) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3992)) ELT)) (-3024 (($ $ (-584 $)) NIL (|has| $ (-6 -3992)) ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3706 (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-3792 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2229 (((-3 |#2| #5="failed") |#1| $) 44 T ELT)) (-3720 (($) NIL T CONST)) (-2295 (($ $) NIL (|has| $ (-6 -3992)) ELT)) (-2296 (($ $) NIL T ELT)) (-3795 (($ $ (-695)) NIL T ELT) (($ $) 30 T ELT)) (-2366 (($ $) NIL (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3401 (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3991)) ELT) (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-3 |#2| #5#) |#1| $) 57 T ELT) (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-3402 (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-3838 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3991)) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3991)) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-1574 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3992)) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3992)) ELT)) (-3110 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ (-484)) NIL T ELT)) (-3439 (((-85) $) NIL T ELT)) (-3415 (((-484) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-484) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) ELT) (((-484) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ (-484)) NIL (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-2887 (((-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 21 (|has| $ (-6 -3991)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3991)) ELT) (((-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 21 (|has| $ (-6 -3991)) ELT)) (-3029 (((-584 $) $) NIL T ELT)) (-3025 (((-85) $ $) NIL (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-3610 (($ (-695) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3715 (((-85) $ (-695)) NIL T ELT)) (-2198 ((|#1| $) NIL (|has| |#1| (-757)) ELT) (((-484) $) 39 (|has| (-484) (-757)) ELT)) (-2529 (($ $ $) NIL (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2854 (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3514 (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2606 (((-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3991)) ELT) (((-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT) (((-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-2199 ((|#1| $) NIL (|has| |#1| (-757)) ELT) (((-484) $) 41 (|has| (-484) (-757)) ELT)) (-2855 (($ $ $) NIL (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-1947 (($ (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3992)) ELT) (($ (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3530 (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3712 (((-85) $ (-695)) NIL T ELT)) (-3028 (((-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3523 (((-85) $) NIL T ELT)) (-3239 (((-1072) $) 50 (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3794 (($ $ (-695)) NIL T ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2230 (((-584 |#1|) $) 23 T ELT)) (-2231 (((-85) |#1| $) NIL T ELT)) (-1272 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3605 (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL T ELT) (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2302 (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2201 (((-584 |#1|) $) NIL T ELT) (((-584 (-484)) $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL T ELT) (((-85) (-484) $) NIL T ELT)) (-3240 (((-1033) $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3797 ((|#2| $) NIL (|has| |#1| (-757)) ELT) (($ $ (-695)) NIL T ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 28 T ELT)) (-1352 (((-3 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2197 (($ $ |#2|) NIL (|has| $ (-6 -3992)) ELT) (($ $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3992)) ELT)) (-1273 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3440 (((-85) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT) (((-85) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-248 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-248 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 (-248 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2200 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT) (((-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-2203 (((-584 |#2|) $) NIL T ELT) (((-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 20 T ELT)) (-3399 (((-85) $) 19 T ELT)) (-3561 (($) 15 T ELT)) (-3796 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ #3#) NIL T ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $ #4#) NIL T ELT)) (-3027 (((-484) $ $) NIL T ELT)) (-1464 (($) 14 T ELT) (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1569 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-2303 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-3629 (((-85) $) NIL T ELT)) (-3788 (($ $) NIL T ELT)) (-3786 (($ $) NIL (|has| $ (-6 -3992)) ELT)) (-3789 (((-695) $) NIL T ELT)) (-3790 (($ $) NIL T ELT)) (-1944 (((-695) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT) (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-695) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-1729 (($ $ $ (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-3396 (($ $) NIL T ELT)) (-3968 (((-473) $) NIL (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-554 (-473))) ELT)) (-3526 (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL T ELT) (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3787 (($ $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-3798 (($ $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ (-584 $)) NIL T ELT) (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 32 T ELT) (($ $ $) NIL T ELT)) (-3942 (((-773) $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-3518 (((-584 $) $) NIL T ELT)) (-3026 (((-85) $ $) NIL (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-1263 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1274 (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1221 (((-3 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) #5#) |#1| $) 52 T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT) (((-85) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-2564 (((-85) $ $) NIL (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2565 (((-85) $ $) NIL (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3054 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-2682 (((-85) $ $) NIL (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2683 (((-85) $ $) NIL (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3953 (((-695) $) 26 (|has| $ (-6 -3991)) ELT)))
+(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1013) (-1013)) (T -45))
+NIL
+((-3933 (((-85) $) 12 T ELT)) (-3954 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-347 (-484)) $) 25 T ELT) (($ $ (-347 (-484))) NIL T ELT)))
+(((-46 |#1| |#2| |#3|) (-10 -7 (-15 * (|#1| |#1| (-347 (-484)))) (-15 * (|#1| (-347 (-484)) |#1|)) (-15 -3933 ((-85) |#1|)) (-15 -3954 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|))) (-47 |#2| |#3|) (-962) (-717)) (T -46))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 69 (|has| |#1| (-495)) ELT)) (-2061 (($ $) 70 (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) 72 (|has| |#1| (-495)) ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3955 (($ $) 78 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-3933 (((-85) $) 80 T ELT)) (-2891 (($ |#1| |#2|) 79 T ELT)) (-3954 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-2892 (($ $) 83 T ELT)) (-3171 ((|#1| $) 84 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3462 (((-3 $ "failed") $ $) 68 (|has| |#1| (-495)) ELT)) (-3944 ((|#2| $) 82 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ (-347 (-484))) 75 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $) 67 (|has| |#1| (-495)) ELT) (($ |#1|) 65 (|has| |#1| (-146)) ELT)) (-3673 ((|#1| $ |#2|) 77 T ELT)) (-2700 (((-633 $) $) 66 (|has| |#1| (-118)) ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2060 (((-85) $ $) 71 (|has| |#1| (-495)) ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3945 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-347 (-484)) $) 74 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 73 (|has| |#1| (-38 (-347 (-484)))) ELT)))
+(((-47 |#1| |#2|) (-113) (-962) (-717)) (T -47))
+((-3171 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) (-2892 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) (-3944 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3954 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)))) (-3933 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-85)))) (-2891 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) (-3955 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) (-3673 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) (-3945 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-311)))))
+(-13 (-962) (-82 |t#1| |t#1|) (-10 -8 (-15 -3171 (|t#1| $)) (-15 -2892 ($ $)) (-15 -3944 (|t#2| $)) (-15 -3954 ($ (-1 |t#1| |t#1|) $)) (-15 -3933 ((-85) $)) (-15 -2891 ($ |t#1| |t#2|)) (-15 -3955 ($ $)) (-15 -3673 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-311)) (-15 -3945 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-6 (-146)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-495)) (-6 (-495)) |%noBranch|) (IF (|has| |t#1| (-38 (-347 (-484)))) (-6 (-38 (-347 (-484)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-556 (-484)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) |has| |#1| (-495)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-245) |has| |#1| (-495)) ((-495) |has| |#1| (-495)) ((-13) . T) ((-589 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-495)) ((-655 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-495)) ((-664) . T) ((-964 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-969 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-1213 (((-584 $) (-1084 $) (-1089)) NIL T ELT) (((-584 $) (-1084 $)) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT)) (-1214 (($ (-1084 $) (-1089)) NIL T ELT) (($ (-1084 $)) NIL T ELT) (($ (-858 $)) NIL T ELT)) (-3185 (((-85) $) 9 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-1598 (((-584 (-551 $)) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1602 (($ $ (-248 $)) NIL T ELT) (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT)) (-3771 (($ $) NIL T ELT)) (-3967 (((-345 $) $) NIL T ELT)) (-3035 (($ $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-1215 (((-584 $) (-1084 $) (-1089)) NIL T ELT) (((-584 $) (-1084 $)) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT)) (-3180 (($ (-1084 $) (-1089)) NIL T ELT) (($ (-1084 $)) NIL T ELT) (($ (-858 $)) NIL T ELT)) (-3154 (((-3 (-551 $) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL T ELT)) (-3153 (((-551 $) $) NIL T ELT) (((-484) $) NIL T ELT) (((-347 (-484)) $) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2277 (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL T ELT) (((-631 (-484)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-347 (-484)))) (|:| |vec| (-1178 (-347 (-484))))) (-631 $) (-1178 $)) NIL T ELT) (((-631 (-347 (-484))) (-631 $)) NIL T ELT)) (-3838 (($ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-3719 (((-85) $) NIL T ELT)) (-2571 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1597 (((-584 (-86)) $) NIL T ELT)) (-3591 (((-86) (-86)) NIL T ELT)) (-2408 (((-85) $) 11 T ELT)) (-2671 (((-85) $) NIL (|has| $ (-951 (-484))) ELT)) (-2996 (((-1038 (-484) (-551 $)) $) NIL T ELT)) (-3009 (($ $ (-484)) NIL T ELT)) (-3129 (((-1084 $) (-1084 $) (-551 $)) NIL T ELT) (((-1084 $) (-1084 $) (-584 (-551 $))) NIL T ELT) (($ $ (-551 $)) NIL T ELT) (($ $ (-584 (-551 $))) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1595 (((-1084 $) (-551 $)) NIL (|has| $ (-962)) ELT)) (-3954 (($ (-1 $ $) (-551 $)) NIL T ELT)) (-1600 (((-3 (-551 $) #1#) $) NIL T ELT)) (-2278 (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-631 (-484)) (-1178 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-347 (-484)))) (|:| |vec| (-1178 (-347 (-484))))) (-1178 $) $) NIL T ELT) (((-631 (-347 (-484))) (-1178 $)) NIL T ELT)) (-1889 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-1599 (((-584 (-551 $)) $) NIL T ELT)) (-2233 (($ (-86) $) NIL T ELT) (($ (-86) (-584 $)) NIL T ELT)) (-2631 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1089)) NIL T ELT)) (-2482 (($ $) NIL T ELT)) (-2601 (((-695) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1596 (((-85) $ $) NIL T ELT) (((-85) $ (-1089)) NIL T ELT)) (-3728 (((-345 $) $) NIL T ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2672 (((-85) $) NIL (|has| $ (-951 (-484))) ELT)) (-3764 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT) (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-1089) (-1 $ (-584 $))) NIL T ELT) (($ $ (-1089) (-1 $ $)) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-584 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-3796 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-584 $)) NIL T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-1601 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3754 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2995 (((-1038 (-484) (-551 $)) $) NIL T ELT)) (-3182 (($ $) NIL (|has| $ (-962)) ELT)) (-3968 (((-327) $) NIL T ELT) (((-179) $) NIL T ELT) (((-142 (-327)) $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-551 $)) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-1038 (-484) (-551 $))) NIL T ELT)) (-3123 (((-695)) NIL T CONST)) (-2588 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-2252 (((-85) (-86)) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-2658 (($) 6 T CONST)) (-2664 (($) 10 T CONST)) (-2667 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3054 (((-85) $ $) 13 T ELT)) (-3945 (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-347 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ (-347 (-484)) $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT)))
+(((-48) (-13 (-253) (-27) (-951 (-484)) (-951 (-347 (-484))) (-581 (-484)) (-934) (-581 (-347 (-484))) (-120) (-554 (-142 (-327))) (-190) (-556 (-1038 (-484) (-551 $))) (-10 -8 (-15 -2996 ((-1038 (-484) (-551 $)) $)) (-15 -2995 ((-1038 (-484) (-551 $)) $)) (-15 -3838 ($ $)) (-15 -3129 ((-1084 $) (-1084 $) (-551 $))) (-15 -3129 ((-1084 $) (-1084 $) (-584 (-551 $)))) (-15 -3129 ($ $ (-551 $))) (-15 -3129 ($ $ (-584 (-551 $))))))) (T -48))
+((-2996 (*1 *2 *1) (-12 (-5 *2 (-1038 (-484) (-551 (-48)))) (-5 *1 (-48)))) (-2995 (*1 *2 *1) (-12 (-5 *2 (-1038 (-484) (-551 (-48)))) (-5 *1 (-48)))) (-3838 (*1 *1 *1) (-5 *1 (-48))) (-3129 (*1 *2 *2 *3) (-12 (-5 *2 (-1084 (-48))) (-5 *3 (-551 (-48))) (-5 *1 (-48)))) (-3129 (*1 *2 *2 *3) (-12 (-5 *2 (-1084 (-48))) (-5 *3 (-584 (-551 (-48)))) (-5 *1 (-48)))) (-3129 (*1 *1 *1 *2) (-12 (-5 *2 (-551 (-48))) (-5 *1 (-48)))) (-3129 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-551 (-48)))) (-5 *1 (-48)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-1936 (((-584 (-444)) $) 17 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 7 T ELT)) (-3230 (((-1094) $) 18 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-49) (-13 (-1013) (-10 -8 (-15 -1936 ((-584 (-444)) $)) (-15 -3230 ((-1094) $))))) (T -49))
+((-1936 (*1 *2 *1) (-12 (-5 *2 (-584 (-444))) (-5 *1 (-49)))) (-3230 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-49)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 86 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-2662 (((-85) $) 31 T ELT)) (-3154 (((-3 |#1| #1#) $) 34 T ELT)) (-3153 ((|#1| $) 35 T ELT)) (-3955 (($ $) 41 T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2408 (((-85) $) NIL T ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3171 ((|#1| $) 32 T ELT)) (-1453 (($ $) 75 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-1452 (((-85) $) 44 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2407 (($ (-695)) 73 T ELT)) (-3939 (($ (-584 (-484))) 74 T ELT)) (-3944 (((-695) $) 45 T ELT)) (-3942 (((-773) $) 92 T ELT) (($ (-484)) 70 T ELT) (($ |#1|) 68 T ELT)) (-3673 ((|#1| $ $) 29 T ELT)) (-3123 (((-695)) 72 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) 46 T CONST)) (-2664 (($) 17 T CONST)) (-3054 (((-85) $ $) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) 65 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 66 T ELT) (($ |#1| $) 59 T ELT)))
+(((-50 |#1| |#2|) (-13 (-561 |#1|) (-951 |#1|) (-10 -8 (-15 -3171 (|#1| $)) (-15 -1453 ($ $)) (-15 -3955 ($ $)) (-15 -3673 (|#1| $ $)) (-15 -2407 ($ (-695))) (-15 -3939 ($ (-584 (-484)))) (-15 -1452 ((-85) $)) (-15 -2662 ((-85) $)) (-15 -3944 ((-695) $)) (-15 -3954 ($ (-1 |#1| |#1|) $)))) (-962) (-584 (-1089))) (T -50))
+((-3171 (*1 *2 *1) (-12 (-4 *2 (-962)) (-5 *1 (-50 *2 *3)) (-14 *3 (-584 (-1089))))) (-1453 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-962)) (-14 *3 (-584 (-1089))))) (-3955 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-962)) (-14 *3 (-584 (-1089))))) (-3673 (*1 *2 *1 *1) (-12 (-4 *2 (-962)) (-5 *1 (-50 *2 *3)) (-14 *3 (-584 (-1089))))) (-2407 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) (-14 *4 (-584 (-1089))))) (-3939 (*1 *1 *2) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) (-14 *4 (-584 (-1089))))) (-1452 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) (-14 *4 (-584 (-1089))))) (-2662 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) (-14 *4 (-584 (-1089))))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) (-14 *4 (-584 (-1089))))) (-3954 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-50 *3 *4)) (-14 *4 (-584 (-1089))))))
+((-2566 (((-85) $ $) NIL T ELT)) (-1248 (((-697) $) 8 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1249 (((-1015) $) 10 T ELT)) (-3942 (((-773) $) 15 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1250 (($ (-1015) (-697)) 16 T ELT)) (-3054 (((-85) $ $) 12 T ELT)))
+(((-51) (-13 (-1013) (-10 -8 (-15 -1250 ($ (-1015) (-697))) (-15 -1249 ((-1015) $)) (-15 -1248 ((-697) $))))) (T -51))
+((-1250 (*1 *1 *2 *3) (-12 (-5 *2 (-1015)) (-5 *3 (-697)) (-5 *1 (-51)))) (-1249 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-51)))) (-1248 (*1 *2 *1) (-12 (-5 *2 (-697)) (-5 *1 (-51)))))
+((-2662 (((-85) (-51)) 18 T ELT)) (-3154 (((-3 |#1| "failed") (-51)) 20 T ELT)) (-3153 ((|#1| (-51)) 21 T ELT)) (-3942 (((-51) |#1|) 14 T ELT)))
+(((-52 |#1|) (-10 -7 (-15 -3942 ((-51) |#1|)) (-15 -3154 ((-3 |#1| "failed") (-51))) (-15 -2662 ((-85) (-51))) (-15 -3153 (|#1| (-51)))) (-1128)) (T -52))
+((-3153 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1128)))) (-2662 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1128)))) (-3154 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1128)))) (-3942 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1128)))))
+((-2543 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT)))
+(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2543 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-962) (-591 |#1|) (-762 |#1|)) (T -53))
+((-2543 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-591 *5)) (-4 *5 (-962)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-762 *5)))))
+((-1252 ((|#3| |#3| (-584 (-1089))) 44 T ELT)) (-1251 ((|#3| (-584 (-987 |#1| |#2| |#3|)) |#3| (-831)) 32 T ELT) ((|#3| (-584 (-987 |#1| |#2| |#3|)) |#3|) 31 T ELT)))
+(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1251 (|#3| (-584 (-987 |#1| |#2| |#3|)) |#3|)) (-15 -1251 (|#3| (-584 (-987 |#1| |#2| |#3|)) |#3| (-831))) (-15 -1252 (|#3| |#3| (-584 (-1089))))) (-1013) (-13 (-962) (-797 |#1|) (-554 (-801 |#1|))) (-13 (-361 |#2|) (-797 |#1|) (-554 (-801 |#1|)))) (T -54))
+((-1252 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-1089))) (-4 *4 (-1013)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-361 *5) (-797 *4) (-554 (-801 *4)))))) (-1251 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-584 (-987 *5 *6 *2))) (-5 *4 (-831)) (-4 *5 (-1013)) (-4 *6 (-13 (-962) (-797 *5) (-554 (-801 *5)))) (-4 *2 (-13 (-361 *6) (-797 *5) (-554 (-801 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1251 (*1 *2 *3 *2) (-12 (-5 *3 (-584 (-987 *4 *5 *2))) (-4 *4 (-1013)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-4 *2 (-13 (-361 *5) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-54 *4 *5 *2)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 13 T ELT)) (-3154 (((-3 (-695) "failed") $) 31 T ELT)) (-3153 (((-695) $) NIL T ELT)) (-2408 (((-85) $) 15 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) 17 T ELT)) (-3942 (((-773) $) 22 T ELT) (($ (-695)) 28 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1253 (($) 10 T CONST)) (-3054 (((-85) $ $) 19 T ELT)))
+(((-55) (-13 (-1013) (-951 (-695)) (-10 -8 (-15 -1253 ($) -3948) (-15 -3185 ((-85) $)) (-15 -2408 ((-85) $))))) (T -55))
+((-1253 (*1 *1) (-5 *1 (-55))) (-3185 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) (-2408 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))))
+((-1255 (($ $ (-484) |#3|) 60 T ELT)) (-1254 (($ $ (-484) |#4|) 64 T ELT)) (-3109 ((|#3| $ (-484)) 73 T ELT)) (-2887 (((-584 |#2|) $) 41 T ELT)) (-3242 (((-85) |#2| $) 68 T ELT)) (-1947 (($ (-1 |#2| |#2|) $) 49 T ELT)) (-3954 (($ (-1 |#2| |#2|) $) 48 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 52 T ELT) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 56 T ELT)) (-2197 (($ $ |#2|) 46 T ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3796 ((|#2| $ (-484) (-484)) NIL T ELT) ((|#2| $ (-484) (-484) |#2|) 29 T ELT)) (-1944 (((-695) (-1 (-85) |#2|) $) 35 T ELT) (((-695) |#2| $) 70 T ELT)) (-3396 (($ $) 45 T ELT)) (-3108 ((|#4| $ (-484)) 76 T ELT)) (-3942 (((-773) $) 82 T ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 20 T ELT)) (-3054 (((-85) $ $) 67 T ELT)) (-3953 (((-695) $) 26 T ELT)))
+(((-56 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3054 ((-85) |#1| |#1|)) (-15 -3942 ((-773) |#1|)) (-15 -3954 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3954 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1947 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1254 (|#1| |#1| (-484) |#4|)) (-15 -1255 (|#1| |#1| (-484) |#3|)) (-15 -2887 ((-584 |#2|) |#1|)) (-15 -3108 (|#4| |#1| (-484))) (-15 -3109 (|#3| |#1| (-484))) (-15 -3796 (|#2| |#1| (-484) (-484) |#2|)) (-15 -3796 (|#2| |#1| (-484) (-484))) (-15 -2197 (|#1| |#1| |#2|)) (-15 -3242 ((-85) |#2| |#1|)) (-15 -1944 ((-695) |#2| |#1|)) (-15 -1944 ((-695) (-1 (-85) |#2|) |#1|)) (-15 -1945 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1946 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3954 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3953 ((-695) |#1|)) (-15 -3396 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1128) (-321 |#2|) (-321 |#2|)) (T -56))
+NIL
+((-2566 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3784 ((|#1| $ (-484) (-484) |#1|) 48 T ELT)) (-1255 (($ $ (-484) |#2|) 46 T ELT)) (-1254 (($ $ (-484) |#3|) 45 T ELT)) (-3720 (($) 7 T CONST)) (-3109 ((|#2| $ (-484)) 50 T ELT)) (-1574 ((|#1| $ (-484) (-484) |#1|) 47 T ELT)) (-3110 ((|#1| $ (-484) (-484)) 52 T ELT)) (-2887 (((-584 |#1|) $) 30 T ELT)) (-3112 (((-695) $) 55 T ELT)) (-3610 (($ (-695) (-695) |#1|) 61 T ELT)) (-3111 (((-695) $) 54 T ELT)) (-3116 (((-484) $) 59 T ELT)) (-3114 (((-484) $) 57 T ELT)) (-2606 (((-584 |#1|) $) 29 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3115 (((-484) $) 58 T ELT)) (-3113 (((-484) $) 56 T ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3954 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3239 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3240 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-2197 (($ $ |#1|) 60 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-3796 ((|#1| $ (-484) (-484)) 53 T ELT) ((|#1| $ (-484) (-484) |#1|) 51 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3396 (($ $) 10 T ELT)) (-3108 ((|#3| $ (-484)) 49 T ELT)) (-3942 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-57 |#1| |#2| |#3|) (-113) (-1128) (-321 |t#1|) (-321 |t#1|)) (T -57))
+((-3954 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3610 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-695)) (-4 *3 (-1128)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-2197 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1128)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-484)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-484)))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-484)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-484)))) (-3112 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-695)))) (-3111 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-695)))) (-3796 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-321 *2)) (-4 *5 (-321 *2)) (-4 *2 (-1128)))) (-3110 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-321 *2)) (-4 *5 (-321 *2)) (-4 *2 (-1128)))) (-3796 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1128)) (-4 *4 (-321 *2)) (-4 *5 (-321 *2)))) (-3109 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1128)) (-4 *5 (-321 *4)) (-4 *2 (-321 *4)))) (-3108 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1128)) (-4 *5 (-321 *4)) (-4 *2 (-321 *4)))) (-2887 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-584 *3)))) (-3784 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1128)) (-4 *4 (-321 *2)) (-4 *5 (-321 *2)))) (-1574 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1128)) (-4 *4 (-321 *2)) (-4 *5 (-321 *2)))) (-1255 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-484)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1128)) (-4 *3 (-321 *4)) (-4 *5 (-321 *4)))) (-1254 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-484)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1128)) (-4 *5 (-321 *4)) (-4 *3 (-321 *4)))) (-1947 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3954 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3954 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))))
+(-13 (-426 |t#1|) (-10 -8 (-6 -3992) (-6 -3991) (-15 -3610 ($ (-695) (-695) |t#1|)) (-15 -2197 ($ $ |t#1|)) (-15 -3116 ((-484) $)) (-15 -3115 ((-484) $)) (-15 -3114 ((-484) $)) (-15 -3113 ((-484) $)) (-15 -3112 ((-695) $)) (-15 -3111 ((-695) $)) (-15 -3796 (|t#1| $ (-484) (-484))) (-15 -3110 (|t#1| $ (-484) (-484))) (-15 -3796 (|t#1| $ (-484) (-484) |t#1|)) (-15 -3109 (|t#2| $ (-484))) (-15 -3108 (|t#3| $ (-484))) (-15 -2887 ((-584 |t#1|) $)) (-15 -3784 (|t#1| $ (-484) (-484) |t#1|)) (-15 -1574 (|t#1| $ (-484) (-484) |t#1|)) (-15 -1255 ($ $ (-484) |t#2|)) (-15 -1254 ($ $ (-484) |t#3|)) (-15 -3954 ($ (-1 |t#1| |t#1|) $)) (-15 -1947 ($ (-1 |t#1| |t#1|) $)) (-15 -3954 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3954 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
+((-2566 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2196 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-757))) ELT)) (-2907 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3784 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3992)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3706 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3720 (($) NIL T CONST)) (-2295 (($ $) NIL (|has| $ (-6 -3992)) ELT)) (-2296 (($ $) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3402 (($ |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-1574 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3110 ((|#1| $ (-484)) NIL T ELT)) (-3415 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-2887 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-1256 (($ (-584 |#1|)) 11 T ELT) (($ (-695) |#1|) 14 T ELT)) (-3610 (($ (-695) |#1|) 13 T ELT)) (-2198 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2529 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3514 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2606 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2199 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2855 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-2302 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2201 (((-584 (-484)) $) NIL T ELT)) (-2202 (((-85) (-484) $) NIL T ELT)) (-3240 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3797 ((|#1| $) NIL (|has| (-484) (-757)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2197 (($ $ |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2200 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2203 (((-584 |#1|) $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) NIL T ELT)) (-3796 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-2303 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-1729 (($ $ $ (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-3396 (($ $) NIL T ELT)) (-3968 (((-473) $) NIL (|has| |#1| (-554 (-473))) ELT)) (-3526 (($ (-584 |#1|)) 10 T ELT)) (-3798 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3942 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2564 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3054 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2682 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1256 ($ (-584 |#1|))) (-15 -1256 ($ (-695) |#1|)))) (-1128)) (T -58))
+((-1256 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-5 *1 (-58 *3)))) (-1256 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *1 (-58 *3)) (-4 *3 (-1128)))))
+((-3837 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16 T ELT)) (-3838 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18 T ELT)) (-3954 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13 T ELT)))
+(((-59 |#1| |#2|) (-10 -7 (-15 -3837 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3838 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3954 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1128) (-1128)) (T -59))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-3838 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-59 *5 *2)))) (-3837 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5)))))
+((-2566 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3784 ((|#1| $ (-484) (-484) |#1|) NIL T ELT)) (-1255 (($ $ (-484) (-58 |#1|)) NIL T ELT)) (-1254 (($ $ (-484) (-58 |#1|)) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3109 (((-58 |#1|) $ (-484)) NIL T ELT)) (-1574 ((|#1| $ (-484) (-484) |#1|) NIL T ELT)) (-3110 ((|#1| $ (-484) (-484)) NIL T ELT)) (-2887 (((-584 |#1|) $) NIL T ELT)) (-3112 (((-695) $) NIL T ELT)) (-3610 (($ (-695) (-695) |#1|) NIL T ELT)) (-3111 (((-695) $) NIL T ELT)) (-3116 (((-484) $) NIL T ELT)) (-3114 (((-484) $) NIL T ELT)) (-2606 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3115 (((-484) $) NIL T ELT)) (-3113 (((-484) $) NIL T ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3239 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3240 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-2197 (($ $ |#1|) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) NIL T ELT)) (-3796 ((|#1| $ (-484) (-484)) NIL T ELT) ((|#1| $ (-484) (-484) |#1|) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3396 (($ $) NIL T ELT)) (-3108 (((-58 |#1|) $ (-484)) NIL T ELT)) (-3942 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-60 |#1|) (-13 (-57 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -3992))) (-1128)) (T -60))
+NIL
+((-1258 (((-1178 (-631 |#1|)) (-631 |#1|)) 61 T ELT)) (-1257 (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 (-584 (-831))))) |#2| (-831)) 49 T ELT)) (-1259 (((-2 (|:| |minor| (-584 (-831))) (|:| -3263 |#2|) (|:| |minors| (-584 (-584 (-831)))) (|:| |ops| (-584 |#2|))) |#2| (-831)) 72 (|has| |#1| (-311)) ELT)))
+(((-61 |#1| |#2|) (-10 -7 (-15 -1257 ((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 (-584 (-831))))) |#2| (-831))) (-15 -1258 ((-1178 (-631 |#1|)) (-631 |#1|))) (IF (|has| |#1| (-311)) (-15 -1259 ((-2 (|:| |minor| (-584 (-831))) (|:| -3263 |#2|) (|:| |minors| (-584 (-584 (-831)))) (|:| |ops| (-584 |#2|))) |#2| (-831))) |%noBranch|)) (-495) (-601 |#1|)) (T -61))
+((-1259 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-4 *5 (-495)) (-5 *2 (-2 (|:| |minor| (-584 (-831))) (|:| -3263 *3) (|:| |minors| (-584 (-584 (-831)))) (|:| |ops| (-584 *3)))) (-5 *1 (-61 *5 *3)) (-5 *4 (-831)) (-4 *3 (-601 *5)))) (-1258 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-1178 (-631 *4))) (-5 *1 (-61 *4 *5)) (-5 *3 (-631 *4)) (-4 *5 (-601 *4)))) (-1257 (*1 *2 *3 *4) (-12 (-4 *5 (-495)) (-5 *2 (-2 (|:| |mat| (-631 *5)) (|:| |vec| (-1178 (-584 (-831)))))) (-5 *1 (-61 *5 *3)) (-5 *4 (-831)) (-4 *3 (-601 *5)))))
+((-2566 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3320 ((|#1| $) 42 T ELT)) (-3720 (($) NIL T CONST)) (-3322 ((|#1| |#1| $) 37 T ELT)) (-3321 ((|#1| $) 35 T ELT)) (-2887 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2606 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3239 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-1272 ((|#1| $) NIL T ELT)) (-3605 (($ |#1| $) 38 T ELT)) (-3240 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 36 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3399 (((-85) $) 20 T ELT)) (-3561 (($) 46 T ELT)) (-3319 (((-695) $) 33 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3396 (($ $) 19 T ELT)) (-3942 (((-773) $) 32 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1274 (($ (-584 |#1|)) NIL T ELT)) (-1260 (($ (-584 |#1|)) 44 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) 14 (|has| $ (-6 -3991)) ELT)))
+(((-62 |#1|) (-13 (-1034 |#1|) (-10 -8 (-15 -1260 ($ (-584 |#1|))))) (-1013)) (T -62))
+((-1260 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-5 *1 (-62 *3)))))
+((-3942 (((-773) $) 13 T ELT) (($ (-1094)) 9 T ELT) (((-1094) $) 8 T ELT)))
+(((-63 |#1|) (-10 -7 (-15 -3942 ((-1094) |#1|)) (-15 -3942 (|#1| (-1094))) (-15 -3942 ((-773) |#1|))) (-64)) (T -63))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-1094)) 20 T ELT) (((-1094) $) 19 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3054 (((-85) $ $) 8 T ELT)))
(((-64) (-113)) (T -64))
NIL
-(-13 (-1012) (-427 (-1093)))
-(((-72) . T) ((-555 (-1093)) . T) ((-552 (-772)) . T) ((-552 (-1093)) . T) ((-427 (-1093)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T))
-((-3482 (($ $) 10 T ELT)) (-3483 (($ $) 12 T ELT)))
-(((-65 |#1|) (-10 -7 (-15 -3483 (|#1| |#1|)) (-15 -3482 (|#1| |#1|))) (-66)) (T -65))
+(-13 (-1013) (-427 (-1094)))
+(((-72) . T) ((-556 (-1094)) . T) ((-553 (-773)) . T) ((-553 (-1094)) . T) ((-427 (-1094)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
+((-3484 (($ $) 10 T ELT)) (-3485 (($ $) 12 T ELT)))
+(((-65 |#1|) (-10 -7 (-15 -3485 (|#1| |#1|)) (-15 -3484 (|#1| |#1|))) (-66)) (T -65))
NIL
-((-3480 (($ $) 11 T ELT)) (-3478 (($ $) 10 T ELT)) (-3482 (($ $) 9 T ELT)) (-3483 (($ $) 8 T ELT)) (-3481 (($ $) 7 T ELT)) (-3479 (($ $) 6 T ELT)))
+((-3482 (($ $) 11 T ELT)) (-3480 (($ $) 10 T ELT)) (-3484 (($ $) 9 T ELT)) (-3485 (($ $) 8 T ELT)) (-3483 (($ $) 7 T ELT)) (-3481 (($ $) 6 T ELT)))
(((-66) (-113)) (T -66))
-((-3480 (*1 *1 *1) (-4 *1 (-66))) (-3478 (*1 *1 *1) (-4 *1 (-66))) (-3482 (*1 *1 *1) (-4 *1 (-66))) (-3483 (*1 *1 *1) (-4 *1 (-66))) (-3481 (*1 *1 *1) (-4 *1 (-66))) (-3479 (*1 *1 *1) (-4 *1 (-66))))
-(-13 (-10 -8 (-15 -3479 ($ $)) (-15 -3481 ($ $)) (-15 -3483 ($ $)) (-15 -3482 ($ $)) (-15 -3478 ($ $)) (-15 -3480 ($ $))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3536 (((-1047) $) 11 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 17 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-67) (-13 (-994) (-10 -8 (-15 -3536 ((-1047) $))))) (T -67))
-((-3536 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-67)))))
+((-3482 (*1 *1 *1) (-4 *1 (-66))) (-3480 (*1 *1 *1) (-4 *1 (-66))) (-3484 (*1 *1 *1) (-4 *1 (-66))) (-3485 (*1 *1 *1) (-4 *1 (-66))) (-3483 (*1 *1 *1) (-4 *1 (-66))) (-3481 (*1 *1 *1) (-4 *1 (-66))))
+(-13 (-10 -8 (-15 -3481 ($ $)) (-15 -3483 ($ $)) (-15 -3485 ($ $)) (-15 -3484 ($ $)) (-15 -3480 ($ $)) (-15 -3482 ($ $))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3538 (((-1048) $) 11 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 17 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-67) (-13 (-995) (-10 -8 (-15 -3538 ((-1048) $))))) (T -67))
+((-3538 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-67)))))
NIL
(((-68) (-113)) (T -68))
NIL
-(-13 (-10 -7 (-6 -3989) (-6 (-3991 "*")) (-6 -3990) (-6 -3986) (-6 -3984) (-6 -3983) (-6 -3982) (-6 -3987) (-6 -3981) (-6 -3980) (-6 -3979) (-6 -3978) (-6 -3977) (-6 -3985) (-6 -3988) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -3976)))
-((-2564 (((-85) $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3461 (((-3 $ "failed") $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-1260 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-483))) 24 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) 16 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3794 ((|#1| $ |#1|) 13 T ELT)) (-3005 (($ $ $) NIL T ELT)) (-2431 (($ $ $) NIL T ELT)) (-3940 (((-772) $) 22 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2662 (($) 8 T CONST)) (-3052 (((-85) $ $) 10 T ELT)) (-3943 (($ $ $) NIL T ELT)) (** (($ $ (-830)) 30 T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) 18 T ELT)) (* (($ $ $) 31 T ELT)))
-(((-69 |#1|) (-13 (-410) (-241 |#1| |#1|) (-10 -8 (-15 -1260 ($ (-1 |#1| |#1|))) (-15 -1260 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1260 ($ (-1 |#1| |#1| (-483)))))) (-961)) (T -69))
-((-1260 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-69 *3)))) (-1260 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-69 *3)))) (-1260 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-483))) (-4 *3 (-961)) (-5 *1 (-69 *3)))))
-((-1261 (((-345 |#2|) |#2| (-583 |#2|)) 10 T ELT) (((-345 |#2|) |#2| |#2|) 11 T ELT)))
-(((-70 |#1| |#2|) (-10 -7 (-15 -1261 ((-345 |#2|) |#2| |#2|)) (-15 -1261 ((-345 |#2|) |#2| (-583 |#2|)))) (-13 (-389) (-120)) (-1153 |#1|)) (T -70))
-((-1261 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-13 (-389) (-120))) (-5 *2 (-345 *3)) (-5 *1 (-70 *5 *3)))) (-1261 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-389) (-120))) (-5 *2 (-345 *3)) (-5 *1 (-70 *4 *3)) (-4 *3 (-1153 *4)))))
-((-2564 (((-85) $ $) 13 T ELT)) (-1262 (((-85) $ $) 14 T ELT)) (-3052 (((-85) $ $) 11 T ELT)))
-(((-71 |#1|) (-10 -7 (-15 -1262 ((-85) |#1| |#1|)) (-15 -2564 ((-85) |#1| |#1|)) (-15 -3052 ((-85) |#1| |#1|))) (-72)) (T -71))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT)))
+(-13 (-10 -7 (-6 -3991) (-6 (-3993 "*")) (-6 -3992) (-6 -3988) (-6 -3986) (-6 -3985) (-6 -3984) (-6 -3989) (-6 -3983) (-6 -3982) (-6 -3981) (-6 -3980) (-6 -3979) (-6 -3987) (-6 -3990) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -3978)))
+((-2566 (((-85) $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3463 (((-3 $ "failed") $) NIL T ELT)) (-2408 (((-85) $) NIL T ELT)) (-1261 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-484))) 24 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) 16 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3796 ((|#1| $ |#1|) 13 T ELT)) (-3007 (($ $ $) NIL T ELT)) (-2433 (($ $ $) NIL T ELT)) (-3942 (((-773) $) 22 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2664 (($) 8 T CONST)) (-3054 (((-85) $ $) 10 T ELT)) (-3945 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 30 T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) 18 T ELT)) (* (($ $ $) 31 T ELT)))
+(((-69 |#1|) (-13 (-410) (-241 |#1| |#1|) (-10 -8 (-15 -1261 ($ (-1 |#1| |#1|))) (-15 -1261 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1261 ($ (-1 |#1| |#1| (-484)))))) (-962)) (T -69))
+((-1261 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-69 *3)))) (-1261 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-69 *3)))) (-1261 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-484))) (-4 *3 (-962)) (-5 *1 (-69 *3)))))
+((-1262 (((-345 |#2|) |#2| (-584 |#2|)) 10 T ELT) (((-345 |#2|) |#2| |#2|) 11 T ELT)))
+(((-70 |#1| |#2|) (-10 -7 (-15 -1262 ((-345 |#2|) |#2| |#2|)) (-15 -1262 ((-345 |#2|) |#2| (-584 |#2|)))) (-13 (-389) (-120)) (-1154 |#1|)) (T -70))
+((-1262 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-13 (-389) (-120))) (-5 *2 (-345 *3)) (-5 *1 (-70 *5 *3)))) (-1262 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-389) (-120))) (-5 *2 (-345 *3)) (-5 *1 (-70 *4 *3)) (-4 *3 (-1154 *4)))))
+((-2566 (((-85) $ $) 13 T ELT)) (-1263 (((-85) $ $) 14 T ELT)) (-3054 (((-85) $ $) 11 T ELT)))
+(((-71 |#1|) (-10 -7 (-15 -1263 ((-85) |#1| |#1|)) (-15 -2566 ((-85) |#1| |#1|)) (-15 -3054 ((-85) |#1| |#1|))) (-72)) (T -71))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3054 (((-85) $ $) 8 T ELT)))
(((-72) (-113)) (T -72))
-((-3052 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) (-2564 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) (-1262 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))))
-(-13 (-1127) (-10 -8 (-15 -3052 ((-85) $ $)) (-15 -2564 ((-85) $ $)) (-15 -1262 ((-85) $ $))))
-(((-13) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3396 ((|#1| $) NIL T ELT)) (-3021 ((|#1| $ |#1|) 24 (|has| $ (-6 -3990)) ELT)) (-1290 (($ $ $) NIL (|has| $ (-6 -3990)) ELT)) (-1291 (($ $ $) NIL (|has| $ (-6 -3990)) ELT)) (-1265 (($ $ (-583 |#1|)) 30 T ELT)) (-3782 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3990)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3990)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) NIL (|has| $ (-6 -3990)) ELT)) (-3718 (($) NIL T CONST)) (-3132 (($ $) 12 T ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3027 (((-583 $) $) NIL T ELT)) (-3023 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1299 (($ $ |#1| $) 32 T ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1264 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-1263 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3133 (($ $) 11 T ELT)) (-3026 (((-583 |#1|) $) NIL T ELT)) (-3521 (((-85) $) 13 T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) 9 T ELT)) (-3559 (($) 31 T ELT)) (-3794 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3025 (((-483) $ $) NIL T ELT)) (-3627 (((-85) $) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-3516 (((-583 $) $) NIL T ELT)) (-3024 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1266 (($ (-694) |#1|) 33 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-73 |#1|) (-13 (-98 |#1|) (-10 -8 (-6 -3989) (-6 -3990) (-15 -1266 ($ (-694) |#1|)) (-15 -1265 ($ $ (-583 |#1|))) (-15 -1264 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1264 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1263 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1263 ($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|))))) (-1012)) (T -73))
-((-1266 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *1 (-73 *3)) (-4 *3 (-1012)))) (-1265 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-5 *1 (-73 *3)))) (-1264 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1012)))) (-1264 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1012)) (-5 *1 (-73 *3)))) (-1263 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1012)) (-5 *1 (-73 *2)))) (-1263 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-583 *2) *2 *2 *2)) (-4 *2 (-1012)) (-5 *1 (-73 *2)))))
-((-1267 ((|#3| |#2| |#2|) 34 T ELT)) (-1269 ((|#1| |#2| |#2|) 46 (|has| |#1| (-6 (-3991 #1="*"))) ELT)) (-1268 ((|#3| |#2| |#2|) 36 T ELT)) (-1270 ((|#1| |#2|) 53 (|has| |#1| (-6 (-3991 #1#))) ELT)))
-(((-74 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1267 (|#3| |#2| |#2|)) (-15 -1268 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-3991 "*"))) (PROGN (-15 -1269 (|#1| |#2| |#2|)) (-15 -1270 (|#1| |#2|))) |%noBranch|)) (-961) (-1153 |#1|) (-627 |#1| |#4| |#5|) (-321 |#1|) (-321 |#1|)) (T -74))
-((-1270 (*1 *2 *3) (-12 (|has| *2 (-6 (-3991 #1="*"))) (-4 *5 (-321 *2)) (-4 *6 (-321 *2)) (-4 *2 (-961)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1153 *2)) (-4 *4 (-627 *2 *5 *6)))) (-1269 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-3991 #1#))) (-4 *5 (-321 *2)) (-4 *6 (-321 *2)) (-4 *2 (-961)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1153 *2)) (-4 *4 (-627 *2 *5 *6)))) (-1268 (*1 *2 *3 *3) (-12 (-4 *4 (-961)) (-4 *2 (-627 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1153 *4)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)))) (-1267 (*1 *2 *3 *3) (-12 (-4 *4 (-961)) (-4 *2 (-627 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1153 *4)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)))))
-((-1273 (($ (-583 |#2|)) 11 T ELT)))
-(((-75 |#1| |#2|) (-10 -7 (-15 -1273 (|#1| (-583 |#2|)))) (-76 |#2|) (-1127)) (T -75))
-NIL
-((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3718 (($) 7 T CONST)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-1271 ((|#1| $) 43 T ELT)) (-3603 (($ |#1| $) 44 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1272 ((|#1| $) 45 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1273 (($ (-583 |#1|)) 46 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-76 |#1|) (-113) (-1127)) (T -76))
-((-1273 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-4 *1 (-76 *3)))) (-1272 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1127)))) (-3603 (*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1127)))) (-1271 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1127)))))
-(-13 (-426 |t#1|) (-10 -8 (-6 -3990) (-15 -1273 ($ (-583 |t#1|))) (-15 -1272 (|t#1| $)) (-15 -3603 ($ |t#1| $)) (-15 -1271 (|t#1| $))))
-(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3124 (((-483) $) NIL (|has| (-483) (-257)) ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-821)) ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-821)) ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3617 (((-483) $) NIL (|has| (-483) (-740)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL T ELT) (((-3 (-1088) #1#) $) NIL (|has| (-483) (-950 (-1088))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| (-483) (-950 (-483))) ELT) (((-3 (-483) #1#) $) NIL (|has| (-483) (-950 (-483))) ELT)) (-3151 (((-483) $) NIL T ELT) (((-1088) $) NIL (|has| (-483) (-950 (-1088))) ELT) (((-347 (-483)) $) NIL (|has| (-483) (-950 (-483))) ELT) (((-483) $) NIL (|has| (-483) (-950 (-483))) ELT)) (-2560 (($ $ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| (-483) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| (-483) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL T ELT) (((-630 (-483)) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) NIL (|has| (-483) (-482)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-3181 (((-85) $) NIL (|has| (-483) (-740)) ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (|has| (-483) (-796 (-483))) ELT) (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (|has| (-483) (-796 (-327))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2992 (($ $) NIL T ELT)) (-2994 (((-483) $) NIL T ELT)) (-3439 (((-632 $) $) NIL (|has| (-483) (-1064)) ELT)) (-3182 (((-85) $) NIL (|has| (-483) (-740)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2527 (($ $ $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| (-483) (-756)) ELT)) (-3952 (($ (-1 (-483) (-483)) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| (-483) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| (-483) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL T ELT) (((-630 (-483)) (-1177 $)) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL (|has| (-483) (-1064)) CONST)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3123 (($ $) NIL (|has| (-483) (-257)) ELT) (((-347 (-483)) $) NIL T ELT)) (-3125 (((-483) $) NIL (|has| (-483) (-482)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-821)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3762 (($ $ (-583 (-483)) (-583 (-483))) NIL (|has| (-483) (-259 (-483))) ELT) (($ $ (-483) (-483)) NIL (|has| (-483) (-259 (-483))) ELT) (($ $ (-248 (-483))) NIL (|has| (-483) (-259 (-483))) ELT) (($ $ (-583 (-248 (-483)))) NIL (|has| (-483) (-259 (-483))) ELT) (($ $ (-583 (-1088)) (-583 (-483))) NIL (|has| (-483) (-452 (-1088) (-483))) ELT) (($ $ (-1088) (-483)) NIL (|has| (-483) (-452 (-1088) (-483))) ELT)) (-1604 (((-694) $) NIL T ELT)) (-3794 (($ $ (-483)) NIL (|has| (-483) (-241 (-483) (-483))) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-3752 (($ $ (-1 (-483) (-483))) NIL T ELT) (($ $ (-1 (-483) (-483)) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $) NIL (|has| (-483) (-189)) ELT) (($ $ (-694)) NIL (|has| (-483) (-189)) ELT)) (-2991 (($ $) NIL T ELT)) (-2993 (((-483) $) NIL T ELT)) (-3966 (((-800 (-483)) $) NIL (|has| (-483) (-553 (-800 (-483)))) ELT) (((-800 (-327)) $) NIL (|has| (-483) (-553 (-800 (-327)))) ELT) (((-472) $) NIL (|has| (-483) (-553 (-472))) ELT) (((-327) $) NIL (|has| (-483) (-933)) ELT) (((-179) $) NIL (|has| (-483) (-933)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-483) (-821))) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) 8 T ELT) (($ (-483)) NIL T ELT) (($ (-1088)) NIL (|has| (-483) (-950 (-1088))) ELT) (((-347 (-483)) $) NIL T ELT) (((-917 2) $) 10 T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-483) (-821))) (|has| (-483) (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-3126 (((-483) $) NIL (|has| (-483) (-482)) ELT)) (-2025 (($ (-347 (-483))) 9 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3377 (($ $) NIL (|has| (-483) (-740)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-1 (-483) (-483))) NIL T ELT) (($ $ (-1 (-483) (-483)) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $) NIL (|has| (-483) (-189)) ELT) (($ $ (-694)) NIL (|has| (-483) (-189)) ELT)) (-2562 (((-85) $ $) NIL (|has| (-483) (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| (-483) (-756)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL (|has| (-483) (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| (-483) (-756)) ELT)) (-3943 (($ $ $) NIL T ELT) (($ (-483) (-483)) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ (-483)) NIL T ELT)))
-(((-77) (-13 (-904 (-483)) (-552 (-347 (-483))) (-552 (-917 2)) (-10 -8 (-15 -3123 ((-347 (-483)) $)) (-15 -2025 ($ (-347 (-483))))))) (T -77))
-((-3123 (*1 *2 *1) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-77)))) (-2025 (*1 *1 *2) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-77)))))
-((-1285 (((-583 (-876)) $) 14 T ELT)) (-3536 (((-444) $) 12 T ELT)) (-3940 (((-772) $) 21 T ELT)) (-1274 (($ (-444) (-583 (-876))) 16 T ELT)))
-(((-78) (-13 (-552 (-772)) (-10 -8 (-15 -3536 ((-444) $)) (-15 -1285 ((-583 (-876)) $)) (-15 -1274 ($ (-444) (-583 (-876))))))) (T -78))
-((-3536 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-78)))) (-1285 (*1 *2 *1) (-12 (-5 *2 (-583 (-876))) (-5 *1 (-78)))) (-1274 (*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-583 (-876))) (-5 *1 (-78)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3794 ((|#1| $ |#1| |#1|) 8 T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1275 (($ (-1 |#1| |#1| |#1|)) 7 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-79 |#1|) (-13 (-80 |#1|) (-1012) (-10 -8 (-15 -1275 ($ (-1 |#1| |#1| |#1|))))) (-1127)) (T -79))
-((-1275 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-79 *3)))))
-((-3794 ((|#1| $ |#1| |#1|) 6 T ELT)))
-(((-80 |#1|) (-113) (-1127)) (T -80))
+((-3054 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) (-2566 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) (-1263 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))))
+(-13 (-1128) (-10 -8 (-15 -3054 ((-85) $ $)) (-15 -2566 ((-85) $ $)) (-15 -1263 ((-85) $ $))))
+(((-13) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3398 ((|#1| $) NIL T ELT)) (-3023 ((|#1| $ |#1|) 24 (|has| $ (-6 -3992)) ELT)) (-1291 (($ $ $) NIL (|has| $ (-6 -3992)) ELT)) (-1292 (($ $ $) NIL (|has| $ (-6 -3992)) ELT)) (-1266 (($ $ (-584 |#1|)) 30 T ELT)) (-3784 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3992)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3992)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3992)) ELT)) (-3024 (($ $ (-584 $)) NIL (|has| $ (-6 -3992)) ELT)) (-3720 (($) NIL T CONST)) (-3134 (($ $) 12 T ELT)) (-2887 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3029 (((-584 $) $) NIL T ELT)) (-3025 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1300 (($ $ |#1| $) 32 T ELT)) (-2606 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-1265 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-1264 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-584 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3135 (($ $) 11 T ELT)) (-3028 (((-584 |#1|) $) NIL T ELT)) (-3523 (((-85) $) 13 T ELT)) (-3239 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3240 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3399 (((-85) $) 9 T ELT)) (-3561 (($) 31 T ELT)) (-3796 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3027 (((-484) $ $) NIL T ELT)) (-3629 (((-85) $) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3396 (($ $) NIL T ELT)) (-3942 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-3518 (((-584 $) $) NIL T ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1267 (($ (-695) |#1|) 33 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-73 |#1|) (-13 (-98 |#1|) (-10 -8 (-6 -3991) (-6 -3992) (-15 -1267 ($ (-695) |#1|)) (-15 -1266 ($ $ (-584 |#1|))) (-15 -1265 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1265 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1264 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1264 ($ $ |#1| (-1 (-584 |#1|) |#1| |#1| |#1|))))) (-1013)) (T -73))
+((-1267 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *1 (-73 *3)) (-4 *3 (-1013)))) (-1266 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-5 *1 (-73 *3)))) (-1265 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1013)))) (-1265 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-73 *3)))) (-1264 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1013)) (-5 *1 (-73 *2)))) (-1264 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-584 *2) *2 *2 *2)) (-4 *2 (-1013)) (-5 *1 (-73 *2)))))
+((-1268 ((|#3| |#2| |#2|) 34 T ELT)) (-1270 ((|#1| |#2| |#2|) 46 (|has| |#1| (-6 (-3993 #1="*"))) ELT)) (-1269 ((|#3| |#2| |#2|) 36 T ELT)) (-1271 ((|#1| |#2|) 53 (|has| |#1| (-6 (-3993 #1#))) ELT)))
+(((-74 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1268 (|#3| |#2| |#2|)) (-15 -1269 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-3993 "*"))) (PROGN (-15 -1270 (|#1| |#2| |#2|)) (-15 -1271 (|#1| |#2|))) |%noBranch|)) (-962) (-1154 |#1|) (-628 |#1| |#4| |#5|) (-321 |#1|) (-321 |#1|)) (T -74))
+((-1271 (*1 *2 *3) (-12 (|has| *2 (-6 (-3993 #1="*"))) (-4 *5 (-321 *2)) (-4 *6 (-321 *2)) (-4 *2 (-962)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1154 *2)) (-4 *4 (-628 *2 *5 *6)))) (-1270 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-3993 #1#))) (-4 *5 (-321 *2)) (-4 *6 (-321 *2)) (-4 *2 (-962)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1154 *2)) (-4 *4 (-628 *2 *5 *6)))) (-1269 (*1 *2 *3 *3) (-12 (-4 *4 (-962)) (-4 *2 (-628 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1154 *4)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)))) (-1268 (*1 *2 *3 *3) (-12 (-4 *4 (-962)) (-4 *2 (-628 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1154 *4)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)))))
+((-1274 (($ (-584 |#2|)) 11 T ELT)))
+(((-75 |#1| |#2|) (-10 -7 (-15 -1274 (|#1| (-584 |#2|)))) (-76 |#2|) (-1128)) (T -75))
+NIL
+((-2566 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3720 (($) 7 T CONST)) (-2887 (((-584 |#1|) $) 30 (|has| $ (-6 -3991)) ELT)) (-2606 (((-584 |#1|) $) 29 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3239 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-1272 ((|#1| $) 43 T ELT)) (-3605 (($ |#1| $) 44 T ELT)) (-3240 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3396 (($ $) 10 T ELT)) (-3942 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1274 (($ (-584 |#1|)) 46 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-76 |#1|) (-113) (-1128)) (T -76))
+((-1274 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-4 *1 (-76 *3)))) (-1273 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1128)))) (-3605 (*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1128)))) (-1272 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1128)))))
+(-13 (-426 |t#1|) (-10 -8 (-6 -3992) (-15 -1274 ($ (-584 |t#1|))) (-15 -1273 (|t#1| $)) (-15 -3605 ($ |t#1| $)) (-15 -1272 (|t#1| $))))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3126 (((-484) $) NIL (|has| (-484) (-257)) ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-822)) ELT)) (-3771 (($ $) NIL T ELT)) (-3967 (((-345 $) $) NIL T ELT)) (-2702 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-822)) ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3619 (((-484) $) NIL (|has| (-484) (-741)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL (|has| (-484) (-951 (-1089))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| (-484) (-951 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-484) (-951 (-484))) ELT)) (-3153 (((-484) $) NIL T ELT) (((-1089) $) NIL (|has| (-484) (-951 (-1089))) ELT) (((-347 (-484)) $) NIL (|has| (-484) (-951 (-484))) ELT) (((-484) $) NIL (|has| (-484) (-951 (-484))) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL (|has| (-484) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| (-484) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL T ELT) (((-631 (-484)) (-631 $)) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2992 (($) NIL (|has| (-484) (-483)) ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-3719 (((-85) $) NIL T ELT)) (-3183 (((-85) $) NIL (|has| (-484) (-741)) ELT)) (-2794 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (|has| (-484) (-797 (-484))) ELT) (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (|has| (-484) (-797 (-327))) ELT)) (-2408 (((-85) $) NIL T ELT)) (-2994 (($ $) NIL T ELT)) (-2996 (((-484) $) NIL T ELT)) (-3441 (((-633 $) $) NIL (|has| (-484) (-1065)) ELT)) (-3184 (((-85) $) NIL (|has| (-484) (-741)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2529 (($ $ $) NIL (|has| (-484) (-757)) ELT)) (-2855 (($ $ $) NIL (|has| (-484) (-757)) ELT)) (-3954 (($ (-1 (-484) (-484)) $) NIL T ELT)) (-2278 (((-631 (-484)) (-1178 $)) NIL (|has| (-484) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-484) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-631 (-484)) (-1178 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) NIL T ELT)) (-3442 (($) NIL (|has| (-484) (-1065)) CONST)) (-3240 (((-1033) $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3125 (($ $) NIL (|has| (-484) (-257)) ELT) (((-347 (-484)) $) NIL T ELT)) (-3127 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-822)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-822)) ELT)) (-3728 (((-345 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3764 (($ $ (-584 (-484)) (-584 (-484))) NIL (|has| (-484) (-259 (-484))) ELT) (($ $ (-484) (-484)) NIL (|has| (-484) (-259 (-484))) ELT) (($ $ (-248 (-484))) NIL (|has| (-484) (-259 (-484))) ELT) (($ $ (-584 (-248 (-484)))) NIL (|has| (-484) (-259 (-484))) ELT) (($ $ (-584 (-1089)) (-584 (-484))) NIL (|has| (-484) (-453 (-1089) (-484))) ELT) (($ $ (-1089) (-484)) NIL (|has| (-484) (-453 (-1089) (-484))) ELT)) (-1605 (((-695) $) NIL T ELT)) (-3796 (($ $ (-484)) NIL (|has| (-484) (-241 (-484) (-484))) ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-3754 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-695)) NIL (|has| (-484) (-189)) ELT)) (-2993 (($ $) NIL T ELT)) (-2995 (((-484) $) NIL T ELT)) (-3968 (((-801 (-484)) $) NIL (|has| (-484) (-554 (-801 (-484)))) ELT) (((-801 (-327)) $) NIL (|has| (-484) (-554 (-801 (-327)))) ELT) (((-473) $) NIL (|has| (-484) (-554 (-473))) ELT) (((-327) $) NIL (|has| (-484) (-934)) ELT) (((-179) $) NIL (|has| (-484) (-934)) ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-484) (-822))) ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) 8 T ELT) (($ (-484)) NIL T ELT) (($ (-1089)) NIL (|has| (-484) (-951 (-1089))) ELT) (((-347 (-484)) $) NIL T ELT) (((-918 2) $) 10 T ELT)) (-2700 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-484) (-822))) (|has| (-484) (-118))) ELT)) (-3123 (((-695)) NIL T CONST)) (-3128 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-2027 (($ (-347 (-484))) 9 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-3379 (($ $) NIL (|has| (-484) (-741)) ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-2667 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-695)) NIL (|has| (-484) (-189)) ELT)) (-2564 (((-85) $ $) NIL (|has| (-484) (-757)) ELT)) (-2565 (((-85) $ $) NIL (|has| (-484) (-757)) ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL (|has| (-484) (-757)) ELT)) (-2683 (((-85) $ $) NIL (|has| (-484) (-757)) ELT)) (-3945 (($ $ $) NIL T ELT) (($ (-484) (-484)) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ (-484)) NIL T ELT)))
+(((-77) (-13 (-905 (-484)) (-553 (-347 (-484))) (-553 (-918 2)) (-10 -8 (-15 -3125 ((-347 (-484)) $)) (-15 -2027 ($ (-347 (-484))))))) (T -77))
+((-3125 (*1 *2 *1) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-77)))) (-2027 (*1 *1 *2) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-77)))))
+((-1286 (((-584 (-877)) $) 14 T ELT)) (-3538 (((-444) $) 12 T ELT)) (-3942 (((-773) $) 21 T ELT)) (-1275 (($ (-444) (-584 (-877))) 16 T ELT)))
+(((-78) (-13 (-553 (-773)) (-10 -8 (-15 -3538 ((-444) $)) (-15 -1286 ((-584 (-877)) $)) (-15 -1275 ($ (-444) (-584 (-877))))))) (T -78))
+((-3538 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-78)))) (-1286 (*1 *2 *1) (-12 (-5 *2 (-584 (-877))) (-5 *1 (-78)))) (-1275 (*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-584 (-877))) (-5 *1 (-78)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3796 ((|#1| $ |#1| |#1|) 8 T ELT)) (-3942 (((-773) $) NIL T ELT)) (-1276 (($ (-1 |#1| |#1| |#1|)) 7 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-79 |#1|) (-13 (-80 |#1|) (-1013) (-10 -8 (-15 -1276 ($ (-1 |#1| |#1| |#1|))))) (-1128)) (T -79))
+((-1276 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-79 *3)))))
+((-3796 ((|#1| $ |#1| |#1|) 6 T ELT)))
+(((-80 |#1|) (-113) (-1128)) (T -80))
NIL
(-13 (|MappingCategory| |t#1| |t#1| |t#1|))
-(((|MappingCategory| |#1| |#1| |#1|) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-2309 (($ $) NIL T ELT)) (-3316 (($ $ $) NIL T ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) $) NIL (|has| (-85) (-756)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1727 (($ $) NIL (-12 (|has| $ (-6 -3990)) (|has| (-85) (-756))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3990)) ELT)) (-2905 (($ $) NIL (|has| (-85) (-756)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3782 (((-85) $ (-1144 (-483)) (-85)) NIL (|has| $ (-6 -3990)) ELT) (((-85) $ (-483) (-85)) NIL (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3718 (($) NIL T CONST)) (-2293 (($ $) NIL (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) NIL T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-85) (-1012))) ELT)) (-3400 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-85) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-85) (-1012))) ELT)) (-3836 (((-85) (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (-12 (|has| $ (-6 -3989)) (|has| (-85) (-1012))) ELT)) (-1573 (((-85) $ (-483) (-85)) NIL (|has| $ (-6 -3990)) ELT)) (-3108 (((-85) $ (-483)) NIL T ELT)) (-3413 (((-483) (-85) $ (-483)) NIL (|has| (-85) (-1012)) ELT) (((-483) (-85) $) NIL (|has| (-85) (-1012)) ELT) (((-483) (-1 (-85) (-85)) $) NIL T ELT)) (-2885 (((-583 (-85)) $) NIL (|has| $ (-6 -3989)) ELT)) (-2557 (($ $ $) NIL T ELT)) (-2556 (($ $) NIL T ELT)) (-1297 (($ $ $) NIL T ELT)) (-3608 (($ (-694) (-85)) 10 T ELT)) (-1298 (($ $ $) NIL T ELT)) (-2196 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL T ELT)) (-3512 (($ $ $) NIL (|has| (-85) (-756)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2604 (((-583 (-85)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-85) (-1012))) ELT)) (-2197 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL T ELT)) (-1946 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2300 (($ $ $ (-483)) NIL T ELT) (($ (-85) $ (-483)) NIL T ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3795 (((-85) $) NIL (|has| (-483) (-756)) ELT)) (-1351 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2195 (($ $ (-85)) NIL (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-85)) (-583 (-85))) NIL (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1012))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1012))) ELT) (($ $ (-248 (-85))) NIL (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1012))) ELT) (($ $ (-583 (-248 (-85)))) NIL (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-85) (-1012))) ELT)) (-2201 (((-583 (-85)) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 (($ $ (-1144 (-483))) NIL T ELT) (((-85) $ (-483)) NIL T ELT) (((-85) $ (-483) (-85)) NIL T ELT)) (-2301 (($ $ (-1144 (-483))) NIL T ELT) (($ $ (-483)) NIL T ELT)) (-1943 (((-694) (-85) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-85) (-1012))) ELT) (((-694) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3989)) ELT)) (-1728 (($ $ $ (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| (-85) (-553 (-472))) ELT)) (-3524 (($ (-583 (-85))) NIL T ELT)) (-3796 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1766 (($ (-694) (-85)) 11 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3989)) ELT)) (-2558 (($ $ $) NIL T ELT)) (-2307 (($ $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT)) (-2308 (($ $ $) NIL T ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-81) (-13 (-96) (-10 -8 (-15 -1766 ($ (-694) (-85)))))) (T -81))
-((-1766 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-85)) (-5 *1 (-81)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#2|) 36 T ELT)))
-(((-82 |#1| |#2|) (-113) (-961) (-961)) (T -82))
-NIL
-(-13 (-590 |t#1|) (-968 |t#2|) (-10 -7 (-6 -3984) (-6 -3983)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-963 |#2|) . T) ((-968 |#2|) . T) ((-1012) . T) ((-1127) . T))
-((-2557 (($ $ $) 12 T ELT)) (-2556 (($ $) 8 T ELT)) (-2558 (($ $ $) 10 T ELT)))
-(((-83 |#1|) (-10 -7 (-15 -2557 (|#1| |#1| |#1|)) (-15 -2558 (|#1| |#1| |#1|)) (-15 -2556 (|#1| |#1|))) (-84)) (T -83))
-NIL
-((-2309 (($ $) 8 T ELT)) (-2557 (($ $ $) 9 T ELT)) (-2556 (($ $) 11 T ELT)) (-2558 (($ $ $) 10 T ELT)) (-2307 (($ $ $) 6 T ELT)) (-2308 (($ $ $) 7 T ELT)))
+(((|MappingCategory| |#1| |#1| |#1|) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-2311 (($ $) NIL T ELT)) (-3318 (($ $ $) NIL T ELT)) (-2196 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-1730 (((-85) $) NIL (|has| (-85) (-757)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1728 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-85) (-757))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3992)) ELT)) (-2907 (($ $) NIL (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3784 (((-85) $ (-1145 (-484)) (-85)) NIL (|has| $ (-6 -3992)) ELT) (((-85) $ (-484) (-85)) NIL (|has| $ (-6 -3992)) ELT)) (-3706 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3991)) ELT)) (-3720 (($) NIL T CONST)) (-2295 (($ $) NIL (|has| $ (-6 -3992)) ELT)) (-2296 (($ $) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-85) (-1013))) ELT)) (-3402 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3991)) ELT) (($ (-85) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-85) (-1013))) ELT)) (-3838 (((-85) (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3991)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL (|has| $ (-6 -3991)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (-12 (|has| $ (-6 -3991)) (|has| (-85) (-1013))) ELT)) (-1574 (((-85) $ (-484) (-85)) NIL (|has| $ (-6 -3992)) ELT)) (-3110 (((-85) $ (-484)) NIL T ELT)) (-3415 (((-484) (-85) $ (-484)) NIL (|has| (-85) (-1013)) ELT) (((-484) (-85) $) NIL (|has| (-85) (-1013)) ELT) (((-484) (-1 (-85) (-85)) $) NIL T ELT)) (-2887 (((-584 (-85)) $) NIL (|has| $ (-6 -3991)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2558 (($ $) NIL T ELT)) (-1298 (($ $ $) NIL T ELT)) (-3610 (($ (-695) (-85)) 10 T ELT)) (-1299 (($ $ $) NIL T ELT)) (-2198 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2529 (($ $ $) NIL T ELT)) (-3514 (($ $ $) NIL (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2606 (((-584 (-85)) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-85) (-1013))) ELT)) (-2199 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2855 (($ $ $) NIL T ELT)) (-1947 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2302 (($ $ $ (-484)) NIL T ELT) (($ (-85) $ (-484)) NIL T ELT)) (-2201 (((-584 (-484)) $) NIL T ELT)) (-2202 (((-85) (-484) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3797 (((-85) $) NIL (|has| (-484) (-757)) ELT)) (-1352 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2197 (($ $ (-85)) NIL (|has| $ (-6 -3992)) ELT)) (-1945 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-85)) (-584 (-85))) NIL (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-248 (-85))) NIL (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-584 (-248 (-85)))) NIL (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2200 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-85) (-1013))) ELT)) (-2203 (((-584 (-85)) $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) NIL T ELT)) (-3796 (($ $ (-1145 (-484))) NIL T ELT) (((-85) $ (-484)) NIL T ELT) (((-85) $ (-484) (-85)) NIL T ELT)) (-2303 (($ $ (-1145 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-1944 (((-695) (-85) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-85) (-1013))) ELT) (((-695) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3991)) ELT)) (-1729 (($ $ $ (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-3396 (($ $) NIL T ELT)) (-3968 (((-473) $) NIL (|has| (-85) (-554 (-473))) ELT)) (-3526 (($ (-584 (-85))) NIL T ELT)) (-3798 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-3942 (((-773) $) NIL T ELT)) (-1767 (($ (-695) (-85)) 11 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3991)) ELT)) (-2560 (($ $ $) NIL T ELT)) (-2309 (($ $ $) NIL T ELT)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2310 (($ $ $) NIL T ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-81) (-13 (-96) (-10 -8 (-15 -1767 ($ (-695) (-85)))))) (T -81))
+((-1767 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-85)) (-5 *1 (-81)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#2|) 36 T ELT)))
+(((-82 |#1| |#2|) (-113) (-962) (-962)) (T -82))
+NIL
+(-13 (-591 |t#1|) (-969 |t#2|) (-10 -7 (-6 -3986) (-6 -3985)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-1013) . T) ((-1128) . T))
+((-2559 (($ $ $) 12 T ELT)) (-2558 (($ $) 8 T ELT)) (-2560 (($ $ $) 10 T ELT)))
+(((-83 |#1|) (-10 -7 (-15 -2559 (|#1| |#1| |#1|)) (-15 -2560 (|#1| |#1| |#1|)) (-15 -2558 (|#1| |#1|))) (-84)) (T -83))
+NIL
+((-2311 (($ $) 8 T ELT)) (-2559 (($ $ $) 9 T ELT)) (-2558 (($ $) 11 T ELT)) (-2560 (($ $ $) 10 T ELT)) (-2309 (($ $ $) 6 T ELT)) (-2310 (($ $ $) 7 T ELT)))
(((-84) (-113)) (T -84))
-((-2556 (*1 *1 *1) (-4 *1 (-84))) (-2558 (*1 *1 *1 *1) (-4 *1 (-84))) (-2557 (*1 *1 *1 *1) (-4 *1 (-84))))
-(-13 (-604) (-10 -8 (-15 -2556 ($ $)) (-15 -2558 ($ $ $)) (-15 -2557 ($ $ $))))
-(((-13) . T) ((-604) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-2309 (($ $) 9 T ELT)) (-3316 (($ $ $) 14 T ELT)) (-2851 (($) 6 T CONST)) (-3131 (((-694)) 23 T ELT)) (-2990 (($) 31 T ELT)) (-2557 (($ $ $) 12 T ELT)) (-2556 (($ $) 8 T ELT)) (-1297 (($ $ $) 15 T ELT)) (-1298 (($ $ $) 16 T ELT)) (-2527 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2853 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2006 (((-830) $) 29 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 (($ (-830)) 27 T ELT)) (-2849 (($ $ $) 19 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2850 (($) 7 T CONST)) (-2848 (($ $ $) 20 T ELT)) (-3966 (((-472) $) 33 T ELT)) (-3940 (((-772) $) 35 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2558 (($ $ $) 10 T ELT)) (-2307 (($ $ $) 13 T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 18 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 21 T ELT)) (-2308 (($ $ $) 11 T ELT)))
-(((-85) (-13 (-752) (-880) (-553 (-472)) (-10 -8 (-15 -3316 ($ $ $)) (-15 -1298 ($ $ $)) (-15 -1297 ($ $ $))))) (T -85))
-((-3316 (*1 *1 *1 *1) (-5 *1 (-85))) (-1298 (*1 *1 *1 *1) (-5 *1 (-85))) (-1297 (*1 *1 *1 *1) (-5 *1 (-85))))
-((-2564 (((-85) $ $) NIL T ELT)) (-1519 (((-694) $) 92 T ELT) (($ $ (-694)) 38 T ELT)) (-1283 (((-85) $) 42 T ELT)) (-1277 (($ $ (-1071) (-696)) 59 T ELT) (($ $ (-444) (-696)) 34 T ELT)) (-1276 (($ $ (-45 (-1071) (-696))) 16 T ELT)) (-2837 (((-3 (-696) "failed") $ (-1071)) 27 T ELT) (((-632 (-696)) $ (-444)) 33 T ELT)) (-1285 (((-45 (-1071) (-696)) $) 15 T ELT)) (-3589 (($ (-1088)) 20 T ELT) (($ (-1088) (-694)) 23 T ELT) (($ (-1088) (-55)) 24 T ELT)) (-1284 (((-85) $) 40 T ELT)) (-1282 (((-85) $) 44 T ELT)) (-3536 (((-1088) $) 8 T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2629 (((-85) $ (-1088)) 11 T ELT)) (-2124 (($ $ (-1 (-472) (-583 (-472)))) 65 T ELT) (((-632 (-1 (-472) (-583 (-472)))) $) 69 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1279 (((-85) $ (-444)) 37 T ELT)) (-1281 (($ $ (-1 (-85) $ $)) 46 T ELT)) (-3611 (((-632 (-1 (-772) (-583 (-772)))) $) 67 T ELT) (($ $ (-1 (-772) (-583 (-772)))) 52 T ELT) (($ $ (-1 (-772) (-772))) 54 T ELT)) (-1278 (($ $ (-1071)) 56 T ELT) (($ $ (-444)) 57 T ELT)) (-3394 (($ $) 75 T ELT)) (-1280 (($ $ (-1 (-85) $ $)) 47 T ELT)) (-3940 (((-772) $) 61 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2788 (($ $ (-444)) 35 T ELT)) (-2517 (((-55) $) 70 T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 88 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 104 T ELT)))
-(((-86) (-13 (-756) (-747 (-1088)) (-10 -8 (-15 -1285 ((-45 (-1071) (-696)) $)) (-15 -3394 ($ $)) (-15 -3589 ($ (-1088))) (-15 -3589 ($ (-1088) (-694))) (-15 -3589 ($ (-1088) (-55))) (-15 -1284 ((-85) $)) (-15 -1283 ((-85) $)) (-15 -1282 ((-85) $)) (-15 -1519 ((-694) $)) (-15 -1519 ($ $ (-694))) (-15 -1281 ($ $ (-1 (-85) $ $))) (-15 -1280 ($ $ (-1 (-85) $ $))) (-15 -3611 ((-632 (-1 (-772) (-583 (-772)))) $)) (-15 -3611 ($ $ (-1 (-772) (-583 (-772))))) (-15 -3611 ($ $ (-1 (-772) (-772)))) (-15 -2124 ($ $ (-1 (-472) (-583 (-472))))) (-15 -2124 ((-632 (-1 (-472) (-583 (-472)))) $)) (-15 -1279 ((-85) $ (-444))) (-15 -2788 ($ $ (-444))) (-15 -1278 ($ $ (-1071))) (-15 -1278 ($ $ (-444))) (-15 -2837 ((-3 (-696) "failed") $ (-1071))) (-15 -2837 ((-632 (-696)) $ (-444))) (-15 -1277 ($ $ (-1071) (-696))) (-15 -1277 ($ $ (-444) (-696))) (-15 -1276 ($ $ (-45 (-1071) (-696))))))) (T -86))
-((-1285 (*1 *2 *1) (-12 (-5 *2 (-45 (-1071) (-696))) (-5 *1 (-86)))) (-3394 (*1 *1 *1) (-5 *1 (-86))) (-3589 (*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-86)))) (-3589 (*1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-694)) (-5 *1 (-86)))) (-3589 (*1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-55)) (-5 *1 (-86)))) (-1284 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1283 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1282 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1519 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-86)))) (-1519 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-86)))) (-1281 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-1280 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-3611 (*1 *2 *1) (-12 (-5 *2 (-632 (-1 (-772) (-583 (-772))))) (-5 *1 (-86)))) (-3611 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-772) (-583 (-772)))) (-5 *1 (-86)))) (-3611 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-772) (-772))) (-5 *1 (-86)))) (-2124 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-472) (-583 (-472)))) (-5 *1 (-86)))) (-2124 (*1 *2 *1) (-12 (-5 *2 (-632 (-1 (-472) (-583 (-472))))) (-5 *1 (-86)))) (-1279 (*1 *2 *1 *3) (-12 (-5 *3 (-444)) (-5 *2 (-85)) (-5 *1 (-86)))) (-2788 (*1 *1 *1 *2) (-12 (-5 *2 (-444)) (-5 *1 (-86)))) (-1278 (*1 *1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-86)))) (-1278 (*1 *1 *1 *2) (-12 (-5 *2 (-444)) (-5 *1 (-86)))) (-2837 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1071)) (-5 *2 (-696)) (-5 *1 (-86)))) (-2837 (*1 *2 *1 *3) (-12 (-5 *3 (-444)) (-5 *2 (-632 (-696))) (-5 *1 (-86)))) (-1277 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1071)) (-5 *3 (-696)) (-5 *1 (-86)))) (-1277 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-696)) (-5 *1 (-86)))) (-1276 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1071) (-696))) (-5 *1 (-86)))))
-((-2514 (((-3 (-1 |#1| (-583 |#1|)) #1="failed") (-86)) 23 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 13 T ELT) (((-86) (-86) (-1 |#1| (-583 |#1|))) 11 T ELT) (((-3 |#1| #1#) (-86) (-583 |#1|)) 25 T ELT)) (-1286 (((-3 (-583 (-1 |#1| (-583 |#1|))) #1#) (-86)) 29 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 33 T ELT) (((-86) (-86) (-583 (-1 |#1| (-583 |#1|)))) 30 T ELT)) (-1287 (((-86) |#1|) 63 T ELT)) (-1288 (((-3 |#1| #1#) (-86)) 58 T ELT)))
-(((-87 |#1|) (-10 -7 (-15 -2514 ((-3 |#1| #1="failed") (-86) (-583 |#1|))) (-15 -2514 ((-86) (-86) (-1 |#1| (-583 |#1|)))) (-15 -2514 ((-86) (-86) (-1 |#1| |#1|))) (-15 -2514 ((-3 (-1 |#1| (-583 |#1|)) #1#) (-86))) (-15 -1286 ((-86) (-86) (-583 (-1 |#1| (-583 |#1|))))) (-15 -1286 ((-86) (-86) (-1 |#1| |#1|))) (-15 -1286 ((-3 (-583 (-1 |#1| (-583 |#1|))) #1#) (-86))) (-15 -1287 ((-86) |#1|)) (-15 -1288 ((-3 |#1| #1#) (-86)))) (-1012)) (T -87))
-((-1288 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1012)))) (-1287 (*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1012)))) (-1286 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-583 (-1 *4 (-583 *4)))) (-5 *1 (-87 *4)) (-4 *4 (-1012)))) (-1286 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1012)) (-5 *1 (-87 *4)))) (-1286 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 (-1 *4 (-583 *4)))) (-4 *4 (-1012)) (-5 *1 (-87 *4)))) (-2514 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-583 *4))) (-5 *1 (-87 *4)) (-4 *4 (-1012)))) (-2514 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1012)) (-5 *1 (-87 *4)))) (-2514 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-583 *4))) (-4 *4 (-1012)) (-5 *1 (-87 *4)))) (-2514 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-583 *2)) (-5 *1 (-87 *2)) (-4 *2 (-1012)))))
-((-1289 (((-483) |#2|) 41 T ELT)))
-(((-88 |#1| |#2|) (-10 -7 (-15 -1289 ((-483) |#2|))) (-13 (-311) (-950 (-347 (-483)))) (-1153 |#1|)) (T -88))
-((-1289 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-950 (-347 *2)))) (-5 *2 (-483)) (-5 *1 (-88 *4 *3)) (-4 *3 (-1153 *4)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3033 (($ $ (-483)) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2607 (($ (-1083 (-483)) (-483)) NIL T ELT)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2608 (($ $) NIL T ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3766 (((-694) $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2610 (((-483)) NIL T ELT)) (-2609 (((-483) $) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3763 (($ $ (-483)) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-2611 (((-1067 (-483)) $) NIL T ELT)) (-2887 (($ $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3764 (((-483) $ (-483)) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT)))
-(((-89 |#1|) (-779 |#1|) (-483)) (T -89))
-NIL
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3124 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-257)) ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-89 |#1|) (-821)) ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| (-89 |#1|) (-821)) ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3617 (((-483) $) NIL (|has| (-89 |#1|) (-740)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-89 |#1|) #1#) $) NIL T ELT) (((-3 (-1088) #1#) $) NIL (|has| (-89 |#1|) (-950 (-1088))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| (-89 |#1|) (-950 (-483))) ELT) (((-3 (-483) #1#) $) NIL (|has| (-89 |#1|) (-950 (-483))) ELT)) (-3151 (((-89 |#1|) $) NIL T ELT) (((-1088) $) NIL (|has| (-89 |#1|) (-950 (-1088))) ELT) (((-347 (-483)) $) NIL (|has| (-89 |#1|) (-950 (-483))) ELT) (((-483) $) NIL (|has| (-89 |#1|) (-950 (-483))) ELT)) (-3724 (($ $) NIL T ELT) (($ (-483) $) NIL T ELT)) (-2560 (($ $ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| (-89 |#1|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| (-89 |#1|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-89 |#1|))) (|:| |vec| (-1177 (-89 |#1|)))) (-630 $) (-1177 $)) NIL T ELT) (((-630 (-89 |#1|)) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) NIL (|has| (-89 |#1|) (-482)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-3181 (((-85) $) NIL (|has| (-89 |#1|) (-740)) ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (|has| (-89 |#1|) (-796 (-483))) ELT) (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (|has| (-89 |#1|) (-796 (-327))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2992 (($ $) NIL T ELT)) (-2994 (((-89 |#1|) $) NIL T ELT)) (-3439 (((-632 $) $) NIL (|has| (-89 |#1|) (-1064)) ELT)) (-3182 (((-85) $) NIL (|has| (-89 |#1|) (-740)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2527 (($ $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-3952 (($ (-1 (-89 |#1|) (-89 |#1|)) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| (-89 |#1|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| (-89 |#1|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-89 |#1|))) (|:| |vec| (-1177 (-89 |#1|)))) (-1177 $) $) NIL T ELT) (((-630 (-89 |#1|)) (-1177 $)) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL (|has| (-89 |#1|) (-1064)) CONST)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3123 (($ $) NIL (|has| (-89 |#1|) (-257)) ELT)) (-3125 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-482)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-89 |#1|) (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-89 |#1|) (-821)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3762 (($ $ (-583 (-89 |#1|)) (-583 (-89 |#1|))) NIL (|has| (-89 |#1|) (-259 (-89 |#1|))) ELT) (($ $ (-89 |#1|) (-89 |#1|)) NIL (|has| (-89 |#1|) (-259 (-89 |#1|))) ELT) (($ $ (-248 (-89 |#1|))) NIL (|has| (-89 |#1|) (-259 (-89 |#1|))) ELT) (($ $ (-583 (-248 (-89 |#1|)))) NIL (|has| (-89 |#1|) (-259 (-89 |#1|))) ELT) (($ $ (-583 (-1088)) (-583 (-89 |#1|))) NIL (|has| (-89 |#1|) (-452 (-1088) (-89 |#1|))) ELT) (($ $ (-1088) (-89 |#1|)) NIL (|has| (-89 |#1|) (-452 (-1088) (-89 |#1|))) ELT)) (-1604 (((-694) $) NIL T ELT)) (-3794 (($ $ (-89 |#1|)) NIL (|has| (-89 |#1|) (-241 (-89 |#1|) (-89 |#1|))) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-3752 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-89 |#1|) (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| (-89 |#1|) (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| (-89 |#1|) (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| (-89 |#1|) (-811 (-1088))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-2991 (($ $) NIL T ELT)) (-2993 (((-89 |#1|) $) NIL T ELT)) (-3966 (((-800 (-483)) $) NIL (|has| (-89 |#1|) (-553 (-800 (-483)))) ELT) (((-800 (-327)) $) NIL (|has| (-89 |#1|) (-553 (-800 (-327)))) ELT) (((-472) $) NIL (|has| (-89 |#1|) (-553 (-472))) ELT) (((-327) $) NIL (|has| (-89 |#1|) (-933)) ELT) (((-179) $) NIL (|has| (-89 |#1|) (-933)) ELT)) (-2612 (((-148 (-347 (-483))) $) NIL T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-821))) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ (-89 |#1|)) NIL T ELT) (($ (-1088)) NIL (|has| (-89 |#1|) (-950 (-1088))) ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-821))) (|has| (-89 |#1|) (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-3126 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-482)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3764 (((-347 (-483)) $ (-483)) NIL T ELT)) (-3377 (($ $) NIL (|has| (-89 |#1|) (-740)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-89 |#1|) (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| (-89 |#1|) (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| (-89 |#1|) (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| (-89 |#1|) (-811 (-1088))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-2562 (((-85) $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-3943 (($ $ $) NIL T ELT) (($ (-89 |#1|) (-89 |#1|)) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ (-89 |#1|) $) NIL T ELT) (($ $ (-89 |#1|)) NIL T ELT)))
-(((-90 |#1|) (-13 (-904 (-89 |#1|)) (-10 -8 (-15 -3764 ((-347 (-483)) $ (-483))) (-15 -2612 ((-148 (-347 (-483))) $)) (-15 -3724 ($ $)) (-15 -3724 ($ (-483) $)))) (-483)) (T -90))
-((-3764 (*1 *2 *1 *3) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-483)))) (-2612 (*1 *2 *1) (-12 (-5 *2 (-148 (-347 (-483)))) (-5 *1 (-90 *3)) (-14 *3 (-483)))) (-3724 (*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-483)))) (-3724 (*1 *1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-90 *3)) (-14 *3 *2))))
-((-3782 ((|#2| $ #1="value" |#2|) NIL T ELT) (($ $ #2="left" $) 61 T ELT) (($ $ #3="right" $) 63 T ELT)) (-3027 (((-583 $) $) 31 T ELT)) (-3023 (((-85) $ $) 36 T ELT)) (-3240 (((-85) |#2| $) 40 T ELT)) (-3026 (((-583 |#2|) $) 25 T ELT)) (-3521 (((-85) $) 18 T ELT)) (-3794 ((|#2| $ #1#) NIL T ELT) (($ $ #2#) 10 T ELT) (($ $ #3#) 13 T ELT)) (-3627 (((-85) $) 57 T ELT)) (-3940 (((-772) $) 47 T ELT)) (-3516 (((-583 $) $) 32 T ELT)) (-3052 (((-85) $ $) 38 T ELT)) (-3951 (((-694) $) 50 T ELT)))
-(((-91 |#1| |#2|) (-10 -7 (-15 -3052 ((-85) |#1| |#1|)) (-15 -3940 ((-772) |#1|)) (-15 -3782 (|#1| |#1| #1="right" |#1|)) (-15 -3782 (|#1| |#1| #2="left" |#1|)) (-15 -3794 (|#1| |#1| #1#)) (-15 -3794 (|#1| |#1| #2#)) (-15 -3782 (|#2| |#1| #3="value" |#2|)) (-15 -3023 ((-85) |#1| |#1|)) (-15 -3026 ((-583 |#2|) |#1|)) (-15 -3627 ((-85) |#1|)) (-15 -3794 (|#2| |#1| #3#)) (-15 -3521 ((-85) |#1|)) (-15 -3027 ((-583 |#1|) |#1|)) (-15 -3516 ((-583 |#1|) |#1|)) (-15 -3240 ((-85) |#2| |#1|)) (-15 -3951 ((-694) |#1|))) (-92 |#2|) (-1127)) (T -91))
-NIL
-((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3396 ((|#1| $) 52 T ELT)) (-3021 ((|#1| $ |#1|) 43 (|has| $ (-6 -3990)) ELT)) (-1290 (($ $ $) 58 (|has| $ (-6 -3990)) ELT)) (-1291 (($ $ $) 60 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3990)) ELT) (($ $ "left" $) 61 (|has| $ (-6 -3990)) ELT) (($ $ "right" $) 59 (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) 45 (|has| $ (-6 -3990)) ELT)) (-3718 (($) 7 T CONST)) (-3132 (($ $) 63 T ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-3027 (((-583 $) $) 54 T ELT)) (-3023 (((-85) $ $) 46 (|has| |#1| (-1012)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3133 (($ $) 65 T ELT)) (-3026 (((-583 |#1|) $) 49 T ELT)) (-3521 (((-85) $) 53 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#1| $ #1#) 51 T ELT) (($ $ "left") 64 T ELT) (($ $ "right") 62 T ELT)) (-3025 (((-483) $ $) 48 T ELT)) (-3627 (((-85) $) 50 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3516 (((-583 $) $) 55 T ELT)) (-3024 (((-85) $ $) 47 (|has| |#1| (-1012)) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-92 |#1|) (-113) (-1127)) (T -92))
-((-3133 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1127)))) (-3794 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1127)))) (-3132 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1127)))) (-3794 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1127)))) (-3782 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -3990)) (-4 *1 (-92 *3)) (-4 *3 (-1127)))) (-1291 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-92 *2)) (-4 *2 (-1127)))) (-3782 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -3990)) (-4 *1 (-92 *3)) (-4 *3 (-1127)))) (-1290 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-92 *2)) (-4 *2 (-1127)))))
-(-13 (-923 |t#1|) (-10 -8 (-15 -3133 ($ $)) (-15 -3794 ($ $ "left")) (-15 -3132 ($ $)) (-15 -3794 ($ $ "right")) (IF (|has| $ (-6 -3990)) (PROGN (-15 -3782 ($ $ "left" $)) (-15 -1291 ($ $ $)) (-15 -3782 ($ $ "right" $)) (-15 -1290 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-923 |#1|) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T))
-((-1294 (((-85) |#1|) 29 T ELT)) (-1293 (((-694) (-694)) 28 T ELT) (((-694)) 27 T ELT)) (-1292 (((-85) |#1| (-85)) 30 T ELT) (((-85) |#1|) 31 T ELT)))
-(((-93 |#1|) (-10 -7 (-15 -1292 ((-85) |#1|)) (-15 -1292 ((-85) |#1| (-85))) (-15 -1293 ((-694))) (-15 -1293 ((-694) (-694))) (-15 -1294 ((-85) |#1|))) (-1153 (-483))) (T -93))
-((-1294 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1153 (-483))))) (-1293 (*1 *2 *2) (-12 (-5 *2 (-694)) (-5 *1 (-93 *3)) (-4 *3 (-1153 (-483))))) (-1293 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-93 *3)) (-4 *3 (-1153 (-483))))) (-1292 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1153 (-483))))) (-1292 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1153 (-483))))))
-((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3396 ((|#1| $) 18 T ELT)) (-3412 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-3021 ((|#1| $ |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-1290 (($ $ $) 21 (|has| $ (-6 -3990)) ELT)) (-1291 (($ $ $) 23 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3990)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3990)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) NIL (|has| $ (-6 -3990)) ELT)) (-3718 (($) NIL T CONST)) (-3132 (($ $) 20 T ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3027 (((-583 $) $) NIL T ELT)) (-3023 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1299 (($ $ |#1| $) 27 T ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3133 (($ $) 22 T ELT)) (-3026 (((-583 |#1|) $) NIL T ELT)) (-3521 (((-85) $) NIL T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-1295 (($ |#1| $) 28 T ELT)) (-3603 (($ |#1| $) 15 T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) 17 T ELT)) (-3559 (($) 11 T ELT)) (-3794 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3025 (((-483) $ $) NIL T ELT)) (-3627 (((-85) $) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-3516 (((-583 $) $) NIL T ELT)) (-3024 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1296 (($ (-583 |#1|)) 16 T ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-94 |#1|) (-13 (-98 |#1|) (-10 -8 (-6 -3990) (-6 -3989) (-15 -1296 ($ (-583 |#1|))) (-15 -3603 ($ |#1| $)) (-15 -1295 ($ |#1| $)) (-15 -3412 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-756)) (T -94))
-((-1296 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-94 *3)))) (-3603 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-756)))) (-1295 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-756)))) (-3412 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-94 *3)) (|:| |greater| (-94 *3)))) (-5 *1 (-94 *3)) (-4 *3 (-756)))))
-((-2309 (($ $) 13 T ELT)) (-2556 (($ $) 11 T ELT)) (-1297 (($ $ $) 23 T ELT)) (-1298 (($ $ $) 21 T ELT)) (-2307 (($ $ $) 19 T ELT)) (-2308 (($ $ $) 17 T ELT)))
-(((-95 |#1|) (-10 -7 (-15 -1297 (|#1| |#1| |#1|)) (-15 -1298 (|#1| |#1| |#1|)) (-15 -2309 (|#1| |#1|)) (-15 -2308 (|#1| |#1| |#1|)) (-15 -2307 (|#1| |#1| |#1|)) (-15 -2556 (|#1| |#1|))) (-96)) (T -95))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-2309 (($ $) 103 T ELT)) (-3316 (($ $ $) 31 T ELT)) (-2194 (((-1183) $ (-483) (-483)) 66 (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) $) 98 (|has| (-85) (-756)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) 92 T ELT)) (-1727 (($ $) 102 (-12 (|has| (-85) (-756)) (|has| $ (-6 -3990))) ELT) (($ (-1 (-85) (-85) (-85)) $) 101 (|has| $ (-6 -3990)) ELT)) (-2905 (($ $) 97 (|has| (-85) (-756)) ELT) (($ (-1 (-85) (-85) (-85)) $) 91 T ELT)) (-3782 (((-85) $ (-1144 (-483)) (-85)) 88 (|has| $ (-6 -3990)) ELT) (((-85) $ (-483) (-85)) 54 (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) (-85)) $) 71 (|has| $ (-6 -3989)) ELT)) (-3718 (($) 38 T CONST)) (-2293 (($ $) 100 (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) 90 T ELT)) (-1350 (($ $) 68 (-12 (|has| (-85) (-1012)) (|has| $ (-6 -3989))) ELT)) (-3400 (($ (-1 (-85) (-85)) $) 72 (|has| $ (-6 -3989)) ELT) (($ (-85) $) 69 (-12 (|has| (-85) (-1012)) (|has| $ (-6 -3989))) ELT)) (-3836 (((-85) (-1 (-85) (-85) (-85)) $) 74 (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) 73 (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) 70 (-12 (|has| (-85) (-1012)) (|has| $ (-6 -3989))) ELT)) (-1573 (((-85) $ (-483) (-85)) 53 (|has| $ (-6 -3990)) ELT)) (-3108 (((-85) $ (-483)) 55 T ELT)) (-3413 (((-483) (-85) $ (-483)) 95 (|has| (-85) (-1012)) ELT) (((-483) (-85) $) 94 (|has| (-85) (-1012)) ELT) (((-483) (-1 (-85) (-85)) $) 93 T ELT)) (-2885 (((-583 (-85)) $) 45 (|has| $ (-6 -3989)) ELT)) (-2557 (($ $ $) 108 T ELT)) (-2556 (($ $) 106 T ELT)) (-1297 (($ $ $) 32 T ELT)) (-3608 (($ (-694) (-85)) 78 T ELT)) (-1298 (($ $ $) 33 T ELT)) (-2196 (((-483) $) 63 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) 23 T ELT)) (-3512 (($ $ $) 96 (|has| (-85) (-756)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) 89 T ELT)) (-2604 (((-583 (-85)) $) 46 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-85) $) 48 (-12 (|has| (-85) (-1012)) (|has| $ (-6 -3989))) ELT)) (-2197 (((-483) $) 62 (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) 22 T ELT)) (-1946 (($ (-1 (-85) (-85)) $) 41 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-85) (-85) (-85)) $ $) 83 T ELT) (($ (-1 (-85) (-85)) $) 40 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2300 (($ $ $ (-483)) 87 T ELT) (($ (-85) $ (-483)) 86 T ELT)) (-2199 (((-583 (-483)) $) 60 T ELT)) (-2200 (((-85) (-483) $) 59 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3795 (((-85) $) 64 (|has| (-483) (-756)) ELT)) (-1351 (((-3 (-85) "failed") (-1 (-85) (-85)) $) 75 T ELT)) (-2195 (($ $ (-85)) 65 (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) (-85)) $) 43 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-85)) (-583 (-85))) 52 (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1012))) ELT) (($ $ (-85) (-85)) 51 (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1012))) ELT) (($ $ (-248 (-85))) 50 (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1012))) ELT) (($ $ (-583 (-248 (-85)))) 49 (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1012))) ELT)) (-1219 (((-85) $ $) 34 T ELT)) (-2198 (((-85) (-85) $) 61 (-12 (|has| $ (-6 -3989)) (|has| (-85) (-1012))) ELT)) (-2201 (((-583 (-85)) $) 58 T ELT)) (-3397 (((-85) $) 37 T ELT)) (-3559 (($) 36 T ELT)) (-3794 (($ $ (-1144 (-483))) 77 T ELT) (((-85) $ (-483)) 57 T ELT) (((-85) $ (-483) (-85)) 56 T ELT)) (-2301 (($ $ (-1144 (-483))) 85 T ELT) (($ $ (-483)) 84 T ELT)) (-1943 (((-694) (-85) $) 47 (-12 (|has| (-85) (-1012)) (|has| $ (-6 -3989))) ELT) (((-694) (-1 (-85) (-85)) $) 44 (|has| $ (-6 -3989)) ELT)) (-1728 (($ $ $ (-483)) 99 (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) 35 T ELT)) (-3966 (((-472) $) 67 (|has| (-85) (-553 (-472))) ELT)) (-3524 (($ (-583 (-85))) 76 T ELT)) (-3796 (($ (-583 $)) 82 T ELT) (($ $ $) 81 T ELT) (($ (-85) $) 80 T ELT) (($ $ (-85)) 79 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-1945 (((-85) (-1 (-85) (-85)) $) 42 (|has| $ (-6 -3989)) ELT)) (-2558 (($ $ $) 107 T ELT)) (-2307 (($ $ $) 105 T ELT)) (-2562 (((-85) $ $) 21 T ELT)) (-2563 (((-85) $ $) 19 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 20 T ELT)) (-2681 (((-85) $ $) 18 T ELT)) (-2308 (($ $ $) 104 T ELT)) (-3951 (((-694) $) 39 (|has| $ (-6 -3989)) ELT)))
+((-2558 (*1 *1 *1) (-4 *1 (-84))) (-2560 (*1 *1 *1 *1) (-4 *1 (-84))) (-2559 (*1 *1 *1 *1) (-4 *1 (-84))))
+(-13 (-605) (-10 -8 (-15 -2558 ($ $)) (-15 -2560 ($ $ $)) (-15 -2559 ($ $ $))))
+(((-13) . T) ((-605) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-2311 (($ $) 9 T ELT)) (-3318 (($ $ $) 14 T ELT)) (-2853 (($) 6 T CONST)) (-3133 (((-695)) 23 T ELT)) (-2992 (($) 31 T ELT)) (-2559 (($ $ $) 12 T ELT)) (-2558 (($ $) 8 T ELT)) (-1298 (($ $ $) 15 T ELT)) (-1299 (($ $ $) 16 T ELT)) (-2529 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2855 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2008 (((-831) $) 29 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2398 (($ (-831)) 27 T ELT)) (-2851 (($ $ $) 19 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2852 (($) 7 T CONST)) (-2850 (($ $ $) 20 T ELT)) (-3968 (((-473) $) 33 T ELT)) (-3942 (((-773) $) 35 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2560 (($ $ $) 10 T ELT)) (-2309 (($ $ $) 13 T ELT)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 18 T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) 21 T ELT)) (-2310 (($ $ $) 11 T ELT)))
+(((-85) (-13 (-753) (-881) (-554 (-473)) (-10 -8 (-15 -3318 ($ $ $)) (-15 -1299 ($ $ $)) (-15 -1298 ($ $ $))))) (T -85))
+((-3318 (*1 *1 *1 *1) (-5 *1 (-85))) (-1299 (*1 *1 *1 *1) (-5 *1 (-85))) (-1298 (*1 *1 *1 *1) (-5 *1 (-85))))
+((-2566 (((-85) $ $) NIL T ELT)) (-1520 (((-695) $) 92 T ELT) (($ $ (-695)) 38 T ELT)) (-1284 (((-85) $) 42 T ELT)) (-1278 (($ $ (-1072) (-697)) 59 T ELT) (($ $ (-444) (-697)) 34 T ELT)) (-1277 (($ $ (-45 (-1072) (-697))) 16 T ELT)) (-2839 (((-3 (-697) "failed") $ (-1072)) 27 T ELT) (((-633 (-697)) $ (-444)) 33 T ELT)) (-1286 (((-45 (-1072) (-697)) $) 15 T ELT)) (-3591 (($ (-1089)) 20 T ELT) (($ (-1089) (-695)) 23 T ELT) (($ (-1089) (-55)) 24 T ELT)) (-1285 (((-85) $) 40 T ELT)) (-1283 (((-85) $) 44 T ELT)) (-3538 (((-1089) $) 8 T ELT)) (-2529 (($ $ $) NIL T ELT)) (-2855 (($ $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2631 (((-85) $ (-1089)) 11 T ELT)) (-2126 (($ $ (-1 (-473) (-584 (-473)))) 65 T ELT) (((-633 (-1 (-473) (-584 (-473)))) $) 69 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1280 (((-85) $ (-444)) 37 T ELT)) (-1282 (($ $ (-1 (-85) $ $)) 46 T ELT)) (-3613 (((-633 (-1 (-773) (-584 (-773)))) $) 67 T ELT) (($ $ (-1 (-773) (-584 (-773)))) 52 T ELT) (($ $ (-1 (-773) (-773))) 54 T ELT)) (-1279 (($ $ (-1072)) 56 T ELT) (($ $ (-444)) 57 T ELT)) (-3396 (($ $) 75 T ELT)) (-1281 (($ $ (-1 (-85) $ $)) 47 T ELT)) (-3942 (((-773) $) 61 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2790 (($ $ (-444)) 35 T ELT)) (-2519 (((-55) $) 70 T ELT)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 88 T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) 104 T ELT)))
+(((-86) (-13 (-757) (-748 (-1089)) (-10 -8 (-15 -1286 ((-45 (-1072) (-697)) $)) (-15 -3396 ($ $)) (-15 -3591 ($ (-1089))) (-15 -3591 ($ (-1089) (-695))) (-15 -3591 ($ (-1089) (-55))) (-15 -1285 ((-85) $)) (-15 -1284 ((-85) $)) (-15 -1283 ((-85) $)) (-15 -1520 ((-695) $)) (-15 -1520 ($ $ (-695))) (-15 -1282 ($ $ (-1 (-85) $ $))) (-15 -1281 ($ $ (-1 (-85) $ $))) (-15 -3613 ((-633 (-1 (-773) (-584 (-773)))) $)) (-15 -3613 ($ $ (-1 (-773) (-584 (-773))))) (-15 -3613 ($ $ (-1 (-773) (-773)))) (-15 -2126 ($ $ (-1 (-473) (-584 (-473))))) (-15 -2126 ((-633 (-1 (-473) (-584 (-473)))) $)) (-15 -1280 ((-85) $ (-444))) (-15 -2790 ($ $ (-444))) (-15 -1279 ($ $ (-1072))) (-15 -1279 ($ $ (-444))) (-15 -2839 ((-3 (-697) "failed") $ (-1072))) (-15 -2839 ((-633 (-697)) $ (-444))) (-15 -1278 ($ $ (-1072) (-697))) (-15 -1278 ($ $ (-444) (-697))) (-15 -1277 ($ $ (-45 (-1072) (-697))))))) (T -86))
+((-1286 (*1 *2 *1) (-12 (-5 *2 (-45 (-1072) (-697))) (-5 *1 (-86)))) (-3396 (*1 *1 *1) (-5 *1 (-86))) (-3591 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-86)))) (-3591 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-695)) (-5 *1 (-86)))) (-3591 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-55)) (-5 *1 (-86)))) (-1285 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1284 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1283 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1520 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-86)))) (-1520 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-86)))) (-1282 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-1281 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-633 (-1 (-773) (-584 (-773))))) (-5 *1 (-86)))) (-3613 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-773) (-584 (-773)))) (-5 *1 (-86)))) (-3613 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-773) (-773))) (-5 *1 (-86)))) (-2126 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-473) (-584 (-473)))) (-5 *1 (-86)))) (-2126 (*1 *2 *1) (-12 (-5 *2 (-633 (-1 (-473) (-584 (-473))))) (-5 *1 (-86)))) (-1280 (*1 *2 *1 *3) (-12 (-5 *3 (-444)) (-5 *2 (-85)) (-5 *1 (-86)))) (-2790 (*1 *1 *1 *2) (-12 (-5 *2 (-444)) (-5 *1 (-86)))) (-1279 (*1 *1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-86)))) (-1279 (*1 *1 *1 *2) (-12 (-5 *2 (-444)) (-5 *1 (-86)))) (-2839 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1072)) (-5 *2 (-697)) (-5 *1 (-86)))) (-2839 (*1 *2 *1 *3) (-12 (-5 *3 (-444)) (-5 *2 (-633 (-697))) (-5 *1 (-86)))) (-1278 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1072)) (-5 *3 (-697)) (-5 *1 (-86)))) (-1278 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-697)) (-5 *1 (-86)))) (-1277 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1072) (-697))) (-5 *1 (-86)))))
+((-2516 (((-3 (-1 |#1| (-584 |#1|)) #1="failed") (-86)) 23 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 13 T ELT) (((-86) (-86) (-1 |#1| (-584 |#1|))) 11 T ELT) (((-3 |#1| #1#) (-86) (-584 |#1|)) 25 T ELT)) (-1287 (((-3 (-584 (-1 |#1| (-584 |#1|))) #1#) (-86)) 29 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 33 T ELT) (((-86) (-86) (-584 (-1 |#1| (-584 |#1|)))) 30 T ELT)) (-1288 (((-86) |#1|) 63 T ELT)) (-1289 (((-3 |#1| #1#) (-86)) 58 T ELT)))
+(((-87 |#1|) (-10 -7 (-15 -2516 ((-3 |#1| #1="failed") (-86) (-584 |#1|))) (-15 -2516 ((-86) (-86) (-1 |#1| (-584 |#1|)))) (-15 -2516 ((-86) (-86) (-1 |#1| |#1|))) (-15 -2516 ((-3 (-1 |#1| (-584 |#1|)) #1#) (-86))) (-15 -1287 ((-86) (-86) (-584 (-1 |#1| (-584 |#1|))))) (-15 -1287 ((-86) (-86) (-1 |#1| |#1|))) (-15 -1287 ((-3 (-584 (-1 |#1| (-584 |#1|))) #1#) (-86))) (-15 -1288 ((-86) |#1|)) (-15 -1289 ((-3 |#1| #1#) (-86)))) (-1013)) (T -87))
+((-1289 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1013)))) (-1288 (*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1013)))) (-1287 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-584 (-1 *4 (-584 *4)))) (-5 *1 (-87 *4)) (-4 *4 (-1013)))) (-1287 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1013)) (-5 *1 (-87 *4)))) (-1287 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 (-1 *4 (-584 *4)))) (-4 *4 (-1013)) (-5 *1 (-87 *4)))) (-2516 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-584 *4))) (-5 *1 (-87 *4)) (-4 *4 (-1013)))) (-2516 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1013)) (-5 *1 (-87 *4)))) (-2516 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-584 *4))) (-4 *4 (-1013)) (-5 *1 (-87 *4)))) (-2516 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-584 *2)) (-5 *1 (-87 *2)) (-4 *2 (-1013)))))
+((-1290 (((-484) |#2|) 41 T ELT)))
+(((-88 |#1| |#2|) (-10 -7 (-15 -1290 ((-484) |#2|))) (-13 (-311) (-951 (-347 (-484)))) (-1154 |#1|)) (T -88))
+((-1290 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-951 (-347 *2)))) (-5 *2 (-484)) (-5 *1 (-88 *4 *3)) (-4 *3 (-1154 *4)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3035 (($ $ (-484)) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-2609 (($ (-1084 (-484)) (-484)) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2610 (($ $) NIL T ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-3768 (((-695) $) NIL T ELT)) (-2408 (((-85) $) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2612 (((-484)) NIL T ELT)) (-2611 (((-484) $) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3765 (($ $ (-484)) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-2613 (((-1068 (-484)) $) NIL T ELT)) (-2889 (($ $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT)) (-3123 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-3766 (((-484) $ (-484)) NIL T ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-3054 (((-85) $ $) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT)))
+(((-89 |#1|) (-780 |#1|) (-484)) (T -89))
+NIL
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3126 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-257)) ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-89 |#1|) (-822)) ELT)) (-3771 (($ $) NIL T ELT)) (-3967 (((-345 $) $) NIL T ELT)) (-2702 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| (-89 |#1|) (-822)) ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3619 (((-484) $) NIL (|has| (-89 |#1|) (-741)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 (-89 |#1|) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL (|has| (-89 |#1|) (-951 (-1089))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| (-89 |#1|) (-951 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-89 |#1|) (-951 (-484))) ELT)) (-3153 (((-89 |#1|) $) NIL T ELT) (((-1089) $) NIL (|has| (-89 |#1|) (-951 (-1089))) ELT) (((-347 (-484)) $) NIL (|has| (-89 |#1|) (-951 (-484))) ELT) (((-484) $) NIL (|has| (-89 |#1|) (-951 (-484))) ELT)) (-3726 (($ $) NIL T ELT) (($ (-484) $) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL (|has| (-89 |#1|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| (-89 |#1|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-89 |#1|))) (|:| |vec| (-1178 (-89 |#1|)))) (-631 $) (-1178 $)) NIL T ELT) (((-631 (-89 |#1|)) (-631 $)) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2992 (($) NIL (|has| (-89 |#1|) (-483)) ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-3719 (((-85) $) NIL T ELT)) (-3183 (((-85) $) NIL (|has| (-89 |#1|) (-741)) ELT)) (-2794 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (|has| (-89 |#1|) (-797 (-484))) ELT) (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (|has| (-89 |#1|) (-797 (-327))) ELT)) (-2408 (((-85) $) NIL T ELT)) (-2994 (($ $) NIL T ELT)) (-2996 (((-89 |#1|) $) NIL T ELT)) (-3441 (((-633 $) $) NIL (|has| (-89 |#1|) (-1065)) ELT)) (-3184 (((-85) $) NIL (|has| (-89 |#1|) (-741)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2529 (($ $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-2855 (($ $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-3954 (($ (-1 (-89 |#1|) (-89 |#1|)) $) NIL T ELT)) (-2278 (((-631 (-484)) (-1178 $)) NIL (|has| (-89 |#1|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-89 |#1|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-89 |#1|))) (|:| |vec| (-1178 (-89 |#1|)))) (-1178 $) $) NIL T ELT) (((-631 (-89 |#1|)) (-1178 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) NIL T ELT)) (-3442 (($) NIL (|has| (-89 |#1|) (-1065)) CONST)) (-3240 (((-1033) $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3125 (($ $) NIL (|has| (-89 |#1|) (-257)) ELT)) (-3127 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-483)) ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-89 |#1|) (-822)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-89 |#1|) (-822)) ELT)) (-3728 (((-345 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3764 (($ $ (-584 (-89 |#1|)) (-584 (-89 |#1|))) NIL (|has| (-89 |#1|) (-259 (-89 |#1|))) ELT) (($ $ (-89 |#1|) (-89 |#1|)) NIL (|has| (-89 |#1|) (-259 (-89 |#1|))) ELT) (($ $ (-248 (-89 |#1|))) NIL (|has| (-89 |#1|) (-259 (-89 |#1|))) ELT) (($ $ (-584 (-248 (-89 |#1|)))) NIL (|has| (-89 |#1|) (-259 (-89 |#1|))) ELT) (($ $ (-584 (-1089)) (-584 (-89 |#1|))) NIL (|has| (-89 |#1|) (-453 (-1089) (-89 |#1|))) ELT) (($ $ (-1089) (-89 |#1|)) NIL (|has| (-89 |#1|) (-453 (-1089) (-89 |#1|))) ELT)) (-1605 (((-695) $) NIL T ELT)) (-3796 (($ $ (-89 |#1|)) NIL (|has| (-89 |#1|) (-241 (-89 |#1|) (-89 |#1|))) ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-3754 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-89 |#1|) (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| (-89 |#1|) (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| (-89 |#1|) (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| (-89 |#1|) (-812 (-1089))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-2993 (($ $) NIL T ELT)) (-2995 (((-89 |#1|) $) NIL T ELT)) (-3968 (((-801 (-484)) $) NIL (|has| (-89 |#1|) (-554 (-801 (-484)))) ELT) (((-801 (-327)) $) NIL (|has| (-89 |#1|) (-554 (-801 (-327)))) ELT) (((-473) $) NIL (|has| (-89 |#1|) (-554 (-473))) ELT) (((-327) $) NIL (|has| (-89 |#1|) (-934)) ELT) (((-179) $) NIL (|has| (-89 |#1|) (-934)) ELT)) (-2614 (((-148 (-347 (-484))) $) NIL T ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-822))) ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ (-89 |#1|)) NIL T ELT) (($ (-1089)) NIL (|has| (-89 |#1|) (-951 (-1089))) ELT)) (-2700 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-822))) (|has| (-89 |#1|) (-118))) ELT)) (-3123 (((-695)) NIL T CONST)) (-3128 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-483)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-3766 (((-347 (-484)) $ (-484)) NIL T ELT)) (-3379 (($ $) NIL (|has| (-89 |#1|) (-741)) ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-2667 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-89 |#1|) (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| (-89 |#1|) (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| (-89 |#1|) (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| (-89 |#1|) (-812 (-1089))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-2564 (((-85) $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-2565 (((-85) $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-2683 (((-85) $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-3945 (($ $ $) NIL T ELT) (($ (-89 |#1|) (-89 |#1|)) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ (-89 |#1|) $) NIL T ELT) (($ $ (-89 |#1|)) NIL T ELT)))
+(((-90 |#1|) (-13 (-905 (-89 |#1|)) (-10 -8 (-15 -3766 ((-347 (-484)) $ (-484))) (-15 -2614 ((-148 (-347 (-484))) $)) (-15 -3726 ($ $)) (-15 -3726 ($ (-484) $)))) (-484)) (T -90))
+((-3766 (*1 *2 *1 *3) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-484)))) (-2614 (*1 *2 *1) (-12 (-5 *2 (-148 (-347 (-484)))) (-5 *1 (-90 *3)) (-14 *3 (-484)))) (-3726 (*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-484)))) (-3726 (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-90 *3)) (-14 *3 *2))))
+((-3784 ((|#2| $ #1="value" |#2|) NIL T ELT) (($ $ #2="left" $) 61 T ELT) (($ $ #3="right" $) 63 T ELT)) (-3029 (((-584 $) $) 31 T ELT)) (-3025 (((-85) $ $) 36 T ELT)) (-3242 (((-85) |#2| $) 40 T ELT)) (-3028 (((-584 |#2|) $) 25 T ELT)) (-3523 (((-85) $) 18 T ELT)) (-3796 ((|#2| $ #1#) NIL T ELT) (($ $ #2#) 10 T ELT) (($ $ #3#) 13 T ELT)) (-3629 (((-85) $) 57 T ELT)) (-3942 (((-773) $) 47 T ELT)) (-3518 (((-584 $) $) 32 T ELT)) (-3054 (((-85) $ $) 38 T ELT)) (-3953 (((-695) $) 50 T ELT)))
+(((-91 |#1| |#2|) (-10 -7 (-15 -3054 ((-85) |#1| |#1|)) (-15 -3942 ((-773) |#1|)) (-15 -3784 (|#1| |#1| #1="right" |#1|)) (-15 -3784 (|#1| |#1| #2="left" |#1|)) (-15 -3796 (|#1| |#1| #1#)) (-15 -3796 (|#1| |#1| #2#)) (-15 -3784 (|#2| |#1| #3="value" |#2|)) (-15 -3025 ((-85) |#1| |#1|)) (-15 -3028 ((-584 |#2|) |#1|)) (-15 -3629 ((-85) |#1|)) (-15 -3796 (|#2| |#1| #3#)) (-15 -3523 ((-85) |#1|)) (-15 -3029 ((-584 |#1|) |#1|)) (-15 -3518 ((-584 |#1|) |#1|)) (-15 -3242 ((-85) |#2| |#1|)) (-15 -3953 ((-695) |#1|))) (-92 |#2|) (-1128)) (T -91))
+NIL
+((-2566 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3398 ((|#1| $) 52 T ELT)) (-3023 ((|#1| $ |#1|) 43 (|has| $ (-6 -3992)) ELT)) (-1291 (($ $ $) 58 (|has| $ (-6 -3992)) ELT)) (-1292 (($ $ $) 60 (|has| $ (-6 -3992)) ELT)) (-3784 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3992)) ELT) (($ $ "left" $) 61 (|has| $ (-6 -3992)) ELT) (($ $ "right" $) 59 (|has| $ (-6 -3992)) ELT)) (-3024 (($ $ (-584 $)) 45 (|has| $ (-6 -3992)) ELT)) (-3720 (($) 7 T CONST)) (-3134 (($ $) 63 T ELT)) (-2887 (((-584 |#1|) $) 30 (|has| $ (-6 -3991)) ELT)) (-3029 (((-584 $) $) 54 T ELT)) (-3025 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-2606 (((-584 |#1|) $) 29 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3135 (($ $) 65 T ELT)) (-3028 (((-584 |#1|) $) 49 T ELT)) (-3523 (((-85) $) 53 T ELT)) (-3239 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3240 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-3796 ((|#1| $ #1#) 51 T ELT) (($ $ "left") 64 T ELT) (($ $ "right") 62 T ELT)) (-3027 (((-484) $ $) 48 T ELT)) (-3629 (((-85) $) 50 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3396 (($ $) 10 T ELT)) (-3942 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-3518 (((-584 $) $) 55 T ELT)) (-3026 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-92 |#1|) (-113) (-1128)) (T -92))
+((-3135 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1128)))) (-3796 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1128)))) (-3134 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1128)))) (-3796 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1128)))) (-3784 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -3992)) (-4 *1 (-92 *3)) (-4 *3 (-1128)))) (-1292 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-92 *2)) (-4 *2 (-1128)))) (-3784 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -3992)) (-4 *1 (-92 *3)) (-4 *3 (-1128)))) (-1291 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-92 *2)) (-4 *2 (-1128)))))
+(-13 (-924 |t#1|) (-10 -8 (-15 -3135 ($ $)) (-15 -3796 ($ $ "left")) (-15 -3134 ($ $)) (-15 -3796 ($ $ "right")) (IF (|has| $ (-6 -3992)) (PROGN (-15 -3784 ($ $ "left" $)) (-15 -1292 ($ $ $)) (-15 -3784 ($ $ "right" $)) (-15 -1291 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-924 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
+((-1295 (((-85) |#1|) 29 T ELT)) (-1294 (((-695) (-695)) 28 T ELT) (((-695)) 27 T ELT)) (-1293 (((-85) |#1| (-85)) 30 T ELT) (((-85) |#1|) 31 T ELT)))
+(((-93 |#1|) (-10 -7 (-15 -1293 ((-85) |#1|)) (-15 -1293 ((-85) |#1| (-85))) (-15 -1294 ((-695))) (-15 -1294 ((-695) (-695))) (-15 -1295 ((-85) |#1|))) (-1154 (-484))) (T -93))
+((-1295 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484))))) (-1294 (*1 *2 *2) (-12 (-5 *2 (-695)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484))))) (-1294 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484))))) (-1293 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484))))) (-1293 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484))))))
+((-2566 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3398 ((|#1| $) 18 T ELT)) (-3414 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-3023 ((|#1| $ |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-1291 (($ $ $) 21 (|has| $ (-6 -3992)) ELT)) (-1292 (($ $ $) 23 (|has| $ (-6 -3992)) ELT)) (-3784 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3992)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3992)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3992)) ELT)) (-3024 (($ $ (-584 $)) NIL (|has| $ (-6 -3992)) ELT)) (-3720 (($) NIL T CONST)) (-3134 (($ $) 20 T ELT)) (-2887 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3029 (((-584 $) $) NIL T ELT)) (-3025 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1300 (($ $ |#1| $) 27 T ELT)) (-2606 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3135 (($ $) 22 T ELT)) (-3028 (((-584 |#1|) $) NIL T ELT)) (-3523 (((-85) $) NIL T ELT)) (-3239 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-1296 (($ |#1| $) 28 T ELT)) (-3605 (($ |#1| $) 15 T ELT)) (-3240 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3399 (((-85) $) 17 T ELT)) (-3561 (($) 11 T ELT)) (-3796 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3027 (((-484) $ $) NIL T ELT)) (-3629 (((-85) $) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3396 (($ $) NIL T ELT)) (-3942 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-3518 (((-584 $) $) NIL T ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1297 (($ (-584 |#1|)) 16 T ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-94 |#1|) (-13 (-98 |#1|) (-10 -8 (-6 -3992) (-6 -3991) (-15 -1297 ($ (-584 |#1|))) (-15 -3605 ($ |#1| $)) (-15 -1296 ($ |#1| $)) (-15 -3414 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-757)) (T -94))
+((-1297 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-94 *3)))) (-3605 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-757)))) (-1296 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-757)))) (-3414 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-94 *3)) (|:| |greater| (-94 *3)))) (-5 *1 (-94 *3)) (-4 *3 (-757)))))
+((-2311 (($ $) 13 T ELT)) (-2558 (($ $) 11 T ELT)) (-1298 (($ $ $) 23 T ELT)) (-1299 (($ $ $) 21 T ELT)) (-2309 (($ $ $) 19 T ELT)) (-2310 (($ $ $) 17 T ELT)))
+(((-95 |#1|) (-10 -7 (-15 -1298 (|#1| |#1| |#1|)) (-15 -1299 (|#1| |#1| |#1|)) (-15 -2311 (|#1| |#1|)) (-15 -2310 (|#1| |#1| |#1|)) (-15 -2309 (|#1| |#1| |#1|)) (-15 -2558 (|#1| |#1|))) (-96)) (T -95))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-2311 (($ $) 103 T ELT)) (-3318 (($ $ $) 31 T ELT)) (-2196 (((-1184) $ (-484) (-484)) 66 (|has| $ (-6 -3992)) ELT)) (-1730 (((-85) $) 98 (|has| (-85) (-757)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) 92 T ELT)) (-1728 (($ $) 102 (-12 (|has| (-85) (-757)) (|has| $ (-6 -3992))) ELT) (($ (-1 (-85) (-85) (-85)) $) 101 (|has| $ (-6 -3992)) ELT)) (-2907 (($ $) 97 (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $) 91 T ELT)) (-3784 (((-85) $ (-1145 (-484)) (-85)) 88 (|has| $ (-6 -3992)) ELT) (((-85) $ (-484) (-85)) 54 (|has| $ (-6 -3992)) ELT)) (-3706 (($ (-1 (-85) (-85)) $) 71 (|has| $ (-6 -3991)) ELT)) (-3720 (($) 38 T CONST)) (-2295 (($ $) 100 (|has| $ (-6 -3992)) ELT)) (-2296 (($ $) 90 T ELT)) (-1351 (($ $) 68 (-12 (|has| (-85) (-1013)) (|has| $ (-6 -3991))) ELT)) (-3402 (($ (-1 (-85) (-85)) $) 72 (|has| $ (-6 -3991)) ELT) (($ (-85) $) 69 (-12 (|has| (-85) (-1013)) (|has| $ (-6 -3991))) ELT)) (-3838 (((-85) (-1 (-85) (-85) (-85)) $) 74 (|has| $ (-6 -3991)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) 73 (|has| $ (-6 -3991)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) 70 (-12 (|has| (-85) (-1013)) (|has| $ (-6 -3991))) ELT)) (-1574 (((-85) $ (-484) (-85)) 53 (|has| $ (-6 -3992)) ELT)) (-3110 (((-85) $ (-484)) 55 T ELT)) (-3415 (((-484) (-85) $ (-484)) 95 (|has| (-85) (-1013)) ELT) (((-484) (-85) $) 94 (|has| (-85) (-1013)) ELT) (((-484) (-1 (-85) (-85)) $) 93 T ELT)) (-2887 (((-584 (-85)) $) 45 (|has| $ (-6 -3991)) ELT)) (-2559 (($ $ $) 108 T ELT)) (-2558 (($ $) 106 T ELT)) (-1298 (($ $ $) 32 T ELT)) (-3610 (($ (-695) (-85)) 78 T ELT)) (-1299 (($ $ $) 33 T ELT)) (-2198 (((-484) $) 63 (|has| (-484) (-757)) ELT)) (-2529 (($ $ $) 23 T ELT)) (-3514 (($ $ $) 96 (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) 89 T ELT)) (-2606 (((-584 (-85)) $) 46 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) (-85) $) 48 (-12 (|has| (-85) (-1013)) (|has| $ (-6 -3991))) ELT)) (-2199 (((-484) $) 62 (|has| (-484) (-757)) ELT)) (-2855 (($ $ $) 22 T ELT)) (-1947 (($ (-1 (-85) (-85)) $) 41 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 (-85) (-85) (-85)) $ $) 83 T ELT) (($ (-1 (-85) (-85)) $) 40 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-2302 (($ $ $ (-484)) 87 T ELT) (($ (-85) $ (-484)) 86 T ELT)) (-2201 (((-584 (-484)) $) 60 T ELT)) (-2202 (((-85) (-484) $) 59 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3797 (((-85) $) 64 (|has| (-484) (-757)) ELT)) (-1352 (((-3 (-85) "failed") (-1 (-85) (-85)) $) 75 T ELT)) (-2197 (($ $ (-85)) 65 (|has| $ (-6 -3992)) ELT)) (-1945 (((-85) (-1 (-85) (-85)) $) 43 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-85)) (-584 (-85))) 52 (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-85) (-85)) 51 (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-248 (-85))) 50 (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-584 (-248 (-85)))) 49 (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1013))) ELT)) (-1220 (((-85) $ $) 34 T ELT)) (-2200 (((-85) (-85) $) 61 (-12 (|has| $ (-6 -3991)) (|has| (-85) (-1013))) ELT)) (-2203 (((-584 (-85)) $) 58 T ELT)) (-3399 (((-85) $) 37 T ELT)) (-3561 (($) 36 T ELT)) (-3796 (($ $ (-1145 (-484))) 77 T ELT) (((-85) $ (-484)) 57 T ELT) (((-85) $ (-484) (-85)) 56 T ELT)) (-2303 (($ $ (-1145 (-484))) 85 T ELT) (($ $ (-484)) 84 T ELT)) (-1944 (((-695) (-85) $) 47 (-12 (|has| (-85) (-1013)) (|has| $ (-6 -3991))) ELT) (((-695) (-1 (-85) (-85)) $) 44 (|has| $ (-6 -3991)) ELT)) (-1729 (($ $ $ (-484)) 99 (|has| $ (-6 -3992)) ELT)) (-3396 (($ $) 35 T ELT)) (-3968 (((-473) $) 67 (|has| (-85) (-554 (-473))) ELT)) (-3526 (($ (-584 (-85))) 76 T ELT)) (-3798 (($ (-584 $)) 82 T ELT) (($ $ $) 81 T ELT) (($ (-85) $) 80 T ELT) (($ $ (-85)) 79 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-1946 (((-85) (-1 (-85) (-85)) $) 42 (|has| $ (-6 -3991)) ELT)) (-2560 (($ $ $) 107 T ELT)) (-2309 (($ $ $) 105 T ELT)) (-2564 (((-85) $ $) 21 T ELT)) (-2565 (((-85) $ $) 19 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-2682 (((-85) $ $) 20 T ELT)) (-2683 (((-85) $ $) 18 T ELT)) (-2310 (($ $ $) 104 T ELT)) (-3953 (((-695) $) 39 (|has| $ (-6 -3991)) ELT)))
(((-96) (-113)) (T -96))
-((-1298 (*1 *1 *1 *1) (-4 *1 (-96))) (-1297 (*1 *1 *1 *1) (-4 *1 (-96))) (-3316 (*1 *1 *1 *1) (-4 *1 (-96))))
-(-13 (-756) (-84) (-604) (-19 (-85)) (-10 -8 (-15 -1298 ($ $ $)) (-15 -1297 ($ $ $)) (-15 -3316 ($ $ $))))
-(((-34) . T) ((-72) . T) ((-84) . T) ((-552 (-772)) . T) ((-124 (-85)) . T) ((-553 (-472)) |has| (-85) (-553 (-472))) ((-241 (-483) (-85)) . T) ((-241 (-1144 (-483)) $) . T) ((-243 (-483) (-85)) . T) ((-259 (-85)) -12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1012))) ((-321 (-85)) . T) ((-426 (-85)) . T) ((-538 (-483) (-85)) . T) ((-452 (-85) (-85)) -12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1012))) ((-13) . T) ((-593 (-85)) . T) ((-604) . T) ((-19 (-85)) . T) ((-756) . T) ((-759) . T) ((-1012) . T) ((-1127) . T))
-((-1946 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-3394 (($ $) 16 T ELT)) (-3951 (((-694) $) 25 T ELT)))
-(((-97 |#1| |#2|) (-10 -7 (-15 -1946 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3951 ((-694) |#1|)) (-15 -3394 (|#1| |#1|))) (-98 |#2|) (-1012)) (T -97))
-NIL
-((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3396 ((|#1| $) 52 T ELT)) (-3021 ((|#1| $ |#1|) 43 (|has| $ (-6 -3990)) ELT)) (-1290 (($ $ $) 58 (|has| $ (-6 -3990)) ELT)) (-1291 (($ $ $) 60 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3990)) ELT) (($ $ #2="left" $) 61 (|has| $ (-6 -3990)) ELT) (($ $ #3="right" $) 59 (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) 45 (|has| $ (-6 -3990)) ELT)) (-3718 (($) 7 T CONST)) (-3132 (($ $) 63 T ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-3027 (((-583 $) $) 54 T ELT)) (-3023 (((-85) $ $) 46 (|has| |#1| (-1012)) ELT)) (-1299 (($ $ |#1| $) 66 T ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3133 (($ $) 65 T ELT)) (-3026 (((-583 |#1|) $) 49 T ELT)) (-3521 (((-85) $) 53 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#1| $ #1#) 51 T ELT) (($ $ #2#) 64 T ELT) (($ $ #3#) 62 T ELT)) (-3025 (((-483) $ $) 48 T ELT)) (-3627 (((-85) $) 50 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3516 (((-583 $) $) 55 T ELT)) (-3024 (((-85) $ $) 47 (|has| |#1| (-1012)) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-98 |#1|) (-113) (-1012)) (T -98))
-((-1299 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1012)))))
-(-13 (-92 |t#1|) (-10 -8 (-6 -3990) (-6 -3989) (-15 -1299 ($ $ |t#1| $))))
-(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-92 |#1|) . T) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-923 |#1|) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T))
-((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3396 ((|#1| $) 18 T ELT)) (-3021 ((|#1| $ |#1|) 22 (|has| $ (-6 -3990)) ELT)) (-1290 (($ $ $) 23 (|has| $ (-6 -3990)) ELT)) (-1291 (($ $ $) 21 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3990)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3990)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) NIL (|has| $ (-6 -3990)) ELT)) (-3718 (($) NIL T CONST)) (-3132 (($ $) 24 T ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3027 (((-583 $) $) NIL T ELT)) (-3023 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1299 (($ $ |#1| $) NIL T ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3133 (($ $) NIL T ELT)) (-3026 (((-583 |#1|) $) NIL T ELT)) (-3521 (((-85) $) NIL T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3603 (($ |#1| $) 15 T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) 17 T ELT)) (-3559 (($) 11 T ELT)) (-3794 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3025 (((-483) $ $) NIL T ELT)) (-3627 (((-85) $) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) 20 T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-3516 (((-583 $) $) NIL T ELT)) (-3024 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1300 (($ (-583 |#1|)) 16 T ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-99 |#1|) (-13 (-98 |#1|) (-10 -8 (-6 -3990) (-15 -1300 ($ (-583 |#1|))) (-15 -3603 ($ |#1| $)))) (-756)) (T -99))
-((-1300 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-99 *3)))) (-3603 (*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-756)))))
-((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3396 ((|#1| $) 31 T ELT)) (-3021 ((|#1| $ |#1|) 33 (|has| $ (-6 -3990)) ELT)) (-1290 (($ $ $) 37 (|has| $ (-6 -3990)) ELT)) (-1291 (($ $ $) 35 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3990)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3990)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) NIL (|has| $ (-6 -3990)) ELT)) (-3718 (($) NIL T CONST)) (-3132 (($ $) 24 T ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3027 (((-583 $) $) NIL T ELT)) (-3023 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1299 (($ $ |#1| $) 17 T ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3133 (($ $) 23 T ELT)) (-3026 (((-583 |#1|) $) NIL T ELT)) (-3521 (((-85) $) 26 T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) 21 T ELT)) (-3559 (($) 13 T ELT)) (-3794 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3025 (((-483) $ $) NIL T ELT)) (-3627 (((-85) $) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-3516 (((-583 $) $) NIL T ELT)) (-3024 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1301 (($ |#1|) 19 T ELT) (($ $ |#1| $) 18 T ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 12 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-100 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1301 ($ |#1|)) (-15 -1301 ($ $ |#1| $)))) (-1012)) (T -100))
-((-1301 (*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1012)))) (-1301 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1012)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-2309 (($ $) 32 T ELT)) (-3131 (((-694)) 17 T ELT)) (-3718 (($) 9 T CONST)) (-2990 (($) 27 T ELT)) (-2527 (($ $ $) NIL T ELT) (($) 15 T CONST)) (-2853 (($ $ $) NIL T ELT) (($) 16 T CONST)) (-2006 (((-830) $) 25 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 (($ (-830)) 23 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1302 (($ (-694)) 8 T ELT)) (-3719 (($ $ $) 29 T ELT)) (-3720 (($ $ $) 28 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2307 (($ $ $) 31 T ELT)) (-2562 (((-85) $ $) 14 T ELT)) (-2563 (((-85) $ $) 12 T ELT)) (-3052 (((-85) $ $) 10 T ELT)) (-2680 (((-85) $ $) 13 T ELT)) (-2681 (((-85) $ $) 11 T ELT)) (-2308 (($ $ $) 30 T ELT)))
-(((-101) (-13 (-752) (-604) (-10 -8 (-15 -1302 ($ (-694))) (-15 -3720 ($ $ $)) (-15 -3719 ($ $ $)) (-15 -3718 ($) -3946)))) (T -101))
-((-1302 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-101)))) (-3720 (*1 *1 *1 *1) (-5 *1 (-101))) (-3719 (*1 *1 *1 *1) (-5 *1 (-101))) (-3718 (*1 *1) (-5 *1 (-101))))
-((-694) (|%ilt| |#1| 256))
-((-2564 (((-85) $ $) NIL (|has| (-101) (-72)) ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) (-1 (-85) (-101) (-101)) $) NIL T ELT) (((-85) $) NIL (|has| (-101) (-756)) ELT)) (-1727 (($ (-1 (-85) (-101) (-101)) $) NIL (|has| $ (-6 -3990)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3990)) (|has| (-101) (-756))) ELT)) (-2905 (($ (-1 (-85) (-101) (-101)) $) NIL T ELT) (($ $) NIL (|has| (-101) (-756)) ELT)) (-3782 (((-101) $ (-483) (-101)) 26 (|has| $ (-6 -3990)) ELT) (((-101) $ (-1144 (-483)) (-101)) NIL (|has| $ (-6 -3990)) ELT)) (-1303 (((-694) $ (-694)) 35 T ELT)) (-3704 (($ (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3718 (($) NIL T CONST)) (-2293 (($ $) NIL (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) NIL T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-101) (-1012))) ELT)) (-3400 (($ (-101) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-101) (-1012))) ELT) (($ (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 (((-101) (-1 (-101) (-101) (-101)) $ (-101) (-101)) NIL (-12 (|has| $ (-6 -3989)) (|has| (-101) (-1012))) ELT) (((-101) (-1 (-101) (-101) (-101)) $ (-101)) NIL (|has| $ (-6 -3989)) ELT) (((-101) (-1 (-101) (-101) (-101)) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 (((-101) $ (-483) (-101)) 25 (|has| $ (-6 -3990)) ELT)) (-3108 (((-101) $ (-483)) 20 T ELT)) (-3413 (((-483) (-1 (-85) (-101)) $) NIL T ELT) (((-483) (-101) $) NIL (|has| (-101) (-1012)) ELT) (((-483) (-101) $ (-483)) NIL (|has| (-101) (-1012)) ELT)) (-2885 (((-583 (-101)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3608 (($ (-694) (-101)) 14 T ELT)) (-2196 (((-483) $) 27 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| (-101) (-756)) ELT)) (-3512 (($ (-1 (-85) (-101) (-101)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-101) (-756)) ELT)) (-2604 (((-583 (-101)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-101) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-101) (-1012))) ELT)) (-2197 (((-483) $) 30 (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| (-101) (-756)) ELT)) (-1946 (($ (-1 (-101) (-101)) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-101) (-101)) $) NIL T ELT) (($ (-1 (-101) (-101) (-101)) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL (|has| (-101) (-1012)) ELT)) (-2300 (($ (-101) $ (-483)) NIL T ELT) (($ $ $ (-483)) NIL T ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-3238 (((-1032) $) NIL (|has| (-101) (-1012)) ELT)) (-3795 (((-101) $) NIL (|has| (-483) (-756)) ELT)) (-1351 (((-3 (-101) "failed") (-1 (-85) (-101)) $) NIL T ELT)) (-2195 (($ $ (-101)) NIL (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 (-101)))) NIL (-12 (|has| (-101) (-259 (-101))) (|has| (-101) (-1012))) ELT) (($ $ (-248 (-101))) NIL (-12 (|has| (-101) (-259 (-101))) (|has| (-101) (-1012))) ELT) (($ $ (-101) (-101)) NIL (-12 (|has| (-101) (-259 (-101))) (|has| (-101) (-1012))) ELT) (($ $ (-583 (-101)) (-583 (-101))) NIL (-12 (|has| (-101) (-259 (-101))) (|has| (-101) (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) (-101) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-101) (-1012))) ELT)) (-2201 (((-583 (-101)) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) 12 T ELT)) (-3794 (((-101) $ (-483) (-101)) NIL T ELT) (((-101) $ (-483)) 23 T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-2301 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-1943 (((-694) (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) (-101) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-101) (-1012))) ELT)) (-1728 (($ $ $ (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| (-101) (-553 (-472))) ELT)) (-3524 (($ (-583 (-101))) 41 T ELT)) (-3796 (($ $ (-101)) NIL T ELT) (($ (-101) $) NIL T ELT) (($ $ $) 45 T ELT) (($ (-583 $)) NIL T ELT)) (-3940 (((-869 (-101)) $) 36 T ELT) (((-1071) $) 38 T ELT) (((-772) $) NIL (|has| (-101) (-552 (-772))) ELT)) (-1304 (((-694) $) 18 T ELT)) (-1305 (($ (-694)) 8 T ELT)) (-1262 (((-85) $ $) NIL (|has| (-101) (-72)) ELT)) (-1945 (((-85) (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) NIL (|has| (-101) (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| (-101) (-756)) ELT)) (-3052 (((-85) $ $) 33 (|has| (-101) (-72)) ELT)) (-2680 (((-85) $ $) NIL (|has| (-101) (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| (-101) (-756)) ELT)) (-3951 (((-694) $) 15 (|has| $ (-6 -3989)) ELT)))
-(((-102) (-13 (-19 (-101)) (-552 (-869 (-101))) (-552 (-1071)) (-10 -8 (-15 -1305 ($ (-694))) (-15 -1304 ((-694) $)) (-15 -1303 ((-694) $ (-694))) (-6 -3989)))) (T -102))
-((-1305 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-102)))) (-1304 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-102)))) (-1303 (*1 *2 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-102)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-1306 (($) 6 T CONST)) (-1308 (($) 7 T CONST)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 14 T ELT)) (-1307 (($) 8 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 10 T ELT)))
-(((-103) (-13 (-1012) (-10 -8 (-15 -1308 ($) -3946) (-15 -1307 ($) -3946) (-15 -1306 ($) -3946)))) (T -103))
-((-1308 (*1 *1) (-5 *1 (-103))) (-1307 (*1 *1) (-5 *1 (-103))) (-1306 (*1 *1) (-5 *1 (-103))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT)))
+((-1299 (*1 *1 *1 *1) (-4 *1 (-96))) (-1298 (*1 *1 *1 *1) (-4 *1 (-96))) (-3318 (*1 *1 *1 *1) (-4 *1 (-96))))
+(-13 (-757) (-84) (-605) (-19 (-85)) (-10 -8 (-15 -1299 ($ $ $)) (-15 -1298 ($ $ $)) (-15 -3318 ($ $ $))))
+(((-34) . T) ((-72) . T) ((-84) . T) ((-553 (-773)) . T) ((-124 (-85)) . T) ((-554 (-473)) |has| (-85) (-554 (-473))) ((-241 (-484) (-85)) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) (-85)) . T) ((-259 (-85)) -12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1013))) ((-321 (-85)) . T) ((-426 (-85)) . T) ((-539 (-484) (-85)) . T) ((-453 (-85) (-85)) -12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1013))) ((-13) . T) ((-594 (-85)) . T) ((-605) . T) ((-19 (-85)) . T) ((-757) . T) ((-760) . T) ((-1013) . T) ((-1128) . T))
+((-1947 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-3396 (($ $) 16 T ELT)) (-3953 (((-695) $) 25 T ELT)))
+(((-97 |#1| |#2|) (-10 -7 (-15 -1947 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3953 ((-695) |#1|)) (-15 -3396 (|#1| |#1|))) (-98 |#2|) (-1013)) (T -97))
+NIL
+((-2566 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3398 ((|#1| $) 52 T ELT)) (-3023 ((|#1| $ |#1|) 43 (|has| $ (-6 -3992)) ELT)) (-1291 (($ $ $) 58 (|has| $ (-6 -3992)) ELT)) (-1292 (($ $ $) 60 (|has| $ (-6 -3992)) ELT)) (-3784 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3992)) ELT) (($ $ #2="left" $) 61 (|has| $ (-6 -3992)) ELT) (($ $ #3="right" $) 59 (|has| $ (-6 -3992)) ELT)) (-3024 (($ $ (-584 $)) 45 (|has| $ (-6 -3992)) ELT)) (-3720 (($) 7 T CONST)) (-3134 (($ $) 63 T ELT)) (-2887 (((-584 |#1|) $) 30 (|has| $ (-6 -3991)) ELT)) (-3029 (((-584 $) $) 54 T ELT)) (-3025 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-1300 (($ $ |#1| $) 66 T ELT)) (-2606 (((-584 |#1|) $) 29 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3135 (($ $) 65 T ELT)) (-3028 (((-584 |#1|) $) 49 T ELT)) (-3523 (((-85) $) 53 T ELT)) (-3239 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3240 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-3796 ((|#1| $ #1#) 51 T ELT) (($ $ #2#) 64 T ELT) (($ $ #3#) 62 T ELT)) (-3027 (((-484) $ $) 48 T ELT)) (-3629 (((-85) $) 50 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3396 (($ $) 10 T ELT)) (-3942 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-3518 (((-584 $) $) 55 T ELT)) (-3026 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-98 |#1|) (-113) (-1013)) (T -98))
+((-1300 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1013)))))
+(-13 (-92 |t#1|) (-10 -8 (-6 -3992) (-6 -3991) (-15 -1300 ($ $ |t#1| $))))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-92 |#1|) . T) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-924 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
+((-2566 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3398 ((|#1| $) 18 T ELT)) (-3023 ((|#1| $ |#1|) 22 (|has| $ (-6 -3992)) ELT)) (-1291 (($ $ $) 23 (|has| $ (-6 -3992)) ELT)) (-1292 (($ $ $) 21 (|has| $ (-6 -3992)) ELT)) (-3784 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3992)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3992)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3992)) ELT)) (-3024 (($ $ (-584 $)) NIL (|has| $ (-6 -3992)) ELT)) (-3720 (($) NIL T CONST)) (-3134 (($ $) 24 T ELT)) (-2887 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3029 (((-584 $) $) NIL T ELT)) (-3025 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1300 (($ $ |#1| $) NIL T ELT)) (-2606 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3135 (($ $) NIL T ELT)) (-3028 (((-584 |#1|) $) NIL T ELT)) (-3523 (((-85) $) NIL T ELT)) (-3239 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3605 (($ |#1| $) 15 T ELT)) (-3240 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3399 (((-85) $) 17 T ELT)) (-3561 (($) 11 T ELT)) (-3796 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3027 (((-484) $ $) NIL T ELT)) (-3629 (((-85) $) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3396 (($ $) 20 T ELT)) (-3942 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-3518 (((-584 $) $) NIL T ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1301 (($ (-584 |#1|)) 16 T ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-99 |#1|) (-13 (-98 |#1|) (-10 -8 (-6 -3992) (-15 -1301 ($ (-584 |#1|))) (-15 -3605 ($ |#1| $)))) (-757)) (T -99))
+((-1301 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-99 *3)))) (-3605 (*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-757)))))
+((-2566 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3398 ((|#1| $) 31 T ELT)) (-3023 ((|#1| $ |#1|) 33 (|has| $ (-6 -3992)) ELT)) (-1291 (($ $ $) 37 (|has| $ (-6 -3992)) ELT)) (-1292 (($ $ $) 35 (|has| $ (-6 -3992)) ELT)) (-3784 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3992)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3992)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3992)) ELT)) (-3024 (($ $ (-584 $)) NIL (|has| $ (-6 -3992)) ELT)) (-3720 (($) NIL T CONST)) (-3134 (($ $) 24 T ELT)) (-2887 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3029 (((-584 $) $) NIL T ELT)) (-3025 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1300 (($ $ |#1| $) 17 T ELT)) (-2606 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3135 (($ $) 23 T ELT)) (-3028 (((-584 |#1|) $) NIL T ELT)) (-3523 (((-85) $) 26 T ELT)) (-3239 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3240 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3399 (((-85) $) 21 T ELT)) (-3561 (($) 13 T ELT)) (-3796 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3027 (((-484) $ $) NIL T ELT)) (-3629 (((-85) $) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3396 (($ $) NIL T ELT)) (-3942 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-3518 (((-584 $) $) NIL T ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1302 (($ |#1|) 19 T ELT) (($ $ |#1| $) 18 T ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 12 (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-100 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1302 ($ |#1|)) (-15 -1302 ($ $ |#1| $)))) (-1013)) (T -100))
+((-1302 (*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1013)))) (-1302 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1013)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-2311 (($ $) 32 T ELT)) (-3133 (((-695)) 17 T ELT)) (-3720 (($) 9 T CONST)) (-2992 (($) 27 T ELT)) (-2529 (($ $ $) NIL T ELT) (($) 15 T CONST)) (-2855 (($ $ $) NIL T ELT) (($) 16 T CONST)) (-2008 (((-831) $) 25 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2398 (($ (-831)) 23 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT)) (-1303 (($ (-695)) 8 T ELT)) (-3721 (($ $ $) 29 T ELT)) (-3722 (($ $ $) 28 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2309 (($ $ $) 31 T ELT)) (-2564 (((-85) $ $) 14 T ELT)) (-2565 (((-85) $ $) 12 T ELT)) (-3054 (((-85) $ $) 10 T ELT)) (-2682 (((-85) $ $) 13 T ELT)) (-2683 (((-85) $ $) 11 T ELT)) (-2310 (($ $ $) 30 T ELT)))
+(((-101) (-13 (-753) (-605) (-10 -8 (-15 -1303 ($ (-695))) (-15 -3722 ($ $ $)) (-15 -3721 ($ $ $)) (-15 -3720 ($) -3948)))) (T -101))
+((-1303 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-101)))) (-3722 (*1 *1 *1 *1) (-5 *1 (-101))) (-3721 (*1 *1 *1 *1) (-5 *1 (-101))) (-3720 (*1 *1) (-5 *1 (-101))))
+((-695) (|%ilt| |#1| 256))
+((-2566 (((-85) $ $) NIL (|has| (-101) (-72)) ELT)) (-2196 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-1730 (((-85) (-1 (-85) (-101) (-101)) $) NIL T ELT) (((-85) $) NIL (|has| (-101) (-757)) ELT)) (-1728 (($ (-1 (-85) (-101) (-101)) $) NIL (|has| $ (-6 -3992)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-101) (-757))) ELT)) (-2907 (($ (-1 (-85) (-101) (-101)) $) NIL T ELT) (($ $) NIL (|has| (-101) (-757)) ELT)) (-3784 (((-101) $ (-484) (-101)) 26 (|has| $ (-6 -3992)) ELT) (((-101) $ (-1145 (-484)) (-101)) NIL (|has| $ (-6 -3992)) ELT)) (-1304 (((-695) $ (-695)) 35 T ELT)) (-3706 (($ (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3991)) ELT)) (-3720 (($) NIL T CONST)) (-2295 (($ $) NIL (|has| $ (-6 -3992)) ELT)) (-2296 (($ $) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-101) (-1013))) ELT)) (-3402 (($ (-101) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-101) (-1013))) ELT) (($ (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3991)) ELT)) (-3838 (((-101) (-1 (-101) (-101) (-101)) $ (-101) (-101)) NIL (-12 (|has| $ (-6 -3991)) (|has| (-101) (-1013))) ELT) (((-101) (-1 (-101) (-101) (-101)) $ (-101)) NIL (|has| $ (-6 -3991)) ELT) (((-101) (-1 (-101) (-101) (-101)) $) NIL (|has| $ (-6 -3991)) ELT)) (-1574 (((-101) $ (-484) (-101)) 25 (|has| $ (-6 -3992)) ELT)) (-3110 (((-101) $ (-484)) 20 T ELT)) (-3415 (((-484) (-1 (-85) (-101)) $) NIL T ELT) (((-484) (-101) $) NIL (|has| (-101) (-1013)) ELT) (((-484) (-101) $ (-484)) NIL (|has| (-101) (-1013)) ELT)) (-2887 (((-584 (-101)) $) NIL (|has| $ (-6 -3991)) ELT)) (-3610 (($ (-695) (-101)) 14 T ELT)) (-2198 (((-484) $) 27 (|has| (-484) (-757)) ELT)) (-2529 (($ $ $) NIL (|has| (-101) (-757)) ELT)) (-3514 (($ (-1 (-85) (-101) (-101)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-101) (-757)) ELT)) (-2606 (((-584 (-101)) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) (-101) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-101) (-1013))) ELT)) (-2199 (((-484) $) 30 (|has| (-484) (-757)) ELT)) (-2855 (($ $ $) NIL (|has| (-101) (-757)) ELT)) (-1947 (($ (-1 (-101) (-101)) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 (-101) (-101)) $) NIL T ELT) (($ (-1 (-101) (-101) (-101)) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL (|has| (-101) (-1013)) ELT)) (-2302 (($ (-101) $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2201 (((-584 (-484)) $) NIL T ELT)) (-2202 (((-85) (-484) $) NIL T ELT)) (-3240 (((-1033) $) NIL (|has| (-101) (-1013)) ELT)) (-3797 (((-101) $) NIL (|has| (-484) (-757)) ELT)) (-1352 (((-3 (-101) "failed") (-1 (-85) (-101)) $) NIL T ELT)) (-2197 (($ $ (-101)) NIL (|has| $ (-6 -3992)) ELT)) (-1945 (((-85) (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 (-101)))) NIL (-12 (|has| (-101) (-259 (-101))) (|has| (-101) (-1013))) ELT) (($ $ (-248 (-101))) NIL (-12 (|has| (-101) (-259 (-101))) (|has| (-101) (-1013))) ELT) (($ $ (-101) (-101)) NIL (-12 (|has| (-101) (-259 (-101))) (|has| (-101) (-1013))) ELT) (($ $ (-584 (-101)) (-584 (-101))) NIL (-12 (|has| (-101) (-259 (-101))) (|has| (-101) (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2200 (((-85) (-101) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-101) (-1013))) ELT)) (-2203 (((-584 (-101)) $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) 12 T ELT)) (-3796 (((-101) $ (-484) (-101)) NIL T ELT) (((-101) $ (-484)) 23 T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-2303 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1944 (((-695) (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) (-101) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-101) (-1013))) ELT)) (-1729 (($ $ $ (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-3396 (($ $) NIL T ELT)) (-3968 (((-473) $) NIL (|has| (-101) (-554 (-473))) ELT)) (-3526 (($ (-584 (-101))) 41 T ELT)) (-3798 (($ $ (-101)) NIL T ELT) (($ (-101) $) NIL T ELT) (($ $ $) 45 T ELT) (($ (-584 $)) NIL T ELT)) (-3942 (((-870 (-101)) $) 36 T ELT) (((-1072) $) 38 T ELT) (((-773) $) NIL (|has| (-101) (-553 (-773))) ELT)) (-1305 (((-695) $) 18 T ELT)) (-1306 (($ (-695)) 8 T ELT)) (-1263 (((-85) $ $) NIL (|has| (-101) (-72)) ELT)) (-1946 (((-85) (-1 (-85) (-101)) $) NIL (|has| $ (-6 -3991)) ELT)) (-2564 (((-85) $ $) NIL (|has| (-101) (-757)) ELT)) (-2565 (((-85) $ $) NIL (|has| (-101) (-757)) ELT)) (-3054 (((-85) $ $) 33 (|has| (-101) (-72)) ELT)) (-2682 (((-85) $ $) NIL (|has| (-101) (-757)) ELT)) (-2683 (((-85) $ $) NIL (|has| (-101) (-757)) ELT)) (-3953 (((-695) $) 15 (|has| $ (-6 -3991)) ELT)))
+(((-102) (-13 (-19 (-101)) (-553 (-870 (-101))) (-553 (-1072)) (-10 -8 (-15 -1306 ($ (-695))) (-15 -1305 ((-695) $)) (-15 -1304 ((-695) $ (-695))) (-6 -3991)))) (T -102))
+((-1306 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-102)))) (-1305 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-102)))) (-1304 (*1 *2 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-102)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-1307 (($) 6 T CONST)) (-1309 (($) 7 T CONST)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 14 T ELT)) (-1308 (($) 8 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 10 T ELT)))
+(((-103) (-13 (-1013) (-10 -8 (-15 -1309 ($) -3948) (-15 -1308 ($) -3948) (-15 -1307 ($) -3948)))) (T -103))
+((-1309 (*1 *1) (-5 *1 (-103))) (-1308 (*1 *1) (-5 *1 (-103))) (-1307 (*1 *1) (-5 *1 (-103))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3835 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT)))
(((-104) (-113)) (T -104))
-((-1309 (*1 *1 *1 *1) (|partial| -4 *1 (-104))))
-(-13 (-23) (-10 -8 (-15 -1309 ((-3 $ "failed") $ $))))
-(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) 7 T ELT)) (-1310 (((-1183) $ (-694)) 17 T ELT)) (-3413 (((-694) $) 18 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT)))
+((-1310 (*1 *1 *1 *1) (|partial| -4 *1 (-104))))
+(-13 (-23) (-10 -8 (-15 -1310 ((-3 $ "failed") $ $))))
+(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) 7 T ELT)) (-1311 (((-1184) $ (-695)) 17 T ELT)) (-3415 (((-695) $) 18 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3054 (((-85) $ $) 8 T ELT)))
(((-105) (-113)) (T -105))
-((-3413 (*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-694)))) (-1310 (*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-694)) (-5 *2 (-1183)))))
-(-13 (-1012) (-10 -8 (-15 -3413 ((-694) $)) (-15 -1310 ((-1183) $ (-694)))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 18 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3228 (((-583 (-1047)) $) 12 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-106) (-13 (-994) (-10 -8 (-15 -3228 ((-583 (-1047)) $))))) (T -106))
-((-3228 (*1 *2 *1) (-12 (-5 *2 (-583 (-1047))) (-5 *1 (-106)))))
-((-2564 (((-85) $ $) 49 T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-694) #1="failed") $) 60 T ELT)) (-3151 (((-694) $) 58 T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) 37 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1312 (((-85)) 61 T ELT)) (-1311 (((-85) (-85)) 63 T ELT)) (-2521 (((-85) $) 30 T ELT)) (-1313 (((-85) $) 57 T ELT)) (-3940 (((-772) $) 28 T ELT) (($ (-694)) 20 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 18 T CONST)) (-2662 (($) 19 T CONST)) (-1314 (($ (-694)) 21 T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) 40 T ELT)) (-3052 (((-85) $ $) 32 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 35 T ELT)) (-3831 (((-3 $ #1#) $ $) 42 T ELT)) (-3833 (($ $ $) 38 T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT) (($ $ $) 56 T ELT)) (* (($ (-694) $) 48 T ELT) (($ (-830) $) NIL T ELT) (($ $ $) 45 T ELT)))
-(((-107) (-13 (-756) (-23) (-663) (-950 (-694)) (-10 -8 (-6 (-3991 "*")) (-15 -3831 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1314 ($ (-694))) (-15 -2521 ((-85) $)) (-15 -1313 ((-85) $)) (-15 -1312 ((-85))) (-15 -1311 ((-85) (-85)))))) (T -107))
-((-3831 (*1 *1 *1 *1) (|partial| -5 *1 (-107))) (** (*1 *1 *1 *1) (-5 *1 (-107))) (-1314 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-107)))) (-2521 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1313 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1312 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1311 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-1315 (($ (-583 |#3|)) 63 T ELT)) (-3408 (($ $) 125 T ELT) (($ $ (-483) (-483)) 124 T ELT)) (-3718 (($) 20 T ELT)) (-3152 (((-3 |#3| "failed") $) 86 T ELT)) (-3151 ((|#3| $) NIL T ELT)) (-1319 (($ $ (-583 (-483))) 126 T ELT)) (-1316 (((-583 |#3|) $) 58 T ELT)) (-3104 (((-694) $) 68 T ELT)) (-3938 (($ $ $) 120 T ELT)) (-1317 (($) 67 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1318 (($) 19 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3794 ((|#3| $ (-483)) 72 T ELT) ((|#3| $) 71 T ELT) ((|#3| $ (-483) (-483)) 73 T ELT) ((|#3| $ (-483) (-483) (-483)) 74 T ELT) ((|#3| $ (-483) (-483) (-483) (-483)) 75 T ELT) ((|#3| $ (-583 (-483))) 76 T ELT)) (-3942 (((-694) $) 69 T ELT)) (-1979 (($ $ (-483) $ (-483)) 121 T ELT) (($ $ (-483) (-483)) 123 T ELT)) (-3940 (((-772) $) 94 T ELT) (($ |#3|) 95 T ELT) (($ (-197 |#2| |#3|)) 102 T ELT) (($ (-1054 |#2| |#3|)) 105 T ELT) (($ (-583 |#3|)) 77 T ELT) (($ (-583 $)) 83 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 96 T CONST)) (-2662 (($) 97 T CONST)) (-3052 (((-85) $ $) 107 T ELT)) (-3831 (($ $) 113 T ELT) (($ $ $) 111 T ELT)) (-3833 (($ $ $) 109 T ELT)) (* (($ |#3| $) 118 T ELT) (($ $ |#3|) 119 T ELT) (($ $ (-483)) 116 T ELT) (($ (-483) $) 115 T ELT) (($ $ $) 122 T ELT)))
-(((-108 |#1| |#2| |#3|) (-13 (-402 |#3| (-694)) (-407 (-483) (-694)) (-241 (-483) |#3|) (-555 (-197 |#2| |#3|)) (-555 (-1054 |#2| |#3|)) (-555 (-583 |#3|)) (-555 (-583 $)) (-10 -8 (-15 -3104 ((-694) $)) (-15 -3794 (|#3| $)) (-15 -3794 (|#3| $ (-483) (-483))) (-15 -3794 (|#3| $ (-483) (-483) (-483))) (-15 -3794 (|#3| $ (-483) (-483) (-483) (-483))) (-15 -3794 (|#3| $ (-583 (-483)))) (-15 -3938 ($ $ $)) (-15 * ($ $ $)) (-15 -1979 ($ $ (-483) $ (-483))) (-15 -1979 ($ $ (-483) (-483))) (-15 -3408 ($ $)) (-15 -3408 ($ $ (-483) (-483))) (-15 -1319 ($ $ (-583 (-483)))) (-15 -1318 ($)) (-15 -1317 ($)) (-15 -1316 ((-583 |#3|) $)) (-15 -1315 ($ (-583 |#3|))) (-15 -3718 ($)))) (-483) (-694) (-146)) (T -108))
-((-3938 (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-694)) (-4 *4 (-146)))) (-3104 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-483)) (-14 *4 *2) (-4 *5 (-146)))) (-3794 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-483)) (-14 *4 (-694)))) (-3794 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-483)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-694)))) (-3794 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-483)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-694)))) (-3794 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-483)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-694)))) (-3794 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-483))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 (-483)) (-14 *5 (-694)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-694)) (-4 *4 (-146)))) (-1979 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694)) (-4 *5 (-146)))) (-1979 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694)) (-4 *5 (-146)))) (-3408 (*1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-694)) (-4 *4 (-146)))) (-3408 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694)) (-4 *5 (-146)))) (-1319 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-483)) (-14 *4 (-694)) (-4 *5 (-146)))) (-1318 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-694)) (-4 *4 (-146)))) (-1317 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-694)) (-4 *4 (-146)))) (-1316 (*1 *2 *1) (-12 (-5 *2 (-583 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-483)) (-14 *4 (-694)) (-4 *5 (-146)))) (-1315 (*1 *1 *2) (-12 (-5 *2 (-583 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-483)) (-14 *4 (-694)))) (-3718 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-694)) (-4 *4 (-146)))))
-((-2411 (((-108 |#1| |#2| |#4|) (-583 |#4|) (-108 |#1| |#2| |#3|)) 14 T ELT)) (-3952 (((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)) 18 T ELT)))
-(((-109 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2411 ((-108 |#1| |#2| |#4|) (-583 |#4|) (-108 |#1| |#2| |#3|))) (-15 -3952 ((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)))) (-483) (-694) (-146) (-146)) (T -109))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-483)) (-14 *6 (-694)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))) (-2411 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-483)) (-14 *6 (-694)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3522 (((-1047) $) 12 T ELT)) (-3523 (((-1047) $) 10 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 18 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-110) (-13 (-994) (-10 -8 (-15 -3523 ((-1047) $)) (-15 -3522 ((-1047) $))))) (T -110))
-((-3523 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-110)))) (-3522 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-110)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1423 (((-161) $) 11 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 20 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3228 (((-583 (-1047)) $) 13 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-111) (-13 (-994) (-10 -8 (-15 -1423 ((-161) $)) (-15 -3228 ((-583 (-1047)) $))))) (T -111))
-((-1423 (*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-111)))) (-3228 (*1 *2 *1) (-12 (-5 *2 (-583 (-1047))) (-5 *1 (-111)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-1421 (((-583 (-774)) $) NIL T ELT)) (-3536 (((-444) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1423 (((-161) $) NIL T ELT)) (-2629 (((-85) $ (-444)) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1422 (((-583 (-85)) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (((-157) $) 6 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2517 (((-55) $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-112) (-13 (-160) (-552 (-157)))) (T -112))
-NIL
-((-1321 (((-583 (-158 (-112))) $) 13 T ELT)) (-1320 (((-583 (-158 (-112))) $) 14 T ELT)) (-1322 (((-583 (-749)) $) 10 T ELT)) (-1479 (((-112) $) 7 T ELT)) (-3940 (((-772) $) 16 T ELT)))
-(((-113) (-13 (-552 (-772)) (-10 -8 (-15 -1479 ((-112) $)) (-15 -1322 ((-583 (-749)) $)) (-15 -1321 ((-583 (-158 (-112))) $)) (-15 -1320 ((-583 (-158 (-112))) $))))) (T -113))
-((-1479 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1322 (*1 *2 *1) (-12 (-5 *2 (-583 (-749))) (-5 *1 (-113)))) (-1321 (*1 *2 *1) (-12 (-5 *2 (-583 (-158 (-112)))) (-5 *1 (-113)))) (-1320 (*1 *2 *1) (-12 (-5 *2 (-583 (-158 (-112)))) (-5 *1 (-113)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3421 (($) 17 T CONST)) (-1799 (($) NIL (|has| (-117) (-317)) ELT)) (-3229 (($ $ $) 19 T ELT) (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT)) (-3231 (($ $ $) NIL T ELT)) (-3230 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) NIL (|has| (-117) (-317)) ELT)) (-3234 (($) NIL T ELT) (($ (-583 (-117))) NIL T ELT)) (-1567 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3718 (($) NIL T CONST)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-117) (-1012))) ELT)) (-3399 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-117) $) 56 (|has| $ (-6 -3989)) ELT)) (-3400 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-117) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-117) (-1012))) ELT)) (-3836 (((-117) (-1 (-117) (-117) (-117)) $) NIL (|has| $ (-6 -3989)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL (|has| $ (-6 -3989)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (-12 (|has| $ (-6 -3989)) (|has| (-117) (-1012))) ELT)) (-2990 (($) NIL (|has| (-117) (-317)) ELT)) (-2885 (((-583 (-117)) $) 65 (|has| $ (-6 -3989)) ELT)) (-3236 (((-85) $ $) NIL T ELT)) (-2527 (((-117) $) NIL (|has| (-117) (-756)) ELT)) (-2604 (((-583 (-117)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-117) $) 29 (-12 (|has| $ (-6 -3989)) (|has| (-117) (-1012))) ELT)) (-2853 (((-117) $) NIL (|has| (-117) (-756)) ELT)) (-1946 (($ (-1 (-117) (-117)) $) 64 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-117) (-117)) $) 60 T ELT)) (-3423 (($) 18 T CONST)) (-2006 (((-830) $) NIL (|has| (-117) (-317)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3233 (($ $ $) 32 T ELT)) (-1271 (((-117) $) 57 T ELT)) (-3603 (($ (-117) $) 55 T ELT)) (-2396 (($ (-830)) NIL (|has| (-117) (-317)) ELT)) (-1325 (($) 16 T CONST)) (-3238 (((-1032) $) NIL T ELT)) (-1351 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-1272 (((-117) $) 58 T ELT)) (-1944 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-117)) (-583 (-117))) NIL (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1012))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1012))) ELT) (($ $ (-248 (-117))) NIL (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1012))) ELT) (($ $ (-583 (-248 (-117)))) NIL (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) 53 T ELT)) (-1326 (($) 15 T CONST)) (-3232 (($ $ $) 34 T ELT) (($ $ (-117)) NIL T ELT)) (-1463 (($ (-583 (-117))) NIL T ELT) (($) NIL T ELT)) (-1943 (((-694) (-117) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-117) (-1012))) ELT) (((-694) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-1071) $) 39 T ELT) (((-472) $) NIL (|has| (-117) (-553 (-472))) ELT) (((-583 (-117)) $) 37 T ELT)) (-3524 (($ (-583 (-117))) NIL T ELT)) (-1800 (($ $) 35 (|has| (-117) (-317)) ELT)) (-3940 (((-772) $) 51 T ELT)) (-1327 (($ (-1071)) 14 T ELT) (($ (-583 (-117))) 48 T ELT)) (-1801 (((-694) $) NIL T ELT)) (-3235 (($) 54 T ELT) (($ (-583 (-117))) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-1273 (($ (-583 (-117))) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3989)) ELT)) (-1323 (($) 21 T CONST)) (-1324 (($) 20 T CONST)) (-3052 (((-85) $ $) 26 T ELT)) (-3951 (((-694) $) 52 (|has| $ (-6 -3989)) ELT)))
-(((-114) (-13 (-1012) (-553 (-1071)) (-366 (-117)) (-553 (-583 (-117))) (-10 -8 (-15 -1327 ($ (-1071))) (-15 -1327 ($ (-583 (-117)))) (-15 -1326 ($) -3946) (-15 -1325 ($) -3946) (-15 -3421 ($) -3946) (-15 -3423 ($) -3946) (-15 -1324 ($) -3946) (-15 -1323 ($) -3946)))) (T -114))
-((-1327 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-114)))) (-1327 (*1 *1 *2) (-12 (-5 *2 (-583 (-117))) (-5 *1 (-114)))) (-1326 (*1 *1) (-5 *1 (-114))) (-1325 (*1 *1) (-5 *1 (-114))) (-3421 (*1 *1) (-5 *1 (-114))) (-3423 (*1 *1) (-5 *1 (-114))) (-1324 (*1 *1) (-5 *1 (-114))) (-1323 (*1 *1) (-5 *1 (-114))))
-((-3735 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-3733 ((|#1| |#3|) 9 T ELT)) (-3734 ((|#3| |#3|) 15 T ELT)))
-(((-115 |#1| |#2| |#3|) (-10 -7 (-15 -3733 (|#1| |#3|)) (-15 -3734 (|#3| |#3|)) (-15 -3735 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-494) (-904 |#1|) (-321 |#2|)) (T -115))
-((-3735 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-904 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-115 *4 *5 *3)) (-4 *3 (-321 *5)))) (-3734 (*1 *2 *2) (-12 (-4 *3 (-494)) (-4 *4 (-904 *3)) (-5 *1 (-115 *3 *4 *2)) (-4 *2 (-321 *4)))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-904 *2)) (-4 *2 (-494)) (-5 *1 (-115 *2 *4 *3)) (-4 *3 (-321 *4)))))
-((-1366 (($ $ $) 8 T ELT)) (-1364 (($ $) 7 T ELT)) (-3097 (($ $ $) 6 T ELT)))
+((-3415 (*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-695)))) (-1311 (*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-695)) (-5 *2 (-1184)))))
+(-13 (-1013) (-10 -8 (-15 -3415 ((-695) $)) (-15 -1311 ((-1184) $ (-695)))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3230 (((-584 (-1048)) $) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-106) (-13 (-995) (-10 -8 (-15 -3230 ((-584 (-1048)) $))))) (T -106))
+((-3230 (*1 *2 *1) (-12 (-5 *2 (-584 (-1048))) (-5 *1 (-106)))))
+((-2566 (((-85) $ $) 49 T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 (-695) #1="failed") $) 60 T ELT)) (-3153 (((-695) $) 58 T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2408 (((-85) $) NIL T ELT)) (-2529 (($ $ $) NIL T ELT)) (-2855 (($ $ $) 37 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1313 (((-85)) 61 T ELT)) (-1312 (((-85) (-85)) 63 T ELT)) (-2523 (((-85) $) 30 T ELT)) (-1314 (((-85) $) 57 T ELT)) (-3942 (((-773) $) 28 T ELT) (($ (-695)) 20 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) 18 T CONST)) (-2664 (($) 19 T CONST)) (-1315 (($ (-695)) 21 T ELT)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) 40 T ELT)) (-3054 (((-85) $ $) 32 T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) 35 T ELT)) (-3833 (((-3 $ #1#) $ $) 42 T ELT)) (-3835 (($ $ $) 38 T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT) (($ $ $) 56 T ELT)) (* (($ (-695) $) 48 T ELT) (($ (-831) $) NIL T ELT) (($ $ $) 45 T ELT)))
+(((-107) (-13 (-757) (-23) (-664) (-951 (-695)) (-10 -8 (-6 (-3993 "*")) (-15 -3833 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1315 ($ (-695))) (-15 -2523 ((-85) $)) (-15 -1314 ((-85) $)) (-15 -1313 ((-85))) (-15 -1312 ((-85) (-85)))))) (T -107))
+((-3833 (*1 *1 *1 *1) (|partial| -5 *1 (-107))) (** (*1 *1 *1 *1) (-5 *1 (-107))) (-1315 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-107)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1314 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1313 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1312 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-1316 (($ (-584 |#3|)) 63 T ELT)) (-3410 (($ $) 125 T ELT) (($ $ (-484) (-484)) 124 T ELT)) (-3720 (($) 20 T ELT)) (-3154 (((-3 |#3| "failed") $) 86 T ELT)) (-3153 ((|#3| $) NIL T ELT)) (-1320 (($ $ (-584 (-484))) 126 T ELT)) (-1317 (((-584 |#3|) $) 58 T ELT)) (-3106 (((-695) $) 68 T ELT)) (-3940 (($ $ $) 120 T ELT)) (-1318 (($) 67 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-1319 (($) 19 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3796 ((|#3| $ (-484)) 72 T ELT) ((|#3| $) 71 T ELT) ((|#3| $ (-484) (-484)) 73 T ELT) ((|#3| $ (-484) (-484) (-484)) 74 T ELT) ((|#3| $ (-484) (-484) (-484) (-484)) 75 T ELT) ((|#3| $ (-584 (-484))) 76 T ELT)) (-3944 (((-695) $) 69 T ELT)) (-1980 (($ $ (-484) $ (-484)) 121 T ELT) (($ $ (-484) (-484)) 123 T ELT)) (-3942 (((-773) $) 94 T ELT) (($ |#3|) 95 T ELT) (($ (-197 |#2| |#3|)) 102 T ELT) (($ (-1055 |#2| |#3|)) 105 T ELT) (($ (-584 |#3|)) 77 T ELT) (($ (-584 $)) 83 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) 96 T CONST)) (-2664 (($) 97 T CONST)) (-3054 (((-85) $ $) 107 T ELT)) (-3833 (($ $) 113 T ELT) (($ $ $) 111 T ELT)) (-3835 (($ $ $) 109 T ELT)) (* (($ |#3| $) 118 T ELT) (($ $ |#3|) 119 T ELT) (($ $ (-484)) 116 T ELT) (($ (-484) $) 115 T ELT) (($ $ $) 122 T ELT)))
+(((-108 |#1| |#2| |#3|) (-13 (-402 |#3| (-695)) (-407 (-484) (-695)) (-241 (-484) |#3|) (-556 (-197 |#2| |#3|)) (-556 (-1055 |#2| |#3|)) (-556 (-584 |#3|)) (-556 (-584 $)) (-10 -8 (-15 -3106 ((-695) $)) (-15 -3796 (|#3| $)) (-15 -3796 (|#3| $ (-484) (-484))) (-15 -3796 (|#3| $ (-484) (-484) (-484))) (-15 -3796 (|#3| $ (-484) (-484) (-484) (-484))) (-15 -3796 (|#3| $ (-584 (-484)))) (-15 -3940 ($ $ $)) (-15 * ($ $ $)) (-15 -1980 ($ $ (-484) $ (-484))) (-15 -1980 ($ $ (-484) (-484))) (-15 -3410 ($ $)) (-15 -3410 ($ $ (-484) (-484))) (-15 -1320 ($ $ (-584 (-484)))) (-15 -1319 ($)) (-15 -1318 ($)) (-15 -1317 ((-584 |#3|) $)) (-15 -1316 ($ (-584 |#3|))) (-15 -3720 ($)))) (-484) (-695) (-146)) (T -108))
+((-3940 (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-695)) (-4 *4 (-146)))) (-3106 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) (-14 *4 *2) (-4 *5 (-146)))) (-3796 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-484)) (-14 *4 (-695)))) (-3796 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-695)))) (-3796 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-695)))) (-3796 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-695)))) (-3796 (*1 *2 *1 *3) (-12 (-5 *3 (-584 (-484))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 (-484)) (-14 *5 (-695)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-695)) (-4 *4 (-146)))) (-1980 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695)) (-4 *5 (-146)))) (-1980 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695)) (-4 *5 (-146)))) (-3410 (*1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-695)) (-4 *4 (-146)))) (-3410 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695)) (-4 *5 (-146)))) (-1320 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) (-14 *4 (-695)) (-4 *5 (-146)))) (-1319 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-695)) (-4 *4 (-146)))) (-1318 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-695)) (-4 *4 (-146)))) (-1317 (*1 *2 *1) (-12 (-5 *2 (-584 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) (-14 *4 (-695)) (-4 *5 (-146)))) (-1316 (*1 *1 *2) (-12 (-5 *2 (-584 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) (-14 *4 (-695)))) (-3720 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-695)) (-4 *4 (-146)))))
+((-2413 (((-108 |#1| |#2| |#4|) (-584 |#4|) (-108 |#1| |#2| |#3|)) 14 T ELT)) (-3954 (((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)) 18 T ELT)))
+(((-109 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2413 ((-108 |#1| |#2| |#4|) (-584 |#4|) (-108 |#1| |#2| |#3|))) (-15 -3954 ((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)))) (-484) (-695) (-146) (-146)) (T -109))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-484)) (-14 *6 (-695)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))) (-2413 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-484)) (-14 *6 (-695)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3524 (((-1048) $) 12 T ELT)) (-3525 (((-1048) $) 10 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-110) (-13 (-995) (-10 -8 (-15 -3525 ((-1048) $)) (-15 -3524 ((-1048) $))))) (T -110))
+((-3525 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-110)))) (-3524 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-110)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-1424 (((-161) $) 11 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 20 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3230 (((-584 (-1048)) $) 13 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-111) (-13 (-995) (-10 -8 (-15 -1424 ((-161) $)) (-15 -3230 ((-584 (-1048)) $))))) (T -111))
+((-1424 (*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-111)))) (-3230 (*1 *2 *1) (-12 (-5 *2 (-584 (-1048))) (-5 *1 (-111)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-1422 (((-584 (-775)) $) NIL T ELT)) (-3538 (((-444) $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-1424 (((-161) $) NIL T ELT)) (-2631 (((-85) $ (-444)) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1423 (((-584 (-85)) $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (((-157) $) 6 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2519 (((-55) $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-112) (-13 (-160) (-553 (-157)))) (T -112))
+NIL
+((-1322 (((-584 (-158 (-112))) $) 13 T ELT)) (-1321 (((-584 (-158 (-112))) $) 14 T ELT)) (-1323 (((-584 (-750)) $) 10 T ELT)) (-1480 (((-112) $) 7 T ELT)) (-3942 (((-773) $) 16 T ELT)))
+(((-113) (-13 (-553 (-773)) (-10 -8 (-15 -1480 ((-112) $)) (-15 -1323 ((-584 (-750)) $)) (-15 -1322 ((-584 (-158 (-112))) $)) (-15 -1321 ((-584 (-158 (-112))) $))))) (T -113))
+((-1480 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1323 (*1 *2 *1) (-12 (-5 *2 (-584 (-750))) (-5 *1 (-113)))) (-1322 (*1 *2 *1) (-12 (-5 *2 (-584 (-158 (-112)))) (-5 *1 (-113)))) (-1321 (*1 *2 *1) (-12 (-5 *2 (-584 (-158 (-112)))) (-5 *1 (-113)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3423 (($) 17 T CONST)) (-1800 (($) NIL (|has| (-117) (-317)) ELT)) (-3231 (($ $ $) 19 T ELT) (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT)) (-3233 (($ $ $) NIL T ELT)) (-3232 (((-85) $ $) NIL T ELT)) (-3133 (((-695)) NIL (|has| (-117) (-317)) ELT)) (-3236 (($) NIL T ELT) (($ (-584 (-117))) NIL T ELT)) (-1568 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3991)) ELT)) (-3706 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3991)) ELT)) (-3720 (($) NIL T CONST)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-117) (-1013))) ELT)) (-3401 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3991)) ELT) (($ (-117) $) 56 (|has| $ (-6 -3991)) ELT)) (-3402 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3991)) ELT) (($ (-117) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-117) (-1013))) ELT)) (-3838 (((-117) (-1 (-117) (-117) (-117)) $) NIL (|has| $ (-6 -3991)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL (|has| $ (-6 -3991)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (-12 (|has| $ (-6 -3991)) (|has| (-117) (-1013))) ELT)) (-2992 (($) NIL (|has| (-117) (-317)) ELT)) (-2887 (((-584 (-117)) $) 65 (|has| $ (-6 -3991)) ELT)) (-3238 (((-85) $ $) NIL T ELT)) (-2529 (((-117) $) NIL (|has| (-117) (-757)) ELT)) (-2606 (((-584 (-117)) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) (-117) $) 29 (-12 (|has| $ (-6 -3991)) (|has| (-117) (-1013))) ELT)) (-2855 (((-117) $) NIL (|has| (-117) (-757)) ELT)) (-1947 (($ (-1 (-117) (-117)) $) 64 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 (-117) (-117)) $) 60 T ELT)) (-3425 (($) 18 T CONST)) (-2008 (((-831) $) NIL (|has| (-117) (-317)) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3235 (($ $ $) 32 T ELT)) (-1272 (((-117) $) 57 T ELT)) (-3605 (($ (-117) $) 55 T ELT)) (-2398 (($ (-831)) NIL (|has| (-117) (-317)) ELT)) (-1326 (($) 16 T CONST)) (-3240 (((-1033) $) NIL T ELT)) (-1352 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-1273 (((-117) $) 58 T ELT)) (-1945 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-117)) (-584 (-117))) NIL (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-248 (-117))) NIL (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-584 (-248 (-117)))) NIL (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) 53 T ELT)) (-1327 (($) 15 T CONST)) (-3234 (($ $ $) 34 T ELT) (($ $ (-117)) NIL T ELT)) (-1464 (($ (-584 (-117))) NIL T ELT) (($) NIL T ELT)) (-1944 (((-695) (-117) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-117) (-1013))) ELT) (((-695) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3991)) ELT)) (-3396 (($ $) NIL T ELT)) (-3968 (((-1072) $) 39 T ELT) (((-473) $) NIL (|has| (-117) (-554 (-473))) ELT) (((-584 (-117)) $) 37 T ELT)) (-3526 (($ (-584 (-117))) NIL T ELT)) (-1801 (($ $) 35 (|has| (-117) (-317)) ELT)) (-3942 (((-773) $) 51 T ELT)) (-1328 (($ (-1072)) 14 T ELT) (($ (-584 (-117))) 48 T ELT)) (-1802 (((-695) $) NIL T ELT)) (-3237 (($) 54 T ELT) (($ (-584 (-117))) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1274 (($ (-584 (-117))) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3991)) ELT)) (-1324 (($) 21 T CONST)) (-1325 (($) 20 T CONST)) (-3054 (((-85) $ $) 26 T ELT)) (-3953 (((-695) $) 52 (|has| $ (-6 -3991)) ELT)))
+(((-114) (-13 (-1013) (-554 (-1072)) (-366 (-117)) (-554 (-584 (-117))) (-10 -8 (-15 -1328 ($ (-1072))) (-15 -1328 ($ (-584 (-117)))) (-15 -1327 ($) -3948) (-15 -1326 ($) -3948) (-15 -3423 ($) -3948) (-15 -3425 ($) -3948) (-15 -1325 ($) -3948) (-15 -1324 ($) -3948)))) (T -114))
+((-1328 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-114)))) (-1328 (*1 *1 *2) (-12 (-5 *2 (-584 (-117))) (-5 *1 (-114)))) (-1327 (*1 *1) (-5 *1 (-114))) (-1326 (*1 *1) (-5 *1 (-114))) (-3423 (*1 *1) (-5 *1 (-114))) (-3425 (*1 *1) (-5 *1 (-114))) (-1325 (*1 *1) (-5 *1 (-114))) (-1324 (*1 *1) (-5 *1 (-114))))
+((-3737 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-3735 ((|#1| |#3|) 9 T ELT)) (-3736 ((|#3| |#3|) 15 T ELT)))
+(((-115 |#1| |#2| |#3|) (-10 -7 (-15 -3735 (|#1| |#3|)) (-15 -3736 (|#3| |#3|)) (-15 -3737 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-495) (-905 |#1|) (-321 |#2|)) (T -115))
+((-3737 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-905 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-115 *4 *5 *3)) (-4 *3 (-321 *5)))) (-3736 (*1 *2 *2) (-12 (-4 *3 (-495)) (-4 *4 (-905 *3)) (-5 *1 (-115 *3 *4 *2)) (-4 *2 (-321 *4)))) (-3735 (*1 *2 *3) (-12 (-4 *4 (-905 *2)) (-4 *2 (-495)) (-5 *1 (-115 *2 *4 *3)) (-4 *3 (-321 *4)))))
+((-1367 (($ $ $) 8 T ELT)) (-1365 (($ $) 7 T ELT)) (-3099 (($ $ $) 6 T ELT)))
(((-116) (-113)) (T -116))
-((-1366 (*1 *1 *1 *1) (-4 *1 (-116))) (-1364 (*1 *1 *1) (-4 *1 (-116))) (-3097 (*1 *1 *1 *1) (-4 *1 (-116))))
-(-13 (-10 -8 (-15 -3097 ($ $ $)) (-15 -1364 ($ $)) (-15 -1366 ($ $ $))))
-((-2564 (((-85) $ $) NIL T ELT)) (-1335 (($) 30 T CONST)) (-1330 (((-85) $) 42 T ELT)) (-3421 (($ $) 52 T ELT)) (-1342 (($) 23 T CONST)) (-1515 (($) 21 T CONST)) (-3131 (((-694)) 13 T ELT)) (-2990 (($) 20 T ELT)) (-2575 (($) 22 T CONST)) (-1344 (((-694) $) 17 T ELT)) (-1341 (($) 24 T CONST)) (-2527 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2853 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1329 (((-85) $) 44 T ELT)) (-3423 (($ $) 53 T ELT)) (-2006 (((-830) $) 18 T ELT)) (-1339 (($) 26 T CONST)) (-3237 (((-1071) $) 50 T ELT)) (-2396 (($ (-830)) 16 T ELT)) (-1336 (($) 29 T CONST)) (-1332 (((-85) $) 40 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1338 (($) 27 T CONST)) (-1334 (($) 31 T CONST)) (-1333 (((-85) $) 38 T ELT)) (-3940 (((-772) $) 33 T ELT)) (-1343 (($ (-694)) 14 T ELT) (($ (-1071)) 51 T ELT)) (-1340 (($) 25 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-1337 (($) 28 T CONST)) (-1328 (((-85) $) 48 T ELT)) (-1331 (((-85) $) 46 T ELT)) (-2562 (((-85) $ $) 11 T ELT)) (-2563 (((-85) $ $) 9 T ELT)) (-3052 (((-85) $ $) 7 T ELT)) (-2680 (((-85) $ $) 10 T ELT)) (-2681 (((-85) $ $) 8 T ELT)))
-(((-117) (-13 (-752) (-10 -8 (-15 -1344 ((-694) $)) (-15 -1343 ($ (-694))) (-15 -1343 ($ (-1071))) (-15 -1515 ($) -3946) (-15 -2575 ($) -3946) (-15 -1342 ($) -3946) (-15 -1341 ($) -3946) (-15 -1340 ($) -3946) (-15 -1339 ($) -3946) (-15 -1338 ($) -3946) (-15 -1337 ($) -3946) (-15 -1336 ($) -3946) (-15 -1335 ($) -3946) (-15 -1334 ($) -3946) (-15 -3421 ($ $)) (-15 -3423 ($ $)) (-15 -1333 ((-85) $)) (-15 -1332 ((-85) $)) (-15 -1331 ((-85) $)) (-15 -1330 ((-85) $)) (-15 -1329 ((-85) $)) (-15 -1328 ((-85) $))))) (T -117))
-((-1344 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-117)))) (-1343 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-117)))) (-1343 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-117)))) (-1515 (*1 *1) (-5 *1 (-117))) (-2575 (*1 *1) (-5 *1 (-117))) (-1342 (*1 *1) (-5 *1 (-117))) (-1341 (*1 *1) (-5 *1 (-117))) (-1340 (*1 *1) (-5 *1 (-117))) (-1339 (*1 *1) (-5 *1 (-117))) (-1338 (*1 *1) (-5 *1 (-117))) (-1337 (*1 *1) (-5 *1 (-117))) (-1336 (*1 *1) (-5 *1 (-117))) (-1335 (*1 *1) (-5 *1 (-117))) (-1334 (*1 *1) (-5 *1 (-117))) (-3421 (*1 *1 *1) (-5 *1 (-117))) (-3423 (*1 *1 *1) (-5 *1 (-117))) (-1333 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1332 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1330 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1329 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1328 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT)) (-2698 (((-632 $) $) 45 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT)))
+((-1367 (*1 *1 *1 *1) (-4 *1 (-116))) (-1365 (*1 *1 *1) (-4 *1 (-116))) (-3099 (*1 *1 *1 *1) (-4 *1 (-116))))
+(-13 (-10 -8 (-15 -3099 ($ $ $)) (-15 -1365 ($ $)) (-15 -1367 ($ $ $))))
+((-2566 (((-85) $ $) NIL T ELT)) (-1336 (($) 30 T CONST)) (-1331 (((-85) $) 42 T ELT)) (-3423 (($ $) 52 T ELT)) (-1343 (($) 23 T CONST)) (-1516 (($) 21 T CONST)) (-3133 (((-695)) 13 T ELT)) (-2992 (($) 20 T ELT)) (-2577 (($) 22 T CONST)) (-1345 (((-695) $) 17 T ELT)) (-1342 (($) 24 T CONST)) (-2529 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2855 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1330 (((-85) $) 44 T ELT)) (-3425 (($ $) 53 T ELT)) (-2008 (((-831) $) 18 T ELT)) (-1340 (($) 26 T CONST)) (-3239 (((-1072) $) 50 T ELT)) (-2398 (($ (-831)) 16 T ELT)) (-1337 (($) 29 T CONST)) (-1333 (((-85) $) 40 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1339 (($) 27 T CONST)) (-1335 (($) 31 T CONST)) (-1334 (((-85) $) 38 T ELT)) (-3942 (((-773) $) 33 T ELT)) (-1344 (($ (-695)) 14 T ELT) (($ (-1072)) 51 T ELT)) (-1341 (($) 25 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-1338 (($) 28 T CONST)) (-1329 (((-85) $) 48 T ELT)) (-1332 (((-85) $) 46 T ELT)) (-2564 (((-85) $ $) 11 T ELT)) (-2565 (((-85) $ $) 9 T ELT)) (-3054 (((-85) $ $) 7 T ELT)) (-2682 (((-85) $ $) 10 T ELT)) (-2683 (((-85) $ $) 8 T ELT)))
+(((-117) (-13 (-753) (-10 -8 (-15 -1345 ((-695) $)) (-15 -1344 ($ (-695))) (-15 -1344 ($ (-1072))) (-15 -1516 ($) -3948) (-15 -2577 ($) -3948) (-15 -1343 ($) -3948) (-15 -1342 ($) -3948) (-15 -1341 ($) -3948) (-15 -1340 ($) -3948) (-15 -1339 ($) -3948) (-15 -1338 ($) -3948) (-15 -1337 ($) -3948) (-15 -1336 ($) -3948) (-15 -1335 ($) -3948) (-15 -3423 ($ $)) (-15 -3425 ($ $)) (-15 -1334 ((-85) $)) (-15 -1333 ((-85) $)) (-15 -1332 ((-85) $)) (-15 -1331 ((-85) $)) (-15 -1330 ((-85) $)) (-15 -1329 ((-85) $))))) (T -117))
+((-1345 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-117)))) (-1344 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-117)))) (-1344 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-117)))) (-1516 (*1 *1) (-5 *1 (-117))) (-2577 (*1 *1) (-5 *1 (-117))) (-1343 (*1 *1) (-5 *1 (-117))) (-1342 (*1 *1) (-5 *1 (-117))) (-1341 (*1 *1) (-5 *1 (-117))) (-1340 (*1 *1) (-5 *1 (-117))) (-1339 (*1 *1) (-5 *1 (-117))) (-1338 (*1 *1) (-5 *1 (-117))) (-1337 (*1 *1) (-5 *1 (-117))) (-1336 (*1 *1) (-5 *1 (-117))) (-1335 (*1 *1) (-5 *1 (-117))) (-3423 (*1 *1 *1) (-5 *1 (-117))) (-3425 (*1 *1 *1) (-5 *1 (-117))) (-1334 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1333 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1332 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1330 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1329 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT)) (-2700 (((-633 $) $) 45 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT)))
(((-118) (-113)) (T -118))
-((-2698 (*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-118)))))
-(-13 (-961) (-10 -8 (-15 -2698 ((-632 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-483)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T))
-((-2445 ((|#1| (-630 |#1|) |#1|) 19 T ELT)))
-(((-119 |#1|) (-10 -7 (-15 -2445 (|#1| (-630 |#1|) |#1|))) (-146)) (T -119))
-((-2445 (*1 *2 *3 *2) (-12 (-5 *3 (-630 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT)))
+((-2700 (*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-118)))))
+(-13 (-962) (-10 -8 (-15 -2700 ((-633 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-484)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
+((-2447 ((|#1| (-631 |#1|) |#1|) 19 T ELT)))
+(((-119 |#1|) (-10 -7 (-15 -2447 (|#1| (-631 |#1|) |#1|))) (-146)) (T -119))
+((-2447 (*1 *2 *3 *2) (-12 (-5 *3 (-631 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT)))
(((-120) (-113)) (T -120))
NIL
-(-13 (-961))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-483)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T))
-((-1347 (((-2 (|:| -2397 (-694)) (|:| -3948 (-347 |#2|)) (|:| |radicand| |#2|)) (-347 |#2|) (-694)) 76 T ELT)) (-1346 (((-3 (-2 (|:| |radicand| (-347 |#2|)) (|:| |deg| (-694))) "failed") |#3|) 56 T ELT)) (-1345 (((-2 (|:| -3948 (-347 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-1348 ((|#1| |#3| |#3|) 44 T ELT)) (-3762 ((|#3| |#3| (-347 |#2|) (-347 |#2|)) 20 T ELT)) (-1349 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-347 |#2|)) (|:| |c2| (-347 |#2|)) (|:| |deg| (-694))) |#3| |#3|) 53 T ELT)))
-(((-121 |#1| |#2| |#3|) (-10 -7 (-15 -1345 ((-2 (|:| -3948 (-347 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1346 ((-3 (-2 (|:| |radicand| (-347 |#2|)) (|:| |deg| (-694))) "failed") |#3|)) (-15 -1347 ((-2 (|:| -2397 (-694)) (|:| -3948 (-347 |#2|)) (|:| |radicand| |#2|)) (-347 |#2|) (-694))) (-15 -1348 (|#1| |#3| |#3|)) (-15 -3762 (|#3| |#3| (-347 |#2|) (-347 |#2|))) (-15 -1349 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-347 |#2|)) (|:| |c2| (-347 |#2|)) (|:| |deg| (-694))) |#3| |#3|))) (-1132) (-1153 |#1|) (-1153 (-347 |#2|))) (T -121))
-((-1349 (*1 *2 *3 *3) (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-347 *5)) (|:| |c2| (-347 *5)) (|:| |deg| (-694)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1153 (-347 *5))))) (-3762 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-347 *5)) (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1153 *3)))) (-1348 (*1 *2 *3 *3) (-12 (-4 *4 (-1153 *2)) (-4 *2 (-1132)) (-5 *1 (-121 *2 *4 *3)) (-4 *3 (-1153 (-347 *4))))) (-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-347 *6)) (-4 *5 (-1132)) (-4 *6 (-1153 *5)) (-5 *2 (-2 (|:| -2397 (-694)) (|:| -3948 *3) (|:| |radicand| *6))) (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-694)) (-4 *7 (-1153 *3)))) (-1346 (*1 *2 *3) (|partial| -12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-5 *2 (-2 (|:| |radicand| (-347 *5)) (|:| |deg| (-694)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1153 (-347 *5))))) (-1345 (*1 *2 *3) (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-5 *2 (-2 (|:| -3948 (-347 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1153 (-347 *5))))))
-((-2700 (((-3 (-583 (-1083 |#2|)) "failed") (-583 (-1083 |#2|)) (-1083 |#2|)) 35 T ELT)))
-(((-122 |#1| |#2|) (-10 -7 (-15 -2700 ((-3 (-583 (-1083 |#2|)) "failed") (-583 (-1083 |#2|)) (-1083 |#2|)))) (-482) (-139 |#1|)) (T -122))
-((-2700 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1083 *5))) (-5 *3 (-1083 *5)) (-4 *5 (-139 *4)) (-4 *4 (-482)) (-5 *1 (-122 *4 *5)))))
-((-3704 (($ (-1 (-85) |#2|) $) 37 T ELT)) (-1350 (($ $) 44 T ELT)) (-3400 (($ (-1 (-85) |#2|) $) 35 T ELT) (($ |#2| $) 40 T ELT)) (-3836 ((|#2| (-1 |#2| |#2| |#2|) $) 30 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42 T ELT)) (-1351 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 27 T ELT)) (-1944 (((-85) (-1 (-85) |#2|) $) 24 T ELT)) (-1943 (((-694) (-1 (-85) |#2|) $) 18 T ELT) (((-694) |#2| $) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3951 (((-694) $) 12 T ELT)))
-(((-123 |#1| |#2|) (-10 -7 (-15 -1350 (|#1| |#1|)) (-15 -3400 (|#1| |#2| |#1|)) (-15 -3836 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3704 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3400 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3836 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3836 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1351 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -1943 ((-694) |#2| |#1|)) (-15 -1943 ((-694) (-1 (-85) |#2|) |#1|)) (-15 -1944 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1945 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3951 ((-694) |#1|))) (-124 |#2|) (-1127)) (T -123))
-NIL
-((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) 48 (|has| $ (-6 -3989)) ELT)) (-3718 (($) 7 T CONST)) (-1350 (($ $) 45 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3400 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3989)) ELT) (($ |#1| $) 46 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $) 51 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 47 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 52 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 44 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 53 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-124 |#1|) (-113) (-1127)) (T -124))
-((-3524 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-4 *1 (-124 *3)))) (-1351 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-124 *2)) (-4 *2 (-1127)))) (-3836 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3989)) (-4 *1 (-124 *2)) (-4 *2 (-1127)))) (-3836 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3989)) (-4 *1 (-124 *2)) (-4 *2 (-1127)))) (-3400 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3989)) (-4 *1 (-124 *3)) (-4 *3 (-1127)))) (-3704 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3989)) (-4 *1 (-124 *3)) (-4 *3 (-1127)))) (-3836 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1012)) (|has| *1 (-6 -3989)) (-4 *1 (-124 *2)) (-4 *2 (-1127)))) (-3400 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -3989)) (-4 *1 (-124 *2)) (-4 *2 (-1127)) (-4 *2 (-1012)))) (-1350 (*1 *1 *1) (-12 (|has| *1 (-6 -3989)) (-4 *1 (-124 *2)) (-4 *2 (-1127)) (-4 *2 (-1012)))))
-(-13 (-426 |t#1|) (-10 -8 (-15 -3524 ($ (-583 |t#1|))) (-15 -1351 ((-3 |t#1| "failed") (-1 (-85) |t#1|) $)) (IF (|has| $ (-6 -3989)) (PROGN (-15 -3836 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3836 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3400 ($ (-1 (-85) |t#1|) $)) (-15 -3704 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1012)) (PROGN (-15 -3836 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3400 ($ |t#1| $)) (-15 -1350 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-553 (-472))) (-6 (-553 (-472))) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3461 (((-3 $ #1#) $) 113 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2889 (($ |#2| (-583 (-830))) 72 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1352 (($ (-830)) 58 T ELT)) (-3905 (((-107)) 23 T ELT)) (-3940 (((-772) $) 88 T ELT) (($ (-483)) 54 T ELT) (($ |#2|) 55 T ELT)) (-3671 ((|#2| $ (-583 (-830))) 75 T ELT)) (-3121 (((-694)) 20 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 48 T CONST)) (-2662 (($) 52 T CONST)) (-3052 (((-85) $ $) 34 T ELT)) (-3943 (($ $ |#2|) NIL T ELT)) (-3831 (($ $) 43 T ELT) (($ $ $) 41 T ELT)) (-3833 (($ $ $) 39 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 45 T ELT) (($ $ $) 64 T ELT) (($ |#2| $) 47 T ELT) (($ $ |#2|) NIL T ELT)))
-(((-125 |#1| |#2| |#3|) (-13 (-961) (-38 |#2|) (-1185 |#2|) (-10 -8 (-15 -1352 ($ (-830))) (-15 -2889 ($ |#2| (-583 (-830)))) (-15 -3671 (|#2| $ (-583 (-830)))) (-15 -3461 ((-3 $ "failed") $)))) (-830) (-311) (-906 |#1| |#2|)) (T -125))
-((-3461 (*1 *1 *1) (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-830)) (-4 *3 (-311)) (-14 *4 (-906 *2 *3)))) (-1352 (*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-311)) (-14 *5 (-906 *3 *4)))) (-2889 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-830)) (-4 *2 (-311)) (-14 *5 (-906 *4 *2)))) (-3671 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-830))) (-4 *2 (-311)) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-830)) (-14 *5 (-906 *4 *2)))))
-((-1354 (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-583 (-583 (-854 (-179)))) (-179) (-179) (-179) (-179)) 59 T ELT)) (-1353 (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-836) (-347 (-483)) (-347 (-483))) 95 T ELT) (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-836)) 96 T ELT)) (-1507 (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-583 (-583 (-854 (-179))))) 99 T ELT) (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-583 (-854 (-179)))) 98 T ELT) (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-836) (-347 (-483)) (-347 (-483))) 89 T ELT) (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-836)) 90 T ELT)))
-(((-126) (-10 -7 (-15 -1507 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-836))) (-15 -1507 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-836) (-347 (-483)) (-347 (-483)))) (-15 -1353 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-836))) (-15 -1353 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-836) (-347 (-483)) (-347 (-483)))) (-15 -1354 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-583 (-583 (-854 (-179)))) (-179) (-179) (-179) (-179))) (-15 -1507 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-583 (-854 (-179))))) (-15 -1507 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))) (-583 (-583 (-854 (-179)))))))) (T -126))
-((-1507 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179))))) (-5 *1 (-126)) (-5 *3 (-583 (-583 (-854 (-179))))))) (-1507 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179))))) (-5 *1 (-126)) (-5 *3 (-583 (-854 (-179)))))) (-1354 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-179)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 *4)))) (|:| |xValues| (-1000 *4)) (|:| |yValues| (-1000 *4)))) (-5 *1 (-126)) (-5 *3 (-583 (-583 (-854 *4)))))) (-1353 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-836)) (-5 *4 (-347 (-483))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179))))) (-5 *1 (-126)))) (-1353 (*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179))))) (-5 *1 (-126)))) (-1507 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-836)) (-5 *4 (-347 (-483))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179))))) (-5 *1 (-126)))) (-1507 (*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179))))) (-5 *1 (-126)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3176 (((-583 (-1047)) $) 20 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 27 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3228 (((-1047) $) 10 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-127) (-13 (-994) (-10 -8 (-15 -3176 ((-583 (-1047)) $)) (-15 -3228 ((-1047) $))))) (T -127))
-((-3176 (*1 *2 *1) (-12 (-5 *2 (-583 (-1047))) (-5 *1 (-127)))) (-3228 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-127)))))
-((-1407 (((-583 (-142 |#2|)) |#1| |#2|) 50 T ELT)))
-(((-128 |#1| |#2|) (-10 -7 (-15 -1407 ((-583 (-142 |#2|)) |#1| |#2|))) (-1153 (-142 (-483))) (-13 (-311) (-755))) (T -128))
-((-1407 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-142 *4))) (-5 *1 (-128 *3 *4)) (-4 *3 (-1153 (-142 (-483)))) (-4 *4 (-13 (-311) (-755))))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3522 (((-1128) $) 13 T ELT)) (-3523 (((-1047) $) 10 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 20 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-129) (-13 (-994) (-10 -8 (-15 -3523 ((-1047) $)) (-15 -3522 ((-1128) $))))) (T -129))
-((-3523 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-129)))) (-3522 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-129)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-1356 (($) 38 T ELT)) (-3094 (($) 37 T ELT)) (-1355 (((-830)) 43 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2952 (((-483) $) 41 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3093 (($) 39 T ELT)) (-2951 (($ (-483)) 44 T ELT)) (-3940 (((-772) $) 50 T ELT)) (-3092 (($) 40 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 35 T ELT)) (-3833 (($ $ $) 32 T ELT)) (* (($ (-830) $) 42 T ELT) (($ (-179) $) 11 T ELT)))
-(((-130) (-13 (-25) (-10 -8 (-15 * ($ (-830) $)) (-15 * ($ (-179) $)) (-15 -3833 ($ $ $)) (-15 -3094 ($)) (-15 -1356 ($)) (-15 -3093 ($)) (-15 -3092 ($)) (-15 -2952 ((-483) $)) (-15 -1355 ((-830))) (-15 -2951 ($ (-483)))))) (T -130))
-((-3833 (*1 *1 *1 *1) (-5 *1 (-130))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-130)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-130)))) (-3094 (*1 *1) (-5 *1 (-130))) (-1356 (*1 *1) (-5 *1 (-130))) (-3093 (*1 *1) (-5 *1 (-130))) (-3092 (*1 *1) (-5 *1 (-130))) (-2952 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-130)))) (-1355 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-130)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-130)))))
-((-1369 ((|#2| |#2| (-1003 |#2|)) 98 T ELT) ((|#2| |#2| (-1088)) 75 T ELT)) (-3938 ((|#2| |#2| (-1003 |#2|)) 97 T ELT) ((|#2| |#2| (-1088)) 74 T ELT)) (-1366 ((|#2| |#2| |#2|) 25 T ELT)) (-3589 (((-86) (-86)) 111 T ELT)) (-1363 ((|#2| (-583 |#2|)) 130 T ELT)) (-1360 ((|#2| (-583 |#2|)) 150 T ELT)) (-1359 ((|#2| (-583 |#2|)) 138 T ELT)) (-1357 ((|#2| |#2|) 136 T ELT)) (-1361 ((|#2| (-583 |#2|)) 124 T ELT)) (-1362 ((|#2| (-583 |#2|)) 125 T ELT)) (-1358 ((|#2| (-583 |#2|)) 148 T ELT)) (-1370 ((|#2| |#2| (-1088)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-1364 ((|#2| |#2|) 21 T ELT)) (-3097 ((|#2| |#2| |#2|) 24 T ELT)) (-2250 (((-85) (-86)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT)))
-(((-131 |#1| |#2|) (-10 -7 (-15 -2250 ((-85) (-86))) (-15 -3589 ((-86) (-86))) (-15 ** (|#2| |#2| |#2|)) (-15 -3097 (|#2| |#2| |#2|)) (-15 -1366 (|#2| |#2| |#2|)) (-15 -1364 (|#2| |#2|)) (-15 -1370 (|#2| |#2|)) (-15 -1370 (|#2| |#2| (-1088))) (-15 -1369 (|#2| |#2| (-1088))) (-15 -1369 (|#2| |#2| (-1003 |#2|))) (-15 -3938 (|#2| |#2| (-1088))) (-15 -3938 (|#2| |#2| (-1003 |#2|))) (-15 -1357 (|#2| |#2|)) (-15 -1358 (|#2| (-583 |#2|))) (-15 -1359 (|#2| (-583 |#2|))) (-15 -1360 (|#2| (-583 |#2|))) (-15 -1361 (|#2| (-583 |#2|))) (-15 -1362 (|#2| (-583 |#2|))) (-15 -1363 (|#2| (-583 |#2|)))) (-494) (-361 |#1|)) (T -131))
-((-1363 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-494)))) (-1362 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-494)))) (-1361 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-494)))) (-1360 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-494)))) (-1359 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-494)))) (-1358 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-494)))) (-1357 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))) (-3938 (*1 *2 *2 *3) (-12 (-5 *3 (-1003 *2)) (-4 *2 (-361 *4)) (-4 *4 (-494)) (-5 *1 (-131 *4 *2)))) (-3938 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *1 (-131 *4 *2)) (-4 *2 (-361 *4)))) (-1369 (*1 *2 *2 *3) (-12 (-5 *3 (-1003 *2)) (-4 *2 (-361 *4)) (-4 *4 (-494)) (-5 *1 (-131 *4 *2)))) (-1369 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *1 (-131 *4 *2)) (-4 *2 (-361 *4)))) (-1370 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *1 (-131 *4 *2)) (-4 *2 (-361 *4)))) (-1370 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))) (-1364 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))) (-1366 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))) (-3097 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))) (-3589 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-494)) (-5 *1 (-131 *3 *4)) (-4 *4 (-361 *3)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5)) (-4 *5 (-361 *4)))))
-((-1368 ((|#1| |#1| |#1|) 66 T ELT)) (-1367 ((|#1| |#1| |#1|) 63 T ELT)) (-1366 ((|#1| |#1| |#1|) 57 T ELT)) (-2886 ((|#1| |#1|) 43 T ELT)) (-1365 ((|#1| |#1| (-583 |#1|)) 55 T ELT)) (-1364 ((|#1| |#1|) 47 T ELT)) (-3097 ((|#1| |#1| |#1|) 51 T ELT)))
-(((-132 |#1|) (-10 -7 (-15 -3097 (|#1| |#1| |#1|)) (-15 -1364 (|#1| |#1|)) (-15 -1365 (|#1| |#1| (-583 |#1|))) (-15 -2886 (|#1| |#1|)) (-15 -1366 (|#1| |#1| |#1|)) (-15 -1367 (|#1| |#1| |#1|)) (-15 -1368 (|#1| |#1| |#1|))) (-482)) (T -132))
-((-1368 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482)))) (-1367 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482)))) (-1366 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482)))) (-2886 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482)))) (-1365 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-482)) (-5 *1 (-132 *2)))) (-1364 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482)))) (-3097 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482)))))
-((-1369 (($ $ (-1088)) 12 T ELT) (($ $ (-1003 $)) 11 T ELT)) (-3938 (($ $ (-1088)) 10 T ELT) (($ $ (-1003 $)) 9 T ELT)) (-1366 (($ $ $) 8 T ELT)) (-1370 (($ $) 14 T ELT) (($ $ (-1088)) 13 T ELT)) (-1364 (($ $) 7 T ELT)) (-3097 (($ $ $) 6 T ELT)))
+(-13 (-962))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-484)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
+((-1348 (((-2 (|:| -2399 (-695)) (|:| -3950 (-347 |#2|)) (|:| |radicand| |#2|)) (-347 |#2|) (-695)) 76 T ELT)) (-1347 (((-3 (-2 (|:| |radicand| (-347 |#2|)) (|:| |deg| (-695))) "failed") |#3|) 56 T ELT)) (-1346 (((-2 (|:| -3950 (-347 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-1349 ((|#1| |#3| |#3|) 44 T ELT)) (-3764 ((|#3| |#3| (-347 |#2|) (-347 |#2|)) 20 T ELT)) (-1350 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-347 |#2|)) (|:| |c2| (-347 |#2|)) (|:| |deg| (-695))) |#3| |#3|) 53 T ELT)))
+(((-121 |#1| |#2| |#3|) (-10 -7 (-15 -1346 ((-2 (|:| -3950 (-347 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1347 ((-3 (-2 (|:| |radicand| (-347 |#2|)) (|:| |deg| (-695))) "failed") |#3|)) (-15 -1348 ((-2 (|:| -2399 (-695)) (|:| -3950 (-347 |#2|)) (|:| |radicand| |#2|)) (-347 |#2|) (-695))) (-15 -1349 (|#1| |#3| |#3|)) (-15 -3764 (|#3| |#3| (-347 |#2|) (-347 |#2|))) (-15 -1350 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-347 |#2|)) (|:| |c2| (-347 |#2|)) (|:| |deg| (-695))) |#3| |#3|))) (-1133) (-1154 |#1|) (-1154 (-347 |#2|))) (T -121))
+((-1350 (*1 *2 *3 *3) (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-347 *5)) (|:| |c2| (-347 *5)) (|:| |deg| (-695)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1154 (-347 *5))))) (-3764 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-347 *5)) (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1154 *3)))) (-1349 (*1 *2 *3 *3) (-12 (-4 *4 (-1154 *2)) (-4 *2 (-1133)) (-5 *1 (-121 *2 *4 *3)) (-4 *3 (-1154 (-347 *4))))) (-1348 (*1 *2 *3 *4) (-12 (-5 *3 (-347 *6)) (-4 *5 (-1133)) (-4 *6 (-1154 *5)) (-5 *2 (-2 (|:| -2399 (-695)) (|:| -3950 *3) (|:| |radicand| *6))) (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-695)) (-4 *7 (-1154 *3)))) (-1347 (*1 *2 *3) (|partial| -12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-5 *2 (-2 (|:| |radicand| (-347 *5)) (|:| |deg| (-695)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1154 (-347 *5))))) (-1346 (*1 *2 *3) (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-5 *2 (-2 (|:| -3950 (-347 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1154 (-347 *5))))))
+((-2702 (((-3 (-584 (-1084 |#2|)) "failed") (-584 (-1084 |#2|)) (-1084 |#2|)) 35 T ELT)))
+(((-122 |#1| |#2|) (-10 -7 (-15 -2702 ((-3 (-584 (-1084 |#2|)) "failed") (-584 (-1084 |#2|)) (-1084 |#2|)))) (-483) (-139 |#1|)) (T -122))
+((-2702 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1084 *5))) (-5 *3 (-1084 *5)) (-4 *5 (-139 *4)) (-4 *4 (-483)) (-5 *1 (-122 *4 *5)))))
+((-3706 (($ (-1 (-85) |#2|) $) 37 T ELT)) (-1351 (($ $) 44 T ELT)) (-3402 (($ (-1 (-85) |#2|) $) 35 T ELT) (($ |#2| $) 40 T ELT)) (-3838 ((|#2| (-1 |#2| |#2| |#2|) $) 30 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42 T ELT)) (-1352 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 27 T ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 24 T ELT)) (-1944 (((-695) (-1 (-85) |#2|) $) 18 T ELT) (((-695) |#2| $) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3953 (((-695) $) 12 T ELT)))
+(((-123 |#1| |#2|) (-10 -7 (-15 -1351 (|#1| |#1|)) (-15 -3402 (|#1| |#2| |#1|)) (-15 -3838 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3706 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3402 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3838 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3838 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1352 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -1944 ((-695) |#2| |#1|)) (-15 -1944 ((-695) (-1 (-85) |#2|) |#1|)) (-15 -1945 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1946 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3953 ((-695) |#1|))) (-124 |#2|) (-1128)) (T -123))
+NIL
+((-2566 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3706 (($ (-1 (-85) |#1|) $) 48 (|has| $ (-6 -3991)) ELT)) (-3720 (($) 7 T CONST)) (-1351 (($ $) 45 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3402 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3991)) ELT) (($ |#1| $) 46 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3838 ((|#1| (-1 |#1| |#1| |#1|) $) 51 (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 47 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-2887 (((-584 |#1|) $) 30 (|has| $ (-6 -3991)) ELT)) (-2606 (((-584 |#1|) $) 29 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3239 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3240 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 52 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3396 (($ $) 10 T ELT)) (-3968 (((-473) $) 44 (|has| |#1| (-554 (-473))) ELT)) (-3526 (($ (-584 |#1|)) 53 T ELT)) (-3942 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-124 |#1|) (-113) (-1128)) (T -124))
+((-3526 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-4 *1 (-124 *3)))) (-1352 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-124 *2)) (-4 *2 (-1128)))) (-3838 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3991)) (-4 *1 (-124 *2)) (-4 *2 (-1128)))) (-3838 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3991)) (-4 *1 (-124 *2)) (-4 *2 (-1128)))) (-3402 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3991)) (-4 *1 (-124 *3)) (-4 *3 (-1128)))) (-3706 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3991)) (-4 *1 (-124 *3)) (-4 *3 (-1128)))) (-3838 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1013)) (|has| *1 (-6 -3991)) (-4 *1 (-124 *2)) (-4 *2 (-1128)))) (-3402 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -3991)) (-4 *1 (-124 *2)) (-4 *2 (-1128)) (-4 *2 (-1013)))) (-1351 (*1 *1 *1) (-12 (|has| *1 (-6 -3991)) (-4 *1 (-124 *2)) (-4 *2 (-1128)) (-4 *2 (-1013)))))
+(-13 (-426 |t#1|) (-10 -8 (-15 -3526 ($ (-584 |t#1|))) (-15 -1352 ((-3 |t#1| "failed") (-1 (-85) |t#1|) $)) (IF (|has| $ (-6 -3991)) (PROGN (-15 -3838 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3838 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3402 ($ (-1 (-85) |t#1|) $)) (-15 -3706 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -3838 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3402 ($ |t#1| $)) (-15 -1351 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-554 (-473))) (-6 (-554 (-473))) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3463 (((-3 $ #1#) $) 113 T ELT)) (-2408 (((-85) $) NIL T ELT)) (-2891 (($ |#2| (-584 (-831))) 72 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1353 (($ (-831)) 58 T ELT)) (-3907 (((-107)) 23 T ELT)) (-3942 (((-773) $) 88 T ELT) (($ (-484)) 54 T ELT) (($ |#2|) 55 T ELT)) (-3673 ((|#2| $ (-584 (-831))) 75 T ELT)) (-3123 (((-695)) 20 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) 48 T CONST)) (-2664 (($) 52 T CONST)) (-3054 (((-85) $ $) 34 T ELT)) (-3945 (($ $ |#2|) NIL T ELT)) (-3833 (($ $) 43 T ELT) (($ $ $) 41 T ELT)) (-3835 (($ $ $) 39 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 45 T ELT) (($ $ $) 64 T ELT) (($ |#2| $) 47 T ELT) (($ $ |#2|) NIL T ELT)))
+(((-125 |#1| |#2| |#3|) (-13 (-962) (-38 |#2|) (-1186 |#2|) (-10 -8 (-15 -1353 ($ (-831))) (-15 -2891 ($ |#2| (-584 (-831)))) (-15 -3673 (|#2| $ (-584 (-831)))) (-15 -3463 ((-3 $ "failed") $)))) (-831) (-311) (-907 |#1| |#2|)) (T -125))
+((-3463 (*1 *1 *1) (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-831)) (-4 *3 (-311)) (-14 *4 (-907 *2 *3)))) (-1353 (*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-311)) (-14 *5 (-907 *3 *4)))) (-2891 (*1 *1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-831)) (-4 *2 (-311)) (-14 *5 (-907 *4 *2)))) (-3673 (*1 *2 *1 *3) (-12 (-5 *3 (-584 (-831))) (-4 *2 (-311)) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-831)) (-14 *5 (-907 *4 *2)))))
+((-1355 (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-584 (-584 (-855 (-179)))) (-179) (-179) (-179) (-179)) 59 T ELT)) (-1354 (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-837) (-347 (-484)) (-347 (-484))) 95 T ELT) (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-837)) 96 T ELT)) (-1508 (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-584 (-584 (-855 (-179))))) 99 T ELT) (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-584 (-855 (-179)))) 98 T ELT) (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-837) (-347 (-484)) (-347 (-484))) 89 T ELT) (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-837)) 90 T ELT)))
+(((-126) (-10 -7 (-15 -1508 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-837))) (-15 -1508 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-837) (-347 (-484)) (-347 (-484)))) (-15 -1354 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-837))) (-15 -1354 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-837) (-347 (-484)) (-347 (-484)))) (-15 -1355 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-584 (-584 (-855 (-179)))) (-179) (-179) (-179) (-179))) (-15 -1508 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-584 (-855 (-179))))) (-15 -1508 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-584 (-584 (-855 (-179)))))))) (T -126))
+((-1508 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)) (-5 *3 (-584 (-584 (-855 (-179))))))) (-1508 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)) (-5 *3 (-584 (-855 (-179)))))) (-1355 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-179)) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 *4)))) (|:| |xValues| (-1001 *4)) (|:| |yValues| (-1001 *4)))) (-5 *1 (-126)) (-5 *3 (-584 (-584 (-855 *4)))))) (-1354 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-837)) (-5 *4 (-347 (-484))) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)))) (-1354 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)))) (-1508 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-837)) (-5 *4 (-347 (-484))) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)))) (-1508 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3178 (((-584 (-1048)) $) 20 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 27 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3230 (((-1048) $) 10 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-127) (-13 (-995) (-10 -8 (-15 -3178 ((-584 (-1048)) $)) (-15 -3230 ((-1048) $))))) (T -127))
+((-3178 (*1 *2 *1) (-12 (-5 *2 (-584 (-1048))) (-5 *1 (-127)))) (-3230 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-127)))))
+((-1408 (((-584 (-142 |#2|)) |#1| |#2|) 50 T ELT)))
+(((-128 |#1| |#2|) (-10 -7 (-15 -1408 ((-584 (-142 |#2|)) |#1| |#2|))) (-1154 (-142 (-484))) (-13 (-311) (-756))) (T -128))
+((-1408 (*1 *2 *3 *4) (-12 (-5 *2 (-584 (-142 *4))) (-5 *1 (-128 *3 *4)) (-4 *3 (-1154 (-142 (-484)))) (-4 *4 (-13 (-311) (-756))))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3524 (((-1129) $) 13 T ELT)) (-3525 (((-1048) $) 10 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 20 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-129) (-13 (-995) (-10 -8 (-15 -3525 ((-1048) $)) (-15 -3524 ((-1129) $))))) (T -129))
+((-3525 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-129)))) (-3524 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-129)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-1357 (($) 38 T ELT)) (-3096 (($) 37 T ELT)) (-1356 (((-831)) 43 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2954 (((-484) $) 41 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3095 (($) 39 T ELT)) (-2953 (($ (-484)) 44 T ELT)) (-3942 (((-773) $) 50 T ELT)) (-3094 (($) 40 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 35 T ELT)) (-3835 (($ $ $) 32 T ELT)) (* (($ (-831) $) 42 T ELT) (($ (-179) $) 11 T ELT)))
+(((-130) (-13 (-25) (-10 -8 (-15 * ($ (-831) $)) (-15 * ($ (-179) $)) (-15 -3835 ($ $ $)) (-15 -3096 ($)) (-15 -1357 ($)) (-15 -3095 ($)) (-15 -3094 ($)) (-15 -2954 ((-484) $)) (-15 -1356 ((-831))) (-15 -2953 ($ (-484)))))) (T -130))
+((-3835 (*1 *1 *1 *1) (-5 *1 (-130))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-130)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-130)))) (-3096 (*1 *1) (-5 *1 (-130))) (-1357 (*1 *1) (-5 *1 (-130))) (-3095 (*1 *1) (-5 *1 (-130))) (-3094 (*1 *1) (-5 *1 (-130))) (-2954 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-130)))) (-1356 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-130)))) (-2953 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-130)))))
+((-1370 ((|#2| |#2| (-1004 |#2|)) 98 T ELT) ((|#2| |#2| (-1089)) 75 T ELT)) (-3940 ((|#2| |#2| (-1004 |#2|)) 97 T ELT) ((|#2| |#2| (-1089)) 74 T ELT)) (-1367 ((|#2| |#2| |#2|) 25 T ELT)) (-3591 (((-86) (-86)) 111 T ELT)) (-1364 ((|#2| (-584 |#2|)) 130 T ELT)) (-1361 ((|#2| (-584 |#2|)) 150 T ELT)) (-1360 ((|#2| (-584 |#2|)) 138 T ELT)) (-1358 ((|#2| |#2|) 136 T ELT)) (-1362 ((|#2| (-584 |#2|)) 124 T ELT)) (-1363 ((|#2| (-584 |#2|)) 125 T ELT)) (-1359 ((|#2| (-584 |#2|)) 148 T ELT)) (-1371 ((|#2| |#2| (-1089)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-1365 ((|#2| |#2|) 21 T ELT)) (-3099 ((|#2| |#2| |#2|) 24 T ELT)) (-2252 (((-85) (-86)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT)))
+(((-131 |#1| |#2|) (-10 -7 (-15 -2252 ((-85) (-86))) (-15 -3591 ((-86) (-86))) (-15 ** (|#2| |#2| |#2|)) (-15 -3099 (|#2| |#2| |#2|)) (-15 -1367 (|#2| |#2| |#2|)) (-15 -1365 (|#2| |#2|)) (-15 -1371 (|#2| |#2|)) (-15 -1371 (|#2| |#2| (-1089))) (-15 -1370 (|#2| |#2| (-1089))) (-15 -1370 (|#2| |#2| (-1004 |#2|))) (-15 -3940 (|#2| |#2| (-1089))) (-15 -3940 (|#2| |#2| (-1004 |#2|))) (-15 -1358 (|#2| |#2|)) (-15 -1359 (|#2| (-584 |#2|))) (-15 -1360 (|#2| (-584 |#2|))) (-15 -1361 (|#2| (-584 |#2|))) (-15 -1362 (|#2| (-584 |#2|))) (-15 -1363 (|#2| (-584 |#2|))) (-15 -1364 (|#2| (-584 |#2|)))) (-495) (-361 |#1|)) (T -131))
+((-1364 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1363 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1362 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1361 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1360 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1359 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1358 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))) (-3940 (*1 *2 *2 *3) (-12 (-5 *3 (-1004 *2)) (-4 *2 (-361 *4)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)))) (-3940 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-361 *4)))) (-1370 (*1 *2 *2 *3) (-12 (-5 *3 (-1004 *2)) (-4 *2 (-361 *4)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)))) (-1370 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-361 *4)))) (-1371 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-361 *4)))) (-1371 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))) (-1365 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))) (-1367 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))) (-3099 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))) (-3591 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-131 *3 *4)) (-4 *4 (-361 *3)))) (-2252 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5)) (-4 *5 (-361 *4)))))
+((-1369 ((|#1| |#1| |#1|) 66 T ELT)) (-1368 ((|#1| |#1| |#1|) 63 T ELT)) (-1367 ((|#1| |#1| |#1|) 57 T ELT)) (-2888 ((|#1| |#1|) 43 T ELT)) (-1366 ((|#1| |#1| (-584 |#1|)) 55 T ELT)) (-1365 ((|#1| |#1|) 47 T ELT)) (-3099 ((|#1| |#1| |#1|) 51 T ELT)))
+(((-132 |#1|) (-10 -7 (-15 -3099 (|#1| |#1| |#1|)) (-15 -1365 (|#1| |#1|)) (-15 -1366 (|#1| |#1| (-584 |#1|))) (-15 -2888 (|#1| |#1|)) (-15 -1367 (|#1| |#1| |#1|)) (-15 -1368 (|#1| |#1| |#1|)) (-15 -1369 (|#1| |#1| |#1|))) (-483)) (T -132))
+((-1369 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) (-1368 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) (-1367 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) (-2888 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) (-1366 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-483)) (-5 *1 (-132 *2)))) (-1365 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) (-3099 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))))
+((-1370 (($ $ (-1089)) 12 T ELT) (($ $ (-1004 $)) 11 T ELT)) (-3940 (($ $ (-1089)) 10 T ELT) (($ $ (-1004 $)) 9 T ELT)) (-1367 (($ $ $) 8 T ELT)) (-1371 (($ $) 14 T ELT) (($ $ (-1089)) 13 T ELT)) (-1365 (($ $) 7 T ELT)) (-3099 (($ $ $) 6 T ELT)))
(((-133) (-113)) (T -133))
-((-1370 (*1 *1 *1) (-4 *1 (-133))) (-1370 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1088)))) (-1369 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1088)))) (-1369 (*1 *1 *1 *2) (-12 (-5 *2 (-1003 *1)) (-4 *1 (-133)))) (-3938 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1088)))) (-3938 (*1 *1 *1 *2) (-12 (-5 *2 (-1003 *1)) (-4 *1 (-133)))))
-(-13 (-116) (-10 -8 (-15 -1370 ($ $)) (-15 -1370 ($ $ (-1088))) (-15 -1369 ($ $ (-1088))) (-15 -1369 ($ $ (-1003 $))) (-15 -3938 ($ $ (-1088))) (-15 -3938 ($ $ (-1003 $)))))
+((-1371 (*1 *1 *1) (-4 *1 (-133))) (-1371 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1089)))) (-1370 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1089)))) (-1370 (*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-133)))) (-3940 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1089)))) (-3940 (*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-133)))))
+(-13 (-116) (-10 -8 (-15 -1371 ($ $)) (-15 -1371 ($ $ (-1089))) (-15 -1370 ($ $ (-1089))) (-15 -1370 ($ $ (-1004 $))) (-15 -3940 ($ $ (-1089))) (-15 -3940 ($ $ (-1004 $)))))
(((-116) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-1371 (($ (-483)) 15 T ELT) (($ $ $) 16 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 19 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 11 T ELT)))
-(((-134) (-13 (-1012) (-10 -8 (-15 -1371 ($ (-483))) (-15 -1371 ($ $ $))))) (T -134))
-((-1371 (*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-134)))) (-1371 (*1 *1 *1 *1) (-5 *1 (-134))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 16 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3228 (((-583 (-1047)) $) 10 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-135) (-13 (-994) (-10 -8 (-15 -3228 ((-583 (-1047)) $))))) (T -135))
-((-3228 (*1 *2 *1) (-12 (-5 *2 (-583 (-1047))) (-5 *1 (-135)))))
-((-3589 (((-86) (-1088)) 103 T ELT)))
-(((-136) (-10 -7 (-15 -3589 ((-86) (-1088))))) (T -136))
-((-3589 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-86)) (-5 *1 (-136)))))
-((-1592 ((|#3| |#3|) 19 T ELT)))
-(((-137 |#1| |#2| |#3|) (-10 -7 (-15 -1592 (|#3| |#3|))) (-961) (-1153 |#1|) (-1153 |#2|)) (T -137))
-((-1592 (*1 *2 *2) (-12 (-4 *3 (-961)) (-4 *4 (-1153 *3)) (-5 *1 (-137 *3 *4 *2)) (-4 *2 (-1153 *4)))))
-((-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 222 T ELT)) (-3324 ((|#2| $) 102 T ELT)) (-3486 (($ $) 255 T ELT)) (-3633 (($ $) 249 T ELT)) (-2700 (((-3 (-583 (-1083 $)) #1="failed") (-583 (-1083 $)) (-1083 $)) 47 T ELT)) (-3484 (($ $) 253 T ELT)) (-3632 (($ $) 247 T ELT)) (-3152 (((-3 (-483) #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 146 T ELT)) (-3151 (((-483) $) NIL T ELT) (((-347 (-483)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-2560 (($ $ $) 228 T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL T ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) 160 T ELT) (((-630 |#2|) (-630 $)) 154 T ELT)) (-3836 (($ (-1083 |#2|)) 125 T ELT) (((-3 $ #1#) (-347 (-1083 |#2|))) NIL T ELT)) (-3461 (((-3 $ #1#) $) 213 T ELT)) (-3020 (((-3 (-347 (-483)) #1#) $) 203 T ELT)) (-3019 (((-85) $) 198 T ELT)) (-3018 (((-347 (-483)) $) 201 T ELT)) (-3104 (((-830)) 96 T ELT)) (-2559 (($ $ $) 230 T ELT)) (-1372 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 267 T ELT)) (-3621 (($) 244 T ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) 192 T ELT) (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 197 T ELT)) (-3127 ((|#2| $) 100 T ELT)) (-2010 (((-1083 |#2|) $) 127 T ELT)) (-3952 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-3936 (($ $) 246 T ELT)) (-3075 (((-1083 |#2|) $) 126 T ELT)) (-2480 (($ $) 206 T ELT)) (-1374 (($) 103 T ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) 95 T ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) 64 T ELT)) (-3460 (((-3 $ #1#) $ |#2|) 208 T ELT) (((-3 $ #1#) $ $) 211 T ELT)) (-3937 (($ $) 245 T ELT)) (-1604 (((-694) $) 225 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 234 T ELT)) (-3751 ((|#2| (-1177 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-3752 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088))) NIL T ELT) (($ $ (-1088)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-3180 (((-1083 |#2|)) 120 T ELT)) (-3485 (($ $) 254 T ELT)) (-3628 (($ $) 248 T ELT)) (-3219 (((-1177 |#2|) $ (-1177 $)) 136 T ELT) (((-630 |#2|) (-1177 $) (-1177 $)) NIL T ELT) (((-1177 |#2|) $) 116 T ELT) (((-630 |#2|) (-1177 $)) NIL T ELT)) (-3966 (((-1177 |#2|) $) NIL T ELT) (($ (-1177 |#2|)) NIL T ELT) (((-1083 |#2|) $) NIL T ELT) (($ (-1083 |#2|)) NIL T ELT) (((-800 (-483)) $) 183 T ELT) (((-800 (-327)) $) 187 T ELT) (((-142 (-327)) $) 172 T ELT) (((-142 (-179)) $) 167 T ELT) (((-472) $) 179 T ELT)) (-3005 (($ $) 104 T ELT)) (-3940 (((-772) $) 143 T ELT) (($ (-483)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ $) NIL T ELT)) (-2445 (((-1083 |#2|) $) 32 T ELT)) (-3121 (((-694)) 106 T CONST)) (-1262 (((-85) $ $) 13 T ELT)) (-3492 (($ $) 258 T ELT)) (-3480 (($ $) 252 T ELT)) (-3490 (($ $) 256 T ELT)) (-3478 (($ $) 250 T ELT)) (-2232 ((|#2| $) 241 T ELT)) (-3491 (($ $) 257 T ELT)) (-3479 (($ $) 251 T ELT)) (-3377 (($ $) 162 T ELT)) (-3052 (((-85) $ $) 110 T ELT)) (-3831 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 111 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-347 (-483))) 274 T ELT) (($ $ $) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT)))
-(((-138 |#1| |#2|) (-10 -7 (-15 -3752 (|#1| |#1|)) (-15 -3752 (|#1| |#1| (-694))) (-15 -3752 (|#1| |#1| (-1088))) (-15 -3752 (|#1| |#1| (-583 (-1088)))) (-15 -3752 (|#1| |#1| (-1088) (-694))) (-15 -3752 (|#1| |#1| (-583 (-1088)) (-583 (-694)))) (-15 -3940 (|#1| |#1|)) (-15 -3460 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2060 ((-2 (|:| -1769 |#1|) (|:| -3976 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1604 ((-694) |#1|)) (-15 -2875 ((-2 (|:| -1970 |#1|) (|:| -2898 |#1|)) |#1| |#1|)) (-15 -2559 (|#1| |#1| |#1|)) (-15 -2560 (|#1| |#1| |#1|)) (-15 -2480 (|#1| |#1|)) (-15 ** (|#1| |#1| (-483))) (-15 * (|#1| |#1| (-347 (-483)))) (-15 * (|#1| (-347 (-483)) |#1|)) (-15 -3940 (|#1| (-347 (-483)))) (-15 -3966 ((-472) |#1|)) (-15 -3966 ((-142 (-179)) |#1|)) (-15 -3966 ((-142 (-327)) |#1|)) (-15 -3633 (|#1| |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -3628 (|#1| |#1|)) (-15 -3479 (|#1| |#1|)) (-15 -3478 (|#1| |#1|)) (-15 -3480 (|#1| |#1|)) (-15 -3485 (|#1| |#1|)) (-15 -3484 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3936 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3621 (|#1|)) (-15 ** (|#1| |#1| (-347 (-483)))) (-15 -2702 ((-345 (-1083 |#1|)) (-1083 |#1|))) (-15 -2701 ((-345 (-1083 |#1|)) (-1083 |#1|))) (-15 -2700 ((-3 (-583 (-1083 |#1|)) #1#) (-583 (-1083 |#1|)) (-1083 |#1|))) (-15 -3020 ((-3 (-347 (-483)) #1#) |#1|)) (-15 -3018 ((-347 (-483)) |#1|)) (-15 -3019 ((-85) |#1|)) (-15 -1372 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2232 (|#2| |#1|)) (-15 -3377 (|#1| |#1|)) (-15 -3460 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3005 (|#1| |#1|)) (-15 -1374 (|#1|)) (-15 -3966 ((-800 (-327)) |#1|)) (-15 -3966 ((-800 (-483)) |#1|)) (-15 -2792 ((-798 (-327) |#1|) |#1| (-800 (-327)) (-798 (-327) |#1|))) (-15 -2792 ((-798 (-483) |#1|) |#1| (-800 (-483)) (-798 (-483) |#1|))) (-15 -3952 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3752 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3752 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3836 ((-3 |#1| #1#) (-347 (-1083 |#2|)))) (-15 -3075 ((-1083 |#2|) |#1|)) (-15 -3966 (|#1| (-1083 |#2|))) (-15 -3836 (|#1| (-1083 |#2|))) (-15 -3180 ((-1083 |#2|))) (-15 -2275 ((-630 |#2|) (-630 |#1|))) (-15 -2275 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 |#1|) (-1177 |#1|))) (-15 -2275 ((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 |#1|) (-1177 |#1|))) (-15 -2275 ((-630 (-483)) (-630 |#1|))) (-15 -3152 ((-3 |#2| #1#) |#1|)) (-15 -3151 (|#2| |#1|)) (-15 -3151 ((-347 (-483)) |#1|)) (-15 -3152 ((-3 (-347 (-483)) #1#) |#1|)) (-15 -3151 ((-483) |#1|)) (-15 -3152 ((-3 (-483) #1#) |#1|)) (-15 -3966 ((-1083 |#2|) |#1|)) (-15 -3751 (|#2|)) (-15 -3966 (|#1| (-1177 |#2|))) (-15 -3966 ((-1177 |#2|) |#1|)) (-15 -3219 ((-630 |#2|) (-1177 |#1|))) (-15 -3219 ((-1177 |#2|) |#1|)) (-15 -2010 ((-1083 |#2|) |#1|)) (-15 -2445 ((-1083 |#2|) |#1|)) (-15 -3751 (|#2| (-1177 |#1|))) (-15 -3219 ((-630 |#2|) (-1177 |#1|) (-1177 |#1|))) (-15 -3219 ((-1177 |#2|) |#1| (-1177 |#1|))) (-15 -3127 (|#2| |#1|)) (-15 -3324 (|#2| |#1|)) (-15 -3104 ((-830))) (-15 -3940 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3121 ((-694)) -3946) (-15 -3940 (|#1| (-483))) (-15 -3461 ((-3 |#1| #1#) |#1|)) (-15 ** (|#1| |#1| (-694))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-830))) (-15 -3831 (|#1| |#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 * (|#1| (-483) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|)) (-15 -3833 (|#1| |#1| |#1|)) (-15 -3940 ((-772) |#1|)) (-15 -1262 ((-85) |#1| |#1|)) (-15 -3052 ((-85) |#1| |#1|))) (-139 |#2|) (-146)) (T -138))
-((-3121 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3104 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-830)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3751 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-138 *3 *2)) (-4 *3 (-139 *2)))) (-3180 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1083 *4)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 112 (OR (|has| |#1| (-494)) (-12 (|has| |#1| (-257)) (|has| |#1| (-821)))) ELT)) (-2059 (($ $) 113 (OR (|has| |#1| (-494)) (-12 (|has| |#1| (-257)) (|has| |#1| (-821)))) ELT)) (-2057 (((-85) $) 115 (OR (|has| |#1| (-494)) (-12 (|has| |#1| (-257)) (|has| |#1| (-821)))) ELT)) (-1779 (((-630 |#1|) (-1177 $)) 59 T ELT) (((-630 |#1|)) 75 T ELT)) (-3324 ((|#1| $) 65 T ELT)) (-3486 (($ $) 248 (|has| |#1| (-1113)) ELT)) (-3633 (($ $) 231 (|has| |#1| (-1113)) ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) 165 (|has| |#1| (-298)) ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) 262 (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) ELT)) (-3769 (($ $) 132 (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) (|has| |#1| (-311))) ELT)) (-3965 (((-345 $) $) 133 (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) (|has| |#1| (-311))) ELT)) (-3033 (($ $) 261 (-12 (|has| |#1| (-915)) (|has| |#1| (-1113))) ELT)) (-2700 (((-3 (-583 (-1083 $)) "failed") (-583 (-1083 $)) (-1083 $)) 265 (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) ELT)) (-1605 (((-85) $ $) 123 (|has| |#1| (-257)) ELT)) (-3131 (((-694)) 106 (|has| |#1| (-317)) ELT)) (-3484 (($ $) 247 (|has| |#1| (-1113)) ELT)) (-3632 (($ $) 232 (|has| |#1| (-1113)) ELT)) (-3488 (($ $) 246 (|has| |#1| (-1113)) ELT)) (-3631 (($ $) 233 (|has| |#1| (-1113)) ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 (-483) #1="failed") $) 192 (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) 190 (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) 187 T ELT)) (-3151 (((-483) $) 191 (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) 189 (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) 188 T ELT)) (-1789 (($ (-1177 |#1|) (-1177 $)) 61 T ELT) (($ (-1177 |#1|)) 78 T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) 171 (|has| |#1| (-298)) ELT)) (-2560 (($ $ $) 127 (|has| |#1| (-257)) ELT)) (-1778 (((-630 |#1|) $ (-1177 $)) 66 T ELT) (((-630 |#1|) $) 73 T ELT)) (-2275 (((-630 (-483)) (-630 $)) 184 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 183 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) 182 T ELT) (((-630 |#1|) (-630 $)) 181 T ELT)) (-3836 (($ (-1083 |#1|)) 176 T ELT) (((-3 $ "failed") (-347 (-1083 |#1|))) 173 (|has| |#1| (-311)) ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3637 ((|#1| $) 273 T ELT)) (-3020 (((-3 (-347 (-483)) "failed") $) 266 (|has| |#1| (-482)) ELT)) (-3019 (((-85) $) 268 (|has| |#1| (-482)) ELT)) (-3018 (((-347 (-483)) $) 267 (|has| |#1| (-482)) ELT)) (-3104 (((-830)) 67 T ELT)) (-2990 (($) 109 (|has| |#1| (-317)) ELT)) (-2559 (($ $ $) 126 (|has| |#1| (-257)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 121 (|has| |#1| (-257)) ELT)) (-2829 (($) 167 (|has| |#1| (-298)) ELT)) (-1677 (((-85) $) 168 (|has| |#1| (-298)) ELT)) (-1761 (($ $ (-694)) 159 (|has| |#1| (-298)) ELT) (($ $) 158 (|has| |#1| (-298)) ELT)) (-3717 (((-85) $) 134 (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) (|has| |#1| (-311))) ELT)) (-1372 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 269 (-12 (|has| |#1| (-972)) (|has| |#1| (-1113))) ELT)) (-3621 (($) 258 (|has| |#1| (-1113)) ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) 281 (|has| |#1| (-796 (-483))) ELT) (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 280 (|has| |#1| (-796 (-327))) ELT)) (-3766 (((-830) $) 170 (|has| |#1| (-298)) ELT) (((-743 (-830)) $) 156 (|has| |#1| (-298)) ELT)) (-2406 (((-85) $) 42 T ELT)) (-3007 (($ $ (-483)) 260 (-12 (|has| |#1| (-915)) (|has| |#1| (-1113))) ELT)) (-3127 ((|#1| $) 64 T ELT)) (-3439 (((-632 $) $) 160 (|has| |#1| (-298)) ELT)) (-1602 (((-3 (-583 $) #2="failed") (-583 $) $) 130 (|has| |#1| (-257)) ELT)) (-2010 (((-1083 |#1|) $) 57 (|has| |#1| (-311)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 282 T ELT)) (-2006 (((-830) $) 108 (|has| |#1| (-317)) ELT)) (-3936 (($ $) 255 (|has| |#1| (-1113)) ELT)) (-3075 (((-1083 |#1|) $) 174 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) 186 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 185 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 180 T ELT) (((-630 |#1|) (-1177 $)) 179 T ELT)) (-1888 (($ (-583 $)) 119 (OR (|has| |#1| (-257)) (-12 (|has| |#1| (-257)) (|has| |#1| (-821)))) ELT) (($ $ $) 118 (OR (|has| |#1| (-257)) (-12 (|has| |#1| (-257)) (|has| |#1| (-821)))) ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 135 (|has| |#1| (-311)) ELT)) (-3440 (($) 161 (|has| |#1| (-298)) CONST)) (-2396 (($ (-830)) 107 (|has| |#1| (-317)) ELT)) (-1374 (($) 277 T ELT)) (-3638 ((|#1| $) 274 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2405 (($) 178 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 120 (OR (|has| |#1| (-257)) (-12 (|has| |#1| (-257)) (|has| |#1| (-821)))) ELT)) (-3139 (($ (-583 $)) 117 (OR (|has| |#1| (-257)) (-12 (|has| |#1| (-257)) (|has| |#1| (-821)))) ELT) (($ $ $) 116 (OR (|has| |#1| (-257)) (-12 (|has| |#1| (-257)) (|has| |#1| (-821)))) ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) 164 (|has| |#1| (-298)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) 264 (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) 263 (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) ELT)) (-3726 (((-345 $) $) 131 (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) (|has| |#1| (-311))) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 129 (|has| |#1| (-257)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 128 (|has| |#1| (-257)) ELT)) (-3460 (((-3 $ "failed") $ |#1|) 272 (|has| |#1| (-494)) ELT) (((-3 $ "failed") $ $) 111 (OR (|has| |#1| (-494)) (-12 (|has| |#1| (-257)) (|has| |#1| (-821)))) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 122 (|has| |#1| (-257)) ELT)) (-3937 (($ $) 256 (|has| |#1| (-1113)) ELT)) (-3762 (($ $ (-583 |#1|) (-583 |#1|)) 288 (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) 287 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) 286 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-248 |#1|))) 285 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-1088)) (-583 |#1|)) 284 (|has| |#1| (-452 (-1088) |#1|)) ELT) (($ $ (-1088) |#1|) 283 (|has| |#1| (-452 (-1088) |#1|)) ELT)) (-1604 (((-694) $) 124 (|has| |#1| (-257)) ELT)) (-3794 (($ $ |#1|) 289 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 125 (|has| |#1| (-257)) ELT)) (-3751 ((|#1| (-1177 $)) 60 T ELT) ((|#1|) 74 T ELT)) (-1762 (((-694) $) 169 (|has| |#1| (-298)) ELT) (((-3 (-694) "failed") $ $) 157 (|has| |#1| (-298)) ELT)) (-3752 (($ $ (-1 |#1| |#1|)) 143 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 142 T ELT) (($ $ (-583 (-1088)) (-583 (-694))) 148 (OR (-2558 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) (-2558 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-1088) (-694)) 147 (OR (-2558 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) (-2558 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-583 (-1088))) 146 (OR (-2558 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) (-2558 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-1088)) 144 (OR (-2558 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) (-2558 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-694)) 154 (OR (-2558 (|has| |#1| (-311)) (|has| |#1| (-189))) (-2558 (|has| |#1| (-311)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2558 (|has| |#1| (-189)) (|has| |#1| (-311)))) ELT) (($ $) 152 (OR (-2558 (|has| |#1| (-311)) (|has| |#1| (-189))) (-2558 (|has| |#1| (-311)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2558 (|has| |#1| (-189)) (|has| |#1| (-311)))) ELT)) (-2404 (((-630 |#1|) (-1177 $) (-1 |#1| |#1|)) 172 (|has| |#1| (-311)) ELT)) (-3180 (((-1083 |#1|)) 177 T ELT)) (-3489 (($ $) 245 (|has| |#1| (-1113)) ELT)) (-3630 (($ $) 234 (|has| |#1| (-1113)) ELT)) (-1671 (($) 166 (|has| |#1| (-298)) ELT)) (-3487 (($ $) 244 (|has| |#1| (-1113)) ELT)) (-3629 (($ $) 235 (|has| |#1| (-1113)) ELT)) (-3485 (($ $) 243 (|has| |#1| (-1113)) ELT)) (-3628 (($ $) 236 (|has| |#1| (-1113)) ELT)) (-3219 (((-1177 |#1|) $ (-1177 $)) 63 T ELT) (((-630 |#1|) (-1177 $) (-1177 $)) 62 T ELT) (((-1177 |#1|) $) 80 T ELT) (((-630 |#1|) (-1177 $)) 79 T ELT)) (-3966 (((-1177 |#1|) $) 77 T ELT) (($ (-1177 |#1|)) 76 T ELT) (((-1083 |#1|) $) 193 T ELT) (($ (-1083 |#1|)) 175 T ELT) (((-800 (-483)) $) 279 (|has| |#1| (-553 (-800 (-483)))) ELT) (((-800 (-327)) $) 278 (|has| |#1| (-553 (-800 (-327)))) ELT) (((-142 (-327)) $) 230 (|has| |#1| (-933)) ELT) (((-142 (-179)) $) 229 (|has| |#1| (-933)) ELT) (((-472) $) 228 (|has| |#1| (-553 (-472))) ELT)) (-3005 (($ $) 276 T ELT)) (-2699 (((-3 (-1177 $) "failed") (-630 $)) 163 (OR (-2558 (|has| $ (-118)) (-12 (|has| |#1| (-257)) (|has| |#1| (-821)))) (|has| |#1| (-298))) ELT)) (-1373 (($ |#1| |#1|) 275 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 50 T ELT) (($ (-347 (-483))) 105 (OR (|has| |#1| (-311)) (|has| |#1| (-950 (-347 (-483))))) ELT) (($ $) 110 (OR (|has| |#1| (-494)) (-12 (|has| |#1| (-257)) (|has| |#1| (-821)))) ELT)) (-2698 (($ $) 162 (|has| |#1| (-298)) ELT) (((-632 $) $) 56 (OR (-2558 (|has| $ (-118)) (-12 (|has| |#1| (-257)) (|has| |#1| (-821)))) (|has| |#1| (-118))) ELT)) (-2445 (((-1083 |#1|) $) 58 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2008 (((-1177 $)) 81 T ELT)) (-3492 (($ $) 254 (|has| |#1| (-1113)) ELT)) (-3480 (($ $) 242 (|has| |#1| (-1113)) ELT)) (-2058 (((-85) $ $) 114 (OR (|has| |#1| (-494)) (-12 (|has| |#1| (-257)) (|has| |#1| (-821)))) ELT)) (-3490 (($ $) 253 (|has| |#1| (-1113)) ELT)) (-3478 (($ $) 241 (|has| |#1| (-1113)) ELT)) (-3494 (($ $) 252 (|has| |#1| (-1113)) ELT)) (-3482 (($ $) 240 (|has| |#1| (-1113)) ELT)) (-2232 ((|#1| $) 270 (|has| |#1| (-1113)) ELT)) (-3495 (($ $) 251 (|has| |#1| (-1113)) ELT)) (-3483 (($ $) 239 (|has| |#1| (-1113)) ELT)) (-3493 (($ $) 250 (|has| |#1| (-1113)) ELT)) (-3481 (($ $) 238 (|has| |#1| (-1113)) ELT)) (-3491 (($ $) 249 (|has| |#1| (-1113)) ELT)) (-3479 (($ $) 237 (|has| |#1| (-1113)) ELT)) (-3377 (($ $) 271 (|has| |#1| (-972)) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-1 |#1| |#1|)) 141 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 140 T ELT) (($ $ (-583 (-1088)) (-583 (-694))) 151 (OR (-2558 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) (-2558 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-1088) (-694)) 150 (OR (-2558 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) (-2558 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-583 (-1088))) 149 (OR (-2558 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) (-2558 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-1088)) 145 (OR (-2558 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) (-2558 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-694)) 155 (OR (-2558 (|has| |#1| (-311)) (|has| |#1| (-189))) (-2558 (|has| |#1| (-311)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2558 (|has| |#1| (-189)) (|has| |#1| (-311)))) ELT) (($ $) 153 (OR (-2558 (|has| |#1| (-311)) (|has| |#1| (-189))) (-2558 (|has| |#1| (-311)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2558 (|has| |#1| (-189)) (|has| |#1| (-311)))) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ $) 139 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-347 (-483))) 259 (-12 (|has| |#1| (-915)) (|has| |#1| (-1113))) ELT) (($ $ $) 257 (|has| |#1| (-1113)) ELT) (($ $ (-483)) 136 (|has| |#1| (-311)) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT) (($ (-347 (-483)) $) 138 (|has| |#1| (-311)) ELT) (($ $ (-347 (-483))) 137 (|has| |#1| (-311)) ELT)))
+((-2566 (((-85) $ $) NIL T ELT)) (-1372 (($ (-484)) 15 T ELT) (($ $ $) 16 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 19 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 11 T ELT)))
+(((-134) (-13 (-1013) (-10 -8 (-15 -1372 ($ (-484))) (-15 -1372 ($ $ $))))) (T -134))
+((-1372 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-134)))) (-1372 (*1 *1 *1 *1) (-5 *1 (-134))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 16 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3230 (((-584 (-1048)) $) 10 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-135) (-13 (-995) (-10 -8 (-15 -3230 ((-584 (-1048)) $))))) (T -135))
+((-3230 (*1 *2 *1) (-12 (-5 *2 (-584 (-1048))) (-5 *1 (-135)))))
+((-3591 (((-86) (-1089)) 103 T ELT)))
+(((-136) (-10 -7 (-15 -3591 ((-86) (-1089))))) (T -136))
+((-3591 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-86)) (-5 *1 (-136)))))
+((-1593 ((|#3| |#3|) 19 T ELT)))
+(((-137 |#1| |#2| |#3|) (-10 -7 (-15 -1593 (|#3| |#3|))) (-962) (-1154 |#1|) (-1154 |#2|)) (T -137))
+((-1593 (*1 *2 *2) (-12 (-4 *3 (-962)) (-4 *4 (-1154 *3)) (-5 *1 (-137 *3 *4 *2)) (-4 *2 (-1154 *4)))))
+((-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 222 T ELT)) (-3326 ((|#2| $) 102 T ELT)) (-3488 (($ $) 255 T ELT)) (-3635 (($ $) 249 T ELT)) (-2702 (((-3 (-584 (-1084 $)) #1="failed") (-584 (-1084 $)) (-1084 $)) 47 T ELT)) (-3486 (($ $) 253 T ELT)) (-3634 (($ $) 247 T ELT)) (-3154 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 146 T ELT)) (-3153 (((-484) $) NIL T ELT) (((-347 (-484)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-2562 (($ $ $) 228 T ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) 160 T ELT) (((-631 |#2|) (-631 $)) 154 T ELT)) (-3838 (($ (-1084 |#2|)) 125 T ELT) (((-3 $ #1#) (-347 (-1084 |#2|))) NIL T ELT)) (-3463 (((-3 $ #1#) $) 213 T ELT)) (-3022 (((-3 (-347 (-484)) #1#) $) 203 T ELT)) (-3021 (((-85) $) 198 T ELT)) (-3020 (((-347 (-484)) $) 201 T ELT)) (-3106 (((-831)) 96 T ELT)) (-2561 (($ $ $) 230 T ELT)) (-1373 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 267 T ELT)) (-3623 (($) 244 T ELT)) (-2794 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) 192 T ELT) (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 197 T ELT)) (-3129 ((|#2| $) 100 T ELT)) (-2012 (((-1084 |#2|) $) 127 T ELT)) (-3954 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-3938 (($ $) 246 T ELT)) (-3077 (((-1084 |#2|) $) 126 T ELT)) (-2482 (($ $) 206 T ELT)) (-1375 (($) 103 T ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) 95 T ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) 64 T ELT)) (-3462 (((-3 $ #1#) $ |#2|) 208 T ELT) (((-3 $ #1#) $ $) 211 T ELT)) (-3939 (($ $) 245 T ELT)) (-1605 (((-695) $) 225 T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 234 T ELT)) (-3753 ((|#2| (-1178 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-3754 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-3182 (((-1084 |#2|)) 120 T ELT)) (-3487 (($ $) 254 T ELT)) (-3630 (($ $) 248 T ELT)) (-3221 (((-1178 |#2|) $ (-1178 $)) 136 T ELT) (((-631 |#2|) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 |#2|) $) 116 T ELT) (((-631 |#2|) (-1178 $)) NIL T ELT)) (-3968 (((-1178 |#2|) $) NIL T ELT) (($ (-1178 |#2|)) NIL T ELT) (((-1084 |#2|) $) NIL T ELT) (($ (-1084 |#2|)) NIL T ELT) (((-801 (-484)) $) 183 T ELT) (((-801 (-327)) $) 187 T ELT) (((-142 (-327)) $) 172 T ELT) (((-142 (-179)) $) 167 T ELT) (((-473) $) 179 T ELT)) (-3007 (($ $) 104 T ELT)) (-3942 (((-773) $) 143 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ $) NIL T ELT)) (-2447 (((-1084 |#2|) $) 32 T ELT)) (-3123 (((-695)) 106 T CONST)) (-1263 (((-85) $ $) 13 T ELT)) (-3494 (($ $) 258 T ELT)) (-3482 (($ $) 252 T ELT)) (-3492 (($ $) 256 T ELT)) (-3480 (($ $) 250 T ELT)) (-2234 ((|#2| $) 241 T ELT)) (-3493 (($ $) 257 T ELT)) (-3481 (($ $) 251 T ELT)) (-3379 (($ $) 162 T ELT)) (-3054 (((-85) $ $) 110 T ELT)) (-3833 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) 111 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-347 (-484))) 274 T ELT) (($ $ $) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT)))
+(((-138 |#1| |#2|) (-10 -7 (-15 -3754 (|#1| |#1|)) (-15 -3754 (|#1| |#1| (-695))) (-15 -3754 (|#1| |#1| (-1089))) (-15 -3754 (|#1| |#1| (-584 (-1089)))) (-15 -3754 (|#1| |#1| (-1089) (-695))) (-15 -3754 (|#1| |#1| (-584 (-1089)) (-584 (-695)))) (-15 -3942 (|#1| |#1|)) (-15 -3462 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2062 ((-2 (|:| -1770 |#1|) (|:| -3978 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1605 ((-695) |#1|)) (-15 -2877 ((-2 (|:| -1971 |#1|) (|:| -2900 |#1|)) |#1| |#1|)) (-15 -2561 (|#1| |#1| |#1|)) (-15 -2562 (|#1| |#1| |#1|)) (-15 -2482 (|#1| |#1|)) (-15 ** (|#1| |#1| (-484))) (-15 * (|#1| |#1| (-347 (-484)))) (-15 * (|#1| (-347 (-484)) |#1|)) (-15 -3942 (|#1| (-347 (-484)))) (-15 -3968 ((-473) |#1|)) (-15 -3968 ((-142 (-179)) |#1|)) (-15 -3968 ((-142 (-327)) |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -3634 (|#1| |#1|)) (-15 -3630 (|#1| |#1|)) (-15 -3481 (|#1| |#1|)) (-15 -3480 (|#1| |#1|)) (-15 -3482 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3938 (|#1| |#1|)) (-15 -3939 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3623 (|#1|)) (-15 ** (|#1| |#1| (-347 (-484)))) (-15 -2704 ((-345 (-1084 |#1|)) (-1084 |#1|))) (-15 -2703 ((-345 (-1084 |#1|)) (-1084 |#1|))) (-15 -2702 ((-3 (-584 (-1084 |#1|)) #1#) (-584 (-1084 |#1|)) (-1084 |#1|))) (-15 -3022 ((-3 (-347 (-484)) #1#) |#1|)) (-15 -3020 ((-347 (-484)) |#1|)) (-15 -3021 ((-85) |#1|)) (-15 -1373 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2234 (|#2| |#1|)) (-15 -3379 (|#1| |#1|)) (-15 -3462 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3007 (|#1| |#1|)) (-15 -1375 (|#1|)) (-15 -3968 ((-801 (-327)) |#1|)) (-15 -3968 ((-801 (-484)) |#1|)) (-15 -2794 ((-799 (-327) |#1|) |#1| (-801 (-327)) (-799 (-327) |#1|))) (-15 -2794 ((-799 (-484) |#1|) |#1| (-801 (-484)) (-799 (-484) |#1|))) (-15 -3954 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3754 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3754 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3838 ((-3 |#1| #1#) (-347 (-1084 |#2|)))) (-15 -3077 ((-1084 |#2|) |#1|)) (-15 -3968 (|#1| (-1084 |#2|))) (-15 -3838 (|#1| (-1084 |#2|))) (-15 -3182 ((-1084 |#2|))) (-15 -2277 ((-631 |#2|) (-631 |#1|))) (-15 -2277 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 |#1|) (-1178 |#1|))) (-15 -2277 ((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 |#1|) (-1178 |#1|))) (-15 -2277 ((-631 (-484)) (-631 |#1|))) (-15 -3154 ((-3 |#2| #1#) |#1|)) (-15 -3153 (|#2| |#1|)) (-15 -3153 ((-347 (-484)) |#1|)) (-15 -3154 ((-3 (-347 (-484)) #1#) |#1|)) (-15 -3153 ((-484) |#1|)) (-15 -3154 ((-3 (-484) #1#) |#1|)) (-15 -3968 ((-1084 |#2|) |#1|)) (-15 -3753 (|#2|)) (-15 -3968 (|#1| (-1178 |#2|))) (-15 -3968 ((-1178 |#2|) |#1|)) (-15 -3221 ((-631 |#2|) (-1178 |#1|))) (-15 -3221 ((-1178 |#2|) |#1|)) (-15 -2012 ((-1084 |#2|) |#1|)) (-15 -2447 ((-1084 |#2|) |#1|)) (-15 -3753 (|#2| (-1178 |#1|))) (-15 -3221 ((-631 |#2|) (-1178 |#1|) (-1178 |#1|))) (-15 -3221 ((-1178 |#2|) |#1| (-1178 |#1|))) (-15 -3129 (|#2| |#1|)) (-15 -3326 (|#2| |#1|)) (-15 -3106 ((-831))) (-15 -3942 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3123 ((-695)) -3948) (-15 -3942 (|#1| (-484))) (-15 -3463 ((-3 |#1| #1#) |#1|)) (-15 ** (|#1| |#1| (-695))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-831))) (-15 -3833 (|#1| |#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|)) (-15 -3835 (|#1| |#1| |#1|)) (-15 -3942 ((-773) |#1|)) (-15 -1263 ((-85) |#1| |#1|)) (-15 -3054 ((-85) |#1| |#1|))) (-139 |#2|) (-146)) (T -138))
+((-3123 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3106 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-831)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3753 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-138 *3 *2)) (-4 *3 (-139 *2)))) (-3182 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1084 *4)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 112 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-257)) (|has| |#1| (-822)))) ELT)) (-2061 (($ $) 113 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-257)) (|has| |#1| (-822)))) ELT)) (-2059 (((-85) $) 115 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-257)) (|has| |#1| (-822)))) ELT)) (-1780 (((-631 |#1|) (-1178 $)) 59 T ELT) (((-631 |#1|)) 75 T ELT)) (-3326 ((|#1| $) 65 T ELT)) (-3488 (($ $) 248 (|has| |#1| (-1114)) ELT)) (-3635 (($ $) 231 (|has| |#1| (-1114)) ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) 165 (|has| |#1| (-298)) ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) 262 (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) ELT)) (-3771 (($ $) 132 (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-311))) ELT)) (-3967 (((-345 $) $) 133 (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-311))) ELT)) (-3035 (($ $) 261 (-12 (|has| |#1| (-916)) (|has| |#1| (-1114))) ELT)) (-2702 (((-3 (-584 (-1084 $)) "failed") (-584 (-1084 $)) (-1084 $)) 265 (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) ELT)) (-1606 (((-85) $ $) 123 (|has| |#1| (-257)) ELT)) (-3133 (((-695)) 106 (|has| |#1| (-317)) ELT)) (-3486 (($ $) 247 (|has| |#1| (-1114)) ELT)) (-3634 (($ $) 232 (|has| |#1| (-1114)) ELT)) (-3490 (($ $) 246 (|has| |#1| (-1114)) ELT)) (-3633 (($ $) 233 (|has| |#1| (-1114)) ELT)) (-3720 (($) 22 T CONST)) (-3154 (((-3 (-484) #1="failed") $) 192 (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) 190 (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) 187 T ELT)) (-3153 (((-484) $) 191 (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) 189 (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) 188 T ELT)) (-1790 (($ (-1178 |#1|) (-1178 $)) 61 T ELT) (($ (-1178 |#1|)) 78 T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) 171 (|has| |#1| (-298)) ELT)) (-2562 (($ $ $) 127 (|has| |#1| (-257)) ELT)) (-1779 (((-631 |#1|) $ (-1178 $)) 66 T ELT) (((-631 |#1|) $) 73 T ELT)) (-2277 (((-631 (-484)) (-631 $)) 184 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 183 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) 182 T ELT) (((-631 |#1|) (-631 $)) 181 T ELT)) (-3838 (($ (-1084 |#1|)) 176 T ELT) (((-3 $ "failed") (-347 (-1084 |#1|))) 173 (|has| |#1| (-311)) ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-3639 ((|#1| $) 273 T ELT)) (-3022 (((-3 (-347 (-484)) "failed") $) 266 (|has| |#1| (-483)) ELT)) (-3021 (((-85) $) 268 (|has| |#1| (-483)) ELT)) (-3020 (((-347 (-484)) $) 267 (|has| |#1| (-483)) ELT)) (-3106 (((-831)) 67 T ELT)) (-2992 (($) 109 (|has| |#1| (-317)) ELT)) (-2561 (($ $ $) 126 (|has| |#1| (-257)) ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) 121 (|has| |#1| (-257)) ELT)) (-2831 (($) 167 (|has| |#1| (-298)) ELT)) (-1678 (((-85) $) 168 (|has| |#1| (-298)) ELT)) (-1762 (($ $ (-695)) 159 (|has| |#1| (-298)) ELT) (($ $) 158 (|has| |#1| (-298)) ELT)) (-3719 (((-85) $) 134 (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-311))) ELT)) (-1373 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 269 (-12 (|has| |#1| (-973)) (|has| |#1| (-1114))) ELT)) (-3623 (($) 258 (|has| |#1| (-1114)) ELT)) (-2794 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) 281 (|has| |#1| (-797 (-484))) ELT) (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 280 (|has| |#1| (-797 (-327))) ELT)) (-3768 (((-831) $) 170 (|has| |#1| (-298)) ELT) (((-744 (-831)) $) 156 (|has| |#1| (-298)) ELT)) (-2408 (((-85) $) 42 T ELT)) (-3009 (($ $ (-484)) 260 (-12 (|has| |#1| (-916)) (|has| |#1| (-1114))) ELT)) (-3129 ((|#1| $) 64 T ELT)) (-3441 (((-633 $) $) 160 (|has| |#1| (-298)) ELT)) (-1603 (((-3 (-584 $) #2="failed") (-584 $) $) 130 (|has| |#1| (-257)) ELT)) (-2012 (((-1084 |#1|) $) 57 (|has| |#1| (-311)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 282 T ELT)) (-2008 (((-831) $) 108 (|has| |#1| (-317)) ELT)) (-3938 (($ $) 255 (|has| |#1| (-1114)) ELT)) (-3077 (((-1084 |#1|) $) 174 T ELT)) (-2278 (((-631 (-484)) (-1178 $)) 186 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 185 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 180 T ELT) (((-631 |#1|) (-1178 $)) 179 T ELT)) (-1889 (($ (-584 $)) 119 (OR (|has| |#1| (-257)) (-12 (|has| |#1| (-257)) (|has| |#1| (-822)))) ELT) (($ $ $) 118 (OR (|has| |#1| (-257)) (-12 (|has| |#1| (-257)) (|has| |#1| (-822)))) ELT)) (-3239 (((-1072) $) 11 T ELT)) (-2482 (($ $) 135 (|has| |#1| (-311)) ELT)) (-3442 (($) 161 (|has| |#1| (-298)) CONST)) (-2398 (($ (-831)) 107 (|has| |#1| (-317)) ELT)) (-1375 (($) 277 T ELT)) (-3640 ((|#1| $) 274 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-2407 (($) 178 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 120 (OR (|has| |#1| (-257)) (-12 (|has| |#1| (-257)) (|has| |#1| (-822)))) ELT)) (-3141 (($ (-584 $)) 117 (OR (|has| |#1| (-257)) (-12 (|has| |#1| (-257)) (|has| |#1| (-822)))) ELT) (($ $ $) 116 (OR (|has| |#1| (-257)) (-12 (|has| |#1| (-257)) (|has| |#1| (-822)))) ELT)) (-1674 (((-584 (-2 (|:| -3728 (-484)) (|:| -2399 (-484))))) 164 (|has| |#1| (-298)) ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) 264 (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) 263 (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) ELT)) (-3728 (((-345 $) $) 131 (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-311))) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 129 (|has| |#1| (-257)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) 128 (|has| |#1| (-257)) ELT)) (-3462 (((-3 $ "failed") $ |#1|) 272 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ $) 111 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-257)) (|has| |#1| (-822)))) ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) 122 (|has| |#1| (-257)) ELT)) (-3939 (($ $) 256 (|has| |#1| (-1114)) ELT)) (-3764 (($ $ (-584 |#1|) (-584 |#1|)) 288 (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) 287 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) 286 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-248 |#1|))) 285 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-1089)) (-584 |#1|)) 284 (|has| |#1| (-453 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) 283 (|has| |#1| (-453 (-1089) |#1|)) ELT)) (-1605 (((-695) $) 124 (|has| |#1| (-257)) ELT)) (-3796 (($ $ |#1|) 289 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 125 (|has| |#1| (-257)) ELT)) (-3753 ((|#1| (-1178 $)) 60 T ELT) ((|#1|) 74 T ELT)) (-1763 (((-695) $) 169 (|has| |#1| (-298)) ELT) (((-3 (-695) "failed") $ $) 157 (|has| |#1| (-298)) ELT)) (-3754 (($ $ (-1 |#1| |#1|)) 143 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 142 T ELT) (($ $ (-584 (-1089)) (-584 (-695))) 148 (OR (-2560 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) (-2560 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-1089) (-695)) 147 (OR (-2560 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) (-2560 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-584 (-1089))) 146 (OR (-2560 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) (-2560 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-1089)) 144 (OR (-2560 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) (-2560 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-695)) 154 (OR (-2560 (|has| |#1| (-311)) (|has| |#1| (-189))) (-2560 (|has| |#1| (-311)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2560 (|has| |#1| (-189)) (|has| |#1| (-311)))) ELT) (($ $) 152 (OR (-2560 (|has| |#1| (-311)) (|has| |#1| (-189))) (-2560 (|has| |#1| (-311)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2560 (|has| |#1| (-189)) (|has| |#1| (-311)))) ELT)) (-2406 (((-631 |#1|) (-1178 $) (-1 |#1| |#1|)) 172 (|has| |#1| (-311)) ELT)) (-3182 (((-1084 |#1|)) 177 T ELT)) (-3491 (($ $) 245 (|has| |#1| (-1114)) ELT)) (-3632 (($ $) 234 (|has| |#1| (-1114)) ELT)) (-1672 (($) 166 (|has| |#1| (-298)) ELT)) (-3489 (($ $) 244 (|has| |#1| (-1114)) ELT)) (-3631 (($ $) 235 (|has| |#1| (-1114)) ELT)) (-3487 (($ $) 243 (|has| |#1| (-1114)) ELT)) (-3630 (($ $) 236 (|has| |#1| (-1114)) ELT)) (-3221 (((-1178 |#1|) $ (-1178 $)) 63 T ELT) (((-631 |#1|) (-1178 $) (-1178 $)) 62 T ELT) (((-1178 |#1|) $) 80 T ELT) (((-631 |#1|) (-1178 $)) 79 T ELT)) (-3968 (((-1178 |#1|) $) 77 T ELT) (($ (-1178 |#1|)) 76 T ELT) (((-1084 |#1|) $) 193 T ELT) (($ (-1084 |#1|)) 175 T ELT) (((-801 (-484)) $) 279 (|has| |#1| (-554 (-801 (-484)))) ELT) (((-801 (-327)) $) 278 (|has| |#1| (-554 (-801 (-327)))) ELT) (((-142 (-327)) $) 230 (|has| |#1| (-934)) ELT) (((-142 (-179)) $) 229 (|has| |#1| (-934)) ELT) (((-473) $) 228 (|has| |#1| (-554 (-473))) ELT)) (-3007 (($ $) 276 T ELT)) (-2701 (((-3 (-1178 $) "failed") (-631 $)) 163 (OR (-2560 (|has| $ (-118)) (-12 (|has| |#1| (-257)) (|has| |#1| (-822)))) (|has| |#1| (-298))) ELT)) (-1374 (($ |#1| |#1|) 275 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 50 T ELT) (($ (-347 (-484))) 105 (OR (|has| |#1| (-311)) (|has| |#1| (-951 (-347 (-484))))) ELT) (($ $) 110 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-257)) (|has| |#1| (-822)))) ELT)) (-2700 (($ $) 162 (|has| |#1| (-298)) ELT) (((-633 $) $) 56 (OR (-2560 (|has| $ (-118)) (-12 (|has| |#1| (-257)) (|has| |#1| (-822)))) (|has| |#1| (-118))) ELT)) (-2447 (((-1084 |#1|) $) 58 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2010 (((-1178 $)) 81 T ELT)) (-3494 (($ $) 254 (|has| |#1| (-1114)) ELT)) (-3482 (($ $) 242 (|has| |#1| (-1114)) ELT)) (-2060 (((-85) $ $) 114 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-257)) (|has| |#1| (-822)))) ELT)) (-3492 (($ $) 253 (|has| |#1| (-1114)) ELT)) (-3480 (($ $) 241 (|has| |#1| (-1114)) ELT)) (-3496 (($ $) 252 (|has| |#1| (-1114)) ELT)) (-3484 (($ $) 240 (|has| |#1| (-1114)) ELT)) (-2234 ((|#1| $) 270 (|has| |#1| (-1114)) ELT)) (-3497 (($ $) 251 (|has| |#1| (-1114)) ELT)) (-3485 (($ $) 239 (|has| |#1| (-1114)) ELT)) (-3495 (($ $) 250 (|has| |#1| (-1114)) ELT)) (-3483 (($ $) 238 (|has| |#1| (-1114)) ELT)) (-3493 (($ $) 249 (|has| |#1| (-1114)) ELT)) (-3481 (($ $) 237 (|has| |#1| (-1114)) ELT)) (-3379 (($ $) 271 (|has| |#1| (-973)) ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-2667 (($ $ (-1 |#1| |#1|)) 141 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 140 T ELT) (($ $ (-584 (-1089)) (-584 (-695))) 151 (OR (-2560 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) (-2560 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-1089) (-695)) 150 (OR (-2560 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) (-2560 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-584 (-1089))) 149 (OR (-2560 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) (-2560 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-1089)) 145 (OR (-2560 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) (-2560 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-695)) 155 (OR (-2560 (|has| |#1| (-311)) (|has| |#1| (-189))) (-2560 (|has| |#1| (-311)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2560 (|has| |#1| (-189)) (|has| |#1| (-311)))) ELT) (($ $) 153 (OR (-2560 (|has| |#1| (-311)) (|has| |#1| (-189))) (-2560 (|has| |#1| (-311)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2560 (|has| |#1| (-189)) (|has| |#1| (-311)))) ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3945 (($ $ $) 139 (|has| |#1| (-311)) ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-347 (-484))) 259 (-12 (|has| |#1| (-916)) (|has| |#1| (-1114))) ELT) (($ $ $) 257 (|has| |#1| (-1114)) ELT) (($ $ (-484)) 136 (|has| |#1| (-311)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT) (($ (-347 (-484)) $) 138 (|has| |#1| (-311)) ELT) (($ $ (-347 (-484))) 137 (|has| |#1| (-311)) ELT)))
(((-139 |#1|) (-113) (-146)) (T -139))
-((-3127 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1374 (*1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3005 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1373 (*1 *1 *2 *2) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3638 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3637 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3460 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-494)))) (-3377 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-972)))) (-2232 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1113)))) (-1372 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-972)) (-4 *3 (-1113)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3019 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-85)))) (-3018 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-347 (-483))))) (-3020 (*1 *2 *1) (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-347 (-483))))))
-(-13 (-661 |t#1| (-1083 |t#1|)) (-352 |t#1|) (-184 |t#1|) (-287 |t#1|) (-340 |t#1|) (-794 |t#1|) (-326 |t#1|) (-146) (-10 -8 (-6 -1373) (-15 -1374 ($)) (-15 -3005 ($ $)) (-15 -1373 ($ |t#1| |t#1|)) (-15 -3638 (|t#1| $)) (-15 -3637 (|t#1| $)) (-15 -3127 (|t#1| $)) (IF (|has| |t#1| (-494)) (PROGN (-6 (-494)) (-15 -3460 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-257)) (-6 (-257)) |%noBranch|) (IF (|has| |t#1| (-6 -3988)) (-6 -3988) |%noBranch|) (IF (|has| |t#1| (-6 -3985)) (-6 -3985) |%noBranch|) (IF (|has| |t#1| (-311)) (-6 (-311)) |%noBranch|) (IF (|has| |t#1| (-553 (-472))) (-6 (-553 (-472))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-933)) (PROGN (-6 (-553 (-142 (-179)))) (-6 (-553 (-142 (-327))))) |%noBranch|) (IF (|has| |t#1| (-972)) (-15 -3377 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1113)) (PROGN (-6 (-1113)) (-15 -2232 (|t#1| $)) (IF (|has| |t#1| (-915)) (-6 (-915)) |%noBranch|) (IF (|has| |t#1| (-972)) (-15 -1372 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-482)) (PROGN (-15 -3019 ((-85) $)) (-15 -3018 ((-347 (-483)) $)) (-15 -3020 ((-3 (-347 (-483)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-821)) (IF (|has| |t#1| (-257)) (-6 (-821)) |%noBranch|) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-483))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-494)) (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-35) |has| |#1| (-1113)) ((-66) |has| |#1| (-1113)) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-298)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) OR (|has| |#1| (-950 (-347 (-483)))) (|has| |#1| (-298)) (|has| |#1| (-311))) ((-555 (-483)) . T) ((-555 |#1|) . T) ((-555 $) OR (|has| |#1| (-494)) (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-552 (-772)) . T) ((-146) . T) ((-553 (-142 (-179))) |has| |#1| (-933)) ((-553 (-142 (-327))) |has| |#1| (-933)) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-553 (-800 (-327))) |has| |#1| (-553 (-800 (-327)))) ((-553 (-800 (-483))) |has| |#1| (-553 (-800 (-483)))) ((-553 (-1083 |#1|)) . T) ((-186 $) OR (|has| |#1| (-298)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) OR (|has| |#1| (-298)) (|has| |#1| (-190))) ((-189) OR (|has| |#1| (-298)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-239) |has| |#1| (-1113)) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-245) OR (|has| |#1| (-494)) (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-257) OR (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-259 |#1|) |has| |#1| (-259 |#1|)) ((-311) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-342) |has| |#1| (-298)) ((-317) OR (|has| |#1| (-298)) (|has| |#1| (-317))) ((-298) |has| |#1| (-298)) ((-319 |#1| (-1083 |#1|)) . T) ((-350 |#1| (-1083 |#1|)) . T) ((-287 |#1|) . T) ((-326 |#1|) . T) ((-340 |#1|) . T) ((-352 |#1|) . T) ((-389) OR (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-430) |has| |#1| (-1113)) ((-452 (-1088) |#1|) |has| |#1| (-452 (-1088) |#1|)) ((-452 |#1| |#1|) |has| |#1| (-259 |#1|)) ((-494) OR (|has| |#1| (-494)) (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-13) . T) ((-588 (-347 (-483))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-590 (-483)) |has| |#1| (-580 (-483))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-582 |#1|) . T) ((-582 $) OR (|has| |#1| (-494)) (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-580 (-483)) |has| |#1| (-580 (-483))) ((-580 |#1|) . T) ((-654 (-347 (-483))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-654 |#1|) . T) ((-654 $) OR (|has| |#1| (-494)) (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-661 |#1| (-1083 |#1|)) . T) ((-663) . T) ((-806 $ (-1088)) OR (|has| |#1| (-811 (-1088))) (|has| |#1| (-809 (-1088)))) ((-809 (-1088)) |has| |#1| (-809 (-1088))) ((-811 (-1088)) OR (|has| |#1| (-811 (-1088))) (|has| |#1| (-809 (-1088)))) ((-796 (-327)) |has| |#1| (-796 (-327))) ((-796 (-483)) |has| |#1| (-796 (-483))) ((-794 |#1|) . T) ((-821) -12 (|has| |#1| (-257)) (|has| |#1| (-821))) ((-832) OR (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-915) -12 (|has| |#1| (-915)) (|has| |#1| (-1113))) ((-950 (-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((-950 (-483)) |has| |#1| (-950 (-483))) ((-950 |#1|) . T) ((-963 (-347 (-483))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-963 |#1|) . T) ((-963 $) . T) ((-968 (-347 (-483))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-968 |#1|) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1064) |has| |#1| (-298)) ((-1113) |has| |#1| (-1113)) ((-1116) |has| |#1| (-1113)) ((-1127) . T) ((-1132) OR (|has| |#1| (-298)) (|has| |#1| (-311)) (-12 (|has| |#1| (-257)) (|has| |#1| (-821)))))
-((-3726 (((-345 |#2|) |#2|) 67 T ELT)))
-(((-140 |#1| |#2|) (-10 -7 (-15 -3726 ((-345 |#2|) |#2|))) (-257) (-1153 (-142 |#1|))) (T -140))
-((-3726 (*1 *2 *3) (-12 (-4 *4 (-257)) (-5 *2 (-345 *3)) (-5 *1 (-140 *4 *3)) (-4 *3 (-1153 (-142 *4))))))
-((-1377 (((-1047) (-1047) (-246)) 8 T ELT)) (-1375 (((-583 (-632 (-235))) (-1071)) 81 T ELT)) (-1376 (((-632 (-235)) (-1047)) 76 T ELT)))
-(((-141) (-13 (-1127) (-10 -7 (-15 -1377 ((-1047) (-1047) (-246))) (-15 -1376 ((-632 (-235)) (-1047))) (-15 -1375 ((-583 (-632 (-235))) (-1071)))))) (T -141))
-((-1377 (*1 *2 *2 *3) (-12 (-5 *2 (-1047)) (-5 *3 (-246)) (-5 *1 (-141)))) (-1376 (*1 *2 *3) (-12 (-5 *3 (-1047)) (-5 *2 (-632 (-235))) (-5 *1 (-141)))) (-1375 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-583 (-632 (-235)))) (-5 *1 (-141)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 15 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) (|has| |#1| (-494))) ELT)) (-2059 (($ $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) (|has| |#1| (-494))) ELT)) (-2057 (((-85) $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) (|has| |#1| (-494))) ELT)) (-1779 (((-630 |#1|) (-1177 $)) NIL T ELT) (((-630 |#1|)) NIL T ELT)) (-3324 ((|#1| $) NIL T ELT)) (-3486 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3633 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) NIL (|has| |#1| (-298)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) ELT)) (-3769 (($ $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) (|has| |#1| (-311))) ELT)) (-3965 (((-345 $) $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) (|has| |#1| (-311))) ELT)) (-3033 (($ $) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-1113))) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) ELT)) (-1605 (((-85) $ $) NIL (|has| |#1| (-257)) ELT)) (-3131 (((-694)) NIL (|has| |#1| (-317)) ELT)) (-3484 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3632 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3488 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3631 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3151 (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) NIL T ELT)) (-1789 (($ (-1177 |#1|) (-1177 $)) NIL T ELT) (($ (-1177 |#1|)) NIL T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-298)) ELT)) (-2560 (($ $ $) NIL (|has| |#1| (-257)) ELT)) (-1778 (((-630 |#1|) $ (-1177 $)) NIL T ELT) (((-630 |#1|) $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3836 (($ (-1083 |#1|)) NIL T ELT) (((-3 $ #1#) (-347 (-1083 |#1|))) NIL (|has| |#1| (-311)) ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3637 ((|#1| $) 20 T ELT)) (-3020 (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-482)) ELT)) (-3019 (((-85) $) NIL (|has| |#1| (-482)) ELT)) (-3018 (((-347 (-483)) $) NIL (|has| |#1| (-482)) ELT)) (-3104 (((-830)) NIL T ELT)) (-2990 (($) NIL (|has| |#1| (-317)) ELT)) (-2559 (($ $ $) NIL (|has| |#1| (-257)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| |#1| (-257)) ELT)) (-2829 (($) NIL (|has| |#1| (-298)) ELT)) (-1677 (((-85) $) NIL (|has| |#1| (-298)) ELT)) (-1761 (($ $ (-694)) NIL (|has| |#1| (-298)) ELT) (($ $) NIL (|has| |#1| (-298)) ELT)) (-3717 (((-85) $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) (|has| |#1| (-311))) ELT)) (-1372 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-972)) (|has| |#1| (-1113))) ELT)) (-3621 (($) NIL (|has| |#1| (-1113)) ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (|has| |#1| (-796 (-483))) ELT) (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (|has| |#1| (-796 (-327))) ELT)) (-3766 (((-830) $) NIL (|has| |#1| (-298)) ELT) (((-743 (-830)) $) NIL (|has| |#1| (-298)) ELT)) (-2406 (((-85) $) 17 T ELT)) (-3007 (($ $ (-483)) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-1113))) ELT)) (-3127 ((|#1| $) 30 T ELT)) (-3439 (((-632 $) $) NIL (|has| |#1| (-298)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-257)) ELT)) (-2010 (((-1083 |#1|) $) NIL (|has| |#1| (-311)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2006 (((-830) $) NIL (|has| |#1| (-317)) ELT)) (-3936 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3075 (((-1083 |#1|) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-257)) ELT) (($ $ $) NIL (|has| |#1| (-257)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3440 (($) NIL (|has| |#1| (-298)) CONST)) (-2396 (($ (-830)) NIL (|has| |#1| (-317)) ELT)) (-1374 (($) NIL T ELT)) (-3638 ((|#1| $) 21 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2405 (($) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-257)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-257)) ELT) (($ $ $) NIL (|has| |#1| (-257)) ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) NIL (|has| |#1| (-298)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) ELT)) (-3726 (((-345 $) $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) (|has| |#1| (-311))) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-257)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-257)) ELT)) (-3460 (((-3 $ #1#) $ |#1|) 28 (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ $) 31 (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) (|has| |#1| (-494))) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-257)) ELT)) (-3937 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3762 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-248 |#1|))) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-1088)) (-583 |#1|)) NIL (|has| |#1| (-452 (-1088) |#1|)) ELT) (($ $ (-1088) |#1|) NIL (|has| |#1| (-452 (-1088) |#1|)) ELT)) (-1604 (((-694) $) NIL (|has| |#1| (-257)) ELT)) (-3794 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-257)) ELT)) (-3751 ((|#1| (-1177 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1762 (((-694) $) NIL (|has| |#1| (-298)) ELT) (((-3 (-694) #1#) $ $) NIL (|has| |#1| (-298)) ELT)) (-3752 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-1088) (-694)) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-583 (-1088))) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-311))) (|has| |#1| (-189))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-311))) (|has| |#1| (-189))) ELT)) (-2404 (((-630 |#1|) (-1177 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-311)) ELT)) (-3180 (((-1083 |#1|)) NIL T ELT)) (-3489 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3630 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-1671 (($) NIL (|has| |#1| (-298)) ELT)) (-3487 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3629 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3485 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3628 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3219 (((-1177 |#1|) $ (-1177 $)) NIL T ELT) (((-630 |#1|) (-1177 $) (-1177 $)) NIL T ELT) (((-1177 |#1|) $) NIL T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-3966 (((-1177 |#1|) $) NIL T ELT) (($ (-1177 |#1|)) NIL T ELT) (((-1083 |#1|) $) NIL T ELT) (($ (-1083 |#1|)) NIL T ELT) (((-800 (-483)) $) NIL (|has| |#1| (-553 (-800 (-483)))) ELT) (((-800 (-327)) $) NIL (|has| |#1| (-553 (-800 (-327)))) ELT) (((-142 (-327)) $) NIL (|has| |#1| (-933)) ELT) (((-142 (-179)) $) NIL (|has| |#1| (-933)) ELT) (((-472) $) NIL (|has| |#1| (-553 (-472))) ELT)) (-3005 (($ $) 29 T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-257)) (|has| |#1| (-821))) (|has| |#1| (-298))) ELT)) (-1373 (($ |#1| |#1|) 19 T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) 18 T ELT) (($ (-347 (-483))) NIL (OR (|has| |#1| (-311)) (|has| |#1| (-950 (-347 (-483))))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) (|has| |#1| (-494))) ELT)) (-2698 (($ $) NIL (|has| |#1| (-298)) ELT) (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-257)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-2445 (((-1083 |#1|) $) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3480 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-2058 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-821))) (|has| |#1| (-494))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3478 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3494 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3482 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-2232 ((|#1| $) NIL (|has| |#1| (-1113)) ELT)) (-3495 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3483 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3481 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3491 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3479 (($ $) NIL (|has| |#1| (-1113)) ELT)) (-3377 (($ $) NIL (|has| |#1| (-972)) ELT)) (-2656 (($) 8 T CONST)) (-2662 (($) 10 T CONST)) (-2665 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-1088) (-694)) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-583 (-1088))) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-311))) (|has| |#1| (-189))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-311))) (|has| |#1| (-189))) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 23 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-347 (-483))) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-1113))) ELT) (($ $ $) NIL (|has| |#1| (-1113)) ELT) (($ $ (-483)) NIL (|has| |#1| (-311)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 26 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-311)) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-311)) ELT)))
+((-3129 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1375 (*1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3007 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1374 (*1 *1 *2 *2) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3640 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3639 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3462 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) (-3379 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-973)))) (-2234 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1114)))) (-1373 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-973)) (-4 *3 (-1114)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3021 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85)))) (-3020 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-347 (-484))))) (-3022 (*1 *2 *1) (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-347 (-484))))))
+(-13 (-662 |t#1| (-1084 |t#1|)) (-352 |t#1|) (-184 |t#1|) (-287 |t#1|) (-340 |t#1|) (-795 |t#1|) (-326 |t#1|) (-146) (-10 -8 (-6 -1374) (-15 -1375 ($)) (-15 -3007 ($ $)) (-15 -1374 ($ |t#1| |t#1|)) (-15 -3640 (|t#1| $)) (-15 -3639 (|t#1| $)) (-15 -3129 (|t#1| $)) (IF (|has| |t#1| (-495)) (PROGN (-6 (-495)) (-15 -3462 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-257)) (-6 (-257)) |%noBranch|) (IF (|has| |t#1| (-6 -3990)) (-6 -3990) |%noBranch|) (IF (|has| |t#1| (-6 -3987)) (-6 -3987) |%noBranch|) (IF (|has| |t#1| (-311)) (-6 (-311)) |%noBranch|) (IF (|has| |t#1| (-554 (-473))) (-6 (-554 (-473))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-934)) (PROGN (-6 (-554 (-142 (-179)))) (-6 (-554 (-142 (-327))))) |%noBranch|) (IF (|has| |t#1| (-973)) (-15 -3379 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1114)) (PROGN (-6 (-1114)) (-15 -2234 (|t#1| $)) (IF (|has| |t#1| (-916)) (-6 (-916)) |%noBranch|) (IF (|has| |t#1| (-973)) (-15 -1373 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-483)) (PROGN (-15 -3021 ((-85) $)) (-15 -3020 ((-347 (-484)) $)) (-15 -3022 ((-3 (-347 (-484)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-822)) (IF (|has| |t#1| (-257)) (-6 (-822)) |%noBranch|) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-484))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-495)) (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-35) |has| |#1| (-1114)) ((-66) |has| |#1| (-1114)) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-298)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) OR (|has| |#1| (-951 (-347 (-484)))) (|has| |#1| (-298)) (|has| |#1| (-311))) ((-556 (-484)) . T) ((-556 |#1|) . T) ((-556 $) OR (|has| |#1| (-495)) (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-553 (-773)) . T) ((-146) . T) ((-554 (-142 (-179))) |has| |#1| (-934)) ((-554 (-142 (-327))) |has| |#1| (-934)) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-554 (-801 (-327))) |has| |#1| (-554 (-801 (-327)))) ((-554 (-801 (-484))) |has| |#1| (-554 (-801 (-484)))) ((-554 (-1084 |#1|)) . T) ((-186 $) OR (|has| |#1| (-298)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) OR (|has| |#1| (-298)) (|has| |#1| (-190))) ((-189) OR (|has| |#1| (-298)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-239) |has| |#1| (-1114)) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-245) OR (|has| |#1| (-495)) (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-257) OR (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-259 |#1|) |has| |#1| (-259 |#1|)) ((-311) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-342) |has| |#1| (-298)) ((-317) OR (|has| |#1| (-298)) (|has| |#1| (-317))) ((-298) |has| |#1| (-298)) ((-319 |#1| (-1084 |#1|)) . T) ((-350 |#1| (-1084 |#1|)) . T) ((-287 |#1|) . T) ((-326 |#1|) . T) ((-340 |#1|) . T) ((-352 |#1|) . T) ((-389) OR (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-430) |has| |#1| (-1114)) ((-453 (-1089) |#1|) |has| |#1| (-453 (-1089) |#1|)) ((-453 |#1| |#1|) |has| |#1| (-259 |#1|)) ((-495) OR (|has| |#1| (-495)) (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-13) . T) ((-589 (-347 (-484))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-591 (-484)) |has| |#1| (-581 (-484))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-583 |#1|) . T) ((-583 $) OR (|has| |#1| (-495)) (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-581 (-484)) |has| |#1| (-581 (-484))) ((-581 |#1|) . T) ((-655 (-347 (-484))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-655 |#1|) . T) ((-655 $) OR (|has| |#1| (-495)) (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-662 |#1| (-1084 |#1|)) . T) ((-664) . T) ((-807 $ (-1089)) OR (|has| |#1| (-812 (-1089))) (|has| |#1| (-810 (-1089)))) ((-810 (-1089)) |has| |#1| (-810 (-1089))) ((-812 (-1089)) OR (|has| |#1| (-812 (-1089))) (|has| |#1| (-810 (-1089)))) ((-797 (-327)) |has| |#1| (-797 (-327))) ((-797 (-484)) |has| |#1| (-797 (-484))) ((-795 |#1|) . T) ((-822) -12 (|has| |#1| (-257)) (|has| |#1| (-822))) ((-833) OR (|has| |#1| (-298)) (|has| |#1| (-311)) (|has| |#1| (-257))) ((-916) -12 (|has| |#1| (-916)) (|has| |#1| (-1114))) ((-951 (-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((-951 (-484)) |has| |#1| (-951 (-484))) ((-951 |#1|) . T) ((-964 (-347 (-484))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-347 (-484))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) |has| |#1| (-298)) ((-1114) |has| |#1| (-1114)) ((-1117) |has| |#1| (-1114)) ((-1128) . T) ((-1133) OR (|has| |#1| (-298)) (|has| |#1| (-311)) (-12 (|has| |#1| (-257)) (|has| |#1| (-822)))))
+((-3728 (((-345 |#2|) |#2|) 67 T ELT)))
+(((-140 |#1| |#2|) (-10 -7 (-15 -3728 ((-345 |#2|) |#2|))) (-257) (-1154 (-142 |#1|))) (T -140))
+((-3728 (*1 *2 *3) (-12 (-4 *4 (-257)) (-5 *2 (-345 *3)) (-5 *1 (-140 *4 *3)) (-4 *3 (-1154 (-142 *4))))))
+((-1378 (((-1048) (-1048) (-246)) 8 T ELT)) (-1376 (((-584 (-633 (-235))) (-1072)) 81 T ELT)) (-1377 (((-633 (-235)) (-1048)) 76 T ELT)))
+(((-141) (-13 (-1128) (-10 -7 (-15 -1378 ((-1048) (-1048) (-246))) (-15 -1377 ((-633 (-235)) (-1048))) (-15 -1376 ((-584 (-633 (-235))) (-1072)))))) (T -141))
+((-1378 (*1 *2 *2 *3) (-12 (-5 *2 (-1048)) (-5 *3 (-246)) (-5 *1 (-141)))) (-1377 (*1 *2 *3) (-12 (-5 *3 (-1048)) (-5 *2 (-633 (-235))) (-5 *1 (-141)))) (-1376 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-584 (-633 (-235)))) (-5 *1 (-141)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 15 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-495))) ELT)) (-2061 (($ $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-495))) ELT)) (-2059 (((-85) $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-495))) ELT)) (-1780 (((-631 |#1|) (-1178 $)) NIL T ELT) (((-631 |#1|)) NIL T ELT)) (-3326 ((|#1| $) NIL T ELT)) (-3488 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3635 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) NIL (|has| |#1| (-298)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) ELT)) (-3771 (($ $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-311))) ELT)) (-3967 (((-345 $) $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-311))) ELT)) (-3035 (($ $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-1114))) ELT)) (-2702 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-257)) ELT)) (-3133 (((-695)) NIL (|has| |#1| (-317)) ELT)) (-3486 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3634 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3633 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3153 (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-1790 (($ (-1178 |#1|) (-1178 $)) NIL T ELT) (($ (-1178 |#1|)) NIL T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-298)) ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-257)) ELT)) (-1779 (((-631 |#1|) $ (-1178 $)) NIL T ELT) (((-631 |#1|) $) NIL T ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3838 (($ (-1084 |#1|)) NIL T ELT) (((-3 $ #1#) (-347 (-1084 |#1|))) NIL (|has| |#1| (-311)) ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-3639 ((|#1| $) 20 T ELT)) (-3022 (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-483)) ELT)) (-3021 (((-85) $) NIL (|has| |#1| (-483)) ELT)) (-3020 (((-347 (-484)) $) NIL (|has| |#1| (-483)) ELT)) (-3106 (((-831)) NIL T ELT)) (-2992 (($) NIL (|has| |#1| (-317)) ELT)) (-2561 (($ $ $) NIL (|has| |#1| (-257)) ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL (|has| |#1| (-257)) ELT)) (-2831 (($) NIL (|has| |#1| (-298)) ELT)) (-1678 (((-85) $) NIL (|has| |#1| (-298)) ELT)) (-1762 (($ $ (-695)) NIL (|has| |#1| (-298)) ELT) (($ $) NIL (|has| |#1| (-298)) ELT)) (-3719 (((-85) $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-311))) ELT)) (-1373 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1114))) ELT)) (-3623 (($) NIL (|has| |#1| (-1114)) ELT)) (-2794 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (|has| |#1| (-797 (-484))) ELT) (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (|has| |#1| (-797 (-327))) ELT)) (-3768 (((-831) $) NIL (|has| |#1| (-298)) ELT) (((-744 (-831)) $) NIL (|has| |#1| (-298)) ELT)) (-2408 (((-85) $) 17 T ELT)) (-3009 (($ $ (-484)) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-1114))) ELT)) (-3129 ((|#1| $) 30 T ELT)) (-3441 (((-633 $) $) NIL (|has| |#1| (-298)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-257)) ELT)) (-2012 (((-1084 |#1|) $) NIL (|has| |#1| (-311)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2008 (((-831) $) NIL (|has| |#1| (-317)) ELT)) (-3938 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3077 (((-1084 |#1|) $) NIL T ELT)) (-2278 (((-631 (-484)) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-257)) ELT) (($ $ $) NIL (|has| |#1| (-257)) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3442 (($) NIL (|has| |#1| (-298)) CONST)) (-2398 (($ (-831)) NIL (|has| |#1| (-317)) ELT)) (-1375 (($) NIL T ELT)) (-3640 ((|#1| $) 21 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2407 (($) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-257)) ELT)) (-3141 (($ (-584 $)) NIL (|has| |#1| (-257)) ELT) (($ $ $) NIL (|has| |#1| (-257)) ELT)) (-1674 (((-584 (-2 (|:| -3728 (-484)) (|:| -2399 (-484))))) NIL (|has| |#1| (-298)) ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) NIL (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) ELT)) (-3728 (((-345 $) $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-311))) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-257)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL (|has| |#1| (-257)) ELT)) (-3462 (((-3 $ #1#) $ |#1|) 28 (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) 31 (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-495))) ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-257)) ELT)) (-3939 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3764 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-248 |#1|))) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-1089)) (-584 |#1|)) NIL (|has| |#1| (-453 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) NIL (|has| |#1| (-453 (-1089) |#1|)) ELT)) (-1605 (((-695) $) NIL (|has| |#1| (-257)) ELT)) (-3796 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| |#1| (-257)) ELT)) (-3753 ((|#1| (-1178 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1763 (((-695) $) NIL (|has| |#1| (-298)) ELT) (((-3 (-695) #1#) $ $) NIL (|has| |#1| (-298)) ELT)) (-3754 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-1089) (-695)) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-584 (-1089))) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-311))) (|has| |#1| (-189))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-311))) (|has| |#1| (-189))) ELT)) (-2406 (((-631 |#1|) (-1178 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-311)) ELT)) (-3182 (((-1084 |#1|)) NIL T ELT)) (-3491 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3632 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-1672 (($) NIL (|has| |#1| (-298)) ELT)) (-3489 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3631 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3487 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3630 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3221 (((-1178 |#1|) $ (-1178 $)) NIL T ELT) (((-631 |#1|) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 |#1|) $) NIL T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-3968 (((-1178 |#1|) $) NIL T ELT) (($ (-1178 |#1|)) NIL T ELT) (((-1084 |#1|) $) NIL T ELT) (($ (-1084 |#1|)) NIL T ELT) (((-801 (-484)) $) NIL (|has| |#1| (-554 (-801 (-484)))) ELT) (((-801 (-327)) $) NIL (|has| |#1| (-554 (-801 (-327)))) ELT) (((-142 (-327)) $) NIL (|has| |#1| (-934)) ELT) (((-142 (-179)) $) NIL (|has| |#1| (-934)) ELT) (((-473) $) NIL (|has| |#1| (-554 (-473))) ELT)) (-3007 (($ $) 29 T ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-298))) ELT)) (-1374 (($ |#1| |#1|) 19 T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) 18 T ELT) (($ (-347 (-484))) NIL (OR (|has| |#1| (-311)) (|has| |#1| (-951 (-347 (-484))))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-495))) ELT)) (-2700 (($ $) NIL (|has| |#1| (-298)) ELT) (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-2447 (((-1084 |#1|) $) NIL T ELT)) (-3123 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2010 (((-1178 $)) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3482 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-2060 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-257)) (|has| |#1| (-822))) (|has| |#1| (-495))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3480 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3496 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3484 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-2234 ((|#1| $) NIL (|has| |#1| (-1114)) ELT)) (-3497 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3485 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3495 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3483 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3481 (($ $) NIL (|has| |#1| (-1114)) ELT)) (-3379 (($ $) NIL (|has| |#1| (-973)) ELT)) (-2658 (($) 8 T CONST)) (-2664 (($) 10 T CONST)) (-2667 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-1089) (-695)) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-584 (-1089))) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-311))) (|has| |#1| (-189))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-311))) (|has| |#1| (-189))) ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) 23 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-347 (-484))) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-1114))) ELT) (($ $ $) NIL (|has| |#1| (-1114)) ELT) (($ $ (-484)) NIL (|has| |#1| (-311)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 26 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-311)) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-311)) ELT)))
(((-142 |#1|) (-139 |#1|) (-146)) (T -142))
NIL
-((-3952 (((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)) 14 T ELT)))
-(((-143 |#1| |#2|) (-10 -7 (-15 -3952 ((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)))) (-146) (-146)) (T -143))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-142 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-5 *2 (-142 *6)) (-5 *1 (-143 *5 *6)))))
-((-3966 (((-800 |#1|) |#3|) 22 T ELT)))
-(((-144 |#1| |#2| |#3|) (-10 -7 (-15 -3966 ((-800 |#1|) |#3|))) (-1012) (-13 (-553 (-800 |#1|)) (-146)) (-139 |#2|)) (T -144))
-((-3966 (*1 *2 *3) (-12 (-4 *5 (-13 (-553 *2) (-146))) (-5 *2 (-800 *4)) (-5 *1 (-144 *4 *5 *3)) (-4 *4 (-1012)) (-4 *3 (-139 *5)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-1379 (((-85) $) 9 T ELT)) (-1378 (((-85) $ (-85)) 11 T ELT)) (-3608 (($) 13 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3394 (($ $) 14 T ELT)) (-3940 (((-772) $) 18 T ELT)) (-3696 (((-85) $) 8 T ELT)) (-3855 (((-85) $ (-85)) 10 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-145) (-13 (-1012) (-10 -8 (-15 -3608 ($)) (-15 -3696 ((-85) $)) (-15 -1379 ((-85) $)) (-15 -3855 ((-85) $ (-85))) (-15 -1378 ((-85) $ (-85))) (-15 -3394 ($ $))))) (T -145))
-((-3608 (*1 *1) (-5 *1 (-145))) (-3696 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1379 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-3855 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1378 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-3394 (*1 *1 *1) (-5 *1 (-145))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT)))
+((-3954 (((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)) 14 T ELT)))
+(((-143 |#1| |#2|) (-10 -7 (-15 -3954 ((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)))) (-146) (-146)) (T -143))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-142 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-5 *2 (-142 *6)) (-5 *1 (-143 *5 *6)))))
+((-3968 (((-801 |#1|) |#3|) 22 T ELT)))
+(((-144 |#1| |#2| |#3|) (-10 -7 (-15 -3968 ((-801 |#1|) |#3|))) (-1013) (-13 (-554 (-801 |#1|)) (-146)) (-139 |#2|)) (T -144))
+((-3968 (*1 *2 *3) (-12 (-4 *5 (-13 (-554 *2) (-146))) (-5 *2 (-801 *4)) (-5 *1 (-144 *4 *5 *3)) (-4 *4 (-1013)) (-4 *3 (-139 *5)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-1380 (((-85) $) 9 T ELT)) (-1379 (((-85) $ (-85)) 11 T ELT)) (-3610 (($) 13 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3396 (($ $) 14 T ELT)) (-3942 (((-773) $) 18 T ELT)) (-3698 (((-85) $) 8 T ELT)) (-3857 (((-85) $ (-85)) 10 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-145) (-13 (-1013) (-10 -8 (-15 -3610 ($)) (-15 -3698 ((-85) $)) (-15 -1380 ((-85) $)) (-15 -3857 ((-85) $ (-85))) (-15 -1379 ((-85) $ (-85))) (-15 -3396 ($ $))))) (T -145))
+((-3610 (*1 *1) (-5 *1 (-145))) (-3698 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1380 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-3857 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1379 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-3396 (*1 *1 *1) (-5 *1 (-145))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT)))
(((-146) (-113)) (T -146))
NIL
-(-13 (-961) (-82 $ $) (-10 -7 (-6 (-3991 "*"))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-483)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T))
-((-1697 (($ $) 6 T ELT)))
+(-13 (-962) (-82 $ $) (-10 -7 (-6 (-3993 "*"))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-484)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
+((-1698 (($ $) 6 T ELT)))
(((-147) (-113)) (T -147))
-((-1697 (*1 *1 *1) (-4 *1 (-147))))
-(-13 (-10 -8 (-15 -1697 ($ $))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3124 ((|#1| $) 79 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2560 (($ $ $) NIL T ELT)) (-1384 (($ $) 21 T ELT)) (-1388 (($ |#1| (-1067 |#1|)) 48 T ELT)) (-3461 (((-3 $ #1#) $) 123 T ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-1385 (((-1067 |#1|) $) 86 T ELT)) (-1387 (((-1067 |#1|) $) 83 T ELT)) (-1386 (((-1067 |#1|) $) 84 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-1381 (((-1067 |#1|) $) 93 T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-1888 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT)) (-3763 (($ $ (-483)) 96 T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-1380 (((-1067 |#1|) $) 94 T ELT)) (-1382 (((-1067 (-347 |#1|)) $) 14 T ELT)) (-2612 (($ (-347 |#1|)) 17 T ELT) (($ |#1| (-1067 |#1|) (-1067 |#1|)) 38 T ELT)) (-2887 (($ $) 98 T ELT)) (-3940 (((-772) $) 139 T ELT) (($ (-483)) 51 T ELT) (($ |#1|) 52 T ELT) (($ (-347 |#1|)) 36 T ELT) (($ (-347 (-483))) NIL T ELT) (($ $) NIL T ELT)) (-3121 (((-694)) 67 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-1383 (((-1067 (-347 |#1|)) $) 20 T ELT)) (-2656 (($) 103 T CONST)) (-2662 (($) 28 T CONST)) (-3052 (((-85) $ $) 35 T ELT)) (-3943 (($ $ $) 121 T ELT)) (-3831 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-3833 (($ $ $) 107 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-347 |#1|) $) 117 T ELT) (($ $ (-347 |#1|)) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT)))
-(((-148 |#1|) (-13 (-38 |#1|) (-38 (-347 |#1|)) (-311) (-10 -8 (-15 -2612 ($ (-347 |#1|))) (-15 -2612 ($ |#1| (-1067 |#1|) (-1067 |#1|))) (-15 -1388 ($ |#1| (-1067 |#1|))) (-15 -1387 ((-1067 |#1|) $)) (-15 -1386 ((-1067 |#1|) $)) (-15 -1385 ((-1067 |#1|) $)) (-15 -3124 (|#1| $)) (-15 -1384 ($ $)) (-15 -1383 ((-1067 (-347 |#1|)) $)) (-15 -1382 ((-1067 (-347 |#1|)) $)) (-15 -1381 ((-1067 |#1|) $)) (-15 -1380 ((-1067 |#1|) $)) (-15 -3763 ($ $ (-483))) (-15 -2887 ($ $)))) (-257)) (T -148))
-((-2612 (*1 *1 *2) (-12 (-5 *2 (-347 *3)) (-4 *3 (-257)) (-5 *1 (-148 *3)))) (-2612 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1067 *2)) (-4 *2 (-257)) (-5 *1 (-148 *2)))) (-1388 (*1 *1 *2 *3) (-12 (-5 *3 (-1067 *2)) (-4 *2 (-257)) (-5 *1 (-148 *2)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257)))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257)))) (-3124 (*1 *2 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-257)))) (-1384 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-257)))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-1067 (-347 *3))) (-5 *1 (-148 *3)) (-4 *3 (-257)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-1067 (-347 *3))) (-5 *1 (-148 *3)) (-4 *3 (-257)))) (-1381 (*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257)))) (-1380 (*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257)))) (-3763 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-148 *3)) (-4 *3 (-257)))) (-2887 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-257)))))
-((-1389 (($ (-78) $) 15 T ELT)) (-3216 (((-632 (-78)) (-444) $) 14 T ELT)) (-3940 (((-772) $) 18 T ELT)) (-1390 (((-583 (-78)) $) 8 T ELT)))
-(((-149) (-13 (-552 (-772)) (-10 -8 (-15 -1390 ((-583 (-78)) $)) (-15 -1389 ($ (-78) $)) (-15 -3216 ((-632 (-78)) (-444) $))))) (T -149))
-((-1390 (*1 *2 *1) (-12 (-5 *2 (-583 (-78))) (-5 *1 (-149)))) (-1389 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-149)))) (-3216 (*1 *2 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-632 (-78))) (-5 *1 (-149)))))
-((-1403 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 38 T ELT)) (-1394 (((-854 |#1|) (-854 |#1|)) 22 T ELT)) (-1399 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 34 T ELT)) (-1392 (((-854 |#1|) (-854 |#1|)) 20 T ELT)) (-1397 (((-854 |#1|) (-854 |#1|)) 28 T ELT)) (-1396 (((-854 |#1|) (-854 |#1|)) 27 T ELT)) (-1395 (((-854 |#1|) (-854 |#1|)) 26 T ELT)) (-1400 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 35 T ELT)) (-1398 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 33 T ELT)) (-1640 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 32 T ELT)) (-1393 (((-854 |#1|) (-854 |#1|)) 21 T ELT)) (-1404 (((-1 (-854 |#1|) (-854 |#1|)) |#1| |#1|) 41 T ELT)) (-1391 (((-854 |#1|) (-854 |#1|)) 8 T ELT)) (-1402 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 37 T ELT)) (-1401 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 36 T ELT)))
-(((-150 |#1|) (-10 -7 (-15 -1391 ((-854 |#1|) (-854 |#1|))) (-15 -1392 ((-854 |#1|) (-854 |#1|))) (-15 -1393 ((-854 |#1|) (-854 |#1|))) (-15 -1394 ((-854 |#1|) (-854 |#1|))) (-15 -1395 ((-854 |#1|) (-854 |#1|))) (-15 -1396 ((-854 |#1|) (-854 |#1|))) (-15 -1397 ((-854 |#1|) (-854 |#1|))) (-15 -1640 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1398 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1399 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1400 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1401 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1402 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1403 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1404 ((-1 (-854 |#1|) (-854 |#1|)) |#1| |#1|))) (-13 (-311) (-1113) (-915))) (T -150))
-((-1404 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-311) (-1113) (-915))))) (-1403 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-311) (-1113) (-915))))) (-1402 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-311) (-1113) (-915))))) (-1401 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-311) (-1113) (-915))))) (-1400 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-311) (-1113) (-915))))) (-1399 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-311) (-1113) (-915))))) (-1398 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-311) (-1113) (-915))))) (-1640 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-311) (-1113) (-915))))) (-1397 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-311) (-1113) (-915))) (-5 *1 (-150 *3)))) (-1396 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-311) (-1113) (-915))) (-5 *1 (-150 *3)))) (-1395 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-311) (-1113) (-915))) (-5 *1 (-150 *3)))) (-1394 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-311) (-1113) (-915))) (-5 *1 (-150 *3)))) (-1393 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-311) (-1113) (-915))) (-5 *1 (-150 *3)))) (-1392 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-311) (-1113) (-915))) (-5 *1 (-150 *3)))) (-1391 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-311) (-1113) (-915))) (-5 *1 (-150 *3)))))
-((-2445 ((|#2| |#3|) 28 T ELT)))
-(((-151 |#1| |#2| |#3|) (-10 -7 (-15 -2445 (|#2| |#3|))) (-146) (-1153 |#1|) (-661 |#1| |#2|)) (T -151))
-((-2445 (*1 *2 *3) (-12 (-4 *4 (-146)) (-4 *2 (-1153 *4)) (-5 *1 (-151 *4 *2 *3)) (-4 *3 (-661 *4 *2)))))
-((-2792 (((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)) 44 (|has| (-857 |#2|) (-796 |#1|)) ELT)))
-(((-152 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-857 |#2|) (-796 |#1|)) (-15 -2792 ((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|))) |%noBranch|)) (-1012) (-13 (-796 |#1|) (-146)) (-139 |#2|)) (T -152))
-((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *3)) (-5 *4 (-800 *5)) (-4 *5 (-1012)) (-4 *3 (-139 *6)) (-4 (-857 *6) (-796 *5)) (-4 *6 (-13 (-796 *5) (-146))) (-5 *1 (-152 *5 *6 *3)))))
-((-1406 (((-583 |#1|) (-583 |#1|) |#1|) 41 T ELT)) (-1405 (((-583 |#1|) |#1| (-583 |#1|)) 20 T ELT)) (-2073 (((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|)) 36 T ELT) ((|#1| (-583 |#1|) (-583 |#1|)) 32 T ELT)))
-(((-153 |#1|) (-10 -7 (-15 -1405 ((-583 |#1|) |#1| (-583 |#1|))) (-15 -2073 (|#1| (-583 |#1|) (-583 |#1|))) (-15 -2073 ((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|))) (-15 -1406 ((-583 |#1|) (-583 |#1|) |#1|))) (-257)) (T -153))
-((-1406 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-257)) (-5 *1 (-153 *3)))) (-2073 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-583 *4))) (-5 *2 (-583 *4)) (-4 *4 (-257)) (-5 *1 (-153 *4)))) (-2073 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-153 *2)) (-4 *2 (-257)))) (-1405 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-257)) (-5 *1 (-153 *3)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3313 (((-1128) $) 14 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3201 (((-1047) $) 11 T ELT)) (-3940 (((-772) $) 21 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-154) (-13 (-994) (-10 -8 (-15 -3201 ((-1047) $)) (-15 -3313 ((-1128) $))))) (T -154))
-((-3201 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-154)))) (-3313 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-154)))))
-((-1415 (((-2 (|:| |start| |#2|) (|:| -1776 (-345 |#2|))) |#2|) 66 T ELT)) (-1414 ((|#1| |#1|) 58 T ELT)) (-1413 (((-142 |#1|) |#2|) 94 T ELT)) (-1412 ((|#1| |#2|) 137 T ELT) ((|#1| |#2| |#1|) 90 T ELT)) (-1411 ((|#2| |#2|) 91 T ELT)) (-1410 (((-345 |#2|) |#2| |#1|) 119 T ELT) (((-345 |#2|) |#2| |#1| (-85)) 88 T ELT)) (-3127 ((|#1| |#2|) 118 T ELT)) (-1409 ((|#2| |#2|) 131 T ELT)) (-3726 (((-345 |#2|) |#2|) 154 T ELT) (((-345 |#2|) |#2| |#1|) 33 T ELT) (((-345 |#2|) |#2| |#1| (-85)) 153 T ELT)) (-1408 (((-583 (-2 (|:| -1776 (-583 |#2|)) (|:| -1593 |#1|))) |#2| |#2|) 152 T ELT) (((-583 (-2 (|:| -1776 (-583 |#2|)) (|:| -1593 |#1|))) |#2| |#2| (-85)) 82 T ELT)) (-1407 (((-583 (-142 |#1|)) |#2| |#1|) 42 T ELT) (((-583 (-142 |#1|)) |#2|) 43 T ELT)))
-(((-155 |#1| |#2|) (-10 -7 (-15 -1407 ((-583 (-142 |#1|)) |#2|)) (-15 -1407 ((-583 (-142 |#1|)) |#2| |#1|)) (-15 -1408 ((-583 (-2 (|:| -1776 (-583 |#2|)) (|:| -1593 |#1|))) |#2| |#2| (-85))) (-15 -1408 ((-583 (-2 (|:| -1776 (-583 |#2|)) (|:| -1593 |#1|))) |#2| |#2|)) (-15 -3726 ((-345 |#2|) |#2| |#1| (-85))) (-15 -3726 ((-345 |#2|) |#2| |#1|)) (-15 -3726 ((-345 |#2|) |#2|)) (-15 -1409 (|#2| |#2|)) (-15 -3127 (|#1| |#2|)) (-15 -1410 ((-345 |#2|) |#2| |#1| (-85))) (-15 -1410 ((-345 |#2|) |#2| |#1|)) (-15 -1411 (|#2| |#2|)) (-15 -1412 (|#1| |#2| |#1|)) (-15 -1412 (|#1| |#2|)) (-15 -1413 ((-142 |#1|) |#2|)) (-15 -1414 (|#1| |#1|)) (-15 -1415 ((-2 (|:| |start| |#2|) (|:| -1776 (-345 |#2|))) |#2|))) (-13 (-311) (-755)) (-1153 (-142 |#1|))) (T -155))
-((-1415 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-755))) (-5 *2 (-2 (|:| |start| *3) (|:| -1776 (-345 *3)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4))))) (-1414 (*1 *2 *2) (-12 (-4 *2 (-13 (-311) (-755))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1153 (-142 *2))))) (-1413 (*1 *2 *3) (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-311) (-755))) (-4 *3 (-1153 *2)))) (-1412 (*1 *2 *3) (-12 (-4 *2 (-13 (-311) (-755))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1153 (-142 *2))))) (-1412 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-311) (-755))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1153 (-142 *2))))) (-1411 (*1 *2 *2) (-12 (-4 *3 (-13 (-311) (-755))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1153 (-142 *3))))) (-1410 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-311) (-755))) (-5 *2 (-345 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4))))) (-1410 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-311) (-755))) (-5 *2 (-345 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4))))) (-3127 (*1 *2 *3) (-12 (-4 *2 (-13 (-311) (-755))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1153 (-142 *2))))) (-1409 (*1 *2 *2) (-12 (-4 *3 (-13 (-311) (-755))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1153 (-142 *3))))) (-3726 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-755))) (-5 *2 (-345 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4))))) (-3726 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-311) (-755))) (-5 *2 (-345 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4))))) (-3726 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-311) (-755))) (-5 *2 (-345 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4))))) (-1408 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-311) (-755))) (-5 *2 (-583 (-2 (|:| -1776 (-583 *3)) (|:| -1593 *4)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4))))) (-1408 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-311) (-755))) (-5 *2 (-583 (-2 (|:| -1776 (-583 *3)) (|:| -1593 *5)))) (-5 *1 (-155 *5 *3)) (-4 *3 (-1153 (-142 *5))))) (-1407 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-311) (-755))) (-5 *2 (-583 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4))))) (-1407 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-755))) (-5 *2 (-583 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4))))))
-((-1416 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-1417 (((-694) |#2|) 18 T ELT)) (-1418 ((|#2| |#2| |#2|) 20 T ELT)))
-(((-156 |#1| |#2|) (-10 -7 (-15 -1416 ((-3 |#2| "failed") |#2|)) (-15 -1417 ((-694) |#2|)) (-15 -1418 (|#2| |#2| |#2|))) (-1127) (-616 |#1|)) (T -156))
-((-1418 (*1 *2 *2 *2) (-12 (-4 *3 (-1127)) (-5 *1 (-156 *3 *2)) (-4 *2 (-616 *3)))) (-1417 (*1 *2 *3) (-12 (-4 *4 (-1127)) (-5 *2 (-694)) (-5 *1 (-156 *4 *3)) (-4 *3 (-616 *4)))) (-1416 (*1 *2 *2) (|partial| -12 (-4 *3 (-1127)) (-5 *1 (-156 *3 *2)) (-4 *2 (-616 *3)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-1421 (((-583 (-774)) $) NIL T ELT)) (-3536 (((-444) $) 8 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1423 (((-161) $) 10 T ELT)) (-2629 (((-85) $ (-444)) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1419 (((-632 $) (-444)) 17 T ELT)) (-1422 (((-583 (-85)) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2517 (((-55) $) 12 T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-157) (-13 (-160) (-10 -8 (-15 -1419 ((-632 $) (-444)))))) (T -157))
-((-1419 (*1 *2 *3) (-12 (-5 *3 (-444)) (-5 *2 (-632 (-157))) (-5 *1 (-157)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1479 ((|#1| $) 7 T ELT)) (-3940 (((-772) $) 14 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-1420 (((-583 (-1093)) $) 10 T ELT)) (-3052 (((-85) $ $) 12 T ELT)))
-(((-158 |#1|) (-13 (-1012) (-10 -8 (-15 -1479 (|#1| $)) (-15 -1420 ((-583 (-1093)) $)))) (-160)) (T -158))
-((-1479 (*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-160)))) (-1420 (*1 *2 *1) (-12 (-5 *2 (-583 (-1093))) (-5 *1 (-158 *3)) (-4 *3 (-160)))))
-((-1421 (((-583 (-774)) $) 16 T ELT)) (-1423 (((-161) $) 8 T ELT)) (-1422 (((-583 (-85)) $) 13 T ELT)) (-2517 (((-55) $) 10 T ELT)))
-(((-159 |#1|) (-10 -7 (-15 -1421 ((-583 (-774)) |#1|)) (-15 -1422 ((-583 (-85)) |#1|)) (-15 -1423 ((-161) |#1|)) (-15 -2517 ((-55) |#1|))) (-160)) (T -159))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-1421 (((-583 (-774)) $) 22 T ELT)) (-3536 (((-444) $) 19 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-1423 (((-161) $) 24 T ELT)) (-2629 (((-85) $ (-444)) 17 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-1422 (((-583 (-85)) $) 23 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2517 (((-55) $) 18 T ELT)) (-3052 (((-85) $ $) 8 T ELT)))
+((-1698 (*1 *1 *1) (-4 *1 (-147))))
+(-13 (-10 -8 (-15 -1698 ($ $))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3126 ((|#1| $) 79 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3771 (($ $) NIL T ELT)) (-3967 (((-345 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-2562 (($ $ $) NIL T ELT)) (-1385 (($ $) 21 T ELT)) (-1389 (($ |#1| (-1068 |#1|)) 48 T ELT)) (-3463 (((-3 $ #1#) $) 123 T ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-3719 (((-85) $) NIL T ELT)) (-1386 (((-1068 |#1|) $) 86 T ELT)) (-1388 (((-1068 |#1|) $) 83 T ELT)) (-1387 (((-1068 |#1|) $) 84 T ELT)) (-2408 (((-85) $) NIL T ELT)) (-1382 (((-1068 |#1|) $) 93 T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1889 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3728 (((-345 $) $) NIL T ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT)) (-3765 (($ $ (-484)) 96 T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-1381 (((-1068 |#1|) $) 94 T ELT)) (-1383 (((-1068 (-347 |#1|)) $) 14 T ELT)) (-2614 (($ (-347 |#1|)) 17 T ELT) (($ |#1| (-1068 |#1|) (-1068 |#1|)) 38 T ELT)) (-2889 (($ $) 98 T ELT)) (-3942 (((-773) $) 139 T ELT) (($ (-484)) 51 T ELT) (($ |#1|) 52 T ELT) (($ (-347 |#1|)) 36 T ELT) (($ (-347 (-484))) NIL T ELT) (($ $) NIL T ELT)) (-3123 (((-695)) 67 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-1384 (((-1068 (-347 |#1|)) $) 20 T ELT)) (-2658 (($) 103 T CONST)) (-2664 (($) 28 T CONST)) (-3054 (((-85) $ $) 35 T ELT)) (-3945 (($ $ $) 121 T ELT)) (-3833 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-3835 (($ $ $) 107 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-347 |#1|) $) 117 T ELT) (($ $ (-347 |#1|)) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT)))
+(((-148 |#1|) (-13 (-38 |#1|) (-38 (-347 |#1|)) (-311) (-10 -8 (-15 -2614 ($ (-347 |#1|))) (-15 -2614 ($ |#1| (-1068 |#1|) (-1068 |#1|))) (-15 -1389 ($ |#1| (-1068 |#1|))) (-15 -1388 ((-1068 |#1|) $)) (-15 -1387 ((-1068 |#1|) $)) (-15 -1386 ((-1068 |#1|) $)) (-15 -3126 (|#1| $)) (-15 -1385 ($ $)) (-15 -1384 ((-1068 (-347 |#1|)) $)) (-15 -1383 ((-1068 (-347 |#1|)) $)) (-15 -1382 ((-1068 |#1|) $)) (-15 -1381 ((-1068 |#1|) $)) (-15 -3765 ($ $ (-484))) (-15 -2889 ($ $)))) (-257)) (T -148))
+((-2614 (*1 *1 *2) (-12 (-5 *2 (-347 *3)) (-4 *3 (-257)) (-5 *1 (-148 *3)))) (-2614 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1068 *2)) (-4 *2 (-257)) (-5 *1 (-148 *2)))) (-1389 (*1 *1 *2 *3) (-12 (-5 *3 (-1068 *2)) (-4 *2 (-257)) (-5 *1 (-148 *2)))) (-1388 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257)))) (-3126 (*1 *2 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-257)))) (-1385 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-257)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-1068 (-347 *3))) (-5 *1 (-148 *3)) (-4 *3 (-257)))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-1068 (-347 *3))) (-5 *1 (-148 *3)) (-4 *3 (-257)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257)))) (-1381 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257)))) (-3765 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-148 *3)) (-4 *3 (-257)))) (-2889 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-257)))))
+((-1390 (($ (-78) $) 15 T ELT)) (-3218 (((-633 (-78)) (-444) $) 14 T ELT)) (-3942 (((-773) $) 18 T ELT)) (-1391 (((-584 (-78)) $) 8 T ELT)))
+(((-149) (-13 (-553 (-773)) (-10 -8 (-15 -1391 ((-584 (-78)) $)) (-15 -1390 ($ (-78) $)) (-15 -3218 ((-633 (-78)) (-444) $))))) (T -149))
+((-1391 (*1 *2 *1) (-12 (-5 *2 (-584 (-78))) (-5 *1 (-149)))) (-1390 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-149)))) (-3218 (*1 *2 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-633 (-78))) (-5 *1 (-149)))))
+((-1404 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 38 T ELT)) (-1395 (((-855 |#1|) (-855 |#1|)) 22 T ELT)) (-1400 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 34 T ELT)) (-1393 (((-855 |#1|) (-855 |#1|)) 20 T ELT)) (-1398 (((-855 |#1|) (-855 |#1|)) 28 T ELT)) (-1397 (((-855 |#1|) (-855 |#1|)) 27 T ELT)) (-1396 (((-855 |#1|) (-855 |#1|)) 26 T ELT)) (-1401 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 35 T ELT)) (-1399 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 33 T ELT)) (-1641 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 32 T ELT)) (-1394 (((-855 |#1|) (-855 |#1|)) 21 T ELT)) (-1405 (((-1 (-855 |#1|) (-855 |#1|)) |#1| |#1|) 41 T ELT)) (-1392 (((-855 |#1|) (-855 |#1|)) 8 T ELT)) (-1403 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 37 T ELT)) (-1402 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 36 T ELT)))
+(((-150 |#1|) (-10 -7 (-15 -1392 ((-855 |#1|) (-855 |#1|))) (-15 -1393 ((-855 |#1|) (-855 |#1|))) (-15 -1394 ((-855 |#1|) (-855 |#1|))) (-15 -1395 ((-855 |#1|) (-855 |#1|))) (-15 -1396 ((-855 |#1|) (-855 |#1|))) (-15 -1397 ((-855 |#1|) (-855 |#1|))) (-15 -1398 ((-855 |#1|) (-855 |#1|))) (-15 -1641 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1399 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1400 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1401 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1402 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1403 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1404 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1405 ((-1 (-855 |#1|) (-855 |#1|)) |#1| |#1|))) (-13 (-311) (-1114) (-916))) (T -150))
+((-1405 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-311) (-1114) (-916))))) (-1404 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-311) (-1114) (-916))))) (-1403 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-311) (-1114) (-916))))) (-1402 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-311) (-1114) (-916))))) (-1401 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-311) (-1114) (-916))))) (-1400 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-311) (-1114) (-916))))) (-1399 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-311) (-1114) (-916))))) (-1641 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-311) (-1114) (-916))))) (-1398 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-311) (-1114) (-916))) (-5 *1 (-150 *3)))) (-1397 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-311) (-1114) (-916))) (-5 *1 (-150 *3)))) (-1396 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-311) (-1114) (-916))) (-5 *1 (-150 *3)))) (-1395 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-311) (-1114) (-916))) (-5 *1 (-150 *3)))) (-1394 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-311) (-1114) (-916))) (-5 *1 (-150 *3)))) (-1393 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-311) (-1114) (-916))) (-5 *1 (-150 *3)))) (-1392 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-311) (-1114) (-916))) (-5 *1 (-150 *3)))))
+((-2447 ((|#2| |#3|) 28 T ELT)))
+(((-151 |#1| |#2| |#3|) (-10 -7 (-15 -2447 (|#2| |#3|))) (-146) (-1154 |#1|) (-662 |#1| |#2|)) (T -151))
+((-2447 (*1 *2 *3) (-12 (-4 *4 (-146)) (-4 *2 (-1154 *4)) (-5 *1 (-151 *4 *2 *3)) (-4 *3 (-662 *4 *2)))))
+((-2794 (((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)) 44 (|has| (-858 |#2|) (-797 |#1|)) ELT)))
+(((-152 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-858 |#2|) (-797 |#1|)) (-15 -2794 ((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|))) |%noBranch|)) (-1013) (-13 (-797 |#1|) (-146)) (-139 |#2|)) (T -152))
+((-2794 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *3)) (-5 *4 (-801 *5)) (-4 *5 (-1013)) (-4 *3 (-139 *6)) (-4 (-858 *6) (-797 *5)) (-4 *6 (-13 (-797 *5) (-146))) (-5 *1 (-152 *5 *6 *3)))))
+((-1407 (((-584 |#1|) (-584 |#1|) |#1|) 41 T ELT)) (-1406 (((-584 |#1|) |#1| (-584 |#1|)) 20 T ELT)) (-2075 (((-584 |#1|) (-584 (-584 |#1|)) (-584 |#1|)) 36 T ELT) ((|#1| (-584 |#1|) (-584 |#1|)) 32 T ELT)))
+(((-153 |#1|) (-10 -7 (-15 -1406 ((-584 |#1|) |#1| (-584 |#1|))) (-15 -2075 (|#1| (-584 |#1|) (-584 |#1|))) (-15 -2075 ((-584 |#1|) (-584 (-584 |#1|)) (-584 |#1|))) (-15 -1407 ((-584 |#1|) (-584 |#1|) |#1|))) (-257)) (T -153))
+((-1407 (*1 *2 *2 *3) (-12 (-5 *2 (-584 *3)) (-4 *3 (-257)) (-5 *1 (-153 *3)))) (-2075 (*1 *2 *3 *2) (-12 (-5 *3 (-584 (-584 *4))) (-5 *2 (-584 *4)) (-4 *4 (-257)) (-5 *1 (-153 *4)))) (-2075 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-153 *2)) (-4 *2 (-257)))) (-1406 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-257)) (-5 *1 (-153 *3)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3315 (((-1129) $) 14 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3203 (((-1048) $) 11 T ELT)) (-3942 (((-773) $) 21 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-154) (-13 (-995) (-10 -8 (-15 -3203 ((-1048) $)) (-15 -3315 ((-1129) $))))) (T -154))
+((-3203 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-154)))) (-3315 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-154)))))
+((-1416 (((-2 (|:| |start| |#2|) (|:| -1777 (-345 |#2|))) |#2|) 66 T ELT)) (-1415 ((|#1| |#1|) 58 T ELT)) (-1414 (((-142 |#1|) |#2|) 94 T ELT)) (-1413 ((|#1| |#2|) 137 T ELT) ((|#1| |#2| |#1|) 90 T ELT)) (-1412 ((|#2| |#2|) 91 T ELT)) (-1411 (((-345 |#2|) |#2| |#1|) 119 T ELT) (((-345 |#2|) |#2| |#1| (-85)) 88 T ELT)) (-3129 ((|#1| |#2|) 118 T ELT)) (-1410 ((|#2| |#2|) 131 T ELT)) (-3728 (((-345 |#2|) |#2|) 154 T ELT) (((-345 |#2|) |#2| |#1|) 33 T ELT) (((-345 |#2|) |#2| |#1| (-85)) 153 T ELT)) (-1409 (((-584 (-2 (|:| -1777 (-584 |#2|)) (|:| -1594 |#1|))) |#2| |#2|) 152 T ELT) (((-584 (-2 (|:| -1777 (-584 |#2|)) (|:| -1594 |#1|))) |#2| |#2| (-85)) 82 T ELT)) (-1408 (((-584 (-142 |#1|)) |#2| |#1|) 42 T ELT) (((-584 (-142 |#1|)) |#2|) 43 T ELT)))
+(((-155 |#1| |#2|) (-10 -7 (-15 -1408 ((-584 (-142 |#1|)) |#2|)) (-15 -1408 ((-584 (-142 |#1|)) |#2| |#1|)) (-15 -1409 ((-584 (-2 (|:| -1777 (-584 |#2|)) (|:| -1594 |#1|))) |#2| |#2| (-85))) (-15 -1409 ((-584 (-2 (|:| -1777 (-584 |#2|)) (|:| -1594 |#1|))) |#2| |#2|)) (-15 -3728 ((-345 |#2|) |#2| |#1| (-85))) (-15 -3728 ((-345 |#2|) |#2| |#1|)) (-15 -3728 ((-345 |#2|) |#2|)) (-15 -1410 (|#2| |#2|)) (-15 -3129 (|#1| |#2|)) (-15 -1411 ((-345 |#2|) |#2| |#1| (-85))) (-15 -1411 ((-345 |#2|) |#2| |#1|)) (-15 -1412 (|#2| |#2|)) (-15 -1413 (|#1| |#2| |#1|)) (-15 -1413 (|#1| |#2|)) (-15 -1414 ((-142 |#1|) |#2|)) (-15 -1415 (|#1| |#1|)) (-15 -1416 ((-2 (|:| |start| |#2|) (|:| -1777 (-345 |#2|))) |#2|))) (-13 (-311) (-756)) (-1154 (-142 |#1|))) (T -155))
+((-1416 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-756))) (-5 *2 (-2 (|:| |start| *3) (|:| -1777 (-345 *3)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) (-1415 (*1 *2 *2) (-12 (-4 *2 (-13 (-311) (-756))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1154 (-142 *2))))) (-1414 (*1 *2 *3) (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-311) (-756))) (-4 *3 (-1154 *2)))) (-1413 (*1 *2 *3) (-12 (-4 *2 (-13 (-311) (-756))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1154 (-142 *2))))) (-1413 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-311) (-756))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1154 (-142 *2))))) (-1412 (*1 *2 *2) (-12 (-4 *3 (-13 (-311) (-756))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1154 (-142 *3))))) (-1411 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-311) (-756))) (-5 *2 (-345 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) (-1411 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-311) (-756))) (-5 *2 (-345 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) (-3129 (*1 *2 *3) (-12 (-4 *2 (-13 (-311) (-756))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1154 (-142 *2))))) (-1410 (*1 *2 *2) (-12 (-4 *3 (-13 (-311) (-756))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1154 (-142 *3))))) (-3728 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-756))) (-5 *2 (-345 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) (-3728 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-311) (-756))) (-5 *2 (-345 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) (-3728 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-311) (-756))) (-5 *2 (-345 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) (-1409 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-311) (-756))) (-5 *2 (-584 (-2 (|:| -1777 (-584 *3)) (|:| -1594 *4)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) (-1409 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-311) (-756))) (-5 *2 (-584 (-2 (|:| -1777 (-584 *3)) (|:| -1594 *5)))) (-5 *1 (-155 *5 *3)) (-4 *3 (-1154 (-142 *5))))) (-1408 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-311) (-756))) (-5 *2 (-584 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))) (-1408 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-756))) (-5 *2 (-584 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))))
+((-1417 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-1418 (((-695) |#2|) 18 T ELT)) (-1419 ((|#2| |#2| |#2|) 20 T ELT)))
+(((-156 |#1| |#2|) (-10 -7 (-15 -1417 ((-3 |#2| "failed") |#2|)) (-15 -1418 ((-695) |#2|)) (-15 -1419 (|#2| |#2| |#2|))) (-1128) (-617 |#1|)) (T -156))
+((-1419 (*1 *2 *2 *2) (-12 (-4 *3 (-1128)) (-5 *1 (-156 *3 *2)) (-4 *2 (-617 *3)))) (-1418 (*1 *2 *3) (-12 (-4 *4 (-1128)) (-5 *2 (-695)) (-5 *1 (-156 *4 *3)) (-4 *3 (-617 *4)))) (-1417 (*1 *2 *2) (|partial| -12 (-4 *3 (-1128)) (-5 *1 (-156 *3 *2)) (-4 *2 (-617 *3)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-1422 (((-584 (-775)) $) NIL T ELT)) (-3538 (((-444) $) 8 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-1424 (((-161) $) 10 T ELT)) (-2631 (((-85) $ (-444)) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1420 (((-633 $) (-444)) 17 T ELT)) (-1423 (((-584 (-85)) $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2519 (((-55) $) 12 T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-157) (-13 (-160) (-10 -8 (-15 -1420 ((-633 $) (-444)))))) (T -157))
+((-1420 (*1 *2 *3) (-12 (-5 *3 (-444)) (-5 *2 (-633 (-157))) (-5 *1 (-157)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1480 ((|#1| $) 7 T ELT)) (-3942 (((-773) $) 14 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1421 (((-584 (-1094)) $) 10 T ELT)) (-3054 (((-85) $ $) 12 T ELT)))
+(((-158 |#1|) (-13 (-1013) (-10 -8 (-15 -1480 (|#1| $)) (-15 -1421 ((-584 (-1094)) $)))) (-160)) (T -158))
+((-1480 (*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-160)))) (-1421 (*1 *2 *1) (-12 (-5 *2 (-584 (-1094))) (-5 *1 (-158 *3)) (-4 *3 (-160)))))
+((-1422 (((-584 (-775)) $) 16 T ELT)) (-1424 (((-161) $) 8 T ELT)) (-1423 (((-584 (-85)) $) 13 T ELT)) (-2519 (((-55) $) 10 T ELT)))
+(((-159 |#1|) (-10 -7 (-15 -1422 ((-584 (-775)) |#1|)) (-15 -1423 ((-584 (-85)) |#1|)) (-15 -1424 ((-161) |#1|)) (-15 -2519 ((-55) |#1|))) (-160)) (T -159))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-1422 (((-584 (-775)) $) 22 T ELT)) (-3538 (((-444) $) 19 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-1424 (((-161) $) 24 T ELT)) (-2631 (((-85) $ (-444)) 17 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-1423 (((-584 (-85)) $) 23 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2519 (((-55) $) 18 T ELT)) (-3054 (((-85) $ $) 8 T ELT)))
(((-160) (-113)) (T -160))
-((-1423 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-161)))) (-1422 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-583 (-85))))) (-1421 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-583 (-774))))))
-(-13 (-747 (-444)) (-10 -8 (-15 -1423 ((-161) $)) (-15 -1422 ((-583 (-85)) $)) (-15 -1421 ((-583 (-774)) $))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-747 (-444)) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-3940 (((-772) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 10 T ELT)))
-(((-161) (-13 (-1012) (-10 -8 (-15 -9 ($) -3946) (-15 -8 ($) -3946) (-15 -7 ($) -3946)))) (T -161))
+((-1424 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-161)))) (-1423 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-584 (-85))))) (-1422 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-584 (-775))))))
+(-13 (-748 (-444)) (-10 -8 (-15 -1424 ((-161) $)) (-15 -1423 ((-584 (-85)) $)) (-15 -1422 ((-584 (-775)) $))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-748 (-444)) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-3942 (((-773) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 10 T ELT)))
+(((-161) (-13 (-1013) (-10 -8 (-15 -9 ($) -3948) (-15 -8 ($) -3948) (-15 -7 ($) -3948)))) (T -161))
((-9 (*1 *1) (-5 *1 (-161))) (-8 (*1 *1) (-5 *1 (-161))) (-7 (*1 *1) (-5 *1 (-161))))
-((-3636 ((|#2| |#2|) 28 T ELT)) (-3639 (((-85) |#2|) 19 T ELT)) (-3637 (((-264 |#1|) |#2|) 12 T ELT)) (-3638 (((-264 |#1|) |#2|) 14 T ELT)) (-3634 ((|#2| |#2| (-1088)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-3640 (((-142 (-264 |#1|)) |#2|) 10 T ELT)) (-3635 ((|#2| |#2| (-1088)) 66 T ELT) ((|#2| |#2|) 60 T ELT)))
-(((-162 |#1| |#2|) (-10 -7 (-15 -3634 (|#2| |#2|)) (-15 -3634 (|#2| |#2| (-1088))) (-15 -3635 (|#2| |#2|)) (-15 -3635 (|#2| |#2| (-1088))) (-15 -3637 ((-264 |#1|) |#2|)) (-15 -3638 ((-264 |#1|) |#2|)) (-15 -3639 ((-85) |#2|)) (-15 -3636 (|#2| |#2|)) (-15 -3640 ((-142 (-264 |#1|)) |#2|))) (-13 (-494) (-950 (-483))) (-13 (-27) (-1113) (-361 (-142 |#1|)))) (T -162))
-((-3640 (*1 *2 *3) (-12 (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *2 (-142 (-264 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 (-142 *4)))))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-13 (-494) (-950 (-483)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-361 (-142 *3)))))) (-3639 (*1 *2 *3) (-12 (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 (-142 *4)))))) (-3638 (*1 *2 *3) (-12 (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *2 (-264 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 (-142 *4)))))) (-3637 (*1 *2 *3) (-12 (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *2 (-264 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 (-142 *4)))))) (-3635 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-361 (-142 *4)))))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-13 (-494) (-950 (-483)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-361 (-142 *3)))))) (-3634 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-361 (-142 *4)))))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-13 (-494) (-950 (-483)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-361 (-142 *3)))))))
-((-1427 (((-1177 (-630 (-857 |#1|))) (-1177 (-630 |#1|))) 26 T ELT)) (-3940 (((-1177 (-630 (-347 (-857 |#1|)))) (-1177 (-630 |#1|))) 37 T ELT)))
-(((-163 |#1|) (-10 -7 (-15 -1427 ((-1177 (-630 (-857 |#1|))) (-1177 (-630 |#1|)))) (-15 -3940 ((-1177 (-630 (-347 (-857 |#1|)))) (-1177 (-630 |#1|))))) (-146)) (T -163))
-((-3940 (*1 *2 *3) (-12 (-5 *3 (-1177 (-630 *4))) (-4 *4 (-146)) (-5 *2 (-1177 (-630 (-347 (-857 *4))))) (-5 *1 (-163 *4)))) (-1427 (*1 *2 *3) (-12 (-5 *3 (-1177 (-630 *4))) (-4 *4 (-146)) (-5 *2 (-1177 (-630 (-857 *4)))) (-5 *1 (-163 *4)))))
-((-1435 (((-1090 (-347 (-483))) (-1090 (-347 (-483))) (-1090 (-347 (-483)))) 93 T ELT)) (-1437 (((-1090 (-347 (-483))) (-583 (-483)) (-583 (-483))) 106 T ELT)) (-1428 (((-1090 (-347 (-483))) (-830)) 54 T ELT)) (-3848 (((-1090 (-347 (-483))) (-830)) 79 T ELT)) (-3762 (((-347 (-483)) (-1090 (-347 (-483)))) 89 T ELT)) (-1429 (((-1090 (-347 (-483))) (-830)) 37 T ELT)) (-1432 (((-1090 (-347 (-483))) (-830)) 66 T ELT)) (-1431 (((-1090 (-347 (-483))) (-830)) 61 T ELT)) (-1434 (((-1090 (-347 (-483))) (-1090 (-347 (-483))) (-1090 (-347 (-483)))) 87 T ELT)) (-2887 (((-1090 (-347 (-483))) (-830)) 29 T ELT)) (-1433 (((-347 (-483)) (-1090 (-347 (-483))) (-1090 (-347 (-483)))) 91 T ELT)) (-1430 (((-1090 (-347 (-483))) (-830)) 35 T ELT)) (-1436 (((-1090 (-347 (-483))) (-583 (-830))) 100 T ELT)))
-(((-164) (-10 -7 (-15 -2887 ((-1090 (-347 (-483))) (-830))) (-15 -1428 ((-1090 (-347 (-483))) (-830))) (-15 -1429 ((-1090 (-347 (-483))) (-830))) (-15 -1430 ((-1090 (-347 (-483))) (-830))) (-15 -1431 ((-1090 (-347 (-483))) (-830))) (-15 -1432 ((-1090 (-347 (-483))) (-830))) (-15 -3848 ((-1090 (-347 (-483))) (-830))) (-15 -1433 ((-347 (-483)) (-1090 (-347 (-483))) (-1090 (-347 (-483))))) (-15 -1434 ((-1090 (-347 (-483))) (-1090 (-347 (-483))) (-1090 (-347 (-483))))) (-15 -3762 ((-347 (-483)) (-1090 (-347 (-483))))) (-15 -1435 ((-1090 (-347 (-483))) (-1090 (-347 (-483))) (-1090 (-347 (-483))))) (-15 -1436 ((-1090 (-347 (-483))) (-583 (-830)))) (-15 -1437 ((-1090 (-347 (-483))) (-583 (-483)) (-583 (-483)))))) (T -164))
-((-1437 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164)))) (-1436 (*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164)))) (-1435 (*1 *2 *2 *2) (-12 (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164)))) (-3762 (*1 *2 *3) (-12 (-5 *3 (-1090 (-347 (-483)))) (-5 *2 (-347 (-483))) (-5 *1 (-164)))) (-1434 (*1 *2 *2 *2) (-12 (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164)))) (-1433 (*1 *2 *3 *3) (-12 (-5 *3 (-1090 (-347 (-483)))) (-5 *2 (-347 (-483))) (-5 *1 (-164)))) (-3848 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164)))) (-1432 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164)))) (-1430 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164)))) (-1429 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164)))) (-1428 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164)))))
-((-1439 (((-345 (-1083 (-483))) (-483)) 38 T ELT)) (-1438 (((-583 (-1083 (-483))) (-483)) 33 T ELT)) (-2797 (((-1083 (-483)) (-483)) 28 T ELT)))
-(((-165) (-10 -7 (-15 -1438 ((-583 (-1083 (-483))) (-483))) (-15 -2797 ((-1083 (-483)) (-483))) (-15 -1439 ((-345 (-1083 (-483))) (-483))))) (T -165))
-((-1439 (*1 *2 *3) (-12 (-5 *2 (-345 (-1083 (-483)))) (-5 *1 (-165)) (-5 *3 (-483)))) (-2797 (*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-165)) (-5 *3 (-483)))) (-1438 (*1 *2 *3) (-12 (-5 *2 (-583 (-1083 (-483)))) (-5 *1 (-165)) (-5 *3 (-483)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-1440 ((|#2| $ (-694) |#2|) 11 T ELT)) (-3108 ((|#2| $ (-694)) 10 T ELT)) (-3608 (($) 8 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 23 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 13 T ELT)))
-(((-166 |#1| |#2|) (-13 (-1012) (-10 -8 (-15 -3608 ($)) (-15 -3108 (|#2| $ (-694))) (-15 -1440 (|#2| $ (-694) |#2|)))) (-830) (-1012)) (T -166))
-((-3608 (*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-830)) (-4 *3 (-1012)))) (-3108 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *2 (-1012)) (-5 *1 (-166 *4 *2)) (-14 *4 (-830)))) (-1440 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-166 *4 *2)) (-14 *4 (-830)) (-4 *2 (-1012)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1961 (((-1183) $) 36 T ELT) (((-1183) $ (-830) (-830)) 40 T ELT)) (-3794 (($ $ (-902)) 19 T ELT) (((-203 (-1071)) $ (-1088)) 15 T ELT)) (-3611 (((-1183) $) 34 T ELT)) (-3940 (((-772) $) 31 T ELT) (($ (-583 |#1|)) 8 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $ $) 26 T ELT)) (-3833 (($ $ $) 22 T ELT)))
-(((-167 |#1|) (-13 (-1012) (-555 (-583 |#1|)) (-10 -8 (-15 -3794 ($ $ (-902))) (-15 -3794 ((-203 (-1071)) $ (-1088))) (-15 -3833 ($ $ $)) (-15 -3831 ($ $ $)) (-15 -3611 ((-1183) $)) (-15 -1961 ((-1183) $)) (-15 -1961 ((-1183) $ (-830) (-830))))) (-13 (-756) (-10 -8 (-15 -3794 ((-1071) $ (-1088))) (-15 -3611 ((-1183) $)) (-15 -1961 ((-1183) $))))) (T -167))
-((-3794 (*1 *1 *1 *2) (-12 (-5 *2 (-902)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3794 ((-1071) $ (-1088))) (-15 -3611 ((-1183) $)) (-15 -1961 ((-1183) $))))))) (-3794 (*1 *2 *1 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-203 (-1071))) (-5 *1 (-167 *4)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3794 ((-1071) $ *3)) (-15 -3611 ((-1183) $)) (-15 -1961 ((-1183) $))))))) (-3833 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-756) (-10 -8 (-15 -3794 ((-1071) $ (-1088))) (-15 -3611 ((-1183) $)) (-15 -1961 ((-1183) $))))))) (-3831 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-756) (-10 -8 (-15 -3794 ((-1071) $ (-1088))) (-15 -3611 ((-1183) $)) (-15 -1961 ((-1183) $))))))) (-3611 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3794 ((-1071) $ (-1088))) (-15 -3611 (*2 $)) (-15 -1961 (*2 $))))))) (-1961 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3794 ((-1071) $ (-1088))) (-15 -3611 (*2 $)) (-15 -1961 (*2 $))))))) (-1961 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1183)) (-5 *1 (-167 *4)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3794 ((-1071) $ (-1088))) (-15 -3611 (*2 $)) (-15 -1961 (*2 $))))))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) NIL T ELT)) (-2990 (($) NIL T ELT)) (-2527 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2853 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2006 (((-830) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 (($ (-830)) 10 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2847 (($ (-577 |#1|)) 11 T ELT)) (-3940 (((-772) $) 18 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT)))
-(((-168 |#1|) (-13 (-752) (-10 -8 (-15 -2847 ($ (-577 |#1|))))) (-583 (-1088))) (T -168))
-((-2847 (*1 *1 *2) (-12 (-5 *2 (-577 *3)) (-14 *3 (-583 (-1088))) (-5 *1 (-168 *3)))))
-((-1441 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT)))
-(((-169 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1441 (|#2| |#4| (-1 |#2| |#2|)))) (-311) (-1153 |#1|) (-1153 (-347 |#2|)) (-290 |#1| |#2| |#3|)) (T -169))
-((-1441 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-311)) (-4 *6 (-1153 (-347 *2))) (-4 *2 (-1153 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-290 *5 *2 *6)))))
-((-1445 ((|#2| |#2| (-694) |#2|) 55 T ELT)) (-1444 ((|#2| |#2| (-694) |#2|) 51 T ELT)) (-2367 (((-583 |#2|) (-583 (-2 (|:| |deg| (-694)) (|:| -2571 |#2|)))) 79 T ELT)) (-1443 (((-583 (-2 (|:| |deg| (-694)) (|:| -2571 |#2|))) |#2|) 72 T ELT)) (-1446 (((-85) |#2|) 70 T ELT)) (-3727 (((-345 |#2|) |#2|) 92 T ELT)) (-3726 (((-345 |#2|) |#2|) 91 T ELT)) (-2368 ((|#2| |#2| (-694) |#2|) 49 T ELT)) (-1442 (((-2 (|:| |cont| |#1|) (|:| -1776 (-583 (-2 (|:| |irr| |#2|) (|:| -2391 (-483)))))) |#2| (-85)) 86 T ELT)))
-(((-170 |#1| |#2|) (-10 -7 (-15 -3726 ((-345 |#2|) |#2|)) (-15 -3727 ((-345 |#2|) |#2|)) (-15 -1442 ((-2 (|:| |cont| |#1|) (|:| -1776 (-583 (-2 (|:| |irr| |#2|) (|:| -2391 (-483)))))) |#2| (-85))) (-15 -1443 ((-583 (-2 (|:| |deg| (-694)) (|:| -2571 |#2|))) |#2|)) (-15 -2367 ((-583 |#2|) (-583 (-2 (|:| |deg| (-694)) (|:| -2571 |#2|))))) (-15 -2368 (|#2| |#2| (-694) |#2|)) (-15 -1444 (|#2| |#2| (-694) |#2|)) (-15 -1445 (|#2| |#2| (-694) |#2|)) (-15 -1446 ((-85) |#2|))) (-298) (-1153 |#1|)) (T -170))
-((-1446 (*1 *2 *3) (-12 (-4 *4 (-298)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1153 *4)))) (-1445 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-694)) (-4 *4 (-298)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1153 *4)))) (-1444 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-694)) (-4 *4 (-298)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1153 *4)))) (-2368 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-694)) (-4 *4 (-298)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1153 *4)))) (-2367 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |deg| (-694)) (|:| -2571 *5)))) (-4 *5 (-1153 *4)) (-4 *4 (-298)) (-5 *2 (-583 *5)) (-5 *1 (-170 *4 *5)))) (-1443 (*1 *2 *3) (-12 (-4 *4 (-298)) (-5 *2 (-583 (-2 (|:| |deg| (-694)) (|:| -2571 *3)))) (-5 *1 (-170 *4 *3)) (-4 *3 (-1153 *4)))) (-1442 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-298)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1776 (-583 (-2 (|:| |irr| *3) (|:| -2391 (-483))))))) (-5 *1 (-170 *5 *3)) (-4 *3 (-1153 *5)))) (-3727 (*1 *2 *3) (-12 (-4 *4 (-298)) (-5 *2 (-345 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1153 *4)))) (-3726 (*1 *2 *3) (-12 (-4 *4 (-298)) (-5 *2 (-345 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1153 *4)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3124 (((-483) $) NIL (|has| (-483) (-257)) ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-821)) ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-821)) ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3617 (((-483) $) NIL (|has| (-483) (-740)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL T ELT) (((-3 (-1088) #1#) $) NIL (|has| (-483) (-950 (-1088))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| (-483) (-950 (-483))) ELT) (((-3 (-483) #1#) $) NIL (|has| (-483) (-950 (-483))) ELT)) (-3151 (((-483) $) NIL T ELT) (((-1088) $) NIL (|has| (-483) (-950 (-1088))) ELT) (((-347 (-483)) $) NIL (|has| (-483) (-950 (-483))) ELT) (((-483) $) NIL (|has| (-483) (-950 (-483))) ELT)) (-2560 (($ $ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| (-483) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| (-483) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL T ELT) (((-630 (-483)) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) NIL (|has| (-483) (-482)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-3181 (((-85) $) NIL (|has| (-483) (-740)) ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (|has| (-483) (-796 (-483))) ELT) (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (|has| (-483) (-796 (-327))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2992 (($ $) NIL T ELT)) (-2994 (((-483) $) NIL T ELT)) (-3439 (((-632 $) $) NIL (|has| (-483) (-1064)) ELT)) (-3182 (((-85) $) NIL (|has| (-483) (-740)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2527 (($ $ $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| (-483) (-756)) ELT)) (-3952 (($ (-1 (-483) (-483)) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| (-483) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| (-483) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL T ELT) (((-630 (-483)) (-1177 $)) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL (|has| (-483) (-1064)) CONST)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3123 (($ $) NIL (|has| (-483) (-257)) ELT) (((-347 (-483)) $) NIL T ELT)) (-3125 (((-483) $) NIL (|has| (-483) (-482)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-821)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3762 (($ $ (-583 (-483)) (-583 (-483))) NIL (|has| (-483) (-259 (-483))) ELT) (($ $ (-483) (-483)) NIL (|has| (-483) (-259 (-483))) ELT) (($ $ (-248 (-483))) NIL (|has| (-483) (-259 (-483))) ELT) (($ $ (-583 (-248 (-483)))) NIL (|has| (-483) (-259 (-483))) ELT) (($ $ (-583 (-1088)) (-583 (-483))) NIL (|has| (-483) (-452 (-1088) (-483))) ELT) (($ $ (-1088) (-483)) NIL (|has| (-483) (-452 (-1088) (-483))) ELT)) (-1604 (((-694) $) NIL T ELT)) (-3794 (($ $ (-483)) NIL (|has| (-483) (-241 (-483) (-483))) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-3752 (($ $ (-1 (-483) (-483))) NIL T ELT) (($ $ (-1 (-483) (-483)) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $) NIL (|has| (-483) (-189)) ELT) (($ $ (-694)) NIL (|has| (-483) (-189)) ELT)) (-2991 (($ $) NIL T ELT)) (-2993 (((-483) $) NIL T ELT)) (-1447 (($ (-347 (-483))) 9 T ELT)) (-3966 (((-800 (-483)) $) NIL (|has| (-483) (-553 (-800 (-483)))) ELT) (((-800 (-327)) $) NIL (|has| (-483) (-553 (-800 (-327)))) ELT) (((-472) $) NIL (|has| (-483) (-553 (-472))) ELT) (((-327) $) NIL (|has| (-483) (-933)) ELT) (((-179) $) NIL (|has| (-483) (-933)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-483) (-821))) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) 8 T ELT) (($ (-483)) NIL T ELT) (($ (-1088)) NIL (|has| (-483) (-950 (-1088))) ELT) (((-347 (-483)) $) NIL T ELT) (((-917 10) $) 10 T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-483) (-821))) (|has| (-483) (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-3126 (((-483) $) NIL (|has| (-483) (-482)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3377 (($ $) NIL (|has| (-483) (-740)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-1 (-483) (-483))) NIL T ELT) (($ $ (-1 (-483) (-483)) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $) NIL (|has| (-483) (-189)) ELT) (($ $ (-694)) NIL (|has| (-483) (-189)) ELT)) (-2562 (((-85) $ $) NIL (|has| (-483) (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| (-483) (-756)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL (|has| (-483) (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| (-483) (-756)) ELT)) (-3943 (($ $ $) NIL T ELT) (($ (-483) (-483)) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ (-483)) NIL T ELT)))
-(((-171) (-13 (-904 (-483)) (-552 (-347 (-483))) (-552 (-917 10)) (-10 -8 (-15 -3123 ((-347 (-483)) $)) (-15 -1447 ($ (-347 (-483))))))) (T -171))
-((-3123 (*1 *2 *1) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-171)))) (-1447 (*1 *1 *2) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-171)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3314 (((-1027) $) 14 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3173 (((-420) $) 11 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 24 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3228 (((-1047) $) 16 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-172) (-13 (-994) (-10 -8 (-15 -3173 ((-420) $)) (-15 -3314 ((-1027) $)) (-15 -3228 ((-1047) $))))) (T -172))
-((-3173 (*1 *2 *1) (-12 (-5 *2 (-420)) (-5 *1 (-172)))) (-3314 (*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-172)))) (-3228 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-172)))))
-((-3806 (((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1003 (-750 |#2|)) (-1071)) 29 T ELT) (((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1003 (-750 |#2|))) 25 T ELT)) (-1448 (((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1088) (-750 |#2|) (-750 |#2|) (-85)) 17 T ELT)))
-(((-173 |#1| |#2|) (-10 -7 (-15 -3806 ((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1003 (-750 |#2|)))) (-15 -3806 ((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1003 (-750 |#2|)) (-1071))) (-15 -1448 ((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1088) (-750 |#2|) (-750 |#2|) (-85)))) (-13 (-257) (-120) (-950 (-483)) (-580 (-483))) (-13 (-1113) (-871) (-29 |#1|))) (T -173))
-((-1448 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1088)) (-5 *6 (-85)) (-4 *7 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (-4 *3 (-13 (-1113) (-871) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-173 *7 *3)) (-5 *5 (-750 *3)))) (-3806 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1003 (-750 *3))) (-5 *5 (-1071)) (-4 *3 (-13 (-1113) (-871) (-29 *6))) (-4 *6 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (-5 *2 (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *6 *3)))) (-3806 (*1 *2 *3 *4) (-12 (-5 *4 (-1003 (-750 *3))) (-4 *3 (-13 (-1113) (-871) (-29 *5))) (-4 *5 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (-5 *2 (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *5 *3)))))
-((-3806 (((-3 (|:| |f1| (-750 (-264 |#1|))) (|:| |f2| (-583 (-750 (-264 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-347 (-857 |#1|)) (-1003 (-750 (-347 (-857 |#1|)))) (-1071)) 49 T ELT) (((-3 (|:| |f1| (-750 (-264 |#1|))) (|:| |f2| (-583 (-750 (-264 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-347 (-857 |#1|)) (-1003 (-750 (-347 (-857 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-750 (-264 |#1|))) (|:| |f2| (-583 (-750 (-264 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-347 (-857 |#1|)) (-1003 (-750 (-264 |#1|))) (-1071)) 50 T ELT) (((-3 (|:| |f1| (-750 (-264 |#1|))) (|:| |f2| (-583 (-750 (-264 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-347 (-857 |#1|)) (-1003 (-750 (-264 |#1|)))) 22 T ELT)))
-(((-174 |#1|) (-10 -7 (-15 -3806 ((-3 (|:| |f1| (-750 (-264 |#1|))) (|:| |f2| (-583 (-750 (-264 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-347 (-857 |#1|)) (-1003 (-750 (-264 |#1|))))) (-15 -3806 ((-3 (|:| |f1| (-750 (-264 |#1|))) (|:| |f2| (-583 (-750 (-264 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-347 (-857 |#1|)) (-1003 (-750 (-264 |#1|))) (-1071))) (-15 -3806 ((-3 (|:| |f1| (-750 (-264 |#1|))) (|:| |f2| (-583 (-750 (-264 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-347 (-857 |#1|)) (-1003 (-750 (-347 (-857 |#1|)))))) (-15 -3806 ((-3 (|:| |f1| (-750 (-264 |#1|))) (|:| |f2| (-583 (-750 (-264 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-347 (-857 |#1|)) (-1003 (-750 (-347 (-857 |#1|)))) (-1071)))) (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (T -174))
-((-3806 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1003 (-750 (-347 (-857 *6))))) (-5 *5 (-1071)) (-5 *3 (-347 (-857 *6))) (-4 *6 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (-5 *2 (-3 (|:| |f1| (-750 (-264 *6))) (|:| |f2| (-583 (-750 (-264 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-174 *6)))) (-3806 (*1 *2 *3 *4) (-12 (-5 *4 (-1003 (-750 (-347 (-857 *5))))) (-5 *3 (-347 (-857 *5))) (-4 *5 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (-5 *2 (-3 (|:| |f1| (-750 (-264 *5))) (|:| |f2| (-583 (-750 (-264 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5)))) (-3806 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-347 (-857 *6))) (-5 *4 (-1003 (-750 (-264 *6)))) (-5 *5 (-1071)) (-4 *6 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (-5 *2 (-3 (|:| |f1| (-750 (-264 *6))) (|:| |f2| (-583 (-750 (-264 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *6)))) (-3806 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-1003 (-750 (-264 *5)))) (-4 *5 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (-5 *2 (-3 (|:| |f1| (-750 (-264 *5))) (|:| |f2| (-583 (-750 (-264 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5)))))
-((-3836 (((-2 (|:| -2000 (-1083 |#1|)) (|:| |deg| (-830))) (-1083 |#1|)) 26 T ELT)) (-3957 (((-583 (-264 |#2|)) (-264 |#2|) (-830)) 51 T ELT)))
-(((-175 |#1| |#2|) (-10 -7 (-15 -3836 ((-2 (|:| -2000 (-1083 |#1|)) (|:| |deg| (-830))) (-1083 |#1|))) (-15 -3957 ((-583 (-264 |#2|)) (-264 |#2|) (-830)))) (-961) (-494)) (T -175))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-4 *6 (-494)) (-5 *2 (-583 (-264 *6))) (-5 *1 (-175 *5 *6)) (-5 *3 (-264 *6)) (-4 *5 (-961)))) (-3836 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-2 (|:| -2000 (-1083 *4)) (|:| |deg| (-830)))) (-5 *1 (-175 *4 *5)) (-5 *3 (-1083 *4)) (-4 *5 (-494)))))
-((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1492 ((|#1| $) NIL T ELT)) (-3318 ((|#1| $) 31 T ELT)) (-3718 (($) NIL T CONST)) (-2998 (($ $) NIL T ELT)) (-2293 (($ $) 40 T ELT)) (-3320 ((|#1| |#1| $) NIL T ELT)) (-3319 ((|#1| $) NIL T ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3827 (((-694) $) NIL T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-1271 ((|#1| $) NIL T ELT)) (-1490 ((|#1| |#1| $) 36 T ELT)) (-1489 ((|#1| |#1| $) 38 T ELT)) (-3603 (($ |#1| $) NIL T ELT)) (-2599 (((-694) $) 34 T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-2997 ((|#1| $) NIL T ELT)) (-1488 ((|#1| $) 32 T ELT)) (-1487 ((|#1| $) 30 T ELT)) (-1272 ((|#1| $) NIL T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3000 ((|#1| |#1| $) NIL T ELT)) (-3397 (((-85) $) 9 T ELT)) (-3559 (($) NIL T ELT)) (-2999 ((|#1| $) NIL T ELT)) (-1493 (($) NIL T ELT) (($ (-583 |#1|)) 17 T ELT)) (-3317 (((-694) $) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1491 ((|#1| $) 14 T ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1273 (($ (-583 |#1|)) NIL T ELT)) (-2996 ((|#1| $) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-176 |#1|) (-13 (-214 |#1|) (-10 -8 (-15 -1493 ($ (-583 |#1|))))) (-1012)) (T -176))
-((-1493 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-5 *1 (-176 *3)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1450 (($ (-264 |#1|)) 24 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2660 (((-85) $) NIL T ELT)) (-3152 (((-3 (-264 |#1|) #1#) $) NIL T ELT)) (-3151 (((-264 |#1|) $) NIL T ELT)) (-3953 (($ $) 32 T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3952 (($ (-1 (-264 |#1|) (-264 |#1|)) $) NIL T ELT)) (-3169 (((-264 |#1|) $) NIL T ELT)) (-1452 (($ $) 31 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1451 (((-85) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2405 (($ (-694)) NIL T ELT)) (-1449 (($ $) 33 T ELT)) (-3942 (((-483) $) NIL T ELT)) (-3940 (((-772) $) 65 T ELT) (($ (-483)) NIL T ELT) (($ (-264 |#1|)) NIL T ELT)) (-3671 (((-264 |#1|) $ $) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 26 T CONST)) (-2662 (($) NIL T CONST)) (-3052 (((-85) $ $) 29 T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 20 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-264 |#1|) $) 19 T ELT)))
-(((-177 |#1| |#2|) (-13 (-560 (-264 |#1|)) (-950 (-264 |#1|)) (-10 -8 (-15 -3169 ((-264 |#1|) $)) (-15 -1452 ($ $)) (-15 -3953 ($ $)) (-15 -3671 ((-264 |#1|) $ $)) (-15 -2405 ($ (-694))) (-15 -1451 ((-85) $)) (-15 -2660 ((-85) $)) (-15 -3942 ((-483) $)) (-15 -3952 ($ (-1 (-264 |#1|) (-264 |#1|)) $)) (-15 -1450 ($ (-264 |#1|))) (-15 -1449 ($ $)))) (-13 (-961) (-756)) (-583 (-1088))) (T -177))
-((-3169 (*1 *2 *1) (-12 (-5 *2 (-264 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1088))))) (-1452 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756))) (-14 *3 (-583 (-1088))))) (-3953 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756))) (-14 *3 (-583 (-1088))))) (-3671 (*1 *2 *1 *1) (-12 (-5 *2 (-264 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1088))))) (-2405 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1088))))) (-1451 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1088))))) (-2660 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1088))))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1088))))) (-3952 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-264 *3) (-264 *3))) (-4 *3 (-13 (-961) (-756))) (-5 *1 (-177 *3 *4)) (-14 *4 (-583 (-1088))))) (-1450 (*1 *1 *2) (-12 (-5 *2 (-264 *3)) (-4 *3 (-13 (-961) (-756))) (-5 *1 (-177 *3 *4)) (-14 *4 (-583 (-1088))))) (-1449 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756))) (-14 *3 (-583 (-1088))))))
-((-1453 (((-85) (-1071)) 26 T ELT)) (-1454 (((-3 (-750 |#2|) #1="failed") (-550 |#2|) |#2| (-750 |#2|) (-750 |#2|) (-85)) 35 T ELT)) (-1455 (((-3 (-85) #1#) (-1083 |#2|) (-750 |#2|) (-750 |#2|) (-85)) 83 T ELT) (((-3 (-85) #1#) (-857 |#1|) (-1088) (-750 |#2|) (-750 |#2|) (-85)) 84 T ELT)))
-(((-178 |#1| |#2|) (-10 -7 (-15 -1453 ((-85) (-1071))) (-15 -1454 ((-3 (-750 |#2|) #1="failed") (-550 |#2|) |#2| (-750 |#2|) (-750 |#2|) (-85))) (-15 -1455 ((-3 (-85) #1#) (-857 |#1|) (-1088) (-750 |#2|) (-750 |#2|) (-85))) (-15 -1455 ((-3 (-85) #1#) (-1083 |#2|) (-750 |#2|) (-750 |#2|) (-85)))) (-13 (-389) (-950 (-483)) (-580 (-483))) (-13 (-1113) (-29 |#1|))) (T -178))
-((-1455 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1083 *6)) (-5 *4 (-750 *6)) (-4 *6 (-13 (-1113) (-29 *5))) (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-178 *5 *6)))) (-1455 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-857 *6)) (-5 *4 (-1088)) (-5 *5 (-750 *7)) (-4 *6 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-4 *7 (-13 (-1113) (-29 *6))) (-5 *1 (-178 *6 *7)))) (-1454 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-750 *4)) (-5 *3 (-550 *4)) (-5 *5 (-85)) (-4 *4 (-13 (-1113) (-29 *6))) (-4 *6 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-178 *6 *4)))) (-1453 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1113) (-29 *4))))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 86 T ELT)) (-3124 (((-483) $) 18 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-3765 (($ $) NIL T ELT)) (-3486 (($ $) 73 T ELT)) (-3633 (($ $) 61 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-3033 (($ $) 52 T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3484 (($ $) 71 T ELT)) (-3632 (($ $) 59 T ELT)) (-3617 (((-483) $) 83 T ELT)) (-3488 (($ $) 76 T ELT)) (-3631 (($ $) 63 T ELT)) (-3718 (($) NIL T CONST)) (-3122 (($ $) NIL T ELT)) (-3152 (((-3 (-483) #1#) $) 116 T ELT) (((-3 (-347 (-483)) #1#) $) 113 T ELT)) (-3151 (((-483) $) 114 T ELT) (((-347 (-483)) $) 111 T ELT)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) 91 T ELT)) (-1741 (((-347 (-483)) $ (-694)) 106 T ELT) (((-347 (-483)) $ (-694) (-694)) 105 T ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-1765 (((-830)) 12 T ELT) (((-830) (-830)) NIL (|has| $ (-6 -3980)) ELT)) (-3181 (((-85) $) 107 T ELT)) (-3621 (($) 31 T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL T ELT)) (-3766 (((-483) $) 25 T ELT)) (-2406 (((-85) $) 87 T ELT)) (-3007 (($ $ (-483)) NIL T ELT)) (-3127 (($ $) NIL T ELT)) (-3182 (((-85) $) 85 T ELT)) (-1456 (((-85) $) 140 T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2527 (($ $ $) 49 T ELT) (($) 21 (-12 (-2556 (|has| $ (-6 -3972))) (-2556 (|has| $ (-6 -3980)))) ELT)) (-2853 (($ $ $) 48 T ELT) (($) 20 (-12 (-2556 (|has| $ (-6 -3972))) (-2556 (|has| $ (-6 -3980)))) ELT)) (-1767 (((-483) $) 10 T ELT)) (-1740 (($ $) 16 T ELT)) (-1739 (($ $) 53 T ELT)) (-3936 (($ $) 58 T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-1764 (((-830) (-483)) NIL (|has| $ (-6 -3980)) ELT)) (-3238 (((-1032) $) 89 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3123 (($ $) NIL T ELT)) (-3125 (($ $) NIL T ELT)) (-3249 (($ (-483) (-483)) NIL T ELT) (($ (-483) (-483) (-830)) 98 T ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2397 (((-483) $) 11 T ELT)) (-1738 (($) 30 T ELT)) (-3937 (($ $) 57 T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-2611 (((-830)) NIL T ELT) (((-830) (-830)) NIL (|has| $ (-6 -3980)) ELT)) (-3752 (($ $) 92 T ELT) (($ $ (-694)) NIL T ELT)) (-1763 (((-830) (-483)) NIL (|has| $ (-6 -3980)) ELT)) (-3489 (($ $) 74 T ELT)) (-3630 (($ $) 64 T ELT)) (-3487 (($ $) 75 T ELT)) (-3629 (($ $) 62 T ELT)) (-3485 (($ $) 72 T ELT)) (-3628 (($ $) 60 T ELT)) (-3966 (((-327) $) 102 T ELT) (((-179) $) 99 T ELT) (((-800 (-327)) $) NIL T ELT) (((-472) $) 38 T ELT)) (-3940 (((-772) $) 35 T ELT) (($ (-483)) 56 T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ (-483)) 56 T ELT) (($ (-347 (-483))) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-3126 (($ $) NIL T ELT)) (-1766 (((-830)) 19 T ELT) (((-830) (-830)) NIL (|has| $ (-6 -3980)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2690 (((-830)) 7 T ELT)) (-3492 (($ $) 79 T ELT)) (-3480 (($ $) 67 T ELT) (($ $ $) 109 T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3490 (($ $) 77 T ELT)) (-3478 (($ $) 65 T ELT)) (-3494 (($ $) 82 T ELT)) (-3482 (($ $) 70 T ELT)) (-3495 (($ $) 80 T ELT)) (-3483 (($ $) 68 T ELT)) (-3493 (($ $) 81 T ELT)) (-3481 (($ $) 69 T ELT)) (-3491 (($ $) 78 T ELT)) (-3479 (($ $) 66 T ELT)) (-3377 (($ $) 108 T ELT)) (-2656 (($) 27 T CONST)) (-2662 (($) 28 T CONST)) (-3381 (($ $) 95 T ELT)) (-2665 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3378 (($ $ $) 97 T ELT)) (-2562 (((-85) $ $) 42 T ELT)) (-2563 (((-85) $ $) 40 T ELT)) (-3052 (((-85) $ $) 50 T ELT)) (-2680 (((-85) $ $) 41 T ELT)) (-2681 (((-85) $ $) 39 T ELT)) (-3943 (($ $ $) 29 T ELT) (($ $ (-483)) 51 T ELT)) (-3831 (($ $) 43 T ELT) (($ $ $) 45 T ELT)) (-3833 (($ $ $) 44 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) 54 T ELT) (($ $ (-347 (-483))) 139 T ELT) (($ $ $) 55 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 47 T ELT) (($ $ $) 46 T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT)))
-(((-179) (-13 (-344) (-190) (-1113) (-553 (-472)) (-10 -8 (-15 -3943 ($ $ (-483))) (-15 ** ($ $ $)) (-15 -1738 ($)) (-15 -1740 ($ $)) (-15 -1739 ($ $)) (-15 -3480 ($ $ $)) (-15 -3381 ($ $)) (-15 -3378 ($ $ $)) (-15 -1741 ((-347 (-483)) $ (-694))) (-15 -1741 ((-347 (-483)) $ (-694) (-694))) (-15 -1456 ((-85) $))))) (T -179))
-((** (*1 *1 *1 *1) (-5 *1 (-179))) (-3943 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-179)))) (-1738 (*1 *1) (-5 *1 (-179))) (-1740 (*1 *1 *1) (-5 *1 (-179))) (-1739 (*1 *1 *1) (-5 *1 (-179))) (-3480 (*1 *1 *1 *1) (-5 *1 (-179))) (-3381 (*1 *1 *1) (-5 *1 (-179))) (-3378 (*1 *1 *1 *1) (-5 *1 (-179))) (-1741 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-347 (-483))) (-5 *1 (-179)))) (-1741 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-347 (-483))) (-5 *1 (-179)))) (-1456 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-179)))))
-((-3380 (((-142 (-179)) (-694) (-142 (-179))) 11 T ELT) (((-179) (-694) (-179)) 12 T ELT)) (-1457 (((-142 (-179)) (-142 (-179))) 13 T ELT) (((-179) (-179)) 14 T ELT)) (-1458 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 19 T ELT) (((-179) (-179) (-179)) 22 T ELT)) (-3379 (((-142 (-179)) (-142 (-179))) 27 T ELT) (((-179) (-179)) 26 T ELT)) (-3383 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 57 T ELT) (((-179) (-179) (-179)) 49 T ELT)) (-3385 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 62 T ELT) (((-179) (-179) (-179)) 60 T ELT)) (-3382 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 15 T ELT) (((-179) (-179) (-179)) 16 T ELT)) (-3384 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 17 T ELT) (((-179) (-179) (-179)) 18 T ELT)) (-3387 (((-142 (-179)) (-142 (-179))) 74 T ELT) (((-179) (-179)) 73 T ELT)) (-3386 (((-179) (-179)) 68 T ELT) (((-142 (-179)) (-142 (-179))) 72 T ELT)) (-3381 (((-142 (-179)) (-142 (-179))) 8 T ELT) (((-179) (-179)) 9 T ELT)) (-3378 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 35 T ELT) (((-179) (-179) (-179)) 31 T ELT)))
-(((-180) (-10 -7 (-15 -3381 ((-179) (-179))) (-15 -3381 ((-142 (-179)) (-142 (-179)))) (-15 -3378 ((-179) (-179) (-179))) (-15 -3378 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -1457 ((-179) (-179))) (-15 -1457 ((-142 (-179)) (-142 (-179)))) (-15 -3379 ((-179) (-179))) (-15 -3379 ((-142 (-179)) (-142 (-179)))) (-15 -3380 ((-179) (-694) (-179))) (-15 -3380 ((-142 (-179)) (-694) (-142 (-179)))) (-15 -3382 ((-179) (-179) (-179))) (-15 -3382 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3383 ((-179) (-179) (-179))) (-15 -3383 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3384 ((-179) (-179) (-179))) (-15 -3384 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3385 ((-179) (-179) (-179))) (-15 -3385 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3386 ((-142 (-179)) (-142 (-179)))) (-15 -3386 ((-179) (-179))) (-15 -3387 ((-179) (-179))) (-15 -3387 ((-142 (-179)) (-142 (-179)))) (-15 -1458 ((-179) (-179) (-179))) (-15 -1458 ((-142 (-179)) (-142 (-179)) (-142 (-179)))))) (T -180))
-((-1458 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1458 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3387 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3387 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3386 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3386 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3385 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3385 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3384 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3384 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3383 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3383 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3382 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3382 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3380 (*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-694)) (-5 *1 (-180)))) (-3380 (*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-694)) (-5 *1 (-180)))) (-3379 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3379 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-1457 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1457 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3378 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3378 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3381 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3381 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))))
-((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3832 (($ (-694) (-694)) NIL T ELT)) (-2346 (($ $ $) NIL T ELT)) (-3408 (($ (-1177 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3867 (($ |#1| |#1| |#1|) 33 T ELT)) (-3116 (((-85) $) NIL T ELT)) (-2345 (($ $ (-483) (-483)) NIL T ELT)) (-2344 (($ $ (-483) (-483)) NIL T ELT)) (-2343 (($ $ (-483) (-483) (-483) (-483)) NIL T ELT)) (-2348 (($ $) NIL T ELT)) (-3118 (((-85) $) NIL T ELT)) (-2342 (($ $ (-483) (-483) $) NIL T ELT)) (-3782 ((|#1| $ (-483) (-483) |#1|) NIL T ELT) (($ $ (-583 (-483)) (-583 (-483)) $) NIL T ELT)) (-1254 (($ $ (-483) (-1177 |#1|)) NIL T ELT)) (-1253 (($ $ (-483) (-1177 |#1|)) NIL T ELT)) (-3841 (($ |#1| |#1| |#1|) 32 T ELT)) (-3327 (($ (-694) |#1|) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3105 (($ $) NIL (|has| |#1| (-257)) ELT)) (-3107 (((-1177 |#1|) $ (-483)) NIL T ELT)) (-1459 (($ |#1|) 31 T ELT)) (-1460 (($ |#1|) 30 T ELT)) (-1461 (($ |#1|) 29 T ELT)) (-3104 (((-694) $) NIL (|has| |#1| (-494)) ELT)) (-1573 ((|#1| $ (-483) (-483) |#1|) NIL T ELT)) (-3108 ((|#1| $ (-483) (-483)) NIL T ELT)) (-2885 (((-583 |#1|) $) NIL T ELT)) (-3103 (((-694) $) NIL (|has| |#1| (-494)) ELT)) (-3102 (((-583 (-1177 |#1|)) $) NIL (|has| |#1| (-494)) ELT)) (-3110 (((-694) $) NIL T ELT)) (-3608 (($ (-694) (-694) |#1|) NIL T ELT)) (-3109 (((-694) $) NIL T ELT)) (-3321 ((|#1| $) NIL (|has| |#1| (-6 (-3991 #1="*"))) ELT)) (-3114 (((-483) $) NIL T ELT)) (-3112 (((-483) $) NIL T ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3113 (((-483) $) NIL T ELT)) (-3111 (((-483) $) NIL T ELT)) (-3119 (($ (-583 (-583 |#1|))) 11 T ELT) (($ (-694) (-694) (-1 |#1| (-483) (-483))) NIL T ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3588 (((-583 (-583 |#1|)) $) NIL T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3584 (((-3 $ #2="failed") $) NIL (|has| |#1| (-311)) ELT)) (-1462 (($) 12 T ELT)) (-2347 (($ $ $) NIL T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-2195 (($ $ |#1|) NIL T ELT)) (-3460 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-494)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#1| $ (-483) (-483)) NIL T ELT) ((|#1| $ (-483) (-483) |#1|) NIL T ELT) (($ $ (-583 (-483)) (-583 (-483))) NIL T ELT)) (-3326 (($ (-583 |#1|)) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3117 (((-85) $) NIL T ELT)) (-3322 ((|#1| $) NIL (|has| |#1| (-6 (-3991 #1#))) ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3106 (((-1177 |#1|) $ (-483)) NIL T ELT)) (-3940 (($ (-1177 |#1|)) NIL T ELT) (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3115 (((-85) $) NIL T ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL (|has| |#1| (-311)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-483) $) NIL T ELT) (((-1177 |#1|) $ (-1177 |#1|)) 15 T ELT) (((-1177 |#1|) (-1177 |#1|) $) NIL T ELT) (((-854 |#1|) $ (-854 |#1|)) 21 T ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-181 |#1|) (-13 (-627 |#1| (-1177 |#1|) (-1177 |#1|)) (-10 -8 (-15 * ((-854 |#1|) $ (-854 |#1|))) (-15 -1462 ($)) (-15 -1461 ($ |#1|)) (-15 -1460 ($ |#1|)) (-15 -1459 ($ |#1|)) (-15 -3841 ($ |#1| |#1| |#1|)) (-15 -3867 ($ |#1| |#1| |#1|)))) (-13 (-311) (-1113))) (T -181))
-((* (*1 *2 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-311) (-1113))) (-5 *1 (-181 *3)))) (-1462 (*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1113))))) (-1461 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1113))))) (-1460 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1113))))) (-1459 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1113))))) (-3841 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1113))))) (-3867 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1113))))))
-((-1567 (($ (-1 (-85) |#2|) $) 16 T ELT)) (-3399 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 28 T ELT)) (-1463 (($) NIL T ELT) (($ (-583 |#2|)) 11 T ELT)) (-3052 (((-85) $ $) 26 T ELT)))
-(((-182 |#1| |#2|) (-10 -7 (-15 -3052 ((-85) |#1| |#1|)) (-15 -1567 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3399 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3399 (|#1| |#2| |#1|)) (-15 -1463 (|#1| (-583 |#2|))) (-15 -1463 (|#1|))) (-183 |#2|) (-1012)) (T -182))
-NIL
-((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1567 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3989)) ELT)) (-3718 (($) 7 T CONST)) (-1350 (($ $) 62 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3399 (($ |#1| $) 51 (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3989)) ELT)) (-3400 (($ |#1| $) 61 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3989)) ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-1271 ((|#1| $) 43 T ELT)) (-3603 (($ |#1| $) 44 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1272 ((|#1| $) 45 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-1463 (($) 53 T ELT) (($ (-583 |#1|)) 52 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 63 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 54 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1273 (($ (-583 |#1|)) 46 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-183 |#1|) (-113) (-1012)) (T -183))
+((-3638 ((|#2| |#2|) 28 T ELT)) (-3641 (((-85) |#2|) 19 T ELT)) (-3639 (((-264 |#1|) |#2|) 12 T ELT)) (-3640 (((-264 |#1|) |#2|) 14 T ELT)) (-3636 ((|#2| |#2| (-1089)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-3642 (((-142 (-264 |#1|)) |#2|) 10 T ELT)) (-3637 ((|#2| |#2| (-1089)) 66 T ELT) ((|#2| |#2|) 60 T ELT)))
+(((-162 |#1| |#2|) (-10 -7 (-15 -3636 (|#2| |#2|)) (-15 -3636 (|#2| |#2| (-1089))) (-15 -3637 (|#2| |#2|)) (-15 -3637 (|#2| |#2| (-1089))) (-15 -3639 ((-264 |#1|) |#2|)) (-15 -3640 ((-264 |#1|) |#2|)) (-15 -3641 ((-85) |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3642 ((-142 (-264 |#1|)) |#2|))) (-13 (-495) (-951 (-484))) (-13 (-27) (-1114) (-361 (-142 |#1|)))) (T -162))
+((-3642 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *2 (-142 (-264 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 (-142 *4)))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-951 (-484)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-361 (-142 *3)))))) (-3641 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 (-142 *4)))))) (-3640 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *2 (-264 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 (-142 *4)))))) (-3639 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *2 (-264 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 (-142 *4)))))) (-3637 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-361 (-142 *4)))))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-951 (-484)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-361 (-142 *3)))))) (-3636 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-361 (-142 *4)))))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-951 (-484)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-361 (-142 *3)))))))
+((-1428 (((-1178 (-631 (-858 |#1|))) (-1178 (-631 |#1|))) 26 T ELT)) (-3942 (((-1178 (-631 (-347 (-858 |#1|)))) (-1178 (-631 |#1|))) 37 T ELT)))
+(((-163 |#1|) (-10 -7 (-15 -1428 ((-1178 (-631 (-858 |#1|))) (-1178 (-631 |#1|)))) (-15 -3942 ((-1178 (-631 (-347 (-858 |#1|)))) (-1178 (-631 |#1|))))) (-146)) (T -163))
+((-3942 (*1 *2 *3) (-12 (-5 *3 (-1178 (-631 *4))) (-4 *4 (-146)) (-5 *2 (-1178 (-631 (-347 (-858 *4))))) (-5 *1 (-163 *4)))) (-1428 (*1 *2 *3) (-12 (-5 *3 (-1178 (-631 *4))) (-4 *4 (-146)) (-5 *2 (-1178 (-631 (-858 *4)))) (-5 *1 (-163 *4)))))
+((-1436 (((-1091 (-347 (-484))) (-1091 (-347 (-484))) (-1091 (-347 (-484)))) 93 T ELT)) (-1438 (((-1091 (-347 (-484))) (-584 (-484)) (-584 (-484))) 106 T ELT)) (-1429 (((-1091 (-347 (-484))) (-831)) 54 T ELT)) (-3850 (((-1091 (-347 (-484))) (-831)) 79 T ELT)) (-3764 (((-347 (-484)) (-1091 (-347 (-484)))) 89 T ELT)) (-1430 (((-1091 (-347 (-484))) (-831)) 37 T ELT)) (-1433 (((-1091 (-347 (-484))) (-831)) 66 T ELT)) (-1432 (((-1091 (-347 (-484))) (-831)) 61 T ELT)) (-1435 (((-1091 (-347 (-484))) (-1091 (-347 (-484))) (-1091 (-347 (-484)))) 87 T ELT)) (-2889 (((-1091 (-347 (-484))) (-831)) 29 T ELT)) (-1434 (((-347 (-484)) (-1091 (-347 (-484))) (-1091 (-347 (-484)))) 91 T ELT)) (-1431 (((-1091 (-347 (-484))) (-831)) 35 T ELT)) (-1437 (((-1091 (-347 (-484))) (-584 (-831))) 100 T ELT)))
+(((-164) (-10 -7 (-15 -2889 ((-1091 (-347 (-484))) (-831))) (-15 -1429 ((-1091 (-347 (-484))) (-831))) (-15 -1430 ((-1091 (-347 (-484))) (-831))) (-15 -1431 ((-1091 (-347 (-484))) (-831))) (-15 -1432 ((-1091 (-347 (-484))) (-831))) (-15 -1433 ((-1091 (-347 (-484))) (-831))) (-15 -3850 ((-1091 (-347 (-484))) (-831))) (-15 -1434 ((-347 (-484)) (-1091 (-347 (-484))) (-1091 (-347 (-484))))) (-15 -1435 ((-1091 (-347 (-484))) (-1091 (-347 (-484))) (-1091 (-347 (-484))))) (-15 -3764 ((-347 (-484)) (-1091 (-347 (-484))))) (-15 -1436 ((-1091 (-347 (-484))) (-1091 (-347 (-484))) (-1091 (-347 (-484))))) (-15 -1437 ((-1091 (-347 (-484))) (-584 (-831)))) (-15 -1438 ((-1091 (-347 (-484))) (-584 (-484)) (-584 (-484)))))) (T -164))
+((-1438 (*1 *2 *3 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164)))) (-1437 (*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164)))) (-1436 (*1 *2 *2 *2) (-12 (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164)))) (-3764 (*1 *2 *3) (-12 (-5 *3 (-1091 (-347 (-484)))) (-5 *2 (-347 (-484))) (-5 *1 (-164)))) (-1435 (*1 *2 *2 *2) (-12 (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164)))) (-1434 (*1 *2 *3 *3) (-12 (-5 *3 (-1091 (-347 (-484)))) (-5 *2 (-347 (-484))) (-5 *1 (-164)))) (-3850 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164)))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164)))) (-1432 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164)))) (-1430 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164)))) (-1429 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164)))) (-2889 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164)))))
+((-1440 (((-345 (-1084 (-484))) (-484)) 38 T ELT)) (-1439 (((-584 (-1084 (-484))) (-484)) 33 T ELT)) (-2799 (((-1084 (-484)) (-484)) 28 T ELT)))
+(((-165) (-10 -7 (-15 -1439 ((-584 (-1084 (-484))) (-484))) (-15 -2799 ((-1084 (-484)) (-484))) (-15 -1440 ((-345 (-1084 (-484))) (-484))))) (T -165))
+((-1440 (*1 *2 *3) (-12 (-5 *2 (-345 (-1084 (-484)))) (-5 *1 (-165)) (-5 *3 (-484)))) (-2799 (*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-165)) (-5 *3 (-484)))) (-1439 (*1 *2 *3) (-12 (-5 *2 (-584 (-1084 (-484)))) (-5 *1 (-165)) (-5 *3 (-484)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-1441 ((|#2| $ (-695) |#2|) 11 T ELT)) (-3110 ((|#2| $ (-695)) 10 T ELT)) (-3610 (($) 8 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 23 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 13 T ELT)))
+(((-166 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -3610 ($)) (-15 -3110 (|#2| $ (-695))) (-15 -1441 (|#2| $ (-695) |#2|)))) (-831) (-1013)) (T -166))
+((-3610 (*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-831)) (-4 *3 (-1013)))) (-3110 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *2 (-1013)) (-5 *1 (-166 *4 *2)) (-14 *4 (-831)))) (-1441 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-166 *4 *2)) (-14 *4 (-831)) (-4 *2 (-1013)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1962 (((-1184) $) 36 T ELT) (((-1184) $ (-831) (-831)) 40 T ELT)) (-3796 (($ $ (-903)) 19 T ELT) (((-203 (-1072)) $ (-1089)) 15 T ELT)) (-3613 (((-1184) $) 34 T ELT)) (-3942 (((-773) $) 31 T ELT) (($ (-584 |#1|)) 8 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3833 (($ $ $) 26 T ELT)) (-3835 (($ $ $) 22 T ELT)))
+(((-167 |#1|) (-13 (-1013) (-556 (-584 |#1|)) (-10 -8 (-15 -3796 ($ $ (-903))) (-15 -3796 ((-203 (-1072)) $ (-1089))) (-15 -3835 ($ $ $)) (-15 -3833 ($ $ $)) (-15 -3613 ((-1184) $)) (-15 -1962 ((-1184) $)) (-15 -1962 ((-1184) $ (-831) (-831))))) (-13 (-757) (-10 -8 (-15 -3796 ((-1072) $ (-1089))) (-15 -3613 ((-1184) $)) (-15 -1962 ((-1184) $))))) (T -167))
+((-3796 (*1 *1 *1 *2) (-12 (-5 *2 (-903)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3796 ((-1072) $ (-1089))) (-15 -3613 ((-1184) $)) (-15 -1962 ((-1184) $))))))) (-3796 (*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-203 (-1072))) (-5 *1 (-167 *4)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3796 ((-1072) $ *3)) (-15 -3613 ((-1184) $)) (-15 -1962 ((-1184) $))))))) (-3835 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-757) (-10 -8 (-15 -3796 ((-1072) $ (-1089))) (-15 -3613 ((-1184) $)) (-15 -1962 ((-1184) $))))))) (-3833 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-757) (-10 -8 (-15 -3796 ((-1072) $ (-1089))) (-15 -3613 ((-1184) $)) (-15 -1962 ((-1184) $))))))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3796 ((-1072) $ (-1089))) (-15 -3613 (*2 $)) (-15 -1962 (*2 $))))))) (-1962 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3796 ((-1072) $ (-1089))) (-15 -3613 (*2 $)) (-15 -1962 (*2 $))))))) (-1962 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1184)) (-5 *1 (-167 *4)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3796 ((-1072) $ (-1089))) (-15 -3613 (*2 $)) (-15 -1962 (*2 $))))))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3133 (((-695)) NIL T ELT)) (-2992 (($) NIL T ELT)) (-2529 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2855 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2008 (((-831) $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2398 (($ (-831)) 10 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2849 (($ (-578 |#1|)) 11 T ELT)) (-3942 (((-773) $) 18 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)))
+(((-168 |#1|) (-13 (-753) (-10 -8 (-15 -2849 ($ (-578 |#1|))))) (-584 (-1089))) (T -168))
+((-2849 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-14 *3 (-584 (-1089))) (-5 *1 (-168 *3)))))
+((-1442 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT)))
+(((-169 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1442 (|#2| |#4| (-1 |#2| |#2|)))) (-311) (-1154 |#1|) (-1154 (-347 |#2|)) (-290 |#1| |#2| |#3|)) (T -169))
+((-1442 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-311)) (-4 *6 (-1154 (-347 *2))) (-4 *2 (-1154 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-290 *5 *2 *6)))))
+((-1446 ((|#2| |#2| (-695) |#2|) 55 T ELT)) (-1445 ((|#2| |#2| (-695) |#2|) 51 T ELT)) (-2369 (((-584 |#2|) (-584 (-2 (|:| |deg| (-695)) (|:| -2573 |#2|)))) 79 T ELT)) (-1444 (((-584 (-2 (|:| |deg| (-695)) (|:| -2573 |#2|))) |#2|) 72 T ELT)) (-1447 (((-85) |#2|) 70 T ELT)) (-3729 (((-345 |#2|) |#2|) 92 T ELT)) (-3728 (((-345 |#2|) |#2|) 91 T ELT)) (-2370 ((|#2| |#2| (-695) |#2|) 49 T ELT)) (-1443 (((-2 (|:| |cont| |#1|) (|:| -1777 (-584 (-2 (|:| |irr| |#2|) (|:| -2393 (-484)))))) |#2| (-85)) 86 T ELT)))
+(((-170 |#1| |#2|) (-10 -7 (-15 -3728 ((-345 |#2|) |#2|)) (-15 -3729 ((-345 |#2|) |#2|)) (-15 -1443 ((-2 (|:| |cont| |#1|) (|:| -1777 (-584 (-2 (|:| |irr| |#2|) (|:| -2393 (-484)))))) |#2| (-85))) (-15 -1444 ((-584 (-2 (|:| |deg| (-695)) (|:| -2573 |#2|))) |#2|)) (-15 -2369 ((-584 |#2|) (-584 (-2 (|:| |deg| (-695)) (|:| -2573 |#2|))))) (-15 -2370 (|#2| |#2| (-695) |#2|)) (-15 -1445 (|#2| |#2| (-695) |#2|)) (-15 -1446 (|#2| |#2| (-695) |#2|)) (-15 -1447 ((-85) |#2|))) (-298) (-1154 |#1|)) (T -170))
+((-1447 (*1 *2 *3) (-12 (-4 *4 (-298)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1154 *4)))) (-1446 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-695)) (-4 *4 (-298)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1154 *4)))) (-1445 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-695)) (-4 *4 (-298)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1154 *4)))) (-2370 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-695)) (-4 *4 (-298)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1154 *4)))) (-2369 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| |deg| (-695)) (|:| -2573 *5)))) (-4 *5 (-1154 *4)) (-4 *4 (-298)) (-5 *2 (-584 *5)) (-5 *1 (-170 *4 *5)))) (-1444 (*1 *2 *3) (-12 (-4 *4 (-298)) (-5 *2 (-584 (-2 (|:| |deg| (-695)) (|:| -2573 *3)))) (-5 *1 (-170 *4 *3)) (-4 *3 (-1154 *4)))) (-1443 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-298)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1777 (-584 (-2 (|:| |irr| *3) (|:| -2393 (-484))))))) (-5 *1 (-170 *5 *3)) (-4 *3 (-1154 *5)))) (-3729 (*1 *2 *3) (-12 (-4 *4 (-298)) (-5 *2 (-345 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1154 *4)))) (-3728 (*1 *2 *3) (-12 (-4 *4 (-298)) (-5 *2 (-345 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1154 *4)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3126 (((-484) $) NIL (|has| (-484) (-257)) ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-822)) ELT)) (-3771 (($ $) NIL T ELT)) (-3967 (((-345 $) $) NIL T ELT)) (-2702 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-822)) ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3619 (((-484) $) NIL (|has| (-484) (-741)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL (|has| (-484) (-951 (-1089))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| (-484) (-951 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-484) (-951 (-484))) ELT)) (-3153 (((-484) $) NIL T ELT) (((-1089) $) NIL (|has| (-484) (-951 (-1089))) ELT) (((-347 (-484)) $) NIL (|has| (-484) (-951 (-484))) ELT) (((-484) $) NIL (|has| (-484) (-951 (-484))) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL (|has| (-484) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| (-484) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL T ELT) (((-631 (-484)) (-631 $)) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2992 (($) NIL (|has| (-484) (-483)) ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-3719 (((-85) $) NIL T ELT)) (-3183 (((-85) $) NIL (|has| (-484) (-741)) ELT)) (-2794 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (|has| (-484) (-797 (-484))) ELT) (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (|has| (-484) (-797 (-327))) ELT)) (-2408 (((-85) $) NIL T ELT)) (-2994 (($ $) NIL T ELT)) (-2996 (((-484) $) NIL T ELT)) (-3441 (((-633 $) $) NIL (|has| (-484) (-1065)) ELT)) (-3184 (((-85) $) NIL (|has| (-484) (-741)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2529 (($ $ $) NIL (|has| (-484) (-757)) ELT)) (-2855 (($ $ $) NIL (|has| (-484) (-757)) ELT)) (-3954 (($ (-1 (-484) (-484)) $) NIL T ELT)) (-2278 (((-631 (-484)) (-1178 $)) NIL (|has| (-484) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-484) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-631 (-484)) (-1178 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) NIL T ELT)) (-3442 (($) NIL (|has| (-484) (-1065)) CONST)) (-3240 (((-1033) $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3125 (($ $) NIL (|has| (-484) (-257)) ELT) (((-347 (-484)) $) NIL T ELT)) (-3127 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-822)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-822)) ELT)) (-3728 (((-345 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3764 (($ $ (-584 (-484)) (-584 (-484))) NIL (|has| (-484) (-259 (-484))) ELT) (($ $ (-484) (-484)) NIL (|has| (-484) (-259 (-484))) ELT) (($ $ (-248 (-484))) NIL (|has| (-484) (-259 (-484))) ELT) (($ $ (-584 (-248 (-484)))) NIL (|has| (-484) (-259 (-484))) ELT) (($ $ (-584 (-1089)) (-584 (-484))) NIL (|has| (-484) (-453 (-1089) (-484))) ELT) (($ $ (-1089) (-484)) NIL (|has| (-484) (-453 (-1089) (-484))) ELT)) (-1605 (((-695) $) NIL T ELT)) (-3796 (($ $ (-484)) NIL (|has| (-484) (-241 (-484) (-484))) ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-3754 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-695)) NIL (|has| (-484) (-189)) ELT)) (-2993 (($ $) NIL T ELT)) (-2995 (((-484) $) NIL T ELT)) (-1448 (($ (-347 (-484))) 9 T ELT)) (-3968 (((-801 (-484)) $) NIL (|has| (-484) (-554 (-801 (-484)))) ELT) (((-801 (-327)) $) NIL (|has| (-484) (-554 (-801 (-327)))) ELT) (((-473) $) NIL (|has| (-484) (-554 (-473))) ELT) (((-327) $) NIL (|has| (-484) (-934)) ELT) (((-179) $) NIL (|has| (-484) (-934)) ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-484) (-822))) ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) 8 T ELT) (($ (-484)) NIL T ELT) (($ (-1089)) NIL (|has| (-484) (-951 (-1089))) ELT) (((-347 (-484)) $) NIL T ELT) (((-918 10) $) 10 T ELT)) (-2700 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-484) (-822))) (|has| (-484) (-118))) ELT)) (-3123 (((-695)) NIL T CONST)) (-3128 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-3379 (($ $) NIL (|has| (-484) (-741)) ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-2667 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-695)) NIL (|has| (-484) (-189)) ELT)) (-2564 (((-85) $ $) NIL (|has| (-484) (-757)) ELT)) (-2565 (((-85) $ $) NIL (|has| (-484) (-757)) ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL (|has| (-484) (-757)) ELT)) (-2683 (((-85) $ $) NIL (|has| (-484) (-757)) ELT)) (-3945 (($ $ $) NIL T ELT) (($ (-484) (-484)) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ (-484)) NIL T ELT)))
+(((-171) (-13 (-905 (-484)) (-553 (-347 (-484))) (-553 (-918 10)) (-10 -8 (-15 -3125 ((-347 (-484)) $)) (-15 -1448 ($ (-347 (-484))))))) (T -171))
+((-3125 (*1 *2 *1) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-171)))) (-1448 (*1 *1 *2) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-171)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3316 (((-1028) $) 14 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3175 (((-420) $) 11 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 24 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3230 (((-1048) $) 16 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-172) (-13 (-995) (-10 -8 (-15 -3175 ((-420) $)) (-15 -3316 ((-1028) $)) (-15 -3230 ((-1048) $))))) (T -172))
+((-3175 (*1 *2 *1) (-12 (-5 *2 (-420)) (-5 *1 (-172)))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-172)))) (-3230 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-172)))))
+((-3808 (((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1004 (-751 |#2|)) (-1072)) 29 T ELT) (((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1004 (-751 |#2|))) 25 T ELT)) (-1449 (((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1089) (-751 |#2|) (-751 |#2|) (-85)) 17 T ELT)))
+(((-173 |#1| |#2|) (-10 -7 (-15 -3808 ((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1004 (-751 |#2|)))) (-15 -3808 ((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1004 (-751 |#2|)) (-1072))) (-15 -1449 ((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1089) (-751 |#2|) (-751 |#2|) (-85)))) (-13 (-257) (-120) (-951 (-484)) (-581 (-484))) (-13 (-1114) (-872) (-29 |#1|))) (T -173))
+((-1449 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1089)) (-5 *6 (-85)) (-4 *7 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) (-4 *3 (-13 (-1114) (-872) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-173 *7 *3)) (-5 *5 (-751 *3)))) (-3808 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1004 (-751 *3))) (-5 *5 (-1072)) (-4 *3 (-13 (-1114) (-872) (-29 *6))) (-4 *6 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) (-5 *2 (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *6 *3)))) (-3808 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-751 *3))) (-4 *3 (-13 (-1114) (-872) (-29 *5))) (-4 *5 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) (-5 *2 (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *5 *3)))))
+((-3808 (((-3 (|:| |f1| (-751 (-264 |#1|))) (|:| |f2| (-584 (-751 (-264 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-347 (-858 |#1|)) (-1004 (-751 (-347 (-858 |#1|)))) (-1072)) 49 T ELT) (((-3 (|:| |f1| (-751 (-264 |#1|))) (|:| |f2| (-584 (-751 (-264 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-347 (-858 |#1|)) (-1004 (-751 (-347 (-858 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-751 (-264 |#1|))) (|:| |f2| (-584 (-751 (-264 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-347 (-858 |#1|)) (-1004 (-751 (-264 |#1|))) (-1072)) 50 T ELT) (((-3 (|:| |f1| (-751 (-264 |#1|))) (|:| |f2| (-584 (-751 (-264 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-347 (-858 |#1|)) (-1004 (-751 (-264 |#1|)))) 22 T ELT)))
+(((-174 |#1|) (-10 -7 (-15 -3808 ((-3 (|:| |f1| (-751 (-264 |#1|))) (|:| |f2| (-584 (-751 (-264 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-347 (-858 |#1|)) (-1004 (-751 (-264 |#1|))))) (-15 -3808 ((-3 (|:| |f1| (-751 (-264 |#1|))) (|:| |f2| (-584 (-751 (-264 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-347 (-858 |#1|)) (-1004 (-751 (-264 |#1|))) (-1072))) (-15 -3808 ((-3 (|:| |f1| (-751 (-264 |#1|))) (|:| |f2| (-584 (-751 (-264 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-347 (-858 |#1|)) (-1004 (-751 (-347 (-858 |#1|)))))) (-15 -3808 ((-3 (|:| |f1| (-751 (-264 |#1|))) (|:| |f2| (-584 (-751 (-264 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-347 (-858 |#1|)) (-1004 (-751 (-347 (-858 |#1|)))) (-1072)))) (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) (T -174))
+((-3808 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1004 (-751 (-347 (-858 *6))))) (-5 *5 (-1072)) (-5 *3 (-347 (-858 *6))) (-4 *6 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) (-5 *2 (-3 (|:| |f1| (-751 (-264 *6))) (|:| |f2| (-584 (-751 (-264 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-174 *6)))) (-3808 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-751 (-347 (-858 *5))))) (-5 *3 (-347 (-858 *5))) (-4 *5 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) (-5 *2 (-3 (|:| |f1| (-751 (-264 *5))) (|:| |f2| (-584 (-751 (-264 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5)))) (-3808 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-347 (-858 *6))) (-5 *4 (-1004 (-751 (-264 *6)))) (-5 *5 (-1072)) (-4 *6 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) (-5 *2 (-3 (|:| |f1| (-751 (-264 *6))) (|:| |f2| (-584 (-751 (-264 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *6)))) (-3808 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-1004 (-751 (-264 *5)))) (-4 *5 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) (-5 *2 (-3 (|:| |f1| (-751 (-264 *5))) (|:| |f2| (-584 (-751 (-264 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5)))))
+((-3838 (((-2 (|:| -2002 (-1084 |#1|)) (|:| |deg| (-831))) (-1084 |#1|)) 26 T ELT)) (-3959 (((-584 (-264 |#2|)) (-264 |#2|) (-831)) 51 T ELT)))
+(((-175 |#1| |#2|) (-10 -7 (-15 -3838 ((-2 (|:| -2002 (-1084 |#1|)) (|:| |deg| (-831))) (-1084 |#1|))) (-15 -3959 ((-584 (-264 |#2|)) (-264 |#2|) (-831)))) (-962) (-495)) (T -175))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-4 *6 (-495)) (-5 *2 (-584 (-264 *6))) (-5 *1 (-175 *5 *6)) (-5 *3 (-264 *6)) (-4 *5 (-962)))) (-3838 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-2 (|:| -2002 (-1084 *4)) (|:| |deg| (-831)))) (-5 *1 (-175 *4 *5)) (-5 *3 (-1084 *4)) (-4 *5 (-495)))))
+((-2566 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1493 ((|#1| $) NIL T ELT)) (-3320 ((|#1| $) 31 T ELT)) (-3720 (($) NIL T CONST)) (-3000 (($ $) NIL T ELT)) (-2295 (($ $) 40 T ELT)) (-3322 ((|#1| |#1| $) NIL T ELT)) (-3321 ((|#1| $) NIL T ELT)) (-2887 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2606 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3829 (((-695) $) NIL T ELT)) (-3239 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-1272 ((|#1| $) NIL T ELT)) (-1491 ((|#1| |#1| $) 36 T ELT)) (-1490 ((|#1| |#1| $) 38 T ELT)) (-3605 (($ |#1| $) NIL T ELT)) (-2601 (((-695) $) 34 T ELT)) (-3240 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-2999 ((|#1| $) NIL T ELT)) (-1489 ((|#1| $) 32 T ELT)) (-1488 ((|#1| $) 30 T ELT)) (-1273 ((|#1| $) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3002 ((|#1| |#1| $) NIL T ELT)) (-3399 (((-85) $) 9 T ELT)) (-3561 (($) NIL T ELT)) (-3001 ((|#1| $) NIL T ELT)) (-1494 (($) NIL T ELT) (($ (-584 |#1|)) 17 T ELT)) (-3319 (((-695) $) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3396 (($ $) NIL T ELT)) (-3942 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1492 ((|#1| $) 14 T ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1274 (($ (-584 |#1|)) NIL T ELT)) (-2998 ((|#1| $) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-176 |#1|) (-13 (-214 |#1|) (-10 -8 (-15 -1494 ($ (-584 |#1|))))) (-1013)) (T -176))
+((-1494 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-5 *1 (-176 *3)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1451 (($ (-264 |#1|)) 24 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-2662 (((-85) $) NIL T ELT)) (-3154 (((-3 (-264 |#1|) #1#) $) NIL T ELT)) (-3153 (((-264 |#1|) $) NIL T ELT)) (-3955 (($ $) 32 T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2408 (((-85) $) NIL T ELT)) (-3954 (($ (-1 (-264 |#1|) (-264 |#1|)) $) NIL T ELT)) (-3171 (((-264 |#1|) $) NIL T ELT)) (-1453 (($ $) 31 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-1452 (((-85) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2407 (($ (-695)) NIL T ELT)) (-1450 (($ $) 33 T ELT)) (-3944 (((-484) $) NIL T ELT)) (-3942 (((-773) $) 65 T ELT) (($ (-484)) NIL T ELT) (($ (-264 |#1|)) NIL T ELT)) (-3673 (((-264 |#1|) $ $) NIL T ELT)) (-3123 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) 26 T CONST)) (-2664 (($) NIL T CONST)) (-3054 (((-85) $ $) 29 T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) 20 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-264 |#1|) $) 19 T ELT)))
+(((-177 |#1| |#2|) (-13 (-561 (-264 |#1|)) (-951 (-264 |#1|)) (-10 -8 (-15 -3171 ((-264 |#1|) $)) (-15 -1453 ($ $)) (-15 -3955 ($ $)) (-15 -3673 ((-264 |#1|) $ $)) (-15 -2407 ($ (-695))) (-15 -1452 ((-85) $)) (-15 -2662 ((-85) $)) (-15 -3944 ((-484) $)) (-15 -3954 ($ (-1 (-264 |#1|) (-264 |#1|)) $)) (-15 -1451 ($ (-264 |#1|))) (-15 -1450 ($ $)))) (-13 (-962) (-757)) (-584 (-1089))) (T -177))
+((-3171 (*1 *2 *1) (-12 (-5 *2 (-264 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1089))))) (-1453 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757))) (-14 *3 (-584 (-1089))))) (-3955 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757))) (-14 *3 (-584 (-1089))))) (-3673 (*1 *2 *1 *1) (-12 (-5 *2 (-264 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1089))))) (-2407 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1089))))) (-1452 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1089))))) (-2662 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1089))))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1089))))) (-3954 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-264 *3) (-264 *3))) (-4 *3 (-13 (-962) (-757))) (-5 *1 (-177 *3 *4)) (-14 *4 (-584 (-1089))))) (-1451 (*1 *1 *2) (-12 (-5 *2 (-264 *3)) (-4 *3 (-13 (-962) (-757))) (-5 *1 (-177 *3 *4)) (-14 *4 (-584 (-1089))))) (-1450 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757))) (-14 *3 (-584 (-1089))))))
+((-1454 (((-85) (-1072)) 26 T ELT)) (-1455 (((-3 (-751 |#2|) #1="failed") (-551 |#2|) |#2| (-751 |#2|) (-751 |#2|) (-85)) 35 T ELT)) (-1456 (((-3 (-85) #1#) (-1084 |#2|) (-751 |#2|) (-751 |#2|) (-85)) 83 T ELT) (((-3 (-85) #1#) (-858 |#1|) (-1089) (-751 |#2|) (-751 |#2|) (-85)) 84 T ELT)))
+(((-178 |#1| |#2|) (-10 -7 (-15 -1454 ((-85) (-1072))) (-15 -1455 ((-3 (-751 |#2|) #1="failed") (-551 |#2|) |#2| (-751 |#2|) (-751 |#2|) (-85))) (-15 -1456 ((-3 (-85) #1#) (-858 |#1|) (-1089) (-751 |#2|) (-751 |#2|) (-85))) (-15 -1456 ((-3 (-85) #1#) (-1084 |#2|) (-751 |#2|) (-751 |#2|) (-85)))) (-13 (-389) (-951 (-484)) (-581 (-484))) (-13 (-1114) (-29 |#1|))) (T -178))
+((-1456 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1084 *6)) (-5 *4 (-751 *6)) (-4 *6 (-13 (-1114) (-29 *5))) (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-178 *5 *6)))) (-1456 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-858 *6)) (-5 *4 (-1089)) (-5 *5 (-751 *7)) (-4 *6 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-4 *7 (-13 (-1114) (-29 *6))) (-5 *1 (-178 *6 *7)))) (-1455 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-751 *4)) (-5 *3 (-551 *4)) (-5 *5 (-85)) (-4 *4 (-13 (-1114) (-29 *6))) (-4 *6 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-178 *6 *4)))) (-1454 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1114) (-29 *4))))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 86 T ELT)) (-3126 (((-484) $) 18 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-3767 (($ $) NIL T ELT)) (-3488 (($ $) 73 T ELT)) (-3635 (($ $) 61 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3771 (($ $) NIL T ELT)) (-3967 (((-345 $) $) NIL T ELT)) (-3035 (($ $) 52 T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3486 (($ $) 71 T ELT)) (-3634 (($ $) 59 T ELT)) (-3619 (((-484) $) 83 T ELT)) (-3490 (($ $) 76 T ELT)) (-3633 (($ $) 63 T ELT)) (-3720 (($) NIL T CONST)) (-3124 (($ $) NIL T ELT)) (-3154 (((-3 (-484) #1#) $) 116 T ELT) (((-3 (-347 (-484)) #1#) $) 113 T ELT)) (-3153 (((-484) $) 114 T ELT) (((-347 (-484)) $) 111 T ELT)) (-2562 (($ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) 91 T ELT)) (-1742 (((-347 (-484)) $ (-695)) 106 T ELT) (((-347 (-484)) $ (-695) (-695)) 105 T ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-3719 (((-85) $) NIL T ELT)) (-1766 (((-831)) 12 T ELT) (((-831) (-831)) NIL (|has| $ (-6 -3982)) ELT)) (-3183 (((-85) $) 107 T ELT)) (-3623 (($) 31 T ELT)) (-2794 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL T ELT)) (-3768 (((-484) $) 25 T ELT)) (-2408 (((-85) $) 87 T ELT)) (-3009 (($ $ (-484)) NIL T ELT)) (-3129 (($ $) NIL T ELT)) (-3184 (((-85) $) 85 T ELT)) (-1457 (((-85) $) 140 T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2529 (($ $ $) 49 T ELT) (($) 21 (-12 (-2558 (|has| $ (-6 -3974))) (-2558 (|has| $ (-6 -3982)))) ELT)) (-2855 (($ $ $) 48 T ELT) (($) 20 (-12 (-2558 (|has| $ (-6 -3974))) (-2558 (|has| $ (-6 -3982)))) ELT)) (-1768 (((-484) $) 10 T ELT)) (-1741 (($ $) 16 T ELT)) (-1740 (($ $) 53 T ELT)) (-3938 (($ $) 58 T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) NIL T ELT)) (-1765 (((-831) (-484)) NIL (|has| $ (-6 -3982)) ELT)) (-3240 (((-1033) $) 89 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3125 (($ $) NIL T ELT)) (-3127 (($ $) NIL T ELT)) (-3251 (($ (-484) (-484)) NIL T ELT) (($ (-484) (-484) (-831)) 98 T ELT)) (-3728 (((-345 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2399 (((-484) $) 11 T ELT)) (-1739 (($) 30 T ELT)) (-3939 (($ $) 57 T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-2613 (((-831)) NIL T ELT) (((-831) (-831)) NIL (|has| $ (-6 -3982)) ELT)) (-3754 (($ $) 92 T ELT) (($ $ (-695)) NIL T ELT)) (-1764 (((-831) (-484)) NIL (|has| $ (-6 -3982)) ELT)) (-3491 (($ $) 74 T ELT)) (-3632 (($ $) 64 T ELT)) (-3489 (($ $) 75 T ELT)) (-3631 (($ $) 62 T ELT)) (-3487 (($ $) 72 T ELT)) (-3630 (($ $) 60 T ELT)) (-3968 (((-327) $) 102 T ELT) (((-179) $) 99 T ELT) (((-801 (-327)) $) NIL T ELT) (((-473) $) 38 T ELT)) (-3942 (((-773) $) 35 T ELT) (($ (-484)) 56 T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ (-484)) 56 T ELT) (($ (-347 (-484))) NIL T ELT)) (-3123 (((-695)) NIL T CONST)) (-3128 (($ $) NIL T ELT)) (-1767 (((-831)) 19 T ELT) (((-831) (-831)) NIL (|has| $ (-6 -3982)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2692 (((-831)) 7 T ELT)) (-3494 (($ $) 79 T ELT)) (-3482 (($ $) 67 T ELT) (($ $ $) 109 T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-3492 (($ $) 77 T ELT)) (-3480 (($ $) 65 T ELT)) (-3496 (($ $) 82 T ELT)) (-3484 (($ $) 70 T ELT)) (-3497 (($ $) 80 T ELT)) (-3485 (($ $) 68 T ELT)) (-3495 (($ $) 81 T ELT)) (-3483 (($ $) 69 T ELT)) (-3493 (($ $) 78 T ELT)) (-3481 (($ $) 66 T ELT)) (-3379 (($ $) 108 T ELT)) (-2658 (($) 27 T CONST)) (-2664 (($) 28 T CONST)) (-3383 (($ $) 95 T ELT)) (-2667 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3380 (($ $ $) 97 T ELT)) (-2564 (((-85) $ $) 42 T ELT)) (-2565 (((-85) $ $) 40 T ELT)) (-3054 (((-85) $ $) 50 T ELT)) (-2682 (((-85) $ $) 41 T ELT)) (-2683 (((-85) $ $) 39 T ELT)) (-3945 (($ $ $) 29 T ELT) (($ $ (-484)) 51 T ELT)) (-3833 (($ $) 43 T ELT) (($ $ $) 45 T ELT)) (-3835 (($ $ $) 44 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) 54 T ELT) (($ $ (-347 (-484))) 139 T ELT) (($ $ $) 55 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 47 T ELT) (($ $ $) 46 T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT)))
+(((-179) (-13 (-344) (-190) (-1114) (-554 (-473)) (-10 -8 (-15 -3945 ($ $ (-484))) (-15 ** ($ $ $)) (-15 -1739 ($)) (-15 -1741 ($ $)) (-15 -1740 ($ $)) (-15 -3482 ($ $ $)) (-15 -3383 ($ $)) (-15 -3380 ($ $ $)) (-15 -1742 ((-347 (-484)) $ (-695))) (-15 -1742 ((-347 (-484)) $ (-695) (-695))) (-15 -1457 ((-85) $))))) (T -179))
+((** (*1 *1 *1 *1) (-5 *1 (-179))) (-3945 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-179)))) (-1739 (*1 *1) (-5 *1 (-179))) (-1741 (*1 *1 *1) (-5 *1 (-179))) (-1740 (*1 *1 *1) (-5 *1 (-179))) (-3482 (*1 *1 *1 *1) (-5 *1 (-179))) (-3383 (*1 *1 *1) (-5 *1 (-179))) (-3380 (*1 *1 *1 *1) (-5 *1 (-179))) (-1742 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-347 (-484))) (-5 *1 (-179)))) (-1742 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-347 (-484))) (-5 *1 (-179)))) (-1457 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-179)))))
+((-3382 (((-142 (-179)) (-695) (-142 (-179))) 11 T ELT) (((-179) (-695) (-179)) 12 T ELT)) (-1458 (((-142 (-179)) (-142 (-179))) 13 T ELT) (((-179) (-179)) 14 T ELT)) (-1459 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 19 T ELT) (((-179) (-179) (-179)) 22 T ELT)) (-3381 (((-142 (-179)) (-142 (-179))) 27 T ELT) (((-179) (-179)) 26 T ELT)) (-3385 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 57 T ELT) (((-179) (-179) (-179)) 49 T ELT)) (-3387 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 62 T ELT) (((-179) (-179) (-179)) 60 T ELT)) (-3384 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 15 T ELT) (((-179) (-179) (-179)) 16 T ELT)) (-3386 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 17 T ELT) (((-179) (-179) (-179)) 18 T ELT)) (-3389 (((-142 (-179)) (-142 (-179))) 74 T ELT) (((-179) (-179)) 73 T ELT)) (-3388 (((-179) (-179)) 68 T ELT) (((-142 (-179)) (-142 (-179))) 72 T ELT)) (-3383 (((-142 (-179)) (-142 (-179))) 8 T ELT) (((-179) (-179)) 9 T ELT)) (-3380 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 35 T ELT) (((-179) (-179) (-179)) 31 T ELT)))
+(((-180) (-10 -7 (-15 -3383 ((-179) (-179))) (-15 -3383 ((-142 (-179)) (-142 (-179)))) (-15 -3380 ((-179) (-179) (-179))) (-15 -3380 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -1458 ((-179) (-179))) (-15 -1458 ((-142 (-179)) (-142 (-179)))) (-15 -3381 ((-179) (-179))) (-15 -3381 ((-142 (-179)) (-142 (-179)))) (-15 -3382 ((-179) (-695) (-179))) (-15 -3382 ((-142 (-179)) (-695) (-142 (-179)))) (-15 -3384 ((-179) (-179) (-179))) (-15 -3384 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3385 ((-179) (-179) (-179))) (-15 -3385 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3386 ((-179) (-179) (-179))) (-15 -3386 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3387 ((-179) (-179) (-179))) (-15 -3387 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3388 ((-142 (-179)) (-142 (-179)))) (-15 -3388 ((-179) (-179))) (-15 -3389 ((-179) (-179))) (-15 -3389 ((-142 (-179)) (-142 (-179)))) (-15 -1459 ((-179) (-179) (-179))) (-15 -1459 ((-142 (-179)) (-142 (-179)) (-142 (-179)))))) (T -180))
+((-1459 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1459 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3389 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3389 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3388 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3388 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3387 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3387 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3386 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3386 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3385 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3385 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3384 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3384 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3382 (*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-695)) (-5 *1 (-180)))) (-3382 (*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-695)) (-5 *1 (-180)))) (-3381 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3381 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-1458 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1458 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3380 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3380 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3383 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3383 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))))
+((-2566 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3834 (($ (-695) (-695)) NIL T ELT)) (-2348 (($ $ $) NIL T ELT)) (-3410 (($ (-1178 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3869 (($ |#1| |#1| |#1|) 33 T ELT)) (-3118 (((-85) $) NIL T ELT)) (-2347 (($ $ (-484) (-484)) NIL T ELT)) (-2346 (($ $ (-484) (-484)) NIL T ELT)) (-2345 (($ $ (-484) (-484) (-484) (-484)) NIL T ELT)) (-2350 (($ $) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-2344 (($ $ (-484) (-484) $) NIL T ELT)) (-3784 ((|#1| $ (-484) (-484) |#1|) NIL T ELT) (($ $ (-584 (-484)) (-584 (-484)) $) NIL T ELT)) (-1255 (($ $ (-484) (-1178 |#1|)) NIL T ELT)) (-1254 (($ $ (-484) (-1178 |#1|)) NIL T ELT)) (-3843 (($ |#1| |#1| |#1|) 32 T ELT)) (-3329 (($ (-695) |#1|) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3107 (($ $) NIL (|has| |#1| (-257)) ELT)) (-3109 (((-1178 |#1|) $ (-484)) NIL T ELT)) (-1460 (($ |#1|) 31 T ELT)) (-1461 (($ |#1|) 30 T ELT)) (-1462 (($ |#1|) 29 T ELT)) (-3106 (((-695) $) NIL (|has| |#1| (-495)) ELT)) (-1574 ((|#1| $ (-484) (-484) |#1|) NIL T ELT)) (-3110 ((|#1| $ (-484) (-484)) NIL T ELT)) (-2887 (((-584 |#1|) $) NIL T ELT)) (-3105 (((-695) $) NIL (|has| |#1| (-495)) ELT)) (-3104 (((-584 (-1178 |#1|)) $) NIL (|has| |#1| (-495)) ELT)) (-3112 (((-695) $) NIL T ELT)) (-3610 (($ (-695) (-695) |#1|) NIL T ELT)) (-3111 (((-695) $) NIL T ELT)) (-3323 ((|#1| $) NIL (|has| |#1| (-6 (-3993 #1="*"))) ELT)) (-3116 (((-484) $) NIL T ELT)) (-3114 (((-484) $) NIL T ELT)) (-2606 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3115 (((-484) $) NIL T ELT)) (-3113 (((-484) $) NIL T ELT)) (-3121 (($ (-584 (-584 |#1|))) 11 T ELT) (($ (-695) (-695) (-1 |#1| (-484) (-484))) NIL T ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3590 (((-584 (-584 |#1|)) $) NIL T ELT)) (-3239 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3586 (((-3 $ #2="failed") $) NIL (|has| |#1| (-311)) ELT)) (-1463 (($) 12 T ELT)) (-2349 (($ $ $) NIL T ELT)) (-3240 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-2197 (($ $ |#1|) NIL T ELT)) (-3462 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) NIL T ELT)) (-3796 ((|#1| $ (-484) (-484)) NIL T ELT) ((|#1| $ (-484) (-484) |#1|) NIL T ELT) (($ $ (-584 (-484)) (-584 (-484))) NIL T ELT)) (-3328 (($ (-584 |#1|)) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3119 (((-85) $) NIL T ELT)) (-3324 ((|#1| $) NIL (|has| |#1| (-6 (-3993 #1#))) ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3396 (($ $) NIL T ELT)) (-3108 (((-1178 |#1|) $ (-484)) NIL T ELT)) (-3942 (($ (-1178 |#1|)) NIL T ELT) (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3117 (((-85) $) NIL T ELT)) (-3054 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3945 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3833 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-311)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-484) $) NIL T ELT) (((-1178 |#1|) $ (-1178 |#1|)) 15 T ELT) (((-1178 |#1|) (-1178 |#1|) $) NIL T ELT) (((-855 |#1|) $ (-855 |#1|)) 21 T ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-181 |#1|) (-13 (-628 |#1| (-1178 |#1|) (-1178 |#1|)) (-10 -8 (-15 * ((-855 |#1|) $ (-855 |#1|))) (-15 -1463 ($)) (-15 -1462 ($ |#1|)) (-15 -1461 ($ |#1|)) (-15 -1460 ($ |#1|)) (-15 -3843 ($ |#1| |#1| |#1|)) (-15 -3869 ($ |#1| |#1| |#1|)))) (-13 (-311) (-1114))) (T -181))
+((* (*1 *2 *1 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-311) (-1114))) (-5 *1 (-181 *3)))) (-1463 (*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1114))))) (-1462 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1114))))) (-1461 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1114))))) (-1460 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1114))))) (-3843 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1114))))) (-3869 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1114))))))
+((-1568 (($ (-1 (-85) |#2|) $) 16 T ELT)) (-3401 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 28 T ELT)) (-1464 (($) NIL T ELT) (($ (-584 |#2|)) 11 T ELT)) (-3054 (((-85) $ $) 26 T ELT)))
+(((-182 |#1| |#2|) (-10 -7 (-15 -3054 ((-85) |#1| |#1|)) (-15 -1568 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3401 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3401 (|#1| |#2| |#1|)) (-15 -1464 (|#1| (-584 |#2|))) (-15 -1464 (|#1|))) (-183 |#2|) (-1013)) (T -182))
+NIL
+((-2566 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1568 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3991)) ELT)) (-3706 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3991)) ELT)) (-3720 (($) 7 T CONST)) (-1351 (($ $) 62 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3401 (($ |#1| $) 51 (|has| $ (-6 -3991)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3991)) ELT)) (-3402 (($ |#1| $) 61 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3991)) ELT)) (-3838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3991)) ELT)) (-2887 (((-584 |#1|) $) 30 (|has| $ (-6 -3991)) ELT)) (-2606 (((-584 |#1|) $) 29 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3239 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-1272 ((|#1| $) 43 T ELT)) (-3605 (($ |#1| $) 44 T ELT)) (-3240 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1273 ((|#1| $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-1464 (($) 53 T ELT) (($ (-584 |#1|)) 52 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3396 (($ $) 10 T ELT)) (-3968 (((-473) $) 63 (|has| |#1| (-554 (-473))) ELT)) (-3526 (($ (-584 |#1|)) 54 T ELT)) (-3942 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1274 (($ (-584 |#1|)) 46 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-183 |#1|) (-113) (-1013)) (T -183))
NIL
(-13 (-193 |t#1|))
-(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-193 |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3752 (($ $ (-1 |#1| |#1|) (-694)) 63 T ELT) (($ $ (-1 |#1| |#1|)) 62 T ELT) (($ $ (-1088)) 61 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) 59 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) 58 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 57 (|has| |#1| (-811 (-1088))) ELT) (($ $) 53 (|has| |#1| (-189)) ELT) (($ $ (-694)) 51 (|has| |#1| (-189)) ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-1 |#1| |#1|) (-694)) 65 T ELT) (($ $ (-1 |#1| |#1|)) 64 T ELT) (($ $ (-1088)) 60 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) 56 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) 55 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 54 (|has| |#1| (-811 (-1088))) ELT) (($ $) 52 (|has| |#1| (-189)) ELT) (($ $ (-694)) 50 (|has| |#1| (-189)) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT)))
-(((-184 |#1|) (-113) (-961)) (T -184))
-NIL
-(-13 (-961) (-225 |t#1|) (-10 -7 (IF (|has| |t#1| (-190)) (-6 (-190)) |%noBranch|) (IF (|has| |t#1| (-809 (-1088))) (-6 (-809 (-1088))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-483)) . T) ((-552 (-772)) . T) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-806 $ (-1088)) OR (|has| |#1| (-811 (-1088))) (|has| |#1| (-809 (-1088)))) ((-809 (-1088)) |has| |#1| (-809 (-1088))) ((-811 (-1088)) OR (|has| |#1| (-811 (-1088))) (|has| |#1| (-809 (-1088)))) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T))
-((-2665 ((|#2| $) 9 T ELT)))
-(((-185 |#1| |#2|) (-10 -7 (-15 -2665 (|#2| |#1|))) (-186 |#2|) (-1127)) (T -185))
-NIL
-((-3752 ((|#1| $) 7 T ELT)) (-2665 ((|#1| $) 6 T ELT)))
-(((-186 |#1|) (-113) (-1127)) (T -186))
-((-3752 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1127)))) (-2665 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1127)))))
-(-13 (-1127) (-10 -8 (-15 -3752 (|t#1| $)) (-15 -2665 (|t#1| $))))
-(((-13) . T) ((-1127) . T))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3752 (($ $ (-694)) 42 T ELT) (($ $) 40 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2665 (($ $ (-694)) 43 T ELT) (($ $) 41 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT)))
-(((-187 |#1|) (-113) (-961)) (T -187))
-NIL
-(-13 (-82 |t#1| |t#1|) (-189) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-654 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1012) . T) ((-1127) . T))
-((-3752 (($ $) NIL T ELT) (($ $ (-694)) 9 T ELT)) (-2665 (($ $) NIL T ELT) (($ $ (-694)) 11 T ELT)))
-(((-188 |#1|) (-10 -7 (-15 -2665 (|#1| |#1| (-694))) (-15 -3752 (|#1| |#1| (-694))) (-15 -2665 (|#1| |#1|)) (-15 -3752 (|#1| |#1|))) (-189)) (T -188))
-NIL
-((-3752 (($ $) 7 T ELT) (($ $ (-694)) 10 T ELT)) (-2665 (($ $) 6 T ELT) (($ $ (-694)) 9 T ELT)))
+(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-193 |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3754 (($ $ (-1 |#1| |#1|) (-695)) 63 T ELT) (($ $ (-1 |#1| |#1|)) 62 T ELT) (($ $ (-1089)) 61 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) 59 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) 58 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 57 (|has| |#1| (-812 (-1089))) ELT) (($ $) 53 (|has| |#1| (-189)) ELT) (($ $ (-695)) 51 (|has| |#1| (-189)) ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-2667 (($ $ (-1 |#1| |#1|) (-695)) 65 T ELT) (($ $ (-1 |#1| |#1|)) 64 T ELT) (($ $ (-1089)) 60 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) 56 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) 55 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 54 (|has| |#1| (-812 (-1089))) ELT) (($ $) 52 (|has| |#1| (-189)) ELT) (($ $ (-695)) 50 (|has| |#1| (-189)) ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT)))
+(((-184 |#1|) (-113) (-962)) (T -184))
+NIL
+(-13 (-962) (-225 |t#1|) (-10 -7 (IF (|has| |t#1| (-190)) (-6 (-190)) |%noBranch|) (IF (|has| |t#1| (-810 (-1089))) (-6 (-810 (-1089))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-484)) . T) ((-553 (-773)) . T) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-807 $ (-1089)) OR (|has| |#1| (-812 (-1089))) (|has| |#1| (-810 (-1089)))) ((-810 (-1089)) |has| |#1| (-810 (-1089))) ((-812 (-1089)) OR (|has| |#1| (-812 (-1089))) (|has| |#1| (-810 (-1089)))) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
+((-2667 ((|#2| $) 9 T ELT)))
+(((-185 |#1| |#2|) (-10 -7 (-15 -2667 (|#2| |#1|))) (-186 |#2|) (-1128)) (T -185))
+NIL
+((-3754 ((|#1| $) 7 T ELT)) (-2667 ((|#1| $) 6 T ELT)))
+(((-186 |#1|) (-113) (-1128)) (T -186))
+((-3754 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1128)))) (-2667 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1128)))))
+(-13 (-1128) (-10 -8 (-15 -3754 (|t#1| $)) (-15 -2667 (|t#1| $))))
+(((-13) . T) ((-1128) . T))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3754 (($ $ (-695)) 42 T ELT) (($ $) 40 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-2667 (($ $ (-695)) 43 T ELT) (($ $) 41 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT)))
+(((-187 |#1|) (-113) (-962)) (T -187))
+NIL
+(-13 (-82 |t#1| |t#1|) (-189) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-655 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1013) . T) ((-1128) . T))
+((-3754 (($ $) NIL T ELT) (($ $ (-695)) 9 T ELT)) (-2667 (($ $) NIL T ELT) (($ $ (-695)) 11 T ELT)))
+(((-188 |#1|) (-10 -7 (-15 -2667 (|#1| |#1| (-695))) (-15 -3754 (|#1| |#1| (-695))) (-15 -2667 (|#1| |#1|)) (-15 -3754 (|#1| |#1|))) (-189)) (T -188))
+NIL
+((-3754 (($ $) 7 T ELT) (($ $ (-695)) 10 T ELT)) (-2667 (($ $) 6 T ELT) (($ $ (-695)) 9 T ELT)))
(((-189) (-113)) (T -189))
-((-3752 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-694)))) (-2665 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-694)))))
-(-13 (-186 $) (-10 -8 (-15 -3752 ($ $ (-694))) (-15 -2665 ($ $ (-694)))))
-(((-186 $) . T) ((-13) . T) ((-1127) . T))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3752 (($ $ (-694)) 48 T ELT) (($ $) 46 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-694)) 49 T ELT) (($ $) 47 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT)))
+((-3754 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-695)))) (-2667 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-695)))))
+(-13 (-186 $) (-10 -8 (-15 -3754 ($ $ (-695))) (-15 -2667 ($ $ (-695)))))
+(((-186 $) . T) ((-13) . T) ((-1128) . T))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3754 (($ $ (-695)) 48 T ELT) (($ $) 46 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-2667 (($ $ (-695)) 49 T ELT) (($ $) 47 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT)))
(((-190) (-113)) (T -190))
NIL
-(-13 (-961) (-189))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-483)) . T) ((-552 (-772)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 31 T ELT)) (-3718 (($) 30 T CONST)) (-3461 (((-3 $ "failed") $) 35 T ELT)) (-3181 (((-85) $) 28 T ELT)) (-2406 (((-85) $) 37 T ELT)) (-2527 (($ $ $) 23 T ELT)) (-2853 (($ $ $) 22 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 29 T CONST)) (-2662 (($) 38 T CONST)) (-2562 (((-85) $ $) 21 T ELT)) (-2563 (((-85) $ $) 19 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 20 T ELT)) (-2681 (((-85) $ $) 18 T ELT)) (-3833 (($ $ $) 25 T ELT)) (** (($ $ (-830)) 39 T ELT) (($ $ (-694)) 36 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT) (($ $ $) 40 T ELT)))
+(-13 (-962) (-189))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-484)) . T) ((-553 (-773)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 31 T ELT)) (-3720 (($) 30 T CONST)) (-3463 (((-3 $ "failed") $) 35 T ELT)) (-3183 (((-85) $) 28 T ELT)) (-2408 (((-85) $) 37 T ELT)) (-2529 (($ $ $) 23 T ELT)) (-2855 (($ $ $) 22 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 29 T CONST)) (-2664 (($) 38 T CONST)) (-2564 (((-85) $ $) 21 T ELT)) (-2565 (((-85) $ $) 19 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-2682 (((-85) $ $) 20 T ELT)) (-2683 (((-85) $ $) 18 T ELT)) (-3835 (($ $ $) 25 T ELT)) (** (($ $ (-831)) 39 T ELT) (($ $ (-695)) 36 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT) (($ $ $) 40 T ELT)))
(((-191) (-113)) (T -191))
NIL
-(-13 (-716) (-1059))
-(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-663) . T) ((-716) . T) ((-718) . T) ((-756) . T) ((-759) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T))
-((-1463 (($) 12 T ELT) (($ (-583 |#2|)) NIL T ELT)) (-3394 (($ $) 14 T ELT)) (-3524 (($ (-583 |#2|)) 10 T ELT)) (-3940 (((-772) $) 21 T ELT)))
-(((-192 |#1| |#2|) (-10 -7 (-15 -3940 ((-772) |#1|)) (-15 -1463 (|#1| (-583 |#2|))) (-15 -1463 (|#1|)) (-15 -3524 (|#1| (-583 |#2|))) (-15 -3394 (|#1| |#1|))) (-193 |#2|) (-1012)) (T -192))
-NIL
-((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1567 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3989)) ELT)) (-3718 (($) 7 T CONST)) (-1350 (($ $) 62 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3399 (($ |#1| $) 51 (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3989)) ELT)) (-3400 (($ |#1| $) 61 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3989)) ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-1271 ((|#1| $) 43 T ELT)) (-3603 (($ |#1| $) 44 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1272 ((|#1| $) 45 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-1463 (($) 53 T ELT) (($ (-583 |#1|)) 52 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 63 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 54 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1273 (($ (-583 |#1|)) 46 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-193 |#1|) (-113) (-1012)) (T -193))
-((-1463 (*1 *1) (-12 (-4 *1 (-193 *2)) (-4 *2 (-1012)))) (-1463 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-4 *1 (-193 *3)))) (-3399 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -3989)) (-4 *1 (-193 *2)) (-4 *2 (-1012)))) (-3399 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3989)) (-4 *1 (-193 *3)) (-4 *3 (-1012)))) (-1567 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3989)) (-4 *1 (-193 *3)) (-4 *3 (-1012)))))
-(-13 (-76 |t#1|) (-124 |t#1|) (-10 -8 (-15 -1463 ($)) (-15 -1463 ($ (-583 |t#1|))) (IF (|has| $ (-6 -3989)) (PROGN (-15 -3399 ($ |t#1| $)) (-15 -3399 ($ (-1 (-85) |t#1|) $)) (-15 -1567 ($ (-1 (-85) |t#1|) $))) |%noBranch|)))
-(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T))
-((-1464 (((-2 (|:| |varOrder| (-583 (-1088))) (|:| |inhom| (-3 (-583 (-1177 (-694))) "failed")) (|:| |hom| (-583 (-1177 (-694))))) (-248 (-857 (-483)))) 42 T ELT)))
-(((-194) (-10 -7 (-15 -1464 ((-2 (|:| |varOrder| (-583 (-1088))) (|:| |inhom| (-3 (-583 (-1177 (-694))) "failed")) (|:| |hom| (-583 (-1177 (-694))))) (-248 (-857 (-483))))))) (T -194))
-((-1464 (*1 *2 *3) (-12 (-5 *3 (-248 (-857 (-483)))) (-5 *2 (-2 (|:| |varOrder| (-583 (-1088))) (|:| |inhom| (-3 (-583 (-1177 (-694))) "failed")) (|:| |hom| (-583 (-1177 (-694)))))) (-5 *1 (-194)))))
-((-3131 (((-694)) 56 T ELT)) (-2275 (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1177 |#3|))) (-630 $) (-1177 $)) 53 T ELT) (((-630 |#3|) (-630 $)) 44 T ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL T ELT) (((-630 (-483)) (-630 $)) NIL T ELT)) (-3905 (((-107)) 62 T ELT)) (-3752 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-694)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088))) NIL T ELT) (($ $ (-1088)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-3940 (((-1177 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-772) $) NIL T ELT) (($ (-483)) 12 T ELT) (($ (-347 (-483))) NIL T ELT)) (-3121 (((-694)) 15 T CONST)) (-3943 (($ $ |#3|) 59 T ELT)))
-(((-195 |#1| |#2| |#3|) (-10 -7 (-15 -3940 (|#1| (-347 (-483)))) (-15 -3940 (|#1| (-483))) (-15 -3752 (|#1| |#1|)) (-15 -3752 (|#1| |#1| (-694))) (-15 -3752 (|#1| |#1| (-1088))) (-15 -3752 (|#1| |#1| (-583 (-1088)))) (-15 -3752 (|#1| |#1| (-1088) (-694))) (-15 -3752 (|#1| |#1| (-583 (-1088)) (-583 (-694)))) (-15 -3940 ((-772) |#1|)) (-15 -3121 ((-694)) -3946) (-15 -2275 ((-630 (-483)) (-630 |#1|))) (-15 -2275 ((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 |#1|) (-1177 |#1|))) (-15 -3940 (|#1| |#3|)) (-15 -3752 (|#1| |#1| (-1 |#3| |#3|) (-694))) (-15 -3752 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2275 ((-630 |#3|) (-630 |#1|))) (-15 -2275 ((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1177 |#3|))) (-630 |#1|) (-1177 |#1|))) (-15 -3131 ((-694))) (-15 -3943 (|#1| |#1| |#3|)) (-15 -3905 ((-107))) (-15 -3940 ((-1177 |#3|) |#1|))) (-196 |#2| |#3|) (-694) (-1127)) (T -195))
-((-3905 (*1 *2) (-12 (-14 *4 (-694)) (-4 *5 (-1127)) (-5 *2 (-107)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) (-3131 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1127)) (-5 *2 (-694)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) (-3121 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1127)) (-5 *2 (-694)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))))
-((-2564 (((-85) $ $) 19 (|has| |#2| (-72)) ELT)) (-3183 (((-85) $) 80 (|has| |#2| (-23)) ELT)) (-3701 (($ (-830)) 134 (|has| |#2| (-961)) ELT)) (-2194 (((-1183) $ (-483) (-483)) 44 (|has| $ (-6 -3990)) ELT)) (-2479 (($ $ $) 130 (|has| |#2| (-717)) ELT)) (-1309 (((-3 $ "failed") $ $) 82 (|has| |#2| (-104)) ELT)) (-3131 (((-694)) 119 (|has| |#2| (-317)) ELT)) (-3782 ((|#2| $ (-483) |#2|) 56 (|has| $ (-6 -3990)) ELT)) (-3718 (($) 7 T CONST)) (-3152 (((-3 (-483) #1="failed") $) 75 (-2558 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) ELT) (((-3 (-347 (-483)) #1#) $) 72 (-2558 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012))) ELT) (((-3 |#2| #1#) $) 69 (|has| |#2| (-1012)) ELT)) (-3151 (((-483) $) 74 (-2558 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) ELT) (((-347 (-483)) $) 71 (-2558 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012))) ELT) ((|#2| $) 70 (|has| |#2| (-1012)) ELT)) (-2275 (((-630 (-483)) (-630 $)) 116 (-2558 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 115 (-2558 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) 114 (|has| |#2| (-961)) ELT) (((-630 |#2|) (-630 $)) 113 (|has| |#2| (-961)) ELT)) (-3461 (((-3 $ "failed") $) 93 (|has| |#2| (-961)) ELT)) (-2990 (($) 122 (|has| |#2| (-317)) ELT)) (-1573 ((|#2| $ (-483) |#2|) 57 (|has| $ (-6 -3990)) ELT)) (-3108 ((|#2| $ (-483)) 55 T ELT)) (-3181 (((-85) $) 129 (|has| |#2| (-717)) ELT)) (-2885 (((-583 |#2|) $) 30 (|has| $ (-6 -3989)) ELT)) (-2406 (((-85) $) 91 (|has| |#2| (-961)) ELT)) (-2196 (((-483) $) 47 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) 123 (|has| |#2| (-756)) ELT)) (-2604 (((-583 |#2|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#2| $) 27 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -3989))) ELT)) (-2197 (((-483) $) 48 (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) 124 (|has| |#2| (-756)) ELT)) (-1946 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-2006 (((-830) $) 121 (|has| |#2| (-317)) ELT)) (-2276 (((-630 (-483)) (-1177 $)) 118 (-2558 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 117 (-2558 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) 112 (|has| |#2| (-961)) ELT) (((-630 |#2|) (-1177 $)) 111 (|has| |#2| (-961)) ELT)) (-3237 (((-1071) $) 22 (|has| |#2| (-1012)) ELT)) (-2199 (((-583 (-483)) $) 50 T ELT)) (-2200 (((-85) (-483) $) 51 T ELT)) (-2396 (($ (-830)) 120 (|has| |#2| (-317)) ELT)) (-3238 (((-1032) $) 21 (|has| |#2| (-1012)) ELT)) (-3795 ((|#2| $) 46 (|has| (-483) (-756)) ELT)) (-2195 (($ $ |#2|) 45 (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#2|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#2|))) 26 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-248 |#2|)) 25 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 23 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-2198 (((-85) |#2| $) 49 (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2201 (((-583 |#2|) $) 52 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#2| $ (-483) |#2|) 54 T ELT) ((|#2| $ (-483)) 53 T ELT)) (-3830 ((|#2| $ $) 133 (|has| |#2| (-961)) ELT)) (-1465 (($ (-1177 |#2|)) 135 T ELT)) (-3905 (((-107)) 132 (|has| |#2| (-311)) ELT)) (-3752 (($ $ (-694)) 109 (-2558 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) 107 (-2558 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 103 (-2558 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1088) (-694)) 102 (-2558 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1088))) 101 (-2558 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1088)) 99 (-2558 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) 98 (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) 97 (|has| |#2| (-961)) ELT)) (-1943 (((-694) (-1 (-85) |#2|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#2| $) 28 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3940 (((-1177 |#2|) $) 136 T ELT) (($ (-483)) 76 (OR (-2558 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) (|has| |#2| (-961))) ELT) (($ (-347 (-483))) 73 (-2558 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012))) ELT) (($ |#2|) 68 (|has| |#2| (-1012)) ELT) (((-772) $) 17 (|has| |#2| (-552 (-772))) ELT)) (-3121 (((-694)) 94 (|has| |#2| (-961)) CONST)) (-1262 (((-85) $ $) 20 (|has| |#2| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 33 (|has| $ (-6 -3989)) ELT)) (-2656 (($) 79 (|has| |#2| (-23)) CONST)) (-2662 (($) 90 (|has| |#2| (-961)) CONST)) (-2665 (($ $ (-694)) 110 (-2558 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) 108 (-2558 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 106 (-2558 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1088) (-694)) 105 (-2558 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1088))) 104 (-2558 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1088)) 100 (-2558 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) 96 (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) 95 (|has| |#2| (-961)) ELT)) (-2562 (((-85) $ $) 125 (|has| |#2| (-756)) ELT)) (-2563 (((-85) $ $) 127 (|has| |#2| (-756)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#2| (-72)) ELT)) (-2680 (((-85) $ $) 126 (|has| |#2| (-756)) ELT)) (-2681 (((-85) $ $) 128 (|has| |#2| (-756)) ELT)) (-3943 (($ $ |#2|) 131 (|has| |#2| (-311)) ELT)) (-3831 (($ $ $) 85 (|has| |#2| (-21)) ELT) (($ $) 84 (|has| |#2| (-21)) ELT)) (-3833 (($ $ $) 77 (|has| |#2| (-25)) ELT)) (** (($ $ (-694)) 92 (|has| |#2| (-961)) ELT) (($ $ (-830)) 88 (|has| |#2| (-961)) ELT)) (* (($ $ $) 89 (|has| |#2| (-961)) ELT) (($ $ |#2|) 87 (|has| |#2| (-663)) ELT) (($ |#2| $) 86 (|has| |#2| (-663)) ELT) (($ (-483) $) 83 (|has| |#2| (-21)) ELT) (($ (-694) $) 81 (|has| |#2| (-23)) ELT) (($ (-830) $) 78 (|has| |#2| (-25)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-196 |#1| |#2|) (-113) (-694) (-1127)) (T -196))
-((-1465 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-4 *4 (-1127)) (-4 *1 (-196 *3 *4)))) (-3701 (*1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-196 *3 *4)) (-4 *4 (-961)) (-4 *4 (-1127)))) (-3830 (*1 *2 *1 *1) (-12 (-4 *1 (-196 *3 *2)) (-4 *2 (-1127)) (-4 *2 (-961)))))
-(-13 (-538 (-483) |t#2|) (-552 (-1177 |t#2|)) (-10 -8 (-6 -3989) (-15 -1465 ($ (-1177 |t#2|))) (IF (|has| |t#2| (-1012)) (-6 (-352 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-961)) (PROGN (-6 (-82 |t#2| |t#2|)) (-6 (-184 |t#2|)) (-6 (-326 |t#2|)) (-15 -3701 ($ (-830))) (-15 -3830 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-104)) (-6 (-104)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-663)) (-6 (-582 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-317)) (-6 (-317)) |%noBranch|) (IF (|has| |t#2| (-146)) (-6 (-654 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -3986)) (-6 -3986) |%noBranch|) (IF (|has| |t#2| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |t#2| (-717)) (-6 (-717)) |%noBranch|) (IF (|has| |t#2| (-311)) (-6 (-1185 |t#2|)) |%noBranch|)))
-(((-21) OR (|has| |#2| (-961)) (|has| |#2| (-311)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-23) OR (|has| |#2| (-961)) (|has| |#2| (-717)) (|has| |#2| (-311)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) OR (|has| |#2| (-961)) (|has| |#2| (-717)) (|has| |#2| (-311)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-72) OR (|has| |#2| (-1012)) (|has| |#2| (-961)) (|has| |#2| (-756)) (|has| |#2| (-717)) (|has| |#2| (-663)) (|has| |#2| (-317)) (|has| |#2| (-311)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-72)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-82 |#2| |#2|) OR (|has| |#2| (-961)) (|has| |#2| (-311)) (|has| |#2| (-146))) ((-104) OR (|has| |#2| (-961)) (|has| |#2| (-717)) (|has| |#2| (-311)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-21))) ((-555 (-347 (-483))) -12 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012))) ((-555 (-483)) OR (|has| |#2| (-961)) (-12 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012)))) ((-555 |#2|) |has| |#2| (-1012)) ((-552 (-772)) OR (|has| |#2| (-1012)) (|has| |#2| (-961)) (|has| |#2| (-756)) (|has| |#2| (-717)) (|has| |#2| (-663)) (|has| |#2| (-317)) (|has| |#2| (-311)) (|has| |#2| (-146)) (|has| |#2| (-552 (-772))) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-552 (-1177 |#2|)) . T) ((-186 $) OR (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) (-12 (|has| |#2| (-190)) (|has| |#2| (-961)))) ((-184 |#2|) |has| |#2| (-961)) ((-190) -12 (|has| |#2| (-190)) (|has| |#2| (-961))) ((-189) OR (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) (-12 (|has| |#2| (-190)) (|has| |#2| (-961)))) ((-225 |#2|) |has| |#2| (-961)) ((-241 (-483) |#2|) . T) ((-243 (-483) |#2|) . T) ((-259 |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ((-317) |has| |#2| (-317)) ((-326 |#2|) |has| |#2| (-961)) ((-352 |#2|) |has| |#2| (-1012)) ((-426 |#2|) . T) ((-538 (-483) |#2|) . T) ((-452 |#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ((-13) . T) ((-588 (-483)) OR (|has| |#2| (-961)) (|has| |#2| (-311)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-588 |#2|) OR (|has| |#2| (-961)) (|has| |#2| (-663)) (|has| |#2| (-311)) (|has| |#2| (-146))) ((-588 $) |has| |#2| (-961)) ((-590 (-483)) -12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ((-590 |#2|) OR (|has| |#2| (-961)) (|has| |#2| (-311)) (|has| |#2| (-146))) ((-590 $) |has| |#2| (-961)) ((-582 |#2|) OR (|has| |#2| (-663)) (|has| |#2| (-311)) (|has| |#2| (-146))) ((-580 (-483)) -12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ((-580 |#2|) |has| |#2| (-961)) ((-654 |#2|) OR (|has| |#2| (-311)) (|has| |#2| (-146))) ((-663) |has| |#2| (-961)) ((-716) |has| |#2| (-717)) ((-717) |has| |#2| (-717)) ((-718) |has| |#2| (-717)) ((-721) |has| |#2| (-717)) ((-756) OR (|has| |#2| (-756)) (|has| |#2| (-717))) ((-759) OR (|has| |#2| (-756)) (|has| |#2| (-717))) ((-806 $ (-1088)) OR (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) (-12 (|has| |#2| (-809 (-1088))) (|has| |#2| (-961)))) ((-809 (-1088)) -12 (|has| |#2| (-809 (-1088))) (|has| |#2| (-961))) ((-811 (-1088)) OR (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) (-12 (|has| |#2| (-809 (-1088))) (|has| |#2| (-961)))) ((-950 (-347 (-483))) -12 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012))) ((-950 (-483)) -12 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) ((-950 |#2|) |has| |#2| (-1012)) ((-963 |#2|) OR (|has| |#2| (-961)) (|has| |#2| (-663)) (|has| |#2| (-311)) (|has| |#2| (-146))) ((-968 |#2|) OR (|has| |#2| (-961)) (|has| |#2| (-311)) (|has| |#2| (-146))) ((-961) |has| |#2| (-961)) ((-969) |has| |#2| (-961)) ((-1024) |has| |#2| (-961)) ((-1059) |has| |#2| (-961)) ((-1012) OR (|has| |#2| (-1012)) (|has| |#2| (-961)) (|has| |#2| (-756)) (|has| |#2| (-717)) (|has| |#2| (-663)) (|has| |#2| (-317)) (|has| |#2| (-311)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1127) . T) ((-1185 |#2|) |has| |#2| (-311)))
-((-2564 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3183 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3701 (($ (-830)) 63 (|has| |#2| (-961)) ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-2479 (($ $ $) 69 (|has| |#2| (-717)) ELT)) (-1309 (((-3 $ #1="failed") $ $) 54 (|has| |#2| (-104)) ELT)) (-3131 (((-694)) NIL (|has| |#2| (-317)) ELT)) (-3782 ((|#2| $ (-483) |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL (-12 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (-12 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012))) ELT) (((-3 |#2| #1#) $) 31 (|has| |#2| (-1012)) ELT)) (-3151 (((-483) $) NIL (-12 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) ELT) (((-347 (-483)) $) NIL (-12 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012))) ELT) ((|#2| $) 29 (|has| |#2| (-1012)) ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (-12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (-12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-630 $)) NIL (|has| |#2| (-961)) ELT)) (-3461 (((-3 $ #1#) $) 59 (|has| |#2| (-961)) ELT)) (-2990 (($) NIL (|has| |#2| (-317)) ELT)) (-1573 ((|#2| $ (-483) |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#2| $ (-483)) 57 T ELT)) (-3181 (((-85) $) NIL (|has| |#2| (-717)) ELT)) (-2885 (((-583 |#2|) $) 14 (|has| $ (-6 -3989)) ELT)) (-2406 (((-85) $) NIL (|has| |#2| (-961)) ELT)) (-2196 (((-483) $) 20 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-2604 (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2197 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-1946 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2006 (((-830) $) NIL (|has| |#2| (-317)) ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (-12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (-12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-1177 $)) NIL (|has| |#2| (-961)) ELT)) (-3237 (((-1071) $) NIL (|has| |#2| (-1012)) ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-2396 (($ (-830)) NIL (|has| |#2| (-317)) ELT)) (-3238 (((-1032) $) NIL (|has| |#2| (-1012)) ELT)) (-3795 ((|#2| $) NIL (|has| (-483) (-756)) ELT)) (-2195 (($ $ |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#2|) $) 24 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2201 (((-583 |#2|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#2| $ (-483) |#2|) NIL T ELT) ((|#2| $ (-483)) 21 T ELT)) (-3830 ((|#2| $ $) NIL (|has| |#2| (-961)) ELT)) (-1465 (($ (-1177 |#2|)) 18 T ELT)) (-3905 (((-107)) NIL (|has| |#2| (-311)) ELT)) (-3752 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1088)) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-1943 (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3940 (((-1177 |#2|) $) 9 T ELT) (($ (-483)) NIL (OR (-12 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) (|has| |#2| (-961))) ELT) (($ (-347 (-483))) NIL (-12 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012))) ELT) (($ |#2|) 12 (|has| |#2| (-1012)) ELT) (((-772) $) NIL (|has| |#2| (-552 (-772))) ELT)) (-3121 (((-694)) NIL (|has| |#2| (-961)) CONST)) (-1262 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2656 (($) 37 (|has| |#2| (-23)) CONST)) (-2662 (($) 41 (|has| |#2| (-961)) CONST)) (-2665 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1088)) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-2562 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-3052 (((-85) $ $) 28 (|has| |#2| (-72)) ELT)) (-2680 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2681 (((-85) $ $) 67 (|has| |#2| (-756)) ELT)) (-3943 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3831 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3833 (($ $ $) 35 (|has| |#2| (-25)) ELT)) (** (($ $ (-694)) NIL (|has| |#2| (-961)) ELT) (($ $ (-830)) NIL (|has| |#2| (-961)) ELT)) (* (($ $ $) 47 (|has| |#2| (-961)) ELT) (($ $ |#2|) 45 (|has| |#2| (-663)) ELT) (($ |#2| $) 46 (|has| |#2| (-663)) ELT) (($ (-483) $) NIL (|has| |#2| (-21)) ELT) (($ (-694) $) NIL (|has| |#2| (-23)) ELT) (($ (-830) $) NIL (|has| |#2| (-25)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-197 |#1| |#2|) (-196 |#1| |#2|) (-694) (-1127)) (T -197))
-NIL
-((-3835 (((-197 |#1| |#3|) (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|) 21 T ELT)) (-3836 ((|#3| (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|) 23 T ELT)) (-3952 (((-197 |#1| |#3|) (-1 |#3| |#2|) (-197 |#1| |#2|)) 18 T ELT)))
-(((-198 |#1| |#2| |#3|) (-10 -7 (-15 -3835 ((-197 |#1| |#3|) (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|)) (-15 -3836 (|#3| (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|)) (-15 -3952 ((-197 |#1| |#3|) (-1 |#3| |#2|) (-197 |#1| |#2|)))) (-694) (-1127) (-1127)) (T -198))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-197 *5 *6)) (-14 *5 (-694)) (-4 *6 (-1127)) (-4 *7 (-1127)) (-5 *2 (-197 *5 *7)) (-5 *1 (-198 *5 *6 *7)))) (-3836 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-197 *5 *6)) (-14 *5 (-694)) (-4 *6 (-1127)) (-4 *2 (-1127)) (-5 *1 (-198 *5 *6 *2)))) (-3835 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-197 *6 *7)) (-14 *6 (-694)) (-4 *7 (-1127)) (-4 *5 (-1127)) (-5 *2 (-197 *6 *5)) (-5 *1 (-198 *6 *7 *5)))))
-((-1469 (((-483) (-583 (-1071))) 36 T ELT) (((-483) (-1071)) 29 T ELT)) (-1468 (((-1183) (-583 (-1071))) 40 T ELT) (((-1183) (-1071)) 39 T ELT)) (-1466 (((-1071)) 16 T ELT)) (-1467 (((-1071) (-483) (-1071)) 23 T ELT)) (-3767 (((-583 (-1071)) (-583 (-1071)) (-483) (-1071)) 37 T ELT) (((-1071) (-1071) (-483) (-1071)) 35 T ELT)) (-2616 (((-583 (-1071)) (-583 (-1071))) 15 T ELT) (((-583 (-1071)) (-1071)) 11 T ELT)))
-(((-199) (-10 -7 (-15 -2616 ((-583 (-1071)) (-1071))) (-15 -2616 ((-583 (-1071)) (-583 (-1071)))) (-15 -1466 ((-1071))) (-15 -1467 ((-1071) (-483) (-1071))) (-15 -3767 ((-1071) (-1071) (-483) (-1071))) (-15 -3767 ((-583 (-1071)) (-583 (-1071)) (-483) (-1071))) (-15 -1468 ((-1183) (-1071))) (-15 -1468 ((-1183) (-583 (-1071)))) (-15 -1469 ((-483) (-1071))) (-15 -1469 ((-483) (-583 (-1071)))))) (T -199))
-((-1469 (*1 *2 *3) (-12 (-5 *3 (-583 (-1071))) (-5 *2 (-483)) (-5 *1 (-199)))) (-1469 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-483)) (-5 *1 (-199)))) (-1468 (*1 *2 *3) (-12 (-5 *3 (-583 (-1071))) (-5 *2 (-1183)) (-5 *1 (-199)))) (-1468 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-199)))) (-3767 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 (-1071))) (-5 *3 (-483)) (-5 *4 (-1071)) (-5 *1 (-199)))) (-3767 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1071)) (-5 *3 (-483)) (-5 *1 (-199)))) (-1467 (*1 *2 *3 *2) (-12 (-5 *2 (-1071)) (-5 *3 (-483)) (-5 *1 (-199)))) (-1466 (*1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-199)))) (-2616 (*1 *2 *2) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-199)))) (-2616 (*1 *2 *3) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-199)) (-5 *3 (-1071)))))
-((** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) 18 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-347 (-483)) $) 25 T ELT) (($ $ (-347 (-483))) NIL T ELT)))
-(((-200 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-483))) (-15 * (|#1| |#1| (-347 (-483)))) (-15 * (|#1| (-347 (-483)) |#1|)) (-15 ** (|#1| |#1| (-694))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-830))) (-15 * (|#1| (-483) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|))) (-201)) (T -200))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 53 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ (-347 (-483))) 57 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 54 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-347 (-483)) $) 56 T ELT) (($ $ (-347 (-483))) 55 T ELT)))
+(-13 (-717) (-1060))
+(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-664) . T) ((-717) . T) ((-719) . T) ((-757) . T) ((-760) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
+((-1464 (($) 12 T ELT) (($ (-584 |#2|)) NIL T ELT)) (-3396 (($ $) 14 T ELT)) (-3526 (($ (-584 |#2|)) 10 T ELT)) (-3942 (((-773) $) 21 T ELT)))
+(((-192 |#1| |#2|) (-10 -7 (-15 -3942 ((-773) |#1|)) (-15 -1464 (|#1| (-584 |#2|))) (-15 -1464 (|#1|)) (-15 -3526 (|#1| (-584 |#2|))) (-15 -3396 (|#1| |#1|))) (-193 |#2|) (-1013)) (T -192))
+NIL
+((-2566 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1568 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3991)) ELT)) (-3706 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3991)) ELT)) (-3720 (($) 7 T CONST)) (-1351 (($ $) 62 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3401 (($ |#1| $) 51 (|has| $ (-6 -3991)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3991)) ELT)) (-3402 (($ |#1| $) 61 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3991)) ELT)) (-3838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3991)) ELT)) (-2887 (((-584 |#1|) $) 30 (|has| $ (-6 -3991)) ELT)) (-2606 (((-584 |#1|) $) 29 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3239 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-1272 ((|#1| $) 43 T ELT)) (-3605 (($ |#1| $) 44 T ELT)) (-3240 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1273 ((|#1| $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-1464 (($) 53 T ELT) (($ (-584 |#1|)) 52 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3396 (($ $) 10 T ELT)) (-3968 (((-473) $) 63 (|has| |#1| (-554 (-473))) ELT)) (-3526 (($ (-584 |#1|)) 54 T ELT)) (-3942 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1274 (($ (-584 |#1|)) 46 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-193 |#1|) (-113) (-1013)) (T -193))
+((-1464 (*1 *1) (-12 (-4 *1 (-193 *2)) (-4 *2 (-1013)))) (-1464 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-4 *1 (-193 *3)))) (-3401 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -3991)) (-4 *1 (-193 *2)) (-4 *2 (-1013)))) (-3401 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3991)) (-4 *1 (-193 *3)) (-4 *3 (-1013)))) (-1568 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3991)) (-4 *1 (-193 *3)) (-4 *3 (-1013)))))
+(-13 (-76 |t#1|) (-124 |t#1|) (-10 -8 (-15 -1464 ($)) (-15 -1464 ($ (-584 |t#1|))) (IF (|has| $ (-6 -3991)) (PROGN (-15 -3401 ($ |t#1| $)) (-15 -3401 ($ (-1 (-85) |t#1|) $)) (-15 -1568 ($ (-1 (-85) |t#1|) $))) |%noBranch|)))
+(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
+((-1465 (((-2 (|:| |varOrder| (-584 (-1089))) (|:| |inhom| (-3 (-584 (-1178 (-695))) "failed")) (|:| |hom| (-584 (-1178 (-695))))) (-248 (-858 (-484)))) 42 T ELT)))
+(((-194) (-10 -7 (-15 -1465 ((-2 (|:| |varOrder| (-584 (-1089))) (|:| |inhom| (-3 (-584 (-1178 (-695))) "failed")) (|:| |hom| (-584 (-1178 (-695))))) (-248 (-858 (-484))))))) (T -194))
+((-1465 (*1 *2 *3) (-12 (-5 *3 (-248 (-858 (-484)))) (-5 *2 (-2 (|:| |varOrder| (-584 (-1089))) (|:| |inhom| (-3 (-584 (-1178 (-695))) "failed")) (|:| |hom| (-584 (-1178 (-695)))))) (-5 *1 (-194)))))
+((-3133 (((-695)) 56 T ELT)) (-2277 (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1178 |#3|))) (-631 $) (-1178 $)) 53 T ELT) (((-631 |#3|) (-631 $)) 44 T ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL T ELT) (((-631 (-484)) (-631 $)) NIL T ELT)) (-3907 (((-107)) 62 T ELT)) (-3754 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-3942 (((-1178 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-773) $) NIL T ELT) (($ (-484)) 12 T ELT) (($ (-347 (-484))) NIL T ELT)) (-3123 (((-695)) 15 T CONST)) (-3945 (($ $ |#3|) 59 T ELT)))
+(((-195 |#1| |#2| |#3|) (-10 -7 (-15 -3942 (|#1| (-347 (-484)))) (-15 -3942 (|#1| (-484))) (-15 -3754 (|#1| |#1|)) (-15 -3754 (|#1| |#1| (-695))) (-15 -3754 (|#1| |#1| (-1089))) (-15 -3754 (|#1| |#1| (-584 (-1089)))) (-15 -3754 (|#1| |#1| (-1089) (-695))) (-15 -3754 (|#1| |#1| (-584 (-1089)) (-584 (-695)))) (-15 -3942 ((-773) |#1|)) (-15 -3123 ((-695)) -3948) (-15 -2277 ((-631 (-484)) (-631 |#1|))) (-15 -2277 ((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 |#1|) (-1178 |#1|))) (-15 -3942 (|#1| |#3|)) (-15 -3754 (|#1| |#1| (-1 |#3| |#3|) (-695))) (-15 -3754 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2277 ((-631 |#3|) (-631 |#1|))) (-15 -2277 ((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1178 |#3|))) (-631 |#1|) (-1178 |#1|))) (-15 -3133 ((-695))) (-15 -3945 (|#1| |#1| |#3|)) (-15 -3907 ((-107))) (-15 -3942 ((-1178 |#3|) |#1|))) (-196 |#2| |#3|) (-695) (-1128)) (T -195))
+((-3907 (*1 *2) (-12 (-14 *4 (-695)) (-4 *5 (-1128)) (-5 *2 (-107)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) (-3133 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1128)) (-5 *2 (-695)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) (-3123 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1128)) (-5 *2 (-695)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))))
+((-2566 (((-85) $ $) 19 (|has| |#2| (-72)) ELT)) (-3185 (((-85) $) 80 (|has| |#2| (-23)) ELT)) (-3703 (($ (-831)) 134 (|has| |#2| (-962)) ELT)) (-2196 (((-1184) $ (-484) (-484)) 44 (|has| $ (-6 -3992)) ELT)) (-2481 (($ $ $) 130 (|has| |#2| (-718)) ELT)) (-1310 (((-3 $ "failed") $ $) 82 (|has| |#2| (-104)) ELT)) (-3133 (((-695)) 119 (|has| |#2| (-317)) ELT)) (-3784 ((|#2| $ (-484) |#2|) 56 (|has| $ (-6 -3992)) ELT)) (-3720 (($) 7 T CONST)) (-3154 (((-3 (-484) #1="failed") $) 75 (-2560 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) ELT) (((-3 (-347 (-484)) #1#) $) 72 (-2560 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013))) ELT) (((-3 |#2| #1#) $) 69 (|has| |#2| (-1013)) ELT)) (-3153 (((-484) $) 74 (-2560 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) ELT) (((-347 (-484)) $) 71 (-2560 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013))) ELT) ((|#2| $) 70 (|has| |#2| (-1013)) ELT)) (-2277 (((-631 (-484)) (-631 $)) 116 (-2560 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 115 (-2560 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) 114 (|has| |#2| (-962)) ELT) (((-631 |#2|) (-631 $)) 113 (|has| |#2| (-962)) ELT)) (-3463 (((-3 $ "failed") $) 93 (|has| |#2| (-962)) ELT)) (-2992 (($) 122 (|has| |#2| (-317)) ELT)) (-1574 ((|#2| $ (-484) |#2|) 57 (|has| $ (-6 -3992)) ELT)) (-3110 ((|#2| $ (-484)) 55 T ELT)) (-3183 (((-85) $) 129 (|has| |#2| (-718)) ELT)) (-2887 (((-584 |#2|) $) 30 (|has| $ (-6 -3991)) ELT)) (-2408 (((-85) $) 91 (|has| |#2| (-962)) ELT)) (-2198 (((-484) $) 47 (|has| (-484) (-757)) ELT)) (-2529 (($ $ $) 123 (|has| |#2| (-757)) ELT)) (-2606 (((-584 |#2|) $) 29 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#2| $) 27 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3991))) ELT)) (-2199 (((-484) $) 48 (|has| (-484) (-757)) ELT)) (-2855 (($ $ $) 124 (|has| |#2| (-757)) ELT)) (-1947 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-2008 (((-831) $) 121 (|has| |#2| (-317)) ELT)) (-2278 (((-631 (-484)) (-1178 $)) 118 (-2560 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 117 (-2560 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) 112 (|has| |#2| (-962)) ELT) (((-631 |#2|) (-1178 $)) 111 (|has| |#2| (-962)) ELT)) (-3239 (((-1072) $) 22 (|has| |#2| (-1013)) ELT)) (-2201 (((-584 (-484)) $) 50 T ELT)) (-2202 (((-85) (-484) $) 51 T ELT)) (-2398 (($ (-831)) 120 (|has| |#2| (-317)) ELT)) (-3240 (((-1033) $) 21 (|has| |#2| (-1013)) ELT)) (-3797 ((|#2| $) 46 (|has| (-484) (-757)) ELT)) (-2197 (($ $ |#2|) 45 (|has| $ (-6 -3992)) ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 32 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#2|))) 26 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-248 |#2|)) 25 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 23 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2200 (((-85) |#2| $) 49 (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT)) (-2203 (((-584 |#2|) $) 52 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-3796 ((|#2| $ (-484) |#2|) 54 T ELT) ((|#2| $ (-484)) 53 T ELT)) (-3832 ((|#2| $ $) 133 (|has| |#2| (-962)) ELT)) (-1466 (($ (-1178 |#2|)) 135 T ELT)) (-3907 (((-107)) 132 (|has| |#2| (-311)) ELT)) (-3754 (($ $ (-695)) 109 (-2560 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) 107 (-2560 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 103 (-2560 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1089) (-695)) 102 (-2560 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1089))) 101 (-2560 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1089)) 99 (-2560 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) 98 (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) 97 (|has| |#2| (-962)) ELT)) (-1944 (((-695) (-1 (-85) |#2|) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) |#2| $) 28 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3396 (($ $) 10 T ELT)) (-3942 (((-1178 |#2|) $) 136 T ELT) (($ (-484)) 76 (OR (-2560 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-962))) ELT) (($ (-347 (-484))) 73 (-2560 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013))) ELT) (($ |#2|) 68 (|has| |#2| (-1013)) ELT) (((-773) $) 17 (|has| |#2| (-553 (-773))) ELT)) (-3123 (((-695)) 94 (|has| |#2| (-962)) CONST)) (-1263 (((-85) $ $) 20 (|has| |#2| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 33 (|has| $ (-6 -3991)) ELT)) (-2658 (($) 79 (|has| |#2| (-23)) CONST)) (-2664 (($) 90 (|has| |#2| (-962)) CONST)) (-2667 (($ $ (-695)) 110 (-2560 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) 108 (-2560 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 106 (-2560 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1089) (-695)) 105 (-2560 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1089))) 104 (-2560 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1089)) 100 (-2560 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) 96 (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) 95 (|has| |#2| (-962)) ELT)) (-2564 (((-85) $ $) 125 (|has| |#2| (-757)) ELT)) (-2565 (((-85) $ $) 127 (|has| |#2| (-757)) ELT)) (-3054 (((-85) $ $) 18 (|has| |#2| (-72)) ELT)) (-2682 (((-85) $ $) 126 (|has| |#2| (-757)) ELT)) (-2683 (((-85) $ $) 128 (|has| |#2| (-757)) ELT)) (-3945 (($ $ |#2|) 131 (|has| |#2| (-311)) ELT)) (-3833 (($ $ $) 85 (|has| |#2| (-21)) ELT) (($ $) 84 (|has| |#2| (-21)) ELT)) (-3835 (($ $ $) 77 (|has| |#2| (-25)) ELT)) (** (($ $ (-695)) 92 (|has| |#2| (-962)) ELT) (($ $ (-831)) 88 (|has| |#2| (-962)) ELT)) (* (($ $ $) 89 (|has| |#2| (-962)) ELT) (($ $ |#2|) 87 (|has| |#2| (-664)) ELT) (($ |#2| $) 86 (|has| |#2| (-664)) ELT) (($ (-484) $) 83 (|has| |#2| (-21)) ELT) (($ (-695) $) 81 (|has| |#2| (-23)) ELT) (($ (-831) $) 78 (|has| |#2| (-25)) ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-196 |#1| |#2|) (-113) (-695) (-1128)) (T -196))
+((-1466 (*1 *1 *2) (-12 (-5 *2 (-1178 *4)) (-4 *4 (-1128)) (-4 *1 (-196 *3 *4)))) (-3703 (*1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-196 *3 *4)) (-4 *4 (-962)) (-4 *4 (-1128)))) (-3832 (*1 *2 *1 *1) (-12 (-4 *1 (-196 *3 *2)) (-4 *2 (-1128)) (-4 *2 (-962)))))
+(-13 (-539 (-484) |t#2|) (-553 (-1178 |t#2|)) (-10 -8 (-6 -3991) (-15 -1466 ($ (-1178 |t#2|))) (IF (|has| |t#2| (-1013)) (-6 (-352 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-962)) (PROGN (-6 (-82 |t#2| |t#2|)) (-6 (-184 |t#2|)) (-6 (-326 |t#2|)) (-15 -3703 ($ (-831))) (-15 -3832 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-104)) (-6 (-104)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-664)) (-6 (-583 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-317)) (-6 (-317)) |%noBranch|) (IF (|has| |t#2| (-146)) (-6 (-655 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -3988)) (-6 -3988) |%noBranch|) (IF (|has| |t#2| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#2| (-718)) (-6 (-718)) |%noBranch|) (IF (|has| |t#2| (-311)) (-6 (-1186 |t#2|)) |%noBranch|)))
+(((-21) OR (|has| |#2| (-962)) (|has| |#2| (-311)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-23) OR (|has| |#2| (-962)) (|has| |#2| (-718)) (|has| |#2| (-311)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) OR (|has| |#2| (-962)) (|has| |#2| (-718)) (|has| |#2| (-311)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-72) OR (|has| |#2| (-1013)) (|has| |#2| (-962)) (|has| |#2| (-757)) (|has| |#2| (-718)) (|has| |#2| (-664)) (|has| |#2| (-317)) (|has| |#2| (-311)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-72)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-82 |#2| |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-311)) (|has| |#2| (-146))) ((-104) OR (|has| |#2| (-962)) (|has| |#2| (-718)) (|has| |#2| (-311)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-21))) ((-556 (-347 (-484))) -12 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013))) ((-556 (-484)) OR (|has| |#2| (-962)) (-12 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013)))) ((-556 |#2|) |has| |#2| (-1013)) ((-553 (-773)) OR (|has| |#2| (-1013)) (|has| |#2| (-962)) (|has| |#2| (-757)) (|has| |#2| (-718)) (|has| |#2| (-664)) (|has| |#2| (-317)) (|has| |#2| (-311)) (|has| |#2| (-146)) (|has| |#2| (-553 (-773))) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-553 (-1178 |#2|)) . T) ((-186 $) OR (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) (-12 (|has| |#2| (-190)) (|has| |#2| (-962)))) ((-184 |#2|) |has| |#2| (-962)) ((-190) -12 (|has| |#2| (-190)) (|has| |#2| (-962))) ((-189) OR (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) (-12 (|has| |#2| (-190)) (|has| |#2| (-962)))) ((-225 |#2|) |has| |#2| (-962)) ((-241 (-484) |#2|) . T) ((-243 (-484) |#2|) . T) ((-259 |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ((-317) |has| |#2| (-317)) ((-326 |#2|) |has| |#2| (-962)) ((-352 |#2|) |has| |#2| (-1013)) ((-426 |#2|) . T) ((-539 (-484) |#2|) . T) ((-453 |#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ((-13) . T) ((-589 (-484)) OR (|has| |#2| (-962)) (|has| |#2| (-311)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-589 |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-664)) (|has| |#2| (-311)) (|has| |#2| (-146))) ((-589 $) |has| |#2| (-962)) ((-591 (-484)) -12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ((-591 |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-311)) (|has| |#2| (-146))) ((-591 $) |has| |#2| (-962)) ((-583 |#2|) OR (|has| |#2| (-664)) (|has| |#2| (-311)) (|has| |#2| (-146))) ((-581 (-484)) -12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ((-581 |#2|) |has| |#2| (-962)) ((-655 |#2|) OR (|has| |#2| (-311)) (|has| |#2| (-146))) ((-664) |has| |#2| (-962)) ((-717) |has| |#2| (-718)) ((-718) |has| |#2| (-718)) ((-719) |has| |#2| (-718)) ((-722) |has| |#2| (-718)) ((-757) OR (|has| |#2| (-757)) (|has| |#2| (-718))) ((-760) OR (|has| |#2| (-757)) (|has| |#2| (-718))) ((-807 $ (-1089)) OR (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) (-12 (|has| |#2| (-810 (-1089))) (|has| |#2| (-962)))) ((-810 (-1089)) -12 (|has| |#2| (-810 (-1089))) (|has| |#2| (-962))) ((-812 (-1089)) OR (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) (-12 (|has| |#2| (-810 (-1089))) (|has| |#2| (-962)))) ((-951 (-347 (-484))) -12 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013))) ((-951 (-484)) -12 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) ((-951 |#2|) |has| |#2| (-1013)) ((-964 |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-664)) (|has| |#2| (-311)) (|has| |#2| (-146))) ((-969 |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-311)) (|has| |#2| (-146))) ((-962) |has| |#2| (-962)) ((-970) |has| |#2| (-962)) ((-1025) |has| |#2| (-962)) ((-1060) |has| |#2| (-962)) ((-1013) OR (|has| |#2| (-1013)) (|has| |#2| (-962)) (|has| |#2| (-757)) (|has| |#2| (-718)) (|has| |#2| (-664)) (|has| |#2| (-317)) (|has| |#2| (-311)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1128) . T) ((-1186 |#2|) |has| |#2| (-311)))
+((-2566 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3185 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3703 (($ (-831)) 63 (|has| |#2| (-962)) ELT)) (-2196 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-2481 (($ $ $) 69 (|has| |#2| (-718)) ELT)) (-1310 (((-3 $ #1="failed") $ $) 54 (|has| |#2| (-104)) ELT)) (-3133 (((-695)) NIL (|has| |#2| (-317)) ELT)) (-3784 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3992)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 (-484) #1#) $) NIL (-12 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (-12 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013))) ELT) (((-3 |#2| #1#) $) 31 (|has| |#2| (-1013)) ELT)) (-3153 (((-484) $) NIL (-12 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) ELT) (((-347 (-484)) $) NIL (-12 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013))) ELT) ((|#2| $) 29 (|has| |#2| (-1013)) ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL (-12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (-12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-631 $)) NIL (|has| |#2| (-962)) ELT)) (-3463 (((-3 $ #1#) $) 59 (|has| |#2| (-962)) ELT)) (-2992 (($) NIL (|has| |#2| (-317)) ELT)) (-1574 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3992)) ELT)) (-3110 ((|#2| $ (-484)) 57 T ELT)) (-3183 (((-85) $) NIL (|has| |#2| (-718)) ELT)) (-2887 (((-584 |#2|) $) 14 (|has| $ (-6 -3991)) ELT)) (-2408 (((-85) $) NIL (|has| |#2| (-962)) ELT)) (-2198 (((-484) $) 20 (|has| (-484) (-757)) ELT)) (-2529 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-2606 (((-584 |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT)) (-2199 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2855 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-1947 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2008 (((-831) $) NIL (|has| |#2| (-317)) ELT)) (-2278 (((-631 (-484)) (-1178 $)) NIL (-12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-1178 $)) NIL (|has| |#2| (-962)) ELT)) (-3239 (((-1072) $) NIL (|has| |#2| (-1013)) ELT)) (-2201 (((-584 (-484)) $) NIL T ELT)) (-2202 (((-85) (-484) $) NIL T ELT)) (-2398 (($ (-831)) NIL (|has| |#2| (-317)) ELT)) (-3240 (((-1033) $) NIL (|has| |#2| (-1013)) ELT)) (-3797 ((|#2| $) NIL (|has| (-484) (-757)) ELT)) (-2197 (($ $ |#2|) NIL (|has| $ (-6 -3992)) ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 24 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2200 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT)) (-2203 (((-584 |#2|) $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) NIL T ELT)) (-3796 ((|#2| $ (-484) |#2|) NIL T ELT) ((|#2| $ (-484)) 21 T ELT)) (-3832 ((|#2| $ $) NIL (|has| |#2| (-962)) ELT)) (-1466 (($ (-1178 |#2|)) 18 T ELT)) (-3907 (((-107)) NIL (|has| |#2| (-311)) ELT)) (-3754 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-1944 (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT)) (-3396 (($ $) NIL T ELT)) (-3942 (((-1178 |#2|) $) 9 T ELT) (($ (-484)) NIL (OR (-12 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-962))) ELT) (($ (-347 (-484))) NIL (-12 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013))) ELT) (($ |#2|) 12 (|has| |#2| (-1013)) ELT) (((-773) $) NIL (|has| |#2| (-553 (-773))) ELT)) (-3123 (((-695)) NIL (|has| |#2| (-962)) CONST)) (-1263 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2658 (($) 37 (|has| |#2| (-23)) CONST)) (-2664 (($) 41 (|has| |#2| (-962)) CONST)) (-2667 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-2564 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-3054 (((-85) $ $) 28 (|has| |#2| (-72)) ELT)) (-2682 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2683 (((-85) $ $) 67 (|has| |#2| (-757)) ELT)) (-3945 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3833 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3835 (($ $ $) 35 (|has| |#2| (-25)) ELT)) (** (($ $ (-695)) NIL (|has| |#2| (-962)) ELT) (($ $ (-831)) NIL (|has| |#2| (-962)) ELT)) (* (($ $ $) 47 (|has| |#2| (-962)) ELT) (($ $ |#2|) 45 (|has| |#2| (-664)) ELT) (($ |#2| $) 46 (|has| |#2| (-664)) ELT) (($ (-484) $) NIL (|has| |#2| (-21)) ELT) (($ (-695) $) NIL (|has| |#2| (-23)) ELT) (($ (-831) $) NIL (|has| |#2| (-25)) ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-197 |#1| |#2|) (-196 |#1| |#2|) (-695) (-1128)) (T -197))
+NIL
+((-3837 (((-197 |#1| |#3|) (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|) 21 T ELT)) (-3838 ((|#3| (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|) 23 T ELT)) (-3954 (((-197 |#1| |#3|) (-1 |#3| |#2|) (-197 |#1| |#2|)) 18 T ELT)))
+(((-198 |#1| |#2| |#3|) (-10 -7 (-15 -3837 ((-197 |#1| |#3|) (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|)) (-15 -3838 (|#3| (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|)) (-15 -3954 ((-197 |#1| |#3|) (-1 |#3| |#2|) (-197 |#1| |#2|)))) (-695) (-1128) (-1128)) (T -198))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-197 *5 *6)) (-14 *5 (-695)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-5 *2 (-197 *5 *7)) (-5 *1 (-198 *5 *6 *7)))) (-3838 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-197 *5 *6)) (-14 *5 (-695)) (-4 *6 (-1128)) (-4 *2 (-1128)) (-5 *1 (-198 *5 *6 *2)))) (-3837 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-197 *6 *7)) (-14 *6 (-695)) (-4 *7 (-1128)) (-4 *5 (-1128)) (-5 *2 (-197 *6 *5)) (-5 *1 (-198 *6 *7 *5)))))
+((-1470 (((-484) (-584 (-1072))) 36 T ELT) (((-484) (-1072)) 29 T ELT)) (-1469 (((-1184) (-584 (-1072))) 40 T ELT) (((-1184) (-1072)) 39 T ELT)) (-1467 (((-1072)) 16 T ELT)) (-1468 (((-1072) (-484) (-1072)) 23 T ELT)) (-3769 (((-584 (-1072)) (-584 (-1072)) (-484) (-1072)) 37 T ELT) (((-1072) (-1072) (-484) (-1072)) 35 T ELT)) (-2618 (((-584 (-1072)) (-584 (-1072))) 15 T ELT) (((-584 (-1072)) (-1072)) 11 T ELT)))
+(((-199) (-10 -7 (-15 -2618 ((-584 (-1072)) (-1072))) (-15 -2618 ((-584 (-1072)) (-584 (-1072)))) (-15 -1467 ((-1072))) (-15 -1468 ((-1072) (-484) (-1072))) (-15 -3769 ((-1072) (-1072) (-484) (-1072))) (-15 -3769 ((-584 (-1072)) (-584 (-1072)) (-484) (-1072))) (-15 -1469 ((-1184) (-1072))) (-15 -1469 ((-1184) (-584 (-1072)))) (-15 -1470 ((-484) (-1072))) (-15 -1470 ((-484) (-584 (-1072)))))) (T -199))
+((-1470 (*1 *2 *3) (-12 (-5 *3 (-584 (-1072))) (-5 *2 (-484)) (-5 *1 (-199)))) (-1470 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-484)) (-5 *1 (-199)))) (-1469 (*1 *2 *3) (-12 (-5 *3 (-584 (-1072))) (-5 *2 (-1184)) (-5 *1 (-199)))) (-1469 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-199)))) (-3769 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-584 (-1072))) (-5 *3 (-484)) (-5 *4 (-1072)) (-5 *1 (-199)))) (-3769 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-484)) (-5 *1 (-199)))) (-1468 (*1 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-484)) (-5 *1 (-199)))) (-1467 (*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-199)))) (-2618 (*1 *2 *2) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-199)))) (-2618 (*1 *2 *3) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-199)) (-5 *3 (-1072)))))
+((** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) 18 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-347 (-484)) $) 25 T ELT) (($ $ (-347 (-484))) NIL T ELT)))
+(((-200 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-484))) (-15 * (|#1| |#1| (-347 (-484)))) (-15 * (|#1| (-347 (-484)) |#1|)) (-15 ** (|#1| |#1| (-695))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-831))) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|))) (-201)) (T -200))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-2482 (($ $) 53 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ (-347 (-484))) 57 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 54 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-347 (-484)) $) 56 T ELT) (($ $ (-347 (-484))) 55 T ELT)))
(((-201) (-113)) (T -201))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-201)) (-5 *2 (-483)))) (-2480 (*1 *1 *1) (-4 *1 (-201))))
-(-13 (-245) (-38 (-347 (-483))) (-10 -8 (-15 ** ($ $ (-483))) (-15 -2480 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-483))) . T) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-347 (-483))) . T) ((-555 (-483)) . T) ((-552 (-772)) . T) ((-245) . T) ((-13) . T) ((-588 (-347 (-483))) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 (-347 (-483))) . T) ((-590 $) . T) ((-582 (-347 (-483))) . T) ((-654 (-347 (-483))) . T) ((-663) . T) ((-963 (-347 (-483))) . T) ((-963 $) . T) ((-968 (-347 (-483))) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3396 ((|#1| $) 52 T ELT)) (-3791 (($ $) 63 T ELT)) (-3021 ((|#1| $ |#1|) 43 (|has| $ (-6 -3990)) ELT)) (-1471 (($ $ $) 59 (|has| $ (-6 -3990)) ELT)) (-1470 (($ $ $) 58 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) 45 (|has| $ (-6 -3990)) ELT)) (-3718 (($) 7 T CONST)) (-1473 (($ $) 62 T ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-3027 (((-583 $) $) 54 T ELT)) (-3023 (((-85) $ $) 46 (|has| |#1| (-1012)) ELT)) (-1472 (($ $) 61 T ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3026 (((-583 |#1|) $) 49 T ELT)) (-3521 (((-85) $) 53 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3792 ((|#1| $) 65 T ELT)) (-3173 (($ $) 64 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#1| $ #1#) 51 T ELT)) (-3025 (((-483) $ $) 48 T ELT)) (-3627 (((-85) $) 50 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3785 (($ $ $) 60 (|has| $ (-6 -3990)) ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3516 (((-583 $) $) 55 T ELT)) (-3024 (((-85) $ $) 47 (|has| |#1| (-1012)) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-202 |#1|) (-113) (-1127)) (T -202))
-((-3792 (*1 *2 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1127)))) (-3173 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1127)))) (-3791 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1127)))) (-1473 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1127)))) (-1472 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1127)))) (-3785 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-202 *2)) (-4 *2 (-1127)))) (-1471 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-202 *2)) (-4 *2 (-1127)))) (-1470 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-202 *2)) (-4 *2 (-1127)))))
-(-13 (-923 |t#1|) (-10 -8 (-15 -3792 (|t#1| $)) (-15 -3173 ($ $)) (-15 -3791 ($ $)) (-15 -1473 ($ $)) (-15 -1472 ($ $)) (IF (|has| $ (-6 -3990)) (PROGN (-15 -3785 ($ $ $)) (-15 -1471 ($ $ $)) (-15 -1470 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-923 |#1|) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T))
-((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3396 ((|#1| $) NIL T ELT)) (-3789 ((|#1| $) NIL T ELT)) (-3791 (($ $) NIL T ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-3779 (($ $ (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) $) NIL (|has| |#1| (-756)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1727 (($ $) NIL (-12 (|has| $ (-6 -3990)) (|has| |#1| (-756))) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-2905 (($ $) 10 (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3436 (((-85) $ (-694)) NIL T ELT)) (-3021 ((|#1| $ |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3781 (($ $ $) NIL (|has| $ (-6 -3990)) ELT)) (-3780 ((|#1| $ |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3783 ((|#1| $ |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3990)) ELT) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -3990)) ELT) (($ $ #3="rest" $) NIL (|has| $ (-6 -3990)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) NIL (|has| $ (-6 -3990)) ELT) ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) NIL (|has| $ (-6 -3990)) ELT)) (-1567 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3704 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3790 ((|#1| $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2293 (($ $) NIL (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) NIL T ELT)) (-3793 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2364 (($ $) NIL (|has| |#1| (-1012)) ELT)) (-1350 (($ $) 7 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3399 (($ |#1| $) NIL (|has| |#1| (-1012)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3400 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1573 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) NIL T ELT)) (-3437 (((-85) $) NIL T ELT)) (-3413 (((-483) |#1| $ (-483)) NIL (|has| |#1| (-1012)) ELT) (((-483) |#1| $) NIL (|has| |#1| (-1012)) ELT) (((-483) (-1 (-85) |#1|) $) NIL T ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3027 (((-583 $) $) NIL T ELT)) (-3023 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-3608 (($ (-694) |#1|) NIL T ELT)) (-3713 (((-85) $ (-694)) NIL T ELT)) (-2196 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2852 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3512 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2197 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3528 (($ |#1|) NIL T ELT)) (-3710 (((-85) $ (-694)) NIL T ELT)) (-3026 (((-583 |#1|) $) NIL T ELT)) (-3521 (((-85) $) NIL T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3792 ((|#1| $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3603 (($ $ $ (-483)) NIL T ELT) (($ |#1| $ (-483)) NIL T ELT)) (-2300 (($ $ $ (-483)) NIL T ELT) (($ |#1| $ (-483)) NIL T ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3795 ((|#1| $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2195 (($ $ |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3438 (((-85) $) NIL T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT) ((|#1| $ (-483)) NIL T ELT) ((|#1| $ (-483) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-694) $ "count") 16 T ELT)) (-3025 (((-483) $ $) NIL T ELT)) (-1568 (($ $ (-1144 (-483))) NIL T ELT) (($ $ (-483)) NIL T ELT)) (-2301 (($ $ (-1144 (-483))) NIL T ELT) (($ $ (-483)) NIL T ELT)) (-1474 (($ (-583 |#1|)) 22 T ELT)) (-3627 (((-85) $) NIL T ELT)) (-3786 (($ $) NIL T ELT)) (-3784 (($ $) NIL (|has| $ (-6 -3990)) ELT)) (-3787 (((-694) $) NIL T ELT)) (-3788 (($ $) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1728 (($ $ $ (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) NIL T ELT)) (-3785 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3796 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-583 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3940 (($ (-583 |#1|)) 17 T ELT) (((-583 |#1|) $) 18 T ELT) (((-772) $) 21 (|has| |#1| (-552 (-772))) ELT)) (-3516 (((-583 $) $) NIL T ELT)) (-3024 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3951 (((-694) $) 14 (|has| $ (-6 -3989)) ELT)))
-(((-203 |#1|) (-13 (-608 |#1|) (-427 (-583 |#1|)) (-10 -8 (-15 -1474 ($ (-583 |#1|))) (-15 -3794 ($ $ "unique")) (-15 -3794 ($ $ "sort")) (-15 -3794 ((-694) $ "count")))) (-756)) (T -203))
-((-1474 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-203 *3)))) (-3794 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-203 *3)) (-4 *3 (-756)))) (-3794 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-203 *3)) (-4 *3 (-756)))) (-3794 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-694)) (-5 *1 (-203 *4)) (-4 *4 (-756)))))
-((-1475 (((-3 (-694) "failed") |#1| |#1| (-694)) 40 T ELT)))
-(((-204 |#1|) (-10 -7 (-15 -1475 ((-3 (-694) "failed") |#1| |#1| (-694)))) (-13 (-663) (-317) (-10 -7 (-15 ** (|#1| |#1| (-483)))))) (T -204))
-((-1475 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-694)) (-4 *3 (-13 (-663) (-317) (-10 -7 (-15 ** (*3 *3 (-483)))))) (-5 *1 (-204 *3)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3752 (($ $) 59 (|has| |#1| (-189)) ELT) (($ $ (-694)) 57 (|has| |#1| (-189)) ELT) (($ $ (-1088)) 55 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) 53 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) 52 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 51 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1 |#1| |#1|) (-694)) 45 T ELT) (($ $ (-1 |#1| |#1|)) 44 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2665 (($ $) 58 (|has| |#1| (-189)) ELT) (($ $ (-694)) 56 (|has| |#1| (-189)) ELT) (($ $ (-1088)) 54 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) 50 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) 49 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 48 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1 |#1| |#1|) (-694)) 47 T ELT) (($ $ (-1 |#1| |#1|)) 46 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT)))
-(((-205 |#1|) (-113) (-961)) (T -205))
-NIL
-(-13 (-82 |t#1| |t#1|) (-225 |t#1|) (-10 -7 (IF (|has| |t#1| (-189)) (-6 (-187 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-811 (-1088))) (-6 (-808 |t#1| (-1088))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-186 $) |has| |#1| (-189)) ((-187 |#1|) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-225 |#1|) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) OR (-12 (|has| |#1| (-146)) (|has| |#1| (-811 (-1088)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-654 |#1|) OR (-12 (|has| |#1| (-146)) (|has| |#1| (-811 (-1088)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-806 $ (-1088)) |has| |#1| (-811 (-1088))) ((-808 |#1| (-1088)) |has| |#1| (-811 (-1088))) ((-811 (-1088)) |has| |#1| (-811 (-1088))) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3077 (((-583 (-773 |#1|)) $) NIL T ELT)) (-3079 (((-1083 $) $ (-773 |#1|)) NIL T ELT) (((-1083 |#2|) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#2| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#2| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#2| (-494)) ELT)) (-2815 (((-694) $) NIL T ELT) (((-694) $ (-583 (-773 |#1|))) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-3769 (($ $) NIL (|has| |#2| (-389)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#2| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-3151 ((|#2| $) NIL T ELT) (((-347 (-483)) $) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) (((-483) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-773 |#1|) $) NIL T ELT)) (-3750 (($ $ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1934 (($ $ (-583 (-483))) NIL T ELT)) (-3953 (($ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#2| (-389)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-389)) ELT)) (-2814 (((-583 $) $) NIL T ELT)) (-3717 (((-85) $) NIL (|has| |#2| (-821)) ELT)) (-1621 (($ $ |#2| (-197 (-3951 |#1|) (-694)) $) NIL T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-327))) (|has| |#2| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-483))) (|has| |#2| (-796 (-483)))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2416 (((-694) $) NIL T ELT)) (-3080 (($ (-1083 |#2|) (-773 |#1|)) NIL T ELT) (($ (-1083 $) (-773 |#1|)) NIL T ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#2| (-197 (-3951 |#1|) (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ (-773 |#1|)) NIL T ELT)) (-2816 (((-197 (-3951 |#1|) (-694)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-1622 (($ (-1 (-197 (-3951 |#1|) (-694)) (-197 (-3951 |#1|) (-694))) $) NIL T ELT)) (-3952 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3078 (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL T ELT) (((-630 |#2|) (-1177 $)) NIL T ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#2| $) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2819 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2818 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-2 (|:| |var| (-773 |#1|)) (|:| -2397 (-694))) #1#) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1794 (((-85) $) NIL T ELT)) (-1793 ((|#2| $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-389)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#2| (-821)) ELT)) (-3460 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-494)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-494)) ELT)) (-3762 (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-773 |#1|) |#2|) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 |#2|)) NIL T ELT) (($ $ (-773 |#1|) $) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 $)) NIL T ELT)) (-3751 (($ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3752 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3942 (((-197 (-3951 |#1|) (-694)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-3966 (((-800 (-327)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-327)))) (|has| |#2| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-483)))) (|has| |#2| (-553 (-800 (-483))))) ELT) (((-472) $) NIL (-12 (|has| (-773 |#1|) (-553 (-472))) (|has| |#2| (-553 (-472)))) ELT)) (-2813 ((|#2| $) NIL (|has| |#2| (-389)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-773 |#1|)) NIL T ELT) (($ (-347 (-483))) NIL (OR (|has| |#2| (-38 (-347 (-483)))) (|has| |#2| (-950 (-347 (-483))))) ELT) (($ $) NIL (|has| |#2| (-494)) ELT)) (-3811 (((-583 |#2|) $) NIL T ELT)) (-3671 ((|#2| $ (-197 (-3951 |#1|) (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1620 (($ $ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| |#2| (-494)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL (|has| |#2| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) NIL (|has| |#2| (-38 (-347 (-483)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
-(((-206 |#1| |#2|) (-13 (-861 |#2| (-197 (-3951 |#1|) (-694)) (-773 |#1|)) (-10 -8 (-15 -1934 ($ $ (-583 (-483)))))) (-583 (-1088)) (-961)) (T -206))
-((-1934 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-206 *3 *4)) (-14 *3 (-583 (-1088))) (-4 *4 (-961)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-1476 (((-1183) $) 17 T ELT)) (-1478 (((-158 (-208)) $) 11 T ELT)) (-1477 (($ (-158 (-208))) 12 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1479 (((-208) $) 7 T ELT)) (-3940 (((-772) $) 9 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 15 T ELT)))
-(((-207) (-13 (-1012) (-10 -8 (-15 -1479 ((-208) $)) (-15 -1478 ((-158 (-208)) $)) (-15 -1477 ($ (-158 (-208)))) (-15 -1476 ((-1183) $))))) (T -207))
-((-1479 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-207)))) (-1478 (*1 *2 *1) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))) (-1476 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-207)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-1421 (((-583 (-774)) $) NIL T ELT)) (-3536 (((-444) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1423 (((-161) $) NIL T ELT)) (-2629 (((-85) $ (-444)) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1480 (((-281) $) 7 T ELT)) (-1422 (((-583 (-85)) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (((-157) $) 8 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2517 (((-55) $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-208) (-13 (-160) (-552 (-157)) (-10 -8 (-15 -1480 ((-281) $))))) (T -208))
-((-1480 (*1 *2 *1) (-12 (-5 *2 (-281)) (-5 *1 (-208)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3794 (((-1093) $ (-694)) 14 T ELT)) (-3940 (((-772) $) 20 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 17 T ELT)) (-3951 (((-694) $) 11 T ELT)))
-(((-209) (-13 (-1012) (-241 (-694) (-1093)) (-10 -8 (-15 -3951 ((-694) $))))) (T -209))
-((-3951 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-209)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3701 (($ (-830)) NIL (|has| |#4| (-961)) ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-2479 (($ $ $) NIL (|has| |#4| (-717)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3131 (((-694)) NIL (|has| |#4| (-317)) ELT)) (-3782 ((|#4| $ (-483) |#4|) NIL (|has| $ (-6 -3990)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#4| #1#) $) NIL (|has| |#4| (-1012)) ELT) (((-3 (-483) #1#) $) NIL (-12 (|has| |#4| (-950 (-483))) (|has| |#4| (-1012))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (-12 (|has| |#4| (-950 (-347 (-483)))) (|has| |#4| (-1012))) ELT)) (-3151 ((|#4| $) NIL (|has| |#4| (-1012)) ELT) (((-483) $) NIL (-12 (|has| |#4| (-950 (-483))) (|has| |#4| (-1012))) ELT) (((-347 (-483)) $) NIL (-12 (|has| |#4| (-950 (-347 (-483)))) (|has| |#4| (-1012))) ELT)) (-2275 (((-2 (|:| |mat| (-630 |#4|)) (|:| |vec| (-1177 |#4|))) (-630 $) (-1177 $)) NIL (|has| |#4| (-961)) ELT) (((-630 |#4|) (-630 $)) NIL (|has| |#4| (-961)) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (-12 (|has| |#4| (-580 (-483))) (|has| |#4| (-961))) ELT) (((-630 (-483)) (-630 $)) NIL (-12 (|has| |#4| (-580 (-483))) (|has| |#4| (-961))) ELT)) (-3461 (((-3 $ #1#) $) NIL (|has| |#4| (-961)) ELT)) (-2990 (($) NIL (|has| |#4| (-317)) ELT)) (-1573 ((|#4| $ (-483) |#4|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#4| $ (-483)) NIL T ELT)) (-3181 (((-85) $) NIL (|has| |#4| (-717)) ELT)) (-2885 (((-583 |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2406 (((-85) $) NIL (|has| |#4| (-961)) ELT)) (-2196 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| |#4| (-756)) ELT)) (-2604 (((-583 |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#4| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT)) (-2197 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#4| (-756)) ELT)) (-1946 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2006 (((-830) $) NIL (|has| |#4| (-317)) ELT)) (-2276 (((-2 (|:| |mat| (-630 |#4|)) (|:| |vec| (-1177 |#4|))) (-1177 $) $) NIL (|has| |#4| (-961)) ELT) (((-630 |#4|) (-1177 $)) NIL (|has| |#4| (-961)) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (-12 (|has| |#4| (-580 (-483))) (|has| |#4| (-961))) ELT) (((-630 (-483)) (-1177 $)) NIL (-12 (|has| |#4| (-580 (-483))) (|has| |#4| (-961))) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-2396 (($ (-830)) NIL (|has| |#4| (-317)) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3795 ((|#4| $) NIL (|has| (-483) (-756)) ELT)) (-2195 (($ $ |#4|) NIL (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#4|))) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-248 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#4| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT)) (-2201 (((-583 |#4|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#4| $ (-483) |#4|) NIL T ELT) ((|#4| $ (-483)) 12 T ELT)) (-3830 ((|#4| $ $) NIL (|has| |#4| (-961)) ELT)) (-1465 (($ (-1177 |#4|)) NIL T ELT)) (-3905 (((-107)) NIL (|has| |#4| (-311)) ELT)) (-3752 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-961)) ELT) (($ $ (-1 |#4| |#4|) (-694)) NIL (|has| |#4| (-961)) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (OR (-12 (|has| |#4| (-809 (-1088))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1088))) (|has| |#4| (-961)))) ELT) (($ $ (-1088) (-694)) NIL (OR (-12 (|has| |#4| (-809 (-1088))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1088))) (|has| |#4| (-961)))) ELT) (($ $ (-583 (-1088))) NIL (OR (-12 (|has| |#4| (-809 (-1088))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1088))) (|has| |#4| (-961)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#4| (-809 (-1088))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1088))) (|has| |#4| (-961)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961)))) ELT)) (-1943 (((-694) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#4| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3940 (((-1177 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1012)) ELT) (((-772) $) NIL T ELT) (($ (-483)) NIL (OR (-12 (|has| |#4| (-950 (-483))) (|has| |#4| (-1012))) (|has| |#4| (-961))) ELT) (($ (-347 (-483))) NIL (-12 (|has| |#4| (-950 (-347 (-483)))) (|has| |#4| (-1012))) ELT)) (-3121 (((-694)) NIL (|has| |#4| (-961)) CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL (|has| |#4| (-961)) CONST)) (-2665 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-961)) ELT) (($ $ (-1 |#4| |#4|) (-694)) NIL (|has| |#4| (-961)) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (OR (-12 (|has| |#4| (-809 (-1088))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1088))) (|has| |#4| (-961)))) ELT) (($ $ (-1088) (-694)) NIL (OR (-12 (|has| |#4| (-809 (-1088))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1088))) (|has| |#4| (-961)))) ELT) (($ $ (-583 (-1088))) NIL (OR (-12 (|has| |#4| (-809 (-1088))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1088))) (|has| |#4| (-961)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#4| (-809 (-1088))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1088))) (|has| |#4| (-961)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961)))) ELT)) (-2562 (((-85) $ $) NIL (|has| |#4| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#4| (-756)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL (|has| |#4| (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| |#4| (-756)) ELT)) (-3943 (($ $ |#4|) NIL (|has| |#4| (-311)) ELT)) (-3831 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL (|has| |#4| (-961)) ELT) (($ $ (-830)) NIL (|has| |#4| (-961)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-483) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-830) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-663)) ELT) (($ |#4| $) NIL (|has| |#4| (-663)) ELT) (($ $ $) NIL (|has| |#4| (-961)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-210 |#1| |#2| |#3| |#4|) (-13 (-196 |#1| |#4|) (-590 |#2|) (-590 |#3|)) (-830) (-961) (-1035 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-590 |#2|)) (T -210))
-NIL
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3701 (($ (-830)) NIL (|has| |#3| (-961)) ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-2479 (($ $ $) NIL (|has| |#3| (-717)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3131 (((-694)) NIL (|has| |#3| (-317)) ELT)) (-3782 ((|#3| $ (-483) |#3|) NIL (|has| $ (-6 -3990)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#3| #1#) $) NIL (|has| |#3| (-1012)) ELT) (((-3 (-483) #1#) $) NIL (-12 (|has| |#3| (-950 (-483))) (|has| |#3| (-1012))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (-12 (|has| |#3| (-950 (-347 (-483)))) (|has| |#3| (-1012))) ELT)) (-3151 ((|#3| $) NIL (|has| |#3| (-1012)) ELT) (((-483) $) NIL (-12 (|has| |#3| (-950 (-483))) (|has| |#3| (-1012))) ELT) (((-347 (-483)) $) NIL (-12 (|has| |#3| (-950 (-347 (-483)))) (|has| |#3| (-1012))) ELT)) (-2275 (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1177 |#3|))) (-630 $) (-1177 $)) NIL (|has| |#3| (-961)) ELT) (((-630 |#3|) (-630 $)) NIL (|has| |#3| (-961)) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (-12 (|has| |#3| (-580 (-483))) (|has| |#3| (-961))) ELT) (((-630 (-483)) (-630 $)) NIL (-12 (|has| |#3| (-580 (-483))) (|has| |#3| (-961))) ELT)) (-3461 (((-3 $ #1#) $) NIL (|has| |#3| (-961)) ELT)) (-2990 (($) NIL (|has| |#3| (-317)) ELT)) (-1573 ((|#3| $ (-483) |#3|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#3| $ (-483)) NIL T ELT)) (-3181 (((-85) $) NIL (|has| |#3| (-717)) ELT)) (-2885 (((-583 |#3|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2406 (((-85) $) NIL (|has| |#3| (-961)) ELT)) (-2196 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| |#3| (-756)) ELT)) (-2604 (((-583 |#3|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#3| (-1012))) ELT)) (-2197 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#3| (-756)) ELT)) (-1946 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2006 (((-830) $) NIL (|has| |#3| (-317)) ELT)) (-2276 (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1177 |#3|))) (-1177 $) $) NIL (|has| |#3| (-961)) ELT) (((-630 |#3|) (-1177 $)) NIL (|has| |#3| (-961)) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (-12 (|has| |#3| (-580 (-483))) (|has| |#3| (-961))) ELT) (((-630 (-483)) (-1177 $)) NIL (-12 (|has| |#3| (-580 (-483))) (|has| |#3| (-961))) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-2396 (($ (-830)) NIL (|has| |#3| (-317)) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3795 ((|#3| $) NIL (|has| (-483) (-756)) ELT)) (-2195 (($ $ |#3|) NIL (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#3|))) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ (-248 |#3|)) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#3| (-1012))) ELT)) (-2201 (((-583 |#3|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#3| $ (-483) |#3|) NIL T ELT) ((|#3| $ (-483)) 11 T ELT)) (-3830 ((|#3| $ $) NIL (|has| |#3| (-961)) ELT)) (-1465 (($ (-1177 |#3|)) NIL T ELT)) (-3905 (((-107)) NIL (|has| |#3| (-311)) ELT)) (-3752 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961)) ELT) (($ $ (-1 |#3| |#3|) (-694)) NIL (|has| |#3| (-961)) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (OR (-12 (|has| |#3| (-809 (-1088))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961)))) ELT) (($ $ (-1088) (-694)) NIL (OR (-12 (|has| |#3| (-809 (-1088))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961)))) ELT) (($ $ (-583 (-1088))) NIL (OR (-12 (|has| |#3| (-809 (-1088))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#3| (-809 (-1088))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))) ELT)) (-1943 (((-694) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#3| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#3| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3940 (((-1177 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1012)) ELT) (((-772) $) NIL T ELT) (($ (-483)) NIL (OR (-12 (|has| |#3| (-950 (-483))) (|has| |#3| (-1012))) (|has| |#3| (-961))) ELT) (($ (-347 (-483))) NIL (-12 (|has| |#3| (-950 (-347 (-483)))) (|has| |#3| (-1012))) ELT)) (-3121 (((-694)) NIL (|has| |#3| (-961)) CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL (|has| |#3| (-961)) CONST)) (-2665 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961)) ELT) (($ $ (-1 |#3| |#3|) (-694)) NIL (|has| |#3| (-961)) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (OR (-12 (|has| |#3| (-809 (-1088))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961)))) ELT) (($ $ (-1088) (-694)) NIL (OR (-12 (|has| |#3| (-809 (-1088))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961)))) ELT) (($ $ (-583 (-1088))) NIL (OR (-12 (|has| |#3| (-809 (-1088))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#3| (-809 (-1088))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))) ELT)) (-2562 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-3943 (($ $ |#3|) NIL (|has| |#3| (-311)) ELT)) (-3831 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL (|has| |#3| (-961)) ELT) (($ $ (-830)) NIL (|has| |#3| (-961)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-483) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-830) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-663)) ELT) (($ |#3| $) NIL (|has| |#3| (-663)) ELT) (($ $ $) NIL (|has| |#3| (-961)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-211 |#1| |#2| |#3|) (-13 (-196 |#1| |#3|) (-590 |#2|)) (-694) (-961) (-590 |#2|)) (T -211))
-NIL
-((-1485 (((-583 (-694)) $) 56 T ELT) (((-583 (-694)) $ |#3|) 59 T ELT)) (-1519 (((-694) $) 58 T ELT) (((-694) $ |#3|) 61 T ELT)) (-1481 (($ $) 76 T ELT)) (-3152 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL T ELT) (((-3 (-483) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 83 T ELT)) (-3766 (((-694) $ |#3|) 43 T ELT) (((-694) $) 38 T ELT)) (-1520 (((-1 $ (-694)) |#3|) 15 T ELT) (((-1 $ (-694)) $) 88 T ELT)) (-1483 ((|#4| $) 69 T ELT)) (-1484 (((-85) $) 67 T ELT)) (-1482 (($ $) 75 T ELT)) (-3762 (($ $ (-583 (-248 $))) 111 T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-583 |#4|) (-583 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-583 |#4|) (-583 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-583 |#3|) (-583 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-583 |#3|) (-583 |#2|)) 97 T ELT)) (-3752 (($ $ (-583 |#4|) (-583 (-694))) NIL T ELT) (($ $ |#4| (-694)) NIL T ELT) (($ $ (-583 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1088)) NIL T ELT) (($ $ (-583 (-1088))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-1486 (((-583 |#3|) $) 86 T ELT)) (-3942 ((|#5| $) NIL T ELT) (((-694) $ |#4|) NIL T ELT) (((-583 (-694)) $ (-583 |#4|)) NIL T ELT) (((-694) $ |#3|) 49 T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-347 (-483))) NIL T ELT) (($ $) NIL T ELT)))
-(((-212 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3752 (|#1| |#1| (-694))) (-15 -3752 (|#1| |#1|)) (-15 -3752 (|#1| |#1| (-583 (-1088)) (-583 (-694)))) (-15 -3752 (|#1| |#1| (-1088) (-694))) (-15 -3752 (|#1| |#1| (-583 (-1088)))) (-15 -3752 (|#1| |#1| (-1088))) (-15 -3940 (|#1| |#1|)) (-15 -3940 (|#1| (-347 (-483)))) (-15 -3762 (|#1| |#1| (-583 |#3|) (-583 |#2|))) (-15 -3762 (|#1| |#1| |#3| |#2|)) (-15 -3762 (|#1| |#1| (-583 |#3|) (-583 |#1|))) (-15 -3762 (|#1| |#1| |#3| |#1|)) (-15 -1520 ((-1 |#1| (-694)) |#1|)) (-15 -1481 (|#1| |#1|)) (-15 -1482 (|#1| |#1|)) (-15 -1483 (|#4| |#1|)) (-15 -1484 ((-85) |#1|)) (-15 -1519 ((-694) |#1| |#3|)) (-15 -1485 ((-583 (-694)) |#1| |#3|)) (-15 -1519 ((-694) |#1|)) (-15 -1485 ((-583 (-694)) |#1|)) (-15 -3942 ((-694) |#1| |#3|)) (-15 -3766 ((-694) |#1|)) (-15 -3766 ((-694) |#1| |#3|)) (-15 -1486 ((-583 |#3|) |#1|)) (-15 -1520 ((-1 |#1| (-694)) |#3|)) (-15 -3940 (|#1| |#3|)) (-15 -3152 ((-3 |#3| #1="failed") |#1|)) (-15 -3752 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3752 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3942 ((-583 (-694)) |#1| (-583 |#4|))) (-15 -3942 ((-694) |#1| |#4|)) (-15 -3940 (|#1| |#4|)) (-15 -3152 ((-3 |#4| #1#) |#1|)) (-15 -3762 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -3762 (|#1| |#1| |#4| |#1|)) (-15 -3762 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -3762 (|#1| |#1| |#4| |#2|)) (-15 -3762 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3762 (|#1| |#1| |#1| |#1|)) (-15 -3762 (|#1| |#1| (-248 |#1|))) (-15 -3762 (|#1| |#1| (-583 (-248 |#1|)))) (-15 -3942 (|#5| |#1|)) (-15 -3152 ((-3 (-483) #1#) |#1|)) (-15 -3152 ((-3 (-347 (-483)) #1#) |#1|)) (-15 -3152 ((-3 |#2| #1#) |#1|)) (-15 -3940 (|#1| |#2|)) (-15 -3752 (|#1| |#1| |#4|)) (-15 -3752 (|#1| |#1| (-583 |#4|))) (-15 -3752 (|#1| |#1| |#4| (-694))) (-15 -3752 (|#1| |#1| (-583 |#4|) (-583 (-694)))) (-15 -3940 (|#1| (-483))) (-15 -3940 ((-772) |#1|))) (-213 |#2| |#3| |#4| |#5|) (-961) (-756) (-228 |#3|) (-717)) (T -212))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1485 (((-583 (-694)) $) 249 T ELT) (((-583 (-694)) $ |#2|) 247 T ELT)) (-1519 (((-694) $) 248 T ELT) (((-694) $ |#2|) 246 T ELT)) (-3077 (((-583 |#3|) $) 121 T ELT)) (-3079 (((-1083 $) $ |#3|) 136 T ELT) (((-1083 |#1|) $) 135 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 98 (|has| |#1| (-494)) ELT)) (-2059 (($ $) 99 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) 101 (|has| |#1| (-494)) ELT)) (-2815 (((-694) $) 123 T ELT) (((-694) $ (-583 |#3|)) 122 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) 111 (|has| |#1| (-821)) ELT)) (-3769 (($ $) 109 (|has| |#1| (-389)) ELT)) (-3965 (((-345 $) $) 108 (|has| |#1| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1="failed") (-583 (-1083 $)) (-1083 $)) 114 (|has| |#1| (-821)) ELT)) (-1481 (($ $) 242 T ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 |#1| #2="failed") $) 179 T ELT) (((-3 (-347 (-483)) #2#) $) 176 (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 (-483) #2#) $) 174 (|has| |#1| (-950 (-483))) ELT) (((-3 |#3| #2#) $) 151 T ELT) (((-3 |#2| #2#) $) 256 T ELT)) (-3151 ((|#1| $) 178 T ELT) (((-347 (-483)) $) 177 (|has| |#1| (-950 (-347 (-483)))) ELT) (((-483) $) 175 (|has| |#1| (-950 (-483))) ELT) ((|#3| $) 152 T ELT) ((|#2| $) 257 T ELT)) (-3750 (($ $ $ |#3|) 119 (|has| |#1| (-146)) ELT)) (-3953 (($ $) 169 T ELT)) (-2275 (((-630 (-483)) (-630 $)) 147 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 146 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) 145 T ELT) (((-630 |#1|) (-630 $)) 144 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3497 (($ $) 191 (|has| |#1| (-389)) ELT) (($ $ |#3|) 116 (|has| |#1| (-389)) ELT)) (-2814 (((-583 $) $) 120 T ELT)) (-3717 (((-85) $) 107 (|has| |#1| (-821)) ELT)) (-1621 (($ $ |#1| |#4| $) 187 T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 95 (-12 (|has| |#3| (-796 (-327))) (|has| |#1| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) 94 (-12 (|has| |#3| (-796 (-483))) (|has| |#1| (-796 (-483)))) ELT)) (-3766 (((-694) $ |#2|) 252 T ELT) (((-694) $) 251 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-2416 (((-694) $) 184 T ELT)) (-3080 (($ (-1083 |#1|) |#3|) 128 T ELT) (($ (-1083 $) |#3|) 127 T ELT)) (-2817 (((-583 $) $) 137 T ELT)) (-3931 (((-85) $) 167 T ELT)) (-2889 (($ |#1| |#4|) 168 T ELT) (($ $ |#3| (-694)) 130 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 129 T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ |#3|) 131 T ELT)) (-2816 ((|#4| $) 185 T ELT) (((-694) $ |#3|) 133 T ELT) (((-583 (-694)) $ (-583 |#3|)) 132 T ELT)) (-1622 (($ (-1 |#4| |#4|) $) 186 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 166 T ELT)) (-1520 (((-1 $ (-694)) |#2|) 254 T ELT) (((-1 $ (-694)) $) 241 (|has| |#1| (-190)) ELT)) (-3078 (((-3 |#3| #3="failed") $) 134 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) 149 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 148 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 143 T ELT) (((-630 |#1|) (-1177 $)) 142 T ELT)) (-2890 (($ $) 164 T ELT)) (-3169 ((|#1| $) 163 T ELT)) (-1483 ((|#3| $) 244 T ELT)) (-1888 (($ (-583 $)) 105 (|has| |#1| (-389)) ELT) (($ $ $) 104 (|has| |#1| (-389)) ELT)) (-3237 (((-1071) $) 11 T ELT)) (-1484 (((-85) $) 245 T ELT)) (-2819 (((-3 (-583 $) #3#) $) 125 T ELT)) (-2818 (((-3 (-583 $) #3#) $) 126 T ELT)) (-2820 (((-3 (-2 (|:| |var| |#3|) (|:| -2397 (-694))) #3#) $) 124 T ELT)) (-1482 (($ $) 243 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-1794 (((-85) $) 181 T ELT)) (-1793 ((|#1| $) 182 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 106 (|has| |#1| (-389)) ELT)) (-3139 (($ (-583 $)) 103 (|has| |#1| (-389)) ELT) (($ $ $) 102 (|has| |#1| (-389)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) 113 (|has| |#1| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) 112 (|has| |#1| (-821)) ELT)) (-3726 (((-345 $) $) 110 (|has| |#1| (-821)) ELT)) (-3460 (((-3 $ "failed") $ |#1|) 189 (|has| |#1| (-494)) ELT) (((-3 $ "failed") $ $) 97 (|has| |#1| (-494)) ELT)) (-3762 (($ $ (-583 (-248 $))) 160 T ELT) (($ $ (-248 $)) 159 T ELT) (($ $ $ $) 158 T ELT) (($ $ (-583 $) (-583 $)) 157 T ELT) (($ $ |#3| |#1|) 156 T ELT) (($ $ (-583 |#3|) (-583 |#1|)) 155 T ELT) (($ $ |#3| $) 154 T ELT) (($ $ (-583 |#3|) (-583 $)) 153 T ELT) (($ $ |#2| $) 240 (|has| |#1| (-190)) ELT) (($ $ (-583 |#2|) (-583 $)) 239 (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) 238 (|has| |#1| (-190)) ELT) (($ $ (-583 |#2|) (-583 |#1|)) 237 (|has| |#1| (-190)) ELT)) (-3751 (($ $ |#3|) 118 (|has| |#1| (-146)) ELT)) (-3752 (($ $ (-583 |#3|) (-583 (-694))) 50 T ELT) (($ $ |#3| (-694)) 49 T ELT) (($ $ (-583 |#3|)) 48 T ELT) (($ $ |#3|) 46 T ELT) (($ $ (-1 |#1| |#1|)) 261 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 260 T ELT) (($ $) 236 (|has| |#1| (-189)) ELT) (($ $ (-694)) 234 (|has| |#1| (-189)) ELT) (($ $ (-1088)) 232 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) 230 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) 229 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 228 (|has| |#1| (-811 (-1088))) ELT)) (-1486 (((-583 |#2|) $) 253 T ELT)) (-3942 ((|#4| $) 165 T ELT) (((-694) $ |#3|) 141 T ELT) (((-583 (-694)) $ (-583 |#3|)) 140 T ELT) (((-694) $ |#2|) 250 T ELT)) (-3966 (((-800 (-327)) $) 93 (-12 (|has| |#3| (-553 (-800 (-327)))) (|has| |#1| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) 92 (-12 (|has| |#3| (-553 (-800 (-483)))) (|has| |#1| (-553 (-800 (-483))))) ELT) (((-472) $) 91 (-12 (|has| |#3| (-553 (-472))) (|has| |#1| (-553 (-472)))) ELT)) (-2813 ((|#1| $) 190 (|has| |#1| (-389)) ELT) (($ $ |#3|) 117 (|has| |#1| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) 115 (-2558 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 180 T ELT) (($ |#3|) 150 T ELT) (($ |#2|) 255 T ELT) (($ (-347 (-483))) 89 (OR (|has| |#1| (-950 (-347 (-483)))) (|has| |#1| (-38 (-347 (-483))))) ELT) (($ $) 96 (|has| |#1| (-494)) ELT)) (-3811 (((-583 |#1|) $) 183 T ELT)) (-3671 ((|#1| $ |#4|) 170 T ELT) (($ $ |#3| (-694)) 139 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 138 T ELT)) (-2698 (((-632 $) $) 90 (OR (-2558 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3121 (((-694)) 38 T CONST)) (-1620 (($ $ $ (-694)) 188 (|has| |#1| (-146)) ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 100 (|has| |#1| (-494)) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-583 |#3|) (-583 (-694))) 53 T ELT) (($ $ |#3| (-694)) 52 T ELT) (($ $ (-583 |#3|)) 51 T ELT) (($ $ |#3|) 47 T ELT) (($ $ (-1 |#1| |#1|)) 259 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 258 T ELT) (($ $) 235 (|has| |#1| (-189)) ELT) (($ $ (-694)) 233 (|has| |#1| (-189)) ELT) (($ $ (-1088)) 231 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) 227 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) 226 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 225 (|has| |#1| (-811 (-1088))) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#1|) 171 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-483))) 173 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) 172 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ |#1| $) 162 T ELT) (($ $ |#1|) 161 T ELT)))
-(((-213 |#1| |#2| |#3| |#4|) (-113) (-961) (-756) (-228 |t#2|) (-717)) (T -213))
-((-1520 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-1 *1 (-694))) (-4 *1 (-213 *4 *3 *5 *6)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-583 *4)))) (-3766 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694)))) (-3766 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-694)))) (-3942 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694)))) (-1485 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-583 (-694))))) (-1519 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-694)))) (-1485 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-583 (-694))))) (-1519 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694)))) (-1484 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-85)))) (-1483 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-717)) (-4 *2 (-228 *4)))) (-1482 (*1 *1 *1) (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-756)) (-4 *4 (-228 *3)) (-4 *5 (-717)))) (-1481 (*1 *1 *1) (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-756)) (-4 *4 (-228 *3)) (-4 *5 (-717)))) (-1520 (*1 *2 *1) (-12 (-4 *3 (-190)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-1 *1 (-694))) (-4 *1 (-213 *3 *4 *5 *6)))))
-(-13 (-861 |t#1| |t#4| |t#3|) (-184 |t#1|) (-950 |t#2|) (-10 -8 (-15 -1520 ((-1 $ (-694)) |t#2|)) (-15 -1486 ((-583 |t#2|) $)) (-15 -3766 ((-694) $ |t#2|)) (-15 -3766 ((-694) $)) (-15 -3942 ((-694) $ |t#2|)) (-15 -1485 ((-583 (-694)) $)) (-15 -1519 ((-694) $)) (-15 -1485 ((-583 (-694)) $ |t#2|)) (-15 -1519 ((-694) $ |t#2|)) (-15 -1484 ((-85) $)) (-15 -1483 (|t#3| $)) (-15 -1482 ($ $)) (-15 -1481 ($ $)) (IF (|has| |t#1| (-190)) (PROGN (-6 (-452 |t#2| |t#1|)) (-6 (-452 |t#2| $)) (-6 (-259 $)) (-15 -1520 ((-1 $ (-694)) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) OR (|has| |#1| (-950 (-347 (-483)))) (|has| |#1| (-38 (-347 (-483))))) ((-555 (-483)) . T) ((-555 |#1|) . T) ((-555 |#2|) . T) ((-555 |#3|) . T) ((-555 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-553 (-472)) -12 (|has| |#1| (-553 (-472))) (|has| |#3| (-553 (-472)))) ((-553 (-800 (-327))) -12 (|has| |#1| (-553 (-800 (-327)))) (|has| |#3| (-553 (-800 (-327))))) ((-553 (-800 (-483))) -12 (|has| |#1| (-553 (-800 (-483)))) (|has| |#3| (-553 (-800 (-483))))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-245) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-259 $) . T) ((-276 |#1| |#4|) . T) ((-326 |#1|) . T) ((-352 |#1|) . T) ((-389) OR (|has| |#1| (-821)) (|has| |#1| (-389))) ((-452 |#2| |#1|) |has| |#1| (-190)) ((-452 |#2| $) |has| |#1| (-190)) ((-452 |#3| |#1|) . T) ((-452 |#3| $) . T) ((-452 $ $) . T) ((-494) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-13) . T) ((-588 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-590 (-483)) |has| |#1| (-580 (-483))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-580 (-483)) |has| |#1| (-580 (-483))) ((-580 |#1|) . T) ((-654 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-663) . T) ((-806 $ (-1088)) OR (|has| |#1| (-811 (-1088))) (|has| |#1| (-809 (-1088)))) ((-806 $ |#3|) . T) ((-809 (-1088)) |has| |#1| (-809 (-1088))) ((-809 |#3|) . T) ((-811 (-1088)) OR (|has| |#1| (-811 (-1088))) (|has| |#1| (-809 (-1088)))) ((-811 |#3|) . T) ((-796 (-327)) -12 (|has| |#1| (-796 (-327))) (|has| |#3| (-796 (-327)))) ((-796 (-483)) -12 (|has| |#1| (-796 (-483))) (|has| |#3| (-796 (-483)))) ((-861 |#1| |#4| |#3|) . T) ((-821) |has| |#1| (-821)) ((-950 (-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((-950 (-483)) |has| |#1| (-950 (-483))) ((-950 |#1|) . T) ((-950 |#2|) . T) ((-950 |#3|) . T) ((-963 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-968 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) |has| |#1| (-821)))
-((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1492 ((|#1| $) 58 T ELT)) (-3318 ((|#1| $) 48 T ELT)) (-3718 (($) 7 T CONST)) (-2998 (($ $) 64 T ELT)) (-2293 (($ $) 52 T ELT)) (-3320 ((|#1| |#1| $) 50 T ELT)) (-3319 ((|#1| $) 49 T ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3827 (((-694) $) 65 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-1271 ((|#1| $) 43 T ELT)) (-1490 ((|#1| |#1| $) 56 T ELT)) (-1489 ((|#1| |#1| $) 55 T ELT)) (-3603 (($ |#1| $) 44 T ELT)) (-2599 (((-694) $) 59 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-2997 ((|#1| $) 66 T ELT)) (-1488 ((|#1| $) 54 T ELT)) (-1487 ((|#1| $) 53 T ELT)) (-1272 ((|#1| $) 45 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3000 ((|#1| |#1| $) 62 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-2999 ((|#1| $) 63 T ELT)) (-1493 (($) 61 T ELT) (($ (-583 |#1|)) 60 T ELT)) (-3317 (((-694) $) 47 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1491 ((|#1| $) 57 T ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1273 (($ (-583 |#1|)) 46 T ELT)) (-2996 ((|#1| $) 67 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-214 |#1|) (-113) (-1127)) (T -214))
-((-1493 (*1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127)))) (-1493 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-4 *1 (-214 *3)))) (-2599 (*1 *2 *1) (-12 (-4 *1 (-214 *3)) (-4 *3 (-1127)) (-5 *2 (-694)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127)))) (-1491 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127)))) (-1490 (*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127)))) (-1489 (*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127)))) (-1488 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127)))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127)))) (-2293 (*1 *1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127)))))
-(-13 (-1033 |t#1|) (-908 |t#1|) (-10 -8 (-15 -1493 ($)) (-15 -1493 ($ (-583 |t#1|))) (-15 -2599 ((-694) $)) (-15 -1492 (|t#1| $)) (-15 -1491 (|t#1| $)) (-15 -1490 (|t#1| |t#1| $)) (-15 -1489 (|t#1| |t#1| $)) (-15 -1488 (|t#1| $)) (-15 -1487 (|t#1| $)) (-15 -2293 ($ $))))
-(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-908 |#1|) . T) ((-1012) |has| |#1| (-1012)) ((-1033 |#1|) . T) ((-1127) . T))
-((-1494 (((-1045 (-179)) (-792 |#1|) (-1003 (-327)) (-1003 (-327))) 75 T ELT) (((-1045 (-179)) (-792 |#1|) (-1003 (-327)) (-1003 (-327)) (-583 (-221))) 74 T ELT) (((-1045 (-179)) |#1| (-1003 (-327)) (-1003 (-327))) 65 T ELT) (((-1045 (-179)) |#1| (-1003 (-327)) (-1003 (-327)) (-583 (-221))) 64 T ELT) (((-1045 (-179)) (-789 |#1|) (-1003 (-327))) 56 T ELT) (((-1045 (-179)) (-789 |#1|) (-1003 (-327)) (-583 (-221))) 55 T ELT)) (-1501 (((-1181) (-792 |#1|) (-1003 (-327)) (-1003 (-327))) 78 T ELT) (((-1181) (-792 |#1|) (-1003 (-327)) (-1003 (-327)) (-583 (-221))) 77 T ELT) (((-1181) |#1| (-1003 (-327)) (-1003 (-327))) 68 T ELT) (((-1181) |#1| (-1003 (-327)) (-1003 (-327)) (-583 (-221))) 67 T ELT) (((-1181) (-789 |#1|) (-1003 (-327))) 60 T ELT) (((-1181) (-789 |#1|) (-1003 (-327)) (-583 (-221))) 59 T ELT) (((-1180) (-787 |#1|) (-1003 (-327))) 47 T ELT) (((-1180) (-787 |#1|) (-1003 (-327)) (-583 (-221))) 46 T ELT) (((-1180) |#1| (-1003 (-327))) 38 T ELT) (((-1180) |#1| (-1003 (-327)) (-583 (-221))) 36 T ELT)))
-(((-215 |#1|) (-10 -7 (-15 -1501 ((-1180) |#1| (-1003 (-327)) (-583 (-221)))) (-15 -1501 ((-1180) |#1| (-1003 (-327)))) (-15 -1501 ((-1180) (-787 |#1|) (-1003 (-327)) (-583 (-221)))) (-15 -1501 ((-1180) (-787 |#1|) (-1003 (-327)))) (-15 -1501 ((-1181) (-789 |#1|) (-1003 (-327)) (-583 (-221)))) (-15 -1501 ((-1181) (-789 |#1|) (-1003 (-327)))) (-15 -1494 ((-1045 (-179)) (-789 |#1|) (-1003 (-327)) (-583 (-221)))) (-15 -1494 ((-1045 (-179)) (-789 |#1|) (-1003 (-327)))) (-15 -1501 ((-1181) |#1| (-1003 (-327)) (-1003 (-327)) (-583 (-221)))) (-15 -1501 ((-1181) |#1| (-1003 (-327)) (-1003 (-327)))) (-15 -1494 ((-1045 (-179)) |#1| (-1003 (-327)) (-1003 (-327)) (-583 (-221)))) (-15 -1494 ((-1045 (-179)) |#1| (-1003 (-327)) (-1003 (-327)))) (-15 -1501 ((-1181) (-792 |#1|) (-1003 (-327)) (-1003 (-327)) (-583 (-221)))) (-15 -1501 ((-1181) (-792 |#1|) (-1003 (-327)) (-1003 (-327)))) (-15 -1494 ((-1045 (-179)) (-792 |#1|) (-1003 (-327)) (-1003 (-327)) (-583 (-221)))) (-15 -1494 ((-1045 (-179)) (-792 |#1|) (-1003 (-327)) (-1003 (-327))))) (-13 (-553 (-472)) (-1012))) (T -215))
-((-1494 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-792 *5)) (-5 *4 (-1003 (-327))) (-4 *5 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1045 (-179))) (-5 *1 (-215 *5)))) (-1494 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-792 *6)) (-5 *4 (-1003 (-327))) (-5 *5 (-583 (-221))) (-4 *6 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1045 (-179))) (-5 *1 (-215 *6)))) (-1501 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-792 *5)) (-5 *4 (-1003 (-327))) (-4 *5 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1181)) (-5 *1 (-215 *5)))) (-1501 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-792 *6)) (-5 *4 (-1003 (-327))) (-5 *5 (-583 (-221))) (-4 *6 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1181)) (-5 *1 (-215 *6)))) (-1494 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1003 (-327))) (-5 *2 (-1045 (-179))) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-472)) (-1012))))) (-1494 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1003 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-472)) (-1012))))) (-1501 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1003 (-327))) (-5 *2 (-1181)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-472)) (-1012))))) (-1501 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1003 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-472)) (-1012))))) (-1494 (*1 *2 *3 *4) (-12 (-5 *3 (-789 *5)) (-5 *4 (-1003 (-327))) (-4 *5 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1045 (-179))) (-5 *1 (-215 *5)))) (-1494 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-789 *6)) (-5 *4 (-1003 (-327))) (-5 *5 (-583 (-221))) (-4 *6 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1045 (-179))) (-5 *1 (-215 *6)))) (-1501 (*1 *2 *3 *4) (-12 (-5 *3 (-789 *5)) (-5 *4 (-1003 (-327))) (-4 *5 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1181)) (-5 *1 (-215 *5)))) (-1501 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-789 *6)) (-5 *4 (-1003 (-327))) (-5 *5 (-583 (-221))) (-4 *6 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1181)) (-5 *1 (-215 *6)))) (-1501 (*1 *2 *3 *4) (-12 (-5 *3 (-787 *5)) (-5 *4 (-1003 (-327))) (-4 *5 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1180)) (-5 *1 (-215 *5)))) (-1501 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-787 *6)) (-5 *4 (-1003 (-327))) (-5 *5 (-583 (-221))) (-4 *6 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1180)) (-5 *1 (-215 *6)))) (-1501 (*1 *2 *3 *4) (-12 (-5 *4 (-1003 (-327))) (-5 *2 (-1180)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-472)) (-1012))))) (-1501 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1003 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1180)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-472)) (-1012))))))
-((-1495 (((-1 (-854 (-179)) (-179) (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 158 T ELT)) (-1494 (((-1045 (-179)) (-792 (-1 (-179) (-179) (-179))) (-1000 (-327)) (-1000 (-327))) 178 T ELT) (((-1045 (-179)) (-792 (-1 (-179) (-179) (-179))) (-1000 (-327)) (-1000 (-327)) (-583 (-221))) 176 T ELT) (((-1045 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1000 (-327)) (-1000 (-327))) 181 T ELT) (((-1045 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1000 (-327)) (-1000 (-327)) (-583 (-221))) 177 T ELT) (((-1045 (-179)) (-1 (-179) (-179) (-179)) (-1000 (-327)) (-1000 (-327))) 169 T ELT) (((-1045 (-179)) (-1 (-179) (-179) (-179)) (-1000 (-327)) (-1000 (-327)) (-583 (-221))) 168 T ELT) (((-1045 (-179)) (-1 (-854 (-179)) (-179)) (-1000 (-327))) 150 T ELT) (((-1045 (-179)) (-1 (-854 (-179)) (-179)) (-1000 (-327)) (-583 (-221))) 148 T ELT) (((-1045 (-179)) (-789 (-1 (-179) (-179))) (-1000 (-327))) 149 T ELT) (((-1045 (-179)) (-789 (-1 (-179) (-179))) (-1000 (-327)) (-583 (-221))) 146 T ELT)) (-1501 (((-1181) (-792 (-1 (-179) (-179) (-179))) (-1000 (-327)) (-1000 (-327))) 180 T ELT) (((-1181) (-792 (-1 (-179) (-179) (-179))) (-1000 (-327)) (-1000 (-327)) (-583 (-221))) 179 T ELT) (((-1181) (-1 (-854 (-179)) (-179) (-179)) (-1000 (-327)) (-1000 (-327))) 183 T ELT) (((-1181) (-1 (-854 (-179)) (-179) (-179)) (-1000 (-327)) (-1000 (-327)) (-583 (-221))) 182 T ELT) (((-1181) (-1 (-179) (-179) (-179)) (-1000 (-327)) (-1000 (-327))) 171 T ELT) (((-1181) (-1 (-179) (-179) (-179)) (-1000 (-327)) (-1000 (-327)) (-583 (-221))) 170 T ELT) (((-1181) (-1 (-854 (-179)) (-179)) (-1000 (-327))) 156 T ELT) (((-1181) (-1 (-854 (-179)) (-179)) (-1000 (-327)) (-583 (-221))) 155 T ELT) (((-1181) (-789 (-1 (-179) (-179))) (-1000 (-327))) 154 T ELT) (((-1181) (-789 (-1 (-179) (-179))) (-1000 (-327)) (-583 (-221))) 153 T ELT) (((-1180) (-787 (-1 (-179) (-179))) (-1000 (-327))) 118 T ELT) (((-1180) (-787 (-1 (-179) (-179))) (-1000 (-327)) (-583 (-221))) 117 T ELT) (((-1180) (-1 (-179) (-179)) (-1000 (-327))) 112 T ELT) (((-1180) (-1 (-179) (-179)) (-1000 (-327)) (-583 (-221))) 110 T ELT)))
-(((-216) (-10 -7 (-15 -1501 ((-1180) (-1 (-179) (-179)) (-1000 (-327)) (-583 (-221)))) (-15 -1501 ((-1180) (-1 (-179) (-179)) (-1000 (-327)))) (-15 -1501 ((-1180) (-787 (-1 (-179) (-179))) (-1000 (-327)) (-583 (-221)))) (-15 -1501 ((-1180) (-787 (-1 (-179) (-179))) (-1000 (-327)))) (-15 -1501 ((-1181) (-789 (-1 (-179) (-179))) (-1000 (-327)) (-583 (-221)))) (-15 -1501 ((-1181) (-789 (-1 (-179) (-179))) (-1000 (-327)))) (-15 -1501 ((-1181) (-1 (-854 (-179)) (-179)) (-1000 (-327)) (-583 (-221)))) (-15 -1501 ((-1181) (-1 (-854 (-179)) (-179)) (-1000 (-327)))) (-15 -1494 ((-1045 (-179)) (-789 (-1 (-179) (-179))) (-1000 (-327)) (-583 (-221)))) (-15 -1494 ((-1045 (-179)) (-789 (-1 (-179) (-179))) (-1000 (-327)))) (-15 -1494 ((-1045 (-179)) (-1 (-854 (-179)) (-179)) (-1000 (-327)) (-583 (-221)))) (-15 -1494 ((-1045 (-179)) (-1 (-854 (-179)) (-179)) (-1000 (-327)))) (-15 -1501 ((-1181) (-1 (-179) (-179) (-179)) (-1000 (-327)) (-1000 (-327)) (-583 (-221)))) (-15 -1501 ((-1181) (-1 (-179) (-179) (-179)) (-1000 (-327)) (-1000 (-327)))) (-15 -1494 ((-1045 (-179)) (-1 (-179) (-179) (-179)) (-1000 (-327)) (-1000 (-327)) (-583 (-221)))) (-15 -1494 ((-1045 (-179)) (-1 (-179) (-179) (-179)) (-1000 (-327)) (-1000 (-327)))) (-15 -1501 ((-1181) (-1 (-854 (-179)) (-179) (-179)) (-1000 (-327)) (-1000 (-327)) (-583 (-221)))) (-15 -1501 ((-1181) (-1 (-854 (-179)) (-179) (-179)) (-1000 (-327)) (-1000 (-327)))) (-15 -1494 ((-1045 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1000 (-327)) (-1000 (-327)) (-583 (-221)))) (-15 -1494 ((-1045 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1000 (-327)) (-1000 (-327)))) (-15 -1501 ((-1181) (-792 (-1 (-179) (-179) (-179))) (-1000 (-327)) (-1000 (-327)) (-583 (-221)))) (-15 -1501 ((-1181) (-792 (-1 (-179) (-179) (-179))) (-1000 (-327)) (-1000 (-327)))) (-15 -1494 ((-1045 (-179)) (-792 (-1 (-179) (-179) (-179))) (-1000 (-327)) (-1000 (-327)) (-583 (-221)))) (-15 -1494 ((-1045 (-179)) (-792 (-1 (-179) (-179) (-179))) (-1000 (-327)) (-1000 (-327)))) (-15 -1495 ((-1 (-854 (-179)) (-179) (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -216))
-((-1495 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-854 (-179)) (-179) (-179))) (-5 *3 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-216)))) (-1494 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1000 (-327))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) (-1494 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1000 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) (-1501 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1000 (-327))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1501 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1000 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1494 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1000 (-327))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) (-1494 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1000 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) (-1501 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1000 (-327))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1501 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1000 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1494 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1000 (-327))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) (-1494 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1000 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) (-1501 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1000 (-327))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1501 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1000 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1000 (-327))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) (-1494 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1000 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) (-1494 (*1 *2 *3 *4) (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1000 (-327))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) (-1494 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1000 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-216)))) (-1501 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1000 (-327))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1501 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1000 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1501 (*1 *2 *3 *4) (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1000 (-327))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1501 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1000 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1501 (*1 *2 *3 *4) (-12 (-5 *3 (-787 (-1 (-179) (-179)))) (-5 *4 (-1000 (-327))) (-5 *2 (-1180)) (-5 *1 (-216)))) (-1501 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-787 (-1 (-179) (-179)))) (-5 *4 (-1000 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1180)) (-5 *1 (-216)))) (-1501 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1000 (-327))) (-5 *2 (-1180)) (-5 *1 (-216)))) (-1501 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1000 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1180)) (-5 *1 (-216)))))
-((-1501 (((-1180) (-248 |#2|) (-1088) (-1088) (-583 (-221))) 102 T ELT)))
-(((-217 |#1| |#2|) (-10 -7 (-15 -1501 ((-1180) (-248 |#2|) (-1088) (-1088) (-583 (-221))))) (-13 (-494) (-756) (-950 (-483))) (-361 |#1|)) (T -217))
-((-1501 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-248 *7)) (-5 *4 (-1088)) (-5 *5 (-583 (-221))) (-4 *7 (-361 *6)) (-4 *6 (-13 (-494) (-756) (-950 (-483)))) (-5 *2 (-1180)) (-5 *1 (-217 *6 *7)))))
-((-1498 (((-483) (-483)) 71 T ELT)) (-1499 (((-483) (-483)) 72 T ELT)) (-1500 (((-179) (-179)) 73 T ELT)) (-1497 (((-1181) (-1 (-142 (-179)) (-142 (-179))) (-1000 (-179)) (-1000 (-179))) 70 T ELT)) (-1496 (((-1181) (-1 (-142 (-179)) (-142 (-179))) (-1000 (-179)) (-1000 (-179)) (-85)) 68 T ELT)))
-(((-218) (-10 -7 (-15 -1496 ((-1181) (-1 (-142 (-179)) (-142 (-179))) (-1000 (-179)) (-1000 (-179)) (-85))) (-15 -1497 ((-1181) (-1 (-142 (-179)) (-142 (-179))) (-1000 (-179)) (-1000 (-179)))) (-15 -1498 ((-483) (-483))) (-15 -1499 ((-483) (-483))) (-15 -1500 ((-179) (-179))))) (T -218))
-((-1500 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-218)))) (-1499 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-218)))) (-1498 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-218)))) (-1497 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1000 (-179))) (-5 *2 (-1181)) (-5 *1 (-218)))) (-1496 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1000 (-179))) (-5 *5 (-85)) (-5 *2 (-1181)) (-5 *1 (-218)))))
-((-3940 (((-1003 (-327)) (-1003 (-264 |#1|))) 16 T ELT)))
-(((-219 |#1|) (-10 -7 (-15 -3940 ((-1003 (-327)) (-1003 (-264 |#1|))))) (-13 (-756) (-494) (-553 (-327)))) (T -219))
-((-3940 (*1 *2 *3) (-12 (-5 *3 (-1003 (-264 *4))) (-4 *4 (-13 (-756) (-494) (-553 (-327)))) (-5 *2 (-1003 (-327))) (-5 *1 (-219 *4)))))
-((-1501 (((-1181) (-583 (-179)) (-583 (-179)) (-583 (-179)) (-583 (-221))) 23 T ELT) (((-1181) (-583 (-179)) (-583 (-179)) (-583 (-179))) 24 T ELT) (((-1180) (-583 (-854 (-179))) (-583 (-221))) 16 T ELT) (((-1180) (-583 (-854 (-179)))) 17 T ELT) (((-1180) (-583 (-179)) (-583 (-179)) (-583 (-221))) 20 T ELT) (((-1180) (-583 (-179)) (-583 (-179))) 21 T ELT)))
-(((-220) (-10 -7 (-15 -1501 ((-1180) (-583 (-179)) (-583 (-179)))) (-15 -1501 ((-1180) (-583 (-179)) (-583 (-179)) (-583 (-221)))) (-15 -1501 ((-1180) (-583 (-854 (-179))))) (-15 -1501 ((-1180) (-583 (-854 (-179))) (-583 (-221)))) (-15 -1501 ((-1181) (-583 (-179)) (-583 (-179)) (-583 (-179)))) (-15 -1501 ((-1181) (-583 (-179)) (-583 (-179)) (-583 (-179)) (-583 (-221)))))) (T -220))
-((-1501 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-583 (-179))) (-5 *4 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-220)))) (-1501 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-179))) (-5 *2 (-1181)) (-5 *1 (-220)))) (-1501 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *4 (-583 (-221))) (-5 *2 (-1180)) (-5 *1 (-220)))) (-1501 (*1 *2 *3) (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *2 (-1180)) (-5 *1 (-220)))) (-1501 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-179))) (-5 *4 (-583 (-221))) (-5 *2 (-1180)) (-5 *1 (-220)))) (-1501 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-179))) (-5 *2 (-1180)) (-5 *1 (-220)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3875 (($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 24 T ELT)) (-1514 (($ (-830)) 81 T ELT)) (-1513 (($ (-830)) 80 T ELT)) (-1769 (($ (-583 (-327))) 87 T ELT)) (-1517 (($ (-327)) 66 T ELT)) (-1516 (($ (-830)) 82 T ELT)) (-1510 (($ (-85)) 33 T ELT)) (-3877 (($ (-1071)) 28 T ELT)) (-1509 (($ (-1071)) 29 T ELT)) (-1515 (($ (-1045 (-179))) 76 T ELT)) (-1925 (($ (-583 (-1000 (-327)))) 72 T ELT)) (-1503 (($ (-583 (-1000 (-327)))) 68 T ELT) (($ (-583 (-1000 (-347 (-483))))) 71 T ELT)) (-1506 (($ (-327)) 38 T ELT) (($ (-783)) 42 T ELT)) (-1502 (((-85) (-583 $) (-1088)) 100 T ELT)) (-1518 (((-3 (-51) "failed") (-583 $) (-1088)) 102 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1505 (($ (-327)) 43 T ELT) (($ (-783)) 44 T ELT)) (-3219 (($ (-1 (-854 (-179)) (-854 (-179)))) 65 T ELT)) (-2262 (($ (-1 (-854 (-179)) (-854 (-179)))) 83 T ELT)) (-1504 (($ (-1 (-179) (-179))) 48 T ELT) (($ (-1 (-179) (-179) (-179))) 52 T ELT) (($ (-1 (-179) (-179) (-179) (-179))) 56 T ELT)) (-3940 (((-772) $) 93 T ELT)) (-1507 (($ (-85)) 34 T ELT) (($ (-583 (-1000 (-327)))) 60 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-1920 (($ (-85)) 35 T ELT)) (-3052 (((-85) $ $) 97 T ELT)))
-(((-221) (-13 (-1012) (-10 -8 (-15 -1920 ($ (-85))) (-15 -1507 ($ (-85))) (-15 -3875 ($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3877 ($ (-1071))) (-15 -1509 ($ (-1071))) (-15 -1510 ($ (-85))) (-15 -1507 ($ (-583 (-1000 (-327))))) (-15 -3219 ($ (-1 (-854 (-179)) (-854 (-179))))) (-15 -1506 ($ (-327))) (-15 -1506 ($ (-783))) (-15 -1505 ($ (-327))) (-15 -1505 ($ (-783))) (-15 -1504 ($ (-1 (-179) (-179)))) (-15 -1504 ($ (-1 (-179) (-179) (-179)))) (-15 -1504 ($ (-1 (-179) (-179) (-179) (-179)))) (-15 -1517 ($ (-327))) (-15 -1503 ($ (-583 (-1000 (-327))))) (-15 -1503 ($ (-583 (-1000 (-347 (-483)))))) (-15 -1925 ($ (-583 (-1000 (-327))))) (-15 -1515 ($ (-1045 (-179)))) (-15 -1513 ($ (-830))) (-15 -1514 ($ (-830))) (-15 -1516 ($ (-830))) (-15 -2262 ($ (-1 (-854 (-179)) (-854 (-179))))) (-15 -1769 ($ (-583 (-327)))) (-15 -1518 ((-3 (-51) "failed") (-583 $) (-1088))) (-15 -1502 ((-85) (-583 $) (-1088)))))) (T -221))
-((-1920 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-3875 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-221)))) (-3877 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-221)))) (-1509 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-221)))) (-1510 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-583 (-1000 (-327)))) (-5 *1 (-221)))) (-3219 (*1 *1 *2) (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *1 (-221)))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-221)))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-221)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-221)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-221)))) (-1504 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-221)))) (-1504 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-221)))) (-1504 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-221)))) (-1517 (*1 *1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-221)))) (-1503 (*1 *1 *2) (-12 (-5 *2 (-583 (-1000 (-327)))) (-5 *1 (-221)))) (-1503 (*1 *1 *2) (-12 (-5 *2 (-583 (-1000 (-347 (-483))))) (-5 *1 (-221)))) (-1925 (*1 *1 *2) (-12 (-5 *2 (-583 (-1000 (-327)))) (-5 *1 (-221)))) (-1515 (*1 *1 *2) (-12 (-5 *2 (-1045 (-179))) (-5 *1 (-221)))) (-1513 (*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221)))) (-1514 (*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221)))) (-1516 (*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221)))) (-2262 (*1 *1 *2) (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *1 (-221)))) (-1769 (*1 *1 *2) (-12 (-5 *2 (-583 (-327))) (-5 *1 (-221)))) (-1518 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-221))) (-5 *4 (-1088)) (-5 *2 (-51)) (-5 *1 (-221)))) (-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-221))) (-5 *4 (-1088)) (-5 *2 (-85)) (-5 *1 (-221)))))
-((-3875 (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-583 (-221)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 25 T ELT)) (-1514 (((-830) (-583 (-221)) (-830)) 52 T ELT)) (-1513 (((-830) (-583 (-221)) (-830)) 51 T ELT)) (-3845 (((-583 (-327)) (-583 (-221)) (-583 (-327))) 68 T ELT)) (-1517 (((-327) (-583 (-221)) (-327)) 57 T ELT)) (-1516 (((-830) (-583 (-221)) (-830)) 53 T ELT)) (-1510 (((-85) (-583 (-221)) (-85)) 27 T ELT)) (-3877 (((-1071) (-583 (-221)) (-1071)) 19 T ELT)) (-1509 (((-1071) (-583 (-221)) (-1071)) 26 T ELT)) (-1515 (((-1045 (-179)) (-583 (-221))) 46 T ELT)) (-1925 (((-583 (-1000 (-327))) (-583 (-221)) (-583 (-1000 (-327)))) 40 T ELT)) (-1511 (((-783) (-583 (-221)) (-783)) 32 T ELT)) (-1512 (((-783) (-583 (-221)) (-783)) 33 T ELT)) (-2262 (((-1 (-854 (-179)) (-854 (-179))) (-583 (-221)) (-1 (-854 (-179)) (-854 (-179)))) 63 T ELT)) (-1508 (((-85) (-583 (-221)) (-85)) 14 T ELT)) (-1920 (((-85) (-583 (-221)) (-85)) 13 T ELT)))
-(((-222) (-10 -7 (-15 -1920 ((-85) (-583 (-221)) (-85))) (-15 -1508 ((-85) (-583 (-221)) (-85))) (-15 -3875 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-583 (-221)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3877 ((-1071) (-583 (-221)) (-1071))) (-15 -1509 ((-1071) (-583 (-221)) (-1071))) (-15 -1510 ((-85) (-583 (-221)) (-85))) (-15 -1511 ((-783) (-583 (-221)) (-783))) (-15 -1512 ((-783) (-583 (-221)) (-783))) (-15 -1925 ((-583 (-1000 (-327))) (-583 (-221)) (-583 (-1000 (-327))))) (-15 -1513 ((-830) (-583 (-221)) (-830))) (-15 -1514 ((-830) (-583 (-221)) (-830))) (-15 -1515 ((-1045 (-179)) (-583 (-221)))) (-15 -1516 ((-830) (-583 (-221)) (-830))) (-15 -1517 ((-327) (-583 (-221)) (-327))) (-15 -2262 ((-1 (-854 (-179)) (-854 (-179))) (-583 (-221)) (-1 (-854 (-179)) (-854 (-179))))) (-15 -3845 ((-583 (-327)) (-583 (-221)) (-583 (-327)))))) (T -222))
-((-3845 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-327))) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-2262 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1517 (*1 *2 *3 *2) (-12 (-5 *2 (-327)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1516 (*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1515 (*1 *2 *3) (-12 (-5 *3 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-222)))) (-1514 (*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1513 (*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1925 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-1000 (-327)))) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1512 (*1 *2 *3 *2) (-12 (-5 *2 (-783)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1511 (*1 *2 *3 *2) (-12 (-5 *2 (-783)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1510 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1509 (*1 *2 *3 *2) (-12 (-5 *2 (-1071)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-3877 (*1 *2 *3 *2) (-12 (-5 *2 (-1071)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-3875 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1508 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1920 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))))
-((-1518 (((-3 |#1| "failed") (-583 (-221)) (-1088)) 17 T ELT)))
-(((-223 |#1|) (-10 -7 (-15 -1518 ((-3 |#1| "failed") (-583 (-221)) (-1088)))) (-1127)) (T -223))
-((-1518 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-221))) (-5 *4 (-1088)) (-5 *1 (-223 *2)) (-4 *2 (-1127)))))
-((-3752 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-694)) 11 T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088))) NIL T ELT) (($ $ (-1088)) 19 T ELT) (($ $ (-694)) NIL T ELT) (($ $) 16 T ELT)) (-2665 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-694)) 14 T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088))) NIL T ELT) (($ $ (-1088)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)))
-(((-224 |#1| |#2|) (-10 -7 (-15 -3752 (|#1| |#1|)) (-15 -2665 (|#1| |#1|)) (-15 -3752 (|#1| |#1| (-694))) (-15 -2665 (|#1| |#1| (-694))) (-15 -3752 (|#1| |#1| (-1088))) (-15 -2665 (|#1| |#1| (-1088))) (-15 -3752 (|#1| |#1| (-583 (-1088)))) (-15 -3752 (|#1| |#1| (-1088) (-694))) (-15 -3752 (|#1| |#1| (-583 (-1088)) (-583 (-694)))) (-15 -2665 (|#1| |#1| (-583 (-1088)))) (-15 -2665 (|#1| |#1| (-1088) (-694))) (-15 -2665 (|#1| |#1| (-583 (-1088)) (-583 (-694)))) (-15 -2665 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -2665 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3752 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3752 (|#1| |#1| (-1 |#2| |#2|)))) (-225 |#2|) (-1127)) (T -224))
-NIL
-((-3752 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 22 T ELT) (($ $ (-583 (-1088)) (-583 (-694))) 16 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) 15 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) 14 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088)) 12 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-694)) 10 (|has| |#1| (-189)) ELT) (($ $) 8 (|has| |#1| (-189)) ELT)) (-2665 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 20 T ELT) (($ $ (-583 (-1088)) (-583 (-694))) 19 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) 18 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) 17 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088)) 13 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-694)) 11 (|has| |#1| (-189)) ELT) (($ $) 9 (|has| |#1| (-189)) ELT)))
-(((-225 |#1|) (-113) (-1127)) (T -225))
-((-3752 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1127)))) (-3752 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *1 (-225 *4)) (-4 *4 (-1127)))) (-2665 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1127)))) (-2665 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *1 (-225 *4)) (-4 *4 (-1127)))))
-(-13 (-1127) (-10 -8 (-15 -3752 ($ $ (-1 |t#1| |t#1|))) (-15 -3752 ($ $ (-1 |t#1| |t#1|) (-694))) (-15 -2665 ($ $ (-1 |t#1| |t#1|))) (-15 -2665 ($ $ (-1 |t#1| |t#1|) (-694))) (IF (|has| |t#1| (-189)) (-6 (-189)) |%noBranch|) (IF (|has| |t#1| (-811 (-1088))) (-6 (-811 (-1088))) |%noBranch|)))
-(((-186 $) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-13) . T) ((-806 $ (-1088)) |has| |#1| (-811 (-1088))) ((-811 (-1088)) |has| |#1| (-811 (-1088))) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1485 (((-583 (-694)) $) NIL T ELT) (((-583 (-694)) $ |#2|) NIL T ELT)) (-1519 (((-694) $) NIL T ELT) (((-694) $ |#2|) NIL T ELT)) (-3077 (((-583 |#3|) $) NIL T ELT)) (-3079 (((-1083 $) $ |#3|) NIL T ELT) (((-1083 |#1|) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2815 (((-694) $) NIL T ELT) (((-694) $ (-583 |#3|)) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3769 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-1481 (($ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 |#3| #1#) $) NIL T ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1037 |#1| |#2|) #1#) $) 23 T ELT)) (-3151 ((|#1| $) NIL T ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1037 |#1| |#2|) $) NIL T ELT)) (-3750 (($ $ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-3953 (($ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-389)) ELT) (($ $ |#3|) NIL (|has| |#1| (-389)) ELT)) (-2814 (((-583 $) $) NIL T ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1621 (($ $ |#1| (-468 |#3|) $) NIL T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (-12 (|has| |#1| (-796 (-327))) (|has| |#3| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (-12 (|has| |#1| (-796 (-483))) (|has| |#3| (-796 (-483)))) ELT)) (-3766 (((-694) $ |#2|) NIL T ELT) (((-694) $) 10 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2416 (((-694) $) NIL T ELT)) (-3080 (($ (-1083 |#1|) |#3|) NIL T ELT) (($ (-1083 $) |#3|) NIL T ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-468 |#3|)) NIL T ELT) (($ $ |#3| (-694)) NIL T ELT) (($ $ (-583 |#3|) (-583 (-694))) NIL T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ |#3|) NIL T ELT)) (-2816 (((-468 |#3|) $) NIL T ELT) (((-694) $ |#3|) NIL T ELT) (((-583 (-694)) $ (-583 |#3|)) NIL T ELT)) (-1622 (($ (-1 (-468 |#3|) (-468 |#3|)) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1520 (((-1 $ (-694)) |#2|) NIL T ELT) (((-1 $ (-694)) $) NIL (|has| |#1| (-190)) ELT)) (-3078 (((-3 |#3| #1#) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-1483 ((|#3| $) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1484 (((-85) $) NIL T ELT)) (-2819 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2818 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-2 (|:| |var| |#3|) (|:| -2397 (-694))) #1#) $) NIL T ELT)) (-1482 (($ $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1794 (((-85) $) NIL T ELT)) (-1793 ((|#1| $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-389)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-821)) ELT)) (-3460 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-3762 (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-583 |#3|) (-583 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-583 |#3|) (-583 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 |#2|) (-583 $)) NIL (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 |#2|) (-583 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3751 (($ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-3752 (($ $ (-583 |#3|) (-583 (-694))) NIL T ELT) (($ $ |#3| (-694)) NIL T ELT) (($ $ (-583 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-1486 (((-583 |#2|) $) NIL T ELT)) (-3942 (((-468 |#3|) $) NIL T ELT) (((-694) $ |#3|) NIL T ELT) (((-583 (-694)) $ (-583 |#3|)) NIL T ELT) (((-694) $ |#2|) NIL T ELT)) (-3966 (((-800 (-327)) $) NIL (-12 (|has| |#1| (-553 (-800 (-327)))) (|has| |#3| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) NIL (-12 (|has| |#1| (-553 (-800 (-483)))) (|has| |#3| (-553 (-800 (-483))))) ELT) (((-472) $) NIL (-12 (|has| |#1| (-553 (-472))) (|has| |#3| (-553 (-472)))) ELT)) (-2813 ((|#1| $) NIL (|has| |#1| (-389)) ELT) (($ $ |#3|) NIL (|has| |#1| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1037 |#1| |#2|)) 32 T ELT) (($ (-347 (-483))) NIL (OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3811 (((-583 |#1|) $) NIL T ELT)) (-3671 ((|#1| $ (-468 |#3|)) NIL T ELT) (($ $ |#3| (-694)) NIL T ELT) (($ $ (-583 |#3|) (-583 (-694))) NIL T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1620 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-583 |#3|) (-583 (-694))) NIL T ELT) (($ $ |#3| (-694)) NIL T ELT) (($ $ (-583 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-226 |#1| |#2| |#3|) (-13 (-213 |#1| |#2| |#3| (-468 |#3|)) (-950 (-1037 |#1| |#2|))) (-961) (-756) (-228 |#2|)) (T -226))
-NIL
-((-1519 (((-694) $) 37 T ELT)) (-3152 (((-3 |#2| "failed") $) 22 T ELT)) (-3151 ((|#2| $) 33 T ELT)) (-3752 (($ $ (-694)) 18 T ELT) (($ $) 14 T ELT)) (-3940 (((-772) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-3052 (((-85) $ $) 26 T ELT)) (-2681 (((-85) $ $) 36 T ELT)))
-(((-227 |#1| |#2|) (-10 -7 (-15 -1519 ((-694) |#1|)) (-15 -3940 (|#1| |#2|)) (-15 -3152 ((-3 |#2| "failed") |#1|)) (-15 -3151 (|#2| |#1|)) (-15 -3752 (|#1| |#1|)) (-15 -3752 (|#1| |#1| (-694))) (-15 -2681 ((-85) |#1| |#1|)) (-15 -3940 ((-772) |#1|)) (-15 -3052 ((-85) |#1| |#1|))) (-228 |#2|) (-756)) (T -227))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-1519 (((-694) $) 26 T ELT)) (-3825 ((|#1| $) 27 T ELT)) (-3152 (((-3 |#1| "failed") $) 31 T ELT)) (-3151 ((|#1| $) 32 T ELT)) (-3766 (((-694) $) 28 T ELT)) (-2527 (($ $ $) 23 T ELT)) (-2853 (($ $ $) 22 T ELT)) (-1520 (($ |#1| (-694)) 29 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3752 (($ $ (-694)) 35 T ELT) (($ $) 33 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ |#1|) 30 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2665 (($ $ (-694)) 36 T ELT) (($ $) 34 T ELT)) (-2562 (((-85) $ $) 21 T ELT)) (-2563 (((-85) $ $) 19 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 20 T ELT)) (-2681 (((-85) $ $) 18 T ELT)))
-(((-228 |#1|) (-113) (-756)) (T -228))
-((-1520 (*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-228 *2)) (-4 *2 (-756)))) (-3766 (*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-756)) (-5 *2 (-694)))) (-3825 (*1 *2 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-756)))) (-1519 (*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-756)) (-5 *2 (-694)))))
-(-13 (-756) (-189) (-950 |t#1|) (-10 -8 (-15 -1520 ($ |t#1| (-694))) (-15 -3766 ((-694) $)) (-15 -3825 (|t#1| $)) (-15 -1519 ((-694) $))))
-(((-72) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-756) . T) ((-759) . T) ((-950 |#1|) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1522 (((-583 (-483)) $) 28 T ELT)) (-3942 (((-694) $) 26 T ELT)) (-3940 (((-772) $) 32 T ELT) (($ (-583 (-483))) 22 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-1521 (($ (-694)) 29 T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 11 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 18 T ELT)))
-(((-229) (-13 (-756) (-10 -8 (-15 -3940 ($ (-583 (-483)))) (-15 -3942 ((-694) $)) (-15 -1522 ((-583 (-483)) $)) (-15 -1521 ($ (-694)))))) (T -229))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-229)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-229)))) (-1522 (*1 *2 *1) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-229)))) (-1521 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-229)))))
-((-3486 ((|#2| |#2|) 77 T ELT)) (-3633 ((|#2| |#2|) 65 T ELT)) (-1551 (((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-85))))) 123 T ELT)) (-3484 ((|#2| |#2|) 75 T ELT)) (-3632 ((|#2| |#2|) 63 T ELT)) (-3488 ((|#2| |#2|) 79 T ELT)) (-3631 ((|#2| |#2|) 67 T ELT)) (-3621 ((|#2|) 46 T ELT)) (-3589 (((-86) (-86)) 97 T ELT)) (-3936 ((|#2| |#2|) 61 T ELT)) (-1552 (((-85) |#2|) 146 T ELT)) (-1541 ((|#2| |#2|) 193 T ELT)) (-1529 ((|#2| |#2|) 169 T ELT)) (-1524 ((|#2|) 59 T ELT)) (-1523 ((|#2|) 58 T ELT)) (-1539 ((|#2| |#2|) 189 T ELT)) (-1527 ((|#2| |#2|) 165 T ELT)) (-1543 ((|#2| |#2|) 197 T ELT)) (-1531 ((|#2| |#2|) 173 T ELT)) (-1526 ((|#2| |#2|) 161 T ELT)) (-1525 ((|#2| |#2|) 163 T ELT)) (-1544 ((|#2| |#2|) 199 T ELT)) (-1532 ((|#2| |#2|) 175 T ELT)) (-1542 ((|#2| |#2|) 195 T ELT)) (-1530 ((|#2| |#2|) 171 T ELT)) (-1540 ((|#2| |#2|) 191 T ELT)) (-1528 ((|#2| |#2|) 167 T ELT)) (-1547 ((|#2| |#2|) 205 T ELT)) (-1535 ((|#2| |#2|) 181 T ELT)) (-1545 ((|#2| |#2|) 201 T ELT)) (-1533 ((|#2| |#2|) 177 T ELT)) (-1549 ((|#2| |#2|) 209 T ELT)) (-1537 ((|#2| |#2|) 185 T ELT)) (-1550 ((|#2| |#2|) 211 T ELT)) (-1538 ((|#2| |#2|) 187 T ELT)) (-1548 ((|#2| |#2|) 207 T ELT)) (-1536 ((|#2| |#2|) 183 T ELT)) (-1546 ((|#2| |#2|) 203 T ELT)) (-1534 ((|#2| |#2|) 179 T ELT)) (-3937 ((|#2| |#2|) 62 T ELT)) (-3489 ((|#2| |#2|) 80 T ELT)) (-3630 ((|#2| |#2|) 68 T ELT)) (-3487 ((|#2| |#2|) 78 T ELT)) (-3629 ((|#2| |#2|) 66 T ELT)) (-3485 ((|#2| |#2|) 76 T ELT)) (-3628 ((|#2| |#2|) 64 T ELT)) (-2250 (((-85) (-86)) 95 T ELT)) (-3492 ((|#2| |#2|) 83 T ELT)) (-3480 ((|#2| |#2|) 71 T ELT)) (-3490 ((|#2| |#2|) 81 T ELT)) (-3478 ((|#2| |#2|) 69 T ELT)) (-3494 ((|#2| |#2|) 85 T ELT)) (-3482 ((|#2| |#2|) 73 T ELT)) (-3495 ((|#2| |#2|) 86 T ELT)) (-3483 ((|#2| |#2|) 74 T ELT)) (-3493 ((|#2| |#2|) 84 T ELT)) (-3481 ((|#2| |#2|) 72 T ELT)) (-3491 ((|#2| |#2|) 82 T ELT)) (-3479 ((|#2| |#2|) 70 T ELT)))
-(((-230 |#1| |#2|) (-10 -7 (-15 -3937 (|#2| |#2|)) (-15 -3936 (|#2| |#2|)) (-15 -3632 (|#2| |#2|)) (-15 -3628 (|#2| |#2|)) (-15 -3633 (|#2| |#2|)) (-15 -3629 (|#2| |#2|)) (-15 -3631 (|#2| |#2|)) (-15 -3630 (|#2| |#2|)) (-15 -3478 (|#2| |#2|)) (-15 -3479 (|#2| |#2|)) (-15 -3480 (|#2| |#2|)) (-15 -3481 (|#2| |#2|)) (-15 -3482 (|#2| |#2|)) (-15 -3483 (|#2| |#2|)) (-15 -3484 (|#2| |#2|)) (-15 -3485 (|#2| |#2|)) (-15 -3486 (|#2| |#2|)) (-15 -3487 (|#2| |#2|)) (-15 -3488 (|#2| |#2|)) (-15 -3489 (|#2| |#2|)) (-15 -3490 (|#2| |#2|)) (-15 -3491 (|#2| |#2|)) (-15 -3492 (|#2| |#2|)) (-15 -3493 (|#2| |#2|)) (-15 -3494 (|#2| |#2|)) (-15 -3495 (|#2| |#2|)) (-15 -3621 (|#2|)) (-15 -2250 ((-85) (-86))) (-15 -3589 ((-86) (-86))) (-15 -1523 (|#2|)) (-15 -1524 (|#2|)) (-15 -1525 (|#2| |#2|)) (-15 -1526 (|#2| |#2|)) (-15 -1527 (|#2| |#2|)) (-15 -1528 (|#2| |#2|)) (-15 -1529 (|#2| |#2|)) (-15 -1530 (|#2| |#2|)) (-15 -1531 (|#2| |#2|)) (-15 -1532 (|#2| |#2|)) (-15 -1533 (|#2| |#2|)) (-15 -1534 (|#2| |#2|)) (-15 -1535 (|#2| |#2|)) (-15 -1536 (|#2| |#2|)) (-15 -1537 (|#2| |#2|)) (-15 -1538 (|#2| |#2|)) (-15 -1539 (|#2| |#2|)) (-15 -1540 (|#2| |#2|)) (-15 -1541 (|#2| |#2|)) (-15 -1542 (|#2| |#2|)) (-15 -1543 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -1545 (|#2| |#2|)) (-15 -1546 (|#2| |#2|)) (-15 -1547 (|#2| |#2|)) (-15 -1548 (|#2| |#2|)) (-15 -1549 (|#2| |#2|)) (-15 -1550 (|#2| |#2|)) (-15 -1551 ((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-85)))))) (-15 -1552 ((-85) |#2|))) (-494) (-13 (-361 |#1|) (-915))) (T -230))
-((-1552 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-230 *4 *3)) (-4 *3 (-13 (-361 *4) (-915))))) (-1551 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-583 (-2 (|:| |func| *2) (|:| |pole| (-85))))) (-4 *2 (-13 (-361 *4) (-915))) (-4 *4 (-494)) (-5 *1 (-230 *4 *2)))) (-1550 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1549 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1548 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1547 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1546 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1545 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1544 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1543 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1542 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1541 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1540 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1539 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1538 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1537 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1536 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1535 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1534 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1533 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1532 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1531 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1530 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1529 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1528 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1527 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1526 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1525 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-1524 (*1 *2) (-12 (-4 *2 (-13 (-361 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-494)))) (-1523 (*1 *2) (-12 (-4 *2 (-13 (-361 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-494)))) (-3589 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-494)) (-5 *1 (-230 *3 *4)) (-4 *4 (-13 (-361 *3) (-915))))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-230 *4 *5)) (-4 *5 (-13 (-361 *4) (-915))))) (-3621 (*1 *2) (-12 (-4 *2 (-13 (-361 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-494)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3482 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3481 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3480 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3479 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3478 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3630 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3631 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3629 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3633 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3628 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3936 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))) (-3937 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))))
-((-1555 (((-3 |#2| "failed") (-583 (-550 |#2|)) |#2| (-1088)) 151 T ELT)) (-1557 ((|#2| (-347 (-483)) |#2|) 49 T ELT)) (-1556 ((|#2| |#2| (-550 |#2|)) 144 T ELT)) (-1553 (((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-550 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1088)) 143 T ELT)) (-1554 ((|#2| |#2| (-1088)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-2439 ((|#2| |#2| (-1088)) 157 T ELT) ((|#2| |#2|) 155 T ELT)))
-(((-231 |#1| |#2|) (-10 -7 (-15 -2439 (|#2| |#2|)) (-15 -2439 (|#2| |#2| (-1088))) (-15 -1553 ((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-550 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1088))) (-15 -1554 (|#2| |#2|)) (-15 -1554 (|#2| |#2| (-1088))) (-15 -1555 ((-3 |#2| "failed") (-583 (-550 |#2|)) |#2| (-1088))) (-15 -1556 (|#2| |#2| (-550 |#2|))) (-15 -1557 (|#2| (-347 (-483)) |#2|))) (-13 (-494) (-950 (-483)) (-580 (-483))) (-13 (-27) (-1113) (-361 |#1|))) (T -231))
-((-1557 (*1 *2 *3 *2) (-12 (-5 *3 (-347 (-483))) (-4 *4 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *4))))) (-1556 (*1 *2 *2 *3) (-12 (-5 *3 (-550 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *4))) (-4 *4 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *1 (-231 *4 *2)))) (-1555 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-583 (-550 *2))) (-5 *4 (-1088)) (-4 *2 (-13 (-27) (-1113) (-361 *5))) (-4 *5 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *1 (-231 *5 *2)))) (-1554 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *4))))) (-1554 (*1 *2 *2) (-12 (-4 *3 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *1 (-231 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *3))))) (-1553 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-583 (-550 *3))) (|:| |vals| (-583 *3)))) (-5 *1 (-231 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5))))) (-2439 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *4))))) (-2439 (*1 *2 *2) (-12 (-4 *3 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *1 (-231 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *3))))))
-((-2971 (((-3 |#3| #1="failed") |#3|) 120 T ELT)) (-3486 ((|#3| |#3|) 142 T ELT)) (-2959 (((-3 |#3| #1#) |#3|) 89 T ELT)) (-3633 ((|#3| |#3|) 132 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 65 T ELT)) (-3484 ((|#3| |#3|) 140 T ELT)) (-2957 (((-3 |#3| #1#) |#3|) 53 T ELT)) (-3632 ((|#3| |#3|) 130 T ELT)) (-2973 (((-3 |#3| #1#) |#3|) 122 T ELT)) (-3488 ((|#3| |#3|) 144 T ELT)) (-2961 (((-3 |#3| #1#) |#3|) 91 T ELT)) (-3631 ((|#3| |#3|) 134 T ELT)) (-2954 (((-3 |#3| #1#) |#3| (-694)) 41 T ELT)) (-2956 (((-3 |#3| #1#) |#3|) 81 T ELT)) (-3936 ((|#3| |#3|) 129 T ELT)) (-2955 (((-3 |#3| #1#) |#3|) 51 T ELT)) (-3937 ((|#3| |#3|) 128 T ELT)) (-2974 (((-3 |#3| #1#) |#3|) 123 T ELT)) (-3489 ((|#3| |#3|) 145 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 92 T ELT)) (-3630 ((|#3| |#3|) 135 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 121 T ELT)) (-3487 ((|#3| |#3|) 143 T ELT)) (-2960 (((-3 |#3| #1#) |#3|) 90 T ELT)) (-3629 ((|#3| |#3|) 133 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 67 T ELT)) (-3485 ((|#3| |#3|) 141 T ELT)) (-2958 (((-3 |#3| #1#) |#3|) 55 T ELT)) (-3628 ((|#3| |#3|) 131 T ELT)) (-2977 (((-3 |#3| #1#) |#3|) 73 T ELT)) (-3492 ((|#3| |#3|) 148 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 114 T ELT)) (-3480 ((|#3| |#3|) 152 T ELT)) (-2975 (((-3 |#3| #1#) |#3|) 69 T ELT)) (-3490 ((|#3| |#3|) 146 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 57 T ELT)) (-3478 ((|#3| |#3|) 136 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 77 T ELT)) (-3494 ((|#3| |#3|) 150 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 61 T ELT)) (-3482 ((|#3| |#3|) 138 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 79 T ELT)) (-3495 ((|#3| |#3|) 151 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 63 T ELT)) (-3483 ((|#3| |#3|) 139 T ELT)) (-2978 (((-3 |#3| #1#) |#3|) 75 T ELT)) (-3493 ((|#3| |#3|) 149 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3481 ((|#3| |#3|) 153 T ELT)) (-2976 (((-3 |#3| #1#) |#3|) 71 T ELT)) (-3491 ((|#3| |#3|) 147 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 59 T ELT)) (-3479 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-347 (-483))) 47 (|has| |#1| (-311)) ELT)))
-(((-232 |#1| |#2| |#3|) (-13 (-896 |#3|) (-10 -7 (IF (|has| |#1| (-311)) (-15 ** (|#3| |#3| (-347 (-483)))) |%noBranch|) (-15 -3937 (|#3| |#3|)) (-15 -3936 (|#3| |#3|)) (-15 -3632 (|#3| |#3|)) (-15 -3628 (|#3| |#3|)) (-15 -3633 (|#3| |#3|)) (-15 -3629 (|#3| |#3|)) (-15 -3631 (|#3| |#3|)) (-15 -3630 (|#3| |#3|)) (-15 -3478 (|#3| |#3|)) (-15 -3479 (|#3| |#3|)) (-15 -3480 (|#3| |#3|)) (-15 -3481 (|#3| |#3|)) (-15 -3482 (|#3| |#3|)) (-15 -3483 (|#3| |#3|)) (-15 -3484 (|#3| |#3|)) (-15 -3485 (|#3| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -3490 (|#3| |#3|)) (-15 -3491 (|#3| |#3|)) (-15 -3492 (|#3| |#3|)) (-15 -3493 (|#3| |#3|)) (-15 -3494 (|#3| |#3|)) (-15 -3495 (|#3| |#3|)))) (-38 (-347 (-483))) (-1170 |#1|) (-1141 |#1| |#2|)) (T -232))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-347 (-483))) (-4 *4 (-311)) (-4 *4 (-38 *3)) (-4 *5 (-1170 *4)) (-5 *1 (-232 *4 *5 *2)) (-4 *2 (-1141 *4 *5)))) (-3937 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3936 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3628 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3633 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3629 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3631 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3630 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3478 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3479 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3480 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3481 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3482 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1141 *3 *4)))))
-((-2971 (((-3 |#3| #1="failed") |#3|) 70 T ELT)) (-3486 ((|#3| |#3|) 137 T ELT)) (-2959 (((-3 |#3| #1#) |#3|) 54 T ELT)) (-3633 ((|#3| |#3|) 125 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 66 T ELT)) (-3484 ((|#3| |#3|) 135 T ELT)) (-2957 (((-3 |#3| #1#) |#3|) 50 T ELT)) (-3632 ((|#3| |#3|) 123 T ELT)) (-2973 (((-3 |#3| #1#) |#3|) 74 T ELT)) (-3488 ((|#3| |#3|) 139 T ELT)) (-2961 (((-3 |#3| #1#) |#3|) 58 T ELT)) (-3631 ((|#3| |#3|) 127 T ELT)) (-2954 (((-3 |#3| #1#) |#3| (-694)) 38 T ELT)) (-2956 (((-3 |#3| #1#) |#3|) 48 T ELT)) (-3936 ((|#3| |#3|) 111 T ELT)) (-2955 (((-3 |#3| #1#) |#3|) 46 T ELT)) (-3937 ((|#3| |#3|) 122 T ELT)) (-2974 (((-3 |#3| #1#) |#3|) 76 T ELT)) (-3489 ((|#3| |#3|) 140 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 60 T ELT)) (-3630 ((|#3| |#3|) 128 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 72 T ELT)) (-3487 ((|#3| |#3|) 138 T ELT)) (-2960 (((-3 |#3| #1#) |#3|) 56 T ELT)) (-3629 ((|#3| |#3|) 126 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 68 T ELT)) (-3485 ((|#3| |#3|) 136 T ELT)) (-2958 (((-3 |#3| #1#) |#3|) 52 T ELT)) (-3628 ((|#3| |#3|) 124 T ELT)) (-2977 (((-3 |#3| #1#) |#3|) 78 T ELT)) (-3492 ((|#3| |#3|) 143 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 62 T ELT)) (-3480 ((|#3| |#3|) 131 T ELT)) (-2975 (((-3 |#3| #1#) |#3|) 112 T ELT)) (-3490 ((|#3| |#3|) 141 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 100 T ELT)) (-3478 ((|#3| |#3|) 129 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 116 T ELT)) (-3494 ((|#3| |#3|) 145 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 107 T ELT)) (-3482 ((|#3| |#3|) 133 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3495 ((|#3| |#3|) 146 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 109 T ELT)) (-3483 ((|#3| |#3|) 134 T ELT)) (-2978 (((-3 |#3| #1#) |#3|) 80 T ELT)) (-3493 ((|#3| |#3|) 144 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 64 T ELT)) (-3481 ((|#3| |#3|) 132 T ELT)) (-2976 (((-3 |#3| #1#) |#3|) 113 T ELT)) (-3491 ((|#3| |#3|) 142 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 103 T ELT)) (-3479 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-347 (-483))) 44 (|has| |#1| (-311)) ELT)))
-(((-233 |#1| |#2| |#3| |#4|) (-13 (-896 |#3|) (-10 -7 (IF (|has| |#1| (-311)) (-15 ** (|#3| |#3| (-347 (-483)))) |%noBranch|) (-15 -3937 (|#3| |#3|)) (-15 -3936 (|#3| |#3|)) (-15 -3632 (|#3| |#3|)) (-15 -3628 (|#3| |#3|)) (-15 -3633 (|#3| |#3|)) (-15 -3629 (|#3| |#3|)) (-15 -3631 (|#3| |#3|)) (-15 -3630 (|#3| |#3|)) (-15 -3478 (|#3| |#3|)) (-15 -3479 (|#3| |#3|)) (-15 -3480 (|#3| |#3|)) (-15 -3481 (|#3| |#3|)) (-15 -3482 (|#3| |#3|)) (-15 -3483 (|#3| |#3|)) (-15 -3484 (|#3| |#3|)) (-15 -3485 (|#3| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -3490 (|#3| |#3|)) (-15 -3491 (|#3| |#3|)) (-15 -3492 (|#3| |#3|)) (-15 -3493 (|#3| |#3|)) (-15 -3494 (|#3| |#3|)) (-15 -3495 (|#3| |#3|)))) (-38 (-347 (-483))) (-1139 |#1|) (-1162 |#1| |#2|) (-896 |#2|)) (T -233))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-347 (-483))) (-4 *4 (-311)) (-4 *4 (-38 *3)) (-4 *5 (-1139 *4)) (-5 *1 (-233 *4 *5 *2 *6)) (-4 *2 (-1162 *4 *5)) (-4 *6 (-896 *5)))) (-3937 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3936 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3628 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3633 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3629 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3631 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3630 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3478 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3479 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3480 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3481 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3482 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4)))))
-((-1560 (((-85) $) 20 T ELT)) (-1562 (((-1093) $) 9 T ELT)) (-3563 (((-3 (-444) #1="failed") $) 15 T ELT)) (-3562 (((-3 (-583 $) #1#) $) NIL T ELT)) (-1559 (((-3 (-444) #1#) $) 21 T ELT)) (-1561 (((-3 (-1014) #1#) $) 19 T ELT)) (-3947 (((-85) $) 17 T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1558 (((-85) $) 10 T ELT)))
-(((-234) (-13 (-552 (-772)) (-10 -8 (-15 -1562 ((-1093) $)) (-15 -3947 ((-85) $)) (-15 -1561 ((-3 (-1014) #1="failed") $)) (-15 -1560 ((-85) $)) (-15 -1559 ((-3 (-444) #1#) $)) (-15 -1558 ((-85) $)) (-15 -3563 ((-3 (-444) #1#) $)) (-15 -3562 ((-3 (-583 $) #1#) $))))) (T -234))
-((-1562 (*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-234)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-1561 (*1 *2 *1) (|partial| -12 (-5 *2 (-1014)) (-5 *1 (-234)))) (-1560 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-1559 (*1 *2 *1) (|partial| -12 (-5 *2 (-444)) (-5 *1 (-234)))) (-1558 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-3563 (*1 *2 *1) (|partial| -12 (-5 *2 (-444)) (-5 *1 (-234)))) (-3562 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-234))) (-5 *1 (-234)))))
-((-1564 (((-531) $) 10 T ELT)) (-1565 (((-521) $) 8 T ELT)) (-1563 (((-246) $) 12 T ELT)) (-1566 (($ (-521) (-531) (-246)) NIL T ELT)) (-3940 (((-772) $) 19 T ELT)))
-(((-235) (-13 (-552 (-772)) (-10 -8 (-15 -1566 ($ (-521) (-531) (-246))) (-15 -1565 ((-521) $)) (-15 -1564 ((-531) $)) (-15 -1563 ((-246) $))))) (T -235))
-((-1566 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-521)) (-5 *3 (-531)) (-5 *4 (-246)) (-5 *1 (-235)))) (-1565 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-235)))) (-1564 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-235)))) (-1563 (*1 *2 *1) (-12 (-5 *2 (-246)) (-5 *1 (-235)))))
-((-3704 (($ (-1 (-85) |#2|) $) 24 T ELT)) (-1350 (($ $) 38 T ELT)) (-3399 (($ (-1 (-85) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-3400 (($ |#2| $) 34 T ELT) (($ (-1 (-85) |#2|) $) 18 T ELT)) (-2852 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-2300 (($ |#2| $ (-483)) 20 T ELT) (($ $ $ (-483)) 22 T ELT)) (-2301 (($ $ (-483)) 11 T ELT) (($ $ (-1144 (-483))) 14 T ELT)) (-3785 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-3796 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-583 $)) NIL T ELT)))
-(((-236 |#1| |#2|) (-10 -7 (-15 -2852 (|#1| |#1| |#1|)) (-15 -3399 (|#1| |#2| |#1|)) (-15 -2852 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -3399 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3785 (|#1| |#1| |#1|)) (-15 -3785 (|#1| |#1| |#2|)) (-15 -2300 (|#1| |#1| |#1| (-483))) (-15 -2300 (|#1| |#2| |#1| (-483))) (-15 -2301 (|#1| |#1| (-1144 (-483)))) (-15 -2301 (|#1| |#1| (-483))) (-15 -3796 (|#1| (-583 |#1|))) (-15 -3796 (|#1| |#1| |#1|)) (-15 -3796 (|#1| |#2| |#1|)) (-15 -3796 (|#1| |#1| |#2|)) (-15 -3400 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3704 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3400 (|#1| |#2| |#1|)) (-15 -1350 (|#1| |#1|))) (-237 |#2|) (-1127)) (T -236))
-NIL
-((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2194 (((-1183) $ (-483) (-483)) 44 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ (-483) |#1|) 56 (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) 64 (|has| $ (-6 -3990)) ELT)) (-1567 (($ (-1 (-85) |#1|) $) 94 T ELT)) (-3704 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3989)) ELT)) (-3718 (($) 7 T CONST)) (-2364 (($ $) 92 (|has| |#1| (-1012)) ELT)) (-1350 (($ $) 84 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3399 (($ (-1 (-85) |#1|) $) 98 T ELT) (($ |#1| $) 93 (|has| |#1| (-1012)) ELT)) (-3400 (($ |#1| $) 83 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3989)) ELT)) (-1573 ((|#1| $ (-483) |#1|) 57 (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) 55 T ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-3608 (($ (-694) |#1|) 74 T ELT)) (-2196 (((-483) $) 47 (|has| (-483) (-756)) ELT)) (-2852 (($ (-1 (-85) |#1| |#1|) $ $) 95 T ELT) (($ $ $) 91 (|has| |#1| (-756)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-2197 (((-483) $) 48 (|has| (-483) (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3603 (($ |#1| $ (-483)) 97 T ELT) (($ $ $ (-483)) 96 T ELT)) (-2300 (($ |#1| $ (-483)) 66 T ELT) (($ $ $ (-483)) 65 T ELT)) (-2199 (((-583 (-483)) $) 50 T ELT)) (-2200 (((-85) (-483) $) 51 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-3795 ((|#1| $) 46 (|has| (-483) (-756)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2195 (($ $ |#1|) 45 (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-2198 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) 52 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#1| $ (-483) |#1|) 54 T ELT) ((|#1| $ (-483)) 53 T ELT) (($ $ (-1144 (-483))) 75 T ELT)) (-1568 (($ $ (-483)) 100 T ELT) (($ $ (-1144 (-483))) 99 T ELT)) (-2301 (($ $ (-483)) 68 T ELT) (($ $ (-1144 (-483))) 67 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 85 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 76 T ELT)) (-3785 (($ $ |#1|) 102 T ELT) (($ $ $) 101 T ELT)) (-3796 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-237 |#1|) (-113) (-1127)) (T -237))
-((-3785 (*1 *1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1127)))) (-3785 (*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1127)))) (-1568 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-237 *3)) (-4 *3 (-1127)))) (-1568 (*1 *1 *1 *2) (-12 (-5 *2 (-1144 (-483))) (-4 *1 (-237 *3)) (-4 *3 (-1127)))) (-3399 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1127)))) (-3603 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-237 *2)) (-4 *2 (-1127)))) (-3603 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-237 *3)) (-4 *3 (-1127)))) (-2852 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-237 *3)) (-4 *3 (-1127)))) (-1567 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1127)))) (-3399 (*1 *1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1127)) (-4 *2 (-1012)))) (-2364 (*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1127)) (-4 *2 (-1012)))) (-2852 (*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1127)) (-4 *2 (-756)))))
-(-13 (-593 |t#1|) (-10 -8 (-6 -3990) (-15 -3785 ($ $ |t#1|)) (-15 -3785 ($ $ $)) (-15 -1568 ($ $ (-483))) (-15 -1568 ($ $ (-1144 (-483)))) (-15 -3399 ($ (-1 (-85) |t#1|) $)) (-15 -3603 ($ |t#1| $ (-483))) (-15 -3603 ($ $ $ (-483))) (-15 -2852 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -1567 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1012)) (PROGN (-15 -3399 ($ |t#1| $)) (-15 -2364 ($ $))) |%noBranch|) (IF (|has| |t#1| (-756)) (-15 -2852 ($ $ $)) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-241 (-483) |#1|) . T) ((-241 (-1144 (-483)) $) . T) ((-243 (-483) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-538 (-483) |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-593 |#1|) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-201)) (-5 *2 (-484)))) (-2482 (*1 *1 *1) (-4 *1 (-201))))
+(-13 (-245) (-38 (-347 (-484))) (-10 -8 (-15 ** ($ $ (-484))) (-15 -2482 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-484))) . T) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-347 (-484))) . T) ((-556 (-484)) . T) ((-553 (-773)) . T) ((-245) . T) ((-13) . T) ((-589 (-347 (-484))) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 (-347 (-484))) . T) ((-591 $) . T) ((-583 (-347 (-484))) . T) ((-655 (-347 (-484))) . T) ((-664) . T) ((-964 (-347 (-484))) . T) ((-964 $) . T) ((-969 (-347 (-484))) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3398 ((|#1| $) 52 T ELT)) (-3793 (($ $) 63 T ELT)) (-3023 ((|#1| $ |#1|) 43 (|has| $ (-6 -3992)) ELT)) (-1472 (($ $ $) 59 (|has| $ (-6 -3992)) ELT)) (-1471 (($ $ $) 58 (|has| $ (-6 -3992)) ELT)) (-3784 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3992)) ELT)) (-3024 (($ $ (-584 $)) 45 (|has| $ (-6 -3992)) ELT)) (-3720 (($) 7 T CONST)) (-1474 (($ $) 62 T ELT)) (-2887 (((-584 |#1|) $) 30 (|has| $ (-6 -3991)) ELT)) (-3029 (((-584 $) $) 54 T ELT)) (-3025 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-1473 (($ $) 61 T ELT)) (-2606 (((-584 |#1|) $) 29 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3028 (((-584 |#1|) $) 49 T ELT)) (-3523 (((-85) $) 53 T ELT)) (-3239 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3794 ((|#1| $) 65 T ELT)) (-3175 (($ $) 64 T ELT)) (-3240 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-3796 ((|#1| $ #1#) 51 T ELT)) (-3027 (((-484) $ $) 48 T ELT)) (-3629 (((-85) $) 50 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3396 (($ $) 10 T ELT)) (-3787 (($ $ $) 60 (|has| $ (-6 -3992)) ELT)) (-3942 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-3518 (((-584 $) $) 55 T ELT)) (-3026 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-202 |#1|) (-113) (-1128)) (T -202))
+((-3794 (*1 *2 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128)))) (-3175 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128)))) (-3793 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128)))) (-1474 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128)))) (-1473 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128)))) (-3787 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-202 *2)) (-4 *2 (-1128)))) (-1472 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-202 *2)) (-4 *2 (-1128)))) (-1471 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-202 *2)) (-4 *2 (-1128)))))
+(-13 (-924 |t#1|) (-10 -8 (-15 -3794 (|t#1| $)) (-15 -3175 ($ $)) (-15 -3793 ($ $)) (-15 -1474 ($ $)) (-15 -1473 ($ $)) (IF (|has| $ (-6 -3992)) (PROGN (-15 -3787 ($ $ $)) (-15 -1472 ($ $ $)) (-15 -1471 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-924 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
+((-2566 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3398 ((|#1| $) NIL T ELT)) (-3791 ((|#1| $) NIL T ELT)) (-3793 (($ $) NIL T ELT)) (-2196 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-3781 (($ $ (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-1730 (((-85) $) NIL (|has| |#1| (-757)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1728 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-757))) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-2907 (($ $) 10 (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3438 (((-85) $ (-695)) NIL T ELT)) (-3023 ((|#1| $ |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3783 (($ $ $) NIL (|has| $ (-6 -3992)) ELT)) (-3782 ((|#1| $ |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3785 ((|#1| $ |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3784 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3992)) ELT) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -3992)) ELT) (($ $ #3="rest" $) NIL (|has| $ (-6 -3992)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -3992)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3992)) ELT) ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3024 (($ $ (-584 $)) NIL (|has| $ (-6 -3992)) ELT)) (-1568 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3706 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3792 ((|#1| $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-2295 (($ $) NIL (|has| $ (-6 -3992)) ELT)) (-2296 (($ $) NIL T ELT)) (-3795 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2366 (($ $) NIL (|has| |#1| (-1013)) ELT)) (-1351 (($ $) 7 (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3401 (($ |#1| $) NIL (|has| |#1| (-1013)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3402 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3838 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-1574 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3110 ((|#1| $ (-484)) NIL T ELT)) (-3439 (((-85) $) NIL T ELT)) (-3415 (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) (-1 (-85) |#1|) $) NIL T ELT)) (-2887 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3029 (((-584 $) $) NIL T ELT)) (-3025 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3610 (($ (-695) |#1|) NIL T ELT)) (-3715 (((-85) $ (-695)) NIL T ELT)) (-2198 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2529 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2854 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3514 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2606 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2199 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2855 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3530 (($ |#1|) NIL T ELT)) (-3712 (((-85) $ (-695)) NIL T ELT)) (-3028 (((-584 |#1|) $) NIL T ELT)) (-3523 (((-85) $) NIL T ELT)) (-3239 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3794 ((|#1| $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3605 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2302 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2201 (((-584 (-484)) $) NIL T ELT)) (-2202 (((-85) (-484) $) NIL T ELT)) (-3240 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3797 ((|#1| $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2197 (($ $ |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3440 (((-85) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2200 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2203 (((-584 |#1|) $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) NIL T ELT)) (-3796 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT) ((|#1| $ (-484)) NIL T ELT) ((|#1| $ (-484) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-695) $ "count") 16 T ELT)) (-3027 (((-484) $ $) NIL T ELT)) (-1569 (($ $ (-1145 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-2303 (($ $ (-1145 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-1475 (($ (-584 |#1|)) 22 T ELT)) (-3629 (((-85) $) NIL T ELT)) (-3788 (($ $) NIL T ELT)) (-3786 (($ $) NIL (|has| $ (-6 -3992)) ELT)) (-3789 (((-695) $) NIL T ELT)) (-3790 (($ $) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-1729 (($ $ $ (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-3396 (($ $) NIL T ELT)) (-3968 (((-473) $) NIL (|has| |#1| (-554 (-473))) ELT)) (-3526 (($ (-584 |#1|)) NIL T ELT)) (-3787 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3798 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-584 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3942 (($ (-584 |#1|)) 17 T ELT) (((-584 |#1|) $) 18 T ELT) (((-773) $) 21 (|has| |#1| (-553 (-773))) ELT)) (-3518 (((-584 $) $) NIL T ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2564 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3054 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2682 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3953 (((-695) $) 14 (|has| $ (-6 -3991)) ELT)))
+(((-203 |#1|) (-13 (-609 |#1|) (-427 (-584 |#1|)) (-10 -8 (-15 -1475 ($ (-584 |#1|))) (-15 -3796 ($ $ "unique")) (-15 -3796 ($ $ "sort")) (-15 -3796 ((-695) $ "count")))) (-757)) (T -203))
+((-1475 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-203 *3)))) (-3796 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-203 *3)) (-4 *3 (-757)))) (-3796 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-203 *3)) (-4 *3 (-757)))) (-3796 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-695)) (-5 *1 (-203 *4)) (-4 *4 (-757)))))
+((-1476 (((-3 (-695) "failed") |#1| |#1| (-695)) 40 T ELT)))
+(((-204 |#1|) (-10 -7 (-15 -1476 ((-3 (-695) "failed") |#1| |#1| (-695)))) (-13 (-664) (-317) (-10 -7 (-15 ** (|#1| |#1| (-484)))))) (T -204))
+((-1476 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-695)) (-4 *3 (-13 (-664) (-317) (-10 -7 (-15 ** (*3 *3 (-484)))))) (-5 *1 (-204 *3)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3754 (($ $) 59 (|has| |#1| (-189)) ELT) (($ $ (-695)) 57 (|has| |#1| (-189)) ELT) (($ $ (-1089)) 55 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) 53 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) 52 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 51 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1 |#1| |#1|) (-695)) 45 T ELT) (($ $ (-1 |#1| |#1|)) 44 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-2667 (($ $) 58 (|has| |#1| (-189)) ELT) (($ $ (-695)) 56 (|has| |#1| (-189)) ELT) (($ $ (-1089)) 54 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) 50 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) 49 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 48 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1 |#1| |#1|) (-695)) 47 T ELT) (($ $ (-1 |#1| |#1|)) 46 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT)))
+(((-205 |#1|) (-113) (-962)) (T -205))
+NIL
+(-13 (-82 |t#1| |t#1|) (-225 |t#1|) (-10 -7 (IF (|has| |t#1| (-189)) (-6 (-187 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-812 (-1089))) (-6 (-809 |t#1| (-1089))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-186 $) |has| |#1| (-189)) ((-187 |#1|) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-225 |#1|) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) OR (-12 (|has| |#1| (-146)) (|has| |#1| (-812 (-1089)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-655 |#1|) OR (-12 (|has| |#1| (-146)) (|has| |#1| (-812 (-1089)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-807 $ (-1089)) |has| |#1| (-812 (-1089))) ((-809 |#1| (-1089)) |has| |#1| (-812 (-1089))) ((-812 (-1089)) |has| |#1| (-812 (-1089))) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3079 (((-584 (-774 |#1|)) $) NIL T ELT)) (-3081 (((-1084 $) $ (-774 |#1|)) NIL T ELT) (((-1084 |#2|) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL (|has| |#2| (-495)) ELT)) (-2061 (($ $) NIL (|has| |#2| (-495)) ELT)) (-2059 (((-85) $) NIL (|has| |#2| (-495)) ELT)) (-2817 (((-695) $) NIL T ELT) (((-695) $ (-584 (-774 |#1|))) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-3771 (($ $) NIL (|has| |#2| (-389)) ELT)) (-3967 (((-345 $) $) NIL (|has| |#2| (-389)) ELT)) (-2702 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-3153 ((|#2| $) NIL T ELT) (((-347 (-484)) $) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) (((-484) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-774 |#1|) $) NIL T ELT)) (-3752 (($ $ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1935 (($ $ (-584 (-484))) NIL T ELT)) (-3955 (($ $) NIL T ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#2| (-389)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-389)) ELT)) (-2816 (((-584 $) $) NIL T ELT)) (-3719 (((-85) $) NIL (|has| |#2| (-822)) ELT)) (-1622 (($ $ |#2| (-197 (-3953 |#1|) (-695)) $) NIL T ELT)) (-2794 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-327))) (|has| |#2| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-484))) (|has| |#2| (-797 (-484)))) ELT)) (-2408 (((-85) $) NIL T ELT)) (-2418 (((-695) $) NIL T ELT)) (-3082 (($ (-1084 |#2|) (-774 |#1|)) NIL T ELT) (($ (-1084 $) (-774 |#1|)) NIL T ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2891 (($ |#2| (-197 (-3953 |#1|) (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-3759 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $ (-774 |#1|)) NIL T ELT)) (-2818 (((-197 (-3953 |#1|) (-695)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-1623 (($ (-1 (-197 (-3953 |#1|) (-695)) (-197 (-3953 |#1|) (-695))) $) NIL T ELT)) (-3954 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3080 (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-2278 (((-631 (-484)) (-1178 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL T ELT) (((-631 |#2|) (-1178 $)) NIL T ELT)) (-2892 (($ $) NIL T ELT)) (-3171 ((|#2| $) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2821 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-2 (|:| |var| (-774 |#1|)) (|:| -2399 (-695))) #1#) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1795 (((-85) $) NIL T ELT)) (-1794 ((|#2| $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#2| (-389)) ELT)) (-3141 (($ (-584 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-3728 (((-345 $) $) NIL (|has| |#2| (-822)) ELT)) (-3462 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT)) (-3764 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-774 |#1|) |#2|) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 |#2|)) NIL T ELT) (($ $ (-774 |#1|) $) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 $)) NIL T ELT)) (-3753 (($ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3754 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3944 (((-197 (-3953 |#1|) (-695)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-3968 (((-801 (-327)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-327)))) (|has| |#2| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-484)))) (|has| |#2| (-554 (-801 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-774 |#1|) (-554 (-473))) (|has| |#2| (-554 (-473)))) ELT)) (-2815 ((|#2| $) NIL (|has| |#2| (-389)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-389)) ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-774 |#1|)) NIL T ELT) (($ (-347 (-484))) NIL (OR (|has| |#2| (-38 (-347 (-484)))) (|has| |#2| (-951 (-347 (-484))))) ELT) (($ $) NIL (|has| |#2| (-495)) ELT)) (-3813 (((-584 |#2|) $) NIL T ELT)) (-3673 ((|#2| $ (-197 (-3953 |#1|) (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-2700 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3123 (((-695)) NIL T CONST)) (-1621 (($ $ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL (|has| |#2| (-495)) ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-2667 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL (|has| |#2| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) NIL (|has| |#2| (-38 (-347 (-484)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
+(((-206 |#1| |#2|) (-13 (-862 |#2| (-197 (-3953 |#1|) (-695)) (-774 |#1|)) (-10 -8 (-15 -1935 ($ $ (-584 (-484)))))) (-584 (-1089)) (-962)) (T -206))
+((-1935 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-206 *3 *4)) (-14 *3 (-584 (-1089))) (-4 *4 (-962)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-1477 (((-1184) $) 17 T ELT)) (-1479 (((-158 (-208)) $) 11 T ELT)) (-1478 (($ (-158 (-208))) 12 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1480 (((-208) $) 7 T ELT)) (-3942 (((-773) $) 9 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 15 T ELT)))
+(((-207) (-13 (-1013) (-10 -8 (-15 -1480 ((-208) $)) (-15 -1479 ((-158 (-208)) $)) (-15 -1478 ($ (-158 (-208)))) (-15 -1477 ((-1184) $))))) (T -207))
+((-1480 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-207)))) (-1479 (*1 *2 *1) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-207)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-1422 (((-584 (-775)) $) NIL T ELT)) (-3538 (((-444) $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-1424 (((-161) $) NIL T ELT)) (-2631 (((-85) $ (-444)) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1481 (((-281) $) 7 T ELT)) (-1423 (((-584 (-85)) $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (((-157) $) 8 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2519 (((-55) $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-208) (-13 (-160) (-553 (-157)) (-10 -8 (-15 -1481 ((-281) $))))) (T -208))
+((-1481 (*1 *2 *1) (-12 (-5 *2 (-281)) (-5 *1 (-208)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3796 (((-1094) $ (-695)) 14 T ELT)) (-3942 (((-773) $) 20 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 17 T ELT)) (-3953 (((-695) $) 11 T ELT)))
+(((-209) (-13 (-1013) (-241 (-695) (-1094)) (-10 -8 (-15 -3953 ((-695) $))))) (T -209))
+((-3953 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-209)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3703 (($ (-831)) NIL (|has| |#4| (-962)) ELT)) (-2196 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-2481 (($ $ $) NIL (|has| |#4| (-718)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3133 (((-695)) NIL (|has| |#4| (-317)) ELT)) (-3784 ((|#4| $ (-484) |#4|) NIL (|has| $ (-6 -3992)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#4| #1#) $) NIL (|has| |#4| (-1013)) ELT) (((-3 (-484) #1#) $) NIL (-12 (|has| |#4| (-951 (-484))) (|has| |#4| (-1013))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (-12 (|has| |#4| (-951 (-347 (-484)))) (|has| |#4| (-1013))) ELT)) (-3153 ((|#4| $) NIL (|has| |#4| (-1013)) ELT) (((-484) $) NIL (-12 (|has| |#4| (-951 (-484))) (|has| |#4| (-1013))) ELT) (((-347 (-484)) $) NIL (-12 (|has| |#4| (-951 (-347 (-484)))) (|has| |#4| (-1013))) ELT)) (-2277 (((-2 (|:| |mat| (-631 |#4|)) (|:| |vec| (-1178 |#4|))) (-631 $) (-1178 $)) NIL (|has| |#4| (-962)) ELT) (((-631 |#4|) (-631 $)) NIL (|has| |#4| (-962)) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (-12 (|has| |#4| (-581 (-484))) (|has| |#4| (-962))) ELT) (((-631 (-484)) (-631 $)) NIL (-12 (|has| |#4| (-581 (-484))) (|has| |#4| (-962))) ELT)) (-3463 (((-3 $ #1#) $) NIL (|has| |#4| (-962)) ELT)) (-2992 (($) NIL (|has| |#4| (-317)) ELT)) (-1574 ((|#4| $ (-484) |#4|) NIL (|has| $ (-6 -3992)) ELT)) (-3110 ((|#4| $ (-484)) NIL T ELT)) (-3183 (((-85) $) NIL (|has| |#4| (-718)) ELT)) (-2887 (((-584 |#4|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2408 (((-85) $) NIL (|has| |#4| (-962)) ELT)) (-2198 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2529 (($ $ $) NIL (|has| |#4| (-757)) ELT)) (-2606 (((-584 |#4|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#4| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#4| (-1013))) ELT)) (-2199 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2855 (($ $ $) NIL (|has| |#4| (-757)) ELT)) (-1947 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2008 (((-831) $) NIL (|has| |#4| (-317)) ELT)) (-2278 (((-2 (|:| |mat| (-631 |#4|)) (|:| |vec| (-1178 |#4|))) (-1178 $) $) NIL (|has| |#4| (-962)) ELT) (((-631 |#4|) (-1178 $)) NIL (|has| |#4| (-962)) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| |#4| (-581 (-484))) (|has| |#4| (-962))) ELT) (((-631 (-484)) (-1178 $)) NIL (-12 (|has| |#4| (-581 (-484))) (|has| |#4| (-962))) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2201 (((-584 (-484)) $) NIL T ELT)) (-2202 (((-85) (-484) $) NIL T ELT)) (-2398 (($ (-831)) NIL (|has| |#4| (-317)) ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3797 ((|#4| $) NIL (|has| (-484) (-757)) ELT)) (-2197 (($ $ |#4|) NIL (|has| $ (-6 -3992)) ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#4|))) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-248 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2200 (((-85) |#4| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#4| (-1013))) ELT)) (-2203 (((-584 |#4|) $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) NIL T ELT)) (-3796 ((|#4| $ (-484) |#4|) NIL T ELT) ((|#4| $ (-484)) 12 T ELT)) (-3832 ((|#4| $ $) NIL (|has| |#4| (-962)) ELT)) (-1466 (($ (-1178 |#4|)) NIL T ELT)) (-3907 (((-107)) NIL (|has| |#4| (-311)) ELT)) (-3754 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-962)) ELT) (($ $ (-1 |#4| |#4|) (-695)) NIL (|has| |#4| (-962)) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (OR (-12 (|has| |#4| (-810 (-1089))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1089))) (|has| |#4| (-962)))) ELT) (($ $ (-1089) (-695)) NIL (OR (-12 (|has| |#4| (-810 (-1089))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1089))) (|has| |#4| (-962)))) ELT) (($ $ (-584 (-1089))) NIL (OR (-12 (|has| |#4| (-810 (-1089))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1089))) (|has| |#4| (-962)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#4| (-810 (-1089))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1089))) (|has| |#4| (-962)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962)))) ELT)) (-1944 (((-695) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#4| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#4| (-1013))) ELT)) (-3396 (($ $) NIL T ELT)) (-3942 (((-1178 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1013)) ELT) (((-773) $) NIL T ELT) (($ (-484)) NIL (OR (-12 (|has| |#4| (-951 (-484))) (|has| |#4| (-1013))) (|has| |#4| (-962))) ELT) (($ (-347 (-484))) NIL (-12 (|has| |#4| (-951 (-347 (-484)))) (|has| |#4| (-1013))) ELT)) (-3123 (((-695)) NIL (|has| |#4| (-962)) CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL (|has| |#4| (-962)) CONST)) (-2667 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-962)) ELT) (($ $ (-1 |#4| |#4|) (-695)) NIL (|has| |#4| (-962)) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (OR (-12 (|has| |#4| (-810 (-1089))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1089))) (|has| |#4| (-962)))) ELT) (($ $ (-1089) (-695)) NIL (OR (-12 (|has| |#4| (-810 (-1089))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1089))) (|has| |#4| (-962)))) ELT) (($ $ (-584 (-1089))) NIL (OR (-12 (|has| |#4| (-810 (-1089))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1089))) (|has| |#4| (-962)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#4| (-810 (-1089))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1089))) (|has| |#4| (-962)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962)))) ELT)) (-2564 (((-85) $ $) NIL (|has| |#4| (-757)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#4| (-757)) ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL (|has| |#4| (-757)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#4| (-757)) ELT)) (-3945 (($ $ |#4|) NIL (|has| |#4| (-311)) ELT)) (-3833 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL (|has| |#4| (-962)) ELT) (($ $ (-831)) NIL (|has| |#4| (-962)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-484) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-664)) ELT) (($ |#4| $) NIL (|has| |#4| (-664)) ELT) (($ $ $) NIL (|has| |#4| (-962)) ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-210 |#1| |#2| |#3| |#4|) (-13 (-196 |#1| |#4|) (-591 |#2|) (-591 |#3|)) (-831) (-962) (-1036 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-591 |#2|)) (T -210))
+NIL
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3703 (($ (-831)) NIL (|has| |#3| (-962)) ELT)) (-2196 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-2481 (($ $ $) NIL (|has| |#3| (-718)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3133 (((-695)) NIL (|has| |#3| (-317)) ELT)) (-3784 ((|#3| $ (-484) |#3|) NIL (|has| $ (-6 -3992)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#3| #1#) $) NIL (|has| |#3| (-1013)) ELT) (((-3 (-484) #1#) $) NIL (-12 (|has| |#3| (-951 (-484))) (|has| |#3| (-1013))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (-12 (|has| |#3| (-951 (-347 (-484)))) (|has| |#3| (-1013))) ELT)) (-3153 ((|#3| $) NIL (|has| |#3| (-1013)) ELT) (((-484) $) NIL (-12 (|has| |#3| (-951 (-484))) (|has| |#3| (-1013))) ELT) (((-347 (-484)) $) NIL (-12 (|has| |#3| (-951 (-347 (-484)))) (|has| |#3| (-1013))) ELT)) (-2277 (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1178 |#3|))) (-631 $) (-1178 $)) NIL (|has| |#3| (-962)) ELT) (((-631 |#3|) (-631 $)) NIL (|has| |#3| (-962)) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (-12 (|has| |#3| (-581 (-484))) (|has| |#3| (-962))) ELT) (((-631 (-484)) (-631 $)) NIL (-12 (|has| |#3| (-581 (-484))) (|has| |#3| (-962))) ELT)) (-3463 (((-3 $ #1#) $) NIL (|has| |#3| (-962)) ELT)) (-2992 (($) NIL (|has| |#3| (-317)) ELT)) (-1574 ((|#3| $ (-484) |#3|) NIL (|has| $ (-6 -3992)) ELT)) (-3110 ((|#3| $ (-484)) NIL T ELT)) (-3183 (((-85) $) NIL (|has| |#3| (-718)) ELT)) (-2887 (((-584 |#3|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2408 (((-85) $) NIL (|has| |#3| (-962)) ELT)) (-2198 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2529 (($ $ $) NIL (|has| |#3| (-757)) ELT)) (-2606 (((-584 |#3|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#3| (-1013))) ELT)) (-2199 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2855 (($ $ $) NIL (|has| |#3| (-757)) ELT)) (-1947 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2008 (((-831) $) NIL (|has| |#3| (-317)) ELT)) (-2278 (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1178 |#3|))) (-1178 $) $) NIL (|has| |#3| (-962)) ELT) (((-631 |#3|) (-1178 $)) NIL (|has| |#3| (-962)) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| |#3| (-581 (-484))) (|has| |#3| (-962))) ELT) (((-631 (-484)) (-1178 $)) NIL (-12 (|has| |#3| (-581 (-484))) (|has| |#3| (-962))) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2201 (((-584 (-484)) $) NIL T ELT)) (-2202 (((-85) (-484) $) NIL T ELT)) (-2398 (($ (-831)) NIL (|has| |#3| (-317)) ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3797 ((|#3| $) NIL (|has| (-484) (-757)) ELT)) (-2197 (($ $ |#3|) NIL (|has| $ (-6 -3992)) ELT)) (-1945 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#3|))) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-248 |#3|)) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-584 |#3|) (-584 |#3|)) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2200 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#3| (-1013))) ELT)) (-2203 (((-584 |#3|) $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) NIL T ELT)) (-3796 ((|#3| $ (-484) |#3|) NIL T ELT) ((|#3| $ (-484)) 11 T ELT)) (-3832 ((|#3| $ $) NIL (|has| |#3| (-962)) ELT)) (-1466 (($ (-1178 |#3|)) NIL T ELT)) (-3907 (((-107)) NIL (|has| |#3| (-311)) ELT)) (-3754 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-962)) ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL (|has| |#3| (-962)) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (OR (-12 (|has| |#3| (-810 (-1089))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962)))) ELT) (($ $ (-1089) (-695)) NIL (OR (-12 (|has| |#3| (-810 (-1089))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962)))) ELT) (($ $ (-584 (-1089))) NIL (OR (-12 (|has| |#3| (-810 (-1089))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#3| (-810 (-1089))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))) ELT)) (-1944 (((-695) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#3| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#3| (-1013))) ELT)) (-3396 (($ $) NIL T ELT)) (-3942 (((-1178 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1013)) ELT) (((-773) $) NIL T ELT) (($ (-484)) NIL (OR (-12 (|has| |#3| (-951 (-484))) (|has| |#3| (-1013))) (|has| |#3| (-962))) ELT) (($ (-347 (-484))) NIL (-12 (|has| |#3| (-951 (-347 (-484)))) (|has| |#3| (-1013))) ELT)) (-3123 (((-695)) NIL (|has| |#3| (-962)) CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL (|has| |#3| (-962)) CONST)) (-2667 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-962)) ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL (|has| |#3| (-962)) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (OR (-12 (|has| |#3| (-810 (-1089))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962)))) ELT) (($ $ (-1089) (-695)) NIL (OR (-12 (|has| |#3| (-810 (-1089))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962)))) ELT) (($ $ (-584 (-1089))) NIL (OR (-12 (|has| |#3| (-810 (-1089))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#3| (-810 (-1089))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))) ELT)) (-2564 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-3945 (($ $ |#3|) NIL (|has| |#3| (-311)) ELT)) (-3833 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL (|has| |#3| (-962)) ELT) (($ $ (-831)) NIL (|has| |#3| (-962)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-484) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-664)) ELT) (($ |#3| $) NIL (|has| |#3| (-664)) ELT) (($ $ $) NIL (|has| |#3| (-962)) ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-211 |#1| |#2| |#3|) (-13 (-196 |#1| |#3|) (-591 |#2|)) (-695) (-962) (-591 |#2|)) (T -211))
+NIL
+((-1486 (((-584 (-695)) $) 56 T ELT) (((-584 (-695)) $ |#3|) 59 T ELT)) (-1520 (((-695) $) 58 T ELT) (((-695) $ |#3|) 61 T ELT)) (-1482 (($ $) 76 T ELT)) (-3154 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 83 T ELT)) (-3768 (((-695) $ |#3|) 43 T ELT) (((-695) $) 38 T ELT)) (-1521 (((-1 $ (-695)) |#3|) 15 T ELT) (((-1 $ (-695)) $) 88 T ELT)) (-1484 ((|#4| $) 69 T ELT)) (-1485 (((-85) $) 67 T ELT)) (-1483 (($ $) 75 T ELT)) (-3764 (($ $ (-584 (-248 $))) 111 T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-584 |#4|) (-584 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-584 |#4|) (-584 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-584 |#3|) (-584 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-584 |#3|) (-584 |#2|)) 97 T ELT)) (-3754 (($ $ (-584 |#4|) (-584 (-695))) NIL T ELT) (($ $ |#4| (-695)) NIL T ELT) (($ $ (-584 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-584 (-1089))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-1487 (((-584 |#3|) $) 86 T ELT)) (-3944 ((|#5| $) NIL T ELT) (((-695) $ |#4|) NIL T ELT) (((-584 (-695)) $ (-584 |#4|)) NIL T ELT) (((-695) $ |#3|) 49 T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-347 (-484))) NIL T ELT) (($ $) NIL T ELT)))
+(((-212 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3754 (|#1| |#1| (-695))) (-15 -3754 (|#1| |#1|)) (-15 -3754 (|#1| |#1| (-584 (-1089)) (-584 (-695)))) (-15 -3754 (|#1| |#1| (-1089) (-695))) (-15 -3754 (|#1| |#1| (-584 (-1089)))) (-15 -3754 (|#1| |#1| (-1089))) (-15 -3942 (|#1| |#1|)) (-15 -3942 (|#1| (-347 (-484)))) (-15 -3764 (|#1| |#1| (-584 |#3|) (-584 |#2|))) (-15 -3764 (|#1| |#1| |#3| |#2|)) (-15 -3764 (|#1| |#1| (-584 |#3|) (-584 |#1|))) (-15 -3764 (|#1| |#1| |#3| |#1|)) (-15 -1521 ((-1 |#1| (-695)) |#1|)) (-15 -1482 (|#1| |#1|)) (-15 -1483 (|#1| |#1|)) (-15 -1484 (|#4| |#1|)) (-15 -1485 ((-85) |#1|)) (-15 -1520 ((-695) |#1| |#3|)) (-15 -1486 ((-584 (-695)) |#1| |#3|)) (-15 -1520 ((-695) |#1|)) (-15 -1486 ((-584 (-695)) |#1|)) (-15 -3944 ((-695) |#1| |#3|)) (-15 -3768 ((-695) |#1|)) (-15 -3768 ((-695) |#1| |#3|)) (-15 -1487 ((-584 |#3|) |#1|)) (-15 -1521 ((-1 |#1| (-695)) |#3|)) (-15 -3942 (|#1| |#3|)) (-15 -3154 ((-3 |#3| #1="failed") |#1|)) (-15 -3754 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3754 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3944 ((-584 (-695)) |#1| (-584 |#4|))) (-15 -3944 ((-695) |#1| |#4|)) (-15 -3942 (|#1| |#4|)) (-15 -3154 ((-3 |#4| #1#) |#1|)) (-15 -3764 (|#1| |#1| (-584 |#4|) (-584 |#1|))) (-15 -3764 (|#1| |#1| |#4| |#1|)) (-15 -3764 (|#1| |#1| (-584 |#4|) (-584 |#2|))) (-15 -3764 (|#1| |#1| |#4| |#2|)) (-15 -3764 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-15 -3764 (|#1| |#1| |#1| |#1|)) (-15 -3764 (|#1| |#1| (-248 |#1|))) (-15 -3764 (|#1| |#1| (-584 (-248 |#1|)))) (-15 -3944 (|#5| |#1|)) (-15 -3154 ((-3 (-484) #1#) |#1|)) (-15 -3154 ((-3 (-347 (-484)) #1#) |#1|)) (-15 -3154 ((-3 |#2| #1#) |#1|)) (-15 -3942 (|#1| |#2|)) (-15 -3754 (|#1| |#1| |#4|)) (-15 -3754 (|#1| |#1| (-584 |#4|))) (-15 -3754 (|#1| |#1| |#4| (-695))) (-15 -3754 (|#1| |#1| (-584 |#4|) (-584 (-695)))) (-15 -3942 (|#1| (-484))) (-15 -3942 ((-773) |#1|))) (-213 |#2| |#3| |#4| |#5|) (-962) (-757) (-228 |#3|) (-718)) (T -212))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1486 (((-584 (-695)) $) 249 T ELT) (((-584 (-695)) $ |#2|) 247 T ELT)) (-1520 (((-695) $) 248 T ELT) (((-695) $ |#2|) 246 T ELT)) (-3079 (((-584 |#3|) $) 121 T ELT)) (-3081 (((-1084 $) $ |#3|) 136 T ELT) (((-1084 |#1|) $) 135 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 98 (|has| |#1| (-495)) ELT)) (-2061 (($ $) 99 (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) 101 (|has| |#1| (-495)) ELT)) (-2817 (((-695) $) 123 T ELT) (((-695) $ (-584 |#3|)) 122 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) 111 (|has| |#1| (-822)) ELT)) (-3771 (($ $) 109 (|has| |#1| (-389)) ELT)) (-3967 (((-345 $) $) 108 (|has| |#1| (-389)) ELT)) (-2702 (((-3 (-584 (-1084 $)) #1="failed") (-584 (-1084 $)) (-1084 $)) 114 (|has| |#1| (-822)) ELT)) (-1482 (($ $) 242 T ELT)) (-3720 (($) 22 T CONST)) (-3154 (((-3 |#1| #2="failed") $) 179 T ELT) (((-3 (-347 (-484)) #2#) $) 176 (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 (-484) #2#) $) 174 (|has| |#1| (-951 (-484))) ELT) (((-3 |#3| #2#) $) 151 T ELT) (((-3 |#2| #2#) $) 256 T ELT)) (-3153 ((|#1| $) 178 T ELT) (((-347 (-484)) $) 177 (|has| |#1| (-951 (-347 (-484)))) ELT) (((-484) $) 175 (|has| |#1| (-951 (-484))) ELT) ((|#3| $) 152 T ELT) ((|#2| $) 257 T ELT)) (-3752 (($ $ $ |#3|) 119 (|has| |#1| (-146)) ELT)) (-3955 (($ $) 169 T ELT)) (-2277 (((-631 (-484)) (-631 $)) 147 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 146 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) 145 T ELT) (((-631 |#1|) (-631 $)) 144 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-3499 (($ $) 191 (|has| |#1| (-389)) ELT) (($ $ |#3|) 116 (|has| |#1| (-389)) ELT)) (-2816 (((-584 $) $) 120 T ELT)) (-3719 (((-85) $) 107 (|has| |#1| (-822)) ELT)) (-1622 (($ $ |#1| |#4| $) 187 T ELT)) (-2794 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 95 (-12 (|has| |#3| (-797 (-327))) (|has| |#1| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) 94 (-12 (|has| |#3| (-797 (-484))) (|has| |#1| (-797 (-484)))) ELT)) (-3768 (((-695) $ |#2|) 252 T ELT) (((-695) $) 251 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-2418 (((-695) $) 184 T ELT)) (-3082 (($ (-1084 |#1|) |#3|) 128 T ELT) (($ (-1084 $) |#3|) 127 T ELT)) (-2819 (((-584 $) $) 137 T ELT)) (-3933 (((-85) $) 167 T ELT)) (-2891 (($ |#1| |#4|) 168 T ELT) (($ $ |#3| (-695)) 130 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 129 T ELT)) (-3759 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $ |#3|) 131 T ELT)) (-2818 ((|#4| $) 185 T ELT) (((-695) $ |#3|) 133 T ELT) (((-584 (-695)) $ (-584 |#3|)) 132 T ELT)) (-1623 (($ (-1 |#4| |#4|) $) 186 T ELT)) (-3954 (($ (-1 |#1| |#1|) $) 166 T ELT)) (-1521 (((-1 $ (-695)) |#2|) 254 T ELT) (((-1 $ (-695)) $) 241 (|has| |#1| (-190)) ELT)) (-3080 (((-3 |#3| #3="failed") $) 134 T ELT)) (-2278 (((-631 (-484)) (-1178 $)) 149 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 148 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 143 T ELT) (((-631 |#1|) (-1178 $)) 142 T ELT)) (-2892 (($ $) 164 T ELT)) (-3171 ((|#1| $) 163 T ELT)) (-1484 ((|#3| $) 244 T ELT)) (-1889 (($ (-584 $)) 105 (|has| |#1| (-389)) ELT) (($ $ $) 104 (|has| |#1| (-389)) ELT)) (-3239 (((-1072) $) 11 T ELT)) (-1485 (((-85) $) 245 T ELT)) (-2821 (((-3 (-584 $) #3#) $) 125 T ELT)) (-2820 (((-3 (-584 $) #3#) $) 126 T ELT)) (-2822 (((-3 (-2 (|:| |var| |#3|) (|:| -2399 (-695))) #3#) $) 124 T ELT)) (-1483 (($ $) 243 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-1795 (((-85) $) 181 T ELT)) (-1794 ((|#1| $) 182 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 106 (|has| |#1| (-389)) ELT)) (-3141 (($ (-584 $)) 103 (|has| |#1| (-389)) ELT) (($ $ $) 102 (|has| |#1| (-389)) ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) 113 (|has| |#1| (-822)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) 112 (|has| |#1| (-822)) ELT)) (-3728 (((-345 $) $) 110 (|has| |#1| (-822)) ELT)) (-3462 (((-3 $ "failed") $ |#1|) 189 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ $) 97 (|has| |#1| (-495)) ELT)) (-3764 (($ $ (-584 (-248 $))) 160 T ELT) (($ $ (-248 $)) 159 T ELT) (($ $ $ $) 158 T ELT) (($ $ (-584 $) (-584 $)) 157 T ELT) (($ $ |#3| |#1|) 156 T ELT) (($ $ (-584 |#3|) (-584 |#1|)) 155 T ELT) (($ $ |#3| $) 154 T ELT) (($ $ (-584 |#3|) (-584 $)) 153 T ELT) (($ $ |#2| $) 240 (|has| |#1| (-190)) ELT) (($ $ (-584 |#2|) (-584 $)) 239 (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) 238 (|has| |#1| (-190)) ELT) (($ $ (-584 |#2|) (-584 |#1|)) 237 (|has| |#1| (-190)) ELT)) (-3753 (($ $ |#3|) 118 (|has| |#1| (-146)) ELT)) (-3754 (($ $ (-584 |#3|) (-584 (-695))) 50 T ELT) (($ $ |#3| (-695)) 49 T ELT) (($ $ (-584 |#3|)) 48 T ELT) (($ $ |#3|) 46 T ELT) (($ $ (-1 |#1| |#1|)) 261 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 260 T ELT) (($ $) 236 (|has| |#1| (-189)) ELT) (($ $ (-695)) 234 (|has| |#1| (-189)) ELT) (($ $ (-1089)) 232 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) 230 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) 229 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 228 (|has| |#1| (-812 (-1089))) ELT)) (-1487 (((-584 |#2|) $) 253 T ELT)) (-3944 ((|#4| $) 165 T ELT) (((-695) $ |#3|) 141 T ELT) (((-584 (-695)) $ (-584 |#3|)) 140 T ELT) (((-695) $ |#2|) 250 T ELT)) (-3968 (((-801 (-327)) $) 93 (-12 (|has| |#3| (-554 (-801 (-327)))) (|has| |#1| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) 92 (-12 (|has| |#3| (-554 (-801 (-484)))) (|has| |#1| (-554 (-801 (-484))))) ELT) (((-473) $) 91 (-12 (|has| |#3| (-554 (-473))) (|has| |#1| (-554 (-473)))) ELT)) (-2815 ((|#1| $) 190 (|has| |#1| (-389)) ELT) (($ $ |#3|) 117 (|has| |#1| (-389)) ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) 115 (-2560 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 180 T ELT) (($ |#3|) 150 T ELT) (($ |#2|) 255 T ELT) (($ (-347 (-484))) 89 (OR (|has| |#1| (-951 (-347 (-484)))) (|has| |#1| (-38 (-347 (-484))))) ELT) (($ $) 96 (|has| |#1| (-495)) ELT)) (-3813 (((-584 |#1|) $) 183 T ELT)) (-3673 ((|#1| $ |#4|) 170 T ELT) (($ $ |#3| (-695)) 139 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 138 T ELT)) (-2700 (((-633 $) $) 90 (OR (-2560 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3123 (((-695)) 38 T CONST)) (-1621 (($ $ $ (-695)) 188 (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2060 (((-85) $ $) 100 (|has| |#1| (-495)) ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-2667 (($ $ (-584 |#3|) (-584 (-695))) 53 T ELT) (($ $ |#3| (-695)) 52 T ELT) (($ $ (-584 |#3|)) 51 T ELT) (($ $ |#3|) 47 T ELT) (($ $ (-1 |#1| |#1|)) 259 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 258 T ELT) (($ $) 235 (|has| |#1| (-189)) ELT) (($ $ (-695)) 233 (|has| |#1| (-189)) ELT) (($ $ (-1089)) 231 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) 227 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) 226 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 225 (|has| |#1| (-812 (-1089))) ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3945 (($ $ |#1|) 171 (|has| |#1| (-311)) ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-484))) 173 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) 172 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ |#1| $) 162 T ELT) (($ $ |#1|) 161 T ELT)))
+(((-213 |#1| |#2| |#3| |#4|) (-113) (-962) (-757) (-228 |t#2|) (-718)) (T -213))
+((-1521 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-1 *1 (-695))) (-4 *1 (-213 *4 *3 *5 *6)))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-584 *4)))) (-3768 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695)))) (-3768 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-695)))) (-3944 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-584 (-695))))) (-1520 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-695)))) (-1486 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-584 (-695))))) (-1520 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695)))) (-1485 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-85)))) (-1484 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-718)) (-4 *2 (-228 *4)))) (-1483 (*1 *1 *1) (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-962)) (-4 *3 (-757)) (-4 *4 (-228 *3)) (-4 *5 (-718)))) (-1482 (*1 *1 *1) (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-962)) (-4 *3 (-757)) (-4 *4 (-228 *3)) (-4 *5 (-718)))) (-1521 (*1 *2 *1) (-12 (-4 *3 (-190)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-1 *1 (-695))) (-4 *1 (-213 *3 *4 *5 *6)))))
+(-13 (-862 |t#1| |t#4| |t#3|) (-184 |t#1|) (-951 |t#2|) (-10 -8 (-15 -1521 ((-1 $ (-695)) |t#2|)) (-15 -1487 ((-584 |t#2|) $)) (-15 -3768 ((-695) $ |t#2|)) (-15 -3768 ((-695) $)) (-15 -3944 ((-695) $ |t#2|)) (-15 -1486 ((-584 (-695)) $)) (-15 -1520 ((-695) $)) (-15 -1486 ((-584 (-695)) $ |t#2|)) (-15 -1520 ((-695) $ |t#2|)) (-15 -1485 ((-85) $)) (-15 -1484 (|t#3| $)) (-15 -1483 ($ $)) (-15 -1482 ($ $)) (IF (|has| |t#1| (-190)) (PROGN (-6 (-453 |t#2| |t#1|)) (-6 (-453 |t#2| $)) (-6 (-259 $)) (-15 -1521 ((-1 $ (-695)) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) OR (|has| |#1| (-951 (-347 (-484)))) (|has| |#1| (-38 (-347 (-484))))) ((-556 (-484)) . T) ((-556 |#1|) . T) ((-556 |#2|) . T) ((-556 |#3|) . T) ((-556 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-554 (-473)) -12 (|has| |#1| (-554 (-473))) (|has| |#3| (-554 (-473)))) ((-554 (-801 (-327))) -12 (|has| |#1| (-554 (-801 (-327)))) (|has| |#3| (-554 (-801 (-327))))) ((-554 (-801 (-484))) -12 (|has| |#1| (-554 (-801 (-484)))) (|has| |#3| (-554 (-801 (-484))))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-245) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-259 $) . T) ((-276 |#1| |#4|) . T) ((-326 |#1|) . T) ((-352 |#1|) . T) ((-389) OR (|has| |#1| (-822)) (|has| |#1| (-389))) ((-453 |#2| |#1|) |has| |#1| (-190)) ((-453 |#2| $) |has| |#1| (-190)) ((-453 |#3| |#1|) . T) ((-453 |#3| $) . T) ((-453 $ $) . T) ((-495) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-13) . T) ((-589 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-591 (-484)) |has| |#1| (-581 (-484))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-581 (-484)) |has| |#1| (-581 (-484))) ((-581 |#1|) . T) ((-655 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-664) . T) ((-807 $ (-1089)) OR (|has| |#1| (-812 (-1089))) (|has| |#1| (-810 (-1089)))) ((-807 $ |#3|) . T) ((-810 (-1089)) |has| |#1| (-810 (-1089))) ((-810 |#3|) . T) ((-812 (-1089)) OR (|has| |#1| (-812 (-1089))) (|has| |#1| (-810 (-1089)))) ((-812 |#3|) . T) ((-797 (-327)) -12 (|has| |#1| (-797 (-327))) (|has| |#3| (-797 (-327)))) ((-797 (-484)) -12 (|has| |#1| (-797 (-484))) (|has| |#3| (-797 (-484)))) ((-862 |#1| |#4| |#3|) . T) ((-822) |has| |#1| (-822)) ((-951 (-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((-951 (-484)) |has| |#1| (-951 (-484))) ((-951 |#1|) . T) ((-951 |#2|) . T) ((-951 |#3|) . T) ((-964 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-969 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) |has| |#1| (-822)))
+((-2566 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1493 ((|#1| $) 58 T ELT)) (-3320 ((|#1| $) 48 T ELT)) (-3720 (($) 7 T CONST)) (-3000 (($ $) 64 T ELT)) (-2295 (($ $) 52 T ELT)) (-3322 ((|#1| |#1| $) 50 T ELT)) (-3321 ((|#1| $) 49 T ELT)) (-2887 (((-584 |#1|) $) 30 (|has| $ (-6 -3991)) ELT)) (-2606 (((-584 |#1|) $) 29 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3829 (((-695) $) 65 T ELT)) (-3239 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-1272 ((|#1| $) 43 T ELT)) (-1491 ((|#1| |#1| $) 56 T ELT)) (-1490 ((|#1| |#1| $) 55 T ELT)) (-3605 (($ |#1| $) 44 T ELT)) (-2601 (((-695) $) 59 T ELT)) (-3240 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-2999 ((|#1| $) 66 T ELT)) (-1489 ((|#1| $) 54 T ELT)) (-1488 ((|#1| $) 53 T ELT)) (-1273 ((|#1| $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3002 ((|#1| |#1| $) 62 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-3001 ((|#1| $) 63 T ELT)) (-1494 (($) 61 T ELT) (($ (-584 |#1|)) 60 T ELT)) (-3319 (((-695) $) 47 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3396 (($ $) 10 T ELT)) (-3942 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1492 ((|#1| $) 57 T ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1274 (($ (-584 |#1|)) 46 T ELT)) (-2998 ((|#1| $) 67 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-214 |#1|) (-113) (-1128)) (T -214))
+((-1494 (*1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))) (-1494 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-4 *1 (-214 *3)))) (-2601 (*1 *2 *1) (-12 (-4 *1 (-214 *3)) (-4 *3 (-1128)) (-5 *2 (-695)))) (-1493 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))) (-1491 (*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))) (-1490 (*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))) (-1489 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))) (-1488 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))) (-2295 (*1 *1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))))
+(-13 (-1034 |t#1|) (-909 |t#1|) (-10 -8 (-15 -1494 ($)) (-15 -1494 ($ (-584 |t#1|))) (-15 -2601 ((-695) $)) (-15 -1493 (|t#1| $)) (-15 -1492 (|t#1| $)) (-15 -1491 (|t#1| |t#1| $)) (-15 -1490 (|t#1| |t#1| $)) (-15 -1489 (|t#1| $)) (-15 -1488 (|t#1| $)) (-15 -2295 ($ $))))
+(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-909 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1034 |#1|) . T) ((-1128) . T))
+((-1495 (((-1046 (-179)) (-793 |#1|) (-1004 (-327)) (-1004 (-327))) 75 T ELT) (((-1046 (-179)) (-793 |#1|) (-1004 (-327)) (-1004 (-327)) (-584 (-221))) 74 T ELT) (((-1046 (-179)) |#1| (-1004 (-327)) (-1004 (-327))) 65 T ELT) (((-1046 (-179)) |#1| (-1004 (-327)) (-1004 (-327)) (-584 (-221))) 64 T ELT) (((-1046 (-179)) (-790 |#1|) (-1004 (-327))) 56 T ELT) (((-1046 (-179)) (-790 |#1|) (-1004 (-327)) (-584 (-221))) 55 T ELT)) (-1502 (((-1182) (-793 |#1|) (-1004 (-327)) (-1004 (-327))) 78 T ELT) (((-1182) (-793 |#1|) (-1004 (-327)) (-1004 (-327)) (-584 (-221))) 77 T ELT) (((-1182) |#1| (-1004 (-327)) (-1004 (-327))) 68 T ELT) (((-1182) |#1| (-1004 (-327)) (-1004 (-327)) (-584 (-221))) 67 T ELT) (((-1182) (-790 |#1|) (-1004 (-327))) 60 T ELT) (((-1182) (-790 |#1|) (-1004 (-327)) (-584 (-221))) 59 T ELT) (((-1181) (-788 |#1|) (-1004 (-327))) 47 T ELT) (((-1181) (-788 |#1|) (-1004 (-327)) (-584 (-221))) 46 T ELT) (((-1181) |#1| (-1004 (-327))) 38 T ELT) (((-1181) |#1| (-1004 (-327)) (-584 (-221))) 36 T ELT)))
+(((-215 |#1|) (-10 -7 (-15 -1502 ((-1181) |#1| (-1004 (-327)) (-584 (-221)))) (-15 -1502 ((-1181) |#1| (-1004 (-327)))) (-15 -1502 ((-1181) (-788 |#1|) (-1004 (-327)) (-584 (-221)))) (-15 -1502 ((-1181) (-788 |#1|) (-1004 (-327)))) (-15 -1502 ((-1182) (-790 |#1|) (-1004 (-327)) (-584 (-221)))) (-15 -1502 ((-1182) (-790 |#1|) (-1004 (-327)))) (-15 -1495 ((-1046 (-179)) (-790 |#1|) (-1004 (-327)) (-584 (-221)))) (-15 -1495 ((-1046 (-179)) (-790 |#1|) (-1004 (-327)))) (-15 -1502 ((-1182) |#1| (-1004 (-327)) (-1004 (-327)) (-584 (-221)))) (-15 -1502 ((-1182) |#1| (-1004 (-327)) (-1004 (-327)))) (-15 -1495 ((-1046 (-179)) |#1| (-1004 (-327)) (-1004 (-327)) (-584 (-221)))) (-15 -1495 ((-1046 (-179)) |#1| (-1004 (-327)) (-1004 (-327)))) (-15 -1502 ((-1182) (-793 |#1|) (-1004 (-327)) (-1004 (-327)) (-584 (-221)))) (-15 -1502 ((-1182) (-793 |#1|) (-1004 (-327)) (-1004 (-327)))) (-15 -1495 ((-1046 (-179)) (-793 |#1|) (-1004 (-327)) (-1004 (-327)) (-584 (-221)))) (-15 -1495 ((-1046 (-179)) (-793 |#1|) (-1004 (-327)) (-1004 (-327))))) (-13 (-554 (-473)) (-1013))) (T -215))
+((-1495 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-793 *5)) (-5 *4 (-1004 (-327))) (-4 *5 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1046 (-179))) (-5 *1 (-215 *5)))) (-1495 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-793 *6)) (-5 *4 (-1004 (-327))) (-5 *5 (-584 (-221))) (-4 *6 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1046 (-179))) (-5 *1 (-215 *6)))) (-1502 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-793 *5)) (-5 *4 (-1004 (-327))) (-4 *5 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *5)))) (-1502 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-793 *6)) (-5 *4 (-1004 (-327))) (-5 *5 (-584 (-221))) (-4 *6 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *6)))) (-1495 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1004 (-327))) (-5 *2 (-1046 (-179))) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-473)) (-1013))))) (-1495 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1004 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-473)) (-1013))))) (-1502 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1004 (-327))) (-5 *2 (-1182)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-473)) (-1013))))) (-1502 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1004 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1182)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-473)) (-1013))))) (-1495 (*1 *2 *3 *4) (-12 (-5 *3 (-790 *5)) (-5 *4 (-1004 (-327))) (-4 *5 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1046 (-179))) (-5 *1 (-215 *5)))) (-1495 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-790 *6)) (-5 *4 (-1004 (-327))) (-5 *5 (-584 (-221))) (-4 *6 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1046 (-179))) (-5 *1 (-215 *6)))) (-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-790 *5)) (-5 *4 (-1004 (-327))) (-4 *5 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *5)))) (-1502 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-790 *6)) (-5 *4 (-1004 (-327))) (-5 *5 (-584 (-221))) (-4 *6 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *6)))) (-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-788 *5)) (-5 *4 (-1004 (-327))) (-4 *5 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1181)) (-5 *1 (-215 *5)))) (-1502 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-788 *6)) (-5 *4 (-1004 (-327))) (-5 *5 (-584 (-221))) (-4 *6 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1181)) (-5 *1 (-215 *6)))) (-1502 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-327))) (-5 *2 (-1181)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-473)) (-1013))))) (-1502 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1004 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1181)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-473)) (-1013))))))
+((-1496 (((-1 (-855 (-179)) (-179) (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 158 T ELT)) (-1495 (((-1046 (-179)) (-793 (-1 (-179) (-179) (-179))) (-1001 (-327)) (-1001 (-327))) 178 T ELT) (((-1046 (-179)) (-793 (-1 (-179) (-179) (-179))) (-1001 (-327)) (-1001 (-327)) (-584 (-221))) 176 T ELT) (((-1046 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1001 (-327)) (-1001 (-327))) 181 T ELT) (((-1046 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1001 (-327)) (-1001 (-327)) (-584 (-221))) 177 T ELT) (((-1046 (-179)) (-1 (-179) (-179) (-179)) (-1001 (-327)) (-1001 (-327))) 169 T ELT) (((-1046 (-179)) (-1 (-179) (-179) (-179)) (-1001 (-327)) (-1001 (-327)) (-584 (-221))) 168 T ELT) (((-1046 (-179)) (-1 (-855 (-179)) (-179)) (-1001 (-327))) 150 T ELT) (((-1046 (-179)) (-1 (-855 (-179)) (-179)) (-1001 (-327)) (-584 (-221))) 148 T ELT) (((-1046 (-179)) (-790 (-1 (-179) (-179))) (-1001 (-327))) 149 T ELT) (((-1046 (-179)) (-790 (-1 (-179) (-179))) (-1001 (-327)) (-584 (-221))) 146 T ELT)) (-1502 (((-1182) (-793 (-1 (-179) (-179) (-179))) (-1001 (-327)) (-1001 (-327))) 180 T ELT) (((-1182) (-793 (-1 (-179) (-179) (-179))) (-1001 (-327)) (-1001 (-327)) (-584 (-221))) 179 T ELT) (((-1182) (-1 (-855 (-179)) (-179) (-179)) (-1001 (-327)) (-1001 (-327))) 183 T ELT) (((-1182) (-1 (-855 (-179)) (-179) (-179)) (-1001 (-327)) (-1001 (-327)) (-584 (-221))) 182 T ELT) (((-1182) (-1 (-179) (-179) (-179)) (-1001 (-327)) (-1001 (-327))) 171 T ELT) (((-1182) (-1 (-179) (-179) (-179)) (-1001 (-327)) (-1001 (-327)) (-584 (-221))) 170 T ELT) (((-1182) (-1 (-855 (-179)) (-179)) (-1001 (-327))) 156 T ELT) (((-1182) (-1 (-855 (-179)) (-179)) (-1001 (-327)) (-584 (-221))) 155 T ELT) (((-1182) (-790 (-1 (-179) (-179))) (-1001 (-327))) 154 T ELT) (((-1182) (-790 (-1 (-179) (-179))) (-1001 (-327)) (-584 (-221))) 153 T ELT) (((-1181) (-788 (-1 (-179) (-179))) (-1001 (-327))) 118 T ELT) (((-1181) (-788 (-1 (-179) (-179))) (-1001 (-327)) (-584 (-221))) 117 T ELT) (((-1181) (-1 (-179) (-179)) (-1001 (-327))) 112 T ELT) (((-1181) (-1 (-179) (-179)) (-1001 (-327)) (-584 (-221))) 110 T ELT)))
+(((-216) (-10 -7 (-15 -1502 ((-1181) (-1 (-179) (-179)) (-1001 (-327)) (-584 (-221)))) (-15 -1502 ((-1181) (-1 (-179) (-179)) (-1001 (-327)))) (-15 -1502 ((-1181) (-788 (-1 (-179) (-179))) (-1001 (-327)) (-584 (-221)))) (-15 -1502 ((-1181) (-788 (-1 (-179) (-179))) (-1001 (-327)))) (-15 -1502 ((-1182) (-790 (-1 (-179) (-179))) (-1001 (-327)) (-584 (-221)))) (-15 -1502 ((-1182) (-790 (-1 (-179) (-179))) (-1001 (-327)))) (-15 -1502 ((-1182) (-1 (-855 (-179)) (-179)) (-1001 (-327)) (-584 (-221)))) (-15 -1502 ((-1182) (-1 (-855 (-179)) (-179)) (-1001 (-327)))) (-15 -1495 ((-1046 (-179)) (-790 (-1 (-179) (-179))) (-1001 (-327)) (-584 (-221)))) (-15 -1495 ((-1046 (-179)) (-790 (-1 (-179) (-179))) (-1001 (-327)))) (-15 -1495 ((-1046 (-179)) (-1 (-855 (-179)) (-179)) (-1001 (-327)) (-584 (-221)))) (-15 -1495 ((-1046 (-179)) (-1 (-855 (-179)) (-179)) (-1001 (-327)))) (-15 -1502 ((-1182) (-1 (-179) (-179) (-179)) (-1001 (-327)) (-1001 (-327)) (-584 (-221)))) (-15 -1502 ((-1182) (-1 (-179) (-179) (-179)) (-1001 (-327)) (-1001 (-327)))) (-15 -1495 ((-1046 (-179)) (-1 (-179) (-179) (-179)) (-1001 (-327)) (-1001 (-327)) (-584 (-221)))) (-15 -1495 ((-1046 (-179)) (-1 (-179) (-179) (-179)) (-1001 (-327)) (-1001 (-327)))) (-15 -1502 ((-1182) (-1 (-855 (-179)) (-179) (-179)) (-1001 (-327)) (-1001 (-327)) (-584 (-221)))) (-15 -1502 ((-1182) (-1 (-855 (-179)) (-179) (-179)) (-1001 (-327)) (-1001 (-327)))) (-15 -1495 ((-1046 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1001 (-327)) (-1001 (-327)) (-584 (-221)))) (-15 -1495 ((-1046 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1001 (-327)) (-1001 (-327)))) (-15 -1502 ((-1182) (-793 (-1 (-179) (-179) (-179))) (-1001 (-327)) (-1001 (-327)) (-584 (-221)))) (-15 -1502 ((-1182) (-793 (-1 (-179) (-179) (-179))) (-1001 (-327)) (-1001 (-327)))) (-15 -1495 ((-1046 (-179)) (-793 (-1 (-179) (-179) (-179))) (-1001 (-327)) (-1001 (-327)) (-584 (-221)))) (-15 -1495 ((-1046 (-179)) (-793 (-1 (-179) (-179) (-179))) (-1001 (-327)) (-1001 (-327)))) (-15 -1496 ((-1 (-855 (-179)) (-179) (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -216))
+((-1496 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-855 (-179)) (-179) (-179))) (-5 *3 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-216)))) (-1495 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-327))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1495 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-327))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1495 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1001 (-327))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1495 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1001 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1001 (-327))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1001 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1495 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-327))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1495 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-327))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1495 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1001 (-327))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1495 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1001 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1495 (*1 *2 *3 *4) (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1001 (-327))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1495 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1001 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1001 (-327))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1001 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1001 (-327))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1001 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-788 (-1 (-179) (-179)))) (-5 *4 (-1001 (-327))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-788 (-1 (-179) (-179)))) (-5 *4 (-1001 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1001 (-327))) (-5 *2 (-1181)) (-5 *1 (-216)))) (-1502 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1001 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1181)) (-5 *1 (-216)))))
+((-1502 (((-1181) (-248 |#2|) (-1089) (-1089) (-584 (-221))) 102 T ELT)))
+(((-217 |#1| |#2|) (-10 -7 (-15 -1502 ((-1181) (-248 |#2|) (-1089) (-1089) (-584 (-221))))) (-13 (-495) (-757) (-951 (-484))) (-361 |#1|)) (T -217))
+((-1502 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-248 *7)) (-5 *4 (-1089)) (-5 *5 (-584 (-221))) (-4 *7 (-361 *6)) (-4 *6 (-13 (-495) (-757) (-951 (-484)))) (-5 *2 (-1181)) (-5 *1 (-217 *6 *7)))))
+((-1499 (((-484) (-484)) 71 T ELT)) (-1500 (((-484) (-484)) 72 T ELT)) (-1501 (((-179) (-179)) 73 T ELT)) (-1498 (((-1182) (-1 (-142 (-179)) (-142 (-179))) (-1001 (-179)) (-1001 (-179))) 70 T ELT)) (-1497 (((-1182) (-1 (-142 (-179)) (-142 (-179))) (-1001 (-179)) (-1001 (-179)) (-85)) 68 T ELT)))
+(((-218) (-10 -7 (-15 -1497 ((-1182) (-1 (-142 (-179)) (-142 (-179))) (-1001 (-179)) (-1001 (-179)) (-85))) (-15 -1498 ((-1182) (-1 (-142 (-179)) (-142 (-179))) (-1001 (-179)) (-1001 (-179)))) (-15 -1499 ((-484) (-484))) (-15 -1500 ((-484) (-484))) (-15 -1501 ((-179) (-179))))) (T -218))
+((-1501 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-218)))) (-1500 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-218)))) (-1499 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-218)))) (-1498 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1001 (-179))) (-5 *2 (-1182)) (-5 *1 (-218)))) (-1497 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1001 (-179))) (-5 *5 (-85)) (-5 *2 (-1182)) (-5 *1 (-218)))))
+((-3942 (((-1004 (-327)) (-1004 (-264 |#1|))) 16 T ELT)))
+(((-219 |#1|) (-10 -7 (-15 -3942 ((-1004 (-327)) (-1004 (-264 |#1|))))) (-13 (-757) (-495) (-554 (-327)))) (T -219))
+((-3942 (*1 *2 *3) (-12 (-5 *3 (-1004 (-264 *4))) (-4 *4 (-13 (-757) (-495) (-554 (-327)))) (-5 *2 (-1004 (-327))) (-5 *1 (-219 *4)))))
+((-1502 (((-1182) (-584 (-179)) (-584 (-179)) (-584 (-179)) (-584 (-221))) 23 T ELT) (((-1182) (-584 (-179)) (-584 (-179)) (-584 (-179))) 24 T ELT) (((-1181) (-584 (-855 (-179))) (-584 (-221))) 16 T ELT) (((-1181) (-584 (-855 (-179)))) 17 T ELT) (((-1181) (-584 (-179)) (-584 (-179)) (-584 (-221))) 20 T ELT) (((-1181) (-584 (-179)) (-584 (-179))) 21 T ELT)))
+(((-220) (-10 -7 (-15 -1502 ((-1181) (-584 (-179)) (-584 (-179)))) (-15 -1502 ((-1181) (-584 (-179)) (-584 (-179)) (-584 (-221)))) (-15 -1502 ((-1181) (-584 (-855 (-179))))) (-15 -1502 ((-1181) (-584 (-855 (-179))) (-584 (-221)))) (-15 -1502 ((-1182) (-584 (-179)) (-584 (-179)) (-584 (-179)))) (-15 -1502 ((-1182) (-584 (-179)) (-584 (-179)) (-584 (-179)) (-584 (-221)))))) (T -220))
+((-1502 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-584 (-179))) (-5 *4 (-584 (-221))) (-5 *2 (-1182)) (-5 *1 (-220)))) (-1502 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-584 (-179))) (-5 *2 (-1182)) (-5 *1 (-220)))) (-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *4 (-584 (-221))) (-5 *2 (-1181)) (-5 *1 (-220)))) (-1502 (*1 *2 *3) (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *2 (-1181)) (-5 *1 (-220)))) (-1502 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-584 (-179))) (-5 *4 (-584 (-221))) (-5 *2 (-1181)) (-5 *1 (-220)))) (-1502 (*1 *2 *3 *3) (-12 (-5 *3 (-584 (-179))) (-5 *2 (-1181)) (-5 *1 (-220)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3877 (($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3843 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 24 T ELT)) (-1515 (($ (-831)) 81 T ELT)) (-1514 (($ (-831)) 80 T ELT)) (-1770 (($ (-584 (-327))) 87 T ELT)) (-1518 (($ (-327)) 66 T ELT)) (-1517 (($ (-831)) 82 T ELT)) (-1511 (($ (-85)) 33 T ELT)) (-3879 (($ (-1072)) 28 T ELT)) (-1510 (($ (-1072)) 29 T ELT)) (-1516 (($ (-1046 (-179))) 76 T ELT)) (-1926 (($ (-584 (-1001 (-327)))) 72 T ELT)) (-1504 (($ (-584 (-1001 (-327)))) 68 T ELT) (($ (-584 (-1001 (-347 (-484))))) 71 T ELT)) (-1507 (($ (-327)) 38 T ELT) (($ (-784)) 42 T ELT)) (-1503 (((-85) (-584 $) (-1089)) 100 T ELT)) (-1519 (((-3 (-51) "failed") (-584 $) (-1089)) 102 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1506 (($ (-327)) 43 T ELT) (($ (-784)) 44 T ELT)) (-3221 (($ (-1 (-855 (-179)) (-855 (-179)))) 65 T ELT)) (-2264 (($ (-1 (-855 (-179)) (-855 (-179)))) 83 T ELT)) (-1505 (($ (-1 (-179) (-179))) 48 T ELT) (($ (-1 (-179) (-179) (-179))) 52 T ELT) (($ (-1 (-179) (-179) (-179) (-179))) 56 T ELT)) (-3942 (((-773) $) 93 T ELT)) (-1508 (($ (-85)) 34 T ELT) (($ (-584 (-1001 (-327)))) 60 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1921 (($ (-85)) 35 T ELT)) (-3054 (((-85) $ $) 97 T ELT)))
+(((-221) (-13 (-1013) (-10 -8 (-15 -1921 ($ (-85))) (-15 -1508 ($ (-85))) (-15 -3877 ($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3843 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3879 ($ (-1072))) (-15 -1510 ($ (-1072))) (-15 -1511 ($ (-85))) (-15 -1508 ($ (-584 (-1001 (-327))))) (-15 -3221 ($ (-1 (-855 (-179)) (-855 (-179))))) (-15 -1507 ($ (-327))) (-15 -1507 ($ (-784))) (-15 -1506 ($ (-327))) (-15 -1506 ($ (-784))) (-15 -1505 ($ (-1 (-179) (-179)))) (-15 -1505 ($ (-1 (-179) (-179) (-179)))) (-15 -1505 ($ (-1 (-179) (-179) (-179) (-179)))) (-15 -1518 ($ (-327))) (-15 -1504 ($ (-584 (-1001 (-327))))) (-15 -1504 ($ (-584 (-1001 (-347 (-484)))))) (-15 -1926 ($ (-584 (-1001 (-327))))) (-15 -1516 ($ (-1046 (-179)))) (-15 -1514 ($ (-831))) (-15 -1515 ($ (-831))) (-15 -1517 ($ (-831))) (-15 -2264 ($ (-1 (-855 (-179)) (-855 (-179))))) (-15 -1770 ($ (-584 (-327)))) (-15 -1519 ((-3 (-51) "failed") (-584 $) (-1089))) (-15 -1503 ((-85) (-584 $) (-1089)))))) (T -221))
+((-1921 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-3877 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3843 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-221)))) (-3879 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-221)))) (-1510 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-221)))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-584 (-1001 (-327)))) (-5 *1 (-221)))) (-3221 (*1 *1 *2) (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *1 (-221)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-221)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-221)))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-221)))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-221)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-221)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-221)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-221)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-221)))) (-1504 (*1 *1 *2) (-12 (-5 *2 (-584 (-1001 (-327)))) (-5 *1 (-221)))) (-1504 (*1 *1 *2) (-12 (-5 *2 (-584 (-1001 (-347 (-484))))) (-5 *1 (-221)))) (-1926 (*1 *1 *2) (-12 (-5 *2 (-584 (-1001 (-327)))) (-5 *1 (-221)))) (-1516 (*1 *1 *2) (-12 (-5 *2 (-1046 (-179))) (-5 *1 (-221)))) (-1514 (*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221)))) (-1515 (*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221)))) (-1517 (*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221)))) (-2264 (*1 *1 *2) (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *1 (-221)))) (-1770 (*1 *1 *2) (-12 (-5 *2 (-584 (-327))) (-5 *1 (-221)))) (-1519 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-584 (-221))) (-5 *4 (-1089)) (-5 *2 (-51)) (-5 *1 (-221)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-221))) (-5 *4 (-1089)) (-5 *2 (-85)) (-5 *1 (-221)))))
+((-3877 (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3843 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-584 (-221)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3843 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 25 T ELT)) (-1515 (((-831) (-584 (-221)) (-831)) 52 T ELT)) (-1514 (((-831) (-584 (-221)) (-831)) 51 T ELT)) (-3847 (((-584 (-327)) (-584 (-221)) (-584 (-327))) 68 T ELT)) (-1518 (((-327) (-584 (-221)) (-327)) 57 T ELT)) (-1517 (((-831) (-584 (-221)) (-831)) 53 T ELT)) (-1511 (((-85) (-584 (-221)) (-85)) 27 T ELT)) (-3879 (((-1072) (-584 (-221)) (-1072)) 19 T ELT)) (-1510 (((-1072) (-584 (-221)) (-1072)) 26 T ELT)) (-1516 (((-1046 (-179)) (-584 (-221))) 46 T ELT)) (-1926 (((-584 (-1001 (-327))) (-584 (-221)) (-584 (-1001 (-327)))) 40 T ELT)) (-1512 (((-784) (-584 (-221)) (-784)) 32 T ELT)) (-1513 (((-784) (-584 (-221)) (-784)) 33 T ELT)) (-2264 (((-1 (-855 (-179)) (-855 (-179))) (-584 (-221)) (-1 (-855 (-179)) (-855 (-179)))) 63 T ELT)) (-1509 (((-85) (-584 (-221)) (-85)) 14 T ELT)) (-1921 (((-85) (-584 (-221)) (-85)) 13 T ELT)))
+(((-222) (-10 -7 (-15 -1921 ((-85) (-584 (-221)) (-85))) (-15 -1509 ((-85) (-584 (-221)) (-85))) (-15 -3877 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3843 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-584 (-221)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3843 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3879 ((-1072) (-584 (-221)) (-1072))) (-15 -1510 ((-1072) (-584 (-221)) (-1072))) (-15 -1511 ((-85) (-584 (-221)) (-85))) (-15 -1512 ((-784) (-584 (-221)) (-784))) (-15 -1513 ((-784) (-584 (-221)) (-784))) (-15 -1926 ((-584 (-1001 (-327))) (-584 (-221)) (-584 (-1001 (-327))))) (-15 -1514 ((-831) (-584 (-221)) (-831))) (-15 -1515 ((-831) (-584 (-221)) (-831))) (-15 -1516 ((-1046 (-179)) (-584 (-221)))) (-15 -1517 ((-831) (-584 (-221)) (-831))) (-15 -1518 ((-327) (-584 (-221)) (-327))) (-15 -2264 ((-1 (-855 (-179)) (-855 (-179))) (-584 (-221)) (-1 (-855 (-179)) (-855 (-179))))) (-15 -3847 ((-584 (-327)) (-584 (-221)) (-584 (-327)))))) (T -222))
+((-3847 (*1 *2 *3 *2) (-12 (-5 *2 (-584 (-327))) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-2264 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1518 (*1 *2 *3 *2) (-12 (-5 *2 (-327)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1517 (*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1516 (*1 *2 *3) (-12 (-5 *3 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-222)))) (-1515 (*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1514 (*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1926 (*1 *2 *3 *2) (-12 (-5 *2 (-584 (-1001 (-327)))) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1513 (*1 *2 *3 *2) (-12 (-5 *2 (-784)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1512 (*1 *2 *3 *2) (-12 (-5 *2 (-784)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1511 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1510 (*1 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-3879 (*1 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-3877 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3843 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1509 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1921 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))))
+((-1519 (((-3 |#1| "failed") (-584 (-221)) (-1089)) 17 T ELT)))
+(((-223 |#1|) (-10 -7 (-15 -1519 ((-3 |#1| "failed") (-584 (-221)) (-1089)))) (-1128)) (T -223))
+((-1519 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-584 (-221))) (-5 *4 (-1089)) (-5 *1 (-223 *2)) (-4 *2 (-1128)))))
+((-3754 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) 11 T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089))) NIL T ELT) (($ $ (-1089)) 19 T ELT) (($ $ (-695)) NIL T ELT) (($ $) 16 T ELT)) (-2667 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-695)) 14 T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)))
+(((-224 |#1| |#2|) (-10 -7 (-15 -3754 (|#1| |#1|)) (-15 -2667 (|#1| |#1|)) (-15 -3754 (|#1| |#1| (-695))) (-15 -2667 (|#1| |#1| (-695))) (-15 -3754 (|#1| |#1| (-1089))) (-15 -2667 (|#1| |#1| (-1089))) (-15 -3754 (|#1| |#1| (-584 (-1089)))) (-15 -3754 (|#1| |#1| (-1089) (-695))) (-15 -3754 (|#1| |#1| (-584 (-1089)) (-584 (-695)))) (-15 -2667 (|#1| |#1| (-584 (-1089)))) (-15 -2667 (|#1| |#1| (-1089) (-695))) (-15 -2667 (|#1| |#1| (-584 (-1089)) (-584 (-695)))) (-15 -2667 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -2667 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3754 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3754 (|#1| |#1| (-1 |#2| |#2|)))) (-225 |#2|) (-1128)) (T -224))
+NIL
+((-3754 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 22 T ELT) (($ $ (-584 (-1089)) (-584 (-695))) 16 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) 15 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) 14 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089)) 12 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-695)) 10 (|has| |#1| (-189)) ELT) (($ $) 8 (|has| |#1| (-189)) ELT)) (-2667 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 20 T ELT) (($ $ (-584 (-1089)) (-584 (-695))) 19 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) 18 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) 17 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089)) 13 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-695)) 11 (|has| |#1| (-189)) ELT) (($ $) 9 (|has| |#1| (-189)) ELT)))
+(((-225 |#1|) (-113) (-1128)) (T -225))
+((-3754 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1128)))) (-3754 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *1 (-225 *4)) (-4 *4 (-1128)))) (-2667 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1128)))) (-2667 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *1 (-225 *4)) (-4 *4 (-1128)))))
+(-13 (-1128) (-10 -8 (-15 -3754 ($ $ (-1 |t#1| |t#1|))) (-15 -3754 ($ $ (-1 |t#1| |t#1|) (-695))) (-15 -2667 ($ $ (-1 |t#1| |t#1|))) (-15 -2667 ($ $ (-1 |t#1| |t#1|) (-695))) (IF (|has| |t#1| (-189)) (-6 (-189)) |%noBranch|) (IF (|has| |t#1| (-812 (-1089))) (-6 (-812 (-1089))) |%noBranch|)))
+(((-186 $) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-13) . T) ((-807 $ (-1089)) |has| |#1| (-812 (-1089))) ((-812 (-1089)) |has| |#1| (-812 (-1089))) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1486 (((-584 (-695)) $) NIL T ELT) (((-584 (-695)) $ |#2|) NIL T ELT)) (-1520 (((-695) $) NIL T ELT) (((-695) $ |#2|) NIL T ELT)) (-3079 (((-584 |#3|) $) NIL T ELT)) (-3081 (((-1084 $) $ |#3|) NIL T ELT) (((-1084 |#1|) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2061 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2817 (((-695) $) NIL T ELT) (((-695) $ (-584 |#3|)) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3771 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3967 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2702 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-1482 (($ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 |#3| #1#) $) NIL T ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1038 |#1| |#2|) #1#) $) 23 T ELT)) (-3153 ((|#1| $) NIL T ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1038 |#1| |#2|) $) NIL T ELT)) (-3752 (($ $ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-3955 (($ $) NIL T ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-389)) ELT) (($ $ |#3|) NIL (|has| |#1| (-389)) ELT)) (-2816 (((-584 $) $) NIL T ELT)) (-3719 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1622 (($ $ |#1| (-469 |#3|) $) NIL T ELT)) (-2794 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (-12 (|has| |#1| (-797 (-327))) (|has| |#3| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (-12 (|has| |#1| (-797 (-484))) (|has| |#3| (-797 (-484)))) ELT)) (-3768 (((-695) $ |#2|) NIL T ELT) (((-695) $) 10 T ELT)) (-2408 (((-85) $) NIL T ELT)) (-2418 (((-695) $) NIL T ELT)) (-3082 (($ (-1084 |#1|) |#3|) NIL T ELT) (($ (-1084 $) |#3|) NIL T ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2891 (($ |#1| (-469 |#3|)) NIL T ELT) (($ $ |#3| (-695)) NIL T ELT) (($ $ (-584 |#3|) (-584 (-695))) NIL T ELT)) (-3759 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $ |#3|) NIL T ELT)) (-2818 (((-469 |#3|) $) NIL T ELT) (((-695) $ |#3|) NIL T ELT) (((-584 (-695)) $ (-584 |#3|)) NIL T ELT)) (-1623 (($ (-1 (-469 |#3|) (-469 |#3|)) $) NIL T ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1521 (((-1 $ (-695)) |#2|) NIL T ELT) (((-1 $ (-695)) $) NIL (|has| |#1| (-190)) ELT)) (-3080 (((-3 |#3| #1#) $) NIL T ELT)) (-2278 (((-631 (-484)) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-2892 (($ $) NIL T ELT)) (-3171 ((|#1| $) NIL T ELT)) (-1484 ((|#3| $) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-1485 (((-85) $) NIL T ELT)) (-2821 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-2 (|:| |var| |#3|) (|:| -2399 (-695))) #1#) $) NIL T ELT)) (-1483 (($ $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1795 (((-85) $) NIL T ELT)) (-1794 ((|#1| $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-389)) ELT)) (-3141 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3728 (((-345 $) $) NIL (|has| |#1| (-822)) ELT)) (-3462 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3764 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-584 |#3|) (-584 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-584 |#3|) (-584 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 |#2|) (-584 $)) NIL (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 |#2|) (-584 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3753 (($ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-3754 (($ $ (-584 |#3|) (-584 (-695))) NIL T ELT) (($ $ |#3| (-695)) NIL T ELT) (($ $ (-584 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-1487 (((-584 |#2|) $) NIL T ELT)) (-3944 (((-469 |#3|) $) NIL T ELT) (((-695) $ |#3|) NIL T ELT) (((-584 (-695)) $ (-584 |#3|)) NIL T ELT) (((-695) $ |#2|) NIL T ELT)) (-3968 (((-801 (-327)) $) NIL (-12 (|has| |#1| (-554 (-801 (-327)))) (|has| |#3| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) NIL (-12 (|has| |#1| (-554 (-801 (-484)))) (|has| |#3| (-554 (-801 (-484))))) ELT) (((-473) $) NIL (-12 (|has| |#1| (-554 (-473))) (|has| |#3| (-554 (-473)))) ELT)) (-2815 ((|#1| $) NIL (|has| |#1| (-389)) ELT) (($ $ |#3|) NIL (|has| |#1| (-389)) ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1038 |#1| |#2|)) 32 T ELT) (($ (-347 (-484))) NIL (OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3813 (((-584 |#1|) $) NIL T ELT)) (-3673 ((|#1| $ (-469 |#3|)) NIL T ELT) (($ $ |#3| (-695)) NIL T ELT) (($ $ (-584 |#3|) (-584 (-695))) NIL T ELT)) (-2700 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3123 (((-695)) NIL T CONST)) (-1621 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-2667 (($ $ (-584 |#3|) (-584 (-695))) NIL T ELT) (($ $ |#3| (-695)) NIL T ELT) (($ $ (-584 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
+(((-226 |#1| |#2| |#3|) (-13 (-213 |#1| |#2| |#3| (-469 |#3|)) (-951 (-1038 |#1| |#2|))) (-962) (-757) (-228 |#2|)) (T -226))
+NIL
+((-1520 (((-695) $) 37 T ELT)) (-3154 (((-3 |#2| "failed") $) 22 T ELT)) (-3153 ((|#2| $) 33 T ELT)) (-3754 (($ $ (-695)) 18 T ELT) (($ $) 14 T ELT)) (-3942 (((-773) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-3054 (((-85) $ $) 26 T ELT)) (-2683 (((-85) $ $) 36 T ELT)))
+(((-227 |#1| |#2|) (-10 -7 (-15 -1520 ((-695) |#1|)) (-15 -3942 (|#1| |#2|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -3153 (|#2| |#1|)) (-15 -3754 (|#1| |#1|)) (-15 -3754 (|#1| |#1| (-695))) (-15 -2683 ((-85) |#1| |#1|)) (-15 -3942 ((-773) |#1|)) (-15 -3054 ((-85) |#1| |#1|))) (-228 |#2|) (-757)) (T -227))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-1520 (((-695) $) 26 T ELT)) (-3827 ((|#1| $) 27 T ELT)) (-3154 (((-3 |#1| "failed") $) 31 T ELT)) (-3153 ((|#1| $) 32 T ELT)) (-3768 (((-695) $) 28 T ELT)) (-2529 (($ $ $) 23 T ELT)) (-2855 (($ $ $) 22 T ELT)) (-1521 (($ |#1| (-695)) 29 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3754 (($ $ (-695)) 35 T ELT) (($ $) 33 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ |#1|) 30 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2667 (($ $ (-695)) 36 T ELT) (($ $) 34 T ELT)) (-2564 (((-85) $ $) 21 T ELT)) (-2565 (((-85) $ $) 19 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-2682 (((-85) $ $) 20 T ELT)) (-2683 (((-85) $ $) 18 T ELT)))
+(((-228 |#1|) (-113) (-757)) (T -228))
+((-1521 (*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-228 *2)) (-4 *2 (-757)))) (-3768 (*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-757)) (-5 *2 (-695)))) (-3827 (*1 *2 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-757)))) (-1520 (*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-757)) (-5 *2 (-695)))))
+(-13 (-757) (-189) (-951 |t#1|) (-10 -8 (-15 -1521 ($ |t#1| (-695))) (-15 -3768 ((-695) $)) (-15 -3827 (|t#1| $)) (-15 -1520 ((-695) $))))
+(((-72) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-757) . T) ((-760) . T) ((-951 |#1|) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-2529 (($ $ $) NIL T ELT)) (-2855 (($ $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1523 (((-584 (-484)) $) 28 T ELT)) (-3944 (((-695) $) 26 T ELT)) (-3942 (((-773) $) 32 T ELT) (($ (-584 (-484))) 22 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1522 (($ (-695)) 29 T ELT)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 11 T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) 18 T ELT)))
+(((-229) (-13 (-757) (-10 -8 (-15 -3942 ($ (-584 (-484)))) (-15 -3944 ((-695) $)) (-15 -1523 ((-584 (-484)) $)) (-15 -1522 ($ (-695)))))) (T -229))
+((-3942 (*1 *1 *2) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-229)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-229)))) (-1523 (*1 *2 *1) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-229)))) (-1522 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-229)))))
+((-3488 ((|#2| |#2|) 77 T ELT)) (-3635 ((|#2| |#2|) 65 T ELT)) (-1552 (((-3 |#2| "failed") |#2| (-584 (-2 (|:| |func| |#2|) (|:| |pole| (-85))))) 123 T ELT)) (-3486 ((|#2| |#2|) 75 T ELT)) (-3634 ((|#2| |#2|) 63 T ELT)) (-3490 ((|#2| |#2|) 79 T ELT)) (-3633 ((|#2| |#2|) 67 T ELT)) (-3623 ((|#2|) 46 T ELT)) (-3591 (((-86) (-86)) 97 T ELT)) (-3938 ((|#2| |#2|) 61 T ELT)) (-1553 (((-85) |#2|) 146 T ELT)) (-1542 ((|#2| |#2|) 193 T ELT)) (-1530 ((|#2| |#2|) 169 T ELT)) (-1525 ((|#2|) 59 T ELT)) (-1524 ((|#2|) 58 T ELT)) (-1540 ((|#2| |#2|) 189 T ELT)) (-1528 ((|#2| |#2|) 165 T ELT)) (-1544 ((|#2| |#2|) 197 T ELT)) (-1532 ((|#2| |#2|) 173 T ELT)) (-1527 ((|#2| |#2|) 161 T ELT)) (-1526 ((|#2| |#2|) 163 T ELT)) (-1545 ((|#2| |#2|) 199 T ELT)) (-1533 ((|#2| |#2|) 175 T ELT)) (-1543 ((|#2| |#2|) 195 T ELT)) (-1531 ((|#2| |#2|) 171 T ELT)) (-1541 ((|#2| |#2|) 191 T ELT)) (-1529 ((|#2| |#2|) 167 T ELT)) (-1548 ((|#2| |#2|) 205 T ELT)) (-1536 ((|#2| |#2|) 181 T ELT)) (-1546 ((|#2| |#2|) 201 T ELT)) (-1534 ((|#2| |#2|) 177 T ELT)) (-1550 ((|#2| |#2|) 209 T ELT)) (-1538 ((|#2| |#2|) 185 T ELT)) (-1551 ((|#2| |#2|) 211 T ELT)) (-1539 ((|#2| |#2|) 187 T ELT)) (-1549 ((|#2| |#2|) 207 T ELT)) (-1537 ((|#2| |#2|) 183 T ELT)) (-1547 ((|#2| |#2|) 203 T ELT)) (-1535 ((|#2| |#2|) 179 T ELT)) (-3939 ((|#2| |#2|) 62 T ELT)) (-3491 ((|#2| |#2|) 80 T ELT)) (-3632 ((|#2| |#2|) 68 T ELT)) (-3489 ((|#2| |#2|) 78 T ELT)) (-3631 ((|#2| |#2|) 66 T ELT)) (-3487 ((|#2| |#2|) 76 T ELT)) (-3630 ((|#2| |#2|) 64 T ELT)) (-2252 (((-85) (-86)) 95 T ELT)) (-3494 ((|#2| |#2|) 83 T ELT)) (-3482 ((|#2| |#2|) 71 T ELT)) (-3492 ((|#2| |#2|) 81 T ELT)) (-3480 ((|#2| |#2|) 69 T ELT)) (-3496 ((|#2| |#2|) 85 T ELT)) (-3484 ((|#2| |#2|) 73 T ELT)) (-3497 ((|#2| |#2|) 86 T ELT)) (-3485 ((|#2| |#2|) 74 T ELT)) (-3495 ((|#2| |#2|) 84 T ELT)) (-3483 ((|#2| |#2|) 72 T ELT)) (-3493 ((|#2| |#2|) 82 T ELT)) (-3481 ((|#2| |#2|) 70 T ELT)))
+(((-230 |#1| |#2|) (-10 -7 (-15 -3939 (|#2| |#2|)) (-15 -3938 (|#2| |#2|)) (-15 -3634 (|#2| |#2|)) (-15 -3630 (|#2| |#2|)) (-15 -3635 (|#2| |#2|)) (-15 -3631 (|#2| |#2|)) (-15 -3633 (|#2| |#2|)) (-15 -3632 (|#2| |#2|)) (-15 -3480 (|#2| |#2|)) (-15 -3481 (|#2| |#2|)) (-15 -3482 (|#2| |#2|)) (-15 -3483 (|#2| |#2|)) (-15 -3484 (|#2| |#2|)) (-15 -3485 (|#2| |#2|)) (-15 -3486 (|#2| |#2|)) (-15 -3487 (|#2| |#2|)) (-15 -3488 (|#2| |#2|)) (-15 -3489 (|#2| |#2|)) (-15 -3490 (|#2| |#2|)) (-15 -3491 (|#2| |#2|)) (-15 -3492 (|#2| |#2|)) (-15 -3493 (|#2| |#2|)) (-15 -3494 (|#2| |#2|)) (-15 -3495 (|#2| |#2|)) (-15 -3496 (|#2| |#2|)) (-15 -3497 (|#2| |#2|)) (-15 -3623 (|#2|)) (-15 -2252 ((-85) (-86))) (-15 -3591 ((-86) (-86))) (-15 -1524 (|#2|)) (-15 -1525 (|#2|)) (-15 -1526 (|#2| |#2|)) (-15 -1527 (|#2| |#2|)) (-15 -1528 (|#2| |#2|)) (-15 -1529 (|#2| |#2|)) (-15 -1530 (|#2| |#2|)) (-15 -1531 (|#2| |#2|)) (-15 -1532 (|#2| |#2|)) (-15 -1533 (|#2| |#2|)) (-15 -1534 (|#2| |#2|)) (-15 -1535 (|#2| |#2|)) (-15 -1536 (|#2| |#2|)) (-15 -1537 (|#2| |#2|)) (-15 -1538 (|#2| |#2|)) (-15 -1539 (|#2| |#2|)) (-15 -1540 (|#2| |#2|)) (-15 -1541 (|#2| |#2|)) (-15 -1542 (|#2| |#2|)) (-15 -1543 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -1545 (|#2| |#2|)) (-15 -1546 (|#2| |#2|)) (-15 -1547 (|#2| |#2|)) (-15 -1548 (|#2| |#2|)) (-15 -1549 (|#2| |#2|)) (-15 -1550 (|#2| |#2|)) (-15 -1551 (|#2| |#2|)) (-15 -1552 ((-3 |#2| "failed") |#2| (-584 (-2 (|:| |func| |#2|) (|:| |pole| (-85)))))) (-15 -1553 ((-85) |#2|))) (-495) (-13 (-361 |#1|) (-916))) (T -230))
+((-1553 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-230 *4 *3)) (-4 *3 (-13 (-361 *4) (-916))))) (-1552 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-584 (-2 (|:| |func| *2) (|:| |pole| (-85))))) (-4 *2 (-13 (-361 *4) (-916))) (-4 *4 (-495)) (-5 *1 (-230 *4 *2)))) (-1551 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1550 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1549 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1548 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1547 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1546 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1545 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1544 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1543 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1542 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1541 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1540 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1539 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1538 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1537 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1536 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1535 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1534 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1533 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1532 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1531 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1530 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1529 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1528 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1527 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1526 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-1525 (*1 *2) (-12 (-4 *2 (-13 (-361 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495)))) (-1524 (*1 *2) (-12 (-4 *2 (-13 (-361 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495)))) (-3591 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-230 *3 *4)) (-4 *4 (-13 (-361 *3) (-916))))) (-2252 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-230 *4 *5)) (-4 *5 (-13 (-361 *4) (-916))))) (-3623 (*1 *2) (-12 (-4 *2 (-13 (-361 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495)))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3482 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3481 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3480 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3633 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3631 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3630 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3938 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))) (-3939 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))))
+((-1556 (((-3 |#2| "failed") (-584 (-551 |#2|)) |#2| (-1089)) 151 T ELT)) (-1558 ((|#2| (-347 (-484)) |#2|) 49 T ELT)) (-1557 ((|#2| |#2| (-551 |#2|)) 144 T ELT)) (-1554 (((-2 (|:| |func| |#2|) (|:| |kers| (-584 (-551 |#2|))) (|:| |vals| (-584 |#2|))) |#2| (-1089)) 143 T ELT)) (-1555 ((|#2| |#2| (-1089)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-2441 ((|#2| |#2| (-1089)) 157 T ELT) ((|#2| |#2|) 155 T ELT)))
+(((-231 |#1| |#2|) (-10 -7 (-15 -2441 (|#2| |#2|)) (-15 -2441 (|#2| |#2| (-1089))) (-15 -1554 ((-2 (|:| |func| |#2|) (|:| |kers| (-584 (-551 |#2|))) (|:| |vals| (-584 |#2|))) |#2| (-1089))) (-15 -1555 (|#2| |#2|)) (-15 -1555 (|#2| |#2| (-1089))) (-15 -1556 ((-3 |#2| "failed") (-584 (-551 |#2|)) |#2| (-1089))) (-15 -1557 (|#2| |#2| (-551 |#2|))) (-15 -1558 (|#2| (-347 (-484)) |#2|))) (-13 (-495) (-951 (-484)) (-581 (-484))) (-13 (-27) (-1114) (-361 |#1|))) (T -231))
+((-1558 (*1 *2 *3 *2) (-12 (-5 *3 (-347 (-484))) (-4 *4 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *4))))) (-1557 (*1 *2 *2 *3) (-12 (-5 *3 (-551 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *4))) (-4 *4 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *1 (-231 *4 *2)))) (-1556 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-584 (-551 *2))) (-5 *4 (-1089)) (-4 *2 (-13 (-27) (-1114) (-361 *5))) (-4 *5 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *1 (-231 *5 *2)))) (-1555 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *4))))) (-1555 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *1 (-231 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *3))))) (-1554 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-584 (-551 *3))) (|:| |vals| (-584 *3)))) (-5 *1 (-231 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5))))) (-2441 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *4))))) (-2441 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *1 (-231 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *3))))))
+((-2973 (((-3 |#3| #1="failed") |#3|) 120 T ELT)) (-3488 ((|#3| |#3|) 142 T ELT)) (-2961 (((-3 |#3| #1#) |#3|) 89 T ELT)) (-3635 ((|#3| |#3|) 132 T ELT)) (-2971 (((-3 |#3| #1#) |#3|) 65 T ELT)) (-3486 ((|#3| |#3|) 140 T ELT)) (-2959 (((-3 |#3| #1#) |#3|) 53 T ELT)) (-3634 ((|#3| |#3|) 130 T ELT)) (-2975 (((-3 |#3| #1#) |#3|) 122 T ELT)) (-3490 ((|#3| |#3|) 144 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 91 T ELT)) (-3633 ((|#3| |#3|) 134 T ELT)) (-2956 (((-3 |#3| #1#) |#3| (-695)) 41 T ELT)) (-2958 (((-3 |#3| #1#) |#3|) 81 T ELT)) (-3938 ((|#3| |#3|) 129 T ELT)) (-2957 (((-3 |#3| #1#) |#3|) 51 T ELT)) (-3939 ((|#3| |#3|) 128 T ELT)) (-2976 (((-3 |#3| #1#) |#3|) 123 T ELT)) (-3491 ((|#3| |#3|) 145 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 92 T ELT)) (-3632 ((|#3| |#3|) 135 T ELT)) (-2974 (((-3 |#3| #1#) |#3|) 121 T ELT)) (-3489 ((|#3| |#3|) 143 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 90 T ELT)) (-3631 ((|#3| |#3|) 133 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 67 T ELT)) (-3487 ((|#3| |#3|) 141 T ELT)) (-2960 (((-3 |#3| #1#) |#3|) 55 T ELT)) (-3630 ((|#3| |#3|) 131 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 73 T ELT)) (-3494 ((|#3| |#3|) 148 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 114 T ELT)) (-3482 ((|#3| |#3|) 152 T ELT)) (-2977 (((-3 |#3| #1#) |#3|) 69 T ELT)) (-3492 ((|#3| |#3|) 146 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 57 T ELT)) (-3480 ((|#3| |#3|) 136 T ELT)) (-2981 (((-3 |#3| #1#) |#3|) 77 T ELT)) (-3496 ((|#3| |#3|) 150 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 61 T ELT)) (-3484 ((|#3| |#3|) 138 T ELT)) (-2982 (((-3 |#3| #1#) |#3|) 79 T ELT)) (-3497 ((|#3| |#3|) 151 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 63 T ELT)) (-3485 ((|#3| |#3|) 139 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 75 T ELT)) (-3495 ((|#3| |#3|) 149 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3483 ((|#3| |#3|) 153 T ELT)) (-2978 (((-3 |#3| #1#) |#3|) 71 T ELT)) (-3493 ((|#3| |#3|) 147 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 59 T ELT)) (-3481 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-347 (-484))) 47 (|has| |#1| (-311)) ELT)))
+(((-232 |#1| |#2| |#3|) (-13 (-897 |#3|) (-10 -7 (IF (|has| |#1| (-311)) (-15 ** (|#3| |#3| (-347 (-484)))) |%noBranch|) (-15 -3939 (|#3| |#3|)) (-15 -3938 (|#3| |#3|)) (-15 -3634 (|#3| |#3|)) (-15 -3630 (|#3| |#3|)) (-15 -3635 (|#3| |#3|)) (-15 -3631 (|#3| |#3|)) (-15 -3633 (|#3| |#3|)) (-15 -3632 (|#3| |#3|)) (-15 -3480 (|#3| |#3|)) (-15 -3481 (|#3| |#3|)) (-15 -3482 (|#3| |#3|)) (-15 -3483 (|#3| |#3|)) (-15 -3484 (|#3| |#3|)) (-15 -3485 (|#3| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -3490 (|#3| |#3|)) (-15 -3491 (|#3| |#3|)) (-15 -3492 (|#3| |#3|)) (-15 -3493 (|#3| |#3|)) (-15 -3494 (|#3| |#3|)) (-15 -3495 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -3497 (|#3| |#3|)))) (-38 (-347 (-484))) (-1171 |#1|) (-1142 |#1| |#2|)) (T -232))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-347 (-484))) (-4 *4 (-311)) (-4 *4 (-38 *3)) (-4 *5 (-1171 *4)) (-5 *1 (-232 *4 *5 *2)) (-4 *2 (-1142 *4 *5)))) (-3939 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3938 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3630 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3631 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3633 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3480 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3481 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3482 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1142 *3 *4)))))
+((-2973 (((-3 |#3| #1="failed") |#3|) 70 T ELT)) (-3488 ((|#3| |#3|) 137 T ELT)) (-2961 (((-3 |#3| #1#) |#3|) 54 T ELT)) (-3635 ((|#3| |#3|) 125 T ELT)) (-2971 (((-3 |#3| #1#) |#3|) 66 T ELT)) (-3486 ((|#3| |#3|) 135 T ELT)) (-2959 (((-3 |#3| #1#) |#3|) 50 T ELT)) (-3634 ((|#3| |#3|) 123 T ELT)) (-2975 (((-3 |#3| #1#) |#3|) 74 T ELT)) (-3490 ((|#3| |#3|) 139 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 58 T ELT)) (-3633 ((|#3| |#3|) 127 T ELT)) (-2956 (((-3 |#3| #1#) |#3| (-695)) 38 T ELT)) (-2958 (((-3 |#3| #1#) |#3|) 48 T ELT)) (-3938 ((|#3| |#3|) 111 T ELT)) (-2957 (((-3 |#3| #1#) |#3|) 46 T ELT)) (-3939 ((|#3| |#3|) 122 T ELT)) (-2976 (((-3 |#3| #1#) |#3|) 76 T ELT)) (-3491 ((|#3| |#3|) 140 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 60 T ELT)) (-3632 ((|#3| |#3|) 128 T ELT)) (-2974 (((-3 |#3| #1#) |#3|) 72 T ELT)) (-3489 ((|#3| |#3|) 138 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 56 T ELT)) (-3631 ((|#3| |#3|) 126 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 68 T ELT)) (-3487 ((|#3| |#3|) 136 T ELT)) (-2960 (((-3 |#3| #1#) |#3|) 52 T ELT)) (-3630 ((|#3| |#3|) 124 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 78 T ELT)) (-3494 ((|#3| |#3|) 143 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 62 T ELT)) (-3482 ((|#3| |#3|) 131 T ELT)) (-2977 (((-3 |#3| #1#) |#3|) 112 T ELT)) (-3492 ((|#3| |#3|) 141 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 100 T ELT)) (-3480 ((|#3| |#3|) 129 T ELT)) (-2981 (((-3 |#3| #1#) |#3|) 116 T ELT)) (-3496 ((|#3| |#3|) 145 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 107 T ELT)) (-3484 ((|#3| |#3|) 133 T ELT)) (-2982 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3497 ((|#3| |#3|) 146 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 109 T ELT)) (-3485 ((|#3| |#3|) 134 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 80 T ELT)) (-3495 ((|#3| |#3|) 144 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 64 T ELT)) (-3483 ((|#3| |#3|) 132 T ELT)) (-2978 (((-3 |#3| #1#) |#3|) 113 T ELT)) (-3493 ((|#3| |#3|) 142 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 103 T ELT)) (-3481 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-347 (-484))) 44 (|has| |#1| (-311)) ELT)))
+(((-233 |#1| |#2| |#3| |#4|) (-13 (-897 |#3|) (-10 -7 (IF (|has| |#1| (-311)) (-15 ** (|#3| |#3| (-347 (-484)))) |%noBranch|) (-15 -3939 (|#3| |#3|)) (-15 -3938 (|#3| |#3|)) (-15 -3634 (|#3| |#3|)) (-15 -3630 (|#3| |#3|)) (-15 -3635 (|#3| |#3|)) (-15 -3631 (|#3| |#3|)) (-15 -3633 (|#3| |#3|)) (-15 -3632 (|#3| |#3|)) (-15 -3480 (|#3| |#3|)) (-15 -3481 (|#3| |#3|)) (-15 -3482 (|#3| |#3|)) (-15 -3483 (|#3| |#3|)) (-15 -3484 (|#3| |#3|)) (-15 -3485 (|#3| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -3490 (|#3| |#3|)) (-15 -3491 (|#3| |#3|)) (-15 -3492 (|#3| |#3|)) (-15 -3493 (|#3| |#3|)) (-15 -3494 (|#3| |#3|)) (-15 -3495 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -3497 (|#3| |#3|)))) (-38 (-347 (-484))) (-1140 |#1|) (-1163 |#1| |#2|) (-897 |#2|)) (T -233))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-347 (-484))) (-4 *4 (-311)) (-4 *4 (-38 *3)) (-4 *5 (-1140 *4)) (-5 *1 (-233 *4 *5 *2 *6)) (-4 *2 (-1163 *4 *5)) (-4 *6 (-897 *5)))) (-3939 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3938 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3630 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3631 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3633 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3480 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3481 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3482 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4)))))
+((-1561 (((-85) $) 20 T ELT)) (-1563 (((-1094) $) 9 T ELT)) (-3565 (((-3 (-444) #1="failed") $) 15 T ELT)) (-3564 (((-3 (-584 $) #1#) $) NIL T ELT)) (-1560 (((-3 (-444) #1#) $) 21 T ELT)) (-1562 (((-3 (-1015) #1#) $) 19 T ELT)) (-3949 (((-85) $) 17 T ELT)) (-3942 (((-773) $) NIL T ELT)) (-1559 (((-85) $) 10 T ELT)))
+(((-234) (-13 (-553 (-773)) (-10 -8 (-15 -1563 ((-1094) $)) (-15 -3949 ((-85) $)) (-15 -1562 ((-3 (-1015) #1="failed") $)) (-15 -1561 ((-85) $)) (-15 -1560 ((-3 (-444) #1#) $)) (-15 -1559 ((-85) $)) (-15 -3565 ((-3 (-444) #1#) $)) (-15 -3564 ((-3 (-584 $) #1#) $))))) (T -234))
+((-1563 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-234)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-1562 (*1 *2 *1) (|partial| -12 (-5 *2 (-1015)) (-5 *1 (-234)))) (-1561 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-1560 (*1 *2 *1) (|partial| -12 (-5 *2 (-444)) (-5 *1 (-234)))) (-1559 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-3565 (*1 *2 *1) (|partial| -12 (-5 *2 (-444)) (-5 *1 (-234)))) (-3564 (*1 *2 *1) (|partial| -12 (-5 *2 (-584 (-234))) (-5 *1 (-234)))))
+((-1565 (((-532) $) 10 T ELT)) (-1566 (((-522) $) 8 T ELT)) (-1564 (((-246) $) 12 T ELT)) (-1567 (($ (-522) (-532) (-246)) NIL T ELT)) (-3942 (((-773) $) 19 T ELT)))
+(((-235) (-13 (-553 (-773)) (-10 -8 (-15 -1567 ($ (-522) (-532) (-246))) (-15 -1566 ((-522) $)) (-15 -1565 ((-532) $)) (-15 -1564 ((-246) $))))) (T -235))
+((-1567 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-522)) (-5 *3 (-532)) (-5 *4 (-246)) (-5 *1 (-235)))) (-1566 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-235)))) (-1565 (*1 *2 *1) (-12 (-5 *2 (-532)) (-5 *1 (-235)))) (-1564 (*1 *2 *1) (-12 (-5 *2 (-246)) (-5 *1 (-235)))))
+((-3706 (($ (-1 (-85) |#2|) $) 24 T ELT)) (-1351 (($ $) 38 T ELT)) (-3401 (($ (-1 (-85) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-3402 (($ |#2| $) 34 T ELT) (($ (-1 (-85) |#2|) $) 18 T ELT)) (-2854 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-2302 (($ |#2| $ (-484)) 20 T ELT) (($ $ $ (-484)) 22 T ELT)) (-2303 (($ $ (-484)) 11 T ELT) (($ $ (-1145 (-484))) 14 T ELT)) (-3787 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-3798 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-584 $)) NIL T ELT)))
+(((-236 |#1| |#2|) (-10 -7 (-15 -2854 (|#1| |#1| |#1|)) (-15 -3401 (|#1| |#2| |#1|)) (-15 -2854 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -3401 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3787 (|#1| |#1| |#1|)) (-15 -3787 (|#1| |#1| |#2|)) (-15 -2302 (|#1| |#1| |#1| (-484))) (-15 -2302 (|#1| |#2| |#1| (-484))) (-15 -2303 (|#1| |#1| (-1145 (-484)))) (-15 -2303 (|#1| |#1| (-484))) (-15 -3798 (|#1| (-584 |#1|))) (-15 -3798 (|#1| |#1| |#1|)) (-15 -3798 (|#1| |#2| |#1|)) (-15 -3798 (|#1| |#1| |#2|)) (-15 -3402 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3706 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3402 (|#1| |#2| |#1|)) (-15 -1351 (|#1| |#1|))) (-237 |#2|) (-1128)) (T -236))
+NIL
+((-2566 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2196 (((-1184) $ (-484) (-484)) 44 (|has| $ (-6 -3992)) ELT)) (-3784 ((|#1| $ (-484) |#1|) 56 (|has| $ (-6 -3992)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 64 (|has| $ (-6 -3992)) ELT)) (-1568 (($ (-1 (-85) |#1|) $) 94 T ELT)) (-3706 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3991)) ELT)) (-3720 (($) 7 T CONST)) (-2366 (($ $) 92 (|has| |#1| (-1013)) ELT)) (-1351 (($ $) 84 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3401 (($ (-1 (-85) |#1|) $) 98 T ELT) (($ |#1| $) 93 (|has| |#1| (-1013)) ELT)) (-3402 (($ |#1| $) 83 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3991)) ELT)) (-3838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3991)) ELT)) (-1574 ((|#1| $ (-484) |#1|) 57 (|has| $ (-6 -3992)) ELT)) (-3110 ((|#1| $ (-484)) 55 T ELT)) (-2887 (((-584 |#1|) $) 30 (|has| $ (-6 -3991)) ELT)) (-3610 (($ (-695) |#1|) 74 T ELT)) (-2198 (((-484) $) 47 (|has| (-484) (-757)) ELT)) (-2854 (($ (-1 (-85) |#1| |#1|) $ $) 95 T ELT) (($ $ $) 91 (|has| |#1| (-757)) ELT)) (-2606 (((-584 |#1|) $) 29 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-2199 (((-484) $) 48 (|has| (-484) (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3239 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3605 (($ |#1| $ (-484)) 97 T ELT) (($ $ $ (-484)) 96 T ELT)) (-2302 (($ |#1| $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2201 (((-584 (-484)) $) 50 T ELT)) (-2202 (((-85) (-484) $) 51 T ELT)) (-3240 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3797 ((|#1| $) 46 (|has| (-484) (-757)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2197 (($ $ |#1|) 45 (|has| $ (-6 -3992)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2200 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2203 (((-584 |#1|) $) 52 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-3796 ((|#1| $ (-484) |#1|) 54 T ELT) ((|#1| $ (-484)) 53 T ELT) (($ $ (-1145 (-484))) 75 T ELT)) (-1569 (($ $ (-484)) 100 T ELT) (($ $ (-1145 (-484))) 99 T ELT)) (-2303 (($ $ (-484)) 68 T ELT) (($ $ (-1145 (-484))) 67 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3396 (($ $) 10 T ELT)) (-3968 (((-473) $) 85 (|has| |#1| (-554 (-473))) ELT)) (-3526 (($ (-584 |#1|)) 76 T ELT)) (-3787 (($ $ |#1|) 102 T ELT) (($ $ $) 101 T ELT)) (-3798 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-584 $)) 70 T ELT)) (-3942 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-237 |#1|) (-113) (-1128)) (T -237))
+((-3787 (*1 *1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)))) (-3787 (*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)))) (-1569 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-237 *3)) (-4 *3 (-1128)))) (-1569 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 (-484))) (-4 *1 (-237 *3)) (-4 *3 (-1128)))) (-3401 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1128)))) (-3605 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-237 *2)) (-4 *2 (-1128)))) (-3605 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-237 *3)) (-4 *3 (-1128)))) (-2854 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-237 *3)) (-4 *3 (-1128)))) (-1568 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1128)))) (-3401 (*1 *1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)) (-4 *2 (-1013)))) (-2366 (*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)) (-4 *2 (-1013)))) (-2854 (*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)) (-4 *2 (-757)))))
+(-13 (-594 |t#1|) (-10 -8 (-6 -3992) (-15 -3787 ($ $ |t#1|)) (-15 -3787 ($ $ $)) (-15 -1569 ($ $ (-484))) (-15 -1569 ($ $ (-1145 (-484)))) (-15 -3401 ($ (-1 (-85) |t#1|) $)) (-15 -3605 ($ |t#1| $ (-484))) (-15 -3605 ($ $ $ (-484))) (-15 -2854 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -1568 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -3401 ($ |t#1| $)) (-15 -2366 ($ $))) |%noBranch|) (IF (|has| |t#1| (-757)) (-15 -2854 ($ $ $)) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-539 (-484) |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-594 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
((** (($ $ $) 10 T ELT)))
(((-238 |#1|) (-10 -7 (-15 ** (|#1| |#1| |#1|))) (-239)) (T -238))
NIL
-((-3936 (($ $) 6 T ELT)) (-3937 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT)))
+((-3938 (($ $) 6 T ELT)) (-3939 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT)))
(((-239) (-113)) (T -239))
-((** (*1 *1 *1 *1) (-4 *1 (-239))) (-3937 (*1 *1 *1) (-4 *1 (-239))) (-3936 (*1 *1 *1) (-4 *1 (-239))))
-(-13 (-10 -8 (-15 -3936 ($ $)) (-15 -3937 ($ $)) (-15 ** ($ $ $))))
-((-1572 (((-583 (-1067 |#1|)) (-1067 |#1|) |#1|) 35 T ELT)) (-1569 ((|#2| |#2| |#1|) 39 T ELT)) (-1571 ((|#2| |#2| |#1|) 41 T ELT)) (-1570 ((|#2| |#2| |#1|) 40 T ELT)))
-(((-240 |#1| |#2|) (-10 -7 (-15 -1569 (|#2| |#2| |#1|)) (-15 -1570 (|#2| |#2| |#1|)) (-15 -1571 (|#2| |#2| |#1|)) (-15 -1572 ((-583 (-1067 |#1|)) (-1067 |#1|) |#1|))) (-311) (-1170 |#1|)) (T -240))
-((-1572 (*1 *2 *3 *4) (-12 (-4 *4 (-311)) (-5 *2 (-583 (-1067 *4))) (-5 *1 (-240 *4 *5)) (-5 *3 (-1067 *4)) (-4 *5 (-1170 *4)))) (-1571 (*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1170 *3)))) (-1570 (*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1170 *3)))) (-1569 (*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1170 *3)))))
-((-3794 ((|#2| $ |#1|) 6 T ELT)))
-(((-241 |#1| |#2|) (-113) (-1127) (-1127)) (T -241))
-((-3794 (*1 *2 *1 *3) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1127)) (-4 *2 (-1127)))))
-(-13 (-1127) (-10 -8 (-15 -3794 (|t#2| $ |t#1|))))
-(((-13) . T) ((-1127) . T))
-((-1573 ((|#3| $ |#2| |#3|) 12 T ELT)) (-3108 ((|#3| $ |#2|) 10 T ELT)))
-(((-242 |#1| |#2| |#3|) (-10 -7 (-15 -1573 (|#3| |#1| |#2| |#3|)) (-15 -3108 (|#3| |#1| |#2|))) (-243 |#2| |#3|) (-1012) (-1127)) (T -242))
-NIL
-((-3782 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -3990)) ELT)) (-1573 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -3990)) ELT)) (-3108 ((|#2| $ |#1|) 11 T ELT)) (-3794 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT)))
-(((-243 |#1| |#2|) (-113) (-1012) (-1127)) (T -243))
-((-3794 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1127)))) (-3108 (*1 *2 *1 *3) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1127)))) (-3782 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1127)))) (-1573 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1127)))))
-(-13 (-241 |t#1| |t#2|) (-10 -8 (-15 -3794 (|t#2| $ |t#1| |t#2|)) (-15 -3108 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -3990)) (PROGN (-15 -3782 (|t#2| $ |t#1| |t#2|)) (-15 -1573 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
-(((-241 |#1| |#2|) . T) ((-13) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 37 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 44 T ELT)) (-2059 (($ $) 41 T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2560 (($ $ $) 35 T ELT)) (-3836 (($ |#2| |#3|) 18 T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2610 ((|#3| $) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) 19 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2398 (((-3 $ #1#) $ $) NIL T ELT)) (-1604 (((-694) $) 36 T ELT)) (-3794 ((|#2| $ |#2|) 46 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 23 T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-2656 (($) 31 T CONST)) (-2662 (($) 39 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 40 T ELT)))
-(((-244 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-257) (-241 |#2| |#2|) (-10 -8 (-15 -2610 (|#3| $)) (-15 -3940 (|#2| $)) (-15 -3836 ($ |#2| |#3|)) (-15 -2398 ((-3 $ #1="failed") $ $)) (-15 -3461 ((-3 $ #1#) $)) (-15 -2480 ($ $)))) (-146) (-1153 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| #1#) |#3| |#3|) (-1 (-3 |#2| #1#) |#2| |#2| |#3|)) (T -244))
-((-3461 (*1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1153 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-2610 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-23)) (-5 *1 (-244 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1153 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-3940 (*1 *2 *1) (-12 (-4 *2 (-1153 *3)) (-5 *1 (-244 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-3836 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-244 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1153 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2398 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1153 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2480 (*1 *1 *1) (-12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1153 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT)))
+((** (*1 *1 *1 *1) (-4 *1 (-239))) (-3939 (*1 *1 *1) (-4 *1 (-239))) (-3938 (*1 *1 *1) (-4 *1 (-239))))
+(-13 (-10 -8 (-15 -3938 ($ $)) (-15 -3939 ($ $)) (-15 ** ($ $ $))))
+((-1573 (((-584 (-1068 |#1|)) (-1068 |#1|) |#1|) 35 T ELT)) (-1570 ((|#2| |#2| |#1|) 39 T ELT)) (-1572 ((|#2| |#2| |#1|) 41 T ELT)) (-1571 ((|#2| |#2| |#1|) 40 T ELT)))
+(((-240 |#1| |#2|) (-10 -7 (-15 -1570 (|#2| |#2| |#1|)) (-15 -1571 (|#2| |#2| |#1|)) (-15 -1572 (|#2| |#2| |#1|)) (-15 -1573 ((-584 (-1068 |#1|)) (-1068 |#1|) |#1|))) (-311) (-1171 |#1|)) (T -240))
+((-1573 (*1 *2 *3 *4) (-12 (-4 *4 (-311)) (-5 *2 (-584 (-1068 *4))) (-5 *1 (-240 *4 *5)) (-5 *3 (-1068 *4)) (-4 *5 (-1171 *4)))) (-1572 (*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1171 *3)))) (-1571 (*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1171 *3)))) (-1570 (*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1171 *3)))))
+((-3796 ((|#2| $ |#1|) 6 T ELT)))
+(((-241 |#1| |#2|) (-113) (-1128) (-1128)) (T -241))
+((-3796 (*1 *2 *1 *3) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1128)) (-4 *2 (-1128)))))
+(-13 (-1128) (-10 -8 (-15 -3796 (|t#2| $ |t#1|))))
+(((-13) . T) ((-1128) . T))
+((-1574 ((|#3| $ |#2| |#3|) 12 T ELT)) (-3110 ((|#3| $ |#2|) 10 T ELT)))
+(((-242 |#1| |#2| |#3|) (-10 -7 (-15 -1574 (|#3| |#1| |#2| |#3|)) (-15 -3110 (|#3| |#1| |#2|))) (-243 |#2| |#3|) (-1013) (-1128)) (T -242))
+NIL
+((-3784 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -3992)) ELT)) (-1574 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -3992)) ELT)) (-3110 ((|#2| $ |#1|) 11 T ELT)) (-3796 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT)))
+(((-243 |#1| |#2|) (-113) (-1013) (-1128)) (T -243))
+((-3796 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1128)))) (-3110 (*1 *2 *1 *3) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1128)))) (-3784 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1128)))) (-1574 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1128)))))
+(-13 (-241 |t#1| |t#2|) (-10 -8 (-15 -3796 (|t#2| $ |t#1| |t#2|)) (-15 -3110 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -3992)) (PROGN (-15 -3784 (|t#2| $ |t#1| |t#2|)) (-15 -1574 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
+(((-241 |#1| |#2|) . T) ((-13) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 37 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 44 T ELT)) (-2061 (($ $) 41 T ELT)) (-2059 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-2562 (($ $ $) 35 T ELT)) (-3838 (($ |#2| |#3|) 18 T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-2408 (((-85) $) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2612 ((|#3| $) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) 19 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2400 (((-3 $ #1#) $ $) NIL T ELT)) (-1605 (((-695) $) 36 T ELT)) (-3796 ((|#2| $ |#2|) 46 T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 23 T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3123 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-2658 (($) 31 T CONST)) (-2664 (($) 39 T CONST)) (-3054 (((-85) $ $) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 40 T ELT)))
+(((-244 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-257) (-241 |#2| |#2|) (-10 -8 (-15 -2612 (|#3| $)) (-15 -3942 (|#2| $)) (-15 -3838 ($ |#2| |#3|)) (-15 -2400 ((-3 $ #1="failed") $ $)) (-15 -3463 ((-3 $ #1#) $)) (-15 -2482 ($ $)))) (-146) (-1154 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| #1#) |#3| |#3|) (-1 (-3 |#2| #1#) |#2| |#2| |#3|)) (T -244))
+((-3463 (*1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1154 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-2612 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-23)) (-5 *1 (-244 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1154 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-3942 (*1 *2 *1) (-12 (-4 *2 (-1154 *3)) (-5 *1 (-244 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-3838 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-244 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1154 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2400 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1154 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2482 (*1 *1 *1) (-12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1154 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT)))
(((-245) (-113)) (T -245))
NIL
-(-13 (-961) (-82 $ $) (-10 -7 (-6 -3982)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-483)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T))
-((-1581 (((-583 (-996)) $) 10 T ELT)) (-1579 (($ (-444) (-444) (-1014) $) 19 T ELT)) (-1577 (($ (-444) (-583 (-876)) $) 23 T ELT)) (-1575 (($) 25 T ELT)) (-1580 (((-632 (-1014)) (-444) (-444) $) 18 T ELT)) (-1578 (((-583 (-876)) (-444) $) 22 T ELT)) (-3559 (($) 7 T ELT)) (-1576 (($) 24 T ELT)) (-3940 (((-772) $) 29 T ELT)) (-1574 (($) 26 T ELT)))
-(((-246) (-13 (-552 (-772)) (-10 -8 (-15 -3559 ($)) (-15 -1581 ((-583 (-996)) $)) (-15 -1580 ((-632 (-1014)) (-444) (-444) $)) (-15 -1579 ($ (-444) (-444) (-1014) $)) (-15 -1578 ((-583 (-876)) (-444) $)) (-15 -1577 ($ (-444) (-583 (-876)) $)) (-15 -1576 ($)) (-15 -1575 ($)) (-15 -1574 ($))))) (T -246))
-((-3559 (*1 *1) (-5 *1 (-246))) (-1581 (*1 *2 *1) (-12 (-5 *2 (-583 (-996))) (-5 *1 (-246)))) (-1580 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-632 (-1014))) (-5 *1 (-246)))) (-1579 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-444)) (-5 *3 (-1014)) (-5 *1 (-246)))) (-1578 (*1 *2 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-583 (-876))) (-5 *1 (-246)))) (-1577 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-444)) (-5 *3 (-583 (-876))) (-5 *1 (-246)))) (-1576 (*1 *1) (-5 *1 (-246))) (-1575 (*1 *1) (-5 *1 (-246))) (-1574 (*1 *1) (-5 *1 (-246))))
-((-1585 (((-583 (-2 (|:| |eigval| (-3 (-347 (-857 |#1|)) (-1078 (-1088) (-857 |#1|)))) (|:| |geneigvec| (-583 (-630 (-347 (-857 |#1|))))))) (-630 (-347 (-857 |#1|)))) 103 T ELT)) (-1584 (((-583 (-630 (-347 (-857 |#1|)))) (-2 (|:| |eigval| (-3 (-347 (-857 |#1|)) (-1078 (-1088) (-857 |#1|)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-347 (-857 |#1|)))))) (-630 (-347 (-857 |#1|)))) 98 T ELT) (((-583 (-630 (-347 (-857 |#1|)))) (-3 (-347 (-857 |#1|)) (-1078 (-1088) (-857 |#1|))) (-630 (-347 (-857 |#1|))) (-694) (-694)) 42 T ELT)) (-1586 (((-583 (-2 (|:| |eigval| (-3 (-347 (-857 |#1|)) (-1078 (-1088) (-857 |#1|)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-347 (-857 |#1|))))))) (-630 (-347 (-857 |#1|)))) 100 T ELT)) (-1583 (((-583 (-630 (-347 (-857 |#1|)))) (-3 (-347 (-857 |#1|)) (-1078 (-1088) (-857 |#1|))) (-630 (-347 (-857 |#1|)))) 76 T ELT)) (-1582 (((-583 (-3 (-347 (-857 |#1|)) (-1078 (-1088) (-857 |#1|)))) (-630 (-347 (-857 |#1|)))) 75 T ELT)) (-2445 (((-857 |#1|) (-630 (-347 (-857 |#1|)))) 56 T ELT) (((-857 |#1|) (-630 (-347 (-857 |#1|))) (-1088)) 57 T ELT)))
-(((-247 |#1|) (-10 -7 (-15 -2445 ((-857 |#1|) (-630 (-347 (-857 |#1|))) (-1088))) (-15 -2445 ((-857 |#1|) (-630 (-347 (-857 |#1|))))) (-15 -1582 ((-583 (-3 (-347 (-857 |#1|)) (-1078 (-1088) (-857 |#1|)))) (-630 (-347 (-857 |#1|))))) (-15 -1583 ((-583 (-630 (-347 (-857 |#1|)))) (-3 (-347 (-857 |#1|)) (-1078 (-1088) (-857 |#1|))) (-630 (-347 (-857 |#1|))))) (-15 -1584 ((-583 (-630 (-347 (-857 |#1|)))) (-3 (-347 (-857 |#1|)) (-1078 (-1088) (-857 |#1|))) (-630 (-347 (-857 |#1|))) (-694) (-694))) (-15 -1584 ((-583 (-630 (-347 (-857 |#1|)))) (-2 (|:| |eigval| (-3 (-347 (-857 |#1|)) (-1078 (-1088) (-857 |#1|)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-347 (-857 |#1|)))))) (-630 (-347 (-857 |#1|))))) (-15 -1585 ((-583 (-2 (|:| |eigval| (-3 (-347 (-857 |#1|)) (-1078 (-1088) (-857 |#1|)))) (|:| |geneigvec| (-583 (-630 (-347 (-857 |#1|))))))) (-630 (-347 (-857 |#1|))))) (-15 -1586 ((-583 (-2 (|:| |eigval| (-3 (-347 (-857 |#1|)) (-1078 (-1088) (-857 |#1|)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-347 (-857 |#1|))))))) (-630 (-347 (-857 |#1|)))))) (-389)) (T -247))
-((-1586 (*1 *2 *3) (-12 (-4 *4 (-389)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-347 (-857 *4)) (-1078 (-1088) (-857 *4)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-347 (-857 *4)))))))) (-5 *1 (-247 *4)) (-5 *3 (-630 (-347 (-857 *4)))))) (-1585 (*1 *2 *3) (-12 (-4 *4 (-389)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-347 (-857 *4)) (-1078 (-1088) (-857 *4)))) (|:| |geneigvec| (-583 (-630 (-347 (-857 *4)))))))) (-5 *1 (-247 *4)) (-5 *3 (-630 (-347 (-857 *4)))))) (-1584 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-347 (-857 *5)) (-1078 (-1088) (-857 *5)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 *4)))) (-4 *5 (-389)) (-5 *2 (-583 (-630 (-347 (-857 *5))))) (-5 *1 (-247 *5)) (-5 *4 (-630 (-347 (-857 *5)))))) (-1584 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-347 (-857 *6)) (-1078 (-1088) (-857 *6)))) (-5 *5 (-694)) (-4 *6 (-389)) (-5 *2 (-583 (-630 (-347 (-857 *6))))) (-5 *1 (-247 *6)) (-5 *4 (-630 (-347 (-857 *6)))))) (-1583 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-347 (-857 *5)) (-1078 (-1088) (-857 *5)))) (-4 *5 (-389)) (-5 *2 (-583 (-630 (-347 (-857 *5))))) (-5 *1 (-247 *5)) (-5 *4 (-630 (-347 (-857 *5)))))) (-1582 (*1 *2 *3) (-12 (-5 *3 (-630 (-347 (-857 *4)))) (-4 *4 (-389)) (-5 *2 (-583 (-3 (-347 (-857 *4)) (-1078 (-1088) (-857 *4))))) (-5 *1 (-247 *4)))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-630 (-347 (-857 *4)))) (-5 *2 (-857 *4)) (-5 *1 (-247 *4)) (-4 *4 (-389)))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-347 (-857 *5)))) (-5 *4 (-1088)) (-5 *2 (-857 *5)) (-5 *1 (-247 *5)) (-4 *5 (-389)))))
-((-2564 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-3183 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1592 (($ $) 12 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-1601 (($ $ $) 95 (|has| |#1| (-253)) ELT)) (-3718 (($) NIL (OR (|has| |#1| (-21)) (|has| |#1| (-663))) CONST)) (-1590 (($ $) 51 (|has| |#1| (-21)) ELT)) (-1588 (((-3 $ #1#) $) 62 (|has| |#1| (-663)) ELT)) (-3522 ((|#1| $) 11 T ELT)) (-3461 (((-3 $ #1#) $) 60 (|has| |#1| (-663)) ELT)) (-2406 (((-85) $) NIL (|has| |#1| (-663)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-3523 ((|#1| $) 10 T ELT)) (-1591 (($ $) 50 (|has| |#1| (-21)) ELT)) (-1589 (((-3 $ #1#) $) 61 (|has| |#1| (-663)) ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-2480 (($ $) 64 (OR (|has| |#1| (-311)) (|has| |#1| (-410))) ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1587 (((-583 $) $) 85 (|has| |#1| (-494)) ELT)) (-3762 (($ $ $) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 $)) 28 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-1088) |#1|) 17 (|has| |#1| (-452 (-1088) |#1|)) ELT) (($ $ (-583 (-1088)) (-583 |#1|)) 21 (|has| |#1| (-452 (-1088) |#1|)) ELT)) (-3221 (($ |#1| |#1|) 9 T ELT)) (-3905 (((-107)) 90 (|has| |#1| (-311)) ELT)) (-3752 (($ $ (-1088)) 87 (|has| |#1| (-809 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-809 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-809 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-809 (-1088))) ELT)) (-3005 (($ $ $) NIL (|has| |#1| (-410)) ELT)) (-2431 (($ $ $) NIL (|has| |#1| (-410)) ELT)) (-3940 (($ (-483)) NIL (|has| |#1| (-961)) ELT) (((-85) $) 37 (|has| |#1| (-1012)) ELT) (((-772) $) 36 (|has| |#1| (-1012)) ELT)) (-3121 (((-694)) 67 (|has| |#1| (-961)) CONST)) (-1262 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-2656 (($) 47 (|has| |#1| (-21)) CONST)) (-2662 (($) 57 (|has| |#1| (-663)) CONST)) (-2665 (($ $ (-1088)) NIL (|has| |#1| (-809 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-809 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-809 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-809 (-1088))) ELT)) (-3052 (($ |#1| |#1|) 8 T ELT) (((-85) $ $) 32 (|has| |#1| (-1012)) ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) 92 (OR (|has| |#1| (-311)) (|has| |#1| (-410))) ELT)) (-3831 (($ |#1| $) 45 (|has| |#1| (-21)) ELT) (($ $ |#1|) 46 (|has| |#1| (-21)) ELT) (($ $ $) 44 (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3833 (($ |#1| $) 40 (|has| |#1| (-25)) ELT) (($ $ |#1|) 41 (|has| |#1| (-25)) ELT) (($ $ $) 39 (|has| |#1| (-25)) ELT)) (** (($ $ (-483)) NIL (|has| |#1| (-410)) ELT) (($ $ (-694)) NIL (|has| |#1| (-663)) ELT) (($ $ (-830)) NIL (|has| |#1| (-1024)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1024)) ELT) (($ |#1| $) 54 (|has| |#1| (-1024)) ELT) (($ $ $) 53 (|has| |#1| (-1024)) ELT) (($ (-483) $) 70 (|has| |#1| (-21)) ELT) (($ (-694) $) NIL (|has| |#1| (-21)) ELT) (($ (-830) $) NIL (|has| |#1| (-25)) ELT)))
-(((-248 |#1|) (-13 (-1127) (-10 -8 (-15 -3052 ($ |#1| |#1|)) (-15 -3221 ($ |#1| |#1|)) (-15 -1592 ($ $)) (-15 -3523 (|#1| $)) (-15 -3522 (|#1| $)) (-15 -3952 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-452 (-1088) |#1|)) (-6 (-452 (-1088) |#1|)) |%noBranch|) (IF (|has| |#1| (-1012)) (PROGN (-6 (-1012)) (-6 (-552 (-85))) (IF (|has| |#1| (-259 |#1|)) (PROGN (-15 -3762 ($ $ $)) (-15 -3762 ($ $ (-583 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3833 ($ |#1| $)) (-15 -3833 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1591 ($ $)) (-15 -1590 ($ $)) (-15 -3831 ($ |#1| $)) (-15 -3831 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1024)) (PROGN (-6 (-1024)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-663)) (PROGN (-6 (-663)) (-15 -1589 ((-3 $ #1="failed") $)) (-15 -1588 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-410)) (PROGN (-6 (-410)) (-15 -1589 ((-3 $ #1#) $)) (-15 -1588 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-961)) (PROGN (-6 (-961)) (-6 (-82 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-654 |#1|)) |%noBranch|) (IF (|has| |#1| (-494)) (-15 -1587 ((-583 $) $)) |%noBranch|) (IF (|has| |#1| (-809 (-1088))) (-6 (-809 (-1088))) |%noBranch|) (IF (|has| |#1| (-311)) (PROGN (-6 (-1185 |#1|)) (-15 -3943 ($ $ $)) (-15 -2480 ($ $))) |%noBranch|) (IF (|has| |#1| (-253)) (-15 -1601 ($ $ $)) |%noBranch|))) (-1127)) (T -248))
-((-3052 (*1 *1 *2 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1127)))) (-3221 (*1 *1 *2 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1127)))) (-1592 (*1 *1 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1127)))) (-3523 (*1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1127)))) (-3522 (*1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1127)))) (-3952 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-248 *3)))) (-3762 (*1 *1 *1 *1) (-12 (-4 *2 (-259 *2)) (-4 *2 (-1012)) (-4 *2 (-1127)) (-5 *1 (-248 *2)))) (-3762 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-248 *3))) (-4 *3 (-259 *3)) (-4 *3 (-1012)) (-4 *3 (-1127)) (-5 *1 (-248 *3)))) (-3833 (*1 *1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-25)) (-4 *2 (-1127)))) (-3833 (*1 *1 *1 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-25)) (-4 *2 (-1127)))) (-1591 (*1 *1 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-21)) (-4 *2 (-1127)))) (-1590 (*1 *1 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-21)) (-4 *2 (-1127)))) (-3831 (*1 *1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-21)) (-4 *2 (-1127)))) (-3831 (*1 *1 *1 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-21)) (-4 *2 (-1127)))) (-1589 (*1 *1 *1) (|partial| -12 (-5 *1 (-248 *2)) (-4 *2 (-663)) (-4 *2 (-1127)))) (-1588 (*1 *1 *1) (|partial| -12 (-5 *1 (-248 *2)) (-4 *2 (-663)) (-4 *2 (-1127)))) (-1587 (*1 *2 *1) (-12 (-5 *2 (-583 (-248 *3))) (-5 *1 (-248 *3)) (-4 *3 (-494)) (-4 *3 (-1127)))) (-1601 (*1 *1 *1 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-253)) (-4 *2 (-1127)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1024)) (-4 *2 (-1127)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1024)) (-4 *2 (-1127)))) (-3943 (*1 *1 *1 *1) (OR (-12 (-5 *1 (-248 *2)) (-4 *2 (-311)) (-4 *2 (-1127))) (-12 (-5 *1 (-248 *2)) (-4 *2 (-410)) (-4 *2 (-1127))))) (-2480 (*1 *1 *1) (OR (-12 (-5 *1 (-248 *2)) (-4 *2 (-311)) (-4 *2 (-1127))) (-12 (-5 *1 (-248 *2)) (-4 *2 (-410)) (-4 *2 (-1127))))))
-((-3952 (((-248 |#2|) (-1 |#2| |#1|) (-248 |#1|)) 14 T ELT)))
-(((-249 |#1| |#2|) (-10 -7 (-15 -3952 ((-248 |#2|) (-1 |#2| |#1|) (-248 |#1|)))) (-1127) (-1127)) (T -249))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-248 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-248 *6)) (-5 *1 (-249 *5 *6)))))
-((-2564 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3593 (($) NIL T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2194 (((-1183) $ |#1| |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3782 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1567 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-2227 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-3399 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3400 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#2| $ |#1|) NIL T ELT)) (-2885 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2196 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2604 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2197 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3990)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-2228 (((-583 |#1|) $) NIL T ELT)) (-2229 (((-85) |#1| $) NIL T ELT)) (-1271 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3603 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2199 (((-583 |#1|) $) NIL T ELT)) (-2200 (((-85) |#1| $) NIL T ELT)) (-3238 (((-1032) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-3795 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1351 (((-3 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2195 (($ $ |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-1272 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1944 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2201 (((-583 |#2|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1463 (($) NIL T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1943 (((-694) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-553 (-472))) ELT)) (-3524 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3940 (((-772) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1262 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1273 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-250 |#1| |#2|) (-13 (-1105 |#1| |#2|) (-10 -7 (-6 -3989))) (-1012) (-1012)) (T -250))
-NIL
-((-1593 (((-261) (-1071) (-583 (-1071))) 17 T ELT) (((-261) (-1071) (-1071)) 16 T ELT) (((-261) (-583 (-1071))) 15 T ELT) (((-261) (-1071)) 14 T ELT)))
-(((-251) (-10 -7 (-15 -1593 ((-261) (-1071))) (-15 -1593 ((-261) (-583 (-1071)))) (-15 -1593 ((-261) (-1071) (-1071))) (-15 -1593 ((-261) (-1071) (-583 (-1071)))))) (T -251))
-((-1593 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1071))) (-5 *3 (-1071)) (-5 *2 (-261)) (-5 *1 (-251)))) (-1593 (*1 *2 *3 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-261)) (-5 *1 (-251)))) (-1593 (*1 *2 *3) (-12 (-5 *3 (-583 (-1071))) (-5 *2 (-261)) (-5 *1 (-251)))) (-1593 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-261)) (-5 *1 (-251)))))
-((-1597 (((-583 (-550 $)) $) 27 T ELT)) (-1601 (($ $ (-248 $)) 78 T ELT) (($ $ (-583 (-248 $))) 140 T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT)) (-3152 (((-3 (-550 $) #1="failed") $) 128 T ELT)) (-3151 (((-550 $) $) 127 T ELT)) (-2569 (($ $) 17 T ELT) (($ (-583 $)) 54 T ELT)) (-1596 (((-583 (-86)) $) 35 T ELT)) (-3589 (((-86) (-86)) 89 T ELT)) (-2669 (((-85) $) 151 T ELT)) (-3952 (($ (-1 $ $) (-550 $)) 87 T ELT)) (-1599 (((-3 (-550 $) #1#) $) 95 T ELT)) (-2231 (($ (-86) $) 59 T ELT) (($ (-86) (-583 $)) 111 T ELT)) (-2629 (((-85) $ (-86)) 133 T ELT) (((-85) $ (-1088)) 132 T ELT)) (-2599 (((-694) $) 44 T ELT)) (-1595 (((-85) $ $) 57 T ELT) (((-85) $ (-1088)) 49 T ELT)) (-2670 (((-85) $) 149 T ELT)) (-3762 (($ $ (-550 $) $) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT) (($ $ (-583 (-248 $))) 138 T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-1 $ $))) 81 T ELT) (($ $ (-583 (-1088)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-1088) (-1 $ (-583 $))) 67 T ELT) (($ $ (-1088) (-1 $ $)) 72 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) 80 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) 83 T ELT) (($ $ (-86) (-1 $ (-583 $))) 68 T ELT) (($ $ (-86) (-1 $ $)) 74 T ELT)) (-3794 (($ (-86) $) 60 T ELT) (($ (-86) $ $) 61 T ELT) (($ (-86) $ $ $) 62 T ELT) (($ (-86) $ $ $ $) 63 T ELT) (($ (-86) (-583 $)) 124 T ELT)) (-1600 (($ $) 51 T ELT) (($ $ $) 136 T ELT)) (-2586 (($ $) 15 T ELT) (($ (-583 $)) 53 T ELT)) (-2250 (((-85) (-86)) 21 T ELT)))
-(((-252 |#1|) (-10 -7 (-15 -2669 ((-85) |#1|)) (-15 -2670 ((-85) |#1|)) (-15 -3762 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3762 (|#1| |#1| (-86) (-1 |#1| (-583 |#1|)))) (-15 -3762 (|#1| |#1| (-583 (-86)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3762 (|#1| |#1| (-583 (-86)) (-583 (-1 |#1| |#1|)))) (-15 -3762 (|#1| |#1| (-1088) (-1 |#1| |#1|))) (-15 -3762 (|#1| |#1| (-1088) (-1 |#1| (-583 |#1|)))) (-15 -3762 (|#1| |#1| (-583 (-1088)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3762 (|#1| |#1| (-583 (-1088)) (-583 (-1 |#1| |#1|)))) (-15 -1595 ((-85) |#1| (-1088))) (-15 -1595 ((-85) |#1| |#1|)) (-15 -3952 (|#1| (-1 |#1| |#1|) (-550 |#1|))) (-15 -2231 (|#1| (-86) (-583 |#1|))) (-15 -2231 (|#1| (-86) |#1|)) (-15 -2629 ((-85) |#1| (-1088))) (-15 -2629 ((-85) |#1| (-86))) (-15 -2250 ((-85) (-86))) (-15 -3589 ((-86) (-86))) (-15 -1596 ((-583 (-86)) |#1|)) (-15 -1597 ((-583 (-550 |#1|)) |#1|)) (-15 -1599 ((-3 (-550 |#1|) #1="failed") |#1|)) (-15 -2599 ((-694) |#1|)) (-15 -1600 (|#1| |#1| |#1|)) (-15 -1600 (|#1| |#1|)) (-15 -2569 (|#1| (-583 |#1|))) (-15 -2569 (|#1| |#1|)) (-15 -2586 (|#1| (-583 |#1|))) (-15 -2586 (|#1| |#1|)) (-15 -1601 (|#1| |#1| (-583 (-550 |#1|)) (-583 |#1|))) (-15 -1601 (|#1| |#1| (-583 (-248 |#1|)))) (-15 -1601 (|#1| |#1| (-248 |#1|))) (-15 -3794 (|#1| (-86) (-583 |#1|))) (-15 -3794 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3794 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3794 (|#1| (-86) |#1| |#1|)) (-15 -3794 (|#1| (-86) |#1|)) (-15 -3762 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3762 (|#1| |#1| |#1| |#1|)) (-15 -3762 (|#1| |#1| (-248 |#1|))) (-15 -3762 (|#1| |#1| (-583 (-248 |#1|)))) (-15 -3762 (|#1| |#1| (-583 (-550 |#1|)) (-583 |#1|))) (-15 -3762 (|#1| |#1| (-550 |#1|) |#1|)) (-15 -3152 ((-3 (-550 |#1|) #1#) |#1|)) (-15 -3151 ((-550 |#1|) |#1|))) (-253)) (T -252))
-((-3589 (*1 *2 *2) (-12 (-5 *2 (-86)) (-5 *1 (-252 *3)) (-4 *3 (-253)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-252 *4)) (-4 *4 (-253)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-1597 (((-583 (-550 $)) $) 42 T ELT)) (-1601 (($ $ (-248 $)) 54 T ELT) (($ $ (-583 (-248 $))) 53 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 52 T ELT)) (-3152 (((-3 (-550 $) "failed") $) 67 T ELT)) (-3151 (((-550 $) $) 68 T ELT)) (-2569 (($ $) 49 T ELT) (($ (-583 $)) 48 T ELT)) (-1596 (((-583 (-86)) $) 41 T ELT)) (-3589 (((-86) (-86)) 40 T ELT)) (-2669 (((-85) $) 20 (|has| $ (-950 (-483))) ELT)) (-1594 (((-1083 $) (-550 $)) 23 (|has| $ (-961)) ELT)) (-3952 (($ (-1 $ $) (-550 $)) 34 T ELT)) (-1599 (((-3 (-550 $) "failed") $) 44 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-1598 (((-583 (-550 $)) $) 43 T ELT)) (-2231 (($ (-86) $) 36 T ELT) (($ (-86) (-583 $)) 35 T ELT)) (-2629 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1088)) 37 T ELT)) (-2599 (((-694) $) 45 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-1595 (((-85) $ $) 33 T ELT) (((-85) $ (-1088)) 32 T ELT)) (-2670 (((-85) $) 21 (|has| $ (-950 (-483))) ELT)) (-3762 (($ $ (-550 $) $) 65 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 64 T ELT) (($ $ (-583 (-248 $))) 63 T ELT) (($ $ (-248 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-583 $) (-583 $)) 60 T ELT) (($ $ (-583 (-1088)) (-583 (-1 $ $))) 31 T ELT) (($ $ (-583 (-1088)) (-583 (-1 $ (-583 $)))) 30 T ELT) (($ $ (-1088) (-1 $ (-583 $))) 29 T ELT) (($ $ (-1088) (-1 $ $)) 28 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) 27 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-583 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT)) (-3794 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-583 $)) 55 T ELT)) (-1600 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3180 (($ $) 22 (|has| $ (-961)) ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-550 $)) 66 T ELT)) (-2586 (($ $) 51 T ELT) (($ (-583 $)) 50 T ELT)) (-2250 (((-85) (-86)) 39 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT)))
+(-13 (-962) (-82 $ $) (-10 -7 (-6 -3984)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-484)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
+((-1582 (((-584 (-997)) $) 10 T ELT)) (-1580 (($ (-444) (-444) (-1015) $) 19 T ELT)) (-1578 (($ (-444) (-584 (-877)) $) 23 T ELT)) (-1576 (($) 25 T ELT)) (-1581 (((-633 (-1015)) (-444) (-444) $) 18 T ELT)) (-1579 (((-584 (-877)) (-444) $) 22 T ELT)) (-3561 (($) 7 T ELT)) (-1577 (($) 24 T ELT)) (-3942 (((-773) $) 29 T ELT)) (-1575 (($) 26 T ELT)))
+(((-246) (-13 (-553 (-773)) (-10 -8 (-15 -3561 ($)) (-15 -1582 ((-584 (-997)) $)) (-15 -1581 ((-633 (-1015)) (-444) (-444) $)) (-15 -1580 ($ (-444) (-444) (-1015) $)) (-15 -1579 ((-584 (-877)) (-444) $)) (-15 -1578 ($ (-444) (-584 (-877)) $)) (-15 -1577 ($)) (-15 -1576 ($)) (-15 -1575 ($))))) (T -246))
+((-3561 (*1 *1) (-5 *1 (-246))) (-1582 (*1 *2 *1) (-12 (-5 *2 (-584 (-997))) (-5 *1 (-246)))) (-1581 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-633 (-1015))) (-5 *1 (-246)))) (-1580 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-444)) (-5 *3 (-1015)) (-5 *1 (-246)))) (-1579 (*1 *2 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-584 (-877))) (-5 *1 (-246)))) (-1578 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-444)) (-5 *3 (-584 (-877))) (-5 *1 (-246)))) (-1577 (*1 *1) (-5 *1 (-246))) (-1576 (*1 *1) (-5 *1 (-246))) (-1575 (*1 *1) (-5 *1 (-246))))
+((-1586 (((-584 (-2 (|:| |eigval| (-3 (-347 (-858 |#1|)) (-1079 (-1089) (-858 |#1|)))) (|:| |geneigvec| (-584 (-631 (-347 (-858 |#1|))))))) (-631 (-347 (-858 |#1|)))) 103 T ELT)) (-1585 (((-584 (-631 (-347 (-858 |#1|)))) (-2 (|:| |eigval| (-3 (-347 (-858 |#1|)) (-1079 (-1089) (-858 |#1|)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-347 (-858 |#1|)))))) (-631 (-347 (-858 |#1|)))) 98 T ELT) (((-584 (-631 (-347 (-858 |#1|)))) (-3 (-347 (-858 |#1|)) (-1079 (-1089) (-858 |#1|))) (-631 (-347 (-858 |#1|))) (-695) (-695)) 42 T ELT)) (-1587 (((-584 (-2 (|:| |eigval| (-3 (-347 (-858 |#1|)) (-1079 (-1089) (-858 |#1|)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-347 (-858 |#1|))))))) (-631 (-347 (-858 |#1|)))) 100 T ELT)) (-1584 (((-584 (-631 (-347 (-858 |#1|)))) (-3 (-347 (-858 |#1|)) (-1079 (-1089) (-858 |#1|))) (-631 (-347 (-858 |#1|)))) 76 T ELT)) (-1583 (((-584 (-3 (-347 (-858 |#1|)) (-1079 (-1089) (-858 |#1|)))) (-631 (-347 (-858 |#1|)))) 75 T ELT)) (-2447 (((-858 |#1|) (-631 (-347 (-858 |#1|)))) 56 T ELT) (((-858 |#1|) (-631 (-347 (-858 |#1|))) (-1089)) 57 T ELT)))
+(((-247 |#1|) (-10 -7 (-15 -2447 ((-858 |#1|) (-631 (-347 (-858 |#1|))) (-1089))) (-15 -2447 ((-858 |#1|) (-631 (-347 (-858 |#1|))))) (-15 -1583 ((-584 (-3 (-347 (-858 |#1|)) (-1079 (-1089) (-858 |#1|)))) (-631 (-347 (-858 |#1|))))) (-15 -1584 ((-584 (-631 (-347 (-858 |#1|)))) (-3 (-347 (-858 |#1|)) (-1079 (-1089) (-858 |#1|))) (-631 (-347 (-858 |#1|))))) (-15 -1585 ((-584 (-631 (-347 (-858 |#1|)))) (-3 (-347 (-858 |#1|)) (-1079 (-1089) (-858 |#1|))) (-631 (-347 (-858 |#1|))) (-695) (-695))) (-15 -1585 ((-584 (-631 (-347 (-858 |#1|)))) (-2 (|:| |eigval| (-3 (-347 (-858 |#1|)) (-1079 (-1089) (-858 |#1|)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-347 (-858 |#1|)))))) (-631 (-347 (-858 |#1|))))) (-15 -1586 ((-584 (-2 (|:| |eigval| (-3 (-347 (-858 |#1|)) (-1079 (-1089) (-858 |#1|)))) (|:| |geneigvec| (-584 (-631 (-347 (-858 |#1|))))))) (-631 (-347 (-858 |#1|))))) (-15 -1587 ((-584 (-2 (|:| |eigval| (-3 (-347 (-858 |#1|)) (-1079 (-1089) (-858 |#1|)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-347 (-858 |#1|))))))) (-631 (-347 (-858 |#1|)))))) (-389)) (T -247))
+((-1587 (*1 *2 *3) (-12 (-4 *4 (-389)) (-5 *2 (-584 (-2 (|:| |eigval| (-3 (-347 (-858 *4)) (-1079 (-1089) (-858 *4)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-347 (-858 *4)))))))) (-5 *1 (-247 *4)) (-5 *3 (-631 (-347 (-858 *4)))))) (-1586 (*1 *2 *3) (-12 (-4 *4 (-389)) (-5 *2 (-584 (-2 (|:| |eigval| (-3 (-347 (-858 *4)) (-1079 (-1089) (-858 *4)))) (|:| |geneigvec| (-584 (-631 (-347 (-858 *4)))))))) (-5 *1 (-247 *4)) (-5 *3 (-631 (-347 (-858 *4)))))) (-1585 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-347 (-858 *5)) (-1079 (-1089) (-858 *5)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 *4)))) (-4 *5 (-389)) (-5 *2 (-584 (-631 (-347 (-858 *5))))) (-5 *1 (-247 *5)) (-5 *4 (-631 (-347 (-858 *5)))))) (-1585 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-347 (-858 *6)) (-1079 (-1089) (-858 *6)))) (-5 *5 (-695)) (-4 *6 (-389)) (-5 *2 (-584 (-631 (-347 (-858 *6))))) (-5 *1 (-247 *6)) (-5 *4 (-631 (-347 (-858 *6)))))) (-1584 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-347 (-858 *5)) (-1079 (-1089) (-858 *5)))) (-4 *5 (-389)) (-5 *2 (-584 (-631 (-347 (-858 *5))))) (-5 *1 (-247 *5)) (-5 *4 (-631 (-347 (-858 *5)))))) (-1583 (*1 *2 *3) (-12 (-5 *3 (-631 (-347 (-858 *4)))) (-4 *4 (-389)) (-5 *2 (-584 (-3 (-347 (-858 *4)) (-1079 (-1089) (-858 *4))))) (-5 *1 (-247 *4)))) (-2447 (*1 *2 *3) (-12 (-5 *3 (-631 (-347 (-858 *4)))) (-5 *2 (-858 *4)) (-5 *1 (-247 *4)) (-4 *4 (-389)))) (-2447 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-347 (-858 *5)))) (-5 *4 (-1089)) (-5 *2 (-858 *5)) (-5 *1 (-247 *5)) (-4 *5 (-389)))))
+((-2566 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3185 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1593 (($ $) 12 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-1602 (($ $ $) 95 (|has| |#1| (-253)) ELT)) (-3720 (($) NIL (OR (|has| |#1| (-21)) (|has| |#1| (-664))) CONST)) (-1591 (($ $) 51 (|has| |#1| (-21)) ELT)) (-1589 (((-3 $ #1#) $) 62 (|has| |#1| (-664)) ELT)) (-3524 ((|#1| $) 11 T ELT)) (-3463 (((-3 $ #1#) $) 60 (|has| |#1| (-664)) ELT)) (-2408 (((-85) $) NIL (|has| |#1| (-664)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-3525 ((|#1| $) 10 T ELT)) (-1592 (($ $) 50 (|has| |#1| (-21)) ELT)) (-1590 (((-3 $ #1#) $) 61 (|has| |#1| (-664)) ELT)) (-3239 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-2482 (($ $) 64 (OR (|has| |#1| (-311)) (|has| |#1| (-410))) ELT)) (-3240 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1588 (((-584 $) $) 85 (|has| |#1| (-495)) ELT)) (-3764 (($ $ $) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 $)) 28 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-1089) |#1|) 17 (|has| |#1| (-453 (-1089) |#1|)) ELT) (($ $ (-584 (-1089)) (-584 |#1|)) 21 (|has| |#1| (-453 (-1089) |#1|)) ELT)) (-3223 (($ |#1| |#1|) 9 T ELT)) (-3907 (((-107)) 90 (|has| |#1| (-311)) ELT)) (-3754 (($ $ (-1089)) 87 (|has| |#1| (-810 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-810 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-810 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-810 (-1089))) ELT)) (-3007 (($ $ $) NIL (|has| |#1| (-410)) ELT)) (-2433 (($ $ $) NIL (|has| |#1| (-410)) ELT)) (-3942 (($ (-484)) NIL (|has| |#1| (-962)) ELT) (((-85) $) 37 (|has| |#1| (-1013)) ELT) (((-773) $) 36 (|has| |#1| (-1013)) ELT)) (-3123 (((-695)) 67 (|has| |#1| (-962)) CONST)) (-1263 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-2658 (($) 47 (|has| |#1| (-21)) CONST)) (-2664 (($) 57 (|has| |#1| (-664)) CONST)) (-2667 (($ $ (-1089)) NIL (|has| |#1| (-810 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-810 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-810 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-810 (-1089))) ELT)) (-3054 (($ |#1| |#1|) 8 T ELT) (((-85) $ $) 32 (|has| |#1| (-1013)) ELT)) (-3945 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) 92 (OR (|has| |#1| (-311)) (|has| |#1| (-410))) ELT)) (-3833 (($ |#1| $) 45 (|has| |#1| (-21)) ELT) (($ $ |#1|) 46 (|has| |#1| (-21)) ELT) (($ $ $) 44 (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3835 (($ |#1| $) 40 (|has| |#1| (-25)) ELT) (($ $ |#1|) 41 (|has| |#1| (-25)) ELT) (($ $ $) 39 (|has| |#1| (-25)) ELT)) (** (($ $ (-484)) NIL (|has| |#1| (-410)) ELT) (($ $ (-695)) NIL (|has| |#1| (-664)) ELT) (($ $ (-831)) NIL (|has| |#1| (-1025)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1025)) ELT) (($ |#1| $) 54 (|has| |#1| (-1025)) ELT) (($ $ $) 53 (|has| |#1| (-1025)) ELT) (($ (-484) $) 70 (|has| |#1| (-21)) ELT) (($ (-695) $) NIL (|has| |#1| (-21)) ELT) (($ (-831) $) NIL (|has| |#1| (-25)) ELT)))
+(((-248 |#1|) (-13 (-1128) (-10 -8 (-15 -3054 ($ |#1| |#1|)) (-15 -3223 ($ |#1| |#1|)) (-15 -1593 ($ $)) (-15 -3525 (|#1| $)) (-15 -3524 (|#1| $)) (-15 -3954 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-453 (-1089) |#1|)) (-6 (-453 (-1089) |#1|)) |%noBranch|) (IF (|has| |#1| (-1013)) (PROGN (-6 (-1013)) (-6 (-553 (-85))) (IF (|has| |#1| (-259 |#1|)) (PROGN (-15 -3764 ($ $ $)) (-15 -3764 ($ $ (-584 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3835 ($ |#1| $)) (-15 -3835 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1592 ($ $)) (-15 -1591 ($ $)) (-15 -3833 ($ |#1| $)) (-15 -3833 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1025)) (PROGN (-6 (-1025)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-664)) (PROGN (-6 (-664)) (-15 -1590 ((-3 $ #1="failed") $)) (-15 -1589 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-410)) (PROGN (-6 (-410)) (-15 -1590 ((-3 $ #1#) $)) (-15 -1589 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-962)) (PROGN (-6 (-962)) (-6 (-82 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-655 |#1|)) |%noBranch|) (IF (|has| |#1| (-495)) (-15 -1588 ((-584 $) $)) |%noBranch|) (IF (|has| |#1| (-810 (-1089))) (-6 (-810 (-1089))) |%noBranch|) (IF (|has| |#1| (-311)) (PROGN (-6 (-1186 |#1|)) (-15 -3945 ($ $ $)) (-15 -2482 ($ $))) |%noBranch|) (IF (|has| |#1| (-253)) (-15 -1602 ($ $ $)) |%noBranch|))) (-1128)) (T -248))
+((-3054 (*1 *1 *2 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1128)))) (-3223 (*1 *1 *2 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1128)))) (-1593 (*1 *1 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1128)))) (-3525 (*1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1128)))) (-3524 (*1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1128)))) (-3954 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-248 *3)))) (-3764 (*1 *1 *1 *1) (-12 (-4 *2 (-259 *2)) (-4 *2 (-1013)) (-4 *2 (-1128)) (-5 *1 (-248 *2)))) (-3764 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-248 *3))) (-4 *3 (-259 *3)) (-4 *3 (-1013)) (-4 *3 (-1128)) (-5 *1 (-248 *3)))) (-3835 (*1 *1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-25)) (-4 *2 (-1128)))) (-3835 (*1 *1 *1 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-25)) (-4 *2 (-1128)))) (-1592 (*1 *1 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))) (-1591 (*1 *1 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))) (-3833 (*1 *1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))) (-3833 (*1 *1 *1 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))) (-1590 (*1 *1 *1) (|partial| -12 (-5 *1 (-248 *2)) (-4 *2 (-664)) (-4 *2 (-1128)))) (-1589 (*1 *1 *1) (|partial| -12 (-5 *1 (-248 *2)) (-4 *2 (-664)) (-4 *2 (-1128)))) (-1588 (*1 *2 *1) (-12 (-5 *2 (-584 (-248 *3))) (-5 *1 (-248 *3)) (-4 *3 (-495)) (-4 *3 (-1128)))) (-1602 (*1 *1 *1 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-253)) (-4 *2 (-1128)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1025)) (-4 *2 (-1128)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1025)) (-4 *2 (-1128)))) (-3945 (*1 *1 *1 *1) (OR (-12 (-5 *1 (-248 *2)) (-4 *2 (-311)) (-4 *2 (-1128))) (-12 (-5 *1 (-248 *2)) (-4 *2 (-410)) (-4 *2 (-1128))))) (-2482 (*1 *1 *1) (OR (-12 (-5 *1 (-248 *2)) (-4 *2 (-311)) (-4 *2 (-1128))) (-12 (-5 *1 (-248 *2)) (-4 *2 (-410)) (-4 *2 (-1128))))))
+((-3954 (((-248 |#2|) (-1 |#2| |#1|) (-248 |#1|)) 14 T ELT)))
+(((-249 |#1| |#2|) (-10 -7 (-15 -3954 ((-248 |#2|) (-1 |#2| |#1|) (-248 |#1|)))) (-1128) (-1128)) (T -249))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-248 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-248 *6)) (-5 *1 (-249 *5 *6)))))
+((-2566 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3595 (($) NIL T ELT) (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2196 (((-1184) $ |#1| |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3784 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-3706 (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-2229 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3401 (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3991)) ELT) (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3402 (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-3838 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3991)) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-1574 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3992)) ELT)) (-3110 ((|#2| $ |#1|) NIL T ELT)) (-2887 (((-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2198 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2606 (((-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT)) (-2199 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2230 (((-584 |#1|) $) NIL T ELT)) (-2231 (((-85) |#1| $) NIL T ELT)) (-1272 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3605 (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2201 (((-584 |#1|) $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL T ELT)) (-3240 (((-1033) $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3797 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1352 (((-3 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2197 (($ $ |#2|) NIL (|has| $ (-6 -3992)) ELT)) (-1273 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-248 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2200 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT)) (-2203 (((-584 |#2|) $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) NIL T ELT)) (-3796 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1464 (($) NIL T ELT) (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1944 (((-695) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT) (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3396 (($ $) NIL T ELT)) (-3968 (((-473) $) NIL (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-554 (-473))) ELT)) (-3526 (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3942 (((-773) $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1263 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1274 (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-250 |#1| |#2|) (-13 (-1106 |#1| |#2|) (-10 -7 (-6 -3991))) (-1013) (-1013)) (T -250))
+NIL
+((-1594 (((-261) (-1072) (-584 (-1072))) 17 T ELT) (((-261) (-1072) (-1072)) 16 T ELT) (((-261) (-584 (-1072))) 15 T ELT) (((-261) (-1072)) 14 T ELT)))
+(((-251) (-10 -7 (-15 -1594 ((-261) (-1072))) (-15 -1594 ((-261) (-584 (-1072)))) (-15 -1594 ((-261) (-1072) (-1072))) (-15 -1594 ((-261) (-1072) (-584 (-1072)))))) (T -251))
+((-1594 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-1072))) (-5 *3 (-1072)) (-5 *2 (-261)) (-5 *1 (-251)))) (-1594 (*1 *2 *3 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-261)) (-5 *1 (-251)))) (-1594 (*1 *2 *3) (-12 (-5 *3 (-584 (-1072))) (-5 *2 (-261)) (-5 *1 (-251)))) (-1594 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-261)) (-5 *1 (-251)))))
+((-1598 (((-584 (-551 $)) $) 27 T ELT)) (-1602 (($ $ (-248 $)) 78 T ELT) (($ $ (-584 (-248 $))) 140 T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT)) (-3154 (((-3 (-551 $) #1="failed") $) 128 T ELT)) (-3153 (((-551 $) $) 127 T ELT)) (-2571 (($ $) 17 T ELT) (($ (-584 $)) 54 T ELT)) (-1597 (((-584 (-86)) $) 35 T ELT)) (-3591 (((-86) (-86)) 89 T ELT)) (-2671 (((-85) $) 151 T ELT)) (-3954 (($ (-1 $ $) (-551 $)) 87 T ELT)) (-1600 (((-3 (-551 $) #1#) $) 95 T ELT)) (-2233 (($ (-86) $) 59 T ELT) (($ (-86) (-584 $)) 111 T ELT)) (-2631 (((-85) $ (-86)) 133 T ELT) (((-85) $ (-1089)) 132 T ELT)) (-2601 (((-695) $) 44 T ELT)) (-1596 (((-85) $ $) 57 T ELT) (((-85) $ (-1089)) 49 T ELT)) (-2672 (((-85) $) 149 T ELT)) (-3764 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT) (($ $ (-584 (-248 $))) 138 T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-1 $ $))) 81 T ELT) (($ $ (-584 (-1089)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-1089) (-1 $ (-584 $))) 67 T ELT) (($ $ (-1089) (-1 $ $)) 72 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) 80 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) 83 T ELT) (($ $ (-86) (-1 $ (-584 $))) 68 T ELT) (($ $ (-86) (-1 $ $)) 74 T ELT)) (-3796 (($ (-86) $) 60 T ELT) (($ (-86) $ $) 61 T ELT) (($ (-86) $ $ $) 62 T ELT) (($ (-86) $ $ $ $) 63 T ELT) (($ (-86) (-584 $)) 124 T ELT)) (-1601 (($ $) 51 T ELT) (($ $ $) 136 T ELT)) (-2588 (($ $) 15 T ELT) (($ (-584 $)) 53 T ELT)) (-2252 (((-85) (-86)) 21 T ELT)))
+(((-252 |#1|) (-10 -7 (-15 -2671 ((-85) |#1|)) (-15 -2672 ((-85) |#1|)) (-15 -3764 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3764 (|#1| |#1| (-86) (-1 |#1| (-584 |#1|)))) (-15 -3764 (|#1| |#1| (-584 (-86)) (-584 (-1 |#1| (-584 |#1|))))) (-15 -3764 (|#1| |#1| (-584 (-86)) (-584 (-1 |#1| |#1|)))) (-15 -3764 (|#1| |#1| (-1089) (-1 |#1| |#1|))) (-15 -3764 (|#1| |#1| (-1089) (-1 |#1| (-584 |#1|)))) (-15 -3764 (|#1| |#1| (-584 (-1089)) (-584 (-1 |#1| (-584 |#1|))))) (-15 -3764 (|#1| |#1| (-584 (-1089)) (-584 (-1 |#1| |#1|)))) (-15 -1596 ((-85) |#1| (-1089))) (-15 -1596 ((-85) |#1| |#1|)) (-15 -3954 (|#1| (-1 |#1| |#1|) (-551 |#1|))) (-15 -2233 (|#1| (-86) (-584 |#1|))) (-15 -2233 (|#1| (-86) |#1|)) (-15 -2631 ((-85) |#1| (-1089))) (-15 -2631 ((-85) |#1| (-86))) (-15 -2252 ((-85) (-86))) (-15 -3591 ((-86) (-86))) (-15 -1597 ((-584 (-86)) |#1|)) (-15 -1598 ((-584 (-551 |#1|)) |#1|)) (-15 -1600 ((-3 (-551 |#1|) #1="failed") |#1|)) (-15 -2601 ((-695) |#1|)) (-15 -1601 (|#1| |#1| |#1|)) (-15 -1601 (|#1| |#1|)) (-15 -2571 (|#1| (-584 |#1|))) (-15 -2571 (|#1| |#1|)) (-15 -2588 (|#1| (-584 |#1|))) (-15 -2588 (|#1| |#1|)) (-15 -1602 (|#1| |#1| (-584 (-551 |#1|)) (-584 |#1|))) (-15 -1602 (|#1| |#1| (-584 (-248 |#1|)))) (-15 -1602 (|#1| |#1| (-248 |#1|))) (-15 -3796 (|#1| (-86) (-584 |#1|))) (-15 -3796 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3796 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3796 (|#1| (-86) |#1| |#1|)) (-15 -3796 (|#1| (-86) |#1|)) (-15 -3764 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-15 -3764 (|#1| |#1| |#1| |#1|)) (-15 -3764 (|#1| |#1| (-248 |#1|))) (-15 -3764 (|#1| |#1| (-584 (-248 |#1|)))) (-15 -3764 (|#1| |#1| (-584 (-551 |#1|)) (-584 |#1|))) (-15 -3764 (|#1| |#1| (-551 |#1|) |#1|)) (-15 -3154 ((-3 (-551 |#1|) #1#) |#1|)) (-15 -3153 ((-551 |#1|) |#1|))) (-253)) (T -252))
+((-3591 (*1 *2 *2) (-12 (-5 *2 (-86)) (-5 *1 (-252 *3)) (-4 *3 (-253)))) (-2252 (*1 *2 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-252 *4)) (-4 *4 (-253)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-1598 (((-584 (-551 $)) $) 42 T ELT)) (-1602 (($ $ (-248 $)) 54 T ELT) (($ $ (-584 (-248 $))) 53 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 52 T ELT)) (-3154 (((-3 (-551 $) "failed") $) 67 T ELT)) (-3153 (((-551 $) $) 68 T ELT)) (-2571 (($ $) 49 T ELT) (($ (-584 $)) 48 T ELT)) (-1597 (((-584 (-86)) $) 41 T ELT)) (-3591 (((-86) (-86)) 40 T ELT)) (-2671 (((-85) $) 20 (|has| $ (-951 (-484))) ELT)) (-1595 (((-1084 $) (-551 $)) 23 (|has| $ (-962)) ELT)) (-3954 (($ (-1 $ $) (-551 $)) 34 T ELT)) (-1600 (((-3 (-551 $) "failed") $) 44 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-1599 (((-584 (-551 $)) $) 43 T ELT)) (-2233 (($ (-86) $) 36 T ELT) (($ (-86) (-584 $)) 35 T ELT)) (-2631 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1089)) 37 T ELT)) (-2601 (((-695) $) 45 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-1596 (((-85) $ $) 33 T ELT) (((-85) $ (-1089)) 32 T ELT)) (-2672 (((-85) $) 21 (|has| $ (-951 (-484))) ELT)) (-3764 (($ $ (-551 $) $) 65 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 64 T ELT) (($ $ (-584 (-248 $))) 63 T ELT) (($ $ (-248 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-584 $) (-584 $)) 60 T ELT) (($ $ (-584 (-1089)) (-584 (-1 $ $))) 31 T ELT) (($ $ (-584 (-1089)) (-584 (-1 $ (-584 $)))) 30 T ELT) (($ $ (-1089) (-1 $ (-584 $))) 29 T ELT) (($ $ (-1089) (-1 $ $)) 28 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) 27 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-584 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT)) (-3796 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-584 $)) 55 T ELT)) (-1601 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3182 (($ $) 22 (|has| $ (-962)) ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-551 $)) 66 T ELT)) (-2588 (($ $) 51 T ELT) (($ (-584 $)) 50 T ELT)) (-2252 (((-85) (-86)) 39 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3054 (((-85) $ $) 8 T ELT)))
(((-253) (-113)) (T -253))
-((-3794 (*1 *1 *2 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) (-3794 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) (-3794 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) (-3794 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) (-3794 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 *1)) (-4 *1 (-253)))) (-1601 (*1 *1 *1 *2) (-12 (-5 *2 (-248 *1)) (-4 *1 (-253)))) (-1601 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-248 *1))) (-4 *1 (-253)))) (-1601 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-550 *1))) (-5 *3 (-583 *1)) (-4 *1 (-253)))) (-2586 (*1 *1 *1) (-4 *1 (-253))) (-2586 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-253)))) (-2569 (*1 *1 *1) (-4 *1 (-253))) (-2569 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-253)))) (-1600 (*1 *1 *1) (-4 *1 (-253))) (-1600 (*1 *1 *1 *1) (-4 *1 (-253))) (-2599 (*1 *2 *1) (-12 (-4 *1 (-253)) (-5 *2 (-694)))) (-1599 (*1 *2 *1) (|partial| -12 (-5 *2 (-550 *1)) (-4 *1 (-253)))) (-1598 (*1 *2 *1) (-12 (-5 *2 (-583 (-550 *1))) (-4 *1 (-253)))) (-1597 (*1 *2 *1) (-12 (-5 *2 (-583 (-550 *1))) (-4 *1 (-253)))) (-1596 (*1 *2 *1) (-12 (-4 *1 (-253)) (-5 *2 (-583 (-86))))) (-3589 (*1 *2 *2) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) (-2250 (*1 *2 *3) (-12 (-4 *1 (-253)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2629 (*1 *2 *1 *3) (-12 (-4 *1 (-253)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2629 (*1 *2 *1 *3) (-12 (-4 *1 (-253)) (-5 *3 (-1088)) (-5 *2 (-85)))) (-2231 (*1 *1 *2 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) (-2231 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 *1)) (-4 *1 (-253)))) (-3952 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-550 *1)) (-4 *1 (-253)))) (-1595 (*1 *2 *1 *1) (-12 (-4 *1 (-253)) (-5 *2 (-85)))) (-1595 (*1 *2 *1 *3) (-12 (-4 *1 (-253)) (-5 *3 (-1088)) (-5 *2 (-85)))) (-3762 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1088))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-253)))) (-3762 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1088))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-253)))) (-3762 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-253)))) (-3762 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-1 *1 *1)) (-4 *1 (-253)))) (-3762 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-253)))) (-3762 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-253)))) (-3762 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-253)))) (-3762 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 *1)) (-4 *1 (-253)))) (-1594 (*1 *2 *3) (-12 (-5 *3 (-550 *1)) (-4 *1 (-961)) (-4 *1 (-253)) (-5 *2 (-1083 *1)))) (-3180 (*1 *1 *1) (-12 (-4 *1 (-961)) (-4 *1 (-253)))) (-2670 (*1 *2 *1) (-12 (-4 *1 (-950 (-483))) (-4 *1 (-253)) (-5 *2 (-85)))) (-2669 (*1 *2 *1) (-12 (-4 *1 (-950 (-483))) (-4 *1 (-253)) (-5 *2 (-85)))))
-(-13 (-1012) (-950 (-550 $)) (-452 (-550 $) $) (-259 $) (-10 -8 (-15 -3794 ($ (-86) $)) (-15 -3794 ($ (-86) $ $)) (-15 -3794 ($ (-86) $ $ $)) (-15 -3794 ($ (-86) $ $ $ $)) (-15 -3794 ($ (-86) (-583 $))) (-15 -1601 ($ $ (-248 $))) (-15 -1601 ($ $ (-583 (-248 $)))) (-15 -1601 ($ $ (-583 (-550 $)) (-583 $))) (-15 -2586 ($ $)) (-15 -2586 ($ (-583 $))) (-15 -2569 ($ $)) (-15 -2569 ($ (-583 $))) (-15 -1600 ($ $)) (-15 -1600 ($ $ $)) (-15 -2599 ((-694) $)) (-15 -1599 ((-3 (-550 $) "failed") $)) (-15 -1598 ((-583 (-550 $)) $)) (-15 -1597 ((-583 (-550 $)) $)) (-15 -1596 ((-583 (-86)) $)) (-15 -3589 ((-86) (-86))) (-15 -2250 ((-85) (-86))) (-15 -2629 ((-85) $ (-86))) (-15 -2629 ((-85) $ (-1088))) (-15 -2231 ($ (-86) $)) (-15 -2231 ($ (-86) (-583 $))) (-15 -3952 ($ (-1 $ $) (-550 $))) (-15 -1595 ((-85) $ $)) (-15 -1595 ((-85) $ (-1088))) (-15 -3762 ($ $ (-583 (-1088)) (-583 (-1 $ $)))) (-15 -3762 ($ $ (-583 (-1088)) (-583 (-1 $ (-583 $))))) (-15 -3762 ($ $ (-1088) (-1 $ (-583 $)))) (-15 -3762 ($ $ (-1088) (-1 $ $))) (-15 -3762 ($ $ (-583 (-86)) (-583 (-1 $ $)))) (-15 -3762 ($ $ (-583 (-86)) (-583 (-1 $ (-583 $))))) (-15 -3762 ($ $ (-86) (-1 $ (-583 $)))) (-15 -3762 ($ $ (-86) (-1 $ $))) (IF (|has| $ (-961)) (PROGN (-15 -1594 ((-1083 $) (-550 $))) (-15 -3180 ($ $))) |%noBranch|) (IF (|has| $ (-950 (-483))) (PROGN (-15 -2670 ((-85) $)) (-15 -2669 ((-85) $))) |%noBranch|)))
-(((-72) . T) ((-555 (-550 $)) . T) ((-552 (-772)) . T) ((-259 $) . T) ((-452 (-550 $) $) . T) ((-452 $ $) . T) ((-13) . T) ((-950 (-550 $)) . T) ((-1012) . T) ((-1127) . T))
-((-3952 ((|#2| (-1 |#2| |#1|) (-1071) (-550 |#1|)) 18 T ELT)))
-(((-254 |#1| |#2|) (-10 -7 (-15 -3952 (|#2| (-1 |#2| |#1|) (-1071) (-550 |#1|)))) (-253) (-1127)) (T -254))
-((-3952 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1071)) (-5 *5 (-550 *6)) (-4 *6 (-253)) (-4 *2 (-1127)) (-5 *1 (-254 *6 *2)))))
-((-3952 ((|#2| (-1 |#2| |#1|) (-550 |#1|)) 17 T ELT)))
-(((-255 |#1| |#2|) (-10 -7 (-15 -3952 (|#2| (-1 |#2| |#1|) (-550 |#1|)))) (-253) (-253)) (T -255))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-550 *5)) (-4 *5 (-253)) (-4 *2 (-253)) (-5 *1 (-255 *5 *2)))))
-((-1605 (((-85) $ $) 14 T ELT)) (-2560 (($ $ $) 18 T ELT)) (-2559 (($ $ $) 17 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 50 T ELT)) (-1602 (((-3 (-583 $) #1="failed") (-583 $) $) 67 T ELT)) (-3139 (($ $ $) 25 T ELT) (($ (-583 $)) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 40 T ELT)) (-3460 (((-3 $ #1#) $ $) 21 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 55 T ELT)))
-(((-256 |#1|) (-10 -7 (-15 -1602 ((-3 (-583 |#1|) #1="failed") (-583 |#1|) |#1|)) (-15 -1603 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) #1#) |#1| |#1| |#1|)) (-15 -1603 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2405 |#1|)) |#1| |#1|)) (-15 -2560 (|#1| |#1| |#1|)) (-15 -2559 (|#1| |#1| |#1|)) (-15 -1605 ((-85) |#1| |#1|)) (-15 -2736 ((-632 (-583 |#1|)) (-583 |#1|) |#1|)) (-15 -2737 ((-2 (|:| -3948 (-583 |#1|)) (|:| -2405 |#1|)) (-583 |#1|))) (-15 -3139 (|#1| (-583 |#1|))) (-15 -3139 (|#1| |#1| |#1|)) (-15 -3460 ((-3 |#1| #1#) |#1| |#1|))) (-257)) (T -256))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-1605 (((-85) $ $) 73 T ELT)) (-3718 (($) 22 T CONST)) (-2560 (($ $ $) 69 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2559 (($ $ $) 70 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 64 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-1602 (((-3 (-583 $) "failed") (-583 $) $) 66 T ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 67 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 63 T ELT)) (-1604 (((-694) $) 72 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 71 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT)))
+((-3796 (*1 *1 *2 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) (-3796 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) (-3796 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) (-3796 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) (-3796 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 *1)) (-4 *1 (-253)))) (-1602 (*1 *1 *1 *2) (-12 (-5 *2 (-248 *1)) (-4 *1 (-253)))) (-1602 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-248 *1))) (-4 *1 (-253)))) (-1602 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-551 *1))) (-5 *3 (-584 *1)) (-4 *1 (-253)))) (-2588 (*1 *1 *1) (-4 *1 (-253))) (-2588 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-253)))) (-2571 (*1 *1 *1) (-4 *1 (-253))) (-2571 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-253)))) (-1601 (*1 *1 *1) (-4 *1 (-253))) (-1601 (*1 *1 *1 *1) (-4 *1 (-253))) (-2601 (*1 *2 *1) (-12 (-4 *1 (-253)) (-5 *2 (-695)))) (-1600 (*1 *2 *1) (|partial| -12 (-5 *2 (-551 *1)) (-4 *1 (-253)))) (-1599 (*1 *2 *1) (-12 (-5 *2 (-584 (-551 *1))) (-4 *1 (-253)))) (-1598 (*1 *2 *1) (-12 (-5 *2 (-584 (-551 *1))) (-4 *1 (-253)))) (-1597 (*1 *2 *1) (-12 (-4 *1 (-253)) (-5 *2 (-584 (-86))))) (-3591 (*1 *2 *2) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) (-2252 (*1 *2 *3) (-12 (-4 *1 (-253)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2631 (*1 *2 *1 *3) (-12 (-4 *1 (-253)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2631 (*1 *2 *1 *3) (-12 (-4 *1 (-253)) (-5 *3 (-1089)) (-5 *2 (-85)))) (-2233 (*1 *1 *2 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86)))) (-2233 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 *1)) (-4 *1 (-253)))) (-3954 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-551 *1)) (-4 *1 (-253)))) (-1596 (*1 *2 *1 *1) (-12 (-4 *1 (-253)) (-5 *2 (-85)))) (-1596 (*1 *2 *1 *3) (-12 (-4 *1 (-253)) (-5 *3 (-1089)) (-5 *2 (-85)))) (-3764 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1089))) (-5 *3 (-584 (-1 *1 *1))) (-4 *1 (-253)))) (-3764 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1089))) (-5 *3 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-253)))) (-3764 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1 *1 (-584 *1))) (-4 *1 (-253)))) (-3764 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1 *1 *1)) (-4 *1 (-253)))) (-3764 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 (-1 *1 *1))) (-4 *1 (-253)))) (-3764 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-253)))) (-3764 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-584 *1))) (-4 *1 (-253)))) (-3764 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 *1)) (-4 *1 (-253)))) (-1595 (*1 *2 *3) (-12 (-5 *3 (-551 *1)) (-4 *1 (-962)) (-4 *1 (-253)) (-5 *2 (-1084 *1)))) (-3182 (*1 *1 *1) (-12 (-4 *1 (-962)) (-4 *1 (-253)))) (-2672 (*1 *2 *1) (-12 (-4 *1 (-951 (-484))) (-4 *1 (-253)) (-5 *2 (-85)))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-951 (-484))) (-4 *1 (-253)) (-5 *2 (-85)))))
+(-13 (-1013) (-951 (-551 $)) (-453 (-551 $) $) (-259 $) (-10 -8 (-15 -3796 ($ (-86) $)) (-15 -3796 ($ (-86) $ $)) (-15 -3796 ($ (-86) $ $ $)) (-15 -3796 ($ (-86) $ $ $ $)) (-15 -3796 ($ (-86) (-584 $))) (-15 -1602 ($ $ (-248 $))) (-15 -1602 ($ $ (-584 (-248 $)))) (-15 -1602 ($ $ (-584 (-551 $)) (-584 $))) (-15 -2588 ($ $)) (-15 -2588 ($ (-584 $))) (-15 -2571 ($ $)) (-15 -2571 ($ (-584 $))) (-15 -1601 ($ $)) (-15 -1601 ($ $ $)) (-15 -2601 ((-695) $)) (-15 -1600 ((-3 (-551 $) "failed") $)) (-15 -1599 ((-584 (-551 $)) $)) (-15 -1598 ((-584 (-551 $)) $)) (-15 -1597 ((-584 (-86)) $)) (-15 -3591 ((-86) (-86))) (-15 -2252 ((-85) (-86))) (-15 -2631 ((-85) $ (-86))) (-15 -2631 ((-85) $ (-1089))) (-15 -2233 ($ (-86) $)) (-15 -2233 ($ (-86) (-584 $))) (-15 -3954 ($ (-1 $ $) (-551 $))) (-15 -1596 ((-85) $ $)) (-15 -1596 ((-85) $ (-1089))) (-15 -3764 ($ $ (-584 (-1089)) (-584 (-1 $ $)))) (-15 -3764 ($ $ (-584 (-1089)) (-584 (-1 $ (-584 $))))) (-15 -3764 ($ $ (-1089) (-1 $ (-584 $)))) (-15 -3764 ($ $ (-1089) (-1 $ $))) (-15 -3764 ($ $ (-584 (-86)) (-584 (-1 $ $)))) (-15 -3764 ($ $ (-584 (-86)) (-584 (-1 $ (-584 $))))) (-15 -3764 ($ $ (-86) (-1 $ (-584 $)))) (-15 -3764 ($ $ (-86) (-1 $ $))) (IF (|has| $ (-962)) (PROGN (-15 -1595 ((-1084 $) (-551 $))) (-15 -3182 ($ $))) |%noBranch|) (IF (|has| $ (-951 (-484))) (PROGN (-15 -2672 ((-85) $)) (-15 -2671 ((-85) $))) |%noBranch|)))
+(((-72) . T) ((-556 (-551 $)) . T) ((-553 (-773)) . T) ((-259 $) . T) ((-453 (-551 $) $) . T) ((-453 $ $) . T) ((-13) . T) ((-951 (-551 $)) . T) ((-1013) . T) ((-1128) . T))
+((-3954 ((|#2| (-1 |#2| |#1|) (-1072) (-551 |#1|)) 18 T ELT)))
+(((-254 |#1| |#2|) (-10 -7 (-15 -3954 (|#2| (-1 |#2| |#1|) (-1072) (-551 |#1|)))) (-253) (-1128)) (T -254))
+((-3954 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1072)) (-5 *5 (-551 *6)) (-4 *6 (-253)) (-4 *2 (-1128)) (-5 *1 (-254 *6 *2)))))
+((-3954 ((|#2| (-1 |#2| |#1|) (-551 |#1|)) 17 T ELT)))
+(((-255 |#1| |#2|) (-10 -7 (-15 -3954 (|#2| (-1 |#2| |#1|) (-551 |#1|)))) (-253) (-253)) (T -255))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-551 *5)) (-4 *5 (-253)) (-4 *2 (-253)) (-5 *1 (-255 *5 *2)))))
+((-1606 (((-85) $ $) 14 T ELT)) (-2562 (($ $ $) 18 T ELT)) (-2561 (($ $ $) 17 T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) 50 T ELT)) (-1603 (((-3 (-584 $) #1="failed") (-584 $) $) 67 T ELT)) (-3141 (($ $ $) 25 T ELT) (($ (-584 $)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 40 T ELT)) (-3462 (((-3 $ #1#) $ $) 21 T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) 55 T ELT)))
+(((-256 |#1|) (-10 -7 (-15 -1603 ((-3 (-584 |#1|) #1="failed") (-584 |#1|) |#1|)) (-15 -1604 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) #1#) |#1| |#1| |#1|)) (-15 -1604 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2407 |#1|)) |#1| |#1|)) (-15 -2562 (|#1| |#1| |#1|)) (-15 -2561 (|#1| |#1| |#1|)) (-15 -1606 ((-85) |#1| |#1|)) (-15 -2738 ((-633 (-584 |#1|)) (-584 |#1|) |#1|)) (-15 -2739 ((-2 (|:| -3950 (-584 |#1|)) (|:| -2407 |#1|)) (-584 |#1|))) (-15 -3141 (|#1| (-584 |#1|))) (-15 -3141 (|#1| |#1| |#1|)) (-15 -3462 ((-3 |#1| #1#) |#1| |#1|))) (-257)) (T -256))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 53 T ELT)) (-2061 (($ $) 52 T ELT)) (-2059 (((-85) $) 50 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-1606 (((-85) $ $) 73 T ELT)) (-3720 (($) 22 T CONST)) (-2562 (($ $ $) 69 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2561 (($ $ $) 70 T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) 64 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-1603 (((-3 (-584 $) "failed") (-584 $) $) 66 T ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3141 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 67 T ELT)) (-3462 (((-3 $ "failed") $ $) 54 T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) 63 T ELT)) (-1605 (((-695) $) 72 T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 71 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2060 (((-85) $ $) 51 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT)))
(((-257) (-113)) (T -257))
-((-1605 (*1 *2 *1 *1) (-12 (-4 *1 (-257)) (-5 *2 (-85)))) (-1604 (*1 *2 *1) (-12 (-4 *1 (-257)) (-5 *2 (-694)))) (-2875 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1))) (-4 *1 (-257)))) (-2559 (*1 *1 *1 *1) (-4 *1 (-257))) (-2560 (*1 *1 *1 *1) (-4 *1 (-257))) (-1603 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2405 *1))) (-4 *1 (-257)))) (-1603 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-257)))) (-1602 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-257)))))
-(-13 (-832) (-10 -8 (-15 -1605 ((-85) $ $)) (-15 -1604 ((-694) $)) (-15 -2875 ((-2 (|:| -1970 $) (|:| -2898 $)) $ $)) (-15 -2559 ($ $ $)) (-15 -2560 ($ $ $)) (-15 -1603 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $)) (-15 -1603 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1602 ((-3 (-583 $) "failed") (-583 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-483)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-245) . T) ((-389) . T) ((-494) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T))
-((-3762 (($ $ (-583 |#2|) (-583 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-248 |#2|)) 11 T ELT) (($ $ (-583 (-248 |#2|))) NIL T ELT)))
-(((-258 |#1| |#2|) (-10 -7 (-15 -3762 (|#1| |#1| (-583 (-248 |#2|)))) (-15 -3762 (|#1| |#1| (-248 |#2|))) (-15 -3762 (|#1| |#1| |#2| |#2|)) (-15 -3762 (|#1| |#1| (-583 |#2|) (-583 |#2|)))) (-259 |#2|) (-1012)) (T -258))
-NIL
-((-3762 (($ $ (-583 |#1|) (-583 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-248 |#1|)) 13 T ELT) (($ $ (-583 (-248 |#1|))) 12 T ELT)))
-(((-259 |#1|) (-113) (-1012)) (T -259))
-((-3762 (*1 *1 *1 *2) (-12 (-5 *2 (-248 *3)) (-4 *1 (-259 *3)) (-4 *3 (-1012)))) (-3762 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-248 *3))) (-4 *1 (-259 *3)) (-4 *3 (-1012)))))
-(-13 (-452 |t#1| |t#1|) (-10 -8 (-15 -3762 ($ $ (-248 |t#1|))) (-15 -3762 ($ $ (-583 (-248 |t#1|))))))
-(((-452 |#1| |#1|) . T))
-((-3762 ((|#1| (-1 |#1| (-483)) (-1090 (-347 (-483)))) 26 T ELT)))
-(((-260 |#1|) (-10 -7 (-15 -3762 (|#1| (-1 |#1| (-483)) (-1090 (-347 (-483)))))) (-38 (-347 (-483)))) (T -260))
-((-3762 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-483))) (-5 *4 (-1090 (-347 (-483)))) (-5 *1 (-260 *2)) (-4 *2 (-38 (-347 (-483)))))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 7 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 9 T ELT)))
-(((-261) (-1012)) (T -261))
-NIL
-((-2564 (((-85) $ $) NIL T ELT)) (-3500 (((-483) $) 13 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3201 (((-1047) $) 10 T ELT)) (-3940 (((-772) $) 20 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-262) (-13 (-994) (-10 -8 (-15 -3201 ((-1047) $)) (-15 -3500 ((-483) $))))) (T -262))
-((-3201 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-262)))) (-3500 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-262)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 60 T ELT)) (-3124 (((-1164 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-257)) ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-821)) ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-821)) ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3617 (((-483) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-740)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-1164 |#1| |#2| |#3| |#4|) #1#) $) NIL T ELT) (((-3 (-1088) #1#) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-950 (-1088))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-950 (-483))) ELT) (((-3 (-483) #1#) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-950 (-483))) ELT) (((-3 (-1158 |#2| |#3| |#4|) #1#) $) 26 T ELT)) (-3151 (((-1164 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1088) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-950 (-1088))) ELT) (((-347 (-483)) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-950 (-483))) ELT) (((-483) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-950 (-483))) ELT) (((-1158 |#2| |#3| |#4|) $) NIL T ELT)) (-2560 (($ $ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-1164 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1177 (-1164 |#1| |#2| |#3| |#4|)))) (-630 $) (-1177 $)) NIL T ELT) (((-630 (-1164 |#1| |#2| |#3| |#4|)) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-482)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-3181 (((-85) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-740)) ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-796 (-483))) ELT) (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-796 (-327))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2992 (($ $) NIL T ELT)) (-2994 (((-1164 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-3439 (((-632 $) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-1064)) ELT)) (-3182 (((-85) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-740)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2527 (($ $ $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-3952 (($ (-1 (-1164 |#1| |#2| |#3| |#4|) (-1164 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-3778 (((-3 (-750 |#2|) #1#) $) 80 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-1164 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1177 (-1164 |#1| |#2| |#3| |#4|)))) (-1177 $) $) NIL T ELT) (((-630 (-1164 |#1| |#2| |#3| |#4|)) (-1177 $)) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-1064)) CONST)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3123 (($ $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-257)) ELT)) (-3125 (((-1164 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-482)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-821)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3762 (($ $ (-583 (-1164 |#1| |#2| |#3| |#4|)) (-583 (-1164 |#1| |#2| |#3| |#4|))) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-259 (-1164 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1164 |#1| |#2| |#3| |#4|) (-1164 |#1| |#2| |#3| |#4|)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-259 (-1164 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-248 (-1164 |#1| |#2| |#3| |#4|))) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-259 (-1164 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-583 (-248 (-1164 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-259 (-1164 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-583 (-1088)) (-583 (-1164 |#1| |#2| |#3| |#4|))) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-452 (-1088) (-1164 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1088) (-1164 |#1| |#2| |#3| |#4|)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-452 (-1088) (-1164 |#1| |#2| |#3| |#4|))) ELT)) (-1604 (((-694) $) NIL T ELT)) (-3794 (($ $ (-1164 |#1| |#2| |#3| |#4|)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-241 (-1164 |#1| |#2| |#3| |#4|) (-1164 |#1| |#2| |#3| |#4|))) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-3752 (($ $ (-1 (-1164 |#1| |#2| |#3| |#4|) (-1164 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1164 |#1| |#2| |#3| |#4|) (-1164 |#1| |#2| |#3| |#4|)) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-811 (-1088))) ELT) (($ $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-2991 (($ $) NIL T ELT)) (-2993 (((-1164 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-3966 (((-800 (-483)) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-553 (-800 (-483)))) ELT) (((-800 (-327)) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-553 (-800 (-327)))) ELT) (((-472) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-553 (-472))) ELT) (((-327) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-933)) ELT) (((-179) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-933)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-1164 |#1| |#2| |#3| |#4|) (-821))) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ (-1164 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1088)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-950 (-1088))) ELT) (($ (-1158 |#2| |#3| |#4|)) 37 T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1164 |#1| |#2| |#3| |#4|) (-821))) (|has| (-1164 |#1| |#2| |#3| |#4|) (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-3126 (((-1164 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-482)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3377 (($ $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-740)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-1 (-1164 |#1| |#2| |#3| |#4|) (-1164 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1164 |#1| |#2| |#3| |#4|) (-1164 |#1| |#2| |#3| |#4|)) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-811 (-1088))) ELT) (($ $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-2562 (((-85) $ $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| (-1164 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-3943 (($ $ $) 35 T ELT) (($ (-1164 |#1| |#2| |#3| |#4|) (-1164 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ (-1164 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1164 |#1| |#2| |#3| |#4|)) NIL T ELT)))
-(((-263 |#1| |#2| |#3| |#4|) (-13 (-904 (-1164 |#1| |#2| |#3| |#4|)) (-950 (-1158 |#2| |#3| |#4|)) (-10 -8 (-15 -3778 ((-3 (-750 |#2|) "failed") $)) (-15 -3940 ($ (-1158 |#2| |#3| |#4|))))) (-13 (-950 (-483)) (-580 (-483)) (-389)) (-13 (-27) (-1113) (-361 |#1|)) (-1088) |#2|) (T -263))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1158 *4 *5 *6)) (-4 *4 (-13 (-27) (-1113) (-361 *3))) (-14 *5 (-1088)) (-14 *6 *4) (-4 *3 (-13 (-950 (-483)) (-580 (-483)) (-389))) (-5 *1 (-263 *3 *4 *5 *6)))) (-3778 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-950 (-483)) (-580 (-483)) (-389))) (-5 *2 (-750 *4)) (-5 *1 (-263 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1113) (-361 *3))) (-14 *5 (-1088)) (-14 *6 *4))))
-((-2564 (((-85) $ $) NIL T ELT)) (-1212 (((-583 $) $ (-1088)) NIL (|has| |#1| (-494)) ELT) (((-583 $) $) NIL (|has| |#1| (-494)) ELT) (((-583 $) (-1083 $) (-1088)) NIL (|has| |#1| (-494)) ELT) (((-583 $) (-1083 $)) NIL (|has| |#1| (-494)) ELT) (((-583 $) (-857 $)) NIL (|has| |#1| (-494)) ELT)) (-1213 (($ $ (-1088)) NIL (|has| |#1| (-494)) ELT) (($ $) NIL (|has| |#1| (-494)) ELT) (($ (-1083 $) (-1088)) NIL (|has| |#1| (-494)) ELT) (($ (-1083 $)) NIL (|has| |#1| (-494)) ELT) (($ (-857 $)) NIL (|has| |#1| (-494)) ELT)) (-3183 (((-85) $) 29 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961)))) ELT)) (-3077 (((-583 (-1088)) $) 365 T ELT)) (-3079 (((-347 (-1083 $)) $ (-550 $)) NIL (|has| |#1| (-494)) ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-1597 (((-583 (-550 $)) $) NIL T ELT)) (-3486 (($ $) 170 (|has| |#1| (-494)) ELT)) (-3633 (($ $) 146 (|has| |#1| (-494)) ELT)) (-1369 (($ $ (-1003 $)) 231 (|has| |#1| (-494)) ELT) (($ $ (-1088)) 227 (|has| |#1| (-494)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961)))) ELT)) (-1601 (($ $ (-248 $)) NIL T ELT) (($ $ (-583 (-248 $))) 383 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 438 T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) 305 (-12 (|has| |#1| (-389)) (|has| |#1| (-494))) ELT)) (-3769 (($ $) NIL (|has| |#1| (-494)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-494)) ELT)) (-3033 (($ $) NIL (|has| |#1| (-494)) ELT)) (-1605 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3484 (($ $) 166 (|has| |#1| (-494)) ELT)) (-3632 (($ $) 142 (|has| |#1| (-494)) ELT)) (-1606 (($ $ (-483)) 68 (|has| |#1| (-494)) ELT)) (-3488 (($ $) 174 (|has| |#1| (-494)) ELT)) (-3631 (($ $) 150 (|has| |#1| (-494)) ELT)) (-3718 (($) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961))) (|has| |#1| (-1024))) CONST)) (-1214 (((-583 $) $ (-1088)) NIL (|has| |#1| (-494)) ELT) (((-583 $) $) NIL (|has| |#1| (-494)) ELT) (((-583 $) (-1083 $) (-1088)) NIL (|has| |#1| (-494)) ELT) (((-583 $) (-1083 $)) NIL (|has| |#1| (-494)) ELT) (((-583 $) (-857 $)) NIL (|has| |#1| (-494)) ELT)) (-3178 (($ $ (-1088)) NIL (|has| |#1| (-494)) ELT) (($ $) NIL (|has| |#1| (-494)) ELT) (($ (-1083 $) (-1088)) 133 (|has| |#1| (-494)) ELT) (($ (-1083 $)) NIL (|has| |#1| (-494)) ELT) (($ (-857 $)) NIL (|has| |#1| (-494)) ELT)) (-3152 (((-3 (-550 $) #1#) $) 18 T ELT) (((-3 (-1088) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 450 T ELT) (((-3 (-48) #1#) $) 333 (-12 (|has| |#1| (-494)) (|has| |#1| (-950 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-857 |#1|)) #1#) $) NIL (|has| |#1| (-494)) ELT) (((-3 (-857 |#1|) #1#) $) NIL (|has| |#1| (-961)) ELT) (((-3 (-347 (-483)) #1#) $) 48 (OR (-12 (|has| |#1| (-494)) (|has| |#1| (-950 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ELT)) (-3151 (((-550 $) $) 12 T ELT) (((-1088) $) NIL T ELT) ((|#1| $) 429 T ELT) (((-48) $) NIL (-12 (|has| |#1| (-494)) (|has| |#1| (-950 (-483)))) ELT) (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-347 (-857 |#1|)) $) NIL (|has| |#1| (-494)) ELT) (((-857 |#1|) $) NIL (|has| |#1| (-961)) ELT) (((-347 (-483)) $) 316 (OR (-12 (|has| |#1| (-494)) (|has| |#1| (-950 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ELT)) (-2560 (($ $ $) NIL (|has| |#1| (-494)) ELT)) (-2275 (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) 124 (|has| |#1| (-961)) ELT) (((-630 |#1|) (-630 $)) 114 (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (-12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961))) ELT) (((-630 (-483)) (-630 $)) NIL (-12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961))) ELT)) (-3836 (($ $) 95 (|has| |#1| (-494)) ELT)) (-3461 (((-3 $ #1#) $) NIL (|has| |#1| (-1024)) ELT)) (-2559 (($ $ $) NIL (|has| |#1| (-494)) ELT)) (-3938 (($ $ (-1003 $)) 235 (|has| |#1| (-494)) ELT) (($ $ (-1088)) 233 (|has| |#1| (-494)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| |#1| (-494)) ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3380 (($ $ $) 201 (|has| |#1| (-494)) ELT)) (-3621 (($) 136 (|has| |#1| (-494)) ELT)) (-1366 (($ $ $) 221 (|has| |#1| (-494)) ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) 389 (|has| |#1| (-796 (-483))) ELT) (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 396 (|has| |#1| (-796 (-327))) ELT)) (-2569 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1596 (((-583 (-86)) $) NIL T ELT)) (-3589 (((-86) (-86)) 275 T ELT)) (-2406 (((-85) $) 27 (|has| |#1| (-1024)) ELT)) (-2669 (((-85) $) NIL (|has| $ (-950 (-483))) ELT)) (-2992 (($ $) 73 (|has| |#1| (-961)) ELT)) (-2994 (((-1037 |#1| (-550 $)) $) 90 (|has| |#1| (-961)) ELT)) (-1607 (((-85) $) 49 (|has| |#1| (-494)) ELT)) (-3007 (($ $ (-483)) NIL (|has| |#1| (-494)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-494)) ELT)) (-1594 (((-1083 $) (-550 $)) 276 (|has| $ (-961)) ELT)) (-3952 (($ (-1 $ $) (-550 $)) 434 T ELT)) (-1599 (((-3 (-550 $) #1#) $) NIL T ELT)) (-3936 (($ $) 140 (|has| |#1| (-494)) ELT)) (-2253 (($ $) 246 (|has| |#1| (-494)) ELT)) (-2276 (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL (|has| |#1| (-961)) ELT) (((-630 |#1|) (-1177 $)) NIL (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (-12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961))) ELT) (((-630 (-483)) (-1177 $)) NIL (-12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961))) ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-494)) ELT) (($ $ $) NIL (|has| |#1| (-494)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1598 (((-583 (-550 $)) $) 51 T ELT)) (-2231 (($ (-86) $) NIL T ELT) (($ (-86) (-583 $)) 439 T ELT)) (-2819 (((-3 (-583 $) #1#) $) NIL (|has| |#1| (-1024)) ELT)) (-2821 (((-3 (-2 (|:| |val| $) (|:| -2397 (-483))) #1#) $) NIL (|has| |#1| (-961)) ELT)) (-2818 (((-3 (-583 $) #1#) $) 444 (|has| |#1| (-25)) ELT)) (-1791 (((-3 (-2 (|:| -3948 (-483)) (|:| |var| (-550 $))) #1#) $) 448 (|has| |#1| (-25)) ELT)) (-2820 (((-3 (-2 (|:| |var| (-550 $)) (|:| -2397 (-483))) #1#) $) NIL (|has| |#1| (-1024)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2397 (-483))) #1#) $ (-86)) NIL (|has| |#1| (-961)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2397 (-483))) #1#) $ (-1088)) NIL (|has| |#1| (-961)) ELT)) (-2629 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1088)) 53 T ELT)) (-2480 (($ $) NIL (OR (|has| |#1| (-410)) (|has| |#1| (-494))) ELT)) (-2828 (($ $ (-1088)) 250 (|has| |#1| (-494)) ELT) (($ $ (-1003 $)) 252 (|has| |#1| (-494)) ELT)) (-2599 (((-694) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1794 (((-85) $) 45 T ELT)) (-1793 ((|#1| $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 298 (|has| |#1| (-494)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-494)) ELT) (($ $ $) NIL (|has| |#1| (-494)) ELT)) (-1595 (((-85) $ $) NIL T ELT) (((-85) $ (-1088)) NIL T ELT)) (-1370 (($ $ (-1088)) 225 (|has| |#1| (-494)) ELT) (($ $) 223 (|has| |#1| (-494)) ELT)) (-1364 (($ $) 217 (|has| |#1| (-494)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) 303 (-12 (|has| |#1| (-389)) (|has| |#1| (-494))) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-494)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-494)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-494)) ELT)) (-3460 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-494)) ELT)) (-3937 (($ $) 138 (|has| |#1| (-494)) ELT)) (-2670 (((-85) $) NIL (|has| $ (-950 (-483))) ELT)) (-3762 (($ $ (-550 $) $) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) 433 T ELT) (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-1088) (-1 $ (-583 $))) NIL T ELT) (($ $ (-1088) (-1 $ $)) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) 376 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-583 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-553 (-472))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-553 (-472))) ELT) (($ $) NIL (|has| |#1| (-553 (-472))) ELT) (($ $ (-86) $ (-1088)) 363 (|has| |#1| (-553 (-472))) ELT) (($ $ (-583 (-86)) (-583 $) (-1088)) 362 (|has| |#1| (-553 (-472))) ELT) (($ $ (-583 (-1088)) (-583 (-694)) (-583 (-1 $ $))) NIL (|has| |#1| (-961)) ELT) (($ $ (-583 (-1088)) (-583 (-694)) (-583 (-1 $ (-583 $)))) NIL (|has| |#1| (-961)) ELT) (($ $ (-1088) (-694) (-1 $ (-583 $))) NIL (|has| |#1| (-961)) ELT) (($ $ (-1088) (-694) (-1 $ $)) NIL (|has| |#1| (-961)) ELT)) (-1604 (((-694) $) NIL (|has| |#1| (-494)) ELT)) (-2251 (($ $) 238 (|has| |#1| (-494)) ELT)) (-3794 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-583 $)) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-494)) ELT)) (-1600 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2252 (($ $) 248 (|has| |#1| (-494)) ELT)) (-3379 (($ $) 199 (|has| |#1| (-494)) ELT)) (-3752 (($ $ (-1088)) NIL (|has| |#1| (-961)) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-961)) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-961)) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-961)) ELT)) (-2991 (($ $) 74 (|has| |#1| (-494)) ELT)) (-2993 (((-1037 |#1| (-550 $)) $) 92 (|has| |#1| (-494)) ELT)) (-3180 (($ $) 314 (|has| $ (-961)) ELT)) (-3489 (($ $) 176 (|has| |#1| (-494)) ELT)) (-3630 (($ $) 152 (|has| |#1| (-494)) ELT)) (-3487 (($ $) 172 (|has| |#1| (-494)) ELT)) (-3629 (($ $) 148 (|has| |#1| (-494)) ELT)) (-3485 (($ $) 168 (|has| |#1| (-494)) ELT)) (-3628 (($ $) 144 (|has| |#1| (-494)) ELT)) (-3966 (((-800 (-483)) $) NIL (|has| |#1| (-553 (-800 (-483)))) ELT) (((-800 (-327)) $) NIL (|has| |#1| (-553 (-800 (-327)))) ELT) (($ (-345 $)) NIL (|has| |#1| (-494)) ELT) (((-472) $) 360 (|has| |#1| (-553 (-472))) ELT)) (-3005 (($ $ $) NIL (|has| |#1| (-410)) ELT)) (-2431 (($ $ $) NIL (|has| |#1| (-410)) ELT)) (-3940 (((-772) $) 432 T ELT) (($ (-550 $)) 423 T ELT) (($ (-1088)) 378 T ELT) (($ |#1|) 334 T ELT) (($ $) NIL (|has| |#1| (-494)) ELT) (($ (-48)) 309 (-12 (|has| |#1| (-494)) (|has| |#1| (-950 (-483)))) ELT) (($ (-1037 |#1| (-550 $))) 94 (|has| |#1| (-961)) ELT) (($ (-347 |#1|)) NIL (|has| |#1| (-494)) ELT) (($ (-857 (-347 |#1|))) NIL (|has| |#1| (-494)) ELT) (($ (-347 (-857 (-347 |#1|)))) NIL (|has| |#1| (-494)) ELT) (($ (-347 (-857 |#1|))) NIL (|has| |#1| (-494)) ELT) (($ (-857 |#1|)) NIL (|has| |#1| (-961)) ELT) (($ (-483)) 36 (OR (|has| |#1| (-950 (-483))) (|has| |#1| (-961))) ELT) (($ (-347 (-483))) NIL (OR (|has| |#1| (-494)) (|has| |#1| (-950 (-347 (-483))))) ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) NIL (|has| |#1| (-961)) CONST)) (-2586 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3097 (($ $ $) 219 (|has| |#1| (-494)) ELT)) (-3383 (($ $ $) 205 (|has| |#1| (-494)) ELT)) (-3385 (($ $ $) 209 (|has| |#1| (-494)) ELT)) (-3382 (($ $ $) 203 (|has| |#1| (-494)) ELT)) (-3384 (($ $ $) 207 (|has| |#1| (-494)) ELT)) (-2250 (((-85) (-86)) 10 T ELT)) (-1262 (((-85) $ $) 85 T ELT)) (-3492 (($ $) 182 (|has| |#1| (-494)) ELT)) (-3480 (($ $) 158 (|has| |#1| (-494)) ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3490 (($ $) 178 (|has| |#1| (-494)) ELT)) (-3478 (($ $) 154 (|has| |#1| (-494)) ELT)) (-3494 (($ $) 186 (|has| |#1| (-494)) ELT)) (-3482 (($ $) 162 (|has| |#1| (-494)) ELT)) (-1792 (($ (-1088) $) NIL T ELT) (($ (-1088) $ $) NIL T ELT) (($ (-1088) $ $ $) NIL T ELT) (($ (-1088) $ $ $ $) NIL T ELT) (($ (-1088) (-583 $)) NIL T ELT)) (-3387 (($ $) 213 (|has| |#1| (-494)) ELT)) (-3386 (($ $) 211 (|has| |#1| (-494)) ELT)) (-3495 (($ $) 188 (|has| |#1| (-494)) ELT)) (-3483 (($ $) 164 (|has| |#1| (-494)) ELT)) (-3493 (($ $) 184 (|has| |#1| (-494)) ELT)) (-3481 (($ $) 160 (|has| |#1| (-494)) ELT)) (-3491 (($ $) 180 (|has| |#1| (-494)) ELT)) (-3479 (($ $) 156 (|has| |#1| (-494)) ELT)) (-3377 (($ $) 191 (|has| |#1| (-494)) ELT)) (-2656 (($) 23 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961)))) CONST)) (-2255 (($ $) 242 (|has| |#1| (-494)) ELT)) (-2662 (($) 25 (|has| |#1| (-1024)) CONST)) (-3381 (($ $) 193 (|has| |#1| (-494)) ELT) (($ $ $) 195 (|has| |#1| (-494)) ELT)) (-2256 (($ $) 240 (|has| |#1| (-494)) ELT)) (-2665 (($ $ (-1088)) NIL (|has| |#1| (-961)) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-961)) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-961)) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-961)) ELT)) (-2254 (($ $) 244 (|has| |#1| (-494)) ELT)) (-3378 (($ $ $) 197 (|has| |#1| (-494)) ELT)) (-3052 (((-85) $ $) 87 T ELT)) (-3943 (($ (-1037 |#1| (-550 $)) (-1037 |#1| (-550 $))) 105 (|has| |#1| (-494)) ELT) (($ $ $) 44 (OR (|has| |#1| (-410)) (|has| |#1| (-494))) ELT)) (-3831 (($ $ $) 42 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961)))) ELT) (($ $) 31 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961)))) ELT)) (-3833 (($ $ $) 40 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961)))) ELT)) (** (($ $ $) 65 (|has| |#1| (-494)) ELT) (($ $ (-347 (-483))) 311 (|has| |#1| (-494)) ELT) (($ $ (-483)) 79 (OR (|has| |#1| (-410)) (|has| |#1| (-494))) ELT) (($ $ (-694)) 75 (|has| |#1| (-1024)) ELT) (($ $ (-830)) 83 (|has| |#1| (-1024)) ELT)) (* (($ (-347 (-483)) $) NIL (|has| |#1| (-494)) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-494)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT) (($ |#1| $) NIL (|has| |#1| (-961)) ELT) (($ $ $) 38 (|has| |#1| (-1024)) ELT) (($ (-483) $) 34 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961)))) ELT) (($ (-694) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961)))) ELT) (($ (-830) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961)))) ELT)))
-(((-264 |#1|) (-13 (-361 |#1|) (-10 -8 (IF (|has| |#1| (-494)) (PROGN (-6 (-29 |#1|)) (-6 (-1113)) (-6 (-133)) (-6 (-569)) (-6 (-1051)) (-15 -3836 ($ $)) (-15 -1607 ((-85) $)) (-15 -1606 ($ $ (-483))) (IF (|has| |#1| (-389)) (PROGN (-15 -2702 ((-345 (-1083 $)) (-1083 $))) (-15 -2703 ((-345 (-1083 $)) (-1083 $)))) |%noBranch|) (IF (|has| |#1| (-950 (-483))) (-6 (-950 (-48))) |%noBranch|)) |%noBranch|))) (-1012)) (T -264))
-((-3836 (*1 *1 *1) (-12 (-5 *1 (-264 *2)) (-4 *2 (-494)) (-4 *2 (-1012)))) (-1607 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-264 *3)) (-4 *3 (-494)) (-4 *3 (-1012)))) (-1606 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-264 *3)) (-4 *3 (-494)) (-4 *3 (-1012)))) (-2702 (*1 *2 *3) (-12 (-5 *2 (-345 (-1083 *1))) (-5 *1 (-264 *4)) (-5 *3 (-1083 *1)) (-4 *4 (-389)) (-4 *4 (-494)) (-4 *4 (-1012)))) (-2703 (*1 *2 *3) (-12 (-5 *2 (-345 (-1083 *1))) (-5 *1 (-264 *4)) (-5 *3 (-1083 *1)) (-4 *4 (-389)) (-4 *4 (-494)) (-4 *4 (-1012)))))
-((-3952 (((-264 |#2|) (-1 |#2| |#1|) (-264 |#1|)) 13 T ELT)))
-(((-265 |#1| |#2|) (-10 -7 (-15 -3952 ((-264 |#2|) (-1 |#2| |#1|) (-264 |#1|)))) (-1012) (-1012)) (T -265))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-264 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *2 (-264 *6)) (-5 *1 (-265 *5 *6)))))
-((-3723 (((-51) |#2| (-248 |#2|) (-694)) 40 T ELT) (((-51) |#2| (-248 |#2|)) 32 T ELT) (((-51) |#2| (-694)) 35 T ELT) (((-51) |#2|) 33 T ELT) (((-51) (-1088)) 26 T ELT)) (-3812 (((-51) |#2| (-248 |#2|) (-347 (-483))) 59 T ELT) (((-51) |#2| (-248 |#2|)) 56 T ELT) (((-51) |#2| (-347 (-483))) 58 T ELT) (((-51) |#2|) 57 T ELT) (((-51) (-1088)) 55 T ELT)) (-3776 (((-51) |#2| (-248 |#2|) (-347 (-483))) 54 T ELT) (((-51) |#2| (-248 |#2|)) 51 T ELT) (((-51) |#2| (-347 (-483))) 53 T ELT) (((-51) |#2|) 52 T ELT) (((-51) (-1088)) 50 T ELT)) (-3773 (((-51) |#2| (-248 |#2|) (-483)) 47 T ELT) (((-51) |#2| (-248 |#2|)) 44 T ELT) (((-51) |#2| (-483)) 46 T ELT) (((-51) |#2|) 45 T ELT) (((-51) (-1088)) 43 T ELT)))
-(((-266 |#1| |#2|) (-10 -7 (-15 -3723 ((-51) (-1088))) (-15 -3723 ((-51) |#2|)) (-15 -3723 ((-51) |#2| (-694))) (-15 -3723 ((-51) |#2| (-248 |#2|))) (-15 -3723 ((-51) |#2| (-248 |#2|) (-694))) (-15 -3773 ((-51) (-1088))) (-15 -3773 ((-51) |#2|)) (-15 -3773 ((-51) |#2| (-483))) (-15 -3773 ((-51) |#2| (-248 |#2|))) (-15 -3773 ((-51) |#2| (-248 |#2|) (-483))) (-15 -3776 ((-51) (-1088))) (-15 -3776 ((-51) |#2|)) (-15 -3776 ((-51) |#2| (-347 (-483)))) (-15 -3776 ((-51) |#2| (-248 |#2|))) (-15 -3776 ((-51) |#2| (-248 |#2|) (-347 (-483)))) (-15 -3812 ((-51) (-1088))) (-15 -3812 ((-51) |#2|)) (-15 -3812 ((-51) |#2| (-347 (-483)))) (-15 -3812 ((-51) |#2| (-248 |#2|))) (-15 -3812 ((-51) |#2| (-248 |#2|) (-347 (-483))))) (-13 (-389) (-950 (-483)) (-580 (-483))) (-13 (-27) (-1113) (-361 |#1|))) (T -266))
-((-3812 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-248 *3)) (-5 *5 (-347 (-483))) (-4 *3 (-13 (-27) (-1113) (-361 *6))) (-4 *6 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *6 *3)))) (-3812 (*1 *2 *3 *4) (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5))) (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *5 *3)))) (-3812 (*1 *2 *3 *4) (-12 (-5 *4 (-347 (-483))) (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5))))) (-3812 (*1 *2 *3) (-12 (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *4))))) (-3812 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *4 *5)) (-4 *5 (-13 (-27) (-1113) (-361 *4))))) (-3776 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-248 *3)) (-5 *5 (-347 (-483))) (-4 *3 (-13 (-27) (-1113) (-361 *6))) (-4 *6 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *6 *3)))) (-3776 (*1 *2 *3 *4) (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5))) (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *5 *3)))) (-3776 (*1 *2 *3 *4) (-12 (-5 *4 (-347 (-483))) (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5))))) (-3776 (*1 *2 *3) (-12 (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *4))))) (-3776 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *4 *5)) (-4 *5 (-13 (-27) (-1113) (-361 *4))))) (-3773 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *6))) (-4 *6 (-13 (-389) (-950 *5) (-580 *5))) (-5 *5 (-483)) (-5 *2 (-51)) (-5 *1 (-266 *6 *3)))) (-3773 (*1 *2 *3 *4) (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5))) (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *5 *3)))) (-3773 (*1 *2 *3 *4) (-12 (-5 *4 (-483)) (-4 *5 (-13 (-389) (-950 *4) (-580 *4))) (-5 *2 (-51)) (-5 *1 (-266 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5))))) (-3773 (*1 *2 *3) (-12 (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *4))))) (-3773 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *4 *5)) (-4 *5 (-13 (-27) (-1113) (-361 *4))))) (-3723 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-248 *3)) (-5 *5 (-694)) (-4 *3 (-13 (-27) (-1113) (-361 *6))) (-4 *6 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *6 *3)))) (-3723 (*1 *2 *3 *4) (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5))) (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *5 *3)))) (-3723 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5))))) (-3723 (*1 *2 *3) (-12 (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *4))))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-266 *4 *5)) (-4 *5 (-13 (-27) (-1113) (-361 *4))))))
-((-1608 (((-51) |#2| (-86) (-248 |#2|) (-583 |#2|)) 89 T ELT) (((-51) |#2| (-86) (-248 |#2|) (-248 |#2|)) 85 T ELT) (((-51) |#2| (-86) (-248 |#2|) |#2|) 87 T ELT) (((-51) (-248 |#2|) (-86) (-248 |#2|) |#2|) 88 T ELT) (((-51) (-583 |#2|) (-583 (-86)) (-248 |#2|) (-583 (-248 |#2|))) 81 T ELT) (((-51) (-583 |#2|) (-583 (-86)) (-248 |#2|) (-583 |#2|)) 83 T ELT) (((-51) (-583 (-248 |#2|)) (-583 (-86)) (-248 |#2|) (-583 |#2|)) 84 T ELT) (((-51) (-583 (-248 |#2|)) (-583 (-86)) (-248 |#2|) (-583 (-248 |#2|))) 82 T ELT) (((-51) (-248 |#2|) (-86) (-248 |#2|) (-583 |#2|)) 90 T ELT) (((-51) (-248 |#2|) (-86) (-248 |#2|) (-248 |#2|)) 86 T ELT)))
-(((-267 |#1| |#2|) (-10 -7 (-15 -1608 ((-51) (-248 |#2|) (-86) (-248 |#2|) (-248 |#2|))) (-15 -1608 ((-51) (-248 |#2|) (-86) (-248 |#2|) (-583 |#2|))) (-15 -1608 ((-51) (-583 (-248 |#2|)) (-583 (-86)) (-248 |#2|) (-583 (-248 |#2|)))) (-15 -1608 ((-51) (-583 (-248 |#2|)) (-583 (-86)) (-248 |#2|) (-583 |#2|))) (-15 -1608 ((-51) (-583 |#2|) (-583 (-86)) (-248 |#2|) (-583 |#2|))) (-15 -1608 ((-51) (-583 |#2|) (-583 (-86)) (-248 |#2|) (-583 (-248 |#2|)))) (-15 -1608 ((-51) (-248 |#2|) (-86) (-248 |#2|) |#2|)) (-15 -1608 ((-51) |#2| (-86) (-248 |#2|) |#2|)) (-15 -1608 ((-51) |#2| (-86) (-248 |#2|) (-248 |#2|))) (-15 -1608 ((-51) |#2| (-86) (-248 |#2|) (-583 |#2|)))) (-13 (-494) (-553 (-472))) (-361 |#1|)) (T -267))
-((-1608 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-86)) (-5 *5 (-248 *3)) (-5 *6 (-583 *3)) (-4 *3 (-361 *7)) (-4 *7 (-13 (-494) (-553 (-472)))) (-5 *2 (-51)) (-5 *1 (-267 *7 *3)))) (-1608 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-86)) (-5 *5 (-248 *3)) (-4 *3 (-361 *6)) (-4 *6 (-13 (-494) (-553 (-472)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-1608 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-86)) (-5 *5 (-248 *3)) (-4 *3 (-361 *6)) (-4 *6 (-13 (-494) (-553 (-472)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-1608 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-248 *5)) (-5 *4 (-86)) (-4 *5 (-361 *6)) (-4 *6 (-13 (-494) (-553 (-472)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *5)))) (-1608 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-86))) (-5 *6 (-583 (-248 *8))) (-4 *8 (-361 *7)) (-5 *5 (-248 *8)) (-4 *7 (-13 (-494) (-553 (-472)))) (-5 *2 (-51)) (-5 *1 (-267 *7 *8)))) (-1608 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-86))) (-5 *5 (-248 *7)) (-4 *7 (-361 *6)) (-4 *6 (-13 (-494) (-553 (-472)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *7)))) (-1608 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 (-248 *8))) (-5 *4 (-583 (-86))) (-5 *5 (-248 *8)) (-5 *6 (-583 *8)) (-4 *8 (-361 *7)) (-4 *7 (-13 (-494) (-553 (-472)))) (-5 *2 (-51)) (-5 *1 (-267 *7 *8)))) (-1608 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 (-248 *7))) (-5 *4 (-583 (-86))) (-5 *5 (-248 *7)) (-4 *7 (-361 *6)) (-4 *6 (-13 (-494) (-553 (-472)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *7)))) (-1608 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-248 *7)) (-5 *4 (-86)) (-5 *5 (-583 *7)) (-4 *7 (-361 *6)) (-4 *6 (-13 (-494) (-553 (-472)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *7)))) (-1608 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-248 *6)) (-5 *4 (-86)) (-4 *6 (-361 *5)) (-4 *5 (-13 (-494) (-553 (-472)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *6)))))
-((-1610 (((-1123 (-838)) (-264 (-483)) (-264 (-483)) (-264 (-483)) (-1 (-179) (-179)) (-1000 (-179)) (-179) (-483) (-1071)) 67 T ELT) (((-1123 (-838)) (-264 (-483)) (-264 (-483)) (-264 (-483)) (-1 (-179) (-179)) (-1000 (-179)) (-179) (-483)) 68 T ELT) (((-1123 (-838)) (-264 (-483)) (-264 (-483)) (-264 (-483)) (-1 (-179) (-179)) (-1000 (-179)) (-1 (-179) (-179)) (-483) (-1071)) 64 T ELT) (((-1123 (-838)) (-264 (-483)) (-264 (-483)) (-264 (-483)) (-1 (-179) (-179)) (-1000 (-179)) (-1 (-179) (-179)) (-483)) 65 T ELT)) (-1609 (((-1 (-179) (-179)) (-179)) 66 T ELT)))
-(((-268) (-10 -7 (-15 -1609 ((-1 (-179) (-179)) (-179))) (-15 -1610 ((-1123 (-838)) (-264 (-483)) (-264 (-483)) (-264 (-483)) (-1 (-179) (-179)) (-1000 (-179)) (-1 (-179) (-179)) (-483))) (-15 -1610 ((-1123 (-838)) (-264 (-483)) (-264 (-483)) (-264 (-483)) (-1 (-179) (-179)) (-1000 (-179)) (-1 (-179) (-179)) (-483) (-1071))) (-15 -1610 ((-1123 (-838)) (-264 (-483)) (-264 (-483)) (-264 (-483)) (-1 (-179) (-179)) (-1000 (-179)) (-179) (-483))) (-15 -1610 ((-1123 (-838)) (-264 (-483)) (-264 (-483)) (-264 (-483)) (-1 (-179) (-179)) (-1000 (-179)) (-179) (-483) (-1071))))) (T -268))
-((-1610 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-264 (-483))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1000 (-179))) (-5 *6 (-179)) (-5 *7 (-483)) (-5 *8 (-1071)) (-5 *2 (-1123 (-838))) (-5 *1 (-268)))) (-1610 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-264 (-483))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1000 (-179))) (-5 *6 (-179)) (-5 *7 (-483)) (-5 *2 (-1123 (-838))) (-5 *1 (-268)))) (-1610 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-264 (-483))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1000 (-179))) (-5 *6 (-483)) (-5 *7 (-1071)) (-5 *2 (-1123 (-838))) (-5 *1 (-268)))) (-1610 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-264 (-483))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1000 (-179))) (-5 *6 (-483)) (-5 *2 (-1123 (-838))) (-5 *1 (-268)))) (-1609 (*1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-268)) (-5 *3 (-179)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 26 T ELT)) (-3077 (((-583 (-993)) $) NIL T ELT)) (-3825 (((-1088) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3765 (($ $ (-347 (-483))) NIL T ELT) (($ $ (-347 (-483)) (-347 (-483))) NIL T ELT)) (-3768 (((-1067 (-2 (|:| |k| (-347 (-483))) (|:| |c| |#1|))) $) 20 T ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-3033 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1605 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3812 (($ (-694) (-1067 (-2 (|:| |k| (-347 (-483))) (|:| |c| |#1|)))) NIL T ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) NIL T CONST)) (-2560 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3953 (($ $) 36 T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2559 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| |#1| (-311)) ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-3181 (((-85) $) NIL T ELT)) (-2888 (((-85) $) NIL T ELT)) (-3621 (($) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3766 (((-347 (-483)) $) NIL T ELT) (((-347 (-483)) $ (-347 (-483))) 16 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3007 (($ $ (-483)) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3771 (($ $ (-830)) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-347 (-483))) NIL T ELT) (($ $ (-993) (-347 (-483))) NIL T ELT) (($ $ (-583 (-993)) (-583 (-347 (-483)))) NIL T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3936 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3806 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-29 (-483))) (|has| |#1| (-871)) (|has| |#1| (-1113))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-15 -3806 (|#1| |#1| (-1088)))) (|has| |#1| (-15 -3077 ((-583 (-1088)) |#1|))))) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-311)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3763 (($ $ (-347 (-483))) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-1611 (((-347 (-483)) $) 17 T ELT)) (-3086 (($ (-1158 |#1| |#2| |#3|)) 11 T ELT)) (-2397 (((-1158 |#1| |#2| |#3|) $) 12 T ELT)) (-3937 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3762 (((-1067 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-347 (-483))))) ELT)) (-1604 (((-694) $) NIL (|has| |#1| (-311)) ELT)) (-3794 ((|#1| $ (-347 (-483))) NIL T ELT) (($ $ $) NIL (|has| (-347 (-483)) (-1024)) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3752 (($ $ (-1088)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT)) (-3942 (((-347 (-483)) $) NIL T ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2887 (($ $) 10 T ELT)) (-3940 (((-772) $) 42 T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3671 ((|#1| $ (-347 (-483))) 34 T ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) NIL T CONST)) (-3767 ((|#1| $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3764 ((|#1| $ (-347 (-483))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-483))))) (|has| |#1| (-15 -3940 (|#1| (-1088))))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-1088)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 28 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 37 T ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)))
-(((-269 |#1| |#2| |#3|) (-13 (-1160 |#1|) (-716) (-10 -8 (-15 -3086 ($ (-1158 |#1| |#2| |#3|))) (-15 -2397 ((-1158 |#1| |#2| |#3|) $)) (-15 -1611 ((-347 (-483)) $)))) (-311) (-1088) |#1|) (T -269))
-((-3086 (*1 *1 *2) (-12 (-5 *2 (-1158 *3 *4 *5)) (-4 *3 (-311)) (-14 *4 (-1088)) (-14 *5 *3) (-5 *1 (-269 *3 *4 *5)))) (-2397 (*1 *2 *1) (-12 (-5 *2 (-1158 *3 *4 *5)) (-5 *1 (-269 *3 *4 *5)) (-4 *3 (-311)) (-14 *4 (-1088)) (-14 *5 *3))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-269 *3 *4 *5)) (-4 *3 (-311)) (-14 *4 (-1088)) (-14 *5 *3))))
-((-3007 (((-2 (|:| -2397 (-694)) (|:| -3948 |#1|) (|:| |radicand| (-583 |#1|))) (-345 |#1|) (-694)) 35 T ELT)) (-3936 (((-583 (-2 (|:| -3948 (-694)) (|:| |logand| |#1|))) (-345 |#1|)) 40 T ELT)))
-(((-270 |#1|) (-10 -7 (-15 -3007 ((-2 (|:| -2397 (-694)) (|:| -3948 |#1|) (|:| |radicand| (-583 |#1|))) (-345 |#1|) (-694))) (-15 -3936 ((-583 (-2 (|:| -3948 (-694)) (|:| |logand| |#1|))) (-345 |#1|)))) (-494)) (T -270))
-((-3936 (*1 *2 *3) (-12 (-5 *3 (-345 *4)) (-4 *4 (-494)) (-5 *2 (-583 (-2 (|:| -3948 (-694)) (|:| |logand| *4)))) (-5 *1 (-270 *4)))) (-3007 (*1 *2 *3 *4) (-12 (-5 *3 (-345 *5)) (-4 *5 (-494)) (-5 *2 (-2 (|:| -2397 (-694)) (|:| -3948 *5) (|:| |radicand| (-583 *5)))) (-5 *1 (-270 *5)) (-5 *4 (-694)))))
-((-3077 (((-583 |#2|) (-1083 |#4|)) 45 T ELT)) (-1616 ((|#3| (-483)) 48 T ELT)) (-1614 (((-1083 |#4|) (-1083 |#3|)) 30 T ELT)) (-1615 (((-1083 |#4|) (-1083 |#4|) (-483)) 67 T ELT)) (-1613 (((-1083 |#3|) (-1083 |#4|)) 21 T ELT)) (-3942 (((-583 (-694)) (-1083 |#4|) (-583 |#2|)) 41 T ELT)) (-1612 (((-1083 |#3|) (-1083 |#4|) (-583 |#2|) (-583 |#3|)) 35 T ELT)))
-(((-271 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1612 ((-1083 |#3|) (-1083 |#4|) (-583 |#2|) (-583 |#3|))) (-15 -3942 ((-583 (-694)) (-1083 |#4|) (-583 |#2|))) (-15 -3077 ((-583 |#2|) (-1083 |#4|))) (-15 -1613 ((-1083 |#3|) (-1083 |#4|))) (-15 -1614 ((-1083 |#4|) (-1083 |#3|))) (-15 -1615 ((-1083 |#4|) (-1083 |#4|) (-483))) (-15 -1616 (|#3| (-483)))) (-717) (-756) (-961) (-861 |#3| |#1| |#2|)) (T -271))
-((-1616 (*1 *2 *3) (-12 (-5 *3 (-483)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-961)) (-5 *1 (-271 *4 *5 *2 *6)) (-4 *6 (-861 *2 *4 *5)))) (-1615 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 *7)) (-5 *3 (-483)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-5 *1 (-271 *4 *5 *6 *7)))) (-1614 (*1 *2 *3) (-12 (-5 *3 (-1083 *6)) (-4 *6 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-1083 *7)) (-5 *1 (-271 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) (-1613 (*1 *2 *3) (-12 (-5 *3 (-1083 *7)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-5 *2 (-1083 *6)) (-5 *1 (-271 *4 *5 *6 *7)))) (-3077 (*1 *2 *3) (-12 (-5 *3 (-1083 *7)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-5 *2 (-583 *5)) (-5 *1 (-271 *4 *5 *6 *7)))) (-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *8)) (-5 *4 (-583 *6)) (-4 *6 (-756)) (-4 *8 (-861 *7 *5 *6)) (-4 *5 (-717)) (-4 *7 (-961)) (-5 *2 (-583 (-694))) (-5 *1 (-271 *5 *6 *7 *8)))) (-1612 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1083 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 *8)) (-4 *7 (-756)) (-4 *8 (-961)) (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717)) (-5 *2 (-1083 *8)) (-5 *1 (-271 *6 *7 *8 *9)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 19 T ELT)) (-3768 (((-583 (-2 (|:| |gen| |#1|) (|:| -3937 (-483)))) $) 21 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3131 (((-694) $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT)) (-2295 ((|#1| $ (-483)) NIL T ELT)) (-1619 (((-483) $ (-483)) NIL T ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2286 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1618 (($ (-1 (-483) (-483)) $) 11 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1617 (($ $ $) NIL (|has| (-483) (-716)) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3671 (((-483) |#1| $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2562 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) 30 (|has| |#1| (-756)) ELT)) (-3831 (($ $) 12 T ELT) (($ $ $) 29 T ELT)) (-3833 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ (-483)) NIL T ELT) (($ (-483) |#1|) 28 T ELT)))
-(((-272 |#1|) (-13 (-21) (-654 (-483)) (-273 |#1| (-483)) (-10 -7 (IF (|has| |#1| (-756)) (-6 (-756)) |%noBranch|))) (-1012)) (T -272))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3768 (((-583 (-2 (|:| |gen| |#1|) (|:| -3937 |#2|))) $) 33 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3131 (((-694) $) 34 T ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 |#1| "failed") $) 38 T ELT)) (-3151 ((|#1| $) 39 T ELT)) (-2295 ((|#1| $ (-483)) 31 T ELT)) (-1619 ((|#2| $ (-483)) 32 T ELT)) (-2286 (($ (-1 |#1| |#1|) $) 28 T ELT)) (-1618 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-1617 (($ $ $) 27 (|has| |#2| (-716)) ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ |#1|) 37 T ELT)) (-3671 ((|#2| |#1| $) 30 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3833 (($ $ $) 18 T ELT) (($ |#1| $) 36 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ |#2| |#1|) 35 T ELT)))
-(((-273 |#1| |#2|) (-113) (-1012) (-104)) (T -273))
-((-3833 (*1 *1 *2 *1) (-12 (-4 *1 (-273 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-104)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-273 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-104)))) (-3131 (*1 *2 *1) (-12 (-4 *1 (-273 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-104)) (-5 *2 (-694)))) (-3768 (*1 *2 *1) (-12 (-4 *1 (-273 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-104)) (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3937 *4)))))) (-1619 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-273 *4 *2)) (-4 *4 (-1012)) (-4 *2 (-104)))) (-2295 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-273 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1012)))) (-3671 (*1 *2 *3 *1) (-12 (-4 *1 (-273 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-104)))) (-1618 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-273 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-104)))) (-2286 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-273 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-104)))) (-1617 (*1 *1 *1 *1) (-12 (-4 *1 (-273 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-104)) (-4 *3 (-716)))))
-(-13 (-104) (-950 |t#1|) (-10 -8 (-15 -3833 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3131 ((-694) $)) (-15 -3768 ((-583 (-2 (|:| |gen| |t#1|) (|:| -3937 |t#2|))) $)) (-15 -1619 (|t#2| $ (-483))) (-15 -2295 (|t#1| $ (-483))) (-15 -3671 (|t#2| |t#1| $)) (-15 -1618 ($ (-1 |t#2| |t#2|) $)) (-15 -2286 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-716)) (-15 -1617 ($ $ $)) |%noBranch|)))
-(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-13) . T) ((-950 |#1|) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3768 (((-583 (-2 (|:| |gen| |#1|) (|:| -3937 (-694)))) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3131 (((-694) $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT)) (-2295 ((|#1| $ (-483)) NIL T ELT)) (-1619 (((-694) $ (-483)) NIL T ELT)) (-2286 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1618 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1617 (($ $ $) NIL (|has| (-694) (-716)) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3671 (((-694) |#1| $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-694) |#1|) NIL T ELT)))
-(((-274 |#1|) (-273 |#1| (-694)) (-1012)) (T -274))
-NIL
-((-3497 (($ $) 72 T ELT)) (-1621 (($ $ |#2| |#3| $) 14 T ELT)) (-1622 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-1794 (((-85) $) 42 T ELT)) (-1793 ((|#2| $) 44 T ELT)) (-3460 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#2|) 64 T ELT)) (-2813 ((|#2| $) 68 T ELT)) (-3811 (((-583 |#2|) $) 56 T ELT)) (-1620 (($ $ $ (-694)) 37 T ELT)) (-3943 (($ $ |#2|) 60 T ELT)))
-(((-275 |#1| |#2| |#3|) (-10 -7 (-15 -3497 (|#1| |#1|)) (-15 -2813 (|#2| |#1|)) (-15 -3460 ((-3 |#1| #1="failed") |#1| |#2|)) (-15 -1620 (|#1| |#1| |#1| (-694))) (-15 -1621 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1622 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3811 ((-583 |#2|) |#1|)) (-15 -1793 (|#2| |#1|)) (-15 -1794 ((-85) |#1|)) (-15 -3460 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3943 (|#1| |#1| |#2|))) (-276 |#2| |#3|) (-961) (-716)) (T -275))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 69 (|has| |#1| (-494)) ELT)) (-2059 (($ $) 70 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) 72 (|has| |#1| (-494)) ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 (-483) #1="failed") $) 107 (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) 105 (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) 102 T ELT)) (-3151 (((-483) $) 106 (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) 104 (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) 103 T ELT)) (-3953 (($ $) 78 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3497 (($ $) 91 (|has| |#1| (-389)) ELT)) (-1621 (($ $ |#1| |#2| $) 95 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-2416 (((-694) $) 98 T ELT)) (-3931 (((-85) $) 80 T ELT)) (-2889 (($ |#1| |#2|) 79 T ELT)) (-2816 ((|#2| $) 97 T ELT)) (-1622 (($ (-1 |#2| |#2|) $) 96 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-2890 (($ $) 83 T ELT)) (-3169 ((|#1| $) 84 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-1794 (((-85) $) 101 T ELT)) (-1793 ((|#1| $) 100 T ELT)) (-3460 (((-3 $ "failed") $ $) 68 (|has| |#1| (-494)) ELT) (((-3 $ "failed") $ |#1|) 93 (|has| |#1| (-494)) ELT)) (-3942 ((|#2| $) 82 T ELT)) (-2813 ((|#1| $) 92 (|has| |#1| (-389)) ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 67 (|has| |#1| (-494)) ELT) (($ |#1|) 65 T ELT) (($ (-347 (-483))) 75 (OR (|has| |#1| (-950 (-347 (-483)))) (|has| |#1| (-38 (-347 (-483))))) ELT)) (-3811 (((-583 |#1|) $) 99 T ELT)) (-3671 ((|#1| $ |#2|) 77 T ELT)) (-2698 (((-632 $) $) 66 (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 38 T CONST)) (-1620 (($ $ $ (-694)) 94 (|has| |#1| (-146)) ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 71 (|has| |#1| (-494)) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-347 (-483)) $) 74 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 73 (|has| |#1| (-38 (-347 (-483)))) ELT)))
-(((-276 |#1| |#2|) (-113) (-961) (-716)) (T -276))
-((-1794 (*1 *2 *1) (-12 (-4 *1 (-276 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-85)))) (-1793 (*1 *2 *1) (-12 (-4 *1 (-276 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))) (-3811 (*1 *2 *1) (-12 (-4 *1 (-276 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-583 *3)))) (-2416 (*1 *2 *1) (-12 (-4 *1 (-276 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-694)))) (-2816 (*1 *2 *1) (-12 (-4 *1 (-276 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-1622 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-276 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)))) (-1621 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-276 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))) (-1620 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-276 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-4 *3 (-146)))) (-3460 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-276 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *2 (-494)))) (-2813 (*1 *2 *1) (-12 (-4 *1 (-276 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)) (-4 *2 (-389)))) (-3497 (*1 *1 *1) (-12 (-4 *1 (-276 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *2 (-389)))))
-(-13 (-47 |t#1| |t#2|) (-352 |t#1|) (-10 -8 (-15 -1794 ((-85) $)) (-15 -1793 (|t#1| $)) (-15 -3811 ((-583 |t#1|) $)) (-15 -2416 ((-694) $)) (-15 -2816 (|t#2| $)) (-15 -1622 ($ (-1 |t#2| |t#2|) $)) (-15 -1621 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-146)) (-15 -1620 ($ $ $ (-694))) |%noBranch|) (IF (|has| |t#1| (-494)) (-15 -3460 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-389)) (PROGN (-15 -2813 (|t#1| $)) (-15 -3497 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-494)) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) OR (|has| |#1| (-950 (-347 (-483)))) (|has| |#1| (-38 (-347 (-483))))) ((-555 (-483)) . T) ((-555 |#1|) . T) ((-555 $) |has| |#1| (-494)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-245) |has| |#1| (-494)) ((-352 |#1|) . T) ((-494) |has| |#1| (-494)) ((-13) . T) ((-588 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-494)) ((-654 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-494)) ((-663) . T) ((-950 (-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((-950 (-483)) |has| |#1| (-950 (-483))) ((-950 |#1|) . T) ((-963 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-968 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1727 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3990)) (|has| |#1| (-756))) ELT)) (-2905 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-1982 (((-85) (-85)) NIL T ELT)) (-3782 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-1567 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3704 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3718 (($) NIL T CONST)) (-2293 (($ $) NIL (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) NIL T ELT)) (-2364 (($ $) NIL (|has| |#1| (-1012)) ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3399 (($ |#1| $) NIL (|has| |#1| (-1012)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3400 (($ |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) NIL T ELT)) (-3413 (((-483) (-1 (-85) |#1|) $) NIL T ELT) (((-483) |#1| $) NIL (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) NIL (|has| |#1| (-1012)) ELT)) (-1983 (($ $ (-483)) NIL T ELT)) (-1984 (((-694) $) NIL T ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3608 (($ (-694) |#1|) NIL T ELT)) (-2196 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2852 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3512 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2197 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3603 (($ $ $ (-483)) NIL T ELT) (($ |#1| $ (-483)) NIL T ELT)) (-2300 (($ |#1| $ (-483)) NIL T ELT) (($ $ $ (-483)) NIL T ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1985 (($ (-583 |#1|)) NIL T ELT)) (-3795 ((|#1| $) NIL (|has| (-483) (-756)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2195 (($ $ |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#1| $ (-483) |#1|) NIL T ELT) ((|#1| $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-1568 (($ $ (-1144 (-483))) NIL T ELT) (($ $ (-483)) NIL T ELT)) (-2301 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1728 (($ $ $ (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) NIL T ELT)) (-3785 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3796 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-277 |#1|) (-13 (-19 |#1|) (-237 |#1|) (-10 -8 (-15 -1985 ($ (-583 |#1|))) (-15 -1984 ((-694) $)) (-15 -1983 ($ $ (-483))) (-15 -1982 ((-85) (-85))))) (-1127)) (T -277))
-((-1985 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-5 *1 (-277 *3)))) (-1984 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-277 *3)) (-4 *3 (-1127)))) (-1983 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-277 *3)) (-4 *3 (-1127)))) (-1982 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-277 *3)) (-4 *3 (-1127)))))
-((-3926 (((-85) $) 47 T ELT)) (-3923 (((-694)) 23 T ELT)) (-3324 ((|#2| $) 51 T ELT) (($ $ (-830)) 123 T ELT)) (-3131 (((-694)) 124 T ELT)) (-1789 (($ (-1177 |#2|)) 20 T ELT)) (-2007 (((-85) $) 136 T ELT)) (-3127 ((|#2| $) 53 T ELT) (($ $ (-830)) 120 T ELT)) (-2010 (((-1083 |#2|) $) NIL T ELT) (((-1083 $) $ (-830)) 111 T ELT)) (-1624 (((-1083 |#2|) $) 95 T ELT)) (-1623 (((-1083 |#2|) $) 91 T ELT) (((-3 (-1083 |#2|) "failed") $ $) 88 T ELT)) (-1625 (($ $ (-1083 |#2|)) 58 T ELT)) (-3924 (((-743 (-830))) 30 T ELT) (((-830)) 48 T ELT)) (-3905 (((-107)) 27 T ELT)) (-3942 (((-743 (-830)) $) 32 T ELT) (((-830) $) 139 T ELT)) (-1626 (($) 130 T ELT)) (-3219 (((-1177 |#2|) $) NIL T ELT) (((-630 |#2|) (-1177 $)) 42 T ELT)) (-2698 (($ $) NIL T ELT) (((-632 $) $) 100 T ELT)) (-3927 (((-85) $) 45 T ELT)))
-(((-278 |#1| |#2|) (-10 -7 (-15 -2698 ((-632 |#1|) |#1|)) (-15 -3131 ((-694))) (-15 -2698 (|#1| |#1|)) (-15 -1623 ((-3 (-1083 |#2|) "failed") |#1| |#1|)) (-15 -1623 ((-1083 |#2|) |#1|)) (-15 -1624 ((-1083 |#2|) |#1|)) (-15 -1625 (|#1| |#1| (-1083 |#2|))) (-15 -2007 ((-85) |#1|)) (-15 -1626 (|#1|)) (-15 -3324 (|#1| |#1| (-830))) (-15 -3127 (|#1| |#1| (-830))) (-15 -2010 ((-1083 |#1|) |#1| (-830))) (-15 -3324 (|#2| |#1|)) (-15 -3127 (|#2| |#1|)) (-15 -3942 ((-830) |#1|)) (-15 -3924 ((-830))) (-15 -2010 ((-1083 |#2|) |#1|)) (-15 -1789 (|#1| (-1177 |#2|))) (-15 -3219 ((-630 |#2|) (-1177 |#1|))) (-15 -3219 ((-1177 |#2|) |#1|)) (-15 -3923 ((-694))) (-15 -3924 ((-743 (-830)))) (-15 -3942 ((-743 (-830)) |#1|)) (-15 -3926 ((-85) |#1|)) (-15 -3927 ((-85) |#1|)) (-15 -3905 ((-107)))) (-279 |#2|) (-311)) (T -278))
-((-3905 (*1 *2) (-12 (-4 *4 (-311)) (-5 *2 (-107)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4)))) (-3924 (*1 *2) (-12 (-4 *4 (-311)) (-5 *2 (-743 (-830))) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4)))) (-3923 (*1 *2) (-12 (-4 *4 (-311)) (-5 *2 (-694)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4)))) (-3924 (*1 *2) (-12 (-4 *4 (-311)) (-5 *2 (-830)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4)))) (-3131 (*1 *2) (-12 (-4 *4 (-311)) (-5 *2 (-694)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-3926 (((-85) $) 112 T ELT)) (-3923 (((-694)) 108 T ELT)) (-3324 ((|#1| $) 160 T ELT) (($ $ (-830)) 157 (|has| |#1| (-317)) ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) 142 (|has| |#1| (-317)) ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3769 (($ $) 89 T ELT)) (-3965 (((-345 $) $) 88 T ELT)) (-1605 (((-85) $ $) 73 T ELT)) (-3131 (((-694)) 132 (|has| |#1| (-317)) ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 |#1| "failed") $) 119 T ELT)) (-3151 ((|#1| $) 120 T ELT)) (-1789 (($ (-1177 |#1|)) 166 T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) 148 (|has| |#1| (-317)) ELT)) (-2560 (($ $ $) 69 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2990 (($) 129 (|has| |#1| (-317)) ELT)) (-2559 (($ $ $) 70 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 64 T ELT)) (-2829 (($) 144 (|has| |#1| (-317)) ELT)) (-1677 (((-85) $) 145 (|has| |#1| (-317)) ELT)) (-1761 (($ $ (-694)) 105 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT) (($ $) 104 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3717 (((-85) $) 87 T ELT)) (-3766 (((-830) $) 147 (|has| |#1| (-317)) ELT) (((-743 (-830)) $) 102 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-2406 (((-85) $) 42 T ELT)) (-2009 (($) 155 (|has| |#1| (-317)) ELT)) (-2007 (((-85) $) 154 (|has| |#1| (-317)) ELT)) (-3127 ((|#1| $) 161 T ELT) (($ $ (-830)) 158 (|has| |#1| (-317)) ELT)) (-3439 (((-632 $) $) 133 (|has| |#1| (-317)) ELT)) (-1602 (((-3 (-583 $) #1="failed") (-583 $) $) 66 T ELT)) (-2010 (((-1083 |#1|) $) 165 T ELT) (((-1083 $) $ (-830)) 159 (|has| |#1| (-317)) ELT)) (-2006 (((-830) $) 130 (|has| |#1| (-317)) ELT)) (-1624 (((-1083 |#1|) $) 151 (|has| |#1| (-317)) ELT)) (-1623 (((-1083 |#1|) $) 150 (|has| |#1| (-317)) ELT) (((-3 (-1083 |#1|) "failed") $ $) 149 (|has| |#1| (-317)) ELT)) (-1625 (($ $ (-1083 |#1|)) 152 (|has| |#1| (-317)) ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 86 T ELT)) (-3440 (($) 134 (|has| |#1| (-317)) CONST)) (-2396 (($ (-830)) 131 (|has| |#1| (-317)) ELT)) (-3925 (((-85) $) 111 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2405 (($) 153 (|has| |#1| (-317)) ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) 141 (|has| |#1| (-317)) ELT)) (-3726 (((-345 $) $) 90 T ELT)) (-3924 (((-743 (-830))) 109 T ELT) (((-830)) 163 T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 63 T ELT)) (-1604 (((-694) $) 72 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 71 T ELT)) (-1762 (((-694) $) 146 (|has| |#1| (-317)) ELT) (((-3 (-694) "failed") $ $) 103 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3905 (((-107)) 117 T ELT)) (-3752 (($ $ (-694)) 137 (|has| |#1| (-317)) ELT) (($ $) 135 (|has| |#1| (-317)) ELT)) (-3942 (((-743 (-830)) $) 110 T ELT) (((-830) $) 162 T ELT)) (-3180 (((-1083 |#1|)) 164 T ELT)) (-1671 (($) 143 (|has| |#1| (-317)) ELT)) (-1626 (($) 156 (|has| |#1| (-317)) ELT)) (-3219 (((-1177 |#1|) $) 168 T ELT) (((-630 |#1|) (-1177 $)) 167 T ELT)) (-2699 (((-3 (-1177 $) "failed") (-630 $)) 140 (|has| |#1| (-317)) ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-483))) 82 T ELT) (($ |#1|) 118 T ELT)) (-2698 (($ $) 139 (|has| |#1| (-317)) ELT) (((-632 $) $) 101 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2008 (((-1177 $)) 170 T ELT) (((-1177 $) (-830)) 169 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-3927 (((-85) $) 113 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3922 (($ $) 107 (|has| |#1| (-317)) ELT) (($ $ (-694)) 106 (|has| |#1| (-317)) ELT)) (-2665 (($ $ (-694)) 138 (|has| |#1| (-317)) ELT) (($ $) 136 (|has| |#1| (-317)) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ $) 81 T ELT) (($ $ |#1|) 116 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 85 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-483))) 84 T ELT) (($ (-347 (-483)) $) 83 T ELT) (($ $ |#1|) 115 T ELT) (($ |#1| $) 114 T ELT)))
+((-1606 (*1 *2 *1 *1) (-12 (-4 *1 (-257)) (-5 *2 (-85)))) (-1605 (*1 *2 *1) (-12 (-4 *1 (-257)) (-5 *2 (-695)))) (-2877 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1971 *1) (|:| -2900 *1))) (-4 *1 (-257)))) (-2561 (*1 *1 *1 *1) (-4 *1 (-257))) (-2562 (*1 *1 *1 *1) (-4 *1 (-257))) (-1604 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2407 *1))) (-4 *1 (-257)))) (-1604 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-257)))) (-1603 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-584 *1)) (-4 *1 (-257)))))
+(-13 (-833) (-10 -8 (-15 -1606 ((-85) $ $)) (-15 -1605 ((-695) $)) (-15 -2877 ((-2 (|:| -1971 $) (|:| -2900 $)) $ $)) (-15 -2561 ($ $ $)) (-15 -2562 ($ $ $)) (-15 -1604 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $)) (-15 -1604 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1603 ((-3 (-584 $) "failed") (-584 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-484)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-245) . T) ((-389) . T) ((-495) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
+((-3764 (($ $ (-584 |#2|) (-584 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-248 |#2|)) 11 T ELT) (($ $ (-584 (-248 |#2|))) NIL T ELT)))
+(((-258 |#1| |#2|) (-10 -7 (-15 -3764 (|#1| |#1| (-584 (-248 |#2|)))) (-15 -3764 (|#1| |#1| (-248 |#2|))) (-15 -3764 (|#1| |#1| |#2| |#2|)) (-15 -3764 (|#1| |#1| (-584 |#2|) (-584 |#2|)))) (-259 |#2|) (-1013)) (T -258))
+NIL
+((-3764 (($ $ (-584 |#1|) (-584 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-248 |#1|)) 13 T ELT) (($ $ (-584 (-248 |#1|))) 12 T ELT)))
+(((-259 |#1|) (-113) (-1013)) (T -259))
+((-3764 (*1 *1 *1 *2) (-12 (-5 *2 (-248 *3)) (-4 *1 (-259 *3)) (-4 *3 (-1013)))) (-3764 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-248 *3))) (-4 *1 (-259 *3)) (-4 *3 (-1013)))))
+(-13 (-453 |t#1| |t#1|) (-10 -8 (-15 -3764 ($ $ (-248 |t#1|))) (-15 -3764 ($ $ (-584 (-248 |t#1|))))))
+(((-453 |#1| |#1|) . T))
+((-3764 ((|#1| (-1 |#1| (-484)) (-1091 (-347 (-484)))) 26 T ELT)))
+(((-260 |#1|) (-10 -7 (-15 -3764 (|#1| (-1 |#1| (-484)) (-1091 (-347 (-484)))))) (-38 (-347 (-484)))) (T -260))
+((-3764 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-484))) (-5 *4 (-1091 (-347 (-484)))) (-5 *1 (-260 *2)) (-4 *2 (-38 (-347 (-484)))))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 7 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 9 T ELT)))
+(((-261) (-1013)) (T -261))
+NIL
+((-2566 (((-85) $ $) NIL T ELT)) (-3502 (((-484) $) 13 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3203 (((-1048) $) 10 T ELT)) (-3942 (((-773) $) 20 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-262) (-13 (-995) (-10 -8 (-15 -3203 ((-1048) $)) (-15 -3502 ((-484) $))))) (T -262))
+((-3203 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-262)))) (-3502 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-262)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 60 T ELT)) (-3126 (((-1165 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-257)) ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-822)) ELT)) (-3771 (($ $) NIL T ELT)) (-3967 (((-345 $) $) NIL T ELT)) (-2702 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-822)) ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3619 (((-484) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-741)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 (-1165 |#1| |#2| |#3| |#4|) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-951 (-1089))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-951 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-951 (-484))) ELT) (((-3 (-1159 |#2| |#3| |#4|) #1#) $) 26 T ELT)) (-3153 (((-1165 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1089) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-951 (-1089))) ELT) (((-347 (-484)) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-951 (-484))) ELT) (((-484) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-951 (-484))) ELT) (((-1159 |#2| |#3| |#4|) $) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-1165 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1178 (-1165 |#1| |#2| |#3| |#4|)))) (-631 $) (-1178 $)) NIL T ELT) (((-631 (-1165 |#1| |#2| |#3| |#4|)) (-631 $)) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2992 (($) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-483)) ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-3719 (((-85) $) NIL T ELT)) (-3183 (((-85) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-741)) ELT)) (-2794 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-797 (-484))) ELT) (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-797 (-327))) ELT)) (-2408 (((-85) $) NIL T ELT)) (-2994 (($ $) NIL T ELT)) (-2996 (((-1165 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-3441 (((-633 $) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-1065)) ELT)) (-3184 (((-85) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-741)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2529 (($ $ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-2855 (($ $ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-3954 (($ (-1 (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-3780 (((-3 (-751 |#2|) #1#) $) 80 T ELT)) (-2278 (((-631 (-484)) (-1178 $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-1165 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1178 (-1165 |#1| |#2| |#3| |#4|)))) (-1178 $) $) NIL T ELT) (((-631 (-1165 |#1| |#2| |#3| |#4|)) (-1178 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) NIL T ELT)) (-3442 (($) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-1065)) CONST)) (-3240 (((-1033) $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3125 (($ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-257)) ELT)) (-3127 (((-1165 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-483)) ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-822)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-822)) ELT)) (-3728 (((-345 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3764 (($ $ (-584 (-1165 |#1| |#2| |#3| |#4|)) (-584 (-1165 |#1| |#2| |#3| |#4|))) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-259 (-1165 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-259 (-1165 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-248 (-1165 |#1| |#2| |#3| |#4|))) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-259 (-1165 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-584 (-248 (-1165 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-259 (-1165 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-584 (-1089)) (-584 (-1165 |#1| |#2| |#3| |#4|))) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-453 (-1089) (-1165 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1089) (-1165 |#1| |#2| |#3| |#4|)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-453 (-1089) (-1165 |#1| |#2| |#3| |#4|))) ELT)) (-1605 (((-695) $) NIL T ELT)) (-3796 (($ $ (-1165 |#1| |#2| |#3| |#4|)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-241 (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|))) ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-3754 (($ $ (-1 (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|)) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-812 (-1089))) ELT) (($ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-2993 (($ $) NIL T ELT)) (-2995 (((-1165 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-3968 (((-801 (-484)) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-554 (-801 (-484)))) ELT) (((-801 (-327)) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-554 (-801 (-327)))) ELT) (((-473) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-554 (-473))) ELT) (((-327) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-934)) ELT) (((-179) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-934)) ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-1165 |#1| |#2| |#3| |#4|) (-822))) ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ (-1165 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1089)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-951 (-1089))) ELT) (($ (-1159 |#2| |#3| |#4|)) 37 T ELT)) (-2700 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1165 |#1| |#2| |#3| |#4|) (-822))) (|has| (-1165 |#1| |#2| |#3| |#4|) (-118))) ELT)) (-3123 (((-695)) NIL T CONST)) (-3128 (((-1165 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-483)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-3379 (($ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-741)) ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-2667 (($ $ (-1 (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|)) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-812 (-1089))) ELT) (($ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-2564 (((-85) $ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-2565 (((-85) $ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-2683 (((-85) $ $) NIL (|has| (-1165 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-3945 (($ $ $) 35 T ELT) (($ (-1165 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ (-1165 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1165 |#1| |#2| |#3| |#4|)) NIL T ELT)))
+(((-263 |#1| |#2| |#3| |#4|) (-13 (-905 (-1165 |#1| |#2| |#3| |#4|)) (-951 (-1159 |#2| |#3| |#4|)) (-10 -8 (-15 -3780 ((-3 (-751 |#2|) "failed") $)) (-15 -3942 ($ (-1159 |#2| |#3| |#4|))))) (-13 (-951 (-484)) (-581 (-484)) (-389)) (-13 (-27) (-1114) (-361 |#1|)) (-1089) |#2|) (T -263))
+((-3942 (*1 *1 *2) (-12 (-5 *2 (-1159 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-361 *3))) (-14 *5 (-1089)) (-14 *6 *4) (-4 *3 (-13 (-951 (-484)) (-581 (-484)) (-389))) (-5 *1 (-263 *3 *4 *5 *6)))) (-3780 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-951 (-484)) (-581 (-484)) (-389))) (-5 *2 (-751 *4)) (-5 *1 (-263 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-361 *3))) (-14 *5 (-1089)) (-14 *6 *4))))
+((-2566 (((-85) $ $) NIL T ELT)) (-1213 (((-584 $) $ (-1089)) NIL (|has| |#1| (-495)) ELT) (((-584 $) $) NIL (|has| |#1| (-495)) ELT) (((-584 $) (-1084 $) (-1089)) NIL (|has| |#1| (-495)) ELT) (((-584 $) (-1084 $)) NIL (|has| |#1| (-495)) ELT) (((-584 $) (-858 $)) NIL (|has| |#1| (-495)) ELT)) (-1214 (($ $ (-1089)) NIL (|has| |#1| (-495)) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-1084 $) (-1089)) NIL (|has| |#1| (-495)) ELT) (($ (-1084 $)) NIL (|has| |#1| (-495)) ELT) (($ (-858 $)) NIL (|has| |#1| (-495)) ELT)) (-3185 (((-85) $) 29 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962)))) ELT)) (-3079 (((-584 (-1089)) $) 365 T ELT)) (-3081 (((-347 (-1084 $)) $ (-551 $)) NIL (|has| |#1| (-495)) ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2061 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-1598 (((-584 (-551 $)) $) NIL T ELT)) (-3488 (($ $) 170 (|has| |#1| (-495)) ELT)) (-3635 (($ $) 146 (|has| |#1| (-495)) ELT)) (-1370 (($ $ (-1004 $)) 231 (|has| |#1| (-495)) ELT) (($ $ (-1089)) 227 (|has| |#1| (-495)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962)))) ELT)) (-1602 (($ $ (-248 $)) NIL T ELT) (($ $ (-584 (-248 $))) 383 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 438 T ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) 305 (-12 (|has| |#1| (-389)) (|has| |#1| (-495))) ELT)) (-3771 (($ $) NIL (|has| |#1| (-495)) ELT)) (-3967 (((-345 $) $) NIL (|has| |#1| (-495)) ELT)) (-3035 (($ $) NIL (|has| |#1| (-495)) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3486 (($ $) 166 (|has| |#1| (-495)) ELT)) (-3634 (($ $) 142 (|has| |#1| (-495)) ELT)) (-1607 (($ $ (-484)) 68 (|has| |#1| (-495)) ELT)) (-3490 (($ $) 174 (|has| |#1| (-495)) ELT)) (-3633 (($ $) 150 (|has| |#1| (-495)) ELT)) (-3720 (($) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962))) (|has| |#1| (-1025))) CONST)) (-1215 (((-584 $) $ (-1089)) NIL (|has| |#1| (-495)) ELT) (((-584 $) $) NIL (|has| |#1| (-495)) ELT) (((-584 $) (-1084 $) (-1089)) NIL (|has| |#1| (-495)) ELT) (((-584 $) (-1084 $)) NIL (|has| |#1| (-495)) ELT) (((-584 $) (-858 $)) NIL (|has| |#1| (-495)) ELT)) (-3180 (($ $ (-1089)) NIL (|has| |#1| (-495)) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-1084 $) (-1089)) 133 (|has| |#1| (-495)) ELT) (($ (-1084 $)) NIL (|has| |#1| (-495)) ELT) (($ (-858 $)) NIL (|has| |#1| (-495)) ELT)) (-3154 (((-3 (-551 $) #1#) $) 18 T ELT) (((-3 (-1089) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 450 T ELT) (((-3 (-48) #1#) $) 333 (-12 (|has| |#1| (-495)) (|has| |#1| (-951 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-858 |#1|)) #1#) $) NIL (|has| |#1| (-495)) ELT) (((-3 (-858 |#1|) #1#) $) NIL (|has| |#1| (-962)) ELT) (((-3 (-347 (-484)) #1#) $) 48 (OR (-12 (|has| |#1| (-495)) (|has| |#1| (-951 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ELT)) (-3153 (((-551 $) $) 12 T ELT) (((-1089) $) NIL T ELT) ((|#1| $) 429 T ELT) (((-48) $) NIL (-12 (|has| |#1| (-495)) (|has| |#1| (-951 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-347 (-858 |#1|)) $) NIL (|has| |#1| (-495)) ELT) (((-858 |#1|) $) NIL (|has| |#1| (-962)) ELT) (((-347 (-484)) $) 316 (OR (-12 (|has| |#1| (-495)) (|has| |#1| (-951 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-2277 (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) 124 (|has| |#1| (-962)) ELT) (((-631 |#1|) (-631 $)) 114 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (-12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962))) ELT) (((-631 (-484)) (-631 $)) NIL (-12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962))) ELT)) (-3838 (($ $) 95 (|has| |#1| (-495)) ELT)) (-3463 (((-3 $ #1#) $) NIL (|has| |#1| (-1025)) ELT)) (-2561 (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3940 (($ $ (-1004 $)) 235 (|has| |#1| (-495)) ELT) (($ $ (-1089)) 233 (|has| |#1| (-495)) ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL (|has| |#1| (-495)) ELT)) (-3719 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3382 (($ $ $) 201 (|has| |#1| (-495)) ELT)) (-3623 (($) 136 (|has| |#1| (-495)) ELT)) (-1367 (($ $ $) 221 (|has| |#1| (-495)) ELT)) (-2794 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) 389 (|has| |#1| (-797 (-484))) ELT) (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 396 (|has| |#1| (-797 (-327))) ELT)) (-2571 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1597 (((-584 (-86)) $) NIL T ELT)) (-3591 (((-86) (-86)) 275 T ELT)) (-2408 (((-85) $) 27 (|has| |#1| (-1025)) ELT)) (-2671 (((-85) $) NIL (|has| $ (-951 (-484))) ELT)) (-2994 (($ $) 73 (|has| |#1| (-962)) ELT)) (-2996 (((-1038 |#1| (-551 $)) $) 90 (|has| |#1| (-962)) ELT)) (-1608 (((-85) $) 49 (|has| |#1| (-495)) ELT)) (-3009 (($ $ (-484)) NIL (|has| |#1| (-495)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-495)) ELT)) (-1595 (((-1084 $) (-551 $)) 276 (|has| $ (-962)) ELT)) (-3954 (($ (-1 $ $) (-551 $)) 434 T ELT)) (-1600 (((-3 (-551 $) #1#) $) NIL T ELT)) (-3938 (($ $) 140 (|has| |#1| (-495)) ELT)) (-2255 (($ $) 246 (|has| |#1| (-495)) ELT)) (-2278 (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL (|has| |#1| (-962)) ELT) (((-631 |#1|) (-1178 $)) NIL (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962))) ELT) (((-631 (-484)) (-1178 $)) NIL (-12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962))) ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-495)) ELT) (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-1599 (((-584 (-551 $)) $) 51 T ELT)) (-2233 (($ (-86) $) NIL T ELT) (($ (-86) (-584 $)) 439 T ELT)) (-2821 (((-3 (-584 $) #1#) $) NIL (|has| |#1| (-1025)) ELT)) (-2823 (((-3 (-2 (|:| |val| $) (|:| -2399 (-484))) #1#) $) NIL (|has| |#1| (-962)) ELT)) (-2820 (((-3 (-584 $) #1#) $) 444 (|has| |#1| (-25)) ELT)) (-1792 (((-3 (-2 (|:| -3950 (-484)) (|:| |var| (-551 $))) #1#) $) 448 (|has| |#1| (-25)) ELT)) (-2822 (((-3 (-2 (|:| |var| (-551 $)) (|:| -2399 (-484))) #1#) $) NIL (|has| |#1| (-1025)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2399 (-484))) #1#) $ (-86)) NIL (|has| |#1| (-962)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2399 (-484))) #1#) $ (-1089)) NIL (|has| |#1| (-962)) ELT)) (-2631 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1089)) 53 T ELT)) (-2482 (($ $) NIL (OR (|has| |#1| (-410)) (|has| |#1| (-495))) ELT)) (-2830 (($ $ (-1089)) 250 (|has| |#1| (-495)) ELT) (($ $ (-1004 $)) 252 (|has| |#1| (-495)) ELT)) (-2601 (((-695) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1795 (((-85) $) 45 T ELT)) (-1794 ((|#1| $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 298 (|has| |#1| (-495)) ELT)) (-3141 (($ (-584 $)) NIL (|has| |#1| (-495)) ELT) (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-1596 (((-85) $ $) NIL T ELT) (((-85) $ (-1089)) NIL T ELT)) (-1371 (($ $ (-1089)) 225 (|has| |#1| (-495)) ELT) (($ $) 223 (|has| |#1| (-495)) ELT)) (-1365 (($ $) 217 (|has| |#1| (-495)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) 303 (-12 (|has| |#1| (-389)) (|has| |#1| (-495))) ELT)) (-3728 (((-345 $) $) NIL (|has| |#1| (-495)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-495)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-3462 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-495)) ELT)) (-3939 (($ $) 138 (|has| |#1| (-495)) ELT)) (-2672 (((-85) $) NIL (|has| $ (-951 (-484))) ELT)) (-3764 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) 433 T ELT) (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-1089) (-1 $ (-584 $))) NIL T ELT) (($ $ (-1089) (-1 $ $)) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) 376 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-584 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-554 (-473))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-554 (-473))) ELT) (($ $) NIL (|has| |#1| (-554 (-473))) ELT) (($ $ (-86) $ (-1089)) 363 (|has| |#1| (-554 (-473))) ELT) (($ $ (-584 (-86)) (-584 $) (-1089)) 362 (|has| |#1| (-554 (-473))) ELT) (($ $ (-584 (-1089)) (-584 (-695)) (-584 (-1 $ $))) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1089)) (-584 (-695)) (-584 (-1 $ (-584 $)))) NIL (|has| |#1| (-962)) ELT) (($ $ (-1089) (-695) (-1 $ (-584 $))) NIL (|has| |#1| (-962)) ELT) (($ $ (-1089) (-695) (-1 $ $)) NIL (|has| |#1| (-962)) ELT)) (-1605 (((-695) $) NIL (|has| |#1| (-495)) ELT)) (-2253 (($ $) 238 (|has| |#1| (-495)) ELT)) (-3796 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-584 $)) NIL T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-1601 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2254 (($ $) 248 (|has| |#1| (-495)) ELT)) (-3381 (($ $) 199 (|has| |#1| (-495)) ELT)) (-3754 (($ $ (-1089)) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-962)) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-962)) ELT)) (-2993 (($ $) 74 (|has| |#1| (-495)) ELT)) (-2995 (((-1038 |#1| (-551 $)) $) 92 (|has| |#1| (-495)) ELT)) (-3182 (($ $) 314 (|has| $ (-962)) ELT)) (-3491 (($ $) 176 (|has| |#1| (-495)) ELT)) (-3632 (($ $) 152 (|has| |#1| (-495)) ELT)) (-3489 (($ $) 172 (|has| |#1| (-495)) ELT)) (-3631 (($ $) 148 (|has| |#1| (-495)) ELT)) (-3487 (($ $) 168 (|has| |#1| (-495)) ELT)) (-3630 (($ $) 144 (|has| |#1| (-495)) ELT)) (-3968 (((-801 (-484)) $) NIL (|has| |#1| (-554 (-801 (-484)))) ELT) (((-801 (-327)) $) NIL (|has| |#1| (-554 (-801 (-327)))) ELT) (($ (-345 $)) NIL (|has| |#1| (-495)) ELT) (((-473) $) 360 (|has| |#1| (-554 (-473))) ELT)) (-3007 (($ $ $) NIL (|has| |#1| (-410)) ELT)) (-2433 (($ $ $) NIL (|has| |#1| (-410)) ELT)) (-3942 (((-773) $) 432 T ELT) (($ (-551 $)) 423 T ELT) (($ (-1089)) 378 T ELT) (($ |#1|) 334 T ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-48)) 309 (-12 (|has| |#1| (-495)) (|has| |#1| (-951 (-484)))) ELT) (($ (-1038 |#1| (-551 $))) 94 (|has| |#1| (-962)) ELT) (($ (-347 |#1|)) NIL (|has| |#1| (-495)) ELT) (($ (-858 (-347 |#1|))) NIL (|has| |#1| (-495)) ELT) (($ (-347 (-858 (-347 |#1|)))) NIL (|has| |#1| (-495)) ELT) (($ (-347 (-858 |#1|))) NIL (|has| |#1| (-495)) ELT) (($ (-858 |#1|)) NIL (|has| |#1| (-962)) ELT) (($ (-484)) 36 (OR (|has| |#1| (-951 (-484))) (|has| |#1| (-962))) ELT) (($ (-347 (-484))) NIL (OR (|has| |#1| (-495)) (|has| |#1| (-951 (-347 (-484))))) ELT)) (-2700 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3123 (((-695)) NIL (|has| |#1| (-962)) CONST)) (-2588 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3099 (($ $ $) 219 (|has| |#1| (-495)) ELT)) (-3385 (($ $ $) 205 (|has| |#1| (-495)) ELT)) (-3387 (($ $ $) 209 (|has| |#1| (-495)) ELT)) (-3384 (($ $ $) 203 (|has| |#1| (-495)) ELT)) (-3386 (($ $ $) 207 (|has| |#1| (-495)) ELT)) (-2252 (((-85) (-86)) 10 T ELT)) (-1263 (((-85) $ $) 85 T ELT)) (-3494 (($ $) 182 (|has| |#1| (-495)) ELT)) (-3482 (($ $) 158 (|has| |#1| (-495)) ELT)) (-2060 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3492 (($ $) 178 (|has| |#1| (-495)) ELT)) (-3480 (($ $) 154 (|has| |#1| (-495)) ELT)) (-3496 (($ $) 186 (|has| |#1| (-495)) ELT)) (-3484 (($ $) 162 (|has| |#1| (-495)) ELT)) (-1793 (($ (-1089) $) NIL T ELT) (($ (-1089) $ $) NIL T ELT) (($ (-1089) $ $ $) NIL T ELT) (($ (-1089) $ $ $ $) NIL T ELT) (($ (-1089) (-584 $)) NIL T ELT)) (-3389 (($ $) 213 (|has| |#1| (-495)) ELT)) (-3388 (($ $) 211 (|has| |#1| (-495)) ELT)) (-3497 (($ $) 188 (|has| |#1| (-495)) ELT)) (-3485 (($ $) 164 (|has| |#1| (-495)) ELT)) (-3495 (($ $) 184 (|has| |#1| (-495)) ELT)) (-3483 (($ $) 160 (|has| |#1| (-495)) ELT)) (-3493 (($ $) 180 (|has| |#1| (-495)) ELT)) (-3481 (($ $) 156 (|has| |#1| (-495)) ELT)) (-3379 (($ $) 191 (|has| |#1| (-495)) ELT)) (-2658 (($) 23 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962)))) CONST)) (-2257 (($ $) 242 (|has| |#1| (-495)) ELT)) (-2664 (($) 25 (|has| |#1| (-1025)) CONST)) (-3383 (($ $) 193 (|has| |#1| (-495)) ELT) (($ $ $) 195 (|has| |#1| (-495)) ELT)) (-2258 (($ $) 240 (|has| |#1| (-495)) ELT)) (-2667 (($ $ (-1089)) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-962)) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-962)) ELT)) (-2256 (($ $) 244 (|has| |#1| (-495)) ELT)) (-3380 (($ $ $) 197 (|has| |#1| (-495)) ELT)) (-3054 (((-85) $ $) 87 T ELT)) (-3945 (($ (-1038 |#1| (-551 $)) (-1038 |#1| (-551 $))) 105 (|has| |#1| (-495)) ELT) (($ $ $) 44 (OR (|has| |#1| (-410)) (|has| |#1| (-495))) ELT)) (-3833 (($ $ $) 42 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962)))) ELT) (($ $) 31 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962)))) ELT)) (-3835 (($ $ $) 40 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962)))) ELT)) (** (($ $ $) 65 (|has| |#1| (-495)) ELT) (($ $ (-347 (-484))) 311 (|has| |#1| (-495)) ELT) (($ $ (-484)) 79 (OR (|has| |#1| (-410)) (|has| |#1| (-495))) ELT) (($ $ (-695)) 75 (|has| |#1| (-1025)) ELT) (($ $ (-831)) 83 (|has| |#1| (-1025)) ELT)) (* (($ (-347 (-484)) $) NIL (|has| |#1| (-495)) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-495)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT) (($ |#1| $) NIL (|has| |#1| (-962)) ELT) (($ $ $) 38 (|has| |#1| (-1025)) ELT) (($ (-484) $) 34 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962)))) ELT) (($ (-695) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962)))) ELT) (($ (-831) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962)))) ELT)))
+(((-264 |#1|) (-13 (-361 |#1|) (-10 -8 (IF (|has| |#1| (-495)) (PROGN (-6 (-29 |#1|)) (-6 (-1114)) (-6 (-133)) (-6 (-570)) (-6 (-1052)) (-15 -3838 ($ $)) (-15 -1608 ((-85) $)) (-15 -1607 ($ $ (-484))) (IF (|has| |#1| (-389)) (PROGN (-15 -2704 ((-345 (-1084 $)) (-1084 $))) (-15 -2705 ((-345 (-1084 $)) (-1084 $)))) |%noBranch|) (IF (|has| |#1| (-951 (-484))) (-6 (-951 (-48))) |%noBranch|)) |%noBranch|))) (-1013)) (T -264))
+((-3838 (*1 *1 *1) (-12 (-5 *1 (-264 *2)) (-4 *2 (-495)) (-4 *2 (-1013)))) (-1608 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-264 *3)) (-4 *3 (-495)) (-4 *3 (-1013)))) (-1607 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-264 *3)) (-4 *3 (-495)) (-4 *3 (-1013)))) (-2704 (*1 *2 *3) (-12 (-5 *2 (-345 (-1084 *1))) (-5 *1 (-264 *4)) (-5 *3 (-1084 *1)) (-4 *4 (-389)) (-4 *4 (-495)) (-4 *4 (-1013)))) (-2705 (*1 *2 *3) (-12 (-5 *2 (-345 (-1084 *1))) (-5 *1 (-264 *4)) (-5 *3 (-1084 *1)) (-4 *4 (-389)) (-4 *4 (-495)) (-4 *4 (-1013)))))
+((-3954 (((-264 |#2|) (-1 |#2| |#1|) (-264 |#1|)) 13 T ELT)))
+(((-265 |#1| |#2|) (-10 -7 (-15 -3954 ((-264 |#2|) (-1 |#2| |#1|) (-264 |#1|)))) (-1013) (-1013)) (T -265))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-264 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-264 *6)) (-5 *1 (-265 *5 *6)))))
+((-3725 (((-51) |#2| (-248 |#2|) (-695)) 40 T ELT) (((-51) |#2| (-248 |#2|)) 32 T ELT) (((-51) |#2| (-695)) 35 T ELT) (((-51) |#2|) 33 T ELT) (((-51) (-1089)) 26 T ELT)) (-3814 (((-51) |#2| (-248 |#2|) (-347 (-484))) 59 T ELT) (((-51) |#2| (-248 |#2|)) 56 T ELT) (((-51) |#2| (-347 (-484))) 58 T ELT) (((-51) |#2|) 57 T ELT) (((-51) (-1089)) 55 T ELT)) (-3778 (((-51) |#2| (-248 |#2|) (-347 (-484))) 54 T ELT) (((-51) |#2| (-248 |#2|)) 51 T ELT) (((-51) |#2| (-347 (-484))) 53 T ELT) (((-51) |#2|) 52 T ELT) (((-51) (-1089)) 50 T ELT)) (-3775 (((-51) |#2| (-248 |#2|) (-484)) 47 T ELT) (((-51) |#2| (-248 |#2|)) 44 T ELT) (((-51) |#2| (-484)) 46 T ELT) (((-51) |#2|) 45 T ELT) (((-51) (-1089)) 43 T ELT)))
+(((-266 |#1| |#2|) (-10 -7 (-15 -3725 ((-51) (-1089))) (-15 -3725 ((-51) |#2|)) (-15 -3725 ((-51) |#2| (-695))) (-15 -3725 ((-51) |#2| (-248 |#2|))) (-15 -3725 ((-51) |#2| (-248 |#2|) (-695))) (-15 -3775 ((-51) (-1089))) (-15 -3775 ((-51) |#2|)) (-15 -3775 ((-51) |#2| (-484))) (-15 -3775 ((-51) |#2| (-248 |#2|))) (-15 -3775 ((-51) |#2| (-248 |#2|) (-484))) (-15 -3778 ((-51) (-1089))) (-15 -3778 ((-51) |#2|)) (-15 -3778 ((-51) |#2| (-347 (-484)))) (-15 -3778 ((-51) |#2| (-248 |#2|))) (-15 -3778 ((-51) |#2| (-248 |#2|) (-347 (-484)))) (-15 -3814 ((-51) (-1089))) (-15 -3814 ((-51) |#2|)) (-15 -3814 ((-51) |#2| (-347 (-484)))) (-15 -3814 ((-51) |#2| (-248 |#2|))) (-15 -3814 ((-51) |#2| (-248 |#2|) (-347 (-484))))) (-13 (-389) (-951 (-484)) (-581 (-484))) (-13 (-27) (-1114) (-361 |#1|))) (T -266))
+((-3814 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-248 *3)) (-5 *5 (-347 (-484))) (-4 *3 (-13 (-27) (-1114) (-361 *6))) (-4 *6 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *6 *3)))) (-3814 (*1 *2 *3 *4) (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5))) (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *5 *3)))) (-3814 (*1 *2 *3 *4) (-12 (-5 *4 (-347 (-484))) (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5))))) (-3814 (*1 *2 *3) (-12 (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *4))))) (-3814 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-361 *4))))) (-3778 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-248 *3)) (-5 *5 (-347 (-484))) (-4 *3 (-13 (-27) (-1114) (-361 *6))) (-4 *6 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *6 *3)))) (-3778 (*1 *2 *3 *4) (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5))) (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *5 *3)))) (-3778 (*1 *2 *3 *4) (-12 (-5 *4 (-347 (-484))) (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5))))) (-3778 (*1 *2 *3) (-12 (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *4))))) (-3778 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-361 *4))))) (-3775 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *6))) (-4 *6 (-13 (-389) (-951 *5) (-581 *5))) (-5 *5 (-484)) (-5 *2 (-51)) (-5 *1 (-266 *6 *3)))) (-3775 (*1 *2 *3 *4) (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5))) (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *5 *3)))) (-3775 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-4 *5 (-13 (-389) (-951 *4) (-581 *4))) (-5 *2 (-51)) (-5 *1 (-266 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5))))) (-3775 (*1 *2 *3) (-12 (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *4))))) (-3775 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-361 *4))))) (-3725 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-248 *3)) (-5 *5 (-695)) (-4 *3 (-13 (-27) (-1114) (-361 *6))) (-4 *6 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *6 *3)))) (-3725 (*1 *2 *3 *4) (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5))) (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *5 *3)))) (-3725 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5))))) (-3725 (*1 *2 *3) (-12 (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *4))))) (-3725 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-266 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-361 *4))))))
+((-1609 (((-51) |#2| (-86) (-248 |#2|) (-584 |#2|)) 89 T ELT) (((-51) |#2| (-86) (-248 |#2|) (-248 |#2|)) 85 T ELT) (((-51) |#2| (-86) (-248 |#2|) |#2|) 87 T ELT) (((-51) (-248 |#2|) (-86) (-248 |#2|) |#2|) 88 T ELT) (((-51) (-584 |#2|) (-584 (-86)) (-248 |#2|) (-584 (-248 |#2|))) 81 T ELT) (((-51) (-584 |#2|) (-584 (-86)) (-248 |#2|) (-584 |#2|)) 83 T ELT) (((-51) (-584 (-248 |#2|)) (-584 (-86)) (-248 |#2|) (-584 |#2|)) 84 T ELT) (((-51) (-584 (-248 |#2|)) (-584 (-86)) (-248 |#2|) (-584 (-248 |#2|))) 82 T ELT) (((-51) (-248 |#2|) (-86) (-248 |#2|) (-584 |#2|)) 90 T ELT) (((-51) (-248 |#2|) (-86) (-248 |#2|) (-248 |#2|)) 86 T ELT)))
+(((-267 |#1| |#2|) (-10 -7 (-15 -1609 ((-51) (-248 |#2|) (-86) (-248 |#2|) (-248 |#2|))) (-15 -1609 ((-51) (-248 |#2|) (-86) (-248 |#2|) (-584 |#2|))) (-15 -1609 ((-51) (-584 (-248 |#2|)) (-584 (-86)) (-248 |#2|) (-584 (-248 |#2|)))) (-15 -1609 ((-51) (-584 (-248 |#2|)) (-584 (-86)) (-248 |#2|) (-584 |#2|))) (-15 -1609 ((-51) (-584 |#2|) (-584 (-86)) (-248 |#2|) (-584 |#2|))) (-15 -1609 ((-51) (-584 |#2|) (-584 (-86)) (-248 |#2|) (-584 (-248 |#2|)))) (-15 -1609 ((-51) (-248 |#2|) (-86) (-248 |#2|) |#2|)) (-15 -1609 ((-51) |#2| (-86) (-248 |#2|) |#2|)) (-15 -1609 ((-51) |#2| (-86) (-248 |#2|) (-248 |#2|))) (-15 -1609 ((-51) |#2| (-86) (-248 |#2|) (-584 |#2|)))) (-13 (-495) (-554 (-473))) (-361 |#1|)) (T -267))
+((-1609 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-86)) (-5 *5 (-248 *3)) (-5 *6 (-584 *3)) (-4 *3 (-361 *7)) (-4 *7 (-13 (-495) (-554 (-473)))) (-5 *2 (-51)) (-5 *1 (-267 *7 *3)))) (-1609 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-86)) (-5 *5 (-248 *3)) (-4 *3 (-361 *6)) (-4 *6 (-13 (-495) (-554 (-473)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-1609 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-86)) (-5 *5 (-248 *3)) (-4 *3 (-361 *6)) (-4 *6 (-13 (-495) (-554 (-473)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-1609 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-248 *5)) (-5 *4 (-86)) (-4 *5 (-361 *6)) (-4 *6 (-13 (-495) (-554 (-473)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *5)))) (-1609 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 (-86))) (-5 *6 (-584 (-248 *8))) (-4 *8 (-361 *7)) (-5 *5 (-248 *8)) (-4 *7 (-13 (-495) (-554 (-473)))) (-5 *2 (-51)) (-5 *1 (-267 *7 *8)))) (-1609 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-584 *7)) (-5 *4 (-584 (-86))) (-5 *5 (-248 *7)) (-4 *7 (-361 *6)) (-4 *6 (-13 (-495) (-554 (-473)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *7)))) (-1609 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-584 (-248 *8))) (-5 *4 (-584 (-86))) (-5 *5 (-248 *8)) (-5 *6 (-584 *8)) (-4 *8 (-361 *7)) (-4 *7 (-13 (-495) (-554 (-473)))) (-5 *2 (-51)) (-5 *1 (-267 *7 *8)))) (-1609 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-584 (-248 *7))) (-5 *4 (-584 (-86))) (-5 *5 (-248 *7)) (-4 *7 (-361 *6)) (-4 *6 (-13 (-495) (-554 (-473)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *7)))) (-1609 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-248 *7)) (-5 *4 (-86)) (-5 *5 (-584 *7)) (-4 *7 (-361 *6)) (-4 *6 (-13 (-495) (-554 (-473)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *7)))) (-1609 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-248 *6)) (-5 *4 (-86)) (-4 *6 (-361 *5)) (-4 *5 (-13 (-495) (-554 (-473)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *6)))))
+((-1611 (((-1124 (-839)) (-264 (-484)) (-264 (-484)) (-264 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-179) (-484) (-1072)) 67 T ELT) (((-1124 (-839)) (-264 (-484)) (-264 (-484)) (-264 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-179) (-484)) 68 T ELT) (((-1124 (-839)) (-264 (-484)) (-264 (-484)) (-264 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-1 (-179) (-179)) (-484) (-1072)) 64 T ELT) (((-1124 (-839)) (-264 (-484)) (-264 (-484)) (-264 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-1 (-179) (-179)) (-484)) 65 T ELT)) (-1610 (((-1 (-179) (-179)) (-179)) 66 T ELT)))
+(((-268) (-10 -7 (-15 -1610 ((-1 (-179) (-179)) (-179))) (-15 -1611 ((-1124 (-839)) (-264 (-484)) (-264 (-484)) (-264 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-1 (-179) (-179)) (-484))) (-15 -1611 ((-1124 (-839)) (-264 (-484)) (-264 (-484)) (-264 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-1 (-179) (-179)) (-484) (-1072))) (-15 -1611 ((-1124 (-839)) (-264 (-484)) (-264 (-484)) (-264 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-179) (-484))) (-15 -1611 ((-1124 (-839)) (-264 (-484)) (-264 (-484)) (-264 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-179) (-484) (-1072))))) (T -268))
+((-1611 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-264 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) (-5 *6 (-179)) (-5 *7 (-484)) (-5 *8 (-1072)) (-5 *2 (-1124 (-839))) (-5 *1 (-268)))) (-1611 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-264 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) (-5 *6 (-179)) (-5 *7 (-484)) (-5 *2 (-1124 (-839))) (-5 *1 (-268)))) (-1611 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-264 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) (-5 *6 (-484)) (-5 *7 (-1072)) (-5 *2 (-1124 (-839))) (-5 *1 (-268)))) (-1611 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-264 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) (-5 *6 (-484)) (-5 *2 (-1124 (-839))) (-5 *1 (-268)))) (-1610 (*1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-268)) (-5 *3 (-179)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 26 T ELT)) (-3079 (((-584 (-994)) $) NIL T ELT)) (-3827 (((-1089) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2061 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3767 (($ $ (-347 (-484))) NIL T ELT) (($ $ (-347 (-484)) (-347 (-484))) NIL T ELT)) (-3770 (((-1068 (-2 (|:| |k| (-347 (-484))) (|:| |c| |#1|))) $) 20 T ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3771 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3967 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-3035 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3814 (($ (-695) (-1068 (-2 (|:| |k| (-347 (-484))) (|:| |c| |#1|)))) NIL T ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3720 (($) NIL T CONST)) (-2562 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3955 (($ $) 36 T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2561 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3719 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-3183 (((-85) $) NIL T ELT)) (-2890 (((-85) $) NIL T ELT)) (-3623 (($) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3768 (((-347 (-484)) $) NIL T ELT) (((-347 (-484)) $ (-347 (-484))) 16 T ELT)) (-2408 (((-85) $) NIL T ELT)) (-3009 (($ $ (-484)) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3773 (($ $ (-831)) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3933 (((-85) $) NIL T ELT)) (-2891 (($ |#1| (-347 (-484))) NIL T ELT) (($ $ (-994) (-347 (-484))) NIL T ELT) (($ $ (-584 (-994)) (-584 (-347 (-484)))) NIL T ELT)) (-2529 (($ $ $) NIL T ELT)) (-2855 (($ $ $) NIL T ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3938 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2892 (($ $) NIL T ELT)) (-3171 ((|#1| $) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3808 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-872)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-15 -3808 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3079 ((-584 (-1089)) |#1|))))) ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-311)) ELT)) (-3141 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3728 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3765 (($ $ (-347 (-484))) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-1612 (((-347 (-484)) $) 17 T ELT)) (-3088 (($ (-1159 |#1| |#2| |#3|)) 11 T ELT)) (-2399 (((-1159 |#1| |#2| |#3|) $) 12 T ELT)) (-3939 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3764 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-347 (-484))))) ELT)) (-1605 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-3796 ((|#1| $ (-347 (-484))) NIL T ELT) (($ $ $) NIL (|has| (-347 (-484)) (-1025)) ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3754 (($ $ (-1089)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT)) (-3944 (((-347 (-484)) $) NIL T ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2889 (($ $) 10 T ELT)) (-3942 (((-773) $) 42 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3673 ((|#1| $ (-347 (-484))) 34 T ELT)) (-2700 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3123 (((-695)) NIL T CONST)) (-3769 ((|#1| $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2060 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3766 ((|#1| $ (-347 (-484))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-484))))) (|has| |#1| (-15 -3942 (|#1| (-1089))))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-2667 (($ $ (-1089)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 28 T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) 37 T ELT)) (-3945 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)))
+(((-269 |#1| |#2| |#3|) (-13 (-1161 |#1|) (-717) (-10 -8 (-15 -3088 ($ (-1159 |#1| |#2| |#3|))) (-15 -2399 ((-1159 |#1| |#2| |#3|) $)) (-15 -1612 ((-347 (-484)) $)))) (-311) (-1089) |#1|) (T -269))
+((-3088 (*1 *1 *2) (-12 (-5 *2 (-1159 *3 *4 *5)) (-4 *3 (-311)) (-14 *4 (-1089)) (-14 *5 *3) (-5 *1 (-269 *3 *4 *5)))) (-2399 (*1 *2 *1) (-12 (-5 *2 (-1159 *3 *4 *5)) (-5 *1 (-269 *3 *4 *5)) (-4 *3 (-311)) (-14 *4 (-1089)) (-14 *5 *3))) (-1612 (*1 *2 *1) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-269 *3 *4 *5)) (-4 *3 (-311)) (-14 *4 (-1089)) (-14 *5 *3))))
+((-3009 (((-2 (|:| -2399 (-695)) (|:| -3950 |#1|) (|:| |radicand| (-584 |#1|))) (-345 |#1|) (-695)) 35 T ELT)) (-3938 (((-584 (-2 (|:| -3950 (-695)) (|:| |logand| |#1|))) (-345 |#1|)) 40 T ELT)))
+(((-270 |#1|) (-10 -7 (-15 -3009 ((-2 (|:| -2399 (-695)) (|:| -3950 |#1|) (|:| |radicand| (-584 |#1|))) (-345 |#1|) (-695))) (-15 -3938 ((-584 (-2 (|:| -3950 (-695)) (|:| |logand| |#1|))) (-345 |#1|)))) (-495)) (T -270))
+((-3938 (*1 *2 *3) (-12 (-5 *3 (-345 *4)) (-4 *4 (-495)) (-5 *2 (-584 (-2 (|:| -3950 (-695)) (|:| |logand| *4)))) (-5 *1 (-270 *4)))) (-3009 (*1 *2 *3 *4) (-12 (-5 *3 (-345 *5)) (-4 *5 (-495)) (-5 *2 (-2 (|:| -2399 (-695)) (|:| -3950 *5) (|:| |radicand| (-584 *5)))) (-5 *1 (-270 *5)) (-5 *4 (-695)))))
+((-3079 (((-584 |#2|) (-1084 |#4|)) 45 T ELT)) (-1617 ((|#3| (-484)) 48 T ELT)) (-1615 (((-1084 |#4|) (-1084 |#3|)) 30 T ELT)) (-1616 (((-1084 |#4|) (-1084 |#4|) (-484)) 67 T ELT)) (-1614 (((-1084 |#3|) (-1084 |#4|)) 21 T ELT)) (-3944 (((-584 (-695)) (-1084 |#4|) (-584 |#2|)) 41 T ELT)) (-1613 (((-1084 |#3|) (-1084 |#4|) (-584 |#2|) (-584 |#3|)) 35 T ELT)))
+(((-271 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1613 ((-1084 |#3|) (-1084 |#4|) (-584 |#2|) (-584 |#3|))) (-15 -3944 ((-584 (-695)) (-1084 |#4|) (-584 |#2|))) (-15 -3079 ((-584 |#2|) (-1084 |#4|))) (-15 -1614 ((-1084 |#3|) (-1084 |#4|))) (-15 -1615 ((-1084 |#4|) (-1084 |#3|))) (-15 -1616 ((-1084 |#4|) (-1084 |#4|) (-484))) (-15 -1617 (|#3| (-484)))) (-718) (-757) (-962) (-862 |#3| |#1| |#2|)) (T -271))
+((-1617 (*1 *2 *3) (-12 (-5 *3 (-484)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-962)) (-5 *1 (-271 *4 *5 *2 *6)) (-4 *6 (-862 *2 *4 *5)))) (-1616 (*1 *2 *2 *3) (-12 (-5 *2 (-1084 *7)) (-5 *3 (-484)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-5 *1 (-271 *4 *5 *6 *7)))) (-1615 (*1 *2 *3) (-12 (-5 *3 (-1084 *6)) (-4 *6 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-1084 *7)) (-5 *1 (-271 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-1614 (*1 *2 *3) (-12 (-5 *3 (-1084 *7)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-5 *2 (-1084 *6)) (-5 *1 (-271 *4 *5 *6 *7)))) (-3079 (*1 *2 *3) (-12 (-5 *3 (-1084 *7)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-5 *2 (-584 *5)) (-5 *1 (-271 *4 *5 *6 *7)))) (-3944 (*1 *2 *3 *4) (-12 (-5 *3 (-1084 *8)) (-5 *4 (-584 *6)) (-4 *6 (-757)) (-4 *8 (-862 *7 *5 *6)) (-4 *5 (-718)) (-4 *7 (-962)) (-5 *2 (-584 (-695))) (-5 *1 (-271 *5 *6 *7 *8)))) (-1613 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1084 *9)) (-5 *4 (-584 *7)) (-5 *5 (-584 *8)) (-4 *7 (-757)) (-4 *8 (-962)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-5 *2 (-1084 *8)) (-5 *1 (-271 *6 *7 *8 *9)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 19 T ELT)) (-3770 (((-584 (-2 (|:| |gen| |#1|) (|:| -3939 (-484)))) $) 21 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3133 (((-695) $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#1| #1#) $) NIL T ELT)) (-3153 ((|#1| $) NIL T ELT)) (-2297 ((|#1| $ (-484)) NIL T ELT)) (-1620 (((-484) $ (-484)) NIL T ELT)) (-2529 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2855 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2288 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1619 (($ (-1 (-484) (-484)) $) 11 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-1618 (($ $ $) NIL (|has| (-484) (-717)) ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3673 (((-484) |#1| $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) NIL T CONST)) (-2564 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2683 (((-85) $ $) 30 (|has| |#1| (-757)) ELT)) (-3833 (($ $) 12 T ELT) (($ $ $) 29 T ELT)) (-3835 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ (-484)) NIL T ELT) (($ (-484) |#1|) 28 T ELT)))
+(((-272 |#1|) (-13 (-21) (-655 (-484)) (-273 |#1| (-484)) (-10 -7 (IF (|has| |#1| (-757)) (-6 (-757)) |%noBranch|))) (-1013)) (T -272))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-3770 (((-584 (-2 (|:| |gen| |#1|) (|:| -3939 |#2|))) $) 33 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3133 (((-695) $) 34 T ELT)) (-3720 (($) 22 T CONST)) (-3154 (((-3 |#1| "failed") $) 38 T ELT)) (-3153 ((|#1| $) 39 T ELT)) (-2297 ((|#1| $ (-484)) 31 T ELT)) (-1620 ((|#2| $ (-484)) 32 T ELT)) (-2288 (($ (-1 |#1| |#1|) $) 28 T ELT)) (-1619 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-1618 (($ $ $) 27 (|has| |#2| (-717)) ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ |#1|) 37 T ELT)) (-3673 ((|#2| |#1| $) 30 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3835 (($ $ $) 18 T ELT) (($ |#1| $) 36 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ |#2| |#1|) 35 T ELT)))
+(((-273 |#1| |#2|) (-113) (-1013) (-104)) (T -273))
+((-3835 (*1 *1 *2 *1) (-12 (-4 *1 (-273 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-104)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-273 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-104)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-273 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)) (-5 *2 (-695)))) (-3770 (*1 *2 *1) (-12 (-4 *1 (-273 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)) (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3939 *4)))))) (-1620 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-273 *4 *2)) (-4 *4 (-1013)) (-4 *2 (-104)))) (-2297 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-273 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1013)))) (-3673 (*1 *2 *3 *1) (-12 (-4 *1 (-273 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-104)))) (-1619 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-273 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)))) (-2288 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-273 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)))) (-1618 (*1 *1 *1 *1) (-12 (-4 *1 (-273 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-104)) (-4 *3 (-717)))))
+(-13 (-104) (-951 |t#1|) (-10 -8 (-15 -3835 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3133 ((-695) $)) (-15 -3770 ((-584 (-2 (|:| |gen| |t#1|) (|:| -3939 |t#2|))) $)) (-15 -1620 (|t#2| $ (-484))) (-15 -2297 (|t#1| $ (-484))) (-15 -3673 (|t#2| |t#1| $)) (-15 -1619 ($ (-1 |t#2| |t#2|) $)) (-15 -2288 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-717)) (-15 -1618 ($ $ $)) |%noBranch|)))
+(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-13) . T) ((-951 |#1|) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3770 (((-584 (-2 (|:| |gen| |#1|) (|:| -3939 (-695)))) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3133 (((-695) $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#1| #1#) $) NIL T ELT)) (-3153 ((|#1| $) NIL T ELT)) (-2297 ((|#1| $ (-484)) NIL T ELT)) (-1620 (((-695) $ (-484)) NIL T ELT)) (-2288 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1619 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-1618 (($ $ $) NIL (|has| (-695) (-717)) ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3673 (((-695) |#1| $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) NIL T CONST)) (-3054 (((-85) $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-695) |#1|) NIL T ELT)))
+(((-274 |#1|) (-273 |#1| (-695)) (-1013)) (T -274))
+NIL
+((-3499 (($ $) 72 T ELT)) (-1622 (($ $ |#2| |#3| $) 14 T ELT)) (-1623 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-1795 (((-85) $) 42 T ELT)) (-1794 ((|#2| $) 44 T ELT)) (-3462 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#2|) 64 T ELT)) (-2815 ((|#2| $) 68 T ELT)) (-3813 (((-584 |#2|) $) 56 T ELT)) (-1621 (($ $ $ (-695)) 37 T ELT)) (-3945 (($ $ |#2|) 60 T ELT)))
+(((-275 |#1| |#2| |#3|) (-10 -7 (-15 -3499 (|#1| |#1|)) (-15 -2815 (|#2| |#1|)) (-15 -3462 ((-3 |#1| #1="failed") |#1| |#2|)) (-15 -1621 (|#1| |#1| |#1| (-695))) (-15 -1622 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1623 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3813 ((-584 |#2|) |#1|)) (-15 -1794 (|#2| |#1|)) (-15 -1795 ((-85) |#1|)) (-15 -3462 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3945 (|#1| |#1| |#2|))) (-276 |#2| |#3|) (-962) (-717)) (T -275))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 69 (|has| |#1| (-495)) ELT)) (-2061 (($ $) 70 (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) 72 (|has| |#1| (-495)) ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3154 (((-3 (-484) #1="failed") $) 107 (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) 105 (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) 102 T ELT)) (-3153 (((-484) $) 106 (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) 104 (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) 103 T ELT)) (-3955 (($ $) 78 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-3499 (($ $) 91 (|has| |#1| (-389)) ELT)) (-1622 (($ $ |#1| |#2| $) 95 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-2418 (((-695) $) 98 T ELT)) (-3933 (((-85) $) 80 T ELT)) (-2891 (($ |#1| |#2|) 79 T ELT)) (-2818 ((|#2| $) 97 T ELT)) (-1623 (($ (-1 |#2| |#2|) $) 96 T ELT)) (-3954 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-2892 (($ $) 83 T ELT)) (-3171 ((|#1| $) 84 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-1795 (((-85) $) 101 T ELT)) (-1794 ((|#1| $) 100 T ELT)) (-3462 (((-3 $ "failed") $ $) 68 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ |#1|) 93 (|has| |#1| (-495)) ELT)) (-3944 ((|#2| $) 82 T ELT)) (-2815 ((|#1| $) 92 (|has| |#1| (-389)) ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 67 (|has| |#1| (-495)) ELT) (($ |#1|) 65 T ELT) (($ (-347 (-484))) 75 (OR (|has| |#1| (-951 (-347 (-484)))) (|has| |#1| (-38 (-347 (-484))))) ELT)) (-3813 (((-584 |#1|) $) 99 T ELT)) (-3673 ((|#1| $ |#2|) 77 T ELT)) (-2700 (((-633 $) $) 66 (|has| |#1| (-118)) ELT)) (-3123 (((-695)) 38 T CONST)) (-1621 (($ $ $ (-695)) 94 (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2060 (((-85) $ $) 71 (|has| |#1| (-495)) ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3945 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-347 (-484)) $) 74 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 73 (|has| |#1| (-38 (-347 (-484)))) ELT)))
+(((-276 |#1| |#2|) (-113) (-962) (-717)) (T -276))
+((-1795 (*1 *2 *1) (-12 (-4 *1 (-276 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-85)))) (-1794 (*1 *2 *1) (-12 (-4 *1 (-276 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) (-3813 (*1 *2 *1) (-12 (-4 *1 (-276 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-584 *3)))) (-2418 (*1 *2 *1) (-12 (-4 *1 (-276 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-695)))) (-2818 (*1 *2 *1) (-12 (-4 *1 (-276 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-1623 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-276 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)))) (-1622 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-276 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) (-1621 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-276 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *3 (-146)))) (-3462 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-276 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-495)))) (-2815 (*1 *2 *1) (-12 (-4 *1 (-276 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)) (-4 *2 (-389)))) (-3499 (*1 *1 *1) (-12 (-4 *1 (-276 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-389)))))
+(-13 (-47 |t#1| |t#2|) (-352 |t#1|) (-10 -8 (-15 -1795 ((-85) $)) (-15 -1794 (|t#1| $)) (-15 -3813 ((-584 |t#1|) $)) (-15 -2418 ((-695) $)) (-15 -2818 (|t#2| $)) (-15 -1623 ($ (-1 |t#2| |t#2|) $)) (-15 -1622 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-146)) (-15 -1621 ($ $ $ (-695))) |%noBranch|) (IF (|has| |t#1| (-495)) (-15 -3462 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-389)) (PROGN (-15 -2815 (|t#1| $)) (-15 -3499 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) OR (|has| |#1| (-951 (-347 (-484)))) (|has| |#1| (-38 (-347 (-484))))) ((-556 (-484)) . T) ((-556 |#1|) . T) ((-556 $) |has| |#1| (-495)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-245) |has| |#1| (-495)) ((-352 |#1|) . T) ((-495) |has| |#1| (-495)) ((-13) . T) ((-589 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-495)) ((-655 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-495)) ((-664) . T) ((-951 (-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((-951 (-484)) |has| |#1| (-951 (-484))) ((-951 |#1|) . T) ((-964 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-969 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2196 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-757))) ELT)) (-2907 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-1984 (((-85) (-85)) NIL T ELT)) (-3784 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3992)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-1568 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3706 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3720 (($) NIL T CONST)) (-2295 (($ $) NIL (|has| $ (-6 -3992)) ELT)) (-2296 (($ $) NIL T ELT)) (-2366 (($ $) NIL (|has| |#1| (-1013)) ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3401 (($ |#1| $) NIL (|has| |#1| (-1013)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3402 (($ |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-1574 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3110 ((|#1| $ (-484)) NIL T ELT)) (-3415 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-1985 (($ $ (-484)) NIL T ELT)) (-1986 (((-695) $) NIL T ELT)) (-2887 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3610 (($ (-695) |#1|) NIL T ELT)) (-2198 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2529 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2854 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3514 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2606 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2199 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2855 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3605 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2302 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2201 (((-584 (-484)) $) NIL T ELT)) (-2202 (((-85) (-484) $) NIL T ELT)) (-3240 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1987 (($ (-584 |#1|)) NIL T ELT)) (-3797 ((|#1| $) NIL (|has| (-484) (-757)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2197 (($ $ |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2200 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2203 (((-584 |#1|) $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) NIL T ELT)) (-3796 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1569 (($ $ (-1145 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-2303 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-1729 (($ $ $ (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-3396 (($ $) NIL T ELT)) (-3968 (((-473) $) NIL (|has| |#1| (-554 (-473))) ELT)) (-3526 (($ (-584 |#1|)) NIL T ELT)) (-3787 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3798 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3942 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2564 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3054 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2682 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-277 |#1|) (-13 (-19 |#1|) (-237 |#1|) (-10 -8 (-15 -1987 ($ (-584 |#1|))) (-15 -1986 ((-695) $)) (-15 -1985 ($ $ (-484))) (-15 -1984 ((-85) (-85))))) (-1128)) (T -277))
+((-1987 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-5 *1 (-277 *3)))) (-1986 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-277 *3)) (-4 *3 (-1128)))) (-1985 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-277 *3)) (-4 *3 (-1128)))) (-1984 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-277 *3)) (-4 *3 (-1128)))))
+((-3928 (((-85) $) 47 T ELT)) (-3925 (((-695)) 23 T ELT)) (-3326 ((|#2| $) 51 T ELT) (($ $ (-831)) 123 T ELT)) (-3133 (((-695)) 124 T ELT)) (-1790 (($ (-1178 |#2|)) 20 T ELT)) (-2009 (((-85) $) 136 T ELT)) (-3129 ((|#2| $) 53 T ELT) (($ $ (-831)) 120 T ELT)) (-2012 (((-1084 |#2|) $) NIL T ELT) (((-1084 $) $ (-831)) 111 T ELT)) (-1625 (((-1084 |#2|) $) 95 T ELT)) (-1624 (((-1084 |#2|) $) 91 T ELT) (((-3 (-1084 |#2|) "failed") $ $) 88 T ELT)) (-1626 (($ $ (-1084 |#2|)) 58 T ELT)) (-3926 (((-744 (-831))) 30 T ELT) (((-831)) 48 T ELT)) (-3907 (((-107)) 27 T ELT)) (-3944 (((-744 (-831)) $) 32 T ELT) (((-831) $) 139 T ELT)) (-1627 (($) 130 T ELT)) (-3221 (((-1178 |#2|) $) NIL T ELT) (((-631 |#2|) (-1178 $)) 42 T ELT)) (-2700 (($ $) NIL T ELT) (((-633 $) $) 100 T ELT)) (-3929 (((-85) $) 45 T ELT)))
+(((-278 |#1| |#2|) (-10 -7 (-15 -2700 ((-633 |#1|) |#1|)) (-15 -3133 ((-695))) (-15 -2700 (|#1| |#1|)) (-15 -1624 ((-3 (-1084 |#2|) "failed") |#1| |#1|)) (-15 -1624 ((-1084 |#2|) |#1|)) (-15 -1625 ((-1084 |#2|) |#1|)) (-15 -1626 (|#1| |#1| (-1084 |#2|))) (-15 -2009 ((-85) |#1|)) (-15 -1627 (|#1|)) (-15 -3326 (|#1| |#1| (-831))) (-15 -3129 (|#1| |#1| (-831))) (-15 -2012 ((-1084 |#1|) |#1| (-831))) (-15 -3326 (|#2| |#1|)) (-15 -3129 (|#2| |#1|)) (-15 -3944 ((-831) |#1|)) (-15 -3926 ((-831))) (-15 -2012 ((-1084 |#2|) |#1|)) (-15 -1790 (|#1| (-1178 |#2|))) (-15 -3221 ((-631 |#2|) (-1178 |#1|))) (-15 -3221 ((-1178 |#2|) |#1|)) (-15 -3925 ((-695))) (-15 -3926 ((-744 (-831)))) (-15 -3944 ((-744 (-831)) |#1|)) (-15 -3928 ((-85) |#1|)) (-15 -3929 ((-85) |#1|)) (-15 -3907 ((-107)))) (-279 |#2|) (-311)) (T -278))
+((-3907 (*1 *2) (-12 (-4 *4 (-311)) (-5 *2 (-107)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4)))) (-3926 (*1 *2) (-12 (-4 *4 (-311)) (-5 *2 (-744 (-831))) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4)))) (-3925 (*1 *2) (-12 (-4 *4 (-311)) (-5 *2 (-695)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4)))) (-3926 (*1 *2) (-12 (-4 *4 (-311)) (-5 *2 (-831)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4)))) (-3133 (*1 *2) (-12 (-4 *4 (-311)) (-5 *2 (-695)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 53 T ELT)) (-2061 (($ $) 52 T ELT)) (-2059 (((-85) $) 50 T ELT)) (-3928 (((-85) $) 112 T ELT)) (-3925 (((-695)) 108 T ELT)) (-3326 ((|#1| $) 160 T ELT) (($ $ (-831)) 157 (|has| |#1| (-317)) ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) 142 (|has| |#1| (-317)) ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3771 (($ $) 89 T ELT)) (-3967 (((-345 $) $) 88 T ELT)) (-1606 (((-85) $ $) 73 T ELT)) (-3133 (((-695)) 132 (|has| |#1| (-317)) ELT)) (-3720 (($) 22 T CONST)) (-3154 (((-3 |#1| "failed") $) 119 T ELT)) (-3153 ((|#1| $) 120 T ELT)) (-1790 (($ (-1178 |#1|)) 166 T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) 148 (|has| |#1| (-317)) ELT)) (-2562 (($ $ $) 69 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2992 (($) 129 (|has| |#1| (-317)) ELT)) (-2561 (($ $ $) 70 T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) 64 T ELT)) (-2831 (($) 144 (|has| |#1| (-317)) ELT)) (-1678 (((-85) $) 145 (|has| |#1| (-317)) ELT)) (-1762 (($ $ (-695)) 105 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT) (($ $) 104 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3719 (((-85) $) 87 T ELT)) (-3768 (((-831) $) 147 (|has| |#1| (-317)) ELT) (((-744 (-831)) $) 102 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-2408 (((-85) $) 42 T ELT)) (-2011 (($) 155 (|has| |#1| (-317)) ELT)) (-2009 (((-85) $) 154 (|has| |#1| (-317)) ELT)) (-3129 ((|#1| $) 161 T ELT) (($ $ (-831)) 158 (|has| |#1| (-317)) ELT)) (-3441 (((-633 $) $) 133 (|has| |#1| (-317)) ELT)) (-1603 (((-3 (-584 $) #1="failed") (-584 $) $) 66 T ELT)) (-2012 (((-1084 |#1|) $) 165 T ELT) (((-1084 $) $ (-831)) 159 (|has| |#1| (-317)) ELT)) (-2008 (((-831) $) 130 (|has| |#1| (-317)) ELT)) (-1625 (((-1084 |#1|) $) 151 (|has| |#1| (-317)) ELT)) (-1624 (((-1084 |#1|) $) 150 (|has| |#1| (-317)) ELT) (((-3 (-1084 |#1|) "failed") $ $) 149 (|has| |#1| (-317)) ELT)) (-1626 (($ $ (-1084 |#1|)) 152 (|has| |#1| (-317)) ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-2482 (($ $) 86 T ELT)) (-3442 (($) 134 (|has| |#1| (-317)) CONST)) (-2398 (($ (-831)) 131 (|has| |#1| (-317)) ELT)) (-3927 (((-85) $) 111 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-2407 (($) 153 (|has| |#1| (-317)) ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3141 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-1674 (((-584 (-2 (|:| -3728 (-484)) (|:| -2399 (-484))))) 141 (|has| |#1| (-317)) ELT)) (-3728 (((-345 $) $) 90 T ELT)) (-3926 (((-744 (-831))) 109 T ELT) (((-831)) 163 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3462 (((-3 $ "failed") $ $) 54 T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) 63 T ELT)) (-1605 (((-695) $) 72 T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 71 T ELT)) (-1763 (((-695) $) 146 (|has| |#1| (-317)) ELT) (((-3 (-695) "failed") $ $) 103 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3907 (((-107)) 117 T ELT)) (-3754 (($ $ (-695)) 137 (|has| |#1| (-317)) ELT) (($ $) 135 (|has| |#1| (-317)) ELT)) (-3944 (((-744 (-831)) $) 110 T ELT) (((-831) $) 162 T ELT)) (-3182 (((-1084 |#1|)) 164 T ELT)) (-1672 (($) 143 (|has| |#1| (-317)) ELT)) (-1627 (($) 156 (|has| |#1| (-317)) ELT)) (-3221 (((-1178 |#1|) $) 168 T ELT) (((-631 |#1|) (-1178 $)) 167 T ELT)) (-2701 (((-3 (-1178 $) "failed") (-631 $)) 140 (|has| |#1| (-317)) ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-484))) 82 T ELT) (($ |#1|) 118 T ELT)) (-2700 (($ $) 139 (|has| |#1| (-317)) ELT) (((-633 $) $) 101 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2010 (((-1178 $)) 170 T ELT) (((-1178 $) (-831)) 169 T ELT)) (-2060 (((-85) $ $) 51 T ELT)) (-3929 (((-85) $) 113 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-3924 (($ $) 107 (|has| |#1| (-317)) ELT) (($ $ (-695)) 106 (|has| |#1| (-317)) ELT)) (-2667 (($ $ (-695)) 138 (|has| |#1| (-317)) ELT) (($ $) 136 (|has| |#1| (-317)) ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3945 (($ $ $) 81 T ELT) (($ $ |#1|) 116 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 85 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-484))) 84 T ELT) (($ (-347 (-484)) $) 83 T ELT) (($ $ |#1|) 115 T ELT) (($ |#1| $) 114 T ELT)))
(((-279 |#1|) (-113) (-311)) (T -279))
-((-2008 (*1 *2) (-12 (-4 *3 (-311)) (-5 *2 (-1177 *1)) (-4 *1 (-279 *3)))) (-2008 (*1 *2 *3) (-12 (-5 *3 (-830)) (-4 *4 (-311)) (-5 *2 (-1177 *1)) (-4 *1 (-279 *4)))) (-3219 (*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-1177 *3)))) (-3219 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-279 *4)) (-4 *4 (-311)) (-5 *2 (-630 *4)))) (-1789 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-311)) (-4 *1 (-279 *3)))) (-2010 (*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-1083 *3)))) (-3180 (*1 *2) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-1083 *3)))) (-3924 (*1 *2) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-830)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-830)))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-311)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-311)))) (-2010 (*1 *2 *1 *3) (-12 (-5 *3 (-830)) (-4 *4 (-317)) (-4 *4 (-311)) (-5 *2 (-1083 *1)) (-4 *1 (-279 *4)))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)))) (-3324 (*1 *1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)))) (-1626 (*1 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-317)) (-4 *2 (-311)))) (-2009 (*1 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-317)) (-4 *2 (-311)))) (-2007 (*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)) (-5 *2 (-85)))) (-2405 (*1 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-317)) (-4 *2 (-311)))) (-1625 (*1 *1 *1 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-317)) (-4 *1 (-279 *3)) (-4 *3 (-311)))) (-1624 (*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)) (-5 *2 (-1083 *3)))) (-1623 (*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)) (-5 *2 (-1083 *3)))) (-1623 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)) (-5 *2 (-1083 *3)))))
-(-13 (-1196 |t#1|) (-950 |t#1|) (-10 -8 (-15 -2008 ((-1177 $))) (-15 -2008 ((-1177 $) (-830))) (-15 -3219 ((-1177 |t#1|) $)) (-15 -3219 ((-630 |t#1|) (-1177 $))) (-15 -1789 ($ (-1177 |t#1|))) (-15 -2010 ((-1083 |t#1|) $)) (-15 -3180 ((-1083 |t#1|))) (-15 -3924 ((-830))) (-15 -3942 ((-830) $)) (-15 -3127 (|t#1| $)) (-15 -3324 (|t#1| $)) (IF (|has| |t#1| (-317)) (PROGN (-6 (-298)) (-15 -2010 ((-1083 $) $ (-830))) (-15 -3127 ($ $ (-830))) (-15 -3324 ($ $ (-830))) (-15 -1626 ($)) (-15 -2009 ($)) (-15 -2007 ((-85) $)) (-15 -2405 ($)) (-15 -1625 ($ $ (-1083 |t#1|))) (-15 -1624 ((-1083 |t#1|) $)) (-15 -1623 ((-1083 |t#1|) $)) (-15 -1623 ((-3 (-1083 |t#1|) "failed") $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-483))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-317)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) . T) ((-555 (-483)) . T) ((-555 |#1|) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-186 $) |has| |#1| (-317)) ((-190) |has| |#1| (-317)) ((-189) |has| |#1| (-317)) ((-201) . T) ((-245) . T) ((-257) . T) ((-1196 |#1|) . T) ((-311) . T) ((-342) OR (|has| |#1| (-317)) (|has| |#1| (-118))) ((-317) |has| |#1| (-317)) ((-298) |has| |#1| (-317)) ((-389) . T) ((-494) . T) ((-13) . T) ((-588 (-347 (-483))) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) . T) ((-582 |#1|) . T) ((-582 $) . T) ((-654 (-347 (-483))) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-950 |#1|) . T) ((-963 (-347 (-483))) . T) ((-963 |#1|) . T) ((-963 $) . T) ((-968 (-347 (-483))) . T) ((-968 |#1|) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1064) |has| |#1| (-317)) ((-1127) . T) ((-1132) . T) ((-1185 |#1|) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-1627 (((-85) $) 13 T ELT)) (-3632 (($ |#1|) 10 T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3628 (($ |#1|) 12 T ELT)) (-3940 (((-772) $) 19 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2232 ((|#1| $) 14 T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 21 T ELT)))
-(((-280 |#1|) (-13 (-756) (-10 -8 (-15 -3632 ($ |#1|)) (-15 -3628 ($ |#1|)) (-15 -1627 ((-85) $)) (-15 -2232 (|#1| $)))) (-756)) (T -280))
-((-3632 (*1 *1 *2) (-12 (-5 *1 (-280 *2)) (-4 *2 (-756)))) (-3628 (*1 *1 *2) (-12 (-5 *1 (-280 *2)) (-4 *2 (-756)))) (-1627 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-280 *3)) (-4 *3 (-756)))) (-2232 (*1 *2 *1) (-12 (-5 *1 (-280 *2)) (-4 *2 (-756)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-1628 (((-444) $) 20 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1629 (((-869 (-694)) $) 18 T ELT)) (-1631 (((-209) $) 7 T ELT)) (-3940 (((-772) $) 26 T ELT)) (-2202 (((-869 (-158 (-112))) $) 16 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-1630 (((-583 (-782 (-1093) (-694))) $) 12 T ELT)) (-3052 (((-85) $ $) 22 T ELT)))
-(((-281) (-13 (-1012) (-10 -8 (-15 -1631 ((-209) $)) (-15 -1630 ((-583 (-782 (-1093) (-694))) $)) (-15 -1629 ((-869 (-694)) $)) (-15 -2202 ((-869 (-158 (-112))) $)) (-15 -1628 ((-444) $))))) (T -281))
-((-1631 (*1 *2 *1) (-12 (-5 *2 (-209)) (-5 *1 (-281)))) (-1630 (*1 *2 *1) (-12 (-5 *2 (-583 (-782 (-1093) (-694)))) (-5 *1 (-281)))) (-1629 (*1 *2 *1) (-12 (-5 *2 (-869 (-694))) (-5 *1 (-281)))) (-2202 (*1 *2 *1) (-12 (-5 *2 (-869 (-158 (-112)))) (-5 *1 (-281)))) (-1628 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-281)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3836 (($ $) 34 T ELT)) (-1634 (((-85) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1632 (((-1177 |#4|) $) 133 T ELT)) (-1966 (((-353 |#2| (-347 |#2|) |#3| |#4|) $) 32 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2405 (((-3 |#4| #1#) $) 37 T ELT)) (-1633 (((-1177 |#4|) $) 125 T ELT)) (-1635 (($ (-353 |#2| (-347 |#2|) |#3| |#4|)) 42 T ELT) (($ |#4|) 44 T ELT) (($ |#1| |#1|) 46 T ELT) (($ |#1| |#1| (-483)) 48 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 50 T ELT)) (-3429 (((-2 (|:| -2332 (-353 |#2| (-347 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 40 T ELT)) (-3940 (((-772) $) 18 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 15 T CONST)) (-3052 (((-85) $ $) 21 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 26 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 24 T ELT)))
-(((-282 |#1| |#2| |#3| |#4|) (-13 (-285 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1633 ((-1177 |#4|) $)) (-15 -1632 ((-1177 |#4|) $)))) (-311) (-1153 |#1|) (-1153 (-347 |#2|)) (-290 |#1| |#2| |#3|)) (T -282))
-((-1633 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-1177 *6)) (-5 *1 (-282 *3 *4 *5 *6)) (-4 *6 (-290 *3 *4 *5)))) (-1632 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-1177 *6)) (-5 *1 (-282 *3 *4 *5 *6)) (-4 *6 (-290 *3 *4 *5)))))
-((-3952 (((-282 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-282 |#1| |#2| |#3| |#4|)) 33 T ELT)))
-(((-283 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3952 ((-282 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-282 |#1| |#2| |#3| |#4|)))) (-311) (-1153 |#1|) (-1153 (-347 |#2|)) (-290 |#1| |#2| |#3|) (-311) (-1153 |#5|) (-1153 (-347 |#6|)) (-290 |#5| |#6| |#7|)) (T -283))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-282 *5 *6 *7 *8)) (-4 *5 (-311)) (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-347 *6))) (-4 *8 (-290 *5 *6 *7)) (-4 *9 (-311)) (-4 *10 (-1153 *9)) (-4 *11 (-1153 (-347 *10))) (-5 *2 (-282 *9 *10 *11 *12)) (-5 *1 (-283 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-290 *9 *10 *11)))))
-((-1634 (((-85) $) 14 T ELT)))
-(((-284 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1634 ((-85) |#1|))) (-285 |#2| |#3| |#4| |#5|) (-311) (-1153 |#2|) (-1153 (-347 |#3|)) (-290 |#2| |#3| |#4|)) (T -284))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3836 (($ $) 34 T ELT)) (-1634 (((-85) $) 33 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-1966 (((-353 |#2| (-347 |#2|) |#3| |#4|) $) 40 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2405 (((-3 |#4| "failed") $) 32 T ELT)) (-1635 (($ (-353 |#2| (-347 |#2|) |#3| |#4|)) 39 T ELT) (($ |#4|) 38 T ELT) (($ |#1| |#1|) 37 T ELT) (($ |#1| |#1| (-483)) 36 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 31 T ELT)) (-3429 (((-2 (|:| -2332 (-353 |#2| (-347 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 35 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT)))
-(((-285 |#1| |#2| |#3| |#4|) (-113) (-311) (-1153 |t#1|) (-1153 (-347 |t#2|)) (-290 |t#1| |t#2| |t#3|)) (T -285))
-((-1966 (*1 *2 *1) (-12 (-4 *1 (-285 *3 *4 *5 *6)) (-4 *3 (-311)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-4 *6 (-290 *3 *4 *5)) (-5 *2 (-353 *4 (-347 *4) *5 *6)))) (-1635 (*1 *1 *2) (-12 (-5 *2 (-353 *4 (-347 *4) *5 *6)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-4 *6 (-290 *3 *4 *5)) (-4 *3 (-311)) (-4 *1 (-285 *3 *4 *5 *6)))) (-1635 (*1 *1 *2) (-12 (-4 *3 (-311)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-4 *1 (-285 *3 *4 *5 *2)) (-4 *2 (-290 *3 *4 *5)))) (-1635 (*1 *1 *2 *2) (-12 (-4 *2 (-311)) (-4 *3 (-1153 *2)) (-4 *4 (-1153 (-347 *3))) (-4 *1 (-285 *2 *3 *4 *5)) (-4 *5 (-290 *2 *3 *4)))) (-1635 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-483)) (-4 *2 (-311)) (-4 *4 (-1153 *2)) (-4 *5 (-1153 (-347 *4))) (-4 *1 (-285 *2 *4 *5 *6)) (-4 *6 (-290 *2 *4 *5)))) (-3429 (*1 *2 *1) (-12 (-4 *1 (-285 *3 *4 *5 *6)) (-4 *3 (-311)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-4 *6 (-290 *3 *4 *5)) (-5 *2 (-2 (|:| -2332 (-353 *4 (-347 *4) *5 *6)) (|:| |principalPart| *6))))) (-3836 (*1 *1 *1) (-12 (-4 *1 (-285 *2 *3 *4 *5)) (-4 *2 (-311)) (-4 *3 (-1153 *2)) (-4 *4 (-1153 (-347 *3))) (-4 *5 (-290 *2 *3 *4)))) (-1634 (*1 *2 *1) (-12 (-4 *1 (-285 *3 *4 *5 *6)) (-4 *3 (-311)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-4 *6 (-290 *3 *4 *5)) (-5 *2 (-85)))) (-2405 (*1 *2 *1) (|partial| -12 (-4 *1 (-285 *3 *4 *5 *2)) (-4 *3 (-311)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-4 *2 (-290 *3 *4 *5)))) (-1635 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-311)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 (-347 *3))) (-4 *1 (-285 *4 *3 *5 *2)) (-4 *2 (-290 *4 *3 *5)))))
-(-13 (-21) (-10 -8 (-15 -1966 ((-353 |t#2| (-347 |t#2|) |t#3| |t#4|) $)) (-15 -1635 ($ (-353 |t#2| (-347 |t#2|) |t#3| |t#4|))) (-15 -1635 ($ |t#4|)) (-15 -1635 ($ |t#1| |t#1|)) (-15 -1635 ($ |t#1| |t#1| (-483))) (-15 -3429 ((-2 (|:| -2332 (-353 |t#2| (-347 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3836 ($ $)) (-15 -1634 ((-85) $)) (-15 -2405 ((-3 |t#4| "failed") $)) (-15 -1635 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-1012) . T) ((-1127) . T))
-((-3762 (($ $ (-1088) |#2|) NIL T ELT) (($ $ (-583 (-1088)) (-583 |#2|)) 20 T ELT) (($ $ (-583 (-248 |#2|))) 15 T ELT) (($ $ (-248 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL T ELT)) (-3794 (($ $ |#2|) 11 T ELT)))
-(((-286 |#1| |#2|) (-10 -7 (-15 -3794 (|#1| |#1| |#2|)) (-15 -3762 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -3762 (|#1| |#1| |#2| |#2|)) (-15 -3762 (|#1| |#1| (-248 |#2|))) (-15 -3762 (|#1| |#1| (-583 (-248 |#2|)))) (-15 -3762 (|#1| |#1| (-583 (-1088)) (-583 |#2|))) (-15 -3762 (|#1| |#1| (-1088) |#2|))) (-287 |#2|) (-1012)) (T -286))
-NIL
-((-3952 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-3762 (($ $ (-1088) |#1|) 17 (|has| |#1| (-452 (-1088) |#1|)) ELT) (($ $ (-583 (-1088)) (-583 |#1|)) 16 (|has| |#1| (-452 (-1088) |#1|)) ELT) (($ $ (-583 (-248 |#1|))) 15 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) 14 (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 12 (|has| |#1| (-259 |#1|)) ELT)) (-3794 (($ $ |#1|) 11 (|has| |#1| (-241 |#1| |#1|)) ELT)))
-(((-287 |#1|) (-113) (-1012)) (T -287))
-((-3952 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-287 *3)) (-4 *3 (-1012)))))
-(-13 (-10 -8 (-15 -3952 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-241 |t#1| |t#1|)) (-6 (-241 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-259 |t#1|)) (-6 (-259 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-452 (-1088) |t#1|)) (-6 (-452 (-1088) |t#1|)) |%noBranch|)))
-(((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-259 |#1|) |has| |#1| (-259 |#1|)) ((-452 (-1088) |#1|) |has| |#1| (-452 (-1088) |#1|)) ((-452 |#1| |#1|) |has| |#1| (-259 |#1|)) ((-13) |has| |#1| (-241 |#1| |#1|)) ((-1127) |has| |#1| (-241 |#1| |#1|)))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-3926 (((-85) $) NIL T ELT)) (-3923 (((-694)) NIL T ELT)) (-3324 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-817 |#1|) #1#) $) NIL T ELT)) (-3151 (((-817 |#1|) $) NIL T ELT)) (-1789 (($ (-1177 (-817 |#1|))) NIL T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-2829 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1677 (((-85) $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1761 (($ $ (-694)) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-317))) ELT) (($ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-317))) ELT)) (-3717 (((-85) $) NIL T ELT)) (-3766 (((-830) $) NIL (|has| (-817 |#1|) (-317)) ELT) (((-743 (-830)) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-317))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2009 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2007 (((-85) $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3127 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3439 (((-632 $) $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2010 (((-1083 (-817 |#1|)) $) NIL T ELT) (((-1083 $) $ (-830)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2006 (((-830) $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1624 (((-1083 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1623 (((-1083 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-317)) ELT) (((-3 (-1083 (-817 |#1|)) #1#) $ $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1625 (($ $ (-1083 (-817 |#1|))) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL (|has| (-817 |#1|) (-317)) CONST)) (-2396 (($ (-830)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3925 (((-85) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2405 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-3924 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-1762 (((-694) $) NIL (|has| (-817 |#1|) (-317)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-317))) ELT)) (-3905 (((-107)) NIL T ELT)) (-3752 (($ $ (-694)) NIL (|has| (-817 |#1|) (-317)) ELT) (($ $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3942 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3180 (((-1083 (-817 |#1|))) NIL T ELT)) (-1671 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1626 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3219 (((-1177 (-817 |#1|)) $) NIL T ELT) (((-630 (-817 |#1|)) (-1177 $)) NIL T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ (-817 |#1|)) NIL T ELT)) (-2698 (($ $) NIL (|has| (-817 |#1|) (-317)) ELT) (((-632 $) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-317))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) NIL T ELT) (((-1177 $) (-830)) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3927 (((-85) $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-3922 (($ $) NIL (|has| (-817 |#1|) (-317)) ELT) (($ $ (-694)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2665 (($ $ (-694)) NIL (|has| (-817 |#1|) (-317)) ELT) (($ $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT) (($ (-817 |#1|) $) NIL T ELT)))
-(((-288 |#1| |#2|) (-279 (-817 |#1|)) (-830) (-830)) (T -288))
-NIL
-((-1644 (((-2 (|:| |num| (-1177 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-1789 (($ (-1177 (-347 |#3|)) (-1177 $)) NIL T ELT) (($ (-1177 (-347 |#3|))) NIL T ELT) (($ (-1177 |#3|) |#3|) 172 T ELT)) (-1649 (((-1177 $) (-1177 $)) 156 T ELT)) (-1636 (((-583 (-583 |#2|))) 126 T ELT)) (-1661 (((-85) |#2| |#2|) 76 T ELT)) (-3497 (($ $) 148 T ELT)) (-3371 (((-694)) 171 T ELT)) (-1650 (((-1177 $) (-1177 $)) 219 T ELT)) (-1637 (((-583 (-857 |#2|)) (-1088)) 115 T ELT)) (-1653 (((-85) $) 168 T ELT)) (-1652 (((-85) $) 27 T ELT) (((-85) $ |#2|) 31 T ELT) (((-85) $ |#3|) 223 T ELT)) (-1639 (((-3 |#3| #1="failed")) 52 T ELT)) (-1663 (((-694)) 183 T ELT)) (-3794 ((|#2| $ |#2| |#2|) 140 T ELT)) (-1640 (((-3 |#3| #1#)) 71 T ELT)) (-3752 (($ $ (-1 (-347 |#3|) (-347 |#3|))) NIL T ELT) (($ $ (-1 (-347 |#3|) (-347 |#3|)) (-694)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 227 T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088))) NIL T ELT) (($ $ (-1088)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-1651 (((-1177 $) (-1177 $)) 162 T ELT)) (-1638 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-1662 (((-85)) 34 T ELT)))
-(((-289 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3752 (|#1| |#1|)) (-15 -3752 (|#1| |#1| (-694))) (-15 -3752 (|#1| |#1| (-1088))) (-15 -3752 (|#1| |#1| (-583 (-1088)))) (-15 -3752 (|#1| |#1| (-1088) (-694))) (-15 -3752 (|#1| |#1| (-583 (-1088)) (-583 (-694)))) (-15 -1636 ((-583 (-583 |#2|)))) (-15 -1637 ((-583 (-857 |#2|)) (-1088))) (-15 -1638 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1639 ((-3 |#3| #1="failed"))) (-15 -1640 ((-3 |#3| #1#))) (-15 -3794 (|#2| |#1| |#2| |#2|)) (-15 -3497 (|#1| |#1|)) (-15 -3752 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1652 ((-85) |#1| |#3|)) (-15 -1652 ((-85) |#1| |#2|)) (-15 -1789 (|#1| (-1177 |#3|) |#3|)) (-15 -1644 ((-2 (|:| |num| (-1177 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1649 ((-1177 |#1|) (-1177 |#1|))) (-15 -1650 ((-1177 |#1|) (-1177 |#1|))) (-15 -1651 ((-1177 |#1|) (-1177 |#1|))) (-15 -1652 ((-85) |#1|)) (-15 -1653 ((-85) |#1|)) (-15 -1661 ((-85) |#2| |#2|)) (-15 -1662 ((-85))) (-15 -1663 ((-694))) (-15 -3371 ((-694))) (-15 -3752 (|#1| |#1| (-1 (-347 |#3|) (-347 |#3|)) (-694))) (-15 -3752 (|#1| |#1| (-1 (-347 |#3|) (-347 |#3|)))) (-15 -1789 (|#1| (-1177 (-347 |#3|)))) (-15 -1789 (|#1| (-1177 (-347 |#3|)) (-1177 |#1|)))) (-290 |#2| |#3| |#4|) (-1132) (-1153 |#2|) (-1153 (-347 |#3|))) (T -289))
-((-3371 (*1 *2) (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-347 *5))) (-5 *2 (-694)) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *3 (-290 *4 *5 *6)))) (-1663 (*1 *2) (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-347 *5))) (-5 *2 (-694)) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *3 (-290 *4 *5 *6)))) (-1662 (*1 *2) (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-347 *5))) (-5 *2 (-85)) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *3 (-290 *4 *5 *6)))) (-1661 (*1 *2 *3 *3) (-12 (-4 *3 (-1132)) (-4 *5 (-1153 *3)) (-4 *6 (-1153 (-347 *5))) (-5 *2 (-85)) (-5 *1 (-289 *4 *3 *5 *6)) (-4 *4 (-290 *3 *5 *6)))) (-1640 (*1 *2) (|partial| -12 (-4 *4 (-1132)) (-4 *5 (-1153 (-347 *2))) (-4 *2 (-1153 *4)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *3 (-290 *4 *2 *5)))) (-1639 (*1 *2) (|partial| -12 (-4 *4 (-1132)) (-4 *5 (-1153 (-347 *2))) (-4 *2 (-1153 *4)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *3 (-290 *4 *2 *5)))) (-1637 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-4 *5 (-1132)) (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-347 *6))) (-5 *2 (-583 (-857 *5))) (-5 *1 (-289 *4 *5 *6 *7)) (-4 *4 (-290 *5 *6 *7)))) (-1636 (*1 *2) (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-347 *5))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *3 (-290 *4 *5 *6)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1644 (((-2 (|:| |num| (-1177 |#2|)) (|:| |den| |#2|)) $) 223 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 112 (|has| (-347 |#2|) (-311)) ELT)) (-2059 (($ $) 113 (|has| (-347 |#2|) (-311)) ELT)) (-2057 (((-85) $) 115 (|has| (-347 |#2|) (-311)) ELT)) (-1779 (((-630 (-347 |#2|)) (-1177 $)) 59 T ELT) (((-630 (-347 |#2|))) 75 T ELT)) (-3324 (((-347 |#2|) $) 65 T ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) 165 (|has| (-347 |#2|) (-298)) ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3769 (($ $) 132 (|has| (-347 |#2|) (-311)) ELT)) (-3965 (((-345 $) $) 133 (|has| (-347 |#2|) (-311)) ELT)) (-1605 (((-85) $ $) 123 (|has| (-347 |#2|) (-311)) ELT)) (-3131 (((-694)) 106 (|has| (-347 |#2|) (-317)) ELT)) (-1658 (((-85)) 240 T ELT)) (-1657 (((-85) |#1|) 239 T ELT) (((-85) |#2|) 238 T ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 (-483) #1="failed") $) 192 (|has| (-347 |#2|) (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) 190 (|has| (-347 |#2|) (-950 (-347 (-483)))) ELT) (((-3 (-347 |#2|) #1#) $) 187 T ELT)) (-3151 (((-483) $) 191 (|has| (-347 |#2|) (-950 (-483))) ELT) (((-347 (-483)) $) 189 (|has| (-347 |#2|) (-950 (-347 (-483)))) ELT) (((-347 |#2|) $) 188 T ELT)) (-1789 (($ (-1177 (-347 |#2|)) (-1177 $)) 61 T ELT) (($ (-1177 (-347 |#2|))) 78 T ELT) (($ (-1177 |#2|) |#2|) 222 T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) 171 (|has| (-347 |#2|) (-298)) ELT)) (-2560 (($ $ $) 127 (|has| (-347 |#2|) (-311)) ELT)) (-1778 (((-630 (-347 |#2|)) $ (-1177 $)) 66 T ELT) (((-630 (-347 |#2|)) $) 73 T ELT)) (-2275 (((-630 (-483)) (-630 $)) 184 (|has| (-347 |#2|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 183 (|has| (-347 |#2|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-347 |#2|))) (|:| |vec| (-1177 (-347 |#2|)))) (-630 $) (-1177 $)) 182 T ELT) (((-630 (-347 |#2|)) (-630 $)) 181 T ELT)) (-1649 (((-1177 $) (-1177 $)) 228 T ELT)) (-3836 (($ |#3|) 176 T ELT) (((-3 $ "failed") (-347 |#3|)) 173 (|has| (-347 |#2|) (-311)) ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-1636 (((-583 (-583 |#1|))) 209 (|has| |#1| (-317)) ELT)) (-1661 (((-85) |#1| |#1|) 244 T ELT)) (-3104 (((-830)) 67 T ELT)) (-2990 (($) 109 (|has| (-347 |#2|) (-317)) ELT)) (-1656 (((-85)) 237 T ELT)) (-1655 (((-85) |#1|) 236 T ELT) (((-85) |#2|) 235 T ELT)) (-2559 (($ $ $) 126 (|has| (-347 |#2|) (-311)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 121 (|has| (-347 |#2|) (-311)) ELT)) (-3497 (($ $) 215 T ELT)) (-2829 (($) 167 (|has| (-347 |#2|) (-298)) ELT)) (-1677 (((-85) $) 168 (|has| (-347 |#2|) (-298)) ELT)) (-1761 (($ $ (-694)) 159 (|has| (-347 |#2|) (-298)) ELT) (($ $) 158 (|has| (-347 |#2|) (-298)) ELT)) (-3717 (((-85) $) 134 (|has| (-347 |#2|) (-311)) ELT)) (-3766 (((-830) $) 170 (|has| (-347 |#2|) (-298)) ELT) (((-743 (-830)) $) 156 (|has| (-347 |#2|) (-298)) ELT)) (-2406 (((-85) $) 42 T ELT)) (-3371 (((-694)) 247 T ELT)) (-1650 (((-1177 $) (-1177 $)) 229 T ELT)) (-3127 (((-347 |#2|) $) 64 T ELT)) (-1637 (((-583 (-857 |#1|)) (-1088)) 210 (|has| |#1| (-311)) ELT)) (-3439 (((-632 $) $) 160 (|has| (-347 |#2|) (-298)) ELT)) (-1602 (((-3 (-583 $) #2="failed") (-583 $) $) 130 (|has| (-347 |#2|) (-311)) ELT)) (-2010 ((|#3| $) 57 (|has| (-347 |#2|) (-311)) ELT)) (-2006 (((-830) $) 108 (|has| (-347 |#2|) (-317)) ELT)) (-3075 ((|#3| $) 174 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) 186 (|has| (-347 |#2|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 185 (|has| (-347 |#2|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-347 |#2|))) (|:| |vec| (-1177 (-347 |#2|)))) (-1177 $) $) 180 T ELT) (((-630 (-347 |#2|)) (-1177 $)) 179 T ELT)) (-1888 (($ (-583 $)) 119 (|has| (-347 |#2|) (-311)) ELT) (($ $ $) 118 (|has| (-347 |#2|) (-311)) ELT)) (-3237 (((-1071) $) 11 T ELT)) (-1645 (((-630 (-347 |#2|))) 224 T ELT)) (-1647 (((-630 (-347 |#2|))) 226 T ELT)) (-2480 (($ $) 135 (|has| (-347 |#2|) (-311)) ELT)) (-1642 (($ (-1177 |#2|) |#2|) 220 T ELT)) (-1646 (((-630 (-347 |#2|))) 225 T ELT)) (-1648 (((-630 (-347 |#2|))) 227 T ELT)) (-1641 (((-2 (|:| |num| (-630 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 219 T ELT)) (-1643 (((-2 (|:| |num| (-1177 |#2|)) (|:| |den| |#2|)) $) 221 T ELT)) (-1654 (((-1177 $)) 233 T ELT)) (-3912 (((-1177 $)) 234 T ELT)) (-1653 (((-85) $) 232 T ELT)) (-1652 (((-85) $) 231 T ELT) (((-85) $ |#1|) 218 T ELT) (((-85) $ |#2|) 217 T ELT)) (-3440 (($) 161 (|has| (-347 |#2|) (-298)) CONST)) (-2396 (($ (-830)) 107 (|has| (-347 |#2|) (-317)) ELT)) (-1639 (((-3 |#2| "failed")) 212 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-1663 (((-694)) 246 T ELT)) (-2405 (($) 178 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 120 (|has| (-347 |#2|) (-311)) ELT)) (-3139 (($ (-583 $)) 117 (|has| (-347 |#2|) (-311)) ELT) (($ $ $) 116 (|has| (-347 |#2|) (-311)) ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) 164 (|has| (-347 |#2|) (-298)) ELT)) (-3726 (((-345 $) $) 131 (|has| (-347 |#2|) (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 129 (|has| (-347 |#2|) (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 128 (|has| (-347 |#2|) (-311)) ELT)) (-3460 (((-3 $ "failed") $ $) 111 (|has| (-347 |#2|) (-311)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 122 (|has| (-347 |#2|) (-311)) ELT)) (-1604 (((-694) $) 124 (|has| (-347 |#2|) (-311)) ELT)) (-3794 ((|#1| $ |#1| |#1|) 214 T ELT)) (-1640 (((-3 |#2| "failed")) 213 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 125 (|has| (-347 |#2|) (-311)) ELT)) (-3751 (((-347 |#2|) (-1177 $)) 60 T ELT) (((-347 |#2|)) 74 T ELT)) (-1762 (((-694) $) 169 (|has| (-347 |#2|) (-298)) ELT) (((-3 (-694) "failed") $ $) 157 (|has| (-347 |#2|) (-298)) ELT)) (-3752 (($ $ (-1 (-347 |#2|) (-347 |#2|))) 143 (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 (-347 |#2|) (-347 |#2|)) (-694)) 142 (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 |#2| |#2|)) 216 T ELT) (($ $ (-583 (-1088)) (-583 (-694))) 148 (OR (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088)))) (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-2558 (|has| (-347 |#2|) (-811 (-1088))) (|has| (-347 |#2|) (-311)))) ELT) (($ $ (-1088) (-694)) 147 (OR (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088)))) (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-2558 (|has| (-347 |#2|) (-811 (-1088))) (|has| (-347 |#2|) (-311)))) ELT) (($ $ (-583 (-1088))) 146 (OR (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088)))) (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-2558 (|has| (-347 |#2|) (-811 (-1088))) (|has| (-347 |#2|) (-311)))) ELT) (($ $ (-1088)) 144 (OR (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088)))) (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-2558 (|has| (-347 |#2|) (-811 (-1088))) (|has| (-347 |#2|) (-311)))) ELT) (($ $ (-694)) 154 (OR (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-189))) (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-190))) (-2558 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT) (($ $) 152 (OR (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-189))) (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-190))) (-2558 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT)) (-2404 (((-630 (-347 |#2|)) (-1177 $) (-1 (-347 |#2|) (-347 |#2|))) 172 (|has| (-347 |#2|) (-311)) ELT)) (-3180 ((|#3|) 177 T ELT)) (-1671 (($) 166 (|has| (-347 |#2|) (-298)) ELT)) (-3219 (((-1177 (-347 |#2|)) $ (-1177 $)) 63 T ELT) (((-630 (-347 |#2|)) (-1177 $) (-1177 $)) 62 T ELT) (((-1177 (-347 |#2|)) $) 80 T ELT) (((-630 (-347 |#2|)) (-1177 $)) 79 T ELT)) (-3966 (((-1177 (-347 |#2|)) $) 77 T ELT) (($ (-1177 (-347 |#2|))) 76 T ELT) ((|#3| $) 193 T ELT) (($ |#3|) 175 T ELT)) (-2699 (((-3 (-1177 $) "failed") (-630 $)) 163 (|has| (-347 |#2|) (-298)) ELT)) (-1651 (((-1177 $) (-1177 $)) 230 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ (-347 |#2|)) 50 T ELT) (($ (-347 (-483))) 105 (OR (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-950 (-347 (-483))))) ELT) (($ $) 110 (|has| (-347 |#2|) (-311)) ELT)) (-2698 (($ $) 162 (|has| (-347 |#2|) (-298)) ELT) (((-632 $) $) 56 (|has| (-347 |#2|) (-118)) ELT)) (-2445 ((|#3| $) 58 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1660 (((-85)) 243 T ELT)) (-1659 (((-85) |#1|) 242 T ELT) (((-85) |#2|) 241 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2008 (((-1177 $)) 81 T ELT)) (-2058 (((-85) $ $) 114 (|has| (-347 |#2|) (-311)) ELT)) (-1638 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 211 T ELT)) (-1662 (((-85)) 245 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-1 (-347 |#2|) (-347 |#2|))) 141 (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 (-347 |#2|) (-347 |#2|)) (-694)) 140 (|has| (-347 |#2|) (-311)) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 151 (OR (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088)))) (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-2558 (|has| (-347 |#2|) (-811 (-1088))) (|has| (-347 |#2|) (-311)))) ELT) (($ $ (-1088) (-694)) 150 (OR (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088)))) (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-2558 (|has| (-347 |#2|) (-811 (-1088))) (|has| (-347 |#2|) (-311)))) ELT) (($ $ (-583 (-1088))) 149 (OR (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088)))) (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-2558 (|has| (-347 |#2|) (-811 (-1088))) (|has| (-347 |#2|) (-311)))) ELT) (($ $ (-1088)) 145 (OR (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088)))) (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-2558 (|has| (-347 |#2|) (-811 (-1088))) (|has| (-347 |#2|) (-311)))) ELT) (($ $ (-694)) 155 (OR (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-189))) (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-190))) (-2558 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT) (($ $) 153 (OR (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-189))) (-2558 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-190))) (-2558 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ $) 139 (|has| (-347 |#2|) (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 136 (|has| (-347 |#2|) (-311)) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 |#2|)) 52 T ELT) (($ (-347 |#2|) $) 51 T ELT) (($ (-347 (-483)) $) 138 (|has| (-347 |#2|) (-311)) ELT) (($ $ (-347 (-483))) 137 (|has| (-347 |#2|) (-311)) ELT)))
-(((-290 |#1| |#2| |#3|) (-113) (-1132) (-1153 |t#1|) (-1153 (-347 |t#2|))) (T -290))
-((-3371 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-694)))) (-1663 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-694)))) (-1662 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85)))) (-1661 (*1 *2 *3 *3) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85)))) (-1660 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85)))) (-1659 (*1 *2 *3) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85)))) (-1659 (*1 *2 *3) (-12 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 (-347 *3))) (-5 *2 (-85)))) (-1658 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85)))) (-1657 (*1 *2 *3) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85)))) (-1657 (*1 *2 *3) (-12 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 (-347 *3))) (-5 *2 (-85)))) (-1656 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85)))) (-1655 (*1 *2 *3) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85)))) (-1655 (*1 *2 *3) (-12 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 (-347 *3))) (-5 *2 (-85)))) (-3912 (*1 *2) (-12 (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-1177 *1)) (-4 *1 (-290 *3 *4 *5)))) (-1654 (*1 *2) (-12 (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-1177 *1)) (-4 *1 (-290 *3 *4 *5)))) (-1653 (*1 *2 *1) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85)))) (-1652 (*1 *2 *1) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85)))) (-1651 (*1 *2 *2) (-12 (-5 *2 (-1177 *1)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))))) (-1650 (*1 *2 *2) (-12 (-5 *2 (-1177 *1)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))))) (-1649 (*1 *2 *2) (-12 (-5 *2 (-1177 *1)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))))) (-1648 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-630 (-347 *4))))) (-1647 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-630 (-347 *4))))) (-1646 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-630 (-347 *4))))) (-1645 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-630 (-347 *4))))) (-1644 (*1 *2 *1) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-2 (|:| |num| (-1177 *4)) (|:| |den| *4))))) (-1789 (*1 *1 *2 *3) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1153 *4)) (-4 *4 (-1132)) (-4 *1 (-290 *4 *3 *5)) (-4 *5 (-1153 (-347 *3))))) (-1643 (*1 *2 *1) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-2 (|:| |num| (-1177 *4)) (|:| |den| *4))))) (-1642 (*1 *1 *2 *3) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1153 *4)) (-4 *4 (-1132)) (-4 *1 (-290 *4 *3 *5)) (-4 *5 (-1153 (-347 *3))))) (-1641 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-290 *4 *5 *6)) (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-347 *5))) (-5 *2 (-2 (|:| |num| (-630 *5)) (|:| |den| *5))))) (-1652 (*1 *2 *1 *3) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85)))) (-1652 (*1 *2 *1 *3) (-12 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 (-347 *3))) (-5 *2 (-85)))) (-3752 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))))) (-3497 (*1 *1 *1) (-12 (-4 *1 (-290 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-1153 *2)) (-4 *4 (-1153 (-347 *3))))) (-3794 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-290 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-1153 *2)) (-4 *4 (-1153 (-347 *3))))) (-1640 (*1 *2) (|partial| -12 (-4 *1 (-290 *3 *2 *4)) (-4 *3 (-1132)) (-4 *4 (-1153 (-347 *2))) (-4 *2 (-1153 *3)))) (-1639 (*1 *2) (|partial| -12 (-4 *1 (-290 *3 *2 *4)) (-4 *3 (-1132)) (-4 *4 (-1153 (-347 *2))) (-4 *2 (-1153 *3)))) (-1638 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1153 *4)) (-4 *4 (-1132)) (-4 *6 (-1153 (-347 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-290 *4 *5 *6)))) (-1637 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-4 *1 (-290 *4 *5 *6)) (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-347 *5))) (-4 *4 (-311)) (-5 *2 (-583 (-857 *4))))) (-1636 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))) (-4 *3 (-317)) (-5 *2 (-583 (-583 *3))))))
-(-13 (-661 (-347 |t#2|) |t#3|) (-10 -8 (-15 -3371 ((-694))) (-15 -1663 ((-694))) (-15 -1662 ((-85))) (-15 -1661 ((-85) |t#1| |t#1|)) (-15 -1660 ((-85))) (-15 -1659 ((-85) |t#1|)) (-15 -1659 ((-85) |t#2|)) (-15 -1658 ((-85))) (-15 -1657 ((-85) |t#1|)) (-15 -1657 ((-85) |t#2|)) (-15 -1656 ((-85))) (-15 -1655 ((-85) |t#1|)) (-15 -1655 ((-85) |t#2|)) (-15 -3912 ((-1177 $))) (-15 -1654 ((-1177 $))) (-15 -1653 ((-85) $)) (-15 -1652 ((-85) $)) (-15 -1651 ((-1177 $) (-1177 $))) (-15 -1650 ((-1177 $) (-1177 $))) (-15 -1649 ((-1177 $) (-1177 $))) (-15 -1648 ((-630 (-347 |t#2|)))) (-15 -1647 ((-630 (-347 |t#2|)))) (-15 -1646 ((-630 (-347 |t#2|)))) (-15 -1645 ((-630 (-347 |t#2|)))) (-15 -1644 ((-2 (|:| |num| (-1177 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1789 ($ (-1177 |t#2|) |t#2|)) (-15 -1643 ((-2 (|:| |num| (-1177 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1642 ($ (-1177 |t#2|) |t#2|)) (-15 -1641 ((-2 (|:| |num| (-630 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1652 ((-85) $ |t#1|)) (-15 -1652 ((-85) $ |t#2|)) (-15 -3752 ($ $ (-1 |t#2| |t#2|))) (-15 -3497 ($ $)) (-15 -3794 (|t#1| $ |t#1| |t#1|)) (-15 -1640 ((-3 |t#2| "failed"))) (-15 -1639 ((-3 |t#2| "failed"))) (-15 -1638 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-311)) (-15 -1637 ((-583 (-857 |t#1|)) (-1088))) |%noBranch|) (IF (|has| |t#1| (-317)) (-15 -1636 ((-583 (-583 |t#1|)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-483))) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-38 (-347 |#2|)) . T) ((-38 $) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-82 (-347 |#2|) (-347 |#2|)) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-118))) ((-120) |has| (-347 |#2|) (-120)) ((-555 (-347 (-483))) OR (|has| (-347 |#2|) (-950 (-347 (-483)))) (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-555 (-347 |#2|)) . T) ((-555 (-483)) . T) ((-555 $) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-552 (-772)) . T) ((-146) . T) ((-553 |#3|) . T) ((-186 $) OR (|has| (-347 |#2|) (-298)) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311)))) ((-184 (-347 |#2|)) |has| (-347 |#2|) (-311)) ((-190) OR (|has| (-347 |#2|) (-298)) (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311)))) ((-189) OR (|has| (-347 |#2|) (-298)) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311)))) ((-225 (-347 |#2|)) |has| (-347 |#2|) (-311)) ((-201) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-245) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-257) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-311) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-342) |has| (-347 |#2|) (-298)) ((-317) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-317))) ((-298) |has| (-347 |#2|) (-298)) ((-319 (-347 |#2|) |#3|) . T) ((-350 (-347 |#2|) |#3|) . T) ((-326 (-347 |#2|)) . T) ((-352 (-347 |#2|)) . T) ((-389) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-494) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-13) . T) ((-588 (-347 (-483))) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-588 (-347 |#2|)) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 (-347 (-483))) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-590 (-347 |#2|)) . T) ((-590 (-483)) |has| (-347 |#2|) (-580 (-483))) ((-590 $) . T) ((-582 (-347 (-483))) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-582 (-347 |#2|)) . T) ((-582 $) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-580 (-347 |#2|)) . T) ((-580 (-483)) |has| (-347 |#2|) (-580 (-483))) ((-654 (-347 (-483))) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-654 (-347 |#2|)) . T) ((-654 $) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-661 (-347 |#2|) |#3|) . T) ((-663) . T) ((-806 $ (-1088)) OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088))))) ((-809 (-1088)) -12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) ((-811 (-1088)) OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088))))) ((-832) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-950 (-347 (-483))) |has| (-347 |#2|) (-950 (-347 (-483)))) ((-950 (-347 |#2|)) . T) ((-950 (-483)) |has| (-347 |#2|) (-950 (-483))) ((-963 (-347 (-483))) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-963 (-347 |#2|)) . T) ((-963 $) . T) ((-968 (-347 (-483))) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-968 (-347 |#2|)) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1064) |has| (-347 |#2|) (-298)) ((-1127) . T) ((-1132) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))))
-((-3952 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT)))
-(((-291 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3952 (|#8| (-1 |#5| |#1|) |#4|))) (-1132) (-1153 |#1|) (-1153 (-347 |#2|)) (-290 |#1| |#2| |#3|) (-1132) (-1153 |#5|) (-1153 (-347 |#6|)) (-290 |#5| |#6| |#7|)) (T -291))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1132)) (-4 *8 (-1132)) (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-347 *6))) (-4 *9 (-1153 *8)) (-4 *2 (-290 *8 *9 *10)) (-5 *1 (-291 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-290 *5 *6 *7)) (-4 *10 (-1153 (-347 *9))))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-3926 (((-85) $) NIL T ELT)) (-3923 (((-694)) NIL T ELT)) (-3324 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-817 |#1|) #1#) $) NIL T ELT)) (-3151 (((-817 |#1|) $) NIL T ELT)) (-1789 (($ (-1177 (-817 |#1|))) NIL T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-2829 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1677 (((-85) $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1761 (($ $ (-694)) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-317))) ELT) (($ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-317))) ELT)) (-3717 (((-85) $) NIL T ELT)) (-3766 (((-830) $) NIL (|has| (-817 |#1|) (-317)) ELT) (((-743 (-830)) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-317))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2009 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2007 (((-85) $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3127 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3439 (((-632 $) $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2010 (((-1083 (-817 |#1|)) $) NIL T ELT) (((-1083 $) $ (-830)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2006 (((-830) $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1624 (((-1083 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1623 (((-1083 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-317)) ELT) (((-3 (-1083 (-817 |#1|)) #1#) $ $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1625 (($ $ (-1083 (-817 |#1|))) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL (|has| (-817 |#1|) (-317)) CONST)) (-2396 (($ (-830)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3925 (((-85) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1664 (((-869 (-1032))) NIL T ELT)) (-2405 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-3924 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-1762 (((-694) $) NIL (|has| (-817 |#1|) (-317)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-317))) ELT)) (-3905 (((-107)) NIL T ELT)) (-3752 (($ $ (-694)) NIL (|has| (-817 |#1|) (-317)) ELT) (($ $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3942 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3180 (((-1083 (-817 |#1|))) NIL T ELT)) (-1671 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1626 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3219 (((-1177 (-817 |#1|)) $) NIL T ELT) (((-630 (-817 |#1|)) (-1177 $)) NIL T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ (-817 |#1|)) NIL T ELT)) (-2698 (($ $) NIL (|has| (-817 |#1|) (-317)) ELT) (((-632 $) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-317))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) NIL T ELT) (((-1177 $) (-830)) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3927 (((-85) $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-3922 (($ $) NIL (|has| (-817 |#1|) (-317)) ELT) (($ $ (-694)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2665 (($ $ (-694)) NIL (|has| (-817 |#1|) (-317)) ELT) (($ $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT) (($ (-817 |#1|) $) NIL T ELT)))
-(((-292 |#1| |#2|) (-13 (-279 (-817 |#1|)) (-10 -7 (-15 -1664 ((-869 (-1032)))))) (-830) (-830)) (T -292))
-((-1664 (*1 *2) (-12 (-5 *2 (-869 (-1032))) (-5 *1 (-292 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 58 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-3926 (((-85) $) NIL T ELT)) (-3923 (((-694)) NIL T ELT)) (-3324 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-317)) ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) 56 (|has| |#1| (-317)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) NIL (|has| |#1| (-317)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) 139 T ELT)) (-3151 ((|#1| $) 111 T ELT)) (-1789 (($ (-1177 |#1|)) 128 T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) 119 (|has| |#1| (-317)) ELT)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) 122 (|has| |#1| (-317)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-2829 (($) 155 (|has| |#1| (-317)) ELT)) (-1677 (((-85) $) 65 (|has| |#1| (-317)) ELT)) (-1761 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3717 (((-85) $) NIL T ELT)) (-3766 (((-830) $) 60 (|has| |#1| (-317)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-2406 (((-85) $) 62 T ELT)) (-2009 (($) 157 (|has| |#1| (-317)) ELT)) (-2007 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-3127 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-317)) ELT)) (-3439 (((-632 $) $) NIL (|has| |#1| (-317)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2010 (((-1083 |#1|) $) 115 T ELT) (((-1083 $) $ (-830)) NIL (|has| |#1| (-317)) ELT)) (-2006 (((-830) $) 165 (|has| |#1| (-317)) ELT)) (-1624 (((-1083 |#1|) $) NIL (|has| |#1| (-317)) ELT)) (-1623 (((-1083 |#1|) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-1083 |#1|) #1#) $ $) NIL (|has| |#1| (-317)) ELT)) (-1625 (($ $ (-1083 |#1|)) NIL (|has| |#1| (-317)) ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) 172 T ELT)) (-3440 (($) NIL (|has| |#1| (-317)) CONST)) (-2396 (($ (-830)) 94 (|has| |#1| (-317)) ELT)) (-3925 (((-85) $) 142 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1664 (((-869 (-1032))) 57 T ELT)) (-2405 (($) 153 (|has| |#1| (-317)) ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) 117 (|has| |#1| (-317)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-3924 (((-743 (-830))) 88 T ELT) (((-830)) 89 T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-1762 (((-694) $) 156 (|has| |#1| (-317)) ELT) (((-3 (-694) #1#) $ $) 149 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3905 (((-107)) NIL T ELT)) (-3752 (($ $ (-694)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3942 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3180 (((-1083 |#1|)) 120 T ELT)) (-1671 (($) 154 (|has| |#1| (-317)) ELT)) (-1626 (($) 162 (|has| |#1| (-317)) ELT)) (-3219 (((-1177 |#1|) $) 76 T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (|has| |#1| (-317)) ELT)) (-3940 (((-772) $) 168 T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2698 (($ $) NIL (|has| |#1| (-317)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3121 (((-694)) 150 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) 141 T ELT) (((-1177 $) (-830)) 96 T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3927 (((-85) $) NIL T ELT)) (-2656 (($) 66 T CONST)) (-2662 (($) 101 T CONST)) (-3922 (($ $) 105 (|has| |#1| (-317)) ELT) (($ $ (-694)) NIL (|has| |#1| (-317)) ELT)) (-2665 (($ $ (-694)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3052 (((-85) $ $) 64 T ELT)) (-3943 (($ $ $) 170 T ELT) (($ $ |#1|) 171 T ELT)) (-3831 (($ $) 152 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 84 T ELT)) (** (($ $ (-830)) 174 T ELT) (($ $ (-694)) 175 T ELT) (($ $ (-483)) 173 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 100 T ELT) (($ $ $) 99 T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 169 T ELT)))
-(((-293 |#1| |#2|) (-13 (-279 |#1|) (-10 -7 (-15 -1664 ((-869 (-1032)))))) (-298) (-1083 |#1|)) (T -293))
-((-1664 (*1 *2) (-12 (-5 *2 (-869 (-1032))) (-5 *1 (-293 *3 *4)) (-4 *3 (-298)) (-14 *4 (-1083 *3)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-3926 (((-85) $) NIL T ELT)) (-3923 (((-694)) NIL T ELT)) (-3324 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-317)) ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) NIL (|has| |#1| (-317)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) NIL (|has| |#1| (-317)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT)) (-1789 (($ (-1177 |#1|)) NIL T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-317)) ELT)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) NIL (|has| |#1| (-317)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-2829 (($) NIL (|has| |#1| (-317)) ELT)) (-1677 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-1761 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3717 (((-85) $) NIL T ELT)) (-3766 (((-830) $) NIL (|has| |#1| (-317)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2009 (($) NIL (|has| |#1| (-317)) ELT)) (-2007 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-3127 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-317)) ELT)) (-3439 (((-632 $) $) NIL (|has| |#1| (-317)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2010 (((-1083 |#1|) $) NIL T ELT) (((-1083 $) $ (-830)) NIL (|has| |#1| (-317)) ELT)) (-2006 (((-830) $) NIL (|has| |#1| (-317)) ELT)) (-1624 (((-1083 |#1|) $) NIL (|has| |#1| (-317)) ELT)) (-1623 (((-1083 |#1|) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-1083 |#1|) #1#) $ $) NIL (|has| |#1| (-317)) ELT)) (-1625 (($ $ (-1083 |#1|)) NIL (|has| |#1| (-317)) ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL (|has| |#1| (-317)) CONST)) (-2396 (($ (-830)) NIL (|has| |#1| (-317)) ELT)) (-3925 (((-85) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1664 (((-869 (-1032))) NIL T ELT)) (-2405 (($) NIL (|has| |#1| (-317)) ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) NIL (|has| |#1| (-317)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-3924 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-1762 (((-694) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3905 (((-107)) NIL T ELT)) (-3752 (($ $ (-694)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3942 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3180 (((-1083 |#1|)) NIL T ELT)) (-1671 (($) NIL (|has| |#1| (-317)) ELT)) (-1626 (($) NIL (|has| |#1| (-317)) ELT)) (-3219 (((-1177 |#1|) $) NIL T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (|has| |#1| (-317)) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2698 (($ $) NIL (|has| |#1| (-317)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) NIL T ELT) (((-1177 $) (-830)) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3927 (((-85) $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-3922 (($ $) NIL (|has| |#1| (-317)) ELT) (($ $ (-694)) NIL (|has| |#1| (-317)) ELT)) (-2665 (($ $ (-694)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-294 |#1| |#2|) (-13 (-279 |#1|) (-10 -7 (-15 -1664 ((-869 (-1032)))))) (-298) (-830)) (T -294))
-((-1664 (*1 *2) (-12 (-5 *2 (-869 (-1032))) (-5 *1 (-294 *3 *4)) (-4 *3 (-298)) (-14 *4 (-830)))))
-((-1674 (((-694) (-1177 (-583 (-2 (|:| -3396 |#1|) (|:| -2396 (-1032)))))) 61 T ELT)) (-1665 (((-869 (-1032)) (-1083 |#1|)) 112 T ELT)) (-1666 (((-1177 (-583 (-2 (|:| -3396 |#1|) (|:| -2396 (-1032))))) (-1083 |#1|)) 103 T ELT)) (-1667 (((-630 |#1|) (-1177 (-583 (-2 (|:| -3396 |#1|) (|:| -2396 (-1032)))))) 113 T ELT)) (-1668 (((-3 (-1177 (-583 (-2 (|:| -3396 |#1|) (|:| -2396 (-1032))))) "failed") (-830)) 13 T ELT)) (-1669 (((-3 (-1083 |#1|) (-1177 (-583 (-2 (|:| -3396 |#1|) (|:| -2396 (-1032)))))) (-830)) 18 T ELT)))
-(((-295 |#1|) (-10 -7 (-15 -1665 ((-869 (-1032)) (-1083 |#1|))) (-15 -1666 ((-1177 (-583 (-2 (|:| -3396 |#1|) (|:| -2396 (-1032))))) (-1083 |#1|))) (-15 -1667 ((-630 |#1|) (-1177 (-583 (-2 (|:| -3396 |#1|) (|:| -2396 (-1032))))))) (-15 -1674 ((-694) (-1177 (-583 (-2 (|:| -3396 |#1|) (|:| -2396 (-1032))))))) (-15 -1668 ((-3 (-1177 (-583 (-2 (|:| -3396 |#1|) (|:| -2396 (-1032))))) "failed") (-830))) (-15 -1669 ((-3 (-1083 |#1|) (-1177 (-583 (-2 (|:| -3396 |#1|) (|:| -2396 (-1032)))))) (-830)))) (-298)) (T -295))
-((-1669 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-3 (-1083 *4) (-1177 (-583 (-2 (|:| -3396 *4) (|:| -2396 (-1032))))))) (-5 *1 (-295 *4)) (-4 *4 (-298)))) (-1668 (*1 *2 *3) (|partial| -12 (-5 *3 (-830)) (-5 *2 (-1177 (-583 (-2 (|:| -3396 *4) (|:| -2396 (-1032)))))) (-5 *1 (-295 *4)) (-4 *4 (-298)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-1177 (-583 (-2 (|:| -3396 *4) (|:| -2396 (-1032)))))) (-4 *4 (-298)) (-5 *2 (-694)) (-5 *1 (-295 *4)))) (-1667 (*1 *2 *3) (-12 (-5 *3 (-1177 (-583 (-2 (|:| -3396 *4) (|:| -2396 (-1032)))))) (-4 *4 (-298)) (-5 *2 (-630 *4)) (-5 *1 (-295 *4)))) (-1666 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-298)) (-5 *2 (-1177 (-583 (-2 (|:| -3396 *4) (|:| -2396 (-1032)))))) (-5 *1 (-295 *4)))) (-1665 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-298)) (-5 *2 (-869 (-1032))) (-5 *1 (-295 *4)))))
-((-3940 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT)))
-(((-296 |#1| |#2| |#3|) (-10 -7 (-15 -3940 (|#3| |#1|)) (-15 -3940 (|#1| |#3|))) (-279 |#2|) (-298) (-279 |#2|)) (T -296))
-((-3940 (*1 *2 *3) (-12 (-4 *4 (-298)) (-4 *2 (-279 *4)) (-5 *1 (-296 *2 *4 *3)) (-4 *3 (-279 *4)))) (-3940 (*1 *2 *3) (-12 (-4 *4 (-298)) (-4 *2 (-279 *4)) (-5 *1 (-296 *3 *4 *2)) (-4 *3 (-279 *4)))))
-((-1677 (((-85) $) 65 T ELT)) (-3766 (((-743 (-830)) $) 26 T ELT) (((-830) $) 69 T ELT)) (-3439 (((-632 $) $) 21 T ELT)) (-3440 (($) 9 T CONST)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 120 T ELT)) (-1762 (((-3 (-694) #1="failed") $ $) 98 T ELT) (((-694) $) 84 T ELT)) (-3752 (($ $) 8 T ELT) (($ $ (-694)) NIL T ELT)) (-1671 (($) 58 T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) 41 T ELT)) (-2698 (((-632 $) $) 50 T ELT) (($ $) 47 T ELT)))
-(((-297 |#1|) (-10 -7 (-15 -3766 ((-830) |#1|)) (-15 -1762 ((-694) |#1|)) (-15 -1677 ((-85) |#1|)) (-15 -1671 (|#1|)) (-15 -2699 ((-3 (-1177 |#1|) #1="failed") (-630 |#1|))) (-15 -2698 (|#1| |#1|)) (-15 -3752 (|#1| |#1| (-694))) (-15 -3752 (|#1| |#1|)) (-15 -3440 (|#1|) -3946) (-15 -3439 ((-632 |#1|) |#1|)) (-15 -1762 ((-3 (-694) #1#) |#1| |#1|)) (-15 -3766 ((-743 (-830)) |#1|)) (-15 -2698 ((-632 |#1|) |#1|)) (-15 -2704 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)))) (-298)) (T -297))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) 111 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3769 (($ $) 89 T ELT)) (-3965 (((-345 $) $) 88 T ELT)) (-1605 (((-85) $ $) 73 T ELT)) (-3131 (((-694)) 121 T ELT)) (-3718 (($) 22 T CONST)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) 105 T ELT)) (-2560 (($ $ $) 69 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2990 (($) 124 T ELT)) (-2559 (($ $ $) 70 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 64 T ELT)) (-2829 (($) 109 T ELT)) (-1677 (((-85) $) 108 T ELT)) (-1761 (($ $) 95 T ELT) (($ $ (-694)) 94 T ELT)) (-3717 (((-85) $) 87 T ELT)) (-3766 (((-743 (-830)) $) 97 T ELT) (((-830) $) 106 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3439 (((-632 $) $) 120 T ELT)) (-1602 (((-3 (-583 $) #1="failed") (-583 $) $) 66 T ELT)) (-2006 (((-830) $) 123 T ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 86 T ELT)) (-3440 (($) 119 T CONST)) (-2396 (($ (-830)) 122 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) 112 T ELT)) (-3726 (((-345 $) $) 90 T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 63 T ELT)) (-1604 (((-694) $) 72 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 71 T ELT)) (-1762 (((-3 (-694) "failed") $ $) 96 T ELT) (((-694) $) 107 T ELT)) (-3752 (($ $) 118 T ELT) (($ $ (-694)) 116 T ELT)) (-1671 (($) 110 T ELT)) (-2699 (((-3 (-1177 $) "failed") (-630 $)) 113 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-483))) 82 T ELT)) (-2698 (((-632 $) $) 98 T ELT) (($ $) 114 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $) 117 T ELT) (($ $ (-694)) 115 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ $) 81 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 85 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-483))) 84 T ELT) (($ (-347 (-483)) $) 83 T ELT)))
+((-2010 (*1 *2) (-12 (-4 *3 (-311)) (-5 *2 (-1178 *1)) (-4 *1 (-279 *3)))) (-2010 (*1 *2 *3) (-12 (-5 *3 (-831)) (-4 *4 (-311)) (-5 *2 (-1178 *1)) (-4 *1 (-279 *4)))) (-3221 (*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-1178 *3)))) (-3221 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-279 *4)) (-4 *4 (-311)) (-5 *2 (-631 *4)))) (-1790 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-311)) (-4 *1 (-279 *3)))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-1084 *3)))) (-3182 (*1 *2) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-1084 *3)))) (-3926 (*1 *2) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-831)))) (-3944 (*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-831)))) (-3129 (*1 *2 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-311)))) (-3326 (*1 *2 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-311)))) (-2012 (*1 *2 *1 *3) (-12 (-5 *3 (-831)) (-4 *4 (-317)) (-4 *4 (-311)) (-5 *2 (-1084 *1)) (-4 *1 (-279 *4)))) (-3129 (*1 *1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)))) (-3326 (*1 *1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)))) (-1627 (*1 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-317)) (-4 *2 (-311)))) (-2011 (*1 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-317)) (-4 *2 (-311)))) (-2009 (*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)) (-5 *2 (-85)))) (-2407 (*1 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-317)) (-4 *2 (-311)))) (-1626 (*1 *1 *1 *2) (-12 (-5 *2 (-1084 *3)) (-4 *3 (-317)) (-4 *1 (-279 *3)) (-4 *3 (-311)))) (-1625 (*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)) (-5 *2 (-1084 *3)))) (-1624 (*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)) (-5 *2 (-1084 *3)))) (-1624 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)) (-5 *2 (-1084 *3)))))
+(-13 (-1197 |t#1|) (-951 |t#1|) (-10 -8 (-15 -2010 ((-1178 $))) (-15 -2010 ((-1178 $) (-831))) (-15 -3221 ((-1178 |t#1|) $)) (-15 -3221 ((-631 |t#1|) (-1178 $))) (-15 -1790 ($ (-1178 |t#1|))) (-15 -2012 ((-1084 |t#1|) $)) (-15 -3182 ((-1084 |t#1|))) (-15 -3926 ((-831))) (-15 -3944 ((-831) $)) (-15 -3129 (|t#1| $)) (-15 -3326 (|t#1| $)) (IF (|has| |t#1| (-317)) (PROGN (-6 (-298)) (-15 -2012 ((-1084 $) $ (-831))) (-15 -3129 ($ $ (-831))) (-15 -3326 ($ $ (-831))) (-15 -1627 ($)) (-15 -2011 ($)) (-15 -2009 ((-85) $)) (-15 -2407 ($)) (-15 -1626 ($ $ (-1084 |t#1|))) (-15 -1625 ((-1084 |t#1|) $)) (-15 -1624 ((-1084 |t#1|) $)) (-15 -1624 ((-3 (-1084 |t#1|) "failed") $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-317)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) . T) ((-556 (-484)) . T) ((-556 |#1|) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-186 $) |has| |#1| (-317)) ((-190) |has| |#1| (-317)) ((-189) |has| |#1| (-317)) ((-201) . T) ((-245) . T) ((-257) . T) ((-1197 |#1|) . T) ((-311) . T) ((-342) OR (|has| |#1| (-317)) (|has| |#1| (-118))) ((-317) |has| |#1| (-317)) ((-298) |has| |#1| (-317)) ((-389) . T) ((-495) . T) ((-13) . T) ((-589 (-347 (-484))) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-655 (-347 (-484))) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-951 |#1|) . T) ((-964 (-347 (-484))) . T) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-347 (-484))) . T) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) |has| |#1| (-317)) ((-1128) . T) ((-1133) . T) ((-1186 |#1|) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-1628 (((-85) $) 13 T ELT)) (-3634 (($ |#1|) 10 T ELT)) (-2529 (($ $ $) NIL T ELT)) (-2855 (($ $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3630 (($ |#1|) 12 T ELT)) (-3942 (((-773) $) 19 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2234 ((|#1| $) 14 T ELT)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) 21 T ELT)))
+(((-280 |#1|) (-13 (-757) (-10 -8 (-15 -3634 ($ |#1|)) (-15 -3630 ($ |#1|)) (-15 -1628 ((-85) $)) (-15 -2234 (|#1| $)))) (-757)) (T -280))
+((-3634 (*1 *1 *2) (-12 (-5 *1 (-280 *2)) (-4 *2 (-757)))) (-3630 (*1 *1 *2) (-12 (-5 *1 (-280 *2)) (-4 *2 (-757)))) (-1628 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-280 *3)) (-4 *3 (-757)))) (-2234 (*1 *2 *1) (-12 (-5 *1 (-280 *2)) (-4 *2 (-757)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-1629 (((-444) $) 20 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1630 (((-870 (-695)) $) 18 T ELT)) (-1632 (((-209) $) 7 T ELT)) (-3942 (((-773) $) 26 T ELT)) (-2204 (((-870 (-158 (-112))) $) 16 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1631 (((-584 (-783 (-1094) (-695))) $) 12 T ELT)) (-3054 (((-85) $ $) 22 T ELT)))
+(((-281) (-13 (-1013) (-10 -8 (-15 -1632 ((-209) $)) (-15 -1631 ((-584 (-783 (-1094) (-695))) $)) (-15 -1630 ((-870 (-695)) $)) (-15 -2204 ((-870 (-158 (-112))) $)) (-15 -1629 ((-444) $))))) (T -281))
+((-1632 (*1 *2 *1) (-12 (-5 *2 (-209)) (-5 *1 (-281)))) (-1631 (*1 *2 *1) (-12 (-5 *2 (-584 (-783 (-1094) (-695)))) (-5 *1 (-281)))) (-1630 (*1 *2 *1) (-12 (-5 *2 (-870 (-695))) (-5 *1 (-281)))) (-2204 (*1 *2 *1) (-12 (-5 *2 (-870 (-158 (-112)))) (-5 *1 (-281)))) (-1629 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-281)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3838 (($ $) 34 T ELT)) (-1635 (((-85) $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-1633 (((-1178 |#4|) $) 133 T ELT)) (-1967 (((-353 |#2| (-347 |#2|) |#3| |#4|) $) 32 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2407 (((-3 |#4| #1#) $) 37 T ELT)) (-1634 (((-1178 |#4|) $) 125 T ELT)) (-1636 (($ (-353 |#2| (-347 |#2|) |#3| |#4|)) 42 T ELT) (($ |#4|) 44 T ELT) (($ |#1| |#1|) 46 T ELT) (($ |#1| |#1| (-484)) 48 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 50 T ELT)) (-3431 (((-2 (|:| -2334 (-353 |#2| (-347 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 40 T ELT)) (-3942 (((-773) $) 18 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) 15 T CONST)) (-3054 (((-85) $ $) 21 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) 26 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 24 T ELT)))
+(((-282 |#1| |#2| |#3| |#4|) (-13 (-285 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1634 ((-1178 |#4|) $)) (-15 -1633 ((-1178 |#4|) $)))) (-311) (-1154 |#1|) (-1154 (-347 |#2|)) (-290 |#1| |#2| |#3|)) (T -282))
+((-1634 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-1178 *6)) (-5 *1 (-282 *3 *4 *5 *6)) (-4 *6 (-290 *3 *4 *5)))) (-1633 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-1178 *6)) (-5 *1 (-282 *3 *4 *5 *6)) (-4 *6 (-290 *3 *4 *5)))))
+((-3954 (((-282 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-282 |#1| |#2| |#3| |#4|)) 33 T ELT)))
+(((-283 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3954 ((-282 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-282 |#1| |#2| |#3| |#4|)))) (-311) (-1154 |#1|) (-1154 (-347 |#2|)) (-290 |#1| |#2| |#3|) (-311) (-1154 |#5|) (-1154 (-347 |#6|)) (-290 |#5| |#6| |#7|)) (T -283))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-282 *5 *6 *7 *8)) (-4 *5 (-311)) (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-347 *6))) (-4 *8 (-290 *5 *6 *7)) (-4 *9 (-311)) (-4 *10 (-1154 *9)) (-4 *11 (-1154 (-347 *10))) (-5 *2 (-282 *9 *10 *11 *12)) (-5 *1 (-283 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-290 *9 *10 *11)))))
+((-1635 (((-85) $) 14 T ELT)))
+(((-284 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1635 ((-85) |#1|))) (-285 |#2| |#3| |#4| |#5|) (-311) (-1154 |#2|) (-1154 (-347 |#3|)) (-290 |#2| |#3| |#4|)) (T -284))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3838 (($ $) 34 T ELT)) (-1635 (((-85) $) 33 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-1967 (((-353 |#2| (-347 |#2|) |#3| |#4|) $) 40 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-2407 (((-3 |#4| "failed") $) 32 T ELT)) (-1636 (($ (-353 |#2| (-347 |#2|) |#3| |#4|)) 39 T ELT) (($ |#4|) 38 T ELT) (($ |#1| |#1|) 37 T ELT) (($ |#1| |#1| (-484)) 36 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 31 T ELT)) (-3431 (((-2 (|:| -2334 (-353 |#2| (-347 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 35 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT)))
+(((-285 |#1| |#2| |#3| |#4|) (-113) (-311) (-1154 |t#1|) (-1154 (-347 |t#2|)) (-290 |t#1| |t#2| |t#3|)) (T -285))
+((-1967 (*1 *2 *1) (-12 (-4 *1 (-285 *3 *4 *5 *6)) (-4 *3 (-311)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-4 *6 (-290 *3 *4 *5)) (-5 *2 (-353 *4 (-347 *4) *5 *6)))) (-1636 (*1 *1 *2) (-12 (-5 *2 (-353 *4 (-347 *4) *5 *6)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-4 *6 (-290 *3 *4 *5)) (-4 *3 (-311)) (-4 *1 (-285 *3 *4 *5 *6)))) (-1636 (*1 *1 *2) (-12 (-4 *3 (-311)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-4 *1 (-285 *3 *4 *5 *2)) (-4 *2 (-290 *3 *4 *5)))) (-1636 (*1 *1 *2 *2) (-12 (-4 *2 (-311)) (-4 *3 (-1154 *2)) (-4 *4 (-1154 (-347 *3))) (-4 *1 (-285 *2 *3 *4 *5)) (-4 *5 (-290 *2 *3 *4)))) (-1636 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-484)) (-4 *2 (-311)) (-4 *4 (-1154 *2)) (-4 *5 (-1154 (-347 *4))) (-4 *1 (-285 *2 *4 *5 *6)) (-4 *6 (-290 *2 *4 *5)))) (-3431 (*1 *2 *1) (-12 (-4 *1 (-285 *3 *4 *5 *6)) (-4 *3 (-311)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-4 *6 (-290 *3 *4 *5)) (-5 *2 (-2 (|:| -2334 (-353 *4 (-347 *4) *5 *6)) (|:| |principalPart| *6))))) (-3838 (*1 *1 *1) (-12 (-4 *1 (-285 *2 *3 *4 *5)) (-4 *2 (-311)) (-4 *3 (-1154 *2)) (-4 *4 (-1154 (-347 *3))) (-4 *5 (-290 *2 *3 *4)))) (-1635 (*1 *2 *1) (-12 (-4 *1 (-285 *3 *4 *5 *6)) (-4 *3 (-311)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-4 *6 (-290 *3 *4 *5)) (-5 *2 (-85)))) (-2407 (*1 *2 *1) (|partial| -12 (-4 *1 (-285 *3 *4 *5 *2)) (-4 *3 (-311)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-4 *2 (-290 *3 *4 *5)))) (-1636 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-311)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 (-347 *3))) (-4 *1 (-285 *4 *3 *5 *2)) (-4 *2 (-290 *4 *3 *5)))))
+(-13 (-21) (-10 -8 (-15 -1967 ((-353 |t#2| (-347 |t#2|) |t#3| |t#4|) $)) (-15 -1636 ($ (-353 |t#2| (-347 |t#2|) |t#3| |t#4|))) (-15 -1636 ($ |t#4|)) (-15 -1636 ($ |t#1| |t#1|)) (-15 -1636 ($ |t#1| |t#1| (-484))) (-15 -3431 ((-2 (|:| -2334 (-353 |t#2| (-347 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3838 ($ $)) (-15 -1635 ((-85) $)) (-15 -2407 ((-3 |t#4| "failed") $)) (-15 -1636 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-1013) . T) ((-1128) . T))
+((-3764 (($ $ (-1089) |#2|) NIL T ELT) (($ $ (-584 (-1089)) (-584 |#2|)) 20 T ELT) (($ $ (-584 (-248 |#2|))) 15 T ELT) (($ $ (-248 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL T ELT)) (-3796 (($ $ |#2|) 11 T ELT)))
+(((-286 |#1| |#2|) (-10 -7 (-15 -3796 (|#1| |#1| |#2|)) (-15 -3764 (|#1| |#1| (-584 |#2|) (-584 |#2|))) (-15 -3764 (|#1| |#1| |#2| |#2|)) (-15 -3764 (|#1| |#1| (-248 |#2|))) (-15 -3764 (|#1| |#1| (-584 (-248 |#2|)))) (-15 -3764 (|#1| |#1| (-584 (-1089)) (-584 |#2|))) (-15 -3764 (|#1| |#1| (-1089) |#2|))) (-287 |#2|) (-1013)) (T -286))
+NIL
+((-3954 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-3764 (($ $ (-1089) |#1|) 17 (|has| |#1| (-453 (-1089) |#1|)) ELT) (($ $ (-584 (-1089)) (-584 |#1|)) 16 (|has| |#1| (-453 (-1089) |#1|)) ELT) (($ $ (-584 (-248 |#1|))) 15 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) 14 (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 12 (|has| |#1| (-259 |#1|)) ELT)) (-3796 (($ $ |#1|) 11 (|has| |#1| (-241 |#1| |#1|)) ELT)))
+(((-287 |#1|) (-113) (-1013)) (T -287))
+((-3954 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-287 *3)) (-4 *3 (-1013)))))
+(-13 (-10 -8 (-15 -3954 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-241 |t#1| |t#1|)) (-6 (-241 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-259 |t#1|)) (-6 (-259 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-453 (-1089) |t#1|)) (-6 (-453 (-1089) |t#1|)) |%noBranch|)))
+(((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-259 |#1|) |has| |#1| (-259 |#1|)) ((-453 (-1089) |#1|) |has| |#1| (-453 (-1089) |#1|)) ((-453 |#1| |#1|) |has| |#1| (-259 |#1|)) ((-13) |has| |#1| (-241 |#1| |#1|)) ((-1128) |has| |#1| (-241 |#1| |#1|)))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-3928 (((-85) $) NIL T ELT)) (-3925 (((-695)) NIL T ELT)) (-3326 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3771 (($ $) NIL T ELT)) (-3967 (((-345 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3133 (((-695)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 (-818 |#1|) #1#) $) NIL T ELT)) (-3153 (((-818 |#1|) $) NIL T ELT)) (-1790 (($ (-1178 (-818 |#1|))) NIL T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2992 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-2831 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1678 (((-85) $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1762 (($ $ (-695)) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-317))) ELT) (($ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-317))) ELT)) (-3719 (((-85) $) NIL T ELT)) (-3768 (((-831) $) NIL (|has| (-818 |#1|) (-317)) ELT) (((-744 (-831)) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-317))) ELT)) (-2408 (((-85) $) NIL T ELT)) (-2011 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2009 (((-85) $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3129 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3441 (((-633 $) $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2012 (((-1084 (-818 |#1|)) $) NIL T ELT) (((-1084 $) $ (-831)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2008 (((-831) $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1625 (((-1084 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1624 (((-1084 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-317)) ELT) (((-3 (-1084 (-818 |#1|)) #1#) $ $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1626 (($ $ (-1084 (-818 |#1|))) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) NIL T ELT)) (-3442 (($) NIL (|has| (-818 |#1|) (-317)) CONST)) (-2398 (($ (-831)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3927 (((-85) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2407 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1674 (((-584 (-2 (|:| -3728 (-484)) (|:| -2399 (-484))))) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3728 (((-345 $) $) NIL T ELT)) (-3926 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-1763 (((-695) $) NIL (|has| (-818 |#1|) (-317)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-317))) ELT)) (-3907 (((-107)) NIL T ELT)) (-3754 (($ $ (-695)) NIL (|has| (-818 |#1|) (-317)) ELT) (($ $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3944 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3182 (((-1084 (-818 |#1|))) NIL T ELT)) (-1672 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1627 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3221 (((-1178 (-818 |#1|)) $) NIL T ELT) (((-631 (-818 |#1|)) (-1178 $)) NIL T ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ (-818 |#1|)) NIL T ELT)) (-2700 (($ $) NIL (|has| (-818 |#1|) (-317)) ELT) (((-633 $) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-317))) ELT)) (-3123 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2010 (((-1178 $)) NIL T ELT) (((-1178 $) (-831)) NIL T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-3929 (((-85) $) NIL T ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-3924 (($ $) NIL (|has| (-818 |#1|) (-317)) ELT) (($ $ (-695)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2667 (($ $ (-695)) NIL (|has| (-818 |#1|) (-317)) ELT) (($ $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT) (($ (-818 |#1|) $) NIL T ELT)))
+(((-288 |#1| |#2|) (-279 (-818 |#1|)) (-831) (-831)) (T -288))
+NIL
+((-1645 (((-2 (|:| |num| (-1178 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-1790 (($ (-1178 (-347 |#3|)) (-1178 $)) NIL T ELT) (($ (-1178 (-347 |#3|))) NIL T ELT) (($ (-1178 |#3|) |#3|) 172 T ELT)) (-1650 (((-1178 $) (-1178 $)) 156 T ELT)) (-1637 (((-584 (-584 |#2|))) 126 T ELT)) (-1662 (((-85) |#2| |#2|) 76 T ELT)) (-3499 (($ $) 148 T ELT)) (-3373 (((-695)) 171 T ELT)) (-1651 (((-1178 $) (-1178 $)) 219 T ELT)) (-1638 (((-584 (-858 |#2|)) (-1089)) 115 T ELT)) (-1654 (((-85) $) 168 T ELT)) (-1653 (((-85) $) 27 T ELT) (((-85) $ |#2|) 31 T ELT) (((-85) $ |#3|) 223 T ELT)) (-1640 (((-3 |#3| #1="failed")) 52 T ELT)) (-1664 (((-695)) 183 T ELT)) (-3796 ((|#2| $ |#2| |#2|) 140 T ELT)) (-1641 (((-3 |#3| #1#)) 71 T ELT)) (-3754 (($ $ (-1 (-347 |#3|) (-347 |#3|))) NIL T ELT) (($ $ (-1 (-347 |#3|) (-347 |#3|)) (-695)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 227 T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-1652 (((-1178 $) (-1178 $)) 162 T ELT)) (-1639 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-1663 (((-85)) 34 T ELT)))
+(((-289 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3754 (|#1| |#1|)) (-15 -3754 (|#1| |#1| (-695))) (-15 -3754 (|#1| |#1| (-1089))) (-15 -3754 (|#1| |#1| (-584 (-1089)))) (-15 -3754 (|#1| |#1| (-1089) (-695))) (-15 -3754 (|#1| |#1| (-584 (-1089)) (-584 (-695)))) (-15 -1637 ((-584 (-584 |#2|)))) (-15 -1638 ((-584 (-858 |#2|)) (-1089))) (-15 -1639 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1640 ((-3 |#3| #1="failed"))) (-15 -1641 ((-3 |#3| #1#))) (-15 -3796 (|#2| |#1| |#2| |#2|)) (-15 -3499 (|#1| |#1|)) (-15 -3754 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1653 ((-85) |#1| |#3|)) (-15 -1653 ((-85) |#1| |#2|)) (-15 -1790 (|#1| (-1178 |#3|) |#3|)) (-15 -1645 ((-2 (|:| |num| (-1178 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1650 ((-1178 |#1|) (-1178 |#1|))) (-15 -1651 ((-1178 |#1|) (-1178 |#1|))) (-15 -1652 ((-1178 |#1|) (-1178 |#1|))) (-15 -1653 ((-85) |#1|)) (-15 -1654 ((-85) |#1|)) (-15 -1662 ((-85) |#2| |#2|)) (-15 -1663 ((-85))) (-15 -1664 ((-695))) (-15 -3373 ((-695))) (-15 -3754 (|#1| |#1| (-1 (-347 |#3|) (-347 |#3|)) (-695))) (-15 -3754 (|#1| |#1| (-1 (-347 |#3|) (-347 |#3|)))) (-15 -1790 (|#1| (-1178 (-347 |#3|)))) (-15 -1790 (|#1| (-1178 (-347 |#3|)) (-1178 |#1|)))) (-290 |#2| |#3| |#4|) (-1133) (-1154 |#2|) (-1154 (-347 |#3|))) (T -289))
+((-3373 (*1 *2) (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-347 *5))) (-5 *2 (-695)) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *3 (-290 *4 *5 *6)))) (-1664 (*1 *2) (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-347 *5))) (-5 *2 (-695)) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *3 (-290 *4 *5 *6)))) (-1663 (*1 *2) (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-347 *5))) (-5 *2 (-85)) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *3 (-290 *4 *5 *6)))) (-1662 (*1 *2 *3 *3) (-12 (-4 *3 (-1133)) (-4 *5 (-1154 *3)) (-4 *6 (-1154 (-347 *5))) (-5 *2 (-85)) (-5 *1 (-289 *4 *3 *5 *6)) (-4 *4 (-290 *3 *5 *6)))) (-1641 (*1 *2) (|partial| -12 (-4 *4 (-1133)) (-4 *5 (-1154 (-347 *2))) (-4 *2 (-1154 *4)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *3 (-290 *4 *2 *5)))) (-1640 (*1 *2) (|partial| -12 (-4 *4 (-1133)) (-4 *5 (-1154 (-347 *2))) (-4 *2 (-1154 *4)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *3 (-290 *4 *2 *5)))) (-1638 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *5 (-1133)) (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-347 *6))) (-5 *2 (-584 (-858 *5))) (-5 *1 (-289 *4 *5 *6 *7)) (-4 *4 (-290 *5 *6 *7)))) (-1637 (*1 *2) (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-347 *5))) (-5 *2 (-584 (-584 *4))) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *3 (-290 *4 *5 *6)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1645 (((-2 (|:| |num| (-1178 |#2|)) (|:| |den| |#2|)) $) 223 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 112 (|has| (-347 |#2|) (-311)) ELT)) (-2061 (($ $) 113 (|has| (-347 |#2|) (-311)) ELT)) (-2059 (((-85) $) 115 (|has| (-347 |#2|) (-311)) ELT)) (-1780 (((-631 (-347 |#2|)) (-1178 $)) 59 T ELT) (((-631 (-347 |#2|))) 75 T ELT)) (-3326 (((-347 |#2|) $) 65 T ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) 165 (|has| (-347 |#2|) (-298)) ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3771 (($ $) 132 (|has| (-347 |#2|) (-311)) ELT)) (-3967 (((-345 $) $) 133 (|has| (-347 |#2|) (-311)) ELT)) (-1606 (((-85) $ $) 123 (|has| (-347 |#2|) (-311)) ELT)) (-3133 (((-695)) 106 (|has| (-347 |#2|) (-317)) ELT)) (-1659 (((-85)) 240 T ELT)) (-1658 (((-85) |#1|) 239 T ELT) (((-85) |#2|) 238 T ELT)) (-3720 (($) 22 T CONST)) (-3154 (((-3 (-484) #1="failed") $) 192 (|has| (-347 |#2|) (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) 190 (|has| (-347 |#2|) (-951 (-347 (-484)))) ELT) (((-3 (-347 |#2|) #1#) $) 187 T ELT)) (-3153 (((-484) $) 191 (|has| (-347 |#2|) (-951 (-484))) ELT) (((-347 (-484)) $) 189 (|has| (-347 |#2|) (-951 (-347 (-484)))) ELT) (((-347 |#2|) $) 188 T ELT)) (-1790 (($ (-1178 (-347 |#2|)) (-1178 $)) 61 T ELT) (($ (-1178 (-347 |#2|))) 78 T ELT) (($ (-1178 |#2|) |#2|) 222 T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) 171 (|has| (-347 |#2|) (-298)) ELT)) (-2562 (($ $ $) 127 (|has| (-347 |#2|) (-311)) ELT)) (-1779 (((-631 (-347 |#2|)) $ (-1178 $)) 66 T ELT) (((-631 (-347 |#2|)) $) 73 T ELT)) (-2277 (((-631 (-484)) (-631 $)) 184 (|has| (-347 |#2|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 183 (|has| (-347 |#2|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-347 |#2|))) (|:| |vec| (-1178 (-347 |#2|)))) (-631 $) (-1178 $)) 182 T ELT) (((-631 (-347 |#2|)) (-631 $)) 181 T ELT)) (-1650 (((-1178 $) (-1178 $)) 228 T ELT)) (-3838 (($ |#3|) 176 T ELT) (((-3 $ "failed") (-347 |#3|)) 173 (|has| (-347 |#2|) (-311)) ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-1637 (((-584 (-584 |#1|))) 209 (|has| |#1| (-317)) ELT)) (-1662 (((-85) |#1| |#1|) 244 T ELT)) (-3106 (((-831)) 67 T ELT)) (-2992 (($) 109 (|has| (-347 |#2|) (-317)) ELT)) (-1657 (((-85)) 237 T ELT)) (-1656 (((-85) |#1|) 236 T ELT) (((-85) |#2|) 235 T ELT)) (-2561 (($ $ $) 126 (|has| (-347 |#2|) (-311)) ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) 121 (|has| (-347 |#2|) (-311)) ELT)) (-3499 (($ $) 215 T ELT)) (-2831 (($) 167 (|has| (-347 |#2|) (-298)) ELT)) (-1678 (((-85) $) 168 (|has| (-347 |#2|) (-298)) ELT)) (-1762 (($ $ (-695)) 159 (|has| (-347 |#2|) (-298)) ELT) (($ $) 158 (|has| (-347 |#2|) (-298)) ELT)) (-3719 (((-85) $) 134 (|has| (-347 |#2|) (-311)) ELT)) (-3768 (((-831) $) 170 (|has| (-347 |#2|) (-298)) ELT) (((-744 (-831)) $) 156 (|has| (-347 |#2|) (-298)) ELT)) (-2408 (((-85) $) 42 T ELT)) (-3373 (((-695)) 247 T ELT)) (-1651 (((-1178 $) (-1178 $)) 229 T ELT)) (-3129 (((-347 |#2|) $) 64 T ELT)) (-1638 (((-584 (-858 |#1|)) (-1089)) 210 (|has| |#1| (-311)) ELT)) (-3441 (((-633 $) $) 160 (|has| (-347 |#2|) (-298)) ELT)) (-1603 (((-3 (-584 $) #2="failed") (-584 $) $) 130 (|has| (-347 |#2|) (-311)) ELT)) (-2012 ((|#3| $) 57 (|has| (-347 |#2|) (-311)) ELT)) (-2008 (((-831) $) 108 (|has| (-347 |#2|) (-317)) ELT)) (-3077 ((|#3| $) 174 T ELT)) (-2278 (((-631 (-484)) (-1178 $)) 186 (|has| (-347 |#2|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 185 (|has| (-347 |#2|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-347 |#2|))) (|:| |vec| (-1178 (-347 |#2|)))) (-1178 $) $) 180 T ELT) (((-631 (-347 |#2|)) (-1178 $)) 179 T ELT)) (-1889 (($ (-584 $)) 119 (|has| (-347 |#2|) (-311)) ELT) (($ $ $) 118 (|has| (-347 |#2|) (-311)) ELT)) (-3239 (((-1072) $) 11 T ELT)) (-1646 (((-631 (-347 |#2|))) 224 T ELT)) (-1648 (((-631 (-347 |#2|))) 226 T ELT)) (-2482 (($ $) 135 (|has| (-347 |#2|) (-311)) ELT)) (-1643 (($ (-1178 |#2|) |#2|) 220 T ELT)) (-1647 (((-631 (-347 |#2|))) 225 T ELT)) (-1649 (((-631 (-347 |#2|))) 227 T ELT)) (-1642 (((-2 (|:| |num| (-631 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 219 T ELT)) (-1644 (((-2 (|:| |num| (-1178 |#2|)) (|:| |den| |#2|)) $) 221 T ELT)) (-1655 (((-1178 $)) 233 T ELT)) (-3914 (((-1178 $)) 234 T ELT)) (-1654 (((-85) $) 232 T ELT)) (-1653 (((-85) $) 231 T ELT) (((-85) $ |#1|) 218 T ELT) (((-85) $ |#2|) 217 T ELT)) (-3442 (($) 161 (|has| (-347 |#2|) (-298)) CONST)) (-2398 (($ (-831)) 107 (|has| (-347 |#2|) (-317)) ELT)) (-1640 (((-3 |#2| "failed")) 212 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-1664 (((-695)) 246 T ELT)) (-2407 (($) 178 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 120 (|has| (-347 |#2|) (-311)) ELT)) (-3141 (($ (-584 $)) 117 (|has| (-347 |#2|) (-311)) ELT) (($ $ $) 116 (|has| (-347 |#2|) (-311)) ELT)) (-1674 (((-584 (-2 (|:| -3728 (-484)) (|:| -2399 (-484))))) 164 (|has| (-347 |#2|) (-298)) ELT)) (-3728 (((-345 $) $) 131 (|has| (-347 |#2|) (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 129 (|has| (-347 |#2|) (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) 128 (|has| (-347 |#2|) (-311)) ELT)) (-3462 (((-3 $ "failed") $ $) 111 (|has| (-347 |#2|) (-311)) ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) 122 (|has| (-347 |#2|) (-311)) ELT)) (-1605 (((-695) $) 124 (|has| (-347 |#2|) (-311)) ELT)) (-3796 ((|#1| $ |#1| |#1|) 214 T ELT)) (-1641 (((-3 |#2| "failed")) 213 T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 125 (|has| (-347 |#2|) (-311)) ELT)) (-3753 (((-347 |#2|) (-1178 $)) 60 T ELT) (((-347 |#2|)) 74 T ELT)) (-1763 (((-695) $) 169 (|has| (-347 |#2|) (-298)) ELT) (((-3 (-695) "failed") $ $) 157 (|has| (-347 |#2|) (-298)) ELT)) (-3754 (($ $ (-1 (-347 |#2|) (-347 |#2|))) 143 (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 (-347 |#2|) (-347 |#2|)) (-695)) 142 (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 |#2| |#2|)) 216 T ELT) (($ $ (-584 (-1089)) (-584 (-695))) 148 (OR (-2560 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089)))) (-2560 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-2560 (|has| (-347 |#2|) (-812 (-1089))) (|has| (-347 |#2|) (-311)))) ELT) (($ $ (-1089) (-695)) 147 (OR (-2560 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089)))) (-2560 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-2560 (|has| (-347 |#2|) (-812 (-1089))) (|has| (-347 |#2|) (-311)))) ELT) (($ $ (-584 (-1089))) 146 (OR (-2560 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089)))) (-2560 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-2560 (|has| (-347 |#2|) (-812 (-1089))) (|has| (-347 |#2|) (-311)))) ELT) (($ $ (-1089)) 144 (OR (-2560 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089)))) (-2560 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-2560 (|has| (-347 |#2|) (-812 (-1089))) (|has| (-347 |#2|) (-311)))) ELT) (($ $ (-695)) 154 (OR (-2560 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-189))) (-2560 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-190))) (-2560 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT) (($ $) 152 (OR (-2560 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-189))) (-2560 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-190))) (-2560 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT)) (-2406 (((-631 (-347 |#2|)) (-1178 $) (-1 (-347 |#2|) (-347 |#2|))) 172 (|has| (-347 |#2|) (-311)) ELT)) (-3182 ((|#3|) 177 T ELT)) (-1672 (($) 166 (|has| (-347 |#2|) (-298)) ELT)) (-3221 (((-1178 (-347 |#2|)) $ (-1178 $)) 63 T ELT) (((-631 (-347 |#2|)) (-1178 $) (-1178 $)) 62 T ELT) (((-1178 (-347 |#2|)) $) 80 T ELT) (((-631 (-347 |#2|)) (-1178 $)) 79 T ELT)) (-3968 (((-1178 (-347 |#2|)) $) 77 T ELT) (($ (-1178 (-347 |#2|))) 76 T ELT) ((|#3| $) 193 T ELT) (($ |#3|) 175 T ELT)) (-2701 (((-3 (-1178 $) "failed") (-631 $)) 163 (|has| (-347 |#2|) (-298)) ELT)) (-1652 (((-1178 $) (-1178 $)) 230 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ (-347 |#2|)) 50 T ELT) (($ (-347 (-484))) 105 (OR (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-951 (-347 (-484))))) ELT) (($ $) 110 (|has| (-347 |#2|) (-311)) ELT)) (-2700 (($ $) 162 (|has| (-347 |#2|) (-298)) ELT) (((-633 $) $) 56 (|has| (-347 |#2|) (-118)) ELT)) (-2447 ((|#3| $) 58 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1661 (((-85)) 243 T ELT)) (-1660 (((-85) |#1|) 242 T ELT) (((-85) |#2|) 241 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2010 (((-1178 $)) 81 T ELT)) (-2060 (((-85) $ $) 114 (|has| (-347 |#2|) (-311)) ELT)) (-1639 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 211 T ELT)) (-1663 (((-85)) 245 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-2667 (($ $ (-1 (-347 |#2|) (-347 |#2|))) 141 (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 (-347 |#2|) (-347 |#2|)) (-695)) 140 (|has| (-347 |#2|) (-311)) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 151 (OR (-2560 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089)))) (-2560 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-2560 (|has| (-347 |#2|) (-812 (-1089))) (|has| (-347 |#2|) (-311)))) ELT) (($ $ (-1089) (-695)) 150 (OR (-2560 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089)))) (-2560 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-2560 (|has| (-347 |#2|) (-812 (-1089))) (|has| (-347 |#2|) (-311)))) ELT) (($ $ (-584 (-1089))) 149 (OR (-2560 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089)))) (-2560 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-2560 (|has| (-347 |#2|) (-812 (-1089))) (|has| (-347 |#2|) (-311)))) ELT) (($ $ (-1089)) 145 (OR (-2560 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089)))) (-2560 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-2560 (|has| (-347 |#2|) (-812 (-1089))) (|has| (-347 |#2|) (-311)))) ELT) (($ $ (-695)) 155 (OR (-2560 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-189))) (-2560 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-190))) (-2560 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT) (($ $) 153 (OR (-2560 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-189))) (-2560 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-190))) (-2560 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3945 (($ $ $) 139 (|has| (-347 |#2|) (-311)) ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 136 (|has| (-347 |#2|) (-311)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 |#2|)) 52 T ELT) (($ (-347 |#2|) $) 51 T ELT) (($ (-347 (-484)) $) 138 (|has| (-347 |#2|) (-311)) ELT) (($ $ (-347 (-484))) 137 (|has| (-347 |#2|) (-311)) ELT)))
+(((-290 |#1| |#2| |#3|) (-113) (-1133) (-1154 |t#1|) (-1154 (-347 |t#2|))) (T -290))
+((-3373 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-695)))) (-1664 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-695)))) (-1663 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85)))) (-1662 (*1 *2 *3 *3) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85)))) (-1661 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85)))) (-1660 (*1 *2 *3) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85)))) (-1660 (*1 *2 *3) (-12 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1133)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 (-347 *3))) (-5 *2 (-85)))) (-1659 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85)))) (-1658 (*1 *2 *3) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85)))) (-1658 (*1 *2 *3) (-12 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1133)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 (-347 *3))) (-5 *2 (-85)))) (-1657 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85)))) (-1656 (*1 *2 *3) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85)))) (-1656 (*1 *2 *3) (-12 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1133)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 (-347 *3))) (-5 *2 (-85)))) (-3914 (*1 *2) (-12 (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-1178 *1)) (-4 *1 (-290 *3 *4 *5)))) (-1655 (*1 *2) (-12 (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-1178 *1)) (-4 *1 (-290 *3 *4 *5)))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85)))) (-1653 (*1 *2 *1) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85)))) (-1652 (*1 *2 *2) (-12 (-5 *2 (-1178 *1)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))))) (-1651 (*1 *2 *2) (-12 (-5 *2 (-1178 *1)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))))) (-1650 (*1 *2 *2) (-12 (-5 *2 (-1178 *1)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))))) (-1649 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-631 (-347 *4))))) (-1648 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-631 (-347 *4))))) (-1647 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-631 (-347 *4))))) (-1646 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-631 (-347 *4))))) (-1645 (*1 *2 *1) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-2 (|:| |num| (-1178 *4)) (|:| |den| *4))))) (-1790 (*1 *1 *2 *3) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1154 *4)) (-4 *4 (-1133)) (-4 *1 (-290 *4 *3 *5)) (-4 *5 (-1154 (-347 *3))))) (-1644 (*1 *2 *1) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-2 (|:| |num| (-1178 *4)) (|:| |den| *4))))) (-1643 (*1 *1 *2 *3) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1154 *4)) (-4 *4 (-1133)) (-4 *1 (-290 *4 *3 *5)) (-4 *5 (-1154 (-347 *3))))) (-1642 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-290 *4 *5 *6)) (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-347 *5))) (-5 *2 (-2 (|:| |num| (-631 *5)) (|:| |den| *5))))) (-1653 (*1 *2 *1 *3) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85)))) (-1653 (*1 *2 *1 *3) (-12 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1133)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 (-347 *3))) (-5 *2 (-85)))) (-3754 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))))) (-3499 (*1 *1 *1) (-12 (-4 *1 (-290 *2 *3 *4)) (-4 *2 (-1133)) (-4 *3 (-1154 *2)) (-4 *4 (-1154 (-347 *3))))) (-3796 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-290 *2 *3 *4)) (-4 *2 (-1133)) (-4 *3 (-1154 *2)) (-4 *4 (-1154 (-347 *3))))) (-1641 (*1 *2) (|partial| -12 (-4 *1 (-290 *3 *2 *4)) (-4 *3 (-1133)) (-4 *4 (-1154 (-347 *2))) (-4 *2 (-1154 *3)))) (-1640 (*1 *2) (|partial| -12 (-4 *1 (-290 *3 *2 *4)) (-4 *3 (-1133)) (-4 *4 (-1154 (-347 *2))) (-4 *2 (-1154 *3)))) (-1639 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-1133)) (-4 *6 (-1154 (-347 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-290 *4 *5 *6)))) (-1638 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *1 (-290 *4 *5 *6)) (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-347 *5))) (-4 *4 (-311)) (-5 *2 (-584 (-858 *4))))) (-1637 (*1 *2) (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))) (-4 *3 (-317)) (-5 *2 (-584 (-584 *3))))))
+(-13 (-662 (-347 |t#2|) |t#3|) (-10 -8 (-15 -3373 ((-695))) (-15 -1664 ((-695))) (-15 -1663 ((-85))) (-15 -1662 ((-85) |t#1| |t#1|)) (-15 -1661 ((-85))) (-15 -1660 ((-85) |t#1|)) (-15 -1660 ((-85) |t#2|)) (-15 -1659 ((-85))) (-15 -1658 ((-85) |t#1|)) (-15 -1658 ((-85) |t#2|)) (-15 -1657 ((-85))) (-15 -1656 ((-85) |t#1|)) (-15 -1656 ((-85) |t#2|)) (-15 -3914 ((-1178 $))) (-15 -1655 ((-1178 $))) (-15 -1654 ((-85) $)) (-15 -1653 ((-85) $)) (-15 -1652 ((-1178 $) (-1178 $))) (-15 -1651 ((-1178 $) (-1178 $))) (-15 -1650 ((-1178 $) (-1178 $))) (-15 -1649 ((-631 (-347 |t#2|)))) (-15 -1648 ((-631 (-347 |t#2|)))) (-15 -1647 ((-631 (-347 |t#2|)))) (-15 -1646 ((-631 (-347 |t#2|)))) (-15 -1645 ((-2 (|:| |num| (-1178 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1790 ($ (-1178 |t#2|) |t#2|)) (-15 -1644 ((-2 (|:| |num| (-1178 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1643 ($ (-1178 |t#2|) |t#2|)) (-15 -1642 ((-2 (|:| |num| (-631 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1653 ((-85) $ |t#1|)) (-15 -1653 ((-85) $ |t#2|)) (-15 -3754 ($ $ (-1 |t#2| |t#2|))) (-15 -3499 ($ $)) (-15 -3796 (|t#1| $ |t#1| |t#1|)) (-15 -1641 ((-3 |t#2| "failed"))) (-15 -1640 ((-3 |t#2| "failed"))) (-15 -1639 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-311)) (-15 -1638 ((-584 (-858 |t#1|)) (-1089))) |%noBranch|) (IF (|has| |t#1| (-317)) (-15 -1637 ((-584 (-584 |t#1|)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-484))) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-38 (-347 |#2|)) . T) ((-38 $) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-82 (-347 |#2|) (-347 |#2|)) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-118))) ((-120) |has| (-347 |#2|) (-120)) ((-556 (-347 (-484))) OR (|has| (-347 |#2|) (-951 (-347 (-484)))) (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-556 (-347 |#2|)) . T) ((-556 (-484)) . T) ((-556 $) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-553 (-773)) . T) ((-146) . T) ((-554 |#3|) . T) ((-186 $) OR (|has| (-347 |#2|) (-298)) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311)))) ((-184 (-347 |#2|)) |has| (-347 |#2|) (-311)) ((-190) OR (|has| (-347 |#2|) (-298)) (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311)))) ((-189) OR (|has| (-347 |#2|) (-298)) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311)))) ((-225 (-347 |#2|)) |has| (-347 |#2|) (-311)) ((-201) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-245) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-257) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-311) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-342) |has| (-347 |#2|) (-298)) ((-317) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-317))) ((-298) |has| (-347 |#2|) (-298)) ((-319 (-347 |#2|) |#3|) . T) ((-350 (-347 |#2|) |#3|) . T) ((-326 (-347 |#2|)) . T) ((-352 (-347 |#2|)) . T) ((-389) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-495) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-13) . T) ((-589 (-347 (-484))) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-589 (-347 |#2|)) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 (-347 (-484))) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-591 (-347 |#2|)) . T) ((-591 (-484)) |has| (-347 |#2|) (-581 (-484))) ((-591 $) . T) ((-583 (-347 (-484))) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-583 (-347 |#2|)) . T) ((-583 $) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-581 (-347 |#2|)) . T) ((-581 (-484)) |has| (-347 |#2|) (-581 (-484))) ((-655 (-347 (-484))) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-655 (-347 |#2|)) . T) ((-655 $) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-662 (-347 |#2|) |#3|) . T) ((-664) . T) ((-807 $ (-1089)) OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089))))) ((-810 (-1089)) -12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) ((-812 (-1089)) OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089))))) ((-833) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-951 (-347 (-484))) |has| (-347 |#2|) (-951 (-347 (-484)))) ((-951 (-347 |#2|)) . T) ((-951 (-484)) |has| (-347 |#2|) (-951 (-484))) ((-964 (-347 (-484))) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-964 (-347 |#2|)) . T) ((-964 $) . T) ((-969 (-347 (-484))) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))) ((-969 (-347 |#2|)) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) |has| (-347 |#2|) (-298)) ((-1128) . T) ((-1133) OR (|has| (-347 |#2|) (-298)) (|has| (-347 |#2|) (-311))))
+((-3954 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT)))
+(((-291 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3954 (|#8| (-1 |#5| |#1|) |#4|))) (-1133) (-1154 |#1|) (-1154 (-347 |#2|)) (-290 |#1| |#2| |#3|) (-1133) (-1154 |#5|) (-1154 (-347 |#6|)) (-290 |#5| |#6| |#7|)) (T -291))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1133)) (-4 *8 (-1133)) (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-347 *6))) (-4 *9 (-1154 *8)) (-4 *2 (-290 *8 *9 *10)) (-5 *1 (-291 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-290 *5 *6 *7)) (-4 *10 (-1154 (-347 *9))))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-3928 (((-85) $) NIL T ELT)) (-3925 (((-695)) NIL T ELT)) (-3326 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3771 (($ $) NIL T ELT)) (-3967 (((-345 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3133 (((-695)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 (-818 |#1|) #1#) $) NIL T ELT)) (-3153 (((-818 |#1|) $) NIL T ELT)) (-1790 (($ (-1178 (-818 |#1|))) NIL T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2992 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-2831 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1678 (((-85) $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1762 (($ $ (-695)) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-317))) ELT) (($ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-317))) ELT)) (-3719 (((-85) $) NIL T ELT)) (-3768 (((-831) $) NIL (|has| (-818 |#1|) (-317)) ELT) (((-744 (-831)) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-317))) ELT)) (-2408 (((-85) $) NIL T ELT)) (-2011 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2009 (((-85) $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3129 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3441 (((-633 $) $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2012 (((-1084 (-818 |#1|)) $) NIL T ELT) (((-1084 $) $ (-831)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2008 (((-831) $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1625 (((-1084 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1624 (((-1084 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-317)) ELT) (((-3 (-1084 (-818 |#1|)) #1#) $ $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1626 (($ $ (-1084 (-818 |#1|))) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) NIL T ELT)) (-3442 (($) NIL (|has| (-818 |#1|) (-317)) CONST)) (-2398 (($ (-831)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3927 (((-85) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1665 (((-870 (-1033))) NIL T ELT)) (-2407 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1674 (((-584 (-2 (|:| -3728 (-484)) (|:| -2399 (-484))))) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3728 (((-345 $) $) NIL T ELT)) (-3926 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-1763 (((-695) $) NIL (|has| (-818 |#1|) (-317)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-317))) ELT)) (-3907 (((-107)) NIL T ELT)) (-3754 (($ $ (-695)) NIL (|has| (-818 |#1|) (-317)) ELT) (($ $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3944 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3182 (((-1084 (-818 |#1|))) NIL T ELT)) (-1672 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1627 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3221 (((-1178 (-818 |#1|)) $) NIL T ELT) (((-631 (-818 |#1|)) (-1178 $)) NIL T ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ (-818 |#1|)) NIL T ELT)) (-2700 (($ $) NIL (|has| (-818 |#1|) (-317)) ELT) (((-633 $) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-317))) ELT)) (-3123 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2010 (((-1178 $)) NIL T ELT) (((-1178 $) (-831)) NIL T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-3929 (((-85) $) NIL T ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-3924 (($ $) NIL (|has| (-818 |#1|) (-317)) ELT) (($ $ (-695)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2667 (($ $ (-695)) NIL (|has| (-818 |#1|) (-317)) ELT) (($ $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT) (($ (-818 |#1|) $) NIL T ELT)))
+(((-292 |#1| |#2|) (-13 (-279 (-818 |#1|)) (-10 -7 (-15 -1665 ((-870 (-1033)))))) (-831) (-831)) (T -292))
+((-1665 (*1 *2) (-12 (-5 *2 (-870 (-1033))) (-5 *1 (-292 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 58 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-3928 (((-85) $) NIL T ELT)) (-3925 (((-695)) NIL T ELT)) (-3326 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-317)) ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) 56 (|has| |#1| (-317)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3771 (($ $) NIL T ELT)) (-3967 (((-345 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3133 (((-695)) NIL (|has| |#1| (-317)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#1| #1#) $) 139 T ELT)) (-3153 ((|#1| $) 111 T ELT)) (-1790 (($ (-1178 |#1|)) 128 T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) 119 (|has| |#1| (-317)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2992 (($) 122 (|has| |#1| (-317)) ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-2831 (($) 155 (|has| |#1| (-317)) ELT)) (-1678 (((-85) $) 65 (|has| |#1| (-317)) ELT)) (-1762 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3719 (((-85) $) NIL T ELT)) (-3768 (((-831) $) 60 (|has| |#1| (-317)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-2408 (((-85) $) 62 T ELT)) (-2011 (($) 157 (|has| |#1| (-317)) ELT)) (-2009 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-3129 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-317)) ELT)) (-3441 (((-633 $) $) NIL (|has| |#1| (-317)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2012 (((-1084 |#1|) $) 115 T ELT) (((-1084 $) $ (-831)) NIL (|has| |#1| (-317)) ELT)) (-2008 (((-831) $) 165 (|has| |#1| (-317)) ELT)) (-1625 (((-1084 |#1|) $) NIL (|has| |#1| (-317)) ELT)) (-1624 (((-1084 |#1|) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-1084 |#1|) #1#) $ $) NIL (|has| |#1| (-317)) ELT)) (-1626 (($ $ (-1084 |#1|)) NIL (|has| |#1| (-317)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) 172 T ELT)) (-3442 (($) NIL (|has| |#1| (-317)) CONST)) (-2398 (($ (-831)) 94 (|has| |#1| (-317)) ELT)) (-3927 (((-85) $) 142 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1665 (((-870 (-1033))) 57 T ELT)) (-2407 (($) 153 (|has| |#1| (-317)) ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1674 (((-584 (-2 (|:| -3728 (-484)) (|:| -2399 (-484))))) 117 (|has| |#1| (-317)) ELT)) (-3728 (((-345 $) $) NIL T ELT)) (-3926 (((-744 (-831))) 88 T ELT) (((-831)) 89 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-1763 (((-695) $) 156 (|has| |#1| (-317)) ELT) (((-3 (-695) #1#) $ $) 149 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3907 (((-107)) NIL T ELT)) (-3754 (($ $ (-695)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3944 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3182 (((-1084 |#1|)) 120 T ELT)) (-1672 (($) 154 (|has| |#1| (-317)) ELT)) (-1627 (($) 162 (|has| |#1| (-317)) ELT)) (-3221 (((-1178 |#1|) $) 76 T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (|has| |#1| (-317)) ELT)) (-3942 (((-773) $) 168 T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2700 (($ $) NIL (|has| |#1| (-317)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3123 (((-695)) 150 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2010 (((-1178 $)) 141 T ELT) (((-1178 $) (-831)) 96 T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-3929 (((-85) $) NIL T ELT)) (-2658 (($) 66 T CONST)) (-2664 (($) 101 T CONST)) (-3924 (($ $) 105 (|has| |#1| (-317)) ELT) (($ $ (-695)) NIL (|has| |#1| (-317)) ELT)) (-2667 (($ $ (-695)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3054 (((-85) $ $) 64 T ELT)) (-3945 (($ $ $) 170 T ELT) (($ $ |#1|) 171 T ELT)) (-3833 (($ $) 152 T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) 84 T ELT)) (** (($ $ (-831)) 174 T ELT) (($ $ (-695)) 175 T ELT) (($ $ (-484)) 173 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 100 T ELT) (($ $ $) 99 T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 169 T ELT)))
+(((-293 |#1| |#2|) (-13 (-279 |#1|) (-10 -7 (-15 -1665 ((-870 (-1033)))))) (-298) (-1084 |#1|)) (T -293))
+((-1665 (*1 *2) (-12 (-5 *2 (-870 (-1033))) (-5 *1 (-293 *3 *4)) (-4 *3 (-298)) (-14 *4 (-1084 *3)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-3928 (((-85) $) NIL T ELT)) (-3925 (((-695)) NIL T ELT)) (-3326 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-317)) ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) NIL (|has| |#1| (-317)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3771 (($ $) NIL T ELT)) (-3967 (((-345 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3133 (((-695)) NIL (|has| |#1| (-317)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#1| #1#) $) NIL T ELT)) (-3153 ((|#1| $) NIL T ELT)) (-1790 (($ (-1178 |#1|)) NIL T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-317)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2992 (($) NIL (|has| |#1| (-317)) ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-2831 (($) NIL (|has| |#1| (-317)) ELT)) (-1678 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-1762 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3719 (((-85) $) NIL T ELT)) (-3768 (((-831) $) NIL (|has| |#1| (-317)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-2408 (((-85) $) NIL T ELT)) (-2011 (($) NIL (|has| |#1| (-317)) ELT)) (-2009 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-3129 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-317)) ELT)) (-3441 (((-633 $) $) NIL (|has| |#1| (-317)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2012 (((-1084 |#1|) $) NIL T ELT) (((-1084 $) $ (-831)) NIL (|has| |#1| (-317)) ELT)) (-2008 (((-831) $) NIL (|has| |#1| (-317)) ELT)) (-1625 (((-1084 |#1|) $) NIL (|has| |#1| (-317)) ELT)) (-1624 (((-1084 |#1|) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-1084 |#1|) #1#) $ $) NIL (|has| |#1| (-317)) ELT)) (-1626 (($ $ (-1084 |#1|)) NIL (|has| |#1| (-317)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) NIL T ELT)) (-3442 (($) NIL (|has| |#1| (-317)) CONST)) (-2398 (($ (-831)) NIL (|has| |#1| (-317)) ELT)) (-3927 (((-85) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1665 (((-870 (-1033))) NIL T ELT)) (-2407 (($) NIL (|has| |#1| (-317)) ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1674 (((-584 (-2 (|:| -3728 (-484)) (|:| -2399 (-484))))) NIL (|has| |#1| (-317)) ELT)) (-3728 (((-345 $) $) NIL T ELT)) (-3926 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-1763 (((-695) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3907 (((-107)) NIL T ELT)) (-3754 (($ $ (-695)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3944 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3182 (((-1084 |#1|)) NIL T ELT)) (-1672 (($) NIL (|has| |#1| (-317)) ELT)) (-1627 (($) NIL (|has| |#1| (-317)) ELT)) (-3221 (((-1178 |#1|) $) NIL T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (|has| |#1| (-317)) ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2700 (($ $) NIL (|has| |#1| (-317)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3123 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2010 (((-1178 $)) NIL T ELT) (((-1178 $) (-831)) NIL T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-3929 (((-85) $) NIL T ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-3924 (($ $) NIL (|has| |#1| (-317)) ELT) (($ $ (-695)) NIL (|has| |#1| (-317)) ELT)) (-2667 (($ $ (-695)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-294 |#1| |#2|) (-13 (-279 |#1|) (-10 -7 (-15 -1665 ((-870 (-1033)))))) (-298) (-831)) (T -294))
+((-1665 (*1 *2) (-12 (-5 *2 (-870 (-1033))) (-5 *1 (-294 *3 *4)) (-4 *3 (-298)) (-14 *4 (-831)))))
+((-1675 (((-695) (-1178 (-584 (-2 (|:| -3398 |#1|) (|:| -2398 (-1033)))))) 61 T ELT)) (-1666 (((-870 (-1033)) (-1084 |#1|)) 112 T ELT)) (-1667 (((-1178 (-584 (-2 (|:| -3398 |#1|) (|:| -2398 (-1033))))) (-1084 |#1|)) 103 T ELT)) (-1668 (((-631 |#1|) (-1178 (-584 (-2 (|:| -3398 |#1|) (|:| -2398 (-1033)))))) 113 T ELT)) (-1669 (((-3 (-1178 (-584 (-2 (|:| -3398 |#1|) (|:| -2398 (-1033))))) "failed") (-831)) 13 T ELT)) (-1670 (((-3 (-1084 |#1|) (-1178 (-584 (-2 (|:| -3398 |#1|) (|:| -2398 (-1033)))))) (-831)) 18 T ELT)))
+(((-295 |#1|) (-10 -7 (-15 -1666 ((-870 (-1033)) (-1084 |#1|))) (-15 -1667 ((-1178 (-584 (-2 (|:| -3398 |#1|) (|:| -2398 (-1033))))) (-1084 |#1|))) (-15 -1668 ((-631 |#1|) (-1178 (-584 (-2 (|:| -3398 |#1|) (|:| -2398 (-1033))))))) (-15 -1675 ((-695) (-1178 (-584 (-2 (|:| -3398 |#1|) (|:| -2398 (-1033))))))) (-15 -1669 ((-3 (-1178 (-584 (-2 (|:| -3398 |#1|) (|:| -2398 (-1033))))) "failed") (-831))) (-15 -1670 ((-3 (-1084 |#1|) (-1178 (-584 (-2 (|:| -3398 |#1|) (|:| -2398 (-1033)))))) (-831)))) (-298)) (T -295))
+((-1670 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-3 (-1084 *4) (-1178 (-584 (-2 (|:| -3398 *4) (|:| -2398 (-1033))))))) (-5 *1 (-295 *4)) (-4 *4 (-298)))) (-1669 (*1 *2 *3) (|partial| -12 (-5 *3 (-831)) (-5 *2 (-1178 (-584 (-2 (|:| -3398 *4) (|:| -2398 (-1033)))))) (-5 *1 (-295 *4)) (-4 *4 (-298)))) (-1675 (*1 *2 *3) (-12 (-5 *3 (-1178 (-584 (-2 (|:| -3398 *4) (|:| -2398 (-1033)))))) (-4 *4 (-298)) (-5 *2 (-695)) (-5 *1 (-295 *4)))) (-1668 (*1 *2 *3) (-12 (-5 *3 (-1178 (-584 (-2 (|:| -3398 *4) (|:| -2398 (-1033)))))) (-4 *4 (-298)) (-5 *2 (-631 *4)) (-5 *1 (-295 *4)))) (-1667 (*1 *2 *3) (-12 (-5 *3 (-1084 *4)) (-4 *4 (-298)) (-5 *2 (-1178 (-584 (-2 (|:| -3398 *4) (|:| -2398 (-1033)))))) (-5 *1 (-295 *4)))) (-1666 (*1 *2 *3) (-12 (-5 *3 (-1084 *4)) (-4 *4 (-298)) (-5 *2 (-870 (-1033))) (-5 *1 (-295 *4)))))
+((-3942 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT)))
+(((-296 |#1| |#2| |#3|) (-10 -7 (-15 -3942 (|#3| |#1|)) (-15 -3942 (|#1| |#3|))) (-279 |#2|) (-298) (-279 |#2|)) (T -296))
+((-3942 (*1 *2 *3) (-12 (-4 *4 (-298)) (-4 *2 (-279 *4)) (-5 *1 (-296 *2 *4 *3)) (-4 *3 (-279 *4)))) (-3942 (*1 *2 *3) (-12 (-4 *4 (-298)) (-4 *2 (-279 *4)) (-5 *1 (-296 *3 *4 *2)) (-4 *3 (-279 *4)))))
+((-1678 (((-85) $) 65 T ELT)) (-3768 (((-744 (-831)) $) 26 T ELT) (((-831) $) 69 T ELT)) (-3441 (((-633 $) $) 21 T ELT)) (-3442 (($) 9 T CONST)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 120 T ELT)) (-1763 (((-3 (-695) #1="failed") $ $) 98 T ELT) (((-695) $) 84 T ELT)) (-3754 (($ $) 8 T ELT) (($ $ (-695)) NIL T ELT)) (-1672 (($) 58 T ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) 41 T ELT)) (-2700 (((-633 $) $) 50 T ELT) (($ $) 47 T ELT)))
+(((-297 |#1|) (-10 -7 (-15 -3768 ((-831) |#1|)) (-15 -1763 ((-695) |#1|)) (-15 -1678 ((-85) |#1|)) (-15 -1672 (|#1|)) (-15 -2701 ((-3 (-1178 |#1|) #1="failed") (-631 |#1|))) (-15 -2700 (|#1| |#1|)) (-15 -3754 (|#1| |#1| (-695))) (-15 -3754 (|#1| |#1|)) (-15 -3442 (|#1|) -3948) (-15 -3441 ((-633 |#1|) |#1|)) (-15 -1763 ((-3 (-695) #1#) |#1| |#1|)) (-15 -3768 ((-744 (-831)) |#1|)) (-15 -2700 ((-633 |#1|) |#1|)) (-15 -2706 ((-1084 |#1|) (-1084 |#1|) (-1084 |#1|)))) (-298)) (T -297))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 53 T ELT)) (-2061 (($ $) 52 T ELT)) (-2059 (((-85) $) 50 T ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) 111 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3771 (($ $) 89 T ELT)) (-3967 (((-345 $) $) 88 T ELT)) (-1606 (((-85) $ $) 73 T ELT)) (-3133 (((-695)) 121 T ELT)) (-3720 (($) 22 T CONST)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) 105 T ELT)) (-2562 (($ $ $) 69 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2992 (($) 124 T ELT)) (-2561 (($ $ $) 70 T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) 64 T ELT)) (-2831 (($) 109 T ELT)) (-1678 (((-85) $) 108 T ELT)) (-1762 (($ $) 95 T ELT) (($ $ (-695)) 94 T ELT)) (-3719 (((-85) $) 87 T ELT)) (-3768 (((-744 (-831)) $) 97 T ELT) (((-831) $) 106 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-3441 (((-633 $) $) 120 T ELT)) (-1603 (((-3 (-584 $) #1="failed") (-584 $) $) 66 T ELT)) (-2008 (((-831) $) 123 T ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-2482 (($ $) 86 T ELT)) (-3442 (($) 119 T CONST)) (-2398 (($ (-831)) 122 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3141 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-1674 (((-584 (-2 (|:| -3728 (-484)) (|:| -2399 (-484))))) 112 T ELT)) (-3728 (((-345 $) $) 90 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3462 (((-3 $ "failed") $ $) 54 T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) 63 T ELT)) (-1605 (((-695) $) 72 T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 71 T ELT)) (-1763 (((-3 (-695) "failed") $ $) 96 T ELT) (((-695) $) 107 T ELT)) (-3754 (($ $) 118 T ELT) (($ $ (-695)) 116 T ELT)) (-1672 (($) 110 T ELT)) (-2701 (((-3 (-1178 $) "failed") (-631 $)) 113 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-484))) 82 T ELT)) (-2700 (((-633 $) $) 98 T ELT) (($ $) 114 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2060 (((-85) $ $) 51 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-2667 (($ $) 117 T ELT) (($ $ (-695)) 115 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3945 (($ $ $) 81 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 85 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-484))) 84 T ELT) (($ (-347 (-484)) $) 83 T ELT)))
(((-298) (-113)) (T -298))
-((-2698 (*1 *1 *1) (-4 *1 (-298))) (-2699 (*1 *2 *3) (|partial| -12 (-5 *3 (-630 *1)) (-4 *1 (-298)) (-5 *2 (-1177 *1)))) (-1673 (*1 *2) (-12 (-4 *1 (-298)) (-5 *2 (-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))))) (-1672 (*1 *2 *3) (-12 (-4 *1 (-298)) (-5 *3 (-483)) (-5 *2 (-1100 (-830) (-694))))) (-1671 (*1 *1) (-4 *1 (-298))) (-2829 (*1 *1) (-4 *1 (-298))) (-1677 (*1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-85)))) (-1762 (*1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-694)))) (-3766 (*1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-830)))) (-1670 (*1 *2) (-12 (-4 *1 (-298)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(-13 (-342) (-317) (-1064) (-190) (-10 -8 (-15 -2698 ($ $)) (-15 -2699 ((-3 (-1177 $) "failed") (-630 $))) (-15 -1673 ((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483)))))) (-15 -1672 ((-1100 (-830) (-694)) (-483))) (-15 -1671 ($)) (-15 -2829 ($)) (-15 -1677 ((-85) $)) (-15 -1762 ((-694) $)) (-15 -3766 ((-830) $)) (-15 -1670 ((-3 "prime" "polynomial" "normal" "cyclic")))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-483))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-555 (-347 (-483))) . T) ((-555 (-483)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-201) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-342) . T) ((-317) . T) ((-389) . T) ((-494) . T) ((-13) . T) ((-588 (-347 (-483))) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 (-347 (-483))) . T) ((-590 $) . T) ((-582 (-347 (-483))) . T) ((-582 $) . T) ((-654 (-347 (-483))) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-963 (-347 (-483))) . T) ((-963 $) . T) ((-968 (-347 (-483))) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1064) . T) ((-1127) . T) ((-1132) . T))
-((-3913 (((-2 (|:| -2008 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) |#1|) 55 T ELT)) (-3912 (((-2 (|:| -2008 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|)))) 53 T ELT)))
-(((-299 |#1| |#2| |#3|) (-10 -7 (-15 -3912 ((-2 (|:| -2008 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))))) (-15 -3913 ((-2 (|:| -2008 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) |#1|))) (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $)))) (-1153 |#1|) (-350 |#1| |#2|)) (T -299))
-((-3913 (*1 *2 *3) (-12 (-4 *3 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $))))) (-4 *4 (-1153 *3)) (-5 *2 (-2 (|:| -2008 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-5 *1 (-299 *3 *4 *5)) (-4 *5 (-350 *3 *4)))) (-3912 (*1 *2) (-12 (-4 *3 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $))))) (-4 *4 (-1153 *3)) (-5 *2 (-2 (|:| -2008 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-5 *1 (-299 *3 *4 *5)) (-4 *5 (-350 *3 *4)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-3926 (((-85) $) NIL T ELT)) (-3923 (((-694)) NIL T ELT)) (-3324 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1674 (((-694)) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-817 |#1|) #1#) $) NIL T ELT)) (-3151 (((-817 |#1|) $) NIL T ELT)) (-1789 (($ (-1177 (-817 |#1|))) NIL T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-2829 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1677 (((-85) $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1761 (($ $ (-694)) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-317))) ELT) (($ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-317))) ELT)) (-3717 (((-85) $) NIL T ELT)) (-3766 (((-830) $) NIL (|has| (-817 |#1|) (-317)) ELT) (((-743 (-830)) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-317))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2009 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2007 (((-85) $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3127 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3439 (((-632 $) $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2010 (((-1083 (-817 |#1|)) $) NIL T ELT) (((-1083 $) $ (-830)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2006 (((-830) $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1624 (((-1083 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1623 (((-1083 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-317)) ELT) (((-3 (-1083 (-817 |#1|)) #1#) $ $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1625 (($ $ (-1083 (-817 |#1|))) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL (|has| (-817 |#1|) (-317)) CONST)) (-2396 (($ (-830)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3925 (((-85) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1676 (((-1177 (-583 (-2 (|:| -3396 (-817 |#1|)) (|:| -2396 (-1032)))))) NIL T ELT)) (-1675 (((-630 (-817 |#1|))) NIL T ELT)) (-2405 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-3924 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-1762 (((-694) $) NIL (|has| (-817 |#1|) (-317)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-317))) ELT)) (-3905 (((-107)) NIL T ELT)) (-3752 (($ $ (-694)) NIL (|has| (-817 |#1|) (-317)) ELT) (($ $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3942 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3180 (((-1083 (-817 |#1|))) NIL T ELT)) (-1671 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-1626 (($) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3219 (((-1177 (-817 |#1|)) $) NIL T ELT) (((-630 (-817 |#1|)) (-1177 $)) NIL T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ (-817 |#1|)) NIL T ELT)) (-2698 (($ $) NIL (|has| (-817 |#1|) (-317)) ELT) (((-632 $) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-317))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) NIL T ELT) (((-1177 $) (-830)) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3927 (((-85) $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-3922 (($ $) NIL (|has| (-817 |#1|) (-317)) ELT) (($ $ (-694)) NIL (|has| (-817 |#1|) (-317)) ELT)) (-2665 (($ $ (-694)) NIL (|has| (-817 |#1|) (-317)) ELT) (($ $) NIL (|has| (-817 |#1|) (-317)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT) (($ (-817 |#1|) $) NIL T ELT)))
-(((-300 |#1| |#2|) (-13 (-279 (-817 |#1|)) (-10 -7 (-15 -1676 ((-1177 (-583 (-2 (|:| -3396 (-817 |#1|)) (|:| -2396 (-1032))))))) (-15 -1675 ((-630 (-817 |#1|)))) (-15 -1674 ((-694))))) (-830) (-830)) (T -300))
-((-1676 (*1 *2) (-12 (-5 *2 (-1177 (-583 (-2 (|:| -3396 (-817 *3)) (|:| -2396 (-1032)))))) (-5 *1 (-300 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) (-1675 (*1 *2) (-12 (-5 *2 (-630 (-817 *3))) (-5 *1 (-300 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) (-1674 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-300 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))))
-((-2564 (((-85) $ $) 72 T ELT)) (-3183 (((-85) $) 87 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-3926 (((-85) $) NIL T ELT)) (-3923 (((-694)) NIL T ELT)) (-3324 ((|#1| $) 105 T ELT) (($ $ (-830)) 103 (|has| |#1| (-317)) ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) 168 (|has| |#1| (-317)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1674 (((-694)) 102 T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) 185 (|has| |#1| (-317)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) 126 T ELT)) (-3151 ((|#1| $) 104 T ELT)) (-1789 (($ (-1177 |#1|)) 70 T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) 211 (|has| |#1| (-317)) ELT)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) 180 (|has| |#1| (-317)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-2829 (($) 169 (|has| |#1| (-317)) ELT)) (-1677 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-1761 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3717 (((-85) $) NIL T ELT)) (-3766 (((-830) $) NIL (|has| |#1| (-317)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2009 (($) 112 (|has| |#1| (-317)) ELT)) (-2007 (((-85) $) 198 (|has| |#1| (-317)) ELT)) (-3127 ((|#1| $) 107 T ELT) (($ $ (-830)) 106 (|has| |#1| (-317)) ELT)) (-3439 (((-632 $) $) NIL (|has| |#1| (-317)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2010 (((-1083 |#1|) $) 212 T ELT) (((-1083 $) $ (-830)) NIL (|has| |#1| (-317)) ELT)) (-2006 (((-830) $) 146 (|has| |#1| (-317)) ELT)) (-1624 (((-1083 |#1|) $) 86 (|has| |#1| (-317)) ELT)) (-1623 (((-1083 |#1|) $) 83 (|has| |#1| (-317)) ELT) (((-3 (-1083 |#1|) #1#) $ $) 95 (|has| |#1| (-317)) ELT)) (-1625 (($ $ (-1083 |#1|)) 82 (|has| |#1| (-317)) ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) 216 T ELT)) (-3440 (($) NIL (|has| |#1| (-317)) CONST)) (-2396 (($ (-830)) 148 (|has| |#1| (-317)) ELT)) (-3925 (((-85) $) 122 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1676 (((-1177 (-583 (-2 (|:| -3396 |#1|) (|:| -2396 (-1032)))))) 96 T ELT)) (-1675 (((-630 |#1|)) 100 T ELT)) (-2405 (($) 109 (|has| |#1| (-317)) ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) 171 (|has| |#1| (-317)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-3924 (((-743 (-830))) NIL T ELT) (((-830)) 172 T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-1762 (((-694) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3905 (((-107)) NIL T ELT)) (-3752 (($ $ (-694)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3942 (((-743 (-830)) $) NIL T ELT) (((-830) $) 74 T ELT)) (-3180 (((-1083 |#1|)) 173 T ELT)) (-1671 (($) 145 (|has| |#1| (-317)) ELT)) (-1626 (($) NIL (|has| |#1| (-317)) ELT)) (-3219 (((-1177 |#1|) $) 120 T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (|has| |#1| (-317)) ELT)) (-3940 (((-772) $) 138 T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ |#1|) 69 T ELT)) (-2698 (($ $) NIL (|has| |#1| (-317)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3121 (((-694)) 178 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) 195 T ELT) (((-1177 $) (-830)) 115 T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3927 (((-85) $) NIL T ELT)) (-2656 (($) 184 T CONST)) (-2662 (($) 159 T CONST)) (-3922 (($ $) 121 (|has| |#1| (-317)) ELT) (($ $ (-694)) 113 (|has| |#1| (-317)) ELT)) (-2665 (($ $ (-694)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3052 (((-85) $ $) 206 T ELT)) (-3943 (($ $ $) 118 T ELT) (($ $ |#1|) 119 T ELT)) (-3831 (($ $) 200 T ELT) (($ $ $) 204 T ELT)) (-3833 (($ $ $) 202 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) 151 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 209 T ELT) (($ $ $) 162 T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 117 T ELT)))
-(((-301 |#1| |#2|) (-13 (-279 |#1|) (-10 -7 (-15 -1676 ((-1177 (-583 (-2 (|:| -3396 |#1|) (|:| -2396 (-1032))))))) (-15 -1675 ((-630 |#1|))) (-15 -1674 ((-694))))) (-298) (-3 (-1083 |#1|) (-1177 (-583 (-2 (|:| -3396 |#1|) (|:| -2396 (-1032))))))) (T -301))
-((-1676 (*1 *2) (-12 (-5 *2 (-1177 (-583 (-2 (|:| -3396 *3) (|:| -2396 (-1032)))))) (-5 *1 (-301 *3 *4)) (-4 *3 (-298)) (-14 *4 (-3 (-1083 *3) *2)))) (-1675 (*1 *2) (-12 (-5 *2 (-630 *3)) (-5 *1 (-301 *3 *4)) (-4 *3 (-298)) (-14 *4 (-3 (-1083 *3) (-1177 (-583 (-2 (|:| -3396 *3) (|:| -2396 (-1032))))))))) (-1674 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-301 *3 *4)) (-4 *3 (-298)) (-14 *4 (-3 (-1083 *3) (-1177 (-583 (-2 (|:| -3396 *3) (|:| -2396 (-1032))))))))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-3926 (((-85) $) NIL T ELT)) (-3923 (((-694)) NIL T ELT)) (-3324 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-317)) ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) NIL (|has| |#1| (-317)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1674 (((-694)) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) NIL (|has| |#1| (-317)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT)) (-1789 (($ (-1177 |#1|)) NIL T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-317)) ELT)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) NIL (|has| |#1| (-317)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-2829 (($) NIL (|has| |#1| (-317)) ELT)) (-1677 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-1761 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3717 (((-85) $) NIL T ELT)) (-3766 (((-830) $) NIL (|has| |#1| (-317)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2009 (($) NIL (|has| |#1| (-317)) ELT)) (-2007 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-3127 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-317)) ELT)) (-3439 (((-632 $) $) NIL (|has| |#1| (-317)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2010 (((-1083 |#1|) $) NIL T ELT) (((-1083 $) $ (-830)) NIL (|has| |#1| (-317)) ELT)) (-2006 (((-830) $) NIL (|has| |#1| (-317)) ELT)) (-1624 (((-1083 |#1|) $) NIL (|has| |#1| (-317)) ELT)) (-1623 (((-1083 |#1|) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-1083 |#1|) #1#) $ $) NIL (|has| |#1| (-317)) ELT)) (-1625 (($ $ (-1083 |#1|)) NIL (|has| |#1| (-317)) ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL (|has| |#1| (-317)) CONST)) (-2396 (($ (-830)) NIL (|has| |#1| (-317)) ELT)) (-3925 (((-85) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1676 (((-1177 (-583 (-2 (|:| -3396 |#1|) (|:| -2396 (-1032)))))) NIL T ELT)) (-1675 (((-630 |#1|)) NIL T ELT)) (-2405 (($) NIL (|has| |#1| (-317)) ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) NIL (|has| |#1| (-317)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-3924 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-1762 (((-694) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3905 (((-107)) NIL T ELT)) (-3752 (($ $ (-694)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3942 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3180 (((-1083 |#1|)) NIL T ELT)) (-1671 (($) NIL (|has| |#1| (-317)) ELT)) (-1626 (($) NIL (|has| |#1| (-317)) ELT)) (-3219 (((-1177 |#1|) $) NIL T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (|has| |#1| (-317)) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2698 (($ $) NIL (|has| |#1| (-317)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) NIL T ELT) (((-1177 $) (-830)) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3927 (((-85) $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-3922 (($ $) NIL (|has| |#1| (-317)) ELT) (($ $ (-694)) NIL (|has| |#1| (-317)) ELT)) (-2665 (($ $ (-694)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-302 |#1| |#2|) (-13 (-279 |#1|) (-10 -7 (-15 -1676 ((-1177 (-583 (-2 (|:| -3396 |#1|) (|:| -2396 (-1032))))))) (-15 -1675 ((-630 |#1|))) (-15 -1674 ((-694))))) (-298) (-830)) (T -302))
-((-1676 (*1 *2) (-12 (-5 *2 (-1177 (-583 (-2 (|:| -3396 *3) (|:| -2396 (-1032)))))) (-5 *1 (-302 *3 *4)) (-4 *3 (-298)) (-14 *4 (-830)))) (-1675 (*1 *2) (-12 (-5 *2 (-630 *3)) (-5 *1 (-302 *3 *4)) (-4 *3 (-298)) (-14 *4 (-830)))) (-1674 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-302 *3 *4)) (-4 *3 (-298)) (-14 *4 (-830)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-3926 (((-85) $) NIL T ELT)) (-3923 (((-694)) NIL T ELT)) (-3324 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-317)) ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) 130 (|has| |#1| (-317)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) 156 (|has| |#1| (-317)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) 104 T ELT)) (-3151 ((|#1| $) 101 T ELT)) (-1789 (($ (-1177 |#1|)) 96 T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) 127 (|has| |#1| (-317)) ELT)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) 93 (|has| |#1| (-317)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-2829 (($) 52 (|has| |#1| (-317)) ELT)) (-1677 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-1761 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3717 (((-85) $) NIL T ELT)) (-3766 (((-830) $) NIL (|has| |#1| (-317)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2009 (($) 131 (|has| |#1| (-317)) ELT)) (-2007 (((-85) $) 85 (|has| |#1| (-317)) ELT)) (-3127 ((|#1| $) 48 T ELT) (($ $ (-830)) 53 (|has| |#1| (-317)) ELT)) (-3439 (((-632 $) $) NIL (|has| |#1| (-317)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2010 (((-1083 |#1|) $) 76 T ELT) (((-1083 $) $ (-830)) NIL (|has| |#1| (-317)) ELT)) (-2006 (((-830) $) 108 (|has| |#1| (-317)) ELT)) (-1624 (((-1083 |#1|) $) NIL (|has| |#1| (-317)) ELT)) (-1623 (((-1083 |#1|) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-1083 |#1|) #1#) $ $) NIL (|has| |#1| (-317)) ELT)) (-1625 (($ $ (-1083 |#1|)) NIL (|has| |#1| (-317)) ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL (|has| |#1| (-317)) CONST)) (-2396 (($ (-830)) 106 (|has| |#1| (-317)) ELT)) (-3925 (((-85) $) 158 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2405 (($) 45 (|has| |#1| (-317)) ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) 125 (|has| |#1| (-317)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-3924 (((-743 (-830))) NIL T ELT) (((-830)) 155 T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-1762 (((-694) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3905 (((-107)) NIL T ELT)) (-3752 (($ $ (-694)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3942 (((-743 (-830)) $) NIL T ELT) (((-830) $) 68 T ELT)) (-3180 (((-1083 |#1|)) 99 T ELT)) (-1671 (($) 136 (|has| |#1| (-317)) ELT)) (-1626 (($) NIL (|has| |#1| (-317)) ELT)) (-3219 (((-1177 |#1|) $) 64 T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (|has| |#1| (-317)) ELT)) (-3940 (((-772) $) 154 T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2698 (($ $) NIL (|has| |#1| (-317)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3121 (((-694)) 160 T CONST)) (-1262 (((-85) $ $) 162 T ELT)) (-2008 (((-1177 $)) 120 T ELT) (((-1177 $) (-830)) 59 T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3927 (((-85) $) NIL T ELT)) (-2656 (($) 122 T CONST)) (-2662 (($) 40 T CONST)) (-3922 (($ $) 79 (|has| |#1| (-317)) ELT) (($ $ (-694)) NIL (|has| |#1| (-317)) ELT)) (-2665 (($ $ (-694)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3052 (((-85) $ $) 118 T ELT)) (-3943 (($ $ $) 110 T ELT) (($ $ |#1|) 111 T ELT)) (-3831 (($ $) 91 T ELT) (($ $ $) 116 T ELT)) (-3833 (($ $ $) 114 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 54 T ELT) (($ $ (-483)) 139 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 89 T ELT) (($ $ $) 66 T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 87 T ELT)))
-(((-303 |#1| |#2|) (-279 |#1|) (-298) (-1083 |#1|)) (T -303))
-NIL
-((-1692 (((-869 (-1083 |#1|)) (-1083 |#1|)) 49 T ELT)) (-2990 (((-1083 |#1|) (-830) (-830)) 159 T ELT) (((-1083 |#1|) (-830)) 155 T ELT)) (-1677 (((-85) (-1083 |#1|)) 110 T ELT)) (-1679 (((-830) (-830)) 85 T ELT)) (-1680 (((-830) (-830)) 94 T ELT)) (-1678 (((-830) (-830)) 83 T ELT)) (-2007 (((-85) (-1083 |#1|)) 114 T ELT)) (-1687 (((-3 (-1083 |#1|) #1="failed") (-1083 |#1|)) 139 T ELT)) (-1690 (((-3 (-1083 |#1|) #1#) (-1083 |#1|)) 144 T ELT)) (-1689 (((-3 (-1083 |#1|) #1#) (-1083 |#1|)) 143 T ELT)) (-1688 (((-3 (-1083 |#1|) #1#) (-1083 |#1|)) 142 T ELT)) (-1686 (((-3 (-1083 |#1|) #1#) (-1083 |#1|)) 134 T ELT)) (-1691 (((-1083 |#1|) (-1083 |#1|)) 71 T ELT)) (-1682 (((-1083 |#1|) (-830)) 149 T ELT)) (-1685 (((-1083 |#1|) (-830)) 152 T ELT)) (-1684 (((-1083 |#1|) (-830)) 151 T ELT)) (-1683 (((-1083 |#1|) (-830)) 150 T ELT)) (-1681 (((-1083 |#1|) (-830)) 147 T ELT)))
-(((-304 |#1|) (-10 -7 (-15 -1677 ((-85) (-1083 |#1|))) (-15 -2007 ((-85) (-1083 |#1|))) (-15 -1678 ((-830) (-830))) (-15 -1679 ((-830) (-830))) (-15 -1680 ((-830) (-830))) (-15 -1681 ((-1083 |#1|) (-830))) (-15 -1682 ((-1083 |#1|) (-830))) (-15 -1683 ((-1083 |#1|) (-830))) (-15 -1684 ((-1083 |#1|) (-830))) (-15 -1685 ((-1083 |#1|) (-830))) (-15 -1686 ((-3 (-1083 |#1|) #1="failed") (-1083 |#1|))) (-15 -1687 ((-3 (-1083 |#1|) #1#) (-1083 |#1|))) (-15 -1688 ((-3 (-1083 |#1|) #1#) (-1083 |#1|))) (-15 -1689 ((-3 (-1083 |#1|) #1#) (-1083 |#1|))) (-15 -1690 ((-3 (-1083 |#1|) #1#) (-1083 |#1|))) (-15 -2990 ((-1083 |#1|) (-830))) (-15 -2990 ((-1083 |#1|) (-830) (-830))) (-15 -1691 ((-1083 |#1|) (-1083 |#1|))) (-15 -1692 ((-869 (-1083 |#1|)) (-1083 |#1|)))) (-298)) (T -304))
-((-1692 (*1 *2 *3) (-12 (-4 *4 (-298)) (-5 *2 (-869 (-1083 *4))) (-5 *1 (-304 *4)) (-5 *3 (-1083 *4)))) (-1691 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))) (-2990 (*1 *2 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1083 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-2990 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1083 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-1690 (*1 *2 *2) (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))) (-1689 (*1 *2 *2) (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))) (-1688 (*1 *2 *2) (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))) (-1687 (*1 *2 *2) (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))) (-1686 (*1 *2 *2) (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1083 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1083 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-1683 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1083 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-1682 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1083 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1083 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-1680 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-304 *3)) (-4 *3 (-298)))) (-1679 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-304 *3)) (-4 *3 (-298)))) (-1678 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-304 *3)) (-4 *3 (-298)))) (-2007 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-298)) (-5 *2 (-85)) (-5 *1 (-304 *4)))) (-1677 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-298)) (-5 *2 (-85)) (-5 *1 (-304 *4)))))
-((-1693 ((|#1| (-1083 |#2|)) 60 T ELT)))
-(((-305 |#1| |#2|) (-10 -7 (-15 -1693 (|#1| (-1083 |#2|)))) (-13 (-342) (-10 -7 (-15 -3940 (|#1| |#2|)) (-15 -2006 ((-830) |#1|)) (-15 -2008 ((-1177 |#1|) (-830))) (-15 -3922 (|#1| |#1|)))) (-298)) (T -305))
-((-1693 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-298)) (-4 *2 (-13 (-342) (-10 -7 (-15 -3940 (*2 *4)) (-15 -2006 ((-830) *2)) (-15 -2008 ((-1177 *2) (-830))) (-15 -3922 (*2 *2))))) (-5 *1 (-305 *2 *4)))))
-((-2700 (((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|) 40 T ELT)))
-(((-306 |#1| |#2| |#3|) (-10 -7 (-15 -2700 ((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|))) (-298) (-1153 |#1|) (-1153 |#2|)) (T -306))
-((-2700 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-1153 *4)) (-4 *4 (-298)) (-5 *1 (-306 *4 *5 *3)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-3926 (((-85) $) NIL T ELT)) (-3923 (((-694)) NIL T ELT)) (-3324 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-317)) ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) NIL (|has| |#1| (-317)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) NIL (|has| |#1| (-317)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT)) (-1789 (($ (-1177 |#1|)) NIL T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-317)) ELT)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) NIL (|has| |#1| (-317)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-2829 (($) NIL (|has| |#1| (-317)) ELT)) (-1677 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-1761 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3717 (((-85) $) NIL T ELT)) (-3766 (((-830) $) NIL (|has| |#1| (-317)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2009 (($) NIL (|has| |#1| (-317)) ELT)) (-2007 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-3127 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-317)) ELT)) (-3439 (((-632 $) $) NIL (|has| |#1| (-317)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2010 (((-1083 |#1|) $) NIL T ELT) (((-1083 $) $ (-830)) NIL (|has| |#1| (-317)) ELT)) (-2006 (((-830) $) NIL (|has| |#1| (-317)) ELT)) (-1624 (((-1083 |#1|) $) NIL (|has| |#1| (-317)) ELT)) (-1623 (((-1083 |#1|) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-1083 |#1|) #1#) $ $) NIL (|has| |#1| (-317)) ELT)) (-1625 (($ $ (-1083 |#1|)) NIL (|has| |#1| (-317)) ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL (|has| |#1| (-317)) CONST)) (-2396 (($ (-830)) NIL (|has| |#1| (-317)) ELT)) (-3925 (((-85) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2405 (($) NIL (|has| |#1| (-317)) ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) NIL (|has| |#1| (-317)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-3924 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-1762 (((-694) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3905 (((-107)) NIL T ELT)) (-3752 (($ $ (-694)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3942 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3180 (((-1083 |#1|)) NIL T ELT)) (-1671 (($) NIL (|has| |#1| (-317)) ELT)) (-1626 (($) NIL (|has| |#1| (-317)) ELT)) (-3219 (((-1177 |#1|) $) NIL T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (|has| |#1| (-317)) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2698 (($ $) NIL (|has| |#1| (-317)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) NIL T ELT) (((-1177 $) (-830)) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3927 (((-85) $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-3922 (($ $) NIL (|has| |#1| (-317)) ELT) (($ $ (-694)) NIL (|has| |#1| (-317)) ELT)) (-2665 (($ $ (-694)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-307 |#1| |#2|) (-279 |#1|) (-298) (-830)) (T -307))
-NIL
-((-2245 (((-85) (-583 (-857 |#1|))) 41 T ELT)) (-2247 (((-583 (-857 |#1|)) (-583 (-857 |#1|))) 53 T ELT)) (-2246 (((-3 (-583 (-857 |#1|)) "failed") (-583 (-857 |#1|))) 48 T ELT)))
-(((-308 |#1| |#2|) (-10 -7 (-15 -2245 ((-85) (-583 (-857 |#1|)))) (-15 -2246 ((-3 (-583 (-857 |#1|)) "failed") (-583 (-857 |#1|)))) (-15 -2247 ((-583 (-857 |#1|)) (-583 (-857 |#1|))))) (-389) (-583 (-1088))) (T -308))
-((-2247 (*1 *2 *2) (-12 (-5 *2 (-583 (-857 *3))) (-4 *3 (-389)) (-5 *1 (-308 *3 *4)) (-14 *4 (-583 (-1088))))) (-2246 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-857 *3))) (-4 *3 (-389)) (-5 *1 (-308 *3 *4)) (-14 *4 (-583 (-1088))))) (-2245 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-389)) (-5 *2 (-85)) (-5 *1 (-308 *4 *5)) (-14 *5 (-583 (-1088))))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3131 (((-694) $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2406 (((-85) $) 17 T ELT)) (-2295 ((|#1| $ (-483)) NIL T ELT)) (-2296 (((-483) $ (-483)) NIL T ELT)) (-2286 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2287 (($ (-1 (-483) (-483)) $) 26 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) 28 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1776 (((-583 (-2 (|:| |gen| |#1|) (|:| -3937 (-483)))) $) 30 T ELT)) (-3005 (($ $ $) NIL T ELT)) (-2431 (($ $ $) NIL T ELT)) (-3940 (((-772) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2662 (($) 7 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT) (($ |#1| (-483)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT)))
-(((-309 |#1|) (-13 (-410) (-950 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-483))) (-15 -3131 ((-694) $)) (-15 -2296 ((-483) $ (-483))) (-15 -2295 (|#1| $ (-483))) (-15 -2287 ($ (-1 (-483) (-483)) $)) (-15 -2286 ($ (-1 |#1| |#1|) $)) (-15 -1776 ((-583 (-2 (|:| |gen| |#1|) (|:| -3937 (-483)))) $)))) (-1012)) (T -309))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-309 *2)) (-4 *2 (-1012)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-309 *2)) (-4 *2 (-1012)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-309 *2)) (-4 *2 (-1012)))) (-3131 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-309 *3)) (-4 *3 (-1012)))) (-2296 (*1 *2 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-309 *3)) (-4 *3 (-1012)))) (-2295 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *1 (-309 *2)) (-4 *2 (-1012)))) (-2287 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-483) (-483))) (-5 *1 (-309 *3)) (-4 *3 (-1012)))) (-2286 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1012)) (-5 *1 (-309 *3)))) (-1776 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3937 (-483))))) (-5 *1 (-309 *3)) (-4 *3 (-1012)))))
-((-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 13 T ELT)) (-2059 (($ $) 14 T ELT)) (-3965 (((-345 $) $) 31 T ELT)) (-3717 (((-85) $) 27 T ELT)) (-2480 (($ $) 19 T ELT)) (-3139 (($ $ $) 22 T ELT) (($ (-583 $)) NIL T ELT)) (-3726 (((-345 $) $) 32 T ELT)) (-3460 (((-3 $ "failed") $ $) 21 T ELT)) (-1604 (((-694) $) 25 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 36 T ELT)) (-2058 (((-85) $ $) 16 T ELT)) (-3943 (($ $ $) 34 T ELT)))
-(((-310 |#1|) (-10 -7 (-15 -3943 (|#1| |#1| |#1|)) (-15 -2480 (|#1| |#1|)) (-15 -3717 ((-85) |#1|)) (-15 -3965 ((-345 |#1|) |#1|)) (-15 -3726 ((-345 |#1|) |#1|)) (-15 -2875 ((-2 (|:| -1970 |#1|) (|:| -2898 |#1|)) |#1| |#1|)) (-15 -1604 ((-694) |#1|)) (-15 -3139 (|#1| (-583 |#1|))) (-15 -3139 (|#1| |#1| |#1|)) (-15 -2058 ((-85) |#1| |#1|)) (-15 -2059 (|#1| |#1|)) (-15 -2060 ((-2 (|:| -1769 |#1|) (|:| -3976 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3460 ((-3 |#1| "failed") |#1| |#1|))) (-311)) (T -310))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3769 (($ $) 89 T ELT)) (-3965 (((-345 $) $) 88 T ELT)) (-1605 (((-85) $ $) 73 T ELT)) (-3718 (($) 22 T CONST)) (-2560 (($ $ $) 69 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2559 (($ $ $) 70 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 64 T ELT)) (-3717 (((-85) $) 87 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-1602 (((-3 (-583 $) #1="failed") (-583 $) $) 66 T ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 86 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3726 (((-345 $) $) 90 T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 63 T ELT)) (-1604 (((-694) $) 72 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 71 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-483))) 82 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ $) 81 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 85 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-483))) 84 T ELT) (($ (-347 (-483)) $) 83 T ELT)))
+((-2700 (*1 *1 *1) (-4 *1 (-298))) (-2701 (*1 *2 *3) (|partial| -12 (-5 *3 (-631 *1)) (-4 *1 (-298)) (-5 *2 (-1178 *1)))) (-1674 (*1 *2) (-12 (-4 *1 (-298)) (-5 *2 (-584 (-2 (|:| -3728 (-484)) (|:| -2399 (-484))))))) (-1673 (*1 *2 *3) (-12 (-4 *1 (-298)) (-5 *3 (-484)) (-5 *2 (-1101 (-831) (-695))))) (-1672 (*1 *1) (-4 *1 (-298))) (-2831 (*1 *1) (-4 *1 (-298))) (-1678 (*1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-85)))) (-1763 (*1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-695)))) (-3768 (*1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-831)))) (-1671 (*1 *2) (-12 (-4 *1 (-298)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(-13 (-342) (-317) (-1065) (-190) (-10 -8 (-15 -2700 ($ $)) (-15 -2701 ((-3 (-1178 $) "failed") (-631 $))) (-15 -1674 ((-584 (-2 (|:| -3728 (-484)) (|:| -2399 (-484)))))) (-15 -1673 ((-1101 (-831) (-695)) (-484))) (-15 -1672 ($)) (-15 -2831 ($)) (-15 -1678 ((-85) $)) (-15 -1763 ((-695) $)) (-15 -3768 ((-831) $)) (-15 -1671 ((-3 "prime" "polynomial" "normal" "cyclic")))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-556 (-347 (-484))) . T) ((-556 (-484)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-201) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-342) . T) ((-317) . T) ((-389) . T) ((-495) . T) ((-13) . T) ((-589 (-347 (-484))) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 (-347 (-484))) . T) ((-591 $) . T) ((-583 (-347 (-484))) . T) ((-583 $) . T) ((-655 (-347 (-484))) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 (-347 (-484))) . T) ((-964 $) . T) ((-969 (-347 (-484))) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) . T) ((-1128) . T) ((-1133) . T))
+((-3915 (((-2 (|:| -2010 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) |#1|) 55 T ELT)) (-3914 (((-2 (|:| -2010 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|)))) 53 T ELT)))
+(((-299 |#1| |#2| |#3|) (-10 -7 (-15 -3914 ((-2 (|:| -2010 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))))) (-15 -3915 ((-2 (|:| -2010 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) |#1|))) (-13 (-257) (-10 -8 (-15 -3967 ((-345 $) $)))) (-1154 |#1|) (-350 |#1| |#2|)) (T -299))
+((-3915 (*1 *2 *3) (-12 (-4 *3 (-13 (-257) (-10 -8 (-15 -3967 ((-345 $) $))))) (-4 *4 (-1154 *3)) (-5 *2 (-2 (|:| -2010 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-299 *3 *4 *5)) (-4 *5 (-350 *3 *4)))) (-3914 (*1 *2) (-12 (-4 *3 (-13 (-257) (-10 -8 (-15 -3967 ((-345 $) $))))) (-4 *4 (-1154 *3)) (-5 *2 (-2 (|:| -2010 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-299 *3 *4 *5)) (-4 *5 (-350 *3 *4)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-3928 (((-85) $) NIL T ELT)) (-3925 (((-695)) NIL T ELT)) (-3326 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3771 (($ $) NIL T ELT)) (-3967 (((-345 $) $) NIL T ELT)) (-1675 (((-695)) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3133 (((-695)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 (-818 |#1|) #1#) $) NIL T ELT)) (-3153 (((-818 |#1|) $) NIL T ELT)) (-1790 (($ (-1178 (-818 |#1|))) NIL T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2992 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-2831 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1678 (((-85) $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1762 (($ $ (-695)) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-317))) ELT) (($ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-317))) ELT)) (-3719 (((-85) $) NIL T ELT)) (-3768 (((-831) $) NIL (|has| (-818 |#1|) (-317)) ELT) (((-744 (-831)) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-317))) ELT)) (-2408 (((-85) $) NIL T ELT)) (-2011 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2009 (((-85) $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3129 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3441 (((-633 $) $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2012 (((-1084 (-818 |#1|)) $) NIL T ELT) (((-1084 $) $ (-831)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2008 (((-831) $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1625 (((-1084 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1624 (((-1084 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-317)) ELT) (((-3 (-1084 (-818 |#1|)) #1#) $ $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1626 (($ $ (-1084 (-818 |#1|))) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) NIL T ELT)) (-3442 (($) NIL (|has| (-818 |#1|) (-317)) CONST)) (-2398 (($ (-831)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3927 (((-85) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1677 (((-1178 (-584 (-2 (|:| -3398 (-818 |#1|)) (|:| -2398 (-1033)))))) NIL T ELT)) (-1676 (((-631 (-818 |#1|))) NIL T ELT)) (-2407 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1674 (((-584 (-2 (|:| -3728 (-484)) (|:| -2399 (-484))))) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3728 (((-345 $) $) NIL T ELT)) (-3926 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-1763 (((-695) $) NIL (|has| (-818 |#1|) (-317)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-317))) ELT)) (-3907 (((-107)) NIL T ELT)) (-3754 (($ $ (-695)) NIL (|has| (-818 |#1|) (-317)) ELT) (($ $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3944 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3182 (((-1084 (-818 |#1|))) NIL T ELT)) (-1672 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-1627 (($) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3221 (((-1178 (-818 |#1|)) $) NIL T ELT) (((-631 (-818 |#1|)) (-1178 $)) NIL T ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ (-818 |#1|)) NIL T ELT)) (-2700 (($ $) NIL (|has| (-818 |#1|) (-317)) ELT) (((-633 $) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-317))) ELT)) (-3123 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2010 (((-1178 $)) NIL T ELT) (((-1178 $) (-831)) NIL T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-3929 (((-85) $) NIL T ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-3924 (($ $) NIL (|has| (-818 |#1|) (-317)) ELT) (($ $ (-695)) NIL (|has| (-818 |#1|) (-317)) ELT)) (-2667 (($ $ (-695)) NIL (|has| (-818 |#1|) (-317)) ELT) (($ $) NIL (|has| (-818 |#1|) (-317)) ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT) (($ (-818 |#1|) $) NIL T ELT)))
+(((-300 |#1| |#2|) (-13 (-279 (-818 |#1|)) (-10 -7 (-15 -1677 ((-1178 (-584 (-2 (|:| -3398 (-818 |#1|)) (|:| -2398 (-1033))))))) (-15 -1676 ((-631 (-818 |#1|)))) (-15 -1675 ((-695))))) (-831) (-831)) (T -300))
+((-1677 (*1 *2) (-12 (-5 *2 (-1178 (-584 (-2 (|:| -3398 (-818 *3)) (|:| -2398 (-1033)))))) (-5 *1 (-300 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) (-1676 (*1 *2) (-12 (-5 *2 (-631 (-818 *3))) (-5 *1 (-300 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) (-1675 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-300 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))))
+((-2566 (((-85) $ $) 72 T ELT)) (-3185 (((-85) $) 87 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-3928 (((-85) $) NIL T ELT)) (-3925 (((-695)) NIL T ELT)) (-3326 ((|#1| $) 105 T ELT) (($ $ (-831)) 103 (|has| |#1| (-317)) ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) 168 (|has| |#1| (-317)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3771 (($ $) NIL T ELT)) (-3967 (((-345 $) $) NIL T ELT)) (-1675 (((-695)) 102 T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3133 (((-695)) 185 (|has| |#1| (-317)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#1| #1#) $) 126 T ELT)) (-3153 ((|#1| $) 104 T ELT)) (-1790 (($ (-1178 |#1|)) 70 T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) 211 (|has| |#1| (-317)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2992 (($) 180 (|has| |#1| (-317)) ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-2831 (($) 169 (|has| |#1| (-317)) ELT)) (-1678 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-1762 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3719 (((-85) $) NIL T ELT)) (-3768 (((-831) $) NIL (|has| |#1| (-317)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-2408 (((-85) $) NIL T ELT)) (-2011 (($) 112 (|has| |#1| (-317)) ELT)) (-2009 (((-85) $) 198 (|has| |#1| (-317)) ELT)) (-3129 ((|#1| $) 107 T ELT) (($ $ (-831)) 106 (|has| |#1| (-317)) ELT)) (-3441 (((-633 $) $) NIL (|has| |#1| (-317)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2012 (((-1084 |#1|) $) 212 T ELT) (((-1084 $) $ (-831)) NIL (|has| |#1| (-317)) ELT)) (-2008 (((-831) $) 146 (|has| |#1| (-317)) ELT)) (-1625 (((-1084 |#1|) $) 86 (|has| |#1| (-317)) ELT)) (-1624 (((-1084 |#1|) $) 83 (|has| |#1| (-317)) ELT) (((-3 (-1084 |#1|) #1#) $ $) 95 (|has| |#1| (-317)) ELT)) (-1626 (($ $ (-1084 |#1|)) 82 (|has| |#1| (-317)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) 216 T ELT)) (-3442 (($) NIL (|has| |#1| (-317)) CONST)) (-2398 (($ (-831)) 148 (|has| |#1| (-317)) ELT)) (-3927 (((-85) $) 122 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1677 (((-1178 (-584 (-2 (|:| -3398 |#1|) (|:| -2398 (-1033)))))) 96 T ELT)) (-1676 (((-631 |#1|)) 100 T ELT)) (-2407 (($) 109 (|has| |#1| (-317)) ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1674 (((-584 (-2 (|:| -3728 (-484)) (|:| -2399 (-484))))) 171 (|has| |#1| (-317)) ELT)) (-3728 (((-345 $) $) NIL T ELT)) (-3926 (((-744 (-831))) NIL T ELT) (((-831)) 172 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-1763 (((-695) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3907 (((-107)) NIL T ELT)) (-3754 (($ $ (-695)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3944 (((-744 (-831)) $) NIL T ELT) (((-831) $) 74 T ELT)) (-3182 (((-1084 |#1|)) 173 T ELT)) (-1672 (($) 145 (|has| |#1| (-317)) ELT)) (-1627 (($) NIL (|has| |#1| (-317)) ELT)) (-3221 (((-1178 |#1|) $) 120 T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (|has| |#1| (-317)) ELT)) (-3942 (((-773) $) 138 T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ |#1|) 69 T ELT)) (-2700 (($ $) NIL (|has| |#1| (-317)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3123 (((-695)) 178 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2010 (((-1178 $)) 195 T ELT) (((-1178 $) (-831)) 115 T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-3929 (((-85) $) NIL T ELT)) (-2658 (($) 184 T CONST)) (-2664 (($) 159 T CONST)) (-3924 (($ $) 121 (|has| |#1| (-317)) ELT) (($ $ (-695)) 113 (|has| |#1| (-317)) ELT)) (-2667 (($ $ (-695)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3054 (((-85) $ $) 206 T ELT)) (-3945 (($ $ $) 118 T ELT) (($ $ |#1|) 119 T ELT)) (-3833 (($ $) 200 T ELT) (($ $ $) 204 T ELT)) (-3835 (($ $ $) 202 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) 151 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 209 T ELT) (($ $ $) 162 T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 117 T ELT)))
+(((-301 |#1| |#2|) (-13 (-279 |#1|) (-10 -7 (-15 -1677 ((-1178 (-584 (-2 (|:| -3398 |#1|) (|:| -2398 (-1033))))))) (-15 -1676 ((-631 |#1|))) (-15 -1675 ((-695))))) (-298) (-3 (-1084 |#1|) (-1178 (-584 (-2 (|:| -3398 |#1|) (|:| -2398 (-1033))))))) (T -301))
+((-1677 (*1 *2) (-12 (-5 *2 (-1178 (-584 (-2 (|:| -3398 *3) (|:| -2398 (-1033)))))) (-5 *1 (-301 *3 *4)) (-4 *3 (-298)) (-14 *4 (-3 (-1084 *3) *2)))) (-1676 (*1 *2) (-12 (-5 *2 (-631 *3)) (-5 *1 (-301 *3 *4)) (-4 *3 (-298)) (-14 *4 (-3 (-1084 *3) (-1178 (-584 (-2 (|:| -3398 *3) (|:| -2398 (-1033))))))))) (-1675 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-301 *3 *4)) (-4 *3 (-298)) (-14 *4 (-3 (-1084 *3) (-1178 (-584 (-2 (|:| -3398 *3) (|:| -2398 (-1033))))))))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-3928 (((-85) $) NIL T ELT)) (-3925 (((-695)) NIL T ELT)) (-3326 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-317)) ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) NIL (|has| |#1| (-317)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3771 (($ $) NIL T ELT)) (-3967 (((-345 $) $) NIL T ELT)) (-1675 (((-695)) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3133 (((-695)) NIL (|has| |#1| (-317)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#1| #1#) $) NIL T ELT)) (-3153 ((|#1| $) NIL T ELT)) (-1790 (($ (-1178 |#1|)) NIL T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-317)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2992 (($) NIL (|has| |#1| (-317)) ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-2831 (($) NIL (|has| |#1| (-317)) ELT)) (-1678 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-1762 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3719 (((-85) $) NIL T ELT)) (-3768 (((-831) $) NIL (|has| |#1| (-317)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-2408 (((-85) $) NIL T ELT)) (-2011 (($) NIL (|has| |#1| (-317)) ELT)) (-2009 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-3129 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-317)) ELT)) (-3441 (((-633 $) $) NIL (|has| |#1| (-317)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2012 (((-1084 |#1|) $) NIL T ELT) (((-1084 $) $ (-831)) NIL (|has| |#1| (-317)) ELT)) (-2008 (((-831) $) NIL (|has| |#1| (-317)) ELT)) (-1625 (((-1084 |#1|) $) NIL (|has| |#1| (-317)) ELT)) (-1624 (((-1084 |#1|) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-1084 |#1|) #1#) $ $) NIL (|has| |#1| (-317)) ELT)) (-1626 (($ $ (-1084 |#1|)) NIL (|has| |#1| (-317)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) NIL T ELT)) (-3442 (($) NIL (|has| |#1| (-317)) CONST)) (-2398 (($ (-831)) NIL (|has| |#1| (-317)) ELT)) (-3927 (((-85) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1677 (((-1178 (-584 (-2 (|:| -3398 |#1|) (|:| -2398 (-1033)))))) NIL T ELT)) (-1676 (((-631 |#1|)) NIL T ELT)) (-2407 (($) NIL (|has| |#1| (-317)) ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1674 (((-584 (-2 (|:| -3728 (-484)) (|:| -2399 (-484))))) NIL (|has| |#1| (-317)) ELT)) (-3728 (((-345 $) $) NIL T ELT)) (-3926 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-1763 (((-695) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3907 (((-107)) NIL T ELT)) (-3754 (($ $ (-695)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3944 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3182 (((-1084 |#1|)) NIL T ELT)) (-1672 (($) NIL (|has| |#1| (-317)) ELT)) (-1627 (($) NIL (|has| |#1| (-317)) ELT)) (-3221 (((-1178 |#1|) $) NIL T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (|has| |#1| (-317)) ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2700 (($ $) NIL (|has| |#1| (-317)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3123 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2010 (((-1178 $)) NIL T ELT) (((-1178 $) (-831)) NIL T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-3929 (((-85) $) NIL T ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-3924 (($ $) NIL (|has| |#1| (-317)) ELT) (($ $ (-695)) NIL (|has| |#1| (-317)) ELT)) (-2667 (($ $ (-695)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-302 |#1| |#2|) (-13 (-279 |#1|) (-10 -7 (-15 -1677 ((-1178 (-584 (-2 (|:| -3398 |#1|) (|:| -2398 (-1033))))))) (-15 -1676 ((-631 |#1|))) (-15 -1675 ((-695))))) (-298) (-831)) (T -302))
+((-1677 (*1 *2) (-12 (-5 *2 (-1178 (-584 (-2 (|:| -3398 *3) (|:| -2398 (-1033)))))) (-5 *1 (-302 *3 *4)) (-4 *3 (-298)) (-14 *4 (-831)))) (-1676 (*1 *2) (-12 (-5 *2 (-631 *3)) (-5 *1 (-302 *3 *4)) (-4 *3 (-298)) (-14 *4 (-831)))) (-1675 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-302 *3 *4)) (-4 *3 (-298)) (-14 *4 (-831)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-3928 (((-85) $) NIL T ELT)) (-3925 (((-695)) NIL T ELT)) (-3326 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-317)) ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) 130 (|has| |#1| (-317)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3771 (($ $) NIL T ELT)) (-3967 (((-345 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3133 (((-695)) 156 (|has| |#1| (-317)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#1| #1#) $) 104 T ELT)) (-3153 ((|#1| $) 101 T ELT)) (-1790 (($ (-1178 |#1|)) 96 T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) 127 (|has| |#1| (-317)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2992 (($) 93 (|has| |#1| (-317)) ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-2831 (($) 52 (|has| |#1| (-317)) ELT)) (-1678 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-1762 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3719 (((-85) $) NIL T ELT)) (-3768 (((-831) $) NIL (|has| |#1| (-317)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-2408 (((-85) $) NIL T ELT)) (-2011 (($) 131 (|has| |#1| (-317)) ELT)) (-2009 (((-85) $) 85 (|has| |#1| (-317)) ELT)) (-3129 ((|#1| $) 48 T ELT) (($ $ (-831)) 53 (|has| |#1| (-317)) ELT)) (-3441 (((-633 $) $) NIL (|has| |#1| (-317)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2012 (((-1084 |#1|) $) 76 T ELT) (((-1084 $) $ (-831)) NIL (|has| |#1| (-317)) ELT)) (-2008 (((-831) $) 108 (|has| |#1| (-317)) ELT)) (-1625 (((-1084 |#1|) $) NIL (|has| |#1| (-317)) ELT)) (-1624 (((-1084 |#1|) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-1084 |#1|) #1#) $ $) NIL (|has| |#1| (-317)) ELT)) (-1626 (($ $ (-1084 |#1|)) NIL (|has| |#1| (-317)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) NIL T ELT)) (-3442 (($) NIL (|has| |#1| (-317)) CONST)) (-2398 (($ (-831)) 106 (|has| |#1| (-317)) ELT)) (-3927 (((-85) $) 158 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2407 (($) 45 (|has| |#1| (-317)) ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1674 (((-584 (-2 (|:| -3728 (-484)) (|:| -2399 (-484))))) 125 (|has| |#1| (-317)) ELT)) (-3728 (((-345 $) $) NIL T ELT)) (-3926 (((-744 (-831))) NIL T ELT) (((-831)) 155 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-1763 (((-695) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3907 (((-107)) NIL T ELT)) (-3754 (($ $ (-695)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3944 (((-744 (-831)) $) NIL T ELT) (((-831) $) 68 T ELT)) (-3182 (((-1084 |#1|)) 99 T ELT)) (-1672 (($) 136 (|has| |#1| (-317)) ELT)) (-1627 (($) NIL (|has| |#1| (-317)) ELT)) (-3221 (((-1178 |#1|) $) 64 T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (|has| |#1| (-317)) ELT)) (-3942 (((-773) $) 154 T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2700 (($ $) NIL (|has| |#1| (-317)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3123 (((-695)) 160 T CONST)) (-1263 (((-85) $ $) 162 T ELT)) (-2010 (((-1178 $)) 120 T ELT) (((-1178 $) (-831)) 59 T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-3929 (((-85) $) NIL T ELT)) (-2658 (($) 122 T CONST)) (-2664 (($) 40 T CONST)) (-3924 (($ $) 79 (|has| |#1| (-317)) ELT) (($ $ (-695)) NIL (|has| |#1| (-317)) ELT)) (-2667 (($ $ (-695)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3054 (((-85) $ $) 118 T ELT)) (-3945 (($ $ $) 110 T ELT) (($ $ |#1|) 111 T ELT)) (-3833 (($ $) 91 T ELT) (($ $ $) 116 T ELT)) (-3835 (($ $ $) 114 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 54 T ELT) (($ $ (-484)) 139 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 89 T ELT) (($ $ $) 66 T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 87 T ELT)))
+(((-303 |#1| |#2|) (-279 |#1|) (-298) (-1084 |#1|)) (T -303))
+NIL
+((-1693 (((-870 (-1084 |#1|)) (-1084 |#1|)) 49 T ELT)) (-2992 (((-1084 |#1|) (-831) (-831)) 159 T ELT) (((-1084 |#1|) (-831)) 155 T ELT)) (-1678 (((-85) (-1084 |#1|)) 110 T ELT)) (-1680 (((-831) (-831)) 85 T ELT)) (-1681 (((-831) (-831)) 94 T ELT)) (-1679 (((-831) (-831)) 83 T ELT)) (-2009 (((-85) (-1084 |#1|)) 114 T ELT)) (-1688 (((-3 (-1084 |#1|) #1="failed") (-1084 |#1|)) 139 T ELT)) (-1691 (((-3 (-1084 |#1|) #1#) (-1084 |#1|)) 144 T ELT)) (-1690 (((-3 (-1084 |#1|) #1#) (-1084 |#1|)) 143 T ELT)) (-1689 (((-3 (-1084 |#1|) #1#) (-1084 |#1|)) 142 T ELT)) (-1687 (((-3 (-1084 |#1|) #1#) (-1084 |#1|)) 134 T ELT)) (-1692 (((-1084 |#1|) (-1084 |#1|)) 71 T ELT)) (-1683 (((-1084 |#1|) (-831)) 149 T ELT)) (-1686 (((-1084 |#1|) (-831)) 152 T ELT)) (-1685 (((-1084 |#1|) (-831)) 151 T ELT)) (-1684 (((-1084 |#1|) (-831)) 150 T ELT)) (-1682 (((-1084 |#1|) (-831)) 147 T ELT)))
+(((-304 |#1|) (-10 -7 (-15 -1678 ((-85) (-1084 |#1|))) (-15 -2009 ((-85) (-1084 |#1|))) (-15 -1679 ((-831) (-831))) (-15 -1680 ((-831) (-831))) (-15 -1681 ((-831) (-831))) (-15 -1682 ((-1084 |#1|) (-831))) (-15 -1683 ((-1084 |#1|) (-831))) (-15 -1684 ((-1084 |#1|) (-831))) (-15 -1685 ((-1084 |#1|) (-831))) (-15 -1686 ((-1084 |#1|) (-831))) (-15 -1687 ((-3 (-1084 |#1|) #1="failed") (-1084 |#1|))) (-15 -1688 ((-3 (-1084 |#1|) #1#) (-1084 |#1|))) (-15 -1689 ((-3 (-1084 |#1|) #1#) (-1084 |#1|))) (-15 -1690 ((-3 (-1084 |#1|) #1#) (-1084 |#1|))) (-15 -1691 ((-3 (-1084 |#1|) #1#) (-1084 |#1|))) (-15 -2992 ((-1084 |#1|) (-831))) (-15 -2992 ((-1084 |#1|) (-831) (-831))) (-15 -1692 ((-1084 |#1|) (-1084 |#1|))) (-15 -1693 ((-870 (-1084 |#1|)) (-1084 |#1|)))) (-298)) (T -304))
+((-1693 (*1 *2 *3) (-12 (-4 *4 (-298)) (-5 *2 (-870 (-1084 *4))) (-5 *1 (-304 *4)) (-5 *3 (-1084 *4)))) (-1692 (*1 *2 *2) (-12 (-5 *2 (-1084 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))) (-2992 (*1 *2 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1084 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-2992 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1084 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-1691 (*1 *2 *2) (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))) (-1690 (*1 *2 *2) (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))) (-1689 (*1 *2 *2) (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))) (-1688 (*1 *2 *2) (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))) (-1687 (*1 *2 *2) (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1084 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1084 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1084 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-1683 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1084 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-1682 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1084 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))) (-1681 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-304 *3)) (-4 *3 (-298)))) (-1680 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-304 *3)) (-4 *3 (-298)))) (-1679 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-304 *3)) (-4 *3 (-298)))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-1084 *4)) (-4 *4 (-298)) (-5 *2 (-85)) (-5 *1 (-304 *4)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-1084 *4)) (-4 *4 (-298)) (-5 *2 (-85)) (-5 *1 (-304 *4)))))
+((-1694 ((|#1| (-1084 |#2|)) 60 T ELT)))
+(((-305 |#1| |#2|) (-10 -7 (-15 -1694 (|#1| (-1084 |#2|)))) (-13 (-342) (-10 -7 (-15 -3942 (|#1| |#2|)) (-15 -2008 ((-831) |#1|)) (-15 -2010 ((-1178 |#1|) (-831))) (-15 -3924 (|#1| |#1|)))) (-298)) (T -305))
+((-1694 (*1 *2 *3) (-12 (-5 *3 (-1084 *4)) (-4 *4 (-298)) (-4 *2 (-13 (-342) (-10 -7 (-15 -3942 (*2 *4)) (-15 -2008 ((-831) *2)) (-15 -2010 ((-1178 *2) (-831))) (-15 -3924 (*2 *2))))) (-5 *1 (-305 *2 *4)))))
+((-2702 (((-3 (-584 |#3|) "failed") (-584 |#3|) |#3|) 40 T ELT)))
+(((-306 |#1| |#2| |#3|) (-10 -7 (-15 -2702 ((-3 (-584 |#3|) "failed") (-584 |#3|) |#3|))) (-298) (-1154 |#1|) (-1154 |#2|)) (T -306))
+((-2702 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-298)) (-5 *1 (-306 *4 *5 *3)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-3928 (((-85) $) NIL T ELT)) (-3925 (((-695)) NIL T ELT)) (-3326 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-317)) ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) NIL (|has| |#1| (-317)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3771 (($ $) NIL T ELT)) (-3967 (((-345 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3133 (((-695)) NIL (|has| |#1| (-317)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#1| #1#) $) NIL T ELT)) (-3153 ((|#1| $) NIL T ELT)) (-1790 (($ (-1178 |#1|)) NIL T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-317)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2992 (($) NIL (|has| |#1| (-317)) ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-2831 (($) NIL (|has| |#1| (-317)) ELT)) (-1678 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-1762 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3719 (((-85) $) NIL T ELT)) (-3768 (((-831) $) NIL (|has| |#1| (-317)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-2408 (((-85) $) NIL T ELT)) (-2011 (($) NIL (|has| |#1| (-317)) ELT)) (-2009 (((-85) $) NIL (|has| |#1| (-317)) ELT)) (-3129 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-317)) ELT)) (-3441 (((-633 $) $) NIL (|has| |#1| (-317)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2012 (((-1084 |#1|) $) NIL T ELT) (((-1084 $) $ (-831)) NIL (|has| |#1| (-317)) ELT)) (-2008 (((-831) $) NIL (|has| |#1| (-317)) ELT)) (-1625 (((-1084 |#1|) $) NIL (|has| |#1| (-317)) ELT)) (-1624 (((-1084 |#1|) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-1084 |#1|) #1#) $ $) NIL (|has| |#1| (-317)) ELT)) (-1626 (($ $ (-1084 |#1|)) NIL (|has| |#1| (-317)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) NIL T ELT)) (-3442 (($) NIL (|has| |#1| (-317)) CONST)) (-2398 (($ (-831)) NIL (|has| |#1| (-317)) ELT)) (-3927 (((-85) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2407 (($) NIL (|has| |#1| (-317)) ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1674 (((-584 (-2 (|:| -3728 (-484)) (|:| -2399 (-484))))) NIL (|has| |#1| (-317)) ELT)) (-3728 (((-345 $) $) NIL T ELT)) (-3926 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-1763 (((-695) $) NIL (|has| |#1| (-317)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3907 (((-107)) NIL T ELT)) (-3754 (($ $ (-695)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3944 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3182 (((-1084 |#1|)) NIL T ELT)) (-1672 (($) NIL (|has| |#1| (-317)) ELT)) (-1627 (($) NIL (|has| |#1| (-317)) ELT)) (-3221 (((-1178 |#1|) $) NIL T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (|has| |#1| (-317)) ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2700 (($ $) NIL (|has| |#1| (-317)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3123 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2010 (((-1178 $)) NIL T ELT) (((-1178 $) (-831)) NIL T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-3929 (((-85) $) NIL T ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-3924 (($ $) NIL (|has| |#1| (-317)) ELT) (($ $ (-695)) NIL (|has| |#1| (-317)) ELT)) (-2667 (($ $ (-695)) NIL (|has| |#1| (-317)) ELT) (($ $) NIL (|has| |#1| (-317)) ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-307 |#1| |#2|) (-279 |#1|) (-298) (-831)) (T -307))
+NIL
+((-2247 (((-85) (-584 (-858 |#1|))) 41 T ELT)) (-2249 (((-584 (-858 |#1|)) (-584 (-858 |#1|))) 53 T ELT)) (-2248 (((-3 (-584 (-858 |#1|)) "failed") (-584 (-858 |#1|))) 48 T ELT)))
+(((-308 |#1| |#2|) (-10 -7 (-15 -2247 ((-85) (-584 (-858 |#1|)))) (-15 -2248 ((-3 (-584 (-858 |#1|)) "failed") (-584 (-858 |#1|)))) (-15 -2249 ((-584 (-858 |#1|)) (-584 (-858 |#1|))))) (-389) (-584 (-1089))) (T -308))
+((-2249 (*1 *2 *2) (-12 (-5 *2 (-584 (-858 *3))) (-4 *3 (-389)) (-5 *1 (-308 *3 *4)) (-14 *4 (-584 (-1089))))) (-2248 (*1 *2 *2) (|partial| -12 (-5 *2 (-584 (-858 *3))) (-4 *3 (-389)) (-5 *1 (-308 *3 *4)) (-14 *4 (-584 (-1089))))) (-2247 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-389)) (-5 *2 (-85)) (-5 *1 (-308 *4 *5)) (-14 *5 (-584 (-1089))))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3133 (((-695) $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3153 ((|#1| $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2408 (((-85) $) 17 T ELT)) (-2297 ((|#1| $ (-484)) NIL T ELT)) (-2298 (((-484) $ (-484)) NIL T ELT)) (-2288 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2289 (($ (-1 (-484) (-484)) $) 26 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) 28 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1777 (((-584 (-2 (|:| |gen| |#1|) (|:| -3939 (-484)))) $) 30 T ELT)) (-3007 (($ $ $) NIL T ELT)) (-2433 (($ $ $) NIL T ELT)) (-3942 (((-773) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2664 (($) 7 T CONST)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT) (($ |#1| (-484)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT)))
+(((-309 |#1|) (-13 (-410) (-951 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-484))) (-15 -3133 ((-695) $)) (-15 -2298 ((-484) $ (-484))) (-15 -2297 (|#1| $ (-484))) (-15 -2289 ($ (-1 (-484) (-484)) $)) (-15 -2288 ($ (-1 |#1| |#1|) $)) (-15 -1777 ((-584 (-2 (|:| |gen| |#1|) (|:| -3939 (-484)))) $)))) (-1013)) (T -309))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-309 *2)) (-4 *2 (-1013)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-309 *2)) (-4 *2 (-1013)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-309 *2)) (-4 *2 (-1013)))) (-3133 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-309 *3)) (-4 *3 (-1013)))) (-2298 (*1 *2 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-309 *3)) (-4 *3 (-1013)))) (-2297 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-309 *2)) (-4 *2 (-1013)))) (-2289 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-484) (-484))) (-5 *1 (-309 *3)) (-4 *3 (-1013)))) (-2288 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-309 *3)))) (-1777 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3939 (-484))))) (-5 *1 (-309 *3)) (-4 *3 (-1013)))))
+((-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 13 T ELT)) (-2061 (($ $) 14 T ELT)) (-3967 (((-345 $) $) 31 T ELT)) (-3719 (((-85) $) 27 T ELT)) (-2482 (($ $) 19 T ELT)) (-3141 (($ $ $) 22 T ELT) (($ (-584 $)) NIL T ELT)) (-3728 (((-345 $) $) 32 T ELT)) (-3462 (((-3 $ "failed") $ $) 21 T ELT)) (-1605 (((-695) $) 25 T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 36 T ELT)) (-2060 (((-85) $ $) 16 T ELT)) (-3945 (($ $ $) 34 T ELT)))
+(((-310 |#1|) (-10 -7 (-15 -3945 (|#1| |#1| |#1|)) (-15 -2482 (|#1| |#1|)) (-15 -3719 ((-85) |#1|)) (-15 -3967 ((-345 |#1|) |#1|)) (-15 -3728 ((-345 |#1|) |#1|)) (-15 -2877 ((-2 (|:| -1971 |#1|) (|:| -2900 |#1|)) |#1| |#1|)) (-15 -1605 ((-695) |#1|)) (-15 -3141 (|#1| (-584 |#1|))) (-15 -3141 (|#1| |#1| |#1|)) (-15 -2060 ((-85) |#1| |#1|)) (-15 -2061 (|#1| |#1|)) (-15 -2062 ((-2 (|:| -1770 |#1|) (|:| -3978 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3462 ((-3 |#1| "failed") |#1| |#1|))) (-311)) (T -310))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 53 T ELT)) (-2061 (($ $) 52 T ELT)) (-2059 (((-85) $) 50 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3771 (($ $) 89 T ELT)) (-3967 (((-345 $) $) 88 T ELT)) (-1606 (((-85) $ $) 73 T ELT)) (-3720 (($) 22 T CONST)) (-2562 (($ $ $) 69 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2561 (($ $ $) 70 T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) 64 T ELT)) (-3719 (((-85) $) 87 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-1603 (((-3 (-584 $) #1="failed") (-584 $) $) 66 T ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-2482 (($ $) 86 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3141 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3728 (((-345 $) $) 90 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3462 (((-3 $ "failed") $ $) 54 T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) 63 T ELT)) (-1605 (((-695) $) 72 T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 71 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-484))) 82 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2060 (((-85) $ $) 51 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3945 (($ $ $) 81 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 85 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-484))) 84 T ELT) (($ (-347 (-484)) $) 83 T ELT)))
(((-311) (-113)) (T -311))
-((-3943 (*1 *1 *1 *1) (-4 *1 (-311))))
-(-13 (-257) (-1132) (-201) (-10 -8 (-15 -3943 ($ $ $)) (-6 -3987) (-6 -3981)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-483))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-347 (-483))) . T) ((-555 (-483)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-201) . T) ((-245) . T) ((-257) . T) ((-389) . T) ((-494) . T) ((-13) . T) ((-588 (-347 (-483))) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 (-347 (-483))) . T) ((-590 $) . T) ((-582 (-347 (-483))) . T) ((-582 $) . T) ((-654 (-347 (-483))) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-963 (-347 (-483))) . T) ((-963 $) . T) ((-968 (-347 (-483))) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-1694 ((|#1| $ |#1|) 35 T ELT)) (-1698 (($ $ (-1071)) 23 T ELT)) (-3613 (((-3 |#1| "failed") $) 34 T ELT)) (-1695 ((|#1| $) 32 T ELT)) (-1699 (($ (-335)) 22 T ELT) (($ (-335) (-1071)) 21 T ELT)) (-3536 (((-335) $) 25 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1696 (((-1071) $) 26 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 20 T ELT)) (-1697 (($ $) 24 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 19 T ELT)))
-(((-312 |#1|) (-13 (-313 (-335) |#1|) (-10 -8 (-15 -3613 ((-3 |#1| "failed") $)))) (-1012)) (T -312))
-((-3613 (*1 *2 *1) (|partial| -12 (-5 *1 (-312 *2)) (-4 *2 (-1012)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-1694 ((|#2| $ |#2|) 17 T ELT)) (-1698 (($ $ (-1071)) 22 T ELT)) (-1695 ((|#2| $) 18 T ELT)) (-1699 (($ |#1|) 24 T ELT) (($ |#1| (-1071)) 23 T ELT)) (-3536 ((|#1| $) 20 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-1696 (((-1071) $) 19 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1697 (($ $) 21 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT)))
-(((-313 |#1| |#2|) (-113) (-1012) (-1012)) (T -313))
-((-1699 (*1 *1 *2) (-12 (-4 *1 (-313 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) (-1699 (*1 *1 *2 *3) (-12 (-5 *3 (-1071)) (-4 *1 (-313 *2 *4)) (-4 *2 (-1012)) (-4 *4 (-1012)))) (-1698 (*1 *1 *1 *2) (-12 (-5 *2 (-1071)) (-4 *1 (-313 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-1697 (*1 *1 *1) (-12 (-4 *1 (-313 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) (-3536 (*1 *2 *1) (-12 (-4 *1 (-313 *2 *3)) (-4 *3 (-1012)) (-4 *2 (-1012)))) (-1696 (*1 *2 *1) (-12 (-4 *1 (-313 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-5 *2 (-1071)))) (-1695 (*1 *2 *1) (-12 (-4 *1 (-313 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012)))) (-1694 (*1 *2 *1 *2) (-12 (-4 *1 (-313 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012)))))
-(-13 (-1012) (-10 -8 (-15 -1699 ($ |t#1|)) (-15 -1699 ($ |t#1| (-1071))) (-15 -1698 ($ $ (-1071))) (-15 -1697 ($ $)) (-15 -3536 (|t#1| $)) (-15 -1696 ((-1071) $)) (-15 -1695 (|t#2| $)) (-15 -1694 (|t#2| $ |t#2|))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T))
-((-3218 (((-1177 (-630 |#2|)) (-1177 $)) 67 T ELT)) (-1785 (((-630 |#2|) (-1177 $)) 139 T ELT)) (-1724 ((|#2| $) 36 T ELT)) (-1783 (((-630 |#2|) $ (-1177 $)) 142 T ELT)) (-2400 (((-3 $ #1="failed") $) 89 T ELT)) (-1722 ((|#2| $) 39 T ELT)) (-1702 (((-1083 |#2|) $) 98 T ELT)) (-1787 ((|#2| (-1177 $)) 122 T ELT)) (-1720 (((-1083 |#2|) $) 32 T ELT)) (-1714 (((-85)) 116 T ELT)) (-1789 (($ (-1177 |#2|) (-1177 $)) 132 T ELT)) (-3461 (((-3 $ #1#) $) 93 T ELT)) (-1707 (((-85)) 111 T ELT)) (-1705 (((-85)) 106 T ELT)) (-1709 (((-85)) 58 T ELT)) (-1786 (((-630 |#2|) (-1177 $)) 137 T ELT)) (-1725 ((|#2| $) 35 T ELT)) (-1784 (((-630 |#2|) $ (-1177 $)) 141 T ELT)) (-2401 (((-3 $ #1#) $) 87 T ELT)) (-1723 ((|#2| $) 38 T ELT)) (-1703 (((-1083 |#2|) $) 97 T ELT)) (-1788 ((|#2| (-1177 $)) 120 T ELT)) (-1721 (((-1083 |#2|) $) 30 T ELT)) (-1715 (((-85)) 115 T ELT)) (-1706 (((-85)) 108 T ELT)) (-1708 (((-85)) 56 T ELT)) (-1710 (((-85)) 103 T ELT)) (-1713 (((-85)) 117 T ELT)) (-3219 (((-1177 |#2|) $ (-1177 $)) NIL T ELT) (((-630 |#2|) (-1177 $) (-1177 $)) 128 T ELT)) (-1719 (((-85)) 113 T ELT)) (-1704 (((-583 (-1177 |#2|))) 102 T ELT)) (-1717 (((-85)) 114 T ELT)) (-1718 (((-85)) 112 T ELT)) (-1716 (((-85)) 51 T ELT)) (-1712 (((-85)) 118 T ELT)))
-(((-314 |#1| |#2|) (-10 -7 (-15 -1702 ((-1083 |#2|) |#1|)) (-15 -1703 ((-1083 |#2|) |#1|)) (-15 -1704 ((-583 (-1177 |#2|)))) (-15 -2400 ((-3 |#1| #1="failed") |#1|)) (-15 -2401 ((-3 |#1| #1#) |#1|)) (-15 -3461 ((-3 |#1| #1#) |#1|)) (-15 -1705 ((-85))) (-15 -1706 ((-85))) (-15 -1707 ((-85))) (-15 -1708 ((-85))) (-15 -1709 ((-85))) (-15 -1710 ((-85))) (-15 -1712 ((-85))) (-15 -1713 ((-85))) (-15 -1714 ((-85))) (-15 -1715 ((-85))) (-15 -1716 ((-85))) (-15 -1717 ((-85))) (-15 -1718 ((-85))) (-15 -1719 ((-85))) (-15 -1720 ((-1083 |#2|) |#1|)) (-15 -1721 ((-1083 |#2|) |#1|)) (-15 -1785 ((-630 |#2|) (-1177 |#1|))) (-15 -1786 ((-630 |#2|) (-1177 |#1|))) (-15 -1787 (|#2| (-1177 |#1|))) (-15 -1788 (|#2| (-1177 |#1|))) (-15 -1789 (|#1| (-1177 |#2|) (-1177 |#1|))) (-15 -3219 ((-630 |#2|) (-1177 |#1|) (-1177 |#1|))) (-15 -3219 ((-1177 |#2|) |#1| (-1177 |#1|))) (-15 -1722 (|#2| |#1|)) (-15 -1723 (|#2| |#1|)) (-15 -1724 (|#2| |#1|)) (-15 -1725 (|#2| |#1|)) (-15 -1783 ((-630 |#2|) |#1| (-1177 |#1|))) (-15 -1784 ((-630 |#2|) |#1| (-1177 |#1|))) (-15 -3218 ((-1177 (-630 |#2|)) (-1177 |#1|)))) (-315 |#2|) (-146)) (T -314))
-((-1719 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1718 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1717 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1716 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1715 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1714 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1713 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1712 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1710 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1709 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1708 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1707 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1706 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1705 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1704 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-583 (-1177 *4))) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1769 (((-3 $ "failed")) 47 (|has| |#1| (-494)) ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3218 (((-1177 (-630 |#1|)) (-1177 $)) 88 T ELT)) (-1726 (((-1177 $)) 91 T ELT)) (-3718 (($) 22 T CONST)) (-1903 (((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) "failed")) 50 (|has| |#1| (-494)) ELT)) (-1700 (((-3 $ "failed")) 48 (|has| |#1| (-494)) ELT)) (-1785 (((-630 |#1|) (-1177 $)) 75 T ELT)) (-1724 ((|#1| $) 84 T ELT)) (-1783 (((-630 |#1|) $ (-1177 $)) 86 T ELT)) (-2400 (((-3 $ "failed") $) 55 (|has| |#1| (-494)) ELT)) (-2403 (($ $ (-830)) 36 T ELT)) (-1722 ((|#1| $) 82 T ELT)) (-1702 (((-1083 |#1|) $) 52 (|has| |#1| (-494)) ELT)) (-1787 ((|#1| (-1177 $)) 77 T ELT)) (-1720 (((-1083 |#1|) $) 73 T ELT)) (-1714 (((-85)) 67 T ELT)) (-1789 (($ (-1177 |#1|) (-1177 $)) 79 T ELT)) (-3461 (((-3 $ "failed") $) 57 (|has| |#1| (-494)) ELT)) (-3104 (((-830)) 90 T ELT)) (-1711 (((-85)) 64 T ELT)) (-2429 (($ $ (-830)) 43 T ELT)) (-1707 (((-85)) 60 T ELT)) (-1705 (((-85)) 58 T ELT)) (-1709 (((-85)) 62 T ELT)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) "failed")) 51 (|has| |#1| (-494)) ELT)) (-1701 (((-3 $ "failed")) 49 (|has| |#1| (-494)) ELT)) (-1786 (((-630 |#1|) (-1177 $)) 76 T ELT)) (-1725 ((|#1| $) 85 T ELT)) (-1784 (((-630 |#1|) $ (-1177 $)) 87 T ELT)) (-2401 (((-3 $ "failed") $) 56 (|has| |#1| (-494)) ELT)) (-2402 (($ $ (-830)) 37 T ELT)) (-1723 ((|#1| $) 83 T ELT)) (-1703 (((-1083 |#1|) $) 53 (|has| |#1| (-494)) ELT)) (-1788 ((|#1| (-1177 $)) 78 T ELT)) (-1721 (((-1083 |#1|) $) 74 T ELT)) (-1715 (((-85)) 68 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-1706 (((-85)) 59 T ELT)) (-1708 (((-85)) 61 T ELT)) (-1710 (((-85)) 63 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-1713 (((-85)) 66 T ELT)) (-3219 (((-1177 |#1|) $ (-1177 $)) 81 T ELT) (((-630 |#1|) (-1177 $) (-1177 $)) 80 T ELT)) (-1889 (((-583 (-857 |#1|)) (-1177 $)) 89 T ELT)) (-2431 (($ $ $) 33 T ELT)) (-1719 (((-85)) 72 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-1704 (((-583 (-1177 |#1|))) 54 (|has| |#1| (-494)) ELT)) (-2432 (($ $ $ $) 34 T ELT)) (-1717 (((-85)) 70 T ELT)) (-2430 (($ $ $) 32 T ELT)) (-1718 (((-85)) 71 T ELT)) (-1716 (((-85)) 69 T ELT)) (-1712 (((-85)) 65 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 38 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT)))
+((-3945 (*1 *1 *1 *1) (-4 *1 (-311))))
+(-13 (-257) (-1133) (-201) (-10 -8 (-15 -3945 ($ $ $)) (-6 -3989) (-6 -3983)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-347 (-484))) . T) ((-556 (-484)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-201) . T) ((-245) . T) ((-257) . T) ((-389) . T) ((-495) . T) ((-13) . T) ((-589 (-347 (-484))) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 (-347 (-484))) . T) ((-591 $) . T) ((-583 (-347 (-484))) . T) ((-583 $) . T) ((-655 (-347 (-484))) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 (-347 (-484))) . T) ((-964 $) . T) ((-969 (-347 (-484))) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-1695 ((|#1| $ |#1|) 35 T ELT)) (-1699 (($ $ (-1072)) 23 T ELT)) (-3615 (((-3 |#1| "failed") $) 34 T ELT)) (-1696 ((|#1| $) 32 T ELT)) (-1700 (($ (-335)) 22 T ELT) (($ (-335) (-1072)) 21 T ELT)) (-3538 (((-335) $) 25 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-1697 (((-1072) $) 26 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 20 T ELT)) (-1698 (($ $) 24 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 19 T ELT)))
+(((-312 |#1|) (-13 (-313 (-335) |#1|) (-10 -8 (-15 -3615 ((-3 |#1| "failed") $)))) (-1013)) (T -312))
+((-3615 (*1 *2 *1) (|partial| -12 (-5 *1 (-312 *2)) (-4 *2 (-1013)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-1695 ((|#2| $ |#2|) 17 T ELT)) (-1699 (($ $ (-1072)) 22 T ELT)) (-1696 ((|#2| $) 18 T ELT)) (-1700 (($ |#1|) 24 T ELT) (($ |#1| (-1072)) 23 T ELT)) (-3538 ((|#1| $) 20 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-1697 (((-1072) $) 19 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1698 (($ $) 21 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3054 (((-85) $ $) 8 T ELT)))
+(((-313 |#1| |#2|) (-113) (-1013) (-1013)) (T -313))
+((-1700 (*1 *1 *2) (-12 (-4 *1 (-313 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-1700 (*1 *1 *2 *3) (-12 (-5 *3 (-1072)) (-4 *1 (-313 *2 *4)) (-4 *2 (-1013)) (-4 *4 (-1013)))) (-1699 (*1 *1 *1 *2) (-12 (-5 *2 (-1072)) (-4 *1 (-313 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-1698 (*1 *1 *1) (-12 (-4 *1 (-313 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-3538 (*1 *2 *1) (-12 (-4 *1 (-313 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-1697 (*1 *2 *1) (-12 (-4 *1 (-313 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-1072)))) (-1696 (*1 *2 *1) (-12 (-4 *1 (-313 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-1695 (*1 *2 *1 *2) (-12 (-4 *1 (-313 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))))
+(-13 (-1013) (-10 -8 (-15 -1700 ($ |t#1|)) (-15 -1700 ($ |t#1| (-1072))) (-15 -1699 ($ $ (-1072))) (-15 -1698 ($ $)) (-15 -3538 (|t#1| $)) (-15 -1697 ((-1072) $)) (-15 -1696 (|t#2| $)) (-15 -1695 (|t#2| $ |t#2|))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
+((-3220 (((-1178 (-631 |#2|)) (-1178 $)) 67 T ELT)) (-1786 (((-631 |#2|) (-1178 $)) 139 T ELT)) (-1725 ((|#2| $) 36 T ELT)) (-1784 (((-631 |#2|) $ (-1178 $)) 142 T ELT)) (-2402 (((-3 $ #1="failed") $) 89 T ELT)) (-1723 ((|#2| $) 39 T ELT)) (-1703 (((-1084 |#2|) $) 98 T ELT)) (-1788 ((|#2| (-1178 $)) 122 T ELT)) (-1721 (((-1084 |#2|) $) 32 T ELT)) (-1715 (((-85)) 116 T ELT)) (-1790 (($ (-1178 |#2|) (-1178 $)) 132 T ELT)) (-3463 (((-3 $ #1#) $) 93 T ELT)) (-1708 (((-85)) 111 T ELT)) (-1706 (((-85)) 106 T ELT)) (-1710 (((-85)) 58 T ELT)) (-1787 (((-631 |#2|) (-1178 $)) 137 T ELT)) (-1726 ((|#2| $) 35 T ELT)) (-1785 (((-631 |#2|) $ (-1178 $)) 141 T ELT)) (-2403 (((-3 $ #1#) $) 87 T ELT)) (-1724 ((|#2| $) 38 T ELT)) (-1704 (((-1084 |#2|) $) 97 T ELT)) (-1789 ((|#2| (-1178 $)) 120 T ELT)) (-1722 (((-1084 |#2|) $) 30 T ELT)) (-1716 (((-85)) 115 T ELT)) (-1707 (((-85)) 108 T ELT)) (-1709 (((-85)) 56 T ELT)) (-1711 (((-85)) 103 T ELT)) (-1714 (((-85)) 117 T ELT)) (-3221 (((-1178 |#2|) $ (-1178 $)) NIL T ELT) (((-631 |#2|) (-1178 $) (-1178 $)) 128 T ELT)) (-1720 (((-85)) 113 T ELT)) (-1705 (((-584 (-1178 |#2|))) 102 T ELT)) (-1718 (((-85)) 114 T ELT)) (-1719 (((-85)) 112 T ELT)) (-1717 (((-85)) 51 T ELT)) (-1713 (((-85)) 118 T ELT)))
+(((-314 |#1| |#2|) (-10 -7 (-15 -1703 ((-1084 |#2|) |#1|)) (-15 -1704 ((-1084 |#2|) |#1|)) (-15 -1705 ((-584 (-1178 |#2|)))) (-15 -2402 ((-3 |#1| #1="failed") |#1|)) (-15 -2403 ((-3 |#1| #1#) |#1|)) (-15 -3463 ((-3 |#1| #1#) |#1|)) (-15 -1706 ((-85))) (-15 -1707 ((-85))) (-15 -1708 ((-85))) (-15 -1709 ((-85))) (-15 -1710 ((-85))) (-15 -1711 ((-85))) (-15 -1713 ((-85))) (-15 -1714 ((-85))) (-15 -1715 ((-85))) (-15 -1716 ((-85))) (-15 -1717 ((-85))) (-15 -1718 ((-85))) (-15 -1719 ((-85))) (-15 -1720 ((-85))) (-15 -1721 ((-1084 |#2|) |#1|)) (-15 -1722 ((-1084 |#2|) |#1|)) (-15 -1786 ((-631 |#2|) (-1178 |#1|))) (-15 -1787 ((-631 |#2|) (-1178 |#1|))) (-15 -1788 (|#2| (-1178 |#1|))) (-15 -1789 (|#2| (-1178 |#1|))) (-15 -1790 (|#1| (-1178 |#2|) (-1178 |#1|))) (-15 -3221 ((-631 |#2|) (-1178 |#1|) (-1178 |#1|))) (-15 -3221 ((-1178 |#2|) |#1| (-1178 |#1|))) (-15 -1723 (|#2| |#1|)) (-15 -1724 (|#2| |#1|)) (-15 -1725 (|#2| |#1|)) (-15 -1726 (|#2| |#1|)) (-15 -1784 ((-631 |#2|) |#1| (-1178 |#1|))) (-15 -1785 ((-631 |#2|) |#1| (-1178 |#1|))) (-15 -3220 ((-1178 (-631 |#2|)) (-1178 |#1|)))) (-315 |#2|) (-146)) (T -314))
+((-1720 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1719 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1718 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1717 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1716 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1715 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1714 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1713 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1711 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1710 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1709 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1708 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1707 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1706 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))) (-1705 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-584 (-1178 *4))) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1770 (((-3 $ "failed")) 47 (|has| |#1| (-495)) ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3220 (((-1178 (-631 |#1|)) (-1178 $)) 88 T ELT)) (-1727 (((-1178 $)) 91 T ELT)) (-3720 (($) 22 T CONST)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2010 (-584 $))) "failed")) 50 (|has| |#1| (-495)) ELT)) (-1701 (((-3 $ "failed")) 48 (|has| |#1| (-495)) ELT)) (-1786 (((-631 |#1|) (-1178 $)) 75 T ELT)) (-1725 ((|#1| $) 84 T ELT)) (-1784 (((-631 |#1|) $ (-1178 $)) 86 T ELT)) (-2402 (((-3 $ "failed") $) 55 (|has| |#1| (-495)) ELT)) (-2405 (($ $ (-831)) 36 T ELT)) (-1723 ((|#1| $) 82 T ELT)) (-1703 (((-1084 |#1|) $) 52 (|has| |#1| (-495)) ELT)) (-1788 ((|#1| (-1178 $)) 77 T ELT)) (-1721 (((-1084 |#1|) $) 73 T ELT)) (-1715 (((-85)) 67 T ELT)) (-1790 (($ (-1178 |#1|) (-1178 $)) 79 T ELT)) (-3463 (((-3 $ "failed") $) 57 (|has| |#1| (-495)) ELT)) (-3106 (((-831)) 90 T ELT)) (-1712 (((-85)) 64 T ELT)) (-2431 (($ $ (-831)) 43 T ELT)) (-1708 (((-85)) 60 T ELT)) (-1706 (((-85)) 58 T ELT)) (-1710 (((-85)) 62 T ELT)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2010 (-584 $))) "failed")) 51 (|has| |#1| (-495)) ELT)) (-1702 (((-3 $ "failed")) 49 (|has| |#1| (-495)) ELT)) (-1787 (((-631 |#1|) (-1178 $)) 76 T ELT)) (-1726 ((|#1| $) 85 T ELT)) (-1785 (((-631 |#1|) $ (-1178 $)) 87 T ELT)) (-2403 (((-3 $ "failed") $) 56 (|has| |#1| (-495)) ELT)) (-2404 (($ $ (-831)) 37 T ELT)) (-1724 ((|#1| $) 83 T ELT)) (-1704 (((-1084 |#1|) $) 53 (|has| |#1| (-495)) ELT)) (-1789 ((|#1| (-1178 $)) 78 T ELT)) (-1722 (((-1084 |#1|) $) 74 T ELT)) (-1716 (((-85)) 68 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-1707 (((-85)) 59 T ELT)) (-1709 (((-85)) 61 T ELT)) (-1711 (((-85)) 63 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-1714 (((-85)) 66 T ELT)) (-3221 (((-1178 |#1|) $ (-1178 $)) 81 T ELT) (((-631 |#1|) (-1178 $) (-1178 $)) 80 T ELT)) (-1890 (((-584 (-858 |#1|)) (-1178 $)) 89 T ELT)) (-2433 (($ $ $) 33 T ELT)) (-1720 (((-85)) 72 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-1705 (((-584 (-1178 |#1|))) 54 (|has| |#1| (-495)) ELT)) (-2434 (($ $ $ $) 34 T ELT)) (-1718 (((-85)) 70 T ELT)) (-2432 (($ $ $) 32 T ELT)) (-1719 (((-85)) 71 T ELT)) (-1717 (((-85)) 69 T ELT)) (-1713 (((-85)) 65 T ELT)) (-2658 (($) 23 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 38 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT)))
(((-315 |#1|) (-113) (-146)) (T -315))
-((-1726 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1177 *1)) (-4 *1 (-315 *3)))) (-3104 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-830)))) (-1889 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-583 (-857 *4))))) (-3218 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-1177 (-630 *4))))) (-1784 (*1 *2 *1 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-1783 (*1 *2 *1 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-1725 (*1 *2 *1) (-12 (-4 *1 (-315 *2)) (-4 *2 (-146)))) (-1724 (*1 *2 *1) (-12 (-4 *1 (-315 *2)) (-4 *2 (-146)))) (-1723 (*1 *2 *1) (-12 (-4 *1 (-315 *2)) (-4 *2 (-146)))) (-1722 (*1 *2 *1) (-12 (-4 *1 (-315 *2)) (-4 *2 (-146)))) (-3219 (*1 *2 *1 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-1177 *4)))) (-3219 (*1 *2 *3 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-1789 (*1 *1 *2 *3) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-1177 *1)) (-4 *4 (-146)) (-4 *1 (-315 *4)))) (-1788 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *2)) (-4 *2 (-146)))) (-1787 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *2)) (-4 *2 (-146)))) (-1786 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-1785 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-1721 (*1 *2 *1) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-1083 *3)))) (-1720 (*1 *2 *1) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-1083 *3)))) (-1719 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1718 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1717 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1716 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1715 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1714 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1713 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1712 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1711 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1710 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1709 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1708 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1707 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1706 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1705 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-3461 (*1 *1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-146)) (-4 *2 (-494)))) (-2401 (*1 *1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-146)) (-4 *2 (-494)))) (-2400 (*1 *1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-146)) (-4 *2 (-494)))) (-1704 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-4 *3 (-494)) (-5 *2 (-583 (-1177 *3))))) (-1703 (*1 *2 *1) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-4 *3 (-494)) (-5 *2 (-1083 *3)))) (-1702 (*1 *2 *1) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-4 *3 (-494)) (-5 *2 (-1083 *3)))) (-1904 (*1 *2) (|partial| -12 (-4 *3 (-494)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2008 (-583 *1)))) (-4 *1 (-315 *3)))) (-1903 (*1 *2) (|partial| -12 (-4 *3 (-494)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2008 (-583 *1)))) (-4 *1 (-315 *3)))) (-1701 (*1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-494)) (-4 *2 (-146)))) (-1700 (*1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-494)) (-4 *2 (-146)))) (-1769 (*1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-494)) (-4 *2 (-146)))))
-(-13 (-683 |t#1|) (-10 -8 (-15 -1726 ((-1177 $))) (-15 -3104 ((-830))) (-15 -1889 ((-583 (-857 |t#1|)) (-1177 $))) (-15 -3218 ((-1177 (-630 |t#1|)) (-1177 $))) (-15 -1784 ((-630 |t#1|) $ (-1177 $))) (-15 -1783 ((-630 |t#1|) $ (-1177 $))) (-15 -1725 (|t#1| $)) (-15 -1724 (|t#1| $)) (-15 -1723 (|t#1| $)) (-15 -1722 (|t#1| $)) (-15 -3219 ((-1177 |t#1|) $ (-1177 $))) (-15 -3219 ((-630 |t#1|) (-1177 $) (-1177 $))) (-15 -1789 ($ (-1177 |t#1|) (-1177 $))) (-15 -1788 (|t#1| (-1177 $))) (-15 -1787 (|t#1| (-1177 $))) (-15 -1786 ((-630 |t#1|) (-1177 $))) (-15 -1785 ((-630 |t#1|) (-1177 $))) (-15 -1721 ((-1083 |t#1|) $)) (-15 -1720 ((-1083 |t#1|) $)) (-15 -1719 ((-85))) (-15 -1718 ((-85))) (-15 -1717 ((-85))) (-15 -1716 ((-85))) (-15 -1715 ((-85))) (-15 -1714 ((-85))) (-15 -1713 ((-85))) (-15 -1712 ((-85))) (-15 -1711 ((-85))) (-15 -1710 ((-85))) (-15 -1709 ((-85))) (-15 -1708 ((-85))) (-15 -1707 ((-85))) (-15 -1706 ((-85))) (-15 -1705 ((-85))) (IF (|has| |t#1| (-494)) (PROGN (-15 -3461 ((-3 $ "failed") $)) (-15 -2401 ((-3 $ "failed") $)) (-15 -2400 ((-3 $ "failed") $)) (-15 -1704 ((-583 (-1177 |t#1|)))) (-15 -1703 ((-1083 |t#1|) $)) (-15 -1702 ((-1083 |t#1|) $)) (-15 -1904 ((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) "failed"))) (-15 -1903 ((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) "failed"))) (-15 -1701 ((-3 $ "failed"))) (-15 -1700 ((-3 $ "failed"))) (-15 -1769 ((-3 $ "failed"))) (-6 -3986)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-657) . T) ((-683 |#1|) . T) ((-685) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1012) . T) ((-1127) . T))
-((-2990 (($) 15 T ELT)))
-(((-316 |#1|) (-10 -7 (-15 -2990 (|#1|))) (-317)) (T -316))
+((-1727 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1178 *1)) (-4 *1 (-315 *3)))) (-3106 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-831)))) (-1890 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-584 (-858 *4))))) (-3220 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-1178 (-631 *4))))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-1784 (*1 *2 *1 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-1726 (*1 *2 *1) (-12 (-4 *1 (-315 *2)) (-4 *2 (-146)))) (-1725 (*1 *2 *1) (-12 (-4 *1 (-315 *2)) (-4 *2 (-146)))) (-1724 (*1 *2 *1) (-12 (-4 *1 (-315 *2)) (-4 *2 (-146)))) (-1723 (*1 *2 *1) (-12 (-4 *1 (-315 *2)) (-4 *2 (-146)))) (-3221 (*1 *2 *1 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-1178 *4)))) (-3221 (*1 *2 *3 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-1790 (*1 *1 *2 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-1178 *1)) (-4 *4 (-146)) (-4 *1 (-315 *4)))) (-1789 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *2)) (-4 *2 (-146)))) (-1788 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *2)) (-4 *2 (-146)))) (-1787 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-1786 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-1722 (*1 *2 *1) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-1084 *3)))) (-1721 (*1 *2 *1) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-1084 *3)))) (-1720 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1719 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1718 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1717 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1716 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1715 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1714 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1713 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1712 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1711 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1710 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1709 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1708 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1707 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1706 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-3463 (*1 *1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) (-2403 (*1 *1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) (-2402 (*1 *1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) (-1705 (*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-4 *3 (-495)) (-5 *2 (-584 (-1178 *3))))) (-1704 (*1 *2 *1) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-4 *3 (-495)) (-5 *2 (-1084 *3)))) (-1703 (*1 *2 *1) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-4 *3 (-495)) (-5 *2 (-1084 *3)))) (-1905 (*1 *2) (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2010 (-584 *1)))) (-4 *1 (-315 *3)))) (-1904 (*1 *2) (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2010 (-584 *1)))) (-4 *1 (-315 *3)))) (-1702 (*1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-495)) (-4 *2 (-146)))) (-1701 (*1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-495)) (-4 *2 (-146)))) (-1770 (*1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-495)) (-4 *2 (-146)))))
+(-13 (-684 |t#1|) (-10 -8 (-15 -1727 ((-1178 $))) (-15 -3106 ((-831))) (-15 -1890 ((-584 (-858 |t#1|)) (-1178 $))) (-15 -3220 ((-1178 (-631 |t#1|)) (-1178 $))) (-15 -1785 ((-631 |t#1|) $ (-1178 $))) (-15 -1784 ((-631 |t#1|) $ (-1178 $))) (-15 -1726 (|t#1| $)) (-15 -1725 (|t#1| $)) (-15 -1724 (|t#1| $)) (-15 -1723 (|t#1| $)) (-15 -3221 ((-1178 |t#1|) $ (-1178 $))) (-15 -3221 ((-631 |t#1|) (-1178 $) (-1178 $))) (-15 -1790 ($ (-1178 |t#1|) (-1178 $))) (-15 -1789 (|t#1| (-1178 $))) (-15 -1788 (|t#1| (-1178 $))) (-15 -1787 ((-631 |t#1|) (-1178 $))) (-15 -1786 ((-631 |t#1|) (-1178 $))) (-15 -1722 ((-1084 |t#1|) $)) (-15 -1721 ((-1084 |t#1|) $)) (-15 -1720 ((-85))) (-15 -1719 ((-85))) (-15 -1718 ((-85))) (-15 -1717 ((-85))) (-15 -1716 ((-85))) (-15 -1715 ((-85))) (-15 -1714 ((-85))) (-15 -1713 ((-85))) (-15 -1712 ((-85))) (-15 -1711 ((-85))) (-15 -1710 ((-85))) (-15 -1709 ((-85))) (-15 -1708 ((-85))) (-15 -1707 ((-85))) (-15 -1706 ((-85))) (IF (|has| |t#1| (-495)) (PROGN (-15 -3463 ((-3 $ "failed") $)) (-15 -2403 ((-3 $ "failed") $)) (-15 -2402 ((-3 $ "failed") $)) (-15 -1705 ((-584 (-1178 |t#1|)))) (-15 -1704 ((-1084 |t#1|) $)) (-15 -1703 ((-1084 |t#1|) $)) (-15 -1905 ((-3 (-2 (|:| |particular| $) (|:| -2010 (-584 $))) "failed"))) (-15 -1904 ((-3 (-2 (|:| |particular| $) (|:| -2010 (-584 $))) "failed"))) (-15 -1702 ((-3 $ "failed"))) (-15 -1701 ((-3 $ "failed"))) (-15 -1770 ((-3 $ "failed"))) (-6 -3988)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-658) . T) ((-684 |#1|) . T) ((-686) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1013) . T) ((-1128) . T))
+((-2992 (($) 15 T ELT)))
+(((-316 |#1|) (-10 -7 (-15 -2992 (|#1|))) (-317)) (T -316))
NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3131 (((-694)) 20 T ELT)) (-2990 (($) 17 T ELT)) (-2006 (((-830) $) 18 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2396 (($ (-830)) 19 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT)))
+((-2566 (((-85) $ $) 7 T ELT)) (-3133 (((-695)) 20 T ELT)) (-2992 (($) 17 T ELT)) (-2008 (((-831) $) 18 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-2398 (($ (-831)) 19 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3054 (((-85) $ $) 8 T ELT)))
(((-317) (-113)) (T -317))
-((-3131 (*1 *2) (-12 (-4 *1 (-317)) (-5 *2 (-694)))) (-2396 (*1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-317)))) (-2006 (*1 *2 *1) (-12 (-4 *1 (-317)) (-5 *2 (-830)))) (-2990 (*1 *1) (-4 *1 (-317))))
-(-13 (-1012) (-10 -8 (-15 -3131 ((-694))) (-15 -2396 ($ (-830))) (-15 -2006 ((-830) $)) (-15 -2990 ($))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T))
-((-1779 (((-630 |#2|) (-1177 $)) 45 T ELT)) (-1789 (($ (-1177 |#2|) (-1177 $)) 39 T ELT)) (-1778 (((-630 |#2|) $ (-1177 $)) 47 T ELT)) (-3751 ((|#2| (-1177 $)) 13 T ELT)) (-3219 (((-1177 |#2|) $ (-1177 $)) NIL T ELT) (((-630 |#2|) (-1177 $) (-1177 $)) 27 T ELT)))
-(((-318 |#1| |#2| |#3|) (-10 -7 (-15 -1779 ((-630 |#2|) (-1177 |#1|))) (-15 -3751 (|#2| (-1177 |#1|))) (-15 -1789 (|#1| (-1177 |#2|) (-1177 |#1|))) (-15 -3219 ((-630 |#2|) (-1177 |#1|) (-1177 |#1|))) (-15 -3219 ((-1177 |#2|) |#1| (-1177 |#1|))) (-15 -1778 ((-630 |#2|) |#1| (-1177 |#1|)))) (-319 |#2| |#3|) (-146) (-1153 |#2|)) (T -318))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1779 (((-630 |#1|) (-1177 $)) 59 T ELT)) (-3324 ((|#1| $) 65 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-1789 (($ (-1177 |#1|) (-1177 $)) 61 T ELT)) (-1778 (((-630 |#1|) $ (-1177 $)) 66 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3104 (((-830)) 67 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3127 ((|#1| $) 64 T ELT)) (-2010 ((|#2| $) 57 (|has| |#1| (-311)) ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3751 ((|#1| (-1177 $)) 60 T ELT)) (-3219 (((-1177 |#1|) $ (-1177 $)) 63 T ELT) (((-630 |#1|) (-1177 $) (-1177 $)) 62 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 50 T ELT)) (-2698 (((-632 $) $) 56 (|has| |#1| (-118)) ELT)) (-2445 ((|#2| $) 58 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT)))
-(((-319 |#1| |#2|) (-113) (-146) (-1153 |t#1|)) (T -319))
-((-3104 (*1 *2) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1153 *3)) (-5 *2 (-830)))) (-1778 (*1 *2 *1 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1153 *4)) (-5 *2 (-630 *4)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-1153 *2)) (-4 *2 (-146)))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-1153 *2)) (-4 *2 (-146)))) (-3219 (*1 *2 *1 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1153 *4)) (-5 *2 (-1177 *4)))) (-3219 (*1 *2 *3 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1153 *4)) (-5 *2 (-630 *4)))) (-1789 (*1 *1 *2 *3) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-1177 *1)) (-4 *4 (-146)) (-4 *1 (-319 *4 *5)) (-4 *5 (-1153 *4)))) (-3751 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-319 *2 *4)) (-4 *4 (-1153 *2)) (-4 *2 (-146)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1153 *4)) (-5 *2 (-630 *4)))) (-2445 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1153 *3)))) (-2010 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *2)) (-4 *3 (-146)) (-4 *3 (-311)) (-4 *2 (-1153 *3)))))
-(-13 (-38 |t#1|) (-10 -8 (-15 -3104 ((-830))) (-15 -1778 ((-630 |t#1|) $ (-1177 $))) (-15 -3324 (|t#1| $)) (-15 -3127 (|t#1| $)) (-15 -3219 ((-1177 |t#1|) $ (-1177 $))) (-15 -3219 ((-630 |t#1|) (-1177 $) (-1177 $))) (-15 -1789 ($ (-1177 |t#1|) (-1177 $))) (-15 -3751 (|t#1| (-1177 $))) (-15 -1779 ((-630 |t#1|) (-1177 $))) (-15 -2445 (|t#2| $)) (IF (|has| |t#1| (-311)) (-15 -2010 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-483)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-663) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T))
-((-1729 (((-85) (-1 (-85) |#2| |#2|) $) NIL T ELT) (((-85) $) 18 T ELT)) (-1727 (($ (-1 (-85) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-2905 (($ (-1 (-85) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-2294 (($ $) 25 T ELT)) (-3413 (((-483) (-1 (-85) |#2|) $) NIL T ELT) (((-483) |#2| $) 11 T ELT) (((-483) |#2| $ (-483)) NIL T ELT)) (-3512 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT)))
-(((-320 |#1| |#2|) (-10 -7 (-15 -1727 (|#1| |#1|)) (-15 -1727 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1729 ((-85) |#1|)) (-15 -2905 (|#1| |#1|)) (-15 -3512 (|#1| |#1| |#1|)) (-15 -3413 ((-483) |#2| |#1| (-483))) (-15 -3413 ((-483) |#2| |#1|)) (-15 -3413 ((-483) (-1 (-85) |#2|) |#1|)) (-15 -1729 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -2905 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2294 (|#1| |#1|)) (-15 -3512 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|))) (-321 |#2|) (-1127)) (T -320))
-NIL
-((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2194 (((-1183) $ (-483) (-483)) 44 (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-756)) ELT)) (-1727 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -3990)) ELT) (($ $) 97 (-12 (|has| |#1| (-756)) (|has| $ (-6 -3990))) ELT)) (-2905 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-756)) ELT)) (-3782 ((|#1| $ (-483) |#1|) 56 (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) 64 (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3989)) ELT)) (-3718 (($) 7 T CONST)) (-2293 (($ $) 99 (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) 109 T ELT)) (-1350 (($ $) 84 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3400 (($ |#1| $) 83 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3989)) ELT)) (-1573 ((|#1| $ (-483) |#1|) 57 (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) 55 T ELT)) (-3413 (((-483) (-1 (-85) |#1|) $) 106 T ELT) (((-483) |#1| $) 105 (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) 104 (|has| |#1| (-1012)) ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-3608 (($ (-694) |#1|) 74 T ELT)) (-2196 (((-483) $) 47 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) 91 (|has| |#1| (-756)) ELT)) (-3512 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-756)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-2197 (((-483) $) 48 (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) 92 (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-2300 (($ |#1| $ (-483)) 66 T ELT) (($ $ $ (-483)) 65 T ELT)) (-2199 (((-583 (-483)) $) 50 T ELT)) (-2200 (((-85) (-483) $) 51 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-3795 ((|#1| $) 46 (|has| (-483) (-756)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2195 (($ $ |#1|) 45 (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-2198 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) 52 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#1| $ (-483) |#1|) 54 T ELT) ((|#1| $ (-483)) 53 T ELT) (($ $ (-1144 (-483))) 75 T ELT)) (-2301 (($ $ (-483)) 68 T ELT) (($ $ (-1144 (-483))) 67 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1728 (($ $ $ (-483)) 100 (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 85 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 76 T ELT)) (-3796 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) 93 (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) 95 (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2680 (((-85) $ $) 94 (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) 96 (|has| |#1| (-756)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-321 |#1|) (-113) (-1127)) (T -321))
-((-3512 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-321 *3)) (-4 *3 (-1127)))) (-2294 (*1 *1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-1127)))) (-2905 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-321 *3)) (-4 *3 (-1127)))) (-1729 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-321 *4)) (-4 *4 (-1127)) (-5 *2 (-85)))) (-3413 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-321 *4)) (-4 *4 (-1127)) (-5 *2 (-483)))) (-3413 (*1 *2 *3 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-1127)) (-4 *3 (-1012)) (-5 *2 (-483)))) (-3413 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-321 *3)) (-4 *3 (-1127)) (-4 *3 (-1012)))) (-3512 (*1 *1 *1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-1127)) (-4 *2 (-756)))) (-2905 (*1 *1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-1127)) (-4 *2 (-756)))) (-1729 (*1 *2 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-1127)) (-4 *3 (-756)) (-5 *2 (-85)))) (-1728 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-483)) (|has| *1 (-6 -3990)) (-4 *1 (-321 *3)) (-4 *3 (-1127)))) (-2293 (*1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-321 *2)) (-4 *2 (-1127)))) (-1727 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (|has| *1 (-6 -3990)) (-4 *1 (-321 *3)) (-4 *3 (-1127)))) (-1727 (*1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-321 *2)) (-4 *2 (-1127)) (-4 *2 (-756)))))
-(-13 (-593 |t#1|) (-10 -8 (-6 -3989) (-15 -3512 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -2294 ($ $)) (-15 -2905 ($ (-1 (-85) |t#1| |t#1|) $)) (-15 -1729 ((-85) (-1 (-85) |t#1| |t#1|) $)) (-15 -3413 ((-483) (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1012)) (PROGN (-15 -3413 ((-483) |t#1| $)) (-15 -3413 ((-483) |t#1| $ (-483)))) |%noBranch|) (IF (|has| |t#1| (-756)) (PROGN (-6 (-756)) (-15 -3512 ($ $ $)) (-15 -2905 ($ $)) (-15 -1729 ((-85) $))) |%noBranch|) (IF (|has| $ (-6 -3990)) (PROGN (-15 -1728 ($ $ $ (-483))) (-15 -2293 ($ $)) (-15 -1727 ($ (-1 (-85) |t#1| |t#1|) $)) (IF (|has| |t#1| (-756)) (-15 -1727 ($ $)) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-756)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-756)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-241 (-483) |#1|) . T) ((-241 (-1144 (-483)) $) . T) ((-243 (-483) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-538 (-483) |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-593 |#1|) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-1012) OR (|has| |#1| (-1012)) (|has| |#1| (-756))) ((-1127) . T))
-((-3835 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-3836 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-3952 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT)))
-(((-322 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3952 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3836 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3835 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1127) (-321 |#1|) (-1127) (-321 |#3|)) (T -322))
-((-3835 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1127)) (-4 *5 (-1127)) (-4 *2 (-321 *5)) (-5 *1 (-322 *6 *4 *5 *2)) (-4 *4 (-321 *6)))) (-3836 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1127)) (-4 *2 (-1127)) (-5 *1 (-322 *5 *4 *2 *6)) (-4 *4 (-321 *5)) (-4 *6 (-321 *2)))) (-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-4 *2 (-321 *6)) (-5 *1 (-322 *5 *4 *6 *2)) (-4 *4 (-321 *5)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3928 (((-583 |#1|) $) 42 T ELT)) (-3941 (($ $ (-694)) 43 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3933 (((-1202 |#1| |#2|) (-1202 |#1| |#2|) $) 46 T ELT)) (-3930 (($ $) 44 T ELT)) (-3934 (((-1202 |#1| |#2|) (-1202 |#1| |#2|) $) 47 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3762 (($ $ |#1| $) 41 T ELT) (($ $ (-583 |#1|) (-583 $)) 40 T ELT)) (-3942 (((-694) $) 48 T ELT)) (-3524 (($ $ $) 39 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ |#1|) 51 T ELT) (((-1193 |#1| |#2|) $) 50 T ELT) (((-1202 |#1| |#2|) $) 49 T ELT)) (-3948 ((|#2| (-1202 |#1| |#2|) $) 52 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-1730 (($ (-614 |#1|)) 45 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#2|) 38 (|has| |#2| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 36 T ELT)))
-(((-323 |#1| |#2|) (-113) (-756) (-146)) (T -323))
-((-3948 (*1 *2 *3 *1) (-12 (-5 *3 (-1202 *4 *2)) (-4 *1 (-323 *4 *2)) (-4 *4 (-756)) (-4 *2 (-146)))) (-3940 (*1 *1 *2) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146)))) (-3940 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-1193 *3 *4)))) (-3940 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-1202 *3 *4)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-694)))) (-3934 (*1 *2 *2 *1) (-12 (-5 *2 (-1202 *3 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3933 (*1 *2 *2 *1) (-12 (-5 *2 (-1202 *3 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-1730 (*1 *1 *2) (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-4 *1 (-323 *3 *4)) (-4 *4 (-146)))) (-3930 (*1 *1 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146)))) (-3941 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-323 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3928 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-583 *3)))) (-3762 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146)))) (-3762 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *1)) (-4 *1 (-323 *4 *5)) (-4 *4 (-756)) (-4 *5 (-146)))))
-(-13 (-574 |t#2|) (-10 -8 (-15 -3948 (|t#2| (-1202 |t#1| |t#2|) $)) (-15 -3940 ($ |t#1|)) (-15 -3940 ((-1193 |t#1| |t#2|) $)) (-15 -3940 ((-1202 |t#1| |t#2|) $)) (-15 -3942 ((-694) $)) (-15 -3934 ((-1202 |t#1| |t#2|) (-1202 |t#1| |t#2|) $)) (-15 -3933 ((-1202 |t#1| |t#2|) (-1202 |t#1| |t#2|) $)) (-15 -1730 ($ (-614 |t#1|))) (-15 -3930 ($ $)) (-15 -3941 ($ $ (-694))) (-15 -3928 ((-583 |t#1|) $)) (-15 -3762 ($ $ |t#1| $)) (-15 -3762 ($ $ (-583 |t#1|) (-583 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#2|) . T) ((-590 |#2|) . T) ((-574 |#2|) . T) ((-582 |#2|) . T) ((-654 |#2|) . T) ((-963 |#2|) . T) ((-968 |#2|) . T) ((-1012) . T) ((-1127) . T))
-((-1733 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 40 T ELT)) (-1731 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 13 T ELT)) (-1732 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 33 T ELT)))
-(((-324 |#1| |#2|) (-10 -7 (-15 -1731 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1732 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1733 (|#2| (-1 (-85) |#1| |#1|) |#2|))) (-1127) (-13 (-321 |#1|) (-10 -7 (-6 -3990)))) (T -324))
-((-1733 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-324 *4 *2)) (-4 *2 (-13 (-321 *4) (-10 -7 (-6 -3990)))))) (-1732 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-324 *4 *2)) (-4 *2 (-13 (-321 *4) (-10 -7 (-6 -3990)))))) (-1731 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-324 *4 *2)) (-4 *2 (-13 (-321 *4) (-10 -7 (-6 -3990)))))))
-((-2275 (((-630 |#2|) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 22 T ELT) (((-630 (-483)) (-630 $)) 14 T ELT)))
-(((-325 |#1| |#2|) (-10 -7 (-15 -2275 ((-630 (-483)) (-630 |#1|))) (-15 -2275 ((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 |#1|) (-1177 |#1|))) (-15 -2275 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 |#1|) (-1177 |#1|))) (-15 -2275 ((-630 |#2|) (-630 |#1|)))) (-326 |#2|) (-961)) (T -325))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-2275 (((-630 |#1|) (-630 $)) 35 T ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) 34 T ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 46 (|has| |#1| (-580 (-483))) ELT) (((-630 (-483)) (-630 $)) 45 (|has| |#1| (-580 (-483))) ELT)) (-2276 (((-630 |#1|) (-1177 $)) 37 T ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 36 T ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 44 (|has| |#1| (-580 (-483))) ELT) (((-630 (-483)) (-1177 $)) 43 (|has| |#1| (-580 (-483))) ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ |#1| $) 32 T ELT)))
-(((-326 |#1|) (-113) (-961)) (T -326))
-NIL
-(-13 (-580 |t#1|) (-10 -7 (IF (|has| |t#1| (-580 (-483))) (-6 (-580 (-483))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-590 (-483)) |has| |#1| (-580 (-483))) ((-590 |#1|) . T) ((-580 (-483)) |has| |#1| (-580 (-483))) ((-580 |#1|) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 16 T ELT)) (-3124 (((-483) $) 44 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-3765 (($ $) 120 T ELT)) (-3486 (($ $) 81 T ELT)) (-3633 (($ $) 72 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-3033 (($ $) 28 T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3484 (($ $) 79 T ELT)) (-3632 (($ $) 67 T ELT)) (-3617 (((-483) $) 60 T ELT)) (-2437 (($ $ (-483)) 55 T ELT)) (-3488 (($ $) NIL T ELT)) (-3631 (($ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3122 (($ $) 122 T ELT)) (-3152 (((-3 (-483) #1#) $) 217 T ELT) (((-3 (-347 (-483)) #1#) $) 213 T ELT)) (-3151 (((-483) $) 215 T ELT) (((-347 (-483)) $) 211 T ELT)) (-2560 (($ $ $) NIL T ELT)) (-1742 (((-483) $ $) 110 T ELT)) (-3461 (((-3 $ #1#) $) 125 T ELT)) (-1741 (((-347 (-483)) $ (-694)) 218 T ELT) (((-347 (-483)) $ (-694) (-694)) 210 T ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-1765 (((-830)) 106 T ELT) (((-830) (-830)) 107 (|has| $ (-6 -3980)) ELT)) (-3181 (((-85) $) 38 T ELT)) (-3621 (($) 22 T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL T ELT)) (-1734 (((-1183) (-694)) 177 T ELT)) (-1735 (((-1183)) 182 T ELT) (((-1183) (-694)) 183 T ELT)) (-1737 (((-1183)) 184 T ELT) (((-1183) (-694)) 185 T ELT)) (-1736 (((-1183)) 180 T ELT) (((-1183) (-694)) 181 T ELT)) (-3766 (((-483) $) 50 T ELT)) (-2406 (((-85) $) 21 T ELT)) (-3007 (($ $ (-483)) NIL T ELT)) (-2439 (($ $) 32 T ELT)) (-3127 (($ $) NIL T ELT)) (-3182 (((-85) $) 18 T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2527 (($ $ $) NIL T ELT) (($) NIL (-12 (-2556 (|has| $ (-6 -3972))) (-2556 (|has| $ (-6 -3980)))) ELT)) (-2853 (($ $ $) NIL T ELT) (($) NIL (-12 (-2556 (|has| $ (-6 -3972))) (-2556 (|has| $ (-6 -3980)))) ELT)) (-1767 (((-483) $) 112 T ELT)) (-1740 (($) 90 T ELT) (($ $) 97 T ELT)) (-1739 (($) 96 T ELT) (($ $) 98 T ELT)) (-3936 (($ $) 84 T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) 127 T ELT)) (-1764 (((-830) (-483)) 27 (|has| $ (-6 -3980)) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3123 (($ $) 41 T ELT)) (-3125 (($ $) 119 T ELT)) (-3249 (($ (-483) (-483)) 115 T ELT) (($ (-483) (-483) (-830)) 116 T ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2397 (((-483) $) 113 T ELT)) (-1738 (($) 99 T ELT)) (-3937 (($ $) 78 T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-2611 (((-830)) 108 T ELT) (((-830) (-830)) 109 (|has| $ (-6 -3980)) ELT)) (-3752 (($ $) 126 T ELT) (($ $ (-694)) NIL T ELT)) (-1763 (((-830) (-483)) 31 (|has| $ (-6 -3980)) ELT)) (-3489 (($ $) NIL T ELT)) (-3630 (($ $) NIL T ELT)) (-3487 (($ $) NIL T ELT)) (-3629 (($ $) NIL T ELT)) (-3485 (($ $) 80 T ELT)) (-3628 (($ $) 71 T ELT)) (-3966 (((-327) $) 202 T ELT) (((-179) $) 204 T ELT) (((-800 (-327)) $) NIL T ELT) (((-1071) $) 188 T ELT) (((-472) $) 200 T ELT) (($ (-179)) 209 T ELT)) (-3940 (((-772) $) 192 T ELT) (($ (-483)) 214 T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ (-483)) 214 T ELT) (($ (-347 (-483))) NIL T ELT) (((-179) $) 205 T ELT)) (-3121 (((-694)) NIL T CONST)) (-3126 (($ $) 121 T ELT)) (-1766 (((-830)) 42 T ELT) (((-830) (-830)) 62 (|has| $ (-6 -3980)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2690 (((-830)) 111 T ELT)) (-3492 (($ $) 87 T ELT)) (-3480 (($ $) 30 T ELT) (($ $ $) 40 T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3490 (($ $) 85 T ELT)) (-3478 (($ $) 20 T ELT)) (-3494 (($ $) NIL T ELT)) (-3482 (($ $) NIL T ELT)) (-3495 (($ $) NIL T ELT)) (-3483 (($ $) NIL T ELT)) (-3493 (($ $) NIL T ELT)) (-3481 (($ $) NIL T ELT)) (-3491 (($ $) 86 T ELT)) (-3479 (($ $) 33 T ELT)) (-3377 (($ $) 39 T ELT)) (-2656 (($) 17 T CONST)) (-2662 (($) 24 T CONST)) (-2665 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2562 (((-85) $ $) 189 T ELT)) (-2563 (((-85) $ $) 26 T ELT)) (-3052 (((-85) $ $) 37 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 43 T ELT)) (-3943 (($ $ $) 29 T ELT) (($ $ (-483)) 23 T ELT)) (-3831 (($ $) 19 T ELT) (($ $ $) 34 T ELT)) (-3833 (($ $ $) 54 T ELT)) (** (($ $ (-830)) 65 T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) 91 T ELT) (($ $ (-347 (-483))) 137 T ELT) (($ $ $) 129 T ELT)) (* (($ (-830) $) 61 T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 66 T ELT) (($ $ $) 53 T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT)))
-(((-327) (-13 (-344) (-190) (-553 (-1071)) (-552 (-179)) (-1113) (-553 (-472)) (-557 (-179)) (-10 -8 (-15 -3943 ($ $ (-483))) (-15 ** ($ $ $)) (-15 -2439 ($ $)) (-15 -1742 ((-483) $ $)) (-15 -2437 ($ $ (-483))) (-15 -1741 ((-347 (-483)) $ (-694))) (-15 -1741 ((-347 (-483)) $ (-694) (-694))) (-15 -1740 ($)) (-15 -1739 ($)) (-15 -1738 ($)) (-15 -3480 ($ $ $)) (-15 -1740 ($ $)) (-15 -1739 ($ $)) (-15 -1737 ((-1183))) (-15 -1737 ((-1183) (-694))) (-15 -1736 ((-1183))) (-15 -1736 ((-1183) (-694))) (-15 -1735 ((-1183))) (-15 -1735 ((-1183) (-694))) (-15 -1734 ((-1183) (-694))) (-6 -3980) (-6 -3972)))) (T -327))
-((** (*1 *1 *1 *1) (-5 *1 (-327))) (-3943 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-327)))) (-2439 (*1 *1 *1) (-5 *1 (-327))) (-1742 (*1 *2 *1 *1) (-12 (-5 *2 (-483)) (-5 *1 (-327)))) (-2437 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-327)))) (-1741 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-347 (-483))) (-5 *1 (-327)))) (-1741 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-347 (-483))) (-5 *1 (-327)))) (-1740 (*1 *1) (-5 *1 (-327))) (-1739 (*1 *1) (-5 *1 (-327))) (-1738 (*1 *1) (-5 *1 (-327))) (-3480 (*1 *1 *1 *1) (-5 *1 (-327))) (-1740 (*1 *1 *1) (-5 *1 (-327))) (-1739 (*1 *1 *1) (-5 *1 (-327))) (-1737 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-327)))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1183)) (-5 *1 (-327)))) (-1736 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-327)))) (-1736 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1183)) (-5 *1 (-327)))) (-1735 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-327)))) (-1735 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1183)) (-5 *1 (-327)))) (-1734 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1183)) (-5 *1 (-327)))))
-((-1743 (((-583 (-248 (-857 (-142 |#1|)))) (-248 (-347 (-857 (-142 (-483))))) |#1|) 52 T ELT) (((-583 (-248 (-857 (-142 |#1|)))) (-347 (-857 (-142 (-483)))) |#1|) 51 T ELT) (((-583 (-583 (-248 (-857 (-142 |#1|))))) (-583 (-248 (-347 (-857 (-142 (-483)))))) |#1|) 48 T ELT) (((-583 (-583 (-248 (-857 (-142 |#1|))))) (-583 (-347 (-857 (-142 (-483))))) |#1|) 42 T ELT)) (-1744 (((-583 (-583 (-142 |#1|))) (-583 (-347 (-857 (-142 (-483))))) (-583 (-1088)) |#1|) 30 T ELT) (((-583 (-142 |#1|)) (-347 (-857 (-142 (-483)))) |#1|) 18 T ELT)))
-(((-328 |#1|) (-10 -7 (-15 -1743 ((-583 (-583 (-248 (-857 (-142 |#1|))))) (-583 (-347 (-857 (-142 (-483))))) |#1|)) (-15 -1743 ((-583 (-583 (-248 (-857 (-142 |#1|))))) (-583 (-248 (-347 (-857 (-142 (-483)))))) |#1|)) (-15 -1743 ((-583 (-248 (-857 (-142 |#1|)))) (-347 (-857 (-142 (-483)))) |#1|)) (-15 -1743 ((-583 (-248 (-857 (-142 |#1|)))) (-248 (-347 (-857 (-142 (-483))))) |#1|)) (-15 -1744 ((-583 (-142 |#1|)) (-347 (-857 (-142 (-483)))) |#1|)) (-15 -1744 ((-583 (-583 (-142 |#1|))) (-583 (-347 (-857 (-142 (-483))))) (-583 (-1088)) |#1|))) (-13 (-311) (-755))) (T -328))
-((-1744 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-347 (-857 (-142 (-483)))))) (-5 *4 (-583 (-1088))) (-5 *2 (-583 (-583 (-142 *5)))) (-5 *1 (-328 *5)) (-4 *5 (-13 (-311) (-755))))) (-1744 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-857 (-142 (-483))))) (-5 *2 (-583 (-142 *4))) (-5 *1 (-328 *4)) (-4 *4 (-13 (-311) (-755))))) (-1743 (*1 *2 *3 *4) (-12 (-5 *3 (-248 (-347 (-857 (-142 (-483)))))) (-5 *2 (-583 (-248 (-857 (-142 *4))))) (-5 *1 (-328 *4)) (-4 *4 (-13 (-311) (-755))))) (-1743 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-857 (-142 (-483))))) (-5 *2 (-583 (-248 (-857 (-142 *4))))) (-5 *1 (-328 *4)) (-4 *4 (-13 (-311) (-755))))) (-1743 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-248 (-347 (-857 (-142 (-483))))))) (-5 *2 (-583 (-583 (-248 (-857 (-142 *4)))))) (-5 *1 (-328 *4)) (-4 *4 (-13 (-311) (-755))))) (-1743 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-347 (-857 (-142 (-483)))))) (-5 *2 (-583 (-583 (-248 (-857 (-142 *4)))))) (-5 *1 (-328 *4)) (-4 *4 (-13 (-311) (-755))))))
-((-3567 (((-583 (-248 (-857 |#1|))) (-248 (-347 (-857 (-483)))) |#1|) 47 T ELT) (((-583 (-248 (-857 |#1|))) (-347 (-857 (-483))) |#1|) 46 T ELT) (((-583 (-583 (-248 (-857 |#1|)))) (-583 (-248 (-347 (-857 (-483))))) |#1|) 43 T ELT) (((-583 (-583 (-248 (-857 |#1|)))) (-583 (-347 (-857 (-483)))) |#1|) 37 T ELT)) (-1745 (((-583 |#1|) (-347 (-857 (-483))) |#1|) 20 T ELT) (((-583 (-583 |#1|)) (-583 (-347 (-857 (-483)))) (-583 (-1088)) |#1|) 30 T ELT)))
-(((-329 |#1|) (-10 -7 (-15 -3567 ((-583 (-583 (-248 (-857 |#1|)))) (-583 (-347 (-857 (-483)))) |#1|)) (-15 -3567 ((-583 (-583 (-248 (-857 |#1|)))) (-583 (-248 (-347 (-857 (-483))))) |#1|)) (-15 -3567 ((-583 (-248 (-857 |#1|))) (-347 (-857 (-483))) |#1|)) (-15 -3567 ((-583 (-248 (-857 |#1|))) (-248 (-347 (-857 (-483)))) |#1|)) (-15 -1745 ((-583 (-583 |#1|)) (-583 (-347 (-857 (-483)))) (-583 (-1088)) |#1|)) (-15 -1745 ((-583 |#1|) (-347 (-857 (-483))) |#1|))) (-13 (-755) (-311))) (T -329))
-((-1745 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-857 (-483)))) (-5 *2 (-583 *4)) (-5 *1 (-329 *4)) (-4 *4 (-13 (-755) (-311))))) (-1745 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-347 (-857 (-483))))) (-5 *4 (-583 (-1088))) (-5 *2 (-583 (-583 *5))) (-5 *1 (-329 *5)) (-4 *5 (-13 (-755) (-311))))) (-3567 (*1 *2 *3 *4) (-12 (-5 *3 (-248 (-347 (-857 (-483))))) (-5 *2 (-583 (-248 (-857 *4)))) (-5 *1 (-329 *4)) (-4 *4 (-13 (-755) (-311))))) (-3567 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-857 (-483)))) (-5 *2 (-583 (-248 (-857 *4)))) (-5 *1 (-329 *4)) (-4 *4 (-13 (-755) (-311))))) (-3567 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-248 (-347 (-857 (-483)))))) (-5 *2 (-583 (-583 (-248 (-857 *4))))) (-5 *1 (-329 *4)) (-4 *4 (-13 (-755) (-311))))) (-3567 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-347 (-857 (-483))))) (-5 *2 (-583 (-583 (-248 (-857 *4))))) (-5 *1 (-329 *4)) (-4 *4 (-13 (-755) (-311))))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3768 (((-583 (-782 |#2| |#1|)) $) NIL T ELT)) (-1309 (((-3 $ "failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3953 (($ $) NIL T ELT)) (-2889 (($ |#1| |#2|) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1981 ((|#2| $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 34 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 12 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT)))
-(((-330 |#1| |#2|) (-13 (-82 |#1| |#1|) (-447 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-146)) (-6 (-654 |#1|)) |%noBranch|))) (-961) (-759)) (T -330))
-NIL
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#2| #1#) $) 29 T ELT)) (-3151 ((|#2| $) 31 T ELT)) (-3953 (($ $) NIL T ELT)) (-2416 (((-694) $) 13 T ELT)) (-2817 (((-583 $) $) 23 T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3932 (($ |#2| |#1|) 21 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1746 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-2890 ((|#2| $) 18 T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 50 T ELT) (($ |#2|) 30 T ELT)) (-3811 (((-583 |#1|) $) 20 T ELT)) (-3671 ((|#1| $ |#2|) 54 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 32 T CONST)) (-2661 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ |#1| $) 35 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 38 T ELT) (($ |#2| |#1|) 39 T ELT)))
-(((-331 |#1| |#2|) (-13 (-332 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-961) (-756)) (T -331))
-((* (*1 *1 *2 *3) (-12 (-5 *1 (-331 *3 *2)) (-4 *3 (-961)) (-4 *2 (-756)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 |#2| "failed") $) 54 T ELT)) (-3151 ((|#2| $) 55 T ELT)) (-3953 (($ $) 40 T ELT)) (-2416 (((-694) $) 44 T ELT)) (-2817 (((-583 $) $) 45 T ELT)) (-3931 (((-85) $) 48 T ELT)) (-3932 (($ |#2| |#1|) 49 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 50 T ELT)) (-1746 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 41 T ELT)) (-2890 ((|#2| $) 43 T ELT)) (-3169 ((|#1| $) 42 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ |#2|) 53 T ELT)) (-3811 (((-583 |#1|) $) 46 T ELT)) (-3671 ((|#1| $ |#2|) 51 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2661 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 47 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 52 T ELT)))
-(((-332 |#1| |#2|) (-113) (-961) (-1012)) (T -332))
-((* (*1 *1 *2 *3) (-12 (-4 *1 (-332 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1012)))) (-3671 (*1 *2 *1 *3) (-12 (-4 *1 (-332 *2 *3)) (-4 *3 (-1012)) (-4 *2 (-961)))) (-3952 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-332 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1012)))) (-3932 (*1 *1 *2 *3) (-12 (-4 *1 (-332 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1012)))) (-3931 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1012)) (-5 *2 (-85)))) (-2661 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1012)) (-5 *2 (-583 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3811 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1012)) (-5 *2 (-583 *3)))) (-2817 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-1012)) (-5 *2 (-583 *1)) (-4 *1 (-332 *3 *4)))) (-2416 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1012)) (-5 *2 (-694)))) (-2890 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1012)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-332 *2 *3)) (-4 *3 (-1012)) (-4 *2 (-961)))) (-1746 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1012)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3953 (*1 *1 *1) (-12 (-4 *1 (-332 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1012)))))
-(-13 (-82 |t#1| |t#1|) (-950 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3671 (|t#1| $ |t#2|)) (-15 -3952 ($ (-1 |t#1| |t#1|) $)) (-15 -3932 ($ |t#2| |t#1|)) (-15 -3931 ((-85) $)) (-15 -2661 ((-583 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3811 ((-583 |t#1|) $)) (-15 -2817 ((-583 $) $)) (-15 -2416 ((-694) $)) (-15 -2890 (|t#2| $)) (-15 -3169 (|t#1| $)) (-15 -1746 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3953 ($ $)) (IF (|has| |t#1| (-146)) (-6 (-654 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 |#2|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-950 |#2|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) 7 T ELT)) (-3131 (((-694) $) 40 T ELT)) (-3718 (($) 23 T CONST)) (-3933 (((-3 $ "failed") $ $) 43 T ELT)) (-3152 (((-3 |#1| "failed") $) 51 T ELT)) (-3151 ((|#1| $) 52 T ELT)) (-3461 (((-3 $ "failed") $) 20 T ELT)) (-1747 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 41 T ELT)) (-2406 (((-85) $) 22 T ELT)) (-2295 ((|#1| $ (-483)) 37 T ELT)) (-2296 (((-694) $ (-483)) 38 T ELT)) (-2527 (($ $ $) 29 (|has| |#1| (-756)) ELT)) (-2853 (($ $ $) 30 (|has| |#1| (-756)) ELT)) (-2286 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2287 (($ (-1 (-694) (-694)) $) 36 T ELT)) (-3934 (((-3 $ "failed") $ $) 44 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-1748 (($ $ $) 45 T ELT)) (-1749 (($ $ $) 46 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-1776 (((-583 (-2 (|:| |gen| |#1|) (|:| -3937 (-694)))) $) 39 T ELT)) (-2875 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 42 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ |#1|) 50 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-2562 (((-85) $ $) 31 (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) 33 (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 32 (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) 34 (|has| |#1| (-756)) ELT)) (** (($ $ (-830)) 17 T ELT) (($ $ (-694)) 21 T ELT) (($ |#1| (-694)) 47 T ELT)) (* (($ $ $) 18 T ELT) (($ |#1| $) 49 T ELT) (($ $ |#1|) 48 T ELT)))
-(((-333 |#1|) (-113) (-1012)) (T -333))
-((* (*1 *1 *2 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-1012)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-333 *2)) (-4 *2 (-1012)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-333 *2)) (-4 *2 (-1012)))) (-1749 (*1 *1 *1 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-1012)))) (-1748 (*1 *1 *1 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-1012)))) (-3934 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-333 *2)) (-4 *2 (-1012)))) (-3933 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-333 *2)) (-4 *2 (-1012)))) (-2875 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1012)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-333 *3)))) (-1747 (*1 *2 *1 *1) (-12 (-4 *3 (-1012)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-333 *3)))) (-3131 (*1 *2 *1) (-12 (-4 *1 (-333 *3)) (-4 *3 (-1012)) (-5 *2 (-694)))) (-1776 (*1 *2 *1) (-12 (-4 *1 (-333 *3)) (-4 *3 (-1012)) (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3937 (-694))))))) (-2296 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-333 *4)) (-4 *4 (-1012)) (-5 *2 (-694)))) (-2295 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-333 *2)) (-4 *2 (-1012)))) (-2287 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-694) (-694))) (-4 *1 (-333 *3)) (-4 *3 (-1012)))) (-2286 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3)) (-4 *3 (-1012)))))
-(-13 (-663) (-950 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-694))) (-15 -1749 ($ $ $)) (-15 -1748 ($ $ $)) (-15 -3934 ((-3 $ "failed") $ $)) (-15 -3933 ((-3 $ "failed") $ $)) (-15 -2875 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1747 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3131 ((-694) $)) (-15 -1776 ((-583 (-2 (|:| |gen| |t#1|) (|:| -3937 (-694)))) $)) (-15 -2296 ((-694) $ (-483))) (-15 -2295 (|t#1| $ (-483))) (-15 -2287 ($ (-1 (-694) (-694)) $)) (-15 -2286 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-756)) (-6 (-756)) |%noBranch|)))
-(((-72) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-13) . T) ((-663) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-950 |#1|) . T) ((-1024) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3131 (((-694) $) 74 T ELT)) (-3718 (($) NIL T CONST)) (-3933 (((-3 $ #1="failed") $ $) 77 T ELT)) (-3152 (((-3 |#1| #1#) $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-1747 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-2406 (((-85) $) 17 T ELT)) (-2295 ((|#1| $ (-483)) NIL T ELT)) (-2296 (((-694) $ (-483)) NIL T ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2286 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-2287 (($ (-1 (-694) (-694)) $) 37 T ELT)) (-3934 (((-3 $ #1#) $ $) 60 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1748 (($ $ $) 28 T ELT)) (-1749 (($ $ $) 26 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1776 (((-583 (-2 (|:| |gen| |#1|) (|:| -3937 (-694)))) $) 34 T ELT)) (-2875 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) 70 T ELT)) (-3940 (((-772) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2662 (($) 7 T CONST)) (-2562 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) 83 (|has| |#1| (-756)) ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ |#1| (-694)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT)))
-(((-334 |#1|) (-333 |#1|) (-1012)) (T -334))
-NIL
-((-2564 (((-85) $ $) NIL T ELT)) (-1750 (((-85) $) 25 T ELT)) (-1751 (((-85) $) 22 T ELT)) (-3608 (($ (-1071) (-1071) (-1071)) 26 T ELT)) (-3536 (((-1071) $) 16 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1755 (($ (-1071) (-1071) (-1071)) 14 T ELT)) (-1753 (((-1071) $) 17 T ELT)) (-1752 (((-85) $) 18 T ELT)) (-1754 (((-1071) $) 15 T ELT)) (-3940 (((-772) $) 12 T ELT) (($ (-1071)) 13 T ELT) (((-1071) $) 9 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 7 T ELT)))
+((-3133 (*1 *2) (-12 (-4 *1 (-317)) (-5 *2 (-695)))) (-2398 (*1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-317)))) (-2008 (*1 *2 *1) (-12 (-4 *1 (-317)) (-5 *2 (-831)))) (-2992 (*1 *1) (-4 *1 (-317))))
+(-13 (-1013) (-10 -8 (-15 -3133 ((-695))) (-15 -2398 ($ (-831))) (-15 -2008 ((-831) $)) (-15 -2992 ($))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
+((-1780 (((-631 |#2|) (-1178 $)) 45 T ELT)) (-1790 (($ (-1178 |#2|) (-1178 $)) 39 T ELT)) (-1779 (((-631 |#2|) $ (-1178 $)) 47 T ELT)) (-3753 ((|#2| (-1178 $)) 13 T ELT)) (-3221 (((-1178 |#2|) $ (-1178 $)) NIL T ELT) (((-631 |#2|) (-1178 $) (-1178 $)) 27 T ELT)))
+(((-318 |#1| |#2| |#3|) (-10 -7 (-15 -1780 ((-631 |#2|) (-1178 |#1|))) (-15 -3753 (|#2| (-1178 |#1|))) (-15 -1790 (|#1| (-1178 |#2|) (-1178 |#1|))) (-15 -3221 ((-631 |#2|) (-1178 |#1|) (-1178 |#1|))) (-15 -3221 ((-1178 |#2|) |#1| (-1178 |#1|))) (-15 -1779 ((-631 |#2|) |#1| (-1178 |#1|)))) (-319 |#2| |#3|) (-146) (-1154 |#2|)) (T -318))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1780 (((-631 |#1|) (-1178 $)) 59 T ELT)) (-3326 ((|#1| $) 65 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-1790 (($ (-1178 |#1|) (-1178 $)) 61 T ELT)) (-1779 (((-631 |#1|) $ (-1178 $)) 66 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-3106 (((-831)) 67 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-3129 ((|#1| $) 64 T ELT)) (-2012 ((|#2| $) 57 (|has| |#1| (-311)) ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3753 ((|#1| (-1178 $)) 60 T ELT)) (-3221 (((-1178 |#1|) $ (-1178 $)) 63 T ELT) (((-631 |#1|) (-1178 $) (-1178 $)) 62 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 50 T ELT)) (-2700 (((-633 $) $) 56 (|has| |#1| (-118)) ELT)) (-2447 ((|#2| $) 58 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT)))
+(((-319 |#1| |#2|) (-113) (-146) (-1154 |t#1|)) (T -319))
+((-3106 (*1 *2) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3)) (-5 *2 (-831)))) (-1779 (*1 *2 *1 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-631 *4)))) (-3326 (*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-1154 *2)) (-4 *2 (-146)))) (-3129 (*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-1154 *2)) (-4 *2 (-146)))) (-3221 (*1 *2 *1 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-1178 *4)))) (-3221 (*1 *2 *3 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-631 *4)))) (-1790 (*1 *1 *2 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-1178 *1)) (-4 *4 (-146)) (-4 *1 (-319 *4 *5)) (-4 *5 (-1154 *4)))) (-3753 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-319 *2 *4)) (-4 *4 (-1154 *2)) (-4 *2 (-146)))) (-1780 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-631 *4)))) (-2447 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1154 *3)))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *2)) (-4 *3 (-146)) (-4 *3 (-311)) (-4 *2 (-1154 *3)))))
+(-13 (-38 |t#1|) (-10 -8 (-15 -3106 ((-831))) (-15 -1779 ((-631 |t#1|) $ (-1178 $))) (-15 -3326 (|t#1| $)) (-15 -3129 (|t#1| $)) (-15 -3221 ((-1178 |t#1|) $ (-1178 $))) (-15 -3221 ((-631 |t#1|) (-1178 $) (-1178 $))) (-15 -1790 ($ (-1178 |t#1|) (-1178 $))) (-15 -3753 (|t#1| (-1178 $))) (-15 -1780 ((-631 |t#1|) (-1178 $))) (-15 -2447 (|t#2| $)) (IF (|has| |t#1| (-311)) (-15 -2012 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-484)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
+((-1730 (((-85) (-1 (-85) |#2| |#2|) $) NIL T ELT) (((-85) $) 18 T ELT)) (-1728 (($ (-1 (-85) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-2907 (($ (-1 (-85) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-2296 (($ $) 25 T ELT)) (-3415 (((-484) (-1 (-85) |#2|) $) NIL T ELT) (((-484) |#2| $) 11 T ELT) (((-484) |#2| $ (-484)) NIL T ELT)) (-3514 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT)))
+(((-320 |#1| |#2|) (-10 -7 (-15 -1728 (|#1| |#1|)) (-15 -1728 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1730 ((-85) |#1|)) (-15 -2907 (|#1| |#1|)) (-15 -3514 (|#1| |#1| |#1|)) (-15 -3415 ((-484) |#2| |#1| (-484))) (-15 -3415 ((-484) |#2| |#1|)) (-15 -3415 ((-484) (-1 (-85) |#2|) |#1|)) (-15 -1730 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -2907 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2296 (|#1| |#1|)) (-15 -3514 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|))) (-321 |#2|) (-1128)) (T -320))
+NIL
+((-2566 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2196 (((-1184) $ (-484) (-484)) 44 (|has| $ (-6 -3992)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-757)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -3992)) ELT) (($ $) 97 (-12 (|has| |#1| (-757)) (|has| $ (-6 -3992))) ELT)) (-2907 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-757)) ELT)) (-3784 ((|#1| $ (-484) |#1|) 56 (|has| $ (-6 -3992)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 64 (|has| $ (-6 -3992)) ELT)) (-3706 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3991)) ELT)) (-3720 (($) 7 T CONST)) (-2295 (($ $) 99 (|has| $ (-6 -3992)) ELT)) (-2296 (($ $) 109 T ELT)) (-1351 (($ $) 84 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3402 (($ |#1| $) 83 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3991)) ELT)) (-3838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3991)) ELT)) (-1574 ((|#1| $ (-484) |#1|) 57 (|has| $ (-6 -3992)) ELT)) (-3110 ((|#1| $ (-484)) 55 T ELT)) (-3415 (((-484) (-1 (-85) |#1|) $) 106 T ELT) (((-484) |#1| $) 105 (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) 104 (|has| |#1| (-1013)) ELT)) (-2887 (((-584 |#1|) $) 30 (|has| $ (-6 -3991)) ELT)) (-3610 (($ (-695) |#1|) 74 T ELT)) (-2198 (((-484) $) 47 (|has| (-484) (-757)) ELT)) (-2529 (($ $ $) 91 (|has| |#1| (-757)) ELT)) (-3514 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-757)) ELT)) (-2606 (((-584 |#1|) $) 29 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-2199 (((-484) $) 48 (|has| (-484) (-757)) ELT)) (-2855 (($ $ $) 92 (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3239 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-2302 (($ |#1| $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2201 (((-584 (-484)) $) 50 T ELT)) (-2202 (((-85) (-484) $) 51 T ELT)) (-3240 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3797 ((|#1| $) 46 (|has| (-484) (-757)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2197 (($ $ |#1|) 45 (|has| $ (-6 -3992)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2200 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2203 (((-584 |#1|) $) 52 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-3796 ((|#1| $ (-484) |#1|) 54 T ELT) ((|#1| $ (-484)) 53 T ELT) (($ $ (-1145 (-484))) 75 T ELT)) (-2303 (($ $ (-484)) 68 T ELT) (($ $ (-1145 (-484))) 67 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-1729 (($ $ $ (-484)) 100 (|has| $ (-6 -3992)) ELT)) (-3396 (($ $) 10 T ELT)) (-3968 (((-473) $) 85 (|has| |#1| (-554 (-473))) ELT)) (-3526 (($ (-584 |#1|)) 76 T ELT)) (-3798 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-584 $)) 70 T ELT)) (-3942 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3991)) ELT)) (-2564 (((-85) $ $) 93 (|has| |#1| (-757)) ELT)) (-2565 (((-85) $ $) 95 (|has| |#1| (-757)) ELT)) (-3054 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2682 (((-85) $ $) 94 (|has| |#1| (-757)) ELT)) (-2683 (((-85) $ $) 96 (|has| |#1| (-757)) ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-321 |#1|) (-113) (-1128)) (T -321))
+((-3514 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-321 *3)) (-4 *3 (-1128)))) (-2296 (*1 *1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-1128)))) (-2907 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-321 *3)) (-4 *3 (-1128)))) (-1730 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-321 *4)) (-4 *4 (-1128)) (-5 *2 (-85)))) (-3415 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-321 *4)) (-4 *4 (-1128)) (-5 *2 (-484)))) (-3415 (*1 *2 *3 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-484)))) (-3415 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-321 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)))) (-3514 (*1 *1 *1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-1128)) (-4 *2 (-757)))) (-2907 (*1 *1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-1128)) (-4 *2 (-757)))) (-1730 (*1 *2 *1) (-12 (-4 *1 (-321 *3)) (-4 *3 (-1128)) (-4 *3 (-757)) (-5 *2 (-85)))) (-1729 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-484)) (|has| *1 (-6 -3992)) (-4 *1 (-321 *3)) (-4 *3 (-1128)))) (-2295 (*1 *1 *1) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-321 *2)) (-4 *2 (-1128)))) (-1728 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (|has| *1 (-6 -3992)) (-4 *1 (-321 *3)) (-4 *3 (-1128)))) (-1728 (*1 *1 *1) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-321 *2)) (-4 *2 (-1128)) (-4 *2 (-757)))))
+(-13 (-594 |t#1|) (-10 -8 (-6 -3991) (-15 -3514 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -2296 ($ $)) (-15 -2907 ($ (-1 (-85) |t#1| |t#1|) $)) (-15 -1730 ((-85) (-1 (-85) |t#1| |t#1|) $)) (-15 -3415 ((-484) (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -3415 ((-484) |t#1| $)) (-15 -3415 ((-484) |t#1| $ (-484)))) |%noBranch|) (IF (|has| |t#1| (-757)) (PROGN (-6 (-757)) (-15 -3514 ($ $ $)) (-15 -2907 ($ $)) (-15 -1730 ((-85) $))) |%noBranch|) (IF (|has| $ (-6 -3992)) (PROGN (-15 -1729 ($ $ $ (-484))) (-15 -2295 ($ $)) (-15 -1728 ($ (-1 (-85) |t#1| |t#1|) $)) (IF (|has| |t#1| (-757)) (-15 -1728 ($ $)) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-757)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-539 (-484) |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-594 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-1013) OR (|has| |#1| (-1013)) (|has| |#1| (-757))) ((-1128) . T))
+((-3837 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-3838 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-3954 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT)))
+(((-322 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3954 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3838 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3837 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1128) (-321 |#1|) (-1128) (-321 |#3|)) (T -322))
+((-3837 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-4 *2 (-321 *5)) (-5 *1 (-322 *6 *4 *5 *2)) (-4 *4 (-321 *6)))) (-3838 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-322 *5 *4 *2 *6)) (-4 *4 (-321 *5)) (-4 *6 (-321 *2)))) (-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-4 *2 (-321 *6)) (-5 *1 (-322 *5 *4 *6 *2)) (-4 *4 (-321 *5)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-3930 (((-584 |#1|) $) 42 T ELT)) (-3943 (($ $ (-695)) 43 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3935 (((-1203 |#1| |#2|) (-1203 |#1| |#2|) $) 46 T ELT)) (-3932 (($ $) 44 T ELT)) (-3936 (((-1203 |#1| |#2|) (-1203 |#1| |#2|) $) 47 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3764 (($ $ |#1| $) 41 T ELT) (($ $ (-584 |#1|) (-584 $)) 40 T ELT)) (-3944 (((-695) $) 48 T ELT)) (-3526 (($ $ $) 39 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ |#1|) 51 T ELT) (((-1194 |#1| |#2|) $) 50 T ELT) (((-1203 |#1| |#2|) $) 49 T ELT)) (-3950 ((|#2| (-1203 |#1| |#2|) $) 52 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-1731 (($ (-615 |#1|)) 45 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3945 (($ $ |#2|) 38 (|has| |#2| (-311)) ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 36 T ELT)))
+(((-323 |#1| |#2|) (-113) (-757) (-146)) (T -323))
+((-3950 (*1 *2 *3 *1) (-12 (-5 *3 (-1203 *4 *2)) (-4 *1 (-323 *4 *2)) (-4 *4 (-757)) (-4 *2 (-146)))) (-3942 (*1 *1 *2) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-1194 *3 *4)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-1203 *3 *4)))) (-3944 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-695)))) (-3936 (*1 *2 *2 *1) (-12 (-5 *2 (-1203 *3 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3935 (*1 *2 *2 *1) (-12 (-5 *2 (-1203 *3 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-1731 (*1 *1 *2) (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-4 *1 (-323 *3 *4)) (-4 *4 (-146)))) (-3932 (*1 *1 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146)))) (-3943 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-323 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-584 *3)))) (-3764 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146)))) (-3764 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 *1)) (-4 *1 (-323 *4 *5)) (-4 *4 (-757)) (-4 *5 (-146)))))
+(-13 (-575 |t#2|) (-10 -8 (-15 -3950 (|t#2| (-1203 |t#1| |t#2|) $)) (-15 -3942 ($ |t#1|)) (-15 -3942 ((-1194 |t#1| |t#2|) $)) (-15 -3942 ((-1203 |t#1| |t#2|) $)) (-15 -3944 ((-695) $)) (-15 -3936 ((-1203 |t#1| |t#2|) (-1203 |t#1| |t#2|) $)) (-15 -3935 ((-1203 |t#1| |t#2|) (-1203 |t#1| |t#2|) $)) (-15 -1731 ($ (-615 |t#1|))) (-15 -3932 ($ $)) (-15 -3943 ($ $ (-695))) (-15 -3930 ((-584 |t#1|) $)) (-15 -3764 ($ $ |t#1| $)) (-15 -3764 ($ $ (-584 |t#1|) (-584 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#2|) . T) ((-591 |#2|) . T) ((-575 |#2|) . T) ((-583 |#2|) . T) ((-655 |#2|) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-1013) . T) ((-1128) . T))
+((-1734 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 40 T ELT)) (-1732 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 13 T ELT)) (-1733 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 33 T ELT)))
+(((-324 |#1| |#2|) (-10 -7 (-15 -1732 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1733 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1734 (|#2| (-1 (-85) |#1| |#1|) |#2|))) (-1128) (-13 (-321 |#1|) (-10 -7 (-6 -3992)))) (T -324))
+((-1734 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-324 *4 *2)) (-4 *2 (-13 (-321 *4) (-10 -7 (-6 -3992)))))) (-1733 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-324 *4 *2)) (-4 *2 (-13 (-321 *4) (-10 -7 (-6 -3992)))))) (-1732 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-324 *4 *2)) (-4 *2 (-13 (-321 *4) (-10 -7 (-6 -3992)))))))
+((-2277 (((-631 |#2|) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 22 T ELT) (((-631 (-484)) (-631 $)) 14 T ELT)))
+(((-325 |#1| |#2|) (-10 -7 (-15 -2277 ((-631 (-484)) (-631 |#1|))) (-15 -2277 ((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 |#1|) (-1178 |#1|))) (-15 -2277 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 |#1|) (-1178 |#1|))) (-15 -2277 ((-631 |#2|) (-631 |#1|)))) (-326 |#2|) (-962)) (T -325))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-2277 (((-631 |#1|) (-631 $)) 35 T ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) 34 T ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 46 (|has| |#1| (-581 (-484))) ELT) (((-631 (-484)) (-631 $)) 45 (|has| |#1| (-581 (-484))) ELT)) (-2278 (((-631 |#1|) (-1178 $)) 37 T ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 36 T ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 44 (|has| |#1| (-581 (-484))) ELT) (((-631 (-484)) (-1178 $)) 43 (|has| |#1| (-581 (-484))) ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ |#1| $) 32 T ELT)))
+(((-326 |#1|) (-113) (-962)) (T -326))
+NIL
+(-13 (-581 |t#1|) (-10 -7 (IF (|has| |t#1| (-581 (-484))) (-6 (-581 (-484))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-591 (-484)) |has| |#1| (-581 (-484))) ((-591 |#1|) . T) ((-581 (-484)) |has| |#1| (-581 (-484))) ((-581 |#1|) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 16 T ELT)) (-3126 (((-484) $) 44 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-3767 (($ $) 120 T ELT)) (-3488 (($ $) 81 T ELT)) (-3635 (($ $) 72 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3771 (($ $) NIL T ELT)) (-3967 (((-345 $) $) NIL T ELT)) (-3035 (($ $) 28 T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3486 (($ $) 79 T ELT)) (-3634 (($ $) 67 T ELT)) (-3619 (((-484) $) 60 T ELT)) (-2439 (($ $ (-484)) 55 T ELT)) (-3490 (($ $) NIL T ELT)) (-3633 (($ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3124 (($ $) 122 T ELT)) (-3154 (((-3 (-484) #1#) $) 217 T ELT) (((-3 (-347 (-484)) #1#) $) 213 T ELT)) (-3153 (((-484) $) 215 T ELT) (((-347 (-484)) $) 211 T ELT)) (-2562 (($ $ $) NIL T ELT)) (-1743 (((-484) $ $) 110 T ELT)) (-3463 (((-3 $ #1#) $) 125 T ELT)) (-1742 (((-347 (-484)) $ (-695)) 218 T ELT) (((-347 (-484)) $ (-695) (-695)) 210 T ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-3719 (((-85) $) NIL T ELT)) (-1766 (((-831)) 106 T ELT) (((-831) (-831)) 107 (|has| $ (-6 -3982)) ELT)) (-3183 (((-85) $) 38 T ELT)) (-3623 (($) 22 T ELT)) (-2794 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL T ELT)) (-1735 (((-1184) (-695)) 177 T ELT)) (-1736 (((-1184)) 182 T ELT) (((-1184) (-695)) 183 T ELT)) (-1738 (((-1184)) 184 T ELT) (((-1184) (-695)) 185 T ELT)) (-1737 (((-1184)) 180 T ELT) (((-1184) (-695)) 181 T ELT)) (-3768 (((-484) $) 50 T ELT)) (-2408 (((-85) $) 21 T ELT)) (-3009 (($ $ (-484)) NIL T ELT)) (-2441 (($ $) 32 T ELT)) (-3129 (($ $) NIL T ELT)) (-3184 (((-85) $) 18 T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2529 (($ $ $) NIL T ELT) (($) NIL (-12 (-2558 (|has| $ (-6 -3974))) (-2558 (|has| $ (-6 -3982)))) ELT)) (-2855 (($ $ $) NIL T ELT) (($) NIL (-12 (-2558 (|has| $ (-6 -3974))) (-2558 (|has| $ (-6 -3982)))) ELT)) (-1768 (((-484) $) 112 T ELT)) (-1741 (($) 90 T ELT) (($ $) 97 T ELT)) (-1740 (($) 96 T ELT) (($ $) 98 T ELT)) (-3938 (($ $) 84 T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) 127 T ELT)) (-1765 (((-831) (-484)) 27 (|has| $ (-6 -3982)) ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3125 (($ $) 41 T ELT)) (-3127 (($ $) 119 T ELT)) (-3251 (($ (-484) (-484)) 115 T ELT) (($ (-484) (-484) (-831)) 116 T ELT)) (-3728 (((-345 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2399 (((-484) $) 113 T ELT)) (-1739 (($) 99 T ELT)) (-3939 (($ $) 78 T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-2613 (((-831)) 108 T ELT) (((-831) (-831)) 109 (|has| $ (-6 -3982)) ELT)) (-3754 (($ $) 126 T ELT) (($ $ (-695)) NIL T ELT)) (-1764 (((-831) (-484)) 31 (|has| $ (-6 -3982)) ELT)) (-3491 (($ $) NIL T ELT)) (-3632 (($ $) NIL T ELT)) (-3489 (($ $) NIL T ELT)) (-3631 (($ $) NIL T ELT)) (-3487 (($ $) 80 T ELT)) (-3630 (($ $) 71 T ELT)) (-3968 (((-327) $) 202 T ELT) (((-179) $) 204 T ELT) (((-801 (-327)) $) NIL T ELT) (((-1072) $) 188 T ELT) (((-473) $) 200 T ELT) (($ (-179)) 209 T ELT)) (-3942 (((-773) $) 192 T ELT) (($ (-484)) 214 T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ (-484)) 214 T ELT) (($ (-347 (-484))) NIL T ELT) (((-179) $) 205 T ELT)) (-3123 (((-695)) NIL T CONST)) (-3128 (($ $) 121 T ELT)) (-1767 (((-831)) 42 T ELT) (((-831) (-831)) 62 (|has| $ (-6 -3982)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2692 (((-831)) 111 T ELT)) (-3494 (($ $) 87 T ELT)) (-3482 (($ $) 30 T ELT) (($ $ $) 40 T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-3492 (($ $) 85 T ELT)) (-3480 (($ $) 20 T ELT)) (-3496 (($ $) NIL T ELT)) (-3484 (($ $) NIL T ELT)) (-3497 (($ $) NIL T ELT)) (-3485 (($ $) NIL T ELT)) (-3495 (($ $) NIL T ELT)) (-3483 (($ $) NIL T ELT)) (-3493 (($ $) 86 T ELT)) (-3481 (($ $) 33 T ELT)) (-3379 (($ $) 39 T ELT)) (-2658 (($) 17 T CONST)) (-2664 (($) 24 T CONST)) (-2667 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2564 (((-85) $ $) 189 T ELT)) (-2565 (((-85) $ $) 26 T ELT)) (-3054 (((-85) $ $) 37 T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) 43 T ELT)) (-3945 (($ $ $) 29 T ELT) (($ $ (-484)) 23 T ELT)) (-3833 (($ $) 19 T ELT) (($ $ $) 34 T ELT)) (-3835 (($ $ $) 54 T ELT)) (** (($ $ (-831)) 65 T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) 91 T ELT) (($ $ (-347 (-484))) 137 T ELT) (($ $ $) 129 T ELT)) (* (($ (-831) $) 61 T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 66 T ELT) (($ $ $) 53 T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT)))
+(((-327) (-13 (-344) (-190) (-554 (-1072)) (-553 (-179)) (-1114) (-554 (-473)) (-558 (-179)) (-10 -8 (-15 -3945 ($ $ (-484))) (-15 ** ($ $ $)) (-15 -2441 ($ $)) (-15 -1743 ((-484) $ $)) (-15 -2439 ($ $ (-484))) (-15 -1742 ((-347 (-484)) $ (-695))) (-15 -1742 ((-347 (-484)) $ (-695) (-695))) (-15 -1741 ($)) (-15 -1740 ($)) (-15 -1739 ($)) (-15 -3482 ($ $ $)) (-15 -1741 ($ $)) (-15 -1740 ($ $)) (-15 -1738 ((-1184))) (-15 -1738 ((-1184) (-695))) (-15 -1737 ((-1184))) (-15 -1737 ((-1184) (-695))) (-15 -1736 ((-1184))) (-15 -1736 ((-1184) (-695))) (-15 -1735 ((-1184) (-695))) (-6 -3982) (-6 -3974)))) (T -327))
+((** (*1 *1 *1 *1) (-5 *1 (-327))) (-3945 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-327)))) (-2441 (*1 *1 *1) (-5 *1 (-327))) (-1743 (*1 *2 *1 *1) (-12 (-5 *2 (-484)) (-5 *1 (-327)))) (-2439 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-327)))) (-1742 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-347 (-484))) (-5 *1 (-327)))) (-1742 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-347 (-484))) (-5 *1 (-327)))) (-1741 (*1 *1) (-5 *1 (-327))) (-1740 (*1 *1) (-5 *1 (-327))) (-1739 (*1 *1) (-5 *1 (-327))) (-3482 (*1 *1 *1 *1) (-5 *1 (-327))) (-1741 (*1 *1 *1) (-5 *1 (-327))) (-1740 (*1 *1 *1) (-5 *1 (-327))) (-1738 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-327)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1184)) (-5 *1 (-327)))) (-1737 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-327)))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1184)) (-5 *1 (-327)))) (-1736 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-327)))) (-1736 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1184)) (-5 *1 (-327)))) (-1735 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1184)) (-5 *1 (-327)))))
+((-1744 (((-584 (-248 (-858 (-142 |#1|)))) (-248 (-347 (-858 (-142 (-484))))) |#1|) 52 T ELT) (((-584 (-248 (-858 (-142 |#1|)))) (-347 (-858 (-142 (-484)))) |#1|) 51 T ELT) (((-584 (-584 (-248 (-858 (-142 |#1|))))) (-584 (-248 (-347 (-858 (-142 (-484)))))) |#1|) 48 T ELT) (((-584 (-584 (-248 (-858 (-142 |#1|))))) (-584 (-347 (-858 (-142 (-484))))) |#1|) 42 T ELT)) (-1745 (((-584 (-584 (-142 |#1|))) (-584 (-347 (-858 (-142 (-484))))) (-584 (-1089)) |#1|) 30 T ELT) (((-584 (-142 |#1|)) (-347 (-858 (-142 (-484)))) |#1|) 18 T ELT)))
+(((-328 |#1|) (-10 -7 (-15 -1744 ((-584 (-584 (-248 (-858 (-142 |#1|))))) (-584 (-347 (-858 (-142 (-484))))) |#1|)) (-15 -1744 ((-584 (-584 (-248 (-858 (-142 |#1|))))) (-584 (-248 (-347 (-858 (-142 (-484)))))) |#1|)) (-15 -1744 ((-584 (-248 (-858 (-142 |#1|)))) (-347 (-858 (-142 (-484)))) |#1|)) (-15 -1744 ((-584 (-248 (-858 (-142 |#1|)))) (-248 (-347 (-858 (-142 (-484))))) |#1|)) (-15 -1745 ((-584 (-142 |#1|)) (-347 (-858 (-142 (-484)))) |#1|)) (-15 -1745 ((-584 (-584 (-142 |#1|))) (-584 (-347 (-858 (-142 (-484))))) (-584 (-1089)) |#1|))) (-13 (-311) (-756))) (T -328))
+((-1745 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-347 (-858 (-142 (-484)))))) (-5 *4 (-584 (-1089))) (-5 *2 (-584 (-584 (-142 *5)))) (-5 *1 (-328 *5)) (-4 *5 (-13 (-311) (-756))))) (-1745 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-858 (-142 (-484))))) (-5 *2 (-584 (-142 *4))) (-5 *1 (-328 *4)) (-4 *4 (-13 (-311) (-756))))) (-1744 (*1 *2 *3 *4) (-12 (-5 *3 (-248 (-347 (-858 (-142 (-484)))))) (-5 *2 (-584 (-248 (-858 (-142 *4))))) (-5 *1 (-328 *4)) (-4 *4 (-13 (-311) (-756))))) (-1744 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-858 (-142 (-484))))) (-5 *2 (-584 (-248 (-858 (-142 *4))))) (-5 *1 (-328 *4)) (-4 *4 (-13 (-311) (-756))))) (-1744 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-248 (-347 (-858 (-142 (-484))))))) (-5 *2 (-584 (-584 (-248 (-858 (-142 *4)))))) (-5 *1 (-328 *4)) (-4 *4 (-13 (-311) (-756))))) (-1744 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-347 (-858 (-142 (-484)))))) (-5 *2 (-584 (-584 (-248 (-858 (-142 *4)))))) (-5 *1 (-328 *4)) (-4 *4 (-13 (-311) (-756))))))
+((-3569 (((-584 (-248 (-858 |#1|))) (-248 (-347 (-858 (-484)))) |#1|) 47 T ELT) (((-584 (-248 (-858 |#1|))) (-347 (-858 (-484))) |#1|) 46 T ELT) (((-584 (-584 (-248 (-858 |#1|)))) (-584 (-248 (-347 (-858 (-484))))) |#1|) 43 T ELT) (((-584 (-584 (-248 (-858 |#1|)))) (-584 (-347 (-858 (-484)))) |#1|) 37 T ELT)) (-1746 (((-584 |#1|) (-347 (-858 (-484))) |#1|) 20 T ELT) (((-584 (-584 |#1|)) (-584 (-347 (-858 (-484)))) (-584 (-1089)) |#1|) 30 T ELT)))
+(((-329 |#1|) (-10 -7 (-15 -3569 ((-584 (-584 (-248 (-858 |#1|)))) (-584 (-347 (-858 (-484)))) |#1|)) (-15 -3569 ((-584 (-584 (-248 (-858 |#1|)))) (-584 (-248 (-347 (-858 (-484))))) |#1|)) (-15 -3569 ((-584 (-248 (-858 |#1|))) (-347 (-858 (-484))) |#1|)) (-15 -3569 ((-584 (-248 (-858 |#1|))) (-248 (-347 (-858 (-484)))) |#1|)) (-15 -1746 ((-584 (-584 |#1|)) (-584 (-347 (-858 (-484)))) (-584 (-1089)) |#1|)) (-15 -1746 ((-584 |#1|) (-347 (-858 (-484))) |#1|))) (-13 (-756) (-311))) (T -329))
+((-1746 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-858 (-484)))) (-5 *2 (-584 *4)) (-5 *1 (-329 *4)) (-4 *4 (-13 (-756) (-311))))) (-1746 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-347 (-858 (-484))))) (-5 *4 (-584 (-1089))) (-5 *2 (-584 (-584 *5))) (-5 *1 (-329 *5)) (-4 *5 (-13 (-756) (-311))))) (-3569 (*1 *2 *3 *4) (-12 (-5 *3 (-248 (-347 (-858 (-484))))) (-5 *2 (-584 (-248 (-858 *4)))) (-5 *1 (-329 *4)) (-4 *4 (-13 (-756) (-311))))) (-3569 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-858 (-484)))) (-5 *2 (-584 (-248 (-858 *4)))) (-5 *1 (-329 *4)) (-4 *4 (-13 (-756) (-311))))) (-3569 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-248 (-347 (-858 (-484)))))) (-5 *2 (-584 (-584 (-248 (-858 *4))))) (-5 *1 (-329 *4)) (-4 *4 (-13 (-756) (-311))))) (-3569 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-347 (-858 (-484))))) (-5 *2 (-584 (-584 (-248 (-858 *4))))) (-5 *1 (-329 *4)) (-4 *4 (-13 (-756) (-311))))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3770 (((-584 (-783 |#2| |#1|)) $) NIL T ELT)) (-1310 (((-3 $ "failed") $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3955 (($ $) NIL T ELT)) (-2891 (($ |#1| |#2|) NIL T ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1982 ((|#2| $) NIL T ELT)) (-3171 ((|#1| $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 34 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) 12 T CONST)) (-3054 (((-85) $ $) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT)))
+(((-330 |#1| |#2|) (-13 (-82 |#1| |#1|) (-447 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-146)) (-6 (-655 |#1|)) |%noBranch|))) (-962) (-760)) (T -330))
+NIL
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#2| #1#) $) 29 T ELT)) (-3153 ((|#2| $) 31 T ELT)) (-3955 (($ $) NIL T ELT)) (-2418 (((-695) $) 13 T ELT)) (-2819 (((-584 $) $) 23 T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3934 (($ |#2| |#1|) 21 T ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1747 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-2892 ((|#2| $) 18 T ELT)) (-3171 ((|#1| $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 50 T ELT) (($ |#2|) 30 T ELT)) (-3813 (((-584 |#1|) $) 20 T ELT)) (-3673 ((|#1| $ |#2|) 54 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) 32 T CONST)) (-2663 (((-584 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#1| $) 35 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 38 T ELT) (($ |#2| |#1|) 39 T ELT)))
+(((-331 |#1| |#2|) (-13 (-332 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-962) (-757)) (T -331))
+((* (*1 *1 *2 *3) (-12 (-5 *1 (-331 *3 *2)) (-4 *3 (-962)) (-4 *2 (-757)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3154 (((-3 |#2| "failed") $) 54 T ELT)) (-3153 ((|#2| $) 55 T ELT)) (-3955 (($ $) 40 T ELT)) (-2418 (((-695) $) 44 T ELT)) (-2819 (((-584 $) $) 45 T ELT)) (-3933 (((-85) $) 48 T ELT)) (-3934 (($ |#2| |#1|) 49 T ELT)) (-3954 (($ (-1 |#1| |#1|) $) 50 T ELT)) (-1747 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 41 T ELT)) (-2892 ((|#2| $) 43 T ELT)) (-3171 ((|#1| $) 42 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ |#2|) 53 T ELT)) (-3813 (((-584 |#1|) $) 46 T ELT)) (-3673 ((|#1| $ |#2|) 51 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-2663 (((-584 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 47 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 52 T ELT)))
+(((-332 |#1| |#2|) (-113) (-962) (-1013)) (T -332))
+((* (*1 *1 *2 *3) (-12 (-4 *1 (-332 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1013)))) (-3673 (*1 *2 *1 *3) (-12 (-4 *1 (-332 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-962)))) (-3954 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-332 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1013)))) (-3934 (*1 *1 *2 *3) (-12 (-4 *1 (-332 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1013)))) (-3933 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1013)) (-5 *2 (-85)))) (-2663 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1013)) (-5 *2 (-584 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3813 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1013)) (-5 *2 (-584 *3)))) (-2819 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-1013)) (-5 *2 (-584 *1)) (-4 *1 (-332 *3 *4)))) (-2418 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1013)) (-5 *2 (-695)))) (-2892 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1013)))) (-3171 (*1 *2 *1) (-12 (-4 *1 (-332 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-962)))) (-1747 (*1 *2 *1) (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1013)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3955 (*1 *1 *1) (-12 (-4 *1 (-332 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1013)))))
+(-13 (-82 |t#1| |t#1|) (-951 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3673 (|t#1| $ |t#2|)) (-15 -3954 ($ (-1 |t#1| |t#1|) $)) (-15 -3934 ($ |t#2| |t#1|)) (-15 -3933 ((-85) $)) (-15 -2663 ((-584 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3813 ((-584 |t#1|) $)) (-15 -2819 ((-584 $) $)) (-15 -2418 ((-695) $)) (-15 -2892 (|t#2| $)) (-15 -3171 (|t#1| $)) (-15 -1747 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3955 ($ $)) (IF (|has| |t#1| (-146)) (-6 (-655 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 |#2|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-951 |#2|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) 7 T ELT)) (-3133 (((-695) $) 40 T ELT)) (-3720 (($) 23 T CONST)) (-3935 (((-3 $ "failed") $ $) 43 T ELT)) (-3154 (((-3 |#1| "failed") $) 51 T ELT)) (-3153 ((|#1| $) 52 T ELT)) (-3463 (((-3 $ "failed") $) 20 T ELT)) (-1748 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 41 T ELT)) (-2408 (((-85) $) 22 T ELT)) (-2297 ((|#1| $ (-484)) 37 T ELT)) (-2298 (((-695) $ (-484)) 38 T ELT)) (-2529 (($ $ $) 29 (|has| |#1| (-757)) ELT)) (-2855 (($ $ $) 30 (|has| |#1| (-757)) ELT)) (-2288 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2289 (($ (-1 (-695) (-695)) $) 36 T ELT)) (-3936 (((-3 $ "failed") $ $) 44 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-1749 (($ $ $) 45 T ELT)) (-1750 (($ $ $) 46 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-1777 (((-584 (-2 (|:| |gen| |#1|) (|:| -3939 (-695)))) $) 39 T ELT)) (-2877 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 42 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ |#1|) 50 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2664 (($) 24 T CONST)) (-2564 (((-85) $ $) 31 (|has| |#1| (-757)) ELT)) (-2565 (((-85) $ $) 33 (|has| |#1| (-757)) ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-2682 (((-85) $ $) 32 (|has| |#1| (-757)) ELT)) (-2683 (((-85) $ $) 34 (|has| |#1| (-757)) ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 21 T ELT) (($ |#1| (-695)) 47 T ELT)) (* (($ $ $) 18 T ELT) (($ |#1| $) 49 T ELT) (($ $ |#1|) 48 T ELT)))
+(((-333 |#1|) (-113) (-1013)) (T -333))
+((* (*1 *1 *2 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-1013)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-333 *2)) (-4 *2 (-1013)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-333 *2)) (-4 *2 (-1013)))) (-1750 (*1 *1 *1 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-1013)))) (-1749 (*1 *1 *1 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-1013)))) (-3936 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-333 *2)) (-4 *2 (-1013)))) (-3935 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-333 *2)) (-4 *2 (-1013)))) (-2877 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1013)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-333 *3)))) (-1748 (*1 *2 *1 *1) (-12 (-4 *3 (-1013)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-333 *3)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-333 *3)) (-4 *3 (-1013)) (-5 *2 (-695)))) (-1777 (*1 *2 *1) (-12 (-4 *1 (-333 *3)) (-4 *3 (-1013)) (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3939 (-695))))))) (-2298 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-333 *4)) (-4 *4 (-1013)) (-5 *2 (-695)))) (-2297 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-333 *2)) (-4 *2 (-1013)))) (-2289 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-695) (-695))) (-4 *1 (-333 *3)) (-4 *3 (-1013)))) (-2288 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3)) (-4 *3 (-1013)))))
+(-13 (-664) (-951 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-695))) (-15 -1750 ($ $ $)) (-15 -1749 ($ $ $)) (-15 -3936 ((-3 $ "failed") $ $)) (-15 -3935 ((-3 $ "failed") $ $)) (-15 -2877 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1748 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3133 ((-695) $)) (-15 -1777 ((-584 (-2 (|:| |gen| |t#1|) (|:| -3939 (-695)))) $)) (-15 -2298 ((-695) $ (-484))) (-15 -2297 (|t#1| $ (-484))) (-15 -2289 ($ (-1 (-695) (-695)) $)) (-15 -2288 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|)))
+(((-72) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-13) . T) ((-664) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-951 |#1|) . T) ((-1025) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3133 (((-695) $) 74 T ELT)) (-3720 (($) NIL T CONST)) (-3935 (((-3 $ #1="failed") $ $) 77 T ELT)) (-3154 (((-3 |#1| #1#) $) NIL T ELT)) (-3153 ((|#1| $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-1748 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-2408 (((-85) $) 17 T ELT)) (-2297 ((|#1| $ (-484)) NIL T ELT)) (-2298 (((-695) $ (-484)) NIL T ELT)) (-2529 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2855 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2288 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-2289 (($ (-1 (-695) (-695)) $) 37 T ELT)) (-3936 (((-3 $ #1#) $ $) 60 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-1749 (($ $ $) 28 T ELT)) (-1750 (($ $ $) 26 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1777 (((-584 (-2 (|:| |gen| |#1|) (|:| -3939 (-695)))) $) 34 T ELT)) (-2877 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) 70 T ELT)) (-3942 (((-773) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2664 (($) 7 T CONST)) (-2564 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2683 (((-85) $ $) 83 (|has| |#1| (-757)) ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ |#1| (-695)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT)))
+(((-334 |#1|) (-333 |#1|) (-1013)) (T -334))
+NIL
+((-2566 (((-85) $ $) NIL T ELT)) (-1751 (((-85) $) 25 T ELT)) (-1752 (((-85) $) 22 T ELT)) (-3610 (($ (-1072) (-1072) (-1072)) 26 T ELT)) (-3538 (((-1072) $) 16 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1756 (($ (-1072) (-1072) (-1072)) 14 T ELT)) (-1754 (((-1072) $) 17 T ELT)) (-1753 (((-85) $) 18 T ELT)) (-1755 (((-1072) $) 15 T ELT)) (-3942 (((-773) $) 12 T ELT) (($ (-1072)) 13 T ELT) (((-1072) $) 9 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 7 T ELT)))
(((-335) (-336)) (T -335))
NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-1750 (((-85) $) 20 T ELT)) (-1751 (((-85) $) 21 T ELT)) (-3608 (($ (-1071) (-1071) (-1071)) 19 T ELT)) (-3536 (((-1071) $) 24 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-1755 (($ (-1071) (-1071) (-1071)) 26 T ELT)) (-1753 (((-1071) $) 23 T ELT)) (-1752 (((-85) $) 22 T ELT)) (-1754 (((-1071) $) 25 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-1071)) 28 T ELT) (((-1071) $) 27 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT)))
+((-2566 (((-85) $ $) 7 T ELT)) (-1751 (((-85) $) 20 T ELT)) (-1752 (((-85) $) 21 T ELT)) (-3610 (($ (-1072) (-1072) (-1072)) 19 T ELT)) (-3538 (((-1072) $) 24 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-1756 (($ (-1072) (-1072) (-1072)) 26 T ELT)) (-1754 (((-1072) $) 23 T ELT)) (-1753 (((-85) $) 22 T ELT)) (-1755 (((-1072) $) 25 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-1072)) 28 T ELT) (((-1072) $) 27 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3054 (((-85) $ $) 8 T ELT)))
(((-336) (-113)) (T -336))
-((-1755 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1071)) (-4 *1 (-336)))) (-1754 (*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-1071)))) (-3536 (*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-1071)))) (-1753 (*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-1071)))) (-1752 (*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-85)))) (-1751 (*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-85)))) (-1750 (*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-85)))) (-3608 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1071)) (-4 *1 (-336)))))
-(-13 (-1012) (-427 (-1071)) (-10 -8 (-15 -1755 ($ (-1071) (-1071) (-1071))) (-15 -1754 ((-1071) $)) (-15 -3536 ((-1071) $)) (-15 -1753 ((-1071) $)) (-15 -1752 ((-85) $)) (-15 -1751 ((-85) $)) (-15 -1750 ((-85) $)) (-15 -3608 ($ (-1071) (-1071) (-1071)))))
-(((-72) . T) ((-555 (-1071)) . T) ((-552 (-772)) . T) ((-552 (-1071)) . T) ((-427 (-1071)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ "failed") $ $) NIL T ELT)) (-1756 (((-772) $) 64 T ELT)) (-3718 (($) NIL T CONST)) (-2403 (($ $ (-830)) NIL T ELT)) (-2429 (($ $ (-830)) NIL T ELT)) (-2402 (($ $ (-830)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2405 (($ (-694)) 38 T ELT)) (-3905 (((-694)) 18 T ELT)) (-1757 (((-772) $) 66 T ELT)) (-2431 (($ $ $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2432 (($ $ $ $) NIL T ELT)) (-2430 (($ $ $) NIL T ELT)) (-2656 (($) 24 T CONST)) (-3052 (((-85) $ $) 41 T ELT)) (-3831 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-3833 (($ $ $) 51 T ELT)) (** (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT)))
-(((-337 |#1| |#2| |#3|) (-13 (-683 |#3|) (-10 -8 (-15 -3905 ((-694))) (-15 -1757 ((-772) $)) (-15 -1756 ((-772) $)) (-15 -2405 ($ (-694))))) (-694) (-694) (-146)) (T -337))
-((-3905 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146)))) (-1757 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 (-694)) (-14 *4 (-694)) (-4 *5 (-146)))) (-1756 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 (-694)) (-14 *4 (-694)) (-4 *5 (-146)))) (-2405 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146)))))
-((-3766 (((-694) (-282 |#1| |#2| |#3| |#4|)) 16 T ELT)))
-(((-338 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3766 ((-694) (-282 |#1| |#2| |#3| |#4|)))) (-13 (-317) (-311)) (-1153 |#1|) (-1153 (-347 |#2|)) (-290 |#1| |#2| |#3|)) (T -338))
-((-3766 (*1 *2 *3) (-12 (-5 *3 (-282 *4 *5 *6 *7)) (-4 *4 (-13 (-317) (-311))) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-347 *5))) (-4 *7 (-290 *4 *5 *6)) (-5 *2 (-694)) (-5 *1 (-338 *4 *5 *6 *7)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-1759 ((|#2| $) 38 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1760 (($ (-347 |#2|)) 93 T ELT)) (-1758 (((-583 (-2 (|:| -2397 (-694)) (|:| -3767 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-3752 (($ $ (-694)) 36 T ELT) (($ $) 34 T ELT)) (-3966 (((-347 |#2|) $) 49 T ELT)) (-3524 (($ (-583 (-2 (|:| -2397 (-694)) (|:| -3767 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-3940 (((-772) $) 131 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2665 (($ $ (-694)) 37 T ELT) (($ $) 35 T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3833 (($ |#2| $) 41 T ELT)))
-(((-339 |#1| |#2|) (-13 (-1012) (-189) (-553 (-347 |#2|)) (-10 -8 (-15 -3833 ($ |#2| $)) (-15 -1760 ($ (-347 |#2|))) (-15 -1759 (|#2| $)) (-15 -1758 ((-583 (-2 (|:| -2397 (-694)) (|:| -3767 |#2|) (|:| |num| |#2|))) $)) (-15 -3524 ($ (-583 (-2 (|:| -2397 (-694)) (|:| -3767 |#2|) (|:| |num| |#2|))))))) (-13 (-311) (-120)) (-1153 |#1|)) (T -339))
-((-3833 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-311) (-120))) (-5 *1 (-339 *3 *2)) (-4 *2 (-1153 *3)))) (-1760 (*1 *1 *2) (-12 (-5 *2 (-347 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-13 (-311) (-120))) (-5 *1 (-339 *3 *4)))) (-1759 (*1 *2 *1) (-12 (-4 *2 (-1153 *3)) (-5 *1 (-339 *3 *2)) (-4 *3 (-13 (-311) (-120))))) (-1758 (*1 *2 *1) (-12 (-4 *3 (-13 (-311) (-120))) (-5 *2 (-583 (-2 (|:| -2397 (-694)) (|:| -3767 *4) (|:| |num| *4)))) (-5 *1 (-339 *3 *4)) (-4 *4 (-1153 *3)))) (-3524 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2397 (-694)) (|:| -3767 *4) (|:| |num| *4)))) (-4 *4 (-1153 *3)) (-4 *3 (-13 (-311) (-120))) (-5 *1 (-339 *3 *4)))))
-((-2564 (((-85) $ $) 10 (OR (|has| |#1| (-796 (-483))) (|has| |#1| (-796 (-327)))) ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 16 (|has| |#1| (-796 (-327))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) 15 (|has| |#1| (-796 (-483))) ELT)) (-3237 (((-1071) $) 14 (OR (|has| |#1| (-796 (-483))) (|has| |#1| (-796 (-327)))) ELT)) (-3238 (((-1032) $) 13 (OR (|has| |#1| (-796 (-483))) (|has| |#1| (-796 (-327)))) ELT)) (-3940 (((-772) $) 12 (OR (|has| |#1| (-796 (-483))) (|has| |#1| (-796 (-327)))) ELT)) (-1262 (((-85) $ $) 11 (OR (|has| |#1| (-796 (-483))) (|has| |#1| (-796 (-327)))) ELT)) (-3052 (((-85) $ $) 9 (OR (|has| |#1| (-796 (-483))) (|has| |#1| (-796 (-327)))) ELT)))
-(((-340 |#1|) (-113) (-1127)) (T -340))
-NIL
-(-13 (-1127) (-10 -7 (IF (|has| |t#1| (-796 (-483))) (-6 (-796 (-483))) |%noBranch|) (IF (|has| |t#1| (-796 (-327))) (-6 (-796 (-327))) |%noBranch|)))
-(((-72) OR (|has| |#1| (-796 (-483))) (|has| |#1| (-796 (-327)))) ((-552 (-772)) OR (|has| |#1| (-796 (-483))) (|has| |#1| (-796 (-327)))) ((-13) . T) ((-796 (-327)) |has| |#1| (-796 (-327))) ((-796 (-483)) |has| |#1| (-796 (-483))) ((-1012) OR (|has| |#1| (-796 (-483))) (|has| |#1| (-796 (-327)))) ((-1127) . T))
-((-1761 (($ $) 10 T ELT) (($ $ (-694)) 12 T ELT)))
-(((-341 |#1|) (-10 -7 (-15 -1761 (|#1| |#1| (-694))) (-15 -1761 (|#1| |#1|))) (-342)) (T -341))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3769 (($ $) 89 T ELT)) (-3965 (((-345 $) $) 88 T ELT)) (-1605 (((-85) $ $) 73 T ELT)) (-3718 (($) 22 T CONST)) (-2560 (($ $ $) 69 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2559 (($ $ $) 70 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 64 T ELT)) (-1761 (($ $) 95 T ELT) (($ $ (-694)) 94 T ELT)) (-3717 (((-85) $) 87 T ELT)) (-3766 (((-743 (-830)) $) 97 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-1602 (((-3 (-583 $) #1="failed") (-583 $) $) 66 T ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 86 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3726 (((-345 $) $) 90 T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 63 T ELT)) (-1604 (((-694) $) 72 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 71 T ELT)) (-1762 (((-3 (-694) "failed") $ $) 96 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-483))) 82 T ELT)) (-2698 (((-632 $) $) 98 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ $) 81 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 85 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-483))) 84 T ELT) (($ (-347 (-483)) $) 83 T ELT)))
+((-1756 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1072)) (-4 *1 (-336)))) (-1755 (*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-1072)))) (-3538 (*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-1072)))) (-1754 (*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-1072)))) (-1753 (*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-85)))) (-1752 (*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-85)))) (-1751 (*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-85)))) (-3610 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1072)) (-4 *1 (-336)))))
+(-13 (-1013) (-427 (-1072)) (-10 -8 (-15 -1756 ($ (-1072) (-1072) (-1072))) (-15 -1755 ((-1072) $)) (-15 -3538 ((-1072) $)) (-15 -1754 ((-1072) $)) (-15 -1753 ((-85) $)) (-15 -1752 ((-85) $)) (-15 -1751 ((-85) $)) (-15 -3610 ($ (-1072) (-1072) (-1072)))))
+(((-72) . T) ((-556 (-1072)) . T) ((-553 (-773)) . T) ((-553 (-1072)) . T) ((-427 (-1072)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1310 (((-3 $ "failed") $ $) NIL T ELT)) (-1757 (((-773) $) 64 T ELT)) (-3720 (($) NIL T CONST)) (-2405 (($ $ (-831)) NIL T ELT)) (-2431 (($ $ (-831)) NIL T ELT)) (-2404 (($ $ (-831)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2407 (($ (-695)) 38 T ELT)) (-3907 (((-695)) 18 T ELT)) (-1758 (((-773) $) 66 T ELT)) (-2433 (($ $ $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2434 (($ $ $ $) NIL T ELT)) (-2432 (($ $ $) NIL T ELT)) (-2658 (($) 24 T CONST)) (-3054 (((-85) $ $) 41 T ELT)) (-3833 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-3835 (($ $ $) 51 T ELT)) (** (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT)))
+(((-337 |#1| |#2| |#3|) (-13 (-684 |#3|) (-10 -8 (-15 -3907 ((-695))) (-15 -1758 ((-773) $)) (-15 -1757 ((-773) $)) (-15 -2407 ($ (-695))))) (-695) (-695) (-146)) (T -337))
+((-3907 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146)))) (-1758 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 (-695)) (-14 *4 (-695)) (-4 *5 (-146)))) (-1757 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 (-695)) (-14 *4 (-695)) (-4 *5 (-146)))) (-2407 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146)))))
+((-3768 (((-695) (-282 |#1| |#2| |#3| |#4|)) 16 T ELT)))
+(((-338 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3768 ((-695) (-282 |#1| |#2| |#3| |#4|)))) (-13 (-317) (-311)) (-1154 |#1|) (-1154 (-347 |#2|)) (-290 |#1| |#2| |#3|)) (T -338))
+((-3768 (*1 *2 *3) (-12 (-5 *3 (-282 *4 *5 *6 *7)) (-4 *4 (-13 (-317) (-311))) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-347 *5))) (-4 *7 (-290 *4 *5 *6)) (-5 *2 (-695)) (-5 *1 (-338 *4 *5 *6 *7)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-1760 ((|#2| $) 38 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1761 (($ (-347 |#2|)) 93 T ELT)) (-1759 (((-584 (-2 (|:| -2399 (-695)) (|:| -3769 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-3754 (($ $ (-695)) 36 T ELT) (($ $) 34 T ELT)) (-3968 (((-347 |#2|) $) 49 T ELT)) (-3526 (($ (-584 (-2 (|:| -2399 (-695)) (|:| -3769 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-3942 (((-773) $) 131 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2667 (($ $ (-695)) 37 T ELT) (($ $) 35 T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3835 (($ |#2| $) 41 T ELT)))
+(((-339 |#1| |#2|) (-13 (-1013) (-189) (-554 (-347 |#2|)) (-10 -8 (-15 -3835 ($ |#2| $)) (-15 -1761 ($ (-347 |#2|))) (-15 -1760 (|#2| $)) (-15 -1759 ((-584 (-2 (|:| -2399 (-695)) (|:| -3769 |#2|) (|:| |num| |#2|))) $)) (-15 -3526 ($ (-584 (-2 (|:| -2399 (-695)) (|:| -3769 |#2|) (|:| |num| |#2|))))))) (-13 (-311) (-120)) (-1154 |#1|)) (T -339))
+((-3835 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-311) (-120))) (-5 *1 (-339 *3 *2)) (-4 *2 (-1154 *3)))) (-1761 (*1 *1 *2) (-12 (-5 *2 (-347 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-13 (-311) (-120))) (-5 *1 (-339 *3 *4)))) (-1760 (*1 *2 *1) (-12 (-4 *2 (-1154 *3)) (-5 *1 (-339 *3 *2)) (-4 *3 (-13 (-311) (-120))))) (-1759 (*1 *2 *1) (-12 (-4 *3 (-13 (-311) (-120))) (-5 *2 (-584 (-2 (|:| -2399 (-695)) (|:| -3769 *4) (|:| |num| *4)))) (-5 *1 (-339 *3 *4)) (-4 *4 (-1154 *3)))) (-3526 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| -2399 (-695)) (|:| -3769 *4) (|:| |num| *4)))) (-4 *4 (-1154 *3)) (-4 *3 (-13 (-311) (-120))) (-5 *1 (-339 *3 *4)))))
+((-2566 (((-85) $ $) 10 (OR (|has| |#1| (-797 (-484))) (|has| |#1| (-797 (-327)))) ELT)) (-2794 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 16 (|has| |#1| (-797 (-327))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) 15 (|has| |#1| (-797 (-484))) ELT)) (-3239 (((-1072) $) 14 (OR (|has| |#1| (-797 (-484))) (|has| |#1| (-797 (-327)))) ELT)) (-3240 (((-1033) $) 13 (OR (|has| |#1| (-797 (-484))) (|has| |#1| (-797 (-327)))) ELT)) (-3942 (((-773) $) 12 (OR (|has| |#1| (-797 (-484))) (|has| |#1| (-797 (-327)))) ELT)) (-1263 (((-85) $ $) 11 (OR (|has| |#1| (-797 (-484))) (|has| |#1| (-797 (-327)))) ELT)) (-3054 (((-85) $ $) 9 (OR (|has| |#1| (-797 (-484))) (|has| |#1| (-797 (-327)))) ELT)))
+(((-340 |#1|) (-113) (-1128)) (T -340))
+NIL
+(-13 (-1128) (-10 -7 (IF (|has| |t#1| (-797 (-484))) (-6 (-797 (-484))) |%noBranch|) (IF (|has| |t#1| (-797 (-327))) (-6 (-797 (-327))) |%noBranch|)))
+(((-72) OR (|has| |#1| (-797 (-484))) (|has| |#1| (-797 (-327)))) ((-553 (-773)) OR (|has| |#1| (-797 (-484))) (|has| |#1| (-797 (-327)))) ((-13) . T) ((-797 (-327)) |has| |#1| (-797 (-327))) ((-797 (-484)) |has| |#1| (-797 (-484))) ((-1013) OR (|has| |#1| (-797 (-484))) (|has| |#1| (-797 (-327)))) ((-1128) . T))
+((-1762 (($ $) 10 T ELT) (($ $ (-695)) 12 T ELT)))
+(((-341 |#1|) (-10 -7 (-15 -1762 (|#1| |#1| (-695))) (-15 -1762 (|#1| |#1|))) (-342)) (T -341))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 53 T ELT)) (-2061 (($ $) 52 T ELT)) (-2059 (((-85) $) 50 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3771 (($ $) 89 T ELT)) (-3967 (((-345 $) $) 88 T ELT)) (-1606 (((-85) $ $) 73 T ELT)) (-3720 (($) 22 T CONST)) (-2562 (($ $ $) 69 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2561 (($ $ $) 70 T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) 64 T ELT)) (-1762 (($ $) 95 T ELT) (($ $ (-695)) 94 T ELT)) (-3719 (((-85) $) 87 T ELT)) (-3768 (((-744 (-831)) $) 97 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-1603 (((-3 (-584 $) #1="failed") (-584 $) $) 66 T ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-2482 (($ $) 86 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3141 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3728 (((-345 $) $) 90 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3462 (((-3 $ "failed") $ $) 54 T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) 63 T ELT)) (-1605 (((-695) $) 72 T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 71 T ELT)) (-1763 (((-3 (-695) "failed") $ $) 96 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-484))) 82 T ELT)) (-2700 (((-633 $) $) 98 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2060 (((-85) $ $) 51 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3945 (($ $ $) 81 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 85 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-484))) 84 T ELT) (($ (-347 (-484)) $) 83 T ELT)))
(((-342) (-113)) (T -342))
-((-3766 (*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-743 (-830))))) (-1762 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-342)) (-5 *2 (-694)))) (-1761 (*1 *1 *1) (-4 *1 (-342))) (-1761 (*1 *1 *1 *2) (-12 (-4 *1 (-342)) (-5 *2 (-694)))))
-(-13 (-311) (-118) (-10 -8 (-15 -3766 ((-743 (-830)) $)) (-15 -1762 ((-3 (-694) "failed") $ $)) (-15 -1761 ($ $)) (-15 -1761 ($ $ (-694)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-483))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-555 (-347 (-483))) . T) ((-555 (-483)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-201) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-389) . T) ((-494) . T) ((-13) . T) ((-588 (-347 (-483))) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 (-347 (-483))) . T) ((-590 $) . T) ((-582 (-347 (-483))) . T) ((-582 $) . T) ((-654 (-347 (-483))) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-963 (-347 (-483))) . T) ((-963 $) . T) ((-968 (-347 (-483))) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) . T))
-((-3249 (($ (-483) (-483)) 11 T ELT) (($ (-483) (-483) (-830)) NIL T ELT)) (-2611 (((-830)) 19 T ELT) (((-830) (-830)) NIL T ELT)))
-(((-343 |#1|) (-10 -7 (-15 -2611 ((-830) (-830))) (-15 -2611 ((-830))) (-15 -3249 (|#1| (-483) (-483) (-830))) (-15 -3249 (|#1| (-483) (-483)))) (-344)) (T -343))
-((-2611 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-343 *3)) (-4 *3 (-344)))) (-2611 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-343 *3)) (-4 *3 (-344)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3124 (((-483) $) 106 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-3765 (($ $) 104 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3769 (($ $) 89 T ELT)) (-3965 (((-345 $) $) 88 T ELT)) (-3033 (($ $) 114 T ELT)) (-1605 (((-85) $ $) 73 T ELT)) (-3617 (((-483) $) 131 T ELT)) (-3718 (($) 22 T CONST)) (-3122 (($ $) 103 T ELT)) (-3152 (((-3 (-483) #1="failed") $) 119 T ELT) (((-3 (-347 (-483)) #1#) $) 116 T ELT)) (-3151 (((-483) $) 120 T ELT) (((-347 (-483)) $) 117 T ELT)) (-2560 (($ $ $) 69 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2559 (($ $ $) 70 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 64 T ELT)) (-3717 (((-85) $) 87 T ELT)) (-1765 (((-830)) 147 T ELT) (((-830) (-830)) 144 (|has| $ (-6 -3980)) ELT)) (-3181 (((-85) $) 129 T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 110 T ELT)) (-3766 (((-483) $) 153 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3007 (($ $ (-483)) 113 T ELT)) (-3127 (($ $) 109 T ELT)) (-3182 (((-85) $) 130 T ELT)) (-1602 (((-3 (-583 $) #2="failed") (-583 $) $) 66 T ELT)) (-2527 (($ $ $) 123 T ELT) (($) 141 (-12 (-2556 (|has| $ (-6 -3980))) (-2556 (|has| $ (-6 -3972)))) ELT)) (-2853 (($ $ $) 124 T ELT) (($) 140 (-12 (-2556 (|has| $ (-6 -3980))) (-2556 (|has| $ (-6 -3972)))) ELT)) (-1767 (((-483) $) 150 T ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 86 T ELT)) (-1764 (((-830) (-483)) 143 (|has| $ (-6 -3980)) ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3123 (($ $) 105 T ELT)) (-3125 (($ $) 107 T ELT)) (-3249 (($ (-483) (-483)) 155 T ELT) (($ (-483) (-483) (-830)) 154 T ELT)) (-3726 (((-345 $) $) 90 T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 67 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 63 T ELT)) (-2397 (((-483) $) 151 T ELT)) (-1604 (((-694) $) 72 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 71 T ELT)) (-2611 (((-830)) 148 T ELT) (((-830) (-830)) 145 (|has| $ (-6 -3980)) ELT)) (-1763 (((-830) (-483)) 142 (|has| $ (-6 -3980)) ELT)) (-3966 (((-327) $) 122 T ELT) (((-179) $) 121 T ELT) (((-800 (-327)) $) 111 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-483))) 82 T ELT) (($ (-483)) 118 T ELT) (($ (-347 (-483))) 115 T ELT)) (-3121 (((-694)) 38 T CONST)) (-3126 (($ $) 108 T ELT)) (-1766 (((-830)) 149 T ELT) (((-830) (-830)) 146 (|has| $ (-6 -3980)) ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2690 (((-830)) 152 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-3377 (($ $) 132 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2562 (((-85) $ $) 125 T ELT)) (-2563 (((-85) $ $) 127 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 126 T ELT)) (-2681 (((-85) $ $) 128 T ELT)) (-3943 (($ $ $) 81 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 85 T ELT) (($ $ (-347 (-483))) 112 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-483))) 84 T ELT) (($ (-347 (-483)) $) 83 T ELT)))
+((-3768 (*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-744 (-831))))) (-1763 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-342)) (-5 *2 (-695)))) (-1762 (*1 *1 *1) (-4 *1 (-342))) (-1762 (*1 *1 *1 *2) (-12 (-4 *1 (-342)) (-5 *2 (-695)))))
+(-13 (-311) (-118) (-10 -8 (-15 -3768 ((-744 (-831)) $)) (-15 -1763 ((-3 (-695) "failed") $ $)) (-15 -1762 ($ $)) (-15 -1762 ($ $ (-695)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-556 (-347 (-484))) . T) ((-556 (-484)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-201) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-389) . T) ((-495) . T) ((-13) . T) ((-589 (-347 (-484))) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 (-347 (-484))) . T) ((-591 $) . T) ((-583 (-347 (-484))) . T) ((-583 $) . T) ((-655 (-347 (-484))) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 (-347 (-484))) . T) ((-964 $) . T) ((-969 (-347 (-484))) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T))
+((-3251 (($ (-484) (-484)) 11 T ELT) (($ (-484) (-484) (-831)) NIL T ELT)) (-2613 (((-831)) 19 T ELT) (((-831) (-831)) NIL T ELT)))
+(((-343 |#1|) (-10 -7 (-15 -2613 ((-831) (-831))) (-15 -2613 ((-831))) (-15 -3251 (|#1| (-484) (-484) (-831))) (-15 -3251 (|#1| (-484) (-484)))) (-344)) (T -343))
+((-2613 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-343 *3)) (-4 *3 (-344)))) (-2613 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-343 *3)) (-4 *3 (-344)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-3126 (((-484) $) 106 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 53 T ELT)) (-2061 (($ $) 52 T ELT)) (-2059 (((-85) $) 50 T ELT)) (-3767 (($ $) 104 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3771 (($ $) 89 T ELT)) (-3967 (((-345 $) $) 88 T ELT)) (-3035 (($ $) 114 T ELT)) (-1606 (((-85) $ $) 73 T ELT)) (-3619 (((-484) $) 131 T ELT)) (-3720 (($) 22 T CONST)) (-3124 (($ $) 103 T ELT)) (-3154 (((-3 (-484) #1="failed") $) 119 T ELT) (((-3 (-347 (-484)) #1#) $) 116 T ELT)) (-3153 (((-484) $) 120 T ELT) (((-347 (-484)) $) 117 T ELT)) (-2562 (($ $ $) 69 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2561 (($ $ $) 70 T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) 64 T ELT)) (-3719 (((-85) $) 87 T ELT)) (-1766 (((-831)) 147 T ELT) (((-831) (-831)) 144 (|has| $ (-6 -3982)) ELT)) (-3183 (((-85) $) 129 T ELT)) (-2794 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 110 T ELT)) (-3768 (((-484) $) 153 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-3009 (($ $ (-484)) 113 T ELT)) (-3129 (($ $) 109 T ELT)) (-3184 (((-85) $) 130 T ELT)) (-1603 (((-3 (-584 $) #2="failed") (-584 $) $) 66 T ELT)) (-2529 (($ $ $) 123 T ELT) (($) 141 (-12 (-2558 (|has| $ (-6 -3982))) (-2558 (|has| $ (-6 -3974)))) ELT)) (-2855 (($ $ $) 124 T ELT) (($) 140 (-12 (-2558 (|has| $ (-6 -3982))) (-2558 (|has| $ (-6 -3974)))) ELT)) (-1768 (((-484) $) 150 T ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-2482 (($ $) 86 T ELT)) (-1765 (((-831) (-484)) 143 (|has| $ (-6 -3982)) ELT)) (-3240 (((-1033) $) 12 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3141 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3125 (($ $) 105 T ELT)) (-3127 (($ $) 107 T ELT)) (-3251 (($ (-484) (-484)) 155 T ELT) (($ (-484) (-484) (-831)) 154 T ELT)) (-3728 (((-345 $) $) 90 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 67 T ELT)) (-3462 (((-3 $ "failed") $ $) 54 T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) 63 T ELT)) (-2399 (((-484) $) 151 T ELT)) (-1605 (((-695) $) 72 T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 71 T ELT)) (-2613 (((-831)) 148 T ELT) (((-831) (-831)) 145 (|has| $ (-6 -3982)) ELT)) (-1764 (((-831) (-484)) 142 (|has| $ (-6 -3982)) ELT)) (-3968 (((-327) $) 122 T ELT) (((-179) $) 121 T ELT) (((-801 (-327)) $) 111 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-484))) 82 T ELT) (($ (-484)) 118 T ELT) (($ (-347 (-484))) 115 T ELT)) (-3123 (((-695)) 38 T CONST)) (-3128 (($ $) 108 T ELT)) (-1767 (((-831)) 149 T ELT) (((-831) (-831)) 146 (|has| $ (-6 -3982)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2692 (((-831)) 152 T ELT)) (-2060 (((-85) $ $) 51 T ELT)) (-3379 (($ $) 132 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-2564 (((-85) $ $) 125 T ELT)) (-2565 (((-85) $ $) 127 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-2682 (((-85) $ $) 126 T ELT)) (-2683 (((-85) $ $) 128 T ELT)) (-3945 (($ $ $) 81 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 85 T ELT) (($ $ (-347 (-484))) 112 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-484))) 84 T ELT) (($ (-347 (-484)) $) 83 T ELT)))
(((-344) (-113)) (T -344))
-((-3249 (*1 *1 *2 *2) (-12 (-5 *2 (-483)) (-4 *1 (-344)))) (-3249 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-483)) (-5 *3 (-830)) (-4 *1 (-344)))) (-3766 (*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-483)))) (-2690 (*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-830)))) (-2397 (*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-483)))) (-1767 (*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-483)))) (-1766 (*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-830)))) (-2611 (*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-830)))) (-1765 (*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-830)))) (-1766 (*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3980)) (-4 *1 (-344)))) (-2611 (*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3980)) (-4 *1 (-344)))) (-1765 (*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3980)) (-4 *1 (-344)))) (-1764 (*1 *2 *3) (-12 (-5 *3 (-483)) (|has| *1 (-6 -3980)) (-4 *1 (-344)) (-5 *2 (-830)))) (-1763 (*1 *2 *3) (-12 (-5 *3 (-483)) (|has| *1 (-6 -3980)) (-4 *1 (-344)) (-5 *2 (-830)))) (-2527 (*1 *1) (-12 (-4 *1 (-344)) (-2556 (|has| *1 (-6 -3980))) (-2556 (|has| *1 (-6 -3972))))) (-2853 (*1 *1) (-12 (-4 *1 (-344)) (-2556 (|has| *1 (-6 -3980))) (-2556 (|has| *1 (-6 -3972))))))
-(-13 (-972) (-10 -8 (-6 -3764) (-15 -3249 ($ (-483) (-483))) (-15 -3249 ($ (-483) (-483) (-830))) (-15 -3766 ((-483) $)) (-15 -2690 ((-830))) (-15 -2397 ((-483) $)) (-15 -1767 ((-483) $)) (-15 -1766 ((-830))) (-15 -2611 ((-830))) (-15 -1765 ((-830))) (IF (|has| $ (-6 -3980)) (PROGN (-15 -1766 ((-830) (-830))) (-15 -2611 ((-830) (-830))) (-15 -1765 ((-830) (-830))) (-15 -1764 ((-830) (-483))) (-15 -1763 ((-830) (-483)))) |%noBranch|) (IF (|has| $ (-6 -3972)) |%noBranch| (IF (|has| $ (-6 -3980)) |%noBranch| (PROGN (-15 -2527 ($)) (-15 -2853 ($)))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-483))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-555 (-347 (-483))) . T) ((-555 (-483)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-553 (-179)) . T) ((-553 (-327)) . T) ((-553 (-800 (-327))) . T) ((-201) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-389) . T) ((-494) . T) ((-13) . T) ((-588 (-347 (-483))) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 (-347 (-483))) . T) ((-590 $) . T) ((-582 (-347 (-483))) . T) ((-582 $) . T) ((-654 (-347 (-483))) . T) ((-654 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-755) . T) ((-756) . T) ((-759) . T) ((-796 (-327)) . T) ((-832) . T) ((-915) . T) ((-933) . T) ((-972) . T) ((-950 (-347 (-483))) . T) ((-950 (-483)) . T) ((-963 (-347 (-483))) . T) ((-963 $) . T) ((-968 (-347 (-483))) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 59 T ELT)) (-1768 (($ $) 77 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 189 T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) 48 T ELT)) (-1769 ((|#1| $) 16 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL (|has| |#1| (-1132)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-1132)) ELT)) (-1771 (($ |#1| (-483)) 42 T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) 147 T ELT)) (-3151 (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) 73 T ELT)) (-3461 (((-3 $ #1#) $) 163 T ELT)) (-3020 (((-3 (-347 (-483)) #1#) $) 84 (|has| |#1| (-482)) ELT)) (-3019 (((-85) $) 80 (|has| |#1| (-482)) ELT)) (-3018 (((-347 (-483)) $) 82 (|has| |#1| (-482)) ELT)) (-1772 (($ |#1| (-483)) 44 T ELT)) (-3717 (((-85) $) 209 (|has| |#1| (-1132)) ELT)) (-2406 (((-85) $) 61 T ELT)) (-1831 (((-694) $) 51 T ELT)) (-1773 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-483)) 174 T ELT)) (-2295 ((|#1| $ (-483)) 173 T ELT)) (-1774 (((-483) $ (-483)) 172 T ELT)) (-1777 (($ |#1| (-483)) 41 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 182 T ELT)) (-1828 (($ |#1| (-583 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-483))))) 78 T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1775 (($ |#1| (-483)) 43 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-389)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) 190 (|has| |#1| (-389)) ELT)) (-1770 (($ |#1| (-483) (-3 #2# #3# #4# #5#)) 40 T ELT)) (-1776 (((-583 (-2 (|:| -3726 |#1|) (|:| -2397 (-483)))) $) 72 T ELT)) (-1949 (((-583 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-483)))) $) 12 T ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-1132)) ELT)) (-3460 (((-3 $ #1#) $ $) 175 T ELT)) (-2397 (((-483) $) 166 T ELT)) (-3957 ((|#1| $) 74 T ELT)) (-3762 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-248 |#1|))) 99 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-1088)) (-583 |#1|)) 105 (|has| |#1| (-452 (-1088) |#1|)) ELT) (($ $ (-1088) |#1|) NIL (|has| |#1| (-452 (-1088) |#1|)) ELT) (($ $ (-1088) $) NIL (|has| |#1| (-452 (-1088) $)) ELT) (($ $ (-583 (-1088)) (-583 $)) 106 (|has| |#1| (-452 (-1088) $)) ELT) (($ $ (-583 (-248 $))) 102 (|has| |#1| (-259 $)) ELT) (($ $ (-248 $)) NIL (|has| |#1| (-259 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-259 $)) ELT) (($ $ (-583 $) (-583 $)) NIL (|has| |#1| (-259 $)) ELT)) (-3794 (($ $ |#1|) 91 (|has| |#1| (-241 |#1| |#1|)) ELT) (($ $ $) 92 (|has| |#1| (-241 $ $)) ELT)) (-3752 (($ $ (-1 |#1| |#1|)) 181 T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT)) (-3966 (((-472) $) 39 (|has| |#1| (-553 (-472))) ELT) (((-327) $) 112 (|has| |#1| (-933)) ELT) (((-179) $) 118 (|has| |#1| (-933)) ELT)) (-3940 (((-772) $) 145 T ELT) (($ (-483)) 64 T ELT) (($ $) NIL T ELT) (($ |#1|) 63 T ELT) (($ (-347 (-483))) NIL (|has| |#1| (-950 (-347 (-483)))) ELT)) (-3121 (((-694)) 66 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-2656 (($) 53 T CONST)) (-2662 (($) 52 T CONST)) (-2665 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT)) (-3052 (((-85) $ $) 158 T ELT)) (-3831 (($ $) 160 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 179 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 124 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 68 T ELT) (($ $ $) 67 T ELT) (($ |#1| $) 69 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-345 |#1|) (-13 (-494) (-184 |#1|) (-38 |#1|) (-287 |#1|) (-352 |#1|) (-10 -8 (-15 -3957 (|#1| $)) (-15 -2397 ((-483) $)) (-15 -1828 ($ |#1| (-583 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-483)))))) (-15 -1949 ((-583 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-483)))) $)) (-15 -1777 ($ |#1| (-483))) (-15 -1776 ((-583 (-2 (|:| -3726 |#1|) (|:| -2397 (-483)))) $)) (-15 -1775 ($ |#1| (-483))) (-15 -1774 ((-483) $ (-483))) (-15 -2295 (|#1| $ (-483))) (-15 -1773 ((-3 #1# #2# #3# #4#) $ (-483))) (-15 -1831 ((-694) $)) (-15 -1772 ($ |#1| (-483))) (-15 -1771 ($ |#1| (-483))) (-15 -1770 ($ |#1| (-483) (-3 #1# #2# #3# #4#))) (-15 -1769 (|#1| $)) (-15 -1768 ($ $)) (-15 -3952 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-389)) (-6 (-389)) |%noBranch|) (IF (|has| |#1| (-933)) (-6 (-933)) |%noBranch|) (IF (|has| |#1| (-1132)) (-6 (-1132)) |%noBranch|) (IF (|has| |#1| (-553 (-472))) (-6 (-553 (-472))) |%noBranch|) (IF (|has| |#1| (-482)) (PROGN (-15 -3019 ((-85) $)) (-15 -3018 ((-347 (-483)) $)) (-15 -3020 ((-3 (-347 (-483)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-241 $ $)) (-6 (-241 $ $)) |%noBranch|) (IF (|has| |#1| (-259 $)) (-6 (-259 $)) |%noBranch|) (IF (|has| |#1| (-452 (-1088) $)) (-6 (-452 (-1088) $)) |%noBranch|))) (-494)) (T -345))
-((-3952 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-494)) (-5 *1 (-345 *3)))) (-3957 (*1 *2 *1) (-12 (-5 *1 (-345 *2)) (-4 *2 (-494)))) (-2397 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-345 *3)) (-4 *3 (-494)))) (-1828 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-483))))) (-4 *2 (-494)) (-5 *1 (-345 *2)))) (-1949 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-483))))) (-5 *1 (-345 *3)) (-4 *3 (-494)))) (-1777 (*1 *1 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-345 *2)) (-4 *2 (-494)))) (-1776 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3726 *3) (|:| -2397 (-483))))) (-5 *1 (-345 *3)) (-4 *3 (-494)))) (-1775 (*1 *1 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-345 *2)) (-4 *2 (-494)))) (-1774 (*1 *2 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-345 *3)) (-4 *3 (-494)))) (-2295 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *1 (-345 *2)) (-4 *2 (-494)))) (-1773 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-345 *4)) (-4 *4 (-494)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-345 *3)) (-4 *3 (-494)))) (-1772 (*1 *1 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-345 *2)) (-4 *2 (-494)))) (-1771 (*1 *1 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-345 *2)) (-4 *2 (-494)))) (-1770 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-483)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-345 *2)) (-4 *2 (-494)))) (-1769 (*1 *2 *1) (-12 (-5 *1 (-345 *2)) (-4 *2 (-494)))) (-1768 (*1 *1 *1) (-12 (-5 *1 (-345 *2)) (-4 *2 (-494)))) (-3019 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-345 *3)) (-4 *3 (-482)) (-4 *3 (-494)))) (-3018 (*1 *2 *1) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-345 *3)) (-4 *3 (-482)) (-4 *3 (-494)))) (-3020 (*1 *2 *1) (|partial| -12 (-5 *2 (-347 (-483))) (-5 *1 (-345 *3)) (-4 *3 (-482)) (-4 *3 (-494)))))
-((-3952 (((-345 |#2|) (-1 |#2| |#1|) (-345 |#1|)) 20 T ELT)))
-(((-346 |#1| |#2|) (-10 -7 (-15 -3952 ((-345 |#2|) (-1 |#2| |#1|) (-345 |#1|)))) (-494) (-494)) (T -346))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-345 *5)) (-4 *5 (-494)) (-4 *6 (-494)) (-5 *2 (-345 *6)) (-5 *1 (-346 *5 *6)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 13 T ELT)) (-3124 ((|#1| $) 21 (|has| |#1| (-257)) ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3617 (((-483) $) NIL (|has| |#1| (-740)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) 17 T ELT) (((-3 (-1088) #1#) $) NIL (|has| |#1| (-950 (-1088))) ELT) (((-3 (-347 (-483)) #1#) $) 54 (|has| |#1| (-950 (-483))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT)) (-3151 ((|#1| $) 15 T ELT) (((-1088) $) NIL (|has| |#1| (-950 (-1088))) ELT) (((-347 (-483)) $) 51 (|has| |#1| (-950 (-483))) ELT) (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT)) (-2560 (($ $ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) 32 T ELT)) (-2990 (($) NIL (|has| |#1| (-482)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-3181 (((-85) $) NIL (|has| |#1| (-740)) ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (|has| |#1| (-796 (-483))) ELT) (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (|has| |#1| (-796 (-327))) ELT)) (-2406 (((-85) $) 38 T ELT)) (-2992 (($ $) NIL T ELT)) (-2994 ((|#1| $) 55 T ELT)) (-3439 (((-632 $) $) NIL (|has| |#1| (-1064)) ELT)) (-3182 (((-85) $) 22 (|has| |#1| (-740)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL (|has| |#1| (-1064)) CONST)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 82 T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3123 (($ $) NIL (|has| |#1| (-257)) ELT)) (-3125 ((|#1| $) 26 (|has| |#1| (-482)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) 133 (|has| |#1| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) 128 (|has| |#1| (-821)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3762 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-248 |#1|))) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-1088)) (-583 |#1|)) NIL (|has| |#1| (-452 (-1088) |#1|)) ELT) (($ $ (-1088) |#1|) NIL (|has| |#1| (-452 (-1088) |#1|)) ELT)) (-1604 (((-694) $) NIL T ELT)) (-3794 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-3752 (($ $ (-1 |#1| |#1|)) 45 T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-2991 (($ $) NIL T ELT)) (-2993 ((|#1| $) 57 T ELT)) (-3966 (((-800 (-483)) $) NIL (|has| |#1| (-553 (-800 (-483)))) ELT) (((-800 (-327)) $) NIL (|has| |#1| (-553 (-800 (-327)))) ELT) (((-472) $) NIL (|has| |#1| (-553 (-472))) ELT) (((-327) $) NIL (|has| |#1| (-933)) ELT) (((-179) $) NIL (|has| |#1| (-933)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) 112 (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1088)) NIL (|has| |#1| (-950 (-1088))) ELT)) (-2698 (((-632 $) $) 92 (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3121 (((-694)) 93 T CONST)) (-3126 ((|#1| $) 24 (|has| |#1| (-482)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3377 (($ $) NIL (|has| |#1| (-740)) ELT)) (-2656 (($) 28 T CONST)) (-2662 (($) 8 T CONST)) (-2665 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-2562 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) 48 T ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3943 (($ $ $) 123 T ELT) (($ |#1| |#1|) 34 T ELT)) (-3831 (($ $) 23 T ELT) (($ $ $) 37 T ELT)) (-3833 (($ $ $) 35 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) 122 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 42 T ELT) (($ $ $) 39 T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ |#1| $) 43 T ELT) (($ $ |#1|) 70 T ELT)))
-(((-347 |#1|) (-13 (-904 |#1|) (-10 -7 (IF (|has| |#1| (-6 -3976)) (IF (|has| |#1| (-389)) (IF (|has| |#1| (-6 -3987)) (-6 -3976) |%noBranch|) |%noBranch|) |%noBranch|))) (-494)) (T -347))
-NIL
-((-3952 (((-347 |#2|) (-1 |#2| |#1|) (-347 |#1|)) 13 T ELT)))
-(((-348 |#1| |#2|) (-10 -7 (-15 -3952 ((-347 |#2|) (-1 |#2| |#1|) (-347 |#1|)))) (-494) (-494)) (T -348))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-347 *5)) (-4 *5 (-494)) (-4 *6 (-494)) (-5 *2 (-347 *6)) (-5 *1 (-348 *5 *6)))))
-((-1779 (((-630 |#2|) (-1177 $)) NIL T ELT) (((-630 |#2|)) 18 T ELT)) (-1789 (($ (-1177 |#2|) (-1177 $)) NIL T ELT) (($ (-1177 |#2|)) 24 T ELT)) (-1778 (((-630 |#2|) $ (-1177 $)) NIL T ELT) (((-630 |#2|) $) 40 T ELT)) (-2010 ((|#3| $) 69 T ELT)) (-3751 ((|#2| (-1177 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-3219 (((-1177 |#2|) $ (-1177 $)) NIL T ELT) (((-630 |#2|) (-1177 $) (-1177 $)) NIL T ELT) (((-1177 |#2|) $) 22 T ELT) (((-630 |#2|) (-1177 $)) 38 T ELT)) (-3966 (((-1177 |#2|) $) 11 T ELT) (($ (-1177 |#2|)) 13 T ELT)) (-2445 ((|#3| $) 55 T ELT)))
-(((-349 |#1| |#2| |#3|) (-10 -7 (-15 -1778 ((-630 |#2|) |#1|)) (-15 -3751 (|#2|)) (-15 -1779 ((-630 |#2|))) (-15 -3966 (|#1| (-1177 |#2|))) (-15 -3966 ((-1177 |#2|) |#1|)) (-15 -1789 (|#1| (-1177 |#2|))) (-15 -3219 ((-630 |#2|) (-1177 |#1|))) (-15 -3219 ((-1177 |#2|) |#1|)) (-15 -2010 (|#3| |#1|)) (-15 -2445 (|#3| |#1|)) (-15 -1779 ((-630 |#2|) (-1177 |#1|))) (-15 -3751 (|#2| (-1177 |#1|))) (-15 -1789 (|#1| (-1177 |#2|) (-1177 |#1|))) (-15 -3219 ((-630 |#2|) (-1177 |#1|) (-1177 |#1|))) (-15 -3219 ((-1177 |#2|) |#1| (-1177 |#1|))) (-15 -1778 ((-630 |#2|) |#1| (-1177 |#1|)))) (-350 |#2| |#3|) (-146) (-1153 |#2|)) (T -349))
-((-1779 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1153 *4)) (-5 *2 (-630 *4)) (-5 *1 (-349 *3 *4 *5)) (-4 *3 (-350 *4 *5)))) (-3751 (*1 *2) (-12 (-4 *4 (-1153 *2)) (-4 *2 (-146)) (-5 *1 (-349 *3 *2 *4)) (-4 *3 (-350 *2 *4)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1779 (((-630 |#1|) (-1177 $)) 59 T ELT) (((-630 |#1|)) 75 T ELT)) (-3324 ((|#1| $) 65 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-1789 (($ (-1177 |#1|) (-1177 $)) 61 T ELT) (($ (-1177 |#1|)) 78 T ELT)) (-1778 (((-630 |#1|) $ (-1177 $)) 66 T ELT) (((-630 |#1|) $) 73 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3104 (((-830)) 67 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3127 ((|#1| $) 64 T ELT)) (-2010 ((|#2| $) 57 (|has| |#1| (-311)) ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3751 ((|#1| (-1177 $)) 60 T ELT) ((|#1|) 74 T ELT)) (-3219 (((-1177 |#1|) $ (-1177 $)) 63 T ELT) (((-630 |#1|) (-1177 $) (-1177 $)) 62 T ELT) (((-1177 |#1|) $) 80 T ELT) (((-630 |#1|) (-1177 $)) 79 T ELT)) (-3966 (((-1177 |#1|) $) 77 T ELT) (($ (-1177 |#1|)) 76 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 50 T ELT)) (-2698 (((-632 $) $) 56 (|has| |#1| (-118)) ELT)) (-2445 ((|#2| $) 58 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2008 (((-1177 $)) 81 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT)))
-(((-350 |#1| |#2|) (-113) (-146) (-1153 |t#1|)) (T -350))
-((-2008 (*1 *2) (-12 (-4 *3 (-146)) (-4 *4 (-1153 *3)) (-5 *2 (-1177 *1)) (-4 *1 (-350 *3 *4)))) (-3219 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1153 *3)) (-5 *2 (-1177 *3)))) (-3219 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-350 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1153 *4)) (-5 *2 (-630 *4)))) (-1789 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-146)) (-4 *1 (-350 *3 *4)) (-4 *4 (-1153 *3)))) (-3966 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1153 *3)) (-5 *2 (-1177 *3)))) (-3966 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-146)) (-4 *1 (-350 *3 *4)) (-4 *4 (-1153 *3)))) (-1779 (*1 *2) (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1153 *3)) (-5 *2 (-630 *3)))) (-3751 (*1 *2) (-12 (-4 *1 (-350 *2 *3)) (-4 *3 (-1153 *2)) (-4 *2 (-146)))) (-1778 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1153 *3)) (-5 *2 (-630 *3)))))
-(-13 (-319 |t#1| |t#2|) (-10 -8 (-15 -2008 ((-1177 $))) (-15 -3219 ((-1177 |t#1|) $)) (-15 -3219 ((-630 |t#1|) (-1177 $))) (-15 -1789 ($ (-1177 |t#1|))) (-15 -3966 ((-1177 |t#1|) $)) (-15 -3966 ($ (-1177 |t#1|))) (-15 -1779 ((-630 |t#1|))) (-15 -3751 (|t#1|)) (-15 -1778 ((-630 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-483)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-319 |#1| |#2|) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-663) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T))
-((-3152 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) 27 T ELT) (((-3 (-483) #1#) $) 19 T ELT)) (-3151 ((|#2| $) NIL T ELT) (((-347 (-483)) $) 24 T ELT) (((-483) $) 14 T ELT)) (-3940 (($ |#2|) NIL T ELT) (($ (-347 (-483))) 22 T ELT) (($ (-483)) 11 T ELT)))
-(((-351 |#1| |#2|) (-10 -7 (-15 -3940 (|#1| (-483))) (-15 -3152 ((-3 (-483) #1="failed") |#1|)) (-15 -3151 ((-483) |#1|)) (-15 -3940 (|#1| (-347 (-483)))) (-15 -3152 ((-3 (-347 (-483)) #1#) |#1|)) (-15 -3151 ((-347 (-483)) |#1|)) (-15 -3151 (|#2| |#1|)) (-15 -3152 ((-3 |#2| #1#) |#1|)) (-15 -3940 (|#1| |#2|))) (-352 |#2|) (-1127)) (T -351))
-NIL
-((-3152 (((-3 |#1| #1="failed") $) 9 T ELT) (((-3 (-347 (-483)) #1#) $) 16 (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 (-483) #1#) $) 13 (|has| |#1| (-950 (-483))) ELT)) (-3151 ((|#1| $) 8 T ELT) (((-347 (-483)) $) 17 (|has| |#1| (-950 (-347 (-483)))) ELT) (((-483) $) 14 (|has| |#1| (-950 (-483))) ELT)) (-3940 (($ |#1|) 6 T ELT) (($ (-347 (-483))) 15 (|has| |#1| (-950 (-347 (-483)))) ELT) (($ (-483)) 12 (|has| |#1| (-950 (-483))) ELT)))
-(((-352 |#1|) (-113) (-1127)) (T -352))
-NIL
-(-13 (-950 |t#1|) (-10 -7 (IF (|has| |t#1| (-950 (-483))) (-6 (-950 (-483))) |%noBranch|) (IF (|has| |t#1| (-950 (-347 (-483)))) (-6 (-950 (-347 (-483)))) |%noBranch|)))
-(((-555 (-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((-555 (-483)) |has| |#1| (-950 (-483))) ((-555 |#1|) . T) ((-950 (-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((-950 (-483)) |has| |#1| (-950 (-483))) ((-950 |#1|) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3461 (((-3 $ "failed") $) NIL T ELT)) (-1780 ((|#4| (-694) (-1177 |#4|)) 55 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2994 (((-1177 |#4|) $) 15 T ELT)) (-3127 ((|#2| $) 53 T ELT)) (-1781 (($ $) 156 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) 103 T ELT)) (-1966 (($ (-1177 |#4|)) 102 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2993 ((|#1| $) 16 T ELT)) (-3005 (($ $ $) NIL T ELT)) (-2431 (($ $ $) NIL T ELT)) (-3940 (((-772) $) 147 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 |#4|) $) 140 T ELT)) (-2662 (($) 11 T CONST)) (-3052 (((-85) $ $) 39 T ELT)) (-3943 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) 133 T ELT)) (* (($ $ $) 130 T ELT)))
-(((-353 |#1| |#2| |#3| |#4|) (-13 (-410) (-10 -8 (-15 -1966 ($ (-1177 |#4|))) (-15 -2008 ((-1177 |#4|) $)) (-15 -3127 (|#2| $)) (-15 -2994 ((-1177 |#4|) $)) (-15 -2993 (|#1| $)) (-15 -1781 ($ $)) (-15 -1780 (|#4| (-694) (-1177 |#4|))))) (-257) (-904 |#1|) (-1153 |#2|) (-13 (-350 |#2| |#3|) (-950 |#2|))) (T -353))
-((-1966 (*1 *1 *2) (-12 (-5 *2 (-1177 *6)) (-4 *6 (-13 (-350 *4 *5) (-950 *4))) (-4 *4 (-904 *3)) (-4 *5 (-1153 *4)) (-4 *3 (-257)) (-5 *1 (-353 *3 *4 *5 *6)))) (-2008 (*1 *2 *1) (-12 (-4 *3 (-257)) (-4 *4 (-904 *3)) (-4 *5 (-1153 *4)) (-5 *2 (-1177 *6)) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *6 (-13 (-350 *4 *5) (-950 *4))))) (-3127 (*1 *2 *1) (-12 (-4 *4 (-1153 *2)) (-4 *2 (-904 *3)) (-5 *1 (-353 *3 *2 *4 *5)) (-4 *3 (-257)) (-4 *5 (-13 (-350 *2 *4) (-950 *2))))) (-2994 (*1 *2 *1) (-12 (-4 *3 (-257)) (-4 *4 (-904 *3)) (-4 *5 (-1153 *4)) (-5 *2 (-1177 *6)) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *6 (-13 (-350 *4 *5) (-950 *4))))) (-2993 (*1 *2 *1) (-12 (-4 *3 (-904 *2)) (-4 *4 (-1153 *3)) (-4 *2 (-257)) (-5 *1 (-353 *2 *3 *4 *5)) (-4 *5 (-13 (-350 *3 *4) (-950 *3))))) (-1781 (*1 *1 *1) (-12 (-4 *2 (-257)) (-4 *3 (-904 *2)) (-4 *4 (-1153 *3)) (-5 *1 (-353 *2 *3 *4 *5)) (-4 *5 (-13 (-350 *3 *4) (-950 *3))))) (-1780 (*1 *2 *3 *4) (-12 (-5 *3 (-694)) (-5 *4 (-1177 *2)) (-4 *5 (-257)) (-4 *6 (-904 *5)) (-4 *2 (-13 (-350 *6 *7) (-950 *6))) (-5 *1 (-353 *5 *6 *7 *2)) (-4 *7 (-1153 *6)))))
-((-3952 (((-353 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-353 |#1| |#2| |#3| |#4|)) 35 T ELT)))
-(((-354 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3952 ((-353 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-353 |#1| |#2| |#3| |#4|)))) (-257) (-904 |#1|) (-1153 |#2|) (-13 (-350 |#2| |#3|) (-950 |#2|)) (-257) (-904 |#5|) (-1153 |#6|) (-13 (-350 |#6| |#7|) (-950 |#6|))) (T -354))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-353 *5 *6 *7 *8)) (-4 *5 (-257)) (-4 *6 (-904 *5)) (-4 *7 (-1153 *6)) (-4 *8 (-13 (-350 *6 *7) (-950 *6))) (-4 *9 (-257)) (-4 *10 (-904 *9)) (-4 *11 (-1153 *10)) (-5 *2 (-353 *9 *10 *11 *12)) (-5 *1 (-354 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-350 *10 *11) (-950 *10))))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3461 (((-3 $ "failed") $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3127 ((|#2| $) 69 T ELT)) (-1782 (($ (-1177 |#4|)) 27 T ELT) (($ (-353 |#1| |#2| |#3| |#4|)) 83 (|has| |#4| (-950 |#2|)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 37 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 |#4|) $) 28 T ELT)) (-2662 (($) 26 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ $ $) 80 T ELT)))
-(((-355 |#1| |#2| |#3| |#4| |#5|) (-13 (-663) (-10 -8 (-15 -2008 ((-1177 |#4|) $)) (-15 -3127 (|#2| $)) (-15 -1782 ($ (-1177 |#4|))) (IF (|has| |#4| (-950 |#2|)) (-15 -1782 ($ (-353 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-257) (-904 |#1|) (-1153 |#2|) (-350 |#2| |#3|) (-1177 |#4|)) (T -355))
-((-2008 (*1 *2 *1) (-12 (-4 *3 (-257)) (-4 *4 (-904 *3)) (-4 *5 (-1153 *4)) (-5 *2 (-1177 *6)) (-5 *1 (-355 *3 *4 *5 *6 *7)) (-4 *6 (-350 *4 *5)) (-14 *7 *2))) (-3127 (*1 *2 *1) (-12 (-4 *4 (-1153 *2)) (-4 *2 (-904 *3)) (-5 *1 (-355 *3 *2 *4 *5 *6)) (-4 *3 (-257)) (-4 *5 (-350 *2 *4)) (-14 *6 (-1177 *5)))) (-1782 (*1 *1 *2) (-12 (-5 *2 (-1177 *6)) (-4 *6 (-350 *4 *5)) (-4 *4 (-904 *3)) (-4 *5 (-1153 *4)) (-4 *3 (-257)) (-5 *1 (-355 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1782 (*1 *1 *2) (-12 (-5 *2 (-353 *3 *4 *5 *6)) (-4 *6 (-950 *4)) (-4 *3 (-257)) (-4 *4 (-904 *3)) (-4 *5 (-1153 *4)) (-4 *6 (-350 *4 *5)) (-14 *7 (-1177 *6)) (-5 *1 (-355 *3 *4 *5 *6 *7)))))
-((-3952 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT)))
-(((-356 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3952 (|#3| (-1 |#4| |#2|) |#1|))) (-358 |#2|) (-146) (-358 |#4|) (-146)) (T -356))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-358 *6)) (-5 *1 (-356 *4 *5 *2 *6)) (-4 *4 (-358 *5)))))
-((-1769 (((-3 $ #1="failed")) 99 T ELT)) (-3218 (((-1177 (-630 |#2|)) (-1177 $)) NIL T ELT) (((-1177 (-630 |#2|))) 104 T ELT)) (-1903 (((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) #1#)) 97 T ELT)) (-1700 (((-3 $ #1#)) 96 T ELT)) (-1785 (((-630 |#2|) (-1177 $)) NIL T ELT) (((-630 |#2|)) 115 T ELT)) (-1783 (((-630 |#2|) $ (-1177 $)) NIL T ELT) (((-630 |#2|) $) 123 T ELT)) (-1897 (((-1083 (-857 |#2|))) 64 T ELT)) (-1787 ((|#2| (-1177 $)) NIL T ELT) ((|#2|) 119 T ELT)) (-1789 (($ (-1177 |#2|) (-1177 $)) NIL T ELT) (($ (-1177 |#2|)) 125 T ELT)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) #1#)) 95 T ELT)) (-1701 (((-3 $ #1#)) 87 T ELT)) (-1786 (((-630 |#2|) (-1177 $)) NIL T ELT) (((-630 |#2|)) 113 T ELT)) (-1784 (((-630 |#2|) $ (-1177 $)) NIL T ELT) (((-630 |#2|) $) 121 T ELT)) (-1901 (((-1083 (-857 |#2|))) 63 T ELT)) (-1788 ((|#2| (-1177 $)) NIL T ELT) ((|#2|) 117 T ELT)) (-3219 (((-1177 |#2|) $ (-1177 $)) NIL T ELT) (((-630 |#2|) (-1177 $) (-1177 $)) NIL T ELT) (((-1177 |#2|) $) 124 T ELT) (((-630 |#2|) (-1177 $)) 133 T ELT)) (-3966 (((-1177 |#2|) $) 109 T ELT) (($ (-1177 |#2|)) 111 T ELT)) (-1889 (((-583 (-857 |#2|)) (-1177 $)) NIL T ELT) (((-583 (-857 |#2|))) 107 T ELT)) (-2541 (($ (-630 |#2|) $) 103 T ELT)))
-(((-357 |#1| |#2|) (-10 -7 (-15 -2541 (|#1| (-630 |#2|) |#1|)) (-15 -1897 ((-1083 (-857 |#2|)))) (-15 -1901 ((-1083 (-857 |#2|)))) (-15 -1783 ((-630 |#2|) |#1|)) (-15 -1784 ((-630 |#2|) |#1|)) (-15 -1785 ((-630 |#2|))) (-15 -1786 ((-630 |#2|))) (-15 -1787 (|#2|)) (-15 -1788 (|#2|)) (-15 -3966 (|#1| (-1177 |#2|))) (-15 -3966 ((-1177 |#2|) |#1|)) (-15 -1789 (|#1| (-1177 |#2|))) (-15 -1889 ((-583 (-857 |#2|)))) (-15 -3218 ((-1177 (-630 |#2|)))) (-15 -3219 ((-630 |#2|) (-1177 |#1|))) (-15 -3219 ((-1177 |#2|) |#1|)) (-15 -1769 ((-3 |#1| #1="failed"))) (-15 -1700 ((-3 |#1| #1#))) (-15 -1701 ((-3 |#1| #1#))) (-15 -1903 ((-3 (-2 (|:| |particular| |#1|) (|:| -2008 (-583 |#1|))) #1#))) (-15 -1904 ((-3 (-2 (|:| |particular| |#1|) (|:| -2008 (-583 |#1|))) #1#))) (-15 -1785 ((-630 |#2|) (-1177 |#1|))) (-15 -1786 ((-630 |#2|) (-1177 |#1|))) (-15 -1787 (|#2| (-1177 |#1|))) (-15 -1788 (|#2| (-1177 |#1|))) (-15 -1789 (|#1| (-1177 |#2|) (-1177 |#1|))) (-15 -3219 ((-630 |#2|) (-1177 |#1|) (-1177 |#1|))) (-15 -3219 ((-1177 |#2|) |#1| (-1177 |#1|))) (-15 -1783 ((-630 |#2|) |#1| (-1177 |#1|))) (-15 -1784 ((-630 |#2|) |#1| (-1177 |#1|))) (-15 -3218 ((-1177 (-630 |#2|)) (-1177 |#1|))) (-15 -1889 ((-583 (-857 |#2|)) (-1177 |#1|)))) (-358 |#2|) (-146)) (T -357))
-((-3218 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1177 (-630 *4))) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-1889 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-583 (-857 *4))) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-1788 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-357 *3 *2)) (-4 *3 (-358 *2)))) (-1787 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-357 *3 *2)) (-4 *3 (-358 *2)))) (-1786 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-630 *4)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-1785 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-630 *4)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-1901 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1083 (-857 *4))) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-1897 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1083 (-857 *4))) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1769 (((-3 $ #1="failed")) 47 (|has| |#1| (-494)) ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3218 (((-1177 (-630 |#1|)) (-1177 $)) 88 T ELT) (((-1177 (-630 |#1|))) 114 T ELT)) (-1726 (((-1177 $)) 91 T ELT)) (-3718 (($) 22 T CONST)) (-1903 (((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) #1#)) 50 (|has| |#1| (-494)) ELT)) (-1700 (((-3 $ #1#)) 48 (|has| |#1| (-494)) ELT)) (-1785 (((-630 |#1|) (-1177 $)) 75 T ELT) (((-630 |#1|)) 106 T ELT)) (-1724 ((|#1| $) 84 T ELT)) (-1783 (((-630 |#1|) $ (-1177 $)) 86 T ELT) (((-630 |#1|) $) 104 T ELT)) (-2400 (((-3 $ #1#) $) 55 (|has| |#1| (-494)) ELT)) (-1897 (((-1083 (-857 |#1|))) 102 (|has| |#1| (-311)) ELT)) (-2403 (($ $ (-830)) 36 T ELT)) (-1722 ((|#1| $) 82 T ELT)) (-1702 (((-1083 |#1|) $) 52 (|has| |#1| (-494)) ELT)) (-1787 ((|#1| (-1177 $)) 77 T ELT) ((|#1|) 108 T ELT)) (-1720 (((-1083 |#1|) $) 73 T ELT)) (-1714 (((-85)) 67 T ELT)) (-1789 (($ (-1177 |#1|) (-1177 $)) 79 T ELT) (($ (-1177 |#1|)) 112 T ELT)) (-3461 (((-3 $ #1#) $) 57 (|has| |#1| (-494)) ELT)) (-3104 (((-830)) 90 T ELT)) (-1711 (((-85)) 64 T ELT)) (-2429 (($ $ (-830)) 43 T ELT)) (-1707 (((-85)) 60 T ELT)) (-1705 (((-85)) 58 T ELT)) (-1709 (((-85)) 62 T ELT)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) #1#)) 51 (|has| |#1| (-494)) ELT)) (-1701 (((-3 $ #1#)) 49 (|has| |#1| (-494)) ELT)) (-1786 (((-630 |#1|) (-1177 $)) 76 T ELT) (((-630 |#1|)) 107 T ELT)) (-1725 ((|#1| $) 85 T ELT)) (-1784 (((-630 |#1|) $ (-1177 $)) 87 T ELT) (((-630 |#1|) $) 105 T ELT)) (-2401 (((-3 $ #1#) $) 56 (|has| |#1| (-494)) ELT)) (-1901 (((-1083 (-857 |#1|))) 103 (|has| |#1| (-311)) ELT)) (-2402 (($ $ (-830)) 37 T ELT)) (-1723 ((|#1| $) 83 T ELT)) (-1703 (((-1083 |#1|) $) 53 (|has| |#1| (-494)) ELT)) (-1788 ((|#1| (-1177 $)) 78 T ELT) ((|#1|) 109 T ELT)) (-1721 (((-1083 |#1|) $) 74 T ELT)) (-1715 (((-85)) 68 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-1706 (((-85)) 59 T ELT)) (-1708 (((-85)) 61 T ELT)) (-1710 (((-85)) 63 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-1713 (((-85)) 66 T ELT)) (-3794 ((|#1| $ (-483)) 118 T ELT)) (-3219 (((-1177 |#1|) $ (-1177 $)) 81 T ELT) (((-630 |#1|) (-1177 $) (-1177 $)) 80 T ELT) (((-1177 |#1|) $) 116 T ELT) (((-630 |#1|) (-1177 $)) 115 T ELT)) (-3966 (((-1177 |#1|) $) 111 T ELT) (($ (-1177 |#1|)) 110 T ELT)) (-1889 (((-583 (-857 |#1|)) (-1177 $)) 89 T ELT) (((-583 (-857 |#1|))) 113 T ELT)) (-2431 (($ $ $) 33 T ELT)) (-1719 (((-85)) 72 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2008 (((-1177 $)) 117 T ELT)) (-1704 (((-583 (-1177 |#1|))) 54 (|has| |#1| (-494)) ELT)) (-2432 (($ $ $ $) 34 T ELT)) (-1717 (((-85)) 70 T ELT)) (-2541 (($ (-630 |#1|) $) 101 T ELT)) (-2430 (($ $ $) 32 T ELT)) (-1718 (((-85)) 71 T ELT)) (-1716 (((-85)) 69 T ELT)) (-1712 (((-85)) 65 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 38 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT)))
+((-3251 (*1 *1 *2 *2) (-12 (-5 *2 (-484)) (-4 *1 (-344)))) (-3251 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-484)) (-5 *3 (-831)) (-4 *1 (-344)))) (-3768 (*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-484)))) (-2692 (*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-831)))) (-2399 (*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-484)))) (-1768 (*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-484)))) (-1767 (*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-831)))) (-2613 (*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-831)))) (-1766 (*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-831)))) (-1767 (*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3982)) (-4 *1 (-344)))) (-2613 (*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3982)) (-4 *1 (-344)))) (-1766 (*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3982)) (-4 *1 (-344)))) (-1765 (*1 *2 *3) (-12 (-5 *3 (-484)) (|has| *1 (-6 -3982)) (-4 *1 (-344)) (-5 *2 (-831)))) (-1764 (*1 *2 *3) (-12 (-5 *3 (-484)) (|has| *1 (-6 -3982)) (-4 *1 (-344)) (-5 *2 (-831)))) (-2529 (*1 *1) (-12 (-4 *1 (-344)) (-2558 (|has| *1 (-6 -3982))) (-2558 (|has| *1 (-6 -3974))))) (-2855 (*1 *1) (-12 (-4 *1 (-344)) (-2558 (|has| *1 (-6 -3982))) (-2558 (|has| *1 (-6 -3974))))))
+(-13 (-973) (-10 -8 (-6 -3766) (-15 -3251 ($ (-484) (-484))) (-15 -3251 ($ (-484) (-484) (-831))) (-15 -3768 ((-484) $)) (-15 -2692 ((-831))) (-15 -2399 ((-484) $)) (-15 -1768 ((-484) $)) (-15 -1767 ((-831))) (-15 -2613 ((-831))) (-15 -1766 ((-831))) (IF (|has| $ (-6 -3982)) (PROGN (-15 -1767 ((-831) (-831))) (-15 -2613 ((-831) (-831))) (-15 -1766 ((-831) (-831))) (-15 -1765 ((-831) (-484))) (-15 -1764 ((-831) (-484)))) |%noBranch|) (IF (|has| $ (-6 -3974)) |%noBranch| (IF (|has| $ (-6 -3982)) |%noBranch| (PROGN (-15 -2529 ($)) (-15 -2855 ($)))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-556 (-347 (-484))) . T) ((-556 (-484)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-554 (-179)) . T) ((-554 (-327)) . T) ((-554 (-801 (-327))) . T) ((-201) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-389) . T) ((-495) . T) ((-13) . T) ((-589 (-347 (-484))) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 (-347 (-484))) . T) ((-591 $) . T) ((-583 (-347 (-484))) . T) ((-583 $) . T) ((-655 (-347 (-484))) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-797 (-327)) . T) ((-833) . T) ((-916) . T) ((-934) . T) ((-973) . T) ((-951 (-347 (-484))) . T) ((-951 (-484)) . T) ((-964 (-347 (-484))) . T) ((-964 $) . T) ((-969 (-347 (-484))) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 59 T ELT)) (-1769 (($ $) 77 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 189 T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) 48 T ELT)) (-1770 ((|#1| $) 16 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3771 (($ $) NIL (|has| |#1| (-1133)) ELT)) (-3967 (((-345 $) $) NIL (|has| |#1| (-1133)) ELT)) (-1772 (($ |#1| (-484)) 42 T ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) 147 T ELT)) (-3153 (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) 73 T ELT)) (-3463 (((-3 $ #1#) $) 163 T ELT)) (-3022 (((-3 (-347 (-484)) #1#) $) 84 (|has| |#1| (-483)) ELT)) (-3021 (((-85) $) 80 (|has| |#1| (-483)) ELT)) (-3020 (((-347 (-484)) $) 82 (|has| |#1| (-483)) ELT)) (-1773 (($ |#1| (-484)) 44 T ELT)) (-3719 (((-85) $) 209 (|has| |#1| (-1133)) ELT)) (-2408 (((-85) $) 61 T ELT)) (-1832 (((-695) $) 51 T ELT)) (-1774 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-484)) 174 T ELT)) (-2297 ((|#1| $ (-484)) 173 T ELT)) (-1775 (((-484) $ (-484)) 172 T ELT)) (-1778 (($ |#1| (-484)) 41 T ELT)) (-3954 (($ (-1 |#1| |#1|) $) 182 T ELT)) (-1829 (($ |#1| (-584 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-484))))) 78 T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-1776 (($ |#1| (-484)) 43 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-389)) ELT)) (-3141 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) 190 (|has| |#1| (-389)) ELT)) (-1771 (($ |#1| (-484) (-3 #2# #3# #4# #5#)) 40 T ELT)) (-1777 (((-584 (-2 (|:| -3728 |#1|) (|:| -2399 (-484)))) $) 72 T ELT)) (-1950 (((-584 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-484)))) $) 12 T ELT)) (-3728 (((-345 $) $) NIL (|has| |#1| (-1133)) ELT)) (-3462 (((-3 $ #1#) $ $) 175 T ELT)) (-2399 (((-484) $) 166 T ELT)) (-3959 ((|#1| $) 74 T ELT)) (-3764 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-248 |#1|))) 99 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-1089)) (-584 |#1|)) 105 (|has| |#1| (-453 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) NIL (|has| |#1| (-453 (-1089) |#1|)) ELT) (($ $ (-1089) $) NIL (|has| |#1| (-453 (-1089) $)) ELT) (($ $ (-584 (-1089)) (-584 $)) 106 (|has| |#1| (-453 (-1089) $)) ELT) (($ $ (-584 (-248 $))) 102 (|has| |#1| (-259 $)) ELT) (($ $ (-248 $)) NIL (|has| |#1| (-259 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-259 $)) ELT) (($ $ (-584 $) (-584 $)) NIL (|has| |#1| (-259 $)) ELT)) (-3796 (($ $ |#1|) 91 (|has| |#1| (-241 |#1| |#1|)) ELT) (($ $ $) 92 (|has| |#1| (-241 $ $)) ELT)) (-3754 (($ $ (-1 |#1| |#1|)) 181 T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT)) (-3968 (((-473) $) 39 (|has| |#1| (-554 (-473))) ELT) (((-327) $) 112 (|has| |#1| (-934)) ELT) (((-179) $) 118 (|has| |#1| (-934)) ELT)) (-3942 (((-773) $) 145 T ELT) (($ (-484)) 64 T ELT) (($ $) NIL T ELT) (($ |#1|) 63 T ELT) (($ (-347 (-484))) NIL (|has| |#1| (-951 (-347 (-484)))) ELT)) (-3123 (((-695)) 66 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-2658 (($) 53 T CONST)) (-2664 (($) 52 T CONST)) (-2667 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT)) (-3054 (((-85) $ $) 158 T ELT)) (-3833 (($ $) 160 T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) 179 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 124 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 68 T ELT) (($ $ $) 67 T ELT) (($ |#1| $) 69 T ELT) (($ $ |#1|) NIL T ELT)))
+(((-345 |#1|) (-13 (-495) (-184 |#1|) (-38 |#1|) (-287 |#1|) (-352 |#1|) (-10 -8 (-15 -3959 (|#1| $)) (-15 -2399 ((-484) $)) (-15 -1829 ($ |#1| (-584 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-484)))))) (-15 -1950 ((-584 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-484)))) $)) (-15 -1778 ($ |#1| (-484))) (-15 -1777 ((-584 (-2 (|:| -3728 |#1|) (|:| -2399 (-484)))) $)) (-15 -1776 ($ |#1| (-484))) (-15 -1775 ((-484) $ (-484))) (-15 -2297 (|#1| $ (-484))) (-15 -1774 ((-3 #1# #2# #3# #4#) $ (-484))) (-15 -1832 ((-695) $)) (-15 -1773 ($ |#1| (-484))) (-15 -1772 ($ |#1| (-484))) (-15 -1771 ($ |#1| (-484) (-3 #1# #2# #3# #4#))) (-15 -1770 (|#1| $)) (-15 -1769 ($ $)) (-15 -3954 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-389)) (-6 (-389)) |%noBranch|) (IF (|has| |#1| (-934)) (-6 (-934)) |%noBranch|) (IF (|has| |#1| (-1133)) (-6 (-1133)) |%noBranch|) (IF (|has| |#1| (-554 (-473))) (-6 (-554 (-473))) |%noBranch|) (IF (|has| |#1| (-483)) (PROGN (-15 -3021 ((-85) $)) (-15 -3020 ((-347 (-484)) $)) (-15 -3022 ((-3 (-347 (-484)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-241 $ $)) (-6 (-241 $ $)) |%noBranch|) (IF (|has| |#1| (-259 $)) (-6 (-259 $)) |%noBranch|) (IF (|has| |#1| (-453 (-1089) $)) (-6 (-453 (-1089) $)) |%noBranch|))) (-495)) (T -345))
+((-3954 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-495)) (-5 *1 (-345 *3)))) (-3959 (*1 *2 *1) (-12 (-5 *1 (-345 *2)) (-4 *2 (-495)))) (-2399 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-345 *3)) (-4 *3 (-495)))) (-1829 (*1 *1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-484))))) (-4 *2 (-495)) (-5 *1 (-345 *2)))) (-1950 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-484))))) (-5 *1 (-345 *3)) (-4 *3 (-495)))) (-1778 (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-345 *2)) (-4 *2 (-495)))) (-1777 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| -3728 *3) (|:| -2399 (-484))))) (-5 *1 (-345 *3)) (-4 *3 (-495)))) (-1776 (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-345 *2)) (-4 *2 (-495)))) (-1775 (*1 *2 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-345 *3)) (-4 *3 (-495)))) (-2297 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-345 *2)) (-4 *2 (-495)))) (-1774 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-345 *4)) (-4 *4 (-495)))) (-1832 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-345 *3)) (-4 *3 (-495)))) (-1773 (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-345 *2)) (-4 *2 (-495)))) (-1772 (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-345 *2)) (-4 *2 (-495)))) (-1771 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-484)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-345 *2)) (-4 *2 (-495)))) (-1770 (*1 *2 *1) (-12 (-5 *1 (-345 *2)) (-4 *2 (-495)))) (-1769 (*1 *1 *1) (-12 (-5 *1 (-345 *2)) (-4 *2 (-495)))) (-3021 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-345 *3)) (-4 *3 (-483)) (-4 *3 (-495)))) (-3020 (*1 *2 *1) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-345 *3)) (-4 *3 (-483)) (-4 *3 (-495)))) (-3022 (*1 *2 *1) (|partial| -12 (-5 *2 (-347 (-484))) (-5 *1 (-345 *3)) (-4 *3 (-483)) (-4 *3 (-495)))))
+((-3954 (((-345 |#2|) (-1 |#2| |#1|) (-345 |#1|)) 20 T ELT)))
+(((-346 |#1| |#2|) (-10 -7 (-15 -3954 ((-345 |#2|) (-1 |#2| |#1|) (-345 |#1|)))) (-495) (-495)) (T -346))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-345 *5)) (-4 *5 (-495)) (-4 *6 (-495)) (-5 *2 (-345 *6)) (-5 *1 (-346 *5 *6)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 13 T ELT)) (-3126 ((|#1| $) 21 (|has| |#1| (-257)) ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3771 (($ $) NIL T ELT)) (-3967 (((-345 $) $) NIL T ELT)) (-2702 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3619 (((-484) $) NIL (|has| |#1| (-741)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#1| #1#) $) 17 T ELT) (((-3 (-1089) #1#) $) NIL (|has| |#1| (-951 (-1089))) ELT) (((-3 (-347 (-484)) #1#) $) 54 (|has| |#1| (-951 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT)) (-3153 ((|#1| $) 15 T ELT) (((-1089) $) NIL (|has| |#1| (-951 (-1089))) ELT) (((-347 (-484)) $) 51 (|has| |#1| (-951 (-484))) ELT) (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3463 (((-3 $ #1#) $) 32 T ELT)) (-2992 (($) NIL (|has| |#1| (-483)) ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-3719 (((-85) $) NIL T ELT)) (-3183 (((-85) $) NIL (|has| |#1| (-741)) ELT)) (-2794 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (|has| |#1| (-797 (-484))) ELT) (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (|has| |#1| (-797 (-327))) ELT)) (-2408 (((-85) $) 38 T ELT)) (-2994 (($ $) NIL T ELT)) (-2996 ((|#1| $) 55 T ELT)) (-3441 (((-633 $) $) NIL (|has| |#1| (-1065)) ELT)) (-3184 (((-85) $) 22 (|has| |#1| (-741)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2529 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2855 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2278 (((-631 (-484)) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) NIL T ELT)) (-3442 (($) NIL (|has| |#1| (-1065)) CONST)) (-3240 (((-1033) $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 82 T ELT)) (-3141 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3125 (($ $) NIL (|has| |#1| (-257)) ELT)) (-3127 ((|#1| $) 26 (|has| |#1| (-483)) ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) 133 (|has| |#1| (-822)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) 128 (|has| |#1| (-822)) ELT)) (-3728 (((-345 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3764 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-248 |#1|))) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-1089)) (-584 |#1|)) NIL (|has| |#1| (-453 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) NIL (|has| |#1| (-453 (-1089) |#1|)) ELT)) (-1605 (((-695) $) NIL T ELT)) (-3796 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-3754 (($ $ (-1 |#1| |#1|)) 45 T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-2993 (($ $) NIL T ELT)) (-2995 ((|#1| $) 57 T ELT)) (-3968 (((-801 (-484)) $) NIL (|has| |#1| (-554 (-801 (-484)))) ELT) (((-801 (-327)) $) NIL (|has| |#1| (-554 (-801 (-327)))) ELT) (((-473) $) NIL (|has| |#1| (-554 (-473))) ELT) (((-327) $) NIL (|has| |#1| (-934)) ELT) (((-179) $) NIL (|has| |#1| (-934)) ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) 112 (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1089)) NIL (|has| |#1| (-951 (-1089))) ELT)) (-2700 (((-633 $) $) 92 (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3123 (((-695)) 93 T CONST)) (-3128 ((|#1| $) 24 (|has| |#1| (-483)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-3379 (($ $) NIL (|has| |#1| (-741)) ELT)) (-2658 (($) 28 T CONST)) (-2664 (($) 8 T CONST)) (-2667 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-2564 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3054 (((-85) $ $) 48 T ELT)) (-2682 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3945 (($ $ $) 123 T ELT) (($ |#1| |#1|) 34 T ELT)) (-3833 (($ $) 23 T ELT) (($ $ $) 37 T ELT)) (-3835 (($ $ $) 35 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) 122 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 42 T ELT) (($ $ $) 39 T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ |#1| $) 43 T ELT) (($ $ |#1|) 70 T ELT)))
+(((-347 |#1|) (-13 (-905 |#1|) (-10 -7 (IF (|has| |#1| (-6 -3978)) (IF (|has| |#1| (-389)) (IF (|has| |#1| (-6 -3989)) (-6 -3978) |%noBranch|) |%noBranch|) |%noBranch|))) (-495)) (T -347))
+NIL
+((-3954 (((-347 |#2|) (-1 |#2| |#1|) (-347 |#1|)) 13 T ELT)))
+(((-348 |#1| |#2|) (-10 -7 (-15 -3954 ((-347 |#2|) (-1 |#2| |#1|) (-347 |#1|)))) (-495) (-495)) (T -348))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-347 *5)) (-4 *5 (-495)) (-4 *6 (-495)) (-5 *2 (-347 *6)) (-5 *1 (-348 *5 *6)))))
+((-1780 (((-631 |#2|) (-1178 $)) NIL T ELT) (((-631 |#2|)) 18 T ELT)) (-1790 (($ (-1178 |#2|) (-1178 $)) NIL T ELT) (($ (-1178 |#2|)) 24 T ELT)) (-1779 (((-631 |#2|) $ (-1178 $)) NIL T ELT) (((-631 |#2|) $) 40 T ELT)) (-2012 ((|#3| $) 69 T ELT)) (-3753 ((|#2| (-1178 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-3221 (((-1178 |#2|) $ (-1178 $)) NIL T ELT) (((-631 |#2|) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 |#2|) $) 22 T ELT) (((-631 |#2|) (-1178 $)) 38 T ELT)) (-3968 (((-1178 |#2|) $) 11 T ELT) (($ (-1178 |#2|)) 13 T ELT)) (-2447 ((|#3| $) 55 T ELT)))
+(((-349 |#1| |#2| |#3|) (-10 -7 (-15 -1779 ((-631 |#2|) |#1|)) (-15 -3753 (|#2|)) (-15 -1780 ((-631 |#2|))) (-15 -3968 (|#1| (-1178 |#2|))) (-15 -3968 ((-1178 |#2|) |#1|)) (-15 -1790 (|#1| (-1178 |#2|))) (-15 -3221 ((-631 |#2|) (-1178 |#1|))) (-15 -3221 ((-1178 |#2|) |#1|)) (-15 -2012 (|#3| |#1|)) (-15 -2447 (|#3| |#1|)) (-15 -1780 ((-631 |#2|) (-1178 |#1|))) (-15 -3753 (|#2| (-1178 |#1|))) (-15 -1790 (|#1| (-1178 |#2|) (-1178 |#1|))) (-15 -3221 ((-631 |#2|) (-1178 |#1|) (-1178 |#1|))) (-15 -3221 ((-1178 |#2|) |#1| (-1178 |#1|))) (-15 -1779 ((-631 |#2|) |#1| (-1178 |#1|)))) (-350 |#2| |#3|) (-146) (-1154 |#2|)) (T -349))
+((-1780 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-631 *4)) (-5 *1 (-349 *3 *4 *5)) (-4 *3 (-350 *4 *5)))) (-3753 (*1 *2) (-12 (-4 *4 (-1154 *2)) (-4 *2 (-146)) (-5 *1 (-349 *3 *2 *4)) (-4 *3 (-350 *2 *4)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1780 (((-631 |#1|) (-1178 $)) 59 T ELT) (((-631 |#1|)) 75 T ELT)) (-3326 ((|#1| $) 65 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-1790 (($ (-1178 |#1|) (-1178 $)) 61 T ELT) (($ (-1178 |#1|)) 78 T ELT)) (-1779 (((-631 |#1|) $ (-1178 $)) 66 T ELT) (((-631 |#1|) $) 73 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-3106 (((-831)) 67 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-3129 ((|#1| $) 64 T ELT)) (-2012 ((|#2| $) 57 (|has| |#1| (-311)) ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3753 ((|#1| (-1178 $)) 60 T ELT) ((|#1|) 74 T ELT)) (-3221 (((-1178 |#1|) $ (-1178 $)) 63 T ELT) (((-631 |#1|) (-1178 $) (-1178 $)) 62 T ELT) (((-1178 |#1|) $) 80 T ELT) (((-631 |#1|) (-1178 $)) 79 T ELT)) (-3968 (((-1178 |#1|) $) 77 T ELT) (($ (-1178 |#1|)) 76 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 50 T ELT)) (-2700 (((-633 $) $) 56 (|has| |#1| (-118)) ELT)) (-2447 ((|#2| $) 58 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2010 (((-1178 $)) 81 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT)))
+(((-350 |#1| |#2|) (-113) (-146) (-1154 |t#1|)) (T -350))
+((-2010 (*1 *2) (-12 (-4 *3 (-146)) (-4 *4 (-1154 *3)) (-5 *2 (-1178 *1)) (-4 *1 (-350 *3 *4)))) (-3221 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3)) (-5 *2 (-1178 *3)))) (-3221 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-350 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-631 *4)))) (-1790 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-146)) (-4 *1 (-350 *3 *4)) (-4 *4 (-1154 *3)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3)) (-5 *2 (-1178 *3)))) (-3968 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-146)) (-4 *1 (-350 *3 *4)) (-4 *4 (-1154 *3)))) (-1780 (*1 *2) (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3)) (-5 *2 (-631 *3)))) (-3753 (*1 *2) (-12 (-4 *1 (-350 *2 *3)) (-4 *3 (-1154 *2)) (-4 *2 (-146)))) (-1779 (*1 *2 *1) (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3)) (-5 *2 (-631 *3)))))
+(-13 (-319 |t#1| |t#2|) (-10 -8 (-15 -2010 ((-1178 $))) (-15 -3221 ((-1178 |t#1|) $)) (-15 -3221 ((-631 |t#1|) (-1178 $))) (-15 -1790 ($ (-1178 |t#1|))) (-15 -3968 ((-1178 |t#1|) $)) (-15 -3968 ($ (-1178 |t#1|))) (-15 -1780 ((-631 |t#1|))) (-15 -3753 (|t#1|)) (-15 -1779 ((-631 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-484)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-319 |#1| |#2|) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
+((-3154 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) 27 T ELT) (((-3 (-484) #1#) $) 19 T ELT)) (-3153 ((|#2| $) NIL T ELT) (((-347 (-484)) $) 24 T ELT) (((-484) $) 14 T ELT)) (-3942 (($ |#2|) NIL T ELT) (($ (-347 (-484))) 22 T ELT) (($ (-484)) 11 T ELT)))
+(((-351 |#1| |#2|) (-10 -7 (-15 -3942 (|#1| (-484))) (-15 -3154 ((-3 (-484) #1="failed") |#1|)) (-15 -3153 ((-484) |#1|)) (-15 -3942 (|#1| (-347 (-484)))) (-15 -3154 ((-3 (-347 (-484)) #1#) |#1|)) (-15 -3153 ((-347 (-484)) |#1|)) (-15 -3153 (|#2| |#1|)) (-15 -3154 ((-3 |#2| #1#) |#1|)) (-15 -3942 (|#1| |#2|))) (-352 |#2|) (-1128)) (T -351))
+NIL
+((-3154 (((-3 |#1| #1="failed") $) 9 T ELT) (((-3 (-347 (-484)) #1#) $) 16 (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 (-484) #1#) $) 13 (|has| |#1| (-951 (-484))) ELT)) (-3153 ((|#1| $) 8 T ELT) (((-347 (-484)) $) 17 (|has| |#1| (-951 (-347 (-484)))) ELT) (((-484) $) 14 (|has| |#1| (-951 (-484))) ELT)) (-3942 (($ |#1|) 6 T ELT) (($ (-347 (-484))) 15 (|has| |#1| (-951 (-347 (-484)))) ELT) (($ (-484)) 12 (|has| |#1| (-951 (-484))) ELT)))
+(((-352 |#1|) (-113) (-1128)) (T -352))
+NIL
+(-13 (-951 |t#1|) (-10 -7 (IF (|has| |t#1| (-951 (-484))) (-6 (-951 (-484))) |%noBranch|) (IF (|has| |t#1| (-951 (-347 (-484)))) (-6 (-951 (-347 (-484)))) |%noBranch|)))
+(((-556 (-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((-556 (-484)) |has| |#1| (-951 (-484))) ((-556 |#1|) . T) ((-951 (-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((-951 (-484)) |has| |#1| (-951 (-484))) ((-951 |#1|) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3463 (((-3 $ "failed") $) NIL T ELT)) (-1781 ((|#4| (-695) (-1178 |#4|)) 55 T ELT)) (-2408 (((-85) $) NIL T ELT)) (-2996 (((-1178 |#4|) $) 15 T ELT)) (-3129 ((|#2| $) 53 T ELT)) (-1782 (($ $) 156 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) 103 T ELT)) (-1967 (($ (-1178 |#4|)) 102 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2995 ((|#1| $) 16 T ELT)) (-3007 (($ $ $) NIL T ELT)) (-2433 (($ $ $) NIL T ELT)) (-3942 (((-773) $) 147 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2010 (((-1178 |#4|) $) 140 T ELT)) (-2664 (($) 11 T CONST)) (-3054 (((-85) $ $) 39 T ELT)) (-3945 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) 133 T ELT)) (* (($ $ $) 130 T ELT)))
+(((-353 |#1| |#2| |#3| |#4|) (-13 (-410) (-10 -8 (-15 -1967 ($ (-1178 |#4|))) (-15 -2010 ((-1178 |#4|) $)) (-15 -3129 (|#2| $)) (-15 -2996 ((-1178 |#4|) $)) (-15 -2995 (|#1| $)) (-15 -1782 ($ $)) (-15 -1781 (|#4| (-695) (-1178 |#4|))))) (-257) (-905 |#1|) (-1154 |#2|) (-13 (-350 |#2| |#3|) (-951 |#2|))) (T -353))
+((-1967 (*1 *1 *2) (-12 (-5 *2 (-1178 *6)) (-4 *6 (-13 (-350 *4 *5) (-951 *4))) (-4 *4 (-905 *3)) (-4 *5 (-1154 *4)) (-4 *3 (-257)) (-5 *1 (-353 *3 *4 *5 *6)))) (-2010 (*1 *2 *1) (-12 (-4 *3 (-257)) (-4 *4 (-905 *3)) (-4 *5 (-1154 *4)) (-5 *2 (-1178 *6)) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *6 (-13 (-350 *4 *5) (-951 *4))))) (-3129 (*1 *2 *1) (-12 (-4 *4 (-1154 *2)) (-4 *2 (-905 *3)) (-5 *1 (-353 *3 *2 *4 *5)) (-4 *3 (-257)) (-4 *5 (-13 (-350 *2 *4) (-951 *2))))) (-2996 (*1 *2 *1) (-12 (-4 *3 (-257)) (-4 *4 (-905 *3)) (-4 *5 (-1154 *4)) (-5 *2 (-1178 *6)) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *6 (-13 (-350 *4 *5) (-951 *4))))) (-2995 (*1 *2 *1) (-12 (-4 *3 (-905 *2)) (-4 *4 (-1154 *3)) (-4 *2 (-257)) (-5 *1 (-353 *2 *3 *4 *5)) (-4 *5 (-13 (-350 *3 *4) (-951 *3))))) (-1782 (*1 *1 *1) (-12 (-4 *2 (-257)) (-4 *3 (-905 *2)) (-4 *4 (-1154 *3)) (-5 *1 (-353 *2 *3 *4 *5)) (-4 *5 (-13 (-350 *3 *4) (-951 *3))))) (-1781 (*1 *2 *3 *4) (-12 (-5 *3 (-695)) (-5 *4 (-1178 *2)) (-4 *5 (-257)) (-4 *6 (-905 *5)) (-4 *2 (-13 (-350 *6 *7) (-951 *6))) (-5 *1 (-353 *5 *6 *7 *2)) (-4 *7 (-1154 *6)))))
+((-3954 (((-353 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-353 |#1| |#2| |#3| |#4|)) 35 T ELT)))
+(((-354 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3954 ((-353 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-353 |#1| |#2| |#3| |#4|)))) (-257) (-905 |#1|) (-1154 |#2|) (-13 (-350 |#2| |#3|) (-951 |#2|)) (-257) (-905 |#5|) (-1154 |#6|) (-13 (-350 |#6| |#7|) (-951 |#6|))) (T -354))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-353 *5 *6 *7 *8)) (-4 *5 (-257)) (-4 *6 (-905 *5)) (-4 *7 (-1154 *6)) (-4 *8 (-13 (-350 *6 *7) (-951 *6))) (-4 *9 (-257)) (-4 *10 (-905 *9)) (-4 *11 (-1154 *10)) (-5 *2 (-353 *9 *10 *11 *12)) (-5 *1 (-354 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-350 *10 *11) (-951 *10))))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3463 (((-3 $ "failed") $) NIL T ELT)) (-2408 (((-85) $) NIL T ELT)) (-3129 ((|#2| $) 69 T ELT)) (-1783 (($ (-1178 |#4|)) 27 T ELT) (($ (-353 |#1| |#2| |#3| |#4|)) 83 (|has| |#4| (-951 |#2|)) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 37 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2010 (((-1178 |#4|) $) 28 T ELT)) (-2664 (($) 26 T CONST)) (-3054 (((-85) $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ $ $) 80 T ELT)))
+(((-355 |#1| |#2| |#3| |#4| |#5|) (-13 (-664) (-10 -8 (-15 -2010 ((-1178 |#4|) $)) (-15 -3129 (|#2| $)) (-15 -1783 ($ (-1178 |#4|))) (IF (|has| |#4| (-951 |#2|)) (-15 -1783 ($ (-353 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-257) (-905 |#1|) (-1154 |#2|) (-350 |#2| |#3|) (-1178 |#4|)) (T -355))
+((-2010 (*1 *2 *1) (-12 (-4 *3 (-257)) (-4 *4 (-905 *3)) (-4 *5 (-1154 *4)) (-5 *2 (-1178 *6)) (-5 *1 (-355 *3 *4 *5 *6 *7)) (-4 *6 (-350 *4 *5)) (-14 *7 *2))) (-3129 (*1 *2 *1) (-12 (-4 *4 (-1154 *2)) (-4 *2 (-905 *3)) (-5 *1 (-355 *3 *2 *4 *5 *6)) (-4 *3 (-257)) (-4 *5 (-350 *2 *4)) (-14 *6 (-1178 *5)))) (-1783 (*1 *1 *2) (-12 (-5 *2 (-1178 *6)) (-4 *6 (-350 *4 *5)) (-4 *4 (-905 *3)) (-4 *5 (-1154 *4)) (-4 *3 (-257)) (-5 *1 (-355 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1783 (*1 *1 *2) (-12 (-5 *2 (-353 *3 *4 *5 *6)) (-4 *6 (-951 *4)) (-4 *3 (-257)) (-4 *4 (-905 *3)) (-4 *5 (-1154 *4)) (-4 *6 (-350 *4 *5)) (-14 *7 (-1178 *6)) (-5 *1 (-355 *3 *4 *5 *6 *7)))))
+((-3954 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT)))
+(((-356 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3954 (|#3| (-1 |#4| |#2|) |#1|))) (-358 |#2|) (-146) (-358 |#4|) (-146)) (T -356))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-358 *6)) (-5 *1 (-356 *4 *5 *2 *6)) (-4 *4 (-358 *5)))))
+((-1770 (((-3 $ #1="failed")) 99 T ELT)) (-3220 (((-1178 (-631 |#2|)) (-1178 $)) NIL T ELT) (((-1178 (-631 |#2|))) 104 T ELT)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2010 (-584 $))) #1#)) 97 T ELT)) (-1701 (((-3 $ #1#)) 96 T ELT)) (-1786 (((-631 |#2|) (-1178 $)) NIL T ELT) (((-631 |#2|)) 115 T ELT)) (-1784 (((-631 |#2|) $ (-1178 $)) NIL T ELT) (((-631 |#2|) $) 123 T ELT)) (-1898 (((-1084 (-858 |#2|))) 64 T ELT)) (-1788 ((|#2| (-1178 $)) NIL T ELT) ((|#2|) 119 T ELT)) (-1790 (($ (-1178 |#2|) (-1178 $)) NIL T ELT) (($ (-1178 |#2|)) 125 T ELT)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2010 (-584 $))) #1#)) 95 T ELT)) (-1702 (((-3 $ #1#)) 87 T ELT)) (-1787 (((-631 |#2|) (-1178 $)) NIL T ELT) (((-631 |#2|)) 113 T ELT)) (-1785 (((-631 |#2|) $ (-1178 $)) NIL T ELT) (((-631 |#2|) $) 121 T ELT)) (-1902 (((-1084 (-858 |#2|))) 63 T ELT)) (-1789 ((|#2| (-1178 $)) NIL T ELT) ((|#2|) 117 T ELT)) (-3221 (((-1178 |#2|) $ (-1178 $)) NIL T ELT) (((-631 |#2|) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 |#2|) $) 124 T ELT) (((-631 |#2|) (-1178 $)) 133 T ELT)) (-3968 (((-1178 |#2|) $) 109 T ELT) (($ (-1178 |#2|)) 111 T ELT)) (-1890 (((-584 (-858 |#2|)) (-1178 $)) NIL T ELT) (((-584 (-858 |#2|))) 107 T ELT)) (-2543 (($ (-631 |#2|) $) 103 T ELT)))
+(((-357 |#1| |#2|) (-10 -7 (-15 -2543 (|#1| (-631 |#2|) |#1|)) (-15 -1898 ((-1084 (-858 |#2|)))) (-15 -1902 ((-1084 (-858 |#2|)))) (-15 -1784 ((-631 |#2|) |#1|)) (-15 -1785 ((-631 |#2|) |#1|)) (-15 -1786 ((-631 |#2|))) (-15 -1787 ((-631 |#2|))) (-15 -1788 (|#2|)) (-15 -1789 (|#2|)) (-15 -3968 (|#1| (-1178 |#2|))) (-15 -3968 ((-1178 |#2|) |#1|)) (-15 -1790 (|#1| (-1178 |#2|))) (-15 -1890 ((-584 (-858 |#2|)))) (-15 -3220 ((-1178 (-631 |#2|)))) (-15 -3221 ((-631 |#2|) (-1178 |#1|))) (-15 -3221 ((-1178 |#2|) |#1|)) (-15 -1770 ((-3 |#1| #1="failed"))) (-15 -1701 ((-3 |#1| #1#))) (-15 -1702 ((-3 |#1| #1#))) (-15 -1904 ((-3 (-2 (|:| |particular| |#1|) (|:| -2010 (-584 |#1|))) #1#))) (-15 -1905 ((-3 (-2 (|:| |particular| |#1|) (|:| -2010 (-584 |#1|))) #1#))) (-15 -1786 ((-631 |#2|) (-1178 |#1|))) (-15 -1787 ((-631 |#2|) (-1178 |#1|))) (-15 -1788 (|#2| (-1178 |#1|))) (-15 -1789 (|#2| (-1178 |#1|))) (-15 -1790 (|#1| (-1178 |#2|) (-1178 |#1|))) (-15 -3221 ((-631 |#2|) (-1178 |#1|) (-1178 |#1|))) (-15 -3221 ((-1178 |#2|) |#1| (-1178 |#1|))) (-15 -1784 ((-631 |#2|) |#1| (-1178 |#1|))) (-15 -1785 ((-631 |#2|) |#1| (-1178 |#1|))) (-15 -3220 ((-1178 (-631 |#2|)) (-1178 |#1|))) (-15 -1890 ((-584 (-858 |#2|)) (-1178 |#1|)))) (-358 |#2|) (-146)) (T -357))
+((-3220 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1178 (-631 *4))) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-1890 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-584 (-858 *4))) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-1789 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-357 *3 *2)) (-4 *3 (-358 *2)))) (-1788 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-357 *3 *2)) (-4 *3 (-358 *2)))) (-1787 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-631 *4)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-1786 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-631 *4)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-1902 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1084 (-858 *4))) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-1898 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1084 (-858 *4))) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1770 (((-3 $ #1="failed")) 47 (|has| |#1| (-495)) ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3220 (((-1178 (-631 |#1|)) (-1178 $)) 88 T ELT) (((-1178 (-631 |#1|))) 114 T ELT)) (-1727 (((-1178 $)) 91 T ELT)) (-3720 (($) 22 T CONST)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2010 (-584 $))) #1#)) 50 (|has| |#1| (-495)) ELT)) (-1701 (((-3 $ #1#)) 48 (|has| |#1| (-495)) ELT)) (-1786 (((-631 |#1|) (-1178 $)) 75 T ELT) (((-631 |#1|)) 106 T ELT)) (-1725 ((|#1| $) 84 T ELT)) (-1784 (((-631 |#1|) $ (-1178 $)) 86 T ELT) (((-631 |#1|) $) 104 T ELT)) (-2402 (((-3 $ #1#) $) 55 (|has| |#1| (-495)) ELT)) (-1898 (((-1084 (-858 |#1|))) 102 (|has| |#1| (-311)) ELT)) (-2405 (($ $ (-831)) 36 T ELT)) (-1723 ((|#1| $) 82 T ELT)) (-1703 (((-1084 |#1|) $) 52 (|has| |#1| (-495)) ELT)) (-1788 ((|#1| (-1178 $)) 77 T ELT) ((|#1|) 108 T ELT)) (-1721 (((-1084 |#1|) $) 73 T ELT)) (-1715 (((-85)) 67 T ELT)) (-1790 (($ (-1178 |#1|) (-1178 $)) 79 T ELT) (($ (-1178 |#1|)) 112 T ELT)) (-3463 (((-3 $ #1#) $) 57 (|has| |#1| (-495)) ELT)) (-3106 (((-831)) 90 T ELT)) (-1712 (((-85)) 64 T ELT)) (-2431 (($ $ (-831)) 43 T ELT)) (-1708 (((-85)) 60 T ELT)) (-1706 (((-85)) 58 T ELT)) (-1710 (((-85)) 62 T ELT)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2010 (-584 $))) #1#)) 51 (|has| |#1| (-495)) ELT)) (-1702 (((-3 $ #1#)) 49 (|has| |#1| (-495)) ELT)) (-1787 (((-631 |#1|) (-1178 $)) 76 T ELT) (((-631 |#1|)) 107 T ELT)) (-1726 ((|#1| $) 85 T ELT)) (-1785 (((-631 |#1|) $ (-1178 $)) 87 T ELT) (((-631 |#1|) $) 105 T ELT)) (-2403 (((-3 $ #1#) $) 56 (|has| |#1| (-495)) ELT)) (-1902 (((-1084 (-858 |#1|))) 103 (|has| |#1| (-311)) ELT)) (-2404 (($ $ (-831)) 37 T ELT)) (-1724 ((|#1| $) 83 T ELT)) (-1704 (((-1084 |#1|) $) 53 (|has| |#1| (-495)) ELT)) (-1789 ((|#1| (-1178 $)) 78 T ELT) ((|#1|) 109 T ELT)) (-1722 (((-1084 |#1|) $) 74 T ELT)) (-1716 (((-85)) 68 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-1707 (((-85)) 59 T ELT)) (-1709 (((-85)) 61 T ELT)) (-1711 (((-85)) 63 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-1714 (((-85)) 66 T ELT)) (-3796 ((|#1| $ (-484)) 118 T ELT)) (-3221 (((-1178 |#1|) $ (-1178 $)) 81 T ELT) (((-631 |#1|) (-1178 $) (-1178 $)) 80 T ELT) (((-1178 |#1|) $) 116 T ELT) (((-631 |#1|) (-1178 $)) 115 T ELT)) (-3968 (((-1178 |#1|) $) 111 T ELT) (($ (-1178 |#1|)) 110 T ELT)) (-1890 (((-584 (-858 |#1|)) (-1178 $)) 89 T ELT) (((-584 (-858 |#1|))) 113 T ELT)) (-2433 (($ $ $) 33 T ELT)) (-1720 (((-85)) 72 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2010 (((-1178 $)) 117 T ELT)) (-1705 (((-584 (-1178 |#1|))) 54 (|has| |#1| (-495)) ELT)) (-2434 (($ $ $ $) 34 T ELT)) (-1718 (((-85)) 70 T ELT)) (-2543 (($ (-631 |#1|) $) 101 T ELT)) (-2432 (($ $ $) 32 T ELT)) (-1719 (((-85)) 71 T ELT)) (-1717 (((-85)) 69 T ELT)) (-1713 (((-85)) 65 T ELT)) (-2658 (($) 23 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 38 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT)))
(((-358 |#1|) (-113) (-146)) (T -358))
-((-2008 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1177 *1)) (-4 *1 (-358 *3)))) (-3219 (*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-1177 *3)))) (-3219 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-358 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-3218 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-1177 (-630 *3))))) (-1889 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-583 (-857 *3))))) (-1789 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-146)) (-4 *1 (-358 *3)))) (-3966 (*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-1177 *3)))) (-3966 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-146)) (-4 *1 (-358 *3)))) (-1788 (*1 *2) (-12 (-4 *1 (-358 *2)) (-4 *2 (-146)))) (-1787 (*1 *2) (-12 (-4 *1 (-358 *2)) (-4 *2 (-146)))) (-1786 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))) (-1785 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))) (-1783 (*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))) (-1901 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-4 *3 (-311)) (-5 *2 (-1083 (-857 *3))))) (-1897 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-4 *3 (-311)) (-5 *2 (-1083 (-857 *3))))) (-2541 (*1 *1 *2 *1) (-12 (-5 *2 (-630 *3)) (-4 *1 (-358 *3)) (-4 *3 (-146)))))
-(-13 (-315 |t#1|) (-241 (-483) |t#1|) (-10 -8 (-15 -2008 ((-1177 $))) (-15 -3219 ((-1177 |t#1|) $)) (-15 -3219 ((-630 |t#1|) (-1177 $))) (-15 -3218 ((-1177 (-630 |t#1|)))) (-15 -1889 ((-583 (-857 |t#1|)))) (-15 -1789 ($ (-1177 |t#1|))) (-15 -3966 ((-1177 |t#1|) $)) (-15 -3966 ($ (-1177 |t#1|))) (-15 -1788 (|t#1|)) (-15 -1787 (|t#1|)) (-15 -1786 ((-630 |t#1|))) (-15 -1785 ((-630 |t#1|))) (-15 -1784 ((-630 |t#1|) $)) (-15 -1783 ((-630 |t#1|) $)) (IF (|has| |t#1| (-311)) (PROGN (-15 -1901 ((-1083 (-857 |t#1|)))) (-15 -1897 ((-1083 (-857 |t#1|))))) |%noBranch|) (-15 -2541 ($ (-630 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-241 (-483) |#1|) . T) ((-315 |#1|) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-657) . T) ((-683 |#1|) . T) ((-685) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1012) . T) ((-1127) . T))
-((-3129 (((-345 |#1|) (-345 |#1|) (-1 (-345 |#1|) |#1|)) 28 T ELT)) (-1790 (((-345 |#1|) (-345 |#1|) (-345 |#1|)) 17 T ELT)))
-(((-359 |#1|) (-10 -7 (-15 -3129 ((-345 |#1|) (-345 |#1|) (-1 (-345 |#1|) |#1|))) (-15 -1790 ((-345 |#1|) (-345 |#1|) (-345 |#1|)))) (-494)) (T -359))
-((-1790 (*1 *2 *2 *2) (-12 (-5 *2 (-345 *3)) (-4 *3 (-494)) (-5 *1 (-359 *3)))) (-3129 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-345 *4) *4)) (-4 *4 (-494)) (-5 *2 (-345 *4)) (-5 *1 (-359 *4)))))
-((-3077 (((-583 (-1088)) $) 81 T ELT)) (-3079 (((-347 (-1083 $)) $ (-550 $)) 313 T ELT)) (-1601 (($ $ (-248 $)) NIL T ELT) (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) 277 T ELT)) (-3152 (((-3 (-550 $) #1="failed") $) NIL T ELT) (((-3 (-1088) #1#) $) 84 T ELT) (((-3 (-483) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 273 T ELT) (((-3 (-347 (-857 |#2|)) #1#) $) 363 T ELT) (((-3 (-857 |#2|) #1#) $) 275 T ELT) (((-3 (-347 (-483)) #1#) $) NIL T ELT)) (-3151 (((-550 $) $) NIL T ELT) (((-1088) $) 28 T ELT) (((-483) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-347 (-857 |#2|)) $) 345 T ELT) (((-857 |#2|) $) 272 T ELT) (((-347 (-483)) $) NIL T ELT)) (-3589 (((-86) (-86)) 47 T ELT)) (-2992 (($ $) 99 T ELT)) (-1599 (((-3 (-550 $) #1#) $) 268 T ELT)) (-1598 (((-583 (-550 $)) $) 269 T ELT)) (-2819 (((-3 (-583 $) #1#) $) 287 T ELT)) (-2821 (((-3 (-2 (|:| |val| $) (|:| -2397 (-483))) #1#) $) 294 T ELT)) (-2818 (((-3 (-583 $) #1#) $) 285 T ELT)) (-1791 (((-3 (-2 (|:| -3948 (-483)) (|:| |var| (-550 $))) #1#) $) 304 T ELT)) (-2820 (((-3 (-2 (|:| |var| (-550 $)) (|:| -2397 (-483))) #1#) $) 291 T ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2397 (-483))) #1#) $ (-86)) 255 T ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2397 (-483))) #1#) $ (-1088)) 257 T ELT)) (-1794 (((-85) $) 17 T ELT)) (-1793 ((|#2| $) 19 T ELT)) (-3762 (($ $ (-550 $) $) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) 276 T ELT) (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-1 $ (-583 $)))) 109 T ELT) (($ $ (-1088) (-1 $ (-583 $))) NIL T ELT) (($ $ (-1088) (-1 $ $)) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-583 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1088)) 62 T ELT) (($ $ (-583 (-1088))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-86) $ (-1088)) 65 T ELT) (($ $ (-583 (-86)) (-583 $) (-1088)) 72 T ELT) (($ $ (-583 (-1088)) (-583 (-694)) (-583 (-1 $ $))) 120 T ELT) (($ $ (-583 (-1088)) (-583 (-694)) (-583 (-1 $ (-583 $)))) 282 T ELT) (($ $ (-1088) (-694) (-1 $ (-583 $))) 105 T ELT) (($ $ (-1088) (-694) (-1 $ $)) 104 T ELT)) (-3794 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-583 $)) 119 T ELT)) (-3752 (($ $ (-1088)) 278 T ELT) (($ $ (-583 (-1088))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT)) (-2991 (($ $) 324 T ELT)) (-3966 (((-800 (-483)) $) 297 T ELT) (((-800 (-327)) $) 301 T ELT) (($ (-345 $)) 359 T ELT) (((-472) $) NIL T ELT)) (-3940 (((-772) $) 279 T ELT) (($ (-550 $)) 93 T ELT) (($ (-1088)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1037 |#2| (-550 $))) NIL T ELT) (($ (-347 |#2|)) 329 T ELT) (($ (-857 (-347 |#2|))) 368 T ELT) (($ (-347 (-857 (-347 |#2|)))) 341 T ELT) (($ (-347 (-857 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-857 |#2|)) 216 T ELT) (($ (-483)) NIL T ELT) (($ (-347 (-483))) 373 T ELT)) (-3121 (((-694)) 88 T CONST)) (-2250 (((-85) (-86)) 42 T ELT)) (-1792 (($ (-1088) $) 31 T ELT) (($ (-1088) $ $) 32 T ELT) (($ (-1088) $ $ $) 33 T ELT) (($ (-1088) $ $ $ $) 34 T ELT) (($ (-1088) (-583 $)) 39 T ELT)) (* (($ (-347 (-483)) $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-830) $) NIL T ELT)))
-(((-360 |#1| |#2|) (-10 -7 (-15 * (|#1| (-830) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-483) |#1|)) (-15 -3940 (|#1| (-347 (-483)))) (-15 -3152 ((-3 (-347 (-483)) #1="failed") |#1|)) (-15 -3151 ((-347 (-483)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3940 (|#1| (-483))) (-15 -3121 ((-694)) -3946) (-15 * (|#1| |#2| |#1|)) (-15 -3966 ((-472) |#1|)) (-15 -3940 (|#1| (-857 |#2|))) (-15 -3152 ((-3 (-857 |#2|) #1#) |#1|)) (-15 -3151 ((-857 |#2|) |#1|)) (-15 -3752 (|#1| |#1| (-583 (-1088)) (-583 (-694)))) (-15 -3752 (|#1| |#1| (-1088) (-694))) (-15 -3752 (|#1| |#1| (-583 (-1088)))) (-15 -3752 (|#1| |#1| (-1088))) (-15 * (|#1| |#1| |#2|)) (-15 -3940 (|#1| |#1|)) (-15 * (|#1| |#1| (-347 (-483)))) (-15 * (|#1| (-347 (-483)) |#1|)) (-15 -3940 (|#1| (-347 (-857 |#2|)))) (-15 -3152 ((-3 (-347 (-857 |#2|)) #1#) |#1|)) (-15 -3151 ((-347 (-857 |#2|)) |#1|)) (-15 -3079 ((-347 (-1083 |#1|)) |#1| (-550 |#1|))) (-15 -3940 (|#1| (-347 (-857 (-347 |#2|))))) (-15 -3940 (|#1| (-857 (-347 |#2|)))) (-15 -3940 (|#1| (-347 |#2|))) (-15 -2991 (|#1| |#1|)) (-15 -3966 (|#1| (-345 |#1|))) (-15 -3762 (|#1| |#1| (-1088) (-694) (-1 |#1| |#1|))) (-15 -3762 (|#1| |#1| (-1088) (-694) (-1 |#1| (-583 |#1|)))) (-15 -3762 (|#1| |#1| (-583 (-1088)) (-583 (-694)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3762 (|#1| |#1| (-583 (-1088)) (-583 (-694)) (-583 (-1 |#1| |#1|)))) (-15 -2821 ((-3 (-2 (|:| |val| |#1|) (|:| -2397 (-483))) #1#) |#1|)) (-15 -2820 ((-3 (-2 (|:| |var| (-550 |#1|)) (|:| -2397 (-483))) #1#) |#1| (-1088))) (-15 -2820 ((-3 (-2 (|:| |var| (-550 |#1|)) (|:| -2397 (-483))) #1#) |#1| (-86))) (-15 -2992 (|#1| |#1|)) (-15 -3940 (|#1| (-1037 |#2| (-550 |#1|)))) (-15 -1791 ((-3 (-2 (|:| -3948 (-483)) (|:| |var| (-550 |#1|))) #1#) |#1|)) (-15 -2818 ((-3 (-583 |#1|) #1#) |#1|)) (-15 -2820 ((-3 (-2 (|:| |var| (-550 |#1|)) (|:| -2397 (-483))) #1#) |#1|)) (-15 -2819 ((-3 (-583 |#1|) #1#) |#1|)) (-15 -3762 (|#1| |#1| (-583 (-86)) (-583 |#1|) (-1088))) (-15 -3762 (|#1| |#1| (-86) |#1| (-1088))) (-15 -3762 (|#1| |#1|)) (-15 -3762 (|#1| |#1| (-583 (-1088)))) (-15 -3762 (|#1| |#1| (-1088))) (-15 -1792 (|#1| (-1088) (-583 |#1|))) (-15 -1792 (|#1| (-1088) |#1| |#1| |#1| |#1|)) (-15 -1792 (|#1| (-1088) |#1| |#1| |#1|)) (-15 -1792 (|#1| (-1088) |#1| |#1|)) (-15 -1792 (|#1| (-1088) |#1|)) (-15 -3077 ((-583 (-1088)) |#1|)) (-15 -1793 (|#2| |#1|)) (-15 -1794 ((-85) |#1|)) (-15 -3940 (|#1| |#2|)) (-15 -3152 ((-3 |#2| #1#) |#1|)) (-15 -3151 (|#2| |#1|)) (-15 -3151 ((-483) |#1|)) (-15 -3152 ((-3 (-483) #1#) |#1|)) (-15 -3966 ((-800 (-327)) |#1|)) (-15 -3966 ((-800 (-483)) |#1|)) (-15 -3940 (|#1| (-1088))) (-15 -3152 ((-3 (-1088) #1#) |#1|)) (-15 -3151 ((-1088) |#1|)) (-15 -3762 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3762 (|#1| |#1| (-86) (-1 |#1| (-583 |#1|)))) (-15 -3762 (|#1| |#1| (-583 (-86)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3762 (|#1| |#1| (-583 (-86)) (-583 (-1 |#1| |#1|)))) (-15 -3762 (|#1| |#1| (-1088) (-1 |#1| |#1|))) (-15 -3762 (|#1| |#1| (-1088) (-1 |#1| (-583 |#1|)))) (-15 -3762 (|#1| |#1| (-583 (-1088)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3762 (|#1| |#1| (-583 (-1088)) (-583 (-1 |#1| |#1|)))) (-15 -2250 ((-85) (-86))) (-15 -3589 ((-86) (-86))) (-15 -1598 ((-583 (-550 |#1|)) |#1|)) (-15 -1599 ((-3 (-550 |#1|) #1#) |#1|)) (-15 -1601 (|#1| |#1| (-583 (-550 |#1|)) (-583 |#1|))) (-15 -1601 (|#1| |#1| (-583 (-248 |#1|)))) (-15 -1601 (|#1| |#1| (-248 |#1|))) (-15 -3794 (|#1| (-86) (-583 |#1|))) (-15 -3794 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3794 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3794 (|#1| (-86) |#1| |#1|)) (-15 -3794 (|#1| (-86) |#1|)) (-15 -3762 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3762 (|#1| |#1| |#1| |#1|)) (-15 -3762 (|#1| |#1| (-248 |#1|))) (-15 -3762 (|#1| |#1| (-583 (-248 |#1|)))) (-15 -3762 (|#1| |#1| (-583 (-550 |#1|)) (-583 |#1|))) (-15 -3762 (|#1| |#1| (-550 |#1|) |#1|)) (-15 -3940 (|#1| (-550 |#1|))) (-15 -3152 ((-3 (-550 |#1|) #1#) |#1|)) (-15 -3151 ((-550 |#1|) |#1|)) (-15 -3940 ((-772) |#1|))) (-361 |#2|) (-1012)) (T -360))
-((-3589 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *4 (-1012)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *5 (-1012)) (-5 *2 (-85)) (-5 *1 (-360 *4 *5)) (-4 *4 (-361 *5)))) (-3121 (*1 *2) (-12 (-4 *4 (-1012)) (-5 *2 (-694)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 129 (|has| |#1| (-25)) ELT)) (-3077 (((-583 (-1088)) $) 220 T ELT)) (-3079 (((-347 (-1083 $)) $ (-550 $)) 188 (|has| |#1| (-494)) ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 160 (|has| |#1| (-494)) ELT)) (-2059 (($ $) 161 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) 163 (|has| |#1| (-494)) ELT)) (-1597 (((-583 (-550 $)) $) 42 T ELT)) (-1309 (((-3 $ "failed") $ $) 131 (|has| |#1| (-21)) ELT)) (-1601 (($ $ (-248 $)) 54 T ELT) (($ $ (-583 (-248 $))) 53 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 52 T ELT)) (-3769 (($ $) 180 (|has| |#1| (-494)) ELT)) (-3965 (((-345 $) $) 181 (|has| |#1| (-494)) ELT)) (-1605 (((-85) $ $) 171 (|has| |#1| (-494)) ELT)) (-3718 (($) 117 (OR (|has| |#1| (-1024)) (|has| |#1| (-25))) CONST)) (-3152 (((-3 (-550 $) #1="failed") $) 67 T ELT) (((-3 (-1088) #1#) $) 233 T ELT) (((-3 (-483) #1#) $) 227 (|has| |#1| (-950 (-483))) ELT) (((-3 |#1| #1#) $) 224 T ELT) (((-3 (-347 (-857 |#1|)) #1#) $) 186 (|has| |#1| (-494)) ELT) (((-3 (-857 |#1|) #1#) $) 136 (|has| |#1| (-961)) ELT) (((-3 (-347 (-483)) #1#) $) 111 (OR (-12 (|has| |#1| (-950 (-483))) (|has| |#1| (-494))) (|has| |#1| (-950 (-347 (-483))))) ELT)) (-3151 (((-550 $) $) 68 T ELT) (((-1088) $) 234 T ELT) (((-483) $) 226 (|has| |#1| (-950 (-483))) ELT) ((|#1| $) 225 T ELT) (((-347 (-857 |#1|)) $) 187 (|has| |#1| (-494)) ELT) (((-857 |#1|) $) 137 (|has| |#1| (-961)) ELT) (((-347 (-483)) $) 112 (OR (-12 (|has| |#1| (-950 (-483))) (|has| |#1| (-494))) (|has| |#1| (-950 (-347 (-483))))) ELT)) (-2560 (($ $ $) 175 (|has| |#1| (-494)) ELT)) (-2275 (((-630 (-483)) (-630 $)) 153 (-2558 (|has| |#1| (-580 (-483))) (|has| |#1| (-961))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 152 (-2558 (|has| |#1| (-580 (-483))) (|has| |#1| (-961))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) 151 (|has| |#1| (-961)) ELT) (((-630 |#1|) (-630 $)) 150 (|has| |#1| (-961)) ELT)) (-3461 (((-3 $ "failed") $) 119 (|has| |#1| (-1024)) ELT)) (-2559 (($ $ $) 174 (|has| |#1| (-494)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 169 (|has| |#1| (-494)) ELT)) (-3717 (((-85) $) 182 (|has| |#1| (-494)) ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) 229 (|has| |#1| (-796 (-483))) ELT) (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 228 (|has| |#1| (-796 (-327))) ELT)) (-2569 (($ $) 49 T ELT) (($ (-583 $)) 48 T ELT)) (-1596 (((-583 (-86)) $) 41 T ELT)) (-3589 (((-86) (-86)) 40 T ELT)) (-2406 (((-85) $) 118 (|has| |#1| (-1024)) ELT)) (-2669 (((-85) $) 20 (|has| $ (-950 (-483))) ELT)) (-2992 (($ $) 203 (|has| |#1| (-961)) ELT)) (-2994 (((-1037 |#1| (-550 $)) $) 204 (|has| |#1| (-961)) ELT)) (-1602 (((-3 (-583 $) #2="failed") (-583 $) $) 178 (|has| |#1| (-494)) ELT)) (-1594 (((-1083 $) (-550 $)) 23 (|has| $ (-961)) ELT)) (-3952 (($ (-1 $ $) (-550 $)) 34 T ELT)) (-1599 (((-3 (-550 $) "failed") $) 44 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) 155 (-2558 (|has| |#1| (-580 (-483))) (|has| |#1| (-961))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 154 (-2558 (|has| |#1| (-580 (-483))) (|has| |#1| (-961))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 149 (|has| |#1| (-961)) ELT) (((-630 |#1|) (-1177 $)) 148 (|has| |#1| (-961)) ELT)) (-1888 (($ (-583 $)) 167 (|has| |#1| (-494)) ELT) (($ $ $) 166 (|has| |#1| (-494)) ELT)) (-3237 (((-1071) $) 11 T ELT)) (-1598 (((-583 (-550 $)) $) 43 T ELT)) (-2231 (($ (-86) $) 36 T ELT) (($ (-86) (-583 $)) 35 T ELT)) (-2819 (((-3 (-583 $) "failed") $) 209 (|has| |#1| (-1024)) ELT)) (-2821 (((-3 (-2 (|:| |val| $) (|:| -2397 (-483))) "failed") $) 200 (|has| |#1| (-961)) ELT)) (-2818 (((-3 (-583 $) "failed") $) 207 (|has| |#1| (-25)) ELT)) (-1791 (((-3 (-2 (|:| -3948 (-483)) (|:| |var| (-550 $))) "failed") $) 206 (|has| |#1| (-25)) ELT)) (-2820 (((-3 (-2 (|:| |var| (-550 $)) (|:| -2397 (-483))) "failed") $) 208 (|has| |#1| (-1024)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2397 (-483))) "failed") $ (-86)) 202 (|has| |#1| (-961)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2397 (-483))) "failed") $ (-1088)) 201 (|has| |#1| (-961)) ELT)) (-2629 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1088)) 37 T ELT)) (-2480 (($ $) 121 (OR (|has| |#1| (-410)) (|has| |#1| (-494))) ELT)) (-2599 (((-694) $) 45 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-1794 (((-85) $) 222 T ELT)) (-1793 ((|#1| $) 221 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 168 (|has| |#1| (-494)) ELT)) (-3139 (($ (-583 $)) 165 (|has| |#1| (-494)) ELT) (($ $ $) 164 (|has| |#1| (-494)) ELT)) (-1595 (((-85) $ $) 33 T ELT) (((-85) $ (-1088)) 32 T ELT)) (-3726 (((-345 $) $) 179 (|has| |#1| (-494)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 177 (|has| |#1| (-494)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 176 (|has| |#1| (-494)) ELT)) (-3460 (((-3 $ "failed") $ $) 159 (|has| |#1| (-494)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 170 (|has| |#1| (-494)) ELT)) (-2670 (((-85) $) 21 (|has| $ (-950 (-483))) ELT)) (-3762 (($ $ (-550 $) $) 65 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 64 T ELT) (($ $ (-583 (-248 $))) 63 T ELT) (($ $ (-248 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-583 $) (-583 $)) 60 T ELT) (($ $ (-583 (-1088)) (-583 (-1 $ $))) 31 T ELT) (($ $ (-583 (-1088)) (-583 (-1 $ (-583 $)))) 30 T ELT) (($ $ (-1088) (-1 $ (-583 $))) 29 T ELT) (($ $ (-1088) (-1 $ $)) 28 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) 27 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-583 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT) (($ $ (-1088)) 214 (|has| |#1| (-553 (-472))) ELT) (($ $ (-583 (-1088))) 213 (|has| |#1| (-553 (-472))) ELT) (($ $) 212 (|has| |#1| (-553 (-472))) ELT) (($ $ (-86) $ (-1088)) 211 (|has| |#1| (-553 (-472))) ELT) (($ $ (-583 (-86)) (-583 $) (-1088)) 210 (|has| |#1| (-553 (-472))) ELT) (($ $ (-583 (-1088)) (-583 (-694)) (-583 (-1 $ $))) 199 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1088)) (-583 (-694)) (-583 (-1 $ (-583 $)))) 198 (|has| |#1| (-961)) ELT) (($ $ (-1088) (-694) (-1 $ (-583 $))) 197 (|has| |#1| (-961)) ELT) (($ $ (-1088) (-694) (-1 $ $)) 196 (|has| |#1| (-961)) ELT)) (-1604 (((-694) $) 172 (|has| |#1| (-494)) ELT)) (-3794 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-583 $)) 55 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 173 (|has| |#1| (-494)) ELT)) (-1600 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3752 (($ $ (-1088)) 146 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1088))) 144 (|has| |#1| (-961)) ELT) (($ $ (-1088) (-694)) 143 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 142 (|has| |#1| (-961)) ELT)) (-2991 (($ $) 193 (|has| |#1| (-494)) ELT)) (-2993 (((-1037 |#1| (-550 $)) $) 194 (|has| |#1| (-494)) ELT)) (-3180 (($ $) 22 (|has| $ (-961)) ELT)) (-3966 (((-800 (-483)) $) 231 (|has| |#1| (-553 (-800 (-483)))) ELT) (((-800 (-327)) $) 230 (|has| |#1| (-553 (-800 (-327)))) ELT) (($ (-345 $)) 195 (|has| |#1| (-494)) ELT) (((-472) $) 113 (|has| |#1| (-553 (-472))) ELT)) (-3005 (($ $ $) 124 (|has| |#1| (-410)) ELT)) (-2431 (($ $ $) 125 (|has| |#1| (-410)) ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-550 $)) 66 T ELT) (($ (-1088)) 232 T ELT) (($ |#1|) 223 T ELT) (($ (-1037 |#1| (-550 $))) 205 (|has| |#1| (-961)) ELT) (($ (-347 |#1|)) 191 (|has| |#1| (-494)) ELT) (($ (-857 (-347 |#1|))) 190 (|has| |#1| (-494)) ELT) (($ (-347 (-857 (-347 |#1|)))) 189 (|has| |#1| (-494)) ELT) (($ (-347 (-857 |#1|))) 185 (|has| |#1| (-494)) ELT) (($ $) 158 (|has| |#1| (-494)) ELT) (($ (-857 |#1|)) 135 (|has| |#1| (-961)) ELT) (($ (-347 (-483))) 110 (OR (|has| |#1| (-494)) (-12 (|has| |#1| (-950 (-483))) (|has| |#1| (-494))) (|has| |#1| (-950 (-347 (-483))))) ELT) (($ (-483)) 109 (OR (|has| |#1| (-961)) (|has| |#1| (-950 (-483)))) ELT)) (-2698 (((-632 $) $) 156 (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 138 (|has| |#1| (-961)) CONST)) (-2586 (($ $) 51 T ELT) (($ (-583 $)) 50 T ELT)) (-2250 (((-85) (-86)) 39 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 162 (|has| |#1| (-494)) ELT)) (-1792 (($ (-1088) $) 219 T ELT) (($ (-1088) $ $) 218 T ELT) (($ (-1088) $ $ $) 217 T ELT) (($ (-1088) $ $ $ $) 216 T ELT) (($ (-1088) (-583 $)) 215 T ELT)) (-2656 (($) 128 (|has| |#1| (-25)) CONST)) (-2662 (($) 116 (|has| |#1| (-1024)) CONST)) (-2665 (($ $ (-1088)) 145 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1088))) 141 (|has| |#1| (-961)) ELT) (($ $ (-1088) (-694)) 140 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 139 (|has| |#1| (-961)) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ (-1037 |#1| (-550 $)) (-1037 |#1| (-550 $))) 192 (|has| |#1| (-494)) ELT) (($ $ $) 122 (OR (|has| |#1| (-410)) (|has| |#1| (-494))) ELT)) (-3831 (($ $ $) 134 (|has| |#1| (-21)) ELT) (($ $) 133 (|has| |#1| (-21)) ELT)) (-3833 (($ $ $) 126 (|has| |#1| (-25)) ELT)) (** (($ $ (-483)) 123 (OR (|has| |#1| (-410)) (|has| |#1| (-494))) ELT) (($ $ (-694)) 120 (|has| |#1| (-1024)) ELT) (($ $ (-830)) 115 (|has| |#1| (-1024)) ELT)) (* (($ (-347 (-483)) $) 184 (|has| |#1| (-494)) ELT) (($ $ (-347 (-483))) 183 (|has| |#1| (-494)) ELT) (($ $ |#1|) 157 (|has| |#1| (-146)) ELT) (($ |#1| $) 147 (|has| |#1| (-961)) ELT) (($ (-483) $) 132 (|has| |#1| (-21)) ELT) (($ (-694) $) 130 (|has| |#1| (-25)) ELT) (($ (-830) $) 127 (|has| |#1| (-25)) ELT) (($ $ $) 114 (|has| |#1| (-1024)) ELT)))
-(((-361 |#1|) (-113) (-1012)) (T -361))
-((-1794 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-1012)) (-5 *2 (-85)))) (-1793 (*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-1012)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-1012)) (-5 *2 (-583 (-1088))))) (-1792 (*1 *1 *2 *1) (-12 (-5 *2 (-1088)) (-4 *1 (-361 *3)) (-4 *3 (-1012)))) (-1792 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1088)) (-4 *1 (-361 *3)) (-4 *3 (-1012)))) (-1792 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1088)) (-4 *1 (-361 *3)) (-4 *3 (-1012)))) (-1792 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1088)) (-4 *1 (-361 *3)) (-4 *3 (-1012)))) (-1792 (*1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-583 *1)) (-4 *1 (-361 *4)) (-4 *4 (-1012)))) (-3762 (*1 *1 *1 *2) (-12 (-5 *2 (-1088)) (-4 *1 (-361 *3)) (-4 *3 (-1012)) (-4 *3 (-553 (-472))))) (-3762 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1088))) (-4 *1 (-361 *3)) (-4 *3 (-1012)) (-4 *3 (-553 (-472))))) (-3762 (*1 *1 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-1012)) (-4 *2 (-553 (-472))))) (-3762 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1088)) (-4 *1 (-361 *4)) (-4 *4 (-1012)) (-4 *4 (-553 (-472))))) (-3762 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 *1)) (-5 *4 (-1088)) (-4 *1 (-361 *5)) (-4 *5 (-1012)) (-4 *5 (-553 (-472))))) (-2819 (*1 *2 *1) (|partial| -12 (-4 *3 (-1024)) (-4 *3 (-1012)) (-5 *2 (-583 *1)) (-4 *1 (-361 *3)))) (-2820 (*1 *2 *1) (|partial| -12 (-4 *3 (-1024)) (-4 *3 (-1012)) (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2397 (-483)))) (-4 *1 (-361 *3)))) (-2818 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1012)) (-5 *2 (-583 *1)) (-4 *1 (-361 *3)))) (-1791 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1012)) (-5 *2 (-2 (|:| -3948 (-483)) (|:| |var| (-550 *1)))) (-4 *1 (-361 *3)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-1037 *3 (-550 *1))) (-4 *3 (-961)) (-4 *3 (-1012)) (-4 *1 (-361 *3)))) (-2994 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *3 (-1012)) (-5 *2 (-1037 *3 (-550 *1))) (-4 *1 (-361 *3)))) (-2992 (*1 *1 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-1012)) (-4 *2 (-961)))) (-2820 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-4 *4 (-961)) (-4 *4 (-1012)) (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2397 (-483)))) (-4 *1 (-361 *4)))) (-2820 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1088)) (-4 *4 (-961)) (-4 *4 (-1012)) (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2397 (-483)))) (-4 *1 (-361 *4)))) (-2821 (*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *3 (-1012)) (-5 *2 (-2 (|:| |val| *1) (|:| -2397 (-483)))) (-4 *1 (-361 *3)))) (-3762 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1088))) (-5 *3 (-583 (-694))) (-5 *4 (-583 (-1 *1 *1))) (-4 *1 (-361 *5)) (-4 *5 (-1012)) (-4 *5 (-961)))) (-3762 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1088))) (-5 *3 (-583 (-694))) (-5 *4 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-361 *5)) (-4 *5 (-1012)) (-4 *5 (-961)))) (-3762 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1088)) (-5 *3 (-694)) (-5 *4 (-1 *1 (-583 *1))) (-4 *1 (-361 *5)) (-4 *5 (-1012)) (-4 *5 (-961)))) (-3762 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1088)) (-5 *3 (-694)) (-5 *4 (-1 *1 *1)) (-4 *1 (-361 *5)) (-4 *5 (-1012)) (-4 *5 (-961)))) (-3966 (*1 *1 *2) (-12 (-5 *2 (-345 *1)) (-4 *1 (-361 *3)) (-4 *3 (-494)) (-4 *3 (-1012)))) (-2993 (*1 *2 *1) (-12 (-4 *3 (-494)) (-4 *3 (-1012)) (-5 *2 (-1037 *3 (-550 *1))) (-4 *1 (-361 *3)))) (-2991 (*1 *1 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-1012)) (-4 *2 (-494)))) (-3943 (*1 *1 *2 *2) (-12 (-5 *2 (-1037 *3 (-550 *1))) (-4 *3 (-494)) (-4 *3 (-1012)) (-4 *1 (-361 *3)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-347 *3)) (-4 *3 (-494)) (-4 *3 (-1012)) (-4 *1 (-361 *3)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-857 (-347 *3))) (-4 *3 (-494)) (-4 *3 (-1012)) (-4 *1 (-361 *3)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-347 (-857 (-347 *3)))) (-4 *3 (-494)) (-4 *3 (-1012)) (-4 *1 (-361 *3)))) (-3079 (*1 *2 *1 *3) (-12 (-5 *3 (-550 *1)) (-4 *1 (-361 *4)) (-4 *4 (-1012)) (-4 *4 (-494)) (-5 *2 (-347 (-1083 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-361 *3)) (-4 *3 (-1012)) (-4 *3 (-1024)))))
-(-13 (-253) (-950 (-1088)) (-794 |t#1|) (-340 |t#1|) (-352 |t#1|) (-10 -8 (-15 -1794 ((-85) $)) (-15 -1793 (|t#1| $)) (-15 -3077 ((-583 (-1088)) $)) (-15 -1792 ($ (-1088) $)) (-15 -1792 ($ (-1088) $ $)) (-15 -1792 ($ (-1088) $ $ $)) (-15 -1792 ($ (-1088) $ $ $ $)) (-15 -1792 ($ (-1088) (-583 $))) (IF (|has| |t#1| (-553 (-472))) (PROGN (-6 (-553 (-472))) (-15 -3762 ($ $ (-1088))) (-15 -3762 ($ $ (-583 (-1088)))) (-15 -3762 ($ $)) (-15 -3762 ($ $ (-86) $ (-1088))) (-15 -3762 ($ $ (-583 (-86)) (-583 $) (-1088)))) |%noBranch|) (IF (|has| |t#1| (-1024)) (PROGN (-6 (-663)) (-15 ** ($ $ (-694))) (-15 -2819 ((-3 (-583 $) "failed") $)) (-15 -2820 ((-3 (-2 (|:| |var| (-550 $)) (|:| -2397 (-483))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-410)) (-6 (-410)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2818 ((-3 (-583 $) "failed") $)) (-15 -1791 ((-3 (-2 (|:| -3948 (-483)) (|:| |var| (-550 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-961)) (PROGN (-6 (-961)) (-6 (-950 (-857 |t#1|))) (-6 (-809 (-1088))) (-6 (-326 |t#1|)) (-15 -3940 ($ (-1037 |t#1| (-550 $)))) (-15 -2994 ((-1037 |t#1| (-550 $)) $)) (-15 -2992 ($ $)) (-15 -2820 ((-3 (-2 (|:| |var| (-550 $)) (|:| -2397 (-483))) "failed") $ (-86))) (-15 -2820 ((-3 (-2 (|:| |var| (-550 $)) (|:| -2397 (-483))) "failed") $ (-1088))) (-15 -2821 ((-3 (-2 (|:| |val| $) (|:| -2397 (-483))) "failed") $)) (-15 -3762 ($ $ (-583 (-1088)) (-583 (-694)) (-583 (-1 $ $)))) (-15 -3762 ($ $ (-583 (-1088)) (-583 (-694)) (-583 (-1 $ (-583 $))))) (-15 -3762 ($ $ (-1088) (-694) (-1 $ (-583 $)))) (-15 -3762 ($ $ (-1088) (-694) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-494)) (PROGN (-6 (-311)) (-6 (-950 (-347 (-857 |t#1|)))) (-15 -3966 ($ (-345 $))) (-15 -2993 ((-1037 |t#1| (-550 $)) $)) (-15 -2991 ($ $)) (-15 -3943 ($ (-1037 |t#1| (-550 $)) (-1037 |t#1| (-550 $)))) (-15 -3940 ($ (-347 |t#1|))) (-15 -3940 ($ (-857 (-347 |t#1|)))) (-15 -3940 ($ (-347 (-857 (-347 |t#1|))))) (-15 -3079 ((-347 (-1083 $)) $ (-550 $))) (IF (|has| |t#1| (-950 (-483))) (-6 (-950 (-347 (-483)))) |%noBranch|)) |%noBranch|)))
-(((-21) OR (|has| |#1| (-961)) (|has| |#1| (-494)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-23) OR (|has| |#1| (-961)) (|has| |#1| (-494)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) OR (|has| |#1| (-961)) (|has| |#1| (-494)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 (-347 (-483))) |has| |#1| (-494)) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-494)) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) |has| |#1| (-494)) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) |has| |#1| (-494)) ((-104) OR (|has| |#1| (-961)) (|has| |#1| (-494)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) OR (|has| |#1| (-950 (-347 (-483)))) (|has| |#1| (-494))) ((-555 (-347 (-857 |#1|))) |has| |#1| (-494)) ((-555 (-483)) OR (|has| |#1| (-961)) (|has| |#1| (-950 (-483))) (|has| |#1| (-494)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-555 (-550 $)) . T) ((-555 (-857 |#1|)) |has| |#1| (-961)) ((-555 (-1088)) . T) ((-555 |#1|) . T) ((-555 $) |has| |#1| (-494)) ((-552 (-772)) . T) ((-146) |has| |#1| (-494)) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-553 (-800 (-327))) |has| |#1| (-553 (-800 (-327)))) ((-553 (-800 (-483))) |has| |#1| (-553 (-800 (-483)))) ((-201) |has| |#1| (-494)) ((-245) |has| |#1| (-494)) ((-257) |has| |#1| (-494)) ((-259 $) . T) ((-253) . T) ((-311) |has| |#1| (-494)) ((-326 |#1|) |has| |#1| (-961)) ((-340 |#1|) . T) ((-352 |#1|) . T) ((-389) |has| |#1| (-494)) ((-410) |has| |#1| (-410)) ((-452 (-550 $) $) . T) ((-452 $ $) . T) ((-494) |has| |#1| (-494)) ((-13) . T) ((-588 (-347 (-483))) |has| |#1| (-494)) ((-588 (-483)) OR (|has| |#1| (-961)) (|has| |#1| (-494)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-588 |#1|) OR (|has| |#1| (-961)) (|has| |#1| (-146))) ((-588 $) OR (|has| |#1| (-961)) (|has| |#1| (-494)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-590 (-347 (-483))) |has| |#1| (-494)) ((-590 (-483)) -12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961))) ((-590 |#1|) OR (|has| |#1| (-961)) (|has| |#1| (-146))) ((-590 $) OR (|has| |#1| (-961)) (|has| |#1| (-494)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-582 (-347 (-483))) |has| |#1| (-494)) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-494)) ((-580 (-483)) -12 (|has| |#1| (-580 (-483))) (|has| |#1| (-961))) ((-580 |#1|) |has| |#1| (-961)) ((-654 (-347 (-483))) |has| |#1| (-494)) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-494)) ((-663) OR (|has| |#1| (-1024)) (|has| |#1| (-961)) (|has| |#1| (-494)) (|has| |#1| (-410)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-806 $ (-1088)) |has| |#1| (-961)) ((-809 (-1088)) |has| |#1| (-961)) ((-811 (-1088)) |has| |#1| (-961)) ((-796 (-327)) |has| |#1| (-796 (-327))) ((-796 (-483)) |has| |#1| (-796 (-483))) ((-794 |#1|) . T) ((-832) |has| |#1| (-494)) ((-950 (-347 (-483))) OR (|has| |#1| (-950 (-347 (-483)))) (-12 (|has| |#1| (-494)) (|has| |#1| (-950 (-483))))) ((-950 (-347 (-857 |#1|))) |has| |#1| (-494)) ((-950 (-483)) |has| |#1| (-950 (-483))) ((-950 (-550 $)) . T) ((-950 (-857 |#1|)) |has| |#1| (-961)) ((-950 (-1088)) . T) ((-950 |#1|) . T) ((-963 (-347 (-483))) |has| |#1| (-494)) ((-963 |#1|) |has| |#1| (-146)) ((-963 $) |has| |#1| (-494)) ((-968 (-347 (-483))) |has| |#1| (-494)) ((-968 |#1|) |has| |#1| (-146)) ((-968 $) |has| |#1| (-494)) ((-961) OR (|has| |#1| (-961)) (|has| |#1| (-494)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-969) OR (|has| |#1| (-961)) (|has| |#1| (-494)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1024) OR (|has| |#1| (-1024)) (|has| |#1| (-961)) (|has| |#1| (-494)) (|has| |#1| (-410)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1059) OR (|has| |#1| (-961)) (|has| |#1| (-494)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1012) . T) ((-1127) . T) ((-1132) |has| |#1| (-494)))
-((-3952 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT)))
-(((-362 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3952 (|#4| (-1 |#3| |#1|) |#2|))) (-961) (-361 |#1|) (-961) (-361 |#3|)) (T -362))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-361 *6)) (-5 *1 (-362 *5 *4 *6 *2)) (-4 *4 (-361 *5)))))
-((-1798 ((|#2| |#2|) 182 T ELT)) (-1795 (((-3 (|:| |%expansion| (-263 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071))))) |#2| (-85)) 60 T ELT)))
-(((-363 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1795 ((-3 (|:| |%expansion| (-263 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071))))) |#2| (-85))) (-15 -1798 (|#2| |#2|))) (-13 (-389) (-950 (-483)) (-580 (-483))) (-13 (-27) (-1113) (-361 |#1|)) (-1088) |#2|) (T -363))
-((-1798 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-363 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1113) (-361 *3))) (-14 *4 (-1088)) (-14 *5 *2))) (-1795 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-3 (|:| |%expansion| (-263 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071)))))) (-5 *1 (-363 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1113) (-361 *5))) (-14 *6 (-1088)) (-14 *7 *3))))
-((-1798 ((|#2| |#2|) 105 T ELT)) (-1796 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071))))) |#2| (-85) (-1071)) 52 T ELT)) (-1797 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071))))) |#2| (-85) (-1071)) 169 T ELT)))
-(((-364 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1796 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071))))) |#2| (-85) (-1071))) (-15 -1797 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071))))) |#2| (-85) (-1071))) (-15 -1798 (|#2| |#2|))) (-13 (-389) (-950 (-483)) (-580 (-483))) (-13 (-27) (-1113) (-361 |#1|) (-10 -8 (-15 -3940 ($ |#3|)))) (-755) (-13 (-1156 |#2| |#3|) (-311) (-1113) (-10 -8 (-15 -3752 ($ $)) (-15 -3806 ($ $)))) (-896 |#4|) (-1088)) (T -364))
-((-1798 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-4 *2 (-13 (-27) (-1113) (-361 *3) (-10 -8 (-15 -3940 ($ *4))))) (-4 *4 (-755)) (-4 *5 (-13 (-1156 *2 *4) (-311) (-1113) (-10 -8 (-15 -3752 ($ $)) (-15 -3806 ($ $))))) (-5 *1 (-364 *3 *2 *4 *5 *6 *7)) (-4 *6 (-896 *5)) (-14 *7 (-1088)))) (-1797 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-4 *3 (-13 (-27) (-1113) (-361 *6) (-10 -8 (-15 -3940 ($ *7))))) (-4 *7 (-755)) (-4 *8 (-13 (-1156 *3 *7) (-311) (-1113) (-10 -8 (-15 -3752 ($ $)) (-15 -3806 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071)))))) (-5 *1 (-364 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1071)) (-4 *9 (-896 *8)) (-14 *10 (-1088)))) (-1796 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-4 *3 (-13 (-27) (-1113) (-361 *6) (-10 -8 (-15 -3940 ($ *7))))) (-4 *7 (-755)) (-4 *8 (-13 (-1156 *3 *7) (-311) (-1113) (-10 -8 (-15 -3752 ($ $)) (-15 -3806 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071)))))) (-5 *1 (-364 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1071)) (-4 *9 (-896 *8)) (-14 *10 (-1088)))))
-((-1799 (($) 51 T ELT)) (-3229 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-3231 (($ $ $) 46 T ELT)) (-3230 (((-85) $ $) 35 T ELT)) (-3131 (((-694)) 55 T ELT)) (-3234 (($ (-583 |#2|)) 23 T ELT) (($) NIL T ELT)) (-2990 (($) 66 T ELT)) (-3236 (((-85) $ $) 15 T ELT)) (-2527 ((|#2| $) 77 T ELT)) (-2853 ((|#2| $) 75 T ELT)) (-2006 (((-830) $) 70 T ELT)) (-3233 (($ $ $) 42 T ELT)) (-2396 (($ (-830)) 60 T ELT)) (-3232 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-1943 (((-694) (-1 (-85) |#2|) $) NIL T ELT) (((-694) |#2| $) 31 T ELT)) (-3524 (($ (-583 |#2|)) 27 T ELT)) (-1800 (($ $) 53 T ELT)) (-3940 (((-772) $) 40 T ELT)) (-1801 (((-694) $) 24 T ELT)) (-3235 (($ (-583 |#2|)) 22 T ELT) (($) NIL T ELT)) (-3052 (((-85) $ $) 19 T ELT)))
-(((-365 |#1| |#2|) (-10 -7 (-15 -3131 ((-694))) (-15 -2396 (|#1| (-830))) (-15 -2006 ((-830) |#1|)) (-15 -2990 (|#1|)) (-15 -2527 (|#2| |#1|)) (-15 -2853 (|#2| |#1|)) (-15 -1799 (|#1|)) (-15 -1800 (|#1| |#1|)) (-15 -1801 ((-694) |#1|)) (-15 -3052 ((-85) |#1| |#1|)) (-15 -3940 ((-772) |#1|)) (-15 -3236 ((-85) |#1| |#1|)) (-15 -3235 (|#1|)) (-15 -3235 (|#1| (-583 |#2|))) (-15 -3234 (|#1|)) (-15 -3234 (|#1| (-583 |#2|))) (-15 -3233 (|#1| |#1| |#1|)) (-15 -3232 (|#1| |#1| |#1|)) (-15 -3232 (|#1| |#1| |#2|)) (-15 -3231 (|#1| |#1| |#1|)) (-15 -3230 ((-85) |#1| |#1|)) (-15 -3229 (|#1| |#1| |#1|)) (-15 -3229 (|#1| |#1| |#2|)) (-15 -3229 (|#1| |#2| |#1|)) (-15 -3524 (|#1| (-583 |#2|))) (-15 -1943 ((-694) |#2| |#1|)) (-15 -1943 ((-694) (-1 (-85) |#2|) |#1|))) (-366 |#2|) (-1012)) (T -365))
-((-3131 (*1 *2) (-12 (-4 *4 (-1012)) (-5 *2 (-694)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))))
-((-2564 (((-85) $ $) 19 T ELT)) (-1799 (($) 71 (|has| |#1| (-317)) ELT)) (-3229 (($ |#1| $) 86 T ELT) (($ $ |#1|) 85 T ELT) (($ $ $) 84 T ELT)) (-3231 (($ $ $) 82 T ELT)) (-3230 (((-85) $ $) 83 T ELT)) (-3131 (((-694)) 65 (|has| |#1| (-317)) ELT)) (-3234 (($ (-583 |#1|)) 78 T ELT) (($) 77 T ELT)) (-1567 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3989)) ELT)) (-3718 (($) 7 T CONST)) (-1350 (($ $) 62 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3399 (($ |#1| $) 51 (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3989)) ELT)) (-3400 (($ |#1| $) 61 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3989)) ELT)) (-2990 (($) 68 (|has| |#1| (-317)) ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-3236 (((-85) $ $) 74 T ELT)) (-2527 ((|#1| $) 69 (|has| |#1| (-756)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-2853 ((|#1| $) 70 (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2006 (((-830) $) 67 (|has| |#1| (-317)) ELT)) (-3237 (((-1071) $) 22 T ELT)) (-3233 (($ $ $) 79 T ELT)) (-1271 ((|#1| $) 43 T ELT)) (-3603 (($ |#1| $) 44 T ELT)) (-2396 (($ (-830)) 66 (|has| |#1| (-317)) ELT)) (-3238 (((-1032) $) 21 T ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1272 ((|#1| $) 45 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3232 (($ $ |#1|) 81 T ELT) (($ $ $) 80 T ELT)) (-1463 (($) 53 T ELT) (($ (-583 |#1|)) 52 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 63 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 54 T ELT)) (-1800 (($ $) 72 (|has| |#1| (-317)) ELT)) (-3940 (((-772) $) 17 T ELT)) (-1801 (((-694) $) 73 T ELT)) (-3235 (($ (-583 |#1|)) 76 T ELT) (($) 75 T ELT)) (-1262 (((-85) $ $) 20 T ELT)) (-1273 (($ (-583 |#1|)) 46 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 T ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-366 |#1|) (-113) (-1012)) (T -366))
-((-1801 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-1012)) (-5 *2 (-694)))) (-1800 (*1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1012)) (-4 *2 (-317)))) (-1799 (*1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-317)) (-4 *2 (-1012)))) (-2853 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1012)) (-4 *2 (-756)))) (-2527 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1012)) (-4 *2 (-756)))))
-(-13 (-183 |t#1|) (-1010 |t#1|) (-10 -8 (-6 -3989) (-15 -1801 ((-694) $)) (IF (|has| |t#1| (-317)) (PROGN (-6 (-317)) (-15 -1800 ($ $)) (-15 -1799 ($))) |%noBranch|) (IF (|has| |t#1| (-756)) (PROGN (-15 -2853 (|t#1| $)) (-15 -2527 (|t#1| $))) |%noBranch|)))
-(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-552 (-772)) . T) ((-124 |#1|) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-183 |#1|) . T) ((-193 |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-317) |has| |#1| (-317)) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1010 |#1|) . T) ((-1012) . T) ((-1127) . T))
-((-3835 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-3836 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-3952 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT)))
-(((-367 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3952 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3836 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3835 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1012) (-366 |#1|) (-1012) (-366 |#3|)) (T -367))
-((-3835 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1012)) (-4 *5 (-1012)) (-4 *2 (-366 *5)) (-5 *1 (-367 *6 *4 *5 *2)) (-4 *4 (-366 *6)))) (-3836 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1012)) (-4 *2 (-1012)) (-5 *1 (-367 *5 *4 *2 *6)) (-4 *4 (-366 *5)) (-4 *6 (-366 *2)))) (-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-366 *6)) (-5 *1 (-367 *5 *4 *6 *2)) (-4 *4 (-366 *5)))))
-((-1802 (((-518 |#2|) |#2| (-1088)) 36 T ELT)) (-2096 (((-518 |#2|) |#2| (-1088)) 21 T ELT)) (-2145 ((|#2| |#2| (-1088)) 26 T ELT)))
-(((-368 |#1| |#2|) (-10 -7 (-15 -2096 ((-518 |#2|) |#2| (-1088))) (-15 -1802 ((-518 |#2|) |#2| (-1088))) (-15 -2145 (|#2| |#2| (-1088)))) (-13 (-257) (-120) (-950 (-483)) (-580 (-483))) (-13 (-1113) (-29 |#1|))) (T -368))
-((-2145 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (-5 *1 (-368 *4 *2)) (-4 *2 (-13 (-1113) (-29 *4))))) (-1802 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (-5 *2 (-518 *3)) (-5 *1 (-368 *5 *3)) (-4 *3 (-13 (-1113) (-29 *5))))) (-2096 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (-5 *2 (-518 *3)) (-5 *1 (-368 *5 *3)) (-4 *3 (-13 (-1113) (-29 *5))))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-1804 (($ |#2| |#1|) 37 T ELT)) (-1803 (($ |#2| |#1|) 35 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-280 |#2|)) 25 T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 10 T CONST)) (-2662 (($) 16 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 36 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-369 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -3976)) (IF (|has| |#1| (-6 -3976)) (-6 -3976) |%noBranch|) |%noBranch|) (-15 -3940 ($ |#1|)) (-15 -3940 ($ (-280 |#2|))) (-15 -1804 ($ |#2| |#1|)) (-15 -1803 ($ |#2| |#1|)))) (-13 (-146) (-38 (-347 (-483)))) (-13 (-756) (-21))) (T -369))
-((-3940 (*1 *1 *2) (-12 (-5 *1 (-369 *2 *3)) (-4 *2 (-13 (-146) (-38 (-347 (-483))))) (-4 *3 (-13 (-756) (-21))))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-280 *4)) (-4 *4 (-13 (-756) (-21))) (-5 *1 (-369 *3 *4)) (-4 *3 (-13 (-146) (-38 (-347 (-483))))))) (-1804 (*1 *1 *2 *3) (-12 (-5 *1 (-369 *3 *2)) (-4 *3 (-13 (-146) (-38 (-347 (-483))))) (-4 *2 (-13 (-756) (-21))))) (-1803 (*1 *1 *2 *3) (-12 (-5 *1 (-369 *3 *2)) (-4 *3 (-13 (-146) (-38 (-347 (-483))))) (-4 *2 (-13 (-756) (-21))))))
-((-3806 (((-3 |#2| (-583 |#2|)) |#2| (-1088)) 115 T ELT)))
-(((-370 |#1| |#2|) (-10 -7 (-15 -3806 ((-3 |#2| (-583 |#2|)) |#2| (-1088)))) (-13 (-257) (-120) (-950 (-483)) (-580 (-483))) (-13 (-1113) (-871) (-29 |#1|))) (T -370))
-((-3806 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (-5 *2 (-3 *3 (-583 *3))) (-5 *1 (-370 *5 *3)) (-4 *3 (-13 (-1113) (-871) (-29 *5))))))
-((-3380 ((|#2| |#2| |#2|) 31 T ELT)) (-3589 (((-86) (-86)) 43 T ELT)) (-1806 ((|#2| |#2|) 63 T ELT)) (-1805 ((|#2| |#2|) 66 T ELT)) (-3379 ((|#2| |#2|) 30 T ELT)) (-3383 ((|#2| |#2| |#2|) 33 T ELT)) (-3385 ((|#2| |#2| |#2|) 35 T ELT)) (-3382 ((|#2| |#2| |#2|) 32 T ELT)) (-3384 ((|#2| |#2| |#2|) 34 T ELT)) (-2250 (((-85) (-86)) 41 T ELT)) (-3387 ((|#2| |#2|) 37 T ELT)) (-3386 ((|#2| |#2|) 36 T ELT)) (-3377 ((|#2| |#2|) 25 T ELT)) (-3381 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-3378 ((|#2| |#2| |#2|) 29 T ELT)))
-(((-371 |#1| |#2|) (-10 -7 (-15 -2250 ((-85) (-86))) (-15 -3589 ((-86) (-86))) (-15 -3377 (|#2| |#2|)) (-15 -3381 (|#2| |#2|)) (-15 -3381 (|#2| |#2| |#2|)) (-15 -3378 (|#2| |#2| |#2|)) (-15 -3379 (|#2| |#2|)) (-15 -3380 (|#2| |#2| |#2|)) (-15 -3382 (|#2| |#2| |#2|)) (-15 -3383 (|#2| |#2| |#2|)) (-15 -3384 (|#2| |#2| |#2|)) (-15 -3385 (|#2| |#2| |#2|)) (-15 -3386 (|#2| |#2|)) (-15 -3387 (|#2| |#2|)) (-15 -1805 (|#2| |#2|)) (-15 -1806 (|#2| |#2|))) (-494) (-361 |#1|)) (T -371))
-((-1806 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-1805 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3387 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3386 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3385 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3384 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3383 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3382 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3380 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3379 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3378 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3381 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3381 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3377 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3589 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-494)) (-5 *1 (-371 *3 *4)) (-4 *4 (-361 *3)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-371 *4 *5)) (-4 *5 (-361 *4)))))
-((-2829 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1083 |#2|)) (|:| |pol2| (-1083 |#2|)) (|:| |prim| (-1083 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1083 |#2|))) (|:| |prim| (-1083 |#2|))) (-583 |#2|)) 65 T ELT)))
-(((-372 |#1| |#2|) (-10 -7 (-15 -2829 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1083 |#2|))) (|:| |prim| (-1083 |#2|))) (-583 |#2|))) (IF (|has| |#2| (-27)) (-15 -2829 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1083 |#2|)) (|:| |pol2| (-1083 |#2|)) (|:| |prim| (-1083 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-494) (-120)) (-361 |#1|)) (T -372))
-((-2829 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-494) (-120))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1083 *3)) (|:| |pol2| (-1083 *3)) (|:| |prim| (-1083 *3)))) (-5 *1 (-372 *4 *3)) (-4 *3 (-27)) (-4 *3 (-361 *4)))) (-2829 (*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-361 *4)) (-4 *4 (-13 (-494) (-120))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-583 (-1083 *5))) (|:| |prim| (-1083 *5)))) (-5 *1 (-372 *4 *5)))))
-((-1808 (((-1183)) 18 T ELT)) (-1807 (((-1083 (-347 (-483))) |#2| (-550 |#2|)) 40 T ELT) (((-347 (-483)) |#2|) 27 T ELT)))
-(((-373 |#1| |#2|) (-10 -7 (-15 -1807 ((-347 (-483)) |#2|)) (-15 -1807 ((-1083 (-347 (-483))) |#2| (-550 |#2|))) (-15 -1808 ((-1183)))) (-13 (-494) (-950 (-483))) (-361 |#1|)) (T -373))
-((-1808 (*1 *2) (-12 (-4 *3 (-13 (-494) (-950 (-483)))) (-5 *2 (-1183)) (-5 *1 (-373 *3 *4)) (-4 *4 (-361 *3)))) (-1807 (*1 *2 *3 *4) (-12 (-5 *4 (-550 *3)) (-4 *3 (-361 *5)) (-4 *5 (-13 (-494) (-950 (-483)))) (-5 *2 (-1083 (-347 (-483)))) (-5 *1 (-373 *5 *3)))) (-1807 (*1 *2 *3) (-12 (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *2 (-347 (-483))) (-5 *1 (-373 *4 *3)) (-4 *3 (-361 *4)))))
-((-3639 (((-85) $) 33 T ELT)) (-1809 (((-85) $) 35 T ELT)) (-3254 (((-85) $) 36 T ELT)) (-1811 (((-85) $) 39 T ELT)) (-1813 (((-85) $) 34 T ELT)) (-1812 (((-85) $) 38 T ELT)) (-3940 (((-772) $) 20 T ELT) (($ (-1071)) 32 T ELT) (($ (-1088)) 30 T ELT) (((-1088) $) 24 T ELT) (((-1014) $) 23 T ELT)) (-1810 (((-85) $) 37 T ELT)) (-3052 (((-85) $ $) 17 T ELT)))
-(((-374) (-13 (-552 (-772)) (-10 -8 (-15 -3940 ($ (-1071))) (-15 -3940 ($ (-1088))) (-15 -3940 ((-1088) $)) (-15 -3940 ((-1014) $)) (-15 -3639 ((-85) $)) (-15 -1813 ((-85) $)) (-15 -3254 ((-85) $)) (-15 -1812 ((-85) $)) (-15 -1811 ((-85) $)) (-15 -1810 ((-85) $)) (-15 -1809 ((-85) $)) (-15 -3052 ((-85) $ $))))) (T -374))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-374)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-374)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-374)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-1014)) (-5 *1 (-374)))) (-3639 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))) (-1813 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))) (-3254 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))) (-1812 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))) (-1811 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))) (-1810 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))) (-1809 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))) (-3052 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))))
-((-1815 (((-3 (-345 (-1083 (-347 (-483)))) #1="failed") |#3|) 71 T ELT)) (-1814 (((-345 |#3|) |#3|) 34 T ELT)) (-1817 (((-3 (-345 (-1083 (-48))) #1#) |#3|) 29 (|has| |#2| (-950 (-48))) ELT)) (-1816 (((-3 (|:| |overq| (-1083 (-347 (-483)))) (|:| |overan| (-1083 (-48))) (|:| -2635 (-85))) |#3|) 37 T ELT)))
-(((-375 |#1| |#2| |#3|) (-10 -7 (-15 -1814 ((-345 |#3|) |#3|)) (-15 -1815 ((-3 (-345 (-1083 (-347 (-483)))) #1="failed") |#3|)) (-15 -1816 ((-3 (|:| |overq| (-1083 (-347 (-483)))) (|:| |overan| (-1083 (-48))) (|:| -2635 (-85))) |#3|)) (IF (|has| |#2| (-950 (-48))) (-15 -1817 ((-3 (-345 (-1083 (-48))) #1#) |#3|)) |%noBranch|)) (-13 (-494) (-950 (-483))) (-361 |#1|) (-1153 |#2|)) (T -375))
-((-1817 (*1 *2 *3) (|partial| -12 (-4 *5 (-950 (-48))) (-4 *4 (-13 (-494) (-950 (-483)))) (-4 *5 (-361 *4)) (-5 *2 (-345 (-1083 (-48)))) (-5 *1 (-375 *4 *5 *3)) (-4 *3 (-1153 *5)))) (-1816 (*1 *2 *3) (-12 (-4 *4 (-13 (-494) (-950 (-483)))) (-4 *5 (-361 *4)) (-5 *2 (-3 (|:| |overq| (-1083 (-347 (-483)))) (|:| |overan| (-1083 (-48))) (|:| -2635 (-85)))) (-5 *1 (-375 *4 *5 *3)) (-4 *3 (-1153 *5)))) (-1815 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-494) (-950 (-483)))) (-4 *5 (-361 *4)) (-5 *2 (-345 (-1083 (-347 (-483))))) (-5 *1 (-375 *4 *5 *3)) (-4 *3 (-1153 *5)))) (-1814 (*1 *2 *3) (-12 (-4 *4 (-13 (-494) (-950 (-483)))) (-4 *5 (-361 *4)) (-5 *2 (-345 *3)) (-5 *1 (-375 *4 *5 *3)) (-4 *3 (-1153 *5)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-1827 (((-3 (|:| |fst| (-374)) (|:| -3904 #1="void")) $) 11 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1824 (($) 35 T ELT)) (-1821 (($) 41 T ELT)) (-1822 (($) 37 T ELT)) (-1819 (($) 39 T ELT)) (-1823 (($) 36 T ELT)) (-1820 (($) 38 T ELT)) (-1818 (($) 40 T ELT)) (-1825 (((-85) $) 8 T ELT)) (-1826 (((-583 (-857 (-483))) $) 19 T ELT)) (-3524 (($ (-3 (|:| |fst| (-374)) (|:| -3904 #1#)) (-583 (-1088)) (-85)) 29 T ELT) (($ (-3 (|:| |fst| (-374)) (|:| -3904 #1#)) (-583 (-857 (-483))) (-85)) 30 T ELT)) (-3940 (((-772) $) 24 T ELT) (($ (-374)) 32 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-376) (-13 (-1012) (-10 -8 (-15 -3940 ($ (-374))) (-15 -1827 ((-3 (|:| |fst| (-374)) (|:| -3904 #1="void")) $)) (-15 -1826 ((-583 (-857 (-483))) $)) (-15 -1825 ((-85) $)) (-15 -3524 ($ (-3 (|:| |fst| (-374)) (|:| -3904 #1#)) (-583 (-1088)) (-85))) (-15 -3524 ($ (-3 (|:| |fst| (-374)) (|:| -3904 #1#)) (-583 (-857 (-483))) (-85))) (-15 -1824 ($)) (-15 -1823 ($)) (-15 -1822 ($)) (-15 -1821 ($)) (-15 -1820 ($)) (-15 -1819 ($)) (-15 -1818 ($))))) (T -376))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-376)))) (-1827 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-374)) (|:| -3904 #1="void"))) (-5 *1 (-376)))) (-1826 (*1 *2 *1) (-12 (-5 *2 (-583 (-857 (-483)))) (-5 *1 (-376)))) (-1825 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376)))) (-3524 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-374)) (|:| -3904 #1#))) (-5 *3 (-583 (-1088))) (-5 *4 (-85)) (-5 *1 (-376)))) (-3524 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-374)) (|:| -3904 #1#))) (-5 *3 (-583 (-857 (-483)))) (-5 *4 (-85)) (-5 *1 (-376)))) (-1824 (*1 *1) (-5 *1 (-376))) (-1823 (*1 *1) (-5 *1 (-376))) (-1822 (*1 *1) (-5 *1 (-376))) (-1821 (*1 *1) (-5 *1 (-376))) (-1820 (*1 *1) (-5 *1 (-376))) (-1819 (*1 *1) (-5 *1 (-376))) (-1818 (*1 *1) (-5 *1 (-376))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3536 (((-1088) $) 8 T ELT)) (-3237 (((-1071) $) 17 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 11 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 14 T ELT)))
-(((-377 |#1|) (-13 (-1012) (-10 -8 (-15 -3536 ((-1088) $)))) (-1088)) (T -377))
-((-3536 (*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-377 *3)) (-14 *3 *2))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3314 (((-1027) $) 7 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 9 T ELT)))
-(((-378) (-13 (-1012) (-10 -8 (-15 -3314 ((-1027) $))))) (T -378))
-((-3314 (*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-378)))))
-((-1833 (((-85)) 18 T ELT)) (-1834 (((-85) (-85)) 19 T ELT)) (-1835 (((-85)) 14 T ELT)) (-1836 (((-85) (-85)) 15 T ELT)) (-1838 (((-85)) 16 T ELT)) (-1839 (((-85) (-85)) 17 T ELT)) (-1830 (((-830) (-830)) 22 T ELT) (((-830)) 21 T ELT)) (-1831 (((-694) (-583 (-2 (|:| -3726 |#1|) (|:| -3942 (-483))))) 52 T ELT)) (-1829 (((-830) (-830)) 24 T ELT) (((-830)) 23 T ELT)) (-1832 (((-2 (|:| -2574 (-483)) (|:| -1776 (-583 |#1|))) |#1|) 94 T ELT)) (-1828 (((-345 |#1|) (-2 (|:| |contp| (-483)) (|:| -1776 (-583 (-2 (|:| |irr| |#1|) (|:| -2391 (-483))))))) 176 T ELT)) (-3728 (((-2 (|:| |contp| (-483)) (|:| -1776 (-583 (-2 (|:| |irr| |#1|) (|:| -2391 (-483)))))) |#1| (-85)) 209 T ELT)) (-3727 (((-345 |#1|) |#1| (-694) (-694)) 224 T ELT) (((-345 |#1|) |#1| (-583 (-694)) (-694)) 221 T ELT) (((-345 |#1|) |#1| (-583 (-694))) 223 T ELT) (((-345 |#1|) |#1| (-694)) 222 T ELT) (((-345 |#1|) |#1|) 220 T ELT)) (-1850 (((-3 |#1| #1="failed") (-830) |#1| (-583 (-694)) (-694) (-85)) 226 T ELT) (((-3 |#1| #1#) (-830) |#1| (-583 (-694)) (-694)) 227 T ELT) (((-3 |#1| #1#) (-830) |#1| (-583 (-694))) 229 T ELT) (((-3 |#1| #1#) (-830) |#1| (-694)) 228 T ELT) (((-3 |#1| #1#) (-830) |#1|) 230 T ELT)) (-3726 (((-345 |#1|) |#1| (-694) (-694)) 219 T ELT) (((-345 |#1|) |#1| (-583 (-694)) (-694)) 215 T ELT) (((-345 |#1|) |#1| (-583 (-694))) 217 T ELT) (((-345 |#1|) |#1| (-694)) 216 T ELT) (((-345 |#1|) |#1|) 214 T ELT)) (-1837 (((-85) |#1|) 43 T ELT)) (-1849 (((-675 (-694)) (-583 (-2 (|:| -3726 |#1|) (|:| -3942 (-483))))) 99 T ELT)) (-1840 (((-2 (|:| |contp| (-483)) (|:| -1776 (-583 (-2 (|:| |irr| |#1|) (|:| -2391 (-483)))))) |#1| (-85) (-1008 (-694)) (-694)) 213 T ELT)))
-(((-379 |#1|) (-10 -7 (-15 -1828 ((-345 |#1|) (-2 (|:| |contp| (-483)) (|:| -1776 (-583 (-2 (|:| |irr| |#1|) (|:| -2391 (-483)))))))) (-15 -1849 ((-675 (-694)) (-583 (-2 (|:| -3726 |#1|) (|:| -3942 (-483)))))) (-15 -1829 ((-830))) (-15 -1829 ((-830) (-830))) (-15 -1830 ((-830))) (-15 -1830 ((-830) (-830))) (-15 -1831 ((-694) (-583 (-2 (|:| -3726 |#1|) (|:| -3942 (-483)))))) (-15 -1832 ((-2 (|:| -2574 (-483)) (|:| -1776 (-583 |#1|))) |#1|)) (-15 -1833 ((-85))) (-15 -1834 ((-85) (-85))) (-15 -1835 ((-85))) (-15 -1836 ((-85) (-85))) (-15 -1837 ((-85) |#1|)) (-15 -1838 ((-85))) (-15 -1839 ((-85) (-85))) (-15 -3726 ((-345 |#1|) |#1|)) (-15 -3726 ((-345 |#1|) |#1| (-694))) (-15 -3726 ((-345 |#1|) |#1| (-583 (-694)))) (-15 -3726 ((-345 |#1|) |#1| (-583 (-694)) (-694))) (-15 -3726 ((-345 |#1|) |#1| (-694) (-694))) (-15 -3727 ((-345 |#1|) |#1|)) (-15 -3727 ((-345 |#1|) |#1| (-694))) (-15 -3727 ((-345 |#1|) |#1| (-583 (-694)))) (-15 -3727 ((-345 |#1|) |#1| (-583 (-694)) (-694))) (-15 -3727 ((-345 |#1|) |#1| (-694) (-694))) (-15 -1850 ((-3 |#1| #1="failed") (-830) |#1|)) (-15 -1850 ((-3 |#1| #1#) (-830) |#1| (-694))) (-15 -1850 ((-3 |#1| #1#) (-830) |#1| (-583 (-694)))) (-15 -1850 ((-3 |#1| #1#) (-830) |#1| (-583 (-694)) (-694))) (-15 -1850 ((-3 |#1| #1#) (-830) |#1| (-583 (-694)) (-694) (-85))) (-15 -3728 ((-2 (|:| |contp| (-483)) (|:| -1776 (-583 (-2 (|:| |irr| |#1|) (|:| -2391 (-483)))))) |#1| (-85))) (-15 -1840 ((-2 (|:| |contp| (-483)) (|:| -1776 (-583 (-2 (|:| |irr| |#1|) (|:| -2391 (-483)))))) |#1| (-85) (-1008 (-694)) (-694)))) (-1153 (-483))) (T -379))
-((-1840 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-85)) (-5 *5 (-1008 (-694))) (-5 *6 (-694)) (-5 *2 (-2 (|:| |contp| (-483)) (|:| -1776 (-583 (-2 (|:| |irr| *3) (|:| -2391 (-483))))))) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-3728 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-483)) (|:| -1776 (-583 (-2 (|:| |irr| *3) (|:| -2391 (-483))))))) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-1850 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *6 (-85)) (-5 *1 (-379 *2)) (-4 *2 (-1153 (-483))))) (-1850 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *1 (-379 *2)) (-4 *2 (-1153 (-483))))) (-1850 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *1 (-379 *2)) (-4 *2 (-1153 (-483))))) (-1850 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-830)) (-5 *4 (-694)) (-5 *1 (-379 *2)) (-4 *2 (-1153 (-483))))) (-1850 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-830)) (-5 *1 (-379 *2)) (-4 *2 (-1153 (-483))))) (-3727 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-694)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-3727 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-3727 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-694))) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-3727 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-3727 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-3726 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-694)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-3726 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-3726 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-694))) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-3726 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-3726 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-1839 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-1838 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-1837 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-1836 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-1835 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-1834 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-1833 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-1832 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2574 (-483)) (|:| -1776 (-583 *3)))) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-1831 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3726 *4) (|:| -3942 (-483))))) (-4 *4 (-1153 (-483))) (-5 *2 (-694)) (-5 *1 (-379 *4)))) (-1830 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-1830 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-1829 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-1829 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))) (-1849 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3726 *4) (|:| -3942 (-483))))) (-4 *4 (-1153 (-483))) (-5 *2 (-675 (-694))) (-5 *1 (-379 *4)))) (-1828 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-483)) (|:| -1776 (-583 (-2 (|:| |irr| *4) (|:| -2391 (-483))))))) (-4 *4 (-1153 (-483))) (-5 *2 (-345 *4)) (-5 *1 (-379 *4)))))
-((-1844 (((-483) |#2|) 52 T ELT) (((-483) |#2| (-694)) 51 T ELT)) (-1843 (((-483) |#2|) 64 T ELT)) (-1845 ((|#3| |#2|) 26 T ELT)) (-3127 ((|#3| |#2| (-830)) 15 T ELT)) (-3827 ((|#3| |#2|) 16 T ELT)) (-1846 ((|#3| |#2|) 9 T ELT)) (-2599 ((|#3| |#2|) 10 T ELT)) (-1842 ((|#3| |#2| (-830)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-1841 (((-483) |#2|) 66 T ELT)))
-(((-380 |#1| |#2| |#3|) (-10 -7 (-15 -1841 ((-483) |#2|)) (-15 -1842 (|#3| |#2|)) (-15 -1842 (|#3| |#2| (-830))) (-15 -1843 ((-483) |#2|)) (-15 -1844 ((-483) |#2| (-694))) (-15 -1844 ((-483) |#2|)) (-15 -3127 (|#3| |#2| (-830))) (-15 -1845 (|#3| |#2|)) (-15 -1846 (|#3| |#2|)) (-15 -2599 (|#3| |#2|)) (-15 -3827 (|#3| |#2|))) (-961) (-1153 |#1|) (-13 (-344) (-950 |#1|) (-311) (-1113) (-239))) (T -380))
-((-3827 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-344) (-950 *4) (-311) (-1113) (-239))) (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1153 *4)))) (-2599 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-344) (-950 *4) (-311) (-1113) (-239))) (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1153 *4)))) (-1846 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-344) (-950 *4) (-311) (-1113) (-239))) (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1153 *4)))) (-1845 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-344) (-950 *4) (-311) (-1113) (-239))) (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1153 *4)))) (-3127 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-4 *5 (-961)) (-4 *2 (-13 (-344) (-950 *5) (-311) (-1113) (-239))) (-5 *1 (-380 *5 *3 *2)) (-4 *3 (-1153 *5)))) (-1844 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-483)) (-5 *1 (-380 *4 *3 *5)) (-4 *3 (-1153 *4)) (-4 *5 (-13 (-344) (-950 *4) (-311) (-1113) (-239))))) (-1844 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-961)) (-5 *2 (-483)) (-5 *1 (-380 *5 *3 *6)) (-4 *3 (-1153 *5)) (-4 *6 (-13 (-344) (-950 *5) (-311) (-1113) (-239))))) (-1843 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-483)) (-5 *1 (-380 *4 *3 *5)) (-4 *3 (-1153 *4)) (-4 *5 (-13 (-344) (-950 *4) (-311) (-1113) (-239))))) (-1842 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-4 *5 (-961)) (-4 *2 (-13 (-344) (-950 *5) (-311) (-1113) (-239))) (-5 *1 (-380 *5 *3 *2)) (-4 *3 (-1153 *5)))) (-1842 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-344) (-950 *4) (-311) (-1113) (-239))) (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1153 *4)))) (-1841 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-483)) (-5 *1 (-380 *4 *3 *5)) (-4 *3 (-1153 *4)) (-4 *5 (-13 (-344) (-950 *4) (-311) (-1113) (-239))))))
-((-3348 ((|#2| (-1177 |#1|)) 42 T ELT)) (-1848 ((|#2| |#2| |#1|) 58 T ELT)) (-1847 ((|#2| |#2| |#1|) 49 T ELT)) (-2294 ((|#2| |#2|) 44 T ELT)) (-3168 (((-85) |#2|) 32 T ELT)) (-1851 (((-583 |#2|) (-830) (-345 |#2|)) 21 T ELT)) (-1850 ((|#2| (-830) (-345 |#2|)) 25 T ELT)) (-1849 (((-675 (-694)) (-345 |#2|)) 29 T ELT)))
-(((-381 |#1| |#2|) (-10 -7 (-15 -3168 ((-85) |#2|)) (-15 -3348 (|#2| (-1177 |#1|))) (-15 -2294 (|#2| |#2|)) (-15 -1847 (|#2| |#2| |#1|)) (-15 -1848 (|#2| |#2| |#1|)) (-15 -1849 ((-675 (-694)) (-345 |#2|))) (-15 -1850 (|#2| (-830) (-345 |#2|))) (-15 -1851 ((-583 |#2|) (-830) (-345 |#2|)))) (-961) (-1153 |#1|)) (T -381))
-((-1851 (*1 *2 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-345 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-961)) (-5 *2 (-583 *6)) (-5 *1 (-381 *5 *6)))) (-1850 (*1 *2 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-345 *2)) (-4 *2 (-1153 *5)) (-5 *1 (-381 *5 *2)) (-4 *5 (-961)))) (-1849 (*1 *2 *3) (-12 (-5 *3 (-345 *5)) (-4 *5 (-1153 *4)) (-4 *4 (-961)) (-5 *2 (-675 (-694))) (-5 *1 (-381 *4 *5)))) (-1848 (*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-381 *3 *2)) (-4 *2 (-1153 *3)))) (-1847 (*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-381 *3 *2)) (-4 *2 (-1153 *3)))) (-2294 (*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-381 *3 *2)) (-4 *2 (-1153 *3)))) (-3348 (*1 *2 *3) (-12 (-5 *3 (-1177 *4)) (-4 *4 (-961)) (-4 *2 (-1153 *4)) (-5 *1 (-381 *4 *2)))) (-3168 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-85)) (-5 *1 (-381 *4 *3)) (-4 *3 (-1153 *4)))))
-((-1854 (((-694)) 59 T ELT)) (-1858 (((-694)) 29 (|has| |#1| (-344)) ELT) (((-694) (-694)) 28 (|has| |#1| (-344)) ELT)) (-1857 (((-483) |#1|) 25 (|has| |#1| (-344)) ELT)) (-1856 (((-483) |#1|) 27 (|has| |#1| (-344)) ELT)) (-1853 (((-694)) 58 T ELT) (((-694) (-694)) 57 T ELT)) (-1852 ((|#1| (-694) (-483)) 37 T ELT)) (-1855 (((-1183)) 61 T ELT)))
-(((-382 |#1|) (-10 -7 (-15 -1852 (|#1| (-694) (-483))) (-15 -1853 ((-694) (-694))) (-15 -1853 ((-694))) (-15 -1854 ((-694))) (-15 -1855 ((-1183))) (IF (|has| |#1| (-344)) (PROGN (-15 -1856 ((-483) |#1|)) (-15 -1857 ((-483) |#1|)) (-15 -1858 ((-694) (-694))) (-15 -1858 ((-694)))) |%noBranch|)) (-961)) (T -382))
-((-1858 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-382 *3)) (-4 *3 (-344)) (-4 *3 (-961)))) (-1858 (*1 *2 *2) (-12 (-5 *2 (-694)) (-5 *1 (-382 *3)) (-4 *3 (-344)) (-4 *3 (-961)))) (-1857 (*1 *2 *3) (-12 (-5 *2 (-483)) (-5 *1 (-382 *3)) (-4 *3 (-344)) (-4 *3 (-961)))) (-1856 (*1 *2 *3) (-12 (-5 *2 (-483)) (-5 *1 (-382 *3)) (-4 *3 (-344)) (-4 *3 (-961)))) (-1855 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-382 *3)) (-4 *3 (-961)))) (-1854 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-382 *3)) (-4 *3 (-961)))) (-1853 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-382 *3)) (-4 *3 (-961)))) (-1853 (*1 *2 *2) (-12 (-5 *2 (-694)) (-5 *1 (-382 *3)) (-4 *3 (-961)))) (-1852 (*1 *2 *3 *4) (-12 (-5 *3 (-694)) (-5 *4 (-483)) (-5 *1 (-382 *2)) (-4 *2 (-961)))))
-((-1859 (((-583 (-483)) (-483)) 76 T ELT)) (-3717 (((-85) (-142 (-483))) 84 T ELT)) (-3726 (((-345 (-142 (-483))) (-142 (-483))) 75 T ELT)))
-(((-383) (-10 -7 (-15 -3726 ((-345 (-142 (-483))) (-142 (-483)))) (-15 -1859 ((-583 (-483)) (-483))) (-15 -3717 ((-85) (-142 (-483)))))) (T -383))
-((-3717 (*1 *2 *3) (-12 (-5 *3 (-142 (-483))) (-5 *2 (-85)) (-5 *1 (-383)))) (-1859 (*1 *2 *3) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-383)) (-5 *3 (-483)))) (-3726 (*1 *2 *3) (-12 (-5 *2 (-345 (-142 (-483)))) (-5 *1 (-383)) (-5 *3 (-142 (-483))))))
-((-2942 ((|#4| |#4| (-583 |#4|)) 20 (|has| |#1| (-311)) ELT)) (-2247 (((-583 |#4|) (-583 |#4|) (-1071) (-1071)) 46 T ELT) (((-583 |#4|) (-583 |#4|) (-1071)) 45 T ELT) (((-583 |#4|) (-583 |#4|)) 34 T ELT)))
-(((-384 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2247 ((-583 |#4|) (-583 |#4|))) (-15 -2247 ((-583 |#4|) (-583 |#4|) (-1071))) (-15 -2247 ((-583 |#4|) (-583 |#4|) (-1071) (-1071))) (IF (|has| |#1| (-311)) (-15 -2942 (|#4| |#4| (-583 |#4|))) |%noBranch|)) (-389) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -384))
-((-2942 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-311)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-384 *4 *5 *6 *2)))) (-2247 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1071)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-384 *4 *5 *6 *7)))) (-2247 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1071)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-384 *4 *5 *6 *7)))) (-2247 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-384 *3 *4 *5 *6)))))
-((-1860 ((|#4| |#4| (-583 |#4|)) 82 T ELT)) (-1861 (((-583 |#4|) (-583 |#4|) (-1071) (-1071)) 22 T ELT) (((-583 |#4|) (-583 |#4|) (-1071)) 21 T ELT) (((-583 |#4|) (-583 |#4|)) 13 T ELT)))
-(((-385 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1860 (|#4| |#4| (-583 |#4|))) (-15 -1861 ((-583 |#4|) (-583 |#4|))) (-15 -1861 ((-583 |#4|) (-583 |#4|) (-1071))) (-15 -1861 ((-583 |#4|) (-583 |#4|) (-1071) (-1071)))) (-257) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -385))
-((-1861 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1071)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-257)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-385 *4 *5 *6 *7)))) (-1861 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1071)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-257)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-385 *4 *5 *6 *7)))) (-1861 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-257)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-385 *3 *4 *5 *6)))) (-1860 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-257)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-385 *4 *5 *6 *2)))))
-((-1863 (((-583 (-583 |#4|)) (-583 |#4|) (-85)) 90 T ELT) (((-583 (-583 |#4|)) (-583 |#4|)) 89 T ELT) (((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-85)) 83 T ELT) (((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|)) 84 T ELT)) (-1862 (((-583 (-583 |#4|)) (-583 |#4|) (-85)) 56 T ELT) (((-583 (-583 |#4|)) (-583 |#4|)) 78 T ELT)))
-(((-386 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1862 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -1862 ((-583 (-583 |#4|)) (-583 |#4|) (-85))) (-15 -1863 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|))) (-15 -1863 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-85))) (-15 -1863 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -1863 ((-583 (-583 |#4|)) (-583 |#4|) (-85)))) (-13 (-257) (-120)) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -386))
-((-1863 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-386 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-1863 (*1 *2 *3) (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-386 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1863 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-386 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-1863 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-386 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1862 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-386 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-1862 (*1 *2 *3) (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-386 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
-((-1887 (((-694) |#4|) 12 T ELT)) (-1875 (((-583 (-2 (|:| |totdeg| (-694)) (|:| -2000 |#4|))) |#4| (-694) (-583 (-2 (|:| |totdeg| (-694)) (|:| -2000 |#4|)))) 39 T ELT)) (-1877 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-1876 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-1865 ((|#4| |#4| (-583 |#4|)) 54 T ELT)) (-1873 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|)) 96 T ELT)) (-1880 (((-1183) |#4|) 59 T ELT)) (-1883 (((-1183) (-583 |#4|)) 69 T ELT)) (-1881 (((-483) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-483) (-483) (-483)) 66 T ELT)) (-1884 (((-1183) (-483)) 110 T ELT)) (-1878 (((-583 |#4|) (-583 |#4|)) 104 T ELT)) (-1886 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-694)) (|:| -2000 |#4|)) |#4| (-694)) 31 T ELT)) (-1879 (((-483) |#4|) 109 T ELT)) (-1874 ((|#4| |#4|) 37 T ELT)) (-1866 (((-583 |#4|) (-583 |#4|) (-483) (-483)) 74 T ELT)) (-1882 (((-483) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-483) (-483) (-483) (-483)) 123 T ELT)) (-1885 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-1867 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-1872 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-1871 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-1868 (((-85) |#2| |#2|) 75 T ELT)) (-1870 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-1869 (((-85) |#2| |#2| |#2| |#2|) 80 T ELT)) (-1864 ((|#4| |#4| (-583 |#4|)) 97 T ELT)))
-(((-387 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1864 (|#4| |#4| (-583 |#4|))) (-15 -1865 (|#4| |#4| (-583 |#4|))) (-15 -1866 ((-583 |#4|) (-583 |#4|) (-483) (-483))) (-15 -1867 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1868 ((-85) |#2| |#2|)) (-15 -1869 ((-85) |#2| |#2| |#2| |#2|)) (-15 -1870 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1871 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1872 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1873 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|))) (-15 -1874 (|#4| |#4|)) (-15 -1875 ((-583 (-2 (|:| |totdeg| (-694)) (|:| -2000 |#4|))) |#4| (-694) (-583 (-2 (|:| |totdeg| (-694)) (|:| -2000 |#4|))))) (-15 -1876 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1877 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1878 ((-583 |#4|) (-583 |#4|))) (-15 -1879 ((-483) |#4|)) (-15 -1880 ((-1183) |#4|)) (-15 -1881 ((-483) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-483) (-483) (-483))) (-15 -1882 ((-483) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-483) (-483) (-483) (-483))) (-15 -1883 ((-1183) (-583 |#4|))) (-15 -1884 ((-1183) (-483))) (-15 -1885 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1886 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-694)) (|:| -2000 |#4|)) |#4| (-694))) (-15 -1887 ((-694) |#4|))) (-389) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -387))
-((-1887 (*1 *2 *3) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-694)) (-5 *1 (-387 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))) (-1886 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-694)) (|:| -2000 *4))) (-5 *5 (-694)) (-4 *4 (-861 *6 *7 *8)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-387 *6 *7 *8 *4)))) (-1885 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-717)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-389)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-387 *4 *5 *6 *7)))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-483)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1183)) (-5 *1 (-387 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))) (-1883 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1183)) (-5 *1 (-387 *4 *5 *6 *7)))) (-1882 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-694)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-717)) (-4 *4 (-861 *5 *6 *7)) (-4 *5 (-389)) (-4 *7 (-756)) (-5 *1 (-387 *5 *6 *7 *4)))) (-1881 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-694)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-717)) (-4 *4 (-861 *5 *6 *7)) (-4 *5 (-389)) (-4 *7 (-756)) (-5 *1 (-387 *5 *6 *7 *4)))) (-1880 (*1 *2 *3) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1183)) (-5 *1 (-387 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))) (-1879 (*1 *2 *3) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-483)) (-5 *1 (-387 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))) (-1878 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-387 *3 *4 *5 *6)))) (-1877 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-694)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-717)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-389)) (-4 *5 (-756)) (-5 *1 (-387 *3 *4 *5 *6)))) (-1876 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-717)) (-4 *2 (-861 *4 *5 *6)) (-5 *1 (-387 *4 *5 *6 *2)) (-4 *4 (-389)) (-4 *6 (-756)))) (-1875 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-2 (|:| |totdeg| (-694)) (|:| -2000 *3)))) (-5 *4 (-694)) (-4 *3 (-861 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-387 *5 *6 *7 *3)))) (-1874 (*1 *2 *2) (-12 (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-387 *3 *4 *5 *2)) (-4 *2 (-861 *3 *4 *5)))) (-1873 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-861 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-387 *5 *6 *7 *3)))) (-1872 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-694)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-717)) (-4 *6 (-861 *4 *3 *5)) (-4 *4 (-389)) (-4 *5 (-756)) (-5 *1 (-387 *4 *3 *5 *6)))) (-1871 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-694)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-717)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-389)) (-4 *5 (-756)) (-5 *1 (-387 *3 *4 *5 *6)))) (-1870 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-717)) (-4 *3 (-861 *4 *5 *6)) (-4 *4 (-389)) (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *3)))) (-1869 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-389)) (-4 *3 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-387 *4 *3 *5 *6)) (-4 *6 (-861 *4 *3 *5)))) (-1868 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *3 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-387 *4 *3 *5 *6)) (-4 *6 (-861 *4 *3 *5)))) (-1867 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-717)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-389)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-387 *4 *5 *6 *7)))) (-1866 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-483)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *7)))) (-1865 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *2)))) (-1864 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *2)))))
-((-1888 (($ $ $) 14 T ELT) (($ (-583 $)) 21 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 45 T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) 22 T ELT)))
-(((-388 |#1|) (-10 -7 (-15 -2704 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -1888 (|#1| (-583 |#1|))) (-15 -1888 (|#1| |#1| |#1|)) (-15 -3139 (|#1| (-583 |#1|))) (-15 -3139 (|#1| |#1| |#1|))) (-389)) (T -388))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT)))
+((-2010 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1178 *1)) (-4 *1 (-358 *3)))) (-3221 (*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-1178 *3)))) (-3221 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-358 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-3220 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-1178 (-631 *3))))) (-1890 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-584 (-858 *3))))) (-1790 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-146)) (-4 *1 (-358 *3)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-1178 *3)))) (-3968 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-146)) (-4 *1 (-358 *3)))) (-1789 (*1 *2) (-12 (-4 *1 (-358 *2)) (-4 *2 (-146)))) (-1788 (*1 *2) (-12 (-4 *1 (-358 *2)) (-4 *2 (-146)))) (-1787 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))) (-1786 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))) (-1785 (*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))) (-1902 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-4 *3 (-311)) (-5 *2 (-1084 (-858 *3))))) (-1898 (*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-4 *3 (-311)) (-5 *2 (-1084 (-858 *3))))) (-2543 (*1 *1 *2 *1) (-12 (-5 *2 (-631 *3)) (-4 *1 (-358 *3)) (-4 *3 (-146)))))
+(-13 (-315 |t#1|) (-241 (-484) |t#1|) (-10 -8 (-15 -2010 ((-1178 $))) (-15 -3221 ((-1178 |t#1|) $)) (-15 -3221 ((-631 |t#1|) (-1178 $))) (-15 -3220 ((-1178 (-631 |t#1|)))) (-15 -1890 ((-584 (-858 |t#1|)))) (-15 -1790 ($ (-1178 |t#1|))) (-15 -3968 ((-1178 |t#1|) $)) (-15 -3968 ($ (-1178 |t#1|))) (-15 -1789 (|t#1|)) (-15 -1788 (|t#1|)) (-15 -1787 ((-631 |t#1|))) (-15 -1786 ((-631 |t#1|))) (-15 -1785 ((-631 |t#1|) $)) (-15 -1784 ((-631 |t#1|) $)) (IF (|has| |t#1| (-311)) (PROGN (-15 -1902 ((-1084 (-858 |t#1|)))) (-15 -1898 ((-1084 (-858 |t#1|))))) |%noBranch|) (-15 -2543 ($ (-631 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-241 (-484) |#1|) . T) ((-315 |#1|) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-658) . T) ((-684 |#1|) . T) ((-686) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1013) . T) ((-1128) . T))
+((-3131 (((-345 |#1|) (-345 |#1|) (-1 (-345 |#1|) |#1|)) 28 T ELT)) (-1791 (((-345 |#1|) (-345 |#1|) (-345 |#1|)) 17 T ELT)))
+(((-359 |#1|) (-10 -7 (-15 -3131 ((-345 |#1|) (-345 |#1|) (-1 (-345 |#1|) |#1|))) (-15 -1791 ((-345 |#1|) (-345 |#1|) (-345 |#1|)))) (-495)) (T -359))
+((-1791 (*1 *2 *2 *2) (-12 (-5 *2 (-345 *3)) (-4 *3 (-495)) (-5 *1 (-359 *3)))) (-3131 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-345 *4) *4)) (-4 *4 (-495)) (-5 *2 (-345 *4)) (-5 *1 (-359 *4)))))
+((-3079 (((-584 (-1089)) $) 81 T ELT)) (-3081 (((-347 (-1084 $)) $ (-551 $)) 313 T ELT)) (-1602 (($ $ (-248 $)) NIL T ELT) (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) 277 T ELT)) (-3154 (((-3 (-551 $) #1="failed") $) NIL T ELT) (((-3 (-1089) #1#) $) 84 T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 273 T ELT) (((-3 (-347 (-858 |#2|)) #1#) $) 363 T ELT) (((-3 (-858 |#2|) #1#) $) 275 T ELT) (((-3 (-347 (-484)) #1#) $) NIL T ELT)) (-3153 (((-551 $) $) NIL T ELT) (((-1089) $) 28 T ELT) (((-484) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-347 (-858 |#2|)) $) 345 T ELT) (((-858 |#2|) $) 272 T ELT) (((-347 (-484)) $) NIL T ELT)) (-3591 (((-86) (-86)) 47 T ELT)) (-2994 (($ $) 99 T ELT)) (-1600 (((-3 (-551 $) #1#) $) 268 T ELT)) (-1599 (((-584 (-551 $)) $) 269 T ELT)) (-2821 (((-3 (-584 $) #1#) $) 287 T ELT)) (-2823 (((-3 (-2 (|:| |val| $) (|:| -2399 (-484))) #1#) $) 294 T ELT)) (-2820 (((-3 (-584 $) #1#) $) 285 T ELT)) (-1792 (((-3 (-2 (|:| -3950 (-484)) (|:| |var| (-551 $))) #1#) $) 304 T ELT)) (-2822 (((-3 (-2 (|:| |var| (-551 $)) (|:| -2399 (-484))) #1#) $) 291 T ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2399 (-484))) #1#) $ (-86)) 255 T ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2399 (-484))) #1#) $ (-1089)) 257 T ELT)) (-1795 (((-85) $) 17 T ELT)) (-1794 ((|#2| $) 19 T ELT)) (-3764 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) 276 T ELT) (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-1 $ (-584 $)))) 109 T ELT) (($ $ (-1089) (-1 $ (-584 $))) NIL T ELT) (($ $ (-1089) (-1 $ $)) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-584 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1089)) 62 T ELT) (($ $ (-584 (-1089))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-86) $ (-1089)) 65 T ELT) (($ $ (-584 (-86)) (-584 $) (-1089)) 72 T ELT) (($ $ (-584 (-1089)) (-584 (-695)) (-584 (-1 $ $))) 120 T ELT) (($ $ (-584 (-1089)) (-584 (-695)) (-584 (-1 $ (-584 $)))) 282 T ELT) (($ $ (-1089) (-695) (-1 $ (-584 $))) 105 T ELT) (($ $ (-1089) (-695) (-1 $ $)) 104 T ELT)) (-3796 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-584 $)) 119 T ELT)) (-3754 (($ $ (-1089)) 278 T ELT) (($ $ (-584 (-1089))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT)) (-2993 (($ $) 324 T ELT)) (-3968 (((-801 (-484)) $) 297 T ELT) (((-801 (-327)) $) 301 T ELT) (($ (-345 $)) 359 T ELT) (((-473) $) NIL T ELT)) (-3942 (((-773) $) 279 T ELT) (($ (-551 $)) 93 T ELT) (($ (-1089)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1038 |#2| (-551 $))) NIL T ELT) (($ (-347 |#2|)) 329 T ELT) (($ (-858 (-347 |#2|))) 368 T ELT) (($ (-347 (-858 (-347 |#2|)))) 341 T ELT) (($ (-347 (-858 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-858 |#2|)) 216 T ELT) (($ (-484)) NIL T ELT) (($ (-347 (-484))) 373 T ELT)) (-3123 (((-695)) 88 T CONST)) (-2252 (((-85) (-86)) 42 T ELT)) (-1793 (($ (-1089) $) 31 T ELT) (($ (-1089) $ $) 32 T ELT) (($ (-1089) $ $ $) 33 T ELT) (($ (-1089) $ $ $ $) 34 T ELT) (($ (-1089) (-584 $)) 39 T ELT)) (* (($ (-347 (-484)) $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT)))
+(((-360 |#1| |#2|) (-10 -7 (-15 * (|#1| (-831) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 -3942 (|#1| (-347 (-484)))) (-15 -3154 ((-3 (-347 (-484)) #1="failed") |#1|)) (-15 -3153 ((-347 (-484)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3942 (|#1| (-484))) (-15 -3123 ((-695)) -3948) (-15 * (|#1| |#2| |#1|)) (-15 -3968 ((-473) |#1|)) (-15 -3942 (|#1| (-858 |#2|))) (-15 -3154 ((-3 (-858 |#2|) #1#) |#1|)) (-15 -3153 ((-858 |#2|) |#1|)) (-15 -3754 (|#1| |#1| (-584 (-1089)) (-584 (-695)))) (-15 -3754 (|#1| |#1| (-1089) (-695))) (-15 -3754 (|#1| |#1| (-584 (-1089)))) (-15 -3754 (|#1| |#1| (-1089))) (-15 * (|#1| |#1| |#2|)) (-15 -3942 (|#1| |#1|)) (-15 * (|#1| |#1| (-347 (-484)))) (-15 * (|#1| (-347 (-484)) |#1|)) (-15 -3942 (|#1| (-347 (-858 |#2|)))) (-15 -3154 ((-3 (-347 (-858 |#2|)) #1#) |#1|)) (-15 -3153 ((-347 (-858 |#2|)) |#1|)) (-15 -3081 ((-347 (-1084 |#1|)) |#1| (-551 |#1|))) (-15 -3942 (|#1| (-347 (-858 (-347 |#2|))))) (-15 -3942 (|#1| (-858 (-347 |#2|)))) (-15 -3942 (|#1| (-347 |#2|))) (-15 -2993 (|#1| |#1|)) (-15 -3968 (|#1| (-345 |#1|))) (-15 -3764 (|#1| |#1| (-1089) (-695) (-1 |#1| |#1|))) (-15 -3764 (|#1| |#1| (-1089) (-695) (-1 |#1| (-584 |#1|)))) (-15 -3764 (|#1| |#1| (-584 (-1089)) (-584 (-695)) (-584 (-1 |#1| (-584 |#1|))))) (-15 -3764 (|#1| |#1| (-584 (-1089)) (-584 (-695)) (-584 (-1 |#1| |#1|)))) (-15 -2823 ((-3 (-2 (|:| |val| |#1|) (|:| -2399 (-484))) #1#) |#1|)) (-15 -2822 ((-3 (-2 (|:| |var| (-551 |#1|)) (|:| -2399 (-484))) #1#) |#1| (-1089))) (-15 -2822 ((-3 (-2 (|:| |var| (-551 |#1|)) (|:| -2399 (-484))) #1#) |#1| (-86))) (-15 -2994 (|#1| |#1|)) (-15 -3942 (|#1| (-1038 |#2| (-551 |#1|)))) (-15 -1792 ((-3 (-2 (|:| -3950 (-484)) (|:| |var| (-551 |#1|))) #1#) |#1|)) (-15 -2820 ((-3 (-584 |#1|) #1#) |#1|)) (-15 -2822 ((-3 (-2 (|:| |var| (-551 |#1|)) (|:| -2399 (-484))) #1#) |#1|)) (-15 -2821 ((-3 (-584 |#1|) #1#) |#1|)) (-15 -3764 (|#1| |#1| (-584 (-86)) (-584 |#1|) (-1089))) (-15 -3764 (|#1| |#1| (-86) |#1| (-1089))) (-15 -3764 (|#1| |#1|)) (-15 -3764 (|#1| |#1| (-584 (-1089)))) (-15 -3764 (|#1| |#1| (-1089))) (-15 -1793 (|#1| (-1089) (-584 |#1|))) (-15 -1793 (|#1| (-1089) |#1| |#1| |#1| |#1|)) (-15 -1793 (|#1| (-1089) |#1| |#1| |#1|)) (-15 -1793 (|#1| (-1089) |#1| |#1|)) (-15 -1793 (|#1| (-1089) |#1|)) (-15 -3079 ((-584 (-1089)) |#1|)) (-15 -1794 (|#2| |#1|)) (-15 -1795 ((-85) |#1|)) (-15 -3942 (|#1| |#2|)) (-15 -3154 ((-3 |#2| #1#) |#1|)) (-15 -3153 (|#2| |#1|)) (-15 -3153 ((-484) |#1|)) (-15 -3154 ((-3 (-484) #1#) |#1|)) (-15 -3968 ((-801 (-327)) |#1|)) (-15 -3968 ((-801 (-484)) |#1|)) (-15 -3942 (|#1| (-1089))) (-15 -3154 ((-3 (-1089) #1#) |#1|)) (-15 -3153 ((-1089) |#1|)) (-15 -3764 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3764 (|#1| |#1| (-86) (-1 |#1| (-584 |#1|)))) (-15 -3764 (|#1| |#1| (-584 (-86)) (-584 (-1 |#1| (-584 |#1|))))) (-15 -3764 (|#1| |#1| (-584 (-86)) (-584 (-1 |#1| |#1|)))) (-15 -3764 (|#1| |#1| (-1089) (-1 |#1| |#1|))) (-15 -3764 (|#1| |#1| (-1089) (-1 |#1| (-584 |#1|)))) (-15 -3764 (|#1| |#1| (-584 (-1089)) (-584 (-1 |#1| (-584 |#1|))))) (-15 -3764 (|#1| |#1| (-584 (-1089)) (-584 (-1 |#1| |#1|)))) (-15 -2252 ((-85) (-86))) (-15 -3591 ((-86) (-86))) (-15 -1599 ((-584 (-551 |#1|)) |#1|)) (-15 -1600 ((-3 (-551 |#1|) #1#) |#1|)) (-15 -1602 (|#1| |#1| (-584 (-551 |#1|)) (-584 |#1|))) (-15 -1602 (|#1| |#1| (-584 (-248 |#1|)))) (-15 -1602 (|#1| |#1| (-248 |#1|))) (-15 -3796 (|#1| (-86) (-584 |#1|))) (-15 -3796 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3796 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3796 (|#1| (-86) |#1| |#1|)) (-15 -3796 (|#1| (-86) |#1|)) (-15 -3764 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-15 -3764 (|#1| |#1| |#1| |#1|)) (-15 -3764 (|#1| |#1| (-248 |#1|))) (-15 -3764 (|#1| |#1| (-584 (-248 |#1|)))) (-15 -3764 (|#1| |#1| (-584 (-551 |#1|)) (-584 |#1|))) (-15 -3764 (|#1| |#1| (-551 |#1|) |#1|)) (-15 -3942 (|#1| (-551 |#1|))) (-15 -3154 ((-3 (-551 |#1|) #1#) |#1|)) (-15 -3153 ((-551 |#1|) |#1|)) (-15 -3942 ((-773) |#1|))) (-361 |#2|) (-1013)) (T -360))
+((-3591 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *4 (-1013)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-2252 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-360 *4 *5)) (-4 *4 (-361 *5)))) (-3123 (*1 *2) (-12 (-4 *4 (-1013)) (-5 *2 (-695)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 129 (|has| |#1| (-25)) ELT)) (-3079 (((-584 (-1089)) $) 220 T ELT)) (-3081 (((-347 (-1084 $)) $ (-551 $)) 188 (|has| |#1| (-495)) ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 160 (|has| |#1| (-495)) ELT)) (-2061 (($ $) 161 (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) 163 (|has| |#1| (-495)) ELT)) (-1598 (((-584 (-551 $)) $) 42 T ELT)) (-1310 (((-3 $ "failed") $ $) 131 (|has| |#1| (-21)) ELT)) (-1602 (($ $ (-248 $)) 54 T ELT) (($ $ (-584 (-248 $))) 53 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 52 T ELT)) (-3771 (($ $) 180 (|has| |#1| (-495)) ELT)) (-3967 (((-345 $) $) 181 (|has| |#1| (-495)) ELT)) (-1606 (((-85) $ $) 171 (|has| |#1| (-495)) ELT)) (-3720 (($) 117 (OR (|has| |#1| (-1025)) (|has| |#1| (-25))) CONST)) (-3154 (((-3 (-551 $) #1="failed") $) 67 T ELT) (((-3 (-1089) #1#) $) 233 T ELT) (((-3 (-484) #1#) $) 227 (|has| |#1| (-951 (-484))) ELT) (((-3 |#1| #1#) $) 224 T ELT) (((-3 (-347 (-858 |#1|)) #1#) $) 186 (|has| |#1| (-495)) ELT) (((-3 (-858 |#1|) #1#) $) 136 (|has| |#1| (-962)) ELT) (((-3 (-347 (-484)) #1#) $) 111 (OR (-12 (|has| |#1| (-951 (-484))) (|has| |#1| (-495))) (|has| |#1| (-951 (-347 (-484))))) ELT)) (-3153 (((-551 $) $) 68 T ELT) (((-1089) $) 234 T ELT) (((-484) $) 226 (|has| |#1| (-951 (-484))) ELT) ((|#1| $) 225 T ELT) (((-347 (-858 |#1|)) $) 187 (|has| |#1| (-495)) ELT) (((-858 |#1|) $) 137 (|has| |#1| (-962)) ELT) (((-347 (-484)) $) 112 (OR (-12 (|has| |#1| (-951 (-484))) (|has| |#1| (-495))) (|has| |#1| (-951 (-347 (-484))))) ELT)) (-2562 (($ $ $) 175 (|has| |#1| (-495)) ELT)) (-2277 (((-631 (-484)) (-631 $)) 153 (-2560 (|has| |#1| (-581 (-484))) (|has| |#1| (-962))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 152 (-2560 (|has| |#1| (-581 (-484))) (|has| |#1| (-962))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) 151 (|has| |#1| (-962)) ELT) (((-631 |#1|) (-631 $)) 150 (|has| |#1| (-962)) ELT)) (-3463 (((-3 $ "failed") $) 119 (|has| |#1| (-1025)) ELT)) (-2561 (($ $ $) 174 (|has| |#1| (-495)) ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) 169 (|has| |#1| (-495)) ELT)) (-3719 (((-85) $) 182 (|has| |#1| (-495)) ELT)) (-2794 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) 229 (|has| |#1| (-797 (-484))) ELT) (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 228 (|has| |#1| (-797 (-327))) ELT)) (-2571 (($ $) 49 T ELT) (($ (-584 $)) 48 T ELT)) (-1597 (((-584 (-86)) $) 41 T ELT)) (-3591 (((-86) (-86)) 40 T ELT)) (-2408 (((-85) $) 118 (|has| |#1| (-1025)) ELT)) (-2671 (((-85) $) 20 (|has| $ (-951 (-484))) ELT)) (-2994 (($ $) 203 (|has| |#1| (-962)) ELT)) (-2996 (((-1038 |#1| (-551 $)) $) 204 (|has| |#1| (-962)) ELT)) (-1603 (((-3 (-584 $) #2="failed") (-584 $) $) 178 (|has| |#1| (-495)) ELT)) (-1595 (((-1084 $) (-551 $)) 23 (|has| $ (-962)) ELT)) (-3954 (($ (-1 $ $) (-551 $)) 34 T ELT)) (-1600 (((-3 (-551 $) "failed") $) 44 T ELT)) (-2278 (((-631 (-484)) (-1178 $)) 155 (-2560 (|has| |#1| (-581 (-484))) (|has| |#1| (-962))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 154 (-2560 (|has| |#1| (-581 (-484))) (|has| |#1| (-962))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 149 (|has| |#1| (-962)) ELT) (((-631 |#1|) (-1178 $)) 148 (|has| |#1| (-962)) ELT)) (-1889 (($ (-584 $)) 167 (|has| |#1| (-495)) ELT) (($ $ $) 166 (|has| |#1| (-495)) ELT)) (-3239 (((-1072) $) 11 T ELT)) (-1599 (((-584 (-551 $)) $) 43 T ELT)) (-2233 (($ (-86) $) 36 T ELT) (($ (-86) (-584 $)) 35 T ELT)) (-2821 (((-3 (-584 $) "failed") $) 209 (|has| |#1| (-1025)) ELT)) (-2823 (((-3 (-2 (|:| |val| $) (|:| -2399 (-484))) "failed") $) 200 (|has| |#1| (-962)) ELT)) (-2820 (((-3 (-584 $) "failed") $) 207 (|has| |#1| (-25)) ELT)) (-1792 (((-3 (-2 (|:| -3950 (-484)) (|:| |var| (-551 $))) "failed") $) 206 (|has| |#1| (-25)) ELT)) (-2822 (((-3 (-2 (|:| |var| (-551 $)) (|:| -2399 (-484))) "failed") $) 208 (|has| |#1| (-1025)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2399 (-484))) "failed") $ (-86)) 202 (|has| |#1| (-962)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2399 (-484))) "failed") $ (-1089)) 201 (|has| |#1| (-962)) ELT)) (-2631 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1089)) 37 T ELT)) (-2482 (($ $) 121 (OR (|has| |#1| (-410)) (|has| |#1| (-495))) ELT)) (-2601 (((-695) $) 45 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-1795 (((-85) $) 222 T ELT)) (-1794 ((|#1| $) 221 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 168 (|has| |#1| (-495)) ELT)) (-3141 (($ (-584 $)) 165 (|has| |#1| (-495)) ELT) (($ $ $) 164 (|has| |#1| (-495)) ELT)) (-1596 (((-85) $ $) 33 T ELT) (((-85) $ (-1089)) 32 T ELT)) (-3728 (((-345 $) $) 179 (|has| |#1| (-495)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 177 (|has| |#1| (-495)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) 176 (|has| |#1| (-495)) ELT)) (-3462 (((-3 $ "failed") $ $) 159 (|has| |#1| (-495)) ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) 170 (|has| |#1| (-495)) ELT)) (-2672 (((-85) $) 21 (|has| $ (-951 (-484))) ELT)) (-3764 (($ $ (-551 $) $) 65 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 64 T ELT) (($ $ (-584 (-248 $))) 63 T ELT) (($ $ (-248 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-584 $) (-584 $)) 60 T ELT) (($ $ (-584 (-1089)) (-584 (-1 $ $))) 31 T ELT) (($ $ (-584 (-1089)) (-584 (-1 $ (-584 $)))) 30 T ELT) (($ $ (-1089) (-1 $ (-584 $))) 29 T ELT) (($ $ (-1089) (-1 $ $)) 28 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) 27 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-584 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT) (($ $ (-1089)) 214 (|has| |#1| (-554 (-473))) ELT) (($ $ (-584 (-1089))) 213 (|has| |#1| (-554 (-473))) ELT) (($ $) 212 (|has| |#1| (-554 (-473))) ELT) (($ $ (-86) $ (-1089)) 211 (|has| |#1| (-554 (-473))) ELT) (($ $ (-584 (-86)) (-584 $) (-1089)) 210 (|has| |#1| (-554 (-473))) ELT) (($ $ (-584 (-1089)) (-584 (-695)) (-584 (-1 $ $))) 199 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1089)) (-584 (-695)) (-584 (-1 $ (-584 $)))) 198 (|has| |#1| (-962)) ELT) (($ $ (-1089) (-695) (-1 $ (-584 $))) 197 (|has| |#1| (-962)) ELT) (($ $ (-1089) (-695) (-1 $ $)) 196 (|has| |#1| (-962)) ELT)) (-1605 (((-695) $) 172 (|has| |#1| (-495)) ELT)) (-3796 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-584 $)) 55 T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 173 (|has| |#1| (-495)) ELT)) (-1601 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3754 (($ $ (-1089)) 146 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1089))) 144 (|has| |#1| (-962)) ELT) (($ $ (-1089) (-695)) 143 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 142 (|has| |#1| (-962)) ELT)) (-2993 (($ $) 193 (|has| |#1| (-495)) ELT)) (-2995 (((-1038 |#1| (-551 $)) $) 194 (|has| |#1| (-495)) ELT)) (-3182 (($ $) 22 (|has| $ (-962)) ELT)) (-3968 (((-801 (-484)) $) 231 (|has| |#1| (-554 (-801 (-484)))) ELT) (((-801 (-327)) $) 230 (|has| |#1| (-554 (-801 (-327)))) ELT) (($ (-345 $)) 195 (|has| |#1| (-495)) ELT) (((-473) $) 113 (|has| |#1| (-554 (-473))) ELT)) (-3007 (($ $ $) 124 (|has| |#1| (-410)) ELT)) (-2433 (($ $ $) 125 (|has| |#1| (-410)) ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-551 $)) 66 T ELT) (($ (-1089)) 232 T ELT) (($ |#1|) 223 T ELT) (($ (-1038 |#1| (-551 $))) 205 (|has| |#1| (-962)) ELT) (($ (-347 |#1|)) 191 (|has| |#1| (-495)) ELT) (($ (-858 (-347 |#1|))) 190 (|has| |#1| (-495)) ELT) (($ (-347 (-858 (-347 |#1|)))) 189 (|has| |#1| (-495)) ELT) (($ (-347 (-858 |#1|))) 185 (|has| |#1| (-495)) ELT) (($ $) 158 (|has| |#1| (-495)) ELT) (($ (-858 |#1|)) 135 (|has| |#1| (-962)) ELT) (($ (-347 (-484))) 110 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-951 (-484))) (|has| |#1| (-495))) (|has| |#1| (-951 (-347 (-484))))) ELT) (($ (-484)) 109 (OR (|has| |#1| (-962)) (|has| |#1| (-951 (-484)))) ELT)) (-2700 (((-633 $) $) 156 (|has| |#1| (-118)) ELT)) (-3123 (((-695)) 138 (|has| |#1| (-962)) CONST)) (-2588 (($ $) 51 T ELT) (($ (-584 $)) 50 T ELT)) (-2252 (((-85) (-86)) 39 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2060 (((-85) $ $) 162 (|has| |#1| (-495)) ELT)) (-1793 (($ (-1089) $) 219 T ELT) (($ (-1089) $ $) 218 T ELT) (($ (-1089) $ $ $) 217 T ELT) (($ (-1089) $ $ $ $) 216 T ELT) (($ (-1089) (-584 $)) 215 T ELT)) (-2658 (($) 128 (|has| |#1| (-25)) CONST)) (-2664 (($) 116 (|has| |#1| (-1025)) CONST)) (-2667 (($ $ (-1089)) 145 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1089))) 141 (|has| |#1| (-962)) ELT) (($ $ (-1089) (-695)) 140 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 139 (|has| |#1| (-962)) ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3945 (($ (-1038 |#1| (-551 $)) (-1038 |#1| (-551 $))) 192 (|has| |#1| (-495)) ELT) (($ $ $) 122 (OR (|has| |#1| (-410)) (|has| |#1| (-495))) ELT)) (-3833 (($ $ $) 134 (|has| |#1| (-21)) ELT) (($ $) 133 (|has| |#1| (-21)) ELT)) (-3835 (($ $ $) 126 (|has| |#1| (-25)) ELT)) (** (($ $ (-484)) 123 (OR (|has| |#1| (-410)) (|has| |#1| (-495))) ELT) (($ $ (-695)) 120 (|has| |#1| (-1025)) ELT) (($ $ (-831)) 115 (|has| |#1| (-1025)) ELT)) (* (($ (-347 (-484)) $) 184 (|has| |#1| (-495)) ELT) (($ $ (-347 (-484))) 183 (|has| |#1| (-495)) ELT) (($ $ |#1|) 157 (|has| |#1| (-146)) ELT) (($ |#1| $) 147 (|has| |#1| (-962)) ELT) (($ (-484) $) 132 (|has| |#1| (-21)) ELT) (($ (-695) $) 130 (|has| |#1| (-25)) ELT) (($ (-831) $) 127 (|has| |#1| (-25)) ELT) (($ $ $) 114 (|has| |#1| (-1025)) ELT)))
+(((-361 |#1|) (-113) (-1013)) (T -361))
+((-1795 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))) (-1794 (*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-1013)))) (-3079 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-1013)) (-5 *2 (-584 (-1089))))) (-1793 (*1 *1 *2 *1) (-12 (-5 *2 (-1089)) (-4 *1 (-361 *3)) (-4 *3 (-1013)))) (-1793 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1089)) (-4 *1 (-361 *3)) (-4 *3 (-1013)))) (-1793 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1089)) (-4 *1 (-361 *3)) (-4 *3 (-1013)))) (-1793 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1089)) (-4 *1 (-361 *3)) (-4 *3 (-1013)))) (-1793 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-584 *1)) (-4 *1 (-361 *4)) (-4 *4 (-1013)))) (-3764 (*1 *1 *1 *2) (-12 (-5 *2 (-1089)) (-4 *1 (-361 *3)) (-4 *3 (-1013)) (-4 *3 (-554 (-473))))) (-3764 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-1089))) (-4 *1 (-361 *3)) (-4 *3 (-1013)) (-4 *3 (-554 (-473))))) (-3764 (*1 *1 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-1013)) (-4 *2 (-554 (-473))))) (-3764 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1089)) (-4 *1 (-361 *4)) (-4 *4 (-1013)) (-4 *4 (-554 (-473))))) (-3764 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 *1)) (-5 *4 (-1089)) (-4 *1 (-361 *5)) (-4 *5 (-1013)) (-4 *5 (-554 (-473))))) (-2821 (*1 *2 *1) (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-1013)) (-5 *2 (-584 *1)) (-4 *1 (-361 *3)))) (-2822 (*1 *2 *1) (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-1013)) (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2399 (-484)))) (-4 *1 (-361 *3)))) (-2820 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1013)) (-5 *2 (-584 *1)) (-4 *1 (-361 *3)))) (-1792 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1013)) (-5 *2 (-2 (|:| -3950 (-484)) (|:| |var| (-551 *1)))) (-4 *1 (-361 *3)))) (-3942 (*1 *1 *2) (-12 (-5 *2 (-1038 *3 (-551 *1))) (-4 *3 (-962)) (-4 *3 (-1013)) (-4 *1 (-361 *3)))) (-2996 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *3 (-1013)) (-5 *2 (-1038 *3 (-551 *1))) (-4 *1 (-361 *3)))) (-2994 (*1 *1 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-1013)) (-4 *2 (-962)))) (-2822 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-4 *4 (-962)) (-4 *4 (-1013)) (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2399 (-484)))) (-4 *1 (-361 *4)))) (-2822 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1089)) (-4 *4 (-962)) (-4 *4 (-1013)) (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2399 (-484)))) (-4 *1 (-361 *4)))) (-2823 (*1 *2 *1) (|partial| -12 (-4 *3 (-962)) (-4 *3 (-1013)) (-5 *2 (-2 (|:| |val| *1) (|:| -2399 (-484)))) (-4 *1 (-361 *3)))) (-3764 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-584 (-1089))) (-5 *3 (-584 (-695))) (-5 *4 (-584 (-1 *1 *1))) (-4 *1 (-361 *5)) (-4 *5 (-1013)) (-4 *5 (-962)))) (-3764 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-584 (-1089))) (-5 *3 (-584 (-695))) (-5 *4 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-361 *5)) (-4 *5 (-1013)) (-4 *5 (-962)))) (-3764 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1089)) (-5 *3 (-695)) (-5 *4 (-1 *1 (-584 *1))) (-4 *1 (-361 *5)) (-4 *5 (-1013)) (-4 *5 (-962)))) (-3764 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1089)) (-5 *3 (-695)) (-5 *4 (-1 *1 *1)) (-4 *1 (-361 *5)) (-4 *5 (-1013)) (-4 *5 (-962)))) (-3968 (*1 *1 *2) (-12 (-5 *2 (-345 *1)) (-4 *1 (-361 *3)) (-4 *3 (-495)) (-4 *3 (-1013)))) (-2995 (*1 *2 *1) (-12 (-4 *3 (-495)) (-4 *3 (-1013)) (-5 *2 (-1038 *3 (-551 *1))) (-4 *1 (-361 *3)))) (-2993 (*1 *1 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-1013)) (-4 *2 (-495)))) (-3945 (*1 *1 *2 *2) (-12 (-5 *2 (-1038 *3 (-551 *1))) (-4 *3 (-495)) (-4 *3 (-1013)) (-4 *1 (-361 *3)))) (-3942 (*1 *1 *2) (-12 (-5 *2 (-347 *3)) (-4 *3 (-495)) (-4 *3 (-1013)) (-4 *1 (-361 *3)))) (-3942 (*1 *1 *2) (-12 (-5 *2 (-858 (-347 *3))) (-4 *3 (-495)) (-4 *3 (-1013)) (-4 *1 (-361 *3)))) (-3942 (*1 *1 *2) (-12 (-5 *2 (-347 (-858 (-347 *3)))) (-4 *3 (-495)) (-4 *3 (-1013)) (-4 *1 (-361 *3)))) (-3081 (*1 *2 *1 *3) (-12 (-5 *3 (-551 *1)) (-4 *1 (-361 *4)) (-4 *4 (-1013)) (-4 *4 (-495)) (-5 *2 (-347 (-1084 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-361 *3)) (-4 *3 (-1013)) (-4 *3 (-1025)))))
+(-13 (-253) (-951 (-1089)) (-795 |t#1|) (-340 |t#1|) (-352 |t#1|) (-10 -8 (-15 -1795 ((-85) $)) (-15 -1794 (|t#1| $)) (-15 -3079 ((-584 (-1089)) $)) (-15 -1793 ($ (-1089) $)) (-15 -1793 ($ (-1089) $ $)) (-15 -1793 ($ (-1089) $ $ $)) (-15 -1793 ($ (-1089) $ $ $ $)) (-15 -1793 ($ (-1089) (-584 $))) (IF (|has| |t#1| (-554 (-473))) (PROGN (-6 (-554 (-473))) (-15 -3764 ($ $ (-1089))) (-15 -3764 ($ $ (-584 (-1089)))) (-15 -3764 ($ $)) (-15 -3764 ($ $ (-86) $ (-1089))) (-15 -3764 ($ $ (-584 (-86)) (-584 $) (-1089)))) |%noBranch|) (IF (|has| |t#1| (-1025)) (PROGN (-6 (-664)) (-15 ** ($ $ (-695))) (-15 -2821 ((-3 (-584 $) "failed") $)) (-15 -2822 ((-3 (-2 (|:| |var| (-551 $)) (|:| -2399 (-484))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-410)) (-6 (-410)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2820 ((-3 (-584 $) "failed") $)) (-15 -1792 ((-3 (-2 (|:| -3950 (-484)) (|:| |var| (-551 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-962)) (PROGN (-6 (-962)) (-6 (-951 (-858 |t#1|))) (-6 (-810 (-1089))) (-6 (-326 |t#1|)) (-15 -3942 ($ (-1038 |t#1| (-551 $)))) (-15 -2996 ((-1038 |t#1| (-551 $)) $)) (-15 -2994 ($ $)) (-15 -2822 ((-3 (-2 (|:| |var| (-551 $)) (|:| -2399 (-484))) "failed") $ (-86))) (-15 -2822 ((-3 (-2 (|:| |var| (-551 $)) (|:| -2399 (-484))) "failed") $ (-1089))) (-15 -2823 ((-3 (-2 (|:| |val| $) (|:| -2399 (-484))) "failed") $)) (-15 -3764 ($ $ (-584 (-1089)) (-584 (-695)) (-584 (-1 $ $)))) (-15 -3764 ($ $ (-584 (-1089)) (-584 (-695)) (-584 (-1 $ (-584 $))))) (-15 -3764 ($ $ (-1089) (-695) (-1 $ (-584 $)))) (-15 -3764 ($ $ (-1089) (-695) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-495)) (PROGN (-6 (-311)) (-6 (-951 (-347 (-858 |t#1|)))) (-15 -3968 ($ (-345 $))) (-15 -2995 ((-1038 |t#1| (-551 $)) $)) (-15 -2993 ($ $)) (-15 -3945 ($ (-1038 |t#1| (-551 $)) (-1038 |t#1| (-551 $)))) (-15 -3942 ($ (-347 |t#1|))) (-15 -3942 ($ (-858 (-347 |t#1|)))) (-15 -3942 ($ (-347 (-858 (-347 |t#1|))))) (-15 -3081 ((-347 (-1084 $)) $ (-551 $))) (IF (|has| |t#1| (-951 (-484))) (-6 (-951 (-347 (-484)))) |%noBranch|)) |%noBranch|)))
+(((-21) OR (|has| |#1| (-962)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-23) OR (|has| |#1| (-962)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) OR (|has| |#1| (-962)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 (-347 (-484))) |has| |#1| (-495)) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) |has| |#1| (-495)) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) |has| |#1| (-495)) ((-104) OR (|has| |#1| (-962)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) OR (|has| |#1| (-951 (-347 (-484)))) (|has| |#1| (-495))) ((-556 (-347 (-858 |#1|))) |has| |#1| (-495)) ((-556 (-484)) OR (|has| |#1| (-962)) (|has| |#1| (-951 (-484))) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-556 (-551 $)) . T) ((-556 (-858 |#1|)) |has| |#1| (-962)) ((-556 (-1089)) . T) ((-556 |#1|) . T) ((-556 $) |has| |#1| (-495)) ((-553 (-773)) . T) ((-146) |has| |#1| (-495)) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-554 (-801 (-327))) |has| |#1| (-554 (-801 (-327)))) ((-554 (-801 (-484))) |has| |#1| (-554 (-801 (-484)))) ((-201) |has| |#1| (-495)) ((-245) |has| |#1| (-495)) ((-257) |has| |#1| (-495)) ((-259 $) . T) ((-253) . T) ((-311) |has| |#1| (-495)) ((-326 |#1|) |has| |#1| (-962)) ((-340 |#1|) . T) ((-352 |#1|) . T) ((-389) |has| |#1| (-495)) ((-410) |has| |#1| (-410)) ((-453 (-551 $) $) . T) ((-453 $ $) . T) ((-495) |has| |#1| (-495)) ((-13) . T) ((-589 (-347 (-484))) |has| |#1| (-495)) ((-589 (-484)) OR (|has| |#1| (-962)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-589 |#1|) OR (|has| |#1| (-962)) (|has| |#1| (-146))) ((-589 $) OR (|has| |#1| (-962)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-591 (-347 (-484))) |has| |#1| (-495)) ((-591 (-484)) -12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962))) ((-591 |#1|) OR (|has| |#1| (-962)) (|has| |#1| (-146))) ((-591 $) OR (|has| |#1| (-962)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-583 (-347 (-484))) |has| |#1| (-495)) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-495)) ((-581 (-484)) -12 (|has| |#1| (-581 (-484))) (|has| |#1| (-962))) ((-581 |#1|) |has| |#1| (-962)) ((-655 (-347 (-484))) |has| |#1| (-495)) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-495)) ((-664) OR (|has| |#1| (-1025)) (|has| |#1| (-962)) (|has| |#1| (-495)) (|has| |#1| (-410)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-807 $ (-1089)) |has| |#1| (-962)) ((-810 (-1089)) |has| |#1| (-962)) ((-812 (-1089)) |has| |#1| (-962)) ((-797 (-327)) |has| |#1| (-797 (-327))) ((-797 (-484)) |has| |#1| (-797 (-484))) ((-795 |#1|) . T) ((-833) |has| |#1| (-495)) ((-951 (-347 (-484))) OR (|has| |#1| (-951 (-347 (-484)))) (-12 (|has| |#1| (-495)) (|has| |#1| (-951 (-484))))) ((-951 (-347 (-858 |#1|))) |has| |#1| (-495)) ((-951 (-484)) |has| |#1| (-951 (-484))) ((-951 (-551 $)) . T) ((-951 (-858 |#1|)) |has| |#1| (-962)) ((-951 (-1089)) . T) ((-951 |#1|) . T) ((-964 (-347 (-484))) |has| |#1| (-495)) ((-964 |#1|) |has| |#1| (-146)) ((-964 $) |has| |#1| (-495)) ((-969 (-347 (-484))) |has| |#1| (-495)) ((-969 |#1|) |has| |#1| (-146)) ((-969 $) |has| |#1| (-495)) ((-962) OR (|has| |#1| (-962)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-970) OR (|has| |#1| (-962)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1025) OR (|has| |#1| (-1025)) (|has| |#1| (-962)) (|has| |#1| (-495)) (|has| |#1| (-410)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1060) OR (|has| |#1| (-962)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1013) . T) ((-1128) . T) ((-1133) |has| |#1| (-495)))
+((-3954 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT)))
+(((-362 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3954 (|#4| (-1 |#3| |#1|) |#2|))) (-962) (-361 |#1|) (-962) (-361 |#3|)) (T -362))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-361 *6)) (-5 *1 (-362 *5 *4 *6 *2)) (-4 *4 (-361 *5)))))
+((-1799 ((|#2| |#2|) 182 T ELT)) (-1796 (((-3 (|:| |%expansion| (-263 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))) |#2| (-85)) 60 T ELT)))
+(((-363 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1796 ((-3 (|:| |%expansion| (-263 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))) |#2| (-85))) (-15 -1799 (|#2| |#2|))) (-13 (-389) (-951 (-484)) (-581 (-484))) (-13 (-27) (-1114) (-361 |#1|)) (-1089) |#2|) (T -363))
+((-1799 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-363 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1114) (-361 *3))) (-14 *4 (-1089)) (-14 *5 *2))) (-1796 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-3 (|:| |%expansion| (-263 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072)))))) (-5 *1 (-363 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1114) (-361 *5))) (-14 *6 (-1089)) (-14 *7 *3))))
+((-1799 ((|#2| |#2|) 105 T ELT)) (-1797 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))) |#2| (-85) (-1072)) 52 T ELT)) (-1798 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))) |#2| (-85) (-1072)) 169 T ELT)))
+(((-364 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1797 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))) |#2| (-85) (-1072))) (-15 -1798 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))) |#2| (-85) (-1072))) (-15 -1799 (|#2| |#2|))) (-13 (-389) (-951 (-484)) (-581 (-484))) (-13 (-27) (-1114) (-361 |#1|) (-10 -8 (-15 -3942 ($ |#3|)))) (-756) (-13 (-1157 |#2| |#3|) (-311) (-1114) (-10 -8 (-15 -3754 ($ $)) (-15 -3808 ($ $)))) (-897 |#4|) (-1089)) (T -364))
+((-1799 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-4 *2 (-13 (-27) (-1114) (-361 *3) (-10 -8 (-15 -3942 ($ *4))))) (-4 *4 (-756)) (-4 *5 (-13 (-1157 *2 *4) (-311) (-1114) (-10 -8 (-15 -3754 ($ $)) (-15 -3808 ($ $))))) (-5 *1 (-364 *3 *2 *4 *5 *6 *7)) (-4 *6 (-897 *5)) (-14 *7 (-1089)))) (-1798 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-4 *3 (-13 (-27) (-1114) (-361 *6) (-10 -8 (-15 -3942 ($ *7))))) (-4 *7 (-756)) (-4 *8 (-13 (-1157 *3 *7) (-311) (-1114) (-10 -8 (-15 -3754 ($ $)) (-15 -3808 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072)))))) (-5 *1 (-364 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1072)) (-4 *9 (-897 *8)) (-14 *10 (-1089)))) (-1797 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-4 *3 (-13 (-27) (-1114) (-361 *6) (-10 -8 (-15 -3942 ($ *7))))) (-4 *7 (-756)) (-4 *8 (-13 (-1157 *3 *7) (-311) (-1114) (-10 -8 (-15 -3754 ($ $)) (-15 -3808 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072)))))) (-5 *1 (-364 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1072)) (-4 *9 (-897 *8)) (-14 *10 (-1089)))))
+((-1800 (($) 51 T ELT)) (-3231 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-3233 (($ $ $) 46 T ELT)) (-3232 (((-85) $ $) 35 T ELT)) (-3133 (((-695)) 55 T ELT)) (-3236 (($ (-584 |#2|)) 23 T ELT) (($) NIL T ELT)) (-2992 (($) 66 T ELT)) (-3238 (((-85) $ $) 15 T ELT)) (-2529 ((|#2| $) 77 T ELT)) (-2855 ((|#2| $) 75 T ELT)) (-2008 (((-831) $) 70 T ELT)) (-3235 (($ $ $) 42 T ELT)) (-2398 (($ (-831)) 60 T ELT)) (-3234 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-1944 (((-695) (-1 (-85) |#2|) $) NIL T ELT) (((-695) |#2| $) 31 T ELT)) (-3526 (($ (-584 |#2|)) 27 T ELT)) (-1801 (($ $) 53 T ELT)) (-3942 (((-773) $) 40 T ELT)) (-1802 (((-695) $) 24 T ELT)) (-3237 (($ (-584 |#2|)) 22 T ELT) (($) NIL T ELT)) (-3054 (((-85) $ $) 19 T ELT)))
+(((-365 |#1| |#2|) (-10 -7 (-15 -3133 ((-695))) (-15 -2398 (|#1| (-831))) (-15 -2008 ((-831) |#1|)) (-15 -2992 (|#1|)) (-15 -2529 (|#2| |#1|)) (-15 -2855 (|#2| |#1|)) (-15 -1800 (|#1|)) (-15 -1801 (|#1| |#1|)) (-15 -1802 ((-695) |#1|)) (-15 -3054 ((-85) |#1| |#1|)) (-15 -3942 ((-773) |#1|)) (-15 -3238 ((-85) |#1| |#1|)) (-15 -3237 (|#1|)) (-15 -3237 (|#1| (-584 |#2|))) (-15 -3236 (|#1|)) (-15 -3236 (|#1| (-584 |#2|))) (-15 -3235 (|#1| |#1| |#1|)) (-15 -3234 (|#1| |#1| |#1|)) (-15 -3234 (|#1| |#1| |#2|)) (-15 -3233 (|#1| |#1| |#1|)) (-15 -3232 ((-85) |#1| |#1|)) (-15 -3231 (|#1| |#1| |#1|)) (-15 -3231 (|#1| |#1| |#2|)) (-15 -3231 (|#1| |#2| |#1|)) (-15 -3526 (|#1| (-584 |#2|))) (-15 -1944 ((-695) |#2| |#1|)) (-15 -1944 ((-695) (-1 (-85) |#2|) |#1|))) (-366 |#2|) (-1013)) (T -365))
+((-3133 (*1 *2) (-12 (-4 *4 (-1013)) (-5 *2 (-695)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4)))))
+((-2566 (((-85) $ $) 19 T ELT)) (-1800 (($) 71 (|has| |#1| (-317)) ELT)) (-3231 (($ |#1| $) 86 T ELT) (($ $ |#1|) 85 T ELT) (($ $ $) 84 T ELT)) (-3233 (($ $ $) 82 T ELT)) (-3232 (((-85) $ $) 83 T ELT)) (-3133 (((-695)) 65 (|has| |#1| (-317)) ELT)) (-3236 (($ (-584 |#1|)) 78 T ELT) (($) 77 T ELT)) (-1568 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3991)) ELT)) (-3706 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3991)) ELT)) (-3720 (($) 7 T CONST)) (-1351 (($ $) 62 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3401 (($ |#1| $) 51 (|has| $ (-6 -3991)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3991)) ELT)) (-3402 (($ |#1| $) 61 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3991)) ELT)) (-3838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3991)) ELT)) (-2992 (($) 68 (|has| |#1| (-317)) ELT)) (-2887 (((-584 |#1|) $) 30 (|has| $ (-6 -3991)) ELT)) (-3238 (((-85) $ $) 74 T ELT)) (-2529 ((|#1| $) 69 (|has| |#1| (-757)) ELT)) (-2606 (((-584 |#1|) $) 29 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-2855 ((|#1| $) 70 (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2008 (((-831) $) 67 (|has| |#1| (-317)) ELT)) (-3239 (((-1072) $) 22 T ELT)) (-3235 (($ $ $) 79 T ELT)) (-1272 ((|#1| $) 43 T ELT)) (-3605 (($ |#1| $) 44 T ELT)) (-2398 (($ (-831)) 66 (|has| |#1| (-317)) ELT)) (-3240 (((-1033) $) 21 T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1273 ((|#1| $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-3234 (($ $ |#1|) 81 T ELT) (($ $ $) 80 T ELT)) (-1464 (($) 53 T ELT) (($ (-584 |#1|)) 52 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3396 (($ $) 10 T ELT)) (-3968 (((-473) $) 63 (|has| |#1| (-554 (-473))) ELT)) (-3526 (($ (-584 |#1|)) 54 T ELT)) (-1801 (($ $) 72 (|has| |#1| (-317)) ELT)) (-3942 (((-773) $) 17 T ELT)) (-1802 (((-695) $) 73 T ELT)) (-3237 (($ (-584 |#1|)) 76 T ELT) (($) 75 T ELT)) (-1263 (((-85) $ $) 20 T ELT)) (-1274 (($ (-584 |#1|)) 46 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 18 T ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-366 |#1|) (-113) (-1013)) (T -366))
+((-1802 (*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-1013)) (-5 *2 (-695)))) (-1801 (*1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1013)) (-4 *2 (-317)))) (-1800 (*1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-317)) (-4 *2 (-1013)))) (-2855 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1013)) (-4 *2 (-757)))) (-2529 (*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1013)) (-4 *2 (-757)))))
+(-13 (-183 |t#1|) (-1011 |t#1|) (-10 -8 (-6 -3991) (-15 -1802 ((-695) $)) (IF (|has| |t#1| (-317)) (PROGN (-6 (-317)) (-15 -1801 ($ $)) (-15 -1800 ($))) |%noBranch|) (IF (|has| |t#1| (-757)) (PROGN (-15 -2855 (|t#1| $)) (-15 -2529 (|t#1| $))) |%noBranch|)))
+(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-553 (-773)) . T) ((-124 |#1|) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-183 |#1|) . T) ((-193 |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-317) |has| |#1| (-317)) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1011 |#1|) . T) ((-1013) . T) ((-1128) . T))
+((-3837 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-3838 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-3954 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT)))
+(((-367 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3954 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3838 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3837 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1013) (-366 |#1|) (-1013) (-366 |#3|)) (T -367))
+((-3837 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1013)) (-4 *5 (-1013)) (-4 *2 (-366 *5)) (-5 *1 (-367 *6 *4 *5 *2)) (-4 *4 (-366 *6)))) (-3838 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1013)) (-4 *2 (-1013)) (-5 *1 (-367 *5 *4 *2 *6)) (-4 *4 (-366 *5)) (-4 *6 (-366 *2)))) (-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-366 *6)) (-5 *1 (-367 *5 *4 *6 *2)) (-4 *4 (-366 *5)))))
+((-1803 (((-519 |#2|) |#2| (-1089)) 36 T ELT)) (-2098 (((-519 |#2|) |#2| (-1089)) 21 T ELT)) (-2147 ((|#2| |#2| (-1089)) 26 T ELT)))
+(((-368 |#1| |#2|) (-10 -7 (-15 -2098 ((-519 |#2|) |#2| (-1089))) (-15 -1803 ((-519 |#2|) |#2| (-1089))) (-15 -2147 (|#2| |#2| (-1089)))) (-13 (-257) (-120) (-951 (-484)) (-581 (-484))) (-13 (-1114) (-29 |#1|))) (T -368))
+((-2147 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) (-5 *1 (-368 *4 *2)) (-4 *2 (-13 (-1114) (-29 *4))))) (-1803 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-368 *5 *3)) (-4 *3 (-13 (-1114) (-29 *5))))) (-2098 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-368 *5 *3)) (-4 *3 (-13 (-1114) (-29 *5))))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2408 (((-85) $) NIL T ELT)) (-1805 (($ |#2| |#1|) 37 T ELT)) (-1804 (($ |#2| |#1|) 35 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-280 |#2|)) 25 T ELT)) (-3123 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) 10 T CONST)) (-2664 (($) 16 T CONST)) (-3054 (((-85) $ $) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) 36 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-369 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -3978)) (IF (|has| |#1| (-6 -3978)) (-6 -3978) |%noBranch|) |%noBranch|) (-15 -3942 ($ |#1|)) (-15 -3942 ($ (-280 |#2|))) (-15 -1805 ($ |#2| |#1|)) (-15 -1804 ($ |#2| |#1|)))) (-13 (-146) (-38 (-347 (-484)))) (-13 (-757) (-21))) (T -369))
+((-3942 (*1 *1 *2) (-12 (-5 *1 (-369 *2 *3)) (-4 *2 (-13 (-146) (-38 (-347 (-484))))) (-4 *3 (-13 (-757) (-21))))) (-3942 (*1 *1 *2) (-12 (-5 *2 (-280 *4)) (-4 *4 (-13 (-757) (-21))) (-5 *1 (-369 *3 *4)) (-4 *3 (-13 (-146) (-38 (-347 (-484))))))) (-1805 (*1 *1 *2 *3) (-12 (-5 *1 (-369 *3 *2)) (-4 *3 (-13 (-146) (-38 (-347 (-484))))) (-4 *2 (-13 (-757) (-21))))) (-1804 (*1 *1 *2 *3) (-12 (-5 *1 (-369 *3 *2)) (-4 *3 (-13 (-146) (-38 (-347 (-484))))) (-4 *2 (-13 (-757) (-21))))))
+((-3808 (((-3 |#2| (-584 |#2|)) |#2| (-1089)) 115 T ELT)))
+(((-370 |#1| |#2|) (-10 -7 (-15 -3808 ((-3 |#2| (-584 |#2|)) |#2| (-1089)))) (-13 (-257) (-120) (-951 (-484)) (-581 (-484))) (-13 (-1114) (-872) (-29 |#1|))) (T -370))
+((-3808 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) (-5 *2 (-3 *3 (-584 *3))) (-5 *1 (-370 *5 *3)) (-4 *3 (-13 (-1114) (-872) (-29 *5))))))
+((-3382 ((|#2| |#2| |#2|) 31 T ELT)) (-3591 (((-86) (-86)) 43 T ELT)) (-1807 ((|#2| |#2|) 63 T ELT)) (-1806 ((|#2| |#2|) 66 T ELT)) (-3381 ((|#2| |#2|) 30 T ELT)) (-3385 ((|#2| |#2| |#2|) 33 T ELT)) (-3387 ((|#2| |#2| |#2|) 35 T ELT)) (-3384 ((|#2| |#2| |#2|) 32 T ELT)) (-3386 ((|#2| |#2| |#2|) 34 T ELT)) (-2252 (((-85) (-86)) 41 T ELT)) (-3389 ((|#2| |#2|) 37 T ELT)) (-3388 ((|#2| |#2|) 36 T ELT)) (-3379 ((|#2| |#2|) 25 T ELT)) (-3383 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-3380 ((|#2| |#2| |#2|) 29 T ELT)))
+(((-371 |#1| |#2|) (-10 -7 (-15 -2252 ((-85) (-86))) (-15 -3591 ((-86) (-86))) (-15 -3379 (|#2| |#2|)) (-15 -3383 (|#2| |#2|)) (-15 -3383 (|#2| |#2| |#2|)) (-15 -3380 (|#2| |#2| |#2|)) (-15 -3381 (|#2| |#2|)) (-15 -3382 (|#2| |#2| |#2|)) (-15 -3384 (|#2| |#2| |#2|)) (-15 -3385 (|#2| |#2| |#2|)) (-15 -3386 (|#2| |#2| |#2|)) (-15 -3387 (|#2| |#2| |#2|)) (-15 -3388 (|#2| |#2|)) (-15 -3389 (|#2| |#2|)) (-15 -1806 (|#2| |#2|)) (-15 -1807 (|#2| |#2|))) (-495) (-361 |#1|)) (T -371))
+((-1807 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-1806 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3389 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3388 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3387 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3386 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3385 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3384 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3382 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3381 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3380 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3383 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3383 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3379 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))) (-3591 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-371 *3 *4)) (-4 *4 (-361 *3)))) (-2252 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-371 *4 *5)) (-4 *5 (-361 *4)))))
+((-2831 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1084 |#2|)) (|:| |pol2| (-1084 |#2|)) (|:| |prim| (-1084 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-584 (-1084 |#2|))) (|:| |prim| (-1084 |#2|))) (-584 |#2|)) 65 T ELT)))
+(((-372 |#1| |#2|) (-10 -7 (-15 -2831 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-584 (-1084 |#2|))) (|:| |prim| (-1084 |#2|))) (-584 |#2|))) (IF (|has| |#2| (-27)) (-15 -2831 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1084 |#2|)) (|:| |pol2| (-1084 |#2|)) (|:| |prim| (-1084 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-495) (-120)) (-361 |#1|)) (T -372))
+((-2831 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-495) (-120))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1084 *3)) (|:| |pol2| (-1084 *3)) (|:| |prim| (-1084 *3)))) (-5 *1 (-372 *4 *3)) (-4 *3 (-27)) (-4 *3 (-361 *4)))) (-2831 (*1 *2 *3) (-12 (-5 *3 (-584 *5)) (-4 *5 (-361 *4)) (-4 *4 (-13 (-495) (-120))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-584 (-1084 *5))) (|:| |prim| (-1084 *5)))) (-5 *1 (-372 *4 *5)))))
+((-1809 (((-1184)) 18 T ELT)) (-1808 (((-1084 (-347 (-484))) |#2| (-551 |#2|)) 40 T ELT) (((-347 (-484)) |#2|) 27 T ELT)))
+(((-373 |#1| |#2|) (-10 -7 (-15 -1808 ((-347 (-484)) |#2|)) (-15 -1808 ((-1084 (-347 (-484))) |#2| (-551 |#2|))) (-15 -1809 ((-1184)))) (-13 (-495) (-951 (-484))) (-361 |#1|)) (T -373))
+((-1809 (*1 *2) (-12 (-4 *3 (-13 (-495) (-951 (-484)))) (-5 *2 (-1184)) (-5 *1 (-373 *3 *4)) (-4 *4 (-361 *3)))) (-1808 (*1 *2 *3 *4) (-12 (-5 *4 (-551 *3)) (-4 *3 (-361 *5)) (-4 *5 (-13 (-495) (-951 (-484)))) (-5 *2 (-1084 (-347 (-484)))) (-5 *1 (-373 *5 *3)))) (-1808 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *2 (-347 (-484))) (-5 *1 (-373 *4 *3)) (-4 *3 (-361 *4)))))
+((-3641 (((-85) $) 33 T ELT)) (-1810 (((-85) $) 35 T ELT)) (-3256 (((-85) $) 36 T ELT)) (-1812 (((-85) $) 39 T ELT)) (-1814 (((-85) $) 34 T ELT)) (-1813 (((-85) $) 38 T ELT)) (-3942 (((-773) $) 20 T ELT) (($ (-1072)) 32 T ELT) (($ (-1089)) 30 T ELT) (((-1089) $) 24 T ELT) (((-1015) $) 23 T ELT)) (-1811 (((-85) $) 37 T ELT)) (-3054 (((-85) $ $) 17 T ELT)))
+(((-374) (-13 (-553 (-773)) (-10 -8 (-15 -3942 ($ (-1072))) (-15 -3942 ($ (-1089))) (-15 -3942 ((-1089) $)) (-15 -3942 ((-1015) $)) (-15 -3641 ((-85) $)) (-15 -1814 ((-85) $)) (-15 -3256 ((-85) $)) (-15 -1813 ((-85) $)) (-15 -1812 ((-85) $)) (-15 -1811 ((-85) $)) (-15 -1810 ((-85) $)) (-15 -3054 ((-85) $ $))))) (T -374))
+((-3942 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-374)))) (-3942 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-374)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-374)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-374)))) (-3641 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))) (-1814 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))) (-3256 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))) (-1813 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))) (-1812 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))) (-1811 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))) (-1810 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))) (-3054 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))))
+((-1816 (((-3 (-345 (-1084 (-347 (-484)))) #1="failed") |#3|) 71 T ELT)) (-1815 (((-345 |#3|) |#3|) 34 T ELT)) (-1818 (((-3 (-345 (-1084 (-48))) #1#) |#3|) 29 (|has| |#2| (-951 (-48))) ELT)) (-1817 (((-3 (|:| |overq| (-1084 (-347 (-484)))) (|:| |overan| (-1084 (-48))) (|:| -2637 (-85))) |#3|) 37 T ELT)))
+(((-375 |#1| |#2| |#3|) (-10 -7 (-15 -1815 ((-345 |#3|) |#3|)) (-15 -1816 ((-3 (-345 (-1084 (-347 (-484)))) #1="failed") |#3|)) (-15 -1817 ((-3 (|:| |overq| (-1084 (-347 (-484)))) (|:| |overan| (-1084 (-48))) (|:| -2637 (-85))) |#3|)) (IF (|has| |#2| (-951 (-48))) (-15 -1818 ((-3 (-345 (-1084 (-48))) #1#) |#3|)) |%noBranch|)) (-13 (-495) (-951 (-484))) (-361 |#1|) (-1154 |#2|)) (T -375))
+((-1818 (*1 *2 *3) (|partial| -12 (-4 *5 (-951 (-48))) (-4 *4 (-13 (-495) (-951 (-484)))) (-4 *5 (-361 *4)) (-5 *2 (-345 (-1084 (-48)))) (-5 *1 (-375 *4 *5 *3)) (-4 *3 (-1154 *5)))) (-1817 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-951 (-484)))) (-4 *5 (-361 *4)) (-5 *2 (-3 (|:| |overq| (-1084 (-347 (-484)))) (|:| |overan| (-1084 (-48))) (|:| -2637 (-85)))) (-5 *1 (-375 *4 *5 *3)) (-4 *3 (-1154 *5)))) (-1816 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-495) (-951 (-484)))) (-4 *5 (-361 *4)) (-5 *2 (-345 (-1084 (-347 (-484))))) (-5 *1 (-375 *4 *5 *3)) (-4 *3 (-1154 *5)))) (-1815 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-951 (-484)))) (-4 *5 (-361 *4)) (-5 *2 (-345 *3)) (-5 *1 (-375 *4 *5 *3)) (-4 *3 (-1154 *5)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-1828 (((-3 (|:| |fst| (-374)) (|:| -3906 #1="void")) $) 11 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1825 (($) 35 T ELT)) (-1822 (($) 41 T ELT)) (-1823 (($) 37 T ELT)) (-1820 (($) 39 T ELT)) (-1824 (($) 36 T ELT)) (-1821 (($) 38 T ELT)) (-1819 (($) 40 T ELT)) (-1826 (((-85) $) 8 T ELT)) (-1827 (((-584 (-858 (-484))) $) 19 T ELT)) (-3526 (($ (-3 (|:| |fst| (-374)) (|:| -3906 #1#)) (-584 (-1089)) (-85)) 29 T ELT) (($ (-3 (|:| |fst| (-374)) (|:| -3906 #1#)) (-584 (-858 (-484))) (-85)) 30 T ELT)) (-3942 (((-773) $) 24 T ELT) (($ (-374)) 32 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-376) (-13 (-1013) (-10 -8 (-15 -3942 ($ (-374))) (-15 -1828 ((-3 (|:| |fst| (-374)) (|:| -3906 #1="void")) $)) (-15 -1827 ((-584 (-858 (-484))) $)) (-15 -1826 ((-85) $)) (-15 -3526 ($ (-3 (|:| |fst| (-374)) (|:| -3906 #1#)) (-584 (-1089)) (-85))) (-15 -3526 ($ (-3 (|:| |fst| (-374)) (|:| -3906 #1#)) (-584 (-858 (-484))) (-85))) (-15 -1825 ($)) (-15 -1824 ($)) (-15 -1823 ($)) (-15 -1822 ($)) (-15 -1821 ($)) (-15 -1820 ($)) (-15 -1819 ($))))) (T -376))
+((-3942 (*1 *1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-376)))) (-1828 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-374)) (|:| -3906 #1="void"))) (-5 *1 (-376)))) (-1827 (*1 *2 *1) (-12 (-5 *2 (-584 (-858 (-484)))) (-5 *1 (-376)))) (-1826 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376)))) (-3526 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-374)) (|:| -3906 #1#))) (-5 *3 (-584 (-1089))) (-5 *4 (-85)) (-5 *1 (-376)))) (-3526 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-374)) (|:| -3906 #1#))) (-5 *3 (-584 (-858 (-484)))) (-5 *4 (-85)) (-5 *1 (-376)))) (-1825 (*1 *1) (-5 *1 (-376))) (-1824 (*1 *1) (-5 *1 (-376))) (-1823 (*1 *1) (-5 *1 (-376))) (-1822 (*1 *1) (-5 *1 (-376))) (-1821 (*1 *1) (-5 *1 (-376))) (-1820 (*1 *1) (-5 *1 (-376))) (-1819 (*1 *1) (-5 *1 (-376))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3538 (((-1089) $) 8 T ELT)) (-3239 (((-1072) $) 17 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 11 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 14 T ELT)))
+(((-377 |#1|) (-13 (-1013) (-10 -8 (-15 -3538 ((-1089) $)))) (-1089)) (T -377))
+((-3538 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-377 *3)) (-14 *3 *2))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3316 (((-1028) $) 7 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 9 T ELT)))
+(((-378) (-13 (-1013) (-10 -8 (-15 -3316 ((-1028) $))))) (T -378))
+((-3316 (*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-378)))))
+((-1834 (((-85)) 18 T ELT)) (-1835 (((-85) (-85)) 19 T ELT)) (-1836 (((-85)) 14 T ELT)) (-1837 (((-85) (-85)) 15 T ELT)) (-1839 (((-85)) 16 T ELT)) (-1840 (((-85) (-85)) 17 T ELT)) (-1831 (((-831) (-831)) 22 T ELT) (((-831)) 21 T ELT)) (-1832 (((-695) (-584 (-2 (|:| -3728 |#1|) (|:| -3944 (-484))))) 52 T ELT)) (-1830 (((-831) (-831)) 24 T ELT) (((-831)) 23 T ELT)) (-1833 (((-2 (|:| -2576 (-484)) (|:| -1777 (-584 |#1|))) |#1|) 94 T ELT)) (-1829 (((-345 |#1|) (-2 (|:| |contp| (-484)) (|:| -1777 (-584 (-2 (|:| |irr| |#1|) (|:| -2393 (-484))))))) 176 T ELT)) (-3730 (((-2 (|:| |contp| (-484)) (|:| -1777 (-584 (-2 (|:| |irr| |#1|) (|:| -2393 (-484)))))) |#1| (-85)) 209 T ELT)) (-3729 (((-345 |#1|) |#1| (-695) (-695)) 224 T ELT) (((-345 |#1|) |#1| (-584 (-695)) (-695)) 221 T ELT) (((-345 |#1|) |#1| (-584 (-695))) 223 T ELT) (((-345 |#1|) |#1| (-695)) 222 T ELT) (((-345 |#1|) |#1|) 220 T ELT)) (-1851 (((-3 |#1| #1="failed") (-831) |#1| (-584 (-695)) (-695) (-85)) 226 T ELT) (((-3 |#1| #1#) (-831) |#1| (-584 (-695)) (-695)) 227 T ELT) (((-3 |#1| #1#) (-831) |#1| (-584 (-695))) 229 T ELT) (((-3 |#1| #1#) (-831) |#1| (-695)) 228 T ELT) (((-3 |#1| #1#) (-831) |#1|) 230 T ELT)) (-3728 (((-345 |#1|) |#1| (-695) (-695)) 219 T ELT) (((-345 |#1|) |#1| (-584 (-695)) (-695)) 215 T ELT) (((-345 |#1|) |#1| (-584 (-695))) 217 T ELT) (((-345 |#1|) |#1| (-695)) 216 T ELT) (((-345 |#1|) |#1|) 214 T ELT)) (-1838 (((-85) |#1|) 43 T ELT)) (-1850 (((-676 (-695)) (-584 (-2 (|:| -3728 |#1|) (|:| -3944 (-484))))) 99 T ELT)) (-1841 (((-2 (|:| |contp| (-484)) (|:| -1777 (-584 (-2 (|:| |irr| |#1|) (|:| -2393 (-484)))))) |#1| (-85) (-1009 (-695)) (-695)) 213 T ELT)))
+(((-379 |#1|) (-10 -7 (-15 -1829 ((-345 |#1|) (-2 (|:| |contp| (-484)) (|:| -1777 (-584 (-2 (|:| |irr| |#1|) (|:| -2393 (-484)))))))) (-15 -1850 ((-676 (-695)) (-584 (-2 (|:| -3728 |#1|) (|:| -3944 (-484)))))) (-15 -1830 ((-831))) (-15 -1830 ((-831) (-831))) (-15 -1831 ((-831))) (-15 -1831 ((-831) (-831))) (-15 -1832 ((-695) (-584 (-2 (|:| -3728 |#1|) (|:| -3944 (-484)))))) (-15 -1833 ((-2 (|:| -2576 (-484)) (|:| -1777 (-584 |#1|))) |#1|)) (-15 -1834 ((-85))) (-15 -1835 ((-85) (-85))) (-15 -1836 ((-85))) (-15 -1837 ((-85) (-85))) (-15 -1838 ((-85) |#1|)) (-15 -1839 ((-85))) (-15 -1840 ((-85) (-85))) (-15 -3728 ((-345 |#1|) |#1|)) (-15 -3728 ((-345 |#1|) |#1| (-695))) (-15 -3728 ((-345 |#1|) |#1| (-584 (-695)))) (-15 -3728 ((-345 |#1|) |#1| (-584 (-695)) (-695))) (-15 -3728 ((-345 |#1|) |#1| (-695) (-695))) (-15 -3729 ((-345 |#1|) |#1|)) (-15 -3729 ((-345 |#1|) |#1| (-695))) (-15 -3729 ((-345 |#1|) |#1| (-584 (-695)))) (-15 -3729 ((-345 |#1|) |#1| (-584 (-695)) (-695))) (-15 -3729 ((-345 |#1|) |#1| (-695) (-695))) (-15 -1851 ((-3 |#1| #1="failed") (-831) |#1|)) (-15 -1851 ((-3 |#1| #1#) (-831) |#1| (-695))) (-15 -1851 ((-3 |#1| #1#) (-831) |#1| (-584 (-695)))) (-15 -1851 ((-3 |#1| #1#) (-831) |#1| (-584 (-695)) (-695))) (-15 -1851 ((-3 |#1| #1#) (-831) |#1| (-584 (-695)) (-695) (-85))) (-15 -3730 ((-2 (|:| |contp| (-484)) (|:| -1777 (-584 (-2 (|:| |irr| |#1|) (|:| -2393 (-484)))))) |#1| (-85))) (-15 -1841 ((-2 (|:| |contp| (-484)) (|:| -1777 (-584 (-2 (|:| |irr| |#1|) (|:| -2393 (-484)))))) |#1| (-85) (-1009 (-695)) (-695)))) (-1154 (-484))) (T -379))
+((-1841 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-85)) (-5 *5 (-1009 (-695))) (-5 *6 (-695)) (-5 *2 (-2 (|:| |contp| (-484)) (|:| -1777 (-584 (-2 (|:| |irr| *3) (|:| -2393 (-484))))))) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-3730 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-484)) (|:| -1777 (-584 (-2 (|:| |irr| *3) (|:| -2393 (-484))))))) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-1851 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *6 (-85)) (-5 *1 (-379 *2)) (-4 *2 (-1154 (-484))))) (-1851 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *1 (-379 *2)) (-4 *2 (-1154 (-484))))) (-1851 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *1 (-379 *2)) (-4 *2 (-1154 (-484))))) (-1851 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-831)) (-5 *4 (-695)) (-5 *1 (-379 *2)) (-4 *2 (-1154 (-484))))) (-1851 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-831)) (-5 *1 (-379 *2)) (-4 *2 (-1154 (-484))))) (-3729 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-695)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-3729 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-3729 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-695))) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-3729 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-3729 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-3728 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-695)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-3728 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-3728 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-695))) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-3728 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-3728 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-1840 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-1839 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-1838 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-1837 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-1836 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-1835 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-1834 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-1833 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2576 (-484)) (|:| -1777 (-584 *3)))) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-1832 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3728 *4) (|:| -3944 (-484))))) (-4 *4 (-1154 (-484))) (-5 *2 (-695)) (-5 *1 (-379 *4)))) (-1831 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-1831 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-1830 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-1830 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))) (-1850 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3728 *4) (|:| -3944 (-484))))) (-4 *4 (-1154 (-484))) (-5 *2 (-676 (-695))) (-5 *1 (-379 *4)))) (-1829 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-484)) (|:| -1777 (-584 (-2 (|:| |irr| *4) (|:| -2393 (-484))))))) (-4 *4 (-1154 (-484))) (-5 *2 (-345 *4)) (-5 *1 (-379 *4)))))
+((-1845 (((-484) |#2|) 52 T ELT) (((-484) |#2| (-695)) 51 T ELT)) (-1844 (((-484) |#2|) 64 T ELT)) (-1846 ((|#3| |#2|) 26 T ELT)) (-3129 ((|#3| |#2| (-831)) 15 T ELT)) (-3829 ((|#3| |#2|) 16 T ELT)) (-1847 ((|#3| |#2|) 9 T ELT)) (-2601 ((|#3| |#2|) 10 T ELT)) (-1843 ((|#3| |#2| (-831)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-1842 (((-484) |#2|) 66 T ELT)))
+(((-380 |#1| |#2| |#3|) (-10 -7 (-15 -1842 ((-484) |#2|)) (-15 -1843 (|#3| |#2|)) (-15 -1843 (|#3| |#2| (-831))) (-15 -1844 ((-484) |#2|)) (-15 -1845 ((-484) |#2| (-695))) (-15 -1845 ((-484) |#2|)) (-15 -3129 (|#3| |#2| (-831))) (-15 -1846 (|#3| |#2|)) (-15 -1847 (|#3| |#2|)) (-15 -2601 (|#3| |#2|)) (-15 -3829 (|#3| |#2|))) (-962) (-1154 |#1|) (-13 (-344) (-951 |#1|) (-311) (-1114) (-239))) (T -380))
+((-3829 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-344) (-951 *4) (-311) (-1114) (-239))) (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1154 *4)))) (-2601 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-344) (-951 *4) (-311) (-1114) (-239))) (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1154 *4)))) (-1847 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-344) (-951 *4) (-311) (-1114) (-239))) (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1154 *4)))) (-1846 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-344) (-951 *4) (-311) (-1114) (-239))) (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1154 *4)))) (-3129 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-4 *5 (-962)) (-4 *2 (-13 (-344) (-951 *5) (-311) (-1114) (-239))) (-5 *1 (-380 *5 *3 *2)) (-4 *3 (-1154 *5)))) (-1845 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-484)) (-5 *1 (-380 *4 *3 *5)) (-4 *3 (-1154 *4)) (-4 *5 (-13 (-344) (-951 *4) (-311) (-1114) (-239))))) (-1845 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-962)) (-5 *2 (-484)) (-5 *1 (-380 *5 *3 *6)) (-4 *3 (-1154 *5)) (-4 *6 (-13 (-344) (-951 *5) (-311) (-1114) (-239))))) (-1844 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-484)) (-5 *1 (-380 *4 *3 *5)) (-4 *3 (-1154 *4)) (-4 *5 (-13 (-344) (-951 *4) (-311) (-1114) (-239))))) (-1843 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-4 *5 (-962)) (-4 *2 (-13 (-344) (-951 *5) (-311) (-1114) (-239))) (-5 *1 (-380 *5 *3 *2)) (-4 *3 (-1154 *5)))) (-1843 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-344) (-951 *4) (-311) (-1114) (-239))) (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1154 *4)))) (-1842 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-484)) (-5 *1 (-380 *4 *3 *5)) (-4 *3 (-1154 *4)) (-4 *5 (-13 (-344) (-951 *4) (-311) (-1114) (-239))))))
+((-3350 ((|#2| (-1178 |#1|)) 42 T ELT)) (-1849 ((|#2| |#2| |#1|) 58 T ELT)) (-1848 ((|#2| |#2| |#1|) 49 T ELT)) (-2296 ((|#2| |#2|) 44 T ELT)) (-3170 (((-85) |#2|) 32 T ELT)) (-1852 (((-584 |#2|) (-831) (-345 |#2|)) 21 T ELT)) (-1851 ((|#2| (-831) (-345 |#2|)) 25 T ELT)) (-1850 (((-676 (-695)) (-345 |#2|)) 29 T ELT)))
+(((-381 |#1| |#2|) (-10 -7 (-15 -3170 ((-85) |#2|)) (-15 -3350 (|#2| (-1178 |#1|))) (-15 -2296 (|#2| |#2|)) (-15 -1848 (|#2| |#2| |#1|)) (-15 -1849 (|#2| |#2| |#1|)) (-15 -1850 ((-676 (-695)) (-345 |#2|))) (-15 -1851 (|#2| (-831) (-345 |#2|))) (-15 -1852 ((-584 |#2|) (-831) (-345 |#2|)))) (-962) (-1154 |#1|)) (T -381))
+((-1852 (*1 *2 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-345 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-962)) (-5 *2 (-584 *6)) (-5 *1 (-381 *5 *6)))) (-1851 (*1 *2 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-345 *2)) (-4 *2 (-1154 *5)) (-5 *1 (-381 *5 *2)) (-4 *5 (-962)))) (-1850 (*1 *2 *3) (-12 (-5 *3 (-345 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-962)) (-5 *2 (-676 (-695))) (-5 *1 (-381 *4 *5)))) (-1849 (*1 *2 *2 *3) (-12 (-4 *3 (-962)) (-5 *1 (-381 *3 *2)) (-4 *2 (-1154 *3)))) (-1848 (*1 *2 *2 *3) (-12 (-4 *3 (-962)) (-5 *1 (-381 *3 *2)) (-4 *2 (-1154 *3)))) (-2296 (*1 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-381 *3 *2)) (-4 *2 (-1154 *3)))) (-3350 (*1 *2 *3) (-12 (-5 *3 (-1178 *4)) (-4 *4 (-962)) (-4 *2 (-1154 *4)) (-5 *1 (-381 *4 *2)))) (-3170 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-85)) (-5 *1 (-381 *4 *3)) (-4 *3 (-1154 *4)))))
+((-1855 (((-695)) 59 T ELT)) (-1859 (((-695)) 29 (|has| |#1| (-344)) ELT) (((-695) (-695)) 28 (|has| |#1| (-344)) ELT)) (-1858 (((-484) |#1|) 25 (|has| |#1| (-344)) ELT)) (-1857 (((-484) |#1|) 27 (|has| |#1| (-344)) ELT)) (-1854 (((-695)) 58 T ELT) (((-695) (-695)) 57 T ELT)) (-1853 ((|#1| (-695) (-484)) 37 T ELT)) (-1856 (((-1184)) 61 T ELT)))
+(((-382 |#1|) (-10 -7 (-15 -1853 (|#1| (-695) (-484))) (-15 -1854 ((-695) (-695))) (-15 -1854 ((-695))) (-15 -1855 ((-695))) (-15 -1856 ((-1184))) (IF (|has| |#1| (-344)) (PROGN (-15 -1857 ((-484) |#1|)) (-15 -1858 ((-484) |#1|)) (-15 -1859 ((-695) (-695))) (-15 -1859 ((-695)))) |%noBranch|)) (-962)) (T -382))
+((-1859 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-382 *3)) (-4 *3 (-344)) (-4 *3 (-962)))) (-1859 (*1 *2 *2) (-12 (-5 *2 (-695)) (-5 *1 (-382 *3)) (-4 *3 (-344)) (-4 *3 (-962)))) (-1858 (*1 *2 *3) (-12 (-5 *2 (-484)) (-5 *1 (-382 *3)) (-4 *3 (-344)) (-4 *3 (-962)))) (-1857 (*1 *2 *3) (-12 (-5 *2 (-484)) (-5 *1 (-382 *3)) (-4 *3 (-344)) (-4 *3 (-962)))) (-1856 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-382 *3)) (-4 *3 (-962)))) (-1855 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-382 *3)) (-4 *3 (-962)))) (-1854 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-382 *3)) (-4 *3 (-962)))) (-1854 (*1 *2 *2) (-12 (-5 *2 (-695)) (-5 *1 (-382 *3)) (-4 *3 (-962)))) (-1853 (*1 *2 *3 *4) (-12 (-5 *3 (-695)) (-5 *4 (-484)) (-5 *1 (-382 *2)) (-4 *2 (-962)))))
+((-1860 (((-584 (-484)) (-484)) 76 T ELT)) (-3719 (((-85) (-142 (-484))) 84 T ELT)) (-3728 (((-345 (-142 (-484))) (-142 (-484))) 75 T ELT)))
+(((-383) (-10 -7 (-15 -3728 ((-345 (-142 (-484))) (-142 (-484)))) (-15 -1860 ((-584 (-484)) (-484))) (-15 -3719 ((-85) (-142 (-484)))))) (T -383))
+((-3719 (*1 *2 *3) (-12 (-5 *3 (-142 (-484))) (-5 *2 (-85)) (-5 *1 (-383)))) (-1860 (*1 *2 *3) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-383)) (-5 *3 (-484)))) (-3728 (*1 *2 *3) (-12 (-5 *2 (-345 (-142 (-484)))) (-5 *1 (-383)) (-5 *3 (-142 (-484))))))
+((-2944 ((|#4| |#4| (-584 |#4|)) 20 (|has| |#1| (-311)) ELT)) (-2249 (((-584 |#4|) (-584 |#4|) (-1072) (-1072)) 46 T ELT) (((-584 |#4|) (-584 |#4|) (-1072)) 45 T ELT) (((-584 |#4|) (-584 |#4|)) 34 T ELT)))
+(((-384 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2249 ((-584 |#4|) (-584 |#4|))) (-15 -2249 ((-584 |#4|) (-584 |#4|) (-1072))) (-15 -2249 ((-584 |#4|) (-584 |#4|) (-1072) (-1072))) (IF (|has| |#1| (-311)) (-15 -2944 (|#4| |#4| (-584 |#4|))) |%noBranch|)) (-389) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -384))
+((-2944 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-311)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-384 *4 *5 *6 *2)))) (-2249 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-1072)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-384 *4 *5 *6 *7)))) (-2249 (*1 *2 *2 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-1072)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-384 *4 *5 *6 *7)))) (-2249 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-384 *3 *4 *5 *6)))))
+((-1861 ((|#4| |#4| (-584 |#4|)) 82 T ELT)) (-1862 (((-584 |#4|) (-584 |#4|) (-1072) (-1072)) 22 T ELT) (((-584 |#4|) (-584 |#4|) (-1072)) 21 T ELT) (((-584 |#4|) (-584 |#4|)) 13 T ELT)))
+(((-385 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1861 (|#4| |#4| (-584 |#4|))) (-15 -1862 ((-584 |#4|) (-584 |#4|))) (-15 -1862 ((-584 |#4|) (-584 |#4|) (-1072))) (-15 -1862 ((-584 |#4|) (-584 |#4|) (-1072) (-1072)))) (-257) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -385))
+((-1862 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-1072)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-257)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-385 *4 *5 *6 *7)))) (-1862 (*1 *2 *2 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-1072)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-257)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-385 *4 *5 *6 *7)))) (-1862 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-257)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-385 *3 *4 *5 *6)))) (-1861 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-257)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-385 *4 *5 *6 *2)))))
+((-1864 (((-584 (-584 |#4|)) (-584 |#4|) (-85)) 90 T ELT) (((-584 (-584 |#4|)) (-584 |#4|)) 89 T ELT) (((-584 (-584 |#4|)) (-584 |#4|) (-584 |#4|) (-85)) 83 T ELT) (((-584 (-584 |#4|)) (-584 |#4|) (-584 |#4|)) 84 T ELT)) (-1863 (((-584 (-584 |#4|)) (-584 |#4|) (-85)) 56 T ELT) (((-584 (-584 |#4|)) (-584 |#4|)) 78 T ELT)))
+(((-386 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1863 ((-584 (-584 |#4|)) (-584 |#4|))) (-15 -1863 ((-584 (-584 |#4|)) (-584 |#4|) (-85))) (-15 -1864 ((-584 (-584 |#4|)) (-584 |#4|) (-584 |#4|))) (-15 -1864 ((-584 (-584 |#4|)) (-584 |#4|) (-584 |#4|) (-85))) (-15 -1864 ((-584 (-584 |#4|)) (-584 |#4|))) (-15 -1864 ((-584 (-584 |#4|)) (-584 |#4|) (-85)))) (-13 (-257) (-120)) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -386))
+((-1864 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-386 *5 *6 *7 *8)) (-5 *3 (-584 *8)))) (-1864 (*1 *2 *3) (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-386 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-1864 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-386 *5 *6 *7 *8)) (-5 *3 (-584 *8)))) (-1864 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-386 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-386 *5 *6 *7 *8)) (-5 *3 (-584 *8)))) (-1863 (*1 *2 *3) (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-386 *4 *5 *6 *7)) (-5 *3 (-584 *7)))))
+((-1888 (((-695) |#4|) 12 T ELT)) (-1876 (((-584 (-2 (|:| |totdeg| (-695)) (|:| -2002 |#4|))) |#4| (-695) (-584 (-2 (|:| |totdeg| (-695)) (|:| -2002 |#4|)))) 39 T ELT)) (-1878 (((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-1877 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-1866 ((|#4| |#4| (-584 |#4|)) 54 T ELT)) (-1874 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-584 |#4|)) 96 T ELT)) (-1881 (((-1184) |#4|) 59 T ELT)) (-1884 (((-1184) (-584 |#4|)) 69 T ELT)) (-1882 (((-484) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-484) (-484) (-484)) 66 T ELT)) (-1885 (((-1184) (-484)) 110 T ELT)) (-1879 (((-584 |#4|) (-584 |#4|)) 104 T ELT)) (-1887 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-695)) (|:| -2002 |#4|)) |#4| (-695)) 31 T ELT)) (-1880 (((-484) |#4|) 109 T ELT)) (-1875 ((|#4| |#4|) 37 T ELT)) (-1867 (((-584 |#4|) (-584 |#4|) (-484) (-484)) 74 T ELT)) (-1883 (((-484) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-484) (-484) (-484) (-484)) 123 T ELT)) (-1886 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-1868 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-1873 (((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-1872 (((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-1869 (((-85) |#2| |#2|) 75 T ELT)) (-1871 (((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-1870 (((-85) |#2| |#2| |#2| |#2|) 80 T ELT)) (-1865 ((|#4| |#4| (-584 |#4|)) 97 T ELT)))
+(((-387 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1865 (|#4| |#4| (-584 |#4|))) (-15 -1866 (|#4| |#4| (-584 |#4|))) (-15 -1867 ((-584 |#4|) (-584 |#4|) (-484) (-484))) (-15 -1868 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1869 ((-85) |#2| |#2|)) (-15 -1870 ((-85) |#2| |#2| |#2| |#2|)) (-15 -1871 ((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1872 ((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1873 ((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1874 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-584 |#4|))) (-15 -1875 (|#4| |#4|)) (-15 -1876 ((-584 (-2 (|:| |totdeg| (-695)) (|:| -2002 |#4|))) |#4| (-695) (-584 (-2 (|:| |totdeg| (-695)) (|:| -2002 |#4|))))) (-15 -1877 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1878 ((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1879 ((-584 |#4|) (-584 |#4|))) (-15 -1880 ((-484) |#4|)) (-15 -1881 ((-1184) |#4|)) (-15 -1882 ((-484) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-484) (-484) (-484))) (-15 -1883 ((-484) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-484) (-484) (-484) (-484))) (-15 -1884 ((-1184) (-584 |#4|))) (-15 -1885 ((-1184) (-484))) (-15 -1886 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1887 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-695)) (|:| -2002 |#4|)) |#4| (-695))) (-15 -1888 ((-695) |#4|))) (-389) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -387))
+((-1888 (*1 *2 *3) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-695)) (-5 *1 (-387 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1887 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-695)) (|:| -2002 *4))) (-5 *5 (-695)) (-4 *4 (-862 *6 *7 *8)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-387 *6 *7 *8 *4)))) (-1886 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-718)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-389)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-387 *4 *5 *6 *7)))) (-1885 (*1 *2 *3) (-12 (-5 *3 (-484)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1184)) (-5 *1 (-387 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1184)) (-5 *1 (-387 *4 *5 *6 *7)))) (-1883 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-695)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-718)) (-4 *4 (-862 *5 *6 *7)) (-4 *5 (-389)) (-4 *7 (-757)) (-5 *1 (-387 *5 *6 *7 *4)))) (-1882 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-695)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-718)) (-4 *4 (-862 *5 *6 *7)) (-4 *5 (-389)) (-4 *7 (-757)) (-5 *1 (-387 *5 *6 *7 *4)))) (-1881 (*1 *2 *3) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1184)) (-5 *1 (-387 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1880 (*1 *2 *3) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-484)) (-5 *1 (-387 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1879 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-387 *3 *4 *5 *6)))) (-1878 (*1 *2 *2 *2) (-12 (-5 *2 (-584 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-695)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-718)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-389)) (-4 *5 (-757)) (-5 *1 (-387 *3 *4 *5 *6)))) (-1877 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-718)) (-4 *2 (-862 *4 *5 *6)) (-5 *1 (-387 *4 *5 *6 *2)) (-4 *4 (-389)) (-4 *6 (-757)))) (-1876 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-584 (-2 (|:| |totdeg| (-695)) (|:| -2002 *3)))) (-5 *4 (-695)) (-4 *3 (-862 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-387 *5 *6 *7 *3)))) (-1875 (*1 *2 *2) (-12 (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-387 *3 *4 *5 *2)) (-4 *2 (-862 *3 *4 *5)))) (-1874 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-862 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-387 *5 *6 *7 *3)))) (-1873 (*1 *2 *3 *2) (-12 (-5 *2 (-584 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-695)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-718)) (-4 *6 (-862 *4 *3 *5)) (-4 *4 (-389)) (-4 *5 (-757)) (-5 *1 (-387 *4 *3 *5 *6)))) (-1872 (*1 *2 *2) (-12 (-5 *2 (-584 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-695)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-718)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-389)) (-4 *5 (-757)) (-5 *1 (-387 *3 *4 *5 *6)))) (-1871 (*1 *2 *3 *2) (-12 (-5 *2 (-584 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-718)) (-4 *3 (-862 *4 *5 *6)) (-4 *4 (-389)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *3)))) (-1870 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-389)) (-4 *3 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-387 *4 *3 *5 *6)) (-4 *6 (-862 *4 *3 *5)))) (-1869 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *3 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-387 *4 *3 *5 *6)) (-4 *6 (-862 *4 *3 *5)))) (-1868 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-718)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-389)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-387 *4 *5 *6 *7)))) (-1867 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-484)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *7)))) (-1866 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *2)))) (-1865 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *2)))))
+((-1889 (($ $ $) 14 T ELT) (($ (-584 $)) 21 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 45 T ELT)) (-3141 (($ $ $) NIL T ELT) (($ (-584 $)) 22 T ELT)))
+(((-388 |#1|) (-10 -7 (-15 -2706 ((-1084 |#1|) (-1084 |#1|) (-1084 |#1|))) (-15 -1889 (|#1| (-584 |#1|))) (-15 -1889 (|#1| |#1| |#1|)) (-15 -3141 (|#1| (-584 |#1|))) (-15 -3141 (|#1| |#1| |#1|))) (-389)) (T -388))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 53 T ELT)) (-2061 (($ $) 52 T ELT)) (-2059 (((-85) $) 50 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3141 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3462 (((-3 $ "failed") $ $) 54 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2060 (((-85) $ $) 51 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT)))
(((-389) (-113)) (T -389))
-((-3139 (*1 *1 *1 *1) (-4 *1 (-389))) (-3139 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-389)))) (-1888 (*1 *1 *1 *1) (-4 *1 (-389))) (-1888 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-389)))) (-2704 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-389)))))
-(-13 (-494) (-10 -8 (-15 -3139 ($ $ $)) (-15 -3139 ($ (-583 $))) (-15 -1888 ($ $ $)) (-15 -1888 ($ (-583 $))) (-15 -2704 ((-1083 $) (-1083 $) (-1083 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-483)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-245) . T) ((-494) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1769 (((-3 $ #1="failed")) NIL (|has| (-347 (-857 |#1|)) (-494)) ELT)) (-1309 (((-3 $ #1#) $ $) NIL T ELT)) (-3218 (((-1177 (-630 (-347 (-857 |#1|)))) (-1177 $)) NIL T ELT) (((-1177 (-630 (-347 (-857 |#1|))))) NIL T ELT)) (-1726 (((-1177 $)) NIL T ELT)) (-3718 (($) NIL T CONST)) (-1903 (((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) #1#)) NIL T ELT)) (-1700 (((-3 $ #1#)) NIL (|has| (-347 (-857 |#1|)) (-494)) ELT)) (-1785 (((-630 (-347 (-857 |#1|))) (-1177 $)) NIL T ELT) (((-630 (-347 (-857 |#1|)))) NIL T ELT)) (-1724 (((-347 (-857 |#1|)) $) NIL T ELT)) (-1783 (((-630 (-347 (-857 |#1|))) $ (-1177 $)) NIL T ELT) (((-630 (-347 (-857 |#1|))) $) NIL T ELT)) (-2400 (((-3 $ #1#) $) NIL (|has| (-347 (-857 |#1|)) (-494)) ELT)) (-1897 (((-1083 (-857 (-347 (-857 |#1|))))) NIL (|has| (-347 (-857 |#1|)) (-311)) ELT) (((-1083 (-347 (-857 |#1|)))) 89 (|has| |#1| (-494)) ELT)) (-2403 (($ $ (-830)) NIL T ELT)) (-1722 (((-347 (-857 |#1|)) $) NIL T ELT)) (-1702 (((-1083 (-347 (-857 |#1|))) $) 87 (|has| (-347 (-857 |#1|)) (-494)) ELT)) (-1787 (((-347 (-857 |#1|)) (-1177 $)) NIL T ELT) (((-347 (-857 |#1|))) NIL T ELT)) (-1720 (((-1083 (-347 (-857 |#1|))) $) NIL T ELT)) (-1714 (((-85)) NIL T ELT)) (-1789 (($ (-1177 (-347 (-857 |#1|))) (-1177 $)) 111 T ELT) (($ (-1177 (-347 (-857 |#1|)))) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL (|has| (-347 (-857 |#1|)) (-494)) ELT)) (-3104 (((-830)) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-2429 (($ $ (-830)) NIL T ELT)) (-1707 (((-85)) NIL T ELT)) (-1705 (((-85)) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) #1#)) NIL T ELT)) (-1701 (((-3 $ #1#)) NIL (|has| (-347 (-857 |#1|)) (-494)) ELT)) (-1786 (((-630 (-347 (-857 |#1|))) (-1177 $)) NIL T ELT) (((-630 (-347 (-857 |#1|)))) NIL T ELT)) (-1725 (((-347 (-857 |#1|)) $) NIL T ELT)) (-1784 (((-630 (-347 (-857 |#1|))) $ (-1177 $)) NIL T ELT) (((-630 (-347 (-857 |#1|))) $) NIL T ELT)) (-2401 (((-3 $ #1#) $) NIL (|has| (-347 (-857 |#1|)) (-494)) ELT)) (-1901 (((-1083 (-857 (-347 (-857 |#1|))))) NIL (|has| (-347 (-857 |#1|)) (-311)) ELT) (((-1083 (-347 (-857 |#1|)))) 88 (|has| |#1| (-494)) ELT)) (-2402 (($ $ (-830)) NIL T ELT)) (-1723 (((-347 (-857 |#1|)) $) NIL T ELT)) (-1703 (((-1083 (-347 (-857 |#1|))) $) 84 (|has| (-347 (-857 |#1|)) (-494)) ELT)) (-1788 (((-347 (-857 |#1|)) (-1177 $)) NIL T ELT) (((-347 (-857 |#1|))) NIL T ELT)) (-1721 (((-1083 (-347 (-857 |#1|))) $) NIL T ELT)) (-1715 (((-85)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1706 (((-85)) NIL T ELT)) (-1708 (((-85)) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1891 (((-347 (-857 |#1|)) $ $) 75 (|has| |#1| (-494)) ELT)) (-1895 (((-347 (-857 |#1|)) $) 74 (|has| |#1| (-494)) ELT)) (-1894 (((-347 (-857 |#1|)) $) 101 (|has| |#1| (-494)) ELT)) (-1896 (((-1083 (-347 (-857 |#1|))) $) 93 (|has| |#1| (-494)) ELT)) (-1890 (((-347 (-857 |#1|))) 76 (|has| |#1| (-494)) ELT)) (-1893 (((-347 (-857 |#1|)) $ $) 64 (|has| |#1| (-494)) ELT)) (-1899 (((-347 (-857 |#1|)) $) 63 (|has| |#1| (-494)) ELT)) (-1898 (((-347 (-857 |#1|)) $) 100 (|has| |#1| (-494)) ELT)) (-1900 (((-1083 (-347 (-857 |#1|))) $) 92 (|has| |#1| (-494)) ELT)) (-1892 (((-347 (-857 |#1|))) 73 (|has| |#1| (-494)) ELT)) (-1902 (($) 107 T ELT) (($ (-1088)) 115 T ELT) (($ (-1177 (-1088))) 114 T ELT) (($ (-1177 $)) 102 T ELT) (($ (-1088) (-1177 $)) 113 T ELT) (($ (-1177 (-1088)) (-1177 $)) 112 T ELT)) (-1713 (((-85)) NIL T ELT)) (-3794 (((-347 (-857 |#1|)) $ (-483)) NIL T ELT)) (-3219 (((-1177 (-347 (-857 |#1|))) $ (-1177 $)) 104 T ELT) (((-630 (-347 (-857 |#1|))) (-1177 $) (-1177 $)) NIL T ELT) (((-1177 (-347 (-857 |#1|))) $) 44 T ELT) (((-630 (-347 (-857 |#1|))) (-1177 $)) NIL T ELT)) (-3966 (((-1177 (-347 (-857 |#1|))) $) NIL T ELT) (($ (-1177 (-347 (-857 |#1|)))) 41 T ELT)) (-1889 (((-583 (-857 (-347 (-857 |#1|)))) (-1177 $)) NIL T ELT) (((-583 (-857 (-347 (-857 |#1|))))) NIL T ELT) (((-583 (-857 |#1|)) (-1177 $)) 105 (|has| |#1| (-494)) ELT) (((-583 (-857 |#1|))) 106 (|has| |#1| (-494)) ELT)) (-2431 (($ $ $) NIL T ELT)) (-1719 (((-85)) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-1177 (-347 (-857 |#1|)))) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) 66 T ELT)) (-1704 (((-583 (-1177 (-347 (-857 |#1|))))) NIL (|has| (-347 (-857 |#1|)) (-494)) ELT)) (-2432 (($ $ $ $) NIL T ELT)) (-1717 (((-85)) NIL T ELT)) (-2541 (($ (-630 (-347 (-857 |#1|))) $) NIL T ELT)) (-2430 (($ $ $) NIL T ELT)) (-1718 (((-85)) NIL T ELT)) (-1716 (((-85)) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-2656 (($) NIL T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) 103 T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-347 (-857 |#1|))) NIL T ELT) (($ (-347 (-857 |#1|)) $) NIL T ELT) (($ (-1054 |#2| (-347 (-857 |#1|))) $) NIL T ELT)))
-(((-390 |#1| |#2| |#3| |#4|) (-13 (-358 (-347 (-857 |#1|))) (-590 (-1054 |#2| (-347 (-857 |#1|)))) (-10 -8 (-15 -3940 ($ (-1177 (-347 (-857 |#1|))))) (-15 -1904 ((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) #1="failed"))) (-15 -1903 ((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) #1#))) (-15 -1902 ($)) (-15 -1902 ($ (-1088))) (-15 -1902 ($ (-1177 (-1088)))) (-15 -1902 ($ (-1177 $))) (-15 -1902 ($ (-1088) (-1177 $))) (-15 -1902 ($ (-1177 (-1088)) (-1177 $))) (IF (|has| |#1| (-494)) (PROGN (-15 -1901 ((-1083 (-347 (-857 |#1|))))) (-15 -1900 ((-1083 (-347 (-857 |#1|))) $)) (-15 -1899 ((-347 (-857 |#1|)) $)) (-15 -1898 ((-347 (-857 |#1|)) $)) (-15 -1897 ((-1083 (-347 (-857 |#1|))))) (-15 -1896 ((-1083 (-347 (-857 |#1|))) $)) (-15 -1895 ((-347 (-857 |#1|)) $)) (-15 -1894 ((-347 (-857 |#1|)) $)) (-15 -1893 ((-347 (-857 |#1|)) $ $)) (-15 -1892 ((-347 (-857 |#1|)))) (-15 -1891 ((-347 (-857 |#1|)) $ $)) (-15 -1890 ((-347 (-857 |#1|)))) (-15 -1889 ((-583 (-857 |#1|)) (-1177 $))) (-15 -1889 ((-583 (-857 |#1|))))) |%noBranch|))) (-146) (-830) (-583 (-1088)) (-1177 (-630 |#1|))) (T -390))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1177 (-347 (-857 *3)))) (-4 *3 (-146)) (-14 *6 (-1177 (-630 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))))) (-1904 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-390 *3 *4 *5 *6)) (|:| -2008 (-583 (-390 *3 *4 *5 *6))))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))) (-1903 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-390 *3 *4 *5 *6)) (|:| -2008 (-583 (-390 *3 *4 *5 *6))))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))) (-1902 (*1 *1) (-12 (-5 *1 (-390 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-830)) (-14 *4 (-583 (-1088))) (-14 *5 (-1177 (-630 *2))))) (-1902 (*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 *2)) (-14 *6 (-1177 (-630 *3))))) (-1902 (*1 *1 *2) (-12 (-5 *2 (-1177 (-1088))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))) (-1902 (*1 *1 *2) (-12 (-5 *2 (-1177 (-390 *3 *4 *5 *6))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))) (-1902 (*1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-1177 (-390 *4 *5 *6 *7))) (-5 *1 (-390 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-830)) (-14 *6 (-583 *2)) (-14 *7 (-1177 (-630 *4))))) (-1902 (*1 *1 *2 *3) (-12 (-5 *2 (-1177 (-1088))) (-5 *3 (-1177 (-390 *4 *5 *6 *7))) (-5 *1 (-390 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-830)) (-14 *6 (-583 (-1088))) (-14 *7 (-1177 (-630 *4))))) (-1901 (*1 *2) (-12 (-5 *2 (-1083 (-347 (-857 *3)))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))) (-1900 (*1 *2 *1) (-12 (-5 *2 (-1083 (-347 (-857 *3)))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))) (-1899 (*1 *2 *1) (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))) (-1898 (*1 *2 *1) (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))) (-1897 (*1 *2) (-12 (-5 *2 (-1083 (-347 (-857 *3)))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))) (-1896 (*1 *2 *1) (-12 (-5 *2 (-1083 (-347 (-857 *3)))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))) (-1895 (*1 *2 *1) (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))) (-1894 (*1 *2 *1) (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))) (-1893 (*1 *2 *1 *1) (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))) (-1892 (*1 *2) (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))) (-1891 (*1 *2 *1 *1) (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))) (-1890 (*1 *2) (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))) (-1889 (*1 *2 *3) (-12 (-5 *3 (-1177 (-390 *4 *5 *6 *7))) (-5 *2 (-583 (-857 *4))) (-5 *1 (-390 *4 *5 *6 *7)) (-4 *4 (-494)) (-4 *4 (-146)) (-14 *5 (-830)) (-14 *6 (-583 (-1088))) (-14 *7 (-1177 (-630 *4))))) (-1889 (*1 *2) (-12 (-5 *2 (-583 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 19 T ELT)) (-3077 (((-583 (-773 |#1|)) $) 88 T ELT)) (-3079 (((-1083 $) $ (-773 |#1|)) 53 T ELT) (((-1083 |#2|) $) 140 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#2| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#2| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#2| (-494)) ELT)) (-2815 (((-694) $) 28 T ELT) (((-694) $ (-583 (-773 |#1|))) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-3769 (($ $) NIL (|has| |#2| (-389)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#2| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#2| #1#) $) 51 T ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-3151 ((|#2| $) 49 T ELT) (((-347 (-483)) $) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) (((-483) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-773 |#1|) $) NIL T ELT)) (-3750 (($ $ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1934 (($ $ (-583 (-483))) 95 T ELT)) (-3953 (($ $) 81 T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#2| (-389)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-389)) ELT)) (-2814 (((-583 $) $) NIL T ELT)) (-3717 (((-85) $) NIL (|has| |#2| (-821)) ELT)) (-1621 (($ $ |#2| |#3| $) NIL T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-327))) (|has| |#2| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-483))) (|has| |#2| (-796 (-483)))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2416 (((-694) $) 66 T ELT)) (-3080 (($ (-1083 |#2|) (-773 |#1|)) 145 T ELT) (($ (-1083 $) (-773 |#1|)) 59 T ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) 69 T ELT)) (-2889 (($ |#2| |#3|) 36 T ELT) (($ $ (-773 |#1|) (-694)) 38 T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ (-773 |#1|)) NIL T ELT)) (-2816 ((|#3| $) NIL T ELT) (((-694) $ (-773 |#1|)) 57 T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) 64 T ELT)) (-1622 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-3952 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3078 (((-3 (-773 |#1|) #1#) $) 46 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL T ELT) (((-630 |#2|) (-1177 $)) NIL T ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#2| $) 48 T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2819 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2818 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-2 (|:| |var| (-773 |#1|)) (|:| -2397 (-694))) #1#) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1794 (((-85) $) 47 T ELT)) (-1793 ((|#2| $) 138 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-389)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) 151 (|has| |#2| (-389)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#2| (-821)) ELT)) (-3460 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-494)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-494)) ELT)) (-3762 (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-773 |#1|) |#2|) 102 T ELT) (($ $ (-583 (-773 |#1|)) (-583 |#2|)) 108 T ELT) (($ $ (-773 |#1|) $) 100 T ELT) (($ $ (-583 (-773 |#1|)) (-583 $)) 126 T ELT)) (-3751 (($ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3752 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) 60 T ELT)) (-3942 ((|#3| $) 80 T ELT) (((-694) $ (-773 |#1|)) 43 T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) 63 T ELT)) (-3966 (((-800 (-327)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-327)))) (|has| |#2| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-483)))) (|has| |#2| (-553 (-800 (-483))))) ELT) (((-472) $) NIL (-12 (|has| (-773 |#1|) (-553 (-472))) (|has| |#2| (-553 (-472)))) ELT)) (-2813 ((|#2| $) 147 (|has| |#2| (-389)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3940 (((-772) $) 175 T ELT) (($ (-483)) NIL T ELT) (($ |#2|) 101 T ELT) (($ (-773 |#1|)) 40 T ELT) (($ (-347 (-483))) NIL (OR (|has| |#2| (-38 (-347 (-483)))) (|has| |#2| (-950 (-347 (-483))))) ELT) (($ $) NIL (|has| |#2| (-494)) ELT)) (-3811 (((-583 |#2|) $) NIL T ELT)) (-3671 ((|#2| $ |#3|) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1620 (($ $ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| |#2| (-494)) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 32 T CONST)) (-2665 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#2|) 77 (|has| |#2| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 133 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 131 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 37 T ELT) (($ $ (-347 (-483))) NIL (|has| |#2| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) NIL (|has| |#2| (-38 (-347 (-483)))) ELT) (($ |#2| $) 76 T ELT) (($ $ |#2|) NIL T ELT)))
-(((-391 |#1| |#2| |#3|) (-13 (-861 |#2| |#3| (-773 |#1|)) (-10 -8 (-15 -1934 ($ $ (-583 (-483)))))) (-583 (-1088)) (-961) (-196 (-3951 |#1|) (-694))) (T -391))
-((-1934 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-483))) (-14 *3 (-583 (-1088))) (-5 *1 (-391 *3 *4 *5)) (-4 *4 (-961)) (-4 *5 (-196 (-3951 *3) (-694))))))
-((-1908 (((-85) |#1| (-583 |#2|)) 90 T ELT)) (-1906 (((-3 (-1177 (-583 |#2|)) #1="failed") (-694) |#1| (-583 |#2|)) 99 T ELT)) (-1907 (((-3 (-583 |#2|) #1#) |#2| |#1| (-1177 (-583 |#2|))) 101 T ELT)) (-2033 ((|#2| |#2| |#1|) 35 T ELT)) (-1905 (((-694) |#2| (-583 |#2|)) 26 T ELT)))
-(((-392 |#1| |#2|) (-10 -7 (-15 -2033 (|#2| |#2| |#1|)) (-15 -1905 ((-694) |#2| (-583 |#2|))) (-15 -1906 ((-3 (-1177 (-583 |#2|)) #1="failed") (-694) |#1| (-583 |#2|))) (-15 -1907 ((-3 (-583 |#2|) #1#) |#2| |#1| (-1177 (-583 |#2|)))) (-15 -1908 ((-85) |#1| (-583 |#2|)))) (-257) (-1153 |#1|)) (T -392))
-((-1908 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-1153 *3)) (-4 *3 (-257)) (-5 *2 (-85)) (-5 *1 (-392 *3 *5)))) (-1907 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1177 (-583 *3))) (-4 *4 (-257)) (-5 *2 (-583 *3)) (-5 *1 (-392 *4 *3)) (-4 *3 (-1153 *4)))) (-1906 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-694)) (-4 *4 (-257)) (-4 *6 (-1153 *4)) (-5 *2 (-1177 (-583 *6))) (-5 *1 (-392 *4 *6)) (-5 *5 (-583 *6)))) (-1905 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-257)) (-5 *2 (-694)) (-5 *1 (-392 *5 *3)))) (-2033 (*1 *2 *2 *3) (-12 (-4 *3 (-257)) (-5 *1 (-392 *3 *2)) (-4 *2 (-1153 *3)))))
-((-3726 (((-345 |#5|) |#5|) 24 T ELT)))
-(((-393 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3726 ((-345 |#5|) |#5|))) (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $)) (-15 -3825 ((-3 $ "failed") (-1088))))) (-717) (-494) (-494) (-861 |#4| |#2| |#1|)) (T -393))
-((-3726 (*1 *2 *3) (-12 (-4 *4 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $)) (-15 -3825 ((-3 $ "failed") (-1088)))))) (-4 *5 (-717)) (-4 *7 (-494)) (-5 *2 (-345 *3)) (-5 *1 (-393 *4 *5 *6 *7 *3)) (-4 *6 (-494)) (-4 *3 (-861 *7 *5 *4)))))
-((-2696 ((|#3|) 43 T ELT)) (-2704 (((-1083 |#4|) (-1083 |#4|) (-1083 |#4|)) 34 T ELT)))
-(((-394 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2704 ((-1083 |#4|) (-1083 |#4|) (-1083 |#4|))) (-15 -2696 (|#3|))) (-717) (-756) (-821) (-861 |#3| |#1| |#2|)) (T -394))
-((-2696 (*1 *2) (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-821)) (-5 *1 (-394 *3 *4 *2 *5)) (-4 *5 (-861 *2 *3 *4)))) (-2704 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-821)) (-5 *1 (-394 *3 *4 *5 *6)))))
-((-3726 (((-345 (-1083 |#1|)) (-1083 |#1|)) 43 T ELT)))
-(((-395 |#1|) (-10 -7 (-15 -3726 ((-345 (-1083 |#1|)) (-1083 |#1|)))) (-257)) (T -395))
-((-3726 (*1 *2 *3) (-12 (-4 *4 (-257)) (-5 *2 (-345 (-1083 *4))) (-5 *1 (-395 *4)) (-5 *3 (-1083 *4)))))
-((-3723 (((-51) |#2| (-1088) (-248 |#2|) (-1144 (-694))) 44 T ELT) (((-51) (-1 |#2| (-483)) (-248 |#2|) (-1144 (-694))) 43 T ELT) (((-51) |#2| (-1088) (-248 |#2|)) 36 T ELT) (((-51) (-1 |#2| (-483)) (-248 |#2|)) 29 T ELT)) (-3812 (((-51) |#2| (-1088) (-248 |#2|) (-1144 (-347 (-483))) (-347 (-483))) 88 T ELT) (((-51) (-1 |#2| (-347 (-483))) (-248 |#2|) (-1144 (-347 (-483))) (-347 (-483))) 87 T ELT) (((-51) |#2| (-1088) (-248 |#2|) (-1144 (-483))) 86 T ELT) (((-51) (-1 |#2| (-483)) (-248 |#2|) (-1144 (-483))) 85 T ELT) (((-51) |#2| (-1088) (-248 |#2|)) 80 T ELT) (((-51) (-1 |#2| (-483)) (-248 |#2|)) 79 T ELT)) (-3776 (((-51) |#2| (-1088) (-248 |#2|) (-1144 (-347 (-483))) (-347 (-483))) 74 T ELT) (((-51) (-1 |#2| (-347 (-483))) (-248 |#2|) (-1144 (-347 (-483))) (-347 (-483))) 72 T ELT)) (-3773 (((-51) |#2| (-1088) (-248 |#2|) (-1144 (-483))) 51 T ELT) (((-51) (-1 |#2| (-483)) (-248 |#2|) (-1144 (-483))) 50 T ELT)))
-(((-396 |#1| |#2|) (-10 -7 (-15 -3723 ((-51) (-1 |#2| (-483)) (-248 |#2|))) (-15 -3723 ((-51) |#2| (-1088) (-248 |#2|))) (-15 -3723 ((-51) (-1 |#2| (-483)) (-248 |#2|) (-1144 (-694)))) (-15 -3723 ((-51) |#2| (-1088) (-248 |#2|) (-1144 (-694)))) (-15 -3773 ((-51) (-1 |#2| (-483)) (-248 |#2|) (-1144 (-483)))) (-15 -3773 ((-51) |#2| (-1088) (-248 |#2|) (-1144 (-483)))) (-15 -3776 ((-51) (-1 |#2| (-347 (-483))) (-248 |#2|) (-1144 (-347 (-483))) (-347 (-483)))) (-15 -3776 ((-51) |#2| (-1088) (-248 |#2|) (-1144 (-347 (-483))) (-347 (-483)))) (-15 -3812 ((-51) (-1 |#2| (-483)) (-248 |#2|))) (-15 -3812 ((-51) |#2| (-1088) (-248 |#2|))) (-15 -3812 ((-51) (-1 |#2| (-483)) (-248 |#2|) (-1144 (-483)))) (-15 -3812 ((-51) |#2| (-1088) (-248 |#2|) (-1144 (-483)))) (-15 -3812 ((-51) (-1 |#2| (-347 (-483))) (-248 |#2|) (-1144 (-347 (-483))) (-347 (-483)))) (-15 -3812 ((-51) |#2| (-1088) (-248 |#2|) (-1144 (-347 (-483))) (-347 (-483))))) (-13 (-494) (-950 (-483)) (-580 (-483))) (-13 (-27) (-1113) (-361 |#1|))) (T -396))
-((-3812 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1088)) (-5 *5 (-248 *3)) (-5 *6 (-1144 (-347 (-483)))) (-5 *7 (-347 (-483))) (-4 *3 (-13 (-27) (-1113) (-361 *8))) (-4 *8 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-396 *8 *3)))) (-3812 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-347 (-483)))) (-5 *4 (-248 *8)) (-5 *5 (-1144 (-347 (-483)))) (-5 *6 (-347 (-483))) (-4 *8 (-13 (-27) (-1113) (-361 *7))) (-4 *7 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-396 *7 *8)))) (-3812 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1088)) (-5 *5 (-248 *3)) (-5 *6 (-1144 (-483))) (-4 *3 (-13 (-27) (-1113) (-361 *7))) (-4 *7 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-396 *7 *3)))) (-3812 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-483))) (-5 *4 (-248 *7)) (-5 *5 (-1144 (-483))) (-4 *7 (-13 (-27) (-1113) (-361 *6))) (-4 *6 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-396 *6 *7)))) (-3812 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1088)) (-5 *5 (-248 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *6))) (-4 *6 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-396 *6 *3)))) (-3812 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-483))) (-5 *4 (-248 *6)) (-4 *6 (-13 (-27) (-1113) (-361 *5))) (-4 *5 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-396 *5 *6)))) (-3776 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1088)) (-5 *5 (-248 *3)) (-5 *6 (-1144 (-347 (-483)))) (-5 *7 (-347 (-483))) (-4 *3 (-13 (-27) (-1113) (-361 *8))) (-4 *8 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-396 *8 *3)))) (-3776 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-347 (-483)))) (-5 *4 (-248 *8)) (-5 *5 (-1144 (-347 (-483)))) (-5 *6 (-347 (-483))) (-4 *8 (-13 (-27) (-1113) (-361 *7))) (-4 *7 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-396 *7 *8)))) (-3773 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1088)) (-5 *5 (-248 *3)) (-5 *6 (-1144 (-483))) (-4 *3 (-13 (-27) (-1113) (-361 *7))) (-4 *7 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-396 *7 *3)))) (-3773 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-483))) (-5 *4 (-248 *7)) (-5 *5 (-1144 (-483))) (-4 *7 (-13 (-27) (-1113) (-361 *6))) (-4 *6 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-396 *6 *7)))) (-3723 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1088)) (-5 *5 (-248 *3)) (-5 *6 (-1144 (-694))) (-4 *3 (-13 (-27) (-1113) (-361 *7))) (-4 *7 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-396 *7 *3)))) (-3723 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-483))) (-5 *4 (-248 *7)) (-5 *5 (-1144 (-694))) (-4 *7 (-13 (-27) (-1113) (-361 *6))) (-4 *6 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-396 *6 *7)))) (-3723 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1088)) (-5 *5 (-248 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *6))) (-4 *6 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-396 *6 *3)))) (-3723 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-483))) (-5 *4 (-248 *6)) (-4 *6 (-13 (-27) (-1113) (-361 *5))) (-4 *5 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51)) (-5 *1 (-396 *5 *6)))))
-((-2033 ((|#2| |#2| |#1|) 15 T ELT)) (-1910 (((-583 |#2|) |#2| (-583 |#2|) |#1| (-830)) 82 T ELT)) (-1909 (((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-830)) 71 T ELT)))
-(((-397 |#1| |#2|) (-10 -7 (-15 -1909 ((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-830))) (-15 -1910 ((-583 |#2|) |#2| (-583 |#2|) |#1| (-830))) (-15 -2033 (|#2| |#2| |#1|))) (-257) (-1153 |#1|)) (T -397))
-((-2033 (*1 *2 *2 *3) (-12 (-4 *3 (-257)) (-5 *1 (-397 *3 *2)) (-4 *2 (-1153 *3)))) (-1910 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-583 *3)) (-5 *5 (-830)) (-4 *3 (-1153 *4)) (-4 *4 (-257)) (-5 *1 (-397 *4 *3)))) (-1909 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-830)) (-4 *5 (-257)) (-4 *3 (-1153 *5)) (-5 *2 (-2 (|:| |plist| (-583 *3)) (|:| |modulo| *5))) (-5 *1 (-397 *5 *3)) (-5 *4 (-583 *3)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 28 T ELT)) (-3701 (($ |#3|) 25 T ELT)) (-1309 (((-3 $ "failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3953 (($ $) 32 T ELT)) (-1911 (($ |#2| |#4| $) 33 T ELT)) (-2889 (($ |#2| (-650 |#3| |#4| |#5|)) 24 T ELT)) (-2890 (((-650 |#3| |#4| |#5|) $) 15 T ELT)) (-1913 ((|#3| $) 19 T ELT)) (-1914 ((|#4| $) 17 T ELT)) (-3169 ((|#2| $) 29 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1912 (($ |#2| |#3| |#4|) 26 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 36 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 34 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
-(((-398 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-654 |#6|) (-654 |#2|) (-10 -8 (-15 -3169 (|#2| $)) (-15 -2890 ((-650 |#3| |#4| |#5|) $)) (-15 -1914 (|#4| $)) (-15 -1913 (|#3| $)) (-15 -3953 ($ $)) (-15 -2889 ($ |#2| (-650 |#3| |#4| |#5|))) (-15 -3701 ($ |#3|)) (-15 -1912 ($ |#2| |#3| |#4|)) (-15 -1911 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-583 (-1088)) (-146) (-756) (-196 (-3951 |#1|) (-694)) (-1 (-85) (-2 (|:| -2396 |#3|) (|:| -2397 |#4|)) (-2 (|:| -2396 |#3|) (|:| -2397 |#4|))) (-861 |#2| |#4| (-773 |#1|))) (T -398))
-((* (*1 *1 *2 *1) (-12 (-14 *3 (-583 (-1088))) (-4 *4 (-146)) (-4 *6 (-196 (-3951 *3) (-694))) (-14 *7 (-1 (-85) (-2 (|:| -2396 *5) (|:| -2397 *6)) (-2 (|:| -2396 *5) (|:| -2397 *6)))) (-5 *1 (-398 *3 *4 *5 *6 *7 *2)) (-4 *5 (-756)) (-4 *2 (-861 *4 *6 (-773 *3))))) (-3169 (*1 *2 *1) (-12 (-14 *3 (-583 (-1088))) (-4 *5 (-196 (-3951 *3) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2396 *4) (|:| -2397 *5)) (-2 (|:| -2396 *4) (|:| -2397 *5)))) (-4 *2 (-146)) (-5 *1 (-398 *3 *2 *4 *5 *6 *7)) (-4 *4 (-756)) (-4 *7 (-861 *2 *5 (-773 *3))))) (-2890 (*1 *2 *1) (-12 (-14 *3 (-583 (-1088))) (-4 *4 (-146)) (-4 *6 (-196 (-3951 *3) (-694))) (-14 *7 (-1 (-85) (-2 (|:| -2396 *5) (|:| -2397 *6)) (-2 (|:| -2396 *5) (|:| -2397 *6)))) (-5 *2 (-650 *5 *6 *7)) (-5 *1 (-398 *3 *4 *5 *6 *7 *8)) (-4 *5 (-756)) (-4 *8 (-861 *4 *6 (-773 *3))))) (-1914 (*1 *2 *1) (-12 (-14 *3 (-583 (-1088))) (-4 *4 (-146)) (-14 *6 (-1 (-85) (-2 (|:| -2396 *5) (|:| -2397 *2)) (-2 (|:| -2396 *5) (|:| -2397 *2)))) (-4 *2 (-196 (-3951 *3) (-694))) (-5 *1 (-398 *3 *4 *5 *2 *6 *7)) (-4 *5 (-756)) (-4 *7 (-861 *4 *2 (-773 *3))))) (-1913 (*1 *2 *1) (-12 (-14 *3 (-583 (-1088))) (-4 *4 (-146)) (-4 *5 (-196 (-3951 *3) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2396 *2) (|:| -2397 *5)) (-2 (|:| -2396 *2) (|:| -2397 *5)))) (-4 *2 (-756)) (-5 *1 (-398 *3 *4 *2 *5 *6 *7)) (-4 *7 (-861 *4 *5 (-773 *3))))) (-3953 (*1 *1 *1) (-12 (-14 *2 (-583 (-1088))) (-4 *3 (-146)) (-4 *5 (-196 (-3951 *2) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2396 *4) (|:| -2397 *5)) (-2 (|:| -2396 *4) (|:| -2397 *5)))) (-5 *1 (-398 *2 *3 *4 *5 *6 *7)) (-4 *4 (-756)) (-4 *7 (-861 *3 *5 (-773 *2))))) (-2889 (*1 *1 *2 *3) (-12 (-5 *3 (-650 *5 *6 *7)) (-4 *5 (-756)) (-4 *6 (-196 (-3951 *4) (-694))) (-14 *7 (-1 (-85) (-2 (|:| -2396 *5) (|:| -2397 *6)) (-2 (|:| -2396 *5) (|:| -2397 *6)))) (-14 *4 (-583 (-1088))) (-4 *2 (-146)) (-5 *1 (-398 *4 *2 *5 *6 *7 *8)) (-4 *8 (-861 *2 *6 (-773 *4))))) (-3701 (*1 *1 *2) (-12 (-14 *3 (-583 (-1088))) (-4 *4 (-146)) (-4 *5 (-196 (-3951 *3) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2396 *2) (|:| -2397 *5)) (-2 (|:| -2396 *2) (|:| -2397 *5)))) (-5 *1 (-398 *3 *4 *2 *5 *6 *7)) (-4 *2 (-756)) (-4 *7 (-861 *4 *5 (-773 *3))))) (-1912 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-583 (-1088))) (-4 *2 (-146)) (-4 *4 (-196 (-3951 *5) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2396 *3) (|:| -2397 *4)) (-2 (|:| -2396 *3) (|:| -2397 *4)))) (-5 *1 (-398 *5 *2 *3 *4 *6 *7)) (-4 *3 (-756)) (-4 *7 (-861 *2 *4 (-773 *5))))) (-1911 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-583 (-1088))) (-4 *2 (-146)) (-4 *3 (-196 (-3951 *4) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2396 *5) (|:| -2397 *3)) (-2 (|:| -2396 *5) (|:| -2397 *3)))) (-5 *1 (-398 *4 *2 *5 *3 *6 *7)) (-4 *5 (-756)) (-4 *7 (-861 *2 *3 (-773 *4))))))
-((-1915 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT)))
-(((-399 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1915 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-717) (-756) (-494) (-861 |#3| |#1| |#2|) (-13 (-950 (-347 (-483))) (-311) (-10 -8 (-15 -3940 ($ |#4|)) (-15 -2994 (|#4| $)) (-15 -2993 (|#4| $))))) (T -399))
-((-1915 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-756)) (-4 *5 (-717)) (-4 *6 (-494)) (-4 *7 (-861 *6 *5 *3)) (-5 *1 (-399 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-950 (-347 (-483))) (-311) (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $))))))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3077 (((-583 |#3|) $) 41 T ELT)) (-2904 (((-85) $) NIL T ELT)) (-2895 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2905 (((-2 (|:| |under| $) (|:| -3125 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3704 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3718 (($) NIL T CONST)) (-2900 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2902 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2901 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2903 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2896 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-494)) ELT)) (-2897 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-494)) ELT)) (-3152 (((-3 $ #1="failed") (-583 |#4|)) 49 T ELT)) (-3151 (($ (-583 |#4|)) NIL T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT)) (-3400 (($ |#4| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2898 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-494)) ELT)) (-3836 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3989)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2885 (((-583 |#4|) $) 18 (|has| $ (-6 -3989)) ELT)) (-3175 ((|#3| $) 47 T ELT)) (-2604 (((-583 |#4|) $) 14 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#4| $) 26 (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT)) (-1946 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#4| |#4|) $) 21 T ELT)) (-2910 (((-583 |#3|) $) NIL T ELT)) (-2909 (((-85) |#3| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2899 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-494)) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1351 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-1944 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-248 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-583 (-248 |#4|))) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) 39 T ELT)) (-3559 (($) 17 T ELT)) (-1943 (((-694) |#4| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT) (((-694) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) 16 T ELT)) (-3966 (((-472) $) NIL (|has| |#4| (-553 (-472))) ELT) (($ (-583 |#4|)) 51 T ELT)) (-3524 (($ (-583 |#4|)) 13 T ELT)) (-2906 (($ $ |#3|) NIL T ELT)) (-2908 (($ $ |#3|) NIL T ELT)) (-2907 (($ $ |#3|) NIL T ELT)) (-3940 (((-772) $) 38 T ELT) (((-583 |#4|) $) 50 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 30 T ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-400 |#1| |#2| |#3| |#4|) (-13 (-889 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3966 ($ (-583 |#4|))) (-6 -3989) (-6 -3990))) (-961) (-717) (-756) (-976 |#1| |#2| |#3|)) (T -400))
-((-3966 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-400 *3 *4 *5 *6)))))
-((-2656 (($) 11 T CONST)) (-2662 (($) 13 T CONST)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT)))
-(((-401 |#1| |#2| |#3|) (-10 -7 (-15 -2662 (|#1|) -3946) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2656 (|#1|) -3946)) (-402 |#2| |#3|) (-146) (-23)) (T -401))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3152 (((-3 |#1| "failed") $) 30 T ELT)) (-3151 ((|#1| $) 31 T ELT)) (-3938 (($ $ $) 27 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3942 ((|#2| $) 23 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ |#1|) 29 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 22 T CONST)) (-2662 (($) 28 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT)))
+((-3141 (*1 *1 *1 *1) (-4 *1 (-389))) (-3141 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-389)))) (-1889 (*1 *1 *1 *1) (-4 *1 (-389))) (-1889 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-389)))) (-2706 (*1 *2 *2 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-389)))))
+(-13 (-495) (-10 -8 (-15 -3141 ($ $ $)) (-15 -3141 ($ (-584 $))) (-15 -1889 ($ $ $)) (-15 -1889 ($ (-584 $))) (-15 -2706 ((-1084 $) (-1084 $) (-1084 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-484)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-245) . T) ((-495) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1770 (((-3 $ #1="failed")) NIL (|has| (-347 (-858 |#1|)) (-495)) ELT)) (-1310 (((-3 $ #1#) $ $) NIL T ELT)) (-3220 (((-1178 (-631 (-347 (-858 |#1|)))) (-1178 $)) NIL T ELT) (((-1178 (-631 (-347 (-858 |#1|))))) NIL T ELT)) (-1727 (((-1178 $)) NIL T ELT)) (-3720 (($) NIL T CONST)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2010 (-584 $))) #1#)) NIL T ELT)) (-1701 (((-3 $ #1#)) NIL (|has| (-347 (-858 |#1|)) (-495)) ELT)) (-1786 (((-631 (-347 (-858 |#1|))) (-1178 $)) NIL T ELT) (((-631 (-347 (-858 |#1|)))) NIL T ELT)) (-1725 (((-347 (-858 |#1|)) $) NIL T ELT)) (-1784 (((-631 (-347 (-858 |#1|))) $ (-1178 $)) NIL T ELT) (((-631 (-347 (-858 |#1|))) $) NIL T ELT)) (-2402 (((-3 $ #1#) $) NIL (|has| (-347 (-858 |#1|)) (-495)) ELT)) (-1898 (((-1084 (-858 (-347 (-858 |#1|))))) NIL (|has| (-347 (-858 |#1|)) (-311)) ELT) (((-1084 (-347 (-858 |#1|)))) 89 (|has| |#1| (-495)) ELT)) (-2405 (($ $ (-831)) NIL T ELT)) (-1723 (((-347 (-858 |#1|)) $) NIL T ELT)) (-1703 (((-1084 (-347 (-858 |#1|))) $) 87 (|has| (-347 (-858 |#1|)) (-495)) ELT)) (-1788 (((-347 (-858 |#1|)) (-1178 $)) NIL T ELT) (((-347 (-858 |#1|))) NIL T ELT)) (-1721 (((-1084 (-347 (-858 |#1|))) $) NIL T ELT)) (-1715 (((-85)) NIL T ELT)) (-1790 (($ (-1178 (-347 (-858 |#1|))) (-1178 $)) 111 T ELT) (($ (-1178 (-347 (-858 |#1|)))) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL (|has| (-347 (-858 |#1|)) (-495)) ELT)) (-3106 (((-831)) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-2431 (($ $ (-831)) NIL T ELT)) (-1708 (((-85)) NIL T ELT)) (-1706 (((-85)) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2010 (-584 $))) #1#)) NIL T ELT)) (-1702 (((-3 $ #1#)) NIL (|has| (-347 (-858 |#1|)) (-495)) ELT)) (-1787 (((-631 (-347 (-858 |#1|))) (-1178 $)) NIL T ELT) (((-631 (-347 (-858 |#1|)))) NIL T ELT)) (-1726 (((-347 (-858 |#1|)) $) NIL T ELT)) (-1785 (((-631 (-347 (-858 |#1|))) $ (-1178 $)) NIL T ELT) (((-631 (-347 (-858 |#1|))) $) NIL T ELT)) (-2403 (((-3 $ #1#) $) NIL (|has| (-347 (-858 |#1|)) (-495)) ELT)) (-1902 (((-1084 (-858 (-347 (-858 |#1|))))) NIL (|has| (-347 (-858 |#1|)) (-311)) ELT) (((-1084 (-347 (-858 |#1|)))) 88 (|has| |#1| (-495)) ELT)) (-2404 (($ $ (-831)) NIL T ELT)) (-1724 (((-347 (-858 |#1|)) $) NIL T ELT)) (-1704 (((-1084 (-347 (-858 |#1|))) $) 84 (|has| (-347 (-858 |#1|)) (-495)) ELT)) (-1789 (((-347 (-858 |#1|)) (-1178 $)) NIL T ELT) (((-347 (-858 |#1|))) NIL T ELT)) (-1722 (((-1084 (-347 (-858 |#1|))) $) NIL T ELT)) (-1716 (((-85)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-1707 (((-85)) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1892 (((-347 (-858 |#1|)) $ $) 75 (|has| |#1| (-495)) ELT)) (-1896 (((-347 (-858 |#1|)) $) 74 (|has| |#1| (-495)) ELT)) (-1895 (((-347 (-858 |#1|)) $) 101 (|has| |#1| (-495)) ELT)) (-1897 (((-1084 (-347 (-858 |#1|))) $) 93 (|has| |#1| (-495)) ELT)) (-1891 (((-347 (-858 |#1|))) 76 (|has| |#1| (-495)) ELT)) (-1894 (((-347 (-858 |#1|)) $ $) 64 (|has| |#1| (-495)) ELT)) (-1900 (((-347 (-858 |#1|)) $) 63 (|has| |#1| (-495)) ELT)) (-1899 (((-347 (-858 |#1|)) $) 100 (|has| |#1| (-495)) ELT)) (-1901 (((-1084 (-347 (-858 |#1|))) $) 92 (|has| |#1| (-495)) ELT)) (-1893 (((-347 (-858 |#1|))) 73 (|has| |#1| (-495)) ELT)) (-1903 (($) 107 T ELT) (($ (-1089)) 115 T ELT) (($ (-1178 (-1089))) 114 T ELT) (($ (-1178 $)) 102 T ELT) (($ (-1089) (-1178 $)) 113 T ELT) (($ (-1178 (-1089)) (-1178 $)) 112 T ELT)) (-1714 (((-85)) NIL T ELT)) (-3796 (((-347 (-858 |#1|)) $ (-484)) NIL T ELT)) (-3221 (((-1178 (-347 (-858 |#1|))) $ (-1178 $)) 104 T ELT) (((-631 (-347 (-858 |#1|))) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 (-347 (-858 |#1|))) $) 44 T ELT) (((-631 (-347 (-858 |#1|))) (-1178 $)) NIL T ELT)) (-3968 (((-1178 (-347 (-858 |#1|))) $) NIL T ELT) (($ (-1178 (-347 (-858 |#1|)))) 41 T ELT)) (-1890 (((-584 (-858 (-347 (-858 |#1|)))) (-1178 $)) NIL T ELT) (((-584 (-858 (-347 (-858 |#1|))))) NIL T ELT) (((-584 (-858 |#1|)) (-1178 $)) 105 (|has| |#1| (-495)) ELT) (((-584 (-858 |#1|))) 106 (|has| |#1| (-495)) ELT)) (-2433 (($ $ $) NIL T ELT)) (-1720 (((-85)) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-1178 (-347 (-858 |#1|)))) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2010 (((-1178 $)) 66 T ELT)) (-1705 (((-584 (-1178 (-347 (-858 |#1|))))) NIL (|has| (-347 (-858 |#1|)) (-495)) ELT)) (-2434 (($ $ $ $) NIL T ELT)) (-1718 (((-85)) NIL T ELT)) (-2543 (($ (-631 (-347 (-858 |#1|))) $) NIL T ELT)) (-2432 (($ $ $) NIL T ELT)) (-1719 (((-85)) NIL T ELT)) (-1717 (((-85)) NIL T ELT)) (-1713 (((-85)) NIL T ELT)) (-2658 (($) NIL T CONST)) (-3054 (((-85) $ $) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) 103 T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-347 (-858 |#1|))) NIL T ELT) (($ (-347 (-858 |#1|)) $) NIL T ELT) (($ (-1055 |#2| (-347 (-858 |#1|))) $) NIL T ELT)))
+(((-390 |#1| |#2| |#3| |#4|) (-13 (-358 (-347 (-858 |#1|))) (-591 (-1055 |#2| (-347 (-858 |#1|)))) (-10 -8 (-15 -3942 ($ (-1178 (-347 (-858 |#1|))))) (-15 -1905 ((-3 (-2 (|:| |particular| $) (|:| -2010 (-584 $))) #1="failed"))) (-15 -1904 ((-3 (-2 (|:| |particular| $) (|:| -2010 (-584 $))) #1#))) (-15 -1903 ($)) (-15 -1903 ($ (-1089))) (-15 -1903 ($ (-1178 (-1089)))) (-15 -1903 ($ (-1178 $))) (-15 -1903 ($ (-1089) (-1178 $))) (-15 -1903 ($ (-1178 (-1089)) (-1178 $))) (IF (|has| |#1| (-495)) (PROGN (-15 -1902 ((-1084 (-347 (-858 |#1|))))) (-15 -1901 ((-1084 (-347 (-858 |#1|))) $)) (-15 -1900 ((-347 (-858 |#1|)) $)) (-15 -1899 ((-347 (-858 |#1|)) $)) (-15 -1898 ((-1084 (-347 (-858 |#1|))))) (-15 -1897 ((-1084 (-347 (-858 |#1|))) $)) (-15 -1896 ((-347 (-858 |#1|)) $)) (-15 -1895 ((-347 (-858 |#1|)) $)) (-15 -1894 ((-347 (-858 |#1|)) $ $)) (-15 -1893 ((-347 (-858 |#1|)))) (-15 -1892 ((-347 (-858 |#1|)) $ $)) (-15 -1891 ((-347 (-858 |#1|)))) (-15 -1890 ((-584 (-858 |#1|)) (-1178 $))) (-15 -1890 ((-584 (-858 |#1|))))) |%noBranch|))) (-146) (-831) (-584 (-1089)) (-1178 (-631 |#1|))) (T -390))
+((-3942 (*1 *1 *2) (-12 (-5 *2 (-1178 (-347 (-858 *3)))) (-4 *3 (-146)) (-14 *6 (-1178 (-631 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))))) (-1905 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-390 *3 *4 *5 *6)) (|:| -2010 (-584 (-390 *3 *4 *5 *6))))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))) (-1904 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-390 *3 *4 *5 *6)) (|:| -2010 (-584 (-390 *3 *4 *5 *6))))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))) (-1903 (*1 *1) (-12 (-5 *1 (-390 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-831)) (-14 *4 (-584 (-1089))) (-14 *5 (-1178 (-631 *2))))) (-1903 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 *2)) (-14 *6 (-1178 (-631 *3))))) (-1903 (*1 *1 *2) (-12 (-5 *2 (-1178 (-1089))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))) (-1903 (*1 *1 *2) (-12 (-5 *2 (-1178 (-390 *3 *4 *5 *6))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))) (-1903 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1178 (-390 *4 *5 *6 *7))) (-5 *1 (-390 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-831)) (-14 *6 (-584 *2)) (-14 *7 (-1178 (-631 *4))))) (-1903 (*1 *1 *2 *3) (-12 (-5 *2 (-1178 (-1089))) (-5 *3 (-1178 (-390 *4 *5 *6 *7))) (-5 *1 (-390 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-831)) (-14 *6 (-584 (-1089))) (-14 *7 (-1178 (-631 *4))))) (-1902 (*1 *2) (-12 (-5 *2 (-1084 (-347 (-858 *3)))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))) (-1901 (*1 *2 *1) (-12 (-5 *2 (-1084 (-347 (-858 *3)))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))) (-1900 (*1 *2 *1) (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))) (-1899 (*1 *2 *1) (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))) (-1898 (*1 *2) (-12 (-5 *2 (-1084 (-347 (-858 *3)))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))) (-1897 (*1 *2 *1) (-12 (-5 *2 (-1084 (-347 (-858 *3)))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))) (-1896 (*1 *2 *1) (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))) (-1895 (*1 *2 *1) (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))) (-1894 (*1 *2 *1 *1) (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))) (-1893 (*1 *2) (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))) (-1892 (*1 *2 *1 *1) (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))) (-1891 (*1 *2) (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))) (-1890 (*1 *2 *3) (-12 (-5 *3 (-1178 (-390 *4 *5 *6 *7))) (-5 *2 (-584 (-858 *4))) (-5 *1 (-390 *4 *5 *6 *7)) (-4 *4 (-495)) (-4 *4 (-146)) (-14 *5 (-831)) (-14 *6 (-584 (-1089))) (-14 *7 (-1178 (-631 *4))))) (-1890 (*1 *2) (-12 (-5 *2 (-584 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 19 T ELT)) (-3079 (((-584 (-774 |#1|)) $) 88 T ELT)) (-3081 (((-1084 $) $ (-774 |#1|)) 53 T ELT) (((-1084 |#2|) $) 140 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL (|has| |#2| (-495)) ELT)) (-2061 (($ $) NIL (|has| |#2| (-495)) ELT)) (-2059 (((-85) $) NIL (|has| |#2| (-495)) ELT)) (-2817 (((-695) $) 28 T ELT) (((-695) $ (-584 (-774 |#1|))) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-3771 (($ $) NIL (|has| |#2| (-389)) ELT)) (-3967 (((-345 $) $) NIL (|has| |#2| (-389)) ELT)) (-2702 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#2| #1#) $) 51 T ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-3153 ((|#2| $) 49 T ELT) (((-347 (-484)) $) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) (((-484) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-774 |#1|) $) NIL T ELT)) (-3752 (($ $ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1935 (($ $ (-584 (-484))) 95 T ELT)) (-3955 (($ $) 81 T ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#2| (-389)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-389)) ELT)) (-2816 (((-584 $) $) NIL T ELT)) (-3719 (((-85) $) NIL (|has| |#2| (-822)) ELT)) (-1622 (($ $ |#2| |#3| $) NIL T ELT)) (-2794 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-327))) (|has| |#2| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-484))) (|has| |#2| (-797 (-484)))) ELT)) (-2408 (((-85) $) NIL T ELT)) (-2418 (((-695) $) 66 T ELT)) (-3082 (($ (-1084 |#2|) (-774 |#1|)) 145 T ELT) (($ (-1084 $) (-774 |#1|)) 59 T ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3933 (((-85) $) 69 T ELT)) (-2891 (($ |#2| |#3|) 36 T ELT) (($ $ (-774 |#1|) (-695)) 38 T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-3759 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $ (-774 |#1|)) NIL T ELT)) (-2818 ((|#3| $) NIL T ELT) (((-695) $ (-774 |#1|)) 57 T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) 64 T ELT)) (-1623 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-3954 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3080 (((-3 (-774 |#1|) #1#) $) 46 T ELT)) (-2278 (((-631 (-484)) (-1178 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL T ELT) (((-631 |#2|) (-1178 $)) NIL T ELT)) (-2892 (($ $) NIL T ELT)) (-3171 ((|#2| $) 48 T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2821 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-2 (|:| |var| (-774 |#1|)) (|:| -2399 (-695))) #1#) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1795 (((-85) $) 47 T ELT)) (-1794 ((|#2| $) 138 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#2| (-389)) ELT)) (-3141 (($ (-584 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) 151 (|has| |#2| (-389)) ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-3728 (((-345 $) $) NIL (|has| |#2| (-822)) ELT)) (-3462 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT)) (-3764 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-774 |#1|) |#2|) 102 T ELT) (($ $ (-584 (-774 |#1|)) (-584 |#2|)) 108 T ELT) (($ $ (-774 |#1|) $) 100 T ELT) (($ $ (-584 (-774 |#1|)) (-584 $)) 126 T ELT)) (-3753 (($ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3754 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) 60 T ELT)) (-3944 ((|#3| $) 80 T ELT) (((-695) $ (-774 |#1|)) 43 T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) 63 T ELT)) (-3968 (((-801 (-327)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-327)))) (|has| |#2| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-484)))) (|has| |#2| (-554 (-801 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-774 |#1|) (-554 (-473))) (|has| |#2| (-554 (-473)))) ELT)) (-2815 ((|#2| $) 147 (|has| |#2| (-389)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-389)) ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3942 (((-773) $) 175 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) 101 T ELT) (($ (-774 |#1|)) 40 T ELT) (($ (-347 (-484))) NIL (OR (|has| |#2| (-38 (-347 (-484)))) (|has| |#2| (-951 (-347 (-484))))) ELT) (($ $) NIL (|has| |#2| (-495)) ELT)) (-3813 (((-584 |#2|) $) NIL T ELT)) (-3673 ((|#2| $ |#3|) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-2700 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3123 (((-695)) NIL T CONST)) (-1621 (($ $ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL (|has| |#2| (-495)) ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 32 T CONST)) (-2667 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ |#2|) 77 (|has| |#2| (-311)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) 133 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 131 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 37 T ELT) (($ $ (-347 (-484))) NIL (|has| |#2| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) NIL (|has| |#2| (-38 (-347 (-484)))) ELT) (($ |#2| $) 76 T ELT) (($ $ |#2|) NIL T ELT)))
+(((-391 |#1| |#2| |#3|) (-13 (-862 |#2| |#3| (-774 |#1|)) (-10 -8 (-15 -1935 ($ $ (-584 (-484)))))) (-584 (-1089)) (-962) (-196 (-3953 |#1|) (-695))) (T -391))
+((-1935 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-484))) (-14 *3 (-584 (-1089))) (-5 *1 (-391 *3 *4 *5)) (-4 *4 (-962)) (-4 *5 (-196 (-3953 *3) (-695))))))
+((-1909 (((-85) |#1| (-584 |#2|)) 90 T ELT)) (-1907 (((-3 (-1178 (-584 |#2|)) #1="failed") (-695) |#1| (-584 |#2|)) 99 T ELT)) (-1908 (((-3 (-584 |#2|) #1#) |#2| |#1| (-1178 (-584 |#2|))) 101 T ELT)) (-2035 ((|#2| |#2| |#1|) 35 T ELT)) (-1906 (((-695) |#2| (-584 |#2|)) 26 T ELT)))
+(((-392 |#1| |#2|) (-10 -7 (-15 -2035 (|#2| |#2| |#1|)) (-15 -1906 ((-695) |#2| (-584 |#2|))) (-15 -1907 ((-3 (-1178 (-584 |#2|)) #1="failed") (-695) |#1| (-584 |#2|))) (-15 -1908 ((-3 (-584 |#2|) #1#) |#2| |#1| (-1178 (-584 |#2|)))) (-15 -1909 ((-85) |#1| (-584 |#2|)))) (-257) (-1154 |#1|)) (T -392))
+((-1909 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *5)) (-4 *5 (-1154 *3)) (-4 *3 (-257)) (-5 *2 (-85)) (-5 *1 (-392 *3 *5)))) (-1908 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1178 (-584 *3))) (-4 *4 (-257)) (-5 *2 (-584 *3)) (-5 *1 (-392 *4 *3)) (-4 *3 (-1154 *4)))) (-1907 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-695)) (-4 *4 (-257)) (-4 *6 (-1154 *4)) (-5 *2 (-1178 (-584 *6))) (-5 *1 (-392 *4 *6)) (-5 *5 (-584 *6)))) (-1906 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-257)) (-5 *2 (-695)) (-5 *1 (-392 *5 *3)))) (-2035 (*1 *2 *2 *3) (-12 (-4 *3 (-257)) (-5 *1 (-392 *3 *2)) (-4 *2 (-1154 *3)))))
+((-3728 (((-345 |#5|) |#5|) 24 T ELT)))
+(((-393 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3728 ((-345 |#5|) |#5|))) (-13 (-757) (-10 -8 (-15 -3968 ((-1089) $)) (-15 -3827 ((-3 $ "failed") (-1089))))) (-718) (-495) (-495) (-862 |#4| |#2| |#1|)) (T -393))
+((-3728 (*1 *2 *3) (-12 (-4 *4 (-13 (-757) (-10 -8 (-15 -3968 ((-1089) $)) (-15 -3827 ((-3 $ "failed") (-1089)))))) (-4 *5 (-718)) (-4 *7 (-495)) (-5 *2 (-345 *3)) (-5 *1 (-393 *4 *5 *6 *7 *3)) (-4 *6 (-495)) (-4 *3 (-862 *7 *5 *4)))))
+((-2698 ((|#3|) 43 T ELT)) (-2706 (((-1084 |#4|) (-1084 |#4|) (-1084 |#4|)) 34 T ELT)))
+(((-394 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2706 ((-1084 |#4|) (-1084 |#4|) (-1084 |#4|))) (-15 -2698 (|#3|))) (-718) (-757) (-822) (-862 |#3| |#1| |#2|)) (T -394))
+((-2698 (*1 *2) (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-822)) (-5 *1 (-394 *3 *4 *2 *5)) (-4 *5 (-862 *2 *3 *4)))) (-2706 (*1 *2 *2 *2) (-12 (-5 *2 (-1084 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-822)) (-5 *1 (-394 *3 *4 *5 *6)))))
+((-3728 (((-345 (-1084 |#1|)) (-1084 |#1|)) 43 T ELT)))
+(((-395 |#1|) (-10 -7 (-15 -3728 ((-345 (-1084 |#1|)) (-1084 |#1|)))) (-257)) (T -395))
+((-3728 (*1 *2 *3) (-12 (-4 *4 (-257)) (-5 *2 (-345 (-1084 *4))) (-5 *1 (-395 *4)) (-5 *3 (-1084 *4)))))
+((-3725 (((-51) |#2| (-1089) (-248 |#2|) (-1145 (-695))) 44 T ELT) (((-51) (-1 |#2| (-484)) (-248 |#2|) (-1145 (-695))) 43 T ELT) (((-51) |#2| (-1089) (-248 |#2|)) 36 T ELT) (((-51) (-1 |#2| (-484)) (-248 |#2|)) 29 T ELT)) (-3814 (((-51) |#2| (-1089) (-248 |#2|) (-1145 (-347 (-484))) (-347 (-484))) 88 T ELT) (((-51) (-1 |#2| (-347 (-484))) (-248 |#2|) (-1145 (-347 (-484))) (-347 (-484))) 87 T ELT) (((-51) |#2| (-1089) (-248 |#2|) (-1145 (-484))) 86 T ELT) (((-51) (-1 |#2| (-484)) (-248 |#2|) (-1145 (-484))) 85 T ELT) (((-51) |#2| (-1089) (-248 |#2|)) 80 T ELT) (((-51) (-1 |#2| (-484)) (-248 |#2|)) 79 T ELT)) (-3778 (((-51) |#2| (-1089) (-248 |#2|) (-1145 (-347 (-484))) (-347 (-484))) 74 T ELT) (((-51) (-1 |#2| (-347 (-484))) (-248 |#2|) (-1145 (-347 (-484))) (-347 (-484))) 72 T ELT)) (-3775 (((-51) |#2| (-1089) (-248 |#2|) (-1145 (-484))) 51 T ELT) (((-51) (-1 |#2| (-484)) (-248 |#2|) (-1145 (-484))) 50 T ELT)))
+(((-396 |#1| |#2|) (-10 -7 (-15 -3725 ((-51) (-1 |#2| (-484)) (-248 |#2|))) (-15 -3725 ((-51) |#2| (-1089) (-248 |#2|))) (-15 -3725 ((-51) (-1 |#2| (-484)) (-248 |#2|) (-1145 (-695)))) (-15 -3725 ((-51) |#2| (-1089) (-248 |#2|) (-1145 (-695)))) (-15 -3775 ((-51) (-1 |#2| (-484)) (-248 |#2|) (-1145 (-484)))) (-15 -3775 ((-51) |#2| (-1089) (-248 |#2|) (-1145 (-484)))) (-15 -3778 ((-51) (-1 |#2| (-347 (-484))) (-248 |#2|) (-1145 (-347 (-484))) (-347 (-484)))) (-15 -3778 ((-51) |#2| (-1089) (-248 |#2|) (-1145 (-347 (-484))) (-347 (-484)))) (-15 -3814 ((-51) (-1 |#2| (-484)) (-248 |#2|))) (-15 -3814 ((-51) |#2| (-1089) (-248 |#2|))) (-15 -3814 ((-51) (-1 |#2| (-484)) (-248 |#2|) (-1145 (-484)))) (-15 -3814 ((-51) |#2| (-1089) (-248 |#2|) (-1145 (-484)))) (-15 -3814 ((-51) (-1 |#2| (-347 (-484))) (-248 |#2|) (-1145 (-347 (-484))) (-347 (-484)))) (-15 -3814 ((-51) |#2| (-1089) (-248 |#2|) (-1145 (-347 (-484))) (-347 (-484))))) (-13 (-495) (-951 (-484)) (-581 (-484))) (-13 (-27) (-1114) (-361 |#1|))) (T -396))
+((-3814 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1089)) (-5 *5 (-248 *3)) (-5 *6 (-1145 (-347 (-484)))) (-5 *7 (-347 (-484))) (-4 *3 (-13 (-27) (-1114) (-361 *8))) (-4 *8 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-396 *8 *3)))) (-3814 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-347 (-484)))) (-5 *4 (-248 *8)) (-5 *5 (-1145 (-347 (-484)))) (-5 *6 (-347 (-484))) (-4 *8 (-13 (-27) (-1114) (-361 *7))) (-4 *7 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-396 *7 *8)))) (-3814 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1089)) (-5 *5 (-248 *3)) (-5 *6 (-1145 (-484))) (-4 *3 (-13 (-27) (-1114) (-361 *7))) (-4 *7 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-396 *7 *3)))) (-3814 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-248 *7)) (-5 *5 (-1145 (-484))) (-4 *7 (-13 (-27) (-1114) (-361 *6))) (-4 *6 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-396 *6 *7)))) (-3814 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1089)) (-5 *5 (-248 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *6))) (-4 *6 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-396 *6 *3)))) (-3814 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-484))) (-5 *4 (-248 *6)) (-4 *6 (-13 (-27) (-1114) (-361 *5))) (-4 *5 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-396 *5 *6)))) (-3778 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1089)) (-5 *5 (-248 *3)) (-5 *6 (-1145 (-347 (-484)))) (-5 *7 (-347 (-484))) (-4 *3 (-13 (-27) (-1114) (-361 *8))) (-4 *8 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-396 *8 *3)))) (-3778 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-347 (-484)))) (-5 *4 (-248 *8)) (-5 *5 (-1145 (-347 (-484)))) (-5 *6 (-347 (-484))) (-4 *8 (-13 (-27) (-1114) (-361 *7))) (-4 *7 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-396 *7 *8)))) (-3775 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1089)) (-5 *5 (-248 *3)) (-5 *6 (-1145 (-484))) (-4 *3 (-13 (-27) (-1114) (-361 *7))) (-4 *7 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-396 *7 *3)))) (-3775 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-248 *7)) (-5 *5 (-1145 (-484))) (-4 *7 (-13 (-27) (-1114) (-361 *6))) (-4 *6 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-396 *6 *7)))) (-3725 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1089)) (-5 *5 (-248 *3)) (-5 *6 (-1145 (-695))) (-4 *3 (-13 (-27) (-1114) (-361 *7))) (-4 *7 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-396 *7 *3)))) (-3725 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-248 *7)) (-5 *5 (-1145 (-695))) (-4 *7 (-13 (-27) (-1114) (-361 *6))) (-4 *6 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-396 *6 *7)))) (-3725 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1089)) (-5 *5 (-248 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *6))) (-4 *6 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-396 *6 *3)))) (-3725 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-484))) (-5 *4 (-248 *6)) (-4 *6 (-13 (-27) (-1114) (-361 *5))) (-4 *5 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51)) (-5 *1 (-396 *5 *6)))))
+((-2035 ((|#2| |#2| |#1|) 15 T ELT)) (-1911 (((-584 |#2|) |#2| (-584 |#2|) |#1| (-831)) 82 T ELT)) (-1910 (((-2 (|:| |plist| (-584 |#2|)) (|:| |modulo| |#1|)) |#2| (-584 |#2|) |#1| (-831)) 71 T ELT)))
+(((-397 |#1| |#2|) (-10 -7 (-15 -1910 ((-2 (|:| |plist| (-584 |#2|)) (|:| |modulo| |#1|)) |#2| (-584 |#2|) |#1| (-831))) (-15 -1911 ((-584 |#2|) |#2| (-584 |#2|) |#1| (-831))) (-15 -2035 (|#2| |#2| |#1|))) (-257) (-1154 |#1|)) (T -397))
+((-2035 (*1 *2 *2 *3) (-12 (-4 *3 (-257)) (-5 *1 (-397 *3 *2)) (-4 *2 (-1154 *3)))) (-1911 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-584 *3)) (-5 *5 (-831)) (-4 *3 (-1154 *4)) (-4 *4 (-257)) (-5 *1 (-397 *4 *3)))) (-1910 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-831)) (-4 *5 (-257)) (-4 *3 (-1154 *5)) (-5 *2 (-2 (|:| |plist| (-584 *3)) (|:| |modulo| *5))) (-5 *1 (-397 *5 *3)) (-5 *4 (-584 *3)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 28 T ELT)) (-3703 (($ |#3|) 25 T ELT)) (-1310 (((-3 $ "failed") $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3955 (($ $) 32 T ELT)) (-1912 (($ |#2| |#4| $) 33 T ELT)) (-2891 (($ |#2| (-651 |#3| |#4| |#5|)) 24 T ELT)) (-2892 (((-651 |#3| |#4| |#5|) $) 15 T ELT)) (-1914 ((|#3| $) 19 T ELT)) (-1915 ((|#4| $) 17 T ELT)) (-3171 ((|#2| $) 29 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT)) (-1913 (($ |#2| |#3| |#4|) 26 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) 36 T CONST)) (-3054 (((-85) $ $) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) 34 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
+(((-398 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-655 |#6|) (-655 |#2|) (-10 -8 (-15 -3171 (|#2| $)) (-15 -2892 ((-651 |#3| |#4| |#5|) $)) (-15 -1915 (|#4| $)) (-15 -1914 (|#3| $)) (-15 -3955 ($ $)) (-15 -2891 ($ |#2| (-651 |#3| |#4| |#5|))) (-15 -3703 ($ |#3|)) (-15 -1913 ($ |#2| |#3| |#4|)) (-15 -1912 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-584 (-1089)) (-146) (-757) (-196 (-3953 |#1|) (-695)) (-1 (-85) (-2 (|:| -2398 |#3|) (|:| -2399 |#4|)) (-2 (|:| -2398 |#3|) (|:| -2399 |#4|))) (-862 |#2| |#4| (-774 |#1|))) (T -398))
+((* (*1 *1 *2 *1) (-12 (-14 *3 (-584 (-1089))) (-4 *4 (-146)) (-4 *6 (-196 (-3953 *3) (-695))) (-14 *7 (-1 (-85) (-2 (|:| -2398 *5) (|:| -2399 *6)) (-2 (|:| -2398 *5) (|:| -2399 *6)))) (-5 *1 (-398 *3 *4 *5 *6 *7 *2)) (-4 *5 (-757)) (-4 *2 (-862 *4 *6 (-774 *3))))) (-3171 (*1 *2 *1) (-12 (-14 *3 (-584 (-1089))) (-4 *5 (-196 (-3953 *3) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2398 *4) (|:| -2399 *5)) (-2 (|:| -2398 *4) (|:| -2399 *5)))) (-4 *2 (-146)) (-5 *1 (-398 *3 *2 *4 *5 *6 *7)) (-4 *4 (-757)) (-4 *7 (-862 *2 *5 (-774 *3))))) (-2892 (*1 *2 *1) (-12 (-14 *3 (-584 (-1089))) (-4 *4 (-146)) (-4 *6 (-196 (-3953 *3) (-695))) (-14 *7 (-1 (-85) (-2 (|:| -2398 *5) (|:| -2399 *6)) (-2 (|:| -2398 *5) (|:| -2399 *6)))) (-5 *2 (-651 *5 *6 *7)) (-5 *1 (-398 *3 *4 *5 *6 *7 *8)) (-4 *5 (-757)) (-4 *8 (-862 *4 *6 (-774 *3))))) (-1915 (*1 *2 *1) (-12 (-14 *3 (-584 (-1089))) (-4 *4 (-146)) (-14 *6 (-1 (-85) (-2 (|:| -2398 *5) (|:| -2399 *2)) (-2 (|:| -2398 *5) (|:| -2399 *2)))) (-4 *2 (-196 (-3953 *3) (-695))) (-5 *1 (-398 *3 *4 *5 *2 *6 *7)) (-4 *5 (-757)) (-4 *7 (-862 *4 *2 (-774 *3))))) (-1914 (*1 *2 *1) (-12 (-14 *3 (-584 (-1089))) (-4 *4 (-146)) (-4 *5 (-196 (-3953 *3) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2398 *2) (|:| -2399 *5)) (-2 (|:| -2398 *2) (|:| -2399 *5)))) (-4 *2 (-757)) (-5 *1 (-398 *3 *4 *2 *5 *6 *7)) (-4 *7 (-862 *4 *5 (-774 *3))))) (-3955 (*1 *1 *1) (-12 (-14 *2 (-584 (-1089))) (-4 *3 (-146)) (-4 *5 (-196 (-3953 *2) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2398 *4) (|:| -2399 *5)) (-2 (|:| -2398 *4) (|:| -2399 *5)))) (-5 *1 (-398 *2 *3 *4 *5 *6 *7)) (-4 *4 (-757)) (-4 *7 (-862 *3 *5 (-774 *2))))) (-2891 (*1 *1 *2 *3) (-12 (-5 *3 (-651 *5 *6 *7)) (-4 *5 (-757)) (-4 *6 (-196 (-3953 *4) (-695))) (-14 *7 (-1 (-85) (-2 (|:| -2398 *5) (|:| -2399 *6)) (-2 (|:| -2398 *5) (|:| -2399 *6)))) (-14 *4 (-584 (-1089))) (-4 *2 (-146)) (-5 *1 (-398 *4 *2 *5 *6 *7 *8)) (-4 *8 (-862 *2 *6 (-774 *4))))) (-3703 (*1 *1 *2) (-12 (-14 *3 (-584 (-1089))) (-4 *4 (-146)) (-4 *5 (-196 (-3953 *3) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2398 *2) (|:| -2399 *5)) (-2 (|:| -2398 *2) (|:| -2399 *5)))) (-5 *1 (-398 *3 *4 *2 *5 *6 *7)) (-4 *2 (-757)) (-4 *7 (-862 *4 *5 (-774 *3))))) (-1913 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-584 (-1089))) (-4 *2 (-146)) (-4 *4 (-196 (-3953 *5) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2398 *3) (|:| -2399 *4)) (-2 (|:| -2398 *3) (|:| -2399 *4)))) (-5 *1 (-398 *5 *2 *3 *4 *6 *7)) (-4 *3 (-757)) (-4 *7 (-862 *2 *4 (-774 *5))))) (-1912 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-584 (-1089))) (-4 *2 (-146)) (-4 *3 (-196 (-3953 *4) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2398 *5) (|:| -2399 *3)) (-2 (|:| -2398 *5) (|:| -2399 *3)))) (-5 *1 (-398 *4 *2 *5 *3 *6 *7)) (-4 *5 (-757)) (-4 *7 (-862 *2 *3 (-774 *4))))))
+((-1916 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT)))
+(((-399 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1916 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-718) (-757) (-495) (-862 |#3| |#1| |#2|) (-13 (-951 (-347 (-484))) (-311) (-10 -8 (-15 -3942 ($ |#4|)) (-15 -2996 (|#4| $)) (-15 -2995 (|#4| $))))) (T -399))
+((-1916 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-757)) (-4 *5 (-718)) (-4 *6 (-495)) (-4 *7 (-862 *6 *5 *3)) (-5 *1 (-399 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-951 (-347 (-484))) (-311) (-10 -8 (-15 -3942 ($ *7)) (-15 -2996 (*7 $)) (-15 -2995 (*7 $))))))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3079 (((-584 |#3|) $) 41 T ELT)) (-2906 (((-85) $) NIL T ELT)) (-2897 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2907 (((-2 (|:| |under| $) (|:| -3127 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3706 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3720 (($) NIL T CONST)) (-2902 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2904 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2903 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2905 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2898 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-2899 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-3154 (((-3 $ #1="failed") (-584 |#4|)) 49 T ELT)) (-3153 (($ (-584 |#4|)) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#4| (-1013))) ELT)) (-3402 (($ |#4| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#4| (-1013))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2900 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3838 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3991)) (|has| |#4| (-1013))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3991)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2887 (((-584 |#4|) $) 18 (|has| $ (-6 -3991)) ELT)) (-3177 ((|#3| $) 47 T ELT)) (-2606 (((-584 |#4|) $) 14 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#4| $) 26 (-12 (|has| $ (-6 -3991)) (|has| |#4| (-1013))) ELT)) (-1947 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#4| |#4|) $) 21 T ELT)) (-2912 (((-584 |#3|) $) NIL T ELT)) (-2911 (((-85) |#3| $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2901 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1352 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-248 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-584 (-248 |#4|))) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3399 (((-85) $) 39 T ELT)) (-3561 (($) 17 T ELT)) (-1944 (((-695) |#4| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#4| (-1013))) ELT) (((-695) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3396 (($ $) 16 T ELT)) (-3968 (((-473) $) NIL (|has| |#4| (-554 (-473))) ELT) (($ (-584 |#4|)) 51 T ELT)) (-3526 (($ (-584 |#4|)) 13 T ELT)) (-2908 (($ $ |#3|) NIL T ELT)) (-2910 (($ $ |#3|) NIL T ELT)) (-2909 (($ $ |#3|) NIL T ELT)) (-3942 (((-773) $) 38 T ELT) (((-584 |#4|) $) 50 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 30 T ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-400 |#1| |#2| |#3| |#4|) (-13 (-890 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3968 ($ (-584 |#4|))) (-6 -3991) (-6 -3992))) (-962) (-718) (-757) (-977 |#1| |#2| |#3|)) (T -400))
+((-3968 (*1 *1 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-400 *3 *4 *5 *6)))))
+((-2658 (($) 11 T CONST)) (-2664 (($) 13 T CONST)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT)))
+(((-401 |#1| |#2| |#3|) (-10 -7 (-15 -2664 (|#1|) -3948) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2658 (|#1|) -3948)) (-402 |#2| |#3|) (-146) (-23)) (T -401))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3154 (((-3 |#1| "failed") $) 30 T ELT)) (-3153 ((|#1| $) 31 T ELT)) (-3940 (($ $ $) 27 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3944 ((|#2| $) 23 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ |#1|) 29 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 22 T CONST)) (-2664 (($) 28 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3835 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT)))
(((-402 |#1| |#2|) (-113) (-146) (-23)) (T -402))
-((-2662 (*1 *1) (-12 (-4 *1 (-402 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3938 (*1 *1 *1 *1) (-12 (-4 *1 (-402 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))))
-(-13 (-407 |t#1| |t#2|) (-950 |t#1|) (-10 -8 (-15 -2662 ($) -3946) (-15 -3938 ($ $ $))))
-(((-72) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-407 |#1| |#2|) . T) ((-13) . T) ((-950 |#1|) . T) ((-1012) . T) ((-1127) . T))
-((-1916 (((-1177 (-1177 (-483))) (-1177 (-1177 (-483))) (-830)) 26 T ELT)) (-1917 (((-1177 (-1177 (-483))) (-830)) 21 T ELT)))
-(((-403) (-10 -7 (-15 -1916 ((-1177 (-1177 (-483))) (-1177 (-1177 (-483))) (-830))) (-15 -1917 ((-1177 (-1177 (-483))) (-830))))) (T -403))
-((-1917 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1177 (-1177 (-483)))) (-5 *1 (-403)))) (-1916 (*1 *2 *2 *3) (-12 (-5 *2 (-1177 (-1177 (-483)))) (-5 *3 (-830)) (-5 *1 (-403)))))
-((-2766 (((-483) (-483)) 32 T ELT) (((-483)) 24 T ELT)) (-2770 (((-483) (-483)) 28 T ELT) (((-483)) 20 T ELT)) (-2768 (((-483) (-483)) 30 T ELT) (((-483)) 22 T ELT)) (-1919 (((-85) (-85)) 14 T ELT) (((-85)) 12 T ELT)) (-1918 (((-85) (-85)) 13 T ELT) (((-85)) 11 T ELT)) (-1920 (((-85) (-85)) 26 T ELT) (((-85)) 17 T ELT)))
-(((-404) (-10 -7 (-15 -1918 ((-85))) (-15 -1919 ((-85))) (-15 -1918 ((-85) (-85))) (-15 -1919 ((-85) (-85))) (-15 -1920 ((-85))) (-15 -2768 ((-483))) (-15 -2770 ((-483))) (-15 -2766 ((-483))) (-15 -1920 ((-85) (-85))) (-15 -2768 ((-483) (-483))) (-15 -2770 ((-483) (-483))) (-15 -2766 ((-483) (-483))))) (T -404))
-((-2766 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-404)))) (-2770 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-404)))) (-2768 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-404)))) (-1920 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404)))) (-2766 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-404)))) (-2770 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-404)))) (-2768 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-404)))) (-1920 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404)))) (-1919 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404)))) (-1918 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404)))) (-1919 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404)))) (-1918 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3845 (((-583 (-327)) $) 34 T ELT) (((-583 (-327)) $ (-583 (-327))) 145 T ELT)) (-1925 (((-583 (-1000 (-327))) $) 16 T ELT) (((-583 (-1000 (-327))) $ (-583 (-1000 (-327)))) 142 T ELT)) (-1922 (((-583 (-583 (-854 (-179)))) (-583 (-583 (-854 (-179)))) (-583 (-783))) 58 T ELT)) (-1926 (((-583 (-583 (-854 (-179)))) $) 137 T ELT)) (-3700 (((-1183) $ (-854 (-179)) (-783)) 162 T ELT)) (-1927 (($ $) 136 T ELT) (($ (-583 (-583 (-854 (-179))))) 148 T ELT) (($ (-583 (-583 (-854 (-179)))) (-583 (-783)) (-583 (-783)) (-583 (-830))) 147 T ELT) (($ (-583 (-583 (-854 (-179)))) (-583 (-783)) (-583 (-783)) (-583 (-830)) (-583 (-221))) 149 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3854 (((-483) $) 110 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1928 (($) 146 T ELT)) (-1921 (((-583 (-179)) (-583 (-583 (-854 (-179))))) 89 T ELT)) (-1924 (((-1183) $ (-583 (-854 (-179))) (-783) (-783) (-830)) 154 T ELT) (((-1183) $ (-854 (-179))) 156 T ELT) (((-1183) $ (-854 (-179)) (-783) (-783) (-830)) 155 T ELT)) (-3940 (((-772) $) 168 T ELT) (($ (-583 (-583 (-854 (-179))))) 163 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-1923 (((-1183) $ (-854 (-179))) 161 T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-405) (-13 (-1012) (-10 -8 (-15 -1928 ($)) (-15 -1927 ($ $)) (-15 -1927 ($ (-583 (-583 (-854 (-179)))))) (-15 -1927 ($ (-583 (-583 (-854 (-179)))) (-583 (-783)) (-583 (-783)) (-583 (-830)))) (-15 -1927 ($ (-583 (-583 (-854 (-179)))) (-583 (-783)) (-583 (-783)) (-583 (-830)) (-583 (-221)))) (-15 -1926 ((-583 (-583 (-854 (-179)))) $)) (-15 -3854 ((-483) $)) (-15 -1925 ((-583 (-1000 (-327))) $)) (-15 -1925 ((-583 (-1000 (-327))) $ (-583 (-1000 (-327))))) (-15 -3845 ((-583 (-327)) $)) (-15 -3845 ((-583 (-327)) $ (-583 (-327)))) (-15 -1924 ((-1183) $ (-583 (-854 (-179))) (-783) (-783) (-830))) (-15 -1924 ((-1183) $ (-854 (-179)))) (-15 -1924 ((-1183) $ (-854 (-179)) (-783) (-783) (-830))) (-15 -1923 ((-1183) $ (-854 (-179)))) (-15 -3700 ((-1183) $ (-854 (-179)) (-783))) (-15 -3940 ($ (-583 (-583 (-854 (-179)))))) (-15 -3940 ((-772) $)) (-15 -1922 ((-583 (-583 (-854 (-179)))) (-583 (-583 (-854 (-179)))) (-583 (-783)))) (-15 -1921 ((-583 (-179)) (-583 (-583 (-854 (-179))))))))) (T -405))
-((-3940 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-405)))) (-1928 (*1 *1) (-5 *1 (-405))) (-1927 (*1 *1 *1) (-5 *1 (-405))) (-1927 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-405)))) (-1927 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783))) (-5 *4 (-583 (-830))) (-5 *1 (-405)))) (-1927 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783))) (-5 *4 (-583 (-830))) (-5 *5 (-583 (-221))) (-5 *1 (-405)))) (-1926 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-405)))) (-3854 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-405)))) (-1925 (*1 *2 *1) (-12 (-5 *2 (-583 (-1000 (-327)))) (-5 *1 (-405)))) (-1925 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1000 (-327)))) (-5 *1 (-405)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-583 (-327))) (-5 *1 (-405)))) (-3845 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-327))) (-5 *1 (-405)))) (-1924 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *4 (-783)) (-5 *5 (-830)) (-5 *2 (-1183)) (-5 *1 (-405)))) (-1924 (*1 *2 *1 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-1183)) (-5 *1 (-405)))) (-1924 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-854 (-179))) (-5 *4 (-783)) (-5 *5 (-830)) (-5 *2 (-1183)) (-5 *1 (-405)))) (-1923 (*1 *2 *1 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-1183)) (-5 *1 (-405)))) (-3700 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-854 (-179))) (-5 *4 (-783)) (-5 *2 (-1183)) (-5 *1 (-405)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-405)))) (-1922 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783))) (-5 *1 (-405)))) (-1921 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-583 (-179))) (-5 *1 (-405)))))
-((-3831 (($ $) NIL T ELT) (($ $ $) 11 T ELT)))
-(((-406 |#1| |#2| |#3|) (-10 -7 (-15 -3831 (|#1| |#1| |#1|)) (-15 -3831 (|#1| |#1|))) (-407 |#2| |#3|) (-146) (-23)) (T -406))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3942 ((|#2| $) 23 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 22 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT)))
+((-2664 (*1 *1) (-12 (-4 *1 (-402 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3940 (*1 *1 *1 *1) (-12 (-4 *1 (-402 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))))
+(-13 (-407 |t#1| |t#2|) (-951 |t#1|) (-10 -8 (-15 -2664 ($) -3948) (-15 -3940 ($ $ $))))
+(((-72) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-407 |#1| |#2|) . T) ((-13) . T) ((-951 |#1|) . T) ((-1013) . T) ((-1128) . T))
+((-1917 (((-1178 (-1178 (-484))) (-1178 (-1178 (-484))) (-831)) 26 T ELT)) (-1918 (((-1178 (-1178 (-484))) (-831)) 21 T ELT)))
+(((-403) (-10 -7 (-15 -1917 ((-1178 (-1178 (-484))) (-1178 (-1178 (-484))) (-831))) (-15 -1918 ((-1178 (-1178 (-484))) (-831))))) (T -403))
+((-1918 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1178 (-1178 (-484)))) (-5 *1 (-403)))) (-1917 (*1 *2 *2 *3) (-12 (-5 *2 (-1178 (-1178 (-484)))) (-5 *3 (-831)) (-5 *1 (-403)))))
+((-2768 (((-484) (-484)) 32 T ELT) (((-484)) 24 T ELT)) (-2772 (((-484) (-484)) 28 T ELT) (((-484)) 20 T ELT)) (-2770 (((-484) (-484)) 30 T ELT) (((-484)) 22 T ELT)) (-1920 (((-85) (-85)) 14 T ELT) (((-85)) 12 T ELT)) (-1919 (((-85) (-85)) 13 T ELT) (((-85)) 11 T ELT)) (-1921 (((-85) (-85)) 26 T ELT) (((-85)) 17 T ELT)))
+(((-404) (-10 -7 (-15 -1919 ((-85))) (-15 -1920 ((-85))) (-15 -1919 ((-85) (-85))) (-15 -1920 ((-85) (-85))) (-15 -1921 ((-85))) (-15 -2770 ((-484))) (-15 -2772 ((-484))) (-15 -2768 ((-484))) (-15 -1921 ((-85) (-85))) (-15 -2770 ((-484) (-484))) (-15 -2772 ((-484) (-484))) (-15 -2768 ((-484) (-484))))) (T -404))
+((-2768 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-404)))) (-2772 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-404)))) (-2770 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-404)))) (-1921 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404)))) (-2768 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-404)))) (-2772 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-404)))) (-2770 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-404)))) (-1921 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404)))) (-1920 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404)))) (-1919 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404)))) (-1920 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404)))) (-1919 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3847 (((-584 (-327)) $) 34 T ELT) (((-584 (-327)) $ (-584 (-327))) 145 T ELT)) (-1926 (((-584 (-1001 (-327))) $) 16 T ELT) (((-584 (-1001 (-327))) $ (-584 (-1001 (-327)))) 142 T ELT)) (-1923 (((-584 (-584 (-855 (-179)))) (-584 (-584 (-855 (-179)))) (-584 (-784))) 58 T ELT)) (-1927 (((-584 (-584 (-855 (-179)))) $) 137 T ELT)) (-3702 (((-1184) $ (-855 (-179)) (-784)) 162 T ELT)) (-1928 (($ $) 136 T ELT) (($ (-584 (-584 (-855 (-179))))) 148 T ELT) (($ (-584 (-584 (-855 (-179)))) (-584 (-784)) (-584 (-784)) (-584 (-831))) 147 T ELT) (($ (-584 (-584 (-855 (-179)))) (-584 (-784)) (-584 (-784)) (-584 (-831)) (-584 (-221))) 149 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3856 (((-484) $) 110 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1929 (($) 146 T ELT)) (-1922 (((-584 (-179)) (-584 (-584 (-855 (-179))))) 89 T ELT)) (-1925 (((-1184) $ (-584 (-855 (-179))) (-784) (-784) (-831)) 154 T ELT) (((-1184) $ (-855 (-179))) 156 T ELT) (((-1184) $ (-855 (-179)) (-784) (-784) (-831)) 155 T ELT)) (-3942 (((-773) $) 168 T ELT) (($ (-584 (-584 (-855 (-179))))) 163 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1924 (((-1184) $ (-855 (-179))) 161 T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-405) (-13 (-1013) (-10 -8 (-15 -1929 ($)) (-15 -1928 ($ $)) (-15 -1928 ($ (-584 (-584 (-855 (-179)))))) (-15 -1928 ($ (-584 (-584 (-855 (-179)))) (-584 (-784)) (-584 (-784)) (-584 (-831)))) (-15 -1928 ($ (-584 (-584 (-855 (-179)))) (-584 (-784)) (-584 (-784)) (-584 (-831)) (-584 (-221)))) (-15 -1927 ((-584 (-584 (-855 (-179)))) $)) (-15 -3856 ((-484) $)) (-15 -1926 ((-584 (-1001 (-327))) $)) (-15 -1926 ((-584 (-1001 (-327))) $ (-584 (-1001 (-327))))) (-15 -3847 ((-584 (-327)) $)) (-15 -3847 ((-584 (-327)) $ (-584 (-327)))) (-15 -1925 ((-1184) $ (-584 (-855 (-179))) (-784) (-784) (-831))) (-15 -1925 ((-1184) $ (-855 (-179)))) (-15 -1925 ((-1184) $ (-855 (-179)) (-784) (-784) (-831))) (-15 -1924 ((-1184) $ (-855 (-179)))) (-15 -3702 ((-1184) $ (-855 (-179)) (-784))) (-15 -3942 ($ (-584 (-584 (-855 (-179)))))) (-15 -3942 ((-773) $)) (-15 -1923 ((-584 (-584 (-855 (-179)))) (-584 (-584 (-855 (-179)))) (-584 (-784)))) (-15 -1922 ((-584 (-179)) (-584 (-584 (-855 (-179))))))))) (T -405))
+((-3942 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-405)))) (-1929 (*1 *1) (-5 *1 (-405))) (-1928 (*1 *1 *1) (-5 *1 (-405))) (-1928 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-405)))) (-1928 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784))) (-5 *4 (-584 (-831))) (-5 *1 (-405)))) (-1928 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784))) (-5 *4 (-584 (-831))) (-5 *5 (-584 (-221))) (-5 *1 (-405)))) (-1927 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-405)))) (-3856 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-405)))) (-1926 (*1 *2 *1) (-12 (-5 *2 (-584 (-1001 (-327)))) (-5 *1 (-405)))) (-1926 (*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1001 (-327)))) (-5 *1 (-405)))) (-3847 (*1 *2 *1) (-12 (-5 *2 (-584 (-327))) (-5 *1 (-405)))) (-3847 (*1 *2 *1 *2) (-12 (-5 *2 (-584 (-327))) (-5 *1 (-405)))) (-1925 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *2 (-1184)) (-5 *1 (-405)))) (-1925 (*1 *2 *1 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-1184)) (-5 *1 (-405)))) (-1925 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-855 (-179))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *2 (-1184)) (-5 *1 (-405)))) (-1924 (*1 *2 *1 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-1184)) (-5 *1 (-405)))) (-3702 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-855 (-179))) (-5 *4 (-784)) (-5 *2 (-1184)) (-5 *1 (-405)))) (-3942 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-405)))) (-1923 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784))) (-5 *1 (-405)))) (-1922 (*1 *2 *3) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-584 (-179))) (-5 *1 (-405)))))
+((-3833 (($ $) NIL T ELT) (($ $ $) 11 T ELT)))
+(((-406 |#1| |#2| |#3|) (-10 -7 (-15 -3833 (|#1| |#1| |#1|)) (-15 -3833 (|#1| |#1|))) (-407 |#2| |#3|) (-146) (-23)) (T -406))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3944 ((|#2| $) 23 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 22 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3835 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT)))
(((-407 |#1| |#2|) (-113) (-146) (-23)) (T -407))
-((-3942 (*1 *2 *1) (-12 (-4 *1 (-407 *3 *2)) (-4 *3 (-146)) (-4 *2 (-23)))) (-2656 (*1 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3831 (*1 *1 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3833 (*1 *1 *1 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3831 (*1 *1 *1 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))))
-(-13 (-1012) (-10 -8 (-15 -3942 (|t#2| $)) (-15 -2656 ($) -3946) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3831 ($ $)) (-15 -3833 ($ $ $)) (-15 -3831 ($ $ $))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T))
-((-1930 (((-3 (-583 (-418 |#1| |#2|)) "failed") (-583 (-418 |#1| |#2|)) (-583 (-773 |#1|))) 135 T ELT)) (-1929 (((-583 (-583 (-206 |#1| |#2|))) (-583 (-206 |#1| |#2|)) (-583 (-773 |#1|))) 132 T ELT)) (-1931 (((-2 (|:| |dpolys| (-583 (-206 |#1| |#2|))) (|:| |coords| (-583 (-483)))) (-583 (-206 |#1| |#2|)) (-583 (-773 |#1|))) 87 T ELT)))
-(((-408 |#1| |#2| |#3|) (-10 -7 (-15 -1929 ((-583 (-583 (-206 |#1| |#2|))) (-583 (-206 |#1| |#2|)) (-583 (-773 |#1|)))) (-15 -1930 ((-3 (-583 (-418 |#1| |#2|)) "failed") (-583 (-418 |#1| |#2|)) (-583 (-773 |#1|)))) (-15 -1931 ((-2 (|:| |dpolys| (-583 (-206 |#1| |#2|))) (|:| |coords| (-583 (-483)))) (-583 (-206 |#1| |#2|)) (-583 (-773 |#1|))))) (-583 (-1088)) (-389) (-389)) (T -408))
-((-1931 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-773 *5))) (-14 *5 (-583 (-1088))) (-4 *6 (-389)) (-5 *2 (-2 (|:| |dpolys| (-583 (-206 *5 *6))) (|:| |coords| (-583 (-483))))) (-5 *1 (-408 *5 *6 *7)) (-5 *3 (-583 (-206 *5 *6))) (-4 *7 (-389)))) (-1930 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-418 *4 *5))) (-5 *3 (-583 (-773 *4))) (-14 *4 (-583 (-1088))) (-4 *5 (-389)) (-5 *1 (-408 *4 *5 *6)) (-4 *6 (-389)))) (-1929 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-773 *5))) (-14 *5 (-583 (-1088))) (-4 *6 (-389)) (-5 *2 (-583 (-583 (-206 *5 *6)))) (-5 *1 (-408 *5 *6 *7)) (-5 *3 (-583 (-206 *5 *6))) (-4 *7 (-389)))))
-((-3461 (((-3 $ "failed") $) 11 T ELT)) (-3005 (($ $ $) 22 T ELT)) (-2431 (($ $ $) 23 T ELT)) (-3943 (($ $ $) 9 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) 21 T ELT)))
-(((-409 |#1|) (-10 -7 (-15 -2431 (|#1| |#1| |#1|)) (-15 -3005 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-483))) (-15 -3943 (|#1| |#1| |#1|)) (-15 -3461 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-694))) (-15 ** (|#1| |#1| (-830)))) (-410)) (T -409))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3718 (($) 23 T CONST)) (-3461 (((-3 $ "failed") $) 20 T ELT)) (-2406 (((-85) $) 22 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 30 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3005 (($ $ $) 27 T ELT)) (-2431 (($ $ $) 26 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ $) 29 T ELT)) (** (($ $ (-830)) 17 T ELT) (($ $ (-694)) 21 T ELT) (($ $ (-483)) 28 T ELT)) (* (($ $ $) 18 T ELT)))
+((-3944 (*1 *2 *1) (-12 (-4 *1 (-407 *3 *2)) (-4 *3 (-146)) (-4 *2 (-23)))) (-2658 (*1 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3833 (*1 *1 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3835 (*1 *1 *1 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3833 (*1 *1 *1 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))))
+(-13 (-1013) (-10 -8 (-15 -3944 (|t#2| $)) (-15 -2658 ($) -3948) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3833 ($ $)) (-15 -3835 ($ $ $)) (-15 -3833 ($ $ $))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
+((-1931 (((-3 (-584 (-418 |#1| |#2|)) "failed") (-584 (-418 |#1| |#2|)) (-584 (-774 |#1|))) 135 T ELT)) (-1930 (((-584 (-584 (-206 |#1| |#2|))) (-584 (-206 |#1| |#2|)) (-584 (-774 |#1|))) 132 T ELT)) (-1932 (((-2 (|:| |dpolys| (-584 (-206 |#1| |#2|))) (|:| |coords| (-584 (-484)))) (-584 (-206 |#1| |#2|)) (-584 (-774 |#1|))) 87 T ELT)))
+(((-408 |#1| |#2| |#3|) (-10 -7 (-15 -1930 ((-584 (-584 (-206 |#1| |#2|))) (-584 (-206 |#1| |#2|)) (-584 (-774 |#1|)))) (-15 -1931 ((-3 (-584 (-418 |#1| |#2|)) "failed") (-584 (-418 |#1| |#2|)) (-584 (-774 |#1|)))) (-15 -1932 ((-2 (|:| |dpolys| (-584 (-206 |#1| |#2|))) (|:| |coords| (-584 (-484)))) (-584 (-206 |#1| |#2|)) (-584 (-774 |#1|))))) (-584 (-1089)) (-389) (-389)) (T -408))
+((-1932 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-774 *5))) (-14 *5 (-584 (-1089))) (-4 *6 (-389)) (-5 *2 (-2 (|:| |dpolys| (-584 (-206 *5 *6))) (|:| |coords| (-584 (-484))))) (-5 *1 (-408 *5 *6 *7)) (-5 *3 (-584 (-206 *5 *6))) (-4 *7 (-389)))) (-1931 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-418 *4 *5))) (-5 *3 (-584 (-774 *4))) (-14 *4 (-584 (-1089))) (-4 *5 (-389)) (-5 *1 (-408 *4 *5 *6)) (-4 *6 (-389)))) (-1930 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-774 *5))) (-14 *5 (-584 (-1089))) (-4 *6 (-389)) (-5 *2 (-584 (-584 (-206 *5 *6)))) (-5 *1 (-408 *5 *6 *7)) (-5 *3 (-584 (-206 *5 *6))) (-4 *7 (-389)))))
+((-3463 (((-3 $ "failed") $) 11 T ELT)) (-3007 (($ $ $) 22 T ELT)) (-2433 (($ $ $) 23 T ELT)) (-3945 (($ $ $) 9 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) 21 T ELT)))
+(((-409 |#1|) (-10 -7 (-15 -2433 (|#1| |#1| |#1|)) (-15 -3007 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-484))) (-15 -3945 (|#1| |#1| |#1|)) (-15 -3463 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-695))) (-15 ** (|#1| |#1| (-831)))) (-410)) (T -409))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3720 (($) 23 T CONST)) (-3463 (((-3 $ "failed") $) 20 T ELT)) (-2408 (((-85) $) 22 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-2482 (($ $) 30 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3007 (($ $ $) 27 T ELT)) (-2433 (($ $ $) 26 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2664 (($) 24 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3945 (($ $ $) 29 T ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 21 T ELT) (($ $ (-484)) 28 T ELT)) (* (($ $ $) 18 T ELT)))
(((-410) (-113)) (T -410))
-((-2480 (*1 *1 *1) (-4 *1 (-410))) (-3943 (*1 *1 *1 *1) (-4 *1 (-410))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-410)) (-5 *2 (-483)))) (-3005 (*1 *1 *1 *1) (-4 *1 (-410))) (-2431 (*1 *1 *1 *1) (-4 *1 (-410))))
-(-13 (-663) (-10 -8 (-15 -2480 ($ $)) (-15 -3943 ($ $ $)) (-15 ** ($ $ (-483))) (-6 -3986) (-15 -3005 ($ $ $)) (-15 -2431 ($ $ $))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-663) . T) ((-1024) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3077 (((-583 (-993)) $) NIL T ELT)) (-3825 (((-1088) $) 18 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3765 (($ $ (-347 (-483))) NIL T ELT) (($ $ (-347 (-483)) (-347 (-483))) NIL T ELT)) (-3768 (((-1067 (-2 (|:| |k| (-347 (-483))) (|:| |c| |#1|))) $) NIL T ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-3033 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1605 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3812 (($ (-694) (-1067 (-2 (|:| |k| (-347 (-483))) (|:| |c| |#1|)))) NIL T ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) NIL T CONST)) (-2560 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3953 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2559 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| |#1| (-311)) ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-2888 (((-85) $) NIL T ELT)) (-3621 (($) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3766 (((-347 (-483)) $) NIL T ELT) (((-347 (-483)) $ (-347 (-483))) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3007 (($ $ (-483)) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3771 (($ $ (-830)) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-347 (-483))) NIL T ELT) (($ $ (-993) (-347 (-483))) NIL T ELT) (($ $ (-583 (-993)) (-583 (-347 (-483)))) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3936 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3806 (($ $) 29 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-1088)) 35 (OR (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-29 (-483))) (|has| |#1| (-871)) (|has| |#1| (-1113))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-15 -3806 (|#1| |#1| (-1088)))) (|has| |#1| (-15 -3077 ((-583 (-1088)) |#1|))))) ELT) (($ $ (-1174 |#2|)) 30 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-311)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3763 (($ $ (-347 (-483))) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3937 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3762 (((-1067 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-347 (-483))))) ELT)) (-1604 (((-694) $) NIL (|has| |#1| (-311)) ELT)) (-3794 ((|#1| $ (-347 (-483))) NIL T ELT) (($ $ $) NIL (|has| (-347 (-483)) (-1024)) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3752 (($ $ (-1088)) 28 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $) 14 (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-1174 |#2|)) 16 T ELT)) (-3942 (((-347 (-483)) $) NIL T ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2887 (($ $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1174 |#2|)) NIL T ELT) (($ (-1158 |#1| |#2| |#3|)) 9 T ELT) (($ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3671 ((|#1| $ (-347 (-483))) NIL T ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) NIL T CONST)) (-3767 ((|#1| $) 21 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3764 ((|#1| $ (-347 (-483))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-483))))) (|has| |#1| (-15 -3940 (|#1| (-1088))))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-1088)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-1174 |#2|)) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)))
-(((-411 |#1| |#2| |#3|) (-13 (-1160 |#1|) (-806 $ (-1174 |#2|)) (-10 -8 (-15 -3940 ($ (-1174 |#2|))) (-15 -3940 ($ (-1158 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-347 (-483)))) (-15 -3806 ($ $ (-1174 |#2|))) |%noBranch|))) (-961) (-1088) |#1|) (T -411))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-411 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-1158 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1088)) (-14 *5 *3) (-5 *1 (-411 *3 *4 *5)))) (-3806 (*1 *1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-411 *3 *4 *5)) (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) (-14 *5 *3))))
-((-2564 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3593 (($) NIL T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2194 (((-1183) $ |#1| |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3782 ((|#2| $ |#1| |#2|) 18 T ELT)) (-1567 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-2227 (((-3 |#2| #1="failed") |#1| $) 19 T ELT)) (-3718 (($) NIL T CONST)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-3399 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-3 |#2| #1#) |#1| $) 16 T ELT)) (-3400 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#2| $ |#1|) NIL T ELT)) (-2885 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2196 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2604 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2197 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3990)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-2228 (((-583 |#1|) $) NIL T ELT)) (-2229 (((-85) |#1| $) NIL T ELT)) (-1271 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3603 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2199 (((-583 |#1|) $) NIL T ELT)) (-2200 (((-85) |#1| $) NIL T ELT)) (-3238 (((-1032) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-3795 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1351 (((-3 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2195 (($ $ |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-1272 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1944 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2201 (((-583 |#2|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1463 (($) NIL T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1943 (((-694) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-553 (-472))) ELT)) (-3524 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3940 (((-772) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1262 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1273 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-412 |#1| |#2| |#3| |#4|) (-1105 |#1| |#2|) (-1012) (-1012) (-1105 |#1| |#2|) |#2|) (T -412))
-NIL
-((-2564 (((-85) $ $) NIL T ELT)) (-3675 (((-583 (-2 (|:| -3855 $) (|:| -1699 (-583 |#4|)))) (-583 |#4|)) NIL T ELT)) (-3676 (((-583 $) (-583 |#4|)) NIL T ELT)) (-3077 (((-583 |#3|) $) NIL T ELT)) (-2904 (((-85) $) NIL T ELT)) (-2895 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3687 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3682 ((|#4| |#4| $) NIL T ELT)) (-2905 (((-2 (|:| |under| $) (|:| -3125 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3704 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2900 (((-85) $) 29 (|has| |#1| (-494)) ELT)) (-2902 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2901 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2903 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3683 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2896 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-494)) ELT)) (-2897 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-494)) ELT)) (-3152 (((-3 $ #1#) (-583 |#4|)) NIL T ELT)) (-3151 (($ (-583 |#4|)) NIL T ELT)) (-3793 (((-3 $ #1#) $) 45 T ELT)) (-3679 ((|#4| |#4| $) NIL T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT)) (-3400 (($ |#4| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2898 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-494)) ELT)) (-3688 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3677 ((|#4| |#4| $) NIL T ELT)) (-3836 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3989)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3989)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3690 (((-2 (|:| -3855 (-583 |#4|)) (|:| -1699 (-583 |#4|))) $) NIL T ELT)) (-2885 (((-583 |#4|) $) 18 (|has| $ (-6 -3989)) ELT)) (-3689 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3175 ((|#3| $) 38 T ELT)) (-2604 (((-583 |#4|) $) 19 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#4| $) 27 (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT)) (-1946 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2910 (((-583 |#3|) $) NIL T ELT)) (-2909 (((-85) |#3| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3792 (((-3 |#4| #1#) $) 42 T ELT)) (-3691 (((-583 |#4|) $) NIL T ELT)) (-3685 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3680 ((|#4| |#4| $) NIL T ELT)) (-3693 (((-85) $ $) NIL T ELT)) (-2899 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-494)) ELT)) (-3686 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3681 ((|#4| |#4| $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3795 (((-3 |#4| #1#) $) 40 T ELT)) (-1351 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3673 (((-3 $ #1#) $ |#4|) 55 T ELT)) (-3763 (($ $ |#4|) NIL T ELT)) (-1944 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-248 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-583 (-248 |#4|))) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) 17 T ELT)) (-3559 (($) 14 T ELT)) (-3942 (((-694) $) NIL T ELT)) (-1943 (((-694) |#4| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT) (((-694) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) 13 T ELT)) (-3966 (((-472) $) NIL (|has| |#4| (-553 (-472))) ELT)) (-3524 (($ (-583 |#4|)) 22 T ELT)) (-2906 (($ $ |#3|) 49 T ELT)) (-2908 (($ $ |#3|) 51 T ELT)) (-3678 (($ $) NIL T ELT)) (-2907 (($ $ |#3|) NIL T ELT)) (-3940 (((-772) $) 35 T ELT) (((-583 |#4|) $) 46 T ELT)) (-3672 (((-694) $) NIL (|has| |#3| (-317)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3692 (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3684 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3674 (((-583 |#3|) $) NIL T ELT)) (-3927 (((-85) |#3| $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-413 |#1| |#2| |#3| |#4|) (-1122 |#1| |#2| |#3| |#4|) (-494) (-717) (-756) (-976 |#1| |#2| |#3|)) (T -413))
-NIL
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL T ELT)) (-3151 (((-483) $) NIL T ELT) (((-347 (-483)) $) NIL T ELT)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-3621 (($) 17 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-3966 (((-327) $) 21 T ELT) (((-179) $) 24 T ELT) (((-347 (-1083 (-483))) $) 18 T ELT) (((-472) $) 53 T ELT)) (-3940 (((-772) $) 51 T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (((-179) $) 23 T ELT) (((-327) $) 20 T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-2656 (($) 37 T CONST)) (-2662 (($) 8 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT)))
-(((-414) (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))) (-933) (-552 (-179)) (-552 (-327)) (-553 (-347 (-1083 (-483)))) (-553 (-472)) (-10 -8 (-15 -3621 ($))))) (T -414))
-((-3621 (*1 *1) (-5 *1 (-414))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3522 (((-1047) $) 12 T ELT)) (-3523 (((-1047) $) 10 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 18 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-415) (-13 (-994) (-10 -8 (-15 -3523 ((-1047) $)) (-15 -3522 ((-1047) $))))) (T -415))
-((-3523 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-415)))) (-3522 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-415)))))
-((-2564 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3593 (($) NIL T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2194 (((-1183) $ |#1| |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3782 ((|#2| $ |#1| |#2|) 16 T ELT)) (-1567 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-2227 (((-3 |#2| #1="failed") |#1| $) 20 T ELT)) (-3718 (($) NIL T CONST)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-3399 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-3 |#2| #1#) |#1| $) 18 T ELT)) (-3400 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#2| $ |#1|) NIL T ELT)) (-2885 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2196 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2604 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2197 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3990)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-2228 (((-583 |#1|) $) 13 T ELT)) (-2229 (((-85) |#1| $) NIL T ELT)) (-1271 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3603 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2199 (((-583 |#1|) $) NIL T ELT)) (-2200 (((-85) |#1| $) NIL T ELT)) (-3238 (((-1032) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-3795 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1351 (((-3 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2195 (($ $ |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-1272 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1944 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2201 (((-583 |#2|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) 19 T ELT)) (-3794 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1463 (($) NIL T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1943 (((-694) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-553 (-472))) ELT)) (-3524 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3940 (((-772) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1262 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1273 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 11 (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3951 (((-694) $) 15 (|has| $ (-6 -3989)) ELT)))
-(((-416 |#1| |#2| |#3|) (-13 (-1105 |#1| |#2|) (-10 -7 (-6 -3989))) (-1012) (-1012) (-1071)) (T -416))
-NIL
-((-1932 (((-483) (-483) (-483)) 19 T ELT)) (-1933 (((-85) (-483) (-483) (-483) (-483)) 28 T ELT)) (-3451 (((-1177 (-583 (-483))) (-694) (-694)) 42 T ELT)))
-(((-417) (-10 -7 (-15 -1932 ((-483) (-483) (-483))) (-15 -1933 ((-85) (-483) (-483) (-483) (-483))) (-15 -3451 ((-1177 (-583 (-483))) (-694) (-694))))) (T -417))
-((-3451 (*1 *2 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1177 (-583 (-483)))) (-5 *1 (-417)))) (-1933 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-483)) (-5 *2 (-85)) (-5 *1 (-417)))) (-1932 (*1 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-417)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3077 (((-583 (-773 |#1|)) $) NIL T ELT)) (-3079 (((-1083 $) $ (-773 |#1|)) NIL T ELT) (((-1083 |#2|) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#2| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#2| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#2| (-494)) ELT)) (-2815 (((-694) $) NIL T ELT) (((-694) $ (-583 (-773 |#1|))) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-3769 (($ $) NIL (|has| |#2| (-389)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#2| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-3151 ((|#2| $) NIL T ELT) (((-347 (-483)) $) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) (((-483) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-773 |#1|) $) NIL T ELT)) (-3750 (($ $ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1934 (($ $ (-583 (-483))) NIL T ELT)) (-3953 (($ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#2| (-389)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-389)) ELT)) (-2814 (((-583 $) $) NIL T ELT)) (-3717 (((-85) $) NIL (|has| |#2| (-821)) ELT)) (-1621 (($ $ |#2| (-419 (-3951 |#1|) (-694)) $) NIL T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-327))) (|has| |#2| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-483))) (|has| |#2| (-796 (-483)))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2416 (((-694) $) NIL T ELT)) (-3080 (($ (-1083 |#2|) (-773 |#1|)) NIL T ELT) (($ (-1083 $) (-773 |#1|)) NIL T ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#2| (-419 (-3951 |#1|) (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ (-773 |#1|)) NIL T ELT)) (-2816 (((-419 (-3951 |#1|) (-694)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-1622 (($ (-1 (-419 (-3951 |#1|) (-694)) (-419 (-3951 |#1|) (-694))) $) NIL T ELT)) (-3952 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3078 (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL T ELT) (((-630 |#2|) (-1177 $)) NIL T ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#2| $) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2819 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2818 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-2 (|:| |var| (-773 |#1|)) (|:| -2397 (-694))) #1#) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1794 (((-85) $) NIL T ELT)) (-1793 ((|#2| $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-389)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#2| (-821)) ELT)) (-3460 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-494)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-494)) ELT)) (-3762 (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-773 |#1|) |#2|) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 |#2|)) NIL T ELT) (($ $ (-773 |#1|) $) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 $)) NIL T ELT)) (-3751 (($ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3752 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3942 (((-419 (-3951 |#1|) (-694)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-3966 (((-800 (-327)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-327)))) (|has| |#2| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-483)))) (|has| |#2| (-553 (-800 (-483))))) ELT) (((-472) $) NIL (-12 (|has| (-773 |#1|) (-553 (-472))) (|has| |#2| (-553 (-472)))) ELT)) (-2813 ((|#2| $) NIL (|has| |#2| (-389)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-773 |#1|)) NIL T ELT) (($ (-347 (-483))) NIL (OR (|has| |#2| (-38 (-347 (-483)))) (|has| |#2| (-950 (-347 (-483))))) ELT) (($ $) NIL (|has| |#2| (-494)) ELT)) (-3811 (((-583 |#2|) $) NIL T ELT)) (-3671 ((|#2| $ (-419 (-3951 |#1|) (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1620 (($ $ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| |#2| (-494)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL (|has| |#2| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) NIL (|has| |#2| (-38 (-347 (-483)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
-(((-418 |#1| |#2|) (-13 (-861 |#2| (-419 (-3951 |#1|) (-694)) (-773 |#1|)) (-10 -8 (-15 -1934 ($ $ (-583 (-483)))))) (-583 (-1088)) (-961)) (T -418))
-((-1934 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-418 *3 *4)) (-14 *3 (-583 (-1088))) (-4 *4 (-961)))))
-((-2564 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3183 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3701 (($ (-830)) NIL (|has| |#2| (-961)) ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-2479 (($ $ $) NIL (|has| |#2| (-717)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3131 (((-694)) NIL (|has| |#2| (-317)) ELT)) (-3782 ((|#2| $ (-483) |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL (-12 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (-12 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1012)) ELT)) (-3151 (((-483) $) NIL (-12 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) ELT) (((-347 (-483)) $) NIL (-12 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012))) ELT) ((|#2| $) NIL (|has| |#2| (-1012)) ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (-12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (-12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-630 $)) NIL (|has| |#2| (-961)) ELT)) (-3461 (((-3 $ #1#) $) NIL (|has| |#2| (-961)) ELT)) (-2990 (($) NIL (|has| |#2| (-317)) ELT)) (-1573 ((|#2| $ (-483) |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#2| $ (-483)) 11 T ELT)) (-3181 (((-85) $) NIL (|has| |#2| (-717)) ELT)) (-2885 (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2406 (((-85) $) NIL (|has| |#2| (-961)) ELT)) (-2196 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-2604 (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2197 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-1946 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2006 (((-830) $) NIL (|has| |#2| (-317)) ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (-12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (-12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-1177 $)) NIL (|has| |#2| (-961)) ELT)) (-3237 (((-1071) $) NIL (|has| |#2| (-1012)) ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-2396 (($ (-830)) NIL (|has| |#2| (-317)) ELT)) (-3238 (((-1032) $) NIL (|has| |#2| (-1012)) ELT)) (-3795 ((|#2| $) NIL (|has| (-483) (-756)) ELT)) (-2195 (($ $ |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2201 (((-583 |#2|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#2| $ (-483) |#2|) NIL T ELT) ((|#2| $ (-483)) NIL T ELT)) (-3830 ((|#2| $ $) NIL (|has| |#2| (-961)) ELT)) (-1465 (($ (-1177 |#2|)) NIL T ELT)) (-3905 (((-107)) NIL (|has| |#2| (-311)) ELT)) (-3752 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1088)) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-1943 (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3940 (((-1177 |#2|) $) NIL T ELT) (($ (-483)) NIL (OR (-12 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) (|has| |#2| (-961))) ELT) (($ (-347 (-483))) NIL (-12 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012))) ELT) (($ |#2|) NIL (|has| |#2| (-1012)) ELT) (((-772) $) NIL (|has| |#2| (-552 (-772))) ELT)) (-3121 (((-694)) NIL (|has| |#2| (-961)) CONST)) (-1262 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2656 (($) NIL (|has| |#2| (-23)) CONST)) (-2662 (($) NIL (|has| |#2| (-961)) CONST)) (-2665 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1088)) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-2562 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-2680 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2681 (((-85) $ $) 17 (|has| |#2| (-756)) ELT)) (-3943 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3831 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3833 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-694)) NIL (|has| |#2| (-961)) ELT) (($ $ (-830)) NIL (|has| |#2| (-961)) ELT)) (* (($ $ $) NIL (|has| |#2| (-961)) ELT) (($ $ |#2|) NIL (|has| |#2| (-663)) ELT) (($ |#2| $) NIL (|has| |#2| (-663)) ELT) (($ (-483) $) NIL (|has| |#2| (-21)) ELT) (($ (-694) $) NIL (|has| |#2| (-23)) ELT) (($ (-830) $) NIL (|has| |#2| (-25)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-419 |#1| |#2|) (-196 |#1| |#2|) (-694) (-717)) (T -419))
-NIL
-((-2564 (((-85) $ $) NIL T ELT)) (-1935 (((-583 (-785)) $) 16 T ELT)) (-3536 (((-444) $) 14 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1936 (($ (-444) (-583 (-785))) 12 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 23 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-420) (-13 (-994) (-10 -8 (-15 -1936 ($ (-444) (-583 (-785)))) (-15 -3536 ((-444) $)) (-15 -1935 ((-583 (-785)) $))))) (T -420))
-((-1936 (*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-583 (-785))) (-5 *1 (-420)))) (-3536 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-420)))) (-1935 (*1 *2 *1) (-12 (-5 *2 (-583 (-785))) (-5 *1 (-420)))))
-((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3718 (($) NIL T CONST)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2852 (($ $ $) 48 T ELT)) (-3512 (($ $ $) 47 T ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2853 ((|#1| $) 40 T ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-1271 ((|#1| $) 41 T ELT)) (-3603 (($ |#1| $) 18 T ELT)) (-1937 (($ (-583 |#1|)) 19 T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1272 ((|#1| $) 34 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) 11 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1273 (($ (-583 |#1|)) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 29 (|has| $ (-6 -3989)) ELT)))
-(((-421 |#1|) (-13 (-881 |#1|) (-10 -8 (-15 -1937 ($ (-583 |#1|))))) (-756)) (T -421))
-((-1937 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-421 *3)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3836 (($ $) 71 T ELT)) (-1634 (((-85) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1966 (((-353 |#2| (-347 |#2|) |#3| |#4|) $) 45 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2405 (((-3 |#4| #1#) $) 117 T ELT)) (-1635 (($ (-353 |#2| (-347 |#2|) |#3| |#4|)) 80 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-483)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-3429 (((-2 (|:| -2332 (-353 |#2| (-347 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-3940 (((-772) $) 110 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 32 T CONST)) (-3052 (((-85) $ $) 121 T ELT)) (-3831 (($ $) 76 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 72 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 77 T ELT)))
-(((-422 |#1| |#2| |#3| |#4|) (-285 |#1| |#2| |#3| |#4|) (-311) (-1153 |#1|) (-1153 (-347 |#2|)) (-290 |#1| |#2| |#3|)) (T -422))
-NIL
-((-1941 (((-483) (-583 (-483))) 53 T ELT)) (-1938 ((|#1| (-583 |#1|)) 94 T ELT)) (-1940 (((-583 |#1|) (-583 |#1|)) 95 T ELT)) (-1939 (((-583 |#1|) (-583 |#1|)) 97 T ELT)) (-3139 ((|#1| (-583 |#1|)) 96 T ELT)) (-2813 (((-583 (-483)) (-583 |#1|)) 56 T ELT)))
-(((-423 |#1|) (-10 -7 (-15 -3139 (|#1| (-583 |#1|))) (-15 -1938 (|#1| (-583 |#1|))) (-15 -1939 ((-583 |#1|) (-583 |#1|))) (-15 -1940 ((-583 |#1|) (-583 |#1|))) (-15 -2813 ((-583 (-483)) (-583 |#1|))) (-15 -1941 ((-483) (-583 (-483))))) (-1153 (-483))) (T -423))
-((-1941 (*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-483)) (-5 *1 (-423 *4)) (-4 *4 (-1153 *2)))) (-2813 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1153 (-483))) (-5 *2 (-583 (-483))) (-5 *1 (-423 *4)))) (-1940 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1153 (-483))) (-5 *1 (-423 *3)))) (-1939 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1153 (-483))) (-5 *1 (-423 *3)))) (-1938 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-423 *2)) (-4 *2 (-1153 (-483))))) (-3139 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-423 *2)) (-4 *2 (-1153 (-483))))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3124 (((-483) $) NIL (|has| (-483) (-257)) ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-821)) ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-821)) ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3617 (((-483) $) NIL (|has| (-483) (-740)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL T ELT) (((-3 (-1088) #1#) $) NIL (|has| (-483) (-950 (-1088))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| (-483) (-950 (-483))) ELT) (((-3 (-483) #1#) $) NIL (|has| (-483) (-950 (-483))) ELT)) (-3151 (((-483) $) NIL T ELT) (((-1088) $) NIL (|has| (-483) (-950 (-1088))) ELT) (((-347 (-483)) $) NIL (|has| (-483) (-950 (-483))) ELT) (((-483) $) NIL (|has| (-483) (-950 (-483))) ELT)) (-2560 (($ $ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| (-483) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| (-483) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL T ELT) (((-630 (-483)) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) NIL (|has| (-483) (-482)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-3181 (((-85) $) NIL (|has| (-483) (-740)) ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (|has| (-483) (-796 (-483))) ELT) (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (|has| (-483) (-796 (-327))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2992 (($ $) NIL T ELT)) (-2994 (((-483) $) NIL T ELT)) (-3439 (((-632 $) $) NIL (|has| (-483) (-1064)) ELT)) (-3182 (((-85) $) NIL (|has| (-483) (-740)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2527 (($ $ $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| (-483) (-756)) ELT)) (-3952 (($ (-1 (-483) (-483)) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| (-483) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| (-483) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL T ELT) (((-630 (-483)) (-1177 $)) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL (|has| (-483) (-1064)) CONST)) (-1942 (($ (-347 (-483))) 9 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3123 (($ $) NIL (|has| (-483) (-257)) ELT) (((-347 (-483)) $) NIL T ELT)) (-3125 (((-483) $) NIL (|has| (-483) (-482)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-821)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3762 (($ $ (-583 (-483)) (-583 (-483))) NIL (|has| (-483) (-259 (-483))) ELT) (($ $ (-483) (-483)) NIL (|has| (-483) (-259 (-483))) ELT) (($ $ (-248 (-483))) NIL (|has| (-483) (-259 (-483))) ELT) (($ $ (-583 (-248 (-483)))) NIL (|has| (-483) (-259 (-483))) ELT) (($ $ (-583 (-1088)) (-583 (-483))) NIL (|has| (-483) (-452 (-1088) (-483))) ELT) (($ $ (-1088) (-483)) NIL (|has| (-483) (-452 (-1088) (-483))) ELT)) (-1604 (((-694) $) NIL T ELT)) (-3794 (($ $ (-483)) NIL (|has| (-483) (-241 (-483) (-483))) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-3752 (($ $ (-1 (-483) (-483))) NIL T ELT) (($ $ (-1 (-483) (-483)) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $) NIL (|has| (-483) (-189)) ELT) (($ $ (-694)) NIL (|has| (-483) (-189)) ELT)) (-2991 (($ $) NIL T ELT)) (-2993 (((-483) $) NIL T ELT)) (-3966 (((-800 (-483)) $) NIL (|has| (-483) (-553 (-800 (-483)))) ELT) (((-800 (-327)) $) NIL (|has| (-483) (-553 (-800 (-327)))) ELT) (((-472) $) NIL (|has| (-483) (-553 (-472))) ELT) (((-327) $) NIL (|has| (-483) (-933)) ELT) (((-179) $) NIL (|has| (-483) (-933)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-483) (-821))) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) 8 T ELT) (($ (-483)) NIL T ELT) (($ (-1088)) NIL (|has| (-483) (-950 (-1088))) ELT) (((-347 (-483)) $) NIL T ELT) (((-917 16) $) 10 T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-483) (-821))) (|has| (-483) (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-3126 (((-483) $) NIL (|has| (-483) (-482)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3377 (($ $) NIL (|has| (-483) (-740)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-1 (-483) (-483))) NIL T ELT) (($ $ (-1 (-483) (-483)) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $) NIL (|has| (-483) (-189)) ELT) (($ $ (-694)) NIL (|has| (-483) (-189)) ELT)) (-2562 (((-85) $ $) NIL (|has| (-483) (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| (-483) (-756)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL (|has| (-483) (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| (-483) (-756)) ELT)) (-3943 (($ $ $) NIL T ELT) (($ (-483) (-483)) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ (-483)) NIL T ELT)))
-(((-424) (-13 (-904 (-483)) (-552 (-347 (-483))) (-552 (-917 16)) (-10 -8 (-15 -3123 ((-347 (-483)) $)) (-15 -1942 ($ (-347 (-483))))))) (T -424))
-((-3123 (*1 *2 *1) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-424)))) (-1942 (*1 *1 *2) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-424)))))
-((-2604 (((-583 |#2|) $) 31 T ELT)) (-3240 (((-85) |#2| $) 39 T ELT)) (-1944 (((-85) (-1 (-85) |#2|) $) 26 T ELT)) (-3762 (($ $ (-583 (-248 |#2|))) 13 T ELT) (($ $ (-248 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#2|) $) 30 T ELT) (((-694) |#2| $) 37 T ELT)) (-3940 (((-772) $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 23 T ELT)) (-3052 (((-85) $ $) 35 T ELT)) (-3951 (((-694) $) 18 T ELT)))
-(((-425 |#1| |#2|) (-10 -7 (-15 -3052 ((-85) |#1| |#1|)) (-15 -3940 ((-772) |#1|)) (-15 -3762 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -3762 (|#1| |#1| |#2| |#2|)) (-15 -3762 (|#1| |#1| (-248 |#2|))) (-15 -3762 (|#1| |#1| (-583 (-248 |#2|)))) (-15 -3240 ((-85) |#2| |#1|)) (-15 -1943 ((-694) |#2| |#1|)) (-15 -2604 ((-583 |#2|) |#1|)) (-15 -1943 ((-694) (-1 (-85) |#2|) |#1|)) (-15 -1944 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1945 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3951 ((-694) |#1|))) (-426 |#2|) (-1127)) (T -425))
-NIL
-((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3718 (($) 7 T CONST)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-426 |#1|) (-113) (-1127)) (T -426))
-((-3952 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-426 *3)) (-4 *3 (-1127)))) (-1946 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -3990)) (-4 *1 (-426 *3)) (-4 *3 (-1127)))) (-1945 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3989)) (-4 *1 (-426 *4)) (-4 *4 (-1127)) (-5 *2 (-85)))) (-1944 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3989)) (-4 *1 (-426 *4)) (-4 *4 (-1127)) (-5 *2 (-85)))) (-1943 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3989)) (-4 *1 (-426 *4)) (-4 *4 (-1127)) (-5 *2 (-694)))) (-2885 (*1 *2 *1) (-12 (|has| *1 (-6 -3989)) (-4 *1 (-426 *3)) (-4 *3 (-1127)) (-5 *2 (-583 *3)))) (-2604 (*1 *2 *1) (-12 (|has| *1 (-6 -3989)) (-4 *1 (-426 *3)) (-4 *3 (-1127)) (-5 *2 (-583 *3)))) (-1943 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3989)) (-4 *1 (-426 *3)) (-4 *3 (-1127)) (-4 *3 (-1012)) (-5 *2 (-694)))) (-3240 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3989)) (-4 *1 (-426 *3)) (-4 *3 (-1127)) (-4 *3 (-1012)) (-5 *2 (-85)))))
-(-13 (-34) (-10 -8 (IF (|has| |t#1| (-552 (-772))) (-6 (-552 (-772))) |%noBranch|) (IF (|has| |t#1| (-72)) (-6 (-72)) |%noBranch|) (IF (|has| |t#1| (-1012)) (-6 (-1012)) |%noBranch|) (IF (|has| |t#1| (-1012)) (IF (|has| |t#1| (-259 |t#1|)) (-6 (-259 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3952 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -3990)) (-15 -1946 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -3989)) (PROGN (-15 -1945 ((-85) (-1 (-85) |t#1|) $)) (-15 -1944 ((-85) (-1 (-85) |t#1|) $)) (-15 -1943 ((-694) (-1 (-85) |t#1|) $)) (-15 -2885 ((-583 |t#1|) $)) (-15 -2604 ((-583 |t#1|) $)) (IF (|has| |t#1| (-1012)) (PROGN (-15 -1943 ((-694) |t#1| $)) (-15 -3240 ((-85) |t#1| $))) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T))
-((-3940 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT)))
-(((-427 |#1|) (-113) (-1127)) (T -427))
-NIL
-(-13 (-552 |t#1|) (-555 |t#1|))
-(((-555 |#1|) . T) ((-552 |#1|) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1947 (($ (-1071)) 8 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 15 T ELT) (((-1071) $) 12 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 11 T ELT)))
-(((-428) (-13 (-1012) (-552 (-1071)) (-10 -8 (-15 -1947 ($ (-1071)))))) (T -428))
-((-1947 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-428)))))
-((-3486 (($ $) 15 T ELT)) (-3484 (($ $) 24 T ELT)) (-3488 (($ $) 12 T ELT)) (-3489 (($ $) 10 T ELT)) (-3487 (($ $) 17 T ELT)) (-3485 (($ $) 22 T ELT)))
-(((-429 |#1|) (-10 -7 (-15 -3485 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3484 (|#1| |#1|)) (-15 -3486 (|#1| |#1|))) (-430)) (T -429))
-NIL
-((-3486 (($ $) 11 T ELT)) (-3484 (($ $) 10 T ELT)) (-3488 (($ $) 9 T ELT)) (-3489 (($ $) 8 T ELT)) (-3487 (($ $) 7 T ELT)) (-3485 (($ $) 6 T ELT)))
+((-2482 (*1 *1 *1) (-4 *1 (-410))) (-3945 (*1 *1 *1 *1) (-4 *1 (-410))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-410)) (-5 *2 (-484)))) (-3007 (*1 *1 *1 *1) (-4 *1 (-410))) (-2433 (*1 *1 *1 *1) (-4 *1 (-410))))
+(-13 (-664) (-10 -8 (-15 -2482 ($ $)) (-15 -3945 ($ $ $)) (-15 ** ($ $ (-484))) (-6 -3988) (-15 -3007 ($ $ $)) (-15 -2433 ($ $ $))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-664) . T) ((-1025) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3079 (((-584 (-994)) $) NIL T ELT)) (-3827 (((-1089) $) 18 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2061 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3767 (($ $ (-347 (-484))) NIL T ELT) (($ $ (-347 (-484)) (-347 (-484))) NIL T ELT)) (-3770 (((-1068 (-2 (|:| |k| (-347 (-484))) (|:| |c| |#1|))) $) NIL T ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3771 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3967 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-3035 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3814 (($ (-695) (-1068 (-2 (|:| |k| (-347 (-484))) (|:| |c| |#1|)))) NIL T ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3720 (($) NIL T CONST)) (-2562 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3955 (($ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2561 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3719 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-2890 (((-85) $) NIL T ELT)) (-3623 (($) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3768 (((-347 (-484)) $) NIL T ELT) (((-347 (-484)) $ (-347 (-484))) NIL T ELT)) (-2408 (((-85) $) NIL T ELT)) (-3009 (($ $ (-484)) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3773 (($ $ (-831)) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3933 (((-85) $) NIL T ELT)) (-2891 (($ |#1| (-347 (-484))) NIL T ELT) (($ $ (-994) (-347 (-484))) NIL T ELT) (($ $ (-584 (-994)) (-584 (-347 (-484)))) NIL T ELT)) (-3954 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3938 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2892 (($ $) NIL T ELT)) (-3171 ((|#1| $) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3808 (($ $) 29 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-1089)) 35 (OR (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-872)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-15 -3808 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3079 ((-584 (-1089)) |#1|))))) ELT) (($ $ (-1175 |#2|)) 30 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-311)) ELT)) (-3141 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3728 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3765 (($ $ (-347 (-484))) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3939 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3764 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-347 (-484))))) ELT)) (-1605 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-3796 ((|#1| $ (-347 (-484))) NIL T ELT) (($ $ $) NIL (|has| (-347 (-484)) (-1025)) ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3754 (($ $ (-1089)) 28 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $) 14 (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-1175 |#2|)) 16 T ELT)) (-3944 (((-347 (-484)) $) NIL T ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2889 (($ $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1175 |#2|)) NIL T ELT) (($ (-1159 |#1| |#2| |#3|)) 9 T ELT) (($ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3673 ((|#1| $ (-347 (-484))) NIL T ELT)) (-2700 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3123 (((-695)) NIL T CONST)) (-3769 ((|#1| $) 21 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2060 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3766 ((|#1| $ (-347 (-484))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-484))))) (|has| |#1| (-15 -3942 (|#1| (-1089))))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-2667 (($ $ (-1089)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-1175 |#2|)) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)))
+(((-411 |#1| |#2| |#3|) (-13 (-1161 |#1|) (-807 $ (-1175 |#2|)) (-10 -8 (-15 -3942 ($ (-1175 |#2|))) (-15 -3942 ($ (-1159 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-347 (-484)))) (-15 -3808 ($ $ (-1175 |#2|))) |%noBranch|))) (-962) (-1089) |#1|) (T -411))
+((-3942 (*1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-411 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-3942 (*1 *1 *2) (-12 (-5 *2 (-1159 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1089)) (-14 *5 *3) (-5 *1 (-411 *3 *4 *5)))) (-3808 (*1 *1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-411 *3 *4 *5)) (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) (-14 *5 *3))))
+((-2566 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3595 (($) NIL T ELT) (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2196 (((-1184) $ |#1| |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3784 ((|#2| $ |#1| |#2|) 18 T ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-3706 (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-2229 (((-3 |#2| #1="failed") |#1| $) 19 T ELT)) (-3720 (($) NIL T CONST)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3401 (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3991)) ELT) (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-3 |#2| #1#) |#1| $) 16 T ELT)) (-3402 (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-3838 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3991)) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-1574 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3992)) ELT)) (-3110 ((|#2| $ |#1|) NIL T ELT)) (-2887 (((-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2198 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2606 (((-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT)) (-2199 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2230 (((-584 |#1|) $) NIL T ELT)) (-2231 (((-85) |#1| $) NIL T ELT)) (-1272 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3605 (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2201 (((-584 |#1|) $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL T ELT)) (-3240 (((-1033) $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3797 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1352 (((-3 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2197 (($ $ |#2|) NIL (|has| $ (-6 -3992)) ELT)) (-1273 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-248 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2200 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT)) (-2203 (((-584 |#2|) $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) NIL T ELT)) (-3796 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1464 (($) NIL T ELT) (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1944 (((-695) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT) (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3396 (($ $) NIL T ELT)) (-3968 (((-473) $) NIL (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-554 (-473))) ELT)) (-3526 (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3942 (((-773) $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1263 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1274 (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-412 |#1| |#2| |#3| |#4|) (-1106 |#1| |#2|) (-1013) (-1013) (-1106 |#1| |#2|) |#2|) (T -412))
+NIL
+((-2566 (((-85) $ $) NIL T ELT)) (-3677 (((-584 (-2 (|:| -3857 $) (|:| -1700 (-584 |#4|)))) (-584 |#4|)) NIL T ELT)) (-3678 (((-584 $) (-584 |#4|)) NIL T ELT)) (-3079 (((-584 |#3|) $) NIL T ELT)) (-2906 (((-85) $) NIL T ELT)) (-2897 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3689 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3684 ((|#4| |#4| $) NIL T ELT)) (-2907 (((-2 (|:| |under| $) (|:| -3127 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3706 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3991)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3720 (($) NIL T CONST)) (-2902 (((-85) $) 29 (|has| |#1| (-495)) ELT)) (-2904 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2903 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2905 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3685 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2898 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-2899 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-3154 (((-3 $ #1#) (-584 |#4|)) NIL T ELT)) (-3153 (($ (-584 |#4|)) NIL T ELT)) (-3795 (((-3 $ #1#) $) 45 T ELT)) (-3681 ((|#4| |#4| $) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#4| (-1013))) ELT)) (-3402 (($ |#4| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#4| (-1013))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2900 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3690 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3679 ((|#4| |#4| $) NIL T ELT)) (-3838 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3991)) (|has| |#4| (-1013))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3991)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3991)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3692 (((-2 (|:| -3857 (-584 |#4|)) (|:| -1700 (-584 |#4|))) $) NIL T ELT)) (-2887 (((-584 |#4|) $) 18 (|has| $ (-6 -3991)) ELT)) (-3691 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3177 ((|#3| $) 38 T ELT)) (-2606 (((-584 |#4|) $) 19 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#4| $) 27 (-12 (|has| $ (-6 -3991)) (|has| |#4| (-1013))) ELT)) (-1947 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2912 (((-584 |#3|) $) NIL T ELT)) (-2911 (((-85) |#3| $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3794 (((-3 |#4| #1#) $) 42 T ELT)) (-3693 (((-584 |#4|) $) NIL T ELT)) (-3687 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3682 ((|#4| |#4| $) NIL T ELT)) (-3695 (((-85) $ $) NIL T ELT)) (-2901 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3688 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3683 ((|#4| |#4| $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3797 (((-3 |#4| #1#) $) 40 T ELT)) (-1352 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3675 (((-3 $ #1#) $ |#4|) 55 T ELT)) (-3765 (($ $ |#4|) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-248 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-584 (-248 |#4|))) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3399 (((-85) $) 17 T ELT)) (-3561 (($) 14 T ELT)) (-3944 (((-695) $) NIL T ELT)) (-1944 (((-695) |#4| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#4| (-1013))) ELT) (((-695) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3396 (($ $) 13 T ELT)) (-3968 (((-473) $) NIL (|has| |#4| (-554 (-473))) ELT)) (-3526 (($ (-584 |#4|)) 22 T ELT)) (-2908 (($ $ |#3|) 49 T ELT)) (-2910 (($ $ |#3|) 51 T ELT)) (-3680 (($ $) NIL T ELT)) (-2909 (($ $ |#3|) NIL T ELT)) (-3942 (((-773) $) 35 T ELT) (((-584 |#4|) $) 46 T ELT)) (-3674 (((-695) $) NIL (|has| |#3| (-317)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3694 (((-3 (-2 (|:| |bas| $) (|:| -3320 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3320 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3686 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3676 (((-584 |#3|) $) NIL T ELT)) (-3929 (((-85) |#3| $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-413 |#1| |#2| |#3| |#4|) (-1123 |#1| |#2| |#3| |#4|) (-495) (-718) (-757) (-977 |#1| |#2| |#3|)) (T -413))
+NIL
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3771 (($ $) NIL T ELT)) (-3967 (((-345 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL T ELT)) (-3153 (((-484) $) NIL T ELT) (((-347 (-484)) $) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-3719 (((-85) $) NIL T ELT)) (-3623 (($) 17 T ELT)) (-2408 (((-85) $) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3728 (((-345 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-3968 (((-327) $) 21 T ELT) (((-179) $) 24 T ELT) (((-347 (-1084 (-484))) $) 18 T ELT) (((-473) $) 53 T ELT)) (-3942 (((-773) $) 51 T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (((-179) $) 23 T ELT) (((-327) $) 20 T ELT)) (-3123 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-2658 (($) 37 T CONST)) (-2664 (($) 8 T CONST)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ $) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT)))
+(((-414) (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))) (-934) (-553 (-179)) (-553 (-327)) (-554 (-347 (-1084 (-484)))) (-554 (-473)) (-10 -8 (-15 -3623 ($))))) (T -414))
+((-3623 (*1 *1) (-5 *1 (-414))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3524 (((-1048) $) 12 T ELT)) (-3525 (((-1048) $) 10 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-415) (-13 (-995) (-10 -8 (-15 -3525 ((-1048) $)) (-15 -3524 ((-1048) $))))) (T -415))
+((-3525 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-415)))) (-3524 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-415)))))
+((-2566 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3595 (($) NIL T ELT) (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2196 (((-1184) $ |#1| |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3784 ((|#2| $ |#1| |#2|) 16 T ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-3706 (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-2229 (((-3 |#2| #1="failed") |#1| $) 20 T ELT)) (-3720 (($) NIL T CONST)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3401 (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3991)) ELT) (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-3 |#2| #1#) |#1| $) 18 T ELT)) (-3402 (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-3838 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3991)) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-1574 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3992)) ELT)) (-3110 ((|#2| $ |#1|) NIL T ELT)) (-2887 (((-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2198 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2606 (((-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT)) (-2199 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2230 (((-584 |#1|) $) 13 T ELT)) (-2231 (((-85) |#1| $) NIL T ELT)) (-1272 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3605 (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2201 (((-584 |#1|) $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL T ELT)) (-3240 (((-1033) $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3797 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1352 (((-3 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2197 (($ $ |#2|) NIL (|has| $ (-6 -3992)) ELT)) (-1273 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-248 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2200 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT)) (-2203 (((-584 |#2|) $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) 19 T ELT)) (-3796 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1464 (($) NIL T ELT) (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1944 (((-695) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT) (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3396 (($ $) NIL T ELT)) (-3968 (((-473) $) NIL (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-554 (-473))) ELT)) (-3526 (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3942 (((-773) $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1263 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1274 (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 11 (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3953 (((-695) $) 15 (|has| $ (-6 -3991)) ELT)))
+(((-416 |#1| |#2| |#3|) (-13 (-1106 |#1| |#2|) (-10 -7 (-6 -3991))) (-1013) (-1013) (-1072)) (T -416))
+NIL
+((-1933 (((-484) (-484) (-484)) 19 T ELT)) (-1934 (((-85) (-484) (-484) (-484) (-484)) 28 T ELT)) (-3453 (((-1178 (-584 (-484))) (-695) (-695)) 42 T ELT)))
+(((-417) (-10 -7 (-15 -1933 ((-484) (-484) (-484))) (-15 -1934 ((-85) (-484) (-484) (-484) (-484))) (-15 -3453 ((-1178 (-584 (-484))) (-695) (-695))))) (T -417))
+((-3453 (*1 *2 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1178 (-584 (-484)))) (-5 *1 (-417)))) (-1934 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-85)) (-5 *1 (-417)))) (-1933 (*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-417)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3079 (((-584 (-774 |#1|)) $) NIL T ELT)) (-3081 (((-1084 $) $ (-774 |#1|)) NIL T ELT) (((-1084 |#2|) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL (|has| |#2| (-495)) ELT)) (-2061 (($ $) NIL (|has| |#2| (-495)) ELT)) (-2059 (((-85) $) NIL (|has| |#2| (-495)) ELT)) (-2817 (((-695) $) NIL T ELT) (((-695) $ (-584 (-774 |#1|))) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-3771 (($ $) NIL (|has| |#2| (-389)) ELT)) (-3967 (((-345 $) $) NIL (|has| |#2| (-389)) ELT)) (-2702 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-3153 ((|#2| $) NIL T ELT) (((-347 (-484)) $) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) (((-484) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-774 |#1|) $) NIL T ELT)) (-3752 (($ $ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1935 (($ $ (-584 (-484))) NIL T ELT)) (-3955 (($ $) NIL T ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#2| (-389)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-389)) ELT)) (-2816 (((-584 $) $) NIL T ELT)) (-3719 (((-85) $) NIL (|has| |#2| (-822)) ELT)) (-1622 (($ $ |#2| (-419 (-3953 |#1|) (-695)) $) NIL T ELT)) (-2794 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-327))) (|has| |#2| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-484))) (|has| |#2| (-797 (-484)))) ELT)) (-2408 (((-85) $) NIL T ELT)) (-2418 (((-695) $) NIL T ELT)) (-3082 (($ (-1084 |#2|) (-774 |#1|)) NIL T ELT) (($ (-1084 $) (-774 |#1|)) NIL T ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2891 (($ |#2| (-419 (-3953 |#1|) (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-3759 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $ (-774 |#1|)) NIL T ELT)) (-2818 (((-419 (-3953 |#1|) (-695)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-1623 (($ (-1 (-419 (-3953 |#1|) (-695)) (-419 (-3953 |#1|) (-695))) $) NIL T ELT)) (-3954 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3080 (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-2278 (((-631 (-484)) (-1178 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL T ELT) (((-631 |#2|) (-1178 $)) NIL T ELT)) (-2892 (($ $) NIL T ELT)) (-3171 ((|#2| $) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2821 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-2 (|:| |var| (-774 |#1|)) (|:| -2399 (-695))) #1#) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1795 (((-85) $) NIL T ELT)) (-1794 ((|#2| $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#2| (-389)) ELT)) (-3141 (($ (-584 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-3728 (((-345 $) $) NIL (|has| |#2| (-822)) ELT)) (-3462 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT)) (-3764 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-774 |#1|) |#2|) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 |#2|)) NIL T ELT) (($ $ (-774 |#1|) $) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 $)) NIL T ELT)) (-3753 (($ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3754 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3944 (((-419 (-3953 |#1|) (-695)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-3968 (((-801 (-327)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-327)))) (|has| |#2| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-484)))) (|has| |#2| (-554 (-801 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-774 |#1|) (-554 (-473))) (|has| |#2| (-554 (-473)))) ELT)) (-2815 ((|#2| $) NIL (|has| |#2| (-389)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-389)) ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-774 |#1|)) NIL T ELT) (($ (-347 (-484))) NIL (OR (|has| |#2| (-38 (-347 (-484)))) (|has| |#2| (-951 (-347 (-484))))) ELT) (($ $) NIL (|has| |#2| (-495)) ELT)) (-3813 (((-584 |#2|) $) NIL T ELT)) (-3673 ((|#2| $ (-419 (-3953 |#1|) (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-2700 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3123 (((-695)) NIL T CONST)) (-1621 (($ $ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL (|has| |#2| (-495)) ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-2667 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL (|has| |#2| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) NIL (|has| |#2| (-38 (-347 (-484)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
+(((-418 |#1| |#2|) (-13 (-862 |#2| (-419 (-3953 |#1|) (-695)) (-774 |#1|)) (-10 -8 (-15 -1935 ($ $ (-584 (-484)))))) (-584 (-1089)) (-962)) (T -418))
+((-1935 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-418 *3 *4)) (-14 *3 (-584 (-1089))) (-4 *4 (-962)))))
+((-2566 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3185 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3703 (($ (-831)) NIL (|has| |#2| (-962)) ELT)) (-2196 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-2481 (($ $ $) NIL (|has| |#2| (-718)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3133 (((-695)) NIL (|has| |#2| (-317)) ELT)) (-3784 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3992)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 (-484) #1#) $) NIL (-12 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (-12 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1013)) ELT)) (-3153 (((-484) $) NIL (-12 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) ELT) (((-347 (-484)) $) NIL (-12 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013))) ELT) ((|#2| $) NIL (|has| |#2| (-1013)) ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL (-12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (-12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-631 $)) NIL (|has| |#2| (-962)) ELT)) (-3463 (((-3 $ #1#) $) NIL (|has| |#2| (-962)) ELT)) (-2992 (($) NIL (|has| |#2| (-317)) ELT)) (-1574 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3992)) ELT)) (-3110 ((|#2| $ (-484)) 11 T ELT)) (-3183 (((-85) $) NIL (|has| |#2| (-718)) ELT)) (-2887 (((-584 |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2408 (((-85) $) NIL (|has| |#2| (-962)) ELT)) (-2198 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2529 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-2606 (((-584 |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT)) (-2199 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2855 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-1947 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2008 (((-831) $) NIL (|has| |#2| (-317)) ELT)) (-2278 (((-631 (-484)) (-1178 $)) NIL (-12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-1178 $)) NIL (|has| |#2| (-962)) ELT)) (-3239 (((-1072) $) NIL (|has| |#2| (-1013)) ELT)) (-2201 (((-584 (-484)) $) NIL T ELT)) (-2202 (((-85) (-484) $) NIL T ELT)) (-2398 (($ (-831)) NIL (|has| |#2| (-317)) ELT)) (-3240 (((-1033) $) NIL (|has| |#2| (-1013)) ELT)) (-3797 ((|#2| $) NIL (|has| (-484) (-757)) ELT)) (-2197 (($ $ |#2|) NIL (|has| $ (-6 -3992)) ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2200 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT)) (-2203 (((-584 |#2|) $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) NIL T ELT)) (-3796 ((|#2| $ (-484) |#2|) NIL T ELT) ((|#2| $ (-484)) NIL T ELT)) (-3832 ((|#2| $ $) NIL (|has| |#2| (-962)) ELT)) (-1466 (($ (-1178 |#2|)) NIL T ELT)) (-3907 (((-107)) NIL (|has| |#2| (-311)) ELT)) (-3754 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-1944 (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT)) (-3396 (($ $) NIL T ELT)) (-3942 (((-1178 |#2|) $) NIL T ELT) (($ (-484)) NIL (OR (-12 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-962))) ELT) (($ (-347 (-484))) NIL (-12 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013))) ELT) (($ |#2|) NIL (|has| |#2| (-1013)) ELT) (((-773) $) NIL (|has| |#2| (-553 (-773))) ELT)) (-3123 (((-695)) NIL (|has| |#2| (-962)) CONST)) (-1263 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2658 (($) NIL (|has| |#2| (-23)) CONST)) (-2664 (($) NIL (|has| |#2| (-962)) CONST)) (-2667 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-2564 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-3054 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-2682 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2683 (((-85) $ $) 17 (|has| |#2| (-757)) ELT)) (-3945 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3833 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3835 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-695)) NIL (|has| |#2| (-962)) ELT) (($ $ (-831)) NIL (|has| |#2| (-962)) ELT)) (* (($ $ $) NIL (|has| |#2| (-962)) ELT) (($ $ |#2|) NIL (|has| |#2| (-664)) ELT) (($ |#2| $) NIL (|has| |#2| (-664)) ELT) (($ (-484) $) NIL (|has| |#2| (-21)) ELT) (($ (-695) $) NIL (|has| |#2| (-23)) ELT) (($ (-831) $) NIL (|has| |#2| (-25)) ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-419 |#1| |#2|) (-196 |#1| |#2|) (-695) (-718)) (T -419))
+NIL
+((-2566 (((-85) $ $) NIL T ELT)) (-1936 (((-584 (-786)) $) 16 T ELT)) (-3538 (((-444) $) 14 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-1937 (($ (-444) (-584 (-786))) 12 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 23 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-420) (-13 (-995) (-10 -8 (-15 -1937 ($ (-444) (-584 (-786)))) (-15 -3538 ((-444) $)) (-15 -1936 ((-584 (-786)) $))))) (T -420))
+((-1937 (*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-584 (-786))) (-5 *1 (-420)))) (-3538 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-420)))) (-1936 (*1 *2 *1) (-12 (-5 *2 (-584 (-786))) (-5 *1 (-420)))))
+((-2566 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3720 (($) NIL T CONST)) (-2887 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2854 (($ $ $) 48 T ELT)) (-3514 (($ $ $) 47 T ELT)) (-2606 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2855 ((|#1| $) 40 T ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3239 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-1272 ((|#1| $) 41 T ELT)) (-3605 (($ |#1| $) 18 T ELT)) (-1938 (($ (-584 |#1|)) 19 T ELT)) (-3240 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 34 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) 11 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3396 (($ $) NIL T ELT)) (-3942 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1274 (($ (-584 |#1|)) 45 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) 29 (|has| $ (-6 -3991)) ELT)))
+(((-421 |#1|) (-13 (-882 |#1|) (-10 -8 (-15 -1938 ($ (-584 |#1|))))) (-757)) (T -421))
+((-1938 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-421 *3)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3838 (($ $) 71 T ELT)) (-1635 (((-85) $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-1967 (((-353 |#2| (-347 |#2|) |#3| |#4|) $) 45 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2407 (((-3 |#4| #1#) $) 117 T ELT)) (-1636 (($ (-353 |#2| (-347 |#2|) |#3| |#4|)) 80 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-484)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-3431 (((-2 (|:| -2334 (-353 |#2| (-347 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-3942 (((-773) $) 110 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) 32 T CONST)) (-3054 (((-85) $ $) 121 T ELT)) (-3833 (($ $) 76 T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) 72 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 77 T ELT)))
+(((-422 |#1| |#2| |#3| |#4|) (-285 |#1| |#2| |#3| |#4|) (-311) (-1154 |#1|) (-1154 (-347 |#2|)) (-290 |#1| |#2| |#3|)) (T -422))
+NIL
+((-1942 (((-484) (-584 (-484))) 53 T ELT)) (-1939 ((|#1| (-584 |#1|)) 94 T ELT)) (-1941 (((-584 |#1|) (-584 |#1|)) 95 T ELT)) (-1940 (((-584 |#1|) (-584 |#1|)) 97 T ELT)) (-3141 ((|#1| (-584 |#1|)) 96 T ELT)) (-2815 (((-584 (-484)) (-584 |#1|)) 56 T ELT)))
+(((-423 |#1|) (-10 -7 (-15 -3141 (|#1| (-584 |#1|))) (-15 -1939 (|#1| (-584 |#1|))) (-15 -1940 ((-584 |#1|) (-584 |#1|))) (-15 -1941 ((-584 |#1|) (-584 |#1|))) (-15 -2815 ((-584 (-484)) (-584 |#1|))) (-15 -1942 ((-484) (-584 (-484))))) (-1154 (-484))) (T -423))
+((-1942 (*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-484)) (-5 *1 (-423 *4)) (-4 *4 (-1154 *2)))) (-2815 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-1154 (-484))) (-5 *2 (-584 (-484))) (-5 *1 (-423 *4)))) (-1941 (*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1154 (-484))) (-5 *1 (-423 *3)))) (-1940 (*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1154 (-484))) (-5 *1 (-423 *3)))) (-1939 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-423 *2)) (-4 *2 (-1154 (-484))))) (-3141 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-423 *2)) (-4 *2 (-1154 (-484))))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3126 (((-484) $) NIL (|has| (-484) (-257)) ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-822)) ELT)) (-3771 (($ $) NIL T ELT)) (-3967 (((-345 $) $) NIL T ELT)) (-2702 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-822)) ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3619 (((-484) $) NIL (|has| (-484) (-741)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL (|has| (-484) (-951 (-1089))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| (-484) (-951 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-484) (-951 (-484))) ELT)) (-3153 (((-484) $) NIL T ELT) (((-1089) $) NIL (|has| (-484) (-951 (-1089))) ELT) (((-347 (-484)) $) NIL (|has| (-484) (-951 (-484))) ELT) (((-484) $) NIL (|has| (-484) (-951 (-484))) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL (|has| (-484) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| (-484) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL T ELT) (((-631 (-484)) (-631 $)) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2992 (($) NIL (|has| (-484) (-483)) ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-3719 (((-85) $) NIL T ELT)) (-3183 (((-85) $) NIL (|has| (-484) (-741)) ELT)) (-2794 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (|has| (-484) (-797 (-484))) ELT) (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (|has| (-484) (-797 (-327))) ELT)) (-2408 (((-85) $) NIL T ELT)) (-2994 (($ $) NIL T ELT)) (-2996 (((-484) $) NIL T ELT)) (-3441 (((-633 $) $) NIL (|has| (-484) (-1065)) ELT)) (-3184 (((-85) $) NIL (|has| (-484) (-741)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2529 (($ $ $) NIL (|has| (-484) (-757)) ELT)) (-2855 (($ $ $) NIL (|has| (-484) (-757)) ELT)) (-3954 (($ (-1 (-484) (-484)) $) NIL T ELT)) (-2278 (((-631 (-484)) (-1178 $)) NIL (|has| (-484) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-484) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-631 (-484)) (-1178 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) NIL T ELT)) (-3442 (($) NIL (|has| (-484) (-1065)) CONST)) (-1943 (($ (-347 (-484))) 9 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3125 (($ $) NIL (|has| (-484) (-257)) ELT) (((-347 (-484)) $) NIL T ELT)) (-3127 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-822)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-822)) ELT)) (-3728 (((-345 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3764 (($ $ (-584 (-484)) (-584 (-484))) NIL (|has| (-484) (-259 (-484))) ELT) (($ $ (-484) (-484)) NIL (|has| (-484) (-259 (-484))) ELT) (($ $ (-248 (-484))) NIL (|has| (-484) (-259 (-484))) ELT) (($ $ (-584 (-248 (-484)))) NIL (|has| (-484) (-259 (-484))) ELT) (($ $ (-584 (-1089)) (-584 (-484))) NIL (|has| (-484) (-453 (-1089) (-484))) ELT) (($ $ (-1089) (-484)) NIL (|has| (-484) (-453 (-1089) (-484))) ELT)) (-1605 (((-695) $) NIL T ELT)) (-3796 (($ $ (-484)) NIL (|has| (-484) (-241 (-484) (-484))) ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-3754 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-695)) NIL (|has| (-484) (-189)) ELT)) (-2993 (($ $) NIL T ELT)) (-2995 (((-484) $) NIL T ELT)) (-3968 (((-801 (-484)) $) NIL (|has| (-484) (-554 (-801 (-484)))) ELT) (((-801 (-327)) $) NIL (|has| (-484) (-554 (-801 (-327)))) ELT) (((-473) $) NIL (|has| (-484) (-554 (-473))) ELT) (((-327) $) NIL (|has| (-484) (-934)) ELT) (((-179) $) NIL (|has| (-484) (-934)) ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-484) (-822))) ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) 8 T ELT) (($ (-484)) NIL T ELT) (($ (-1089)) NIL (|has| (-484) (-951 (-1089))) ELT) (((-347 (-484)) $) NIL T ELT) (((-918 16) $) 10 T ELT)) (-2700 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-484) (-822))) (|has| (-484) (-118))) ELT)) (-3123 (((-695)) NIL T CONST)) (-3128 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-3379 (($ $) NIL (|has| (-484) (-741)) ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-2667 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-695)) NIL (|has| (-484) (-189)) ELT)) (-2564 (((-85) $ $) NIL (|has| (-484) (-757)) ELT)) (-2565 (((-85) $ $) NIL (|has| (-484) (-757)) ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL (|has| (-484) (-757)) ELT)) (-2683 (((-85) $ $) NIL (|has| (-484) (-757)) ELT)) (-3945 (($ $ $) NIL T ELT) (($ (-484) (-484)) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ (-484)) NIL T ELT)))
+(((-424) (-13 (-905 (-484)) (-553 (-347 (-484))) (-553 (-918 16)) (-10 -8 (-15 -3125 ((-347 (-484)) $)) (-15 -1943 ($ (-347 (-484))))))) (T -424))
+((-3125 (*1 *2 *1) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-424)))) (-1943 (*1 *1 *2) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-424)))))
+((-2606 (((-584 |#2|) $) 31 T ELT)) (-3242 (((-85) |#2| $) 39 T ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 26 T ELT)) (-3764 (($ $ (-584 (-248 |#2|))) 13 T ELT) (($ $ (-248 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#2|) $) 30 T ELT) (((-695) |#2| $) 37 T ELT)) (-3942 (((-773) $) 45 T ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 23 T ELT)) (-3054 (((-85) $ $) 35 T ELT)) (-3953 (((-695) $) 18 T ELT)))
+(((-425 |#1| |#2|) (-10 -7 (-15 -3054 ((-85) |#1| |#1|)) (-15 -3942 ((-773) |#1|)) (-15 -3764 (|#1| |#1| (-584 |#2|) (-584 |#2|))) (-15 -3764 (|#1| |#1| |#2| |#2|)) (-15 -3764 (|#1| |#1| (-248 |#2|))) (-15 -3764 (|#1| |#1| (-584 (-248 |#2|)))) (-15 -3242 ((-85) |#2| |#1|)) (-15 -1944 ((-695) |#2| |#1|)) (-15 -2606 ((-584 |#2|) |#1|)) (-15 -1944 ((-695) (-1 (-85) |#2|) |#1|)) (-15 -1945 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1946 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3953 ((-695) |#1|))) (-426 |#2|) (-1128)) (T -425))
+NIL
+((-2566 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3720 (($) 7 T CONST)) (-2887 (((-584 |#1|) $) 30 (|has| $ (-6 -3991)) ELT)) (-2606 (((-584 |#1|) $) 29 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3239 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3240 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3396 (($ $) 10 T ELT)) (-3942 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-426 |#1|) (-113) (-1128)) (T -426))
+((-3954 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-426 *3)) (-4 *3 (-1128)))) (-1947 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -3992)) (-4 *1 (-426 *3)) (-4 *3 (-1128)))) (-1946 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3991)) (-4 *1 (-426 *4)) (-4 *4 (-1128)) (-5 *2 (-85)))) (-1945 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3991)) (-4 *1 (-426 *4)) (-4 *4 (-1128)) (-5 *2 (-85)))) (-1944 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3991)) (-4 *1 (-426 *4)) (-4 *4 (-1128)) (-5 *2 (-695)))) (-2887 (*1 *2 *1) (-12 (|has| *1 (-6 -3991)) (-4 *1 (-426 *3)) (-4 *3 (-1128)) (-5 *2 (-584 *3)))) (-2606 (*1 *2 *1) (-12 (|has| *1 (-6 -3991)) (-4 *1 (-426 *3)) (-4 *3 (-1128)) (-5 *2 (-584 *3)))) (-1944 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3991)) (-4 *1 (-426 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-695)))) (-3242 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3991)) (-4 *1 (-426 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-85)))))
+(-13 (-34) (-10 -8 (IF (|has| |t#1| (-553 (-773))) (-6 (-553 (-773))) |%noBranch|) (IF (|has| |t#1| (-72)) (-6 (-72)) |%noBranch|) (IF (|has| |t#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |t#1| (-1013)) (IF (|has| |t#1| (-259 |t#1|)) (-6 (-259 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3954 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -3992)) (-15 -1947 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -3991)) (PROGN (-15 -1946 ((-85) (-1 (-85) |t#1|) $)) (-15 -1945 ((-85) (-1 (-85) |t#1|) $)) (-15 -1944 ((-695) (-1 (-85) |t#1|) $)) (-15 -2887 ((-584 |t#1|) $)) (-15 -2606 ((-584 |t#1|) $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -1944 ((-695) |t#1| $)) (-15 -3242 ((-85) |t#1| $))) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
+((-3942 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT)))
+(((-427 |#1|) (-113) (-1128)) (T -427))
+NIL
+(-13 (-553 |t#1|) (-556 |t#1|))
+(((-556 |#1|) . T) ((-553 |#1|) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-1948 (($ (-1072)) 8 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 15 T ELT) (((-1072) $) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 11 T ELT)))
+(((-428) (-13 (-1013) (-553 (-1072)) (-10 -8 (-15 -1948 ($ (-1072)))))) (T -428))
+((-1948 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-428)))))
+((-3488 (($ $) 15 T ELT)) (-3486 (($ $) 24 T ELT)) (-3490 (($ $) 12 T ELT)) (-3491 (($ $) 10 T ELT)) (-3489 (($ $) 17 T ELT)) (-3487 (($ $) 22 T ELT)))
+(((-429 |#1|) (-10 -7 (-15 -3487 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3488 (|#1| |#1|))) (-430)) (T -429))
+NIL
+((-3488 (($ $) 11 T ELT)) (-3486 (($ $) 10 T ELT)) (-3490 (($ $) 9 T ELT)) (-3491 (($ $) 8 T ELT)) (-3489 (($ $) 7 T ELT)) (-3487 (($ $) 6 T ELT)))
(((-430) (-113)) (T -430))
-((-3486 (*1 *1 *1) (-4 *1 (-430))) (-3484 (*1 *1 *1) (-4 *1 (-430))) (-3488 (*1 *1 *1) (-4 *1 (-430))) (-3489 (*1 *1 *1) (-4 *1 (-430))) (-3487 (*1 *1 *1) (-4 *1 (-430))) (-3485 (*1 *1 *1) (-4 *1 (-430))))
-(-13 (-10 -8 (-15 -3485 ($ $)) (-15 -3487 ($ $)) (-15 -3489 ($ $)) (-15 -3488 ($ $)) (-15 -3484 ($ $)) (-15 -3486 ($ $))))
-((-3726 (((-345 |#4|) |#4| (-1 (-345 |#2|) |#2|)) 54 T ELT)))
-(((-431 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3726 ((-345 |#4|) |#4| (-1 (-345 |#2|) |#2|)))) (-311) (-1153 |#1|) (-13 (-311) (-120) (-661 |#1| |#2|)) (-1153 |#3|)) (T -431))
-((-3726 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1153 *5)) (-4 *5 (-311)) (-4 *7 (-13 (-311) (-120) (-661 *5 *6))) (-5 *2 (-345 *3)) (-5 *1 (-431 *5 *6 *7 *3)) (-4 *3 (-1153 *7)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-1212 (((-583 $) (-1083 $) (-1088)) NIL T ELT) (((-583 $) (-1083 $)) NIL T ELT) (((-583 $) (-857 $)) NIL T ELT)) (-1213 (($ (-1083 $) (-1088)) NIL T ELT) (($ (-1083 $)) NIL T ELT) (($ (-857 $)) NIL T ELT)) (-3183 (((-85) $) 39 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1948 (((-85) $ $) 72 T ELT)) (-1597 (((-583 (-550 $)) $) 49 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1601 (($ $ (-248 $)) NIL T ELT) (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-3033 (($ $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-1214 (((-583 $) (-1083 $) (-1088)) NIL T ELT) (((-583 $) (-1083 $)) NIL T ELT) (((-583 $) (-857 $)) NIL T ELT)) (-3178 (($ (-1083 $) (-1088)) NIL T ELT) (($ (-1083 $)) NIL T ELT) (($ (-857 $)) NIL T ELT)) (-3152 (((-3 (-550 $) #1#) $) NIL T ELT) (((-3 (-483) #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL T ELT)) (-3151 (((-550 $) $) NIL T ELT) (((-483) $) NIL T ELT) (((-347 (-483)) $) 54 T ELT)) (-2560 (($ $ $) NIL T ELT)) (-2275 (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL T ELT) (((-630 (-483)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-347 (-483)))) (|:| |vec| (-1177 (-347 (-483))))) (-630 $) (-1177 $)) NIL T ELT) (((-630 (-347 (-483))) (-630 $)) NIL T ELT)) (-3836 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-2569 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1596 (((-583 (-86)) $) NIL T ELT)) (-3589 (((-86) (-86)) NIL T ELT)) (-2406 (((-85) $) 42 T ELT)) (-2669 (((-85) $) NIL (|has| $ (-950 (-483))) ELT)) (-2994 (((-1037 (-483) (-550 $)) $) 37 T ELT)) (-3007 (($ $ (-483)) NIL T ELT)) (-3127 (((-1083 $) (-1083 $) (-550 $)) 86 T ELT) (((-1083 $) (-1083 $) (-583 (-550 $))) 61 T ELT) (($ $ (-550 $)) 75 T ELT) (($ $ (-583 (-550 $))) 76 T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-1594 (((-1083 $) (-550 $)) 73 (|has| $ (-961)) ELT)) (-3952 (($ (-1 $ $) (-550 $)) NIL T ELT)) (-1599 (((-3 (-550 $) #1#) $) NIL T ELT)) (-2276 (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL T ELT) (((-630 (-483)) (-1177 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-347 (-483)))) (|:| |vec| (-1177 (-347 (-483))))) (-1177 $) $) NIL T ELT) (((-630 (-347 (-483))) (-1177 $)) NIL T ELT)) (-1888 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1598 (((-583 (-550 $)) $) NIL T ELT)) (-2231 (($ (-86) $) NIL T ELT) (($ (-86) (-583 $)) NIL T ELT)) (-2629 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1088)) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-2599 (((-694) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1595 (((-85) $ $) NIL T ELT) (((-85) $ (-1088)) NIL T ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2670 (((-85) $) NIL (|has| $ (-950 (-483))) ELT)) (-3762 (($ $ (-550 $) $) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT) (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-1088) (-1 $ (-583 $))) NIL T ELT) (($ $ (-1088) (-1 $ $)) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-583 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-3794 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-583 $)) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-1600 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3752 (($ $) 36 T ELT) (($ $ (-694)) NIL T ELT)) (-2993 (((-1037 (-483) (-550 $)) $) 20 T ELT)) (-3180 (($ $) NIL (|has| $ (-961)) ELT)) (-3966 (((-327) $) 100 T ELT) (((-179) $) 108 T ELT) (((-142 (-327)) $) 116 T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-550 $)) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-1037 (-483) (-550 $))) 21 T ELT)) (-3121 (((-694)) NIL T CONST)) (-2586 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-2250 (((-85) (-86)) 92 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-2656 (($) 10 T CONST)) (-2662 (($) 22 T CONST)) (-2665 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3052 (((-85) $ $) 24 T ELT)) (-3943 (($ $ $) 44 T ELT)) (-3831 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-347 (-483))) NIL T ELT) (($ $ (-483)) 47 T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT)) (* (($ (-347 (-483)) $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-483) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-830) $) NIL T ELT)))
-(((-432) (-13 (-253) (-27) (-950 (-483)) (-950 (-347 (-483))) (-580 (-483)) (-933) (-580 (-347 (-483))) (-120) (-553 (-142 (-327))) (-190) (-555 (-1037 (-483) (-550 $))) (-10 -8 (-15 -2994 ((-1037 (-483) (-550 $)) $)) (-15 -2993 ((-1037 (-483) (-550 $)) $)) (-15 -3836 ($ $)) (-15 -1948 ((-85) $ $)) (-15 -3127 ((-1083 $) (-1083 $) (-550 $))) (-15 -3127 ((-1083 $) (-1083 $) (-583 (-550 $)))) (-15 -3127 ($ $ (-550 $))) (-15 -3127 ($ $ (-583 (-550 $))))))) (T -432))
-((-2994 (*1 *2 *1) (-12 (-5 *2 (-1037 (-483) (-550 (-432)))) (-5 *1 (-432)))) (-2993 (*1 *2 *1) (-12 (-5 *2 (-1037 (-483) (-550 (-432)))) (-5 *1 (-432)))) (-3836 (*1 *1 *1) (-5 *1 (-432))) (-1948 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-432)))) (-3127 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 (-432))) (-5 *3 (-550 (-432))) (-5 *1 (-432)))) (-3127 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 (-432))) (-5 *3 (-583 (-550 (-432)))) (-5 *1 (-432)))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-550 (-432))) (-5 *1 (-432)))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-550 (-432)))) (-5 *1 (-432)))))
-((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1727 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3990)) (|has| |#1| (-756))) ELT)) (-2905 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-3782 ((|#1| $ (-483) |#1|) 43 (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3718 (($) NIL T CONST)) (-2293 (($ $) NIL (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) NIL T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3400 (($ |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 ((|#1| $ (-483) |#1|) 39 (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) 38 T ELT)) (-3413 (((-483) (-1 (-85) |#1|) $) NIL T ELT) (((-483) |#1| $) NIL (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) NIL (|has| |#1| (-1012)) ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3608 (($ (-694) |#1|) 22 T ELT)) (-2196 (((-483) $) 18 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3512 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2197 (((-483) $) 40 (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 32 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 35 T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-2300 (($ |#1| $ (-483)) NIL T ELT) (($ $ $ (-483)) NIL T ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3795 ((|#1| $) NIL (|has| (-483) (-756)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2195 (($ $ |#1|) 16 (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) 20 T ELT)) (-3794 ((|#1| $ (-483) |#1|) NIL T ELT) ((|#1| $ (-483)) 42 T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-2301 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1728 (($ $ $ (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) 14 T ELT)) (-3966 (((-472) $) NIL (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 25 T ELT)) (-3796 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3951 (((-694) $) 12 (|has| $ (-6 -3989)) ELT)))
-(((-433 |#1| |#2|) (-19 |#1|) (-1127) (-483)) (T -433))
-NIL
-((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3782 ((|#1| $ (-483) (-483) |#1|) NIL T ELT)) (-1254 (($ $ (-483) (-433 |#1| |#3|)) NIL T ELT)) (-1253 (($ $ (-483) (-433 |#1| |#2|)) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3107 (((-433 |#1| |#3|) $ (-483)) NIL T ELT)) (-1573 ((|#1| $ (-483) (-483) |#1|) NIL T ELT)) (-3108 ((|#1| $ (-483) (-483)) NIL T ELT)) (-2885 (((-583 |#1|) $) NIL T ELT)) (-3110 (((-694) $) NIL T ELT)) (-3608 (($ (-694) (-694) |#1|) NIL T ELT)) (-3109 (((-694) $) NIL T ELT)) (-3114 (((-483) $) NIL T ELT)) (-3112 (((-483) $) NIL T ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3113 (((-483) $) NIL T ELT)) (-3111 (((-483) $) NIL T ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-2195 (($ $ |#1|) NIL T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#1| $ (-483) (-483)) NIL T ELT) ((|#1| $ (-483) (-483) |#1|) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3106 (((-433 |#1| |#2|) $ (-483)) NIL T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-434 |#1| |#2| |#3|) (-57 |#1| (-433 |#1| |#3|) (-433 |#1| |#2|)) (-1127) (-483) (-483)) (T -434))
-NIL
-((-1950 (((-583 (-2 (|:| -2008 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) (-2 (|:| -2008 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) (-694) (-694)) 32 T ELT)) (-1949 (((-583 (-1083 |#1|)) |#1| (-694) (-694) (-694)) 43 T ELT)) (-2073 (((-2 (|:| -2008 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) (-583 |#3|) (-583 (-2 (|:| -2008 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) (-694)) 107 T ELT)))
-(((-435 |#1| |#2| |#3|) (-10 -7 (-15 -1949 ((-583 (-1083 |#1|)) |#1| (-694) (-694) (-694))) (-15 -1950 ((-583 (-2 (|:| -2008 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) (-2 (|:| -2008 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) (-694) (-694))) (-15 -2073 ((-2 (|:| -2008 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) (-583 |#3|) (-583 (-2 (|:| -2008 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) (-694)))) (-298) (-1153 |#1|) (-1153 |#2|)) (T -435))
-((-2073 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-2 (|:| -2008 (-630 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-630 *7))))) (-5 *5 (-694)) (-4 *8 (-1153 *7)) (-4 *7 (-1153 *6)) (-4 *6 (-298)) (-5 *2 (-2 (|:| -2008 (-630 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-630 *7)))) (-5 *1 (-435 *6 *7 *8)))) (-1950 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-694)) (-4 *5 (-298)) (-4 *6 (-1153 *5)) (-5 *2 (-583 (-2 (|:| -2008 (-630 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-630 *6))))) (-5 *1 (-435 *5 *6 *7)) (-5 *3 (-2 (|:| -2008 (-630 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-630 *6)))) (-4 *7 (-1153 *6)))) (-1949 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-694)) (-4 *3 (-298)) (-4 *5 (-1153 *3)) (-5 *2 (-583 (-1083 *3))) (-5 *1 (-435 *3 *5 *6)) (-4 *6 (-1153 *5)))))
-((-1956 (((-2 (|:| -2008 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) (-2 (|:| -2008 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) (-2 (|:| -2008 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|)))) 70 T ELT)) (-1951 ((|#1| (-630 |#1|) |#1| (-694)) 24 T ELT)) (-1953 (((-694) (-694) (-694)) 34 T ELT)) (-1955 (((-630 |#1|) (-630 |#1|) (-630 |#1|)) 50 T ELT)) (-1954 (((-630 |#1|) (-630 |#1|) (-630 |#1|) |#1|) 58 T ELT) (((-630 |#1|) (-630 |#1|) (-630 |#1|)) 55 T ELT)) (-1952 ((|#1| (-630 |#1|) (-630 |#1|) |#1| (-483)) 28 T ELT)) (-3323 ((|#1| (-630 |#1|)) 18 T ELT)))
-(((-436 |#1| |#2| |#3|) (-10 -7 (-15 -3323 (|#1| (-630 |#1|))) (-15 -1951 (|#1| (-630 |#1|) |#1| (-694))) (-15 -1952 (|#1| (-630 |#1|) (-630 |#1|) |#1| (-483))) (-15 -1953 ((-694) (-694) (-694))) (-15 -1954 ((-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -1954 ((-630 |#1|) (-630 |#1|) (-630 |#1|) |#1|)) (-15 -1955 ((-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -1956 ((-2 (|:| -2008 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) (-2 (|:| -2008 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) (-2 (|:| -2008 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|)))))) (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $)))) (-1153 |#1|) (-350 |#1| |#2|)) (T -436))
-((-1956 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2008 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-4 *3 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $))))) (-4 *4 (-1153 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4)))) (-1955 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $))))) (-4 *4 (-1153 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4)))) (-1954 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $))))) (-4 *4 (-1153 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4)))) (-1954 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $))))) (-4 *4 (-1153 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4)))) (-1953 (*1 *2 *2 *2) (-12 (-5 *2 (-694)) (-4 *3 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $))))) (-4 *4 (-1153 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4)))) (-1952 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-630 *2)) (-5 *4 (-483)) (-4 *2 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $))))) (-4 *5 (-1153 *2)) (-5 *1 (-436 *2 *5 *6)) (-4 *6 (-350 *2 *5)))) (-1951 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-630 *2)) (-5 *4 (-694)) (-4 *2 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $))))) (-4 *5 (-1153 *2)) (-5 *1 (-436 *2 *5 *6)) (-4 *6 (-350 *2 *5)))) (-3323 (*1 *2 *3) (-12 (-5 *3 (-630 *2)) (-4 *4 (-1153 *2)) (-4 *2 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $))))) (-5 *1 (-436 *2 *4 *5)) (-4 *5 (-350 *2 *4)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-2309 (($ $) 44 T ELT)) (-3316 (($ $ $) 41 T ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) $) NIL (|has| (-85) (-756)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1727 (($ $) NIL (-12 (|has| $ (-6 -3990)) (|has| (-85) (-756))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3990)) ELT)) (-2905 (($ $) NIL (|has| (-85) (-756)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3782 (((-85) $ (-1144 (-483)) (-85)) NIL (|has| $ (-6 -3990)) ELT) (((-85) $ (-483) (-85)) 43 (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3718 (($) NIL T CONST)) (-2293 (($ $) NIL (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) NIL T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-85) (-1012))) ELT)) (-3400 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-85) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-85) (-1012))) ELT)) (-3836 (((-85) (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (-12 (|has| $ (-6 -3989)) (|has| (-85) (-1012))) ELT)) (-1573 (((-85) $ (-483) (-85)) NIL (|has| $ (-6 -3990)) ELT)) (-3108 (((-85) $ (-483)) NIL T ELT)) (-3413 (((-483) (-85) $ (-483)) NIL (|has| (-85) (-1012)) ELT) (((-483) (-85) $) NIL (|has| (-85) (-1012)) ELT) (((-483) (-1 (-85) (-85)) $) NIL T ELT)) (-2885 (((-583 (-85)) $) NIL (|has| $ (-6 -3989)) ELT)) (-2557 (($ $ $) 39 T ELT)) (-2556 (($ $) NIL T ELT)) (-1297 (($ $ $) NIL T ELT)) (-3608 (($ (-694) (-85)) 27 T ELT)) (-1298 (($ $ $) NIL T ELT)) (-2196 (((-483) $) 8 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL T ELT)) (-3512 (($ $ $) NIL (|has| (-85) (-756)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2604 (((-583 (-85)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-85) (-1012))) ELT)) (-2197 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL T ELT)) (-1946 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-85) (-85) (-85)) $ $) 36 T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2300 (($ $ $ (-483)) NIL T ELT) (($ (-85) $ (-483)) NIL T ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3795 (((-85) $) NIL (|has| (-483) (-756)) ELT)) (-1351 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2195 (($ $ (-85)) NIL (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-85)) (-583 (-85))) NIL (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1012))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1012))) ELT) (($ $ (-248 (-85))) NIL (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1012))) ELT) (($ $ (-583 (-248 (-85)))) NIL (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-85) (-1012))) ELT)) (-2201 (((-583 (-85)) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) 29 T ELT)) (-3794 (($ $ (-1144 (-483))) NIL T ELT) (((-85) $ (-483)) 22 T ELT) (((-85) $ (-483) (-85)) NIL T ELT)) (-2301 (($ $ (-1144 (-483))) NIL T ELT) (($ $ (-483)) NIL T ELT)) (-1943 (((-694) (-85) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-85) (-1012))) ELT) (((-694) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3989)) ELT)) (-1728 (($ $ $ (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) 30 T ELT)) (-3966 (((-472) $) NIL (|has| (-85) (-553 (-472))) ELT)) (-3524 (($ (-583 (-85))) NIL T ELT)) (-3796 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-3940 (((-772) $) 26 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3989)) ELT)) (-2558 (($ $ $) 37 T ELT)) (-2307 (($ $ $) 46 T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 31 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 32 T ELT)) (-2308 (($ $ $) 45 T ELT)) (-3951 (((-694) $) 13 (|has| $ (-6 -3989)) ELT)))
-(((-437 |#1|) (-96) (-483)) (T -437))
-NIL
-((-1958 (((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1083 |#4|)) 35 T ELT)) (-1957 (((-1083 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1083 |#4|)) 22 T ELT)) (-1959 (((-3 (-630 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-630 (-1083 |#4|))) 46 T ELT)) (-1960 (((-1083 (-1083 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT)))
-(((-438 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1957 (|#2| (-1 |#1| |#4|) (-1083 |#4|))) (-15 -1957 ((-1083 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1958 ((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1083 |#4|))) (-15 -1959 ((-3 (-630 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-630 (-1083 |#4|)))) (-15 -1960 ((-1083 (-1083 |#4|)) (-1 |#4| |#1|) |#3|))) (-961) (-1153 |#1|) (-1153 |#2|) (-961)) (T -438))
-((-1960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *6 (-1153 *5)) (-5 *2 (-1083 (-1083 *7))) (-5 *1 (-438 *5 *6 *4 *7)) (-4 *4 (-1153 *6)))) (-1959 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-630 (-1083 *8))) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-1153 *5)) (-5 *2 (-630 *6)) (-5 *1 (-438 *5 *6 *7 *8)) (-4 *7 (-1153 *6)))) (-1958 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1083 *7)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1153 *5)) (-5 *1 (-438 *5 *2 *6 *7)) (-4 *6 (-1153 *2)))) (-1957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *4 (-1153 *5)) (-5 *2 (-1083 *7)) (-5 *1 (-438 *5 *4 *6 *7)) (-4 *6 (-1153 *4)))) (-1957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1083 *7)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1153 *5)) (-5 *1 (-438 *5 *2 *6 *7)) (-4 *6 (-1153 *2)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1961 (((-1183) $) 25 T ELT)) (-3794 (((-1071) $ (-1088)) 30 T ELT)) (-3611 (((-1183) $) 20 T ELT)) (-3940 (((-772) $) 27 T ELT) (($ (-1071)) 26 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 12 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 10 T ELT)))
-(((-439) (-13 (-756) (-555 (-1071)) (-10 -8 (-15 -3794 ((-1071) $ (-1088))) (-15 -3611 ((-1183) $)) (-15 -1961 ((-1183) $))))) (T -439))
-((-3794 (*1 *2 *1 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1071)) (-5 *1 (-439)))) (-3611 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-439)))) (-1961 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-439)))))
-((-3735 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-3733 ((|#1| |#4|) 10 T ELT)) (-3734 ((|#3| |#4|) 17 T ELT)))
-(((-440 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3733 (|#1| |#4|)) (-15 -3734 (|#3| |#4|)) (-15 -3735 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-494) (-904 |#1|) (-321 |#1|) (-321 |#2|)) (T -440))
-((-3735 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-904 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-440 *4 *5 *6 *3)) (-4 *6 (-321 *4)) (-4 *3 (-321 *5)))) (-3734 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-904 *4)) (-4 *2 (-321 *4)) (-5 *1 (-440 *4 *5 *2 *3)) (-4 *3 (-321 *5)))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-904 *2)) (-4 *2 (-494)) (-5 *1 (-440 *2 *4 *5 *3)) (-4 *5 (-321 *2)) (-4 *3 (-321 *4)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-1971 (((-85) $ (-583 |#3|)) 127 T ELT) (((-85) $) 128 T ELT)) (-3183 (((-85) $) 178 T ELT)) (-1963 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-583 |#3|)) 122 T ELT)) (-1962 (((-1078 (-583 (-857 |#1|)) (-583 (-248 (-857 |#1|)))) (-583 |#4|)) 171 (|has| |#3| (-553 (-1088))) ELT)) (-1970 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-2406 (((-85) $) 177 T ELT)) (-1967 (($ $) 132 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3233 (($ $ $) 99 T ELT) (($ (-583 $)) 101 T ELT)) (-1972 (((-85) |#4| $) 130 T ELT)) (-1973 (((-85) $ $) 82 T ELT)) (-1966 (($ (-583 |#4|)) 106 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1965 (($ (-583 |#4|)) 175 T ELT)) (-1964 (((-85) $) 176 T ELT)) (-2247 (($ $) 85 T ELT)) (-2691 (((-583 |#4|) $) 73 T ELT)) (-1969 (((-2 (|:| |mval| (-630 |#1|)) (|:| |invmval| (-630 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|)) NIL T ELT)) (-1974 (((-85) |#4| $) 89 T ELT)) (-3905 (((-483) $ (-583 |#3|)) 134 T ELT) (((-483) $) 135 T ELT)) (-3940 (((-772) $) 174 T ELT) (($ (-583 |#4|)) 102 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-1968 (($ (-2 (|:| |mval| (-630 |#1|)) (|:| |invmval| (-630 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-3052 (((-85) $ $) 84 T ELT)) (-3833 (($ $ $) 109 T ELT)) (** (($ $ (-694)) 115 T ELT)) (* (($ $ $) 113 T ELT)))
-(((-441 |#1| |#2| |#3| |#4|) (-13 (-1012) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-694))) (-15 -3833 ($ $ $)) (-15 -2406 ((-85) $)) (-15 -3183 ((-85) $)) (-15 -1974 ((-85) |#4| $)) (-15 -1973 ((-85) $ $)) (-15 -1972 ((-85) |#4| $)) (-15 -1971 ((-85) $ (-583 |#3|))) (-15 -1971 ((-85) $)) (-15 -3233 ($ $ $)) (-15 -3233 ($ (-583 $))) (-15 -1970 ($ $ $)) (-15 -1970 ($ $ |#4|)) (-15 -2247 ($ $)) (-15 -1969 ((-2 (|:| |mval| (-630 |#1|)) (|:| |invmval| (-630 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|))) (-15 -1968 ($ (-2 (|:| |mval| (-630 |#1|)) (|:| |invmval| (-630 |#1|)) (|:| |genIdeal| $)))) (-15 -3905 ((-483) $ (-583 |#3|))) (-15 -3905 ((-483) $)) (-15 -1967 ($ $)) (-15 -1966 ($ (-583 |#4|))) (-15 -1965 ($ (-583 |#4|))) (-15 -1964 ((-85) $)) (-15 -2691 ((-583 |#4|) $)) (-15 -3940 ($ (-583 |#4|))) (-15 -1963 ($ $ |#4|)) (-15 -1963 ($ $ |#4| (-583 |#3|))) (IF (|has| |#3| (-553 (-1088))) (-15 -1962 ((-1078 (-583 (-857 |#1|)) (-583 (-248 (-857 |#1|)))) (-583 |#4|))) |%noBranch|))) (-311) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -441))
-((* (*1 *1 *1 *1) (-12 (-4 *2 (-311)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-441 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-3833 (*1 *1 *1 *1) (-12 (-4 *2 (-311)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-441 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-2406 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-3183 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-1974 (*1 *2 *3 *1) (-12 (-4 *4 (-311)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))) (-1973 (*1 *2 *1 *1) (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-1972 (*1 *2 *3 *1) (-12 (-4 *4 (-311)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))) (-1971 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-311)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-441 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))) (-1971 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-3233 (*1 *1 *1 *1) (-12 (-4 *2 (-311)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-441 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-3233 (*1 *1 *2) (-12 (-5 *2 (-583 (-441 *3 *4 *5 *6))) (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-1970 (*1 *1 *1 *1) (-12 (-4 *2 (-311)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-441 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-1970 (*1 *1 *1 *2) (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-441 *3 *4 *5 *2)) (-4 *2 (-861 *3 *4 *5)))) (-2247 (*1 *1 *1) (-12 (-4 *2 (-311)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-441 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-1969 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-311)) (-4 *5 (-717)) (-5 *2 (-2 (|:| |mval| (-630 *4)) (|:| |invmval| (-630 *4)) (|:| |genIdeal| (-441 *4 *5 *6 *7)))) (-5 *1 (-441 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))) (-1968 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-630 *3)) (|:| |invmval| (-630 *3)) (|:| |genIdeal| (-441 *3 *4 *5 *6)))) (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-3905 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-311)) (-4 *5 (-717)) (-5 *2 (-483)) (-5 *1 (-441 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))) (-3905 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-483)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-1967 (*1 *1 *1) (-12 (-4 *2 (-311)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-441 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-1966 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-441 *3 *4 *5 *6)))) (-1965 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-441 *3 *4 *5 *6)))) (-1964 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-2691 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *6)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-441 *3 *4 *5 *6)))) (-1963 (*1 *1 *1 *2) (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-441 *3 *4 *5 *2)) (-4 *2 (-861 *3 *4 *5)))) (-1963 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-311)) (-4 *5 (-717)) (-5 *1 (-441 *4 *5 *6 *2)) (-4 *2 (-861 *4 *5 *6)))) (-1962 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *5 *6)) (-4 *6 (-553 (-1088))) (-4 *4 (-311)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1078 (-583 (-857 *4)) (-583 (-248 (-857 *4))))) (-5 *1 (-441 *4 *5 *6 *7)))))
-((-1975 (((-85) (-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483))))) 178 T ELT)) (-1976 (((-85) (-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483))))) 179 T ELT)) (-1977 (((-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483)))) (-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483))))) 129 T ELT)) (-3717 (((-85) (-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483))))) NIL T ELT)) (-1978 (((-583 (-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483))))) (-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483))))) 181 T ELT)) (-1979 (((-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483)))) (-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483)))) (-583 (-773 |#1|))) 197 T ELT)))
-(((-442 |#1| |#2|) (-10 -7 (-15 -1975 ((-85) (-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483)))))) (-15 -1976 ((-85) (-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483)))))) (-15 -3717 ((-85) (-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483)))))) (-15 -1977 ((-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483)))) (-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483)))))) (-15 -1978 ((-583 (-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483))))) (-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483)))))) (-15 -1979 ((-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483)))) (-441 (-347 (-483)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-347 (-483)))) (-583 (-773 |#1|))))) (-583 (-1088)) (-694)) (T -442))
-((-1979 (*1 *2 *2 *3) (-12 (-5 *2 (-441 (-347 (-483)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-347 (-483))))) (-5 *3 (-583 (-773 *4))) (-14 *4 (-583 (-1088))) (-14 *5 (-694)) (-5 *1 (-442 *4 *5)))) (-1978 (*1 *2 *3) (-12 (-14 *4 (-583 (-1088))) (-14 *5 (-694)) (-5 *2 (-583 (-441 (-347 (-483)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-347 (-483)))))) (-5 *1 (-442 *4 *5)) (-5 *3 (-441 (-347 (-483)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-347 (-483))))))) (-1977 (*1 *2 *2) (-12 (-5 *2 (-441 (-347 (-483)) (-197 *4 (-694)) (-773 *3) (-206 *3 (-347 (-483))))) (-14 *3 (-583 (-1088))) (-14 *4 (-694)) (-5 *1 (-442 *3 *4)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-441 (-347 (-483)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-347 (-483))))) (-14 *4 (-583 (-1088))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-442 *4 *5)))) (-1976 (*1 *2 *3) (-12 (-5 *3 (-441 (-347 (-483)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-347 (-483))))) (-14 *4 (-583 (-1088))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-442 *4 *5)))) (-1975 (*1 *2 *3) (-12 (-5 *3 (-441 (-347 (-483)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-347 (-483))))) (-14 *4 (-583 (-1088))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-442 *4 *5)))))
-((-3794 ((|#1| $ |#1| |#1|) 6 T ELT)))
+((-3488 (*1 *1 *1) (-4 *1 (-430))) (-3486 (*1 *1 *1) (-4 *1 (-430))) (-3490 (*1 *1 *1) (-4 *1 (-430))) (-3491 (*1 *1 *1) (-4 *1 (-430))) (-3489 (*1 *1 *1) (-4 *1 (-430))) (-3487 (*1 *1 *1) (-4 *1 (-430))))
+(-13 (-10 -8 (-15 -3487 ($ $)) (-15 -3489 ($ $)) (-15 -3491 ($ $)) (-15 -3490 ($ $)) (-15 -3486 ($ $)) (-15 -3488 ($ $))))
+((-3728 (((-345 |#4|) |#4| (-1 (-345 |#2|) |#2|)) 54 T ELT)))
+(((-431 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3728 ((-345 |#4|) |#4| (-1 (-345 |#2|) |#2|)))) (-311) (-1154 |#1|) (-13 (-311) (-120) (-662 |#1| |#2|)) (-1154 |#3|)) (T -431))
+((-3728 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1154 *5)) (-4 *5 (-311)) (-4 *7 (-13 (-311) (-120) (-662 *5 *6))) (-5 *2 (-345 *3)) (-5 *1 (-431 *5 *6 *7 *3)) (-4 *3 (-1154 *7)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-1213 (((-584 $) (-1084 $) (-1089)) NIL T ELT) (((-584 $) (-1084 $)) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT)) (-1214 (($ (-1084 $) (-1089)) NIL T ELT) (($ (-1084 $)) NIL T ELT) (($ (-858 $)) NIL T ELT)) (-3185 (((-85) $) 39 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-1949 (((-85) $ $) 72 T ELT)) (-1598 (((-584 (-551 $)) $) 49 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1602 (($ $ (-248 $)) NIL T ELT) (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT)) (-3771 (($ $) NIL T ELT)) (-3967 (((-345 $) $) NIL T ELT)) (-3035 (($ $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-1215 (((-584 $) (-1084 $) (-1089)) NIL T ELT) (((-584 $) (-1084 $)) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT)) (-3180 (($ (-1084 $) (-1089)) NIL T ELT) (($ (-1084 $)) NIL T ELT) (($ (-858 $)) NIL T ELT)) (-3154 (((-3 (-551 $) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL T ELT)) (-3153 (((-551 $) $) NIL T ELT) (((-484) $) NIL T ELT) (((-347 (-484)) $) 54 T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2277 (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL T ELT) (((-631 (-484)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-347 (-484)))) (|:| |vec| (-1178 (-347 (-484))))) (-631 $) (-1178 $)) NIL T ELT) (((-631 (-347 (-484))) (-631 $)) NIL T ELT)) (-3838 (($ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-3719 (((-85) $) NIL T ELT)) (-2571 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1597 (((-584 (-86)) $) NIL T ELT)) (-3591 (((-86) (-86)) NIL T ELT)) (-2408 (((-85) $) 42 T ELT)) (-2671 (((-85) $) NIL (|has| $ (-951 (-484))) ELT)) (-2996 (((-1038 (-484) (-551 $)) $) 37 T ELT)) (-3009 (($ $ (-484)) NIL T ELT)) (-3129 (((-1084 $) (-1084 $) (-551 $)) 86 T ELT) (((-1084 $) (-1084 $) (-584 (-551 $))) 61 T ELT) (($ $ (-551 $)) 75 T ELT) (($ $ (-584 (-551 $))) 76 T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1595 (((-1084 $) (-551 $)) 73 (|has| $ (-962)) ELT)) (-3954 (($ (-1 $ $) (-551 $)) NIL T ELT)) (-1600 (((-3 (-551 $) #1#) $) NIL T ELT)) (-2278 (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-631 (-484)) (-1178 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-347 (-484)))) (|:| |vec| (-1178 (-347 (-484))))) (-1178 $) $) NIL T ELT) (((-631 (-347 (-484))) (-1178 $)) NIL T ELT)) (-1889 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-1599 (((-584 (-551 $)) $) NIL T ELT)) (-2233 (($ (-86) $) NIL T ELT) (($ (-86) (-584 $)) NIL T ELT)) (-2631 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1089)) NIL T ELT)) (-2482 (($ $) NIL T ELT)) (-2601 (((-695) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1596 (((-85) $ $) NIL T ELT) (((-85) $ (-1089)) NIL T ELT)) (-3728 (((-345 $) $) NIL T ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2672 (((-85) $) NIL (|has| $ (-951 (-484))) ELT)) (-3764 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT) (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-1089) (-1 $ (-584 $))) NIL T ELT) (($ $ (-1089) (-1 $ $)) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-584 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-3796 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-584 $)) NIL T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-1601 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3754 (($ $) 36 T ELT) (($ $ (-695)) NIL T ELT)) (-2995 (((-1038 (-484) (-551 $)) $) 20 T ELT)) (-3182 (($ $) NIL (|has| $ (-962)) ELT)) (-3968 (((-327) $) 100 T ELT) (((-179) $) 108 T ELT) (((-142 (-327)) $) 116 T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-551 $)) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-1038 (-484) (-551 $))) 21 T ELT)) (-3123 (((-695)) NIL T CONST)) (-2588 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-2252 (((-85) (-86)) 92 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-2658 (($) 10 T CONST)) (-2664 (($) 22 T CONST)) (-2667 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3054 (((-85) $ $) 24 T ELT)) (-3945 (($ $ $) 44 T ELT)) (-3833 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-347 (-484))) NIL T ELT) (($ $ (-484)) 47 T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ (-347 (-484)) $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-484) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT)))
+(((-432) (-13 (-253) (-27) (-951 (-484)) (-951 (-347 (-484))) (-581 (-484)) (-934) (-581 (-347 (-484))) (-120) (-554 (-142 (-327))) (-190) (-556 (-1038 (-484) (-551 $))) (-10 -8 (-15 -2996 ((-1038 (-484) (-551 $)) $)) (-15 -2995 ((-1038 (-484) (-551 $)) $)) (-15 -3838 ($ $)) (-15 -1949 ((-85) $ $)) (-15 -3129 ((-1084 $) (-1084 $) (-551 $))) (-15 -3129 ((-1084 $) (-1084 $) (-584 (-551 $)))) (-15 -3129 ($ $ (-551 $))) (-15 -3129 ($ $ (-584 (-551 $))))))) (T -432))
+((-2996 (*1 *2 *1) (-12 (-5 *2 (-1038 (-484) (-551 (-432)))) (-5 *1 (-432)))) (-2995 (*1 *2 *1) (-12 (-5 *2 (-1038 (-484) (-551 (-432)))) (-5 *1 (-432)))) (-3838 (*1 *1 *1) (-5 *1 (-432))) (-1949 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-432)))) (-3129 (*1 *2 *2 *3) (-12 (-5 *2 (-1084 (-432))) (-5 *3 (-551 (-432))) (-5 *1 (-432)))) (-3129 (*1 *2 *2 *3) (-12 (-5 *2 (-1084 (-432))) (-5 *3 (-584 (-551 (-432)))) (-5 *1 (-432)))) (-3129 (*1 *1 *1 *2) (-12 (-5 *2 (-551 (-432))) (-5 *1 (-432)))) (-3129 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-551 (-432)))) (-5 *1 (-432)))))
+((-2566 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2196 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-757))) ELT)) (-2907 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3784 ((|#1| $ (-484) |#1|) 43 (|has| $ (-6 -3992)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3706 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3720 (($) NIL T CONST)) (-2295 (($ $) NIL (|has| $ (-6 -3992)) ELT)) (-2296 (($ $) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3402 (($ |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-1574 ((|#1| $ (-484) |#1|) 39 (|has| $ (-6 -3992)) ELT)) (-3110 ((|#1| $ (-484)) 38 T ELT)) (-3415 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-2887 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3610 (($ (-695) |#1|) 22 T ELT)) (-2198 (((-484) $) 18 (|has| (-484) (-757)) ELT)) (-2529 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3514 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2606 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2199 (((-484) $) 40 (|has| (-484) (-757)) ELT)) (-2855 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 32 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 35 T ELT)) (-3239 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-2302 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2201 (((-584 (-484)) $) NIL T ELT)) (-2202 (((-85) (-484) $) NIL T ELT)) (-3240 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3797 ((|#1| $) NIL (|has| (-484) (-757)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2197 (($ $ |#1|) 16 (|has| $ (-6 -3992)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2200 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2203 (((-584 |#1|) $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) 20 T ELT)) (-3796 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) 42 T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-2303 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-1729 (($ $ $ (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-3396 (($ $) 14 T ELT)) (-3968 (((-473) $) NIL (|has| |#1| (-554 (-473))) ELT)) (-3526 (($ (-584 |#1|)) 25 T ELT)) (-3798 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3942 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2564 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3054 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2682 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3953 (((-695) $) 12 (|has| $ (-6 -3991)) ELT)))
+(((-433 |#1| |#2|) (-19 |#1|) (-1128) (-484)) (T -433))
+NIL
+((-2566 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3784 ((|#1| $ (-484) (-484) |#1|) NIL T ELT)) (-1255 (($ $ (-484) (-433 |#1| |#3|)) NIL T ELT)) (-1254 (($ $ (-484) (-433 |#1| |#2|)) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3109 (((-433 |#1| |#3|) $ (-484)) NIL T ELT)) (-1574 ((|#1| $ (-484) (-484) |#1|) NIL T ELT)) (-3110 ((|#1| $ (-484) (-484)) NIL T ELT)) (-2887 (((-584 |#1|) $) NIL T ELT)) (-3112 (((-695) $) NIL T ELT)) (-3610 (($ (-695) (-695) |#1|) NIL T ELT)) (-3111 (((-695) $) NIL T ELT)) (-3116 (((-484) $) NIL T ELT)) (-3114 (((-484) $) NIL T ELT)) (-2606 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3115 (((-484) $) NIL T ELT)) (-3113 (((-484) $) NIL T ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3239 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3240 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-2197 (($ $ |#1|) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) NIL T ELT)) (-3796 ((|#1| $ (-484) (-484)) NIL T ELT) ((|#1| $ (-484) (-484) |#1|) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3396 (($ $) NIL T ELT)) (-3108 (((-433 |#1| |#2|) $ (-484)) NIL T ELT)) (-3942 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-434 |#1| |#2| |#3|) (-57 |#1| (-433 |#1| |#3|) (-433 |#1| |#2|)) (-1128) (-484) (-484)) (T -434))
+NIL
+((-1951 (((-584 (-2 (|:| -2010 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) (-2 (|:| -2010 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) (-695) (-695)) 32 T ELT)) (-1950 (((-584 (-1084 |#1|)) |#1| (-695) (-695) (-695)) 43 T ELT)) (-2075 (((-2 (|:| -2010 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) (-584 |#3|) (-584 (-2 (|:| -2010 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) (-695)) 107 T ELT)))
+(((-435 |#1| |#2| |#3|) (-10 -7 (-15 -1950 ((-584 (-1084 |#1|)) |#1| (-695) (-695) (-695))) (-15 -1951 ((-584 (-2 (|:| -2010 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) (-2 (|:| -2010 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) (-695) (-695))) (-15 -2075 ((-2 (|:| -2010 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) (-584 |#3|) (-584 (-2 (|:| -2010 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) (-695)))) (-298) (-1154 |#1|) (-1154 |#2|)) (T -435))
+((-2075 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 (-2 (|:| -2010 (-631 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-631 *7))))) (-5 *5 (-695)) (-4 *8 (-1154 *7)) (-4 *7 (-1154 *6)) (-4 *6 (-298)) (-5 *2 (-2 (|:| -2010 (-631 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-631 *7)))) (-5 *1 (-435 *6 *7 *8)))) (-1951 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-695)) (-4 *5 (-298)) (-4 *6 (-1154 *5)) (-5 *2 (-584 (-2 (|:| -2010 (-631 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-631 *6))))) (-5 *1 (-435 *5 *6 *7)) (-5 *3 (-2 (|:| -2010 (-631 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-631 *6)))) (-4 *7 (-1154 *6)))) (-1950 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-695)) (-4 *3 (-298)) (-4 *5 (-1154 *3)) (-5 *2 (-584 (-1084 *3))) (-5 *1 (-435 *3 *5 *6)) (-4 *6 (-1154 *5)))))
+((-1957 (((-2 (|:| -2010 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) (-2 (|:| -2010 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) (-2 (|:| -2010 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|)))) 70 T ELT)) (-1952 ((|#1| (-631 |#1|) |#1| (-695)) 24 T ELT)) (-1954 (((-695) (-695) (-695)) 34 T ELT)) (-1956 (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 50 T ELT)) (-1955 (((-631 |#1|) (-631 |#1|) (-631 |#1|) |#1|) 58 T ELT) (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 55 T ELT)) (-1953 ((|#1| (-631 |#1|) (-631 |#1|) |#1| (-484)) 28 T ELT)) (-3325 ((|#1| (-631 |#1|)) 18 T ELT)))
+(((-436 |#1| |#2| |#3|) (-10 -7 (-15 -3325 (|#1| (-631 |#1|))) (-15 -1952 (|#1| (-631 |#1|) |#1| (-695))) (-15 -1953 (|#1| (-631 |#1|) (-631 |#1|) |#1| (-484))) (-15 -1954 ((-695) (-695) (-695))) (-15 -1955 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -1955 ((-631 |#1|) (-631 |#1|) (-631 |#1|) |#1|)) (-15 -1956 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -1957 ((-2 (|:| -2010 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) (-2 (|:| -2010 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) (-2 (|:| -2010 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|)))))) (-13 (-257) (-10 -8 (-15 -3967 ((-345 $) $)))) (-1154 |#1|) (-350 |#1| |#2|)) (T -436))
+((-1957 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2010 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-4 *3 (-13 (-257) (-10 -8 (-15 -3967 ((-345 $) $))))) (-4 *4 (-1154 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4)))) (-1956 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-257) (-10 -8 (-15 -3967 ((-345 $) $))))) (-4 *4 (-1154 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4)))) (-1955 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-257) (-10 -8 (-15 -3967 ((-345 $) $))))) (-4 *4 (-1154 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4)))) (-1955 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-257) (-10 -8 (-15 -3967 ((-345 $) $))))) (-4 *4 (-1154 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4)))) (-1954 (*1 *2 *2 *2) (-12 (-5 *2 (-695)) (-4 *3 (-13 (-257) (-10 -8 (-15 -3967 ((-345 $) $))))) (-4 *4 (-1154 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4)))) (-1953 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-631 *2)) (-5 *4 (-484)) (-4 *2 (-13 (-257) (-10 -8 (-15 -3967 ((-345 $) $))))) (-4 *5 (-1154 *2)) (-5 *1 (-436 *2 *5 *6)) (-4 *6 (-350 *2 *5)))) (-1952 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-631 *2)) (-5 *4 (-695)) (-4 *2 (-13 (-257) (-10 -8 (-15 -3967 ((-345 $) $))))) (-4 *5 (-1154 *2)) (-5 *1 (-436 *2 *5 *6)) (-4 *6 (-350 *2 *5)))) (-3325 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *4 (-1154 *2)) (-4 *2 (-13 (-257) (-10 -8 (-15 -3967 ((-345 $) $))))) (-5 *1 (-436 *2 *4 *5)) (-4 *5 (-350 *2 *4)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-2311 (($ $) 44 T ELT)) (-3318 (($ $ $) 41 T ELT)) (-2196 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-1730 (((-85) $) NIL (|has| (-85) (-757)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1728 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-85) (-757))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3992)) ELT)) (-2907 (($ $) NIL (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3784 (((-85) $ (-1145 (-484)) (-85)) NIL (|has| $ (-6 -3992)) ELT) (((-85) $ (-484) (-85)) 43 (|has| $ (-6 -3992)) ELT)) (-3706 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3991)) ELT)) (-3720 (($) NIL T CONST)) (-2295 (($ $) NIL (|has| $ (-6 -3992)) ELT)) (-2296 (($ $) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-85) (-1013))) ELT)) (-3402 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3991)) ELT) (($ (-85) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-85) (-1013))) ELT)) (-3838 (((-85) (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-6 -3991)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL (|has| $ (-6 -3991)) ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (-12 (|has| $ (-6 -3991)) (|has| (-85) (-1013))) ELT)) (-1574 (((-85) $ (-484) (-85)) NIL (|has| $ (-6 -3992)) ELT)) (-3110 (((-85) $ (-484)) NIL T ELT)) (-3415 (((-484) (-85) $ (-484)) NIL (|has| (-85) (-1013)) ELT) (((-484) (-85) $) NIL (|has| (-85) (-1013)) ELT) (((-484) (-1 (-85) (-85)) $) NIL T ELT)) (-2887 (((-584 (-85)) $) NIL (|has| $ (-6 -3991)) ELT)) (-2559 (($ $ $) 39 T ELT)) (-2558 (($ $) NIL T ELT)) (-1298 (($ $ $) NIL T ELT)) (-3610 (($ (-695) (-85)) 27 T ELT)) (-1299 (($ $ $) NIL T ELT)) (-2198 (((-484) $) 8 (|has| (-484) (-757)) ELT)) (-2529 (($ $ $) NIL T ELT)) (-3514 (($ $ $) NIL (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2606 (((-584 (-85)) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-85) (-1013))) ELT)) (-2199 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2855 (($ $ $) NIL T ELT)) (-1947 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 (-85) (-85) (-85)) $ $) 36 T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2302 (($ $ $ (-484)) NIL T ELT) (($ (-85) $ (-484)) NIL T ELT)) (-2201 (((-584 (-484)) $) NIL T ELT)) (-2202 (((-85) (-484) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3797 (((-85) $) NIL (|has| (-484) (-757)) ELT)) (-1352 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2197 (($ $ (-85)) NIL (|has| $ (-6 -3992)) ELT)) (-1945 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-85)) (-584 (-85))) NIL (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-248 (-85))) NIL (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-584 (-248 (-85)))) NIL (-12 (|has| (-85) (-259 (-85))) (|has| (-85) (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2200 (((-85) (-85) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-85) (-1013))) ELT)) (-2203 (((-584 (-85)) $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) 29 T ELT)) (-3796 (($ $ (-1145 (-484))) NIL T ELT) (((-85) $ (-484)) 22 T ELT) (((-85) $ (-484) (-85)) NIL T ELT)) (-2303 (($ $ (-1145 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-1944 (((-695) (-85) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-85) (-1013))) ELT) (((-695) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3991)) ELT)) (-1729 (($ $ $ (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-3396 (($ $) 30 T ELT)) (-3968 (((-473) $) NIL (|has| (-85) (-554 (-473))) ELT)) (-3526 (($ (-584 (-85))) NIL T ELT)) (-3798 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-3942 (((-773) $) 26 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-85)) $) NIL (|has| $ (-6 -3991)) ELT)) (-2560 (($ $ $) 37 T ELT)) (-2309 (($ $ $) 46 T ELT)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 31 T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) 32 T ELT)) (-2310 (($ $ $) 45 T ELT)) (-3953 (((-695) $) 13 (|has| $ (-6 -3991)) ELT)))
+(((-437 |#1|) (-96) (-484)) (T -437))
+NIL
+((-1959 (((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1084 |#4|)) 35 T ELT)) (-1958 (((-1084 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1084 |#4|)) 22 T ELT)) (-1960 (((-3 (-631 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-631 (-1084 |#4|))) 46 T ELT)) (-1961 (((-1084 (-1084 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT)))
+(((-438 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1958 (|#2| (-1 |#1| |#4|) (-1084 |#4|))) (-15 -1958 ((-1084 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1959 ((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1084 |#4|))) (-15 -1960 ((-3 (-631 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-631 (-1084 |#4|)))) (-15 -1961 ((-1084 (-1084 |#4|)) (-1 |#4| |#1|) |#3|))) (-962) (-1154 |#1|) (-1154 |#2|) (-962)) (T -438))
+((-1961 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *6 (-1154 *5)) (-5 *2 (-1084 (-1084 *7))) (-5 *1 (-438 *5 *6 *4 *7)) (-4 *4 (-1154 *6)))) (-1960 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-631 (-1084 *8))) (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-1154 *5)) (-5 *2 (-631 *6)) (-5 *1 (-438 *5 *6 *7 *8)) (-4 *7 (-1154 *6)))) (-1959 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1084 *7)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *2 (-1154 *5)) (-5 *1 (-438 *5 *2 *6 *7)) (-4 *6 (-1154 *2)))) (-1958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *4 (-1154 *5)) (-5 *2 (-1084 *7)) (-5 *1 (-438 *5 *4 *6 *7)) (-4 *6 (-1154 *4)))) (-1958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1084 *7)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *2 (-1154 *5)) (-5 *1 (-438 *5 *2 *6 *7)) (-4 *6 (-1154 *2)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-2529 (($ $ $) NIL T ELT)) (-2855 (($ $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1962 (((-1184) $) 25 T ELT)) (-3796 (((-1072) $ (-1089)) 30 T ELT)) (-3613 (((-1184) $) 20 T ELT)) (-3942 (((-773) $) 27 T ELT) (($ (-1072)) 26 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 12 T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) 10 T ELT)))
+(((-439) (-13 (-757) (-556 (-1072)) (-10 -8 (-15 -3796 ((-1072) $ (-1089))) (-15 -3613 ((-1184) $)) (-15 -1962 ((-1184) $))))) (T -439))
+((-3796 (*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1072)) (-5 *1 (-439)))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-439)))) (-1962 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-439)))))
+((-3737 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-3735 ((|#1| |#4|) 10 T ELT)) (-3736 ((|#3| |#4|) 17 T ELT)))
+(((-440 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3735 (|#1| |#4|)) (-15 -3736 (|#3| |#4|)) (-15 -3737 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-495) (-905 |#1|) (-321 |#1|) (-321 |#2|)) (T -440))
+((-3737 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-905 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-440 *4 *5 *6 *3)) (-4 *6 (-321 *4)) (-4 *3 (-321 *5)))) (-3736 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-905 *4)) (-4 *2 (-321 *4)) (-5 *1 (-440 *4 *5 *2 *3)) (-4 *3 (-321 *5)))) (-3735 (*1 *2 *3) (-12 (-4 *4 (-905 *2)) (-4 *2 (-495)) (-5 *1 (-440 *2 *4 *5 *3)) (-4 *5 (-321 *2)) (-4 *3 (-321 *4)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-1972 (((-85) $ (-584 |#3|)) 127 T ELT) (((-85) $) 128 T ELT)) (-3185 (((-85) $) 178 T ELT)) (-1964 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-584 |#3|)) 122 T ELT)) (-1963 (((-1079 (-584 (-858 |#1|)) (-584 (-248 (-858 |#1|)))) (-584 |#4|)) 171 (|has| |#3| (-554 (-1089))) ELT)) (-1971 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-2408 (((-85) $) 177 T ELT)) (-1968 (($ $) 132 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3235 (($ $ $) 99 T ELT) (($ (-584 $)) 101 T ELT)) (-1973 (((-85) |#4| $) 130 T ELT)) (-1974 (((-85) $ $) 82 T ELT)) (-1967 (($ (-584 |#4|)) 106 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1966 (($ (-584 |#4|)) 175 T ELT)) (-1965 (((-85) $) 176 T ELT)) (-2249 (($ $) 85 T ELT)) (-2693 (((-584 |#4|) $) 73 T ELT)) (-1970 (((-2 (|:| |mval| (-631 |#1|)) (|:| |invmval| (-631 |#1|)) (|:| |genIdeal| $)) $ (-584 |#3|)) NIL T ELT)) (-1975 (((-85) |#4| $) 89 T ELT)) (-3907 (((-484) $ (-584 |#3|)) 134 T ELT) (((-484) $) 135 T ELT)) (-3942 (((-773) $) 174 T ELT) (($ (-584 |#4|)) 102 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1969 (($ (-2 (|:| |mval| (-631 |#1|)) (|:| |invmval| (-631 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-3054 (((-85) $ $) 84 T ELT)) (-3835 (($ $ $) 109 T ELT)) (** (($ $ (-695)) 115 T ELT)) (* (($ $ $) 113 T ELT)))
+(((-441 |#1| |#2| |#3| |#4|) (-13 (-1013) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-695))) (-15 -3835 ($ $ $)) (-15 -2408 ((-85) $)) (-15 -3185 ((-85) $)) (-15 -1975 ((-85) |#4| $)) (-15 -1974 ((-85) $ $)) (-15 -1973 ((-85) |#4| $)) (-15 -1972 ((-85) $ (-584 |#3|))) (-15 -1972 ((-85) $)) (-15 -3235 ($ $ $)) (-15 -3235 ($ (-584 $))) (-15 -1971 ($ $ $)) (-15 -1971 ($ $ |#4|)) (-15 -2249 ($ $)) (-15 -1970 ((-2 (|:| |mval| (-631 |#1|)) (|:| |invmval| (-631 |#1|)) (|:| |genIdeal| $)) $ (-584 |#3|))) (-15 -1969 ($ (-2 (|:| |mval| (-631 |#1|)) (|:| |invmval| (-631 |#1|)) (|:| |genIdeal| $)))) (-15 -3907 ((-484) $ (-584 |#3|))) (-15 -3907 ((-484) $)) (-15 -1968 ($ $)) (-15 -1967 ($ (-584 |#4|))) (-15 -1966 ($ (-584 |#4|))) (-15 -1965 ((-85) $)) (-15 -2693 ((-584 |#4|) $)) (-15 -3942 ($ (-584 |#4|))) (-15 -1964 ($ $ |#4|)) (-15 -1964 ($ $ |#4| (-584 |#3|))) (IF (|has| |#3| (-554 (-1089))) (-15 -1963 ((-1079 (-584 (-858 |#1|)) (-584 (-248 (-858 |#1|)))) (-584 |#4|))) |%noBranch|))) (-311) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -441))
+((* (*1 *1 *1 *1) (-12 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-441 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3835 (*1 *1 *1 *1) (-12 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-441 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-2408 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3185 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-1975 (*1 *2 *3 *1) (-12 (-4 *4 (-311)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1974 (*1 *2 *1 *1) (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-1973 (*1 *2 *3 *1) (-12 (-4 *4 (-311)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1972 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-311)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-441 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))) (-1972 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3235 (*1 *1 *1 *1) (-12 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-441 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-3235 (*1 *1 *2) (-12 (-5 *2 (-584 (-441 *3 *4 *5 *6))) (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-1971 (*1 *1 *1 *1) (-12 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-441 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-1971 (*1 *1 *1 *2) (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-441 *3 *4 *5 *2)) (-4 *2 (-862 *3 *4 *5)))) (-2249 (*1 *1 *1) (-12 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-441 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-1970 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-311)) (-4 *5 (-718)) (-5 *2 (-2 (|:| |mval| (-631 *4)) (|:| |invmval| (-631 *4)) (|:| |genIdeal| (-441 *4 *5 *6 *7)))) (-5 *1 (-441 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))) (-1969 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-631 *3)) (|:| |invmval| (-631 *3)) (|:| |genIdeal| (-441 *3 *4 *5 *6)))) (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3907 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-311)) (-4 *5 (-718)) (-5 *2 (-484)) (-5 *1 (-441 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))) (-3907 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-484)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-1968 (*1 *1 *1) (-12 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-441 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-1967 (*1 *1 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-441 *3 *4 *5 *6)))) (-1966 (*1 *1 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-441 *3 *4 *5 *6)))) (-1965 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-2693 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *6)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3942 (*1 *1 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-441 *3 *4 *5 *6)))) (-1964 (*1 *1 *1 *2) (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-441 *3 *4 *5 *2)) (-4 *2 (-862 *3 *4 *5)))) (-1964 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-311)) (-4 *5 (-718)) (-5 *1 (-441 *4 *5 *6 *2)) (-4 *2 (-862 *4 *5 *6)))) (-1963 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *6 (-554 (-1089))) (-4 *4 (-311)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1079 (-584 (-858 *4)) (-584 (-248 (-858 *4))))) (-5 *1 (-441 *4 *5 *6 *7)))))
+((-1976 (((-85) (-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484))))) 178 T ELT)) (-1977 (((-85) (-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484))))) 179 T ELT)) (-1978 (((-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484)))) (-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484))))) 129 T ELT)) (-3719 (((-85) (-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484))))) NIL T ELT)) (-1979 (((-584 (-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484))))) (-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484))))) 181 T ELT)) (-1980 (((-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484)))) (-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484)))) (-584 (-774 |#1|))) 197 T ELT)))
+(((-442 |#1| |#2|) (-10 -7 (-15 -1976 ((-85) (-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484)))))) (-15 -1977 ((-85) (-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484)))))) (-15 -3719 ((-85) (-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484)))))) (-15 -1978 ((-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484)))) (-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484)))))) (-15 -1979 ((-584 (-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484))))) (-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484)))))) (-15 -1980 ((-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484)))) (-441 (-347 (-484)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-347 (-484)))) (-584 (-774 |#1|))))) (-584 (-1089)) (-695)) (T -442))
+((-1980 (*1 *2 *2 *3) (-12 (-5 *2 (-441 (-347 (-484)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-347 (-484))))) (-5 *3 (-584 (-774 *4))) (-14 *4 (-584 (-1089))) (-14 *5 (-695)) (-5 *1 (-442 *4 *5)))) (-1979 (*1 *2 *3) (-12 (-14 *4 (-584 (-1089))) (-14 *5 (-695)) (-5 *2 (-584 (-441 (-347 (-484)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-347 (-484)))))) (-5 *1 (-442 *4 *5)) (-5 *3 (-441 (-347 (-484)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-347 (-484))))))) (-1978 (*1 *2 *2) (-12 (-5 *2 (-441 (-347 (-484)) (-197 *4 (-695)) (-774 *3) (-206 *3 (-347 (-484))))) (-14 *3 (-584 (-1089))) (-14 *4 (-695)) (-5 *1 (-442 *3 *4)))) (-3719 (*1 *2 *3) (-12 (-5 *3 (-441 (-347 (-484)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-347 (-484))))) (-14 *4 (-584 (-1089))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-442 *4 *5)))) (-1977 (*1 *2 *3) (-12 (-5 *3 (-441 (-347 (-484)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-347 (-484))))) (-14 *4 (-584 (-1089))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-442 *4 *5)))) (-1976 (*1 *2 *3) (-12 (-5 *3 (-441 (-347 (-484)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-347 (-484))))) (-14 *4 (-584 (-1089))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-442 *4 *5)))))
+((-3796 ((|#1| $ |#1| |#1|) 6 T ELT)))
(((-443 |#1|) (-113) (-72)) (T -443))
NIL
-(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (-3052 (|f| |x| |x|) |x|))))))
-(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1980 (($) 6 T ELT)) (-3940 (((-772) $) 10 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 8 T ELT)))
-(((-444) (-13 (-1012) (-10 -8 (-15 -1980 ($))))) (T -444))
-((-1980 (*1 *1) (-5 *1 (-444))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3768 (((-583 (-782 |#2| |#1|)) $) 12 T ELT)) (-1309 (((-3 $ "failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3953 (($ $) NIL T ELT)) (-2889 (($ |#1| |#2|) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1981 ((|#2| $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 16 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) 15 T ELT) (($ $ $) 39 T ELT)) (-3833 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 26 T ELT)))
-(((-445 |#1| |#2|) (-13 (-21) (-447 |#1| |#2|)) (-21) (-759)) (T -445))
-NIL
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 17 T ELT)) (-3768 (((-583 (-782 |#2| |#1|)) $) 14 T ELT)) (-3718 (($) NIL T CONST)) (-3953 (($ $) 44 T ELT)) (-2889 (($ |#1| |#2|) 41 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 43 T ELT)) (-1981 ((|#2| $) NIL T ELT)) (-3169 ((|#1| $) 45 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 13 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3833 (($ $ $) 31 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) 40 T ELT)))
-(((-446 |#1| |#2|) (-13 (-23) (-447 |#1| |#2|)) (-23) (-759)) (T -446))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3768 (((-583 (-782 |#2| |#1|)) $) 15 T ELT)) (-3953 (($ $) 16 T ELT)) (-2889 (($ |#1| |#2|) 19 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 20 T ELT)) (-1981 ((|#2| $) 17 T ELT)) (-3169 ((|#1| $) 18 T ELT)) (-3237 (((-1071) $) 14 (-12 (|has| |#2| (-1012)) (|has| |#1| (-1012))) ELT)) (-3238 (((-1032) $) 13 (-12 (|has| |#2| (-1012)) (|has| |#1| (-1012))) ELT)) (-3940 (((-772) $) 12 (-12 (|has| |#2| (-1012)) (|has| |#1| (-1012))) ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT)))
-(((-447 |#1| |#2|) (-113) (-72) (-759)) (T -447))
-((-3952 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-447 *3 *4)) (-4 *3 (-72)) (-4 *4 (-759)))) (-2889 (*1 *1 *2 *3) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-72)) (-4 *3 (-759)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *3 (-759)) (-4 *2 (-72)))) (-1981 (*1 *2 *1) (-12 (-4 *1 (-447 *3 *2)) (-4 *3 (-72)) (-4 *2 (-759)))) (-3953 (*1 *1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-72)) (-4 *3 (-759)))) (-3768 (*1 *2 *1) (-12 (-4 *1 (-447 *3 *4)) (-4 *3 (-72)) (-4 *4 (-759)) (-5 *2 (-583 (-782 *4 *3))))))
-(-13 (-72) (-10 -8 (IF (|has| |t#1| (-1012)) (IF (|has| |t#2| (-1012)) (-6 (-1012)) |%noBranch|) |%noBranch|) (-15 -3952 ($ (-1 |t#1| |t#1|) $)) (-15 -2889 ($ |t#1| |t#2|)) (-15 -3169 (|t#1| $)) (-15 -1981 (|t#2| $)) (-15 -3953 ($ $)) (-15 -3768 ((-583 (-782 |t#2| |t#1|)) $))))
-(((-72) . T) ((-552 (-772)) -12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) ((-13) . T) ((-1012) -12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3768 (((-583 (-782 |#2| |#1|)) $) 36 T ELT)) (-3953 (($ $) 33 T ELT)) (-2889 (($ |#1| |#2|) 30 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 32 T ELT)) (-1981 ((|#2| $) 35 T ELT)) (-3169 ((|#1| $) 34 T ELT)) (-3237 (((-1071) $) NIL (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) ELT)) (-3238 (((-1032) $) NIL (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) ELT)) (-3940 (((-772) $) 28 (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 21 T ELT)))
-(((-448 |#1| |#2|) (-447 |#1| |#2|) (-72) (-759)) (T -448))
-NIL
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3768 (((-583 (-782 |#2| |#1|)) $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3953 (($ $) NIL T ELT)) (-3181 (((-85) $) NIL T ELT)) (-2889 (($ |#1| |#2|) NIL T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1981 ((|#2| $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 23 T ELT)) (-3833 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT)))
-(((-449 |#1| |#2|) (-13 (-716) (-447 |#1| |#2|)) (-716) (-759)) (T -449))
-NIL
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3768 (((-583 (-782 |#2| |#1|)) $) NIL T ELT)) (-2479 (($ $ $) 24 T ELT)) (-1309 (((-3 $ "failed") $ $) 20 T ELT)) (-3718 (($) NIL T CONST)) (-3953 (($ $) NIL T ELT)) (-3181 (((-85) $) NIL T ELT)) (-2889 (($ |#1| |#2|) NIL T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1981 ((|#2| $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT)))
-(((-450 |#1| |#2|) (-13 (-717) (-447 |#1| |#2|)) (-717) (-756)) (T -450))
-NIL
-((-3762 (($ $ (-583 |#2|) (-583 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT)))
-(((-451 |#1| |#2| |#3|) (-10 -7 (-15 -3762 (|#1| |#1| |#2| |#3|)) (-15 -3762 (|#1| |#1| (-583 |#2|) (-583 |#3|)))) (-452 |#2| |#3|) (-1012) (-1127)) (T -451))
-NIL
-((-3762 (($ $ (-583 |#1|) (-583 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT)))
-(((-452 |#1| |#2|) (-113) (-1012) (-1127)) (T -452))
-((-3762 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *5)) (-4 *1 (-452 *4 *5)) (-4 *4 (-1012)) (-4 *5 (-1127)))) (-3762 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-452 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1127)))))
-(-13 (-10 -8 (-15 -3762 ($ $ |t#1| |t#2|)) (-15 -3762 ($ $ (-583 |t#1|) (-583 |t#2|)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 17 T ELT)) (-3768 (((-583 (-2 (|:| |gen| |#1|) (|:| -3937 |#2|))) $) 19 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3131 (((-694) $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT)) (-2295 ((|#1| $ (-483)) 24 T ELT)) (-1619 ((|#2| $ (-483)) 22 T ELT)) (-2286 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-1618 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1617 (($ $ $) 55 (|has| |#2| (-716)) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-3671 ((|#2| |#1| $) 51 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 11 T CONST)) (-3052 (((-85) $ $) 30 T ELT)) (-3833 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT)))
-(((-453 |#1| |#2| |#3|) (-273 |#1| |#2|) (-1012) (-104) |#2|) (T -453))
-NIL
-((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1727 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3990)) (|has| |#1| (-756))) ELT)) (-2905 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-1982 (((-85) (-85)) 32 T ELT)) (-3782 ((|#1| $ (-483) |#1|) 42 (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-1567 (($ (-1 (-85) |#1|) $) 79 T ELT)) (-3704 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3718 (($) NIL T CONST)) (-2293 (($ $) NIL (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) NIL T ELT)) (-2364 (($ $) 83 (|has| |#1| (-1012)) ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3399 (($ |#1| $) NIL (|has| |#1| (-1012)) ELT) (($ (-1 (-85) |#1|) $) 66 T ELT)) (-3400 (($ |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) NIL T ELT)) (-3413 (((-483) (-1 (-85) |#1|) $) NIL T ELT) (((-483) |#1| $) NIL (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) NIL (|has| |#1| (-1012)) ELT)) (-1983 (($ $ (-483)) 19 T ELT)) (-1984 (((-694) $) 13 T ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3608 (($ (-694) |#1|) 31 T ELT)) (-2196 (((-483) $) 29 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2852 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 57 T ELT)) (-3512 (($ (-1 (-85) |#1| |#1|) $ $) 58 T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2197 (((-483) $) 28 (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3603 (($ $ $ (-483)) 75 T ELT) (($ |#1| $ (-483)) 59 T ELT)) (-2300 (($ |#1| $ (-483)) NIL T ELT) (($ $ $ (-483)) NIL T ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1985 (($ (-583 |#1|)) 43 T ELT)) (-3795 ((|#1| $) NIL (|has| (-483) (-756)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2195 (($ $ |#1|) 24 (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 62 T ELT)) (-2198 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) 21 T ELT)) (-3794 ((|#1| $ (-483) |#1|) NIL T ELT) ((|#1| $ (-483)) 55 T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-1568 (($ $ (-1144 (-483))) 73 T ELT) (($ $ (-483)) 67 T ELT)) (-2301 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1728 (($ $ $ (-483)) 63 (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) 53 T ELT)) (-3966 (((-472) $) NIL (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) NIL T ELT)) (-3785 (($ $ $) 64 T ELT) (($ $ |#1|) 61 T ELT)) (-3796 (($ $ |#1|) NIL T ELT) (($ |#1| $) 60 T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3951 (((-694) $) 22 (|has| $ (-6 -3989)) ELT)))
-(((-454 |#1| |#2|) (-13 (-19 |#1|) (-237 |#1|) (-10 -8 (-15 -1985 ($ (-583 |#1|))) (-15 -1984 ((-694) $)) (-15 -1983 ($ $ (-483))) (-15 -1982 ((-85) (-85))))) (-1127) (-483)) (T -454))
-((-1985 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-5 *1 (-454 *3 *4)) (-14 *4 (-483)))) (-1984 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-454 *3 *4)) (-4 *3 (-1127)) (-14 *4 (-483)))) (-1983 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-454 *3 *4)) (-4 *3 (-1127)) (-14 *4 *2))) (-1982 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-454 *3 *4)) (-4 *3 (-1127)) (-14 *4 (-483)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-1987 (((-1047) $) 12 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1986 (((-1047) $) 14 T ELT)) (-3916 (((-1047) $) 10 T ELT)) (-3940 (((-772) $) 20 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-455) (-13 (-994) (-10 -8 (-15 -3916 ((-1047) $)) (-15 -1987 ((-1047) $)) (-15 -1986 ((-1047) $))))) (T -455))
-((-3916 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-455)))) (-1987 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-455)))) (-1986 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-455)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-3926 (((-85) $) NIL T ELT)) (-3923 (((-694)) NIL T ELT)) (-3324 (((-516 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-516 |#1|) (-317)) ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) NIL (|has| (-516 |#1|) (-317)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) NIL (|has| (-516 |#1|) (-317)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-516 |#1|) #1#) $) NIL T ELT)) (-3151 (((-516 |#1|) $) NIL T ELT)) (-1789 (($ (-1177 (-516 |#1|))) NIL T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-516 |#1|) (-317)) ELT)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) NIL (|has| (-516 |#1|) (-317)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-2829 (($) NIL (|has| (-516 |#1|) (-317)) ELT)) (-1677 (((-85) $) NIL (|has| (-516 |#1|) (-317)) ELT)) (-1761 (($ $ (-694)) NIL (OR (|has| (-516 |#1|) (-118)) (|has| (-516 |#1|) (-317))) ELT) (($ $) NIL (OR (|has| (-516 |#1|) (-118)) (|has| (-516 |#1|) (-317))) ELT)) (-3717 (((-85) $) NIL T ELT)) (-3766 (((-830) $) NIL (|has| (-516 |#1|) (-317)) ELT) (((-743 (-830)) $) NIL (OR (|has| (-516 |#1|) (-118)) (|has| (-516 |#1|) (-317))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2009 (($) NIL (|has| (-516 |#1|) (-317)) ELT)) (-2007 (((-85) $) NIL (|has| (-516 |#1|) (-317)) ELT)) (-3127 (((-516 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-516 |#1|) (-317)) ELT)) (-3439 (((-632 $) $) NIL (|has| (-516 |#1|) (-317)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2010 (((-1083 (-516 |#1|)) $) NIL T ELT) (((-1083 $) $ (-830)) NIL (|has| (-516 |#1|) (-317)) ELT)) (-2006 (((-830) $) NIL (|has| (-516 |#1|) (-317)) ELT)) (-1624 (((-1083 (-516 |#1|)) $) NIL (|has| (-516 |#1|) (-317)) ELT)) (-1623 (((-1083 (-516 |#1|)) $) NIL (|has| (-516 |#1|) (-317)) ELT) (((-3 (-1083 (-516 |#1|)) #1#) $ $) NIL (|has| (-516 |#1|) (-317)) ELT)) (-1625 (($ $ (-1083 (-516 |#1|))) NIL (|has| (-516 |#1|) (-317)) ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL (|has| (-516 |#1|) (-317)) CONST)) (-2396 (($ (-830)) NIL (|has| (-516 |#1|) (-317)) ELT)) (-3925 (((-85) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2405 (($) NIL (|has| (-516 |#1|) (-317)) ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) NIL (|has| (-516 |#1|) (-317)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-3924 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-1762 (((-694) $) NIL (|has| (-516 |#1|) (-317)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| (-516 |#1|) (-118)) (|has| (-516 |#1|) (-317))) ELT)) (-3905 (((-107)) NIL T ELT)) (-3752 (($ $ (-694)) NIL (|has| (-516 |#1|) (-317)) ELT) (($ $) NIL (|has| (-516 |#1|) (-317)) ELT)) (-3942 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3180 (((-1083 (-516 |#1|))) NIL T ELT)) (-1671 (($) NIL (|has| (-516 |#1|) (-317)) ELT)) (-1626 (($) NIL (|has| (-516 |#1|) (-317)) ELT)) (-3219 (((-1177 (-516 |#1|)) $) NIL T ELT) (((-630 (-516 |#1|)) (-1177 $)) NIL T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (|has| (-516 |#1|) (-317)) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ (-516 |#1|)) NIL T ELT)) (-2698 (($ $) NIL (|has| (-516 |#1|) (-317)) ELT) (((-632 $) $) NIL (OR (|has| (-516 |#1|) (-118)) (|has| (-516 |#1|) (-317))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) NIL T ELT) (((-1177 $) (-830)) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3927 (((-85) $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-3922 (($ $) NIL (|has| (-516 |#1|) (-317)) ELT) (($ $ (-694)) NIL (|has| (-516 |#1|) (-317)) ELT)) (-2665 (($ $ (-694)) NIL (|has| (-516 |#1|) (-317)) ELT) (($ $) NIL (|has| (-516 |#1|) (-317)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ $) NIL T ELT) (($ $ (-516 |#1|)) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ $ (-516 |#1|)) NIL T ELT) (($ (-516 |#1|) $) NIL T ELT)))
-(((-456 |#1| |#2|) (-279 (-516 |#1|)) (-830) (-830)) (T -456))
-NIL
-((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3782 ((|#1| $ (-483) (-483) |#1|) 51 T ELT)) (-1254 (($ $ (-483) |#4|) NIL T ELT)) (-1253 (($ $ (-483) |#5|) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3107 ((|#4| $ (-483)) NIL T ELT)) (-1573 ((|#1| $ (-483) (-483) |#1|) 50 T ELT)) (-3108 ((|#1| $ (-483) (-483)) 45 T ELT)) (-2885 (((-583 |#1|) $) NIL T ELT)) (-3110 (((-694) $) 33 T ELT)) (-3608 (($ (-694) (-694) |#1|) 30 T ELT)) (-3109 (((-694) $) 38 T ELT)) (-3114 (((-483) $) 31 T ELT)) (-3112 (((-483) $) 32 T ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3113 (((-483) $) 37 T ELT)) (-3111 (((-483) $) 39 T ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3237 (((-1071) $) 55 (|has| |#1| (-1012)) ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-2195 (($ $ |#1|) NIL T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) 16 T ELT)) (-3559 (($) 18 T ELT)) (-3794 ((|#1| $ (-483) (-483)) 48 T ELT) ((|#1| $ (-483) (-483) |#1|) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3106 ((|#5| $ (-483)) NIL T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-457 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1127) (-483) (-483) (-321 |#1|) (-321 |#1|)) (T -457))
-NIL
-((-3105 ((|#4| |#4|) 38 T ELT)) (-3104 (((-694) |#4|) 45 T ELT)) (-3103 (((-694) |#4|) 46 T ELT)) (-3102 (((-583 |#3|) |#4|) 57 (|has| |#3| (-6 -3990)) ELT)) (-3584 (((-3 |#4| "failed") |#4|) 69 T ELT)) (-1988 ((|#4| |#4|) 61 T ELT)) (-3322 ((|#1| |#4|) 60 T ELT)))
-(((-458 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3105 (|#4| |#4|)) (-15 -3104 ((-694) |#4|)) (-15 -3103 ((-694) |#4|)) (IF (|has| |#3| (-6 -3990)) (-15 -3102 ((-583 |#3|) |#4|)) |%noBranch|) (-15 -3322 (|#1| |#4|)) (-15 -1988 (|#4| |#4|)) (-15 -3584 ((-3 |#4| "failed") |#4|))) (-311) (-321 |#1|) (-321 |#1|) (-627 |#1| |#2| |#3|)) (T -458))
-((-3584 (*1 *2 *2) (|partial| -12 (-4 *3 (-311)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-458 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-1988 (*1 *2 *2) (-12 (-4 *3 (-311)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-458 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-3322 (*1 *2 *3) (-12 (-4 *4 (-321 *2)) (-4 *5 (-321 *2)) (-4 *2 (-311)) (-5 *1 (-458 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) (-3102 (*1 *2 *3) (-12 (|has| *6 (-6 -3990)) (-4 *4 (-311)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-583 *6)) (-5 *1 (-458 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3103 (*1 *2 *3) (-12 (-4 *4 (-311)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-694)) (-5 *1 (-458 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3104 (*1 *2 *3) (-12 (-4 *4 (-311)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-694)) (-5 *1 (-458 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3105 (*1 *2 *2) (-12 (-4 *3 (-311)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-458 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))))
-((-3105 ((|#8| |#4|) 20 T ELT)) (-3102 (((-583 |#3|) |#4|) 29 (|has| |#7| (-6 -3990)) ELT)) (-3584 (((-3 |#8| "failed") |#4|) 23 T ELT)))
-(((-459 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3105 (|#8| |#4|)) (-15 -3584 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -3990)) (-15 -3102 ((-583 |#3|) |#4|)) |%noBranch|)) (-494) (-321 |#1|) (-321 |#1|) (-627 |#1| |#2| |#3|) (-904 |#1|) (-321 |#5|) (-321 |#5|) (-627 |#5| |#6| |#7|)) (T -459))
-((-3102 (*1 *2 *3) (-12 (|has| *9 (-6 -3990)) (-4 *4 (-494)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-4 *7 (-904 *4)) (-4 *8 (-321 *7)) (-4 *9 (-321 *7)) (-5 *2 (-583 *6)) (-5 *1 (-459 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-627 *4 *5 *6)) (-4 *10 (-627 *7 *8 *9)))) (-3584 (*1 *2 *3) (|partial| -12 (-4 *4 (-494)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-4 *7 (-904 *4)) (-4 *2 (-627 *7 *8 *9)) (-5 *1 (-459 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-627 *4 *5 *6)) (-4 *8 (-321 *7)) (-4 *9 (-321 *7)))) (-3105 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-4 *7 (-904 *4)) (-4 *2 (-627 *7 *8 *9)) (-5 *1 (-459 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-627 *4 *5 *6)) (-4 *8 (-321 *7)) (-4 *9 (-321 *7)))))
-((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3832 (($ (-694) (-694)) NIL T ELT)) (-2346 (($ $ $) NIL T ELT)) (-3408 (($ (-536 |#1| |#3|)) NIL T ELT) (($ $) NIL T ELT)) (-3116 (((-85) $) NIL T ELT)) (-2345 (($ $ (-483) (-483)) 21 T ELT)) (-2344 (($ $ (-483) (-483)) NIL T ELT)) (-2343 (($ $ (-483) (-483) (-483) (-483)) NIL T ELT)) (-2348 (($ $) NIL T ELT)) (-3118 (((-85) $) NIL T ELT)) (-2342 (($ $ (-483) (-483) $) NIL T ELT)) (-3782 ((|#1| $ (-483) (-483) |#1|) NIL T ELT) (($ $ (-583 (-483)) (-583 (-483)) $) NIL T ELT)) (-1254 (($ $ (-483) (-536 |#1| |#3|)) NIL T ELT)) (-1253 (($ $ (-483) (-536 |#1| |#2|)) NIL T ELT)) (-3327 (($ (-694) |#1|) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3105 (($ $) 30 (|has| |#1| (-257)) ELT)) (-3107 (((-536 |#1| |#3|) $ (-483)) NIL T ELT)) (-3104 (((-694) $) 33 (|has| |#1| (-494)) ELT)) (-1573 ((|#1| $ (-483) (-483) |#1|) NIL T ELT)) (-3108 ((|#1| $ (-483) (-483)) NIL T ELT)) (-2885 (((-583 |#1|) $) NIL T ELT)) (-3103 (((-694) $) 35 (|has| |#1| (-494)) ELT)) (-3102 (((-583 (-536 |#1| |#2|)) $) 38 (|has| |#1| (-494)) ELT)) (-3110 (((-694) $) NIL T ELT)) (-3608 (($ (-694) (-694) |#1|) NIL T ELT)) (-3109 (((-694) $) NIL T ELT)) (-3321 ((|#1| $) 28 (|has| |#1| (-6 (-3991 #1="*"))) ELT)) (-3114 (((-483) $) 10 T ELT)) (-3112 (((-483) $) NIL T ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3113 (((-483) $) 13 T ELT)) (-3111 (((-483) $) NIL T ELT)) (-3119 (($ (-583 (-583 |#1|))) NIL T ELT) (($ (-694) (-694) (-1 |#1| (-483) (-483))) NIL T ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3588 (((-583 (-583 |#1|)) $) NIL T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3584 (((-3 $ #2="failed") $) 42 (|has| |#1| (-311)) ELT)) (-2347 (($ $ $) NIL T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-2195 (($ $ |#1|) NIL T ELT)) (-3460 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-494)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#1| $ (-483) (-483)) NIL T ELT) ((|#1| $ (-483) (-483) |#1|) NIL T ELT) (($ $ (-583 (-483)) (-583 (-483))) NIL T ELT)) (-3326 (($ (-583 |#1|)) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3117 (((-85) $) NIL T ELT)) (-3322 ((|#1| $) 26 (|has| |#1| (-6 (-3991 #1#))) ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3106 (((-536 |#1| |#2|) $ (-483)) NIL T ELT)) (-3940 (($ (-536 |#1| |#2|)) NIL T ELT) (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3115 (((-85) $) NIL T ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL (|has| |#1| (-311)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-483) $) NIL T ELT) (((-536 |#1| |#2|) $ (-536 |#1| |#2|)) NIL T ELT) (((-536 |#1| |#3|) (-536 |#1| |#3|) $) NIL T ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-460 |#1| |#2| |#3|) (-627 |#1| (-536 |#1| |#3|) (-536 |#1| |#2|)) (-961) (-483) (-483)) (T -460))
-NIL
-((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1989 (((-583 (-1128)) $) 14 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 20 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT) (($ (-583 (-1128))) 12 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-461) (-13 (-994) (-10 -8 (-15 -3940 ($ (-583 (-1128)))) (-15 -1989 ((-583 (-1128)) $))))) (T -461))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-583 (-1128))) (-5 *1 (-461)))) (-1989 (*1 *2 *1) (-12 (-5 *2 (-583 (-1128))) (-5 *1 (-461)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-1990 (((-1047) $) 15 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3444 (((-444) $) 12 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 22 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-462) (-13 (-994) (-10 -8 (-15 -3444 ((-444) $)) (-15 -1990 ((-1047) $))))) (T -462))
-((-3444 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-462)))) (-1990 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-462)))))
-((-1996 (((-632 (-1136)) $) 15 T ELT)) (-1992 (((-632 (-1134)) $) 38 T ELT)) (-1994 (((-632 (-1133)) $) 29 T ELT)) (-1997 (((-632 (-487)) $) 12 T ELT)) (-1993 (((-632 (-485)) $) 42 T ELT)) (-1995 (((-632 (-484)) $) 33 T ELT)) (-1991 (((-694) $ (-102)) 54 T ELT)))
-(((-463 |#1|) (-10 -7 (-15 -1991 ((-694) |#1| (-102))) (-15 -1992 ((-632 (-1134)) |#1|)) (-15 -1993 ((-632 (-485)) |#1|)) (-15 -1994 ((-632 (-1133)) |#1|)) (-15 -1995 ((-632 (-484)) |#1|)) (-15 -1996 ((-632 (-1136)) |#1|)) (-15 -1997 ((-632 (-487)) |#1|))) (-464)) (T -463))
-NIL
-((-1996 (((-632 (-1136)) $) 12 T ELT)) (-1992 (((-632 (-1134)) $) 8 T ELT)) (-1994 (((-632 (-1133)) $) 10 T ELT)) (-1997 (((-632 (-487)) $) 13 T ELT)) (-1993 (((-632 (-485)) $) 9 T ELT)) (-1995 (((-632 (-484)) $) 11 T ELT)) (-1991 (((-694) $ (-102)) 7 T ELT)) (-1998 (((-632 (-101)) $) 14 T ELT)) (-1697 (($ $) 6 T ELT)))
-(((-464) (-113)) (T -464))
-((-1998 (*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-632 (-101))))) (-1997 (*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-632 (-487))))) (-1996 (*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-632 (-1136))))) (-1995 (*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-632 (-484))))) (-1994 (*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-632 (-1133))))) (-1993 (*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-632 (-485))))) (-1992 (*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-632 (-1134))))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-464)) (-5 *3 (-102)) (-5 *2 (-694)))))
-(-13 (-147) (-10 -8 (-15 -1998 ((-632 (-101)) $)) (-15 -1997 ((-632 (-487)) $)) (-15 -1996 ((-632 (-1136)) $)) (-15 -1995 ((-632 (-484)) $)) (-15 -1994 ((-632 (-1133)) $)) (-15 -1993 ((-632 (-485)) $)) (-15 -1992 ((-632 (-1134)) $)) (-15 -1991 ((-694) $ (-102)))))
+(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (-3054 (|f| |x| |x|) |x|))))))
+(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1981 (($) 6 T ELT)) (-3942 (((-773) $) 10 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 8 T ELT)))
+(((-444) (-13 (-1013) (-10 -8 (-15 -1981 ($))))) (T -444))
+((-1981 (*1 *1) (-5 *1 (-444))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3770 (((-584 (-783 |#2| |#1|)) $) 12 T ELT)) (-1310 (((-3 $ "failed") $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3955 (($ $) NIL T ELT)) (-2891 (($ |#1| |#2|) NIL T ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1982 ((|#2| $) NIL T ELT)) (-3171 ((|#1| $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) 16 T CONST)) (-3054 (((-85) $ $) NIL T ELT)) (-3833 (($ $) 15 T ELT) (($ $ $) 39 T ELT)) (-3835 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 26 T ELT)))
+(((-445 |#1| |#2|) (-13 (-21) (-447 |#1| |#2|)) (-21) (-760)) (T -445))
+NIL
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 17 T ELT)) (-3770 (((-584 (-783 |#2| |#1|)) $) 14 T ELT)) (-3720 (($) NIL T CONST)) (-3955 (($ $) 44 T ELT)) (-2891 (($ |#1| |#2|) 41 T ELT)) (-3954 (($ (-1 |#1| |#1|) $) 43 T ELT)) (-1982 ((|#2| $) NIL T ELT)) (-3171 ((|#1| $) 45 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) 13 T CONST)) (-3054 (((-85) $ $) NIL T ELT)) (-3835 (($ $ $) 31 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 40 T ELT)))
+(((-446 |#1| |#2|) (-13 (-23) (-447 |#1| |#2|)) (-23) (-760)) (T -446))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3770 (((-584 (-783 |#2| |#1|)) $) 15 T ELT)) (-3955 (($ $) 16 T ELT)) (-2891 (($ |#1| |#2|) 19 T ELT)) (-3954 (($ (-1 |#1| |#1|) $) 20 T ELT)) (-1982 ((|#2| $) 17 T ELT)) (-3171 ((|#1| $) 18 T ELT)) (-3239 (((-1072) $) 14 (-12 (|has| |#2| (-1013)) (|has| |#1| (-1013))) ELT)) (-3240 (((-1033) $) 13 (-12 (|has| |#2| (-1013)) (|has| |#1| (-1013))) ELT)) (-3942 (((-773) $) 12 (-12 (|has| |#2| (-1013)) (|has| |#1| (-1013))) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3054 (((-85) $ $) 8 T ELT)))
+(((-447 |#1| |#2|) (-113) (-72) (-760)) (T -447))
+((-3954 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-447 *3 *4)) (-4 *3 (-72)) (-4 *4 (-760)))) (-2891 (*1 *1 *2 *3) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-72)) (-4 *3 (-760)))) (-3171 (*1 *2 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *3 (-760)) (-4 *2 (-72)))) (-1982 (*1 *2 *1) (-12 (-4 *1 (-447 *3 *2)) (-4 *3 (-72)) (-4 *2 (-760)))) (-3955 (*1 *1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-72)) (-4 *3 (-760)))) (-3770 (*1 *2 *1) (-12 (-4 *1 (-447 *3 *4)) (-4 *3 (-72)) (-4 *4 (-760)) (-5 *2 (-584 (-783 *4 *3))))))
+(-13 (-72) (-10 -8 (IF (|has| |t#1| (-1013)) (IF (|has| |t#2| (-1013)) (-6 (-1013)) |%noBranch|) |%noBranch|) (-15 -3954 ($ (-1 |t#1| |t#1|) $)) (-15 -2891 ($ |t#1| |t#2|)) (-15 -3171 (|t#1| $)) (-15 -1982 (|t#2| $)) (-15 -3955 ($ $)) (-15 -3770 ((-584 (-783 |t#2| |t#1|)) $))))
+(((-72) . T) ((-553 (-773)) -12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ((-13) . T) ((-1013) -12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3770 (((-584 (-783 |#2| |#1|)) $) 36 T ELT)) (-3955 (($ $) 33 T ELT)) (-2891 (($ |#1| |#2|) 30 T ELT)) (-3954 (($ (-1 |#1| |#1|) $) 32 T ELT)) (-1982 ((|#2| $) 35 T ELT)) (-3171 ((|#1| $) 34 T ELT)) (-3239 (((-1072) $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3240 (((-1033) $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3942 (((-773) $) 28 (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 21 T ELT)))
+(((-448 |#1| |#2|) (-447 |#1| |#2|) (-72) (-760)) (T -448))
+NIL
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3770 (((-584 (-783 |#2| |#1|)) $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3955 (($ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2891 (($ |#1| |#2|) NIL T ELT)) (-2529 (($ $ $) NIL T ELT)) (-2855 (($ $ $) NIL T ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1982 ((|#2| $) NIL T ELT)) (-3171 ((|#1| $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) NIL T CONST)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) 23 T ELT)) (-3835 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT)))
+(((-449 |#1| |#2|) (-13 (-717) (-447 |#1| |#2|)) (-717) (-760)) (T -449))
+NIL
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3770 (((-584 (-783 |#2| |#1|)) $) NIL T ELT)) (-2481 (($ $ $) 24 T ELT)) (-1310 (((-3 $ "failed") $ $) 20 T ELT)) (-3720 (($) NIL T CONST)) (-3955 (($ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2891 (($ |#1| |#2|) NIL T ELT)) (-2529 (($ $ $) NIL T ELT)) (-2855 (($ $ $) NIL T ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1982 ((|#2| $) NIL T ELT)) (-3171 ((|#1| $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) NIL T CONST)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT)))
+(((-450 |#1| |#2|) (-13 (-718) (-447 |#1| |#2|)) (-718) (-757)) (T -450))
+NIL
+((-2566 (((-85) $ $) NIL T ELT)) (-1983 (($ |#2| |#1|) 9 T ELT)) (-2398 ((|#2| $) 11 T ELT)) (-3942 (((-783 |#2| |#1|) $) 14 T ELT)) (-3673 ((|#1| $) 13 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-451 |#1| |#2|) (-13 (-72) (-553 (-783 |#2| |#1|)) (-10 -8 (-15 -1983 ($ |#2| |#1|)) (-15 -2398 (|#2| $)) (-15 -3673 (|#1| $)))) (-72) (-760)) (T -451))
+((-1983 (*1 *1 *2 *3) (-12 (-5 *1 (-451 *3 *2)) (-4 *3 (-72)) (-4 *2 (-760)))) (-2398 (*1 *2 *1) (-12 (-4 *2 (-760)) (-5 *1 (-451 *3 *2)) (-4 *3 (-72)))) (-3673 (*1 *2 *1) (-12 (-4 *2 (-72)) (-5 *1 (-451 *2 *3)) (-4 *3 (-760)))))
+((-3764 (($ $ (-584 |#2|) (-584 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT)))
+(((-452 |#1| |#2| |#3|) (-10 -7 (-15 -3764 (|#1| |#1| |#2| |#3|)) (-15 -3764 (|#1| |#1| (-584 |#2|) (-584 |#3|)))) (-453 |#2| |#3|) (-1013) (-1128)) (T -452))
+NIL
+((-3764 (($ $ (-584 |#1|) (-584 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT)))
+(((-453 |#1| |#2|) (-113) (-1013) (-1128)) (T -453))
+((-3764 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 *5)) (-4 *1 (-453 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1128)))) (-3764 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-453 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1128)))))
+(-13 (-10 -8 (-15 -3764 ($ $ |t#1| |t#2|)) (-15 -3764 ($ $ (-584 |t#1|) (-584 |t#2|)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 17 T ELT)) (-3770 (((-584 (-2 (|:| |gen| |#1|) (|:| -3939 |#2|))) $) 19 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3133 (((-695) $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#1| #1#) $) NIL T ELT)) (-3153 ((|#1| $) NIL T ELT)) (-2297 ((|#1| $ (-484)) 24 T ELT)) (-1620 ((|#2| $ (-484)) 22 T ELT)) (-2288 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-1619 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-1618 (($ $ $) 55 (|has| |#2| (-717)) ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-3673 ((|#2| |#1| $) 51 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) 11 T CONST)) (-3054 (((-85) $ $) 30 T ELT)) (-3835 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT)))
+(((-454 |#1| |#2| |#3|) (-273 |#1| |#2|) (-1013) (-104) |#2|) (T -454))
+NIL
+((-2566 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2196 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-757))) ELT)) (-2907 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-1984 (((-85) (-85)) 32 T ELT)) (-3784 ((|#1| $ (-484) |#1|) 42 (|has| $ (-6 -3992)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-1568 (($ (-1 (-85) |#1|) $) 79 T ELT)) (-3706 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3720 (($) NIL T CONST)) (-2295 (($ $) NIL (|has| $ (-6 -3992)) ELT)) (-2296 (($ $) NIL T ELT)) (-2366 (($ $) 83 (|has| |#1| (-1013)) ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3401 (($ |#1| $) NIL (|has| |#1| (-1013)) ELT) (($ (-1 (-85) |#1|) $) 66 T ELT)) (-3402 (($ |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-1574 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3110 ((|#1| $ (-484)) NIL T ELT)) (-3415 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-1985 (($ $ (-484)) 19 T ELT)) (-1986 (((-695) $) 13 T ELT)) (-2887 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3610 (($ (-695) |#1|) 31 T ELT)) (-2198 (((-484) $) 29 (|has| (-484) (-757)) ELT)) (-2529 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2854 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 57 T ELT)) (-3514 (($ (-1 (-85) |#1| |#1|) $ $) 58 T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2606 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2199 (((-484) $) 28 (|has| (-484) (-757)) ELT)) (-2855 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3605 (($ $ $ (-484)) 75 T ELT) (($ |#1| $ (-484)) 59 T ELT)) (-2302 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2201 (((-584 (-484)) $) NIL T ELT)) (-2202 (((-85) (-484) $) NIL T ELT)) (-3240 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1987 (($ (-584 |#1|)) 43 T ELT)) (-3797 ((|#1| $) NIL (|has| (-484) (-757)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2197 (($ $ |#1|) 24 (|has| $ (-6 -3992)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 62 T ELT)) (-2200 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2203 (((-584 |#1|) $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) 21 T ELT)) (-3796 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) 55 T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1569 (($ $ (-1145 (-484))) 73 T ELT) (($ $ (-484)) 67 T ELT)) (-2303 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-1729 (($ $ $ (-484)) 63 (|has| $ (-6 -3992)) ELT)) (-3396 (($ $) 53 T ELT)) (-3968 (((-473) $) NIL (|has| |#1| (-554 (-473))) ELT)) (-3526 (($ (-584 |#1|)) NIL T ELT)) (-3787 (($ $ $) 64 T ELT) (($ $ |#1|) 61 T ELT)) (-3798 (($ $ |#1|) NIL T ELT) (($ |#1| $) 60 T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3942 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2564 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3054 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2682 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3953 (((-695) $) 22 (|has| $ (-6 -3991)) ELT)))
+(((-455 |#1| |#2|) (-13 (-19 |#1|) (-237 |#1|) (-10 -8 (-15 -1987 ($ (-584 |#1|))) (-15 -1986 ((-695) $)) (-15 -1985 ($ $ (-484))) (-15 -1984 ((-85) (-85))))) (-1128) (-484)) (T -455))
+((-1987 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-5 *1 (-455 *3 *4)) (-14 *4 (-484)))) (-1986 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-455 *3 *4)) (-4 *3 (-1128)) (-14 *4 (-484)))) (-1985 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-455 *3 *4)) (-4 *3 (-1128)) (-14 *4 *2))) (-1984 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-455 *3 *4)) (-4 *3 (-1128)) (-14 *4 (-484)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-1989 (((-1048) $) 12 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1988 (((-1048) $) 14 T ELT)) (-3918 (((-1048) $) 10 T ELT)) (-3942 (((-773) $) 20 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-456) (-13 (-995) (-10 -8 (-15 -3918 ((-1048) $)) (-15 -1989 ((-1048) $)) (-15 -1988 ((-1048) $))))) (T -456))
+((-3918 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-456)))) (-1989 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-456)))) (-1988 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-456)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-3928 (((-85) $) NIL T ELT)) (-3925 (((-695)) NIL T ELT)) (-3326 (((-517 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-517 |#1|) (-317)) ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) NIL (|has| (-517 |#1|) (-317)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3771 (($ $) NIL T ELT)) (-3967 (((-345 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3133 (((-695)) NIL (|has| (-517 |#1|) (-317)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 (-517 |#1|) #1#) $) NIL T ELT)) (-3153 (((-517 |#1|) $) NIL T ELT)) (-1790 (($ (-1178 (-517 |#1|))) NIL T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-517 |#1|) (-317)) ELT)) (-2562 (($ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2992 (($) NIL (|has| (-517 |#1|) (-317)) ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-2831 (($) NIL (|has| (-517 |#1|) (-317)) ELT)) (-1678 (((-85) $) NIL (|has| (-517 |#1|) (-317)) ELT)) (-1762 (($ $ (-695)) NIL (OR (|has| (-517 |#1|) (-118)) (|has| (-517 |#1|) (-317))) ELT) (($ $) NIL (OR (|has| (-517 |#1|) (-118)) (|has| (-517 |#1|) (-317))) ELT)) (-3719 (((-85) $) NIL T ELT)) (-3768 (((-831) $) NIL (|has| (-517 |#1|) (-317)) ELT) (((-744 (-831)) $) NIL (OR (|has| (-517 |#1|) (-118)) (|has| (-517 |#1|) (-317))) ELT)) (-2408 (((-85) $) NIL T ELT)) (-2011 (($) NIL (|has| (-517 |#1|) (-317)) ELT)) (-2009 (((-85) $) NIL (|has| (-517 |#1|) (-317)) ELT)) (-3129 (((-517 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-517 |#1|) (-317)) ELT)) (-3441 (((-633 $) $) NIL (|has| (-517 |#1|) (-317)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2012 (((-1084 (-517 |#1|)) $) NIL T ELT) (((-1084 $) $ (-831)) NIL (|has| (-517 |#1|) (-317)) ELT)) (-2008 (((-831) $) NIL (|has| (-517 |#1|) (-317)) ELT)) (-1625 (((-1084 (-517 |#1|)) $) NIL (|has| (-517 |#1|) (-317)) ELT)) (-1624 (((-1084 (-517 |#1|)) $) NIL (|has| (-517 |#1|) (-317)) ELT) (((-3 (-1084 (-517 |#1|)) #1#) $ $) NIL (|has| (-517 |#1|) (-317)) ELT)) (-1626 (($ $ (-1084 (-517 |#1|))) NIL (|has| (-517 |#1|) (-317)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) NIL T ELT)) (-3442 (($) NIL (|has| (-517 |#1|) (-317)) CONST)) (-2398 (($ (-831)) NIL (|has| (-517 |#1|) (-317)) ELT)) (-3927 (((-85) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2407 (($) NIL (|has| (-517 |#1|) (-317)) ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1674 (((-584 (-2 (|:| -3728 (-484)) (|:| -2399 (-484))))) NIL (|has| (-517 |#1|) (-317)) ELT)) (-3728 (((-345 $) $) NIL T ELT)) (-3926 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-1763 (((-695) $) NIL (|has| (-517 |#1|) (-317)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| (-517 |#1|) (-118)) (|has| (-517 |#1|) (-317))) ELT)) (-3907 (((-107)) NIL T ELT)) (-3754 (($ $ (-695)) NIL (|has| (-517 |#1|) (-317)) ELT) (($ $) NIL (|has| (-517 |#1|) (-317)) ELT)) (-3944 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3182 (((-1084 (-517 |#1|))) NIL T ELT)) (-1672 (($) NIL (|has| (-517 |#1|) (-317)) ELT)) (-1627 (($) NIL (|has| (-517 |#1|) (-317)) ELT)) (-3221 (((-1178 (-517 |#1|)) $) NIL T ELT) (((-631 (-517 |#1|)) (-1178 $)) NIL T ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (|has| (-517 |#1|) (-317)) ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ (-517 |#1|)) NIL T ELT)) (-2700 (($ $) NIL (|has| (-517 |#1|) (-317)) ELT) (((-633 $) $) NIL (OR (|has| (-517 |#1|) (-118)) (|has| (-517 |#1|) (-317))) ELT)) (-3123 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2010 (((-1178 $)) NIL T ELT) (((-1178 $) (-831)) NIL T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-3929 (((-85) $) NIL T ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-3924 (($ $) NIL (|has| (-517 |#1|) (-317)) ELT) (($ $ (-695)) NIL (|has| (-517 |#1|) (-317)) ELT)) (-2667 (($ $ (-695)) NIL (|has| (-517 |#1|) (-317)) ELT) (($ $) NIL (|has| (-517 |#1|) (-317)) ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ $) NIL T ELT) (($ $ (-517 |#1|)) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ $ (-517 |#1|)) NIL T ELT) (($ (-517 |#1|) $) NIL T ELT)))
+(((-457 |#1| |#2|) (-279 (-517 |#1|)) (-831) (-831)) (T -457))
+NIL
+((-2566 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3784 ((|#1| $ (-484) (-484) |#1|) 51 T ELT)) (-1255 (($ $ (-484) |#4|) NIL T ELT)) (-1254 (($ $ (-484) |#5|) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3109 ((|#4| $ (-484)) NIL T ELT)) (-1574 ((|#1| $ (-484) (-484) |#1|) 50 T ELT)) (-3110 ((|#1| $ (-484) (-484)) 45 T ELT)) (-2887 (((-584 |#1|) $) NIL T ELT)) (-3112 (((-695) $) 33 T ELT)) (-3610 (($ (-695) (-695) |#1|) 30 T ELT)) (-3111 (((-695) $) 38 T ELT)) (-3116 (((-484) $) 31 T ELT)) (-3114 (((-484) $) 32 T ELT)) (-2606 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3115 (((-484) $) 37 T ELT)) (-3113 (((-484) $) 39 T ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3239 (((-1072) $) 55 (|has| |#1| (-1013)) ELT)) (-3240 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-2197 (($ $ |#1|) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3399 (((-85) $) 16 T ELT)) (-3561 (($) 18 T ELT)) (-3796 ((|#1| $ (-484) (-484)) 48 T ELT) ((|#1| $ (-484) (-484) |#1|) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3396 (($ $) NIL T ELT)) (-3108 ((|#5| $ (-484)) NIL T ELT)) (-3942 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-458 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1128) (-484) (-484) (-321 |#1|) (-321 |#1|)) (T -458))
+NIL
+((-3107 ((|#4| |#4|) 38 T ELT)) (-3106 (((-695) |#4|) 45 T ELT)) (-3105 (((-695) |#4|) 46 T ELT)) (-3104 (((-584 |#3|) |#4|) 57 (|has| |#3| (-6 -3992)) ELT)) (-3586 (((-3 |#4| "failed") |#4|) 69 T ELT)) (-1990 ((|#4| |#4|) 61 T ELT)) (-3324 ((|#1| |#4|) 60 T ELT)))
+(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3107 (|#4| |#4|)) (-15 -3106 ((-695) |#4|)) (-15 -3105 ((-695) |#4|)) (IF (|has| |#3| (-6 -3992)) (-15 -3104 ((-584 |#3|) |#4|)) |%noBranch|) (-15 -3324 (|#1| |#4|)) (-15 -1990 (|#4| |#4|)) (-15 -3586 ((-3 |#4| "failed") |#4|))) (-311) (-321 |#1|) (-321 |#1|) (-628 |#1| |#2| |#3|)) (T -459))
+((-3586 (*1 *2 *2) (|partial| -12 (-4 *3 (-311)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-459 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-1990 (*1 *2 *2) (-12 (-4 *3 (-311)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-459 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-3324 (*1 *2 *3) (-12 (-4 *4 (-321 *2)) (-4 *5 (-321 *2)) (-4 *2 (-311)) (-5 *1 (-459 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5)))) (-3104 (*1 *2 *3) (-12 (|has| *6 (-6 -3992)) (-4 *4 (-311)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-584 *6)) (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3105 (*1 *2 *3) (-12 (-4 *4 (-311)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-695)) (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3106 (*1 *2 *3) (-12 (-4 *4 (-311)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-695)) (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3107 (*1 *2 *2) (-12 (-4 *3 (-311)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-459 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
+((-3107 ((|#8| |#4|) 20 T ELT)) (-3104 (((-584 |#3|) |#4|) 29 (|has| |#7| (-6 -3992)) ELT)) (-3586 (((-3 |#8| "failed") |#4|) 23 T ELT)))
+(((-460 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3107 (|#8| |#4|)) (-15 -3586 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -3992)) (-15 -3104 ((-584 |#3|) |#4|)) |%noBranch|)) (-495) (-321 |#1|) (-321 |#1|) (-628 |#1| |#2| |#3|) (-905 |#1|) (-321 |#5|) (-321 |#5|) (-628 |#5| |#6| |#7|)) (T -460))
+((-3104 (*1 *2 *3) (-12 (|has| *9 (-6 -3992)) (-4 *4 (-495)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-4 *7 (-905 *4)) (-4 *8 (-321 *7)) (-4 *9 (-321 *7)) (-5 *2 (-584 *6)) (-5 *1 (-460 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-628 *4 *5 *6)) (-4 *10 (-628 *7 *8 *9)))) (-3586 (*1 *2 *3) (|partial| -12 (-4 *4 (-495)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-4 *7 (-905 *4)) (-4 *2 (-628 *7 *8 *9)) (-5 *1 (-460 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-628 *4 *5 *6)) (-4 *8 (-321 *7)) (-4 *9 (-321 *7)))) (-3107 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-4 *7 (-905 *4)) (-4 *2 (-628 *7 *8 *9)) (-5 *1 (-460 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-628 *4 *5 *6)) (-4 *8 (-321 *7)) (-4 *9 (-321 *7)))))
+((-2566 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3834 (($ (-695) (-695)) NIL T ELT)) (-2348 (($ $ $) NIL T ELT)) (-3410 (($ (-537 |#1| |#3|)) NIL T ELT) (($ $) NIL T ELT)) (-3118 (((-85) $) NIL T ELT)) (-2347 (($ $ (-484) (-484)) 21 T ELT)) (-2346 (($ $ (-484) (-484)) NIL T ELT)) (-2345 (($ $ (-484) (-484) (-484) (-484)) NIL T ELT)) (-2350 (($ $) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-2344 (($ $ (-484) (-484) $) NIL T ELT)) (-3784 ((|#1| $ (-484) (-484) |#1|) NIL T ELT) (($ $ (-584 (-484)) (-584 (-484)) $) NIL T ELT)) (-1255 (($ $ (-484) (-537 |#1| |#3|)) NIL T ELT)) (-1254 (($ $ (-484) (-537 |#1| |#2|)) NIL T ELT)) (-3329 (($ (-695) |#1|) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3107 (($ $) 30 (|has| |#1| (-257)) ELT)) (-3109 (((-537 |#1| |#3|) $ (-484)) NIL T ELT)) (-3106 (((-695) $) 33 (|has| |#1| (-495)) ELT)) (-1574 ((|#1| $ (-484) (-484) |#1|) NIL T ELT)) (-3110 ((|#1| $ (-484) (-484)) NIL T ELT)) (-2887 (((-584 |#1|) $) NIL T ELT)) (-3105 (((-695) $) 35 (|has| |#1| (-495)) ELT)) (-3104 (((-584 (-537 |#1| |#2|)) $) 38 (|has| |#1| (-495)) ELT)) (-3112 (((-695) $) NIL T ELT)) (-3610 (($ (-695) (-695) |#1|) NIL T ELT)) (-3111 (((-695) $) NIL T ELT)) (-3323 ((|#1| $) 28 (|has| |#1| (-6 (-3993 #1="*"))) ELT)) (-3116 (((-484) $) 10 T ELT)) (-3114 (((-484) $) NIL T ELT)) (-2606 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3115 (((-484) $) 13 T ELT)) (-3113 (((-484) $) NIL T ELT)) (-3121 (($ (-584 (-584 |#1|))) NIL T ELT) (($ (-695) (-695) (-1 |#1| (-484) (-484))) NIL T ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3590 (((-584 (-584 |#1|)) $) NIL T ELT)) (-3239 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3586 (((-3 $ #2="failed") $) 42 (|has| |#1| (-311)) ELT)) (-2349 (($ $ $) NIL T ELT)) (-3240 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-2197 (($ $ |#1|) NIL T ELT)) (-3462 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) NIL T ELT)) (-3796 ((|#1| $ (-484) (-484)) NIL T ELT) ((|#1| $ (-484) (-484) |#1|) NIL T ELT) (($ $ (-584 (-484)) (-584 (-484))) NIL T ELT)) (-3328 (($ (-584 |#1|)) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3119 (((-85) $) NIL T ELT)) (-3324 ((|#1| $) 26 (|has| |#1| (-6 (-3993 #1#))) ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3396 (($ $) NIL T ELT)) (-3108 (((-537 |#1| |#2|) $ (-484)) NIL T ELT)) (-3942 (($ (-537 |#1| |#2|)) NIL T ELT) (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3117 (((-85) $) NIL T ELT)) (-3054 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3945 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3833 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-311)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-484) $) NIL T ELT) (((-537 |#1| |#2|) $ (-537 |#1| |#2|)) NIL T ELT) (((-537 |#1| |#3|) (-537 |#1| |#3|) $) NIL T ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-461 |#1| |#2| |#3|) (-628 |#1| (-537 |#1| |#3|) (-537 |#1| |#2|)) (-962) (-484) (-484)) (T -461))
+NIL
+((-2566 (((-85) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-1991 (((-584 (-1129)) $) 14 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 20 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT) (($ (-584 (-1129))) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-462) (-13 (-995) (-10 -8 (-15 -3942 ($ (-584 (-1129)))) (-15 -1991 ((-584 (-1129)) $))))) (T -462))
+((-3942 (*1 *1 *2) (-12 (-5 *2 (-584 (-1129))) (-5 *1 (-462)))) (-1991 (*1 *2 *1) (-12 (-5 *2 (-584 (-1129))) (-5 *1 (-462)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-1992 (((-1048) $) 15 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3446 (((-444) $) 12 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 22 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-463) (-13 (-995) (-10 -8 (-15 -3446 ((-444) $)) (-15 -1992 ((-1048) $))))) (T -463))
+((-3446 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-463)))) (-1992 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-463)))))
+((-1998 (((-633 (-1137)) $) 15 T ELT)) (-1994 (((-633 (-1135)) $) 38 T ELT)) (-1996 (((-633 (-1134)) $) 29 T ELT)) (-1999 (((-633 (-488)) $) 12 T ELT)) (-1995 (((-633 (-486)) $) 42 T ELT)) (-1997 (((-633 (-485)) $) 33 T ELT)) (-1993 (((-695) $ (-102)) 54 T ELT)))
+(((-464 |#1|) (-10 -7 (-15 -1993 ((-695) |#1| (-102))) (-15 -1994 ((-633 (-1135)) |#1|)) (-15 -1995 ((-633 (-486)) |#1|)) (-15 -1996 ((-633 (-1134)) |#1|)) (-15 -1997 ((-633 (-485)) |#1|)) (-15 -1998 ((-633 (-1137)) |#1|)) (-15 -1999 ((-633 (-488)) |#1|))) (-465)) (T -464))
+NIL
+((-1998 (((-633 (-1137)) $) 12 T ELT)) (-1994 (((-633 (-1135)) $) 8 T ELT)) (-1996 (((-633 (-1134)) $) 10 T ELT)) (-1999 (((-633 (-488)) $) 13 T ELT)) (-1995 (((-633 (-486)) $) 9 T ELT)) (-1997 (((-633 (-485)) $) 11 T ELT)) (-1993 (((-695) $ (-102)) 7 T ELT)) (-2000 (((-633 (-101)) $) 14 T ELT)) (-1698 (($ $) 6 T ELT)))
+(((-465) (-113)) (T -465))
+((-2000 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-633 (-101))))) (-1999 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-633 (-488))))) (-1998 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-633 (-1137))))) (-1997 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-633 (-485))))) (-1996 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-633 (-1134))))) (-1995 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-633 (-486))))) (-1994 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-633 (-1135))))) (-1993 (*1 *2 *1 *3) (-12 (-4 *1 (-465)) (-5 *3 (-102)) (-5 *2 (-695)))))
+(-13 (-147) (-10 -8 (-15 -2000 ((-633 (-101)) $)) (-15 -1999 ((-633 (-488)) $)) (-15 -1998 ((-633 (-1137)) $)) (-15 -1997 ((-633 (-485)) $)) (-15 -1996 ((-633 (-1134)) $)) (-15 -1995 ((-633 (-486)) $)) (-15 -1994 ((-633 (-1135)) $)) (-15 -1993 ((-695) $ (-102)))))
(((-147) . T))
-((-2001 (((-1083 |#1|) (-694)) 114 T ELT)) (-3324 (((-1177 |#1|) (-1177 |#1|) (-830)) 107 T ELT)) (-1999 (((-1183) (-1177 (-583 (-2 (|:| -3396 |#1|) (|:| -2396 (-1032))))) |#1|) 122 T ELT)) (-2003 (((-1177 |#1|) (-1177 |#1|) (-694)) 53 T ELT)) (-2990 (((-1177 |#1|) (-830)) 109 T ELT)) (-2005 (((-1177 |#1|) (-1177 |#1|) (-483)) 30 T ELT)) (-2000 (((-1083 |#1|) (-1177 |#1|)) 115 T ELT)) (-2009 (((-1177 |#1|) (-830)) 136 T ELT)) (-2007 (((-85) (-1177 |#1|)) 119 T ELT)) (-3127 (((-1177 |#1|) (-1177 |#1|) (-830)) 99 T ELT)) (-2010 (((-1083 |#1|) (-1177 |#1|)) 130 T ELT)) (-2006 (((-830) (-1177 |#1|)) 95 T ELT)) (-2480 (((-1177 |#1|) (-1177 |#1|)) 38 T ELT)) (-2396 (((-1177 |#1|) (-830) (-830)) 139 T ELT)) (-2004 (((-1177 |#1|) (-1177 |#1|) (-1032) (-1032)) 29 T ELT)) (-2002 (((-1177 |#1|) (-1177 |#1|) (-694) (-1032)) 54 T ELT)) (-2008 (((-1177 (-1177 |#1|)) (-830)) 135 T ELT)) (-3943 (((-1177 |#1|) (-1177 |#1|) (-1177 |#1|)) 120 T ELT)) (** (((-1177 |#1|) (-1177 |#1|) (-483)) 67 T ELT)) (* (((-1177 |#1|) (-1177 |#1|) (-1177 |#1|)) 31 T ELT)))
-(((-465 |#1|) (-10 -7 (-15 -1999 ((-1183) (-1177 (-583 (-2 (|:| -3396 |#1|) (|:| -2396 (-1032))))) |#1|)) (-15 -2990 ((-1177 |#1|) (-830))) (-15 -2396 ((-1177 |#1|) (-830) (-830))) (-15 -2000 ((-1083 |#1|) (-1177 |#1|))) (-15 -2001 ((-1083 |#1|) (-694))) (-15 -2002 ((-1177 |#1|) (-1177 |#1|) (-694) (-1032))) (-15 -2003 ((-1177 |#1|) (-1177 |#1|) (-694))) (-15 -2004 ((-1177 |#1|) (-1177 |#1|) (-1032) (-1032))) (-15 -2005 ((-1177 |#1|) (-1177 |#1|) (-483))) (-15 ** ((-1177 |#1|) (-1177 |#1|) (-483))) (-15 * ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))) (-15 -3943 ((-1177 |#1|) (-1177 |#1|) (-1177 |#1|))) (-15 -3127 ((-1177 |#1|) (-1177 |#1|) (-830))) (-15 -3324 ((-1177 |#1|) (-1177 |#1|) (-830))) (-15 -2480 ((-1177 |#1|) (-1177 |#1|))) (-15 -2006 ((-830) (-1177 |#1|))) (-15 -2007 ((-85) (-1177 |#1|))) (-15 -2008 ((-1177 (-1177 |#1|)) (-830))) (-15 -2009 ((-1177 |#1|) (-830))) (-15 -2010 ((-1083 |#1|) (-1177 |#1|)))) (-298)) (T -465))
-((-2010 (*1 *2 *3) (-12 (-5 *3 (-1177 *4)) (-4 *4 (-298)) (-5 *2 (-1083 *4)) (-5 *1 (-465 *4)))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1177 *4)) (-5 *1 (-465 *4)) (-4 *4 (-298)))) (-2008 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1177 (-1177 *4))) (-5 *1 (-465 *4)) (-4 *4 (-298)))) (-2007 (*1 *2 *3) (-12 (-5 *3 (-1177 *4)) (-4 *4 (-298)) (-5 *2 (-85)) (-5 *1 (-465 *4)))) (-2006 (*1 *2 *3) (-12 (-5 *3 (-1177 *4)) (-4 *4 (-298)) (-5 *2 (-830)) (-5 *1 (-465 *4)))) (-2480 (*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-298)) (-5 *1 (-465 *3)))) (-3324 (*1 *2 *2 *3) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-830)) (-4 *4 (-298)) (-5 *1 (-465 *4)))) (-3127 (*1 *2 *2 *3) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-830)) (-4 *4 (-298)) (-5 *1 (-465 *4)))) (-3943 (*1 *2 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-298)) (-5 *1 (-465 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-298)) (-5 *1 (-465 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-483)) (-4 *4 (-298)) (-5 *1 (-465 *4)))) (-2005 (*1 *2 *2 *3) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-483)) (-4 *4 (-298)) (-5 *1 (-465 *4)))) (-2004 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-1032)) (-4 *4 (-298)) (-5 *1 (-465 *4)))) (-2003 (*1 *2 *2 *3) (-12 (-5 *2 (-1177 *4)) (-5 *3 (-694)) (-4 *4 (-298)) (-5 *1 (-465 *4)))) (-2002 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1177 *5)) (-5 *3 (-694)) (-5 *4 (-1032)) (-4 *5 (-298)) (-5 *1 (-465 *5)))) (-2001 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1083 *4)) (-5 *1 (-465 *4)) (-4 *4 (-298)))) (-2000 (*1 *2 *3) (-12 (-5 *3 (-1177 *4)) (-4 *4 (-298)) (-5 *2 (-1083 *4)) (-5 *1 (-465 *4)))) (-2396 (*1 *2 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1177 *4)) (-5 *1 (-465 *4)) (-4 *4 (-298)))) (-2990 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1177 *4)) (-5 *1 (-465 *4)) (-4 *4 (-298)))) (-1999 (*1 *2 *3 *4) (-12 (-5 *3 (-1177 (-583 (-2 (|:| -3396 *4) (|:| -2396 (-1032)))))) (-4 *4 (-298)) (-5 *2 (-1183)) (-5 *1 (-465 *4)))))
-((-1996 (((-632 (-1136)) $) NIL T ELT)) (-1992 (((-632 (-1134)) $) NIL T ELT)) (-1994 (((-632 (-1133)) $) NIL T ELT)) (-1997 (((-632 (-487)) $) NIL T ELT)) (-1993 (((-632 (-485)) $) NIL T ELT)) (-1995 (((-632 (-484)) $) NIL T ELT)) (-1991 (((-694) $ (-102)) NIL T ELT)) (-1998 (((-632 (-101)) $) 26 T ELT)) (-2011 (((-1032) $ (-1032)) 31 T ELT)) (-3413 (((-1032) $) 30 T ELT)) (-2554 (((-85) $) 20 T ELT)) (-2013 (($ (-335)) 14 T ELT) (($ (-1071)) 16 T ELT)) (-2012 (((-85) $) 27 T ELT)) (-3940 (((-772) $) 34 T ELT)) (-1697 (($ $) 28 T ELT)))
-(((-466) (-13 (-464) (-552 (-772)) (-10 -8 (-15 -2013 ($ (-335))) (-15 -2013 ($ (-1071))) (-15 -2012 ((-85) $)) (-15 -2554 ((-85) $)) (-15 -3413 ((-1032) $)) (-15 -2011 ((-1032) $ (-1032)))))) (T -466))
-((-2013 (*1 *1 *2) (-12 (-5 *2 (-335)) (-5 *1 (-466)))) (-2013 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-466)))) (-2012 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-466)))) (-2554 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-466)))) (-3413 (*1 *2 *1) (-12 (-5 *2 (-1032)) (-5 *1 (-466)))) (-2011 (*1 *2 *1 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-466)))))
-((-2015 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-2014 (((-1 |#1| |#1|)) 10 T ELT)))
-(((-467 |#1|) (-10 -7 (-15 -2014 ((-1 |#1| |#1|))) (-15 -2015 ((-1 |#1| |#1|) |#1|))) (-13 (-663) (-25))) (T -467))
-((-2015 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-467 *3)) (-4 *3 (-13 (-663) (-25))))) (-2014 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-467 *3)) (-4 *3 (-13 (-663) (-25))))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3768 (((-583 (-782 |#1| (-694))) $) NIL T ELT)) (-2479 (($ $ $) NIL T ELT)) (-1309 (((-3 $ "failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3953 (($ $) NIL T ELT)) (-3181 (((-85) $) NIL T ELT)) (-2889 (($ (-694) |#1|) NIL T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3952 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-1981 ((|#1| $) NIL T ELT)) (-3169 (((-694) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 28 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT)))
-(((-468 |#1|) (-13 (-717) (-447 (-694) |#1|)) (-756)) (T -468))
-NIL
-((-2017 (((-583 |#2|) (-1083 |#1|) |#3|) 98 T ELT)) (-2018 (((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-483)) (|:| |outvect| (-583 (-630 |#2|))))) (-630 |#1|) |#3| (-1 (-345 (-1083 |#1|)) (-1083 |#1|))) 114 T ELT)) (-2016 (((-1083 |#1|) (-630 |#1|)) 110 T ELT)))
-(((-469 |#1| |#2| |#3|) (-10 -7 (-15 -2016 ((-1083 |#1|) (-630 |#1|))) (-15 -2017 ((-583 |#2|) (-1083 |#1|) |#3|)) (-15 -2018 ((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-483)) (|:| |outvect| (-583 (-630 |#2|))))) (-630 |#1|) |#3| (-1 (-345 (-1083 |#1|)) (-1083 |#1|))))) (-311) (-311) (-13 (-311) (-755))) (T -469))
-((-2018 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *6)) (-5 *5 (-1 (-345 (-1083 *6)) (-1083 *6))) (-4 *6 (-311)) (-5 *2 (-583 (-2 (|:| |outval| *7) (|:| |outmult| (-483)) (|:| |outvect| (-583 (-630 *7)))))) (-5 *1 (-469 *6 *7 *4)) (-4 *7 (-311)) (-4 *4 (-13 (-311) (-755))))) (-2017 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *5)) (-4 *5 (-311)) (-5 *2 (-583 *6)) (-5 *1 (-469 *5 *6 *4)) (-4 *6 (-311)) (-4 *4 (-13 (-311) (-755))))) (-2016 (*1 *2 *3) (-12 (-5 *3 (-630 *4)) (-4 *4 (-311)) (-5 *2 (-1083 *4)) (-5 *1 (-469 *4 *5 *6)) (-4 *5 (-311)) (-4 *6 (-13 (-311) (-755))))))
-((-2551 (((-632 (-1136)) $ (-1136)) NIL T ELT)) (-2552 (((-632 (-487)) $ (-487)) NIL T ELT)) (-2550 (((-694) $ (-102)) 39 T ELT)) (-2553 (((-632 (-101)) $ (-101)) 40 T ELT)) (-1996 (((-632 (-1136)) $) NIL T ELT)) (-1992 (((-632 (-1134)) $) NIL T ELT)) (-1994 (((-632 (-1133)) $) NIL T ELT)) (-1997 (((-632 (-487)) $) NIL T ELT)) (-1993 (((-632 (-485)) $) NIL T ELT)) (-1995 (((-632 (-484)) $) NIL T ELT)) (-1991 (((-694) $ (-102)) 35 T ELT)) (-1998 (((-632 (-101)) $) 37 T ELT)) (-2435 (((-85) $) 27 T ELT)) (-2436 (((-632 $) (-514) (-865)) 18 T ELT) (((-632 $) (-428) (-865)) 24 T ELT)) (-3940 (((-772) $) 48 T ELT)) (-1697 (($ $) 42 T ELT)))
-(((-470) (-13 (-691 (-514)) (-552 (-772)) (-10 -8 (-15 -2436 ((-632 $) (-428) (-865)))))) (T -470))
-((-2436 (*1 *2 *3 *4) (-12 (-5 *3 (-428)) (-5 *4 (-865)) (-5 *2 (-632 (-470))) (-5 *1 (-470)))))
-((-2523 (((-750 (-483))) 12 T ELT)) (-2522 (((-750 (-483))) 14 T ELT)) (-2510 (((-743 (-483))) 9 T ELT)))
-(((-471) (-10 -7 (-15 -2510 ((-743 (-483)))) (-15 -2523 ((-750 (-483)))) (-15 -2522 ((-750 (-483)))))) (T -471))
-((-2522 (*1 *2) (-12 (-5 *2 (-750 (-483))) (-5 *1 (-471)))) (-2523 (*1 *2) (-12 (-5 *2 (-750 (-483))) (-5 *1 (-471)))) (-2510 (*1 *2) (-12 (-5 *2 (-743 (-483))) (-5 *1 (-471)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-2022 (((-1071) $) 55 T ELT)) (-3255 (((-85) $) 51 T ELT)) (-3251 (((-1088) $) 52 T ELT)) (-3256 (((-85) $) 49 T ELT)) (-3529 (((-1071) $) 50 T ELT)) (-2021 (($ (-1071)) 56 T ELT)) (-3258 (((-85) $) NIL T ELT)) (-3260 (((-85) $) NIL T ELT)) (-3257 (((-85) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2024 (($ $ (-583 (-1088))) 21 T ELT)) (-2027 (((-51) $) 23 T ELT)) (-3254 (((-85) $) NIL T ELT)) (-3250 (((-483) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2379 (($ $ (-583 (-1088)) (-1088)) 73 T ELT)) (-3253 (((-85) $) NIL T ELT)) (-3249 (((-179) $) NIL T ELT)) (-2023 (($ $) 44 T ELT)) (-3248 (((-772) $) NIL T ELT)) (-3261 (((-85) $ $) NIL T ELT)) (-3794 (($ $ (-483)) NIL T ELT) (($ $ (-583 (-483))) NIL T ELT)) (-3252 (((-583 $) $) 30 T ELT)) (-2020 (((-1088) (-583 $)) 57 T ELT)) (-3966 (($ (-1071)) NIL T ELT) (($ (-1088)) 19 T ELT) (($ (-483)) 8 T ELT) (($ (-179)) 28 T ELT) (($ (-772)) NIL T ELT) (($ (-583 $)) 65 T ELT) (((-1014) $) 12 T ELT) (($ (-1014)) 13 T ELT)) (-2019 (((-1088) (-1088) (-583 $)) 60 T ELT)) (-3940 (((-772) $) 54 T ELT)) (-3246 (($ $) 59 T ELT)) (-3247 (($ $) 58 T ELT)) (-2025 (($ $ (-583 $)) 66 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3259 (((-85) $) 29 T ELT)) (-2656 (($) 9 T CONST)) (-2662 (($) 11 T CONST)) (-3052 (((-85) $ $) 74 T ELT)) (-3943 (($ $ $) 82 T ELT)) (-3833 (($ $ $) 75 T ELT)) (** (($ $ (-694)) 81 T ELT) (($ $ (-483)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-3951 (((-483) $) NIL T ELT)))
-(((-472) (-13 (-1015 (-1071) (-1088) (-483) (-179) (-772)) (-553 (-1014)) (-10 -8 (-15 -2027 ((-51) $)) (-15 -3966 ($ (-1014))) (-15 -2025 ($ $ (-583 $))) (-15 -2379 ($ $ (-583 (-1088)) (-1088))) (-15 -2024 ($ $ (-583 (-1088)))) (-15 -3833 ($ $ $)) (-15 * ($ $ $)) (-15 -3943 ($ $ $)) (-15 ** ($ $ (-694))) (-15 ** ($ $ (-483))) (-15 -2656 ($) -3946) (-15 -2662 ($) -3946) (-15 -2023 ($ $)) (-15 -2022 ((-1071) $)) (-15 -2021 ($ (-1071))) (-15 -2020 ((-1088) (-583 $))) (-15 -2019 ((-1088) (-1088) (-583 $)))))) (T -472))
-((-2027 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-472)))) (-3966 (*1 *1 *2) (-12 (-5 *2 (-1014)) (-5 *1 (-472)))) (-2025 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-472))) (-5 *1 (-472)))) (-2379 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1088))) (-5 *3 (-1088)) (-5 *1 (-472)))) (-2024 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1088))) (-5 *1 (-472)))) (-3833 (*1 *1 *1 *1) (-5 *1 (-472))) (* (*1 *1 *1 *1) (-5 *1 (-472))) (-3943 (*1 *1 *1 *1) (-5 *1 (-472))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-472)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-472)))) (-2656 (*1 *1) (-5 *1 (-472))) (-2662 (*1 *1) (-5 *1 (-472))) (-2023 (*1 *1 *1) (-5 *1 (-472))) (-2022 (*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-472)))) (-2021 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-472)))) (-2020 (*1 *2 *3) (-12 (-5 *3 (-583 (-472))) (-5 *2 (-1088)) (-5 *1 (-472)))) (-2019 (*1 *2 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-583 (-472))) (-5 *1 (-472)))))
-((-2026 (((-472) (-1088)) 15 T ELT)) (-2027 ((|#1| (-472)) 20 T ELT)))
-(((-473 |#1|) (-10 -7 (-15 -2026 ((-472) (-1088))) (-15 -2027 (|#1| (-472)))) (-1127)) (T -473))
-((-2027 (*1 *2 *3) (-12 (-5 *3 (-472)) (-5 *1 (-473 *2)) (-4 *2 (-1127)))) (-2026 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-472)) (-5 *1 (-473 *4)) (-4 *4 (-1127)))))
-((-3447 ((|#2| |#2|) 17 T ELT)) (-3445 ((|#2| |#2|) 13 T ELT)) (-3448 ((|#2| |#2| (-483) (-483)) 20 T ELT)) (-3446 ((|#2| |#2|) 15 T ELT)))
-(((-474 |#1| |#2|) (-10 -7 (-15 -3445 (|#2| |#2|)) (-15 -3446 (|#2| |#2|)) (-15 -3447 (|#2| |#2|)) (-15 -3448 (|#2| |#2| (-483) (-483)))) (-13 (-494) (-120)) (-1170 |#1|)) (T -474))
-((-3448 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-483)) (-4 *4 (-13 (-494) (-120))) (-5 *1 (-474 *4 *2)) (-4 *2 (-1170 *4)))) (-3447 (*1 *2 *2) (-12 (-4 *3 (-13 (-494) (-120))) (-5 *1 (-474 *3 *2)) (-4 *2 (-1170 *3)))) (-3446 (*1 *2 *2) (-12 (-4 *3 (-13 (-494) (-120))) (-5 *1 (-474 *3 *2)) (-4 *2 (-1170 *3)))) (-3445 (*1 *2 *2) (-12 (-4 *3 (-13 (-494) (-120))) (-5 *1 (-474 *3 *2)) (-4 *2 (-1170 *3)))))
-((-2030 (((-583 (-248 (-857 |#2|))) (-583 |#2|) (-583 (-1088))) 32 T ELT)) (-2028 (((-583 |#2|) (-857 |#1|) |#3|) 54 T ELT) (((-583 |#2|) (-1083 |#1|) |#3|) 53 T ELT)) (-2029 (((-583 (-583 |#2|)) (-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1088)) |#3|) 106 T ELT)))
-(((-475 |#1| |#2| |#3|) (-10 -7 (-15 -2028 ((-583 |#2|) (-1083 |#1|) |#3|)) (-15 -2028 ((-583 |#2|) (-857 |#1|) |#3|)) (-15 -2029 ((-583 (-583 |#2|)) (-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1088)) |#3|)) (-15 -2030 ((-583 (-248 (-857 |#2|))) (-583 |#2|) (-583 (-1088))))) (-389) (-311) (-13 (-311) (-755))) (T -475))
-((-2030 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1088))) (-4 *6 (-311)) (-5 *2 (-583 (-248 (-857 *6)))) (-5 *1 (-475 *5 *6 *7)) (-4 *5 (-389)) (-4 *7 (-13 (-311) (-755))))) (-2029 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1088))) (-4 *6 (-389)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-475 *6 *7 *5)) (-4 *7 (-311)) (-4 *5 (-13 (-311) (-755))))) (-2028 (*1 *2 *3 *4) (-12 (-5 *3 (-857 *5)) (-4 *5 (-389)) (-5 *2 (-583 *6)) (-5 *1 (-475 *5 *6 *4)) (-4 *6 (-311)) (-4 *4 (-13 (-311) (-755))))) (-2028 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *5)) (-4 *5 (-389)) (-5 *2 (-583 *6)) (-5 *1 (-475 *5 *6 *4)) (-4 *6 (-311)) (-4 *4 (-13 (-311) (-755))))))
-((-2033 ((|#2| |#2| |#1|) 17 T ELT)) (-2031 ((|#2| (-583 |#2|)) 30 T ELT)) (-2032 ((|#2| (-583 |#2|)) 51 T ELT)))
-(((-476 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2031 (|#2| (-583 |#2|))) (-15 -2032 (|#2| (-583 |#2|))) (-15 -2033 (|#2| |#2| |#1|))) (-257) (-1153 |#1|) |#1| (-1 |#1| |#1| (-694))) (T -476))
-((-2033 (*1 *2 *2 *3) (-12 (-4 *3 (-257)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-694))) (-5 *1 (-476 *3 *2 *4 *5)) (-4 *2 (-1153 *3)))) (-2032 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1153 *4)) (-5 *1 (-476 *4 *2 *5 *6)) (-4 *4 (-257)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-694))))) (-2031 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1153 *4)) (-5 *1 (-476 *4 *2 *5 *6)) (-4 *4 (-257)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-694))))))
-((-3726 (((-345 (-1083 |#4|)) (-1083 |#4|) (-1 (-345 (-1083 |#3|)) (-1083 |#3|))) 90 T ELT) (((-345 |#4|) |#4| (-1 (-345 (-1083 |#3|)) (-1083 |#3|))) 213 T ELT)))
-(((-477 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3726 ((-345 |#4|) |#4| (-1 (-345 (-1083 |#3|)) (-1083 |#3|)))) (-15 -3726 ((-345 (-1083 |#4|)) (-1083 |#4|) (-1 (-345 (-1083 |#3|)) (-1083 |#3|))))) (-756) (-717) (-13 (-257) (-120)) (-861 |#3| |#2| |#1|)) (T -477))
-((-3726 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-345 (-1083 *7)) (-1083 *7))) (-4 *7 (-13 (-257) (-120))) (-4 *5 (-756)) (-4 *6 (-717)) (-4 *8 (-861 *7 *6 *5)) (-5 *2 (-345 (-1083 *8))) (-5 *1 (-477 *5 *6 *7 *8)) (-5 *3 (-1083 *8)))) (-3726 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-345 (-1083 *7)) (-1083 *7))) (-4 *7 (-13 (-257) (-120))) (-4 *5 (-756)) (-4 *6 (-717)) (-5 *2 (-345 *3)) (-5 *1 (-477 *5 *6 *7 *3)) (-4 *3 (-861 *7 *6 *5)))))
-((-3447 ((|#4| |#4|) 74 T ELT)) (-3445 ((|#4| |#4|) 70 T ELT)) (-3448 ((|#4| |#4| (-483) (-483)) 76 T ELT)) (-3446 ((|#4| |#4|) 72 T ELT)))
-(((-478 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3445 (|#4| |#4|)) (-15 -3446 (|#4| |#4|)) (-15 -3447 (|#4| |#4|)) (-15 -3448 (|#4| |#4| (-483) (-483)))) (-13 (-311) (-317) (-553 (-483))) (-1153 |#1|) (-661 |#1| |#2|) (-1170 |#3|)) (T -478))
-((-3448 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-483)) (-4 *4 (-13 (-311) (-317) (-553 *3))) (-4 *5 (-1153 *4)) (-4 *6 (-661 *4 *5)) (-5 *1 (-478 *4 *5 *6 *2)) (-4 *2 (-1170 *6)))) (-3447 (*1 *2 *2) (-12 (-4 *3 (-13 (-311) (-317) (-553 (-483)))) (-4 *4 (-1153 *3)) (-4 *5 (-661 *3 *4)) (-5 *1 (-478 *3 *4 *5 *2)) (-4 *2 (-1170 *5)))) (-3446 (*1 *2 *2) (-12 (-4 *3 (-13 (-311) (-317) (-553 (-483)))) (-4 *4 (-1153 *3)) (-4 *5 (-661 *3 *4)) (-5 *1 (-478 *3 *4 *5 *2)) (-4 *2 (-1170 *5)))) (-3445 (*1 *2 *2) (-12 (-4 *3 (-13 (-311) (-317) (-553 (-483)))) (-4 *4 (-1153 *3)) (-4 *5 (-661 *3 *4)) (-5 *1 (-478 *3 *4 *5 *2)) (-4 *2 (-1170 *5)))))
-((-3447 ((|#2| |#2|) 27 T ELT)) (-3445 ((|#2| |#2|) 23 T ELT)) (-3448 ((|#2| |#2| (-483) (-483)) 29 T ELT)) (-3446 ((|#2| |#2|) 25 T ELT)))
-(((-479 |#1| |#2|) (-10 -7 (-15 -3445 (|#2| |#2|)) (-15 -3446 (|#2| |#2|)) (-15 -3447 (|#2| |#2|)) (-15 -3448 (|#2| |#2| (-483) (-483)))) (-13 (-311) (-317) (-553 (-483))) (-1170 |#1|)) (T -479))
-((-3448 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-483)) (-4 *4 (-13 (-311) (-317) (-553 *3))) (-5 *1 (-479 *4 *2)) (-4 *2 (-1170 *4)))) (-3447 (*1 *2 *2) (-12 (-4 *3 (-13 (-311) (-317) (-553 (-483)))) (-5 *1 (-479 *3 *2)) (-4 *2 (-1170 *3)))) (-3446 (*1 *2 *2) (-12 (-4 *3 (-13 (-311) (-317) (-553 (-483)))) (-5 *1 (-479 *3 *2)) (-4 *2 (-1170 *3)))) (-3445 (*1 *2 *2) (-12 (-4 *3 (-13 (-311) (-317) (-553 (-483)))) (-5 *1 (-479 *3 *2)) (-4 *2 (-1170 *3)))))
-((-2034 (((-3 (-483) #1="failed") |#2| |#1| (-1 (-3 (-483) #1#) |#1|)) 18 T ELT) (((-3 (-483) #1#) |#2| |#1| (-483) (-1 (-3 (-483) #1#) |#1|)) 14 T ELT) (((-3 (-483) #1#) |#2| (-483) (-1 (-3 (-483) #1#) |#1|)) 30 T ELT)))
-(((-480 |#1| |#2|) (-10 -7 (-15 -2034 ((-3 (-483) #1="failed") |#2| (-483) (-1 (-3 (-483) #1#) |#1|))) (-15 -2034 ((-3 (-483) #1#) |#2| |#1| (-483) (-1 (-3 (-483) #1#) |#1|))) (-15 -2034 ((-3 (-483) #1#) |#2| |#1| (-1 (-3 (-483) #1#) |#1|)))) (-961) (-1153 |#1|)) (T -480))
-((-2034 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-483) #1="failed") *4)) (-4 *4 (-961)) (-5 *2 (-483)) (-5 *1 (-480 *4 *3)) (-4 *3 (-1153 *4)))) (-2034 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-483) #1#) *4)) (-4 *4 (-961)) (-5 *2 (-483)) (-5 *1 (-480 *4 *3)) (-4 *3 (-1153 *4)))) (-2034 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-483) #1#) *5)) (-4 *5 (-961)) (-5 *2 (-483)) (-5 *1 (-480 *5 *3)) (-4 *3 (-1153 *5)))))
-((-2043 (($ $ $) 87 T ELT)) (-3965 (((-345 $) $) 50 T ELT)) (-3152 (((-3 (-483) #1="failed") $) 62 T ELT)) (-3151 (((-483) $) 40 T ELT)) (-3020 (((-3 (-347 (-483)) #1#) $) 80 T ELT)) (-3019 (((-85) $) 24 T ELT)) (-3018 (((-347 (-483)) $) 78 T ELT)) (-3717 (((-85) $) 53 T ELT)) (-2036 (($ $ $ $) 94 T ELT)) (-1366 (($ $ $) 60 T ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) 75 T ELT)) (-3439 (((-632 $) $) 70 T ELT)) (-2040 (($ $) 22 T ELT)) (-2035 (($ $ $) 92 T ELT)) (-3440 (($) 63 T CONST)) (-1364 (($ $) 56 T ELT)) (-3726 (((-345 $) $) 48 T ELT)) (-2670 (((-85) $) 15 T ELT)) (-1604 (((-694) $) 30 T ELT)) (-3752 (($ $) 11 T ELT) (($ $ (-694)) NIL T ELT)) (-3394 (($ $) 16 T ELT)) (-3966 (((-483) $) NIL T ELT) (((-472) $) 39 T ELT) (((-800 (-483)) $) 43 T ELT) (((-327) $) 33 T ELT) (((-179) $) 36 T ELT)) (-3121 (((-694)) 9 T CONST)) (-2045 (((-85) $ $) 19 T ELT)) (-3097 (($ $ $) 58 T ELT)))
-(((-481 |#1|) (-10 -7 (-15 -2035 (|#1| |#1| |#1|)) (-15 -2036 (|#1| |#1| |#1| |#1|)) (-15 -2040 (|#1| |#1|)) (-15 -3394 (|#1| |#1|)) (-15 -3020 ((-3 (-347 (-483)) #1="failed") |#1|)) (-15 -3018 ((-347 (-483)) |#1|)) (-15 -3019 ((-85) |#1|)) (-15 -2043 (|#1| |#1| |#1|)) (-15 -2045 ((-85) |#1| |#1|)) (-15 -2670 ((-85) |#1|)) (-15 -3440 (|#1|) -3946) (-15 -3439 ((-632 |#1|) |#1|)) (-15 -3966 ((-179) |#1|)) (-15 -3966 ((-327) |#1|)) (-15 -1366 (|#1| |#1| |#1|)) (-15 -1364 (|#1| |#1|)) (-15 -3097 (|#1| |#1| |#1|)) (-15 -2792 ((-798 (-483) |#1|) |#1| (-800 (-483)) (-798 (-483) |#1|))) (-15 -3966 ((-800 (-483)) |#1|)) (-15 -3966 ((-472) |#1|)) (-15 -3152 ((-3 (-483) #1#) |#1|)) (-15 -3151 ((-483) |#1|)) (-15 -3966 ((-483) |#1|)) (-15 -3752 (|#1| |#1| (-694))) (-15 -3752 (|#1| |#1|)) (-15 -1604 ((-694) |#1|)) (-15 -3726 ((-345 |#1|) |#1|)) (-15 -3965 ((-345 |#1|) |#1|)) (-15 -3717 ((-85) |#1|)) (-15 -3121 ((-694)) -3946)) (-482)) (T -481))
-((-3121 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-481 *3)) (-4 *3 (-482)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-2043 (($ $ $) 100 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-2038 (($ $ $ $) 89 T ELT)) (-3769 (($ $) 64 T ELT)) (-3965 (((-345 $) $) 65 T ELT)) (-1605 (((-85) $ $) 143 T ELT)) (-3617 (((-483) $) 132 T ELT)) (-2437 (($ $ $) 103 T ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 (-483) "failed") $) 124 T ELT)) (-3151 (((-483) $) 125 T ELT)) (-2560 (($ $ $) 147 T ELT)) (-2275 (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 122 T ELT) (((-630 (-483)) (-630 $)) 121 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3020 (((-3 (-347 (-483)) "failed") $) 97 T ELT)) (-3019 (((-85) $) 99 T ELT)) (-3018 (((-347 (-483)) $) 98 T ELT)) (-2990 (($) 96 T ELT) (($ $) 95 T ELT)) (-2559 (($ $ $) 146 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 141 T ELT)) (-3717 (((-85) $) 66 T ELT)) (-2036 (($ $ $ $) 87 T ELT)) (-2044 (($ $ $) 101 T ELT)) (-3181 (((-85) $) 134 T ELT)) (-1366 (($ $ $) 112 T ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) 115 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-2669 (((-85) $) 107 T ELT)) (-3439 (((-632 $) $) 109 T ELT)) (-3182 (((-85) $) 133 T ELT)) (-1602 (((-3 (-583 $) #1="failed") (-583 $) $) 150 T ELT)) (-2037 (($ $ $ $) 88 T ELT)) (-2527 (($ $ $) 140 T ELT)) (-2853 (($ $ $) 139 T ELT)) (-2040 (($ $) 91 T ELT)) (-3827 (($ $) 104 T ELT)) (-2276 (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 120 T ELT) (((-630 (-483)) (-1177 $)) 119 T ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2035 (($ $ $) 86 T ELT)) (-3440 (($) 108 T CONST)) (-2042 (($ $) 93 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-1364 (($ $) 113 T ELT)) (-3726 (((-345 $) $) 63 T ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 149 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 148 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 142 T ELT)) (-2670 (((-85) $) 106 T ELT)) (-1604 (((-694) $) 144 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 145 T ELT)) (-3752 (($ $) 130 T ELT) (($ $ (-694)) 128 T ELT)) (-2041 (($ $) 92 T ELT)) (-3394 (($ $) 94 T ELT)) (-3966 (((-483) $) 126 T ELT) (((-472) $) 117 T ELT) (((-800 (-483)) $) 116 T ELT) (((-327) $) 111 T ELT) (((-179) $) 110 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT) (($ (-483)) 123 T ELT)) (-3121 (((-694)) 38 T CONST)) (-2045 (((-85) $ $) 102 T ELT)) (-3097 (($ $ $) 114 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2690 (($) 105 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-2039 (($ $ $ $) 90 T ELT)) (-3377 (($ $) 131 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $) 129 T ELT) (($ $ (-694)) 127 T ELT)) (-2562 (((-85) $ $) 138 T ELT)) (-2563 (((-85) $ $) 136 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 137 T ELT)) (-2681 (((-85) $ $) 135 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-483) $) 118 T ELT)))
-(((-482) (-113)) (T -482))
-((-2669 (*1 *2 *1) (-12 (-4 *1 (-482)) (-5 *2 (-85)))) (-2670 (*1 *2 *1) (-12 (-4 *1 (-482)) (-5 *2 (-85)))) (-2690 (*1 *1) (-4 *1 (-482))) (-3827 (*1 *1 *1) (-4 *1 (-482))) (-2437 (*1 *1 *1 *1) (-4 *1 (-482))) (-2045 (*1 *2 *1 *1) (-12 (-4 *1 (-482)) (-5 *2 (-85)))) (-2044 (*1 *1 *1 *1) (-4 *1 (-482))) (-2043 (*1 *1 *1 *1) (-4 *1 (-482))) (-3019 (*1 *2 *1) (-12 (-4 *1 (-482)) (-5 *2 (-85)))) (-3018 (*1 *2 *1) (-12 (-4 *1 (-482)) (-5 *2 (-347 (-483))))) (-3020 (*1 *2 *1) (|partial| -12 (-4 *1 (-482)) (-5 *2 (-347 (-483))))) (-2990 (*1 *1) (-4 *1 (-482))) (-2990 (*1 *1 *1) (-4 *1 (-482))) (-3394 (*1 *1 *1) (-4 *1 (-482))) (-2042 (*1 *1 *1) (-4 *1 (-482))) (-2041 (*1 *1 *1) (-4 *1 (-482))) (-2040 (*1 *1 *1) (-4 *1 (-482))) (-2039 (*1 *1 *1 *1 *1) (-4 *1 (-482))) (-2038 (*1 *1 *1 *1 *1) (-4 *1 (-482))) (-2037 (*1 *1 *1 *1 *1) (-4 *1 (-482))) (-2036 (*1 *1 *1 *1 *1) (-4 *1 (-482))) (-2035 (*1 *1 *1 *1) (-4 *1 (-482))))
-(-13 (-1132) (-257) (-740) (-190) (-553 (-483)) (-950 (-483)) (-580 (-483)) (-553 (-472)) (-553 (-800 (-483))) (-796 (-483)) (-116) (-933) (-120) (-1064) (-10 -8 (-15 -2669 ((-85) $)) (-15 -2670 ((-85) $)) (-6 -3988) (-15 -2690 ($)) (-15 -3827 ($ $)) (-15 -2437 ($ $ $)) (-15 -2045 ((-85) $ $)) (-15 -2044 ($ $ $)) (-15 -2043 ($ $ $)) (-15 -3019 ((-85) $)) (-15 -3018 ((-347 (-483)) $)) (-15 -3020 ((-3 (-347 (-483)) "failed") $)) (-15 -2990 ($)) (-15 -2990 ($ $)) (-15 -3394 ($ $)) (-15 -2042 ($ $)) (-15 -2041 ($ $)) (-15 -2040 ($ $)) (-15 -2039 ($ $ $ $)) (-15 -2038 ($ $ $ $)) (-15 -2037 ($ $ $ $)) (-15 -2036 ($ $ $ $)) (-15 -2035 ($ $ $)) (-6 -3987)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-555 (-483)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-116) . T) ((-146) . T) ((-553 (-179)) . T) ((-553 (-327)) . T) ((-553 (-472)) . T) ((-553 (-483)) . T) ((-553 (-800 (-483))) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-245) . T) ((-257) . T) ((-389) . T) ((-494) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 (-483)) . T) ((-590 $) . T) ((-582 $) . T) ((-580 (-483)) . T) ((-654 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-740) . T) ((-755) . T) ((-756) . T) ((-759) . T) ((-796 (-483)) . T) ((-832) . T) ((-933) . T) ((-950 (-483)) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1064) . T) ((-1127) . T) ((-1132) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 8 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 77 T ELT)) (-2059 (($ $) 78 T ELT)) (-2057 (((-85) $) NIL T ELT)) (-2043 (($ $ $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2038 (($ $ $ $) 32 T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3617 (((-483) $) NIL T ELT)) (-2437 (($ $ $) 71 T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL T ELT)) (-3151 (((-483) $) NIL T ELT)) (-2560 (($ $ $) 33 T ELT)) (-2275 (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 54 T ELT) (((-630 (-483)) (-630 $)) 50 T ELT)) (-3461 (((-3 $ #1#) $) 74 T ELT)) (-3020 (((-3 (-347 (-483)) #1#) $) NIL T ELT)) (-3019 (((-85) $) NIL T ELT)) (-3018 (((-347 (-483)) $) NIL T ELT)) (-2990 (($) 56 T ELT) (($ $) 57 T ELT)) (-2559 (($ $ $) 70 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-2036 (($ $ $ $) NIL T ELT)) (-2044 (($ $ $) 47 T ELT)) (-3181 (((-85) $) 22 T ELT)) (-1366 (($ $ $) NIL T ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL T ELT)) (-2406 (((-85) $) 9 T ELT)) (-2669 (((-85) $) 64 T ELT)) (-3439 (((-632 $) $) NIL T ELT)) (-3182 (((-85) $) 21 T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2037 (($ $ $ $) 34 T ELT)) (-2527 (($ $ $) 67 T ELT)) (-2853 (($ $ $) 66 T ELT)) (-2040 (($ $) NIL T ELT)) (-3827 (($ $) 29 T ELT)) (-2276 (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL T ELT) (((-630 (-483)) (-1177 $)) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) 46 T ELT)) (-2035 (($ $ $) NIL T ELT)) (-3440 (($) NIL T CONST)) (-2042 (($ $) 15 T ELT)) (-3238 (((-1032) $) 19 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 109 T ELT)) (-3139 (($ $ $) 75 T ELT) (($ (-583 $)) NIL T ELT)) (-1364 (($ $) NIL T ELT)) (-3726 (((-345 $) $) 95 T ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) 93 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2670 (((-85) $) 65 T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 69 T ELT)) (-3752 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2041 (($ $) 17 T ELT)) (-3394 (($ $) 13 T ELT)) (-3966 (((-483) $) 28 T ELT) (((-472) $) 43 T ELT) (((-800 (-483)) $) NIL T ELT) (((-327) $) 37 T ELT) (((-179) $) 40 T ELT)) (-3940 (((-772) $) 26 T ELT) (($ (-483)) 27 T ELT) (($ $) NIL T ELT) (($ (-483)) 27 T ELT)) (-3121 (((-694)) NIL T CONST)) (-2045 (((-85) $ $) NIL T ELT)) (-3097 (($ $ $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2690 (($) 12 T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-2039 (($ $ $ $) 31 T ELT)) (-3377 (($ $) 55 T ELT)) (-2656 (($) 10 T CONST)) (-2662 (($) 11 T CONST)) (-2665 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2562 (((-85) $ $) 30 T ELT)) (-2563 (((-85) $ $) 58 T ELT)) (-3052 (((-85) $ $) 7 T ELT)) (-2680 (((-85) $ $) 59 T ELT)) (-2681 (((-85) $ $) 20 T ELT)) (-3831 (($ $) 44 T ELT) (($ $ $) 16 T ELT)) (-3833 (($ $ $) 14 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 63 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 61 T ELT) (($ $ $) 60 T ELT) (($ (-483) $) 61 T ELT)))
-(((-483) (-13 (-482) (-10 -7 (-6 -3976) (-6 -3981) (-6 -3977)))) (T -483))
-NIL
-((-2564 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2990 (($) NIL T ELT)) (-2527 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2853 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2006 (((-830) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 (($ (-830)) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT)))
-(((-484) (-13 (-752) (-10 -8 (-15 -3718 ($) -3946)))) (T -484))
-((-3718 (*1 *1) (-5 *1 (-484))))
-((-483) (|%not| (|%ilt| 16 (|%ilength| |#1|))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2990 (($) NIL T ELT)) (-2527 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2853 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2006 (((-830) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 (($ (-830)) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT)))
-(((-485) (-13 (-752) (-10 -8 (-15 -3718 ($) -3946)))) (T -485))
-((-3718 (*1 *1) (-5 *1 (-485))))
-((-483) (|%not| (|%ilt| 32 (|%ilength| |#1|))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2990 (($) NIL T ELT)) (-2527 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2853 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2006 (((-830) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 (($ (-830)) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT)))
-(((-486) (-13 (-752) (-10 -8 (-15 -3718 ($) -3946)))) (T -486))
-((-3718 (*1 *1) (-5 *1 (-486))))
-((-483) (|%not| (|%ilt| 64 (|%ilength| |#1|))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2990 (($) NIL T ELT)) (-2527 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2853 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2006 (((-830) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 (($ (-830)) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT)))
-(((-487) (-13 (-752) (-10 -8 (-15 -3718 ($) -3946)))) (T -487))
-((-3718 (*1 *1) (-5 *1 (-487))))
-((-483) (|%not| (|%ilt| 8 (|%ilength| |#1|))))
-((-2564 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3593 (($) NIL T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2194 (((-1183) $ |#1| |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3782 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1567 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-2227 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-3399 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3400 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#2| $ |#1|) NIL T ELT)) (-2885 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2196 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2604 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2197 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3990)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-2228 (((-583 |#1|) $) NIL T ELT)) (-2229 (((-85) |#1| $) NIL T ELT)) (-1271 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3603 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2199 (((-583 |#1|) $) NIL T ELT)) (-2200 (((-85) |#1| $) NIL T ELT)) (-3238 (((-1032) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-3795 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1351 (((-3 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2195 (($ $ |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-1272 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1944 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2201 (((-583 |#2|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1463 (($) NIL T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1943 (((-694) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-553 (-472))) ELT)) (-3524 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3940 (((-772) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1262 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1273 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-488 |#1| |#2| |#3|) (-13 (-1105 |#1| |#2|) (-10 -7 (-6 -3989))) (-1012) (-1012) (-13 (-1105 |#1| |#2|) (-10 -7 (-6 -3989)))) (T -488))
-NIL
-((-2046 (((-518 |#2|) |#2| (-550 |#2|) (-550 |#2|) (-1 (-1083 |#2|) (-1083 |#2|))) 50 T ELT)))
-(((-489 |#1| |#2|) (-10 -7 (-15 -2046 ((-518 |#2|) |#2| (-550 |#2|) (-550 |#2|) (-1 (-1083 |#2|) (-1083 |#2|))))) (-494) (-13 (-27) (-361 |#1|))) (T -489))
-((-2046 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-550 *3)) (-5 *5 (-1 (-1083 *3) (-1083 *3))) (-4 *3 (-13 (-27) (-361 *6))) (-4 *6 (-494)) (-5 *2 (-518 *3)) (-5 *1 (-489 *6 *3)))))
-((-2048 (((-518 |#5|) |#5| (-1 |#3| |#3|)) 217 T ELT)) (-2049 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 213 T ELT)) (-2047 (((-518 |#5|) |#5| (-1 |#3| |#3|)) 221 T ELT)))
-(((-490 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2047 ((-518 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2048 ((-518 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2049 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-494) (-950 (-483))) (-13 (-27) (-361 |#1|)) (-1153 |#2|) (-1153 (-347 |#3|)) (-290 |#2| |#3| |#4|)) (T -490))
-((-2049 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-27) (-361 *4))) (-4 *4 (-13 (-494) (-950 (-483)))) (-4 *7 (-1153 (-347 *6))) (-5 *1 (-490 *4 *5 *6 *7 *2)) (-4 *2 (-290 *5 *6 *7)))) (-2048 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1153 *6)) (-4 *6 (-13 (-27) (-361 *5))) (-4 *5 (-13 (-494) (-950 (-483)))) (-4 *8 (-1153 (-347 *7))) (-5 *2 (-518 *3)) (-5 *1 (-490 *5 *6 *7 *8 *3)) (-4 *3 (-290 *6 *7 *8)))) (-2047 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1153 *6)) (-4 *6 (-13 (-27) (-361 *5))) (-4 *5 (-13 (-494) (-950 (-483)))) (-4 *8 (-1153 (-347 *7))) (-5 *2 (-518 *3)) (-5 *1 (-490 *5 *6 *7 *8 *3)) (-4 *3 (-290 *6 *7 *8)))))
-((-2052 (((-85) (-483) (-483)) 12 T ELT)) (-2050 (((-483) (-483)) 7 T ELT)) (-2051 (((-483) (-483) (-483)) 10 T ELT)))
-(((-491) (-10 -7 (-15 -2050 ((-483) (-483))) (-15 -2051 ((-483) (-483) (-483))) (-15 -2052 ((-85) (-483) (-483))))) (T -491))
-((-2052 (*1 *2 *3 *3) (-12 (-5 *3 (-483)) (-5 *2 (-85)) (-5 *1 (-491)))) (-2051 (*1 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-491)))) (-2050 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-491)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2600 ((|#1| $) 75 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-3486 (($ $) 105 T ELT)) (-3633 (($ $) 88 T ELT)) (-2479 ((|#1| $) 76 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3033 (($ $) 87 T ELT)) (-3484 (($ $) 104 T ELT)) (-3632 (($ $) 89 T ELT)) (-3488 (($ $) 103 T ELT)) (-3631 (($ $) 90 T ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 (-483) "failed") $) 83 T ELT)) (-3151 (((-483) $) 84 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2055 (($ |#1| |#1|) 80 T ELT)) (-3181 (((-85) $) 74 T ELT)) (-3621 (($) 115 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3007 (($ $ (-483)) 86 T ELT)) (-3182 (((-85) $) 73 T ELT)) (-2527 (($ $ $) 116 T ELT)) (-2853 (($ $ $) 117 T ELT)) (-3936 (($ $) 112 T ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2056 (($ |#1| |#1|) 81 T ELT) (($ |#1|) 79 T ELT) (($ (-347 (-483))) 78 T ELT)) (-2054 ((|#1| $) 77 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-3937 (($ $) 113 T ELT)) (-3489 (($ $) 102 T ELT)) (-3630 (($ $) 91 T ELT)) (-3487 (($ $) 101 T ELT)) (-3629 (($ $) 92 T ELT)) (-3485 (($ $) 100 T ELT)) (-3628 (($ $) 93 T ELT)) (-2053 (((-85) $ |#1|) 72 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT) (($ (-483)) 82 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-3492 (($ $) 111 T ELT)) (-3480 (($ $) 99 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-3490 (($ $) 110 T ELT)) (-3478 (($ $) 98 T ELT)) (-3494 (($ $) 109 T ELT)) (-3482 (($ $) 97 T ELT)) (-3495 (($ $) 108 T ELT)) (-3483 (($ $) 96 T ELT)) (-3493 (($ $) 107 T ELT)) (-3481 (($ $) 95 T ELT)) (-3491 (($ $) 106 T ELT)) (-3479 (($ $) 94 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2562 (((-85) $ $) 118 T ELT)) (-2563 (((-85) $ $) 120 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 119 T ELT)) (-2681 (((-85) $ $) 121 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ $) 114 T ELT) (($ $ (-347 (-483))) 85 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT)))
-(((-492 |#1|) (-113) (-13 (-344) (-1113))) (T -492))
-((-2056 (*1 *1 *2 *2) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-344) (-1113))))) (-2055 (*1 *1 *2 *2) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-344) (-1113))))) (-2056 (*1 *1 *2) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-344) (-1113))))) (-2056 (*1 *1 *2) (-12 (-5 *2 (-347 (-483))) (-4 *1 (-492 *3)) (-4 *3 (-13 (-344) (-1113))))) (-2054 (*1 *2 *1) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-344) (-1113))))) (-2479 (*1 *2 *1) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-344) (-1113))))) (-2600 (*1 *2 *1) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-344) (-1113))))) (-3181 (*1 *2 *1) (-12 (-4 *1 (-492 *3)) (-4 *3 (-13 (-344) (-1113))) (-5 *2 (-85)))) (-3182 (*1 *2 *1) (-12 (-4 *1 (-492 *3)) (-4 *3 (-13 (-344) (-1113))) (-5 *2 (-85)))) (-2053 (*1 *2 *1 *3) (-12 (-4 *1 (-492 *3)) (-4 *3 (-13 (-344) (-1113))) (-5 *2 (-85)))))
-(-13 (-389) (-756) (-1113) (-915) (-950 (-483)) (-10 -8 (-6 -3764) (-15 -2056 ($ |t#1| |t#1|)) (-15 -2055 ($ |t#1| |t#1|)) (-15 -2056 ($ |t#1|)) (-15 -2056 ($ (-347 (-483)))) (-15 -2054 (|t#1| $)) (-15 -2479 (|t#1| $)) (-15 -2600 (|t#1| $)) (-15 -3181 ((-85) $)) (-15 -3182 ((-85) $)) (-15 -2053 ((-85) $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-66) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-483)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-239) . T) ((-245) . T) ((-389) . T) ((-430) . T) ((-494) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-756) . T) ((-759) . T) ((-915) . T) ((-950 (-483)) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1113) . T) ((-1116) . T) ((-1127) . T))
-((-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 9 T ELT)) (-2059 (($ $) 11 T ELT)) (-2057 (((-85) $) 20 T ELT)) (-3461 (((-3 $ "failed") $) 16 T ELT)) (-2058 (((-85) $ $) 22 T ELT)))
-(((-493 |#1|) (-10 -7 (-15 -2057 ((-85) |#1|)) (-15 -2058 ((-85) |#1| |#1|)) (-15 -2059 (|#1| |#1|)) (-15 -2060 ((-2 (|:| -1769 |#1|) (|:| -3976 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3461 ((-3 |#1| "failed") |#1|))) (-494)) (T -493))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT)))
-(((-494) (-113)) (T -494))
-((-3460 (*1 *1 *1 *1) (|partial| -4 *1 (-494))) (-2060 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1769 *1) (|:| -3976 *1) (|:| |associate| *1))) (-4 *1 (-494)))) (-2059 (*1 *1 *1) (-4 *1 (-494))) (-2058 (*1 *2 *1 *1) (-12 (-4 *1 (-494)) (-5 *2 (-85)))) (-2057 (*1 *2 *1) (-12 (-4 *1 (-494)) (-5 *2 (-85)))))
-(-13 (-146) (-38 $) (-245) (-10 -8 (-15 -3460 ((-3 $ "failed") $ $)) (-15 -2060 ((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $)) (-15 -2059 ($ $)) (-15 -2058 ((-85) $ $)) (-15 -2057 ((-85) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-483)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-245) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T))
-((-2062 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-1088) (-583 |#2|)) 38 T ELT)) (-2064 (((-518 |#2|) |#2| (-1088)) 63 T ELT)) (-2063 (((-3 |#2| #1#) |#2| (-1088)) 156 T ELT)) (-2065 (((-3 (-2 (|:| -2132 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1088) (-550 |#2|) (-583 (-550 |#2|))) 159 T ELT)) (-2061 (((-3 (-2 (|:| -2132 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1088) |#2|) 41 T ELT)))
-(((-495 |#1| |#2|) (-10 -7 (-15 -2061 ((-3 (-2 (|:| -2132 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1088) |#2|)) (-15 -2062 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-1088) (-583 |#2|))) (-15 -2063 ((-3 |#2| #1#) |#2| (-1088))) (-15 -2064 ((-518 |#2|) |#2| (-1088))) (-15 -2065 ((-3 (-2 (|:| -2132 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1088) (-550 |#2|) (-583 (-550 |#2|))))) (-13 (-389) (-120) (-950 (-483)) (-580 (-483))) (-13 (-27) (-1113) (-361 |#1|))) (T -495))
-((-2065 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1088)) (-5 *6 (-583 (-550 *3))) (-5 *5 (-550 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *7))) (-4 *7 (-13 (-389) (-120) (-950 (-483)) (-580 (-483)))) (-5 *2 (-2 (|:| -2132 *3) (|:| |coeff| *3))) (-5 *1 (-495 *7 *3)))) (-2064 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-389) (-120) (-950 (-483)) (-580 (-483)))) (-5 *2 (-518 *3)) (-5 *1 (-495 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5))))) (-2063 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1088)) (-4 *4 (-13 (-389) (-120) (-950 (-483)) (-580 (-483)))) (-5 *1 (-495 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *4))))) (-2062 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *6))) (-4 *6 (-13 (-389) (-120) (-950 (-483)) (-580 (-483)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-495 *6 *3)))) (-2061 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1088)) (-4 *5 (-13 (-389) (-120) (-950 (-483)) (-580 (-483)))) (-5 *2 (-2 (|:| -2132 *3) (|:| |coeff| *3))) (-5 *1 (-495 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5))))))
-((-3965 (((-345 |#1|) |#1|) 17 T ELT)) (-3726 (((-345 |#1|) |#1|) 32 T ELT)) (-2067 (((-3 |#1| "failed") |#1|) 48 T ELT)) (-2066 (((-345 |#1|) |#1|) 59 T ELT)))
-(((-496 |#1|) (-10 -7 (-15 -3726 ((-345 |#1|) |#1|)) (-15 -3965 ((-345 |#1|) |#1|)) (-15 -2066 ((-345 |#1|) |#1|)) (-15 -2067 ((-3 |#1| "failed") |#1|))) (-482)) (T -496))
-((-2067 (*1 *2 *2) (|partial| -12 (-5 *1 (-496 *2)) (-4 *2 (-482)))) (-2066 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-496 *3)) (-4 *3 (-482)))) (-3965 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-496 *3)) (-4 *3 (-482)))) (-3726 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-496 *3)) (-4 *3 (-482)))))
-((-3079 (((-1083 (-347 (-1083 |#2|))) |#2| (-550 |#2|) (-550 |#2|) (-1083 |#2|)) 35 T ELT)) (-2070 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|) (-550 |#2|) |#2| (-347 (-1083 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|) |#2| (-1083 |#2|)) 115 T ELT)) (-2068 (((-518 |#2|) |#2| (-550 |#2|) (-550 |#2|) (-550 |#2|) |#2| (-347 (-1083 |#2|))) 85 T ELT) (((-518 |#2|) |#2| (-550 |#2|) (-550 |#2|) |#2| (-1083 |#2|)) 55 T ELT)) (-2069 (((-3 (-2 (|:| -2132 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-550 |#2|) (-550 |#2|) |#2| (-550 |#2|) |#2| (-347 (-1083 |#2|))) 92 T ELT) (((-3 (-2 (|:| -2132 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-550 |#2|) (-550 |#2|) |#2| |#2| (-1083 |#2|)) 114 T ELT)) (-2071 (((-3 |#2| #1#) |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1088)) (-550 |#2|) |#2| (-347 (-1083 |#2|))) 110 T ELT) (((-3 |#2| #1#) |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1088)) |#2| (-1083 |#2|)) 116 T ELT)) (-2072 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2008 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) (-550 |#2|) |#2| (-347 (-1083 |#2|))) 133 (|has| |#3| (-600 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2008 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) |#2| (-1083 |#2|)) 132 (|has| |#3| (-600 |#2|)) ELT)) (-3080 ((|#2| (-1083 (-347 (-1083 |#2|))) (-550 |#2|) |#2|) 53 T ELT)) (-3075 (((-1083 (-347 (-1083 |#2|))) (-1083 |#2|) (-550 |#2|)) 34 T ELT)))
-(((-497 |#1| |#2| |#3|) (-10 -7 (-15 -2068 ((-518 |#2|) |#2| (-550 |#2|) (-550 |#2|) |#2| (-1083 |#2|))) (-15 -2068 ((-518 |#2|) |#2| (-550 |#2|) (-550 |#2|) (-550 |#2|) |#2| (-347 (-1083 |#2|)))) (-15 -2069 ((-3 (-2 (|:| -2132 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-550 |#2|) (-550 |#2|) |#2| |#2| (-1083 |#2|))) (-15 -2069 ((-3 (-2 (|:| -2132 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-550 |#2|) (-550 |#2|) |#2| (-550 |#2|) |#2| (-347 (-1083 |#2|)))) (-15 -2070 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|) |#2| (-1083 |#2|))) (-15 -2070 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|) (-550 |#2|) |#2| (-347 (-1083 |#2|)))) (-15 -2071 ((-3 |#2| #1#) |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1088)) |#2| (-1083 |#2|))) (-15 -2071 ((-3 |#2| #1#) |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1088)) (-550 |#2|) |#2| (-347 (-1083 |#2|)))) (-15 -3079 ((-1083 (-347 (-1083 |#2|))) |#2| (-550 |#2|) (-550 |#2|) (-1083 |#2|))) (-15 -3080 (|#2| (-1083 (-347 (-1083 |#2|))) (-550 |#2|) |#2|)) (-15 -3075 ((-1083 (-347 (-1083 |#2|))) (-1083 |#2|) (-550 |#2|))) (IF (|has| |#3| (-600 |#2|)) (PROGN (-15 -2072 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2008 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) |#2| (-1083 |#2|))) (-15 -2072 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2008 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) (-550 |#2|) |#2| (-347 (-1083 |#2|))))) |%noBranch|)) (-13 (-389) (-950 (-483)) (-120) (-580 (-483))) (-13 (-361 |#1|) (-27) (-1113)) (-1012)) (T -497))
-((-2072 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-550 *4)) (-5 *6 (-347 (-1083 *4))) (-4 *4 (-13 (-361 *7) (-27) (-1113))) (-4 *7 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2008 (-583 *4)))) (-5 *1 (-497 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1012)))) (-2072 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-550 *4)) (-5 *6 (-1083 *4)) (-4 *4 (-13 (-361 *7) (-27) (-1113))) (-4 *7 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2008 (-583 *4)))) (-5 *1 (-497 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1012)))) (-3075 (*1 *2 *3 *4) (-12 (-5 *4 (-550 *6)) (-4 *6 (-13 (-361 *5) (-27) (-1113))) (-4 *5 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-1083 (-347 (-1083 *6)))) (-5 *1 (-497 *5 *6 *7)) (-5 *3 (-1083 *6)) (-4 *7 (-1012)))) (-3080 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1083 (-347 (-1083 *2)))) (-5 *4 (-550 *2)) (-4 *2 (-13 (-361 *5) (-27) (-1113))) (-4 *5 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *1 (-497 *5 *2 *6)) (-4 *6 (-1012)))) (-3079 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-361 *6) (-27) (-1113))) (-4 *6 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-1083 (-347 (-1083 *3)))) (-5 *1 (-497 *6 *3 *7)) (-5 *5 (-1083 *3)) (-4 *7 (-1012)))) (-2071 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-550 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1088))) (-5 *5 (-347 (-1083 *2))) (-4 *2 (-13 (-361 *6) (-27) (-1113))) (-4 *6 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *1 (-497 *6 *2 *7)) (-4 *7 (-1012)))) (-2071 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-550 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1088))) (-5 *5 (-1083 *2)) (-4 *2 (-13 (-361 *6) (-27) (-1113))) (-4 *6 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *1 (-497 *6 *2 *7)) (-4 *7 (-1012)))) (-2070 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3)) (-5 *6 (-347 (-1083 *3))) (-4 *3 (-13 (-361 *7) (-27) (-1113))) (-4 *7 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-497 *7 *3 *8)) (-4 *8 (-1012)))) (-2070 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3)) (-5 *6 (-1083 *3)) (-4 *3 (-13 (-361 *7) (-27) (-1113))) (-4 *7 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-497 *7 *3 *8)) (-4 *8 (-1012)))) (-2069 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-347 (-1083 *3))) (-4 *3 (-13 (-361 *6) (-27) (-1113))) (-4 *6 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-2 (|:| -2132 *3) (|:| |coeff| *3))) (-5 *1 (-497 *6 *3 *7)) (-4 *7 (-1012)))) (-2069 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-1083 *3)) (-4 *3 (-13 (-361 *6) (-27) (-1113))) (-4 *6 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-2 (|:| -2132 *3) (|:| |coeff| *3))) (-5 *1 (-497 *6 *3 *7)) (-4 *7 (-1012)))) (-2068 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-550 *3)) (-5 *5 (-347 (-1083 *3))) (-4 *3 (-13 (-361 *6) (-27) (-1113))) (-4 *6 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-518 *3)) (-5 *1 (-497 *6 *3 *7)) (-4 *7 (-1012)))) (-2068 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-550 *3)) (-5 *5 (-1083 *3)) (-4 *3 (-13 (-361 *6) (-27) (-1113))) (-4 *6 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-518 *3)) (-5 *1 (-497 *6 *3 *7)) (-4 *7 (-1012)))))
-((-2082 (((-483) (-483) (-694)) 87 T ELT)) (-2081 (((-483) (-483)) 85 T ELT)) (-2080 (((-483) (-483)) 82 T ELT)) (-2079 (((-483) (-483)) 89 T ELT)) (-2801 (((-483) (-483) (-483)) 67 T ELT)) (-2078 (((-483) (-483) (-483)) 64 T ELT)) (-2077 (((-347 (-483)) (-483)) 29 T ELT)) (-2076 (((-483) (-483)) 34 T ELT)) (-2075 (((-483) (-483)) 76 T ELT)) (-2798 (((-483) (-483)) 47 T ELT)) (-2074 (((-583 (-483)) (-483)) 81 T ELT)) (-2073 (((-483) (-483) (-483) (-483) (-483)) 60 T ELT)) (-2794 (((-347 (-483)) (-483)) 56 T ELT)))
-(((-498) (-10 -7 (-15 -2794 ((-347 (-483)) (-483))) (-15 -2073 ((-483) (-483) (-483) (-483) (-483))) (-15 -2074 ((-583 (-483)) (-483))) (-15 -2798 ((-483) (-483))) (-15 -2075 ((-483) (-483))) (-15 -2076 ((-483) (-483))) (-15 -2077 ((-347 (-483)) (-483))) (-15 -2078 ((-483) (-483) (-483))) (-15 -2801 ((-483) (-483) (-483))) (-15 -2079 ((-483) (-483))) (-15 -2080 ((-483) (-483))) (-15 -2081 ((-483) (-483))) (-15 -2082 ((-483) (-483) (-694))))) (T -498))
-((-2082 (*1 *2 *2 *3) (-12 (-5 *2 (-483)) (-5 *3 (-694)) (-5 *1 (-498)))) (-2081 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))) (-2080 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))) (-2079 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))) (-2801 (*1 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))) (-2078 (*1 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))) (-2077 (*1 *2 *3) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-498)) (-5 *3 (-483)))) (-2076 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))) (-2075 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))) (-2798 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))) (-2074 (*1 *2 *3) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-498)) (-5 *3 (-483)))) (-2073 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))) (-2794 (*1 *2 *3) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-498)) (-5 *3 (-483)))))
-((-2083 (((-2 (|:| |answer| |#4|) (|:| -2131 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT)))
-(((-499 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2083 ((-2 (|:| |answer| |#4|) (|:| -2131 |#4|)) |#4| (-1 |#2| |#2|)))) (-311) (-1153 |#1|) (-1153 (-347 |#2|)) (-290 |#1| |#2| |#3|)) (T -499))
-((-2083 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-311)) (-4 *7 (-1153 (-347 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2131 *3))) (-5 *1 (-499 *5 *6 *7 *3)) (-4 *3 (-290 *5 *6 *7)))))
-((-2083 (((-2 (|:| |answer| (-347 |#2|)) (|:| -2131 (-347 |#2|)) (|:| |specpart| (-347 |#2|)) (|:| |polypart| |#2|)) (-347 |#2|) (-1 |#2| |#2|)) 18 T ELT)))
-(((-500 |#1| |#2|) (-10 -7 (-15 -2083 ((-2 (|:| |answer| (-347 |#2|)) (|:| -2131 (-347 |#2|)) (|:| |specpart| (-347 |#2|)) (|:| |polypart| |#2|)) (-347 |#2|) (-1 |#2| |#2|)))) (-311) (-1153 |#1|)) (T -500))
-((-2083 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| |answer| (-347 *6)) (|:| -2131 (-347 *6)) (|:| |specpart| (-347 *6)) (|:| |polypart| *6))) (-5 *1 (-500 *5 *6)) (-5 *3 (-347 *6)))))
-((-2086 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|)) 195 T ELT)) (-2084 (((-518 |#2|) |#2| (-550 |#2|) (-550 |#2|)) 97 T ELT)) (-2085 (((-3 (-2 (|:| -2132 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-550 |#2|) (-550 |#2|) |#2|) 191 T ELT)) (-2087 (((-3 |#2| #1#) |#2| |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1088))) 200 T ELT)) (-2088 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2008 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) (-1088)) 209 (|has| |#3| (-600 |#2|)) ELT)))
-(((-501 |#1| |#2| |#3|) (-10 -7 (-15 -2084 ((-518 |#2|) |#2| (-550 |#2|) (-550 |#2|))) (-15 -2085 ((-3 (-2 (|:| -2132 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-550 |#2|) (-550 |#2|) |#2|)) (-15 -2086 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|))) (-15 -2087 ((-3 |#2| #1#) |#2| |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1088)))) (IF (|has| |#3| (-600 |#2|)) (-15 -2088 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2008 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) (-1088))) |%noBranch|)) (-13 (-389) (-950 (-483)) (-120) (-580 (-483))) (-13 (-361 |#1|) (-27) (-1113)) (-1012)) (T -501))
-((-2088 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-550 *4)) (-5 *6 (-1088)) (-4 *4 (-13 (-361 *7) (-27) (-1113))) (-4 *7 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2008 (-583 *4)))) (-5 *1 (-501 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1012)))) (-2087 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-550 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1088))) (-4 *2 (-13 (-361 *5) (-27) (-1113))) (-4 *5 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *1 (-501 *5 *2 *6)) (-4 *6 (-1012)))) (-2086 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-361 *6) (-27) (-1113))) (-4 *6 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-501 *6 *3 *7)) (-4 *7 (-1012)))) (-2085 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-361 *5) (-27) (-1113))) (-4 *5 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-2 (|:| -2132 *3) (|:| |coeff| *3))) (-5 *1 (-501 *5 *3 *6)) (-4 *6 (-1012)))) (-2084 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-361 *5) (-27) (-1113))) (-4 *5 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-518 *3)) (-5 *1 (-501 *5 *3 *6)) (-4 *6 (-1012)))))
-((-2089 (((-2 (|:| -2334 |#2|) (|:| |nconst| |#2|)) |#2| (-1088)) 64 T ELT)) (-2091 (((-3 |#2| #1="failed") |#2| (-1088) (-750 |#2|) (-750 |#2|)) 174 (-12 (|has| |#2| (-1051)) (|has| |#1| (-553 (-800 (-483)))) (|has| |#1| (-796 (-483)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1088)) 145 (-12 (|has| |#2| (-569)) (|has| |#1| (-553 (-800 (-483)))) (|has| |#1| (-796 (-483)))) ELT)) (-2090 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1088)) 156 (-12 (|has| |#2| (-569)) (|has| |#1| (-553 (-800 (-483)))) (|has| |#1| (-796 (-483)))) ELT)))
-(((-502 |#1| |#2|) (-10 -7 (-15 -2089 ((-2 (|:| -2334 |#2|) (|:| |nconst| |#2|)) |#2| (-1088))) (IF (|has| |#1| (-553 (-800 (-483)))) (IF (|has| |#1| (-796 (-483))) (PROGN (IF (|has| |#2| (-569)) (PROGN (-15 -2090 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1="failed") |#2| (-1088))) (-15 -2091 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1088)))) |%noBranch|) (IF (|has| |#2| (-1051)) (-15 -2091 ((-3 |#2| #1#) |#2| (-1088) (-750 |#2|) (-750 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-950 (-483)) (-389) (-580 (-483))) (-13 (-27) (-1113) (-361 |#1|))) (T -502))
-((-2091 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1088)) (-5 *4 (-750 *2)) (-4 *2 (-1051)) (-4 *2 (-13 (-27) (-1113) (-361 *5))) (-4 *5 (-553 (-800 (-483)))) (-4 *5 (-796 (-483))) (-4 *5 (-13 (-950 (-483)) (-389) (-580 (-483)))) (-5 *1 (-502 *5 *2)))) (-2091 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1088)) (-4 *5 (-553 (-800 (-483)))) (-4 *5 (-796 (-483))) (-4 *5 (-13 (-950 (-483)) (-389) (-580 (-483)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-502 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1113) (-361 *5))))) (-2090 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1088)) (-4 *5 (-553 (-800 (-483)))) (-4 *5 (-796 (-483))) (-4 *5 (-13 (-950 (-483)) (-389) (-580 (-483)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-502 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1113) (-361 *5))))) (-2089 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-950 (-483)) (-389) (-580 (-483)))) (-5 *2 (-2 (|:| -2334 *3) (|:| |nconst| *3))) (-5 *1 (-502 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5))))))
-((-2094 (((-3 (-2 (|:| |mainpart| (-347 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-347 |#2|)) (|:| |logand| (-347 |#2|)))))) #1="failed") (-347 |#2|) (-583 (-347 |#2|))) 41 T ELT)) (-3806 (((-518 (-347 |#2|)) (-347 |#2|)) 28 T ELT)) (-2092 (((-3 (-347 |#2|) #1#) (-347 |#2|)) 17 T ELT)) (-2093 (((-3 (-2 (|:| -2132 (-347 |#2|)) (|:| |coeff| (-347 |#2|))) #1#) (-347 |#2|) (-347 |#2|)) 48 T ELT)))
-(((-503 |#1| |#2|) (-10 -7 (-15 -3806 ((-518 (-347 |#2|)) (-347 |#2|))) (-15 -2092 ((-3 (-347 |#2|) #1="failed") (-347 |#2|))) (-15 -2093 ((-3 (-2 (|:| -2132 (-347 |#2|)) (|:| |coeff| (-347 |#2|))) #1#) (-347 |#2|) (-347 |#2|))) (-15 -2094 ((-3 (-2 (|:| |mainpart| (-347 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-347 |#2|)) (|:| |logand| (-347 |#2|)))))) #1#) (-347 |#2|) (-583 (-347 |#2|))))) (-13 (-311) (-120) (-950 (-483))) (-1153 |#1|)) (T -503))
-((-2094 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-583 (-347 *6))) (-5 *3 (-347 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-311) (-120) (-950 (-483)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-503 *5 *6)))) (-2093 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-311) (-120) (-950 (-483)))) (-4 *5 (-1153 *4)) (-5 *2 (-2 (|:| -2132 (-347 *5)) (|:| |coeff| (-347 *5)))) (-5 *1 (-503 *4 *5)) (-5 *3 (-347 *5)))) (-2092 (*1 *2 *2) (|partial| -12 (-5 *2 (-347 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-13 (-311) (-120) (-950 (-483)))) (-5 *1 (-503 *3 *4)))) (-3806 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-120) (-950 (-483)))) (-4 *5 (-1153 *4)) (-5 *2 (-518 (-347 *5))) (-5 *1 (-503 *4 *5)) (-5 *3 (-347 *5)))))
-((-2095 (((-3 (-483) "failed") |#1|) 14 T ELT)) (-3254 (((-85) |#1|) 13 T ELT)) (-3250 (((-483) |#1|) 9 T ELT)))
-(((-504 |#1|) (-10 -7 (-15 -3250 ((-483) |#1|)) (-15 -3254 ((-85) |#1|)) (-15 -2095 ((-3 (-483) "failed") |#1|))) (-950 (-483))) (T -504))
-((-2095 (*1 *2 *3) (|partial| -12 (-5 *2 (-483)) (-5 *1 (-504 *3)) (-4 *3 (-950 *2)))) (-3254 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-504 *3)) (-4 *3 (-950 (-483))))) (-3250 (*1 *2 *3) (-12 (-5 *2 (-483)) (-5 *1 (-504 *3)) (-4 *3 (-950 *2)))))
-((-2098 (((-3 (-2 (|:| |mainpart| (-347 (-857 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-347 (-857 |#1|))) (|:| |logand| (-347 (-857 |#1|))))))) #1="failed") (-347 (-857 |#1|)) (-1088) (-583 (-347 (-857 |#1|)))) 48 T ELT)) (-2096 (((-518 (-347 (-857 |#1|))) (-347 (-857 |#1|)) (-1088)) 28 T ELT)) (-2097 (((-3 (-347 (-857 |#1|)) #1#) (-347 (-857 |#1|)) (-1088)) 23 T ELT)) (-2099 (((-3 (-2 (|:| -2132 (-347 (-857 |#1|))) (|:| |coeff| (-347 (-857 |#1|)))) #1#) (-347 (-857 |#1|)) (-1088) (-347 (-857 |#1|))) 35 T ELT)))
-(((-505 |#1|) (-10 -7 (-15 -2096 ((-518 (-347 (-857 |#1|))) (-347 (-857 |#1|)) (-1088))) (-15 -2097 ((-3 (-347 (-857 |#1|)) #1="failed") (-347 (-857 |#1|)) (-1088))) (-15 -2098 ((-3 (-2 (|:| |mainpart| (-347 (-857 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-347 (-857 |#1|))) (|:| |logand| (-347 (-857 |#1|))))))) #1#) (-347 (-857 |#1|)) (-1088) (-583 (-347 (-857 |#1|))))) (-15 -2099 ((-3 (-2 (|:| -2132 (-347 (-857 |#1|))) (|:| |coeff| (-347 (-857 |#1|)))) #1#) (-347 (-857 |#1|)) (-1088) (-347 (-857 |#1|))))) (-13 (-494) (-950 (-483)) (-120))) (T -505))
-((-2099 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1088)) (-4 *5 (-13 (-494) (-950 (-483)) (-120))) (-5 *2 (-2 (|:| -2132 (-347 (-857 *5))) (|:| |coeff| (-347 (-857 *5))))) (-5 *1 (-505 *5)) (-5 *3 (-347 (-857 *5))))) (-2098 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-583 (-347 (-857 *6)))) (-5 *3 (-347 (-857 *6))) (-4 *6 (-13 (-494) (-950 (-483)) (-120))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-505 *6)))) (-2097 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-347 (-857 *4))) (-5 *3 (-1088)) (-4 *4 (-13 (-494) (-950 (-483)) (-120))) (-5 *1 (-505 *4)))) (-2096 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-494) (-950 (-483)) (-120))) (-5 *2 (-518 (-347 (-857 *5)))) (-5 *1 (-505 *5)) (-5 *3 (-347 (-857 *5))))))
-((-2564 (((-85) $ $) 77 T ELT)) (-3183 (((-85) $) 49 T ELT)) (-2600 ((|#1| $) 39 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) 81 T ELT)) (-3486 (($ $) 142 T ELT)) (-3633 (($ $) 120 T ELT)) (-2479 ((|#1| $) 37 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3033 (($ $) NIL T ELT)) (-3484 (($ $) 144 T ELT)) (-3632 (($ $) 116 T ELT)) (-3488 (($ $) 146 T ELT)) (-3631 (($ $) 124 T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) 95 T ELT)) (-3151 (((-483) $) 97 T ELT)) (-3461 (((-3 $ #1#) $) 80 T ELT)) (-2055 (($ |#1| |#1|) 35 T ELT)) (-3181 (((-85) $) 44 T ELT)) (-3621 (($) 106 T ELT)) (-2406 (((-85) $) 56 T ELT)) (-3007 (($ $ (-483)) NIL T ELT)) (-3182 (((-85) $) 46 T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3936 (($ $) 108 T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2056 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-347 (-483))) 94 T ELT)) (-2054 ((|#1| $) 36 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) 83 T ELT) (($ (-583 $)) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) 82 T ELT)) (-3937 (($ $) 110 T ELT)) (-3489 (($ $) 150 T ELT)) (-3630 (($ $) 122 T ELT)) (-3487 (($ $) 152 T ELT)) (-3629 (($ $) 126 T ELT)) (-3485 (($ $) 148 T ELT)) (-3628 (($ $) 118 T ELT)) (-2053 (((-85) $ |#1|) 42 T ELT)) (-3940 (((-772) $) 102 T ELT) (($ (-483)) 85 T ELT) (($ $) NIL T ELT) (($ (-483)) 85 T ELT)) (-3121 (((-694)) 104 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-3492 (($ $) 164 T ELT)) (-3480 (($ $) 132 T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3490 (($ $) 162 T ELT)) (-3478 (($ $) 128 T ELT)) (-3494 (($ $) 160 T ELT)) (-3482 (($ $) 140 T ELT)) (-3495 (($ $) 158 T ELT)) (-3483 (($ $) 138 T ELT)) (-3493 (($ $) 156 T ELT)) (-3481 (($ $) 134 T ELT)) (-3491 (($ $) 154 T ELT)) (-3479 (($ $) 130 T ELT)) (-2656 (($) 30 T CONST)) (-2662 (($) 10 T CONST)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 50 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 48 T ELT)) (-3831 (($ $) 54 T ELT) (($ $ $) 55 T ELT)) (-3833 (($ $ $) 53 T ELT)) (** (($ $ (-830)) 73 T ELT) (($ $ (-694)) NIL T ELT) (($ $ $) 112 T ELT) (($ $ (-347 (-483))) 166 T ELT)) (* (($ (-830) $) 67 T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 66 T ELT) (($ $ $) 62 T ELT)))
-(((-506 |#1|) (-492 |#1|) (-13 (-344) (-1113))) (T -506))
-NIL
-((-2700 (((-3 (-583 (-1083 (-483))) "failed") (-583 (-1083 (-483))) (-1083 (-483))) 27 T ELT)))
-(((-507) (-10 -7 (-15 -2700 ((-3 (-583 (-1083 (-483))) "failed") (-583 (-1083 (-483))) (-1083 (-483)))))) (T -507))
-((-2700 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1083 (-483)))) (-5 *3 (-1083 (-483))) (-5 *1 (-507)))))
-((-2100 (((-583 (-550 |#2|)) (-583 (-550 |#2|)) (-1088)) 19 T ELT)) (-2103 (((-583 (-550 |#2|)) (-583 |#2|) (-1088)) 23 T ELT)) (-3229 (((-583 (-550 |#2|)) (-583 (-550 |#2|)) (-583 (-550 |#2|))) 11 T ELT)) (-2104 ((|#2| |#2| (-1088)) 59 (|has| |#1| (-494)) ELT)) (-2105 ((|#2| |#2| (-1088)) 87 (-12 (|has| |#2| (-239)) (|has| |#1| (-389))) ELT)) (-2102 (((-550 |#2|) (-550 |#2|) (-583 (-550 |#2|)) (-1088)) 25 T ELT)) (-2101 (((-550 |#2|) (-583 (-550 |#2|))) 24 T ELT)) (-2106 (((-518 |#2|) |#2| (-1088) (-1 (-518 |#2|) |#2| (-1088)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1088))) 115 (-12 (|has| |#2| (-239)) (|has| |#2| (-569)) (|has| |#2| (-950 (-1088))) (|has| |#1| (-553 (-800 (-483)))) (|has| |#1| (-389)) (|has| |#1| (-796 (-483)))) ELT)))
-(((-508 |#1| |#2|) (-10 -7 (-15 -2100 ((-583 (-550 |#2|)) (-583 (-550 |#2|)) (-1088))) (-15 -2101 ((-550 |#2|) (-583 (-550 |#2|)))) (-15 -2102 ((-550 |#2|) (-550 |#2|) (-583 (-550 |#2|)) (-1088))) (-15 -3229 ((-583 (-550 |#2|)) (-583 (-550 |#2|)) (-583 (-550 |#2|)))) (-15 -2103 ((-583 (-550 |#2|)) (-583 |#2|) (-1088))) (IF (|has| |#1| (-494)) (-15 -2104 (|#2| |#2| (-1088))) |%noBranch|) (IF (|has| |#1| (-389)) (IF (|has| |#2| (-239)) (PROGN (-15 -2105 (|#2| |#2| (-1088))) (IF (|has| |#1| (-553 (-800 (-483)))) (IF (|has| |#1| (-796 (-483))) (IF (|has| |#2| (-569)) (IF (|has| |#2| (-950 (-1088))) (-15 -2106 ((-518 |#2|) |#2| (-1088) (-1 (-518 |#2|) |#2| (-1088)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1088)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1012) (-361 |#1|)) (T -508))
-((-2106 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-518 *3) *3 (-1088))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1088))) (-4 *3 (-239)) (-4 *3 (-569)) (-4 *3 (-950 *4)) (-4 *3 (-361 *7)) (-5 *4 (-1088)) (-4 *7 (-553 (-800 (-483)))) (-4 *7 (-389)) (-4 *7 (-796 (-483))) (-4 *7 (-1012)) (-5 *2 (-518 *3)) (-5 *1 (-508 *7 *3)))) (-2105 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-389)) (-4 *4 (-1012)) (-5 *1 (-508 *4 *2)) (-4 *2 (-239)) (-4 *2 (-361 *4)))) (-2104 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-4 *4 (-1012)) (-5 *1 (-508 *4 *2)) (-4 *2 (-361 *4)))) (-2103 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-1088)) (-4 *6 (-361 *5)) (-4 *5 (-1012)) (-5 *2 (-583 (-550 *6))) (-5 *1 (-508 *5 *6)))) (-3229 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-550 *4))) (-4 *4 (-361 *3)) (-4 *3 (-1012)) (-5 *1 (-508 *3 *4)))) (-2102 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-550 *6))) (-5 *4 (-1088)) (-5 *2 (-550 *6)) (-4 *6 (-361 *5)) (-4 *5 (-1012)) (-5 *1 (-508 *5 *6)))) (-2101 (*1 *2 *3) (-12 (-5 *3 (-583 (-550 *5))) (-4 *4 (-1012)) (-5 *2 (-550 *5)) (-5 *1 (-508 *4 *5)) (-4 *5 (-361 *4)))) (-2100 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-550 *5))) (-5 *3 (-1088)) (-4 *5 (-361 *4)) (-4 *4 (-1012)) (-5 *1 (-508 *4 *5)))))
-((-2109 (((-2 (|:| |answer| (-518 (-347 |#2|))) (|:| |a0| |#1|)) (-347 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) #1="failed") (-483) |#1| |#1|)) 199 T ELT)) (-2112 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-347 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-347 |#2|)) (|:| |logand| (-347 |#2|))))))) (|:| |a0| |#1|)) #1#) (-347 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2132 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-583 (-347 |#2|))) 174 T ELT)) (-2115 (((-3 (-2 (|:| |mainpart| (-347 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-347 |#2|)) (|:| |logand| (-347 |#2|)))))) #1#) (-347 |#2|) (-1 |#2| |#2|) (-583 (-347 |#2|))) 171 T ELT)) (-2116 (((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2132 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 162 T ELT)) (-2107 (((-2 (|:| |answer| (-518 (-347 |#2|))) (|:| |a0| |#1|)) (-347 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2132 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 185 T ELT)) (-2114 (((-3 (-2 (|:| -2132 (-347 |#2|)) (|:| |coeff| (-347 |#2|))) #1#) (-347 |#2|) (-1 |#2| |#2|) (-347 |#2|)) 202 T ELT)) (-2110 (((-3 (-2 (|:| |answer| (-347 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2132 (-347 |#2|)) (|:| |coeff| (-347 |#2|))) #1#) (-347 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2132 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-347 |#2|)) 205 T ELT)) (-2118 (((-2 (|:| |ir| (-518 (-347 |#2|))) (|:| |specpart| (-347 |#2|)) (|:| |polypart| |#2|)) (-347 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-2119 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-2113 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-347 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-347 |#2|)) (|:| |logand| (-347 |#2|))))))) (|:| |a0| |#1|)) #1#) (-347 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3132 |#1|) (|:| |sol?| (-85))) (-483) |#1|) (-583 (-347 |#2|))) 178 T ELT)) (-2117 (((-3 (-562 |#1| |#2|) #1#) (-562 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3132 |#1|) (|:| |sol?| (-85))) (-483) |#1|)) 166 T ELT)) (-2108 (((-2 (|:| |answer| (-518 (-347 |#2|))) (|:| |a0| |#1|)) (-347 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3132 |#1|) (|:| |sol?| (-85))) (-483) |#1|)) 189 T ELT)) (-2111 (((-3 (-2 (|:| |answer| (-347 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2132 (-347 |#2|)) (|:| |coeff| (-347 |#2|))) #1#) (-347 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3132 |#1|) (|:| |sol?| (-85))) (-483) |#1|) (-347 |#2|)) 210 T ELT)))
-(((-509 |#1| |#2|) (-10 -7 (-15 -2107 ((-2 (|:| |answer| (-518 (-347 |#2|))) (|:| |a0| |#1|)) (-347 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2132 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2108 ((-2 (|:| |answer| (-518 (-347 |#2|))) (|:| |a0| |#1|)) (-347 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3132 |#1|) (|:| |sol?| (-85))) (-483) |#1|))) (-15 -2109 ((-2 (|:| |answer| (-518 (-347 |#2|))) (|:| |a0| |#1|)) (-347 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) #1#) (-483) |#1| |#1|))) (-15 -2110 ((-3 (-2 (|:| |answer| (-347 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2132 (-347 |#2|)) (|:| |coeff| (-347 |#2|))) #1#) (-347 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2132 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-347 |#2|))) (-15 -2111 ((-3 (-2 (|:| |answer| (-347 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2132 (-347 |#2|)) (|:| |coeff| (-347 |#2|))) #1#) (-347 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3132 |#1|) (|:| |sol?| (-85))) (-483) |#1|) (-347 |#2|))) (-15 -2112 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-347 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-347 |#2|)) (|:| |logand| (-347 |#2|))))))) (|:| |a0| |#1|)) #1#) (-347 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2132 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-583 (-347 |#2|)))) (-15 -2113 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-347 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-347 |#2|)) (|:| |logand| (-347 |#2|))))))) (|:| |a0| |#1|)) #1#) (-347 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3132 |#1|) (|:| |sol?| (-85))) (-483) |#1|) (-583 (-347 |#2|)))) (-15 -2114 ((-3 (-2 (|:| -2132 (-347 |#2|)) (|:| |coeff| (-347 |#2|))) #1#) (-347 |#2|) (-1 |#2| |#2|) (-347 |#2|))) (-15 -2115 ((-3 (-2 (|:| |mainpart| (-347 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-347 |#2|)) (|:| |logand| (-347 |#2|)))))) #1#) (-347 |#2|) (-1 |#2| |#2|) (-583 (-347 |#2|)))) (-15 -2116 ((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2132 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2117 ((-3 (-562 |#1| |#2|) #1#) (-562 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3132 |#1|) (|:| |sol?| (-85))) (-483) |#1|))) (-15 -2118 ((-2 (|:| |ir| (-518 (-347 |#2|))) (|:| |specpart| (-347 |#2|)) (|:| |polypart| |#2|)) (-347 |#2|) (-1 |#2| |#2|))) (-15 -2119 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-311) (-1153 |#1|)) (T -509))
-((-2119 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-509 *5 *3)))) (-2118 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| |ir| (-518 (-347 *6))) (|:| |specpart| (-347 *6)) (|:| |polypart| *6))) (-5 *1 (-509 *5 *6)) (-5 *3 (-347 *6)))) (-2117 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-562 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3132 *4) (|:| |sol?| (-85))) (-483) *4)) (-4 *4 (-311)) (-4 *5 (-1153 *4)) (-5 *1 (-509 *4 *5)))) (-2116 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2132 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-311)) (-5 *1 (-509 *4 *2)) (-4 *2 (-1153 *4)))) (-2115 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-583 (-347 *7))) (-4 *7 (-1153 *6)) (-5 *3 (-347 *7)) (-4 *6 (-311)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-509 *6 *7)))) (-2114 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| -2132 (-347 *6)) (|:| |coeff| (-347 *6)))) (-5 *1 (-509 *5 *6)) (-5 *3 (-347 *6)))) (-2113 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3132 *7) (|:| |sol?| (-85))) (-483) *7)) (-5 *6 (-583 (-347 *8))) (-4 *7 (-311)) (-4 *8 (-1153 *7)) (-5 *3 (-347 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-509 *7 *8)))) (-2112 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2132 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-583 (-347 *8))) (-4 *7 (-311)) (-4 *8 (-1153 *7)) (-5 *3 (-347 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-509 *7 *8)))) (-2111 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3132 *6) (|:| |sol?| (-85))) (-483) *6)) (-4 *6 (-311)) (-4 *7 (-1153 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-347 *7)) (|:| |a0| *6)) (-2 (|:| -2132 (-347 *7)) (|:| |coeff| (-347 *7))) "failed")) (-5 *1 (-509 *6 *7)) (-5 *3 (-347 *7)))) (-2110 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2132 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-311)) (-4 *7 (-1153 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-347 *7)) (|:| |a0| *6)) (-2 (|:| -2132 (-347 *7)) (|:| |coeff| (-347 *7))) "failed")) (-5 *1 (-509 *6 *7)) (-5 *3 (-347 *7)))) (-2109 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-583 *6) "failed") (-483) *6 *6)) (-4 *6 (-311)) (-4 *7 (-1153 *6)) (-5 *2 (-2 (|:| |answer| (-518 (-347 *7))) (|:| |a0| *6))) (-5 *1 (-509 *6 *7)) (-5 *3 (-347 *7)))) (-2108 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3132 *6) (|:| |sol?| (-85))) (-483) *6)) (-4 *6 (-311)) (-4 *7 (-1153 *6)) (-5 *2 (-2 (|:| |answer| (-518 (-347 *7))) (|:| |a0| *6))) (-5 *1 (-509 *6 *7)) (-5 *3 (-347 *7)))) (-2107 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2132 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-311)) (-4 *7 (-1153 *6)) (-5 *2 (-2 (|:| |answer| (-518 (-347 *7))) (|:| |a0| *6))) (-5 *1 (-509 *6 *7)) (-5 *3 (-347 *7)))))
-((-2120 (((-3 |#2| "failed") |#2| (-1088) (-1088)) 10 T ELT)))
-(((-510 |#1| |#2|) (-10 -7 (-15 -2120 ((-3 |#2| "failed") |#2| (-1088) (-1088)))) (-13 (-257) (-120) (-950 (-483)) (-580 (-483))) (-13 (-1113) (-871) (-1051) (-29 |#1|))) (T -510))
-((-2120 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1088)) (-4 *4 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (-5 *1 (-510 *4 *2)) (-4 *2 (-13 (-1113) (-871) (-1051) (-29 *4))))))
-((-2551 (((-632 (-1136)) $ (-1136)) 27 T ELT)) (-2552 (((-632 (-487)) $ (-487)) 26 T ELT)) (-2550 (((-694) $ (-102)) 28 T ELT)) (-2553 (((-632 (-101)) $ (-101)) 25 T ELT)) (-1996 (((-632 (-1136)) $) 12 T ELT)) (-1992 (((-632 (-1134)) $) 8 T ELT)) (-1994 (((-632 (-1133)) $) 10 T ELT)) (-1997 (((-632 (-487)) $) 13 T ELT)) (-1993 (((-632 (-485)) $) 9 T ELT)) (-1995 (((-632 (-484)) $) 11 T ELT)) (-1991 (((-694) $ (-102)) 7 T ELT)) (-1998 (((-632 (-101)) $) 14 T ELT)) (-1697 (($ $) 6 T ELT)))
-(((-511) (-113)) (T -511))
-NIL
-(-13 (-464) (-770))
-(((-147) . T) ((-464) . T) ((-770) . T))
-((-2551 (((-632 (-1136)) $ (-1136)) NIL T ELT)) (-2552 (((-632 (-487)) $ (-487)) NIL T ELT)) (-2550 (((-694) $ (-102)) NIL T ELT)) (-2553 (((-632 (-101)) $ (-101)) NIL T ELT)) (-1996 (((-632 (-1136)) $) NIL T ELT)) (-1992 (((-632 (-1134)) $) NIL T ELT)) (-1994 (((-632 (-1133)) $) NIL T ELT)) (-1997 (((-632 (-487)) $) NIL T ELT)) (-1993 (((-632 (-485)) $) NIL T ELT)) (-1995 (((-632 (-484)) $) NIL T ELT)) (-1991 (((-694) $ (-102)) NIL T ELT)) (-1998 (((-632 (-101)) $) NIL T ELT)) (-2554 (((-85) $) NIL T ELT)) (-2121 (($ (-335)) 14 T ELT) (($ (-1071)) 16 T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1697 (($ $) NIL T ELT)))
-(((-512) (-13 (-511) (-552 (-772)) (-10 -8 (-15 -2121 ($ (-335))) (-15 -2121 ($ (-1071))) (-15 -2554 ((-85) $))))) (T -512))
-((-2121 (*1 *1 *2) (-12 (-5 *2 (-335)) (-5 *1 (-512)))) (-2121 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-512)))) (-2554 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-512)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3454 (($) 7 T CONST)) (-3237 (((-1071) $) NIL T ELT)) (-2124 (($) 6 T CONST)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 15 T ELT)) (-2122 (($) 9 T CONST)) (-2123 (($) 8 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 11 T ELT)))
-(((-513) (-13 (-1012) (-10 -8 (-15 -2124 ($) -3946) (-15 -3454 ($) -3946) (-15 -2123 ($) -3946) (-15 -2122 ($) -3946)))) (T -513))
-((-2124 (*1 *1) (-5 *1 (-513))) (-3454 (*1 *1) (-5 *1 (-513))) (-2123 (*1 *1) (-5 *1 (-513))) (-2122 (*1 *1) (-5 *1 (-513))))
-((-2564 (((-85) $ $) NIL T ELT)) (-2125 (((-632 $) (-428)) 23 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2127 (($ (-1071)) 16 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 33 T ELT)) (-2126 (((-166 4 (-101)) $) 24 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 26 T ELT)))
-(((-514) (-13 (-1012) (-10 -8 (-15 -2127 ($ (-1071))) (-15 -2126 ((-166 4 (-101)) $)) (-15 -2125 ((-632 $) (-428)))))) (T -514))
-((-2127 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-514)))) (-2126 (*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-514)))) (-2125 (*1 *2 *3) (-12 (-5 *3 (-428)) (-5 *2 (-632 (-514))) (-5 *1 (-514)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3033 (($ $ (-483)) 73 T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2607 (($ (-1083 (-483)) (-483)) 79 T ELT)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) 64 T ELT)) (-2608 (($ $) 43 T ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3766 (((-694) $) 16 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2610 (((-483)) 37 T ELT)) (-2609 (((-483) $) 41 T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3763 (($ $ (-483)) 24 T ELT)) (-3460 (((-3 $ #1#) $ $) 70 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) 17 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 71 T ELT)) (-2611 (((-1067 (-483)) $) 19 T ELT)) (-2887 (($ $) 26 T ELT)) (-3940 (((-772) $) 100 T ELT) (($ (-483)) 59 T ELT) (($ $) NIL T ELT)) (-3121 (((-694)) 15 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3764 (((-483) $ (-483)) 46 T ELT)) (-2656 (($) 44 T CONST)) (-2662 (($) 21 T CONST)) (-3052 (((-85) $ $) 51 T ELT)) (-3831 (($ $) 58 T ELT) (($ $ $) 48 T ELT)) (-3833 (($ $ $) 57 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 60 T ELT) (($ $ $) 61 T ELT)))
-(((-515 |#1| |#2|) (-779 |#1|) (-483) (-85)) (T -515))
-NIL
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 30 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-3926 (((-85) $) NIL T ELT)) (-3923 (((-694)) NIL T ELT)) (-3324 (($ $ (-830)) NIL (|has| $ (-317)) ELT) (($ $) NIL T ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) 59 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 $ #1#) $) 95 T ELT)) (-3151 (($ $) 94 T ELT)) (-1789 (($ (-1177 $)) 93 T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) 47 T ELT)) (-2990 (($) NIL T ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-2829 (($) 61 T ELT)) (-1677 (((-85) $) NIL T ELT)) (-1761 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-3766 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2009 (($) 49 (|has| $ (-317)) ELT)) (-2007 (((-85) $) NIL (|has| $ (-317)) ELT)) (-3127 (($ $ (-830)) NIL (|has| $ (-317)) ELT) (($ $) NIL T ELT)) (-3439 (((-632 $) $) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2010 (((-1083 $) $ (-830)) NIL (|has| $ (-317)) ELT) (((-1083 $) $) 104 T ELT)) (-2006 (((-830) $) 67 T ELT)) (-1624 (((-1083 $) $) NIL (|has| $ (-317)) ELT)) (-1623 (((-3 (-1083 $) #1#) $ $) NIL (|has| $ (-317)) ELT) (((-1083 $) $) NIL (|has| $ (-317)) ELT)) (-1625 (($ $ (-1083 $)) NIL (|has| $ (-317)) ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL T CONST)) (-2396 (($ (-830)) 60 T ELT)) (-3925 (((-85) $) 87 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2405 (($) 28 (|has| $ (-317)) ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) 54 T ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-3924 (((-830)) 86 T ELT) (((-743 (-830))) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-1762 (((-3 (-694) #1#) $ $) NIL T ELT) (((-694) $) NIL T ELT)) (-3905 (((-107)) NIL T ELT)) (-3752 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3942 (((-830) $) 85 T ELT) (((-743 (-830)) $) NIL T ELT)) (-3180 (((-1083 $)) 102 T ELT)) (-1671 (($) 66 T ELT)) (-1626 (($) 50 (|has| $ (-317)) ELT)) (-3219 (((-630 $) (-1177 $)) NIL T ELT) (((-1177 $) $) 91 T ELT)) (-3966 (((-483) $) 42 T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) 45 T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT)) (-2698 (((-632 $) $) NIL T ELT) (($ $) 105 T ELT)) (-3121 (((-694)) 51 T CONST)) (-1262 (((-85) $ $) 107 T ELT)) (-2008 (((-1177 $) (-830)) 97 T ELT) (((-1177 $)) 96 T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3927 (((-85) $) NIL T ELT)) (-2656 (($) 31 T CONST)) (-2662 (($) 27 T CONST)) (-3922 (($ $ (-694)) NIL (|has| $ (-317)) ELT) (($ $) NIL (|has| $ (-317)) ELT)) (-2665 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) 34 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT)))
-(((-516 |#1|) (-13 (-298) (-279 $) (-553 (-483))) (-830)) (T -516))
-NIL
-((-2128 (((-1183) (-1071)) 10 T ELT)))
-(((-517) (-10 -7 (-15 -2128 ((-1183) (-1071))))) (T -517))
-((-2128 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-517)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) 77 T ELT)) (-3151 ((|#1| $) NIL T ELT)) (-2132 ((|#1| $) 30 T ELT)) (-2130 (((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-2133 (($ |#1| (-583 (-2 (|:| |scalar| (-347 (-483))) (|:| |coeff| (-1083 |#1|)) (|:| |logand| (-1083 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-2131 (((-583 (-2 (|:| |scalar| (-347 (-483))) (|:| |coeff| (-1083 |#1|)) (|:| |logand| (-1083 |#1|)))) $) 31 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2828 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1088)) 49 (|has| |#1| (-950 (-1088))) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2129 (((-85) $) 35 T ELT)) (-3752 ((|#1| $ (-1 |#1| |#1|)) 89 T ELT) ((|#1| $ (-1088)) 90 (|has| |#1| (-809 (-1088))) ELT)) (-3940 (((-772) $) 113 T ELT) (($ |#1|) 29 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 18 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 86 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 16 T ELT) (($ (-347 (-483)) $) 41 T ELT) (($ $ (-347 (-483))) NIL T ELT)))
-(((-518 |#1|) (-13 (-654 (-347 (-483))) (-950 |#1|) (-10 -8 (-15 -2133 ($ |#1| (-583 (-2 (|:| |scalar| (-347 (-483))) (|:| |coeff| (-1083 |#1|)) (|:| |logand| (-1083 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2132 (|#1| $)) (-15 -2131 ((-583 (-2 (|:| |scalar| (-347 (-483))) (|:| |coeff| (-1083 |#1|)) (|:| |logand| (-1083 |#1|)))) $)) (-15 -2130 ((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2129 ((-85) $)) (-15 -2828 ($ |#1| |#1|)) (-15 -3752 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-809 (-1088))) (-15 -3752 (|#1| $ (-1088))) |%noBranch|) (IF (|has| |#1| (-950 (-1088))) (-15 -2828 ($ |#1| (-1088))) |%noBranch|))) (-311)) (T -518))
-((-2133 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |scalar| (-347 (-483))) (|:| |coeff| (-1083 *2)) (|:| |logand| (-1083 *2))))) (-5 *4 (-583 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-311)) (-5 *1 (-518 *2)))) (-2132 (*1 *2 *1) (-12 (-5 *1 (-518 *2)) (-4 *2 (-311)))) (-2131 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |scalar| (-347 (-483))) (|:| |coeff| (-1083 *3)) (|:| |logand| (-1083 *3))))) (-5 *1 (-518 *3)) (-4 *3 (-311)))) (-2130 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-518 *3)) (-4 *3 (-311)))) (-2129 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-518 *3)) (-4 *3 (-311)))) (-2828 (*1 *1 *2 *2) (-12 (-5 *1 (-518 *2)) (-4 *2 (-311)))) (-3752 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-518 *2)) (-4 *2 (-311)))) (-3752 (*1 *2 *1 *3) (-12 (-4 *2 (-311)) (-4 *2 (-809 *3)) (-5 *1 (-518 *2)) (-5 *3 (-1088)))) (-2828 (*1 *1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *1 (-518 *2)) (-4 *2 (-950 *3)) (-4 *2 (-311)))))
-((-3952 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)) 44 T ELT) (((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#)) 11 T ELT) (((-3 (-2 (|:| -2132 |#2|) (|:| |coeff| |#2|)) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| -2132 |#1|) (|:| |coeff| |#1|)) #1#)) 35 T ELT) (((-518 |#2|) (-1 |#2| |#1|) (-518 |#1|)) 30 T ELT)))
-(((-519 |#1| |#2|) (-10 -7 (-15 -3952 ((-518 |#2|) (-1 |#2| |#1|) (-518 |#1|))) (-15 -3952 ((-3 (-2 (|:| -2132 |#2|) (|:| |coeff| |#2|)) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2132 |#1|) (|:| |coeff| |#1|)) #1#))) (-15 -3952 ((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#))) (-15 -3952 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)))) (-311) (-311)) (T -519))
-((-3952 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-311)) (-4 *6 (-311)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-519 *5 *6)))) (-3952 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-311)) (-4 *2 (-311)) (-5 *1 (-519 *5 *2)))) (-3952 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2132 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-311)) (-4 *6 (-311)) (-5 *2 (-2 (|:| -2132 *6) (|:| |coeff| *6))) (-5 *1 (-519 *5 *6)))) (-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-518 *5)) (-4 *5 (-311)) (-4 *6 (-311)) (-5 *2 (-518 *6)) (-5 *1 (-519 *5 *6)))))
-((-3412 (((-518 |#2|) (-518 |#2|)) 42 T ELT)) (-3957 (((-583 |#2|) (-518 |#2|)) 44 T ELT)) (-2144 ((|#2| (-518 |#2|)) 50 T ELT)))
-(((-520 |#1| |#2|) (-10 -7 (-15 -3412 ((-518 |#2|) (-518 |#2|))) (-15 -3957 ((-583 |#2|) (-518 |#2|))) (-15 -2144 (|#2| (-518 |#2|)))) (-13 (-389) (-950 (-483)) (-580 (-483))) (-13 (-29 |#1|) (-1113))) (T -520))
-((-2144 (*1 *2 *3) (-12 (-5 *3 (-518 *2)) (-4 *2 (-13 (-29 *4) (-1113))) (-5 *1 (-520 *4 *2)) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))))) (-3957 (*1 *2 *3) (-12 (-5 *3 (-518 *5)) (-4 *5 (-13 (-29 *4) (-1113))) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-583 *5)) (-5 *1 (-520 *4 *5)))) (-3412 (*1 *2 *2) (-12 (-5 *2 (-518 *4)) (-4 *4 (-13 (-29 *3) (-1113))) (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-520 *3 *4)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2136 (($ (-444) (-531)) 14 T ELT)) (-2134 (($ (-444) (-531) $) 16 T ELT)) (-2135 (($ (-444) (-531)) 15 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-1093)) 7 T ELT) (((-1093) $) 6 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-521) (-13 (-1012) (-427 (-1093)) (-10 -8 (-15 -2136 ($ (-444) (-531))) (-15 -2135 ($ (-444) (-531))) (-15 -2134 ($ (-444) (-531) $))))) (T -521))
-((-2136 (*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-531)) (-5 *1 (-521)))) (-2135 (*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-531)) (-5 *1 (-521)))) (-2134 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-444)) (-5 *3 (-531)) (-5 *1 (-521)))))
-((-2140 (((-85) |#1|) 16 T ELT)) (-2141 (((-3 |#1| #1="failed") |#1|) 14 T ELT)) (-2138 (((-2 (|:| -2690 |#1|) (|:| -2397 (-694))) |#1|) 37 T ELT) (((-3 |#1| #1#) |#1| (-694)) 18 T ELT)) (-2137 (((-85) |#1| (-694)) 19 T ELT)) (-2142 ((|#1| |#1|) 41 T ELT)) (-2139 ((|#1| |#1| (-694)) 44 T ELT)))
-(((-522 |#1|) (-10 -7 (-15 -2137 ((-85) |#1| (-694))) (-15 -2138 ((-3 |#1| #1="failed") |#1| (-694))) (-15 -2138 ((-2 (|:| -2690 |#1|) (|:| -2397 (-694))) |#1|)) (-15 -2139 (|#1| |#1| (-694))) (-15 -2140 ((-85) |#1|)) (-15 -2141 ((-3 |#1| #1#) |#1|)) (-15 -2142 (|#1| |#1|))) (-482)) (T -522))
-((-2142 (*1 *2 *2) (-12 (-5 *1 (-522 *2)) (-4 *2 (-482)))) (-2141 (*1 *2 *2) (|partial| -12 (-5 *1 (-522 *2)) (-4 *2 (-482)))) (-2140 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-522 *3)) (-4 *3 (-482)))) (-2139 (*1 *2 *2 *3) (-12 (-5 *3 (-694)) (-5 *1 (-522 *2)) (-4 *2 (-482)))) (-2138 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2690 *3) (|:| -2397 (-694)))) (-5 *1 (-522 *3)) (-4 *3 (-482)))) (-2138 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-694)) (-5 *1 (-522 *2)) (-4 *2 (-482)))) (-2137 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-5 *2 (-85)) (-5 *1 (-522 *3)) (-4 *3 (-482)))))
-((-2143 (((-1083 |#1|) (-830)) 44 T ELT)))
-(((-523 |#1|) (-10 -7 (-15 -2143 ((-1083 |#1|) (-830)))) (-298)) (T -523))
-((-2143 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1083 *4)) (-5 *1 (-523 *4)) (-4 *4 (-298)))))
-((-3412 (((-518 (-347 (-857 |#1|))) (-518 (-347 (-857 |#1|)))) 27 T ELT)) (-3806 (((-3 (-264 |#1|) (-583 (-264 |#1|))) (-347 (-857 |#1|)) (-1088)) 33 (|has| |#1| (-120)) ELT)) (-3957 (((-583 (-264 |#1|)) (-518 (-347 (-857 |#1|)))) 19 T ELT)) (-2145 (((-264 |#1|) (-347 (-857 |#1|)) (-1088)) 31 (|has| |#1| (-120)) ELT)) (-2144 (((-264 |#1|) (-518 (-347 (-857 |#1|)))) 21 T ELT)))
-(((-524 |#1|) (-10 -7 (-15 -3412 ((-518 (-347 (-857 |#1|))) (-518 (-347 (-857 |#1|))))) (-15 -3957 ((-583 (-264 |#1|)) (-518 (-347 (-857 |#1|))))) (-15 -2144 ((-264 |#1|) (-518 (-347 (-857 |#1|))))) (IF (|has| |#1| (-120)) (PROGN (-15 -3806 ((-3 (-264 |#1|) (-583 (-264 |#1|))) (-347 (-857 |#1|)) (-1088))) (-15 -2145 ((-264 |#1|) (-347 (-857 |#1|)) (-1088)))) |%noBranch|)) (-13 (-389) (-950 (-483)) (-580 (-483)))) (T -524))
-((-2145 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-1088)) (-4 *5 (-120)) (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-264 *5)) (-5 *1 (-524 *5)))) (-3806 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-1088)) (-4 *5 (-120)) (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-3 (-264 *5) (-583 (-264 *5)))) (-5 *1 (-524 *5)))) (-2144 (*1 *2 *3) (-12 (-5 *3 (-518 (-347 (-857 *4)))) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-264 *4)) (-5 *1 (-524 *4)))) (-3957 (*1 *2 *3) (-12 (-5 *3 (-518 (-347 (-857 *4)))) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-583 (-264 *4))) (-5 *1 (-524 *4)))) (-3412 (*1 *2 *2) (-12 (-5 *2 (-518 (-347 (-857 *3)))) (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-524 *3)))))
-((-2147 (((-583 (-630 (-483))) (-583 (-830)) (-583 (-813 (-483)))) 80 T ELT) (((-583 (-630 (-483))) (-583 (-830))) 81 T ELT) (((-630 (-483)) (-583 (-830)) (-813 (-483))) 74 T ELT)) (-2146 (((-694) (-583 (-830))) 71 T ELT)))
-(((-525) (-10 -7 (-15 -2146 ((-694) (-583 (-830)))) (-15 -2147 ((-630 (-483)) (-583 (-830)) (-813 (-483)))) (-15 -2147 ((-583 (-630 (-483))) (-583 (-830)))) (-15 -2147 ((-583 (-630 (-483))) (-583 (-830)) (-583 (-813 (-483))))))) (T -525))
-((-2147 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-830))) (-5 *4 (-583 (-813 (-483)))) (-5 *2 (-583 (-630 (-483)))) (-5 *1 (-525)))) (-2147 (*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-583 (-630 (-483)))) (-5 *1 (-525)))) (-2147 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-830))) (-5 *4 (-813 (-483))) (-5 *2 (-630 (-483))) (-5 *1 (-525)))) (-2146 (*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-694)) (-5 *1 (-525)))))
-((-3208 (((-583 |#5|) |#5| (-85)) 97 T ELT)) (-2148 (((-85) |#5| (-583 |#5|)) 34 T ELT)))
-(((-526 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3208 ((-583 |#5|) |#5| (-85))) (-15 -2148 ((-85) |#5| (-583 |#5|)))) (-13 (-257) (-120)) (-717) (-756) (-976 |#1| |#2| |#3|) (-1019 |#1| |#2| |#3| |#4|)) (T -526))
-((-2148 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1019 *5 *6 *7 *8)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-526 *5 *6 *7 *8 *3)))) (-3208 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-583 *3)) (-5 *1 (-526 *5 *6 *7 *8 *3)) (-4 *3 (-1019 *5 *6 *7 *8)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3522 (((-1047) $) 12 T ELT)) (-3523 (((-1047) $) 10 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 18 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-527) (-13 (-994) (-10 -8 (-15 -3523 ((-1047) $)) (-15 -3522 ((-1047) $))))) (T -527))
-((-3523 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-527)))) (-3522 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-527)))))
-((-3526 (((-2 (|:| |num| |#4|) (|:| |den| (-483))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-483))) |#4| |#2| (-1000 |#4|)) 32 T ELT)))
-(((-528 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3526 ((-2 (|:| |num| |#4|) (|:| |den| (-483))) |#4| |#2| (-1000 |#4|))) (-15 -3526 ((-2 (|:| |num| |#4|) (|:| |den| (-483))) |#4| |#2|))) (-717) (-756) (-494) (-861 |#3| |#1| |#2|)) (T -528))
-((-3526 (*1 *2 *3 *4) (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-494)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-483)))) (-5 *1 (-528 *5 *4 *6 *3)) (-4 *3 (-861 *6 *5 *4)))) (-3526 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1000 *3)) (-4 *3 (-861 *7 *6 *4)) (-4 *6 (-717)) (-4 *4 (-756)) (-4 *7 (-494)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-483)))) (-5 *1 (-528 *6 *4 *7 *3)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 71 T ELT)) (-3077 (((-583 (-993)) $) NIL T ELT)) (-3825 (((-1088) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3765 (($ $ (-483)) 58 T ELT) (($ $ (-483) (-483)) 59 T ELT)) (-3768 (((-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))) $) 65 T ELT)) (-2179 (($ $) 109 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2177 (((-772) (-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))) (-939 (-750 (-483))) (-1088) |#1| (-347 (-483))) 232 T ELT)) (-3812 (($ (-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|)))) 36 T ELT)) (-3718 (($) NIL T CONST)) (-3953 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2888 (((-85) $) NIL T ELT)) (-3766 (((-483) $) 63 T ELT) (((-483) $ (-483)) 64 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3771 (($ $ (-830)) 83 T ELT)) (-3809 (($ (-1 |#1| (-483)) $) 80 T ELT)) (-3931 (((-85) $) 26 T ELT)) (-2889 (($ |#1| (-483)) 22 T ELT) (($ $ (-993) (-483)) NIL T ELT) (($ $ (-583 (-993)) (-583 (-483))) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2183 (($ (-939 (-750 (-483))) (-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|)))) 13 T ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3806 (($ $) 120 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2180 (((-3 $ #1#) $ $ (-85)) 108 T ELT)) (-2178 (($ $ $) 116 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2181 (((-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))) $) 15 T ELT)) (-2182 (((-939 (-750 (-483))) $) 14 T ELT)) (-3763 (($ $ (-483)) 47 T ELT)) (-3460 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-3762 (((-1067 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-483)))) ELT)) (-3794 ((|#1| $ (-483)) 62 T ELT) (($ $ $) NIL (|has| (-483) (-1024)) ELT)) (-3752 (($ $ (-1088)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $) 77 (|has| |#1| (-15 * (|#1| (-483) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-483) |#1|))) ELT)) (-3942 (((-483) $) NIL T ELT)) (-2887 (($ $) 48 T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) 29 T ELT) (($ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT) (($ |#1|) 28 (|has| |#1| (-146)) ELT)) (-3671 ((|#1| $ (-483)) 61 T ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 39 T CONST)) (-3767 ((|#1| $) NIL T ELT)) (-2158 (($ $) 192 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2170 (($ $) 167 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2160 (($ $) 189 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2172 (($ $) 164 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2156 (($ $) 194 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2168 (($ $) 170 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2175 (($ $ (-347 (-483))) 157 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2176 (($ $ |#1|) 128 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2173 (($ $) 161 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2174 (($ $) 159 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2155 (($ $) 195 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2167 (($ $) 171 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2157 (($ $) 193 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2169 (($ $) 169 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2159 (($ $) 190 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2171 (($ $) 165 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2152 (($ $) 200 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2164 (($ $) 180 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2154 (($ $) 197 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2166 (($ $) 176 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2150 (($ $) 204 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2162 (($ $) 184 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2149 (($ $) 206 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2161 (($ $) 186 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2151 (($ $) 202 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2163 (($ $) 182 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2153 (($ $) 199 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2165 (($ $) 178 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3764 ((|#1| $ (-483)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-483)))) (|has| |#1| (-15 -3940 (|#1| (-1088))))) ELT)) (-2656 (($) 30 T CONST)) (-2662 (($) 40 T CONST)) (-2665 (($ $ (-1088)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-483) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-483) |#1|))) ELT)) (-3052 (((-85) $ $) 73 T ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-3833 (($ $ $) 88 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 111 T ELT)) (* (($ (-830) $) 98 T ELT) (($ (-694) $) 96 T ELT) (($ (-483) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)))
-(((-529 |#1|) (-13 (-1156 |#1| (-483)) (-10 -8 (-15 -2183 ($ (-939 (-750 (-483))) (-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))))) (-15 -2182 ((-939 (-750 (-483))) $)) (-15 -2181 ((-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))) $)) (-15 -3812 ($ (-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))))) (-15 -3931 ((-85) $)) (-15 -3809 ($ (-1 |#1| (-483)) $)) (-15 -2180 ((-3 $ "failed") $ $ (-85))) (-15 -2179 ($ $)) (-15 -2178 ($ $ $)) (-15 -2177 ((-772) (-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))) (-939 (-750 (-483))) (-1088) |#1| (-347 (-483)))) (IF (|has| |#1| (-38 (-347 (-483)))) (PROGN (-15 -3806 ($ $)) (-15 -2176 ($ $ |#1|)) (-15 -2175 ($ $ (-347 (-483)))) (-15 -2174 ($ $)) (-15 -2173 ($ $)) (-15 -2172 ($ $)) (-15 -2171 ($ $)) (-15 -2170 ($ $)) (-15 -2169 ($ $)) (-15 -2168 ($ $)) (-15 -2167 ($ $)) (-15 -2166 ($ $)) (-15 -2165 ($ $)) (-15 -2164 ($ $)) (-15 -2163 ($ $)) (-15 -2162 ($ $)) (-15 -2161 ($ $)) (-15 -2160 ($ $)) (-15 -2159 ($ $)) (-15 -2158 ($ $)) (-15 -2157 ($ $)) (-15 -2156 ($ $)) (-15 -2155 ($ $)) (-15 -2154 ($ $)) (-15 -2153 ($ $)) (-15 -2152 ($ $)) (-15 -2151 ($ $)) (-15 -2150 ($ $)) (-15 -2149 ($ $))) |%noBranch|))) (-961)) (T -529))
-((-3931 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-529 *3)) (-4 *3 (-961)))) (-2183 (*1 *1 *2 *3) (-12 (-5 *2 (-939 (-750 (-483)))) (-5 *3 (-1067 (-2 (|:| |k| (-483)) (|:| |c| *4)))) (-4 *4 (-961)) (-5 *1 (-529 *4)))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-939 (-750 (-483)))) (-5 *1 (-529 *3)) (-4 *3 (-961)))) (-2181 (*1 *2 *1) (-12 (-5 *2 (-1067 (-2 (|:| |k| (-483)) (|:| |c| *3)))) (-5 *1 (-529 *3)) (-4 *3 (-961)))) (-3812 (*1 *1 *2) (-12 (-5 *2 (-1067 (-2 (|:| |k| (-483)) (|:| |c| *3)))) (-4 *3 (-961)) (-5 *1 (-529 *3)))) (-3809 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-483))) (-4 *3 (-961)) (-5 *1 (-529 *3)))) (-2180 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-529 *3)) (-4 *3 (-961)))) (-2179 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-961)))) (-2178 (*1 *1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-961)))) (-2177 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1067 (-2 (|:| |k| (-483)) (|:| |c| *6)))) (-5 *4 (-939 (-750 (-483)))) (-5 *5 (-1088)) (-5 *7 (-347 (-483))) (-4 *6 (-961)) (-5 *2 (-772)) (-5 *1 (-529 *6)))) (-3806 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2176 (*1 *1 *1 *2) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2175 (*1 *1 *1 *2) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-529 *3)) (-4 *3 (-38 *2)) (-4 *3 (-961)))) (-2174 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2173 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2172 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2171 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2170 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2169 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2168 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2167 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2166 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2165 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2164 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2163 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2162 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2161 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2160 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2159 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2158 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2157 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2156 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2155 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2154 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2153 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2152 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2151 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2150 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))) (-2149 (*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 62 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3812 (($ (-1067 |#1|)) 9 T ELT)) (-3718 (($) NIL T CONST)) (-3461 (((-3 $ #1#) $) 44 T ELT)) (-2888 (((-85) $) 56 T ELT)) (-3766 (((-694) $) 61 T ELT) (((-694) $ (-694)) 60 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) 46 (|has| |#1| (-494)) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3811 (((-1067 |#1|) $) 25 T ELT)) (-3121 (((-694)) 55 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2656 (($) 10 T CONST)) (-2662 (($) 14 T CONST)) (-3052 (((-85) $ $) 24 T ELT)) (-3831 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-3833 (($ $ $) 27 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 53 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-483)) 38 T ELT)))
-(((-530 |#1|) (-13 (-961) (-82 |#1| |#1|) (-10 -8 (-15 -3811 ((-1067 |#1|) $)) (-15 -3812 ($ (-1067 |#1|))) (-15 -2888 ((-85) $)) (-15 -3766 ((-694) $)) (-15 -3766 ((-694) $ (-694))) (-15 * ($ $ (-483))) (IF (|has| |#1| (-494)) (-6 (-494)) |%noBranch|))) (-961)) (T -530))
-((-3811 (*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-530 *3)) (-4 *3 (-961)))) (-3812 (*1 *1 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-530 *3)))) (-2888 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-530 *3)) (-4 *3 (-961)))) (-3766 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-530 *3)) (-4 *3 (-961)))) (-3766 (*1 *2 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-530 *3)) (-4 *3 (-961)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-530 *3)) (-4 *3 (-961)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-2186 (($) 8 T CONST)) (-2187 (($) 7 T CONST)) (-2184 (($ $ (-583 $)) 16 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2188 (($) 6 T CONST)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-1093)) 15 T ELT) (((-1093) $) 10 T ELT)) (-2185 (($) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-531) (-13 (-1012) (-427 (-1093)) (-10 -8 (-15 -2188 ($) -3946) (-15 -2187 ($) -3946) (-15 -2186 ($) -3946) (-15 -2185 ($) -3946) (-15 -2184 ($ $ (-583 $)))))) (T -531))
-((-2188 (*1 *1) (-5 *1 (-531))) (-2187 (*1 *1) (-5 *1 (-531))) (-2186 (*1 *1) (-5 *1 (-531))) (-2185 (*1 *1) (-5 *1 (-531))) (-2184 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-531))) (-5 *1 (-531)))))
-((-3952 (((-535 |#2|) (-1 |#2| |#1|) (-535 |#1|)) 15 T ELT)))
-(((-532 |#1| |#2|) (-13 (-1127) (-10 -7 (-15 -3952 ((-535 |#2|) (-1 |#2| |#1|) (-535 |#1|))))) (-1127) (-1127)) (T -532))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-535 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-535 *6)) (-5 *1 (-532 *5 *6)))))
-((-3952 (((-1067 |#3|) (-1 |#3| |#1| |#2|) (-535 |#1|) (-1067 |#2|)) 20 T ELT) (((-1067 |#3|) (-1 |#3| |#1| |#2|) (-1067 |#1|) (-535 |#2|)) 19 T ELT) (((-535 |#3|) (-1 |#3| |#1| |#2|) (-535 |#1|) (-535 |#2|)) 18 T ELT)))
-(((-533 |#1| |#2| |#3|) (-10 -7 (-15 -3952 ((-535 |#3|) (-1 |#3| |#1| |#2|) (-535 |#1|) (-535 |#2|))) (-15 -3952 ((-1067 |#3|) (-1 |#3| |#1| |#2|) (-1067 |#1|) (-535 |#2|))) (-15 -3952 ((-1067 |#3|) (-1 |#3| |#1| |#2|) (-535 |#1|) (-1067 |#2|)))) (-1127) (-1127) (-1127)) (T -533))
-((-3952 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-535 *6)) (-5 *5 (-1067 *7)) (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-1067 *8)) (-5 *1 (-533 *6 *7 *8)))) (-3952 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1067 *6)) (-5 *5 (-535 *7)) (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-1067 *8)) (-5 *1 (-533 *6 *7 *8)))) (-3952 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-535 *6)) (-5 *5 (-535 *7)) (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-535 *8)) (-5 *1 (-533 *6 *7 *8)))))
-((-2193 ((|#3| |#3| (-583 (-550 |#3|)) (-583 (-1088))) 57 T ELT)) (-2192 (((-142 |#2|) |#3|) 122 T ELT)) (-2189 ((|#3| (-142 |#2|)) 46 T ELT)) (-2190 ((|#2| |#3|) 21 T ELT)) (-2191 ((|#3| |#2|) 35 T ELT)))
-(((-534 |#1| |#2| |#3|) (-10 -7 (-15 -2189 (|#3| (-142 |#2|))) (-15 -2190 (|#2| |#3|)) (-15 -2191 (|#3| |#2|)) (-15 -2192 ((-142 |#2|) |#3|)) (-15 -2193 (|#3| |#3| (-583 (-550 |#3|)) (-583 (-1088))))) (-494) (-13 (-361 |#1|) (-915) (-1113)) (-13 (-361 (-142 |#1|)) (-915) (-1113))) (T -534))
-((-2193 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-550 *2))) (-5 *4 (-583 (-1088))) (-4 *2 (-13 (-361 (-142 *5)) (-915) (-1113))) (-4 *5 (-494)) (-5 *1 (-534 *5 *6 *2)) (-4 *6 (-13 (-361 *5) (-915) (-1113))))) (-2192 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-142 *5)) (-5 *1 (-534 *4 *5 *3)) (-4 *5 (-13 (-361 *4) (-915) (-1113))) (-4 *3 (-13 (-361 (-142 *4)) (-915) (-1113))))) (-2191 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *2 (-13 (-361 (-142 *4)) (-915) (-1113))) (-5 *1 (-534 *4 *3 *2)) (-4 *3 (-13 (-361 *4) (-915) (-1113))))) (-2190 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *2 (-13 (-361 *4) (-915) (-1113))) (-5 *1 (-534 *4 *2 *3)) (-4 *3 (-13 (-361 (-142 *4)) (-915) (-1113))))) (-2189 (*1 *2 *3) (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-361 *4) (-915) (-1113))) (-4 *4 (-494)) (-4 *2 (-13 (-361 (-142 *4)) (-915) (-1113))) (-5 *1 (-534 *4 *5 *2)))))
-((-3704 (($ (-1 (-85) |#1|) $) 19 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3451 (($ (-1 |#1| |#1|) |#1|) 11 T ELT)) (-3450 (($ (-1 (-85) |#1|) $) 15 T ELT)) (-3449 (($ (-1 (-85) |#1|) $) 17 T ELT)) (-3524 (((-1067 |#1|) $) 20 T ELT)) (-3940 (((-772) $) 25 T ELT)))
-(((-535 |#1|) (-13 (-552 (-772)) (-10 -8 (-15 -3952 ($ (-1 |#1| |#1|) $)) (-15 -3450 ($ (-1 (-85) |#1|) $)) (-15 -3449 ($ (-1 (-85) |#1|) $)) (-15 -3704 ($ (-1 (-85) |#1|) $)) (-15 -3451 ($ (-1 |#1| |#1|) |#1|)) (-15 -3524 ((-1067 |#1|) $)))) (-1127)) (T -535))
-((-3952 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-535 *3)))) (-3450 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1127)) (-5 *1 (-535 *3)))) (-3449 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1127)) (-5 *1 (-535 *3)))) (-3704 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1127)) (-5 *1 (-535 *3)))) (-3451 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-535 *3)))) (-3524 (*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-535 *3)) (-4 *3 (-1127)))))
-((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3832 (($ (-694)) NIL (|has| |#1| (-23)) ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1727 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3990)) (|has| |#1| (-756))) ELT)) (-2905 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-3782 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3718 (($) NIL T CONST)) (-2293 (($ $) NIL (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) NIL T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3400 (($ |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) NIL T ELT)) (-3413 (((-483) (-1 (-85) |#1|) $) NIL T ELT) (((-483) |#1| $) NIL (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) NIL (|has| |#1| (-1012)) ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3829 (((-630 |#1|) $ $) NIL (|has| |#1| (-961)) ELT)) (-3608 (($ (-694) |#1|) NIL T ELT)) (-2196 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3512 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2197 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3826 ((|#1| $) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-961))) ELT)) (-3827 ((|#1| $) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-961))) ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-2300 (($ |#1| $ (-483)) NIL T ELT) (($ $ $ (-483)) NIL T ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3795 ((|#1| $) NIL (|has| (-483) (-756)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2195 (($ $ |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#1| $ (-483) |#1|) NIL T ELT) ((|#1| $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-3830 ((|#1| $ $) NIL (|has| |#1| (-961)) ELT)) (-2301 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-3828 (($ $ $) NIL (|has| |#1| (-961)) ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1728 (($ $ $ (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) NIL T ELT)) (-3796 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3831 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3833 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-483) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-663)) ELT) (($ $ |#1|) NIL (|has| |#1| (-663)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-536 |#1| |#2|) (-1176 |#1|) (-1127) (-483)) (T -536))
-NIL
-((-2194 (((-1183) $ |#2| |#2|) 35 T ELT)) (-2196 ((|#2| $) 23 T ELT)) (-2197 ((|#2| $) 21 T ELT)) (-1946 (($ (-1 |#3| |#3|) $) 32 T ELT)) (-3952 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-3795 ((|#3| $) 26 T ELT)) (-2195 (($ $ |#3|) 33 T ELT)) (-2198 (((-85) |#3| $) 17 T ELT)) (-2201 (((-583 |#3|) $) 15 T ELT)) (-3794 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT)))
-(((-537 |#1| |#2| |#3|) (-10 -7 (-15 -2194 ((-1183) |#1| |#2| |#2|)) (-15 -2195 (|#1| |#1| |#3|)) (-15 -3795 (|#3| |#1|)) (-15 -2196 (|#2| |#1|)) (-15 -2197 (|#2| |#1|)) (-15 -2198 ((-85) |#3| |#1|)) (-15 -2201 ((-583 |#3|) |#1|)) (-15 -3794 (|#3| |#1| |#2|)) (-15 -3794 (|#3| |#1| |#2| |#3|)) (-15 -1946 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3952 (|#1| (-1 |#3| |#3|) |#1|))) (-538 |#2| |#3|) (-1012) (-1127)) (T -537))
-NIL
-((-2564 (((-85) $ $) 19 (|has| |#2| (-72)) ELT)) (-2194 (((-1183) $ |#1| |#1|) 44 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#2| $ |#1| |#2|) 56 (|has| $ (-6 -3990)) ELT)) (-3718 (($) 7 T CONST)) (-1573 ((|#2| $ |#1| |#2|) 57 (|has| $ (-6 -3990)) ELT)) (-3108 ((|#2| $ |#1|) 55 T ELT)) (-2885 (((-583 |#2|) $) 30 (|has| $ (-6 -3989)) ELT)) (-2196 ((|#1| $) 47 (|has| |#1| (-756)) ELT)) (-2604 (((-583 |#2|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#2| $) 27 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -3989))) ELT)) (-2197 ((|#1| $) 48 (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-3237 (((-1071) $) 22 (|has| |#2| (-1012)) ELT)) (-2199 (((-583 |#1|) $) 50 T ELT)) (-2200 (((-85) |#1| $) 51 T ELT)) (-3238 (((-1032) $) 21 (|has| |#2| (-1012)) ELT)) (-3795 ((|#2| $) 46 (|has| |#1| (-756)) ELT)) (-2195 (($ $ |#2|) 45 (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#2|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#2|))) 26 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-248 |#2|)) 25 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 23 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-2198 (((-85) |#2| $) 49 (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2201 (((-583 |#2|) $) 52 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#2| $ |#1| |#2|) 54 T ELT) ((|#2| $ |#1|) 53 T ELT)) (-1943 (((-694) (-1 (-85) |#2|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#2| $) 28 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3940 (((-772) $) 17 (|has| |#2| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#2| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#2| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-538 |#1| |#2|) (-113) (-1012) (-1127)) (T -538))
-((-2201 (*1 *2 *1) (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1127)) (-5 *2 (-583 *4)))) (-2200 (*1 *2 *3 *1) (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1127)) (-5 *2 (-85)))) (-2199 (*1 *2 *1) (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1127)) (-5 *2 (-583 *3)))) (-2198 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3989)) (-4 *1 (-538 *4 *3)) (-4 *4 (-1012)) (-4 *3 (-1127)) (-4 *3 (-1012)) (-5 *2 (-85)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-538 *2 *3)) (-4 *3 (-1127)) (-4 *2 (-1012)) (-4 *2 (-756)))) (-2196 (*1 *2 *1) (-12 (-4 *1 (-538 *2 *3)) (-4 *3 (-1127)) (-4 *2 (-1012)) (-4 *2 (-756)))) (-3795 (*1 *2 *1) (-12 (-4 *1 (-538 *3 *2)) (-4 *3 (-1012)) (-4 *3 (-756)) (-4 *2 (-1127)))) (-2195 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-538 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1127)))) (-2194 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-538 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1127)) (-5 *2 (-1183)))))
-(-13 (-426 |t#2|) (-243 |t#1| |t#2|) (-10 -8 (-15 -2201 ((-583 |t#2|) $)) (-15 -2200 ((-85) |t#1| $)) (-15 -2199 ((-583 |t#1|) $)) (IF (|has| |t#2| (-1012)) (IF (|has| $ (-6 -3989)) (-15 -2198 ((-85) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-756)) (PROGN (-15 -2197 (|t#1| $)) (-15 -2196 (|t#1| $)) (-15 -3795 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -3990)) (PROGN (-15 -2195 ($ $ |t#2|)) (-15 -2194 ((-1183) $ |t#1| |t#1|))) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#2| (-1012)) (|has| |#2| (-72))) ((-552 (-772)) OR (|has| |#2| (-1012)) (|has| |#2| (-552 (-772)))) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-259 |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ((-426 |#2|) . T) ((-452 |#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ((-13) . T) ((-1012) |has| |#2| (-1012)) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT) (((-1128) $) 15 T ELT) (($ (-583 (-1128))) 14 T ELT)) (-2202 (((-583 (-1128)) $) 12 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-539) (-13 (-994) (-552 (-1128)) (-10 -8 (-15 -3940 ($ (-583 (-1128)))) (-15 -2202 ((-583 (-1128)) $))))) (T -539))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-583 (-1128))) (-5 *1 (-539)))) (-2202 (*1 *2 *1) (-12 (-5 *2 (-583 (-1128))) (-5 *1 (-539)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1769 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1309 (((-3 $ #1#) $ $) NIL T ELT)) (-3218 (((-1177 (-630 |#1|))) NIL (|has| |#2| (-358 |#1|)) ELT) (((-1177 (-630 |#1|)) (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1726 (((-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3718 (($) NIL T CONST)) (-1903 (((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) #1#)) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1700 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1785 (((-630 |#1|)) NIL (|has| |#2| (-358 |#1|)) ELT) (((-630 |#1|) (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1724 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1783 (((-630 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT) (((-630 |#1|) $ (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2400 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1897 (((-1083 (-857 |#1|))) NIL (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-311))) ELT)) (-2403 (($ $ (-830)) NIL T ELT)) (-1722 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1702 (((-1083 |#1|) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1787 ((|#1|) NIL (|has| |#2| (-358 |#1|)) ELT) ((|#1| (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1720 (((-1083 |#1|) $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1714 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1789 (($ (-1177 |#1|)) NIL (|has| |#2| (-358 |#1|)) ELT) (($ (-1177 |#1|) (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3461 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-3104 (((-830)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1711 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2429 (($ $ (-830)) NIL T ELT)) (-1707 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1705 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1709 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) #1#)) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1701 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1786 (((-630 |#1|)) NIL (|has| |#2| (-358 |#1|)) ELT) (((-630 |#1|) (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1725 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1784 (((-630 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT) (((-630 |#1|) $ (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2401 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1901 (((-1083 (-857 |#1|))) NIL (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-311))) ELT)) (-2402 (($ $ (-830)) NIL T ELT)) (-1723 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1703 (((-1083 |#1|) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1788 ((|#1|) NIL (|has| |#2| (-358 |#1|)) ELT) ((|#1| (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1721 (((-1083 |#1|) $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1715 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1706 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1708 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1710 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1713 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3794 ((|#1| $ (-483)) NIL (|has| |#2| (-358 |#1|)) ELT)) (-3219 (((-630 |#1|) (-1177 $)) NIL (|has| |#2| (-358 |#1|)) ELT) (((-1177 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT) (((-630 |#1|) (-1177 $) (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT) (((-1177 |#1|) $ (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3966 (($ (-1177 |#1|)) NIL (|has| |#2| (-358 |#1|)) ELT) (((-1177 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT)) (-1889 (((-583 (-857 |#1|))) NIL (|has| |#2| (-358 |#1|)) ELT) (((-583 (-857 |#1|)) (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2431 (($ $ $) NIL T ELT)) (-1719 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3940 (((-772) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) NIL (|has| |#2| (-358 |#1|)) ELT)) (-1704 (((-583 (-1177 |#1|))) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-2432 (($ $ $ $) NIL T ELT)) (-1717 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2541 (($ (-630 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT)) (-2430 (($ $ $) NIL T ELT)) (-1718 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1716 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1712 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2656 (($) NIL T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) 24 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-540 |#1| |#2|) (-13 (-683 |#1|) (-552 |#2|) (-10 -8 (-15 -3940 ($ |#2|)) (IF (|has| |#2| (-358 |#1|)) (-6 (-358 |#1|)) |%noBranch|) (IF (|has| |#2| (-315 |#1|)) (-6 (-315 |#1|)) |%noBranch|))) (-146) (-683 |#1|)) (T -540))
-((-3940 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-540 *3 *2)) (-4 *2 (-683 *3)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-101)) 6 T ELT) (((-101) $) 7 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-541) (-13 (-1012) (-427 (-101)))) (T -541))
-NIL
-((-2564 (((-85) $ $) NIL T ELT)) (-2309 (($ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2204 (($) 10 T CONST)) (-2226 (($) 8 T CONST)) (-2203 (($) 11 T CONST)) (-2222 (($) 9 T CONST)) (-2219 (($) 12 T CONST)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2307 (($ $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2308 (($ $ $) NIL T ELT)))
-(((-542) (-13 (-1012) (-604) (-10 -8 (-15 -2226 ($) -3946) (-15 -2222 ($) -3946) (-15 -2204 ($) -3946) (-15 -2203 ($) -3946) (-15 -2219 ($) -3946)))) (T -542))
-((-2226 (*1 *1) (-5 *1 (-542))) (-2222 (*1 *1) (-5 *1 (-542))) (-2204 (*1 *1) (-5 *1 (-542))) (-2203 (*1 *1) (-5 *1 (-542))) (-2219 (*1 *1) (-5 *1 (-542))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2215 (($) 11 T CONST)) (-2209 (($) 17 T CONST)) (-2205 (($) 21 T CONST)) (-2207 (($) 19 T CONST)) (-2212 (($) 14 T CONST)) (-2206 (($) 20 T CONST)) (-2214 (($) 12 T CONST)) (-2213 (($) 13 T CONST)) (-2208 (($) 18 T CONST)) (-2211 (($) 15 T CONST)) (-2210 (($) 16 T CONST)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (((-101) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-543) (-13 (-1012) (-552 (-101)) (-10 -8 (-15 -2215 ($) -3946) (-15 -2214 ($) -3946) (-15 -2213 ($) -3946) (-15 -2212 ($) -3946) (-15 -2211 ($) -3946) (-15 -2210 ($) -3946) (-15 -2209 ($) -3946) (-15 -2208 ($) -3946) (-15 -2207 ($) -3946) (-15 -2206 ($) -3946) (-15 -2205 ($) -3946)))) (T -543))
-((-2215 (*1 *1) (-5 *1 (-543))) (-2214 (*1 *1) (-5 *1 (-543))) (-2213 (*1 *1) (-5 *1 (-543))) (-2212 (*1 *1) (-5 *1 (-543))) (-2211 (*1 *1) (-5 *1 (-543))) (-2210 (*1 *1) (-5 *1 (-543))) (-2209 (*1 *1) (-5 *1 (-543))) (-2208 (*1 *1) (-5 *1 (-543))) (-2207 (*1 *1) (-5 *1 (-543))) (-2206 (*1 *1) (-5 *1 (-543))) (-2205 (*1 *1) (-5 *1 (-543))))
-((-2564 (((-85) $ $) NIL T ELT)) (-2309 (($ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2217 (($) 13 T CONST)) (-2216 (($) 14 T CONST)) (-2223 (($) 11 T CONST)) (-2226 (($) 8 T CONST)) (-2224 (($) 10 T CONST)) (-2225 (($) 9 T CONST)) (-2222 (($) 12 T CONST)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2307 (($ $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2308 (($ $ $) NIL T ELT)))
-(((-544) (-13 (-1012) (-604) (-10 -8 (-15 -2226 ($) -3946) (-15 -2225 ($) -3946) (-15 -2224 ($) -3946) (-15 -2223 ($) -3946) (-15 -2222 ($) -3946) (-15 -2217 ($) -3946) (-15 -2216 ($) -3946)))) (T -544))
-((-2226 (*1 *1) (-5 *1 (-544))) (-2225 (*1 *1) (-5 *1 (-544))) (-2224 (*1 *1) (-5 *1 (-544))) (-2223 (*1 *1) (-5 *1 (-544))) (-2222 (*1 *1) (-5 *1 (-544))) (-2217 (*1 *1) (-5 *1 (-544))) (-2216 (*1 *1) (-5 *1 (-544))))
-((-2564 (((-85) $ $) NIL T ELT)) (-2309 (($ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2221 (($) 13 T CONST)) (-2218 (($) 16 T CONST)) (-2223 (($) 11 T CONST)) (-2226 (($) 8 T CONST)) (-2224 (($) 10 T CONST)) (-2225 (($) 9 T CONST)) (-2220 (($) 14 T CONST)) (-2222 (($) 12 T CONST)) (-2219 (($) 15 T CONST)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2307 (($ $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2308 (($ $ $) NIL T ELT)))
-(((-545) (-13 (-1012) (-604) (-10 -8 (-15 -2226 ($) -3946) (-15 -2225 ($) -3946) (-15 -2224 ($) -3946) (-15 -2223 ($) -3946) (-15 -2222 ($) -3946) (-15 -2221 ($) -3946) (-15 -2220 ($) -3946) (-15 -2219 ($) -3946) (-15 -2218 ($) -3946)))) (T -545))
-((-2226 (*1 *1) (-5 *1 (-545))) (-2225 (*1 *1) (-5 *1 (-545))) (-2224 (*1 *1) (-5 *1 (-545))) (-2223 (*1 *1) (-5 *1 (-545))) (-2222 (*1 *1) (-5 *1 (-545))) (-2221 (*1 *1) (-5 *1 (-545))) (-2220 (*1 *1) (-5 *1 (-545))) (-2219 (*1 *1) (-5 *1 (-545))) (-2218 (*1 *1) (-5 *1 (-545))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 19 T ELT) (($ (-541)) 12 T ELT) (((-541) $) 11 T ELT) (($ (-101)) NIL T ELT) (((-101) $) 14 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-546) (-13 (-1012) (-427 (-541)) (-427 (-101)))) (T -546))
-NIL
-((-2564 (((-85) $ $) NIL T ELT)) (-1694 (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) $ (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) 40 T ELT)) (-3593 (($ (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2194 (((-1183) $ (-1071) (-1071)) NIL (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ (-1071) |#1|) 50 T ELT)) (-1567 (($ (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-2227 (((-3 |#1| #1="failed") (-1071) $) 53 T ELT)) (-3718 (($) NIL T CONST)) (-1698 (($ $ (-1071)) 25 T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT)) (-3399 (((-3 |#1| #1#) (-1071) $) 54 T ELT) (($ (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3400 (($ (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT)) (-3836 (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $ (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) NIL (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $ (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT)) (-1695 (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) $) 39 T ELT)) (-1573 ((|#1| $ (-1071) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-1071)) NIL T ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-2267 (($ $) 55 T ELT)) (-1699 (($ (-335)) 23 T ELT) (($ (-335) (-1071)) 22 T ELT)) (-3536 (((-335) $) 41 T ELT)) (-2196 (((-1071) $) NIL (|has| (-1071) (-756)) ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) (((-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT)) (-2197 (((-1071) $) NIL (|has| (-1071) (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT) (($ (-1 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2228 (((-583 (-1071)) $) 46 T ELT)) (-2229 (((-85) (-1071) $) NIL T ELT)) (-1696 (((-1071) $) 42 T ELT)) (-1271 (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3603 (($ (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2199 (((-583 (-1071)) $) NIL T ELT)) (-2200 (((-85) (-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3795 ((|#1| $) NIL (|has| (-1071) (-756)) ELT)) (-1351 (((-3 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2195 (($ $ |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-1272 (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (($ $ (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (($ $ (-248 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (($ $ (-583 (-248 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) 44 T ELT)) (-3794 ((|#1| $ (-1071) |#1|) NIL T ELT) ((|#1| $ (-1071)) 49 T ELT)) (-1463 (($ (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) (((-694) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (((-694) (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-553 (-472))) ELT)) (-3524 (($ (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) NIL T ELT)) (-3940 (((-772) $) 21 T ELT)) (-1697 (($ $) 26 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-1273 (($ (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 20 T ELT)) (-3951 (((-694) $) 48 (|has| $ (-6 -3989)) ELT)))
-(((-547 |#1|) (-13 (-313 (-335) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) (-1105 (-1071) |#1|) (-10 -8 (-6 -3989) (-15 -2267 ($ $)))) (-1012)) (T -547))
-((-2267 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-1012)))))
-((-3240 (((-85) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2228 (((-583 |#2|) $) 20 T ELT)) (-2229 (((-85) |#2| $) 12 T ELT)))
-(((-548 |#1| |#2| |#3|) (-10 -7 (-15 -2228 ((-583 |#2|) |#1|)) (-15 -2229 ((-85) |#2| |#1|)) (-15 -3240 ((-85) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) |#1|))) (-549 |#2| |#3|) (-1012) (-1012)) (T -548))
-NIL
-((-2564 (((-85) $ $) 19 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1567 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3989)) ELT)) (-2227 (((-3 |#2| "failed") |#1| $) 65 T ELT)) (-3718 (($) 7 T CONST)) (-1350 (($ $) 62 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT)) (-3399 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3989)) ELT) (((-3 |#2| "failed") |#1| $) 66 T ELT)) (-3400 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3989)) ELT)) (-3836 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3989)) ELT)) (-2885 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3989)) ELT)) (-2604 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 35 T ELT)) (-3237 (((-1071) $) 22 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-2228 (((-583 |#1|) $) 67 T ELT)) (-2229 (((-85) |#1| $) 68 T ELT)) (-1271 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3603 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-3238 (((-1032) $) 21 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) ELT)) (-1351 (((-3 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 55 T ELT)) (-1272 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-1944 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-1463 (($) 53 T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1943 (((-694) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 63 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-553 (-472))) ELT)) (-3524 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 54 T ELT)) (-3940 (((-772) $) 17 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1273 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-549 |#1| |#2|) (-113) (-1012) (-1012)) (T -549))
-((-2229 (*1 *2 *3 *1) (-12 (-4 *1 (-549 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-5 *2 (-85)))) (-2228 (*1 *2 *1) (-12 (-4 *1 (-549 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-5 *2 (-583 *3)))) (-3399 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-549 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012)))) (-2227 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-549 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012)))))
-(-13 (-183 (-2 (|:| -3854 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -2229 ((-85) |t#1| $)) (-15 -2228 ((-583 |t#1|) $)) (-15 -3399 ((-3 |t#2| "failed") |t#1| $)) (-15 -2227 ((-3 |t#2| "failed") |t#1| $))))
-(((-34) . T) ((-76 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72))) ((-552 (-772)) OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-552 (-772)))) ((-124 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-553 (-472)) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-553 (-472))) ((-183 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ((-426 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-452 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ((-13) . T) ((-1012) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-2230 (((-3 (-1088) "failed") $) 46 T ELT)) (-1310 (((-1183) $ (-694)) 22 T ELT)) (-3413 (((-694) $) 20 T ELT)) (-3589 (((-86) $) 9 T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2231 (($ (-86) (-583 |#1|) (-694)) 32 T ELT) (($ (-1088)) 33 T ELT)) (-2629 (((-85) $ (-86)) 15 T ELT) (((-85) $ (-1088)) 13 T ELT)) (-2599 (((-694) $) 17 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3966 (((-800 (-483)) $) 99 (|has| |#1| (-553 (-800 (-483)))) ELT) (((-800 (-327)) $) 106 (|has| |#1| (-553 (-800 (-327)))) ELT) (((-472) $) 92 (|has| |#1| (-553 (-472))) ELT)) (-3940 (((-772) $) 74 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2232 (((-583 |#1|) $) 19 T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 51 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 53 T ELT)))
-(((-550 |#1|) (-13 (-105) (-756) (-794 |#1|) (-10 -8 (-15 -3589 ((-86) $)) (-15 -2232 ((-583 |#1|) $)) (-15 -2599 ((-694) $)) (-15 -2231 ($ (-86) (-583 |#1|) (-694))) (-15 -2231 ($ (-1088))) (-15 -2230 ((-3 (-1088) "failed") $)) (-15 -2629 ((-85) $ (-86))) (-15 -2629 ((-85) $ (-1088))) (IF (|has| |#1| (-553 (-472))) (-6 (-553 (-472))) |%noBranch|))) (-1012)) (T -550))
-((-3589 (*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-550 *3)) (-4 *3 (-1012)))) (-2232 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-550 *3)) (-4 *3 (-1012)))) (-2599 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-550 *3)) (-4 *3 (-1012)))) (-2231 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-86)) (-5 *3 (-583 *5)) (-5 *4 (-694)) (-4 *5 (-1012)) (-5 *1 (-550 *5)))) (-2231 (*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-550 *3)) (-4 *3 (-1012)))) (-2230 (*1 *2 *1) (|partial| -12 (-5 *2 (-1088)) (-5 *1 (-550 *3)) (-4 *3 (-1012)))) (-2629 (*1 *2 *1 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-550 *4)) (-4 *4 (-1012)))) (-2629 (*1 *2 *1 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-85)) (-5 *1 (-550 *4)) (-4 *4 (-1012)))))
-((-2233 (((-550 |#2|) |#1|) 17 T ELT)) (-2234 (((-3 |#1| "failed") (-550 |#2|)) 21 T ELT)))
-(((-551 |#1| |#2|) (-10 -7 (-15 -2233 ((-550 |#2|) |#1|)) (-15 -2234 ((-3 |#1| "failed") (-550 |#2|)))) (-1012) (-1012)) (T -551))
-((-2234 (*1 *2 *3) (|partial| -12 (-5 *3 (-550 *4)) (-4 *4 (-1012)) (-4 *2 (-1012)) (-5 *1 (-551 *2 *4)))) (-2233 (*1 *2 *3) (-12 (-5 *2 (-550 *4)) (-5 *1 (-551 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))))
-((-3940 ((|#1| $) 6 T ELT)))
-(((-552 |#1|) (-113) (-1127)) (T -552))
-((-3940 (*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-1127)))))
-(-13 (-10 -8 (-15 -3940 (|t#1| $))))
-((-3966 ((|#1| $) 6 T ELT)))
-(((-553 |#1|) (-113) (-1127)) (T -553))
-((-3966 (*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-1127)))))
-(-13 (-10 -8 (-15 -3966 (|t#1| $))))
-((-2235 (((-3 (-1083 (-347 |#2|)) #1="failed") (-347 |#2|) (-347 |#2|) (-347 |#2|) (-1 (-345 |#2|) |#2|)) 15 T ELT) (((-3 (-1083 (-347 |#2|)) #1#) (-347 |#2|) (-347 |#2|) (-347 |#2|)) 16 T ELT)))
-(((-554 |#1| |#2|) (-10 -7 (-15 -2235 ((-3 (-1083 (-347 |#2|)) #1="failed") (-347 |#2|) (-347 |#2|) (-347 |#2|))) (-15 -2235 ((-3 (-1083 (-347 |#2|)) #1#) (-347 |#2|) (-347 |#2|) (-347 |#2|) (-1 (-345 |#2|) |#2|)))) (-13 (-120) (-27) (-950 (-483)) (-950 (-347 (-483)))) (-1153 |#1|)) (T -554))
-((-2235 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-120) (-27) (-950 (-483)) (-950 (-347 (-483))))) (-5 *2 (-1083 (-347 *6))) (-5 *1 (-554 *5 *6)) (-5 *3 (-347 *6)))) (-2235 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-120) (-27) (-950 (-483)) (-950 (-347 (-483))))) (-4 *5 (-1153 *4)) (-5 *2 (-1083 (-347 *5))) (-5 *1 (-554 *4 *5)) (-5 *3 (-347 *5)))))
-((-3940 (($ |#1|) 6 T ELT)))
-(((-555 |#1|) (-113) (-1127)) (T -555))
-((-3940 (*1 *1 *2) (-12 (-4 *1 (-555 *2)) (-4 *2 (-1127)))))
-(-13 (-10 -8 (-15 -3940 ($ |t#1|))))
-((-2564 (((-85) $ $) NIL T ELT)) (-2309 (($ $) NIL T ELT)) (-2236 (($) 11 T CONST)) (-2851 (($) 13 T CONST)) (-3131 (((-694)) 36 T ELT)) (-2990 (($) NIL T ELT)) (-2557 (($ $ $) 25 T ELT)) (-2556 (($ $) 23 T ELT)) (-2006 (((-830) $) 43 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 (($ (-830)) 42 T ELT)) (-2849 (($ $ $) 26 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2850 (($) 9 T CONST)) (-2848 (($ $ $) 27 T ELT)) (-3940 (((-772) $) 34 T ELT)) (-3560 (((-85) $ (|[\|\|]| -2850)) 20 T ELT) (((-85) $ (|[\|\|]| -2236)) 22 T ELT) (((-85) $ (|[\|\|]| -2851)) 18 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2558 (($ $ $) 24 T ELT)) (-2307 (($ $ $) NIL T ELT)) (-3052 (((-85) $ $) 16 T ELT)) (-2308 (($ $ $) NIL T ELT)))
-(((-556) (-13 (-880) (-317) (-10 -8 (-15 -2236 ($) -3946) (-15 -3560 ((-85) $ (|[\|\|]| -2850))) (-15 -3560 ((-85) $ (|[\|\|]| -2236))) (-15 -3560 ((-85) $ (|[\|\|]| -2851)))))) (T -556))
-((-2236 (*1 *1) (-5 *1 (-556))) (-3560 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2850)) (-5 *2 (-85)) (-5 *1 (-556)))) (-3560 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2236)) (-5 *2 (-85)) (-5 *1 (-556)))) (-3560 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2851)) (-5 *2 (-85)) (-5 *1 (-556)))))
-((-3966 (($ |#1|) 6 T ELT)))
-(((-557 |#1|) (-113) (-1127)) (T -557))
-((-3966 (*1 *1 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1127)))))
-(-13 (-10 -8 (-15 -3966 ($ |t#1|))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3617 (((-483) $) NIL (|has| |#1| (-755)) ELT)) (-3718 (($) NIL T CONST)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3181 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2994 ((|#1| $) 13 T ELT)) (-3182 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2993 ((|#3| $) 15 T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#2|) NIL T ELT)) (-3121 (((-694)) 20 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-3377 (($ $) NIL (|has| |#1| (-755)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) 12 T CONST)) (-2562 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2681 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3943 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
-(((-558 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-755)) (-6 (-755)) |%noBranch|) (-15 -3943 ($ $ |#3|)) (-15 -3943 ($ |#1| |#3|)) (-15 -2994 (|#1| $)) (-15 -2993 (|#3| $)))) (-38 |#2|) (-146) (|SubsetCategory| (-663) |#2|)) (T -558))
-((-3943 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-558 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-663) *4)))) (-3943 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-558 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-663) *4)))) (-2994 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-558 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-663) *3)))) (-2993 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-663) *4)) (-5 *1 (-558 *3 *4 *2)) (-4 *3 (-38 *4)))))
-((-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#2|) 10 T ELT)))
-(((-559 |#1| |#2|) (-10 -7 (-15 -3940 (|#1| |#2|)) (-15 -3940 (|#1| (-483))) (-15 -3940 ((-772) |#1|))) (-560 |#2|) (-961)) (T -559))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 47 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 48 T ELT)))
-(((-560 |#1|) (-113) (-961)) (T -560))
-((-3940 (*1 *1 *2) (-12 (-4 *1 (-560 *2)) (-4 *2 (-961)))))
-(-13 (-961) (-590 |t#1|) (-10 -8 (-15 -3940 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-483)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-663) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T))
-((-2237 ((|#2| |#2| (-1088) (-1088)) 16 T ELT)))
-(((-561 |#1| |#2|) (-10 -7 (-15 -2237 (|#2| |#2| (-1088) (-1088)))) (-13 (-257) (-120) (-950 (-483)) (-580 (-483))) (-13 (-1113) (-871) (-29 |#1|))) (T -561))
-((-2237 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (-5 *1 (-561 *4 *2)) (-4 *2 (-13 (-1113) (-871) (-29 *4))))))
-((-2564 (((-85) $ $) 64 T ELT)) (-3183 (((-85) $) 58 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-2238 ((|#1| $) 55 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1605 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3745 (((-2 (|:| -1759 $) (|:| -1758 (-347 |#2|))) (-347 |#2|)) 111 (|has| |#1| (-311)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) 99 T ELT) (((-3 |#2| #1#) $) 95 T ELT)) (-3151 (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-2560 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3953 (($ $) 27 T ELT)) (-3461 (((-3 $ #1#) $) 88 T ELT)) (-2559 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| |#1| (-311)) ELT)) (-3766 (((-483) $) 22 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3931 (((-85) $) 40 T ELT)) (-2889 (($ |#1| (-483)) 24 T ELT)) (-3169 ((|#1| $) 57 T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-311)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) 101 (|has| |#1| (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 116 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3460 (((-3 $ #1#) $ $) 93 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-1604 (((-694) $) 115 (|has| |#1| (-311)) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 114 (|has| |#1| (-311)) ELT)) (-3752 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1088)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#2| (-811 (-1088))) ELT)) (-3942 (((-483) $) 38 T ELT)) (-3966 (((-347 |#2|) $) 47 T ELT)) (-3940 (((-772) $) 69 T ELT) (($ (-483)) 35 T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-3671 ((|#1| $ (-483)) 72 T ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 32 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-2656 (($) 9 T CONST)) (-2662 (($) 14 T CONST)) (-2665 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1088)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#2| (-811 (-1088))) ELT)) (-3052 (((-85) $ $) 21 T ELT)) (-3831 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 90 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 49 T ELT)))
-(((-562 |#1| |#2|) (-13 (-184 |#2|) (-494) (-553 (-347 |#2|)) (-352 |#1|) (-950 |#2|) (-10 -8 (-15 -3931 ((-85) $)) (-15 -3942 ((-483) $)) (-15 -3766 ((-483) $)) (-15 -3953 ($ $)) (-15 -3169 (|#1| $)) (-15 -2238 (|#1| $)) (-15 -3671 (|#1| $ (-483))) (-15 -2889 ($ |#1| (-483))) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-311)) (PROGN (-6 (-257)) (-15 -3745 ((-2 (|:| -1759 $) (|:| -1758 (-347 |#2|))) (-347 |#2|)))) |%noBranch|))) (-494) (-1153 |#1|)) (T -562))
-((-3931 (*1 *2 *1) (-12 (-4 *3 (-494)) (-5 *2 (-85)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1153 *3)))) (-3942 (*1 *2 *1) (-12 (-4 *3 (-494)) (-5 *2 (-483)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1153 *3)))) (-3766 (*1 *2 *1) (-12 (-4 *3 (-494)) (-5 *2 (-483)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1153 *3)))) (-3953 (*1 *1 *1) (-12 (-4 *2 (-494)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1153 *2)))) (-3169 (*1 *2 *1) (-12 (-4 *2 (-494)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1153 *2)))) (-2238 (*1 *2 *1) (-12 (-4 *2 (-494)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1153 *2)))) (-3671 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *2 (-494)) (-5 *1 (-562 *2 *4)) (-4 *4 (-1153 *2)))) (-2889 (*1 *1 *2 *3) (-12 (-5 *3 (-483)) (-4 *2 (-494)) (-5 *1 (-562 *2 *4)) (-4 *4 (-1153 *2)))) (-3745 (*1 *2 *3) (-12 (-4 *4 (-311)) (-4 *4 (-494)) (-4 *5 (-1153 *4)) (-5 *2 (-2 (|:| -1759 (-562 *4 *5)) (|:| -1758 (-347 *5)))) (-5 *1 (-562 *4 *5)) (-5 *3 (-347 *5)))))
-((-3676 (((-583 |#6|) (-583 |#4|) (-85)) 54 T ELT)) (-2239 ((|#6| |#6|) 48 T ELT)))
-(((-563 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2239 (|#6| |#6|)) (-15 -3676 ((-583 |#6|) (-583 |#4|) (-85)))) (-389) (-717) (-756) (-976 |#1| |#2| |#3|) (-982 |#1| |#2| |#3| |#4|) (-1019 |#1| |#2| |#3| |#4|)) (T -563))
-((-3676 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 *10)) (-5 *1 (-563 *5 *6 *7 *8 *9 *10)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *10 (-1019 *5 *6 *7 *8)))) (-2239 (*1 *2 *2) (-12 (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *1 (-563 *3 *4 *5 *6 *7 *2)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *2 (-1019 *3 *4 *5 *6)))))
-((-2240 (((-85) |#3| (-694) (-583 |#3|)) 30 T ELT)) (-2241 (((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1083 |#3|)))) "failed") |#3| (-583 (-1083 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1776 (-583 (-2 (|:| |irr| |#4|) (|:| -2391 (-483)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|)) 68 T ELT)))
-(((-564 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2240 ((-85) |#3| (-694) (-583 |#3|))) (-15 -2241 ((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1083 |#3|)))) "failed") |#3| (-583 (-1083 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1776 (-583 (-2 (|:| |irr| |#4|) (|:| -2391 (-483)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|)))) (-756) (-717) (-257) (-861 |#3| |#2| |#1|)) (T -564))
-((-2241 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1776 (-583 (-2 (|:| |irr| *10) (|:| -2391 (-483))))))) (-5 *6 (-583 *3)) (-5 *7 (-583 *8)) (-4 *8 (-756)) (-4 *3 (-257)) (-4 *10 (-861 *3 *9 *8)) (-4 *9 (-717)) (-5 *2 (-2 (|:| |polfac| (-583 *10)) (|:| |correct| *3) (|:| |corrfact| (-583 (-1083 *3))))) (-5 *1 (-564 *8 *9 *3 *10)) (-5 *4 (-583 (-1083 *3))))) (-2240 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-694)) (-5 *5 (-583 *3)) (-4 *3 (-257)) (-4 *6 (-756)) (-4 *7 (-717)) (-5 *2 (-85)) (-5 *1 (-564 *6 *7 *3 *8)) (-4 *8 (-861 *3 *7 *6)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3522 (((-1047) $) 12 T ELT)) (-3523 (((-1047) $) 10 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 18 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-565) (-13 (-994) (-10 -8 (-15 -3523 ((-1047) $)) (-15 -3522 ((-1047) $))))) (T -565))
-((-3523 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-565)))) (-3522 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-565)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3928 (((-583 |#1|) $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3461 (((-3 $ "failed") $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3930 (($ $) 77 T ELT)) (-3936 (((-606 |#1| |#2|) $) 60 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) 81 T ELT)) (-2242 (((-583 (-248 |#2|)) $ $) 42 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3937 (($ (-606 |#1| |#2|)) 56 T ELT)) (-3005 (($ $ $) NIL T ELT)) (-2431 (($ $ $) NIL T ELT)) (-3940 (((-772) $) 66 T ELT) (((-1193 |#1| |#2|) $) NIL T ELT) (((-1198 |#1| |#2|) $) 74 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2662 (($) 61 T CONST)) (-2243 (((-583 (-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-2244 (((-583 (-606 |#1| |#2|)) (-583 |#1|)) 73 T ELT)) (-2661 (((-583 (-2 (|:| |k| (-803 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-3052 (((-85) $ $) 62 T ELT)) (-3943 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ $ $) 52 T ELT)))
-(((-566 |#1| |#2| |#3|) (-13 (-410) (-10 -8 (-15 -3937 ($ (-606 |#1| |#2|))) (-15 -3936 ((-606 |#1| |#2|) $)) (-15 -2661 ((-583 (-2 (|:| |k| (-803 |#1|)) (|:| |c| |#2|))) $)) (-15 -3940 ((-1193 |#1| |#2|) $)) (-15 -3940 ((-1198 |#1| |#2|) $)) (-15 -3930 ($ $)) (-15 -3928 ((-583 |#1|) $)) (-15 -2244 ((-583 (-606 |#1| |#2|)) (-583 |#1|))) (-15 -2243 ((-583 (-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|))) $)) (-15 -2242 ((-583 (-248 |#2|)) $ $)))) (-756) (-13 (-146) (-654 (-347 (-483)))) (-830)) (T -566))
-((-3937 (*1 *1 *2) (-12 (-5 *2 (-606 *3 *4)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-347 (-483))))) (-5 *1 (-566 *3 *4 *5)) (-14 *5 (-830)))) (-3936 (*1 *2 *1) (-12 (-5 *2 (-606 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-347 (-483))))) (-14 *5 (-830)))) (-2661 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-803 *3)) (|:| |c| *4)))) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-347 (-483))))) (-14 *5 (-830)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-1193 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-347 (-483))))) (-14 *5 (-830)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-1198 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-347 (-483))))) (-14 *5 (-830)))) (-3930 (*1 *1 *1) (-12 (-5 *1 (-566 *2 *3 *4)) (-4 *2 (-756)) (-4 *3 (-13 (-146) (-654 (-347 (-483))))) (-14 *4 (-830)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-347 (-483))))) (-14 *5 (-830)))) (-2244 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-756)) (-5 *2 (-583 (-606 *4 *5))) (-5 *1 (-566 *4 *5 *6)) (-4 *5 (-13 (-146) (-654 (-347 (-483))))) (-14 *6 (-830)))) (-2243 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-614 *3)) (|:| |c| *4)))) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-347 (-483))))) (-14 *5 (-830)))) (-2242 (*1 *2 *1 *1) (-12 (-5 *2 (-583 (-248 *4))) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-347 (-483))))) (-14 *5 (-830)))))
-((-3676 (((-583 (-1058 |#1| (-468 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|)))) (-583 (-703 |#1| (-773 |#2|))) (-85)) 103 T ELT) (((-583 (-958 |#1| |#2|)) (-583 (-703 |#1| (-773 |#2|))) (-85)) 77 T ELT)) (-2245 (((-85) (-583 (-703 |#1| (-773 |#2|)))) 26 T ELT)) (-2249 (((-583 (-1058 |#1| (-468 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|)))) (-583 (-703 |#1| (-773 |#2|))) (-85)) 102 T ELT)) (-2248 (((-583 (-958 |#1| |#2|)) (-583 (-703 |#1| (-773 |#2|))) (-85)) 76 T ELT)) (-2247 (((-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|)))) 30 T ELT)) (-2246 (((-3 (-583 (-703 |#1| (-773 |#2|))) "failed") (-583 (-703 |#1| (-773 |#2|)))) 29 T ELT)))
-(((-567 |#1| |#2|) (-10 -7 (-15 -2245 ((-85) (-583 (-703 |#1| (-773 |#2|))))) (-15 -2246 ((-3 (-583 (-703 |#1| (-773 |#2|))) "failed") (-583 (-703 |#1| (-773 |#2|))))) (-15 -2247 ((-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|))))) (-15 -2248 ((-583 (-958 |#1| |#2|)) (-583 (-703 |#1| (-773 |#2|))) (-85))) (-15 -2249 ((-583 (-1058 |#1| (-468 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|)))) (-583 (-703 |#1| (-773 |#2|))) (-85))) (-15 -3676 ((-583 (-958 |#1| |#2|)) (-583 (-703 |#1| (-773 |#2|))) (-85))) (-15 -3676 ((-583 (-1058 |#1| (-468 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|)))) (-583 (-703 |#1| (-773 |#2|))) (-85)))) (-389) (-583 (-1088))) (T -567))
-((-3676 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-389)) (-14 *6 (-583 (-1088))) (-5 *2 (-583 (-1058 *5 (-468 (-773 *6)) (-773 *6) (-703 *5 (-773 *6))))) (-5 *1 (-567 *5 *6)))) (-3676 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-389)) (-14 *6 (-583 (-1088))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-567 *5 *6)))) (-2249 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-389)) (-14 *6 (-583 (-1088))) (-5 *2 (-583 (-1058 *5 (-468 (-773 *6)) (-773 *6) (-703 *5 (-773 *6))))) (-5 *1 (-567 *5 *6)))) (-2248 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-389)) (-14 *6 (-583 (-1088))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-567 *5 *6)))) (-2247 (*1 *2 *2) (-12 (-5 *2 (-583 (-703 *3 (-773 *4)))) (-4 *3 (-389)) (-14 *4 (-583 (-1088))) (-5 *1 (-567 *3 *4)))) (-2246 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-703 *3 (-773 *4)))) (-4 *3 (-389)) (-14 *4 (-583 (-1088))) (-5 *1 (-567 *3 *4)))) (-2245 (*1 *2 *3) (-12 (-5 *3 (-583 (-703 *4 (-773 *5)))) (-4 *4 (-389)) (-14 *5 (-583 (-1088))) (-5 *2 (-85)) (-5 *1 (-567 *4 *5)))))
-((-3589 (((-86) (-86)) 88 T ELT)) (-2253 ((|#2| |#2|) 28 T ELT)) (-2828 ((|#2| |#2| (-1003 |#2|)) 84 T ELT) ((|#2| |#2| (-1088)) 50 T ELT)) (-2251 ((|#2| |#2|) 27 T ELT)) (-2252 ((|#2| |#2|) 29 T ELT)) (-2250 (((-85) (-86)) 33 T ELT)) (-2255 ((|#2| |#2|) 24 T ELT)) (-2256 ((|#2| |#2|) 26 T ELT)) (-2254 ((|#2| |#2|) 25 T ELT)))
-(((-568 |#1| |#2|) (-10 -7 (-15 -2250 ((-85) (-86))) (-15 -3589 ((-86) (-86))) (-15 -2256 (|#2| |#2|)) (-15 -2255 (|#2| |#2|)) (-15 -2254 (|#2| |#2|)) (-15 -2253 (|#2| |#2|)) (-15 -2251 (|#2| |#2|)) (-15 -2252 (|#2| |#2|)) (-15 -2828 (|#2| |#2| (-1088))) (-15 -2828 (|#2| |#2| (-1003 |#2|)))) (-494) (-13 (-361 |#1|) (-915) (-1113))) (T -568))
-((-2828 (*1 *2 *2 *3) (-12 (-5 *3 (-1003 *2)) (-4 *2 (-13 (-361 *4) (-915) (-1113))) (-4 *4 (-494)) (-5 *1 (-568 *4 *2)))) (-2828 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *1 (-568 *4 *2)) (-4 *2 (-13 (-361 *4) (-915) (-1113))))) (-2252 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-361 *3) (-915) (-1113))))) (-2251 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-361 *3) (-915) (-1113))))) (-2253 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-361 *3) (-915) (-1113))))) (-2254 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-361 *3) (-915) (-1113))))) (-2255 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-361 *3) (-915) (-1113))))) (-2256 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-361 *3) (-915) (-1113))))) (-3589 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-494)) (-5 *1 (-568 *3 *4)) (-4 *4 (-13 (-361 *3) (-915) (-1113))))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-568 *4 *5)) (-4 *5 (-13 (-361 *4) (-915) (-1113))))))
-((-3486 (($ $) 38 T ELT)) (-3633 (($ $) 21 T ELT)) (-3484 (($ $) 37 T ELT)) (-3632 (($ $) 22 T ELT)) (-3488 (($ $) 36 T ELT)) (-3631 (($ $) 23 T ELT)) (-3621 (($) 48 T ELT)) (-3936 (($ $) 45 T ELT)) (-2253 (($ $) 17 T ELT)) (-2828 (($ $ (-1003 $)) 7 T ELT) (($ $ (-1088)) 6 T ELT)) (-3937 (($ $) 46 T ELT)) (-2251 (($ $) 15 T ELT)) (-2252 (($ $) 16 T ELT)) (-3489 (($ $) 35 T ELT)) (-3630 (($ $) 24 T ELT)) (-3487 (($ $) 34 T ELT)) (-3629 (($ $) 25 T ELT)) (-3485 (($ $) 33 T ELT)) (-3628 (($ $) 26 T ELT)) (-3492 (($ $) 44 T ELT)) (-3480 (($ $) 32 T ELT)) (-3490 (($ $) 43 T ELT)) (-3478 (($ $) 31 T ELT)) (-3494 (($ $) 42 T ELT)) (-3482 (($ $) 30 T ELT)) (-3495 (($ $) 41 T ELT)) (-3483 (($ $) 29 T ELT)) (-3493 (($ $) 40 T ELT)) (-3481 (($ $) 28 T ELT)) (-3491 (($ $) 39 T ELT)) (-3479 (($ $) 27 T ELT)) (-2255 (($ $) 19 T ELT)) (-2256 (($ $) 20 T ELT)) (-2254 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT)))
-(((-569) (-113)) (T -569))
-((-2256 (*1 *1 *1) (-4 *1 (-569))) (-2255 (*1 *1 *1) (-4 *1 (-569))) (-2254 (*1 *1 *1) (-4 *1 (-569))) (-2253 (*1 *1 *1) (-4 *1 (-569))) (-2252 (*1 *1 *1) (-4 *1 (-569))) (-2251 (*1 *1 *1) (-4 *1 (-569))))
-(-13 (-871) (-1113) (-10 -8 (-15 -2256 ($ $)) (-15 -2255 ($ $)) (-15 -2254 ($ $)) (-15 -2253 ($ $)) (-15 -2252 ($ $)) (-15 -2251 ($ $))))
-(((-35) . T) ((-66) . T) ((-239) . T) ((-430) . T) ((-871) . T) ((-1113) . T) ((-1116) . T))
-((-2266 (((-418 |#1| |#2|) (-206 |#1| |#2|)) 65 T ELT)) (-2259 (((-583 (-206 |#1| |#2|)) (-583 (-418 |#1| |#2|))) 90 T ELT)) (-2260 (((-418 |#1| |#2|) (-583 (-418 |#1| |#2|)) (-773 |#1|)) 92 T ELT) (((-418 |#1| |#2|) (-583 (-418 |#1| |#2|)) (-583 (-418 |#1| |#2|)) (-773 |#1|)) 91 T ELT)) (-2257 (((-2 (|:| |gblist| (-583 (-206 |#1| |#2|))) (|:| |gvlist| (-583 (-483)))) (-583 (-418 |#1| |#2|))) 136 T ELT)) (-2264 (((-583 (-418 |#1| |#2|)) (-773 |#1|) (-583 (-418 |#1| |#2|)) (-583 (-418 |#1| |#2|))) 105 T ELT)) (-2258 (((-2 (|:| |glbase| (-583 (-206 |#1| |#2|))) (|:| |glval| (-583 (-483)))) (-583 (-206 |#1| |#2|))) 147 T ELT)) (-2262 (((-1177 |#2|) (-418 |#1| |#2|) (-583 (-418 |#1| |#2|))) 70 T ELT)) (-2261 (((-583 (-418 |#1| |#2|)) (-583 (-418 |#1| |#2|))) 47 T ELT)) (-2265 (((-206 |#1| |#2|) (-206 |#1| |#2|) (-583 (-206 |#1| |#2|))) 61 T ELT)) (-2263 (((-206 |#1| |#2|) (-583 |#2|) (-206 |#1| |#2|) (-583 (-206 |#1| |#2|))) 113 T ELT)))
-(((-570 |#1| |#2|) (-10 -7 (-15 -2257 ((-2 (|:| |gblist| (-583 (-206 |#1| |#2|))) (|:| |gvlist| (-583 (-483)))) (-583 (-418 |#1| |#2|)))) (-15 -2258 ((-2 (|:| |glbase| (-583 (-206 |#1| |#2|))) (|:| |glval| (-583 (-483)))) (-583 (-206 |#1| |#2|)))) (-15 -2259 ((-583 (-206 |#1| |#2|)) (-583 (-418 |#1| |#2|)))) (-15 -2260 ((-418 |#1| |#2|) (-583 (-418 |#1| |#2|)) (-583 (-418 |#1| |#2|)) (-773 |#1|))) (-15 -2260 ((-418 |#1| |#2|) (-583 (-418 |#1| |#2|)) (-773 |#1|))) (-15 -2261 ((-583 (-418 |#1| |#2|)) (-583 (-418 |#1| |#2|)))) (-15 -2262 ((-1177 |#2|) (-418 |#1| |#2|) (-583 (-418 |#1| |#2|)))) (-15 -2263 ((-206 |#1| |#2|) (-583 |#2|) (-206 |#1| |#2|) (-583 (-206 |#1| |#2|)))) (-15 -2264 ((-583 (-418 |#1| |#2|)) (-773 |#1|) (-583 (-418 |#1| |#2|)) (-583 (-418 |#1| |#2|)))) (-15 -2265 ((-206 |#1| |#2|) (-206 |#1| |#2|) (-583 (-206 |#1| |#2|)))) (-15 -2266 ((-418 |#1| |#2|) (-206 |#1| |#2|)))) (-583 (-1088)) (-389)) (T -570))
-((-2266 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1088))) (-4 *5 (-389)) (-5 *2 (-418 *4 *5)) (-5 *1 (-570 *4 *5)))) (-2265 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-206 *4 *5))) (-5 *2 (-206 *4 *5)) (-14 *4 (-583 (-1088))) (-4 *5 (-389)) (-5 *1 (-570 *4 *5)))) (-2264 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-583 (-418 *4 *5))) (-5 *3 (-773 *4)) (-14 *4 (-583 (-1088))) (-4 *5 (-389)) (-5 *1 (-570 *4 *5)))) (-2263 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-206 *5 *6))) (-4 *6 (-389)) (-5 *2 (-206 *5 *6)) (-14 *5 (-583 (-1088))) (-5 *1 (-570 *5 *6)))) (-2262 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-418 *5 *6))) (-5 *3 (-418 *5 *6)) (-14 *5 (-583 (-1088))) (-4 *6 (-389)) (-5 *2 (-1177 *6)) (-5 *1 (-570 *5 *6)))) (-2261 (*1 *2 *2) (-12 (-5 *2 (-583 (-418 *3 *4))) (-14 *3 (-583 (-1088))) (-4 *4 (-389)) (-5 *1 (-570 *3 *4)))) (-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-418 *5 *6))) (-5 *4 (-773 *5)) (-14 *5 (-583 (-1088))) (-5 *2 (-418 *5 *6)) (-5 *1 (-570 *5 *6)) (-4 *6 (-389)))) (-2260 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-418 *5 *6))) (-5 *4 (-773 *5)) (-14 *5 (-583 (-1088))) (-5 *2 (-418 *5 *6)) (-5 *1 (-570 *5 *6)) (-4 *6 (-389)))) (-2259 (*1 *2 *3) (-12 (-5 *3 (-583 (-418 *4 *5))) (-14 *4 (-583 (-1088))) (-4 *5 (-389)) (-5 *2 (-583 (-206 *4 *5))) (-5 *1 (-570 *4 *5)))) (-2258 (*1 *2 *3) (-12 (-14 *4 (-583 (-1088))) (-4 *5 (-389)) (-5 *2 (-2 (|:| |glbase| (-583 (-206 *4 *5))) (|:| |glval| (-583 (-483))))) (-5 *1 (-570 *4 *5)) (-5 *3 (-583 (-206 *4 *5))))) (-2257 (*1 *2 *3) (-12 (-5 *3 (-583 (-418 *4 *5))) (-14 *4 (-583 (-1088))) (-4 *5 (-389)) (-5 *2 (-2 (|:| |gblist| (-583 (-206 *4 *5))) (|:| |gvlist| (-583 (-483))))) (-5 *1 (-570 *4 *5)))))
-((-2564 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-72))) ELT)) (-3593 (($) NIL T ELT) (($ (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))))) NIL T ELT)) (-2194 (((-1183) $ (-1071) (-1071)) NIL (|has| $ (-6 -3990)) ELT)) (-3782 (((-51) $ (-1071) (-51)) NIL T ELT) (((-51) $ (-1088) (-51)) 16 T ELT)) (-1567 (($ (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3989)) ELT)) (-2227 (((-3 (-51) #1="failed") (-1071) $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-1012))) ELT)) (-3399 (($ (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3989)) ELT) (((-3 (-51) #1#) (-1071) $) NIL T ELT)) (-3400 (($ (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-1012))) ELT) (($ (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 (((-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-1 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) $ (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-1012))) ELT) (((-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-1 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) $ (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) NIL (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-1 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 (((-51) $ (-1071) (-51)) NIL (|has| $ (-6 -3990)) ELT)) (-3108 (((-51) $ (-1071)) NIL T ELT)) (-2885 (((-583 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 (-51)) $) NIL (|has| $ (-6 -3989)) ELT)) (-2267 (($ $) NIL T ELT)) (-2196 (((-1071) $) NIL (|has| (-1071) (-756)) ELT)) (-2604 (((-583 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 (-51)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-1012))) ELT) (((-85) (-51) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-51) (-1012))) ELT)) (-2197 (((-1071) $) NIL (|has| (-1071) (-756)) ELT)) (-1946 (($ (-1 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3990)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-2268 (($ (-335)) 8 T ELT)) (-3237 (((-1071) $) NIL (OR (|has| (-51) (-1012)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-1012))) ELT)) (-2228 (((-583 (-1071)) $) NIL T ELT)) (-2229 (((-85) (-1071) $) NIL T ELT)) (-1271 (((-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) $) NIL T ELT)) (-3603 (($ (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) $) NIL T ELT)) (-2199 (((-583 (-1071)) $) NIL T ELT)) (-2200 (((-85) (-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL (OR (|has| (-51) (-1012)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-1012))) ELT)) (-3795 (((-51) $) NIL (|has| (-1071) (-756)) ELT)) (-1351 (((-3 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) #1#) (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) $) NIL T ELT)) (-2195 (($ $ (-51)) NIL (|has| $ (-6 -3990)) ELT)) (-1272 (((-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) $) NIL T ELT)) (-1944 (((-85) (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-1012))) ELT) (($ $ (-248 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-1012))) ELT) (($ $ (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-1012))) ELT) (($ $ (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-1012))) ELT) (($ $ (-583 (-51)) (-583 (-51))) NIL (-12 (|has| (-51) (-259 (-51))) (|has| (-51) (-1012))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-259 (-51))) (|has| (-51) (-1012))) ELT) (($ $ (-248 (-51))) NIL (-12 (|has| (-51) (-259 (-51))) (|has| (-51) (-1012))) ELT) (($ $ (-583 (-248 (-51)))) NIL (-12 (|has| (-51) (-259 (-51))) (|has| (-51) (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) (-51) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-51) (-1012))) ELT)) (-2201 (((-583 (-51)) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 (((-51) $ (-1071)) NIL T ELT) (((-51) $ (-1071) (-51)) NIL T ELT) (((-51) $ (-1088)) 14 T ELT)) (-1463 (($) NIL T ELT) (($ (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))))) NIL T ELT)) (-1943 (((-694) (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-1012))) ELT) (((-694) (-51) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-51) (-1012))) ELT) (((-694) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-553 (-472))) ELT)) (-3524 (($ (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))))) NIL T ELT)) (-3940 (((-772) $) NIL (OR (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-552 (-772))) (|has| (-51) (-552 (-772)))) ELT)) (-1262 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-72))) ELT)) (-1273 (($ (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))))) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| (-51))) (-72))) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-571) (-13 (-1105 (-1071) (-51)) (-241 (-1088) (-51)) (-10 -8 (-15 -2268 ($ (-335))) (-15 -2267 ($ $)) (-15 -3782 ((-51) $ (-1088) (-51)))))) (T -571))
-((-2268 (*1 *1 *2) (-12 (-5 *2 (-335)) (-5 *1 (-571)))) (-2267 (*1 *1 *1) (-5 *1 (-571))) (-3782 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1088)) (-5 *1 (-571)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1769 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1309 (((-3 $ #1#) $ $) NIL T ELT)) (-3218 (((-1177 (-630 |#1|))) NIL (|has| |#2| (-358 |#1|)) ELT) (((-1177 (-630 |#1|)) (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1726 (((-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3718 (($) NIL T CONST)) (-1903 (((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) #1#)) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1700 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1785 (((-630 |#1|)) NIL (|has| |#2| (-358 |#1|)) ELT) (((-630 |#1|) (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1724 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1783 (((-630 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT) (((-630 |#1|) $ (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2400 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1897 (((-1083 (-857 |#1|))) NIL (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-311))) ELT)) (-2403 (($ $ (-830)) NIL T ELT)) (-1722 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1702 (((-1083 |#1|) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1787 ((|#1|) NIL (|has| |#2| (-358 |#1|)) ELT) ((|#1| (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1720 (((-1083 |#1|) $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1714 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1789 (($ (-1177 |#1|)) NIL (|has| |#2| (-358 |#1|)) ELT) (($ (-1177 |#1|) (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3461 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-3104 (((-830)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1711 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2429 (($ $ (-830)) NIL T ELT)) (-1707 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1705 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1709 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) #1#)) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1701 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1786 (((-630 |#1|)) NIL (|has| |#2| (-358 |#1|)) ELT) (((-630 |#1|) (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1725 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1784 (((-630 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT) (((-630 |#1|) $ (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2401 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1901 (((-1083 (-857 |#1|))) NIL (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-311))) ELT)) (-2402 (($ $ (-830)) NIL T ELT)) (-1723 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1703 (((-1083 |#1|) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-1788 ((|#1|) NIL (|has| |#2| (-358 |#1|)) ELT) ((|#1| (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1721 (((-1083 |#1|) $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1715 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1706 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1708 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1710 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1713 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3794 ((|#1| $ (-483)) NIL (|has| |#2| (-358 |#1|)) ELT)) (-3219 (((-630 |#1|) (-1177 $)) NIL (|has| |#2| (-358 |#1|)) ELT) (((-1177 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT) (((-630 |#1|) (-1177 $) (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT) (((-1177 |#1|) $ (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3966 (($ (-1177 |#1|)) NIL (|has| |#2| (-358 |#1|)) ELT) (((-1177 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT)) (-1889 (((-583 (-857 |#1|))) NIL (|has| |#2| (-358 |#1|)) ELT) (((-583 (-857 |#1|)) (-1177 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2431 (($ $ $) NIL T ELT)) (-1719 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3940 (((-772) $) NIL T ELT) ((|#2| $) 11 T ELT) (($ |#2|) 12 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) NIL (|has| |#2| (-358 |#1|)) ELT)) (-1704 (((-583 (-1177 |#1|))) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-494))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-494)))) ELT)) (-2432 (($ $ $ $) NIL T ELT)) (-1717 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2541 (($ (-630 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT)) (-2430 (($ $ $) NIL T ELT)) (-1718 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1716 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1712 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2656 (($) 18 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) 19 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 10 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-572 |#1| |#2|) (-13 (-683 |#1|) (-552 |#2|) (-10 -8 (-15 -3940 ($ |#2|)) (IF (|has| |#2| (-358 |#1|)) (-6 (-358 |#1|)) |%noBranch|) (IF (|has| |#2| (-315 |#1|)) (-6 (-315 |#1|)) |%noBranch|))) (-146) (-683 |#1|)) (T -572))
-((-3940 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-572 *3 *2)) (-4 *2 (-683 *3)))))
-((-3943 (($ $ |#2|) 10 T ELT)))
-(((-573 |#1| |#2|) (-10 -7 (-15 -3943 (|#1| |#1| |#2|))) (-574 |#2|) (-146)) (T -573))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3524 (($ $ $) 39 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#1|) 38 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT)))
-(((-574 |#1|) (-113) (-146)) (T -574))
-((-3524 (*1 *1 *1 *1) (-12 (-4 *1 (-574 *2)) (-4 *2 (-146)))) (-3943 (*1 *1 *1 *2) (-12 (-4 *1 (-574 *2)) (-4 *2 (-146)) (-4 *2 (-311)))))
-(-13 (-654 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3524 ($ $ $)) (IF (|has| |t#1| (-311)) (-15 -3943 ($ $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1012) . T) ((-1127) . T))
-((-2270 (((-3 (-750 |#2|) #1="failed") |#2| (-248 |#2|) (-1071)) 105 T ELT) (((-3 (-750 |#2|) (-2 (|:| |leftHandLimit| (-3 (-750 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-750 |#2|) #1#))) #1#) |#2| (-248 (-750 |#2|))) 130 T ELT)) (-2269 (((-3 (-743 |#2|) #1#) |#2| (-248 (-743 |#2|))) 135 T ELT)))
-(((-575 |#1| |#2|) (-10 -7 (-15 -2270 ((-3 (-750 |#2|) (-2 (|:| |leftHandLimit| (-3 (-750 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-750 |#2|) #1#))) #1#) |#2| (-248 (-750 |#2|)))) (-15 -2269 ((-3 (-743 |#2|) #1#) |#2| (-248 (-743 |#2|)))) (-15 -2270 ((-3 (-750 |#2|) #1#) |#2| (-248 |#2|) (-1071)))) (-13 (-389) (-950 (-483)) (-580 (-483))) (-13 (-27) (-1113) (-361 |#1|))) (T -575))
-((-2270 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-248 *3)) (-5 *5 (-1071)) (-4 *3 (-13 (-27) (-1113) (-361 *6))) (-4 *6 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-750 *3)) (-5 *1 (-575 *6 *3)))) (-2269 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-248 (-743 *3))) (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-743 *3)) (-5 *1 (-575 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5))))) (-2270 (*1 *2 *3 *4) (-12 (-5 *4 (-248 (-750 *3))) (-4 *3 (-13 (-27) (-1113) (-361 *5))) (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-3 (-750 *3) (-2 (|:| |leftHandLimit| (-3 (-750 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-750 *3) #1#))) "failed")) (-5 *1 (-575 *5 *3)))))
-((-2270 (((-3 (-750 (-347 (-857 |#1|))) #1="failed") (-347 (-857 |#1|)) (-248 (-347 (-857 |#1|))) (-1071)) 86 T ELT) (((-3 (-750 (-347 (-857 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-750 (-347 (-857 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-750 (-347 (-857 |#1|))) #1#))) #1#) (-347 (-857 |#1|)) (-248 (-347 (-857 |#1|)))) 20 T ELT) (((-3 (-750 (-347 (-857 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-750 (-347 (-857 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-750 (-347 (-857 |#1|))) #1#))) #1#) (-347 (-857 |#1|)) (-248 (-750 (-857 |#1|)))) 35 T ELT)) (-2269 (((-743 (-347 (-857 |#1|))) (-347 (-857 |#1|)) (-248 (-347 (-857 |#1|)))) 23 T ELT) (((-743 (-347 (-857 |#1|))) (-347 (-857 |#1|)) (-248 (-743 (-857 |#1|)))) 43 T ELT)))
-(((-576 |#1|) (-10 -7 (-15 -2270 ((-3 (-750 (-347 (-857 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-750 (-347 (-857 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-750 (-347 (-857 |#1|))) #1#))) #1#) (-347 (-857 |#1|)) (-248 (-750 (-857 |#1|))))) (-15 -2270 ((-3 (-750 (-347 (-857 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-750 (-347 (-857 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-750 (-347 (-857 |#1|))) #1#))) #1#) (-347 (-857 |#1|)) (-248 (-347 (-857 |#1|))))) (-15 -2269 ((-743 (-347 (-857 |#1|))) (-347 (-857 |#1|)) (-248 (-743 (-857 |#1|))))) (-15 -2269 ((-743 (-347 (-857 |#1|))) (-347 (-857 |#1|)) (-248 (-347 (-857 |#1|))))) (-15 -2270 ((-3 (-750 (-347 (-857 |#1|))) #1#) (-347 (-857 |#1|)) (-248 (-347 (-857 |#1|))) (-1071)))) (-389)) (T -576))
-((-2270 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-248 (-347 (-857 *6)))) (-5 *5 (-1071)) (-5 *3 (-347 (-857 *6))) (-4 *6 (-389)) (-5 *2 (-750 *3)) (-5 *1 (-576 *6)))) (-2269 (*1 *2 *3 *4) (-12 (-5 *4 (-248 (-347 (-857 *5)))) (-5 *3 (-347 (-857 *5))) (-4 *5 (-389)) (-5 *2 (-743 *3)) (-5 *1 (-576 *5)))) (-2269 (*1 *2 *3 *4) (-12 (-5 *4 (-248 (-743 (-857 *5)))) (-4 *5 (-389)) (-5 *2 (-743 (-347 (-857 *5)))) (-5 *1 (-576 *5)) (-5 *3 (-347 (-857 *5))))) (-2270 (*1 *2 *3 *4) (-12 (-5 *4 (-248 (-347 (-857 *5)))) (-5 *3 (-347 (-857 *5))) (-4 *5 (-389)) (-5 *2 (-3 (-750 *3) (-2 (|:| |leftHandLimit| (-3 (-750 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-750 *3) #1#))) #2="failed")) (-5 *1 (-576 *5)))) (-2270 (*1 *2 *3 *4) (-12 (-5 *4 (-248 (-750 (-857 *5)))) (-4 *5 (-389)) (-5 *2 (-3 (-750 (-347 (-857 *5))) (-2 (|:| |leftHandLimit| (-3 (-750 (-347 (-857 *5))) #1#)) (|:| |rightHandLimit| (-3 (-750 (-347 (-857 *5))) #1#))) #2#)) (-5 *1 (-576 *5)) (-5 *3 (-347 (-857 *5))))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) NIL T ELT)) (-2990 (($) NIL T ELT)) (-2527 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2853 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2006 (((-830) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 (($ (-830)) 11 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2847 (($ (-168 |#1|)) 12 T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-773 |#1|)) 7 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT)))
-(((-577 |#1|) (-13 (-752) (-555 (-773 |#1|)) (-10 -8 (-15 -2847 ($ (-168 |#1|))))) (-583 (-1088))) (T -577))
-((-2847 (*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-583 (-1088))) (-5 *1 (-577 *3)))))
-((-2273 (((-3 (-1177 (-347 |#1|)) #1="failed") (-1177 |#2|) |#2|) 64 (-2556 (|has| |#1| (-311))) ELT) (((-3 (-1177 |#1|) #1#) (-1177 |#2|) |#2|) 49 (|has| |#1| (-311)) ELT)) (-2271 (((-85) (-1177 |#2|)) 33 T ELT)) (-2272 (((-3 (-1177 |#1|) #1#) (-1177 |#2|)) 40 T ELT)))
-(((-578 |#1| |#2|) (-10 -7 (-15 -2271 ((-85) (-1177 |#2|))) (-15 -2272 ((-3 (-1177 |#1|) #1="failed") (-1177 |#2|))) (IF (|has| |#1| (-311)) (-15 -2273 ((-3 (-1177 |#1|) #1#) (-1177 |#2|) |#2|)) (-15 -2273 ((-3 (-1177 (-347 |#1|)) #1#) (-1177 |#2|) |#2|)))) (-494) (-13 (-961) (-580 |#1|))) (T -578))
-((-2273 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1177 *4)) (-4 *4 (-13 (-961) (-580 *5))) (-2556 (-4 *5 (-311))) (-4 *5 (-494)) (-5 *2 (-1177 (-347 *5))) (-5 *1 (-578 *5 *4)))) (-2273 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1177 *4)) (-4 *4 (-13 (-961) (-580 *5))) (-4 *5 (-311)) (-4 *5 (-494)) (-5 *2 (-1177 *5)) (-5 *1 (-578 *5 *4)))) (-2272 (*1 *2 *3) (|partial| -12 (-5 *3 (-1177 *5)) (-4 *5 (-13 (-961) (-580 *4))) (-4 *4 (-494)) (-5 *2 (-1177 *4)) (-5 *1 (-578 *4 *5)))) (-2271 (*1 *2 *3) (-12 (-5 *3 (-1177 *5)) (-4 *5 (-13 (-961) (-580 *4))) (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-578 *4 *5)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3768 (((-583 (-782 (-577 |#2|) |#1|)) $) NIL T ELT)) (-1309 (((-3 $ "failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3953 (($ $) NIL T ELT)) (-2889 (($ |#1| (-577 |#2|)) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2274 (($ (-583 |#1|)) 25 T ELT)) (-1981 (((-577 |#2|) $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3905 (((-107)) 16 T ELT)) (-3219 (((-1177 |#1|) $) 44 T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-577 |#2|)) 11 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 20 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#1|) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 17 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-579 |#1| |#2|) (-13 (-1185 |#1|) (-555 (-577 |#2|)) (-447 |#1| (-577 |#2|)) (-10 -8 (-15 -2274 ($ (-583 |#1|))) (-15 -3219 ((-1177 |#1|) $)))) (-311) (-583 (-1088))) (T -579))
-((-2274 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-311)) (-5 *1 (-579 *3 *4)) (-14 *4 (-583 (-1088))))) (-3219 (*1 *2 *1) (-12 (-5 *2 (-1177 *3)) (-5 *1 (-579 *3 *4)) (-4 *3 (-311)) (-14 *4 (-583 (-1088))))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-2275 (((-630 |#1|) (-630 $)) 35 T ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) 34 T ELT)) (-2276 (((-630 |#1|) (-1177 $)) 37 T ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 36 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ |#1| $) 32 T ELT)))
-(((-580 |#1|) (-113) (-961)) (T -580))
-((-2276 (*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961)) (-5 *2 (-630 *4)))) (-2276 (*1 *2 *3 *1) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961)) (-5 *2 (-2 (|:| |mat| (-630 *4)) (|:| |vec| (-1177 *4)))))) (-2275 (*1 *2 *3) (-12 (-5 *3 (-630 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961)) (-5 *2 (-630 *4)))) (-2275 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *1)) (-5 *4 (-1177 *1)) (-4 *1 (-580 *5)) (-4 *5 (-961)) (-5 *2 (-2 (|:| |mat| (-630 *5)) (|:| |vec| (-1177 *5)))))))
-(-13 (-590 |t#1|) (-10 -8 (-15 -2276 ((-630 |t#1|) (-1177 $))) (-15 -2276 ((-2 (|:| |mat| (-630 |t#1|)) (|:| |vec| (-1177 |t#1|))) (-1177 $) $)) (-15 -2275 ((-630 |t#1|) (-630 $))) (-15 -2275 ((-2 (|:| |mat| (-630 |t#1|)) (|:| |vec| (-1177 |t#1|))) (-630 $) (-1177 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ "failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2277 (($ (-583 |#1|)) 23 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3794 ((|#1| $ (-579 |#1| |#2|)) 46 T ELT)) (-3905 (((-107)) 13 T ELT)) (-3219 (((-1177 |#1|) $) 42 T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 18 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#1|) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 14 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-581 |#1| |#2|) (-13 (-1185 |#1|) (-241 (-579 |#1| |#2|) |#1|) (-10 -8 (-15 -2277 ($ (-583 |#1|))) (-15 -3219 ((-1177 |#1|) $)))) (-311) (-583 (-1088))) (T -581))
-((-2277 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-311)) (-5 *1 (-581 *3 *4)) (-14 *4 (-583 (-1088))))) (-3219 (*1 *2 *1) (-12 (-5 *2 (-1177 *3)) (-5 *1 (-581 *3 *4)) (-4 *3 (-311)) (-14 *4 (-583 (-1088))))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT) (($ $ |#1|) 20 T ELT)))
-(((-582 |#1|) (-113) (-1024)) (T -582))
-NIL
-(-13 (-588 |t#1|) (-963 |t#1|))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 |#1|) . T) ((-963 |#1|) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3396 ((|#1| $) NIL T ELT)) (-3789 ((|#1| $) NIL T ELT)) (-3791 (($ $) NIL T ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-3779 (($ $ (-483)) 71 (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) $) NIL (|has| |#1| (-756)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1727 (($ $) NIL (-12 (|has| $ (-6 -3990)) (|has| |#1| (-756))) ELT) (($ (-1 (-85) |#1| |#1|) $) 68 (|has| $ (-6 -3990)) ELT)) (-2905 (($ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3436 (((-85) $ (-694)) NIL T ELT)) (-3021 ((|#1| $ |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3781 (($ $ $) 26 (|has| $ (-6 -3990)) ELT)) (-3780 ((|#1| $ |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3783 ((|#1| $ |#1|) 24 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3990)) ELT) ((|#1| $ #2="first" |#1|) 25 (|has| $ (-6 -3990)) ELT) (($ $ #3="rest" $) 27 (|has| $ (-6 -3990)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) NIL (|has| $ (-6 -3990)) ELT) ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) NIL (|has| $ (-6 -3990)) ELT)) (-2280 (($ $ $) 77 (|has| |#1| (-1012)) ELT)) (-2279 (($ $ $) 78 (|has| |#1| (-1012)) ELT)) (-2278 (($ $ $) 81 (|has| |#1| (-1012)) ELT)) (-1567 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3704 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3790 ((|#1| $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2293 (($ $) 31 (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) 32 T ELT)) (-3793 (($ $) 21 T ELT) (($ $ (-694)) 36 T ELT)) (-2364 (($ $) 66 (|has| |#1| (-1012)) ELT)) (-1350 (($ $) 76 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3399 (($ |#1| $) NIL (|has| |#1| (-1012)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3400 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1573 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) NIL T ELT)) (-3437 (((-85) $) NIL T ELT)) (-3413 (((-483) |#1| $ (-483)) NIL (|has| |#1| (-1012)) ELT) (((-483) |#1| $) NIL (|has| |#1| (-1012)) ELT) (((-483) (-1 (-85) |#1|) $) NIL T ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-2282 (((-85) $) 9 T ELT)) (-3027 (((-583 $) $) NIL T ELT)) (-3023 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-2283 (($) 7 T CONST)) (-3608 (($ (-694) |#1|) NIL T ELT)) (-3713 (((-85) $ (-694)) NIL T ELT)) (-2196 (((-483) $) 35 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2852 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 69 T ELT)) (-3512 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 64 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2197 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3528 (($ |#1|) NIL T ELT)) (-3710 (((-85) $ (-694)) NIL T ELT)) (-3026 (((-583 |#1|) $) NIL T ELT)) (-3521 (((-85) $) NIL T ELT)) (-3237 (((-1071) $) 62 (|has| |#1| (-1012)) ELT)) (-3792 ((|#1| $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3603 (($ $ $ (-483)) NIL T ELT) (($ |#1| $ (-483)) NIL T ELT)) (-2300 (($ $ $ (-483)) NIL T ELT) (($ |#1| $ (-483)) NIL T ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3795 ((|#1| $) 16 T ELT) (($ $ (-694)) NIL T ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2195 (($ $ |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3438 (((-85) $) NIL T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 15 T ELT)) (-2198 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) NIL T ELT)) (-3397 (((-85) $) 20 T ELT)) (-3559 (($) 19 T ELT)) (-3794 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) 18 T ELT) (($ $ #3#) 23 T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT) ((|#1| $ (-483)) 80 T ELT) ((|#1| $ (-483) |#1|) NIL T ELT)) (-3025 (((-483) $ $) NIL T ELT)) (-1568 (($ $ (-1144 (-483))) NIL T ELT) (($ $ (-483)) NIL T ELT)) (-2301 (($ $ (-1144 (-483))) NIL T ELT) (($ $ (-483)) NIL T ELT)) (-3627 (((-85) $) 39 T ELT)) (-3786 (($ $) NIL T ELT)) (-3784 (($ $) NIL (|has| $ (-6 -3990)) ELT)) (-3787 (((-694) $) NIL T ELT)) (-3788 (($ $) 44 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1728 (($ $ $ (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) 40 T ELT)) (-3966 (((-472) $) 89 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 29 T ELT)) (-3455 (($ |#1| $) 10 T ELT)) (-3785 (($ $ $) 65 T ELT) (($ $ |#1|) NIL T ELT)) (-3796 (($ $ $) 75 T ELT) (($ |#1| $) 14 T ELT) (($ (-583 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3940 (((-772) $) 54 (|has| |#1| (-552 (-772))) ELT)) (-3516 (((-583 $) $) NIL T ELT)) (-3024 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2281 (($ $ $) 11 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) 58 (|has| |#1| (-72)) ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3951 (((-694) $) 13 (|has| $ (-6 -3989)) ELT)))
-(((-583 |#1|) (-13 (-608 |#1|) (-10 -8 (-15 -2283 ($) -3946) (-15 -2282 ((-85) $)) (-15 -3455 ($ |#1| $)) (-15 -2281 ($ $ $)) (IF (|has| |#1| (-1012)) (PROGN (-15 -2280 ($ $ $)) (-15 -2279 ($ $ $)) (-15 -2278 ($ $ $))) |%noBranch|))) (-1127)) (T -583))
-((-2283 (*1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1127)))) (-2282 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-583 *3)) (-4 *3 (-1127)))) (-3455 (*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1127)))) (-2281 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1127)))) (-2280 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1012)) (-4 *2 (-1127)))) (-2279 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1012)) (-4 *2 (-1127)))) (-2278 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1012)) (-4 *2 (-1127)))))
-((-3835 (((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|) 16 T ELT)) (-3836 ((|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|) 18 T ELT)) (-3952 (((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)) 13 T ELT)))
-(((-584 |#1| |#2|) (-10 -7 (-15 -3835 ((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -3836 (|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -3952 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)))) (-1127) (-1127)) (T -584))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-583 *6)) (-5 *1 (-584 *5 *6)))) (-3836 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-583 *5)) (-4 *5 (-1127)) (-4 *2 (-1127)) (-5 *1 (-584 *5 *2)))) (-3835 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-583 *6)) (-4 *6 (-1127)) (-4 *5 (-1127)) (-5 *2 (-583 *5)) (-5 *1 (-584 *6 *5)))))
-((-3416 ((|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|) 17 T ELT) ((|#2| (-583 |#1|) (-583 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|)) 12 T ELT)))
-(((-585 |#1| |#2|) (-10 -7 (-15 -3416 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|))) (-15 -3416 (|#2| (-583 |#1|) (-583 |#2|) |#1|)) (-15 -3416 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|)) (-15 -3416 (|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|)) (-15 -3416 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|))) (-15 -3416 (|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|)))) (-1012) (-1127)) (T -585))
-((-3416 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1012)) (-4 *2 (-1127)) (-5 *1 (-585 *5 *2)))) (-3416 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1012)) (-4 *6 (-1127)) (-5 *1 (-585 *5 *6)))) (-3416 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1012)) (-4 *2 (-1127)) (-5 *1 (-585 *5 *2)))) (-3416 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 *5)) (-4 *6 (-1012)) (-4 *5 (-1127)) (-5 *2 (-1 *5 *6)) (-5 *1 (-585 *6 *5)))) (-3416 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1012)) (-4 *2 (-1127)) (-5 *1 (-585 *5 *2)))) (-3416 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1012)) (-4 *6 (-1127)) (-5 *2 (-1 *6 *5)) (-5 *1 (-585 *5 *6)))))
-((-3952 (((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)) 21 T ELT)))
-(((-586 |#1| |#2| |#3|) (-10 -7 (-15 -3952 ((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)))) (-1127) (-1127) (-1127)) (T -586))
-((-3952 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7)) (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-583 *8)) (-5 *1 (-586 *6 *7 *8)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 11 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-587 |#1|) (-13 (-994) (-552 |#1|)) (-1012)) (T -587))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT)))
-(((-588 |#1|) (-113) (-1024)) (T -588))
-((* (*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1024)))))
-(-13 (-1012) (-10 -8 (-15 * ($ |t#1| $))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2284 (($ |#1| |#1| $) 45 T ELT)) (-1567 (($ (-1 (-85) |#1|) $) 61 (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3718 (($) NIL T CONST)) (-2364 (($ $) 47 T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3399 (($ |#1| $) 58 (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) |#1|) $) 60 (|has| $ (-6 -3989)) ELT)) (-3400 (($ |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2885 (((-583 |#1|) $) 9 (|has| $ (-6 -3989)) ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 41 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-1271 ((|#1| $) 49 T ELT)) (-3603 (($ |#1| $) 30 T ELT) (($ |#1| $ (-694)) 44 T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1272 ((|#1| $) 52 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) 23 T ELT)) (-3559 (($) 29 T ELT)) (-2285 (((-85) $) 56 T ELT)) (-2363 (((-583 (-2 (|:| |entry| |#1|) (|:| -1943 (-694)))) $) 69 T ELT)) (-1463 (($) 26 T ELT) (($ (-583 |#1|)) 19 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 65 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) 20 T ELT)) (-3966 (((-472) $) 36 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) NIL T ELT)) (-3940 (((-772) $) 14 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1273 (($ (-583 |#1|)) 24 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 71 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 17 (|has| $ (-6 -3989)) ELT)))
-(((-589 |#1|) (-13 (-634 |#1|) (-10 -8 (-6 -3989) (-15 -2285 ((-85) $)) (-15 -2284 ($ |#1| |#1| $)))) (-1012)) (T -589))
-((-2285 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-589 *3)) (-4 *3 (-1012)))) (-2284 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1012)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ |#1| $) 32 T ELT)))
-(((-590 |#1|) (-113) (-969)) (T -590))
-NIL
-(-13 (-21) (-588 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3131 (((-694) $) 17 T ELT)) (-2291 (($ $ |#1|) 68 T ELT)) (-2293 (($ $) 39 T ELT)) (-2294 (($ $) 37 T ELT)) (-3152 (((-3 |#1| "failed") $) 60 T ELT)) (-3151 ((|#1| $) NIL T ELT)) (-2289 (($ |#1| |#2| $) 77 T ELT) (($ $ $) 79 T ELT)) (-3527 (((-772) $ (-1 (-772) (-772) (-772)) (-1 (-772) (-772) (-772)) (-483)) 55 T ELT)) (-2295 ((|#1| $ (-483)) 35 T ELT)) (-2296 ((|#2| $ (-483)) 34 T ELT)) (-2286 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-2287 (($ (-1 |#2| |#2|) $) 46 T ELT)) (-2292 (($) 13 T ELT)) (-2298 (($ |#1| |#2|) 24 T ELT)) (-2297 (($ (-583 (-2 (|:| |gen| |#1|) (|:| -3937 |#2|)))) 25 T ELT)) (-2299 (((-583 (-2 (|:| |gen| |#1|) (|:| -3937 |#2|))) $) 14 T ELT)) (-2290 (($ |#1| $) 69 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2288 (((-85) $ $) 74 T ELT)) (-3940 (((-772) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 27 T ELT)))
-(((-591 |#1| |#2| |#3|) (-13 (-1012) (-950 |#1|) (-10 -8 (-15 -3527 ((-772) $ (-1 (-772) (-772) (-772)) (-1 (-772) (-772) (-772)) (-483))) (-15 -2299 ((-583 (-2 (|:| |gen| |#1|) (|:| -3937 |#2|))) $)) (-15 -2298 ($ |#1| |#2|)) (-15 -2297 ($ (-583 (-2 (|:| |gen| |#1|) (|:| -3937 |#2|))))) (-15 -2296 (|#2| $ (-483))) (-15 -2295 (|#1| $ (-483))) (-15 -2294 ($ $)) (-15 -2293 ($ $)) (-15 -3131 ((-694) $)) (-15 -2292 ($)) (-15 -2291 ($ $ |#1|)) (-15 -2290 ($ |#1| $)) (-15 -2289 ($ |#1| |#2| $)) (-15 -2289 ($ $ $)) (-15 -2288 ((-85) $ $)) (-15 -2287 ($ (-1 |#2| |#2|) $)) (-15 -2286 ($ (-1 |#1| |#1|) $)))) (-1012) (-23) |#2|) (T -591))
-((-3527 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-772) (-772) (-772))) (-5 *4 (-483)) (-5 *2 (-772)) (-5 *1 (-591 *5 *6 *7)) (-4 *5 (-1012)) (-4 *6 (-23)) (-14 *7 *6))) (-2299 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3937 *4)))) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1012)) (-4 *4 (-23)) (-14 *5 *4))) (-2298 (*1 *1 *2 *3) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))) (-2297 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3937 *4)))) (-4 *3 (-1012)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-591 *3 *4 *5)))) (-2296 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *2 (-23)) (-5 *1 (-591 *4 *2 *5)) (-4 *4 (-1012)) (-14 *5 *2))) (-2295 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *2 (-1012)) (-5 *1 (-591 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2294 (*1 *1 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))) (-2293 (*1 *1 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))) (-3131 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1012)) (-4 *4 (-23)) (-14 *5 *4))) (-2292 (*1 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))) (-2291 (*1 *1 *1 *2) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))) (-2290 (*1 *1 *2 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))) (-2289 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))) (-2289 (*1 *1 *1 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))) (-2288 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1012)) (-4 *4 (-23)) (-14 *5 *4))) (-2287 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1012)))) (-2286 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1012)) (-5 *1 (-591 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-((-2197 (((-483) $) 30 T ELT)) (-2300 (($ |#2| $ (-483)) 26 T ELT) (($ $ $ (-483)) NIL T ELT)) (-2199 (((-583 (-483)) $) 12 T ELT)) (-2200 (((-85) (-483) $) 17 T ELT)) (-3796 (($ $ |#2|) 23 T ELT) (($ |#2| $) 24 T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)))
-(((-592 |#1| |#2|) (-10 -7 (-15 -2300 (|#1| |#1| |#1| (-483))) (-15 -2300 (|#1| |#2| |#1| (-483))) (-15 -3796 (|#1| (-583 |#1|))) (-15 -3796 (|#1| |#1| |#1|)) (-15 -3796 (|#1| |#2| |#1|)) (-15 -3796 (|#1| |#1| |#2|)) (-15 -2197 ((-483) |#1|)) (-15 -2199 ((-583 (-483)) |#1|)) (-15 -2200 ((-85) (-483) |#1|))) (-593 |#2|) (-1127)) (T -592))
-NIL
-((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2194 (((-1183) $ (-483) (-483)) 44 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ (-483) |#1|) 56 (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) 64 (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3989)) ELT)) (-3718 (($) 7 T CONST)) (-1350 (($ $) 84 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3400 (($ |#1| $) 83 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3989)) ELT)) (-1573 ((|#1| $ (-483) |#1|) 57 (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) 55 T ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-3608 (($ (-694) |#1|) 74 T ELT)) (-2196 (((-483) $) 47 (|has| (-483) (-756)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-2197 (((-483) $) 48 (|has| (-483) (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-2300 (($ |#1| $ (-483)) 66 T ELT) (($ $ $ (-483)) 65 T ELT)) (-2199 (((-583 (-483)) $) 50 T ELT)) (-2200 (((-85) (-483) $) 51 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-3795 ((|#1| $) 46 (|has| (-483) (-756)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2195 (($ $ |#1|) 45 (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-2198 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) 52 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#1| $ (-483) |#1|) 54 T ELT) ((|#1| $ (-483)) 53 T ELT) (($ $ (-1144 (-483))) 75 T ELT)) (-2301 (($ $ (-483)) 68 T ELT) (($ $ (-1144 (-483))) 67 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 85 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 76 T ELT)) (-3796 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-593 |#1|) (-113) (-1127)) (T -593))
-((-3608 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-4 *1 (-593 *3)) (-4 *3 (-1127)))) (-3796 (*1 *1 *1 *2) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1127)))) (-3796 (*1 *1 *2 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1127)))) (-3796 (*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1127)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-593 *3)) (-4 *3 (-1127)))) (-3952 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-593 *3)) (-4 *3 (-1127)))) (-2301 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-593 *3)) (-4 *3 (-1127)))) (-2301 (*1 *1 *1 *2) (-12 (-5 *2 (-1144 (-483))) (-4 *1 (-593 *3)) (-4 *3 (-1127)))) (-2300 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-593 *2)) (-4 *2 (-1127)))) (-2300 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-593 *3)) (-4 *3 (-1127)))) (-3782 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1144 (-483))) (|has| *1 (-6 -3990)) (-4 *1 (-593 *2)) (-4 *2 (-1127)))))
-(-13 (-538 (-483) |t#1|) (-124 |t#1|) (-241 (-1144 (-483)) $) (-10 -8 (-15 -3608 ($ (-694) |t#1|)) (-15 -3796 ($ $ |t#1|)) (-15 -3796 ($ |t#1| $)) (-15 -3796 ($ $ $)) (-15 -3796 ($ (-583 $))) (-15 -3952 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2301 ($ $ (-483))) (-15 -2301 ($ $ (-1144 (-483)))) (-15 -2300 ($ |t#1| $ (-483))) (-15 -2300 ($ $ $ (-483))) (IF (|has| $ (-6 -3990)) (-15 -3782 (|t#1| $ (-1144 (-483)) |t#1|)) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-241 (-483) |#1|) . T) ((-241 (-1144 (-483)) $) . T) ((-243 (-483) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-538 (-483) |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 15 T ELT)) (-1309 (((-3 $ "failed") $ $) NIL T ELT)) (-3617 (((-483) $) NIL (|has| |#1| (-714)) ELT)) (-3718 (($) NIL T CONST)) (-3181 (((-85) $) NIL (|has| |#1| (-714)) ELT)) (-2994 ((|#1| $) 23 T ELT)) (-3182 (((-85) $) NIL (|has| |#1| (-714)) ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-714)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-714)) ELT)) (-3237 (((-1071) $) 48 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2993 ((|#3| $) 24 T ELT)) (-3940 (((-772) $) 43 T ELT)) (-1262 (((-85) $ $) 22 T ELT)) (-3377 (($ $) NIL (|has| |#1| (-714)) ELT)) (-2656 (($) 10 T CONST)) (-2562 (((-85) $ $) NIL (|has| |#1| (-714)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-714)) ELT)) (-3052 (((-85) $ $) 20 T ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-714)) ELT)) (-2681 (((-85) $ $) 26 (|has| |#1| (-714)) ELT)) (-3943 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-3831 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 29 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT)))
-(((-594 |#1| |#2| |#3|) (-13 (-654 |#2|) (-10 -8 (IF (|has| |#1| (-714)) (-6 (-714)) |%noBranch|) (-15 -3943 ($ $ |#3|)) (-15 -3943 ($ |#1| |#3|)) (-15 -2994 (|#1| $)) (-15 -2993 (|#3| $)))) (-654 |#2|) (-146) (|SubsetCategory| (-663) |#2|)) (T -594))
-((-3943 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-594 *3 *4 *2)) (-4 *3 (-654 *4)) (-4 *2 (|SubsetCategory| (-663) *4)))) (-3943 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-594 *2 *4 *3)) (-4 *2 (-654 *4)) (-4 *3 (|SubsetCategory| (-663) *4)))) (-2994 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-654 *3)) (-5 *1 (-594 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-663) *3)))) (-2993 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-663) *4)) (-5 *1 (-594 *3 *4 *2)) (-4 *3 (-654 *4)))))
-((-3567 (((-3 |#2| #1="failed") |#3| |#2| (-1088) |#2| (-583 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2008 (-583 |#2|))) #1#) |#3| |#2| (-1088)) 44 T ELT)))
-(((-595 |#1| |#2| |#3|) (-10 -7 (-15 -3567 ((-3 (-2 (|:| |particular| |#2|) (|:| -2008 (-583 |#2|))) #1="failed") |#3| |#2| (-1088))) (-15 -3567 ((-3 |#2| #1#) |#3| |#2| (-1088) |#2| (-583 |#2|)))) (-13 (-257) (-950 (-483)) (-580 (-483)) (-120)) (-13 (-29 |#1|) (-1113) (-871)) (-600 |#2|)) (T -595))
-((-3567 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1113) (-871))) (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *1 (-595 *6 *2 *3)) (-4 *3 (-600 *2)))) (-3567 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1088)) (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-4 *4 (-13 (-29 *6) (-1113) (-871))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2008 (-583 *4)))) (-5 *1 (-595 *6 *4 *3)) (-4 *3 (-600 *4)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2302 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2304 (($ $ $) 28 (|has| |#1| (-311)) ELT)) (-2305 (($ $ (-694)) 31 (|has| |#1| (-311)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2532 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2529 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2531 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2545 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3152 (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3151 (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) NIL T ELT)) (-3953 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-389)) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-694)) NIL T ELT)) (-2543 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-494)) ELT)) (-2542 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-494)) ELT)) (-2816 (((-694) $) NIL T ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2528 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2536 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2537 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2544 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3169 ((|#1| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3460 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT)) (-3794 ((|#1| $ |#1|) 24 T ELT)) (-2306 (($ $ $) 33 (|has| |#1| (-311)) ELT)) (-3942 (((-694) $) NIL T ELT)) (-2813 ((|#1| $) NIL (|has| |#1| (-389)) ELT)) (-3940 (((-772) $) 20 T ELT) (($ (-483)) NIL T ELT) (($ (-347 (-483))) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (($ |#1|) NIL T ELT)) (-3811 (((-583 |#1|) $) NIL T ELT)) (-3671 ((|#1| $ (-694)) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2541 ((|#1| $ |#1| |#1|) 23 T ELT)) (-2516 (($ $) NIL T ELT)) (-2656 (($) 21 T CONST)) (-2662 (($) 8 T CONST)) (-2665 (($) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-596 |#1| |#2|) (-600 |#1|) (-961) (-1 |#1| |#1|)) (T -596))
-NIL
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2302 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2304 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2305 (($ $ (-694)) NIL (|has| |#1| (-311)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2532 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2529 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2531 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2545 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3152 (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3151 (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) NIL T ELT)) (-3953 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-389)) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-694)) NIL T ELT)) (-2543 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-494)) ELT)) (-2542 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-494)) ELT)) (-2816 (((-694) $) NIL T ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2528 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2536 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2537 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2544 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3169 ((|#1| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3460 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT)) (-3794 ((|#1| $ |#1|) NIL T ELT)) (-2306 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3942 (((-694) $) NIL T ELT)) (-2813 ((|#1| $) NIL (|has| |#1| (-389)) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-347 (-483))) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (($ |#1|) NIL T ELT)) (-3811 (((-583 |#1|) $) NIL T ELT)) (-3671 ((|#1| $ (-694)) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2541 ((|#1| $ |#1| |#1|) NIL T ELT)) (-2516 (($ $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-597 |#1|) (-600 |#1|) (-190)) (T -597))
-NIL
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2302 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2304 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2305 (($ $ (-694)) NIL (|has| |#1| (-311)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2532 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2529 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2531 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2545 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3152 (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3151 (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) NIL T ELT)) (-3953 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-389)) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-694)) NIL T ELT)) (-2543 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-494)) ELT)) (-2542 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-494)) ELT)) (-2816 (((-694) $) NIL T ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2528 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2536 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2537 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2544 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3169 ((|#1| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3460 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT)) (-3794 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-2306 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3942 (((-694) $) NIL T ELT)) (-2813 ((|#1| $) NIL (|has| |#1| (-389)) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-347 (-483))) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (($ |#1|) NIL T ELT)) (-3811 (((-583 |#1|) $) NIL T ELT)) (-3671 ((|#1| $ (-694)) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2541 ((|#1| $ |#1| |#1|) NIL T ELT)) (-2516 (($ $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-598 |#1| |#2|) (-13 (-600 |#1|) (-241 |#2| |#2|)) (-190) (-13 (-590 |#1|) (-10 -8 (-15 -3752 ($ $))))) (T -598))
-NIL
-((-2302 (($ $) 29 T ELT)) (-2516 (($ $) 27 T ELT)) (-2665 (($) 13 T ELT)))
-(((-599 |#1| |#2|) (-10 -7 (-15 -2302 (|#1| |#1|)) (-15 -2516 (|#1| |#1|)) (-15 -2665 (|#1|))) (-600 |#2|) (-961)) (T -599))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2302 (($ $) 94 (|has| |#1| (-311)) ELT)) (-2304 (($ $ $) 96 (|has| |#1| (-311)) ELT)) (-2305 (($ $ (-694)) 95 (|has| |#1| (-311)) ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-2532 (($ $ $) 56 (|has| |#1| (-311)) ELT)) (-2533 (($ $ $) 57 (|has| |#1| (-311)) ELT)) (-2534 (($ $ $) 59 (|has| |#1| (-311)) ELT)) (-2530 (($ $ $) 54 (|has| |#1| (-311)) ELT)) (-2529 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 53 (|has| |#1| (-311)) ELT)) (-2531 (((-3 $ #1="failed") $ $) 55 (|has| |#1| (-311)) ELT)) (-2545 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 58 (|has| |#1| (-311)) ELT)) (-3152 (((-3 (-483) #2="failed") $) 86 (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #2#) $) 83 (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #2#) $) 80 T ELT)) (-3151 (((-483) $) 85 (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) 82 (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) 81 T ELT)) (-3953 (($ $) 75 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3497 (($ $) 66 (|has| |#1| (-389)) ELT)) (-2406 (((-85) $) 42 T ELT)) (-2889 (($ |#1| (-694)) 73 T ELT)) (-2543 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 68 (|has| |#1| (-494)) ELT)) (-2542 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 69 (|has| |#1| (-494)) ELT)) (-2816 (((-694) $) 77 T ELT)) (-2538 (($ $ $) 63 (|has| |#1| (-311)) ELT)) (-2539 (($ $ $) 64 (|has| |#1| (-311)) ELT)) (-2528 (($ $ $) 52 (|has| |#1| (-311)) ELT)) (-2536 (($ $ $) 61 (|has| |#1| (-311)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 60 (|has| |#1| (-311)) ELT)) (-2537 (((-3 $ #1#) $ $) 62 (|has| |#1| (-311)) ELT)) (-2544 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 65 (|has| |#1| (-311)) ELT)) (-3169 ((|#1| $) 76 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3460 (((-3 $ #1#) $ |#1|) 70 (|has| |#1| (-494)) ELT)) (-3794 ((|#1| $ |#1|) 99 T ELT)) (-2306 (($ $ $) 93 (|has| |#1| (-311)) ELT)) (-3942 (((-694) $) 78 T ELT)) (-2813 ((|#1| $) 67 (|has| |#1| (-389)) ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ (-347 (-483))) 84 (|has| |#1| (-950 (-347 (-483)))) ELT) (($ |#1|) 79 T ELT)) (-3811 (((-583 |#1|) $) 72 T ELT)) (-3671 ((|#1| $ (-694)) 74 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2541 ((|#1| $ |#1| |#1|) 71 T ELT)) (-2516 (($ $) 97 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($) 98 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT)))
-(((-600 |#1|) (-113) (-961)) (T -600))
-((-2665 (*1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)))) (-2516 (*1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)))) (-2304 (*1 *1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-311)))) (-2305 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-600 *3)) (-4 *3 (-961)) (-4 *3 (-311)))) (-2302 (*1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-311)))) (-2306 (*1 *1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-311)))))
-(-13 (-761 |t#1|) (-241 |t#1| |t#1|) (-10 -8 (-15 -2665 ($)) (-15 -2516 ($ $)) (IF (|has| |t#1| (-311)) (PROGN (-15 -2304 ($ $ $)) (-15 -2305 ($ $ (-694))) (-15 -2302 ($ $)) (-15 -2306 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 (-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((-555 (-483)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-241 |#1| |#1|) . T) ((-352 |#1|) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-663) . T) ((-950 (-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((-950 (-483)) |has| |#1| (-950 (-483))) ((-950 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-761 |#1|) . T))
-((-2303 (((-583 (-597 (-347 |#2|))) (-597 (-347 |#2|))) 86 (|has| |#1| (-27)) ELT)) (-3726 (((-583 (-597 (-347 |#2|))) (-597 (-347 |#2|))) 85 (|has| |#1| (-27)) ELT) (((-583 (-597 (-347 |#2|))) (-597 (-347 |#2|)) (-1 (-583 |#1|) |#2|)) 19 T ELT)))
-(((-601 |#1| |#2|) (-10 -7 (-15 -3726 ((-583 (-597 (-347 |#2|))) (-597 (-347 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3726 ((-583 (-597 (-347 |#2|))) (-597 (-347 |#2|)))) (-15 -2303 ((-583 (-597 (-347 |#2|))) (-597 (-347 |#2|))))) |%noBranch|)) (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483)))) (-1153 |#1|)) (T -601))
-((-2303 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-4 *5 (-1153 *4)) (-5 *2 (-583 (-597 (-347 *5)))) (-5 *1 (-601 *4 *5)) (-5 *3 (-597 (-347 *5))))) (-3726 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-4 *5 (-1153 *4)) (-5 *2 (-583 (-597 (-347 *5)))) (-5 *1 (-601 *4 *5)) (-5 *3 (-597 (-347 *5))))) (-3726 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-4 *6 (-1153 *5)) (-5 *2 (-583 (-597 (-347 *6)))) (-5 *1 (-601 *5 *6)) (-5 *3 (-597 (-347 *6))))))
-((-2304 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-2305 ((|#2| |#2| (-694) (-1 |#1| |#1|)) 45 T ELT)) (-2306 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT)))
-(((-602 |#1| |#2|) (-10 -7 (-15 -2304 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2305 (|#2| |#2| (-694) (-1 |#1| |#1|))) (-15 -2306 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-311) (-600 |#1|)) (T -602))
-((-2306 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-311)) (-5 *1 (-602 *4 *2)) (-4 *2 (-600 *4)))) (-2305 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-694)) (-5 *4 (-1 *5 *5)) (-4 *5 (-311)) (-5 *1 (-602 *5 *2)) (-4 *2 (-600 *5)))) (-2304 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-311)) (-5 *1 (-602 *4 *2)) (-4 *2 (-600 *4)))))
-((-2307 (($ $ $) 9 T ELT)))
-(((-603 |#1|) (-10 -7 (-15 -2307 (|#1| |#1| |#1|))) (-604)) (T -603))
-NIL
-((-2309 (($ $) 8 T ELT)) (-2307 (($ $ $) 6 T ELT)) (-2308 (($ $ $) 7 T ELT)))
-(((-604) (-113)) (T -604))
-((-2309 (*1 *1 *1) (-4 *1 (-604))) (-2308 (*1 *1 *1 *1) (-4 *1 (-604))) (-2307 (*1 *1 *1 *1) (-4 *1 (-604))))
-(-13 (-1127) (-10 -8 (-15 -2309 ($ $)) (-15 -2308 ($ $ $)) (-15 -2307 ($ $ $))))
-(((-13) . T) ((-1127) . T))
-((-2310 (((-3 (-583 (-1083 |#1|)) "failed") (-583 (-1083 |#1|)) (-1083 |#1|)) 33 T ELT)))
-(((-605 |#1|) (-10 -7 (-15 -2310 ((-3 (-583 (-1083 |#1|)) "failed") (-583 (-1083 |#1|)) (-1083 |#1|)))) (-821)) (T -605))
-((-2310 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1083 *4))) (-5 *3 (-1083 *4)) (-4 *4 (-821)) (-5 *1 (-605 *4)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3928 (((-583 |#1|) $) 85 T ELT)) (-3941 (($ $ (-694)) 95 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3933 (((-1202 |#1| |#2|) (-1202 |#1| |#2|) $) 50 T ELT)) (-3152 (((-3 (-614 |#1|) #1#) $) NIL T ELT)) (-3151 (((-614 |#1|) $) NIL T ELT)) (-3953 (($ $) 94 T ELT)) (-2416 (((-694) $) NIL T ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3932 (($ (-614 |#1|) |#2|) 70 T ELT)) (-3930 (($ $) 90 T ELT)) (-3952 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3934 (((-1202 |#1| |#2|) (-1202 |#1| |#2|) $) 49 T ELT)) (-1746 (((-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2890 (((-614 |#1|) $) NIL T ELT)) (-3169 ((|#2| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3762 (($ $ |#1| $) 32 T ELT) (($ $ (-583 |#1|) (-583 $)) 34 T ELT)) (-3942 (((-694) $) 92 T ELT)) (-3524 (($ $ $) 20 T ELT) (($ (-614 |#1|) (-614 |#1|)) 79 T ELT) (($ (-614 |#1|) $) 77 T ELT) (($ $ (-614 |#1|)) 78 T ELT)) (-3940 (((-772) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1193 |#1| |#2|) $) 60 T ELT) (((-1202 |#1| |#2|) $) 43 T ELT) (($ (-614 |#1|)) 27 T ELT)) (-3811 (((-583 |#2|) $) NIL T ELT)) (-3671 ((|#2| $ (-614 |#1|)) NIL T ELT)) (-3948 ((|#2| (-1202 |#1| |#2|) $) 45 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 23 T CONST)) (-2661 (((-583 (-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3939 (((-3 $ #1#) (-1193 |#1| |#2|)) 62 T ELT)) (-1730 (($ (-614 |#1|)) 14 T ELT)) (-3052 (((-85) $ $) 46 T ELT)) (-3943 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3831 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 31 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-614 |#1|)) NIL T ELT)))
-(((-606 |#1| |#2|) (-13 (-323 |#1| |#2|) (-332 |#2| (-614 |#1|)) (-10 -8 (-15 -3939 ((-3 $ "failed") (-1193 |#1| |#2|))) (-15 -3524 ($ (-614 |#1|) (-614 |#1|))) (-15 -3524 ($ (-614 |#1|) $)) (-15 -3524 ($ $ (-614 |#1|))))) (-756) (-146)) (T -606))
-((-3939 (*1 *1 *2) (|partial| -12 (-5 *2 (-1193 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *1 (-606 *3 *4)))) (-3524 (*1 *1 *2 *2) (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146)))) (-3524 (*1 *1 *2 *1) (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146)))) (-3524 (*1 *1 *1 *2) (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146)))))
-((-1729 (((-85) $) NIL T ELT) (((-85) (-1 (-85) |#2| |#2|) $) 59 T ELT)) (-1727 (($ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $) 12 T ELT)) (-1567 (($ (-1 (-85) |#2|) $) 29 T ELT)) (-2293 (($ $) 65 T ELT)) (-2364 (($ $) 74 T ELT)) (-3399 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 43 T ELT)) (-3836 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-3413 (((-483) |#2| $ (-483)) 71 T ELT) (((-483) |#2| $) NIL T ELT) (((-483) (-1 (-85) |#2|) $) 54 T ELT)) (-3608 (($ (-694) |#2|) 63 T ELT)) (-2852 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 31 T ELT)) (-3512 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 24 T ELT)) (-3952 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-3528 (($ |#2|) 15 T ELT)) (-3603 (($ $ $ (-483)) 42 T ELT) (($ |#2| $ (-483)) 40 T ELT)) (-1351 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 53 T ELT)) (-1568 (($ $ (-1144 (-483))) 51 T ELT) (($ $ (-483)) 44 T ELT)) (-1728 (($ $ $ (-483)) 70 T ELT)) (-3394 (($ $) 68 T ELT)) (-2681 (((-85) $ $) 76 T ELT)))
-(((-607 |#1| |#2|) (-10 -7 (-15 -3528 (|#1| |#2|)) (-15 -1568 (|#1| |#1| (-483))) (-15 -1568 (|#1| |#1| (-1144 (-483)))) (-15 -3399 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3603 (|#1| |#2| |#1| (-483))) (-15 -3603 (|#1| |#1| |#1| (-483))) (-15 -2852 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1567 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3399 (|#1| |#2| |#1|)) (-15 -2364 (|#1| |#1|)) (-15 -2852 (|#1| |#1| |#1|)) (-15 -3512 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1729 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3413 ((-483) (-1 (-85) |#2|) |#1|)) (-15 -3413 ((-483) |#2| |#1|)) (-15 -3413 ((-483) |#2| |#1| (-483))) (-15 -3512 (|#1| |#1| |#1|)) (-15 -1729 ((-85) |#1|)) (-15 -1728 (|#1| |#1| |#1| (-483))) (-15 -2293 (|#1| |#1|)) (-15 -1727 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1727 (|#1| |#1|)) (-15 -2681 ((-85) |#1| |#1|)) (-15 -3836 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3836 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3836 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1351 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3608 (|#1| (-694) |#2|)) (-15 -3952 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3952 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3394 (|#1| |#1|))) (-608 |#2|) (-1127)) (T -607))
-NIL
-((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3396 ((|#1| $) 52 T ELT)) (-3789 ((|#1| $) 71 T ELT)) (-3791 (($ $) 73 T ELT)) (-2194 (((-1183) $ (-483) (-483)) 107 (|has| $ (-6 -3990)) ELT)) (-3779 (($ $ (-483)) 58 (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) $) 153 (|has| |#1| (-756)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) 147 T ELT)) (-1727 (($ $) 157 (-12 (|has| |#1| (-756)) (|has| $ (-6 -3990))) ELT) (($ (-1 (-85) |#1| |#1|) $) 156 (|has| $ (-6 -3990)) ELT)) (-2905 (($ $) 152 (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $) 146 T ELT)) (-3436 (((-85) $ (-694)) 90 T ELT)) (-3021 ((|#1| $ |#1|) 43 (|has| $ (-6 -3990)) ELT)) (-3781 (($ $ $) 62 (|has| $ (-6 -3990)) ELT)) (-3780 ((|#1| $ |#1|) 60 (|has| $ (-6 -3990)) ELT)) (-3783 ((|#1| $ |#1|) 64 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3990)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3990)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3990)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) 127 (|has| $ (-6 -3990)) ELT) ((|#1| $ (-483) |#1|) 96 (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) 45 (|has| $ (-6 -3990)) ELT)) (-1567 (($ (-1 (-85) |#1|) $) 140 T ELT)) (-3704 (($ (-1 (-85) |#1|) $) 112 (|has| $ (-6 -3989)) ELT)) (-3790 ((|#1| $) 72 T ELT)) (-3718 (($) 7 T CONST)) (-2293 (($ $) 155 (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) 145 T ELT)) (-3793 (($ $) 79 T ELT) (($ $ (-694)) 77 T ELT)) (-2364 (($ $) 142 (|has| |#1| (-1012)) ELT)) (-1350 (($ $) 109 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3399 (($ |#1| $) 141 (|has| |#1| (-1012)) ELT) (($ (-1 (-85) |#1|) $) 136 T ELT)) (-3400 (($ (-1 (-85) |#1|) $) 113 (|has| $ (-6 -3989)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1573 ((|#1| $ (-483) |#1|) 95 (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) 97 T ELT)) (-3437 (((-85) $) 93 T ELT)) (-3413 (((-483) |#1| $ (-483)) 150 (|has| |#1| (-1012)) ELT) (((-483) |#1| $) 149 (|has| |#1| (-1012)) ELT) (((-483) (-1 (-85) |#1|) $) 148 T ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-3027 (((-583 $) $) 54 T ELT)) (-3023 (((-85) $ $) 46 (|has| |#1| (-1012)) ELT)) (-3608 (($ (-694) |#1|) 119 T ELT)) (-3713 (((-85) $ (-694)) 91 T ELT)) (-2196 (((-483) $) 105 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) 163 (|has| |#1| (-756)) ELT)) (-2852 (($ $ $) 143 (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 139 T ELT)) (-3512 (($ $ $) 151 (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 144 T ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-2197 (((-483) $) 104 (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) 162 (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3528 (($ |#1|) 133 T ELT)) (-3710 (((-85) $ (-694)) 92 T ELT)) (-3026 (((-583 |#1|) $) 49 T ELT)) (-3521 (((-85) $) 53 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3792 ((|#1| $) 76 T ELT) (($ $ (-694)) 74 T ELT)) (-3603 (($ $ $ (-483)) 138 T ELT) (($ |#1| $ (-483)) 137 T ELT)) (-2300 (($ $ $ (-483)) 126 T ELT) (($ |#1| $ (-483)) 125 T ELT)) (-2199 (((-583 (-483)) $) 102 T ELT)) (-2200 (((-85) (-483) $) 101 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-3795 ((|#1| $) 82 T ELT) (($ $ (-694)) 80 T ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2195 (($ $ |#1|) 106 (|has| $ (-6 -3990)) ELT)) (-3438 (((-85) $) 94 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-2198 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) 100 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1144 (-483))) 118 T ELT) ((|#1| $ (-483)) 99 T ELT) ((|#1| $ (-483) |#1|) 98 T ELT)) (-3025 (((-483) $ $) 48 T ELT)) (-1568 (($ $ (-1144 (-483))) 135 T ELT) (($ $ (-483)) 134 T ELT)) (-2301 (($ $ (-1144 (-483))) 124 T ELT) (($ $ (-483)) 123 T ELT)) (-3627 (((-85) $) 50 T ELT)) (-3786 (($ $) 68 T ELT)) (-3784 (($ $) 65 (|has| $ (-6 -3990)) ELT)) (-3787 (((-694) $) 69 T ELT)) (-3788 (($ $) 70 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1728 (($ $ $ (-483)) 154 (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 108 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 117 T ELT)) (-3785 (($ $ $) 67 T ELT) (($ $ |#1|) 66 T ELT)) (-3796 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-583 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3516 (((-583 $) $) 55 T ELT)) (-3024 (((-85) $ $) 47 (|has| |#1| (-1012)) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) 161 (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) 159 (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2680 (((-85) $ $) 160 (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) 158 (|has| |#1| (-756)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-608 |#1|) (-113) (-1127)) (T -608))
-((-3528 (*1 *1 *2) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1127)))))
-(-13 (-1062 |t#1|) (-321 |t#1|) (-237 |t#1|) (-10 -8 (-15 -3528 ($ |t#1|))))
-(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-756)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-756)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-241 (-483) |#1|) . T) ((-241 (-1144 (-483)) $) . T) ((-243 (-483) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-237 |#1|) . T) ((-321 |#1|) . T) ((-426 |#1|) . T) ((-538 (-483) |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-593 |#1|) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-923 |#1|) . T) ((-1012) OR (|has| |#1| (-1012)) (|has| |#1| (-756))) ((-1062 |#1|) . T) ((-1127) . T) ((-1166 |#1|) . T))
-((-3567 (((-583 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2008 (-583 |#3|)))) |#4| (-583 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2008 (-583 |#3|))) |#4| |#3|) 60 T ELT)) (-3104 (((-694) |#4| |#3|) 18 T ELT)) (-3334 (((-3 |#3| #1#) |#4| |#3|) 21 T ELT)) (-2311 (((-85) |#4| |#3|) 14 T ELT)))
-(((-609 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3567 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2008 (-583 |#3|))) |#4| |#3|)) (-15 -3567 ((-583 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2008 (-583 |#3|)))) |#4| (-583 |#3|))) (-15 -3334 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2311 ((-85) |#4| |#3|)) (-15 -3104 ((-694) |#4| |#3|))) (-311) (-13 (-321 |#1|) (-10 -7 (-6 -3990))) (-13 (-321 |#1|) (-10 -7 (-6 -3990))) (-627 |#1| |#2| |#3|)) (T -609))
-((-3104 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-4 *6 (-13 (-321 *5) (-10 -7 (-6 -3990)))) (-4 *4 (-13 (-321 *5) (-10 -7 (-6 -3990)))) (-5 *2 (-694)) (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) (-2311 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-4 *6 (-13 (-321 *5) (-10 -7 (-6 -3990)))) (-4 *4 (-13 (-321 *5) (-10 -7 (-6 -3990)))) (-5 *2 (-85)) (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) (-3334 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-311)) (-4 *5 (-13 (-321 *4) (-10 -7 (-6 -3990)))) (-4 *2 (-13 (-321 *4) (-10 -7 (-6 -3990)))) (-5 *1 (-609 *4 *5 *2 *3)) (-4 *3 (-627 *4 *5 *2)))) (-3567 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-4 *6 (-13 (-321 *5) (-10 -7 (-6 -3990)))) (-4 *7 (-13 (-321 *5) (-10 -7 (-6 -3990)))) (-5 *2 (-583 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2008 (-583 *7))))) (-5 *1 (-609 *5 *6 *7 *3)) (-5 *4 (-583 *7)) (-4 *3 (-627 *5 *6 *7)))) (-3567 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-4 *6 (-13 (-321 *5) (-10 -7 (-6 -3990)))) (-4 *4 (-13 (-321 *5) (-10 -7 (-6 -3990)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2008 (-583 *4)))) (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))))
-((-3567 (((-583 (-2 (|:| |particular| (-3 (-1177 |#1|) #1="failed")) (|:| -2008 (-583 (-1177 |#1|))))) (-583 (-583 |#1|)) (-583 (-1177 |#1|))) 22 T ELT) (((-583 (-2 (|:| |particular| (-3 (-1177 |#1|) #1#)) (|:| -2008 (-583 (-1177 |#1|))))) (-630 |#1|) (-583 (-1177 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1177 |#1|) #1#)) (|:| -2008 (-583 (-1177 |#1|)))) (-583 (-583 |#1|)) (-1177 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1177 |#1|) #1#)) (|:| -2008 (-583 (-1177 |#1|)))) (-630 |#1|) (-1177 |#1|)) 14 T ELT)) (-3104 (((-694) (-630 |#1|) (-1177 |#1|)) 30 T ELT)) (-3334 (((-3 (-1177 |#1|) #1#) (-630 |#1|) (-1177 |#1|)) 24 T ELT)) (-2311 (((-85) (-630 |#1|) (-1177 |#1|)) 27 T ELT)))
-(((-610 |#1|) (-10 -7 (-15 -3567 ((-2 (|:| |particular| (-3 (-1177 |#1|) #1="failed")) (|:| -2008 (-583 (-1177 |#1|)))) (-630 |#1|) (-1177 |#1|))) (-15 -3567 ((-2 (|:| |particular| (-3 (-1177 |#1|) #1#)) (|:| -2008 (-583 (-1177 |#1|)))) (-583 (-583 |#1|)) (-1177 |#1|))) (-15 -3567 ((-583 (-2 (|:| |particular| (-3 (-1177 |#1|) #1#)) (|:| -2008 (-583 (-1177 |#1|))))) (-630 |#1|) (-583 (-1177 |#1|)))) (-15 -3567 ((-583 (-2 (|:| |particular| (-3 (-1177 |#1|) #1#)) (|:| -2008 (-583 (-1177 |#1|))))) (-583 (-583 |#1|)) (-583 (-1177 |#1|)))) (-15 -3334 ((-3 (-1177 |#1|) #1#) (-630 |#1|) (-1177 |#1|))) (-15 -2311 ((-85) (-630 |#1|) (-1177 |#1|))) (-15 -3104 ((-694) (-630 |#1|) (-1177 |#1|)))) (-311)) (T -610))
-((-3104 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *5)) (-5 *4 (-1177 *5)) (-4 *5 (-311)) (-5 *2 (-694)) (-5 *1 (-610 *5)))) (-2311 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *5)) (-5 *4 (-1177 *5)) (-4 *5 (-311)) (-5 *2 (-85)) (-5 *1 (-610 *5)))) (-3334 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1177 *4)) (-5 *3 (-630 *4)) (-4 *4 (-311)) (-5 *1 (-610 *4)))) (-3567 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-311)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1177 *5) #1="failed")) (|:| -2008 (-583 (-1177 *5)))))) (-5 *1 (-610 *5)) (-5 *4 (-583 (-1177 *5))))) (-3567 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *5)) (-4 *5 (-311)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1177 *5) #1#)) (|:| -2008 (-583 (-1177 *5)))))) (-5 *1 (-610 *5)) (-5 *4 (-583 (-1177 *5))))) (-3567 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-311)) (-5 *2 (-2 (|:| |particular| (-3 (-1177 *5) #1#)) (|:| -2008 (-583 (-1177 *5))))) (-5 *1 (-610 *5)) (-5 *4 (-1177 *5)))) (-3567 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| |particular| (-3 (-1177 *5) #1#)) (|:| -2008 (-583 (-1177 *5))))) (-5 *1 (-610 *5)) (-5 *4 (-1177 *5)))))
-((-2312 (((-2 (|:| |particular| (-3 (-1177 (-347 |#4|)) "failed")) (|:| -2008 (-583 (-1177 (-347 |#4|))))) (-583 |#4|) (-583 |#3|)) 51 T ELT)))
-(((-611 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2312 ((-2 (|:| |particular| (-3 (-1177 (-347 |#4|)) "failed")) (|:| -2008 (-583 (-1177 (-347 |#4|))))) (-583 |#4|) (-583 |#3|)))) (-494) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -611))
-((-2312 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *7)) (-4 *7 (-756)) (-4 *8 (-861 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-717)) (-5 *2 (-2 (|:| |particular| (-3 (-1177 (-347 *8)) "failed")) (|:| -2008 (-583 (-1177 (-347 *8)))))) (-5 *1 (-611 *5 *6 *7 *8)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1769 (((-3 $ #1="failed")) NIL (|has| |#2| (-494)) ELT)) (-3324 ((|#2| $) NIL T ELT)) (-3116 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1#) $ $) NIL T ELT)) (-3218 (((-1177 (-630 |#2|))) NIL T ELT) (((-1177 (-630 |#2|)) (-1177 $)) NIL T ELT)) (-3118 (((-85) $) NIL T ELT)) (-1726 (((-1177 $)) 41 T ELT)) (-3327 (($ |#2|) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3105 (($ $) NIL (|has| |#2| (-257)) ELT)) (-3107 (((-197 |#1| |#2|) $ (-483)) NIL T ELT)) (-1903 (((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) #1#)) NIL (|has| |#2| (-494)) ELT)) (-1700 (((-3 $ #1#)) NIL (|has| |#2| (-494)) ELT)) (-1785 (((-630 |#2|)) NIL T ELT) (((-630 |#2|) (-1177 $)) NIL T ELT)) (-1724 ((|#2| $) NIL T ELT)) (-1783 (((-630 |#2|) $) NIL T ELT) (((-630 |#2|) $ (-1177 $)) NIL T ELT)) (-2400 (((-3 $ #1#) $) NIL (|has| |#2| (-494)) ELT)) (-1897 (((-1083 (-857 |#2|))) NIL (|has| |#2| (-311)) ELT)) (-2403 (($ $ (-830)) NIL T ELT)) (-1722 ((|#2| $) NIL T ELT)) (-1702 (((-1083 |#2|) $) NIL (|has| |#2| (-494)) ELT)) (-1787 ((|#2|) NIL T ELT) ((|#2| (-1177 $)) NIL T ELT)) (-1720 (((-1083 |#2|) $) NIL T ELT)) (-1714 (((-85)) NIL T ELT)) (-3152 (((-3 (-483) #1#) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3151 (((-483) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) ((|#2| $) NIL T ELT)) (-1789 (($ (-1177 |#2|)) NIL T ELT) (($ (-1177 |#2|) (-1177 $)) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3104 (((-694) $) NIL (|has| |#2| (-494)) ELT) (((-830)) 42 T ELT)) (-3108 ((|#2| $ (-483) (-483)) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-2429 (($ $ (-830)) NIL T ELT)) (-2885 (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2406 (((-85) $) NIL T ELT)) (-3103 (((-694) $) NIL (|has| |#2| (-494)) ELT)) (-3102 (((-583 (-197 |#1| |#2|)) $) NIL (|has| |#2| (-494)) ELT)) (-3110 (((-694) $) NIL T ELT)) (-1707 (((-85)) NIL T ELT)) (-3109 (((-694) $) NIL T ELT)) (-3321 ((|#2| $) NIL (|has| |#2| (-6 (-3991 #2="*"))) ELT)) (-3114 (((-483) $) NIL T ELT)) (-3112 (((-483) $) NIL T ELT)) (-2604 (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-3113 (((-483) $) NIL T ELT)) (-3111 (((-483) $) NIL T ELT)) (-3119 (($ (-583 (-583 |#2|))) NIL T ELT)) (-1946 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3588 (((-583 (-583 |#2|)) $) NIL T ELT)) (-1705 (((-85)) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2008 (-583 $))) #1#)) NIL (|has| |#2| (-494)) ELT)) (-1701 (((-3 $ #1#)) NIL (|has| |#2| (-494)) ELT)) (-1786 (((-630 |#2|)) NIL T ELT) (((-630 |#2|) (-1177 $)) NIL T ELT)) (-1725 ((|#2| $) NIL T ELT)) (-1784 (((-630 |#2|) $) NIL T ELT) (((-630 |#2|) $ (-1177 $)) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL T ELT) (((-630 |#2|) (-1177 $)) NIL T ELT)) (-2401 (((-3 $ #1#) $) NIL (|has| |#2| (-494)) ELT)) (-1901 (((-1083 (-857 |#2|))) NIL (|has| |#2| (-311)) ELT)) (-2402 (($ $ (-830)) NIL T ELT)) (-1723 ((|#2| $) NIL T ELT)) (-1703 (((-1083 |#2|) $) NIL (|has| |#2| (-494)) ELT)) (-1788 ((|#2|) NIL T ELT) ((|#2| (-1177 $)) NIL T ELT)) (-1721 (((-1083 |#2|) $) NIL T ELT)) (-1715 (((-85)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1706 (((-85)) NIL T ELT)) (-1708 (((-85)) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-3584 (((-3 $ #1#) $) NIL (|has| |#2| (-311)) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1713 (((-85)) NIL T ELT)) (-3460 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-494)) ELT)) (-1944 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#2| $ (-483) (-483) |#2|) NIL T ELT) ((|#2| $ (-483) (-483)) 27 T ELT) ((|#2| $ (-483)) NIL T ELT)) (-3752 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1088)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#2| (-811 (-1088))) ELT)) (-3323 ((|#2| $) NIL T ELT)) (-3326 (($ (-583 |#2|)) NIL T ELT)) (-3117 (((-85) $) NIL T ELT)) (-3325 (((-197 |#1| |#2|) $) NIL T ELT)) (-3322 ((|#2| $) NIL (|has| |#2| (-6 (-3991 #2#))) ELT)) (-1943 (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3219 (((-630 |#2|) (-1177 $)) NIL T ELT) (((-1177 |#2|) $) NIL T ELT) (((-630 |#2|) (-1177 $) (-1177 $)) NIL T ELT) (((-1177 |#2|) $ (-1177 $)) 30 T ELT)) (-3966 (($ (-1177 |#2|)) NIL T ELT) (((-1177 |#2|) $) NIL T ELT)) (-1889 (((-583 (-857 |#2|))) NIL T ELT) (((-583 (-857 |#2|)) (-1177 $)) NIL T ELT)) (-2431 (($ $ $) NIL T ELT)) (-1719 (((-85)) NIL T ELT)) (-3106 (((-197 |#1| |#2|) $ (-483)) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-347 (-483))) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) (($ |#2|) NIL T ELT) (((-630 |#2|) $) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) 40 T ELT)) (-1704 (((-583 (-1177 |#2|))) NIL (|has| |#2| (-494)) ELT)) (-2432 (($ $ $ $) NIL T ELT)) (-1717 (((-85)) NIL T ELT)) (-2541 (($ (-630 |#2|) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3115 (((-85) $) NIL T ELT)) (-2430 (($ $ $) NIL T ELT)) (-1718 (((-85)) NIL T ELT)) (-1716 (((-85)) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1088)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#2| (-811 (-1088))) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL (|has| |#2| (-311)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-197 |#1| |#2|) $ (-197 |#1| |#2|)) NIL T ELT) (((-197 |#1| |#2|) (-197 |#1| |#2|) $) NIL T ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-612 |#1| |#2|) (-13 (-1035 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-552 (-630 |#2|)) (-358 |#2|)) (-830) (-146)) (T -612))
-NIL
-((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3243 (((-583 (-1047)) $) 12 T ELT)) (-3940 (((-772) $) 18 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-613) (-13 (-994) (-10 -8 (-15 -3243 ((-583 (-1047)) $))))) (T -613))
-((-3243 (*1 *2 *1) (-12 (-5 *2 (-583 (-1047))) (-5 *1 (-613)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3928 (((-583 |#1|) $) NIL T ELT)) (-3132 (($ $) 62 T ELT)) (-2660 (((-85) $) NIL T ELT)) (-3152 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-2315 (((-3 $ #1#) (-739 |#1|)) 28 T ELT)) (-2317 (((-85) (-739 |#1|)) 18 T ELT)) (-2316 (($ (-739 |#1|)) 29 T ELT)) (-2507 (((-85) $ $) 36 T ELT)) (-3827 (((-830) $) 43 T ELT)) (-3133 (($ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3726 (((-583 $) (-739 |#1|)) 20 T ELT)) (-3940 (((-772) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-739 |#1|) $) 47 T ELT) (((-618 |#1|) $) 52 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2314 (((-58 (-583 $)) (-583 |#1|) (-830)) 67 T ELT)) (-2313 (((-583 $) (-583 |#1|) (-830)) 70 T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 63 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 46 T ELT)))
-(((-614 |#1|) (-13 (-756) (-950 |#1|) (-10 -8 (-15 -2660 ((-85) $)) (-15 -3133 ($ $)) (-15 -3132 ($ $)) (-15 -3827 ((-830) $)) (-15 -2507 ((-85) $ $)) (-15 -3940 ((-739 |#1|) $)) (-15 -3940 ((-618 |#1|) $)) (-15 -3726 ((-583 $) (-739 |#1|))) (-15 -2317 ((-85) (-739 |#1|))) (-15 -2316 ($ (-739 |#1|))) (-15 -2315 ((-3 $ "failed") (-739 |#1|))) (-15 -3928 ((-583 |#1|) $)) (-15 -2314 ((-58 (-583 $)) (-583 |#1|) (-830))) (-15 -2313 ((-583 $) (-583 |#1|) (-830))))) (-756)) (T -614))
-((-2660 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-3133 (*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-756)))) (-3132 (*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-756)))) (-3827 (*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-2507 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-3726 (*1 *2 *3) (-12 (-5 *3 (-739 *4)) (-4 *4 (-756)) (-5 *2 (-583 (-614 *4))) (-5 *1 (-614 *4)))) (-2317 (*1 *2 *3) (-12 (-5 *3 (-739 *4)) (-4 *4 (-756)) (-5 *2 (-85)) (-5 *1 (-614 *4)))) (-2316 (*1 *1 *2) (-12 (-5 *2 (-739 *3)) (-4 *3 (-756)) (-5 *1 (-614 *3)))) (-2315 (*1 *1 *2) (|partial| -12 (-5 *2 (-739 *3)) (-4 *3 (-756)) (-5 *1 (-614 *3)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-2314 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-830)) (-4 *5 (-756)) (-5 *2 (-58 (-583 (-614 *5)))) (-5 *1 (-614 *5)))) (-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-830)) (-4 *5 (-756)) (-5 *2 (-583 (-614 *5))) (-5 *1 (-614 *5)))))
-((-3396 ((|#2| $) 100 T ELT)) (-3791 (($ $) 121 T ELT)) (-3436 (((-85) $ (-694)) 35 T ELT)) (-3793 (($ $) 109 T ELT) (($ $ (-694)) 112 T ELT)) (-3437 (((-85) $) 122 T ELT)) (-3027 (((-583 $) $) 96 T ELT)) (-3023 (((-85) $ $) 92 T ELT)) (-3713 (((-85) $ (-694)) 33 T ELT)) (-2196 (((-483) $) 66 T ELT)) (-2197 (((-483) $) 65 T ELT)) (-3710 (((-85) $ (-694)) 31 T ELT)) (-3521 (((-85) $) 98 T ELT)) (-3792 ((|#2| $) 113 T ELT) (($ $ (-694)) 117 T ELT)) (-2300 (($ $ $ (-483)) 83 T ELT) (($ |#2| $ (-483)) 82 T ELT)) (-2199 (((-583 (-483)) $) 64 T ELT)) (-2200 (((-85) (-483) $) 59 T ELT)) (-3795 ((|#2| $) NIL T ELT) (($ $ (-694)) 108 T ELT)) (-3763 (($ $ (-483)) 125 T ELT)) (-3438 (((-85) $) 124 T ELT)) (-1944 (((-85) (-1 (-85) |#2|) $) 42 T ELT)) (-2201 (((-583 |#2|) $) 46 T ELT)) (-3794 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 107 T ELT) (($ $ "rest") 111 T ELT) ((|#2| $ "last") 120 T ELT) (($ $ (-1144 (-483))) 79 T ELT) ((|#2| $ (-483)) 57 T ELT) ((|#2| $ (-483) |#2|) 58 T ELT)) (-3025 (((-483) $ $) 91 T ELT)) (-2301 (($ $ (-1144 (-483))) 78 T ELT) (($ $ (-483)) 72 T ELT)) (-3627 (((-85) $) 87 T ELT)) (-3786 (($ $) 105 T ELT)) (-3787 (((-694) $) 104 T ELT)) (-3788 (($ $) 103 T ELT)) (-3524 (($ (-583 |#2|)) 53 T ELT)) (-2887 (($ $) 126 T ELT)) (-3516 (((-583 $) $) 90 T ELT)) (-3024 (((-85) $ $) 89 T ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 41 T ELT)) (-3052 (((-85) $ $) 20 T ELT)) (-3951 (((-694) $) 39 T ELT)))
-(((-615 |#1| |#2|) (-10 -7 (-15 -3052 ((-85) |#1| |#1|)) (-15 -2887 (|#1| |#1|)) (-15 -3763 (|#1| |#1| (-483))) (-15 -3436 ((-85) |#1| (-694))) (-15 -3713 ((-85) |#1| (-694))) (-15 -3710 ((-85) |#1| (-694))) (-15 -3437 ((-85) |#1|)) (-15 -3438 ((-85) |#1|)) (-15 -3794 (|#2| |#1| (-483) |#2|)) (-15 -3794 (|#2| |#1| (-483))) (-15 -2201 ((-583 |#2|) |#1|)) (-15 -2200 ((-85) (-483) |#1|)) (-15 -2199 ((-583 (-483)) |#1|)) (-15 -2197 ((-483) |#1|)) (-15 -2196 ((-483) |#1|)) (-15 -3524 (|#1| (-583 |#2|))) (-15 -3794 (|#1| |#1| (-1144 (-483)))) (-15 -2301 (|#1| |#1| (-483))) (-15 -2301 (|#1| |#1| (-1144 (-483)))) (-15 -2300 (|#1| |#2| |#1| (-483))) (-15 -2300 (|#1| |#1| |#1| (-483))) (-15 -3786 (|#1| |#1|)) (-15 -3787 ((-694) |#1|)) (-15 -3788 (|#1| |#1|)) (-15 -3791 (|#1| |#1|)) (-15 -3792 (|#1| |#1| (-694))) (-15 -3794 (|#2| |#1| "last")) (-15 -3792 (|#2| |#1|)) (-15 -3793 (|#1| |#1| (-694))) (-15 -3794 (|#1| |#1| "rest")) (-15 -3793 (|#1| |#1|)) (-15 -3795 (|#1| |#1| (-694))) (-15 -3794 (|#2| |#1| "first")) (-15 -3795 (|#2| |#1|)) (-15 -3023 ((-85) |#1| |#1|)) (-15 -3024 ((-85) |#1| |#1|)) (-15 -3025 ((-483) |#1| |#1|)) (-15 -3627 ((-85) |#1|)) (-15 -3794 (|#2| |#1| "value")) (-15 -3396 (|#2| |#1|)) (-15 -3521 ((-85) |#1|)) (-15 -3027 ((-583 |#1|) |#1|)) (-15 -3516 ((-583 |#1|) |#1|)) (-15 -1944 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1945 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3951 ((-694) |#1|))) (-616 |#2|) (-1127)) (T -615))
-NIL
-((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3396 ((|#1| $) 52 T ELT)) (-3789 ((|#1| $) 71 T ELT)) (-3791 (($ $) 73 T ELT)) (-2194 (((-1183) $ (-483) (-483)) 107 (|has| $ (-6 -3990)) ELT)) (-3779 (($ $ (-483)) 58 (|has| $ (-6 -3990)) ELT)) (-3436 (((-85) $ (-694)) 90 T ELT)) (-3021 ((|#1| $ |#1|) 43 (|has| $ (-6 -3990)) ELT)) (-3781 (($ $ $) 62 (|has| $ (-6 -3990)) ELT)) (-3780 ((|#1| $ |#1|) 60 (|has| $ (-6 -3990)) ELT)) (-3783 ((|#1| $ |#1|) 64 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3990)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3990)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3990)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) 127 (|has| $ (-6 -3990)) ELT) ((|#1| $ (-483) |#1|) 96 (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) 45 (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) 112 T ELT)) (-3790 ((|#1| $) 72 T ELT)) (-3718 (($) 7 T CONST)) (-2319 (($ $) 135 T ELT)) (-3793 (($ $) 79 T ELT) (($ $ (-694)) 77 T ELT)) (-1350 (($ $) 109 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3400 (($ |#1| $) 110 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#1|) $) 113 T ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1573 ((|#1| $ (-483) |#1|) 95 (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) 97 T ELT)) (-3437 (((-85) $) 93 T ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-2318 (((-694) $) 134 T ELT)) (-3027 (((-583 $) $) 54 T ELT)) (-3023 (((-85) $ $) 46 (|has| |#1| (-1012)) ELT)) (-3608 (($ (-694) |#1|) 119 T ELT)) (-3713 (((-85) $ (-694)) 91 T ELT)) (-2196 (((-483) $) 105 (|has| (-483) (-756)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-2197 (((-483) $) 104 (|has| (-483) (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3710 (((-85) $ (-694)) 92 T ELT)) (-3026 (((-583 |#1|) $) 49 T ELT)) (-3521 (((-85) $) 53 T ELT)) (-2321 (($ $) 137 T ELT)) (-2322 (((-85) $) 138 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3792 ((|#1| $) 76 T ELT) (($ $ (-694)) 74 T ELT)) (-2300 (($ $ $ (-483)) 126 T ELT) (($ |#1| $ (-483)) 125 T ELT)) (-2199 (((-583 (-483)) $) 102 T ELT)) (-2200 (((-85) (-483) $) 101 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-2320 ((|#1| $) 136 T ELT)) (-3795 ((|#1| $) 82 T ELT) (($ $ (-694)) 80 T ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2195 (($ $ |#1|) 106 (|has| $ (-6 -3990)) ELT)) (-3763 (($ $ (-483)) 133 T ELT)) (-3438 (((-85) $) 94 T ELT)) (-2323 (((-85) $) 139 T ELT)) (-2324 (((-85) $) 140 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-2198 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) 100 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1144 (-483))) 118 T ELT) ((|#1| $ (-483)) 99 T ELT) ((|#1| $ (-483) |#1|) 98 T ELT)) (-3025 (((-483) $ $) 48 T ELT)) (-2301 (($ $ (-1144 (-483))) 124 T ELT) (($ $ (-483)) 123 T ELT)) (-3627 (((-85) $) 50 T ELT)) (-3786 (($ $) 68 T ELT)) (-3784 (($ $) 65 (|has| $ (-6 -3990)) ELT)) (-3787 (((-694) $) 69 T ELT)) (-3788 (($ $) 70 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 108 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 117 T ELT)) (-3785 (($ $ $) 67 (|has| $ (-6 -3990)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3990)) ELT)) (-3796 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-583 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-2887 (($ $) 132 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3516 (((-583 $) $) 55 T ELT)) (-3024 (((-85) $ $) 47 (|has| |#1| (-1012)) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-616 |#1|) (-113) (-1127)) (T -616))
-((-3400 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1127)))) (-3704 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1127)))) (-2324 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1127)) (-5 *2 (-85)))) (-2323 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1127)) (-5 *2 (-85)))) (-2322 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1127)) (-5 *2 (-85)))) (-2321 (*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1127)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1127)))) (-2319 (*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1127)))) (-2318 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1127)) (-5 *2 (-694)))) (-3763 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-616 *3)) (-4 *3 (-1127)))) (-2887 (*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1127)))))
-(-13 (-1062 |t#1|) (-10 -8 (-15 -3400 ($ (-1 (-85) |t#1|) $)) (-15 -3704 ($ (-1 (-85) |t#1|) $)) (-15 -2324 ((-85) $)) (-15 -2323 ((-85) $)) (-15 -2322 ((-85) $)) (-15 -2321 ($ $)) (-15 -2320 (|t#1| $)) (-15 -2319 ($ $)) (-15 -2318 ((-694) $)) (-15 -3763 ($ $ (-483))) (-15 -2887 ($ $))))
-(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-241 (-483) |#1|) . T) ((-241 (-1144 (-483)) $) . T) ((-243 (-483) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-538 (-483) |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-593 |#1|) . T) ((-923 |#1|) . T) ((-1012) |has| |#1| (-1012)) ((-1062 |#1|) . T) ((-1127) . T) ((-1166 |#1|) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3173 (((-420) $) 15 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 24 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3228 (((-1047) $) 17 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-617) (-13 (-994) (-10 -8 (-15 -3173 ((-420) $)) (-15 -3228 ((-1047) $))))) (T -617))
-((-3173 (*1 *2 *1) (-12 (-5 *2 (-420)) (-5 *1 (-617)))) (-3228 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-617)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3928 (((-583 |#1|) $) 15 T ELT)) (-3132 (($ $) 19 T ELT)) (-2660 (((-85) $) 20 T ELT)) (-3152 (((-3 |#1| "failed") $) 23 T ELT)) (-3151 ((|#1| $) 21 T ELT)) (-3793 (($ $) 37 T ELT)) (-3930 (($ $) 25 T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-2507 (((-85) $ $) 46 T ELT)) (-3827 (((-830) $) 40 T ELT)) (-3133 (($ $) 18 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3795 ((|#1| $) 36 T ELT)) (-3940 (((-772) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-739 |#1|) $) 28 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 13 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT)))
-(((-618 |#1|) (-13 (-756) (-950 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3940 ((-739 |#1|) $)) (-15 -3795 (|#1| $)) (-15 -3133 ($ $)) (-15 -3827 ((-830) $)) (-15 -2507 ((-85) $ $)) (-15 -3930 ($ $)) (-15 -3793 ($ $)) (-15 -2660 ((-85) $)) (-15 -3132 ($ $)) (-15 -3928 ((-583 |#1|) $)))) (-756)) (T -618))
-((* (*1 *1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) (-3795 (*1 *2 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-3133 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-3827 (*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) (-2507 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) (-3930 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-3793 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-2660 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) (-3132 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-618 *3)) (-4 *3 (-756)))))
-((-2333 ((|#1| (-1 |#1| (-694) |#1|) (-694) |#1|) 11 T ELT)) (-2325 ((|#1| (-1 |#1| |#1|) (-694) |#1|) 9 T ELT)))
-(((-619 |#1|) (-10 -7 (-15 -2325 (|#1| (-1 |#1| |#1|) (-694) |#1|)) (-15 -2333 (|#1| (-1 |#1| (-694) |#1|) (-694) |#1|))) (-1012)) (T -619))
-((-2333 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-694) *2)) (-5 *4 (-694)) (-4 *2 (-1012)) (-5 *1 (-619 *2)))) (-2325 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-694)) (-4 *2 (-1012)) (-5 *1 (-619 *2)))))
-((-2327 ((|#2| |#1| |#2|) 9 T ELT)) (-2326 ((|#1| |#1| |#2|) 8 T ELT)))
-(((-620 |#1| |#2|) (-10 -7 (-15 -2326 (|#1| |#1| |#2|)) (-15 -2327 (|#2| |#1| |#2|))) (-1012) (-1012)) (T -620))
-((-2327 (*1 *2 *3 *2) (-12 (-5 *1 (-620 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012)))) (-2326 (*1 *2 *2 *3) (-12 (-5 *1 (-620 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))))
-((-2328 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT)))
-(((-621 |#1| |#2| |#3|) (-10 -7 (-15 -2328 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1012) (-1012) (-1012)) (T -621))
-((-2328 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)) (-5 *1 (-621 *5 *6 *2)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3313 (((-1128) $) 22 T ELT)) (-3312 (((-583 (-1128)) $) 20 T ELT)) (-2329 (($ (-583 (-1128)) (-1128)) 15 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 30 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT) (((-1128) $) 23 T ELT) (($ (-1027)) 11 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-622) (-13 (-994) (-552 (-1128)) (-10 -8 (-15 -3940 ($ (-1027))) (-15 -2329 ($ (-583 (-1128)) (-1128))) (-15 -3312 ((-583 (-1128)) $)) (-15 -3313 ((-1128) $))))) (T -622))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1027)) (-5 *1 (-622)))) (-2329 (*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1128))) (-5 *3 (-1128)) (-5 *1 (-622)))) (-3312 (*1 *2 *1) (-12 (-5 *2 (-583 (-1128))) (-5 *1 (-622)))) (-3313 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-622)))))
-((-2333 (((-1 |#1| (-694) |#1|) (-1 |#1| (-694) |#1|)) 26 T ELT)) (-2330 (((-1 |#1|) |#1|) 8 T ELT)) (-2332 ((|#1| |#1|) 19 T ELT)) (-2331 (((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-483)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-3940 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-694)) 23 T ELT)))
-(((-623 |#1|) (-10 -7 (-15 -2330 ((-1 |#1|) |#1|)) (-15 -3940 ((-1 |#1|) |#1|)) (-15 -2331 (|#1| (-1 |#1| |#1|))) (-15 -2331 ((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-483))) (-15 -2332 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-694))) (-15 -2333 ((-1 |#1| (-694) |#1|) (-1 |#1| (-694) |#1|)))) (-1012)) (T -623))
-((-2333 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-694) *3)) (-4 *3 (-1012)) (-5 *1 (-623 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *4 (-1012)) (-5 *1 (-623 *4)))) (-2332 (*1 *2 *2) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1012)))) (-2331 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 *5) (-583 *5))) (-5 *4 (-483)) (-5 *2 (-583 *5)) (-5 *1 (-623 *5)) (-4 *5 (-1012)))) (-2331 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-623 *2)) (-4 *2 (-1012)))) (-3940 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-623 *3)) (-4 *3 (-1012)))) (-2330 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-623 *3)) (-4 *3 (-1012)))))
-((-2336 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-2335 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-3946 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-2334 (((-1 |#2| |#1|) |#2|) 11 T ELT)))
-(((-624 |#1| |#2|) (-10 -7 (-15 -2334 ((-1 |#2| |#1|) |#2|)) (-15 -2335 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3946 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2336 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1012) (-1012)) (T -624))
-((-2336 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-5 *2 (-1 *5 *4)) (-5 *1 (-624 *4 *5)))) (-3946 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1012)) (-5 *2 (-1 *5 *4)) (-5 *1 (-624 *4 *5)) (-4 *4 (-1012)))) (-2335 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-5 *2 (-1 *5)) (-5 *1 (-624 *4 *5)))) (-2334 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-624 *4 *3)) (-4 *4 (-1012)) (-4 *3 (-1012)))))
-((-2341 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-2337 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-2338 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-2339 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-2340 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT)))
-(((-625 |#1| |#2| |#3|) (-10 -7 (-15 -2337 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2338 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2339 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2340 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2341 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1012) (-1012) (-1012)) (T -625))
-((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-1 *7 *5)) (-5 *1 (-625 *5 *6 *7)))) (-2341 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-625 *4 *5 *6)))) (-2340 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-625 *4 *5 *6)) (-4 *4 (-1012)))) (-2339 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1012)) (-4 *6 (-1012)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-625 *4 *5 *6)) (-4 *5 (-1012)))) (-2338 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *2 (-1 *6 *5)) (-5 *1 (-625 *4 *5 *6)))) (-2337 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1012)) (-4 *4 (-1012)) (-4 *6 (-1012)) (-5 *2 (-1 *6 *5)) (-5 *1 (-625 *5 *4 *6)))))
-((-3832 (($ (-694) (-694)) 42 T ELT)) (-2346 (($ $ $) 73 T ELT)) (-3408 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-3116 (((-85) $) 36 T ELT)) (-2345 (($ $ (-483) (-483)) 84 T ELT)) (-2344 (($ $ (-483) (-483)) 85 T ELT)) (-2343 (($ $ (-483) (-483) (-483) (-483)) 90 T ELT)) (-2348 (($ $) 71 T ELT)) (-3118 (((-85) $) 15 T ELT)) (-2342 (($ $ (-483) (-483) $) 91 T ELT)) (-3782 ((|#2| $ (-483) (-483) |#2|) NIL T ELT) (($ $ (-583 (-483)) (-583 (-483)) $) 89 T ELT)) (-3327 (($ (-694) |#2|) 55 T ELT)) (-3119 (($ (-583 (-583 |#2|))) 51 T ELT) (($ (-694) (-694) (-1 |#2| (-483) (-483))) 53 T ELT)) (-3588 (((-583 (-583 |#2|)) $) 80 T ELT)) (-2347 (($ $ $) 72 T ELT)) (-3460 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-3794 ((|#2| $ (-483) (-483)) NIL T ELT) ((|#2| $ (-483) (-483) |#2|) NIL T ELT) (($ $ (-583 (-483)) (-583 (-483))) 88 T ELT)) (-3326 (($ (-583 |#2|)) 56 T ELT) (($ (-583 $)) 58 T ELT)) (-3117 (((-85) $) 28 T ELT)) (-3940 (($ |#4|) 63 T ELT) (((-772) $) NIL T ELT)) (-3115 (((-85) $) 38 T ELT)) (-3943 (($ $ |#2|) 124 T ELT)) (-3831 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-3833 (($ $ $) 93 T ELT)) (** (($ $ (-694)) 111 T ELT) (($ $ (-483)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-483) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT)))
-(((-626 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3940 ((-772) |#1|)) (-15 ** (|#1| |#1| (-483))) (-15 -3943 (|#1| |#1| |#2|)) (-15 -3460 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-694))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-483) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 -3831 (|#1| |#1| |#1|)) (-15 -3833 (|#1| |#1| |#1|)) (-15 -2342 (|#1| |#1| (-483) (-483) |#1|)) (-15 -2343 (|#1| |#1| (-483) (-483) (-483) (-483))) (-15 -2344 (|#1| |#1| (-483) (-483))) (-15 -2345 (|#1| |#1| (-483) (-483))) (-15 -3782 (|#1| |#1| (-583 (-483)) (-583 (-483)) |#1|)) (-15 -3794 (|#1| |#1| (-583 (-483)) (-583 (-483)))) (-15 -3588 ((-583 (-583 |#2|)) |#1|)) (-15 -2346 (|#1| |#1| |#1|)) (-15 -2347 (|#1| |#1| |#1|)) (-15 -2348 (|#1| |#1|)) (-15 -3408 (|#1| |#1|)) (-15 -3408 (|#1| |#3|)) (-15 -3940 (|#1| |#4|)) (-15 -3326 (|#1| (-583 |#1|))) (-15 -3326 (|#1| (-583 |#2|))) (-15 -3327 (|#1| (-694) |#2|)) (-15 -3119 (|#1| (-694) (-694) (-1 |#2| (-483) (-483)))) (-15 -3119 (|#1| (-583 (-583 |#2|)))) (-15 -3832 (|#1| (-694) (-694))) (-15 -3115 ((-85) |#1|)) (-15 -3116 ((-85) |#1|)) (-15 -3117 ((-85) |#1|)) (-15 -3118 ((-85) |#1|)) (-15 -3782 (|#2| |#1| (-483) (-483) |#2|)) (-15 -3794 (|#2| |#1| (-483) (-483) |#2|)) (-15 -3794 (|#2| |#1| (-483) (-483)))) (-627 |#2| |#3| |#4|) (-961) (-321 |#2|) (-321 |#2|)) (T -626))
-NIL
-((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3832 (($ (-694) (-694)) 103 T ELT)) (-2346 (($ $ $) 92 T ELT)) (-3408 (($ |#2|) 96 T ELT) (($ $) 95 T ELT)) (-3116 (((-85) $) 105 T ELT)) (-2345 (($ $ (-483) (-483)) 88 T ELT)) (-2344 (($ $ (-483) (-483)) 87 T ELT)) (-2343 (($ $ (-483) (-483) (-483) (-483)) 86 T ELT)) (-2348 (($ $) 94 T ELT)) (-3118 (((-85) $) 107 T ELT)) (-2342 (($ $ (-483) (-483) $) 85 T ELT)) (-3782 ((|#1| $ (-483) (-483) |#1|) 48 T ELT) (($ $ (-583 (-483)) (-583 (-483)) $) 89 T ELT)) (-1254 (($ $ (-483) |#2|) 46 T ELT)) (-1253 (($ $ (-483) |#3|) 45 T ELT)) (-3327 (($ (-694) |#1|) 100 T ELT)) (-3718 (($) 7 T CONST)) (-3105 (($ $) 72 (|has| |#1| (-257)) ELT)) (-3107 ((|#2| $ (-483)) 50 T ELT)) (-3104 (((-694) $) 71 (|has| |#1| (-494)) ELT)) (-1573 ((|#1| $ (-483) (-483) |#1|) 47 T ELT)) (-3108 ((|#1| $ (-483) (-483)) 52 T ELT)) (-2885 (((-583 |#1|) $) 30 T ELT)) (-3103 (((-694) $) 70 (|has| |#1| (-494)) ELT)) (-3102 (((-583 |#3|) $) 69 (|has| |#1| (-494)) ELT)) (-3110 (((-694) $) 55 T ELT)) (-3608 (($ (-694) (-694) |#1|) 61 T ELT)) (-3109 (((-694) $) 54 T ELT)) (-3321 ((|#1| $) 67 (|has| |#1| (-6 (-3991 #1="*"))) ELT)) (-3114 (((-483) $) 59 T ELT)) (-3112 (((-483) $) 57 T ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3113 (((-483) $) 58 T ELT)) (-3111 (((-483) $) 56 T ELT)) (-3119 (($ (-583 (-583 |#1|))) 102 T ELT) (($ (-694) (-694) (-1 |#1| (-483) (-483))) 101 T ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3588 (((-583 (-583 |#1|)) $) 91 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3584 (((-3 $ "failed") $) 66 (|has| |#1| (-311)) ELT)) (-2347 (($ $ $) 93 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-2195 (($ $ |#1|) 60 T ELT)) (-3460 (((-3 $ "failed") $ |#1|) 74 (|has| |#1| (-494)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#1| $ (-483) (-483)) 53 T ELT) ((|#1| $ (-483) (-483) |#1|) 51 T ELT) (($ $ (-583 (-483)) (-583 (-483))) 90 T ELT)) (-3326 (($ (-583 |#1|)) 99 T ELT) (($ (-583 $)) 98 T ELT)) (-3117 (((-85) $) 106 T ELT)) (-3322 ((|#1| $) 68 (|has| |#1| (-6 (-3991 #1#))) ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3106 ((|#3| $ (-483)) 49 T ELT)) (-3940 (($ |#3|) 97 T ELT) (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3115 (((-85) $) 104 T ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3943 (($ $ |#1|) 73 (|has| |#1| (-311)) ELT)) (-3831 (($ $ $) 83 T ELT) (($ $) 82 T ELT)) (-3833 (($ $ $) 84 T ELT)) (** (($ $ (-694)) 75 T ELT) (($ $ (-483)) 65 (|has| |#1| (-311)) ELT)) (* (($ $ $) 81 T ELT) (($ |#1| $) 80 T ELT) (($ $ |#1|) 79 T ELT) (($ (-483) $) 78 T ELT) ((|#3| $ |#3|) 77 T ELT) ((|#2| |#2| $) 76 T ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-627 |#1| |#2| |#3|) (-113) (-961) (-321 |t#1|) (-321 |t#1|)) (T -627))
-((-3118 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-85)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-85)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-85)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-85)))) (-3832 (*1 *1 *2 *2) (-12 (-5 *2 (-694)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3119 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3119 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-1 *4 (-483) (-483))) (-4 *4 (-961)) (-4 *1 (-627 *4 *5 *6)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)))) (-3327 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3326 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3326 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3940 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *2)) (-4 *4 (-321 *3)) (-4 *2 (-321 *3)))) (-3408 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-627 *3 *2 *4)) (-4 *2 (-321 *3)) (-4 *4 (-321 *3)))) (-3408 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (-2348 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (-2347 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (-2346 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (-3588 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-583 (-583 *3))))) (-3794 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-583 (-483))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3782 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-583 (-483))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-2345 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-483)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-2344 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-483)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-2343 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-483)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-2342 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-483)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3833 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (-3831 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (-3831 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-483)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-627 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *2 (-321 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-627 *3 *2 *4)) (-4 *3 (-961)) (-4 *2 (-321 *3)) (-4 *4 (-321 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3460 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)) (-4 *2 (-494)))) (-3943 (*1 *1 *1 *2) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)) (-4 *2 (-311)))) (-3105 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)) (-4 *2 (-257)))) (-3104 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-4 *3 (-494)) (-5 *2 (-694)))) (-3103 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-4 *3 (-494)) (-5 *2 (-694)))) (-3102 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-4 *3 (-494)) (-5 *2 (-583 *5)))) (-3322 (*1 *2 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)) (|has| *2 (-6 (-3991 #1="*"))) (-4 *2 (-961)))) (-3321 (*1 *2 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)) (|has| *2 (-6 (-3991 #1#))) (-4 *2 (-961)))) (-3584 (*1 *1 *1) (|partial| -12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)) (-4 *2 (-311)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-4 *3 (-311)))))
-(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -3990) (-6 -3989) (-15 -3118 ((-85) $)) (-15 -3117 ((-85) $)) (-15 -3116 ((-85) $)) (-15 -3115 ((-85) $)) (-15 -3832 ($ (-694) (-694))) (-15 -3119 ($ (-583 (-583 |t#1|)))) (-15 -3119 ($ (-694) (-694) (-1 |t#1| (-483) (-483)))) (-15 -3327 ($ (-694) |t#1|)) (-15 -3326 ($ (-583 |t#1|))) (-15 -3326 ($ (-583 $))) (-15 -3940 ($ |t#3|)) (-15 -3408 ($ |t#2|)) (-15 -3408 ($ $)) (-15 -2348 ($ $)) (-15 -2347 ($ $ $)) (-15 -2346 ($ $ $)) (-15 -3588 ((-583 (-583 |t#1|)) $)) (-15 -3794 ($ $ (-583 (-483)) (-583 (-483)))) (-15 -3782 ($ $ (-583 (-483)) (-583 (-483)) $)) (-15 -2345 ($ $ (-483) (-483))) (-15 -2344 ($ $ (-483) (-483))) (-15 -2343 ($ $ (-483) (-483) (-483) (-483))) (-15 -2342 ($ $ (-483) (-483) $)) (-15 -3833 ($ $ $)) (-15 -3831 ($ $ $)) (-15 -3831 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-483) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-694))) (IF (|has| |t#1| (-494)) (-15 -3460 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-311)) (-15 -3943 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-257)) (-15 -3105 ($ $)) |%noBranch|) (IF (|has| |t#1| (-494)) (PROGN (-15 -3104 ((-694) $)) (-15 -3103 ((-694) $)) (-15 -3102 ((-583 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-3991 "*"))) (PROGN (-15 -3322 (|t#1| $)) (-15 -3321 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-311)) (PROGN (-15 -3584 ((-3 $ "failed") $)) (-15 ** ($ $ (-483)))) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-57 |#1| |#2| |#3|) . T) ((-1127) . T))
-((-3836 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-3952 (((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT)))
-(((-628 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3952 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3952 ((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|)) (-15 -3836 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-961) (-321 |#1|) (-321 |#1|) (-627 |#1| |#2| |#3|) (-961) (-321 |#5|) (-321 |#5|) (-627 |#5| |#6| |#7|)) (T -628))
-((-3836 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-961)) (-4 *2 (-961)) (-4 *6 (-321 *5)) (-4 *7 (-321 *5)) (-4 *8 (-321 *2)) (-4 *9 (-321 *2)) (-5 *1 (-628 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-627 *5 *6 *7)) (-4 *10 (-627 *2 *8 *9)))) (-3952 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-321 *5)) (-4 *7 (-321 *5)) (-4 *2 (-627 *8 *9 *10)) (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-627 *5 *6 *7)) (-4 *9 (-321 *8)) (-4 *10 (-321 *8)))) (-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-321 *5)) (-4 *7 (-321 *5)) (-4 *2 (-627 *8 *9 *10)) (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-627 *5 *6 *7)) (-4 *9 (-321 *8)) (-4 *10 (-321 *8)))))
-((-3105 ((|#4| |#4|) 90 (|has| |#1| (-257)) ELT)) (-3104 (((-694) |#4|) 92 (|has| |#1| (-494)) ELT)) (-3103 (((-694) |#4|) 94 (|has| |#1| (-494)) ELT)) (-3102 (((-583 |#3|) |#4|) 101 (|has| |#1| (-494)) ELT)) (-2376 (((-2 (|:| -1970 |#1|) (|:| -2898 |#1|)) |#1| |#1|) 124 (|has| |#1| (-257)) ELT)) (-3321 ((|#1| |#4|) 52 T ELT)) (-2353 (((-3 |#4| #1="failed") |#4|) 84 (|has| |#1| (-494)) ELT)) (-3584 (((-3 |#4| #1#) |#4|) 98 (|has| |#1| (-311)) ELT)) (-2352 ((|#4| |#4|) 76 (|has| |#1| (-494)) ELT)) (-2350 ((|#4| |#4| |#1| (-483) (-483)) 60 T ELT)) (-2349 ((|#4| |#4| (-483) (-483)) 55 T ELT)) (-2351 ((|#4| |#4| |#1| (-483) (-483)) 65 T ELT)) (-3322 ((|#1| |#4|) 96 T ELT)) (-2516 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 80 (|has| |#1| (-494)) ELT)))
-(((-629 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3322 (|#1| |#4|)) (-15 -3321 (|#1| |#4|)) (-15 -2349 (|#4| |#4| (-483) (-483))) (-15 -2350 (|#4| |#4| |#1| (-483) (-483))) (-15 -2351 (|#4| |#4| |#1| (-483) (-483))) (IF (|has| |#1| (-494)) (PROGN (-15 -3104 ((-694) |#4|)) (-15 -3103 ((-694) |#4|)) (-15 -3102 ((-583 |#3|) |#4|)) (-15 -2352 (|#4| |#4|)) (-15 -2353 ((-3 |#4| #1="failed") |#4|)) (-15 -2516 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-257)) (PROGN (-15 -3105 (|#4| |#4|)) (-15 -2376 ((-2 (|:| -1970 |#1|) (|:| -2898 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-311)) (-15 -3584 ((-3 |#4| #1#) |#4|)) |%noBranch|)) (-146) (-321 |#1|) (-321 |#1|) (-627 |#1| |#2| |#3|)) (T -629))
-((-3584 (*1 *2 *2) (|partial| -12 (-4 *3 (-311)) (-4 *3 (-146)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-2376 (*1 *2 *3 *3) (-12 (-4 *3 (-257)) (-4 *3 (-146)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3))) (-5 *1 (-629 *3 *4 *5 *6)) (-4 *6 (-627 *3 *4 *5)))) (-3105 (*1 *2 *2) (-12 (-4 *3 (-257)) (-4 *3 (-146)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-2516 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-2353 (*1 *2 *2) (|partial| -12 (-4 *3 (-494)) (-4 *3 (-146)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-2352 (*1 *2 *2) (-12 (-4 *3 (-494)) (-4 *3 (-146)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-3102 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-583 *6)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3103 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-694)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3104 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-694)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-2351 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-483)) (-4 *3 (-146)) (-4 *5 (-321 *3)) (-4 *6 (-321 *3)) (-5 *1 (-629 *3 *5 *6 *2)) (-4 *2 (-627 *3 *5 *6)))) (-2350 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-483)) (-4 *3 (-146)) (-4 *5 (-321 *3)) (-4 *6 (-321 *3)) (-5 *1 (-629 *3 *5 *6 *2)) (-4 *2 (-627 *3 *5 *6)))) (-2349 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-483)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *1 (-629 *4 *5 *6 *2)) (-4 *2 (-627 *4 *5 *6)))) (-3321 (*1 *2 *3) (-12 (-4 *4 (-321 *2)) (-4 *5 (-321 *2)) (-4 *2 (-146)) (-5 *1 (-629 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) (-3322 (*1 *2 *3) (-12 (-4 *4 (-321 *2)) (-4 *5 (-321 *2)) (-4 *2 (-146)) (-5 *1 (-629 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))))
-((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3832 (($ (-694) (-694)) 63 T ELT)) (-2346 (($ $ $) NIL T ELT)) (-3408 (($ (-1177 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3116 (((-85) $) NIL T ELT)) (-2345 (($ $ (-483) (-483)) 22 T ELT)) (-2344 (($ $ (-483) (-483)) NIL T ELT)) (-2343 (($ $ (-483) (-483) (-483) (-483)) NIL T ELT)) (-2348 (($ $) NIL T ELT)) (-3118 (((-85) $) NIL T ELT)) (-2342 (($ $ (-483) (-483) $) NIL T ELT)) (-3782 ((|#1| $ (-483) (-483) |#1|) NIL T ELT) (($ $ (-583 (-483)) (-583 (-483)) $) NIL T ELT)) (-1254 (($ $ (-483) (-1177 |#1|)) NIL T ELT)) (-1253 (($ $ (-483) (-1177 |#1|)) NIL T ELT)) (-3327 (($ (-694) |#1|) 37 T ELT)) (-3718 (($) NIL T CONST)) (-3105 (($ $) 46 (|has| |#1| (-257)) ELT)) (-3107 (((-1177 |#1|) $ (-483)) NIL T ELT)) (-3104 (((-694) $) 48 (|has| |#1| (-494)) ELT)) (-1573 ((|#1| $ (-483) (-483) |#1|) 68 T ELT)) (-3108 ((|#1| $ (-483) (-483)) NIL T ELT)) (-2885 (((-583 |#1|) $) NIL T ELT)) (-3103 (((-694) $) 50 (|has| |#1| (-494)) ELT)) (-3102 (((-583 (-1177 |#1|)) $) 53 (|has| |#1| (-494)) ELT)) (-3110 (((-694) $) 32 T ELT)) (-3608 (($ (-694) (-694) |#1|) 28 T ELT)) (-3109 (((-694) $) 33 T ELT)) (-3321 ((|#1| $) 44 (|has| |#1| (-6 (-3991 #1="*"))) ELT)) (-3114 (((-483) $) 10 T ELT)) (-3112 (((-483) $) 11 T ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3113 (((-483) $) 14 T ELT)) (-3111 (((-483) $) 64 T ELT)) (-3119 (($ (-583 (-583 |#1|))) NIL T ELT) (($ (-694) (-694) (-1 |#1| (-483) (-483))) NIL T ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3588 (((-583 (-583 |#1|)) $) 75 T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3584 (((-3 $ #2="failed") $) 57 (|has| |#1| (-311)) ELT)) (-2347 (($ $ $) NIL T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-2195 (($ $ |#1|) NIL T ELT)) (-3460 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-494)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#1| $ (-483) (-483)) NIL T ELT) ((|#1| $ (-483) (-483) |#1|) NIL T ELT) (($ $ (-583 (-483)) (-583 (-483))) NIL T ELT)) (-3326 (($ (-583 |#1|)) NIL T ELT) (($ (-583 $)) NIL T ELT) (($ (-1177 |#1|)) 69 T ELT)) (-3117 (((-85) $) NIL T ELT)) (-3322 ((|#1| $) 42 (|has| |#1| (-6 (-3991 #1#))) ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) 79 (|has| |#1| (-553 (-472))) ELT)) (-3106 (((-1177 |#1|) $ (-483)) NIL T ELT)) (-3940 (($ (-1177 |#1|)) NIL T ELT) (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3115 (((-85) $) NIL T ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-694)) 38 T ELT) (($ $ (-483)) 61 (|has| |#1| (-311)) ELT)) (* (($ $ $) 24 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-483) $) NIL T ELT) (((-1177 |#1|) $ (-1177 |#1|)) NIL T ELT) (((-1177 |#1|) (-1177 |#1|) $) NIL T ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-630 |#1|) (-13 (-627 |#1| (-1177 |#1|) (-1177 |#1|)) (-10 -8 (-15 -3326 ($ (-1177 |#1|))) (IF (|has| |#1| (-553 (-472))) (-6 (-553 (-472))) |%noBranch|) (IF (|has| |#1| (-311)) (-15 -3584 ((-3 $ "failed") $)) |%noBranch|))) (-961)) (T -630))
-((-3584 (*1 *1 *1) (|partial| -12 (-5 *1 (-630 *2)) (-4 *2 (-311)) (-4 *2 (-961)))) (-3326 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-961)) (-5 *1 (-630 *3)))))
-((-2359 (((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|)) 37 T ELT)) (-2358 (((-630 |#1|) (-630 |#1|) (-630 |#1|) |#1|) 32 T ELT)) (-2360 (((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|) (-694)) 43 T ELT)) (-2355 (((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|)) 25 T ELT)) (-2356 (((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|)) 29 T ELT) (((-630 |#1|) (-630 |#1|) (-630 |#1|)) 27 T ELT)) (-2357 (((-630 |#1|) (-630 |#1|) |#1| (-630 |#1|)) 31 T ELT)) (-2354 (((-630 |#1|) (-630 |#1|) (-630 |#1|)) 23 T ELT)) (** (((-630 |#1|) (-630 |#1|) (-694)) 46 T ELT)))
-(((-631 |#1|) (-10 -7 (-15 -2354 ((-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -2355 ((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -2356 ((-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -2356 ((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -2357 ((-630 |#1|) (-630 |#1|) |#1| (-630 |#1|))) (-15 -2358 ((-630 |#1|) (-630 |#1|) (-630 |#1|) |#1|)) (-15 -2359 ((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -2360 ((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|) (-694))) (-15 ** ((-630 |#1|) (-630 |#1|) (-694)))) (-961)) (T -631))
-((** (*1 *2 *2 *3) (-12 (-5 *2 (-630 *4)) (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-631 *4)))) (-2360 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-630 *4)) (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-631 *4)))) (-2359 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2358 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2357 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2356 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2356 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2355 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2354 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))))
-((-3152 (((-3 |#1| "failed") $) 18 T ELT)) (-3151 ((|#1| $) NIL T ELT)) (-2361 (($) 7 T CONST)) (-2362 (($ |#1|) 8 T ELT)) (-3940 (($ |#1|) 16 T ELT) (((-772) $) 23 T ELT)) (-3560 (((-85) $ (|[\|\|]| |#1|)) 14 T ELT) (((-85) $ (|[\|\|]| -2361)) 11 T ELT)) (-3566 ((|#1| $) 15 T ELT)))
-(((-632 |#1|) (-13 (-1173) (-950 |#1|) (-552 (-772)) (-10 -8 (-15 -2362 ($ |#1|)) (-15 -3560 ((-85) $ (|[\|\|]| |#1|))) (-15 -3560 ((-85) $ (|[\|\|]| -2361))) (-15 -3566 (|#1| $)) (-15 -2361 ($) -3946))) (-552 (-772))) (T -632))
-((-2362 (*1 *1 *2) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772))))) (-3560 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-552 (-772))) (-5 *2 (-85)) (-5 *1 (-632 *4)))) (-3560 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2361)) (-5 *2 (-85)) (-5 *1 (-632 *4)) (-4 *4 (-552 (-772))))) (-3566 (*1 *2 *1) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772))))) (-2361 (*1 *1) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772))))))
-((-3735 (((-2 (|:| |num| (-630 |#1|)) (|:| |den| |#1|)) (-630 |#2|)) 20 T ELT)) (-3733 ((|#1| (-630 |#2|)) 9 T ELT)) (-3734 (((-630 |#1|) (-630 |#2|)) 18 T ELT)))
-(((-633 |#1| |#2|) (-10 -7 (-15 -3733 (|#1| (-630 |#2|))) (-15 -3734 ((-630 |#1|) (-630 |#2|))) (-15 -3735 ((-2 (|:| |num| (-630 |#1|)) (|:| |den| |#1|)) (-630 |#2|)))) (-494) (-904 |#1|)) (T -633))
-((-3735 (*1 *2 *3) (-12 (-5 *3 (-630 *5)) (-4 *5 (-904 *4)) (-4 *4 (-494)) (-5 *2 (-2 (|:| |num| (-630 *4)) (|:| |den| *4))) (-5 *1 (-633 *4 *5)))) (-3734 (*1 *2 *3) (-12 (-5 *3 (-630 *5)) (-4 *5 (-904 *4)) (-4 *4 (-494)) (-5 *2 (-630 *4)) (-5 *1 (-633 *4 *5)))) (-3733 (*1 *2 *3) (-12 (-5 *3 (-630 *4)) (-4 *4 (-904 *2)) (-4 *2 (-494)) (-5 *1 (-633 *2 *4)))))
-((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1567 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3989)) ELT)) (-3718 (($) 7 T CONST)) (-2364 (($ $) 66 T ELT)) (-1350 (($ $) 62 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3399 (($ |#1| $) 51 (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3989)) ELT)) (-3400 (($ |#1| $) 61 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3989)) ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-1271 ((|#1| $) 43 T ELT)) (-3603 (($ |#1| $) 44 T ELT) (($ |#1| $ (-694)) 67 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1272 ((|#1| $) 45 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-2363 (((-583 (-2 (|:| |entry| |#1|) (|:| -1943 (-694)))) $) 65 T ELT)) (-1463 (($) 53 T ELT) (($ (-583 |#1|)) 52 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 63 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 54 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1273 (($ (-583 |#1|)) 46 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-634 |#1|) (-113) (-1012)) (T -634))
-((-3603 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-634 *2)) (-4 *2 (-1012)))) (-2364 (*1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1012)))) (-2363 (*1 *2 *1) (-12 (-4 *1 (-634 *3)) (-4 *3 (-1012)) (-5 *2 (-583 (-2 (|:| |entry| *3) (|:| -1943 (-694))))))))
-(-13 (-193 |t#1|) (-10 -8 (-15 -3603 ($ |t#1| $ (-694))) (-15 -2364 ($ $)) (-15 -2363 ((-583 (-2 (|:| |entry| |t#1|) (|:| -1943 (-694)))) $))))
-(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-193 |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T))
-((-2367 (((-583 |#1|) (-583 (-2 (|:| -3726 |#1|) (|:| -3942 (-483)))) (-483)) 66 T ELT)) (-2365 ((|#1| |#1| (-483)) 63 T ELT)) (-3139 ((|#1| |#1| |#1| (-483)) 46 T ELT)) (-3726 (((-583 |#1|) |#1| (-483)) 49 T ELT)) (-2368 ((|#1| |#1| (-483) |#1| (-483)) 40 T ELT)) (-2366 (((-583 (-2 (|:| -3726 |#1|) (|:| -3942 (-483)))) |#1| (-483)) 62 T ELT)))
-(((-635 |#1|) (-10 -7 (-15 -3139 (|#1| |#1| |#1| (-483))) (-15 -2365 (|#1| |#1| (-483))) (-15 -3726 ((-583 |#1|) |#1| (-483))) (-15 -2366 ((-583 (-2 (|:| -3726 |#1|) (|:| -3942 (-483)))) |#1| (-483))) (-15 -2367 ((-583 |#1|) (-583 (-2 (|:| -3726 |#1|) (|:| -3942 (-483)))) (-483))) (-15 -2368 (|#1| |#1| (-483) |#1| (-483)))) (-1153 (-483))) (T -635))
-((-2368 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-635 *2)) (-4 *2 (-1153 *3)))) (-2367 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| -3726 *5) (|:| -3942 (-483))))) (-5 *4 (-483)) (-4 *5 (-1153 *4)) (-5 *2 (-583 *5)) (-5 *1 (-635 *5)))) (-2366 (*1 *2 *3 *4) (-12 (-5 *4 (-483)) (-5 *2 (-583 (-2 (|:| -3726 *3) (|:| -3942 *4)))) (-5 *1 (-635 *3)) (-4 *3 (-1153 *4)))) (-3726 (*1 *2 *3 *4) (-12 (-5 *4 (-483)) (-5 *2 (-583 *3)) (-5 *1 (-635 *3)) (-4 *3 (-1153 *4)))) (-2365 (*1 *2 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-635 *2)) (-4 *2 (-1153 *3)))) (-3139 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-635 *2)) (-4 *2 (-1153 *3)))))
-((-2372 (((-1 (-854 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 17 T ELT)) (-2369 (((-1045 (-179)) (-1045 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1000 (-179)) (-1000 (-179)) (-583 (-221))) 53 T ELT) (((-1045 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1000 (-179)) (-1000 (-179)) (-583 (-221))) 55 T ELT) (((-1045 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1000 (-179)) (-1000 (-179)) (-583 (-221))) 57 T ELT)) (-2371 (((-1045 (-179)) (-264 (-483)) (-264 (-483)) (-264 (-483)) (-1 (-179) (-179)) (-1000 (-179)) (-583 (-221))) NIL T ELT)) (-2370 (((-1045 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1000 (-179)) (-1000 (-179)) (-583 (-221))) 58 T ELT)))
-(((-636) (-10 -7 (-15 -2369 ((-1045 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1000 (-179)) (-1000 (-179)) (-583 (-221)))) (-15 -2369 ((-1045 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1000 (-179)) (-1000 (-179)) (-583 (-221)))) (-15 -2369 ((-1045 (-179)) (-1045 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1000 (-179)) (-1000 (-179)) (-583 (-221)))) (-15 -2370 ((-1045 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1000 (-179)) (-1000 (-179)) (-583 (-221)))) (-15 -2371 ((-1045 (-179)) (-264 (-483)) (-264 (-483)) (-264 (-483)) (-1 (-179) (-179)) (-1000 (-179)) (-583 (-221)))) (-15 -2372 ((-1 (-854 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -636))
-((-2372 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1 (-179) (-179) (-179) (-179))) (-5 *2 (-1 (-854 (-179)) (-179) (-179))) (-5 *1 (-636)))) (-2371 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-264 (-483))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1000 (-179))) (-5 *6 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-636)))) (-2370 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined")) (-5 *5 (-1000 (-179))) (-5 *6 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-636)))) (-2369 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1045 (-179))) (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1000 (-179))) (-5 *5 (-583 (-221))) (-5 *1 (-636)))) (-2369 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1000 (-179))) (-5 *5 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-636)))) (-2369 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1#)) (-5 *5 (-1000 (-179))) (-5 *6 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-636)))))
-((-3726 (((-345 (-1083 |#4|)) (-1083 |#4|)) 87 T ELT) (((-345 |#4|) |#4|) 270 T ELT)))
-(((-637 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3726 ((-345 |#4|) |#4|)) (-15 -3726 ((-345 (-1083 |#4|)) (-1083 |#4|)))) (-756) (-717) (-298) (-861 |#3| |#2| |#1|)) (T -637))
-((-3726 (*1 *2 *3) (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-298)) (-4 *7 (-861 *6 *5 *4)) (-5 *2 (-345 (-1083 *7))) (-5 *1 (-637 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-3726 (*1 *2 *3) (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-298)) (-5 *2 (-345 *3)) (-5 *1 (-637 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4)))))
-((-2375 (((-630 |#1|) (-630 |#1|) |#1| |#1|) 85 T ELT)) (-3105 (((-630 |#1|) (-630 |#1|) |#1|) 66 T ELT)) (-2374 (((-630 |#1|) (-630 |#1|) |#1|) 86 T ELT)) (-2373 (((-630 |#1|) (-630 |#1|)) 67 T ELT)) (-2376 (((-2 (|:| -1970 |#1|) (|:| -2898 |#1|)) |#1| |#1|) 84 T ELT)))
-(((-638 |#1|) (-10 -7 (-15 -2373 ((-630 |#1|) (-630 |#1|))) (-15 -3105 ((-630 |#1|) (-630 |#1|) |#1|)) (-15 -2374 ((-630 |#1|) (-630 |#1|) |#1|)) (-15 -2375 ((-630 |#1|) (-630 |#1|) |#1| |#1|)) (-15 -2376 ((-2 (|:| -1970 |#1|) (|:| -2898 |#1|)) |#1| |#1|))) (-257)) (T -638))
-((-2376 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3))) (-5 *1 (-638 *3)) (-4 *3 (-257)))) (-2375 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-257)) (-5 *1 (-638 *3)))) (-2374 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-257)) (-5 *1 (-638 *3)))) (-3105 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-257)) (-5 *1 (-638 *3)))) (-2373 (*1 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-257)) (-5 *1 (-638 *3)))))
-((-2382 (((-1 |#4| |#2| |#3|) |#1| (-1088) (-1088)) 19 T ELT)) (-2377 (((-1 |#4| |#2| |#3|) (-1088)) 12 T ELT)))
-(((-639 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2377 ((-1 |#4| |#2| |#3|) (-1088))) (-15 -2382 ((-1 |#4| |#2| |#3|) |#1| (-1088) (-1088)))) (-553 (-472)) (-1127) (-1127) (-1127)) (T -639))
-((-2382 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1088)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-639 *3 *5 *6 *7)) (-4 *3 (-553 (-472))) (-4 *5 (-1127)) (-4 *6 (-1127)) (-4 *7 (-1127)))) (-2377 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-639 *4 *5 *6 *7)) (-4 *4 (-553 (-472))) (-4 *5 (-1127)) (-4 *6 (-1127)) (-4 *7 (-1127)))))
-((-2378 (((-1 (-179) (-179) (-179)) |#1| (-1088) (-1088)) 43 T ELT) (((-1 (-179) (-179)) |#1| (-1088)) 48 T ELT)))
-(((-640 |#1|) (-10 -7 (-15 -2378 ((-1 (-179) (-179)) |#1| (-1088))) (-15 -2378 ((-1 (-179) (-179) (-179)) |#1| (-1088) (-1088)))) (-553 (-472))) (T -640))
-((-2378 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1088)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-640 *3)) (-4 *3 (-553 (-472))))) (-2378 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-640 *3)) (-4 *3 (-553 (-472))))))
-((-2379 (((-1088) |#1| (-1088) (-583 (-1088))) 10 T ELT) (((-1088) |#1| (-1088) (-1088) (-1088)) 13 T ELT) (((-1088) |#1| (-1088) (-1088)) 12 T ELT) (((-1088) |#1| (-1088)) 11 T ELT)))
-(((-641 |#1|) (-10 -7 (-15 -2379 ((-1088) |#1| (-1088))) (-15 -2379 ((-1088) |#1| (-1088) (-1088))) (-15 -2379 ((-1088) |#1| (-1088) (-1088) (-1088))) (-15 -2379 ((-1088) |#1| (-1088) (-583 (-1088))))) (-553 (-472))) (T -641))
-((-2379 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-583 (-1088))) (-5 *2 (-1088)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-472))))) (-2379 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-472))))) (-2379 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-472))))) (-2379 (*1 *2 *3 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-472))))))
-((-2380 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT)))
-(((-642 |#1| |#2|) (-10 -7 (-15 -2380 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1127) (-1127)) (T -642))
-((-2380 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-642 *3 *4)) (-4 *3 (-1127)) (-4 *4 (-1127)))))
-((-2381 (((-1 |#3| |#2|) (-1088)) 11 T ELT)) (-2382 (((-1 |#3| |#2|) |#1| (-1088)) 21 T ELT)))
-(((-643 |#1| |#2| |#3|) (-10 -7 (-15 -2381 ((-1 |#3| |#2|) (-1088))) (-15 -2382 ((-1 |#3| |#2|) |#1| (-1088)))) (-553 (-472)) (-1127) (-1127)) (T -643))
-((-2382 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-5 *2 (-1 *6 *5)) (-5 *1 (-643 *3 *5 *6)) (-4 *3 (-553 (-472))) (-4 *5 (-1127)) (-4 *6 (-1127)))) (-2381 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1 *6 *5)) (-5 *1 (-643 *4 *5 *6)) (-4 *4 (-553 (-472))) (-4 *5 (-1127)) (-4 *6 (-1127)))))
-((-2385 (((-3 (-583 (-1083 |#4|)) #1="failed") (-1083 |#4|) (-583 |#2|) (-583 (-1083 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -3074 (-694)) (|:| |pcoef| |#4|)))) (-583 (-694)) (-1177 (-583 (-1083 |#3|))) |#3|) 92 T ELT)) (-2384 (((-3 (-583 (-1083 |#4|)) #1#) (-1083 |#4|) (-583 |#2|) (-583 (-1083 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-694)) |#3|) 110 T ELT)) (-2383 (((-3 (-583 (-1083 |#4|)) #1#) (-1083 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-694)) (-583 (-1083 |#4|)) (-1177 (-583 (-1083 |#3|))) |#3|) 48 T ELT)))
-(((-644 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2383 ((-3 (-583 (-1083 |#4|)) #1="failed") (-1083 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-694)) (-583 (-1083 |#4|)) (-1177 (-583 (-1083 |#3|))) |#3|)) (-15 -2384 ((-3 (-583 (-1083 |#4|)) #1#) (-1083 |#4|) (-583 |#2|) (-583 (-1083 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-694)) |#3|)) (-15 -2385 ((-3 (-583 (-1083 |#4|)) #1#) (-1083 |#4|) (-583 |#2|) (-583 (-1083 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -3074 (-694)) (|:| |pcoef| |#4|)))) (-583 (-694)) (-1177 (-583 (-1083 |#3|))) |#3|))) (-717) (-756) (-257) (-861 |#3| |#1| |#2|)) (T -644))
-((-2385 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-583 (-1083 *13))) (-5 *3 (-1083 *13)) (-5 *4 (-583 *12)) (-5 *5 (-583 *10)) (-5 *6 (-583 *13)) (-5 *7 (-583 (-583 (-2 (|:| -3074 (-694)) (|:| |pcoef| *13))))) (-5 *8 (-583 (-694))) (-5 *9 (-1177 (-583 (-1083 *10)))) (-4 *12 (-756)) (-4 *10 (-257)) (-4 *13 (-861 *10 *11 *12)) (-4 *11 (-717)) (-5 *1 (-644 *11 *12 *10 *13)))) (-2384 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-583 *11)) (-5 *5 (-583 (-1083 *9))) (-5 *6 (-583 *9)) (-5 *7 (-583 *12)) (-5 *8 (-583 (-694))) (-4 *11 (-756)) (-4 *9 (-257)) (-4 *12 (-861 *9 *10 *11)) (-4 *10 (-717)) (-5 *2 (-583 (-1083 *12))) (-5 *1 (-644 *10 *11 *9 *12)) (-5 *3 (-1083 *12)))) (-2383 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-583 (-1083 *11))) (-5 *3 (-1083 *11)) (-5 *4 (-583 *10)) (-5 *5 (-583 *8)) (-5 *6 (-583 (-694))) (-5 *7 (-1177 (-583 (-1083 *8)))) (-4 *10 (-756)) (-4 *8 (-257)) (-4 *11 (-861 *8 *9 *10)) (-4 *9 (-717)) (-5 *1 (-644 *9 *10 *8 *11)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3953 (($ $) 54 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-2889 (($ |#1| (-694)) 52 T ELT)) (-2816 (((-694) $) 56 T ELT)) (-3169 ((|#1| $) 55 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3942 (((-694) $) 57 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 51 (|has| |#1| (-146)) ELT)) (-3671 ((|#1| $ (-694)) 53 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 59 T ELT) (($ |#1| $) 58 T ELT)))
-(((-645 |#1|) (-113) (-961)) (T -645))
-((-3942 (*1 *2 *1) (-12 (-4 *1 (-645 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-2816 (*1 *2 *1) (-12 (-4 *1 (-645 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-961)))) (-3953 (*1 *1 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-961)))) (-3671 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-645 *2)) (-4 *2 (-961)))) (-2889 (*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-645 *2)) (-4 *2 (-961)))))
-(-13 (-961) (-82 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3942 ((-694) $)) (-15 -2816 ((-694) $)) (-15 -3169 (|t#1| $)) (-15 -3953 ($ $)) (-15 -3671 (|t#1| $ (-694))) (-15 -2889 ($ |t#1| (-694)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 (-483)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-663) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T))
-((-3952 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT)))
-(((-646 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3952 (|#6| (-1 |#4| |#1|) |#3|))) (-494) (-1153 |#1|) (-1153 (-347 |#2|)) (-494) (-1153 |#4|) (-1153 (-347 |#5|))) (T -646))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-494)) (-4 *7 (-494)) (-4 *6 (-1153 *5)) (-4 *2 (-1153 (-347 *8))) (-5 *1 (-646 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1153 (-347 *6))) (-4 *8 (-1153 *7)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2386 (((-1071) (-772)) 36 T ELT)) (-3611 (((-1183) (-1071)) 29 T ELT)) (-2388 (((-1071) (-772)) 26 T ELT)) (-2387 (((-1071) (-772)) 27 T ELT)) (-3940 (((-772) $) NIL T ELT) (((-1071) (-772)) 25 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-647) (-13 (-1012) (-10 -7 (-15 -3940 ((-1071) (-772))) (-15 -2388 ((-1071) (-772))) (-15 -2387 ((-1071) (-772))) (-15 -2386 ((-1071) (-772))) (-15 -3611 ((-1183) (-1071)))))) (T -647))
-((-3940 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1071)) (-5 *1 (-647)))) (-2388 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1071)) (-5 *1 (-647)))) (-2387 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1071)) (-5 *1 (-647)))) (-2386 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1071)) (-5 *1 (-647)))) (-3611 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-647)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2560 (($ $ $) NIL T ELT)) (-3836 (($ |#1| |#2|) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2610 ((|#2| $) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2398 (((-3 $ #1#) $ $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) ((|#1| $) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT)))
-(((-648 |#1| |#2| |#3| |#4| |#5|) (-13 (-311) (-10 -8 (-15 -2610 (|#2| $)) (-15 -3940 (|#1| $)) (-15 -3836 ($ |#1| |#2|)) (-15 -2398 ((-3 $ #1="failed") $ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -648))
-((-2610 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-3940 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3836 (*1 *1 *2 *3) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2398 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 37 T ELT)) (-3761 (((-1177 |#1|) $ (-694)) NIL T ELT)) (-3077 (((-583 (-993)) $) NIL T ELT)) (-3759 (($ (-1083 |#1|)) NIL T ELT)) (-3079 (((-1083 $) $ (-993)) NIL T ELT) (((-1083 |#1|) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2815 (((-694) $) NIL T ELT) (((-694) $ (-583 (-993))) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3749 (($ $ $) NIL (|has| |#1| (-494)) ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3769 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-1605 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3131 (((-694)) 55 (|has| |#1| (-317)) ELT)) (-3755 (($ $ (-694)) NIL T ELT)) (-3754 (($ $ (-694)) NIL T ELT)) (-2395 ((|#2| |#2|) 51 T ELT)) (-3745 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-389)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-993) #1#) $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-993) $) NIL T ELT)) (-3750 (($ $ $ (-993)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) NIL (|has| |#1| (-146)) ELT)) (-2560 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3953 (($ $) 72 T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3836 (($ |#2|) 49 T ELT)) (-3461 (((-3 $ #1#) $) 98 T ELT)) (-2990 (($) 59 (|has| |#1| (-317)) ELT)) (-2559 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3753 (($ $ $) NIL T ELT)) (-3747 (($ $ $) NIL (|has| |#1| (-494)) ELT)) (-3746 (((-2 (|:| -3948 |#1|) (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-494)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| |#1| (-311)) ELT)) (-3497 (($ $) NIL (|has| |#1| (-389)) ELT) (($ $ (-993)) NIL (|has| |#1| (-389)) ELT)) (-2814 (((-583 $) $) NIL T ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-2391 (((-869 $)) 89 T ELT)) (-1621 (($ $ |#1| (-694) $) NIL T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (-12 (|has| (-993) (-796 (-327))) (|has| |#1| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (-12 (|has| (-993) (-796 (-483))) (|has| |#1| (-796 (-483)))) ELT)) (-3766 (((-694) $ $) NIL (|has| |#1| (-494)) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2416 (((-694) $) NIL T ELT)) (-3439 (((-632 $) $) NIL (|has| |#1| (-1064)) ELT)) (-3080 (($ (-1083 |#1|) (-993)) NIL T ELT) (($ (-1083 $) (-993)) NIL T ELT)) (-3771 (($ $ (-694)) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-694)) 86 T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ (-993)) NIL T ELT) (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-2610 ((|#2|) 52 T ELT)) (-2816 (((-694) $) NIL T ELT) (((-694) $ (-993)) NIL T ELT) (((-583 (-694)) $ (-583 (-993))) NIL T ELT)) (-1622 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3760 (((-1083 |#1|) $) NIL T ELT)) (-3078 (((-3 (-993) #1#) $) NIL T ELT)) (-2006 (((-830) $) NIL (|has| |#1| (-317)) ELT)) (-3075 ((|#2| $) 48 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) 35 T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3756 (((-2 (|:| -1970 $) (|:| -2898 $)) $ (-694)) NIL T ELT)) (-2819 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2818 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-2 (|:| |var| (-993)) (|:| -2397 (-694))) #1#) $) NIL T ELT)) (-3806 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3440 (($) NIL (|has| |#1| (-1064)) CONST)) (-2396 (($ (-830)) NIL (|has| |#1| (-317)) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1794 (((-85) $) NIL T ELT)) (-1793 ((|#1| $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-389)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-2389 (($ $) 88 (|has| |#1| (-298)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-821)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3460 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ $) 97 (|has| |#1| (-494)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3762 (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-993) |#1|) NIL T ELT) (($ $ (-583 (-993)) (-583 |#1|)) NIL T ELT) (($ $ (-993) $) NIL T ELT) (($ $ (-583 (-993)) (-583 $)) NIL T ELT)) (-1604 (((-694) $) NIL (|has| |#1| (-311)) ELT)) (-3794 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-347 $) (-347 $) (-347 $)) NIL (|has| |#1| (-494)) ELT) ((|#1| (-347 $) |#1|) NIL (|has| |#1| (-311)) ELT) (((-347 $) $ (-347 $)) NIL (|has| |#1| (-494)) ELT)) (-3758 (((-3 $ #1#) $ (-694)) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 99 (|has| |#1| (-311)) ELT)) (-3751 (($ $ (-993)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3752 (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993))) NIL T ELT) (($ $ (-993)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT)) (-3942 (((-694) $) 39 T ELT) (((-694) $ (-993)) NIL T ELT) (((-583 (-694)) $ (-583 (-993))) NIL T ELT)) (-3966 (((-800 (-327)) $) NIL (-12 (|has| (-993) (-553 (-800 (-327)))) (|has| |#1| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) NIL (-12 (|has| (-993) (-553 (-800 (-483)))) (|has| |#1| (-553 (-800 (-483))))) ELT) (((-472) $) NIL (-12 (|has| (-993) (-553 (-472))) (|has| |#1| (-553 (-472)))) ELT)) (-2813 ((|#1| $) NIL (|has| |#1| (-389)) ELT) (($ $ (-993)) NIL (|has| |#1| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-2390 (((-869 $)) 43 T ELT)) (-3748 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT) (((-3 (-347 $) #1#) (-347 $) $) NIL (|has| |#1| (-494)) ELT)) (-3940 (((-772) $) 69 T ELT) (($ (-483)) NIL T ELT) (($ |#1|) 66 T ELT) (($ (-993)) NIL T ELT) (($ |#2|) 76 T ELT) (($ (-347 (-483))) NIL (OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3811 (((-583 |#1|) $) NIL T ELT)) (-3671 ((|#1| $ (-694)) 71 T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1620 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2656 (($) 26 T CONST)) (-2394 (((-1177 |#1|) $) 84 T ELT)) (-2393 (($ (-1177 |#1|)) 58 T ELT)) (-2662 (($) 9 T CONST)) (-2665 (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993))) NIL T ELT) (($ $ (-993)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT)) (-2392 (((-1177 |#1|) $) NIL T ELT)) (-3052 (((-85) $ $) 77 T ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) 80 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 40 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 93 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 65 T ELT) (($ $ $) 83 T ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ |#1| $) 63 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-649 |#1| |#2|) (-13 (-1153 |#1|) (-555 |#2|) (-10 -8 (-15 -2395 (|#2| |#2|)) (-15 -2610 (|#2|)) (-15 -3836 ($ |#2|)) (-15 -3075 (|#2| $)) (-15 -2394 ((-1177 |#1|) $)) (-15 -2393 ($ (-1177 |#1|))) (-15 -2392 ((-1177 |#1|) $)) (-15 -2391 ((-869 $))) (-15 -2390 ((-869 $))) (IF (|has| |#1| (-298)) (-15 -2389 ($ $)) |%noBranch|) (IF (|has| |#1| (-317)) (-6 (-317)) |%noBranch|))) (-961) (-1153 |#1|)) (T -649))
-((-2395 (*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1153 *3)))) (-2610 (*1 *2) (-12 (-4 *2 (-1153 *3)) (-5 *1 (-649 *3 *2)) (-4 *3 (-961)))) (-3836 (*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1153 *3)))) (-3075 (*1 *2 *1) (-12 (-4 *2 (-1153 *3)) (-5 *1 (-649 *3 *2)) (-4 *3 (-961)))) (-2394 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-1177 *3)) (-5 *1 (-649 *3 *4)) (-4 *4 (-1153 *3)))) (-2393 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-961)) (-5 *1 (-649 *3 *4)) (-4 *4 (-1153 *3)))) (-2392 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-1177 *3)) (-5 *1 (-649 *3 *4)) (-4 *4 (-1153 *3)))) (-2391 (*1 *2) (-12 (-4 *3 (-961)) (-5 *2 (-869 (-649 *3 *4))) (-5 *1 (-649 *3 *4)) (-4 *4 (-1153 *3)))) (-2390 (*1 *2) (-12 (-4 *3 (-961)) (-5 *2 (-869 (-649 *3 *4))) (-5 *1 (-649 *3 *4)) (-4 *4 (-1153 *3)))) (-2389 (*1 *1 *1) (-12 (-4 *2 (-298)) (-4 *2 (-961)) (-5 *1 (-649 *2 *3)) (-4 *3 (-1153 *2)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 ((|#1| $) 13 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2397 ((|#2| $) 12 T ELT)) (-3524 (($ |#1| |#2|) 16 T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-2 (|:| -2396 |#1|) (|:| -2397 |#2|))) 15 T ELT) (((-2 (|:| -2396 |#1|) (|:| -2397 |#2|)) $) 14 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 11 T ELT)))
-(((-650 |#1| |#2| |#3|) (-13 (-756) (-427 (-2 (|:| -2396 |#1|) (|:| -2397 |#2|))) (-10 -8 (-15 -2397 (|#2| $)) (-15 -2396 (|#1| $)) (-15 -3524 ($ |#1| |#2|)))) (-756) (-1012) (-1 (-85) (-2 (|:| -2396 |#1|) (|:| -2397 |#2|)) (-2 (|:| -2396 |#1|) (|:| -2397 |#2|)))) (T -650))
-((-2397 (*1 *2 *1) (-12 (-4 *2 (-1012)) (-5 *1 (-650 *3 *2 *4)) (-4 *3 (-756)) (-14 *4 (-1 (-85) (-2 (|:| -2396 *3) (|:| -2397 *2)) (-2 (|:| -2396 *3) (|:| -2397 *2)))))) (-2396 (*1 *2 *1) (-12 (-4 *2 (-756)) (-5 *1 (-650 *2 *3 *4)) (-4 *3 (-1012)) (-14 *4 (-1 (-85) (-2 (|:| -2396 *2) (|:| -2397 *3)) (-2 (|:| -2396 *2) (|:| -2397 *3)))))) (-3524 (*1 *1 *2 *3) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-756)) (-4 *3 (-1012)) (-14 *4 (-1 (-85) (-2 (|:| -2396 *2) (|:| -2397 *3)) (-2 (|:| -2396 *2) (|:| -2397 *3)))))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 66 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) 101 T ELT) (((-3 (-86) #1#) $) 107 T ELT)) (-3151 ((|#1| $) NIL T ELT) (((-86) $) 39 T ELT)) (-3461 (((-3 $ #1#) $) 102 T ELT)) (-2512 ((|#2| (-86) |#2|) 93 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2511 (($ |#1| (-309 (-86))) 14 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2513 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-2514 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-3794 ((|#2| $ |#2|) 33 T ELT)) (-2515 ((|#1| |#1|) 112 (|has| |#1| (-146)) ELT)) (-3940 (((-772) $) 73 T ELT) (($ (-483)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-86)) 23 T ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 37 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2516 (($ $) 111 (|has| |#1| (-146)) ELT) (($ $ $) 115 (|has| |#1| (-146)) ELT)) (-2656 (($) 21 T CONST)) (-2662 (($) 9 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 83 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ (-86) (-483)) NIL T ELT) (($ $ (-483)) 64 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 110 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 108 (|has| |#1| (-146)) ELT) (($ $ |#1|) 109 (|has| |#1| (-146)) ELT)))
-(((-651 |#1| |#2|) (-13 (-961) (-950 |#1|) (-950 (-86)) (-241 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2516 ($ $)) (-15 -2516 ($ $ $)) (-15 -2515 (|#1| |#1|))) |%noBranch|) (-15 -2514 ($ $ (-1 |#2| |#2|))) (-15 -2513 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-86) (-483))) (-15 ** ($ $ (-483))) (-15 -2512 (|#2| (-86) |#2|)) (-15 -2511 ($ |#1| (-309 (-86)))))) (-961) (-590 |#1|)) (T -651))
-((-2516 (*1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2)))) (-2516 (*1 *1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2)))) (-2515 (*1 *2 *2) (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2)))) (-2514 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-590 *3)) (-4 *3 (-961)) (-5 *1 (-651 *3 *4)))) (-2513 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-590 *3)) (-4 *3 (-961)) (-5 *1 (-651 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-483)) (-4 *4 (-961)) (-5 *1 (-651 *4 *5)) (-4 *5 (-590 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *3 (-961)) (-5 *1 (-651 *3 *4)) (-4 *4 (-590 *3)))) (-2512 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-4 *4 (-961)) (-5 *1 (-651 *4 *2)) (-4 *2 (-590 *4)))) (-2511 (*1 *1 *2 *3) (-12 (-5 *3 (-309 (-86))) (-4 *2 (-961)) (-5 *1 (-651 *2 *4)) (-4 *4 (-590 *2)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 33 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3836 (($ |#1| |#2|) 25 T ELT)) (-3461 (((-3 $ #1#) $) 51 T ELT)) (-2406 (((-85) $) 35 T ELT)) (-2610 ((|#2| $) 12 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) 52 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2398 (((-3 $ #1#) $ $) 50 T ELT)) (-3940 (((-772) $) 24 T ELT) (($ (-483)) 19 T ELT) ((|#1| $) 13 T ELT)) (-3121 (((-694)) 28 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 16 T CONST)) (-2662 (($) 30 T CONST)) (-3052 (((-85) $ $) 41 T ELT)) (-3831 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-3833 (($ $ $) 43 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 21 T ELT) (($ $ $) 20 T ELT)))
-(((-652 |#1| |#2| |#3| |#4| |#5|) (-13 (-961) (-10 -8 (-15 -2610 (|#2| $)) (-15 -3940 (|#1| $)) (-15 -3836 ($ |#1| |#2|)) (-15 -2398 ((-3 $ #1="failed") $ $)) (-15 -3461 ((-3 $ #1#) $)) (-15 -2480 ($ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -652))
-((-3461 (*1 *1 *1) (|partial| -12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-2610 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-652 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-3940 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3836 (*1 *1 *2 *3) (-12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2398 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2480 (*1 *1 *1) (-12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))))
-((* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT)))
-(((-653 |#1| |#2|) (-10 -7 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-483) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|))) (-654 |#2|) (-146)) (T -653))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT)))
-(((-654 |#1|) (-113) (-146)) (T -654))
-NIL
-(-13 (-82 |t#1| |t#1|) (-582 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-2437 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-3841 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-3718 (($) NIL T CONST)) (-3461 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2399 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) 16 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3762 ((|#1| $ |#1|) 24 T ELT) (((-743 |#1|) $ (-743 |#1|)) 32 T ELT)) (-3005 (($ $ $) NIL T ELT)) (-2431 (($ $ $) NIL T ELT)) (-3940 (((-772) $) 39 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2662 (($) 9 T CONST)) (-3052 (((-85) $ $) 48 T ELT)) (-3943 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ $ $) 14 T ELT)))
-(((-655 |#1|) (-13 (-410) (-10 -8 (-15 -2399 ($ |#1| |#1| |#1| |#1|)) (-15 -2437 ($ |#1|)) (-15 -3841 ($ |#1|)) (-15 -3461 ($)) (-15 -2437 ($ $ |#1|)) (-15 -3841 ($ $ |#1|)) (-15 -3461 ($ $)) (-15 -3762 (|#1| $ |#1|)) (-15 -3762 ((-743 |#1|) $ (-743 |#1|))))) (-311)) (T -655))
-((-2399 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-311)))) (-2437 (*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-311)))) (-3841 (*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-311)))) (-3461 (*1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-311)))) (-2437 (*1 *1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-311)))) (-3841 (*1 *1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-311)))) (-3461 (*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-311)))) (-3762 (*1 *2 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-311)))) (-3762 (*1 *2 *1 *2) (-12 (-5 *2 (-743 *3)) (-4 *3 (-311)) (-5 *1 (-655 *3)))))
-((-2403 (($ $ (-830)) 19 T ELT)) (-2402 (($ $ (-830)) 20 T ELT)) (** (($ $ (-830)) 10 T ELT)))
-(((-656 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-830))) (-15 -2402 (|#1| |#1| (-830))) (-15 -2403 (|#1| |#1| (-830)))) (-657)) (T -656))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-2403 (($ $ (-830)) 19 T ELT)) (-2402 (($ $ (-830)) 18 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (** (($ $ (-830)) 17 T ELT)) (* (($ $ $) 20 T ELT)))
-(((-657) (-113)) (T -657))
-((* (*1 *1 *1 *1) (-4 *1 (-657))) (-2403 (*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830)))) (-2402 (*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830)))))
-(-13 (-1012) (-10 -8 (-15 * ($ $ $)) (-15 -2403 ($ $ (-830))) (-15 -2402 ($ $ (-830))) (-15 ** ($ $ (-830)))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T))
-((-2403 (($ $ (-830)) NIL T ELT) (($ $ (-694)) 18 T ELT)) (-2406 (((-85) $) 10 T ELT)) (-2402 (($ $ (-830)) NIL T ELT) (($ $ (-694)) 19 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 16 T ELT)))
-(((-658 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-694))) (-15 -2402 (|#1| |#1| (-694))) (-15 -2403 (|#1| |#1| (-694))) (-15 -2406 ((-85) |#1|)) (-15 ** (|#1| |#1| (-830))) (-15 -2402 (|#1| |#1| (-830))) (-15 -2403 (|#1| |#1| (-830)))) (-659)) (T -658))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-2400 (((-3 $ "failed") $) 22 T ELT)) (-2403 (($ $ (-830)) 19 T ELT) (($ $ (-694)) 27 T ELT)) (-3461 (((-3 $ "failed") $) 24 T ELT)) (-2406 (((-85) $) 28 T ELT)) (-2401 (((-3 $ "failed") $) 23 T ELT)) (-2402 (($ $ (-830)) 18 T ELT) (($ $ (-694)) 26 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2662 (($) 29 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (** (($ $ (-830)) 17 T ELT) (($ $ (-694)) 25 T ELT)) (* (($ $ $) 20 T ELT)))
-(((-659) (-113)) (T -659))
-((-2662 (*1 *1) (-4 *1 (-659))) (-2406 (*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-85)))) (-2403 (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694)))) (-2402 (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694)))) (-3461 (*1 *1 *1) (|partial| -4 *1 (-659))) (-2401 (*1 *1 *1) (|partial| -4 *1 (-659))) (-2400 (*1 *1 *1) (|partial| -4 *1 (-659))))
-(-13 (-657) (-10 -8 (-15 -2662 ($) -3946) (-15 -2406 ((-85) $)) (-15 -2403 ($ $ (-694))) (-15 -2402 ($ $ (-694))) (-15 ** ($ $ (-694))) (-15 -3461 ((-3 $ "failed") $)) (-15 -2401 ((-3 $ "failed") $)) (-15 -2400 ((-3 $ "failed") $))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-657) . T) ((-1012) . T) ((-1127) . T))
-((-3131 (((-694)) 39 T ELT)) (-3152 (((-3 (-483) #1="failed") $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 26 T ELT)) (-3151 (((-483) $) NIL T ELT) (((-347 (-483)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-3836 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-347 |#3|)) 49 T ELT)) (-3461 (((-3 $ #1#) $) 69 T ELT)) (-2990 (($) 43 T ELT)) (-3127 ((|#2| $) 21 T ELT)) (-2405 (($) 18 T ELT)) (-3752 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088))) NIL T ELT) (($ $ (-1088)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-2404 (((-630 |#2|) (-1177 $) (-1 |#2| |#2|)) 64 T ELT)) (-3966 (((-1177 |#2|) $) NIL T ELT) (($ (-1177 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-2445 ((|#3| $) 36 T ELT)) (-2008 (((-1177 $)) 33 T ELT)))
-(((-660 |#1| |#2| |#3|) (-10 -7 (-15 -3752 (|#1| |#1|)) (-15 -3752 (|#1| |#1| (-694))) (-15 -3752 (|#1| |#1| (-1088))) (-15 -3752 (|#1| |#1| (-583 (-1088)))) (-15 -3752 (|#1| |#1| (-1088) (-694))) (-15 -3752 (|#1| |#1| (-583 (-1088)) (-583 (-694)))) (-15 -2990 (|#1|)) (-15 -3131 ((-694))) (-15 -3752 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3752 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2404 ((-630 |#2|) (-1177 |#1|) (-1 |#2| |#2|))) (-15 -3836 ((-3 |#1| #1="failed") (-347 |#3|))) (-15 -3966 (|#1| |#3|)) (-15 -3836 (|#1| |#3|)) (-15 -2405 (|#1|)) (-15 -3152 ((-3 |#2| #1#) |#1|)) (-15 -3151 (|#2| |#1|)) (-15 -3151 ((-347 (-483)) |#1|)) (-15 -3152 ((-3 (-347 (-483)) #1#) |#1|)) (-15 -3151 ((-483) |#1|)) (-15 -3152 ((-3 (-483) #1#) |#1|)) (-15 -3966 (|#3| |#1|)) (-15 -3966 (|#1| (-1177 |#2|))) (-15 -3966 ((-1177 |#2|) |#1|)) (-15 -2008 ((-1177 |#1|))) (-15 -2445 (|#3| |#1|)) (-15 -3127 (|#2| |#1|)) (-15 -3461 ((-3 |#1| #1#) |#1|))) (-661 |#2| |#3|) (-146) (-1153 |#2|)) (T -660))
-((-3131 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1153 *4)) (-5 *2 (-694)) (-5 *1 (-660 *3 *4 *5)) (-4 *3 (-661 *4 *5)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 112 (|has| |#1| (-311)) ELT)) (-2059 (($ $) 113 (|has| |#1| (-311)) ELT)) (-2057 (((-85) $) 115 (|has| |#1| (-311)) ELT)) (-1779 (((-630 |#1|) (-1177 $)) 59 T ELT) (((-630 |#1|)) 75 T ELT)) (-3324 ((|#1| $) 65 T ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) 165 (|has| |#1| (-298)) ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3769 (($ $) 132 (|has| |#1| (-311)) ELT)) (-3965 (((-345 $) $) 133 (|has| |#1| (-311)) ELT)) (-1605 (((-85) $ $) 123 (|has| |#1| (-311)) ELT)) (-3131 (((-694)) 106 (|has| |#1| (-317)) ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 (-483) #1="failed") $) 192 (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) 190 (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) 187 T ELT)) (-3151 (((-483) $) 191 (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) 189 (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) 188 T ELT)) (-1789 (($ (-1177 |#1|) (-1177 $)) 61 T ELT) (($ (-1177 |#1|)) 78 T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) 171 (|has| |#1| (-298)) ELT)) (-2560 (($ $ $) 127 (|has| |#1| (-311)) ELT)) (-1778 (((-630 |#1|) $ (-1177 $)) 66 T ELT) (((-630 |#1|) $) 73 T ELT)) (-2275 (((-630 (-483)) (-630 $)) 184 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 183 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) 182 T ELT) (((-630 |#1|) (-630 $)) 181 T ELT)) (-3836 (($ |#2|) 176 T ELT) (((-3 $ "failed") (-347 |#2|)) 173 (|has| |#1| (-311)) ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3104 (((-830)) 67 T ELT)) (-2990 (($) 109 (|has| |#1| (-317)) ELT)) (-2559 (($ $ $) 126 (|has| |#1| (-311)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 121 (|has| |#1| (-311)) ELT)) (-2829 (($) 167 (|has| |#1| (-298)) ELT)) (-1677 (((-85) $) 168 (|has| |#1| (-298)) ELT)) (-1761 (($ $ (-694)) 159 (|has| |#1| (-298)) ELT) (($ $) 158 (|has| |#1| (-298)) ELT)) (-3717 (((-85) $) 134 (|has| |#1| (-311)) ELT)) (-3766 (((-830) $) 170 (|has| |#1| (-298)) ELT) (((-743 (-830)) $) 156 (|has| |#1| (-298)) ELT)) (-2406 (((-85) $) 42 T ELT)) (-3127 ((|#1| $) 64 T ELT)) (-3439 (((-632 $) $) 160 (|has| |#1| (-298)) ELT)) (-1602 (((-3 (-583 $) #2="failed") (-583 $) $) 130 (|has| |#1| (-311)) ELT)) (-2010 ((|#2| $) 57 (|has| |#1| (-311)) ELT)) (-2006 (((-830) $) 108 (|has| |#1| (-317)) ELT)) (-3075 ((|#2| $) 174 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) 186 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 185 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 180 T ELT) (((-630 |#1|) (-1177 $)) 179 T ELT)) (-1888 (($ (-583 $)) 119 (|has| |#1| (-311)) ELT) (($ $ $) 118 (|has| |#1| (-311)) ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 135 (|has| |#1| (-311)) ELT)) (-3440 (($) 161 (|has| |#1| (-298)) CONST)) (-2396 (($ (-830)) 107 (|has| |#1| (-317)) ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2405 (($) 178 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 120 (|has| |#1| (-311)) ELT)) (-3139 (($ (-583 $)) 117 (|has| |#1| (-311)) ELT) (($ $ $) 116 (|has| |#1| (-311)) ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) 164 (|has| |#1| (-298)) ELT)) (-3726 (((-345 $) $) 131 (|has| |#1| (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 129 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 128 (|has| |#1| (-311)) ELT)) (-3460 (((-3 $ "failed") $ $) 111 (|has| |#1| (-311)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 122 (|has| |#1| (-311)) ELT)) (-1604 (((-694) $) 124 (|has| |#1| (-311)) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 125 (|has| |#1| (-311)) ELT)) (-3751 ((|#1| (-1177 $)) 60 T ELT) ((|#1|) 74 T ELT)) (-1762 (((-694) $) 169 (|has| |#1| (-298)) ELT) (((-3 (-694) "failed") $ $) 157 (|has| |#1| (-298)) ELT)) (-3752 (($ $ (-694)) 154 (OR (-2558 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $) 152 (OR (-2558 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 148 (-2558 (|has| |#1| (-811 (-1088))) (|has| |#1| (-311))) ELT) (($ $ (-1088) (-694)) 147 (-2558 (|has| |#1| (-811 (-1088))) (|has| |#1| (-311))) ELT) (($ $ (-583 (-1088))) 146 (-2558 (|has| |#1| (-811 (-1088))) (|has| |#1| (-311))) ELT) (($ $ (-1088)) 144 (-2558 (|has| |#1| (-811 (-1088))) (|has| |#1| (-311))) ELT) (($ $ (-1 |#1| |#1|)) 143 (|has| |#1| (-311)) ELT) (($ $ (-1 |#1| |#1|) (-694)) 142 (|has| |#1| (-311)) ELT)) (-2404 (((-630 |#1|) (-1177 $) (-1 |#1| |#1|)) 172 (|has| |#1| (-311)) ELT)) (-3180 ((|#2|) 177 T ELT)) (-1671 (($) 166 (|has| |#1| (-298)) ELT)) (-3219 (((-1177 |#1|) $ (-1177 $)) 63 T ELT) (((-630 |#1|) (-1177 $) (-1177 $)) 62 T ELT) (((-1177 |#1|) $) 80 T ELT) (((-630 |#1|) (-1177 $)) 79 T ELT)) (-3966 (((-1177 |#1|) $) 77 T ELT) (($ (-1177 |#1|)) 76 T ELT) ((|#2| $) 193 T ELT) (($ |#2|) 175 T ELT)) (-2699 (((-3 (-1177 $) "failed") (-630 $)) 163 (|has| |#1| (-298)) ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 50 T ELT) (($ $) 110 (|has| |#1| (-311)) ELT) (($ (-347 (-483))) 105 (OR (|has| |#1| (-311)) (|has| |#1| (-950 (-347 (-483))))) ELT)) (-2698 (($ $) 162 (|has| |#1| (-298)) ELT) (((-632 $) $) 56 (|has| |#1| (-118)) ELT)) (-2445 ((|#2| $) 58 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2008 (((-1177 $)) 81 T ELT)) (-2058 (((-85) $ $) 114 (|has| |#1| (-311)) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-694)) 155 (OR (-2558 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $) 153 (OR (-2558 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 151 (-2558 (|has| |#1| (-811 (-1088))) (|has| |#1| (-311))) ELT) (($ $ (-1088) (-694)) 150 (-2558 (|has| |#1| (-811 (-1088))) (|has| |#1| (-311))) ELT) (($ $ (-583 (-1088))) 149 (-2558 (|has| |#1| (-811 (-1088))) (|has| |#1| (-311))) ELT) (($ $ (-1088)) 145 (-2558 (|has| |#1| (-811 (-1088))) (|has| |#1| (-311))) ELT) (($ $ (-1 |#1| |#1|)) 141 (|has| |#1| (-311)) ELT) (($ $ (-1 |#1| |#1|) (-694)) 140 (|has| |#1| (-311)) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ $) 139 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 136 (|has| |#1| (-311)) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT) (($ (-347 (-483)) $) 138 (|has| |#1| (-311)) ELT) (($ $ (-347 (-483))) 137 (|has| |#1| (-311)) ELT)))
-(((-661 |#1| |#2|) (-113) (-146) (-1153 |t#1|)) (T -661))
-((-2405 (*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-661 *2 *3)) (-4 *3 (-1153 *2)))) (-3180 (*1 *2) (-12 (-4 *1 (-661 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1153 *3)))) (-3836 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-661 *3 *2)) (-4 *2 (-1153 *3)))) (-3966 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-661 *3 *2)) (-4 *2 (-1153 *3)))) (-3075 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1153 *3)))) (-3836 (*1 *1 *2) (|partial| -12 (-5 *2 (-347 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-311)) (-4 *3 (-146)) (-4 *1 (-661 *3 *4)))) (-2404 (*1 *2 *3 *4) (-12 (-5 *3 (-1177 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-311)) (-4 *1 (-661 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1153 *5)) (-5 *2 (-630 *5)))))
-(-13 (-350 |t#1| |t#2|) (-146) (-553 |t#2|) (-352 |t#1|) (-326 |t#1|) (-10 -8 (-15 -2405 ($)) (-15 -3180 (|t#2|)) (-15 -3836 ($ |t#2|)) (-15 -3966 ($ |t#2|)) (-15 -3075 (|t#2| $)) (IF (|has| |t#1| (-317)) (-6 (-317)) |%noBranch|) (IF (|has| |t#1| (-311)) (PROGN (-6 (-311)) (-6 (-184 |t#1|)) (-15 -3836 ((-3 $ "failed") (-347 |t#2|))) (-15 -2404 ((-630 |t#1|) (-1177 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-298)) (-6 (-298)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-483))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-298)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) OR (|has| |#1| (-950 (-347 (-483)))) (|has| |#1| (-298)) (|has| |#1| (-311))) ((-555 (-483)) . T) ((-555 |#1|) . T) ((-555 $) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-552 (-772)) . T) ((-146) . T) ((-553 |#2|) . T) ((-186 $) OR (|has| |#1| (-298)) (-12 (|has| |#1| (-189)) (|has| |#1| (-311))) (-12 (|has| |#1| (-190)) (|has| |#1| (-311)))) ((-184 |#1|) |has| |#1| (-311)) ((-190) OR (|has| |#1| (-298)) (-12 (|has| |#1| (-190)) (|has| |#1| (-311)))) ((-189) OR (|has| |#1| (-298)) (-12 (|has| |#1| (-189)) (|has| |#1| (-311))) (-12 (|has| |#1| (-190)) (|has| |#1| (-311)))) ((-225 |#1|) |has| |#1| (-311)) ((-201) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-245) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-257) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-311) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-342) |has| |#1| (-298)) ((-317) OR (|has| |#1| (-298)) (|has| |#1| (-317))) ((-298) |has| |#1| (-298)) ((-319 |#1| |#2|) . T) ((-350 |#1| |#2|) . T) ((-326 |#1|) . T) ((-352 |#1|) . T) ((-389) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-494) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-13) . T) ((-588 (-347 (-483))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-590 (-483)) |has| |#1| (-580 (-483))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-582 |#1|) . T) ((-582 $) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-580 (-483)) |has| |#1| (-580 (-483))) ((-580 |#1|) . T) ((-654 (-347 (-483))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-654 |#1|) . T) ((-654 $) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-663) . T) ((-806 $ (-1088)) OR (-12 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) (-12 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088))))) ((-809 (-1088)) -12 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088)))) ((-811 (-1088)) OR (-12 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) (-12 (|has| |#1| (-311)) (|has| |#1| (-809 (-1088))))) ((-832) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-950 (-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((-950 (-483)) |has| |#1| (-950 (-483))) ((-950 |#1|) . T) ((-963 (-347 (-483))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-963 |#1|) . T) ((-963 $) . T) ((-968 (-347 (-483))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-968 |#1|) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1064) |has| |#1| (-298)) ((-1127) . T) ((-1132) OR (|has| |#1| (-298)) (|has| |#1| (-311))))
-((-3718 (($) 11 T CONST)) (-3461 (((-3 $ "failed") $) 14 T ELT)) (-2406 (((-85) $) 10 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 20 T ELT)))
-(((-662 |#1|) (-10 -7 (-15 -3461 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-694))) (-15 -2406 ((-85) |#1|)) (-15 -3718 (|#1|) -3946) (-15 ** (|#1| |#1| (-830)))) (-663)) (T -662))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3718 (($) 23 T CONST)) (-3461 (((-3 $ "failed") $) 20 T ELT)) (-2406 (((-85) $) 22 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (** (($ $ (-830)) 17 T ELT) (($ $ (-694)) 21 T ELT)) (* (($ $ $) 18 T ELT)))
-(((-663) (-113)) (T -663))
-((-2662 (*1 *1) (-4 *1 (-663))) (-3718 (*1 *1) (-4 *1 (-663))) (-2406 (*1 *2 *1) (-12 (-4 *1 (-663)) (-5 *2 (-85)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-694)))) (-3461 (*1 *1 *1) (|partial| -4 *1 (-663))))
-(-13 (-1024) (-10 -8 (-15 -2662 ($) -3946) (-15 -3718 ($) -3946) (-15 -2406 ((-85) $)) (-15 ** ($ $ (-694))) (-15 -3461 ((-3 $ "failed") $))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1024) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-2408 ((|#1| $) 13 T ELT)) (-2407 (($ (-1 |#1| |#1| |#1|) |#1|) 9 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3794 ((|#1| $ |#1| |#1|) 11 T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-664 |#1|) (-13 (-665 |#1|) (-1012) (-10 -8 (-15 -2407 ($ (-1 |#1| |#1| |#1|) |#1|)))) (-72)) (T -664))
-((-2407 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-664 *3)))))
-((-2408 ((|#1| $) 8 T ELT)) (-3794 ((|#1| $ |#1| |#1|) 6 T ELT)))
-(((-665 |#1|) (-113) (-72)) (T -665))
-((-2408 (*1 *2 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-72)))))
-(-13 (-1022 |t#1|) (-10 -8 (-15 -2408 (|t#1| $)) (-6 (|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (SEQ (-3052 (|f| |x| (-2408 |f|)) |x|) (|exit| 1 (-3052 (|f| (-2408 |f|) |x|) |x|))))))))
-(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1022 |#1|) . T) ((-1127) . T))
-((-2409 (((-2 (|:| -3085 (-345 |#2|)) (|:| |special| (-345 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-3412 (((-2 (|:| -3085 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-2410 ((|#2| (-347 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-3429 (((-2 (|:| |poly| |#2|) (|:| -3085 (-347 |#2|)) (|:| |special| (-347 |#2|))) (-347 |#2|) (-1 |#2| |#2|)) 48 T ELT)))
-(((-666 |#1| |#2|) (-10 -7 (-15 -3412 ((-2 (|:| -3085 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2409 ((-2 (|:| -3085 (-345 |#2|)) (|:| |special| (-345 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2410 (|#2| (-347 |#2|) (-1 |#2| |#2|))) (-15 -3429 ((-2 (|:| |poly| |#2|) (|:| -3085 (-347 |#2|)) (|:| |special| (-347 |#2|))) (-347 |#2|) (-1 |#2| |#2|)))) (-311) (-1153 |#1|)) (T -666))
-((-3429 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3085 (-347 *6)) (|:| |special| (-347 *6)))) (-5 *1 (-666 *5 *6)) (-5 *3 (-347 *6)))) (-2410 (*1 *2 *3 *4) (-12 (-5 *3 (-347 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1153 *5)) (-5 *1 (-666 *5 *2)) (-4 *5 (-311)))) (-2409 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| -3085 (-345 *3)) (|:| |special| (-345 *3)))) (-5 *1 (-666 *5 *3)))) (-3412 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| -3085 *3) (|:| |special| *3))) (-5 *1 (-666 *5 *3)))))
-((-2411 ((|#7| (-583 |#5|) |#6|) NIL T ELT)) (-3952 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT)))
-(((-667 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3952 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2411 (|#7| (-583 |#5|) |#6|))) (-756) (-717) (-717) (-961) (-961) (-861 |#4| |#2| |#1|) (-861 |#5| |#3| |#1|)) (T -667))
-((-2411 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *9)) (-4 *9 (-961)) (-4 *5 (-756)) (-4 *6 (-717)) (-4 *8 (-961)) (-4 *2 (-861 *9 *7 *5)) (-5 *1 (-667 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-717)) (-4 *4 (-861 *8 *6 *5)))) (-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-961)) (-4 *9 (-961)) (-4 *5 (-756)) (-4 *6 (-717)) (-4 *2 (-861 *9 *7 *5)) (-5 *1 (-667 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-717)) (-4 *4 (-861 *8 *6 *5)))))
-((-3952 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT)))
-(((-668 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3952 (|#7| (-1 |#2| |#1|) |#6|))) (-756) (-756) (-717) (-717) (-961) (-861 |#5| |#3| |#1|) (-861 |#5| |#4| |#2|)) (T -668))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-756)) (-4 *6 (-756)) (-4 *7 (-717)) (-4 *9 (-961)) (-4 *2 (-861 *9 *8 *6)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-717)) (-4 *4 (-861 *9 *7 *5)))))
-((-3726 (((-345 |#4|) |#4|) 42 T ELT)))
-(((-669 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3726 ((-345 |#4|) |#4|))) (-717) (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $)) (-15 -3825 ((-3 $ "failed") (-1088))))) (-257) (-861 (-857 |#3|) |#1| |#2|)) (T -669))
-((-3726 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $)) (-15 -3825 ((-3 $ "failed") (-1088)))))) (-4 *6 (-257)) (-5 *2 (-345 *3)) (-5 *1 (-669 *4 *5 *6 *3)) (-4 *3 (-861 (-857 *6) *4 *5)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3077 (((-583 (-773 |#1|)) $) NIL T ELT)) (-3079 (((-1083 $) $ (-773 |#1|)) NIL T ELT) (((-1083 |#2|) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#2| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#2| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#2| (-494)) ELT)) (-2815 (((-694) $) NIL T ELT) (((-694) $ (-583 (-773 |#1|))) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-3769 (($ $) NIL (|has| |#2| (-389)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#2| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-3151 ((|#2| $) NIL T ELT) (((-347 (-483)) $) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) (((-483) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-773 |#1|) $) NIL T ELT)) (-3750 (($ $ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3953 (($ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#2| (-389)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-389)) ELT)) (-2814 (((-583 $) $) NIL T ELT)) (-3717 (((-85) $) NIL (|has| |#2| (-821)) ELT)) (-1621 (($ $ |#2| (-468 (-773 |#1|)) $) NIL T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-327))) (|has| |#2| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-483))) (|has| |#2| (-796 (-483)))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2416 (((-694) $) NIL T ELT)) (-3080 (($ (-1083 |#2|) (-773 |#1|)) NIL T ELT) (($ (-1083 $) (-773 |#1|)) NIL T ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#2| (-468 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ (-773 |#1|)) NIL T ELT)) (-2816 (((-468 (-773 |#1|)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-1622 (($ (-1 (-468 (-773 |#1|)) (-468 (-773 |#1|))) $) NIL T ELT)) (-3952 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3078 (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL T ELT) (((-630 |#2|) (-1177 $)) NIL T ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#2| $) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2819 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2818 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-2 (|:| |var| (-773 |#1|)) (|:| -2397 (-694))) #1#) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1794 (((-85) $) NIL T ELT)) (-1793 ((|#2| $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-389)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#2| (-821)) ELT)) (-3460 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-494)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-494)) ELT)) (-3762 (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-773 |#1|) |#2|) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 |#2|)) NIL T ELT) (($ $ (-773 |#1|) $) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 $)) NIL T ELT)) (-3751 (($ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3752 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3942 (((-468 (-773 |#1|)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-3966 (((-800 (-327)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-327)))) (|has| |#2| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-483)))) (|has| |#2| (-553 (-800 (-483))))) ELT) (((-472) $) NIL (-12 (|has| (-773 |#1|) (-553 (-472))) (|has| |#2| (-553 (-472)))) ELT)) (-2813 ((|#2| $) NIL (|has| |#2| (-389)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-773 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-494)) ELT) (($ (-347 (-483))) NIL (OR (|has| |#2| (-38 (-347 (-483)))) (|has| |#2| (-950 (-347 (-483))))) ELT)) (-3811 (((-583 |#2|) $) NIL T ELT)) (-3671 ((|#2| $ (-468 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1620 (($ $ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| |#2| (-494)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL (|has| |#2| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) NIL (|has| |#2| (-38 (-347 (-483)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
-(((-670 |#1| |#2|) (-861 |#2| (-468 (-773 |#1|)) (-773 |#1|)) (-583 (-1088)) (-961)) (T -670))
-NIL
-((-2412 (((-2 (|:| -2479 (-857 |#3|)) (|:| -2054 (-857 |#3|))) |#4|) 14 T ELT)) (-2982 ((|#4| |#4| |#2|) 33 T ELT)) (-2415 ((|#4| (-347 (-857 |#3|)) |#2|) 62 T ELT)) (-2414 ((|#4| (-1083 (-857 |#3|)) |#2|) 74 T ELT)) (-2413 ((|#4| (-1083 |#4|) |#2|) 49 T ELT)) (-2981 ((|#4| |#4| |#2|) 52 T ELT)) (-3726 (((-345 |#4|) |#4|) 40 T ELT)))
-(((-671 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2412 ((-2 (|:| -2479 (-857 |#3|)) (|:| -2054 (-857 |#3|))) |#4|)) (-15 -2981 (|#4| |#4| |#2|)) (-15 -2413 (|#4| (-1083 |#4|) |#2|)) (-15 -2982 (|#4| |#4| |#2|)) (-15 -2414 (|#4| (-1083 (-857 |#3|)) |#2|)) (-15 -2415 (|#4| (-347 (-857 |#3|)) |#2|)) (-15 -3726 ((-345 |#4|) |#4|))) (-717) (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $)))) (-494) (-861 (-347 (-857 |#3|)) |#1| |#2|)) (T -671))
-((-3726 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $))))) (-4 *6 (-494)) (-5 *2 (-345 *3)) (-5 *1 (-671 *4 *5 *6 *3)) (-4 *3 (-861 (-347 (-857 *6)) *4 *5)))) (-2415 (*1 *2 *3 *4) (-12 (-4 *6 (-494)) (-4 *2 (-861 *3 *5 *4)) (-5 *1 (-671 *5 *4 *6 *2)) (-5 *3 (-347 (-857 *6))) (-4 *5 (-717)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $))))))) (-2414 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 (-857 *6))) (-4 *6 (-494)) (-4 *2 (-861 (-347 (-857 *6)) *5 *4)) (-5 *1 (-671 *5 *4 *6 *2)) (-4 *5 (-717)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $))))))) (-2982 (*1 *2 *2 *3) (-12 (-4 *4 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $))))) (-4 *5 (-494)) (-5 *1 (-671 *4 *3 *5 *2)) (-4 *2 (-861 (-347 (-857 *5)) *4 *3)))) (-2413 (*1 *2 *3 *4) (-12 (-5 *3 (-1083 *2)) (-4 *2 (-861 (-347 (-857 *6)) *5 *4)) (-5 *1 (-671 *5 *4 *6 *2)) (-4 *5 (-717)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $))))) (-4 *6 (-494)))) (-2981 (*1 *2 *2 *3) (-12 (-4 *4 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $))))) (-4 *5 (-494)) (-5 *1 (-671 *4 *3 *5 *2)) (-4 *2 (-861 (-347 (-857 *5)) *4 *3)))) (-2412 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $))))) (-4 *6 (-494)) (-5 *2 (-2 (|:| -2479 (-857 *6)) (|:| -2054 (-857 *6)))) (-5 *1 (-671 *4 *5 *6 *3)) (-4 *3 (-861 (-347 (-857 *6)) *4 *5)))))
-((-3726 (((-345 |#4|) |#4|) 54 T ELT)))
-(((-672 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3726 ((-345 |#4|) |#4|))) (-717) (-756) (-13 (-257) (-120)) (-861 (-347 |#3|) |#1| |#2|)) (T -672))
-((-3726 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-13 (-257) (-120))) (-5 *2 (-345 *3)) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-861 (-347 *6) *4 *5)))))
-((-3952 (((-674 |#2| |#3|) (-1 |#2| |#1|) (-674 |#1| |#3|)) 18 T ELT)))
-(((-673 |#1| |#2| |#3|) (-10 -7 (-15 -3952 ((-674 |#2| |#3|) (-1 |#2| |#1|) (-674 |#1| |#3|)))) (-961) (-961) (-663)) (T -673))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-674 *5 *7)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *7 (-663)) (-5 *2 (-674 *6 *7)) (-5 *1 (-673 *5 *6 *7)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 36 T ELT)) (-3768 (((-583 (-2 (|:| -3948 |#1|) (|:| -3932 |#2|))) $) 37 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3131 (((-694)) 22 (-12 (|has| |#2| (-317)) (|has| |#1| (-317))) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#2| #1#) $) 76 T ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3151 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-3953 (($ $) 99 (|has| |#2| (-756)) ELT)) (-3461 (((-3 $ #1#) $) 83 T ELT)) (-2990 (($) 48 (-12 (|has| |#2| (-317)) (|has| |#1| (-317))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2416 (((-694) $) 70 T ELT)) (-2817 (((-583 $) $) 52 T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| |#2|) 17 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-2006 (((-830) $) 43 (-12 (|has| |#2| (-317)) (|has| |#1| (-317))) ELT)) (-2890 ((|#2| $) 98 (|has| |#2| (-756)) ELT)) (-3169 ((|#1| $) 97 (|has| |#2| (-756)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 (($ (-830)) 35 (-12 (|has| |#2| (-317)) (|has| |#1| (-317))) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 96 T ELT) (($ (-483)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-583 (-2 (|:| -3948 |#1|) (|:| -3932 |#2|)))) 11 T ELT)) (-3811 (((-583 |#1|) $) 54 T ELT)) (-3671 ((|#1| $ |#2|) 114 T ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 12 T CONST)) (-2662 (($) 44 T CONST)) (-3052 (((-85) $ $) 104 T ELT)) (-3831 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 33 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 66 T ELT) (($ $ $) 117 T ELT) (($ |#1| $) 63 (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT)))
-(((-674 |#1| |#2|) (-13 (-961) (-950 |#2|) (-950 |#1|) (-10 -8 (-15 -2889 ($ |#1| |#2|)) (-15 -3671 (|#1| $ |#2|)) (-15 -3940 ($ (-583 (-2 (|:| -3948 |#1|) (|:| -3932 |#2|))))) (-15 -3768 ((-583 (-2 (|:| -3948 |#1|) (|:| -3932 |#2|))) $)) (-15 -3952 ($ (-1 |#1| |#1|) $)) (-15 -3931 ((-85) $)) (-15 -3811 ((-583 |#1|) $)) (-15 -2817 ((-583 $) $)) (-15 -2416 ((-694) $)) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-317)) (IF (|has| |#2| (-317)) (-6 (-317)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-756)) (PROGN (-15 -2890 (|#2| $)) (-15 -3169 (|#1| $)) (-15 -3953 ($ $))) |%noBranch|))) (-961) (-663)) (T -674))
-((-2889 (*1 *1 *2 *3) (-12 (-5 *1 (-674 *2 *3)) (-4 *2 (-961)) (-4 *3 (-663)))) (-3671 (*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-674 *2 *3)) (-4 *3 (-663)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3948 *3) (|:| -3932 *4)))) (-4 *3 (-961)) (-4 *4 (-663)) (-5 *1 (-674 *3 *4)))) (-3768 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3948 *3) (|:| -3932 *4)))) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) (-3952 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-674 *3 *4)) (-4 *4 (-663)))) (-3931 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) (-3811 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) (-2817 (*1 *2 *1) (-12 (-5 *2 (-583 (-674 *3 *4))) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) (-2416 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) (-2890 (*1 *2 *1) (-12 (-4 *2 (-663)) (-4 *2 (-756)) (-5 *1 (-674 *3 *2)) (-4 *3 (-961)))) (-3169 (*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-674 *2 *3)) (-4 *3 (-756)) (-4 *3 (-663)))) (-3953 (*1 *1 *1) (-12 (-5 *1 (-674 *2 *3)) (-4 *3 (-756)) (-4 *2 (-961)) (-4 *3 (-663)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3229 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-3231 (($ $ $) 99 T ELT)) (-3230 (((-85) $ $) 107 T ELT)) (-3234 (($ (-583 |#1|)) 26 T ELT) (($) 17 T ELT)) (-1567 (($ (-1 (-85) |#1|) $) 86 (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3718 (($) NIL T CONST)) (-2364 (($ $) 88 T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3399 (($ |#1| $) 71 (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3989)) ELT) (($ |#1| $ (-483)) 78 T ELT) (($ (-1 (-85) |#1|) $ (-483)) 81 T ELT)) (-3400 (($ |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (($ |#1| $ (-483)) 83 T ELT) (($ (-1 (-85) |#1|) $ (-483)) 84 T ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2885 (((-583 |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3236 (((-85) $ $) 106 T ELT)) (-2417 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-583 |#1|)) 23 T ELT)) (-2604 (((-583 |#1|) $) 38 T ELT)) (-3240 (((-85) |#1| $) 66 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 91 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3233 (($ $ $) 97 T ELT)) (-1271 ((|#1| $) 63 T ELT)) (-3603 (($ |#1| $) 64 T ELT) (($ |#1| $ (-694)) 89 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1272 ((|#1| $) 62 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) 57 T ELT)) (-3559 (($) 14 T ELT)) (-2363 (((-583 (-2 (|:| |entry| |#1|) (|:| -1943 (-694)))) $) 56 T ELT)) (-3232 (($ $ |#1|) NIL T ELT) (($ $ $) 98 T ELT)) (-1463 (($) 16 T ELT) (($ (-583 |#1|)) 25 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 69 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) 82 T ELT)) (-3966 (((-472) $) 36 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 22 T ELT)) (-3940 (((-772) $) 50 T ELT)) (-3235 (($ (-583 |#1|)) 27 T ELT) (($) 18 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-1273 (($ (-583 |#1|)) 24 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 103 T ELT)) (-3951 (((-694) $) 68 (|has| $ (-6 -3989)) ELT)))
-(((-675 |#1|) (-13 (-676 |#1|) (-10 -8 (-6 -3989) (-6 -3990) (-15 -2417 ($)) (-15 -2417 ($ |#1|)) (-15 -2417 ($ (-583 |#1|))) (-15 -2604 ((-583 |#1|) $)) (-15 -3400 ($ |#1| $ (-483))) (-15 -3400 ($ (-1 (-85) |#1|) $ (-483))) (-15 -3399 ($ |#1| $ (-483))) (-15 -3399 ($ (-1 (-85) |#1|) $ (-483))))) (-1012)) (T -675))
-((-2417 (*1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1012)))) (-2417 (*1 *1 *2) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1012)))) (-2417 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-5 *1 (-675 *3)))) (-2604 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-675 *3)) (-4 *3 (-1012)))) (-3400 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *1 (-675 *2)) (-4 *2 (-1012)))) (-3400 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-483)) (-4 *4 (-1012)) (-5 *1 (-675 *4)))) (-3399 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *1 (-675 *2)) (-4 *2 (-1012)))) (-3399 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-483)) (-4 *4 (-1012)) (-5 *1 (-675 *4)))))
-((-2564 (((-85) $ $) 19 T ELT)) (-3229 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3231 (($ $ $) 77 T ELT)) (-3230 (((-85) $ $) 78 T ELT)) (-3234 (($ (-583 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1567 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3989)) ELT)) (-3718 (($) 7 T CONST)) (-2364 (($ $) 66 T ELT)) (-1350 (($ $) 62 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3399 (($ |#1| $) 51 (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3989)) ELT)) (-3400 (($ |#1| $) 61 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3989)) ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-3236 (((-85) $ $) 69 T ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3237 (((-1071) $) 22 T ELT)) (-3233 (($ $ $) 74 T ELT)) (-1271 ((|#1| $) 43 T ELT)) (-3603 (($ |#1| $) 44 T ELT) (($ |#1| $ (-694)) 67 T ELT)) (-3238 (((-1032) $) 21 T ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1272 ((|#1| $) 45 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-2363 (((-583 (-2 (|:| |entry| |#1|) (|:| -1943 (-694)))) $) 65 T ELT)) (-3232 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1463 (($) 53 T ELT) (($ (-583 |#1|)) 52 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 63 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 54 T ELT)) (-3940 (((-772) $) 17 T ELT)) (-3235 (($ (-583 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1262 (((-85) $ $) 20 T ELT)) (-1273 (($ (-583 |#1|)) 46 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 T ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-676 |#1|) (-113) (-1012)) (T -676))
-NIL
-(-13 (-634 |t#1|) (-1010 |t#1|))
-(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-552 (-772)) . T) ((-124 |#1|) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-193 |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-634 |#1|) . T) ((-1010 |#1|) . T) ((-1012) . T) ((-1127) . T))
-((-2418 (((-1183) (-1071)) 8 T ELT)))
-(((-677) (-10 -7 (-15 -2418 ((-1183) (-1071))))) (T -677))
-((-2418 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-677)))))
-((-2419 (((-583 |#1|) (-583 |#1|) (-583 |#1|)) 15 T ELT)))
-(((-678 |#1|) (-10 -7 (-15 -2419 ((-583 |#1|) (-583 |#1|) (-583 |#1|)))) (-756)) (T -678))
-((-2419 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-678 *3)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3077 (((-583 |#2|) $) 157 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 150 (|has| |#1| (-494)) ELT)) (-2059 (($ $) 149 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) 147 (|has| |#1| (-494)) ELT)) (-3486 (($ $) 106 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) 89 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3033 (($ $) 88 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3484 (($ $) 105 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) 90 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3488 (($ $) 104 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) 91 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) 22 T CONST)) (-3953 (($ $) 141 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3808 (((-857 |#1|) $ (-694)) 119 T ELT) (((-857 |#1|) $ (-694) (-694)) 118 T ELT)) (-2888 (((-85) $) 158 T ELT)) (-3621 (($) 116 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3766 (((-694) $ |#2|) 121 T ELT) (((-694) $ |#2| (-694)) 120 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3007 (($ $ (-483)) 87 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3931 (((-85) $) 139 T ELT)) (-2889 (($ $ (-583 |#2|) (-583 (-468 |#2|))) 156 T ELT) (($ $ |#2| (-468 |#2|)) 155 T ELT) (($ |#1| (-468 |#2|)) 140 T ELT) (($ $ |#2| (-694)) 123 T ELT) (($ $ (-583 |#2|) (-583 (-694))) 122 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 138 T ELT)) (-3936 (($ $) 113 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2890 (($ $) 136 T ELT)) (-3169 ((|#1| $) 135 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3806 (($ $ |#2|) 117 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3763 (($ $ (-694)) 124 T ELT)) (-3460 (((-3 $ "failed") $ $) 151 (|has| |#1| (-494)) ELT)) (-3937 (($ $) 114 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3762 (($ $ |#2| $) 132 T ELT) (($ $ (-583 |#2|) (-583 $)) 131 T ELT) (($ $ (-583 (-248 $))) 130 T ELT) (($ $ (-248 $)) 129 T ELT) (($ $ $ $) 128 T ELT) (($ $ (-583 $) (-583 $)) 127 T ELT)) (-3752 (($ $ (-583 |#2|) (-583 (-694))) 50 T ELT) (($ $ |#2| (-694)) 49 T ELT) (($ $ (-583 |#2|)) 48 T ELT) (($ $ |#2|) 46 T ELT)) (-3942 (((-468 |#2|) $) 137 T ELT)) (-3489 (($ $) 103 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) 92 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) 102 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) 93 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) 101 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) 94 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2887 (($ $) 159 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 154 (|has| |#1| (-146)) ELT) (($ $) 152 (|has| |#1| (-494)) ELT) (($ (-347 (-483))) 144 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3671 ((|#1| $ (-468 |#2|)) 142 T ELT) (($ $ |#2| (-694)) 126 T ELT) (($ $ (-583 |#2|) (-583 (-694))) 125 T ELT)) (-2698 (((-632 $) $) 153 (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-3492 (($ $) 112 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) 100 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) 148 (|has| |#1| (-494)) ELT)) (-3490 (($ $) 111 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) 99 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) 110 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) 98 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3495 (($ $) 109 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) 97 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) 108 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) 96 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) 107 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) 95 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-583 |#2|) (-583 (-694))) 53 T ELT) (($ $ |#2| (-694)) 52 T ELT) (($ $ (-583 |#2|)) 51 T ELT) (($ $ |#2|) 47 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#1|) 143 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ $) 115 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 86 (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-483))) 146 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) 145 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ |#1| $) 134 T ELT) (($ $ |#1|) 133 T ELT)))
-(((-679 |#1| |#2|) (-113) (-961) (-756)) (T -679))
-((-3671 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *2)) (-4 *4 (-961)) (-4 *2 (-756)))) (-3671 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-694))) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756)))) (-3763 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-679 *3 *4)) (-4 *3 (-961)) (-4 *4 (-756)))) (-2889 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *2)) (-4 *4 (-961)) (-4 *2 (-756)))) (-2889 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-694))) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756)))) (-3766 (*1 *2 *1 *3) (-12 (-4 *1 (-679 *4 *3)) (-4 *4 (-961)) (-4 *3 (-756)) (-5 *2 (-694)))) (-3766 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-694)) (-4 *1 (-679 *4 *3)) (-4 *4 (-961)) (-4 *3 (-756)))) (-3808 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756)) (-5 *2 (-857 *4)))) (-3808 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756)) (-5 *2 (-857 *4)))) (-3806 (*1 *1 *1 *2) (-12 (-4 *1 (-679 *3 *2)) (-4 *3 (-961)) (-4 *2 (-756)) (-4 *3 (-38 (-347 (-483)))))))
-(-13 (-809 |t#2|) (-886 |t#1| (-468 |t#2|) |t#2|) (-452 |t#2| $) (-259 $) (-10 -8 (-15 -3671 ($ $ |t#2| (-694))) (-15 -3671 ($ $ (-583 |t#2|) (-583 (-694)))) (-15 -3763 ($ $ (-694))) (-15 -2889 ($ $ |t#2| (-694))) (-15 -2889 ($ $ (-583 |t#2|) (-583 (-694)))) (-15 -3766 ((-694) $ |t#2|)) (-15 -3766 ((-694) $ |t#2| (-694))) (-15 -3808 ((-857 |t#1|) $ (-694))) (-15 -3808 ((-857 |t#1|) $ (-694) (-694))) (IF (|has| |t#1| (-38 (-347 (-483)))) (PROGN (-15 -3806 ($ $ |t#2|)) (-6 (-915)) (-6 (-1113))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| (-468 |#2|)) . T) ((-25) . T) ((-38 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-494)) ((-35) |has| |#1| (-38 (-347 (-483)))) ((-66) |has| |#1| (-38 (-347 (-483)))) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-555 (-483)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) |has| |#1| (-494)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-239) |has| |#1| (-38 (-347 (-483)))) ((-245) |has| |#1| (-494)) ((-259 $) . T) ((-430) |has| |#1| (-38 (-347 (-483)))) ((-452 |#2| $) . T) ((-452 $ $) . T) ((-494) |has| |#1| (-494)) ((-13) . T) ((-588 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-494)) ((-654 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-494)) ((-663) . T) ((-806 $ |#2|) . T) ((-809 |#2|) . T) ((-811 |#2|) . T) ((-886 |#1| (-468 |#2|) |#2|) . T) ((-915) |has| |#1| (-38 (-347 (-483)))) ((-963 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-968 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1113) |has| |#1| (-38 (-347 (-483)))) ((-1116) |has| |#1| (-38 (-347 (-483)))) ((-1127) . T))
-((-3726 (((-345 (-1083 |#4|)) (-1083 |#4|)) 30 T ELT) (((-345 |#4|) |#4|) 26 T ELT)))
-(((-680 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3726 ((-345 |#4|) |#4|)) (-15 -3726 ((-345 (-1083 |#4|)) (-1083 |#4|)))) (-756) (-717) (-13 (-257) (-120)) (-861 |#3| |#2| |#1|)) (T -680))
-((-3726 (*1 *2 *3) (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-13 (-257) (-120))) (-4 *7 (-861 *6 *5 *4)) (-5 *2 (-345 (-1083 *7))) (-5 *1 (-680 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-3726 (*1 *2 *3) (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-13 (-257) (-120))) (-5 *2 (-345 *3)) (-5 *1 (-680 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4)))))
-((-2422 (((-345 |#4|) |#4| |#2|) 142 T ELT)) (-2420 (((-345 |#4|) |#4|) NIL T ELT)) (-3965 (((-345 (-1083 |#4|)) (-1083 |#4|)) 129 T ELT) (((-345 |#4|) |#4|) 52 T ELT)) (-2424 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3726 (-1083 |#4|)) (|:| -2397 (-483)))))) (-1083 |#4|) (-583 |#2|) (-583 (-583 |#3|))) 81 T ELT)) (-2428 (((-1083 |#3|) (-1083 |#3|) (-483)) 169 T ELT)) (-2427 (((-583 (-694)) (-1083 |#4|) (-583 |#2|) (-694)) 75 T ELT)) (-3075 (((-3 (-583 (-1083 |#4|)) "failed") (-1083 |#4|) (-1083 |#3|) (-1083 |#3|) |#4| (-583 |#2|) (-583 (-694)) (-583 |#3|)) 79 T ELT)) (-2425 (((-2 (|:| |upol| (-1083 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3726 (-1083 |#3|)) (|:| -2397 (-483))))) (|:| |ctpol| |#3|)) (-1083 |#4|) (-583 |#2|) (-583 (-583 |#3|))) 27 T ELT)) (-2423 (((-2 (|:| -2000 (-1083 |#4|)) (|:| |polval| (-1083 |#3|))) (-1083 |#4|) (-1083 |#3|) (-483)) 72 T ELT)) (-2421 (((-483) (-583 (-2 (|:| -3726 (-1083 |#3|)) (|:| -2397 (-483))))) 165 T ELT)) (-2426 ((|#4| (-483) (-345 |#4|)) 73 T ELT)) (-3351 (((-85) (-583 (-2 (|:| -3726 (-1083 |#3|)) (|:| -2397 (-483)))) (-583 (-2 (|:| -3726 (-1083 |#3|)) (|:| -2397 (-483))))) NIL T ELT)))
-(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3965 ((-345 |#4|) |#4|)) (-15 -3965 ((-345 (-1083 |#4|)) (-1083 |#4|))) (-15 -2420 ((-345 |#4|) |#4|)) (-15 -2421 ((-483) (-583 (-2 (|:| -3726 (-1083 |#3|)) (|:| -2397 (-483)))))) (-15 -2422 ((-345 |#4|) |#4| |#2|)) (-15 -2423 ((-2 (|:| -2000 (-1083 |#4|)) (|:| |polval| (-1083 |#3|))) (-1083 |#4|) (-1083 |#3|) (-483))) (-15 -2424 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3726 (-1083 |#4|)) (|:| -2397 (-483)))))) (-1083 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -2425 ((-2 (|:| |upol| (-1083 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3726 (-1083 |#3|)) (|:| -2397 (-483))))) (|:| |ctpol| |#3|)) (-1083 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -2426 (|#4| (-483) (-345 |#4|))) (-15 -3351 ((-85) (-583 (-2 (|:| -3726 (-1083 |#3|)) (|:| -2397 (-483)))) (-583 (-2 (|:| -3726 (-1083 |#3|)) (|:| -2397 (-483)))))) (-15 -3075 ((-3 (-583 (-1083 |#4|)) "failed") (-1083 |#4|) (-1083 |#3|) (-1083 |#3|) |#4| (-583 |#2|) (-583 (-694)) (-583 |#3|))) (-15 -2427 ((-583 (-694)) (-1083 |#4|) (-583 |#2|) (-694))) (-15 -2428 ((-1083 |#3|) (-1083 |#3|) (-483)))) (-717) (-756) (-257) (-861 |#3| |#1| |#2|)) (T -681))
-((-2428 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 *6)) (-5 *3 (-483)) (-4 *6 (-257)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) (-2427 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1083 *9)) (-5 *4 (-583 *7)) (-4 *7 (-756)) (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717)) (-4 *8 (-257)) (-5 *2 (-583 (-694))) (-5 *1 (-681 *6 *7 *8 *9)) (-5 *5 (-694)))) (-3075 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1083 *11)) (-5 *6 (-583 *10)) (-5 *7 (-583 (-694))) (-5 *8 (-583 *11)) (-4 *10 (-756)) (-4 *11 (-257)) (-4 *9 (-717)) (-4 *5 (-861 *11 *9 *10)) (-5 *2 (-583 (-1083 *5))) (-5 *1 (-681 *9 *10 *11 *5)) (-5 *3 (-1083 *5)))) (-3351 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-2 (|:| -3726 (-1083 *6)) (|:| -2397 (-483))))) (-4 *6 (-257)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) (-2426 (*1 *2 *3 *4) (-12 (-5 *3 (-483)) (-5 *4 (-345 *2)) (-4 *2 (-861 *7 *5 *6)) (-5 *1 (-681 *5 *6 *7 *2)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-257)))) (-2425 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1083 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-756)) (-4 *8 (-257)) (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717)) (-5 *2 (-2 (|:| |upol| (-1083 *8)) (|:| |Lval| (-583 *8)) (|:| |Lfact| (-583 (-2 (|:| -3726 (-1083 *8)) (|:| -2397 (-483))))) (|:| |ctpol| *8))) (-5 *1 (-681 *6 *7 *8 *9)))) (-2424 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-756)) (-4 *8 (-257)) (-4 *6 (-717)) (-4 *9 (-861 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-583 (-2 (|:| -3726 (-1083 *9)) (|:| -2397 (-483))))))) (-5 *1 (-681 *6 *7 *8 *9)) (-5 *3 (-1083 *9)))) (-2423 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-483)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-257)) (-4 *9 (-861 *8 *6 *7)) (-5 *2 (-2 (|:| -2000 (-1083 *9)) (|:| |polval| (-1083 *8)))) (-5 *1 (-681 *6 *7 *8 *9)) (-5 *3 (-1083 *9)) (-5 *4 (-1083 *8)))) (-2422 (*1 *2 *3 *4) (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-257)) (-5 *2 (-345 *3)) (-5 *1 (-681 *5 *4 *6 *3)) (-4 *3 (-861 *6 *5 *4)))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3726 (-1083 *6)) (|:| -2397 (-483))))) (-4 *6 (-257)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-483)) (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) (-2420 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-257)) (-5 *2 (-345 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-861 *6 *4 *5)))) (-3965 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-257)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-345 (-1083 *7))) (-5 *1 (-681 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-3965 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-257)) (-5 *2 (-345 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-861 *6 *4 *5)))))
-((-2429 (($ $ (-830)) 17 T ELT)))
-(((-682 |#1| |#2|) (-10 -7 (-15 -2429 (|#1| |#1| (-830)))) (-683 |#2|) (-146)) (T -682))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-2403 (($ $ (-830)) 36 T ELT)) (-2429 (($ $ (-830)) 43 T ELT)) (-2402 (($ $ (-830)) 37 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2431 (($ $ $) 33 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2432 (($ $ $ $) 34 T ELT)) (-2430 (($ $ $) 32 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 38 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT)))
-(((-683 |#1|) (-113) (-146)) (T -683))
-((-2429 (*1 *1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-683 *3)) (-4 *3 (-146)))))
-(-13 (-685) (-654 |t#1|) (-10 -8 (-15 -2429 ($ $ (-830)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-657) . T) ((-685) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1012) . T) ((-1127) . T))
-((-2431 (($ $ $) 10 T ELT)) (-2432 (($ $ $ $) 9 T ELT)) (-2430 (($ $ $) 12 T ELT)))
-(((-684 |#1|) (-10 -7 (-15 -2430 (|#1| |#1| |#1|)) (-15 -2431 (|#1| |#1| |#1|)) (-15 -2432 (|#1| |#1| |#1| |#1|))) (-685)) (T -684))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-2403 (($ $ (-830)) 36 T ELT)) (-2402 (($ $ (-830)) 37 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2431 (($ $ $) 33 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2432 (($ $ $ $) 34 T ELT)) (-2430 (($ $ $) 32 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 38 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 35 T ELT)))
-(((-685) (-113)) (T -685))
-((-2432 (*1 *1 *1 *1 *1) (-4 *1 (-685))) (-2431 (*1 *1 *1 *1) (-4 *1 (-685))) (-2430 (*1 *1 *1 *1) (-4 *1 (-685))))
-(-13 (-21) (-657) (-10 -8 (-15 -2432 ($ $ $ $)) (-15 -2431 ($ $ $)) (-15 -2430 ($ $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-657) . T) ((-1012) . T) ((-1127) . T))
-((-3940 (((-772) $) NIL T ELT) (($ (-483)) 10 T ELT)))
-(((-686 |#1|) (-10 -7 (-15 -3940 (|#1| (-483))) (-15 -3940 ((-772) |#1|))) (-687)) (T -686))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-2400 (((-3 $ #1="failed") $) 48 T ELT)) (-2403 (($ $ (-830)) 36 T ELT) (($ $ (-694)) 43 T ELT)) (-3461 (((-3 $ #1#) $) 46 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-2401 (((-3 $ #1#) $) 47 T ELT)) (-2402 (($ $ (-830)) 37 T ELT) (($ $ (-694)) 44 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2431 (($ $ $) 33 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT)) (-3121 (((-694)) 40 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2432 (($ $ $ $) 34 T ELT)) (-2430 (($ $ $) 32 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 41 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 38 T ELT) (($ $ (-694)) 45 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 35 T ELT)))
-(((-687) (-113)) (T -687))
-((-3121 (*1 *2) (-12 (-4 *1 (-687)) (-5 *2 (-694)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-687)))))
-(-13 (-685) (-659) (-10 -8 (-15 -3121 ((-694)) -3946) (-15 -3940 ($ (-483)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-657) . T) ((-659) . T) ((-685) . T) ((-1012) . T) ((-1127) . T))
-((-2434 (((-583 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-483)) (|:| |outvect| (-583 (-630 (-142 |#1|)))))) (-630 (-142 (-347 (-483)))) |#1|) 33 T ELT)) (-2433 (((-583 (-142 |#1|)) (-630 (-142 (-347 (-483)))) |#1|) 23 T ELT)) (-2445 (((-857 (-142 (-347 (-483)))) (-630 (-142 (-347 (-483)))) (-1088)) 20 T ELT) (((-857 (-142 (-347 (-483)))) (-630 (-142 (-347 (-483))))) 19 T ELT)))
-(((-688 |#1|) (-10 -7 (-15 -2445 ((-857 (-142 (-347 (-483)))) (-630 (-142 (-347 (-483)))))) (-15 -2445 ((-857 (-142 (-347 (-483)))) (-630 (-142 (-347 (-483)))) (-1088))) (-15 -2433 ((-583 (-142 |#1|)) (-630 (-142 (-347 (-483)))) |#1|)) (-15 -2434 ((-583 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-483)) (|:| |outvect| (-583 (-630 (-142 |#1|)))))) (-630 (-142 (-347 (-483)))) |#1|))) (-13 (-311) (-755))) (T -688))
-((-2434 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-142 (-347 (-483))))) (-5 *2 (-583 (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-483)) (|:| |outvect| (-583 (-630 (-142 *4))))))) (-5 *1 (-688 *4)) (-4 *4 (-13 (-311) (-755))))) (-2433 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-142 (-347 (-483))))) (-5 *2 (-583 (-142 *4))) (-5 *1 (-688 *4)) (-4 *4 (-13 (-311) (-755))))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-142 (-347 (-483))))) (-5 *4 (-1088)) (-5 *2 (-857 (-142 (-347 (-483))))) (-5 *1 (-688 *5)) (-4 *5 (-13 (-311) (-755))))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-630 (-142 (-347 (-483))))) (-5 *2 (-857 (-142 (-347 (-483))))) (-5 *1 (-688 *4)) (-4 *4 (-13 (-311) (-755))))))
-((-2612 (((-148 (-483)) |#1|) 27 T ELT)))
-(((-689 |#1|) (-10 -7 (-15 -2612 ((-148 (-483)) |#1|))) (-344)) (T -689))
-((-2612 (*1 *2 *3) (-12 (-5 *2 (-148 (-483))) (-5 *1 (-689 *3)) (-4 *3 (-344)))))
-((-2538 ((|#1| |#1| |#1|) 28 T ELT)) (-2539 ((|#1| |#1| |#1|) 27 T ELT)) (-2528 ((|#1| |#1| |#1|) 38 T ELT)) (-2536 ((|#1| |#1| |#1|) 33 T ELT)) (-2537 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-2544 (((-2 (|:| -1970 |#1|) (|:| -2898 |#1|)) |#1| |#1|) 26 T ELT)))
-(((-690 |#1| |#2|) (-10 -7 (-15 -2544 ((-2 (|:| -1970 |#1|) (|:| -2898 |#1|)) |#1| |#1|)) (-15 -2539 (|#1| |#1| |#1|)) (-15 -2538 (|#1| |#1| |#1|)) (-15 -2537 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2536 (|#1| |#1| |#1|)) (-15 -2528 (|#1| |#1| |#1|))) (-645 |#2|) (-311)) (T -690))
-((-2528 (*1 *2 *2 *2) (-12 (-4 *3 (-311)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) (-2536 (*1 *2 *2 *2) (-12 (-4 *3 (-311)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) (-2537 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-311)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) (-2538 (*1 *2 *2 *2) (-12 (-4 *3 (-311)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) (-2539 (*1 *2 *2 *2) (-12 (-4 *3 (-311)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) (-2544 (*1 *2 *3 *3) (-12 (-4 *4 (-311)) (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3))) (-5 *1 (-690 *3 *4)) (-4 *3 (-645 *4)))))
-((-2551 (((-632 (-1136)) $ (-1136)) 27 T ELT)) (-2552 (((-632 (-487)) $ (-487)) 26 T ELT)) (-2550 (((-694) $ (-102)) 28 T ELT)) (-2553 (((-632 (-101)) $ (-101)) 25 T ELT)) (-1996 (((-632 (-1136)) $) 12 T ELT)) (-1992 (((-632 (-1134)) $) 8 T ELT)) (-1994 (((-632 (-1133)) $) 10 T ELT)) (-1997 (((-632 (-487)) $) 13 T ELT)) (-1993 (((-632 (-485)) $) 9 T ELT)) (-1995 (((-632 (-484)) $) 11 T ELT)) (-1991 (((-694) $ (-102)) 7 T ELT)) (-1998 (((-632 (-101)) $) 14 T ELT)) (-2435 (((-85) $) 32 T ELT)) (-2436 (((-632 $) |#1| (-865)) 33 T ELT)) (-1697 (($ $) 6 T ELT)))
-(((-691 |#1|) (-113) (-1012)) (T -691))
-((-2436 (*1 *2 *3 *4) (-12 (-5 *4 (-865)) (-4 *3 (-1012)) (-5 *2 (-632 *1)) (-4 *1 (-691 *3)))) (-2435 (*1 *2 *1) (-12 (-4 *1 (-691 *3)) (-4 *3 (-1012)) (-5 *2 (-85)))))
-(-13 (-511) (-10 -8 (-15 -2436 ((-632 $) |t#1| (-865))) (-15 -2435 ((-85) $))))
-(((-147) . T) ((-464) . T) ((-511) . T) ((-770) . T))
-((-3913 (((-2 (|:| -2008 (-630 (-483))) (|:| |basisDen| (-483)) (|:| |basisInv| (-630 (-483)))) (-483)) 72 T ELT)) (-3912 (((-2 (|:| -2008 (-630 (-483))) (|:| |basisDen| (-483)) (|:| |basisInv| (-630 (-483))))) 70 T ELT)) (-3751 (((-483)) 86 T ELT)))
-(((-692 |#1| |#2|) (-10 -7 (-15 -3751 ((-483))) (-15 -3912 ((-2 (|:| -2008 (-630 (-483))) (|:| |basisDen| (-483)) (|:| |basisInv| (-630 (-483)))))) (-15 -3913 ((-2 (|:| -2008 (-630 (-483))) (|:| |basisDen| (-483)) (|:| |basisInv| (-630 (-483)))) (-483)))) (-1153 (-483)) (-350 (-483) |#1|)) (T -692))
-((-3913 (*1 *2 *3) (-12 (-5 *3 (-483)) (-4 *4 (-1153 *3)) (-5 *2 (-2 (|:| -2008 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-5 *1 (-692 *4 *5)) (-4 *5 (-350 *3 *4)))) (-3912 (*1 *2) (-12 (-4 *3 (-1153 (-483))) (-5 *2 (-2 (|:| -2008 (-630 (-483))) (|:| |basisDen| (-483)) (|:| |basisInv| (-630 (-483))))) (-5 *1 (-692 *3 *4)) (-4 *4 (-350 (-483) *3)))) (-3751 (*1 *2) (-12 (-4 *3 (-1153 *2)) (-5 *2 (-483)) (-5 *1 (-692 *3 *4)) (-4 *4 (-350 *2 *3)))))
-((-2504 (((-583 (-583 (-248 (-347 (-857 |#1|))))) (-583 (-857 |#1|))) 19 T ELT) (((-583 (-583 (-248 (-347 (-857 |#1|))))) (-583 (-857 |#1|)) (-583 (-1088))) 18 T ELT)) (-3567 (((-583 (-583 (-248 (-347 (-857 |#1|))))) (-583 (-857 |#1|))) 21 T ELT) (((-583 (-583 (-248 (-347 (-857 |#1|))))) (-583 (-857 |#1|)) (-583 (-1088))) 20 T ELT)))
-(((-693 |#1|) (-10 -7 (-15 -2504 ((-583 (-583 (-248 (-347 (-857 |#1|))))) (-583 (-857 |#1|)) (-583 (-1088)))) (-15 -2504 ((-583 (-583 (-248 (-347 (-857 |#1|))))) (-583 (-857 |#1|)))) (-15 -3567 ((-583 (-583 (-248 (-347 (-857 |#1|))))) (-583 (-857 |#1|)) (-583 (-1088)))) (-15 -3567 ((-583 (-583 (-248 (-347 (-857 |#1|))))) (-583 (-857 |#1|))))) (-494)) (T -693))
-((-3567 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-494)) (-5 *2 (-583 (-583 (-248 (-347 (-857 *4)))))) (-5 *1 (-693 *4)))) (-3567 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1088))) (-4 *5 (-494)) (-5 *2 (-583 (-583 (-248 (-347 (-857 *5)))))) (-5 *1 (-693 *5)))) (-2504 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-494)) (-5 *2 (-583 (-583 (-248 (-347 (-857 *4)))))) (-5 *1 (-693 *4)))) (-2504 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1088))) (-4 *5 (-494)) (-5 *2 (-583 (-583 (-248 (-347 (-857 *5)))))) (-5 *1 (-693 *5)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2479 (($ $ $) 10 T ELT)) (-1309 (((-3 $ #1="failed") $ $) 15 T ELT)) (-2437 (($ $ (-483)) 11 T ELT)) (-3718 (($) NIL T CONST)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($ $) NIL T ELT)) (-2559 (($ $ $) NIL T ELT)) (-3181 (((-85) $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3139 (($ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 6 T CONST)) (-2662 (($) NIL T CONST)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ $ $) NIL T ELT)))
-(((-694) (-13 (-717) (-663) (-10 -8 (-15 -2559 ($ $ $)) (-15 -2560 ($ $ $)) (-15 -3139 ($ $ $)) (-15 -2875 ((-2 (|:| -1970 $) (|:| -2898 $)) $ $)) (-15 -3460 ((-3 $ "failed") $ $)) (-15 -2437 ($ $ (-483))) (-15 -2990 ($ $)) (-6 (-3991 "*"))))) (T -694))
-((-2559 (*1 *1 *1 *1) (-5 *1 (-694))) (-2560 (*1 *1 *1 *1) (-5 *1 (-694))) (-3139 (*1 *1 *1 *1) (-5 *1 (-694))) (-2875 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1970 (-694)) (|:| -2898 (-694)))) (-5 *1 (-694)))) (-3460 (*1 *1 *1 *1) (|partial| -5 *1 (-694))) (-2437 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-694)))) (-2990 (*1 *1 *1) (-5 *1 (-694))))
-((-483) (|%not| (|%ilt| |#1| 0)))
-((-3567 (((-3 |#2| "failed") |#2| |#2| (-86) (-1088)) 37 T ELT)))
-(((-695 |#1| |#2|) (-10 -7 (-15 -3567 ((-3 |#2| "failed") |#2| |#2| (-86) (-1088)))) (-13 (-257) (-950 (-483)) (-580 (-483)) (-120)) (-13 (-29 |#1|) (-1113) (-871))) (T -695))
-((-3567 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *1 (-695 *5 *2)) (-4 *2 (-13 (-29 *5) (-1113) (-871))))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 7 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 9 T ELT)))
-(((-696) (-1012)) (T -696))
-NIL
-((-3940 (((-696) |#1|) 8 T ELT)))
-(((-697 |#1|) (-10 -7 (-15 -3940 ((-696) |#1|))) (-1127)) (T -697))
-((-3940 (*1 *2 *3) (-12 (-5 *2 (-696)) (-5 *1 (-697 *3)) (-4 *3 (-1127)))))
-((-3127 ((|#2| |#4|) 35 T ELT)))
-(((-698 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3127 (|#2| |#4|))) (-389) (-1153 |#1|) (-661 |#1| |#2|) (-1153 |#3|)) (T -698))
-((-3127 (*1 *2 *3) (-12 (-4 *4 (-389)) (-4 *5 (-661 *4 *2)) (-4 *2 (-1153 *4)) (-5 *1 (-698 *4 *2 *5 *3)) (-4 *3 (-1153 *5)))))
-((-3461 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-2440 (((-1183) (-1071) (-1071) |#4| |#5|) 33 T ELT)) (-2438 ((|#4| |#4| |#5|) 74 T ELT)) (-2439 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#5|) 79 T ELT)) (-2441 (((-583 (-2 (|:| |val| (-85)) (|:| -1597 |#5|))) |#4| |#5|) 16 T ELT)))
-(((-699 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3461 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2438 (|#4| |#4| |#5|)) (-15 -2439 ((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#5|)) (-15 -2440 ((-1183) (-1071) (-1071) |#4| |#5|)) (-15 -2441 ((-583 (-2 (|:| |val| (-85)) (|:| -1597 |#5|))) |#4| |#5|))) (-389) (-717) (-756) (-976 |#1| |#2| |#3|) (-982 |#1| |#2| |#3| |#4|)) (T -699))
-((-2441 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1597 *4)))) (-5 *1 (-699 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-2440 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1071)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *4 (-976 *6 *7 *8)) (-5 *2 (-1183)) (-5 *1 (-699 *6 *7 *8 *4 *5)) (-4 *5 (-982 *6 *7 *8 *4)))) (-2439 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4)))) (-5 *1 (-699 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-2438 (*1 *2 *2 *3) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *2 (-976 *4 *5 *6)) (-5 *1 (-699 *4 *5 *6 *2 *3)) (-4 *3 (-982 *4 *5 *6 *2)))) (-3461 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-699 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
-((-3152 (((-3 (-1083 (-1083 |#1|)) "failed") |#4|) 53 T ELT)) (-2442 (((-583 |#4|) |#4|) 22 T ELT)) (-3922 ((|#4| |#4|) 17 T ELT)))
-(((-700 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2442 ((-583 |#4|) |#4|)) (-15 -3152 ((-3 (-1083 (-1083 |#1|)) "failed") |#4|)) (-15 -3922 (|#4| |#4|))) (-298) (-279 |#1|) (-1153 |#2|) (-1153 |#3|) (-830)) (T -700))
-((-3922 (*1 *2 *2) (-12 (-4 *3 (-298)) (-4 *4 (-279 *3)) (-4 *5 (-1153 *4)) (-5 *1 (-700 *3 *4 *5 *2 *6)) (-4 *2 (-1153 *5)) (-14 *6 (-830)))) (-3152 (*1 *2 *3) (|partial| -12 (-4 *4 (-298)) (-4 *5 (-279 *4)) (-4 *6 (-1153 *5)) (-5 *2 (-1083 (-1083 *4))) (-5 *1 (-700 *4 *5 *6 *3 *7)) (-4 *3 (-1153 *6)) (-14 *7 (-830)))) (-2442 (*1 *2 *3) (-12 (-4 *4 (-298)) (-4 *5 (-279 *4)) (-4 *6 (-1153 *5)) (-5 *2 (-583 *3)) (-5 *1 (-700 *4 *5 *6 *3 *7)) (-4 *3 (-1153 *6)) (-14 *7 (-830)))))
-((-2443 (((-2 (|:| |deter| (-583 (-1083 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -3074 (-694)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1083 |#5|) (-583 |#1|) (-583 |#5|)) 72 T ELT)) (-2444 (((-583 (-694)) |#1|) 20 T ELT)))
-(((-701 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2443 ((-2 (|:| |deter| (-583 (-1083 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -3074 (-694)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1083 |#5|) (-583 |#1|) (-583 |#5|))) (-15 -2444 ((-583 (-694)) |#1|))) (-1153 |#4|) (-717) (-756) (-257) (-861 |#4| |#2| |#3|)) (T -701))
-((-2444 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-257)) (-5 *2 (-583 (-694))) (-5 *1 (-701 *3 *4 *5 *6 *7)) (-4 *3 (-1153 *6)) (-4 *7 (-861 *6 *4 *5)))) (-2443 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1153 *9)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-257)) (-4 *10 (-861 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-583 (-1083 *10))) (|:| |dterm| (-583 (-583 (-2 (|:| -3074 (-694)) (|:| |pcoef| *10))))) (|:| |nfacts| (-583 *6)) (|:| |nlead| (-583 *10)))) (-5 *1 (-701 *6 *7 *8 *9 *10)) (-5 *3 (-1083 *10)) (-5 *4 (-583 *6)) (-5 *5 (-583 *10)))))
-((-2447 (((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-483)) (|:| |outvect| (-583 (-630 |#1|))))) (-630 (-347 (-483))) |#1|) 31 T ELT)) (-2446 (((-583 |#1|) (-630 (-347 (-483))) |#1|) 21 T ELT)) (-2445 (((-857 (-347 (-483))) (-630 (-347 (-483))) (-1088)) 18 T ELT) (((-857 (-347 (-483))) (-630 (-347 (-483)))) 17 T ELT)))
-(((-702 |#1|) (-10 -7 (-15 -2445 ((-857 (-347 (-483))) (-630 (-347 (-483))))) (-15 -2445 ((-857 (-347 (-483))) (-630 (-347 (-483))) (-1088))) (-15 -2446 ((-583 |#1|) (-630 (-347 (-483))) |#1|)) (-15 -2447 ((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-483)) (|:| |outvect| (-583 (-630 |#1|))))) (-630 (-347 (-483))) |#1|))) (-13 (-311) (-755))) (T -702))
-((-2447 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-347 (-483)))) (-5 *2 (-583 (-2 (|:| |outval| *4) (|:| |outmult| (-483)) (|:| |outvect| (-583 (-630 *4)))))) (-5 *1 (-702 *4)) (-4 *4 (-13 (-311) (-755))))) (-2446 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-347 (-483)))) (-5 *2 (-583 *4)) (-5 *1 (-702 *4)) (-4 *4 (-13 (-311) (-755))))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-347 (-483)))) (-5 *4 (-1088)) (-5 *2 (-857 (-347 (-483)))) (-5 *1 (-702 *5)) (-4 *5 (-13 (-311) (-755))))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-630 (-347 (-483)))) (-5 *2 (-857 (-347 (-483)))) (-5 *1 (-702 *4)) (-4 *4 (-13 (-311) (-755))))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 36 T ELT)) (-3077 (((-583 |#2|) $) NIL T ELT)) (-3079 (((-1083 $) $ |#2|) NIL T ELT) (((-1083 |#1|) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2815 (((-694) $) NIL T ELT) (((-694) $ (-583 |#2|)) NIL T ELT)) (-3791 (($ $) 30 T ELT)) (-3161 (((-85) $ $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3749 (($ $ $) 110 (|has| |#1| (-494)) ELT)) (-3143 (((-583 $) $ $) 123 (|has| |#1| (-494)) ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3769 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 $ #1#) (-857 (-347 (-483)))) NIL (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#2| (-553 (-1088)))) ELT) (((-3 $ #1#) (-857 (-483))) NIL (OR (-12 (|has| |#1| (-38 (-483))) (|has| |#2| (-553 (-1088))) (-2556 (|has| |#1| (-38 (-347 (-483)))))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#2| (-553 (-1088))))) ELT) (((-3 $ #1#) (-857 |#1|)) NIL (OR (-12 (|has| |#2| (-553 (-1088))) (-2556 (|has| |#1| (-38 (-347 (-483))))) (-2556 (|has| |#1| (-38 (-483))))) (-12 (|has| |#1| (-38 (-483))) (|has| |#2| (-553 (-1088))) (-2556 (|has| |#1| (-38 (-347 (-483))))) (-2556 (|has| |#1| (-482)))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#2| (-553 (-1088))) (-2556 (|has| |#1| (-904 (-483)))))) ELT) (((-3 (-1037 |#1| |#2|) #1#) $) 21 T ELT)) (-3151 ((|#1| $) NIL T ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) ((|#2| $) NIL T ELT) (($ (-857 (-347 (-483)))) NIL (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#2| (-553 (-1088)))) ELT) (($ (-857 (-483))) NIL (OR (-12 (|has| |#1| (-38 (-483))) (|has| |#2| (-553 (-1088))) (-2556 (|has| |#1| (-38 (-347 (-483)))))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#2| (-553 (-1088))))) ELT) (($ (-857 |#1|)) NIL (OR (-12 (|has| |#2| (-553 (-1088))) (-2556 (|has| |#1| (-38 (-347 (-483))))) (-2556 (|has| |#1| (-38 (-483))))) (-12 (|has| |#1| (-38 (-483))) (|has| |#2| (-553 (-1088))) (-2556 (|has| |#1| (-38 (-347 (-483))))) (-2556 (|has| |#1| (-482)))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#2| (-553 (-1088))) (-2556 (|has| |#1| (-904 (-483)))))) ELT) (((-1037 |#1| |#2|) $) NIL T ELT)) (-3750 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT) (($ $ $) 121 (|has| |#1| (-494)) ELT)) (-3953 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3688 (((-85) $ $) NIL T ELT) (((-85) $ (-583 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3167 (((-85) $) NIL T ELT)) (-3746 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 81 T ELT)) (-3138 (($ $) 136 (|has| |#1| (-389)) ELT)) (-3497 (($ $) NIL (|has| |#1| (-389)) ELT) (($ $ |#2|) NIL (|has| |#1| (-389)) ELT)) (-2814 (((-583 $) $) NIL T ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-3149 (($ $) NIL (|has| |#1| (-494)) ELT)) (-3150 (($ $) NIL (|has| |#1| (-494)) ELT)) (-3160 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3159 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1621 (($ $ |#1| (-468 |#2|) $) NIL T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (-12 (|has| |#1| (-796 (-327))) (|has| |#2| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (-12 (|has| |#1| (-796 (-483))) (|has| |#2| (-796 (-483)))) ELT)) (-2406 (((-85) $) 57 T ELT)) (-2416 (((-694) $) NIL T ELT)) (-3689 (((-85) $ $) NIL T ELT) (((-85) $ (-583 $)) NIL T ELT)) (-3140 (($ $ $ $ $) 107 (|has| |#1| (-494)) ELT)) (-3175 ((|#2| $) 22 T ELT)) (-3080 (($ (-1083 |#1|) |#2|) NIL T ELT) (($ (-1083 $) |#2|) NIL T ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-468 |#2|)) NIL T ELT) (($ $ |#2| (-694)) 38 T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT)) (-3154 (($ $ $) 63 T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ |#2|) NIL T ELT)) (-3168 (((-85) $) NIL T ELT)) (-2816 (((-468 |#2|) $) NIL T ELT) (((-694) $ |#2|) NIL T ELT) (((-583 (-694)) $ (-583 |#2|)) NIL T ELT)) (-3174 (((-694) $) 23 T ELT)) (-1622 (($ (-1 (-468 |#2|) (-468 |#2|)) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3078 (((-3 |#2| #1#) $) NIL T ELT)) (-3135 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3136 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3163 (((-583 $) $) NIL T ELT)) (-3166 (($ $) 39 T ELT)) (-3137 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3164 (((-583 $) $) 43 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-3165 (($ $) 41 T ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3153 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3475 (-694))) $ $) 96 T ELT)) (-3155 (((-2 (|:| -3948 $) (|:| |gap| (-694)) (|:| -1970 $) (|:| -2898 $)) $ $) 78 T ELT) (((-2 (|:| -3948 $) (|:| |gap| (-694)) (|:| -1970 $) (|:| -2898 $)) $ $ |#2|) NIL T ELT)) (-3156 (((-2 (|:| -3948 $) (|:| |gap| (-694)) (|:| -2898 $)) $ $) NIL T ELT) (((-2 (|:| -3948 $) (|:| |gap| (-694)) (|:| -2898 $)) $ $ |#2|) NIL T ELT)) (-3158 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3157 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3185 (($ $ $) 125 (|has| |#1| (-494)) ELT)) (-3171 (((-583 $) $) 32 T ELT)) (-2819 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2818 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-2 (|:| |var| |#2|) (|:| -2397 (-694))) #1#) $) NIL T ELT)) (-3685 (((-85) $ $) NIL T ELT) (((-85) $ (-583 $)) NIL T ELT)) (-3680 (($ $ $) NIL T ELT)) (-3440 (($ $) 24 T ELT)) (-3693 (((-85) $ $) NIL T ELT)) (-3686 (((-85) $ $) NIL T ELT) (((-85) $ (-583 $)) NIL T ELT)) (-3681 (($ $ $) NIL T ELT)) (-3173 (($ $) 26 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3144 (((-2 (|:| -3139 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-494)) ELT)) (-3145 (((-2 (|:| -3139 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-494)) ELT)) (-1794 (((-85) $) 56 T ELT)) (-1793 ((|#1| $) 58 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-389)) ELT)) (-3139 ((|#1| |#1| $) 133 (|has| |#1| (-389)) ELT) (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-821)) ELT)) (-3146 (((-2 (|:| -3139 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-494)) ELT)) (-3460 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ $) 98 (|has| |#1| (-494)) ELT)) (-3147 (($ $ |#1|) 129 (|has| |#1| (-494)) ELT) (($ $ $) NIL (|has| |#1| (-494)) ELT)) (-3148 (($ $ |#1|) 128 (|has| |#1| (-494)) ELT) (($ $ $) NIL (|has| |#1| (-494)) ELT)) (-3762 (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-583 |#2|) (-583 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-583 |#2|) (-583 $)) NIL T ELT)) (-3751 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3752 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3942 (((-468 |#2|) $) NIL T ELT) (((-694) $ |#2|) 45 T ELT) (((-583 (-694)) $ (-583 |#2|)) NIL T ELT)) (-3172 (($ $) NIL T ELT)) (-3170 (($ $) 35 T ELT)) (-3966 (((-800 (-327)) $) NIL (-12 (|has| |#1| (-553 (-800 (-327)))) (|has| |#2| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) NIL (-12 (|has| |#1| (-553 (-800 (-483)))) (|has| |#2| (-553 (-800 (-483))))) ELT) (((-472) $) NIL (-12 (|has| |#1| (-553 (-472))) (|has| |#2| (-553 (-472)))) ELT) (($ (-857 (-347 (-483)))) NIL (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#2| (-553 (-1088)))) ELT) (($ (-857 (-483))) NIL (OR (-12 (|has| |#1| (-38 (-483))) (|has| |#2| (-553 (-1088))) (-2556 (|has| |#1| (-38 (-347 (-483)))))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#2| (-553 (-1088))))) ELT) (($ (-857 |#1|)) NIL (|has| |#2| (-553 (-1088))) ELT) (((-1071) $) NIL (-12 (|has| |#1| (-950 (-483))) (|has| |#2| (-553 (-1088)))) ELT) (((-857 |#1|) $) NIL (|has| |#2| (-553 (-1088))) ELT)) (-2813 ((|#1| $) 132 (|has| |#1| (-389)) ELT) (($ $ |#2|) NIL (|has| |#1| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-857 |#1|) $) NIL (|has| |#2| (-553 (-1088))) ELT) (((-1037 |#1| |#2|) $) 18 T ELT) (($ (-1037 |#1| |#2|)) 19 T ELT) (($ (-347 (-483))) NIL (OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3811 (((-583 |#1|) $) NIL T ELT)) (-3671 ((|#1| $ (-468 |#2|)) NIL T ELT) (($ $ |#2| (-694)) 47 T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1620 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2656 (($) 13 T CONST)) (-3162 (((-3 (-85) #1#) $ $) NIL T ELT)) (-2662 (($) 37 T CONST)) (-3141 (($ $ $ $ (-694)) 105 (|has| |#1| (-494)) ELT)) (-3142 (($ $ $ (-694)) 104 (|has| |#1| (-494)) ELT)) (-2665 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-3833 (($ $ $) 85 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 70 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-703 |#1| |#2|) (-13 (-976 |#1| (-468 |#2|) |#2|) (-552 (-1037 |#1| |#2|)) (-950 (-1037 |#1| |#2|))) (-961) (-756)) (T -703))
-NIL
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 12 T ELT)) (-3761 (((-1177 |#1|) $ (-694)) NIL T ELT)) (-3077 (((-583 (-993)) $) NIL T ELT)) (-3759 (($ (-1083 |#1|)) NIL T ELT)) (-3079 (((-1083 $) $ (-993)) NIL T ELT) (((-1083 |#1|) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2815 (((-694) $) NIL T ELT) (((-694) $ (-583 (-993))) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2451 (((-583 $) $ $) 54 (|has| |#1| (-494)) ELT)) (-3749 (($ $ $) 50 (|has| |#1| (-494)) ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3769 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-1605 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3755 (($ $ (-694)) NIL T ELT)) (-3754 (($ $ (-694)) NIL T ELT)) (-3745 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-389)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-993) #1#) $) NIL T ELT) (((-3 (-1083 |#1|) #1#) $) 10 T ELT)) (-3151 ((|#1| $) NIL T ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-993) $) NIL T ELT) (((-1083 |#1|) $) NIL T ELT)) (-3750 (($ $ $ (-993)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 58 (|has| |#1| (-146)) ELT)) (-2560 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3953 (($ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2559 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3753 (($ $ $) NIL T ELT)) (-3747 (($ $ $) 87 (|has| |#1| (-494)) ELT)) (-3746 (((-2 (|:| -3948 |#1|) (|:| -1970 $) (|:| -2898 $)) $ $) 86 (|has| |#1| (-494)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| |#1| (-311)) ELT)) (-3497 (($ $) NIL (|has| |#1| (-389)) ELT) (($ $ (-993)) NIL (|has| |#1| (-389)) ELT)) (-2814 (((-583 $) $) NIL T ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1621 (($ $ |#1| (-694) $) NIL T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (-12 (|has| (-993) (-796 (-327))) (|has| |#1| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (-12 (|has| (-993) (-796 (-483))) (|has| |#1| (-796 (-483)))) ELT)) (-3766 (((-694) $ $) NIL (|has| |#1| (-494)) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2416 (((-694) $) NIL T ELT)) (-3439 (((-632 $) $) NIL (|has| |#1| (-1064)) ELT)) (-3080 (($ (-1083 |#1|) (-993)) NIL T ELT) (($ (-1083 $) (-993)) NIL T ELT)) (-3771 (($ $ (-694)) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-694)) NIL T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT)) (-3154 (($ $ $) 27 T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ (-993)) NIL T ELT) (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-2816 (((-694) $) NIL T ELT) (((-694) $ (-993)) NIL T ELT) (((-583 (-694)) $ (-583 (-993))) NIL T ELT)) (-1622 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3760 (((-1083 |#1|) $) NIL T ELT)) (-3078 (((-3 (-993) #1#) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3153 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3475 (-694))) $ $) 37 T ELT)) (-2453 (($ $ $) 41 T ELT)) (-2452 (($ $ $) 47 T ELT)) (-3155 (((-2 (|:| -3948 |#1|) (|:| |gap| (-694)) (|:| -1970 $) (|:| -2898 $)) $ $) 46 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3185 (($ $ $) 56 (|has| |#1| (-494)) ELT)) (-3756 (((-2 (|:| -1970 $) (|:| -2898 $)) $ (-694)) NIL T ELT)) (-2819 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2818 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-2 (|:| |var| (-993)) (|:| -2397 (-694))) #1#) $) NIL T ELT)) (-3806 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3440 (($) NIL (|has| |#1| (-1064)) CONST)) (-3238 (((-1032) $) NIL T ELT)) (-3144 (((-2 (|:| -3139 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-494)) ELT)) (-3145 (((-2 (|:| -3139 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-494)) ELT)) (-2448 (((-2 (|:| -3750 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-494)) ELT)) (-2449 (((-2 (|:| -3750 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-494)) ELT)) (-1794 (((-85) $) 13 T ELT)) (-1793 ((|#1| $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-389)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3732 (($ $ (-694) |#1| $) 26 T ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-821)) ELT)) (-3146 (((-2 (|:| -3139 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-494)) ELT)) (-2450 (((-2 (|:| -3750 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-494)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3460 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3762 (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-993) |#1|) NIL T ELT) (($ $ (-583 (-993)) (-583 |#1|)) NIL T ELT) (($ $ (-993) $) NIL T ELT) (($ $ (-583 (-993)) (-583 $)) NIL T ELT)) (-1604 (((-694) $) NIL (|has| |#1| (-311)) ELT)) (-3794 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-347 $) (-347 $) (-347 $)) NIL (|has| |#1| (-494)) ELT) ((|#1| (-347 $) |#1|) NIL (|has| |#1| (-311)) ELT) (((-347 $) $ (-347 $)) NIL (|has| |#1| (-494)) ELT)) (-3758 (((-3 $ #1#) $ (-694)) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3751 (($ $ (-993)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3752 (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993))) NIL T ELT) (($ $ (-993)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT)) (-3942 (((-694) $) NIL T ELT) (((-694) $ (-993)) NIL T ELT) (((-583 (-694)) $ (-583 (-993))) NIL T ELT)) (-3966 (((-800 (-327)) $) NIL (-12 (|has| (-993) (-553 (-800 (-327)))) (|has| |#1| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) NIL (-12 (|has| (-993) (-553 (-800 (-483)))) (|has| |#1| (-553 (-800 (-483))))) ELT) (((-472) $) NIL (-12 (|has| (-993) (-553 (-472))) (|has| |#1| (-553 (-472)))) ELT)) (-2813 ((|#1| $) NIL (|has| |#1| (-389)) ELT) (($ $ (-993)) NIL (|has| |#1| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3748 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT) (((-3 (-347 $) #1#) (-347 $) $) NIL (|has| |#1| (-494)) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-993)) NIL T ELT) (((-1083 |#1|) $) 7 T ELT) (($ (-1083 |#1|)) 8 T ELT) (($ (-347 (-483))) NIL (OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3811 (((-583 |#1|) $) NIL T ELT)) (-3671 ((|#1| $ (-694)) NIL T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1620 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2656 (($) 28 T CONST)) (-2662 (($) 32 T CONST)) (-2665 (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993))) NIL T ELT) (($ $ (-993)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-704 |#1|) (-13 (-1153 |#1|) (-552 (-1083 |#1|)) (-950 (-1083 |#1|)) (-10 -8 (-15 -3732 ($ $ (-694) |#1| $)) (-15 -3154 ($ $ $)) (-15 -3153 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3475 (-694))) $ $)) (-15 -2453 ($ $ $)) (-15 -3155 ((-2 (|:| -3948 |#1|) (|:| |gap| (-694)) (|:| -1970 $) (|:| -2898 $)) $ $)) (-15 -2452 ($ $ $)) (IF (|has| |#1| (-494)) (PROGN (-15 -2451 ((-583 $) $ $)) (-15 -3185 ($ $ $)) (-15 -3146 ((-2 (|:| -3139 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3145 ((-2 (|:| -3139 $) (|:| |coef1| $)) $ $)) (-15 -3144 ((-2 (|:| -3139 $) (|:| |coef2| $)) $ $)) (-15 -2450 ((-2 (|:| -3750 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2449 ((-2 (|:| -3750 |#1|) (|:| |coef1| $)) $ $)) (-15 -2448 ((-2 (|:| -3750 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-961)) (T -704))
-((-3732 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-694)) (-5 *1 (-704 *3)) (-4 *3 (-961)))) (-3154 (*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961)))) (-3153 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-704 *3)) (|:| |polden| *3) (|:| -3475 (-694)))) (-5 *1 (-704 *3)) (-4 *3 (-961)))) (-2453 (*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961)))) (-3155 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3948 *3) (|:| |gap| (-694)) (|:| -1970 (-704 *3)) (|:| -2898 (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-961)))) (-2452 (*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961)))) (-2451 (*1 *2 *1 *1) (-12 (-5 *2 (-583 (-704 *3))) (-5 *1 (-704 *3)) (-4 *3 (-494)) (-4 *3 (-961)))) (-3185 (*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-494)) (-4 *2 (-961)))) (-3146 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3139 (-704 *3)) (|:| |coef1| (-704 *3)) (|:| |coef2| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-494)) (-4 *3 (-961)))) (-3145 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3139 (-704 *3)) (|:| |coef1| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-494)) (-4 *3 (-961)))) (-3144 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3139 (-704 *3)) (|:| |coef2| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-494)) (-4 *3 (-961)))) (-2450 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3750 *3) (|:| |coef1| (-704 *3)) (|:| |coef2| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-494)) (-4 *3 (-961)))) (-2449 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3750 *3) (|:| |coef1| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-494)) (-4 *3 (-961)))) (-2448 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3750 *3) (|:| |coef2| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-494)) (-4 *3 (-961)))))
-((-3952 (((-704 |#2|) (-1 |#2| |#1|) (-704 |#1|)) 13 T ELT)))
-(((-705 |#1| |#2|) (-10 -7 (-15 -3952 ((-704 |#2|) (-1 |#2| |#1|) (-704 |#1|)))) (-961) (-961)) (T -705))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-704 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-704 *6)) (-5 *1 (-705 *5 *6)))))
-((-2455 ((|#1| (-694) |#1|) 33 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2797 ((|#1| (-694) |#1|) 23 T ELT)) (-2454 ((|#1| (-694) |#1|) 35 (|has| |#1| (-38 (-347 (-483)))) ELT)))
-(((-706 |#1|) (-10 -7 (-15 -2797 (|#1| (-694) |#1|)) (IF (|has| |#1| (-38 (-347 (-483)))) (PROGN (-15 -2454 (|#1| (-694) |#1|)) (-15 -2455 (|#1| (-694) |#1|))) |%noBranch|)) (-146)) (T -706))
-((-2455 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-146)))) (-2454 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-146)))) (-2797 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-146)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3675 (((-583 (-2 (|:| -3855 $) (|:| -1699 (-583 |#4|)))) (-583 |#4|)) 90 T ELT)) (-3676 (((-583 $) (-583 |#4|)) 91 T ELT) (((-583 $) (-583 |#4|) (-85)) 118 T ELT)) (-3077 (((-583 |#3|) $) 37 T ELT)) (-2904 (((-85) $) 30 T ELT)) (-2895 (((-85) $) 21 (|has| |#1| (-494)) ELT)) (-3687 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3682 ((|#4| |#4| $) 97 T ELT)) (-3769 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 $))) |#4| $) 133 T ELT)) (-2905 (((-2 (|:| |under| $) (|:| -3125 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3704 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3989)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3718 (($) 46 T CONST)) (-2900 (((-85) $) 26 (|has| |#1| (-494)) ELT)) (-2902 (((-85) $ $) 28 (|has| |#1| (-494)) ELT)) (-2901 (((-85) $ $) 27 (|has| |#1| (-494)) ELT)) (-2903 (((-85) $) 29 (|has| |#1| (-494)) ELT)) (-3683 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2896 (((-583 |#4|) (-583 |#4|) $) 22 (|has| |#1| (-494)) ELT)) (-2897 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-494)) ELT)) (-3152 (((-3 $ "failed") (-583 |#4|)) 40 T ELT)) (-3151 (($ (-583 |#4|)) 39 T ELT)) (-3793 (((-3 $ #1#) $) 87 T ELT)) (-3679 ((|#4| |#4| $) 94 T ELT)) (-1350 (($ $) 69 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3400 (($ |#4| $) 68 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3989)) ELT)) (-2898 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-494)) ELT)) (-3688 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3677 ((|#4| |#4| $) 92 T ELT)) (-3836 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3989)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3989)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3690 (((-2 (|:| -3855 (-583 |#4|)) (|:| -1699 (-583 |#4|))) $) 110 T ELT)) (-3192 (((-85) |#4| $) 143 T ELT)) (-3190 (((-85) |#4| $) 140 T ELT)) (-3193 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-2885 (((-583 |#4|) $) 53 (|has| $ (-6 -3989)) ELT)) (-3689 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3175 ((|#3| $) 38 T ELT)) (-2604 (((-583 |#4|) $) 54 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2910 (((-583 |#3|) $) 36 T ELT)) (-2909 (((-85) |#3| $) 35 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3186 (((-3 |#4| (-583 $)) |#4| |#4| $) 135 T ELT)) (-3185 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 $))) |#4| |#4| $) 134 T ELT)) (-3792 (((-3 |#4| #1#) $) 88 T ELT)) (-3187 (((-583 $) |#4| $) 136 T ELT)) (-3189 (((-3 (-85) (-583 $)) |#4| $) 139 T ELT)) (-3188 (((-583 (-2 (|:| |val| (-85)) (|:| -1597 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3233 (((-583 $) |#4| $) 132 T ELT) (((-583 $) (-583 |#4|) $) 131 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 130 T ELT) (((-583 $) |#4| (-583 $)) 129 T ELT)) (-3434 (($ |#4| $) 124 T ELT) (($ (-583 |#4|) $) 123 T ELT)) (-3691 (((-583 |#4|) $) 112 T ELT)) (-3685 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3680 ((|#4| |#4| $) 95 T ELT)) (-3693 (((-85) $ $) 115 T ELT)) (-2899 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-494)) ELT)) (-3686 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3681 ((|#4| |#4| $) 96 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3795 (((-3 |#4| #1#) $) 89 T ELT)) (-1351 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3673 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3763 (($ $ |#4|) 82 T ELT) (((-583 $) |#4| $) 122 T ELT) (((-583 $) |#4| (-583 $)) 121 T ELT) (((-583 $) (-583 |#4|) $) 120 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 119 T ELT)) (-1944 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 |#4|) (-583 |#4|)) 60 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-248 |#4|)) 58 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-583 (-248 |#4|))) 57 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT)) (-1219 (((-85) $ $) 42 T ELT)) (-3397 (((-85) $) 45 T ELT)) (-3559 (($) 44 T ELT)) (-3942 (((-694) $) 111 T ELT)) (-1943 (((-694) |#4| $) 55 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) (((-694) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) 43 T ELT)) (-3966 (((-472) $) 70 (|has| |#4| (-553 (-472))) ELT)) (-3524 (($ (-583 |#4|)) 61 T ELT)) (-2906 (($ $ |#3|) 32 T ELT)) (-2908 (($ $ |#3|) 34 T ELT)) (-3678 (($ $) 93 T ELT)) (-2907 (($ $ |#3|) 33 T ELT)) (-3940 (((-772) $) 13 T ELT) (((-583 |#4|) $) 41 T ELT)) (-3672 (((-694) $) 81 (|has| |#3| (-317)) ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3692 (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3684 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) 103 T ELT)) (-3184 (((-583 $) |#4| $) 128 T ELT) (((-583 $) |#4| (-583 $)) 127 T ELT) (((-583 $) (-583 |#4|) $) 126 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 125 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3989)) ELT)) (-3674 (((-583 |#3|) $) 86 T ELT)) (-3191 (((-85) |#4| $) 142 T ELT)) (-3927 (((-85) |#3| $) 85 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3951 (((-694) $) 47 (|has| $ (-6 -3989)) ELT)))
-(((-707 |#1| |#2| |#3| |#4|) (-113) (-389) (-717) (-756) (-976 |t#1| |t#2| |t#3|)) (T -707))
-NIL
-(-13 (-982 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-472)) |has| |#4| (-553 (-472))) ((-259 |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ((-426 |#4|) . T) ((-452 |#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ((-13) . T) ((-889 |#1| |#2| |#3| |#4|) . T) ((-982 |#1| |#2| |#3| |#4|) . T) ((-1012) . T) ((-1122 |#1| |#2| |#3| |#4|) . T) ((-1127) . T))
-((-2458 (((-3 (-327) #1="failed") (-264 |#1|) (-830)) 60 (-12 (|has| |#1| (-494)) (|has| |#1| (-756))) ELT) (((-3 (-327) #1#) (-264 |#1|)) 52 (-12 (|has| |#1| (-494)) (|has| |#1| (-756))) ELT) (((-3 (-327) #1#) (-347 (-857 |#1|)) (-830)) 39 (|has| |#1| (-494)) ELT) (((-3 (-327) #1#) (-347 (-857 |#1|))) 35 (|has| |#1| (-494)) ELT) (((-3 (-327) #1#) (-857 |#1|) (-830)) 30 (|has| |#1| (-961)) ELT) (((-3 (-327) #1#) (-857 |#1|)) 24 (|has| |#1| (-961)) ELT)) (-2456 (((-327) (-264 |#1|) (-830)) 92 (-12 (|has| |#1| (-494)) (|has| |#1| (-756))) ELT) (((-327) (-264 |#1|)) 87 (-12 (|has| |#1| (-494)) (|has| |#1| (-756))) ELT) (((-327) (-347 (-857 |#1|)) (-830)) 84 (|has| |#1| (-494)) ELT) (((-327) (-347 (-857 |#1|))) 81 (|has| |#1| (-494)) ELT) (((-327) (-857 |#1|) (-830)) 80 (|has| |#1| (-961)) ELT) (((-327) (-857 |#1|)) 77 (|has| |#1| (-961)) ELT) (((-327) |#1| (-830)) 73 T ELT) (((-327) |#1|) 22 T ELT)) (-2459 (((-3 (-142 (-327)) #1#) (-264 (-142 |#1|)) (-830)) 68 (-12 (|has| |#1| (-494)) (|has| |#1| (-756))) ELT) (((-3 (-142 (-327)) #1#) (-264 (-142 |#1|))) 58 (-12 (|has| |#1| (-494)) (|has| |#1| (-756))) ELT) (((-3 (-142 (-327)) #1#) (-264 |#1|) (-830)) 61 (-12 (|has| |#1| (-494)) (|has| |#1| (-756))) ELT) (((-3 (-142 (-327)) #1#) (-264 |#1|)) 59 (-12 (|has| |#1| (-494)) (|has| |#1| (-756))) ELT) (((-3 (-142 (-327)) #1#) (-347 (-857 (-142 |#1|))) (-830)) 44 (|has| |#1| (-494)) ELT) (((-3 (-142 (-327)) #1#) (-347 (-857 (-142 |#1|)))) 43 (|has| |#1| (-494)) ELT) (((-3 (-142 (-327)) #1#) (-347 (-857 |#1|)) (-830)) 38 (|has| |#1| (-494)) ELT) (((-3 (-142 (-327)) #1#) (-347 (-857 |#1|))) 37 (|has| |#1| (-494)) ELT) (((-3 (-142 (-327)) #1#) (-857 |#1|) (-830)) 28 (|has| |#1| (-961)) ELT) (((-3 (-142 (-327)) #1#) (-857 |#1|)) 26 (|has| |#1| (-961)) ELT) (((-3 (-142 (-327)) #1#) (-857 (-142 |#1|)) (-830)) 18 (|has| |#1| (-146)) ELT) (((-3 (-142 (-327)) #1#) (-857 (-142 |#1|))) 15 (|has| |#1| (-146)) ELT)) (-2457 (((-142 (-327)) (-264 (-142 |#1|)) (-830)) 95 (-12 (|has| |#1| (-494)) (|has| |#1| (-756))) ELT) (((-142 (-327)) (-264 (-142 |#1|))) 94 (-12 (|has| |#1| (-494)) (|has| |#1| (-756))) ELT) (((-142 (-327)) (-264 |#1|) (-830)) 93 (-12 (|has| |#1| (-494)) (|has| |#1| (-756))) ELT) (((-142 (-327)) (-264 |#1|)) 91 (-12 (|has| |#1| (-494)) (|has| |#1| (-756))) ELT) (((-142 (-327)) (-347 (-857 (-142 |#1|))) (-830)) 86 (|has| |#1| (-494)) ELT) (((-142 (-327)) (-347 (-857 (-142 |#1|)))) 85 (|has| |#1| (-494)) ELT) (((-142 (-327)) (-347 (-857 |#1|)) (-830)) 83 (|has| |#1| (-494)) ELT) (((-142 (-327)) (-347 (-857 |#1|))) 82 (|has| |#1| (-494)) ELT) (((-142 (-327)) (-857 |#1|) (-830)) 79 (|has| |#1| (-961)) ELT) (((-142 (-327)) (-857 |#1|)) 78 (|has| |#1| (-961)) ELT) (((-142 (-327)) (-857 (-142 |#1|)) (-830)) 75 (|has| |#1| (-146)) ELT) (((-142 (-327)) (-857 (-142 |#1|))) 74 (|has| |#1| (-146)) ELT) (((-142 (-327)) (-142 |#1|) (-830)) 17 (|has| |#1| (-146)) ELT) (((-142 (-327)) (-142 |#1|)) 13 (|has| |#1| (-146)) ELT) (((-142 (-327)) |#1| (-830)) 27 T ELT) (((-142 (-327)) |#1|) 25 T ELT)))
-(((-708 |#1|) (-10 -7 (-15 -2456 ((-327) |#1|)) (-15 -2456 ((-327) |#1| (-830))) (-15 -2457 ((-142 (-327)) |#1|)) (-15 -2457 ((-142 (-327)) |#1| (-830))) (IF (|has| |#1| (-146)) (PROGN (-15 -2457 ((-142 (-327)) (-142 |#1|))) (-15 -2457 ((-142 (-327)) (-142 |#1|) (-830))) (-15 -2457 ((-142 (-327)) (-857 (-142 |#1|)))) (-15 -2457 ((-142 (-327)) (-857 (-142 |#1|)) (-830)))) |%noBranch|) (IF (|has| |#1| (-961)) (PROGN (-15 -2456 ((-327) (-857 |#1|))) (-15 -2456 ((-327) (-857 |#1|) (-830))) (-15 -2457 ((-142 (-327)) (-857 |#1|))) (-15 -2457 ((-142 (-327)) (-857 |#1|) (-830)))) |%noBranch|) (IF (|has| |#1| (-494)) (PROGN (-15 -2456 ((-327) (-347 (-857 |#1|)))) (-15 -2456 ((-327) (-347 (-857 |#1|)) (-830))) (-15 -2457 ((-142 (-327)) (-347 (-857 |#1|)))) (-15 -2457 ((-142 (-327)) (-347 (-857 |#1|)) (-830))) (-15 -2457 ((-142 (-327)) (-347 (-857 (-142 |#1|))))) (-15 -2457 ((-142 (-327)) (-347 (-857 (-142 |#1|))) (-830))) (IF (|has| |#1| (-756)) (PROGN (-15 -2456 ((-327) (-264 |#1|))) (-15 -2456 ((-327) (-264 |#1|) (-830))) (-15 -2457 ((-142 (-327)) (-264 |#1|))) (-15 -2457 ((-142 (-327)) (-264 |#1|) (-830))) (-15 -2457 ((-142 (-327)) (-264 (-142 |#1|)))) (-15 -2457 ((-142 (-327)) (-264 (-142 |#1|)) (-830)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-15 -2459 ((-3 (-142 (-327)) #1="failed") (-857 (-142 |#1|)))) (-15 -2459 ((-3 (-142 (-327)) #1#) (-857 (-142 |#1|)) (-830)))) |%noBranch|) (IF (|has| |#1| (-961)) (PROGN (-15 -2458 ((-3 (-327) #1#) (-857 |#1|))) (-15 -2458 ((-3 (-327) #1#) (-857 |#1|) (-830))) (-15 -2459 ((-3 (-142 (-327)) #1#) (-857 |#1|))) (-15 -2459 ((-3 (-142 (-327)) #1#) (-857 |#1|) (-830)))) |%noBranch|) (IF (|has| |#1| (-494)) (PROGN (-15 -2458 ((-3 (-327) #1#) (-347 (-857 |#1|)))) (-15 -2458 ((-3 (-327) #1#) (-347 (-857 |#1|)) (-830))) (-15 -2459 ((-3 (-142 (-327)) #1#) (-347 (-857 |#1|)))) (-15 -2459 ((-3 (-142 (-327)) #1#) (-347 (-857 |#1|)) (-830))) (-15 -2459 ((-3 (-142 (-327)) #1#) (-347 (-857 (-142 |#1|))))) (-15 -2459 ((-3 (-142 (-327)) #1#) (-347 (-857 (-142 |#1|))) (-830))) (IF (|has| |#1| (-756)) (PROGN (-15 -2458 ((-3 (-327) #1#) (-264 |#1|))) (-15 -2458 ((-3 (-327) #1#) (-264 |#1|) (-830))) (-15 -2459 ((-3 (-142 (-327)) #1#) (-264 |#1|))) (-15 -2459 ((-3 (-142 (-327)) #1#) (-264 |#1|) (-830))) (-15 -2459 ((-3 (-142 (-327)) #1#) (-264 (-142 |#1|)))) (-15 -2459 ((-3 (-142 (-327)) #1#) (-264 (-142 |#1|)) (-830)))) |%noBranch|)) |%noBranch|)) (-553 (-327))) (T -708))
-((-2459 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-264 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-756)) (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) (-2459 (*1 *2 *3) (|partial| -12 (-5 *3 (-264 (-142 *4))) (-4 *4 (-494)) (-4 *4 (-756)) (-4 *4 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) (-2459 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-264 *5)) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-756)) (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) (-2459 (*1 *2 *3) (|partial| -12 (-5 *3 (-264 *4)) (-4 *4 (-494)) (-4 *4 (-756)) (-4 *4 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) (-2458 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-264 *5)) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-756)) (-4 *5 (-553 *2)) (-5 *2 (-327)) (-5 *1 (-708 *5)))) (-2458 (*1 *2 *3) (|partial| -12 (-5 *3 (-264 *4)) (-4 *4 (-494)) (-4 *4 (-756)) (-4 *4 (-553 *2)) (-5 *2 (-327)) (-5 *1 (-708 *4)))) (-2459 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-347 (-857 (-142 *5)))) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) (-2459 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-857 (-142 *4)))) (-4 *4 (-494)) (-4 *4 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) (-2459 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) (-2459 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-494)) (-4 *4 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) (-2458 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-553 *2)) (-5 *2 (-327)) (-5 *1 (-708 *5)))) (-2458 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-494)) (-4 *4 (-553 *2)) (-5 *2 (-327)) (-5 *1 (-708 *4)))) (-2459 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) (-2459 (*1 *2 *3) (|partial| -12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) (-2458 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 *2)) (-5 *2 (-327)) (-5 *1 (-708 *5)))) (-2458 (*1 *2 *3) (|partial| -12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 *2)) (-5 *2 (-327)) (-5 *1 (-708 *4)))) (-2459 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-857 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-146)) (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) (-2459 (*1 *2 *3) (|partial| -12 (-5 *3 (-857 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) (-2457 (*1 *2 *3 *4) (-12 (-5 *3 (-264 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-756)) (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) (-2457 (*1 *2 *3) (-12 (-5 *3 (-264 (-142 *4))) (-4 *4 (-494)) (-4 *4 (-756)) (-4 *4 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) (-2457 (*1 *2 *3 *4) (-12 (-5 *3 (-264 *5)) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-756)) (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) (-2457 (*1 *2 *3) (-12 (-5 *3 (-264 *4)) (-4 *4 (-494)) (-4 *4 (-756)) (-4 *4 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) (-2456 (*1 *2 *3 *4) (-12 (-5 *3 (-264 *5)) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-756)) (-4 *5 (-553 *2)) (-5 *2 (-327)) (-5 *1 (-708 *5)))) (-2456 (*1 *2 *3) (-12 (-5 *3 (-264 *4)) (-4 *4 (-494)) (-4 *4 (-756)) (-4 *4 (-553 *2)) (-5 *2 (-327)) (-5 *1 (-708 *4)))) (-2457 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-857 (-142 *5)))) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) (-2457 (*1 *2 *3) (-12 (-5 *3 (-347 (-857 (-142 *4)))) (-4 *4 (-494)) (-4 *4 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) (-2457 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) (-2457 (*1 *2 *3) (-12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-494)) (-4 *4 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) (-2456 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-553 *2)) (-5 *2 (-327)) (-5 *1 (-708 *5)))) (-2456 (*1 *2 *3) (-12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-494)) (-4 *4 (-553 *2)) (-5 *2 (-327)) (-5 *1 (-708 *4)))) (-2457 (*1 *2 *3 *4) (-12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) (-2457 (*1 *2 *3) (-12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) (-2456 (*1 *2 *3 *4) (-12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 *2)) (-5 *2 (-327)) (-5 *1 (-708 *5)))) (-2456 (*1 *2 *3) (-12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 *2)) (-5 *2 (-327)) (-5 *1 (-708 *4)))) (-2457 (*1 *2 *3 *4) (-12 (-5 *3 (-857 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-146)) (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) (-2457 (*1 *2 *3) (-12 (-5 *3 (-857 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) (-2457 (*1 *2 *3 *4) (-12 (-5 *3 (-142 *5)) (-5 *4 (-830)) (-4 *5 (-146)) (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))) (-2457 (*1 *2 *3) (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *4)))) (-2457 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-5 *2 (-142 (-327))) (-5 *1 (-708 *3)) (-4 *3 (-553 (-327))))) (-2457 (*1 *2 *3) (-12 (-5 *2 (-142 (-327))) (-5 *1 (-708 *3)) (-4 *3 (-553 (-327))))) (-2456 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-5 *2 (-327)) (-5 *1 (-708 *3)) (-4 *3 (-553 *2)))) (-2456 (*1 *2 *3) (-12 (-5 *2 (-327)) (-5 *1 (-708 *3)) (-4 *3 (-553 *2)))))
-((-2463 (((-830) (-1071)) 90 T ELT)) (-2465 (((-3 (-327) "failed") (-1071)) 36 T ELT)) (-2464 (((-327) (-1071)) 34 T ELT)) (-2461 (((-830) (-1071)) 64 T ELT)) (-2462 (((-1071) (-830)) 74 T ELT)) (-2460 (((-1071) (-830)) 63 T ELT)))
-(((-709) (-10 -7 (-15 -2460 ((-1071) (-830))) (-15 -2461 ((-830) (-1071))) (-15 -2462 ((-1071) (-830))) (-15 -2463 ((-830) (-1071))) (-15 -2464 ((-327) (-1071))) (-15 -2465 ((-3 (-327) "failed") (-1071))))) (T -709))
-((-2465 (*1 *2 *3) (|partial| -12 (-5 *3 (-1071)) (-5 *2 (-327)) (-5 *1 (-709)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-327)) (-5 *1 (-709)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-830)) (-5 *1 (-709)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1071)) (-5 *1 (-709)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-830)) (-5 *1 (-709)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1071)) (-5 *1 (-709)))))
-((-2468 (((-1183) (-1177 (-327)) (-483) (-327) (-2 (|:| |tryValue| (-327)) (|:| |did| (-327)) (|:| -1472 (-327))) (-327) (-1177 (-327)) (-1 (-1183) (-1177 (-327)) (-1177 (-327)) (-327)) (-1177 (-327)) (-1177 (-327)) (-1177 (-327)) (-1177 (-327)) (-1177 (-327)) (-1177 (-327)) (-1177 (-327))) 54 T ELT) (((-1183) (-1177 (-327)) (-483) (-327) (-2 (|:| |tryValue| (-327)) (|:| |did| (-327)) (|:| -1472 (-327))) (-327) (-1177 (-327)) (-1 (-1183) (-1177 (-327)) (-1177 (-327)) (-327))) 51 T ELT)) (-2469 (((-1183) (-1177 (-327)) (-483) (-327) (-327) (-483) (-1 (-1183) (-1177 (-327)) (-1177 (-327)) (-327))) 61 T ELT)) (-2467 (((-1183) (-1177 (-327)) (-483) (-327) (-327) (-327) (-327) (-483) (-1 (-1183) (-1177 (-327)) (-1177 (-327)) (-327))) 49 T ELT)) (-2466 (((-1183) (-1177 (-327)) (-483) (-327) (-327) (-1 (-1183) (-1177 (-327)) (-1177 (-327)) (-327)) (-1177 (-327)) (-1177 (-327)) (-1177 (-327)) (-1177 (-327))) 63 T ELT) (((-1183) (-1177 (-327)) (-483) (-327) (-327) (-1 (-1183) (-1177 (-327)) (-1177 (-327)) (-327))) 62 T ELT)))
-(((-710) (-10 -7 (-15 -2466 ((-1183) (-1177 (-327)) (-483) (-327) (-327) (-1 (-1183) (-1177 (-327)) (-1177 (-327)) (-327)))) (-15 -2466 ((-1183) (-1177 (-327)) (-483) (-327) (-327) (-1 (-1183) (-1177 (-327)) (-1177 (-327)) (-327)) (-1177 (-327)) (-1177 (-327)) (-1177 (-327)) (-1177 (-327)))) (-15 -2467 ((-1183) (-1177 (-327)) (-483) (-327) (-327) (-327) (-327) (-483) (-1 (-1183) (-1177 (-327)) (-1177 (-327)) (-327)))) (-15 -2468 ((-1183) (-1177 (-327)) (-483) (-327) (-2 (|:| |tryValue| (-327)) (|:| |did| (-327)) (|:| -1472 (-327))) (-327) (-1177 (-327)) (-1 (-1183) (-1177 (-327)) (-1177 (-327)) (-327)))) (-15 -2468 ((-1183) (-1177 (-327)) (-483) (-327) (-2 (|:| |tryValue| (-327)) (|:| |did| (-327)) (|:| -1472 (-327))) (-327) (-1177 (-327)) (-1 (-1183) (-1177 (-327)) (-1177 (-327)) (-327)) (-1177 (-327)) (-1177 (-327)) (-1177 (-327)) (-1177 (-327)) (-1177 (-327)) (-1177 (-327)) (-1177 (-327)))) (-15 -2469 ((-1183) (-1177 (-327)) (-483) (-327) (-327) (-483) (-1 (-1183) (-1177 (-327)) (-1177 (-327)) (-327)))))) (T -710))
-((-2469 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-483)) (-5 *6 (-1 (-1183) (-1177 *5) (-1177 *5) (-327))) (-5 *3 (-1177 (-327))) (-5 *5 (-327)) (-5 *2 (-1183)) (-5 *1 (-710)))) (-2468 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-483)) (-5 *6 (-2 (|:| |tryValue| (-327)) (|:| |did| (-327)) (|:| -1472 (-327)))) (-5 *7 (-1 (-1183) (-1177 *5) (-1177 *5) (-327))) (-5 *3 (-1177 (-327))) (-5 *5 (-327)) (-5 *2 (-1183)) (-5 *1 (-710)))) (-2468 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-483)) (-5 *6 (-2 (|:| |tryValue| (-327)) (|:| |did| (-327)) (|:| -1472 (-327)))) (-5 *7 (-1 (-1183) (-1177 *5) (-1177 *5) (-327))) (-5 *3 (-1177 (-327))) (-5 *5 (-327)) (-5 *2 (-1183)) (-5 *1 (-710)))) (-2467 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-483)) (-5 *6 (-1 (-1183) (-1177 *5) (-1177 *5) (-327))) (-5 *3 (-1177 (-327))) (-5 *5 (-327)) (-5 *2 (-1183)) (-5 *1 (-710)))) (-2466 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-483)) (-5 *6 (-1 (-1183) (-1177 *5) (-1177 *5) (-327))) (-5 *3 (-1177 (-327))) (-5 *5 (-327)) (-5 *2 (-1183)) (-5 *1 (-710)))) (-2466 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-483)) (-5 *6 (-1 (-1183) (-1177 *5) (-1177 *5) (-327))) (-5 *3 (-1177 (-327))) (-5 *5 (-327)) (-5 *2 (-1183)) (-5 *1 (-710)))))
-((-2478 (((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483)) 65 T ELT)) (-2475 (((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483)) 40 T ELT)) (-2477 (((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483)) 64 T ELT)) (-2474 (((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483)) 38 T ELT)) (-2476 (((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483)) 63 T ELT)) (-2473 (((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483)) 24 T ELT)) (-2472 (((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483) (-483)) 41 T ELT)) (-2471 (((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483) (-483)) 39 T ELT)) (-2470 (((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483) (-483)) 37 T ELT)))
-(((-711) (-10 -7 (-15 -2470 ((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483) (-483))) (-15 -2471 ((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483) (-483))) (-15 -2472 ((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483) (-483))) (-15 -2473 ((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483))) (-15 -2474 ((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483))) (-15 -2475 ((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483))) (-15 -2476 ((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483))) (-15 -2477 ((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483))) (-15 -2478 ((-2 (|:| -3396 (-327)) (|:| -1593 (-327)) (|:| |totalpts| (-483)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-483) (-483))))) (T -711))
-((-2478 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-483)))) (-2477 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-483)))) (-2476 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-483)))) (-2475 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-483)))) (-2474 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-483)))) (-2473 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-483)))) (-2472 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-483)))) (-2471 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-483)))) (-2470 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-483)))))
-((-3699 (((-1123 |#1|) |#1| (-179) (-483)) 69 T ELT)))
-(((-712 |#1|) (-10 -7 (-15 -3699 ((-1123 |#1|) |#1| (-179) (-483)))) (-887)) (T -712))
-((-3699 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-179)) (-5 *5 (-483)) (-5 *2 (-1123 *3)) (-5 *1 (-712 *3)) (-4 *3 (-887)))))
-((-3617 (((-483) $) 17 T ELT)) (-3182 (((-85) $) 10 T ELT)) (-3377 (($ $) 19 T ELT)))
-(((-713 |#1|) (-10 -7 (-15 -3377 (|#1| |#1|)) (-15 -3617 ((-483) |#1|)) (-15 -3182 ((-85) |#1|))) (-714)) (T -713))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 31 T ELT)) (-1309 (((-3 $ "failed") $ $) 34 T ELT)) (-3617 (((-483) $) 37 T ELT)) (-3718 (($) 30 T CONST)) (-3181 (((-85) $) 28 T ELT)) (-3182 (((-85) $) 38 T ELT)) (-2527 (($ $ $) 23 T ELT)) (-2853 (($ $ $) 22 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3377 (($ $) 36 T ELT)) (-2656 (($) 29 T CONST)) (-2562 (((-85) $ $) 21 T ELT)) (-2563 (((-85) $ $) 19 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 20 T ELT)) (-2681 (((-85) $ $) 18 T ELT)) (-3831 (($ $ $) 41 T ELT) (($ $) 40 T ELT)) (-3833 (($ $ $) 25 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT) (($ (-483) $) 39 T ELT)))
-(((-714) (-113)) (T -714))
-((-3182 (*1 *2 *1) (-12 (-4 *1 (-714)) (-5 *2 (-85)))) (-3617 (*1 *2 *1) (-12 (-4 *1 (-714)) (-5 *2 (-483)))) (-3377 (*1 *1 *1) (-4 *1 (-714))))
-(-13 (-721) (-21) (-10 -8 (-15 -3182 ((-85) $)) (-15 -3617 ((-483) $)) (-15 -3377 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-756) . T) ((-759) . T) ((-1012) . T) ((-1127) . T))
-((-3181 (((-85) $) 10 T ELT)))
-(((-715 |#1|) (-10 -7 (-15 -3181 ((-85) |#1|))) (-716)) (T -715))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 31 T ELT)) (-3718 (($) 30 T CONST)) (-3181 (((-85) $) 28 T ELT)) (-2527 (($ $ $) 23 T ELT)) (-2853 (($ $ $) 22 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 29 T CONST)) (-2562 (((-85) $ $) 21 T ELT)) (-2563 (((-85) $ $) 19 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 20 T ELT)) (-2681 (((-85) $ $) 18 T ELT)) (-3833 (($ $ $) 25 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT)))
-(((-716) (-113)) (T -716))
-((-3181 (*1 *2 *1) (-12 (-4 *1 (-716)) (-5 *2 (-85)))))
-(-13 (-718) (-23) (-10 -8 (-15 -3181 ((-85) $))))
-(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-718) . T) ((-756) . T) ((-759) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 31 T ELT)) (-2479 (($ $ $) 35 T ELT)) (-1309 (((-3 $ "failed") $ $) 34 T ELT)) (-3718 (($) 30 T CONST)) (-3181 (((-85) $) 28 T ELT)) (-2527 (($ $ $) 23 T ELT)) (-2853 (($ $ $) 22 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 29 T CONST)) (-2562 (((-85) $ $) 21 T ELT)) (-2563 (((-85) $ $) 19 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 20 T ELT)) (-2681 (((-85) $ $) 18 T ELT)) (-3833 (($ $ $) 25 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT)))
+((-2003 (((-1084 |#1|) (-695)) 114 T ELT)) (-3326 (((-1178 |#1|) (-1178 |#1|) (-831)) 107 T ELT)) (-2001 (((-1184) (-1178 (-584 (-2 (|:| -3398 |#1|) (|:| -2398 (-1033))))) |#1|) 122 T ELT)) (-2005 (((-1178 |#1|) (-1178 |#1|) (-695)) 53 T ELT)) (-2992 (((-1178 |#1|) (-831)) 109 T ELT)) (-2007 (((-1178 |#1|) (-1178 |#1|) (-484)) 30 T ELT)) (-2002 (((-1084 |#1|) (-1178 |#1|)) 115 T ELT)) (-2011 (((-1178 |#1|) (-831)) 136 T ELT)) (-2009 (((-85) (-1178 |#1|)) 119 T ELT)) (-3129 (((-1178 |#1|) (-1178 |#1|) (-831)) 99 T ELT)) (-2012 (((-1084 |#1|) (-1178 |#1|)) 130 T ELT)) (-2008 (((-831) (-1178 |#1|)) 95 T ELT)) (-2482 (((-1178 |#1|) (-1178 |#1|)) 38 T ELT)) (-2398 (((-1178 |#1|) (-831) (-831)) 139 T ELT)) (-2006 (((-1178 |#1|) (-1178 |#1|) (-1033) (-1033)) 29 T ELT)) (-2004 (((-1178 |#1|) (-1178 |#1|) (-695) (-1033)) 54 T ELT)) (-2010 (((-1178 (-1178 |#1|)) (-831)) 135 T ELT)) (-3945 (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 120 T ELT)) (** (((-1178 |#1|) (-1178 |#1|) (-484)) 67 T ELT)) (* (((-1178 |#1|) (-1178 |#1|) (-1178 |#1|)) 31 T ELT)))
+(((-466 |#1|) (-10 -7 (-15 -2001 ((-1184) (-1178 (-584 (-2 (|:| -3398 |#1|) (|:| -2398 (-1033))))) |#1|)) (-15 -2992 ((-1178 |#1|) (-831))) (-15 -2398 ((-1178 |#1|) (-831) (-831))) (-15 -2002 ((-1084 |#1|) (-1178 |#1|))) (-15 -2003 ((-1084 |#1|) (-695))) (-15 -2004 ((-1178 |#1|) (-1178 |#1|) (-695) (-1033))) (-15 -2005 ((-1178 |#1|) (-1178 |#1|) (-695))) (-15 -2006 ((-1178 |#1|) (-1178 |#1|) (-1033) (-1033))) (-15 -2007 ((-1178 |#1|) (-1178 |#1|) (-484))) (-15 ** ((-1178 |#1|) (-1178 |#1|) (-484))) (-15 * ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3945 ((-1178 |#1|) (-1178 |#1|) (-1178 |#1|))) (-15 -3129 ((-1178 |#1|) (-1178 |#1|) (-831))) (-15 -3326 ((-1178 |#1|) (-1178 |#1|) (-831))) (-15 -2482 ((-1178 |#1|) (-1178 |#1|))) (-15 -2008 ((-831) (-1178 |#1|))) (-15 -2009 ((-85) (-1178 |#1|))) (-15 -2010 ((-1178 (-1178 |#1|)) (-831))) (-15 -2011 ((-1178 |#1|) (-831))) (-15 -2012 ((-1084 |#1|) (-1178 |#1|)))) (-298)) (T -466))
+((-2012 (*1 *2 *3) (-12 (-5 *3 (-1178 *4)) (-4 *4 (-298)) (-5 *2 (-1084 *4)) (-5 *1 (-466 *4)))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1178 *4)) (-5 *1 (-466 *4)) (-4 *4 (-298)))) (-2010 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1178 (-1178 *4))) (-5 *1 (-466 *4)) (-4 *4 (-298)))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-1178 *4)) (-4 *4 (-298)) (-5 *2 (-85)) (-5 *1 (-466 *4)))) (-2008 (*1 *2 *3) (-12 (-5 *3 (-1178 *4)) (-4 *4 (-298)) (-5 *2 (-831)) (-5 *1 (-466 *4)))) (-2482 (*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-298)) (-5 *1 (-466 *3)))) (-3326 (*1 *2 *2 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-831)) (-4 *4 (-298)) (-5 *1 (-466 *4)))) (-3129 (*1 *2 *2 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-831)) (-4 *4 (-298)) (-5 *1 (-466 *4)))) (-3945 (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-298)) (-5 *1 (-466 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-298)) (-5 *1 (-466 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-484)) (-4 *4 (-298)) (-5 *1 (-466 *4)))) (-2007 (*1 *2 *2 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-484)) (-4 *4 (-298)) (-5 *1 (-466 *4)))) (-2006 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-1033)) (-4 *4 (-298)) (-5 *1 (-466 *4)))) (-2005 (*1 *2 *2 *3) (-12 (-5 *2 (-1178 *4)) (-5 *3 (-695)) (-4 *4 (-298)) (-5 *1 (-466 *4)))) (-2004 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1178 *5)) (-5 *3 (-695)) (-5 *4 (-1033)) (-4 *5 (-298)) (-5 *1 (-466 *5)))) (-2003 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1084 *4)) (-5 *1 (-466 *4)) (-4 *4 (-298)))) (-2002 (*1 *2 *3) (-12 (-5 *3 (-1178 *4)) (-4 *4 (-298)) (-5 *2 (-1084 *4)) (-5 *1 (-466 *4)))) (-2398 (*1 *2 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1178 *4)) (-5 *1 (-466 *4)) (-4 *4 (-298)))) (-2992 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1178 *4)) (-5 *1 (-466 *4)) (-4 *4 (-298)))) (-2001 (*1 *2 *3 *4) (-12 (-5 *3 (-1178 (-584 (-2 (|:| -3398 *4) (|:| -2398 (-1033)))))) (-4 *4 (-298)) (-5 *2 (-1184)) (-5 *1 (-466 *4)))))
+((-1998 (((-633 (-1137)) $) NIL T ELT)) (-1994 (((-633 (-1135)) $) NIL T ELT)) (-1996 (((-633 (-1134)) $) NIL T ELT)) (-1999 (((-633 (-488)) $) NIL T ELT)) (-1995 (((-633 (-486)) $) NIL T ELT)) (-1997 (((-633 (-485)) $) NIL T ELT)) (-1993 (((-695) $ (-102)) NIL T ELT)) (-2000 (((-633 (-101)) $) 26 T ELT)) (-2013 (((-1033) $ (-1033)) 31 T ELT)) (-3415 (((-1033) $) 30 T ELT)) (-2556 (((-85) $) 20 T ELT)) (-2015 (($ (-335)) 14 T ELT) (($ (-1072)) 16 T ELT)) (-2014 (((-85) $) 27 T ELT)) (-3942 (((-773) $) 34 T ELT)) (-1698 (($ $) 28 T ELT)))
+(((-467) (-13 (-465) (-553 (-773)) (-10 -8 (-15 -2015 ($ (-335))) (-15 -2015 ($ (-1072))) (-15 -2014 ((-85) $)) (-15 -2556 ((-85) $)) (-15 -3415 ((-1033) $)) (-15 -2013 ((-1033) $ (-1033)))))) (T -467))
+((-2015 (*1 *1 *2) (-12 (-5 *2 (-335)) (-5 *1 (-467)))) (-2015 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-467)))) (-2014 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-467)))) (-2556 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-467)))) (-3415 (*1 *2 *1) (-12 (-5 *2 (-1033)) (-5 *1 (-467)))) (-2013 (*1 *2 *1 *2) (-12 (-5 *2 (-1033)) (-5 *1 (-467)))))
+((-2017 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-2016 (((-1 |#1| |#1|)) 10 T ELT)))
+(((-468 |#1|) (-10 -7 (-15 -2016 ((-1 |#1| |#1|))) (-15 -2017 ((-1 |#1| |#1|) |#1|))) (-13 (-664) (-25))) (T -468))
+((-2017 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-468 *3)) (-4 *3 (-13 (-664) (-25))))) (-2016 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-468 *3)) (-4 *3 (-13 (-664) (-25))))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3770 (((-584 (-783 |#1| (-695))) $) NIL T ELT)) (-2481 (($ $ $) NIL T ELT)) (-1310 (((-3 $ "failed") $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3955 (($ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2891 (($ (-695) |#1|) NIL T ELT)) (-2529 (($ $ $) NIL T ELT)) (-2855 (($ $ $) NIL T ELT)) (-3954 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-1982 ((|#1| $) NIL T ELT)) (-3171 (((-695) $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 28 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) NIL T CONST)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT)))
+(((-469 |#1|) (-13 (-718) (-447 (-695) |#1|)) (-757)) (T -469))
+NIL
+((-2019 (((-584 |#2|) (-1084 |#1|) |#3|) 98 T ELT)) (-2020 (((-584 (-2 (|:| |outval| |#2|) (|:| |outmult| (-484)) (|:| |outvect| (-584 (-631 |#2|))))) (-631 |#1|) |#3| (-1 (-345 (-1084 |#1|)) (-1084 |#1|))) 114 T ELT)) (-2018 (((-1084 |#1|) (-631 |#1|)) 110 T ELT)))
+(((-470 |#1| |#2| |#3|) (-10 -7 (-15 -2018 ((-1084 |#1|) (-631 |#1|))) (-15 -2019 ((-584 |#2|) (-1084 |#1|) |#3|)) (-15 -2020 ((-584 (-2 (|:| |outval| |#2|) (|:| |outmult| (-484)) (|:| |outvect| (-584 (-631 |#2|))))) (-631 |#1|) |#3| (-1 (-345 (-1084 |#1|)) (-1084 |#1|))))) (-311) (-311) (-13 (-311) (-756))) (T -470))
+((-2020 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *6)) (-5 *5 (-1 (-345 (-1084 *6)) (-1084 *6))) (-4 *6 (-311)) (-5 *2 (-584 (-2 (|:| |outval| *7) (|:| |outmult| (-484)) (|:| |outvect| (-584 (-631 *7)))))) (-5 *1 (-470 *6 *7 *4)) (-4 *7 (-311)) (-4 *4 (-13 (-311) (-756))))) (-2019 (*1 *2 *3 *4) (-12 (-5 *3 (-1084 *5)) (-4 *5 (-311)) (-5 *2 (-584 *6)) (-5 *1 (-470 *5 *6 *4)) (-4 *6 (-311)) (-4 *4 (-13 (-311) (-756))))) (-2018 (*1 *2 *3) (-12 (-5 *3 (-631 *4)) (-4 *4 (-311)) (-5 *2 (-1084 *4)) (-5 *1 (-470 *4 *5 *6)) (-4 *5 (-311)) (-4 *6 (-13 (-311) (-756))))))
+((-2553 (((-633 (-1137)) $ (-1137)) NIL T ELT)) (-2554 (((-633 (-488)) $ (-488)) NIL T ELT)) (-2552 (((-695) $ (-102)) 39 T ELT)) (-2555 (((-633 (-101)) $ (-101)) 40 T ELT)) (-1998 (((-633 (-1137)) $) NIL T ELT)) (-1994 (((-633 (-1135)) $) NIL T ELT)) (-1996 (((-633 (-1134)) $) NIL T ELT)) (-1999 (((-633 (-488)) $) NIL T ELT)) (-1995 (((-633 (-486)) $) NIL T ELT)) (-1997 (((-633 (-485)) $) NIL T ELT)) (-1993 (((-695) $ (-102)) 35 T ELT)) (-2000 (((-633 (-101)) $) 37 T ELT)) (-2437 (((-85) $) 27 T ELT)) (-2438 (((-633 $) (-515) (-866)) 18 T ELT) (((-633 $) (-428) (-866)) 24 T ELT)) (-3942 (((-773) $) 48 T ELT)) (-1698 (($ $) 42 T ELT)))
+(((-471) (-13 (-692 (-515)) (-553 (-773)) (-10 -8 (-15 -2438 ((-633 $) (-428) (-866)))))) (T -471))
+((-2438 (*1 *2 *3 *4) (-12 (-5 *3 (-428)) (-5 *4 (-866)) (-5 *2 (-633 (-471))) (-5 *1 (-471)))))
+((-2525 (((-751 (-484))) 12 T ELT)) (-2524 (((-751 (-484))) 14 T ELT)) (-2512 (((-744 (-484))) 9 T ELT)))
+(((-472) (-10 -7 (-15 -2512 ((-744 (-484)))) (-15 -2525 ((-751 (-484)))) (-15 -2524 ((-751 (-484)))))) (T -472))
+((-2524 (*1 *2) (-12 (-5 *2 (-751 (-484))) (-5 *1 (-472)))) (-2525 (*1 *2) (-12 (-5 *2 (-751 (-484))) (-5 *1 (-472)))) (-2512 (*1 *2) (-12 (-5 *2 (-744 (-484))) (-5 *1 (-472)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-2024 (((-1072) $) 55 T ELT)) (-3257 (((-85) $) 51 T ELT)) (-3253 (((-1089) $) 52 T ELT)) (-3258 (((-85) $) 49 T ELT)) (-3531 (((-1072) $) 50 T ELT)) (-2023 (($ (-1072)) 56 T ELT)) (-3260 (((-85) $) NIL T ELT)) (-3262 (((-85) $) NIL T ELT)) (-3259 (((-85) $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2026 (($ $ (-584 (-1089))) 21 T ELT)) (-2029 (((-51) $) 23 T ELT)) (-3256 (((-85) $) NIL T ELT)) (-3252 (((-484) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2381 (($ $ (-584 (-1089)) (-1089)) 73 T ELT)) (-3255 (((-85) $) NIL T ELT)) (-3251 (((-179) $) NIL T ELT)) (-2025 (($ $) 44 T ELT)) (-3250 (((-773) $) NIL T ELT)) (-3263 (((-85) $ $) NIL T ELT)) (-3796 (($ $ (-484)) NIL T ELT) (($ $ (-584 (-484))) NIL T ELT)) (-3254 (((-584 $) $) 30 T ELT)) (-2022 (((-1089) (-584 $)) 57 T ELT)) (-3968 (($ (-1072)) NIL T ELT) (($ (-1089)) 19 T ELT) (($ (-484)) 8 T ELT) (($ (-179)) 28 T ELT) (($ (-773)) NIL T ELT) (($ (-584 $)) 65 T ELT) (((-1015) $) 12 T ELT) (($ (-1015)) 13 T ELT)) (-2021 (((-1089) (-1089) (-584 $)) 60 T ELT)) (-3942 (((-773) $) 54 T ELT)) (-3248 (($ $) 59 T ELT)) (-3249 (($ $) 58 T ELT)) (-2027 (($ $ (-584 $)) 66 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3261 (((-85) $) 29 T ELT)) (-2658 (($) 9 T CONST)) (-2664 (($) 11 T CONST)) (-3054 (((-85) $ $) 74 T ELT)) (-3945 (($ $ $) 82 T ELT)) (-3835 (($ $ $) 75 T ELT)) (** (($ $ (-695)) 81 T ELT) (($ $ (-484)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-3953 (((-484) $) NIL T ELT)))
+(((-473) (-13 (-1016 (-1072) (-1089) (-484) (-179) (-773)) (-554 (-1015)) (-10 -8 (-15 -2029 ((-51) $)) (-15 -3968 ($ (-1015))) (-15 -2027 ($ $ (-584 $))) (-15 -2381 ($ $ (-584 (-1089)) (-1089))) (-15 -2026 ($ $ (-584 (-1089)))) (-15 -3835 ($ $ $)) (-15 * ($ $ $)) (-15 -3945 ($ $ $)) (-15 ** ($ $ (-695))) (-15 ** ($ $ (-484))) (-15 -2658 ($) -3948) (-15 -2664 ($) -3948) (-15 -2025 ($ $)) (-15 -2024 ((-1072) $)) (-15 -2023 ($ (-1072))) (-15 -2022 ((-1089) (-584 $))) (-15 -2021 ((-1089) (-1089) (-584 $)))))) (T -473))
+((-2029 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-473)))) (-3968 (*1 *1 *2) (-12 (-5 *2 (-1015)) (-5 *1 (-473)))) (-2027 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-473))) (-5 *1 (-473)))) (-2381 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1089))) (-5 *3 (-1089)) (-5 *1 (-473)))) (-2026 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-1089))) (-5 *1 (-473)))) (-3835 (*1 *1 *1 *1) (-5 *1 (-473))) (* (*1 *1 *1 *1) (-5 *1 (-473))) (-3945 (*1 *1 *1 *1) (-5 *1 (-473))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-473)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-473)))) (-2658 (*1 *1) (-5 *1 (-473))) (-2664 (*1 *1) (-5 *1 (-473))) (-2025 (*1 *1 *1) (-5 *1 (-473))) (-2024 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-473)))) (-2023 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-473)))) (-2022 (*1 *2 *3) (-12 (-5 *3 (-584 (-473))) (-5 *2 (-1089)) (-5 *1 (-473)))) (-2021 (*1 *2 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-584 (-473))) (-5 *1 (-473)))))
+((-2028 (((-473) (-1089)) 15 T ELT)) (-2029 ((|#1| (-473)) 20 T ELT)))
+(((-474 |#1|) (-10 -7 (-15 -2028 ((-473) (-1089))) (-15 -2029 (|#1| (-473)))) (-1128)) (T -474))
+((-2029 (*1 *2 *3) (-12 (-5 *3 (-473)) (-5 *1 (-474 *2)) (-4 *2 (-1128)))) (-2028 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-473)) (-5 *1 (-474 *4)) (-4 *4 (-1128)))))
+((-3449 ((|#2| |#2|) 17 T ELT)) (-3447 ((|#2| |#2|) 13 T ELT)) (-3450 ((|#2| |#2| (-484) (-484)) 20 T ELT)) (-3448 ((|#2| |#2|) 15 T ELT)))
+(((-475 |#1| |#2|) (-10 -7 (-15 -3447 (|#2| |#2|)) (-15 -3448 (|#2| |#2|)) (-15 -3449 (|#2| |#2|)) (-15 -3450 (|#2| |#2| (-484) (-484)))) (-13 (-495) (-120)) (-1171 |#1|)) (T -475))
+((-3450 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-484)) (-4 *4 (-13 (-495) (-120))) (-5 *1 (-475 *4 *2)) (-4 *2 (-1171 *4)))) (-3449 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1171 *3)))) (-3448 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1171 *3)))) (-3447 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1171 *3)))))
+((-2032 (((-584 (-248 (-858 |#2|))) (-584 |#2|) (-584 (-1089))) 32 T ELT)) (-2030 (((-584 |#2|) (-858 |#1|) |#3|) 54 T ELT) (((-584 |#2|) (-1084 |#1|) |#3|) 53 T ELT)) (-2031 (((-584 (-584 |#2|)) (-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1089)) |#3|) 106 T ELT)))
+(((-476 |#1| |#2| |#3|) (-10 -7 (-15 -2030 ((-584 |#2|) (-1084 |#1|) |#3|)) (-15 -2030 ((-584 |#2|) (-858 |#1|) |#3|)) (-15 -2031 ((-584 (-584 |#2|)) (-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1089)) |#3|)) (-15 -2032 ((-584 (-248 (-858 |#2|))) (-584 |#2|) (-584 (-1089))))) (-389) (-311) (-13 (-311) (-756))) (T -476))
+((-2032 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-1089))) (-4 *6 (-311)) (-5 *2 (-584 (-248 (-858 *6)))) (-5 *1 (-476 *5 *6 *7)) (-4 *5 (-389)) (-4 *7 (-13 (-311) (-756))))) (-2031 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1089))) (-4 *6 (-389)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-476 *6 *7 *5)) (-4 *7 (-311)) (-4 *5 (-13 (-311) (-756))))) (-2030 (*1 *2 *3 *4) (-12 (-5 *3 (-858 *5)) (-4 *5 (-389)) (-5 *2 (-584 *6)) (-5 *1 (-476 *5 *6 *4)) (-4 *6 (-311)) (-4 *4 (-13 (-311) (-756))))) (-2030 (*1 *2 *3 *4) (-12 (-5 *3 (-1084 *5)) (-4 *5 (-389)) (-5 *2 (-584 *6)) (-5 *1 (-476 *5 *6 *4)) (-4 *6 (-311)) (-4 *4 (-13 (-311) (-756))))))
+((-2035 ((|#2| |#2| |#1|) 17 T ELT)) (-2033 ((|#2| (-584 |#2|)) 30 T ELT)) (-2034 ((|#2| (-584 |#2|)) 51 T ELT)))
+(((-477 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2033 (|#2| (-584 |#2|))) (-15 -2034 (|#2| (-584 |#2|))) (-15 -2035 (|#2| |#2| |#1|))) (-257) (-1154 |#1|) |#1| (-1 |#1| |#1| (-695))) (T -477))
+((-2035 (*1 *2 *2 *3) (-12 (-4 *3 (-257)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-695))) (-5 *1 (-477 *3 *2 *4 *5)) (-4 *2 (-1154 *3)))) (-2034 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-1154 *4)) (-5 *1 (-477 *4 *2 *5 *6)) (-4 *4 (-257)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-695))))) (-2033 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-1154 *4)) (-5 *1 (-477 *4 *2 *5 *6)) (-4 *4 (-257)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-695))))))
+((-3728 (((-345 (-1084 |#4|)) (-1084 |#4|) (-1 (-345 (-1084 |#3|)) (-1084 |#3|))) 90 T ELT) (((-345 |#4|) |#4| (-1 (-345 (-1084 |#3|)) (-1084 |#3|))) 213 T ELT)))
+(((-478 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3728 ((-345 |#4|) |#4| (-1 (-345 (-1084 |#3|)) (-1084 |#3|)))) (-15 -3728 ((-345 (-1084 |#4|)) (-1084 |#4|) (-1 (-345 (-1084 |#3|)) (-1084 |#3|))))) (-757) (-718) (-13 (-257) (-120)) (-862 |#3| |#2| |#1|)) (T -478))
+((-3728 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-345 (-1084 *7)) (-1084 *7))) (-4 *7 (-13 (-257) (-120))) (-4 *5 (-757)) (-4 *6 (-718)) (-4 *8 (-862 *7 *6 *5)) (-5 *2 (-345 (-1084 *8))) (-5 *1 (-478 *5 *6 *7 *8)) (-5 *3 (-1084 *8)))) (-3728 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-345 (-1084 *7)) (-1084 *7))) (-4 *7 (-13 (-257) (-120))) (-4 *5 (-757)) (-4 *6 (-718)) (-5 *2 (-345 *3)) (-5 *1 (-478 *5 *6 *7 *3)) (-4 *3 (-862 *7 *6 *5)))))
+((-3449 ((|#4| |#4|) 74 T ELT)) (-3447 ((|#4| |#4|) 70 T ELT)) (-3450 ((|#4| |#4| (-484) (-484)) 76 T ELT)) (-3448 ((|#4| |#4|) 72 T ELT)))
+(((-479 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3447 (|#4| |#4|)) (-15 -3448 (|#4| |#4|)) (-15 -3449 (|#4| |#4|)) (-15 -3450 (|#4| |#4| (-484) (-484)))) (-13 (-311) (-317) (-554 (-484))) (-1154 |#1|) (-662 |#1| |#2|) (-1171 |#3|)) (T -479))
+((-3450 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-484)) (-4 *4 (-13 (-311) (-317) (-554 *3))) (-4 *5 (-1154 *4)) (-4 *6 (-662 *4 *5)) (-5 *1 (-479 *4 *5 *6 *2)) (-4 *2 (-1171 *6)))) (-3449 (*1 *2 *2) (-12 (-4 *3 (-13 (-311) (-317) (-554 (-484)))) (-4 *4 (-1154 *3)) (-4 *5 (-662 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1171 *5)))) (-3448 (*1 *2 *2) (-12 (-4 *3 (-13 (-311) (-317) (-554 (-484)))) (-4 *4 (-1154 *3)) (-4 *5 (-662 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1171 *5)))) (-3447 (*1 *2 *2) (-12 (-4 *3 (-13 (-311) (-317) (-554 (-484)))) (-4 *4 (-1154 *3)) (-4 *5 (-662 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1171 *5)))))
+((-3449 ((|#2| |#2|) 27 T ELT)) (-3447 ((|#2| |#2|) 23 T ELT)) (-3450 ((|#2| |#2| (-484) (-484)) 29 T ELT)) (-3448 ((|#2| |#2|) 25 T ELT)))
+(((-480 |#1| |#2|) (-10 -7 (-15 -3447 (|#2| |#2|)) (-15 -3448 (|#2| |#2|)) (-15 -3449 (|#2| |#2|)) (-15 -3450 (|#2| |#2| (-484) (-484)))) (-13 (-311) (-317) (-554 (-484))) (-1171 |#1|)) (T -480))
+((-3450 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-484)) (-4 *4 (-13 (-311) (-317) (-554 *3))) (-5 *1 (-480 *4 *2)) (-4 *2 (-1171 *4)))) (-3449 (*1 *2 *2) (-12 (-4 *3 (-13 (-311) (-317) (-554 (-484)))) (-5 *1 (-480 *3 *2)) (-4 *2 (-1171 *3)))) (-3448 (*1 *2 *2) (-12 (-4 *3 (-13 (-311) (-317) (-554 (-484)))) (-5 *1 (-480 *3 *2)) (-4 *2 (-1171 *3)))) (-3447 (*1 *2 *2) (-12 (-4 *3 (-13 (-311) (-317) (-554 (-484)))) (-5 *1 (-480 *3 *2)) (-4 *2 (-1171 *3)))))
+((-2036 (((-3 (-484) #1="failed") |#2| |#1| (-1 (-3 (-484) #1#) |#1|)) 18 T ELT) (((-3 (-484) #1#) |#2| |#1| (-484) (-1 (-3 (-484) #1#) |#1|)) 14 T ELT) (((-3 (-484) #1#) |#2| (-484) (-1 (-3 (-484) #1#) |#1|)) 30 T ELT)))
+(((-481 |#1| |#2|) (-10 -7 (-15 -2036 ((-3 (-484) #1="failed") |#2| (-484) (-1 (-3 (-484) #1#) |#1|))) (-15 -2036 ((-3 (-484) #1#) |#2| |#1| (-484) (-1 (-3 (-484) #1#) |#1|))) (-15 -2036 ((-3 (-484) #1#) |#2| |#1| (-1 (-3 (-484) #1#) |#1|)))) (-962) (-1154 |#1|)) (T -481))
+((-2036 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-484) #1="failed") *4)) (-4 *4 (-962)) (-5 *2 (-484)) (-5 *1 (-481 *4 *3)) (-4 *3 (-1154 *4)))) (-2036 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-484) #1#) *4)) (-4 *4 (-962)) (-5 *2 (-484)) (-5 *1 (-481 *4 *3)) (-4 *3 (-1154 *4)))) (-2036 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-484) #1#) *5)) (-4 *5 (-962)) (-5 *2 (-484)) (-5 *1 (-481 *5 *3)) (-4 *3 (-1154 *5)))))
+((-2045 (($ $ $) 87 T ELT)) (-3967 (((-345 $) $) 50 T ELT)) (-3154 (((-3 (-484) #1="failed") $) 62 T ELT)) (-3153 (((-484) $) 40 T ELT)) (-3022 (((-3 (-347 (-484)) #1#) $) 80 T ELT)) (-3021 (((-85) $) 24 T ELT)) (-3020 (((-347 (-484)) $) 78 T ELT)) (-3719 (((-85) $) 53 T ELT)) (-2038 (($ $ $ $) 94 T ELT)) (-1367 (($ $ $) 60 T ELT)) (-2794 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) 75 T ELT)) (-3441 (((-633 $) $) 70 T ELT)) (-2042 (($ $) 22 T ELT)) (-2037 (($ $ $) 92 T ELT)) (-3442 (($) 63 T CONST)) (-1365 (($ $) 56 T ELT)) (-3728 (((-345 $) $) 48 T ELT)) (-2672 (((-85) $) 15 T ELT)) (-1605 (((-695) $) 30 T ELT)) (-3754 (($ $) 11 T ELT) (($ $ (-695)) NIL T ELT)) (-3396 (($ $) 16 T ELT)) (-3968 (((-484) $) NIL T ELT) (((-473) $) 39 T ELT) (((-801 (-484)) $) 43 T ELT) (((-327) $) 33 T ELT) (((-179) $) 36 T ELT)) (-3123 (((-695)) 9 T CONST)) (-2047 (((-85) $ $) 19 T ELT)) (-3099 (($ $ $) 58 T ELT)))
+(((-482 |#1|) (-10 -7 (-15 -2037 (|#1| |#1| |#1|)) (-15 -2038 (|#1| |#1| |#1| |#1|)) (-15 -2042 (|#1| |#1|)) (-15 -3396 (|#1| |#1|)) (-15 -3022 ((-3 (-347 (-484)) #1="failed") |#1|)) (-15 -3020 ((-347 (-484)) |#1|)) (-15 -3021 ((-85) |#1|)) (-15 -2045 (|#1| |#1| |#1|)) (-15 -2047 ((-85) |#1| |#1|)) (-15 -2672 ((-85) |#1|)) (-15 -3442 (|#1|) -3948) (-15 -3441 ((-633 |#1|) |#1|)) (-15 -3968 ((-179) |#1|)) (-15 -3968 ((-327) |#1|)) (-15 -1367 (|#1| |#1| |#1|)) (-15 -1365 (|#1| |#1|)) (-15 -3099 (|#1| |#1| |#1|)) (-15 -2794 ((-799 (-484) |#1|) |#1| (-801 (-484)) (-799 (-484) |#1|))) (-15 -3968 ((-801 (-484)) |#1|)) (-15 -3968 ((-473) |#1|)) (-15 -3154 ((-3 (-484) #1#) |#1|)) (-15 -3153 ((-484) |#1|)) (-15 -3968 ((-484) |#1|)) (-15 -3754 (|#1| |#1| (-695))) (-15 -3754 (|#1| |#1|)) (-15 -1605 ((-695) |#1|)) (-15 -3728 ((-345 |#1|) |#1|)) (-15 -3967 ((-345 |#1|) |#1|)) (-15 -3719 ((-85) |#1|)) (-15 -3123 ((-695)) -3948)) (-483)) (T -482))
+((-3123 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-482 *3)) (-4 *3 (-483)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 53 T ELT)) (-2061 (($ $) 52 T ELT)) (-2059 (((-85) $) 50 T ELT)) (-2045 (($ $ $) 100 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-2040 (($ $ $ $) 89 T ELT)) (-3771 (($ $) 64 T ELT)) (-3967 (((-345 $) $) 65 T ELT)) (-1606 (((-85) $ $) 143 T ELT)) (-3619 (((-484) $) 132 T ELT)) (-2439 (($ $ $) 103 T ELT)) (-3720 (($) 22 T CONST)) (-3154 (((-3 (-484) "failed") $) 124 T ELT)) (-3153 (((-484) $) 125 T ELT)) (-2562 (($ $ $) 147 T ELT)) (-2277 (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 122 T ELT) (((-631 (-484)) (-631 $)) 121 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-3022 (((-3 (-347 (-484)) "failed") $) 97 T ELT)) (-3021 (((-85) $) 99 T ELT)) (-3020 (((-347 (-484)) $) 98 T ELT)) (-2992 (($) 96 T ELT) (($ $) 95 T ELT)) (-2561 (($ $ $) 146 T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) 141 T ELT)) (-3719 (((-85) $) 66 T ELT)) (-2038 (($ $ $ $) 87 T ELT)) (-2046 (($ $ $) 101 T ELT)) (-3183 (((-85) $) 134 T ELT)) (-1367 (($ $ $) 112 T ELT)) (-2794 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) 115 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-2671 (((-85) $) 107 T ELT)) (-3441 (((-633 $) $) 109 T ELT)) (-3184 (((-85) $) 133 T ELT)) (-1603 (((-3 (-584 $) #1="failed") (-584 $) $) 150 T ELT)) (-2039 (($ $ $ $) 88 T ELT)) (-2529 (($ $ $) 140 T ELT)) (-2855 (($ $ $) 139 T ELT)) (-2042 (($ $) 91 T ELT)) (-3829 (($ $) 104 T ELT)) (-2278 (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 120 T ELT) (((-631 (-484)) (-1178 $)) 119 T ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-2037 (($ $ $) 86 T ELT)) (-3442 (($) 108 T CONST)) (-2044 (($ $) 93 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3141 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-1365 (($ $) 113 T ELT)) (-3728 (((-345 $) $) 63 T ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 149 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) 148 T ELT)) (-3462 (((-3 $ "failed") $ $) 54 T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) 142 T ELT)) (-2672 (((-85) $) 106 T ELT)) (-1605 (((-695) $) 144 T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 145 T ELT)) (-3754 (($ $) 130 T ELT) (($ $ (-695)) 128 T ELT)) (-2043 (($ $) 92 T ELT)) (-3396 (($ $) 94 T ELT)) (-3968 (((-484) $) 126 T ELT) (((-473) $) 117 T ELT) (((-801 (-484)) $) 116 T ELT) (((-327) $) 111 T ELT) (((-179) $) 110 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT) (($ (-484)) 123 T ELT)) (-3123 (((-695)) 38 T CONST)) (-2047 (((-85) $ $) 102 T ELT)) (-3099 (($ $ $) 114 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2692 (($) 105 T ELT)) (-2060 (((-85) $ $) 51 T ELT)) (-2041 (($ $ $ $) 90 T ELT)) (-3379 (($ $) 131 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-2667 (($ $) 129 T ELT) (($ $ (-695)) 127 T ELT)) (-2564 (((-85) $ $) 138 T ELT)) (-2565 (((-85) $ $) 136 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-2682 (((-85) $ $) 137 T ELT)) (-2683 (((-85) $ $) 135 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-484) $) 118 T ELT)))
+(((-483) (-113)) (T -483))
+((-2671 (*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))) (-2672 (*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))) (-2692 (*1 *1) (-4 *1 (-483))) (-3829 (*1 *1 *1) (-4 *1 (-483))) (-2439 (*1 *1 *1 *1) (-4 *1 (-483))) (-2047 (*1 *2 *1 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))) (-2046 (*1 *1 *1 *1) (-4 *1 (-483))) (-2045 (*1 *1 *1 *1) (-4 *1 (-483))) (-3021 (*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))) (-3020 (*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-347 (-484))))) (-3022 (*1 *2 *1) (|partial| -12 (-4 *1 (-483)) (-5 *2 (-347 (-484))))) (-2992 (*1 *1) (-4 *1 (-483))) (-2992 (*1 *1 *1) (-4 *1 (-483))) (-3396 (*1 *1 *1) (-4 *1 (-483))) (-2044 (*1 *1 *1) (-4 *1 (-483))) (-2043 (*1 *1 *1) (-4 *1 (-483))) (-2042 (*1 *1 *1) (-4 *1 (-483))) (-2041 (*1 *1 *1 *1 *1) (-4 *1 (-483))) (-2040 (*1 *1 *1 *1 *1) (-4 *1 (-483))) (-2039 (*1 *1 *1 *1 *1) (-4 *1 (-483))) (-2038 (*1 *1 *1 *1 *1) (-4 *1 (-483))) (-2037 (*1 *1 *1 *1) (-4 *1 (-483))))
+(-13 (-1133) (-257) (-741) (-190) (-554 (-484)) (-951 (-484)) (-581 (-484)) (-554 (-473)) (-554 (-801 (-484))) (-797 (-484)) (-116) (-934) (-120) (-1065) (-10 -8 (-15 -2671 ((-85) $)) (-15 -2672 ((-85) $)) (-6 -3990) (-15 -2692 ($)) (-15 -3829 ($ $)) (-15 -2439 ($ $ $)) (-15 -2047 ((-85) $ $)) (-15 -2046 ($ $ $)) (-15 -2045 ($ $ $)) (-15 -3021 ((-85) $)) (-15 -3020 ((-347 (-484)) $)) (-15 -3022 ((-3 (-347 (-484)) "failed") $)) (-15 -2992 ($)) (-15 -2992 ($ $)) (-15 -3396 ($ $)) (-15 -2044 ($ $)) (-15 -2043 ($ $)) (-15 -2042 ($ $)) (-15 -2041 ($ $ $ $)) (-15 -2040 ($ $ $ $)) (-15 -2039 ($ $ $ $)) (-15 -2038 ($ $ $ $)) (-15 -2037 ($ $ $)) (-6 -3989)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-556 (-484)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-116) . T) ((-146) . T) ((-554 (-179)) . T) ((-554 (-327)) . T) ((-554 (-473)) . T) ((-554 (-484)) . T) ((-554 (-801 (-484))) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-245) . T) ((-257) . T) ((-389) . T) ((-495) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 (-484)) . T) ((-591 $) . T) ((-583 $) . T) ((-581 (-484)) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-741) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-797 (-484)) . T) ((-833) . T) ((-934) . T) ((-951 (-484)) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) . T) ((-1128) . T) ((-1133) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 8 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 77 T ELT)) (-2061 (($ $) 78 T ELT)) (-2059 (((-85) $) NIL T ELT)) (-2045 (($ $ $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2040 (($ $ $ $) 31 T ELT)) (-3771 (($ $) NIL T ELT)) (-3967 (((-345 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3619 (((-484) $) NIL T ELT)) (-2439 (($ $ $) 71 T ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 (-484) #1#) $) NIL T ELT)) (-3153 (((-484) $) NIL T ELT)) (-2562 (($ $ $) 45 T ELT)) (-2277 (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 53 T ELT) (((-631 (-484)) (-631 $)) 49 T ELT)) (-3463 (((-3 $ #1#) $) 74 T ELT)) (-3022 (((-3 (-347 (-484)) #1#) $) NIL T ELT)) (-3021 (((-85) $) NIL T ELT)) (-3020 (((-347 (-484)) $) NIL T ELT)) (-2992 (($) 55 T ELT) (($ $) 56 T ELT)) (-2561 (($ $ $) 70 T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-3719 (((-85) $) NIL T ELT)) (-2038 (($ $ $ $) NIL T ELT)) (-2046 (($ $ $) 46 T ELT)) (-3183 (((-85) $) 22 T ELT)) (-1367 (($ $ $) NIL T ELT)) (-2794 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL T ELT)) (-2408 (((-85) $) 9 T ELT)) (-2671 (((-85) $) 64 T ELT)) (-3441 (((-633 $) $) NIL T ELT)) (-3184 (((-85) $) 21 T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2039 (($ $ $ $) 32 T ELT)) (-2529 (($ $ $) 67 T ELT)) (-2855 (($ $ $) 66 T ELT)) (-2042 (($ $) NIL T ELT)) (-3829 (($ $) 29 T ELT)) (-2278 (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-631 (-484)) (-1178 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3239 (((-1072) $) 44 T ELT)) (-2037 (($ $ $) NIL T ELT)) (-3442 (($) NIL T CONST)) (-2044 (($ $) 15 T ELT)) (-3240 (((-1033) $) 19 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 109 T ELT)) (-3141 (($ $ $) 75 T ELT) (($ (-584 $)) NIL T ELT)) (-1365 (($ $) NIL T ELT)) (-3728 (((-345 $) $) 95 T ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) 93 T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2672 (((-85) $) 65 T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 69 T ELT)) (-3754 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2043 (($ $) 17 T ELT)) (-3396 (($ $) 13 T ELT)) (-3968 (((-484) $) 28 T ELT) (((-473) $) 41 T ELT) (((-801 (-484)) $) NIL T ELT) (((-327) $) 35 T ELT) (((-179) $) 38 T ELT)) (-3942 (((-773) $) 26 T ELT) (($ (-484)) 27 T ELT) (($ $) NIL T ELT) (($ (-484)) 27 T ELT)) (-3123 (((-695)) NIL T CONST)) (-2047 (((-85) $ $) NIL T ELT)) (-3099 (($ $ $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2692 (($) 12 T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-2041 (($ $ $ $) 30 T ELT)) (-3379 (($ $) 54 T ELT)) (-2658 (($) 10 T CONST)) (-2664 (($) 11 T CONST)) (-2667 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2564 (((-85) $ $) 59 T ELT)) (-2565 (((-85) $ $) 57 T ELT)) (-3054 (((-85) $ $) 7 T ELT)) (-2682 (((-85) $ $) 58 T ELT)) (-2683 (((-85) $ $) 20 T ELT)) (-3833 (($ $) 42 T ELT) (($ $ $) 16 T ELT)) (-3835 (($ $ $) 14 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 63 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 61 T ELT) (($ $ $) 60 T ELT) (($ (-484) $) 61 T ELT)))
+(((-484) (-13 (-483) (-10 -7 (-6 -3978) (-6 -3983) (-6 -3979)))) (T -484))
+NIL
+((-2566 (((-85) $ $) NIL T ELT)) (-3133 (((-695)) NIL T ELT)) (-3720 (($) NIL T CONST)) (-2992 (($) NIL T ELT)) (-2529 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2855 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2008 (((-831) $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2398 (($ (-831)) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)))
+(((-485) (-13 (-753) (-10 -8 (-15 -3720 ($) -3948)))) (T -485))
+((-3720 (*1 *1) (-5 *1 (-485))))
+((-484) (|%not| (|%ilt| 16 (|%ilength| |#1|))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3133 (((-695)) NIL T ELT)) (-3720 (($) NIL T CONST)) (-2992 (($) NIL T ELT)) (-2529 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2855 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2008 (((-831) $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2398 (($ (-831)) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)))
+(((-486) (-13 (-753) (-10 -8 (-15 -3720 ($) -3948)))) (T -486))
+((-3720 (*1 *1) (-5 *1 (-486))))
+((-484) (|%not| (|%ilt| 32 (|%ilength| |#1|))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3133 (((-695)) NIL T ELT)) (-3720 (($) NIL T CONST)) (-2992 (($) NIL T ELT)) (-2529 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2855 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2008 (((-831) $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2398 (($ (-831)) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)))
+(((-487) (-13 (-753) (-10 -8 (-15 -3720 ($) -3948)))) (T -487))
+((-3720 (*1 *1) (-5 *1 (-487))))
+((-484) (|%not| (|%ilt| 64 (|%ilength| |#1|))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3133 (((-695)) NIL T ELT)) (-3720 (($) NIL T CONST)) (-2992 (($) NIL T ELT)) (-2529 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2855 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2008 (((-831) $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2398 (($ (-831)) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)))
+(((-488) (-13 (-753) (-10 -8 (-15 -3720 ($) -3948)))) (T -488))
+((-3720 (*1 *1) (-5 *1 (-488))))
+((-484) (|%not| (|%ilt| 8 (|%ilength| |#1|))))
+((-2566 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3595 (($) NIL T ELT) (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2196 (((-1184) $ |#1| |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3784 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-3706 (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-2229 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3401 (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3991)) ELT) (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3402 (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-3838 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3991)) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-1574 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3992)) ELT)) (-3110 ((|#2| $ |#1|) NIL T ELT)) (-2887 (((-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2198 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2606 (((-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT)) (-2199 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2230 (((-584 |#1|) $) NIL T ELT)) (-2231 (((-85) |#1| $) NIL T ELT)) (-1272 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3605 (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2201 (((-584 |#1|) $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL T ELT)) (-3240 (((-1033) $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3797 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1352 (((-3 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2197 (($ $ |#2|) NIL (|has| $ (-6 -3992)) ELT)) (-1273 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-248 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2200 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT)) (-2203 (((-584 |#2|) $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) NIL T ELT)) (-3796 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1464 (($) NIL T ELT) (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1944 (((-695) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT) (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3396 (($ $) NIL T ELT)) (-3968 (((-473) $) NIL (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-554 (-473))) ELT)) (-3526 (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3942 (((-773) $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1263 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1274 (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-489 |#1| |#2| |#3|) (-13 (-1106 |#1| |#2|) (-10 -7 (-6 -3991))) (-1013) (-1013) (-13 (-1106 |#1| |#2|) (-10 -7 (-6 -3991)))) (T -489))
+NIL
+((-2048 (((-519 |#2|) |#2| (-551 |#2|) (-551 |#2|) (-1 (-1084 |#2|) (-1084 |#2|))) 50 T ELT)))
+(((-490 |#1| |#2|) (-10 -7 (-15 -2048 ((-519 |#2|) |#2| (-551 |#2|) (-551 |#2|) (-1 (-1084 |#2|) (-1084 |#2|))))) (-495) (-13 (-27) (-361 |#1|))) (T -490))
+((-2048 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-551 *3)) (-5 *5 (-1 (-1084 *3) (-1084 *3))) (-4 *3 (-13 (-27) (-361 *6))) (-4 *6 (-495)) (-5 *2 (-519 *3)) (-5 *1 (-490 *6 *3)))))
+((-2050 (((-519 |#5|) |#5| (-1 |#3| |#3|)) 217 T ELT)) (-2051 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 213 T ELT)) (-2049 (((-519 |#5|) |#5| (-1 |#3| |#3|)) 221 T ELT)))
+(((-491 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2049 ((-519 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2050 ((-519 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2051 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-495) (-951 (-484))) (-13 (-27) (-361 |#1|)) (-1154 |#2|) (-1154 (-347 |#3|)) (-290 |#2| |#3| |#4|)) (T -491))
+((-2051 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-27) (-361 *4))) (-4 *4 (-13 (-495) (-951 (-484)))) (-4 *7 (-1154 (-347 *6))) (-5 *1 (-491 *4 *5 *6 *7 *2)) (-4 *2 (-290 *5 *6 *7)))) (-2050 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1154 *6)) (-4 *6 (-13 (-27) (-361 *5))) (-4 *5 (-13 (-495) (-951 (-484)))) (-4 *8 (-1154 (-347 *7))) (-5 *2 (-519 *3)) (-5 *1 (-491 *5 *6 *7 *8 *3)) (-4 *3 (-290 *6 *7 *8)))) (-2049 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1154 *6)) (-4 *6 (-13 (-27) (-361 *5))) (-4 *5 (-13 (-495) (-951 (-484)))) (-4 *8 (-1154 (-347 *7))) (-5 *2 (-519 *3)) (-5 *1 (-491 *5 *6 *7 *8 *3)) (-4 *3 (-290 *6 *7 *8)))))
+((-2054 (((-85) (-484) (-484)) 12 T ELT)) (-2052 (((-484) (-484)) 7 T ELT)) (-2053 (((-484) (-484) (-484)) 10 T ELT)))
+(((-492) (-10 -7 (-15 -2052 ((-484) (-484))) (-15 -2053 ((-484) (-484) (-484))) (-15 -2054 ((-85) (-484) (-484))))) (T -492))
+((-2054 (*1 *2 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-85)) (-5 *1 (-492)))) (-2053 (*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-492)))) (-2052 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-492)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-2602 ((|#1| $) 75 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 53 T ELT)) (-2061 (($ $) 52 T ELT)) (-2059 (((-85) $) 50 T ELT)) (-3488 (($ $) 105 T ELT)) (-3635 (($ $) 88 T ELT)) (-2481 ((|#1| $) 76 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3035 (($ $) 87 T ELT)) (-3486 (($ $) 104 T ELT)) (-3634 (($ $) 89 T ELT)) (-3490 (($ $) 103 T ELT)) (-3633 (($ $) 90 T ELT)) (-3720 (($) 22 T CONST)) (-3154 (((-3 (-484) "failed") $) 83 T ELT)) (-3153 (((-484) $) 84 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2057 (($ |#1| |#1|) 80 T ELT)) (-3183 (((-85) $) 74 T ELT)) (-3623 (($) 115 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-3009 (($ $ (-484)) 86 T ELT)) (-3184 (((-85) $) 73 T ELT)) (-2529 (($ $ $) 116 T ELT)) (-2855 (($ $ $) 117 T ELT)) (-3938 (($ $) 112 T ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-2058 (($ |#1| |#1|) 81 T ELT) (($ |#1|) 79 T ELT) (($ (-347 (-484))) 78 T ELT)) (-2056 ((|#1| $) 77 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3141 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3462 (((-3 $ "failed") $ $) 54 T ELT)) (-3939 (($ $) 113 T ELT)) (-3491 (($ $) 102 T ELT)) (-3632 (($ $) 91 T ELT)) (-3489 (($ $) 101 T ELT)) (-3631 (($ $) 92 T ELT)) (-3487 (($ $) 100 T ELT)) (-3630 (($ $) 93 T ELT)) (-2055 (((-85) $ |#1|) 72 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT) (($ (-484)) 82 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-3494 (($ $) 111 T ELT)) (-3482 (($ $) 99 T ELT)) (-2060 (((-85) $ $) 51 T ELT)) (-3492 (($ $) 110 T ELT)) (-3480 (($ $) 98 T ELT)) (-3496 (($ $) 109 T ELT)) (-3484 (($ $) 97 T ELT)) (-3497 (($ $) 108 T ELT)) (-3485 (($ $) 96 T ELT)) (-3495 (($ $) 107 T ELT)) (-3483 (($ $) 95 T ELT)) (-3493 (($ $) 106 T ELT)) (-3481 (($ $) 94 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-2564 (((-85) $ $) 118 T ELT)) (-2565 (((-85) $ $) 120 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-2682 (((-85) $ $) 119 T ELT)) (-2683 (((-85) $ $) 121 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ $) 114 T ELT) (($ $ (-347 (-484))) 85 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT)))
+(((-493 |#1|) (-113) (-13 (-344) (-1114))) (T -493))
+((-2058 (*1 *1 *2 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-344) (-1114))))) (-2057 (*1 *1 *2 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-344) (-1114))))) (-2058 (*1 *1 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-344) (-1114))))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-347 (-484))) (-4 *1 (-493 *3)) (-4 *3 (-13 (-344) (-1114))))) (-2056 (*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-344) (-1114))))) (-2481 (*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-344) (-1114))))) (-2602 (*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-344) (-1114))))) (-3183 (*1 *2 *1) (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-344) (-1114))) (-5 *2 (-85)))) (-3184 (*1 *2 *1) (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-344) (-1114))) (-5 *2 (-85)))) (-2055 (*1 *2 *1 *3) (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-344) (-1114))) (-5 *2 (-85)))))
+(-13 (-389) (-757) (-1114) (-916) (-951 (-484)) (-10 -8 (-6 -3766) (-15 -2058 ($ |t#1| |t#1|)) (-15 -2057 ($ |t#1| |t#1|)) (-15 -2058 ($ |t#1|)) (-15 -2058 ($ (-347 (-484)))) (-15 -2056 (|t#1| $)) (-15 -2481 (|t#1| $)) (-15 -2602 (|t#1| $)) (-15 -3183 ((-85) $)) (-15 -3184 ((-85) $)) (-15 -2055 ((-85) $ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-66) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-484)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-239) . T) ((-245) . T) ((-389) . T) ((-430) . T) ((-495) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-757) . T) ((-760) . T) ((-916) . T) ((-951 (-484)) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1114) . T) ((-1117) . T) ((-1128) . T))
+((-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 9 T ELT)) (-2061 (($ $) 11 T ELT)) (-2059 (((-85) $) 20 T ELT)) (-3463 (((-3 $ "failed") $) 16 T ELT)) (-2060 (((-85) $ $) 22 T ELT)))
+(((-494 |#1|) (-10 -7 (-15 -2059 ((-85) |#1|)) (-15 -2060 ((-85) |#1| |#1|)) (-15 -2061 (|#1| |#1|)) (-15 -2062 ((-2 (|:| -1770 |#1|) (|:| -3978 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3463 ((-3 |#1| "failed") |#1|))) (-495)) (T -494))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 53 T ELT)) (-2061 (($ $) 52 T ELT)) (-2059 (((-85) $) 50 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3462 (((-3 $ "failed") $ $) 54 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2060 (((-85) $ $) 51 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT)))
+(((-495) (-113)) (T -495))
+((-3462 (*1 *1 *1 *1) (|partial| -4 *1 (-495))) (-2062 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1770 *1) (|:| -3978 *1) (|:| |associate| *1))) (-4 *1 (-495)))) (-2061 (*1 *1 *1) (-4 *1 (-495))) (-2060 (*1 *2 *1 *1) (-12 (-4 *1 (-495)) (-5 *2 (-85)))) (-2059 (*1 *2 *1) (-12 (-4 *1 (-495)) (-5 *2 (-85)))))
+(-13 (-146) (-38 $) (-245) (-10 -8 (-15 -3462 ((-3 $ "failed") $ $)) (-15 -2062 ((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $)) (-15 -2061 ($ $)) (-15 -2060 ((-85) $ $)) (-15 -2059 ((-85) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-484)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-245) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
+((-2064 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-1089) (-584 |#2|)) 38 T ELT)) (-2066 (((-519 |#2|) |#2| (-1089)) 63 T ELT)) (-2065 (((-3 |#2| #1#) |#2| (-1089)) 156 T ELT)) (-2067 (((-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1089) (-551 |#2|) (-584 (-551 |#2|))) 159 T ELT)) (-2063 (((-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1089) |#2|) 41 T ELT)))
+(((-496 |#1| |#2|) (-10 -7 (-15 -2063 ((-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1089) |#2|)) (-15 -2064 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-1089) (-584 |#2|))) (-15 -2065 ((-3 |#2| #1#) |#2| (-1089))) (-15 -2066 ((-519 |#2|) |#2| (-1089))) (-15 -2067 ((-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1089) (-551 |#2|) (-584 (-551 |#2|))))) (-13 (-389) (-120) (-951 (-484)) (-581 (-484))) (-13 (-27) (-1114) (-361 |#1|))) (T -496))
+((-2067 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1089)) (-5 *6 (-584 (-551 *3))) (-5 *5 (-551 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *7))) (-4 *7 (-13 (-389) (-120) (-951 (-484)) (-581 (-484)))) (-5 *2 (-2 (|:| -2134 *3) (|:| |coeff| *3))) (-5 *1 (-496 *7 *3)))) (-2066 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-389) (-120) (-951 (-484)) (-581 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-496 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5))))) (-2065 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1089)) (-4 *4 (-13 (-389) (-120) (-951 (-484)) (-581 (-484)))) (-5 *1 (-496 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *4))))) (-2064 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-584 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *6))) (-4 *6 (-13 (-389) (-120) (-951 (-484)) (-581 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-496 *6 *3)))) (-2063 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1089)) (-4 *5 (-13 (-389) (-120) (-951 (-484)) (-581 (-484)))) (-5 *2 (-2 (|:| -2134 *3) (|:| |coeff| *3))) (-5 *1 (-496 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5))))))
+((-3967 (((-345 |#1|) |#1|) 17 T ELT)) (-3728 (((-345 |#1|) |#1|) 32 T ELT)) (-2069 (((-3 |#1| "failed") |#1|) 48 T ELT)) (-2068 (((-345 |#1|) |#1|) 59 T ELT)))
+(((-497 |#1|) (-10 -7 (-15 -3728 ((-345 |#1|) |#1|)) (-15 -3967 ((-345 |#1|) |#1|)) (-15 -2068 ((-345 |#1|) |#1|)) (-15 -2069 ((-3 |#1| "failed") |#1|))) (-483)) (T -497))
+((-2069 (*1 *2 *2) (|partial| -12 (-5 *1 (-497 *2)) (-4 *2 (-483)))) (-2068 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483)))) (-3967 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483)))) (-3728 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483)))))
+((-3081 (((-1084 (-347 (-1084 |#2|))) |#2| (-551 |#2|) (-551 |#2|) (-1084 |#2|)) 35 T ELT)) (-2072 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|) (-551 |#2|) |#2| (-347 (-1084 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|) |#2| (-1084 |#2|)) 115 T ELT)) (-2070 (((-519 |#2|) |#2| (-551 |#2|) (-551 |#2|) (-551 |#2|) |#2| (-347 (-1084 |#2|))) 85 T ELT) (((-519 |#2|) |#2| (-551 |#2|) (-551 |#2|) |#2| (-1084 |#2|)) 55 T ELT)) (-2071 (((-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-551 |#2|) (-551 |#2|) |#2| (-551 |#2|) |#2| (-347 (-1084 |#2|))) 92 T ELT) (((-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-551 |#2|) (-551 |#2|) |#2| |#2| (-1084 |#2|)) 114 T ELT)) (-2073 (((-3 |#2| #1#) |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1089)) (-551 |#2|) |#2| (-347 (-1084 |#2|))) 110 T ELT) (((-3 |#2| #1#) |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1089)) |#2| (-1084 |#2|)) 116 T ELT)) (-2074 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2010 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) (-551 |#2|) |#2| (-347 (-1084 |#2|))) 133 (|has| |#3| (-601 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2010 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) |#2| (-1084 |#2|)) 132 (|has| |#3| (-601 |#2|)) ELT)) (-3082 ((|#2| (-1084 (-347 (-1084 |#2|))) (-551 |#2|) |#2|) 53 T ELT)) (-3077 (((-1084 (-347 (-1084 |#2|))) (-1084 |#2|) (-551 |#2|)) 34 T ELT)))
+(((-498 |#1| |#2| |#3|) (-10 -7 (-15 -2070 ((-519 |#2|) |#2| (-551 |#2|) (-551 |#2|) |#2| (-1084 |#2|))) (-15 -2070 ((-519 |#2|) |#2| (-551 |#2|) (-551 |#2|) (-551 |#2|) |#2| (-347 (-1084 |#2|)))) (-15 -2071 ((-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-551 |#2|) (-551 |#2|) |#2| |#2| (-1084 |#2|))) (-15 -2071 ((-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-551 |#2|) (-551 |#2|) |#2| (-551 |#2|) |#2| (-347 (-1084 |#2|)))) (-15 -2072 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|) |#2| (-1084 |#2|))) (-15 -2072 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|) (-551 |#2|) |#2| (-347 (-1084 |#2|)))) (-15 -2073 ((-3 |#2| #1#) |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1089)) |#2| (-1084 |#2|))) (-15 -2073 ((-3 |#2| #1#) |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1089)) (-551 |#2|) |#2| (-347 (-1084 |#2|)))) (-15 -3081 ((-1084 (-347 (-1084 |#2|))) |#2| (-551 |#2|) (-551 |#2|) (-1084 |#2|))) (-15 -3082 (|#2| (-1084 (-347 (-1084 |#2|))) (-551 |#2|) |#2|)) (-15 -3077 ((-1084 (-347 (-1084 |#2|))) (-1084 |#2|) (-551 |#2|))) (IF (|has| |#3| (-601 |#2|)) (PROGN (-15 -2074 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2010 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) |#2| (-1084 |#2|))) (-15 -2074 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2010 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) (-551 |#2|) |#2| (-347 (-1084 |#2|))))) |%noBranch|)) (-13 (-389) (-951 (-484)) (-120) (-581 (-484))) (-13 (-361 |#1|) (-27) (-1114)) (-1013)) (T -498))
+((-2074 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-551 *4)) (-5 *6 (-347 (-1084 *4))) (-4 *4 (-13 (-361 *7) (-27) (-1114))) (-4 *7 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2010 (-584 *4)))) (-5 *1 (-498 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1013)))) (-2074 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-551 *4)) (-5 *6 (-1084 *4)) (-4 *4 (-13 (-361 *7) (-27) (-1114))) (-4 *7 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2010 (-584 *4)))) (-5 *1 (-498 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1013)))) (-3077 (*1 *2 *3 *4) (-12 (-5 *4 (-551 *6)) (-4 *6 (-13 (-361 *5) (-27) (-1114))) (-4 *5 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *2 (-1084 (-347 (-1084 *6)))) (-5 *1 (-498 *5 *6 *7)) (-5 *3 (-1084 *6)) (-4 *7 (-1013)))) (-3082 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1084 (-347 (-1084 *2)))) (-5 *4 (-551 *2)) (-4 *2 (-13 (-361 *5) (-27) (-1114))) (-4 *5 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *1 (-498 *5 *2 *6)) (-4 *6 (-1013)))) (-3081 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-361 *6) (-27) (-1114))) (-4 *6 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *2 (-1084 (-347 (-1084 *3)))) (-5 *1 (-498 *6 *3 *7)) (-5 *5 (-1084 *3)) (-4 *7 (-1013)))) (-2073 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1089))) (-5 *5 (-347 (-1084 *2))) (-4 *2 (-13 (-361 *6) (-27) (-1114))) (-4 *6 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *1 (-498 *6 *2 *7)) (-4 *7 (-1013)))) (-2073 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1089))) (-5 *5 (-1084 *2)) (-4 *2 (-13 (-361 *6) (-27) (-1114))) (-4 *6 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *1 (-498 *6 *2 *7)) (-4 *7 (-1013)))) (-2072 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-5 *6 (-347 (-1084 *3))) (-4 *3 (-13 (-361 *7) (-27) (-1114))) (-4 *7 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-498 *7 *3 *8)) (-4 *8 (-1013)))) (-2072 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-5 *6 (-1084 *3)) (-4 *3 (-13 (-361 *7) (-27) (-1114))) (-4 *7 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-498 *7 *3 *8)) (-4 *8 (-1013)))) (-2071 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-347 (-1084 *3))) (-4 *3 (-13 (-361 *6) (-27) (-1114))) (-4 *6 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *2 (-2 (|:| -2134 *3) (|:| |coeff| *3))) (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013)))) (-2071 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-1084 *3)) (-4 *3 (-13 (-361 *6) (-27) (-1114))) (-4 *6 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *2 (-2 (|:| -2134 *3) (|:| |coeff| *3))) (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013)))) (-2070 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-551 *3)) (-5 *5 (-347 (-1084 *3))) (-4 *3 (-13 (-361 *6) (-27) (-1114))) (-4 *6 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013)))) (-2070 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-551 *3)) (-5 *5 (-1084 *3)) (-4 *3 (-13 (-361 *6) (-27) (-1114))) (-4 *6 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013)))))
+((-2084 (((-484) (-484) (-695)) 87 T ELT)) (-2083 (((-484) (-484)) 85 T ELT)) (-2082 (((-484) (-484)) 82 T ELT)) (-2081 (((-484) (-484)) 89 T ELT)) (-2803 (((-484) (-484) (-484)) 67 T ELT)) (-2080 (((-484) (-484) (-484)) 64 T ELT)) (-2079 (((-347 (-484)) (-484)) 29 T ELT)) (-2078 (((-484) (-484)) 34 T ELT)) (-2077 (((-484) (-484)) 76 T ELT)) (-2800 (((-484) (-484)) 47 T ELT)) (-2076 (((-584 (-484)) (-484)) 81 T ELT)) (-2075 (((-484) (-484) (-484) (-484) (-484)) 60 T ELT)) (-2796 (((-347 (-484)) (-484)) 56 T ELT)))
+(((-499) (-10 -7 (-15 -2796 ((-347 (-484)) (-484))) (-15 -2075 ((-484) (-484) (-484) (-484) (-484))) (-15 -2076 ((-584 (-484)) (-484))) (-15 -2800 ((-484) (-484))) (-15 -2077 ((-484) (-484))) (-15 -2078 ((-484) (-484))) (-15 -2079 ((-347 (-484)) (-484))) (-15 -2080 ((-484) (-484) (-484))) (-15 -2803 ((-484) (-484) (-484))) (-15 -2081 ((-484) (-484))) (-15 -2082 ((-484) (-484))) (-15 -2083 ((-484) (-484))) (-15 -2084 ((-484) (-484) (-695))))) (T -499))
+((-2084 (*1 *2 *2 *3) (-12 (-5 *2 (-484)) (-5 *3 (-695)) (-5 *1 (-499)))) (-2083 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2082 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2081 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2803 (*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2080 (*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2079 (*1 *2 *3) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-499)) (-5 *3 (-484)))) (-2078 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2077 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2800 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2076 (*1 *2 *3) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-499)) (-5 *3 (-484)))) (-2075 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2796 (*1 *2 *3) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-499)) (-5 *3 (-484)))))
+((-2085 (((-2 (|:| |answer| |#4|) (|:| -2133 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT)))
+(((-500 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2085 ((-2 (|:| |answer| |#4|) (|:| -2133 |#4|)) |#4| (-1 |#2| |#2|)))) (-311) (-1154 |#1|) (-1154 (-347 |#2|)) (-290 |#1| |#2| |#3|)) (T -500))
+((-2085 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-311)) (-4 *7 (-1154 (-347 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2133 *3))) (-5 *1 (-500 *5 *6 *7 *3)) (-4 *3 (-290 *5 *6 *7)))))
+((-2085 (((-2 (|:| |answer| (-347 |#2|)) (|:| -2133 (-347 |#2|)) (|:| |specpart| (-347 |#2|)) (|:| |polypart| |#2|)) (-347 |#2|) (-1 |#2| |#2|)) 18 T ELT)))
+(((-501 |#1| |#2|) (-10 -7 (-15 -2085 ((-2 (|:| |answer| (-347 |#2|)) (|:| -2133 (-347 |#2|)) (|:| |specpart| (-347 |#2|)) (|:| |polypart| |#2|)) (-347 |#2|) (-1 |#2| |#2|)))) (-311) (-1154 |#1|)) (T -501))
+((-2085 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| |answer| (-347 *6)) (|:| -2133 (-347 *6)) (|:| |specpart| (-347 *6)) (|:| |polypart| *6))) (-5 *1 (-501 *5 *6)) (-5 *3 (-347 *6)))))
+((-2088 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|)) 195 T ELT)) (-2086 (((-519 |#2|) |#2| (-551 |#2|) (-551 |#2|)) 97 T ELT)) (-2087 (((-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-551 |#2|) (-551 |#2|) |#2|) 191 T ELT)) (-2089 (((-3 |#2| #1#) |#2| |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1089))) 200 T ELT)) (-2090 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2010 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) (-1089)) 209 (|has| |#3| (-601 |#2|)) ELT)))
+(((-502 |#1| |#2| |#3|) (-10 -7 (-15 -2086 ((-519 |#2|) |#2| (-551 |#2|) (-551 |#2|))) (-15 -2087 ((-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-551 |#2|) (-551 |#2|) |#2|)) (-15 -2088 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|))) (-15 -2089 ((-3 |#2| #1#) |#2| |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1089)))) (IF (|has| |#3| (-601 |#2|)) (-15 -2090 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2010 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) (-1089))) |%noBranch|)) (-13 (-389) (-951 (-484)) (-120) (-581 (-484))) (-13 (-361 |#1|) (-27) (-1114)) (-1013)) (T -502))
+((-2090 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-551 *4)) (-5 *6 (-1089)) (-4 *4 (-13 (-361 *7) (-27) (-1114))) (-4 *7 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2010 (-584 *4)))) (-5 *1 (-502 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1013)))) (-2089 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1089))) (-4 *2 (-13 (-361 *5) (-27) (-1114))) (-4 *5 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *1 (-502 *5 *2 *6)) (-4 *6 (-1013)))) (-2088 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-4 *3 (-13 (-361 *6) (-27) (-1114))) (-4 *6 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-502 *6 *3 *7)) (-4 *7 (-1013)))) (-2087 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-361 *5) (-27) (-1114))) (-4 *5 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *2 (-2 (|:| -2134 *3) (|:| |coeff| *3))) (-5 *1 (-502 *5 *3 *6)) (-4 *6 (-1013)))) (-2086 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-361 *5) (-27) (-1114))) (-4 *5 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-502 *5 *3 *6)) (-4 *6 (-1013)))))
+((-2091 (((-2 (|:| -2336 |#2|) (|:| |nconst| |#2|)) |#2| (-1089)) 64 T ELT)) (-2093 (((-3 |#2| #1="failed") |#2| (-1089) (-751 |#2|) (-751 |#2|)) 174 (-12 (|has| |#2| (-1052)) (|has| |#1| (-554 (-801 (-484)))) (|has| |#1| (-797 (-484)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1089)) 145 (-12 (|has| |#2| (-570)) (|has| |#1| (-554 (-801 (-484)))) (|has| |#1| (-797 (-484)))) ELT)) (-2092 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1089)) 156 (-12 (|has| |#2| (-570)) (|has| |#1| (-554 (-801 (-484)))) (|has| |#1| (-797 (-484)))) ELT)))
+(((-503 |#1| |#2|) (-10 -7 (-15 -2091 ((-2 (|:| -2336 |#2|) (|:| |nconst| |#2|)) |#2| (-1089))) (IF (|has| |#1| (-554 (-801 (-484)))) (IF (|has| |#1| (-797 (-484))) (PROGN (IF (|has| |#2| (-570)) (PROGN (-15 -2092 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1="failed") |#2| (-1089))) (-15 -2093 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1089)))) |%noBranch|) (IF (|has| |#2| (-1052)) (-15 -2093 ((-3 |#2| #1#) |#2| (-1089) (-751 |#2|) (-751 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-951 (-484)) (-389) (-581 (-484))) (-13 (-27) (-1114) (-361 |#1|))) (T -503))
+((-2093 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1089)) (-5 *4 (-751 *2)) (-4 *2 (-1052)) (-4 *2 (-13 (-27) (-1114) (-361 *5))) (-4 *5 (-554 (-801 (-484)))) (-4 *5 (-797 (-484))) (-4 *5 (-13 (-951 (-484)) (-389) (-581 (-484)))) (-5 *1 (-503 *5 *2)))) (-2093 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1089)) (-4 *5 (-554 (-801 (-484)))) (-4 *5 (-797 (-484))) (-4 *5 (-13 (-951 (-484)) (-389) (-581 (-484)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-503 *5 *3)) (-4 *3 (-570)) (-4 *3 (-13 (-27) (-1114) (-361 *5))))) (-2092 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1089)) (-4 *5 (-554 (-801 (-484)))) (-4 *5 (-797 (-484))) (-4 *5 (-13 (-951 (-484)) (-389) (-581 (-484)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-503 *5 *3)) (-4 *3 (-570)) (-4 *3 (-13 (-27) (-1114) (-361 *5))))) (-2091 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-951 (-484)) (-389) (-581 (-484)))) (-5 *2 (-2 (|:| -2336 *3) (|:| |nconst| *3))) (-5 *1 (-503 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5))))))
+((-2096 (((-3 (-2 (|:| |mainpart| (-347 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-347 |#2|)) (|:| |logand| (-347 |#2|)))))) #1="failed") (-347 |#2|) (-584 (-347 |#2|))) 41 T ELT)) (-3808 (((-519 (-347 |#2|)) (-347 |#2|)) 28 T ELT)) (-2094 (((-3 (-347 |#2|) #1#) (-347 |#2|)) 17 T ELT)) (-2095 (((-3 (-2 (|:| -2134 (-347 |#2|)) (|:| |coeff| (-347 |#2|))) #1#) (-347 |#2|) (-347 |#2|)) 48 T ELT)))
+(((-504 |#1| |#2|) (-10 -7 (-15 -3808 ((-519 (-347 |#2|)) (-347 |#2|))) (-15 -2094 ((-3 (-347 |#2|) #1="failed") (-347 |#2|))) (-15 -2095 ((-3 (-2 (|:| -2134 (-347 |#2|)) (|:| |coeff| (-347 |#2|))) #1#) (-347 |#2|) (-347 |#2|))) (-15 -2096 ((-3 (-2 (|:| |mainpart| (-347 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-347 |#2|)) (|:| |logand| (-347 |#2|)))))) #1#) (-347 |#2|) (-584 (-347 |#2|))))) (-13 (-311) (-120) (-951 (-484))) (-1154 |#1|)) (T -504))
+((-2096 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-584 (-347 *6))) (-5 *3 (-347 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-311) (-120) (-951 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-504 *5 *6)))) (-2095 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-311) (-120) (-951 (-484)))) (-4 *5 (-1154 *4)) (-5 *2 (-2 (|:| -2134 (-347 *5)) (|:| |coeff| (-347 *5)))) (-5 *1 (-504 *4 *5)) (-5 *3 (-347 *5)))) (-2094 (*1 *2 *2) (|partial| -12 (-5 *2 (-347 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-13 (-311) (-120) (-951 (-484)))) (-5 *1 (-504 *3 *4)))) (-3808 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-120) (-951 (-484)))) (-4 *5 (-1154 *4)) (-5 *2 (-519 (-347 *5))) (-5 *1 (-504 *4 *5)) (-5 *3 (-347 *5)))))
+((-2097 (((-3 (-484) "failed") |#1|) 14 T ELT)) (-3256 (((-85) |#1|) 13 T ELT)) (-3252 (((-484) |#1|) 9 T ELT)))
+(((-505 |#1|) (-10 -7 (-15 -3252 ((-484) |#1|)) (-15 -3256 ((-85) |#1|)) (-15 -2097 ((-3 (-484) "failed") |#1|))) (-951 (-484))) (T -505))
+((-2097 (*1 *2 *3) (|partial| -12 (-5 *2 (-484)) (-5 *1 (-505 *3)) (-4 *3 (-951 *2)))) (-3256 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-505 *3)) (-4 *3 (-951 (-484))))) (-3252 (*1 *2 *3) (-12 (-5 *2 (-484)) (-5 *1 (-505 *3)) (-4 *3 (-951 *2)))))
+((-2100 (((-3 (-2 (|:| |mainpart| (-347 (-858 |#1|))) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-347 (-858 |#1|))) (|:| |logand| (-347 (-858 |#1|))))))) #1="failed") (-347 (-858 |#1|)) (-1089) (-584 (-347 (-858 |#1|)))) 48 T ELT)) (-2098 (((-519 (-347 (-858 |#1|))) (-347 (-858 |#1|)) (-1089)) 28 T ELT)) (-2099 (((-3 (-347 (-858 |#1|)) #1#) (-347 (-858 |#1|)) (-1089)) 23 T ELT)) (-2101 (((-3 (-2 (|:| -2134 (-347 (-858 |#1|))) (|:| |coeff| (-347 (-858 |#1|)))) #1#) (-347 (-858 |#1|)) (-1089) (-347 (-858 |#1|))) 35 T ELT)))
+(((-506 |#1|) (-10 -7 (-15 -2098 ((-519 (-347 (-858 |#1|))) (-347 (-858 |#1|)) (-1089))) (-15 -2099 ((-3 (-347 (-858 |#1|)) #1="failed") (-347 (-858 |#1|)) (-1089))) (-15 -2100 ((-3 (-2 (|:| |mainpart| (-347 (-858 |#1|))) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-347 (-858 |#1|))) (|:| |logand| (-347 (-858 |#1|))))))) #1#) (-347 (-858 |#1|)) (-1089) (-584 (-347 (-858 |#1|))))) (-15 -2101 ((-3 (-2 (|:| -2134 (-347 (-858 |#1|))) (|:| |coeff| (-347 (-858 |#1|)))) #1#) (-347 (-858 |#1|)) (-1089) (-347 (-858 |#1|))))) (-13 (-495) (-951 (-484)) (-120))) (T -506))
+((-2101 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-951 (-484)) (-120))) (-5 *2 (-2 (|:| -2134 (-347 (-858 *5))) (|:| |coeff| (-347 (-858 *5))))) (-5 *1 (-506 *5)) (-5 *3 (-347 (-858 *5))))) (-2100 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-584 (-347 (-858 *6)))) (-5 *3 (-347 (-858 *6))) (-4 *6 (-13 (-495) (-951 (-484)) (-120))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-506 *6)))) (-2099 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-347 (-858 *4))) (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-951 (-484)) (-120))) (-5 *1 (-506 *4)))) (-2098 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-951 (-484)) (-120))) (-5 *2 (-519 (-347 (-858 *5)))) (-5 *1 (-506 *5)) (-5 *3 (-347 (-858 *5))))))
+((-2566 (((-85) $ $) 77 T ELT)) (-3185 (((-85) $) 49 T ELT)) (-2602 ((|#1| $) 39 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) 81 T ELT)) (-3488 (($ $) 142 T ELT)) (-3635 (($ $) 120 T ELT)) (-2481 ((|#1| $) 37 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3035 (($ $) NIL T ELT)) (-3486 (($ $) 144 T ELT)) (-3634 (($ $) 116 T ELT)) (-3490 (($ $) 146 T ELT)) (-3633 (($ $) 124 T ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 (-484) #1#) $) 95 T ELT)) (-3153 (((-484) $) 97 T ELT)) (-3463 (((-3 $ #1#) $) 80 T ELT)) (-2057 (($ |#1| |#1|) 35 T ELT)) (-3183 (((-85) $) 44 T ELT)) (-3623 (($) 106 T ELT)) (-2408 (((-85) $) 56 T ELT)) (-3009 (($ $ (-484)) NIL T ELT)) (-3184 (((-85) $) 46 T ELT)) (-2529 (($ $ $) NIL T ELT)) (-2855 (($ $ $) NIL T ELT)) (-3938 (($ $) 108 T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2058 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-347 (-484))) 94 T ELT)) (-2056 ((|#1| $) 36 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ $ $) 83 T ELT) (($ (-584 $)) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) 82 T ELT)) (-3939 (($ $) 110 T ELT)) (-3491 (($ $) 150 T ELT)) (-3632 (($ $) 122 T ELT)) (-3489 (($ $) 152 T ELT)) (-3631 (($ $) 126 T ELT)) (-3487 (($ $) 148 T ELT)) (-3630 (($ $) 118 T ELT)) (-2055 (((-85) $ |#1|) 42 T ELT)) (-3942 (((-773) $) 102 T ELT) (($ (-484)) 85 T ELT) (($ $) NIL T ELT) (($ (-484)) 85 T ELT)) (-3123 (((-695)) 104 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3494 (($ $) 164 T ELT)) (-3482 (($ $) 132 T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-3492 (($ $) 162 T ELT)) (-3480 (($ $) 128 T ELT)) (-3496 (($ $) 160 T ELT)) (-3484 (($ $) 140 T ELT)) (-3497 (($ $) 158 T ELT)) (-3485 (($ $) 138 T ELT)) (-3495 (($ $) 156 T ELT)) (-3483 (($ $) 134 T ELT)) (-3493 (($ $) 154 T ELT)) (-3481 (($ $) 130 T ELT)) (-2658 (($) 30 T CONST)) (-2664 (($) 10 T CONST)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 50 T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) 48 T ELT)) (-3833 (($ $) 54 T ELT) (($ $ $) 55 T ELT)) (-3835 (($ $ $) 53 T ELT)) (** (($ $ (-831)) 73 T ELT) (($ $ (-695)) NIL T ELT) (($ $ $) 112 T ELT) (($ $ (-347 (-484))) 166 T ELT)) (* (($ (-831) $) 67 T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 66 T ELT) (($ $ $) 62 T ELT)))
+(((-507 |#1|) (-493 |#1|) (-13 (-344) (-1114))) (T -507))
+NIL
+((-2702 (((-3 (-584 (-1084 (-484))) "failed") (-584 (-1084 (-484))) (-1084 (-484))) 27 T ELT)))
+(((-508) (-10 -7 (-15 -2702 ((-3 (-584 (-1084 (-484))) "failed") (-584 (-1084 (-484))) (-1084 (-484)))))) (T -508))
+((-2702 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1084 (-484)))) (-5 *3 (-1084 (-484))) (-5 *1 (-508)))))
+((-2102 (((-584 (-551 |#2|)) (-584 (-551 |#2|)) (-1089)) 19 T ELT)) (-2105 (((-584 (-551 |#2|)) (-584 |#2|) (-1089)) 23 T ELT)) (-3231 (((-584 (-551 |#2|)) (-584 (-551 |#2|)) (-584 (-551 |#2|))) 11 T ELT)) (-2106 ((|#2| |#2| (-1089)) 59 (|has| |#1| (-495)) ELT)) (-2107 ((|#2| |#2| (-1089)) 87 (-12 (|has| |#2| (-239)) (|has| |#1| (-389))) ELT)) (-2104 (((-551 |#2|) (-551 |#2|) (-584 (-551 |#2|)) (-1089)) 25 T ELT)) (-2103 (((-551 |#2|) (-584 (-551 |#2|))) 24 T ELT)) (-2108 (((-519 |#2|) |#2| (-1089) (-1 (-519 |#2|) |#2| (-1089)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1089))) 115 (-12 (|has| |#2| (-239)) (|has| |#2| (-570)) (|has| |#2| (-951 (-1089))) (|has| |#1| (-554 (-801 (-484)))) (|has| |#1| (-389)) (|has| |#1| (-797 (-484)))) ELT)))
+(((-509 |#1| |#2|) (-10 -7 (-15 -2102 ((-584 (-551 |#2|)) (-584 (-551 |#2|)) (-1089))) (-15 -2103 ((-551 |#2|) (-584 (-551 |#2|)))) (-15 -2104 ((-551 |#2|) (-551 |#2|) (-584 (-551 |#2|)) (-1089))) (-15 -3231 ((-584 (-551 |#2|)) (-584 (-551 |#2|)) (-584 (-551 |#2|)))) (-15 -2105 ((-584 (-551 |#2|)) (-584 |#2|) (-1089))) (IF (|has| |#1| (-495)) (-15 -2106 (|#2| |#2| (-1089))) |%noBranch|) (IF (|has| |#1| (-389)) (IF (|has| |#2| (-239)) (PROGN (-15 -2107 (|#2| |#2| (-1089))) (IF (|has| |#1| (-554 (-801 (-484)))) (IF (|has| |#1| (-797 (-484))) (IF (|has| |#2| (-570)) (IF (|has| |#2| (-951 (-1089))) (-15 -2108 ((-519 |#2|) |#2| (-1089) (-1 (-519 |#2|) |#2| (-1089)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1089)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1013) (-361 |#1|)) (T -509))
+((-2108 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-519 *3) *3 (-1089))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1089))) (-4 *3 (-239)) (-4 *3 (-570)) (-4 *3 (-951 *4)) (-4 *3 (-361 *7)) (-5 *4 (-1089)) (-4 *7 (-554 (-801 (-484)))) (-4 *7 (-389)) (-4 *7 (-797 (-484))) (-4 *7 (-1013)) (-5 *2 (-519 *3)) (-5 *1 (-509 *7 *3)))) (-2107 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-389)) (-4 *4 (-1013)) (-5 *1 (-509 *4 *2)) (-4 *2 (-239)) (-4 *2 (-361 *4)))) (-2106 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-4 *4 (-1013)) (-5 *1 (-509 *4 *2)) (-4 *2 (-361 *4)))) (-2105 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-1089)) (-4 *6 (-361 *5)) (-4 *5 (-1013)) (-5 *2 (-584 (-551 *6))) (-5 *1 (-509 *5 *6)))) (-3231 (*1 *2 *2 *2) (-12 (-5 *2 (-584 (-551 *4))) (-4 *4 (-361 *3)) (-4 *3 (-1013)) (-5 *1 (-509 *3 *4)))) (-2104 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-584 (-551 *6))) (-5 *4 (-1089)) (-5 *2 (-551 *6)) (-4 *6 (-361 *5)) (-4 *5 (-1013)) (-5 *1 (-509 *5 *6)))) (-2103 (*1 *2 *3) (-12 (-5 *3 (-584 (-551 *5))) (-4 *4 (-1013)) (-5 *2 (-551 *5)) (-5 *1 (-509 *4 *5)) (-4 *5 (-361 *4)))) (-2102 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-551 *5))) (-5 *3 (-1089)) (-4 *5 (-361 *4)) (-4 *4 (-1013)) (-5 *1 (-509 *4 *5)))))
+((-2111 (((-2 (|:| |answer| (-519 (-347 |#2|))) (|:| |a0| |#1|)) (-347 |#2|) (-1 |#2| |#2|) (-1 (-3 (-584 |#1|) #1="failed") (-484) |#1| |#1|)) 199 T ELT)) (-2114 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-347 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-347 |#2|)) (|:| |logand| (-347 |#2|))))))) (|:| |a0| |#1|)) #1#) (-347 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2134 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-584 (-347 |#2|))) 174 T ELT)) (-2117 (((-3 (-2 (|:| |mainpart| (-347 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-347 |#2|)) (|:| |logand| (-347 |#2|)))))) #1#) (-347 |#2|) (-1 |#2| |#2|) (-584 (-347 |#2|))) 171 T ELT)) (-2118 (((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2134 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 162 T ELT)) (-2109 (((-2 (|:| |answer| (-519 (-347 |#2|))) (|:| |a0| |#1|)) (-347 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2134 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 185 T ELT)) (-2116 (((-3 (-2 (|:| -2134 (-347 |#2|)) (|:| |coeff| (-347 |#2|))) #1#) (-347 |#2|) (-1 |#2| |#2|) (-347 |#2|)) 202 T ELT)) (-2112 (((-3 (-2 (|:| |answer| (-347 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2134 (-347 |#2|)) (|:| |coeff| (-347 |#2|))) #1#) (-347 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2134 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-347 |#2|)) 205 T ELT)) (-2120 (((-2 (|:| |ir| (-519 (-347 |#2|))) (|:| |specpart| (-347 |#2|)) (|:| |polypart| |#2|)) (-347 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-2121 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-2115 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-347 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-347 |#2|)) (|:| |logand| (-347 |#2|))))))) (|:| |a0| |#1|)) #1#) (-347 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3134 |#1|) (|:| |sol?| (-85))) (-484) |#1|) (-584 (-347 |#2|))) 178 T ELT)) (-2119 (((-3 (-563 |#1| |#2|) #1#) (-563 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3134 |#1|) (|:| |sol?| (-85))) (-484) |#1|)) 166 T ELT)) (-2110 (((-2 (|:| |answer| (-519 (-347 |#2|))) (|:| |a0| |#1|)) (-347 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3134 |#1|) (|:| |sol?| (-85))) (-484) |#1|)) 189 T ELT)) (-2113 (((-3 (-2 (|:| |answer| (-347 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2134 (-347 |#2|)) (|:| |coeff| (-347 |#2|))) #1#) (-347 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3134 |#1|) (|:| |sol?| (-85))) (-484) |#1|) (-347 |#2|)) 210 T ELT)))
+(((-510 |#1| |#2|) (-10 -7 (-15 -2109 ((-2 (|:| |answer| (-519 (-347 |#2|))) (|:| |a0| |#1|)) (-347 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2134 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2110 ((-2 (|:| |answer| (-519 (-347 |#2|))) (|:| |a0| |#1|)) (-347 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3134 |#1|) (|:| |sol?| (-85))) (-484) |#1|))) (-15 -2111 ((-2 (|:| |answer| (-519 (-347 |#2|))) (|:| |a0| |#1|)) (-347 |#2|) (-1 |#2| |#2|) (-1 (-3 (-584 |#1|) #1#) (-484) |#1| |#1|))) (-15 -2112 ((-3 (-2 (|:| |answer| (-347 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2134 (-347 |#2|)) (|:| |coeff| (-347 |#2|))) #1#) (-347 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2134 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-347 |#2|))) (-15 -2113 ((-3 (-2 (|:| |answer| (-347 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2134 (-347 |#2|)) (|:| |coeff| (-347 |#2|))) #1#) (-347 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3134 |#1|) (|:| |sol?| (-85))) (-484) |#1|) (-347 |#2|))) (-15 -2114 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-347 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-347 |#2|)) (|:| |logand| (-347 |#2|))))))) (|:| |a0| |#1|)) #1#) (-347 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2134 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-584 (-347 |#2|)))) (-15 -2115 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-347 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-347 |#2|)) (|:| |logand| (-347 |#2|))))))) (|:| |a0| |#1|)) #1#) (-347 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3134 |#1|) (|:| |sol?| (-85))) (-484) |#1|) (-584 (-347 |#2|)))) (-15 -2116 ((-3 (-2 (|:| -2134 (-347 |#2|)) (|:| |coeff| (-347 |#2|))) #1#) (-347 |#2|) (-1 |#2| |#2|) (-347 |#2|))) (-15 -2117 ((-3 (-2 (|:| |mainpart| (-347 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-347 |#2|)) (|:| |logand| (-347 |#2|)))))) #1#) (-347 |#2|) (-1 |#2| |#2|) (-584 (-347 |#2|)))) (-15 -2118 ((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2134 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2119 ((-3 (-563 |#1| |#2|) #1#) (-563 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3134 |#1|) (|:| |sol?| (-85))) (-484) |#1|))) (-15 -2120 ((-2 (|:| |ir| (-519 (-347 |#2|))) (|:| |specpart| (-347 |#2|)) (|:| |polypart| |#2|)) (-347 |#2|) (-1 |#2| |#2|))) (-15 -2121 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-311) (-1154 |#1|)) (T -510))
+((-2121 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-510 *5 *3)))) (-2120 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| |ir| (-519 (-347 *6))) (|:| |specpart| (-347 *6)) (|:| |polypart| *6))) (-5 *1 (-510 *5 *6)) (-5 *3 (-347 *6)))) (-2119 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-563 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3134 *4) (|:| |sol?| (-85))) (-484) *4)) (-4 *4 (-311)) (-4 *5 (-1154 *4)) (-5 *1 (-510 *4 *5)))) (-2118 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2134 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-311)) (-5 *1 (-510 *4 *2)) (-4 *2 (-1154 *4)))) (-2117 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-584 (-347 *7))) (-4 *7 (-1154 *6)) (-5 *3 (-347 *7)) (-4 *6 (-311)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-510 *6 *7)))) (-2116 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| -2134 (-347 *6)) (|:| |coeff| (-347 *6)))) (-5 *1 (-510 *5 *6)) (-5 *3 (-347 *6)))) (-2115 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3134 *7) (|:| |sol?| (-85))) (-484) *7)) (-5 *6 (-584 (-347 *8))) (-4 *7 (-311)) (-4 *8 (-1154 *7)) (-5 *3 (-347 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-510 *7 *8)))) (-2114 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2134 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-584 (-347 *8))) (-4 *7 (-311)) (-4 *8 (-1154 *7)) (-5 *3 (-347 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-510 *7 *8)))) (-2113 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3134 *6) (|:| |sol?| (-85))) (-484) *6)) (-4 *6 (-311)) (-4 *7 (-1154 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-347 *7)) (|:| |a0| *6)) (-2 (|:| -2134 (-347 *7)) (|:| |coeff| (-347 *7))) "failed")) (-5 *1 (-510 *6 *7)) (-5 *3 (-347 *7)))) (-2112 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2134 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-311)) (-4 *7 (-1154 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-347 *7)) (|:| |a0| *6)) (-2 (|:| -2134 (-347 *7)) (|:| |coeff| (-347 *7))) "failed")) (-5 *1 (-510 *6 *7)) (-5 *3 (-347 *7)))) (-2111 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-584 *6) "failed") (-484) *6 *6)) (-4 *6 (-311)) (-4 *7 (-1154 *6)) (-5 *2 (-2 (|:| |answer| (-519 (-347 *7))) (|:| |a0| *6))) (-5 *1 (-510 *6 *7)) (-5 *3 (-347 *7)))) (-2110 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3134 *6) (|:| |sol?| (-85))) (-484) *6)) (-4 *6 (-311)) (-4 *7 (-1154 *6)) (-5 *2 (-2 (|:| |answer| (-519 (-347 *7))) (|:| |a0| *6))) (-5 *1 (-510 *6 *7)) (-5 *3 (-347 *7)))) (-2109 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2134 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-311)) (-4 *7 (-1154 *6)) (-5 *2 (-2 (|:| |answer| (-519 (-347 *7))) (|:| |a0| *6))) (-5 *1 (-510 *6 *7)) (-5 *3 (-347 *7)))))
+((-2122 (((-3 |#2| "failed") |#2| (-1089) (-1089)) 10 T ELT)))
+(((-511 |#1| |#2|) (-10 -7 (-15 -2122 ((-3 |#2| "failed") |#2| (-1089) (-1089)))) (-13 (-257) (-120) (-951 (-484)) (-581 (-484))) (-13 (-1114) (-872) (-1052) (-29 |#1|))) (T -511))
+((-2122 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1089)) (-4 *4 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) (-5 *1 (-511 *4 *2)) (-4 *2 (-13 (-1114) (-872) (-1052) (-29 *4))))))
+((-2553 (((-633 (-1137)) $ (-1137)) 27 T ELT)) (-2554 (((-633 (-488)) $ (-488)) 26 T ELT)) (-2552 (((-695) $ (-102)) 28 T ELT)) (-2555 (((-633 (-101)) $ (-101)) 25 T ELT)) (-1998 (((-633 (-1137)) $) 12 T ELT)) (-1994 (((-633 (-1135)) $) 8 T ELT)) (-1996 (((-633 (-1134)) $) 10 T ELT)) (-1999 (((-633 (-488)) $) 13 T ELT)) (-1995 (((-633 (-486)) $) 9 T ELT)) (-1997 (((-633 (-485)) $) 11 T ELT)) (-1993 (((-695) $ (-102)) 7 T ELT)) (-2000 (((-633 (-101)) $) 14 T ELT)) (-1698 (($ $) 6 T ELT)))
+(((-512) (-113)) (T -512))
+NIL
+(-13 (-465) (-771))
+(((-147) . T) ((-465) . T) ((-771) . T))
+((-2553 (((-633 (-1137)) $ (-1137)) NIL T ELT)) (-2554 (((-633 (-488)) $ (-488)) NIL T ELT)) (-2552 (((-695) $ (-102)) NIL T ELT)) (-2555 (((-633 (-101)) $ (-101)) NIL T ELT)) (-1998 (((-633 (-1137)) $) NIL T ELT)) (-1994 (((-633 (-1135)) $) NIL T ELT)) (-1996 (((-633 (-1134)) $) NIL T ELT)) (-1999 (((-633 (-488)) $) NIL T ELT)) (-1995 (((-633 (-486)) $) NIL T ELT)) (-1997 (((-633 (-485)) $) NIL T ELT)) (-1993 (((-695) $ (-102)) NIL T ELT)) (-2000 (((-633 (-101)) $) NIL T ELT)) (-2556 (((-85) $) NIL T ELT)) (-2123 (($ (-335)) 14 T ELT) (($ (-1072)) 16 T ELT)) (-3942 (((-773) $) NIL T ELT)) (-1698 (($ $) NIL T ELT)))
+(((-513) (-13 (-512) (-553 (-773)) (-10 -8 (-15 -2123 ($ (-335))) (-15 -2123 ($ (-1072))) (-15 -2556 ((-85) $))))) (T -513))
+((-2123 (*1 *1 *2) (-12 (-5 *2 (-335)) (-5 *1 (-513)))) (-2123 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-513)))) (-2556 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-513)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3456 (($) 7 T CONST)) (-3239 (((-1072) $) NIL T ELT)) (-2126 (($) 6 T CONST)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 15 T ELT)) (-2124 (($) 9 T CONST)) (-2125 (($) 8 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 11 T ELT)))
+(((-514) (-13 (-1013) (-10 -8 (-15 -2126 ($) -3948) (-15 -3456 ($) -3948) (-15 -2125 ($) -3948) (-15 -2124 ($) -3948)))) (T -514))
+((-2126 (*1 *1) (-5 *1 (-514))) (-3456 (*1 *1) (-5 *1 (-514))) (-2125 (*1 *1) (-5 *1 (-514))) (-2124 (*1 *1) (-5 *1 (-514))))
+((-2566 (((-85) $ $) NIL T ELT)) (-2127 (((-633 $) (-428)) 23 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2129 (($ (-1072)) 16 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 33 T ELT)) (-2128 (((-166 4 (-101)) $) 24 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 26 T ELT)))
+(((-515) (-13 (-1013) (-10 -8 (-15 -2129 ($ (-1072))) (-15 -2128 ((-166 4 (-101)) $)) (-15 -2127 ((-633 $) (-428)))))) (T -515))
+((-2129 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-515)))) (-2128 (*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-515)))) (-2127 (*1 *2 *3) (-12 (-5 *3 (-428)) (-5 *2 (-633 (-515))) (-5 *1 (-515)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3035 (($ $ (-484)) 73 T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-2609 (($ (-1084 (-484)) (-484)) 79 T ELT)) (-2562 (($ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) 64 T ELT)) (-2610 (($ $) 43 T ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-3768 (((-695) $) 16 T ELT)) (-2408 (((-85) $) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2612 (((-484)) 37 T ELT)) (-2611 (((-484) $) 41 T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3765 (($ $ (-484)) 24 T ELT)) (-3462 (((-3 $ #1#) $ $) 70 T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) 17 T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 71 T ELT)) (-2613 (((-1068 (-484)) $) 19 T ELT)) (-2889 (($ $) 26 T ELT)) (-3942 (((-773) $) 100 T ELT) (($ (-484)) 59 T ELT) (($ $) NIL T ELT)) (-3123 (((-695)) 15 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-3766 (((-484) $ (-484)) 46 T ELT)) (-2658 (($) 44 T CONST)) (-2664 (($) 21 T CONST)) (-3054 (((-85) $ $) 51 T ELT)) (-3833 (($ $) 58 T ELT) (($ $ $) 48 T ELT)) (-3835 (($ $ $) 57 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 60 T ELT) (($ $ $) 61 T ELT)))
+(((-516 |#1| |#2|) (-780 |#1|) (-484) (-85)) (T -516))
+NIL
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 30 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-3928 (((-85) $) NIL T ELT)) (-3925 (((-695)) NIL T ELT)) (-3326 (($ $ (-831)) NIL (|has| $ (-317)) ELT) (($ $) NIL T ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) 59 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3771 (($ $) NIL T ELT)) (-3967 (((-345 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3133 (((-695)) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 $ #1#) $) 95 T ELT)) (-3153 (($ $) 94 T ELT)) (-1790 (($ (-1178 $)) 93 T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-2562 (($ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) 47 T ELT)) (-2992 (($) NIL T ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-2831 (($) 61 T ELT)) (-1678 (((-85) $) NIL T ELT)) (-1762 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3719 (((-85) $) NIL T ELT)) (-3768 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-2408 (((-85) $) NIL T ELT)) (-2011 (($) 49 (|has| $ (-317)) ELT)) (-2009 (((-85) $) NIL (|has| $ (-317)) ELT)) (-3129 (($ $ (-831)) NIL (|has| $ (-317)) ELT) (($ $) NIL T ELT)) (-3441 (((-633 $) $) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2012 (((-1084 $) $ (-831)) NIL (|has| $ (-317)) ELT) (((-1084 $) $) 104 T ELT)) (-2008 (((-831) $) 67 T ELT)) (-1625 (((-1084 $) $) NIL (|has| $ (-317)) ELT)) (-1624 (((-3 (-1084 $) #1#) $ $) NIL (|has| $ (-317)) ELT) (((-1084 $) $) NIL (|has| $ (-317)) ELT)) (-1626 (($ $ (-1084 $)) NIL (|has| $ (-317)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) NIL T ELT)) (-3442 (($) NIL T CONST)) (-2398 (($ (-831)) 60 T ELT)) (-3927 (((-85) $) 87 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2407 (($) 28 (|has| $ (-317)) ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1674 (((-584 (-2 (|:| -3728 (-484)) (|:| -2399 (-484))))) 54 T ELT)) (-3728 (((-345 $) $) NIL T ELT)) (-3926 (((-831)) 86 T ELT) (((-744 (-831))) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-1763 (((-3 (-695) #1#) $ $) NIL T ELT) (((-695) $) NIL T ELT)) (-3907 (((-107)) NIL T ELT)) (-3754 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3944 (((-831) $) 85 T ELT) (((-744 (-831)) $) NIL T ELT)) (-3182 (((-1084 $)) 102 T ELT)) (-1672 (($) 66 T ELT)) (-1627 (($) 50 (|has| $ (-317)) ELT)) (-3221 (((-631 $) (-1178 $)) NIL T ELT) (((-1178 $) $) 91 T ELT)) (-3968 (((-484) $) 42 T ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) 45 T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT)) (-2700 (((-633 $) $) NIL T ELT) (($ $) 105 T ELT)) (-3123 (((-695)) 51 T CONST)) (-1263 (((-85) $ $) 107 T ELT)) (-2010 (((-1178 $) (-831)) 97 T ELT) (((-1178 $)) 96 T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-3929 (((-85) $) NIL T ELT)) (-2658 (($) 31 T CONST)) (-2664 (($) 27 T CONST)) (-3924 (($ $ (-695)) NIL (|has| $ (-317)) ELT) (($ $) NIL (|has| $ (-317)) ELT)) (-2667 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ $) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) 34 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT)))
+(((-517 |#1|) (-13 (-298) (-279 $) (-554 (-484))) (-831)) (T -517))
+NIL
+((-2130 (((-1184) (-1072)) 10 T ELT)))
+(((-518) (-10 -7 (-15 -2130 ((-1184) (-1072))))) (T -518))
+((-2130 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-518)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#1| #1#) $) 77 T ELT)) (-3153 ((|#1| $) NIL T ELT)) (-2134 ((|#1| $) 30 T ELT)) (-2132 (((-584 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-2135 (($ |#1| (-584 (-2 (|:| |scalar| (-347 (-484))) (|:| |coeff| (-1084 |#1|)) (|:| |logand| (-1084 |#1|)))) (-584 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-2133 (((-584 (-2 (|:| |scalar| (-347 (-484))) (|:| |coeff| (-1084 |#1|)) (|:| |logand| (-1084 |#1|)))) $) 31 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2830 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1089)) 49 (|has| |#1| (-951 (-1089))) ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2131 (((-85) $) 35 T ELT)) (-3754 ((|#1| $ (-1 |#1| |#1|)) 89 T ELT) ((|#1| $ (-1089)) 90 (|has| |#1| (-810 (-1089))) ELT)) (-3942 (((-773) $) 113 T ELT) (($ |#1|) 29 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) 18 T CONST)) (-3054 (((-85) $ $) NIL T ELT)) (-3833 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) 86 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 16 T ELT) (($ (-347 (-484)) $) 41 T ELT) (($ $ (-347 (-484))) NIL T ELT)))
+(((-519 |#1|) (-13 (-655 (-347 (-484))) (-951 |#1|) (-10 -8 (-15 -2135 ($ |#1| (-584 (-2 (|:| |scalar| (-347 (-484))) (|:| |coeff| (-1084 |#1|)) (|:| |logand| (-1084 |#1|)))) (-584 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2134 (|#1| $)) (-15 -2133 ((-584 (-2 (|:| |scalar| (-347 (-484))) (|:| |coeff| (-1084 |#1|)) (|:| |logand| (-1084 |#1|)))) $)) (-15 -2132 ((-584 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2131 ((-85) $)) (-15 -2830 ($ |#1| |#1|)) (-15 -3754 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-810 (-1089))) (-15 -3754 (|#1| $ (-1089))) |%noBranch|) (IF (|has| |#1| (-951 (-1089))) (-15 -2830 ($ |#1| (-1089))) |%noBranch|))) (-311)) (T -519))
+((-2135 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-584 (-2 (|:| |scalar| (-347 (-484))) (|:| |coeff| (-1084 *2)) (|:| |logand| (-1084 *2))))) (-5 *4 (-584 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-311)) (-5 *1 (-519 *2)))) (-2134 (*1 *2 *1) (-12 (-5 *1 (-519 *2)) (-4 *2 (-311)))) (-2133 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |scalar| (-347 (-484))) (|:| |coeff| (-1084 *3)) (|:| |logand| (-1084 *3))))) (-5 *1 (-519 *3)) (-4 *3 (-311)))) (-2132 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-519 *3)) (-4 *3 (-311)))) (-2131 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-519 *3)) (-4 *3 (-311)))) (-2830 (*1 *1 *2 *2) (-12 (-5 *1 (-519 *2)) (-4 *2 (-311)))) (-3754 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-519 *2)) (-4 *2 (-311)))) (-3754 (*1 *2 *1 *3) (-12 (-4 *2 (-311)) (-4 *2 (-810 *3)) (-5 *1 (-519 *2)) (-5 *3 (-1089)))) (-2830 (*1 *1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *1 (-519 *2)) (-4 *2 (-951 *3)) (-4 *2 (-311)))))
+((-3954 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)) 44 T ELT) (((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#)) 11 T ELT) (((-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| -2134 |#1|) (|:| |coeff| |#1|)) #1#)) 35 T ELT) (((-519 |#2|) (-1 |#2| |#1|) (-519 |#1|)) 30 T ELT)))
+(((-520 |#1| |#2|) (-10 -7 (-15 -3954 ((-519 |#2|) (-1 |#2| |#1|) (-519 |#1|))) (-15 -3954 ((-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2134 |#1|) (|:| |coeff| |#1|)) #1#))) (-15 -3954 ((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#))) (-15 -3954 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)))) (-311) (-311)) (T -520))
+((-3954 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-311)) (-4 *6 (-311)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-520 *5 *6)))) (-3954 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-311)) (-4 *2 (-311)) (-5 *1 (-520 *5 *2)))) (-3954 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2134 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-311)) (-4 *6 (-311)) (-5 *2 (-2 (|:| -2134 *6) (|:| |coeff| *6))) (-5 *1 (-520 *5 *6)))) (-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-519 *5)) (-4 *5 (-311)) (-4 *6 (-311)) (-5 *2 (-519 *6)) (-5 *1 (-520 *5 *6)))))
+((-3414 (((-519 |#2|) (-519 |#2|)) 42 T ELT)) (-3959 (((-584 |#2|) (-519 |#2|)) 44 T ELT)) (-2146 ((|#2| (-519 |#2|)) 50 T ELT)))
+(((-521 |#1| |#2|) (-10 -7 (-15 -3414 ((-519 |#2|) (-519 |#2|))) (-15 -3959 ((-584 |#2|) (-519 |#2|))) (-15 -2146 (|#2| (-519 |#2|)))) (-13 (-389) (-951 (-484)) (-581 (-484))) (-13 (-29 |#1|) (-1114))) (T -521))
+((-2146 (*1 *2 *3) (-12 (-5 *3 (-519 *2)) (-4 *2 (-13 (-29 *4) (-1114))) (-5 *1 (-521 *4 *2)) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))))) (-3959 (*1 *2 *3) (-12 (-5 *3 (-519 *5)) (-4 *5 (-13 (-29 *4) (-1114))) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-584 *5)) (-5 *1 (-521 *4 *5)))) (-3414 (*1 *2 *2) (-12 (-5 *2 (-519 *4)) (-4 *4 (-13 (-29 *3) (-1114))) (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-521 *3 *4)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2138 (($ (-444) (-532)) 14 T ELT)) (-2136 (($ (-444) (-532) $) 16 T ELT)) (-2137 (($ (-444) (-532)) 15 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-1094)) 7 T ELT) (((-1094) $) 6 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-522) (-13 (-1013) (-427 (-1094)) (-10 -8 (-15 -2138 ($ (-444) (-532))) (-15 -2137 ($ (-444) (-532))) (-15 -2136 ($ (-444) (-532) $))))) (T -522))
+((-2138 (*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-532)) (-5 *1 (-522)))) (-2137 (*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-532)) (-5 *1 (-522)))) (-2136 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-444)) (-5 *3 (-532)) (-5 *1 (-522)))))
+((-2142 (((-85) |#1|) 16 T ELT)) (-2143 (((-3 |#1| #1="failed") |#1|) 14 T ELT)) (-2140 (((-2 (|:| -2692 |#1|) (|:| -2399 (-695))) |#1|) 37 T ELT) (((-3 |#1| #1#) |#1| (-695)) 18 T ELT)) (-2139 (((-85) |#1| (-695)) 19 T ELT)) (-2144 ((|#1| |#1|) 41 T ELT)) (-2141 ((|#1| |#1| (-695)) 44 T ELT)))
+(((-523 |#1|) (-10 -7 (-15 -2139 ((-85) |#1| (-695))) (-15 -2140 ((-3 |#1| #1="failed") |#1| (-695))) (-15 -2140 ((-2 (|:| -2692 |#1|) (|:| -2399 (-695))) |#1|)) (-15 -2141 (|#1| |#1| (-695))) (-15 -2142 ((-85) |#1|)) (-15 -2143 ((-3 |#1| #1#) |#1|)) (-15 -2144 (|#1| |#1|))) (-483)) (T -523))
+((-2144 (*1 *2 *2) (-12 (-5 *1 (-523 *2)) (-4 *2 (-483)))) (-2143 (*1 *2 *2) (|partial| -12 (-5 *1 (-523 *2)) (-4 *2 (-483)))) (-2142 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-523 *3)) (-4 *3 (-483)))) (-2141 (*1 *2 *2 *3) (-12 (-5 *3 (-695)) (-5 *1 (-523 *2)) (-4 *2 (-483)))) (-2140 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2692 *3) (|:| -2399 (-695)))) (-5 *1 (-523 *3)) (-4 *3 (-483)))) (-2140 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-695)) (-5 *1 (-523 *2)) (-4 *2 (-483)))) (-2139 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-5 *2 (-85)) (-5 *1 (-523 *3)) (-4 *3 (-483)))))
+((-2145 (((-1084 |#1|) (-831)) 44 T ELT)))
+(((-524 |#1|) (-10 -7 (-15 -2145 ((-1084 |#1|) (-831)))) (-298)) (T -524))
+((-2145 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1084 *4)) (-5 *1 (-524 *4)) (-4 *4 (-298)))))
+((-3414 (((-519 (-347 (-858 |#1|))) (-519 (-347 (-858 |#1|)))) 27 T ELT)) (-3808 (((-3 (-264 |#1|) (-584 (-264 |#1|))) (-347 (-858 |#1|)) (-1089)) 33 (|has| |#1| (-120)) ELT)) (-3959 (((-584 (-264 |#1|)) (-519 (-347 (-858 |#1|)))) 19 T ELT)) (-2147 (((-264 |#1|) (-347 (-858 |#1|)) (-1089)) 31 (|has| |#1| (-120)) ELT)) (-2146 (((-264 |#1|) (-519 (-347 (-858 |#1|)))) 21 T ELT)))
+(((-525 |#1|) (-10 -7 (-15 -3414 ((-519 (-347 (-858 |#1|))) (-519 (-347 (-858 |#1|))))) (-15 -3959 ((-584 (-264 |#1|)) (-519 (-347 (-858 |#1|))))) (-15 -2146 ((-264 |#1|) (-519 (-347 (-858 |#1|))))) (IF (|has| |#1| (-120)) (PROGN (-15 -3808 ((-3 (-264 |#1|) (-584 (-264 |#1|))) (-347 (-858 |#1|)) (-1089))) (-15 -2147 ((-264 |#1|) (-347 (-858 |#1|)) (-1089)))) |%noBranch|)) (-13 (-389) (-951 (-484)) (-581 (-484)))) (T -525))
+((-2147 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-1089)) (-4 *5 (-120)) (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-264 *5)) (-5 *1 (-525 *5)))) (-3808 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-1089)) (-4 *5 (-120)) (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-3 (-264 *5) (-584 (-264 *5)))) (-5 *1 (-525 *5)))) (-2146 (*1 *2 *3) (-12 (-5 *3 (-519 (-347 (-858 *4)))) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-264 *4)) (-5 *1 (-525 *4)))) (-3959 (*1 *2 *3) (-12 (-5 *3 (-519 (-347 (-858 *4)))) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-584 (-264 *4))) (-5 *1 (-525 *4)))) (-3414 (*1 *2 *2) (-12 (-5 *2 (-519 (-347 (-858 *3)))) (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-525 *3)))))
+((-2149 (((-584 (-631 (-484))) (-584 (-831)) (-584 (-814 (-484)))) 80 T ELT) (((-584 (-631 (-484))) (-584 (-831))) 81 T ELT) (((-631 (-484)) (-584 (-831)) (-814 (-484))) 74 T ELT)) (-2148 (((-695) (-584 (-831))) 71 T ELT)))
+(((-526) (-10 -7 (-15 -2148 ((-695) (-584 (-831)))) (-15 -2149 ((-631 (-484)) (-584 (-831)) (-814 (-484)))) (-15 -2149 ((-584 (-631 (-484))) (-584 (-831)))) (-15 -2149 ((-584 (-631 (-484))) (-584 (-831)) (-584 (-814 (-484))))))) (T -526))
+((-2149 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-831))) (-5 *4 (-584 (-814 (-484)))) (-5 *2 (-584 (-631 (-484)))) (-5 *1 (-526)))) (-2149 (*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-584 (-631 (-484)))) (-5 *1 (-526)))) (-2149 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-831))) (-5 *4 (-814 (-484))) (-5 *2 (-631 (-484))) (-5 *1 (-526)))) (-2148 (*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-695)) (-5 *1 (-526)))))
+((-3210 (((-584 |#5|) |#5| (-85)) 97 T ELT)) (-2150 (((-85) |#5| (-584 |#5|)) 34 T ELT)))
+(((-527 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3210 ((-584 |#5|) |#5| (-85))) (-15 -2150 ((-85) |#5| (-584 |#5|)))) (-13 (-257) (-120)) (-718) (-757) (-977 |#1| |#2| |#3|) (-1020 |#1| |#2| |#3| |#4|)) (T -527))
+((-2150 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-1020 *5 *6 *7 *8)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-527 *5 *6 *7 *8 *3)))) (-3210 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-584 *3)) (-5 *1 (-527 *5 *6 *7 *8 *3)) (-4 *3 (-1020 *5 *6 *7 *8)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3524 (((-1048) $) 12 T ELT)) (-3525 (((-1048) $) 10 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-528) (-13 (-995) (-10 -8 (-15 -3525 ((-1048) $)) (-15 -3524 ((-1048) $))))) (T -528))
+((-3525 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-528)))) (-3524 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-528)))))
+((-3528 (((-2 (|:| |num| |#4|) (|:| |den| (-484))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-484))) |#4| |#2| (-1001 |#4|)) 32 T ELT)))
+(((-529 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3528 ((-2 (|:| |num| |#4|) (|:| |den| (-484))) |#4| |#2| (-1001 |#4|))) (-15 -3528 ((-2 (|:| |num| |#4|) (|:| |den| (-484))) |#4| |#2|))) (-718) (-757) (-495) (-862 |#3| |#1| |#2|)) (T -529))
+((-3528 (*1 *2 *3 *4) (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-495)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-484)))) (-5 *1 (-529 *5 *4 *6 *3)) (-4 *3 (-862 *6 *5 *4)))) (-3528 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1001 *3)) (-4 *3 (-862 *7 *6 *4)) (-4 *6 (-718)) (-4 *4 (-757)) (-4 *7 (-495)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-484)))) (-5 *1 (-529 *6 *4 *7 *3)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 71 T ELT)) (-3079 (((-584 (-994)) $) NIL T ELT)) (-3827 (((-1089) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2061 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3767 (($ $ (-484)) 58 T ELT) (($ $ (-484) (-484)) 59 T ELT)) (-3770 (((-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) 65 T ELT)) (-2181 (($ $) 109 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2179 (((-773) (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) (-940 (-751 (-484))) (-1089) |#1| (-347 (-484))) 232 T ELT)) (-3814 (($ (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) 36 T ELT)) (-3720 (($) NIL T CONST)) (-3955 (($ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2890 (((-85) $) NIL T ELT)) (-3768 (((-484) $) 63 T ELT) (((-484) $ (-484)) 64 T ELT)) (-2408 (((-85) $) NIL T ELT)) (-3773 (($ $ (-831)) 83 T ELT)) (-3811 (($ (-1 |#1| (-484)) $) 80 T ELT)) (-3933 (((-85) $) 26 T ELT)) (-2891 (($ |#1| (-484)) 22 T ELT) (($ $ (-994) (-484)) NIL T ELT) (($ $ (-584 (-994)) (-584 (-484))) NIL T ELT)) (-3954 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2185 (($ (-940 (-751 (-484))) (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) 13 T ELT)) (-2892 (($ $) NIL T ELT)) (-3171 ((|#1| $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3808 (($ $) 120 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2182 (((-3 $ #1#) $ $ (-85)) 108 T ELT)) (-2180 (($ $ $) 116 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2183 (((-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) 15 T ELT)) (-2184 (((-940 (-751 (-484))) $) 14 T ELT)) (-3765 (($ $ (-484)) 47 T ELT)) (-3462 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3764 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT)) (-3796 ((|#1| $ (-484)) 62 T ELT) (($ $ $) NIL (|has| (-484) (-1025)) ELT)) (-3754 (($ $ (-1089)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $) 77 (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT)) (-3944 (((-484) $) NIL T ELT)) (-2889 (($ $) 48 T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) 29 T ELT) (($ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ |#1|) 28 (|has| |#1| (-146)) ELT)) (-3673 ((|#1| $ (-484)) 61 T ELT)) (-2700 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3123 (((-695)) 39 T CONST)) (-3769 ((|#1| $) NIL T ELT)) (-2160 (($ $) 192 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2172 (($ $) 167 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2162 (($ $) 189 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2174 (($ $) 164 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2158 (($ $) 194 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2170 (($ $) 170 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2177 (($ $ (-347 (-484))) 157 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2178 (($ $ |#1|) 128 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2175 (($ $) 161 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2176 (($ $) 159 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2157 (($ $) 195 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2169 (($ $) 171 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2159 (($ $) 193 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2171 (($ $) 169 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2161 (($ $) 190 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2173 (($ $) 165 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2154 (($ $) 200 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2166 (($ $) 180 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2156 (($ $) 197 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2168 (($ $) 176 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2152 (($ $) 204 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2164 (($ $) 184 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2151 (($ $) 206 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2163 (($ $) 186 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2153 (($ $) 202 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2165 (($ $) 182 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2155 (($ $) 199 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2167 (($ $) 178 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3766 ((|#1| $ (-484)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3942 (|#1| (-1089))))) ELT)) (-2658 (($) 30 T CONST)) (-2664 (($) 40 T CONST)) (-2667 (($ $ (-1089)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT)) (-3054 (((-85) $ $) 73 T ELT)) (-3945 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3833 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-3835 (($ $ $) 88 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 111 T ELT)) (* (($ (-831) $) 98 T ELT) (($ (-695) $) 96 T ELT) (($ (-484) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)))
+(((-530 |#1|) (-13 (-1157 |#1| (-484)) (-10 -8 (-15 -2185 ($ (-940 (-751 (-484))) (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))))) (-15 -2184 ((-940 (-751 (-484))) $)) (-15 -2183 ((-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $)) (-15 -3814 ($ (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))))) (-15 -3933 ((-85) $)) (-15 -3811 ($ (-1 |#1| (-484)) $)) (-15 -2182 ((-3 $ "failed") $ $ (-85))) (-15 -2181 ($ $)) (-15 -2180 ($ $ $)) (-15 -2179 ((-773) (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) (-940 (-751 (-484))) (-1089) |#1| (-347 (-484)))) (IF (|has| |#1| (-38 (-347 (-484)))) (PROGN (-15 -3808 ($ $)) (-15 -2178 ($ $ |#1|)) (-15 -2177 ($ $ (-347 (-484)))) (-15 -2176 ($ $)) (-15 -2175 ($ $)) (-15 -2174 ($ $)) (-15 -2173 ($ $)) (-15 -2172 ($ $)) (-15 -2171 ($ $)) (-15 -2170 ($ $)) (-15 -2169 ($ $)) (-15 -2168 ($ $)) (-15 -2167 ($ $)) (-15 -2166 ($ $)) (-15 -2165 ($ $)) (-15 -2164 ($ $)) (-15 -2163 ($ $)) (-15 -2162 ($ $)) (-15 -2161 ($ $)) (-15 -2160 ($ $)) (-15 -2159 ($ $)) (-15 -2158 ($ $)) (-15 -2157 ($ $)) (-15 -2156 ($ $)) (-15 -2155 ($ $)) (-15 -2154 ($ $)) (-15 -2153 ($ $)) (-15 -2152 ($ $)) (-15 -2151 ($ $))) |%noBranch|))) (-962)) (T -530))
+((-3933 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-530 *3)) (-4 *3 (-962)))) (-2185 (*1 *1 *2 *3) (-12 (-5 *2 (-940 (-751 (-484)))) (-5 *3 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *4)))) (-4 *4 (-962)) (-5 *1 (-530 *4)))) (-2184 (*1 *2 *1) (-12 (-5 *2 (-940 (-751 (-484)))) (-5 *1 (-530 *3)) (-4 *3 (-962)))) (-2183 (*1 *2 *1) (-12 (-5 *2 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-5 *1 (-530 *3)) (-4 *3 (-962)))) (-3814 (*1 *1 *2) (-12 (-5 *2 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-4 *3 (-962)) (-5 *1 (-530 *3)))) (-3811 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *3 (-962)) (-5 *1 (-530 *3)))) (-2182 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-530 *3)) (-4 *3 (-962)))) (-2181 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-962)))) (-2180 (*1 *1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-962)))) (-2179 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *6)))) (-5 *4 (-940 (-751 (-484)))) (-5 *5 (-1089)) (-5 *7 (-347 (-484))) (-4 *6 (-962)) (-5 *2 (-773)) (-5 *1 (-530 *6)))) (-3808 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2178 (*1 *1 *1 *2) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2177 (*1 *1 *1 *2) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-530 *3)) (-4 *3 (-38 *2)) (-4 *3 (-962)))) (-2176 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2175 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2174 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2173 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2172 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2171 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2170 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2169 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2168 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2167 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2166 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2165 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2164 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2163 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2162 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2161 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2160 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2159 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2158 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2157 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2156 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2155 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2154 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2153 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2152 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))) (-2151 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 62 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2061 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3814 (($ (-1068 |#1|)) 9 T ELT)) (-3720 (($) NIL T CONST)) (-3463 (((-3 $ #1#) $) 44 T ELT)) (-2890 (((-85) $) 56 T ELT)) (-3768 (((-695) $) 61 T ELT) (((-695) $ (-695)) 60 T ELT)) (-2408 (((-85) $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) 46 (|has| |#1| (-495)) ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3813 (((-1068 |#1|) $) 25 T ELT)) (-3123 (((-695)) 55 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2658 (($) 10 T CONST)) (-2664 (($) 14 T CONST)) (-3054 (((-85) $ $) 24 T ELT)) (-3833 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-3835 (($ $ $) 27 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 53 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-484)) 38 T ELT)))
+(((-531 |#1|) (-13 (-962) (-82 |#1| |#1|) (-10 -8 (-15 -3813 ((-1068 |#1|) $)) (-15 -3814 ($ (-1068 |#1|))) (-15 -2890 ((-85) $)) (-15 -3768 ((-695) $)) (-15 -3768 ((-695) $ (-695))) (-15 * ($ $ (-484))) (IF (|has| |#1| (-495)) (-6 (-495)) |%noBranch|))) (-962)) (T -531))
+((-3813 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-531 *3)) (-4 *3 (-962)))) (-3814 (*1 *1 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-531 *3)))) (-2890 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-531 *3)) (-4 *3 (-962)))) (-3768 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-531 *3)) (-4 *3 (-962)))) (-3768 (*1 *2 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-531 *3)) (-4 *3 (-962)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-531 *3)) (-4 *3 (-962)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-2188 (($) 8 T CONST)) (-2189 (($) 7 T CONST)) (-2186 (($ $ (-584 $)) 16 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2190 (($) 6 T CONST)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-1094)) 15 T ELT) (((-1094) $) 10 T ELT)) (-2187 (($) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-532) (-13 (-1013) (-427 (-1094)) (-10 -8 (-15 -2190 ($) -3948) (-15 -2189 ($) -3948) (-15 -2188 ($) -3948) (-15 -2187 ($) -3948) (-15 -2186 ($ $ (-584 $)))))) (T -532))
+((-2190 (*1 *1) (-5 *1 (-532))) (-2189 (*1 *1) (-5 *1 (-532))) (-2188 (*1 *1) (-5 *1 (-532))) (-2187 (*1 *1) (-5 *1 (-532))) (-2186 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-532))) (-5 *1 (-532)))))
+((-3954 (((-536 |#2|) (-1 |#2| |#1|) (-536 |#1|)) 15 T ELT)))
+(((-533 |#1| |#2|) (-13 (-1128) (-10 -7 (-15 -3954 ((-536 |#2|) (-1 |#2| |#1|) (-536 |#1|))))) (-1128) (-1128)) (T -533))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-536 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-536 *6)) (-5 *1 (-533 *5 *6)))))
+((-3954 (((-1068 |#3|) (-1 |#3| |#1| |#2|) (-536 |#1|) (-1068 |#2|)) 20 T ELT) (((-1068 |#3|) (-1 |#3| |#1| |#2|) (-1068 |#1|) (-536 |#2|)) 19 T ELT) (((-536 |#3|) (-1 |#3| |#1| |#2|) (-536 |#1|) (-536 |#2|)) 18 T ELT)))
+(((-534 |#1| |#2| |#3|) (-10 -7 (-15 -3954 ((-536 |#3|) (-1 |#3| |#1| |#2|) (-536 |#1|) (-536 |#2|))) (-15 -3954 ((-1068 |#3|) (-1 |#3| |#1| |#2|) (-1068 |#1|) (-536 |#2|))) (-15 -3954 ((-1068 |#3|) (-1 |#3| |#1| |#2|) (-536 |#1|) (-1068 |#2|)))) (-1128) (-1128) (-1128)) (T -534))
+((-3954 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-536 *6)) (-5 *5 (-1068 *7)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-1068 *8)) (-5 *1 (-534 *6 *7 *8)))) (-3954 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1068 *6)) (-5 *5 (-536 *7)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-1068 *8)) (-5 *1 (-534 *6 *7 *8)))) (-3954 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-536 *6)) (-5 *5 (-536 *7)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-536 *8)) (-5 *1 (-534 *6 *7 *8)))))
+((-2195 ((|#3| |#3| (-584 (-551 |#3|)) (-584 (-1089))) 57 T ELT)) (-2194 (((-142 |#2|) |#3|) 122 T ELT)) (-2191 ((|#3| (-142 |#2|)) 46 T ELT)) (-2192 ((|#2| |#3|) 21 T ELT)) (-2193 ((|#3| |#2|) 35 T ELT)))
+(((-535 |#1| |#2| |#3|) (-10 -7 (-15 -2191 (|#3| (-142 |#2|))) (-15 -2192 (|#2| |#3|)) (-15 -2193 (|#3| |#2|)) (-15 -2194 ((-142 |#2|) |#3|)) (-15 -2195 (|#3| |#3| (-584 (-551 |#3|)) (-584 (-1089))))) (-495) (-13 (-361 |#1|) (-916) (-1114)) (-13 (-361 (-142 |#1|)) (-916) (-1114))) (T -535))
+((-2195 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-584 (-551 *2))) (-5 *4 (-584 (-1089))) (-4 *2 (-13 (-361 (-142 *5)) (-916) (-1114))) (-4 *5 (-495)) (-5 *1 (-535 *5 *6 *2)) (-4 *6 (-13 (-361 *5) (-916) (-1114))))) (-2194 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-142 *5)) (-5 *1 (-535 *4 *5 *3)) (-4 *5 (-13 (-361 *4) (-916) (-1114))) (-4 *3 (-13 (-361 (-142 *4)) (-916) (-1114))))) (-2193 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *2 (-13 (-361 (-142 *4)) (-916) (-1114))) (-5 *1 (-535 *4 *3 *2)) (-4 *3 (-13 (-361 *4) (-916) (-1114))))) (-2192 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *2 (-13 (-361 *4) (-916) (-1114))) (-5 *1 (-535 *4 *2 *3)) (-4 *3 (-13 (-361 (-142 *4)) (-916) (-1114))))) (-2191 (*1 *2 *3) (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-361 *4) (-916) (-1114))) (-4 *4 (-495)) (-4 *2 (-13 (-361 (-142 *4)) (-916) (-1114))) (-5 *1 (-535 *4 *5 *2)))))
+((-3706 (($ (-1 (-85) |#1|) $) 19 T ELT)) (-3954 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3453 (($ (-1 |#1| |#1|) |#1|) 11 T ELT)) (-3452 (($ (-1 (-85) |#1|) $) 15 T ELT)) (-3451 (($ (-1 (-85) |#1|) $) 17 T ELT)) (-3526 (((-1068 |#1|) $) 20 T ELT)) (-3942 (((-773) $) 25 T ELT)))
+(((-536 |#1|) (-13 (-553 (-773)) (-10 -8 (-15 -3954 ($ (-1 |#1| |#1|) $)) (-15 -3452 ($ (-1 (-85) |#1|) $)) (-15 -3451 ($ (-1 (-85) |#1|) $)) (-15 -3706 ($ (-1 (-85) |#1|) $)) (-15 -3453 ($ (-1 |#1| |#1|) |#1|)) (-15 -3526 ((-1068 |#1|) $)))) (-1128)) (T -536))
+((-3954 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3)))) (-3452 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3)))) (-3451 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3)))) (-3706 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3)))) (-3453 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3)))) (-3526 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-536 *3)) (-4 *3 (-1128)))))
+((-2566 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3834 (($ (-695)) NIL (|has| |#1| (-23)) ELT)) (-2196 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-757))) ELT)) (-2907 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3784 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3992)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3706 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3720 (($) NIL T CONST)) (-2295 (($ $) NIL (|has| $ (-6 -3992)) ELT)) (-2296 (($ $) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3402 (($ |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-1574 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3110 ((|#1| $ (-484)) NIL T ELT)) (-3415 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-2887 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3831 (((-631 |#1|) $ $) NIL (|has| |#1| (-962)) ELT)) (-3610 (($ (-695) |#1|) NIL T ELT)) (-2198 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2529 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3514 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2606 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2199 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2855 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3828 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-962))) ELT)) (-3829 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-962))) ELT)) (-3239 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-2302 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2201 (((-584 (-484)) $) NIL T ELT)) (-2202 (((-85) (-484) $) NIL T ELT)) (-3240 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3797 ((|#1| $) NIL (|has| (-484) (-757)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2197 (($ $ |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2200 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2203 (((-584 |#1|) $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) NIL T ELT)) (-3796 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-3832 ((|#1| $ $) NIL (|has| |#1| (-962)) ELT)) (-2303 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-3830 (($ $ $) NIL (|has| |#1| (-962)) ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-1729 (($ $ $ (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-3396 (($ $) NIL T ELT)) (-3968 (((-473) $) NIL (|has| |#1| (-554 (-473))) ELT)) (-3526 (($ (-584 |#1|)) NIL T ELT)) (-3798 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3942 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2564 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3054 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2682 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3833 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3835 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-484) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-664)) ELT) (($ $ |#1|) NIL (|has| |#1| (-664)) ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-537 |#1| |#2|) (-1177 |#1|) (-1128) (-484)) (T -537))
+NIL
+((-2196 (((-1184) $ |#2| |#2|) 35 T ELT)) (-2198 ((|#2| $) 23 T ELT)) (-2199 ((|#2| $) 21 T ELT)) (-1947 (($ (-1 |#3| |#3|) $) 32 T ELT)) (-3954 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-3797 ((|#3| $) 26 T ELT)) (-2197 (($ $ |#3|) 33 T ELT)) (-2200 (((-85) |#3| $) 17 T ELT)) (-2203 (((-584 |#3|) $) 15 T ELT)) (-3796 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT)))
+(((-538 |#1| |#2| |#3|) (-10 -7 (-15 -2196 ((-1184) |#1| |#2| |#2|)) (-15 -2197 (|#1| |#1| |#3|)) (-15 -3797 (|#3| |#1|)) (-15 -2198 (|#2| |#1|)) (-15 -2199 (|#2| |#1|)) (-15 -2200 ((-85) |#3| |#1|)) (-15 -2203 ((-584 |#3|) |#1|)) (-15 -3796 (|#3| |#1| |#2|)) (-15 -3796 (|#3| |#1| |#2| |#3|)) (-15 -1947 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3954 (|#1| (-1 |#3| |#3|) |#1|))) (-539 |#2| |#3|) (-1013) (-1128)) (T -538))
+NIL
+((-2566 (((-85) $ $) 19 (|has| |#2| (-72)) ELT)) (-2196 (((-1184) $ |#1| |#1|) 44 (|has| $ (-6 -3992)) ELT)) (-3784 ((|#2| $ |#1| |#2|) 56 (|has| $ (-6 -3992)) ELT)) (-3720 (($) 7 T CONST)) (-1574 ((|#2| $ |#1| |#2|) 57 (|has| $ (-6 -3992)) ELT)) (-3110 ((|#2| $ |#1|) 55 T ELT)) (-2887 (((-584 |#2|) $) 30 (|has| $ (-6 -3991)) ELT)) (-2198 ((|#1| $) 47 (|has| |#1| (-757)) ELT)) (-2606 (((-584 |#2|) $) 29 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#2| $) 27 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3991))) ELT)) (-2199 ((|#1| $) 48 (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-3239 (((-1072) $) 22 (|has| |#2| (-1013)) ELT)) (-2201 (((-584 |#1|) $) 50 T ELT)) (-2202 (((-85) |#1| $) 51 T ELT)) (-3240 (((-1033) $) 21 (|has| |#2| (-1013)) ELT)) (-3797 ((|#2| $) 46 (|has| |#1| (-757)) ELT)) (-2197 (($ $ |#2|) 45 (|has| $ (-6 -3992)) ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 32 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#2|))) 26 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-248 |#2|)) 25 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 23 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2200 (((-85) |#2| $) 49 (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT)) (-2203 (((-584 |#2|) $) 52 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-3796 ((|#2| $ |#1| |#2|) 54 T ELT) ((|#2| $ |#1|) 53 T ELT)) (-1944 (((-695) (-1 (-85) |#2|) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) |#2| $) 28 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3396 (($ $) 10 T ELT)) (-3942 (((-773) $) 17 (|has| |#2| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#2| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 33 (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 18 (|has| |#2| (-72)) ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-539 |#1| |#2|) (-113) (-1013) (-1128)) (T -539))
+((-2203 (*1 *2 *1) (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1128)) (-5 *2 (-584 *4)))) (-2202 (*1 *2 *3 *1) (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1128)) (-5 *2 (-85)))) (-2201 (*1 *2 *1) (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1128)) (-5 *2 (-584 *3)))) (-2200 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3991)) (-4 *1 (-539 *4 *3)) (-4 *4 (-1013)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-85)))) (-2199 (*1 *2 *1) (-12 (-4 *1 (-539 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1013)) (-4 *2 (-757)))) (-2198 (*1 *2 *1) (-12 (-4 *1 (-539 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1013)) (-4 *2 (-757)))) (-3797 (*1 *2 *1) (-12 (-4 *1 (-539 *3 *2)) (-4 *3 (-1013)) (-4 *3 (-757)) (-4 *2 (-1128)))) (-2197 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-539 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1128)))) (-2196 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-539 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1128)) (-5 *2 (-1184)))))
+(-13 (-426 |t#2|) (-243 |t#1| |t#2|) (-10 -8 (-15 -2203 ((-584 |t#2|) $)) (-15 -2202 ((-85) |t#1| $)) (-15 -2201 ((-584 |t#1|) $)) (IF (|has| |t#2| (-1013)) (IF (|has| $ (-6 -3991)) (-15 -2200 ((-85) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-757)) (PROGN (-15 -2199 (|t#1| $)) (-15 -2198 (|t#1| $)) (-15 -3797 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -3992)) (PROGN (-15 -2197 ($ $ |t#2|)) (-15 -2196 ((-1184) $ |t#1| |t#1|))) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#2| (-1013)) (|has| |#2| (-72))) ((-553 (-773)) OR (|has| |#2| (-1013)) (|has| |#2| (-553 (-773)))) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-259 |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ((-426 |#2|) . T) ((-453 |#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ((-13) . T) ((-1013) |has| |#2| (-1013)) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT) (((-1129) $) 15 T ELT) (($ (-584 (-1129))) 14 T ELT)) (-2204 (((-584 (-1129)) $) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-540) (-13 (-995) (-553 (-1129)) (-10 -8 (-15 -3942 ($ (-584 (-1129)))) (-15 -2204 ((-584 (-1129)) $))))) (T -540))
+((-3942 (*1 *1 *2) (-12 (-5 *2 (-584 (-1129))) (-5 *1 (-540)))) (-2204 (*1 *2 *1) (-12 (-5 *2 (-584 (-1129))) (-5 *1 (-540)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1770 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1310 (((-3 $ #1#) $ $) NIL T ELT)) (-3220 (((-1178 (-631 |#1|))) NIL (|has| |#2| (-358 |#1|)) ELT) (((-1178 (-631 |#1|)) (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1727 (((-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3720 (($) NIL T CONST)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2010 (-584 $))) #1#)) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1701 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1786 (((-631 |#1|)) NIL (|has| |#2| (-358 |#1|)) ELT) (((-631 |#1|) (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1725 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1784 (((-631 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT) (((-631 |#1|) $ (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2402 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1898 (((-1084 (-858 |#1|))) NIL (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-311))) ELT)) (-2405 (($ $ (-831)) NIL T ELT)) (-1723 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1703 (((-1084 |#1|) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1788 ((|#1|) NIL (|has| |#2| (-358 |#1|)) ELT) ((|#1| (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1721 (((-1084 |#1|) $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1715 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1790 (($ (-1178 |#1|)) NIL (|has| |#2| (-358 |#1|)) ELT) (($ (-1178 |#1|) (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3463 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-3106 (((-831)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1712 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2431 (($ $ (-831)) NIL T ELT)) (-1708 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1706 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1710 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2010 (-584 $))) #1#)) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1702 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1787 (((-631 |#1|)) NIL (|has| |#2| (-358 |#1|)) ELT) (((-631 |#1|) (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1726 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1785 (((-631 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT) (((-631 |#1|) $ (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2403 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1902 (((-1084 (-858 |#1|))) NIL (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-311))) ELT)) (-2404 (($ $ (-831)) NIL T ELT)) (-1724 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1704 (((-1084 |#1|) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1789 ((|#1|) NIL (|has| |#2| (-358 |#1|)) ELT) ((|#1| (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1722 (((-1084 |#1|) $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1716 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-1707 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1709 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1711 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1714 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3796 ((|#1| $ (-484)) NIL (|has| |#2| (-358 |#1|)) ELT)) (-3221 (((-631 |#1|) (-1178 $)) NIL (|has| |#2| (-358 |#1|)) ELT) (((-1178 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT) (((-631 |#1|) (-1178 $) (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT) (((-1178 |#1|) $ (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3968 (($ (-1178 |#1|)) NIL (|has| |#2| (-358 |#1|)) ELT) (((-1178 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT)) (-1890 (((-584 (-858 |#1|))) NIL (|has| |#2| (-358 |#1|)) ELT) (((-584 (-858 |#1|)) (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2433 (($ $ $) NIL T ELT)) (-1720 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3942 (((-773) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2010 (((-1178 $)) NIL (|has| |#2| (-358 |#1|)) ELT)) (-1705 (((-584 (-1178 |#1|))) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-2434 (($ $ $ $) NIL T ELT)) (-1718 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2543 (($ (-631 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT)) (-2432 (($ $ $) NIL T ELT)) (-1719 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1717 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1713 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2658 (($) NIL T CONST)) (-3054 (((-85) $ $) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 24 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-541 |#1| |#2|) (-13 (-684 |#1|) (-553 |#2|) (-10 -8 (-15 -3942 ($ |#2|)) (IF (|has| |#2| (-358 |#1|)) (-6 (-358 |#1|)) |%noBranch|) (IF (|has| |#2| (-315 |#1|)) (-6 (-315 |#1|)) |%noBranch|))) (-146) (-684 |#1|)) (T -541))
+((-3942 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-541 *3 *2)) (-4 *2 (-684 *3)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-101)) 6 T ELT) (((-101) $) 7 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-542) (-13 (-1013) (-427 (-101)))) (T -542))
+NIL
+((-2566 (((-85) $ $) NIL T ELT)) (-2311 (($ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2206 (($) 10 T CONST)) (-2228 (($) 8 T CONST)) (-2205 (($) 11 T CONST)) (-2224 (($) 9 T CONST)) (-2221 (($) 12 T CONST)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2309 (($ $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2310 (($ $ $) NIL T ELT)))
+(((-543) (-13 (-1013) (-605) (-10 -8 (-15 -2228 ($) -3948) (-15 -2224 ($) -3948) (-15 -2206 ($) -3948) (-15 -2205 ($) -3948) (-15 -2221 ($) -3948)))) (T -543))
+((-2228 (*1 *1) (-5 *1 (-543))) (-2224 (*1 *1) (-5 *1 (-543))) (-2206 (*1 *1) (-5 *1 (-543))) (-2205 (*1 *1) (-5 *1 (-543))) (-2221 (*1 *1) (-5 *1 (-543))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2217 (($) 11 T CONST)) (-2211 (($) 17 T CONST)) (-2207 (($) 21 T CONST)) (-2209 (($) 19 T CONST)) (-2214 (($) 14 T CONST)) (-2208 (($) 20 T CONST)) (-2216 (($) 12 T CONST)) (-2215 (($) 13 T CONST)) (-2210 (($) 18 T CONST)) (-2213 (($) 15 T CONST)) (-2212 (($) 16 T CONST)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (((-101) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-544) (-13 (-1013) (-553 (-101)) (-10 -8 (-15 -2217 ($) -3948) (-15 -2216 ($) -3948) (-15 -2215 ($) -3948) (-15 -2214 ($) -3948) (-15 -2213 ($) -3948) (-15 -2212 ($) -3948) (-15 -2211 ($) -3948) (-15 -2210 ($) -3948) (-15 -2209 ($) -3948) (-15 -2208 ($) -3948) (-15 -2207 ($) -3948)))) (T -544))
+((-2217 (*1 *1) (-5 *1 (-544))) (-2216 (*1 *1) (-5 *1 (-544))) (-2215 (*1 *1) (-5 *1 (-544))) (-2214 (*1 *1) (-5 *1 (-544))) (-2213 (*1 *1) (-5 *1 (-544))) (-2212 (*1 *1) (-5 *1 (-544))) (-2211 (*1 *1) (-5 *1 (-544))) (-2210 (*1 *1) (-5 *1 (-544))) (-2209 (*1 *1) (-5 *1 (-544))) (-2208 (*1 *1) (-5 *1 (-544))) (-2207 (*1 *1) (-5 *1 (-544))))
+((-2566 (((-85) $ $) NIL T ELT)) (-2311 (($ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2219 (($) 13 T CONST)) (-2218 (($) 14 T CONST)) (-2225 (($) 11 T CONST)) (-2228 (($) 8 T CONST)) (-2226 (($) 10 T CONST)) (-2227 (($) 9 T CONST)) (-2224 (($) 12 T CONST)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2309 (($ $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2310 (($ $ $) NIL T ELT)))
+(((-545) (-13 (-1013) (-605) (-10 -8 (-15 -2228 ($) -3948) (-15 -2227 ($) -3948) (-15 -2226 ($) -3948) (-15 -2225 ($) -3948) (-15 -2224 ($) -3948) (-15 -2219 ($) -3948) (-15 -2218 ($) -3948)))) (T -545))
+((-2228 (*1 *1) (-5 *1 (-545))) (-2227 (*1 *1) (-5 *1 (-545))) (-2226 (*1 *1) (-5 *1 (-545))) (-2225 (*1 *1) (-5 *1 (-545))) (-2224 (*1 *1) (-5 *1 (-545))) (-2219 (*1 *1) (-5 *1 (-545))) (-2218 (*1 *1) (-5 *1 (-545))))
+((-2566 (((-85) $ $) NIL T ELT)) (-2311 (($ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2223 (($) 13 T CONST)) (-2220 (($) 16 T CONST)) (-2225 (($) 11 T CONST)) (-2228 (($) 8 T CONST)) (-2226 (($) 10 T CONST)) (-2227 (($) 9 T CONST)) (-2222 (($) 14 T CONST)) (-2224 (($) 12 T CONST)) (-2221 (($) 15 T CONST)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2309 (($ $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2310 (($ $ $) NIL T ELT)))
+(((-546) (-13 (-1013) (-605) (-10 -8 (-15 -2228 ($) -3948) (-15 -2227 ($) -3948) (-15 -2226 ($) -3948) (-15 -2225 ($) -3948) (-15 -2224 ($) -3948) (-15 -2223 ($) -3948) (-15 -2222 ($) -3948) (-15 -2221 ($) -3948) (-15 -2220 ($) -3948)))) (T -546))
+((-2228 (*1 *1) (-5 *1 (-546))) (-2227 (*1 *1) (-5 *1 (-546))) (-2226 (*1 *1) (-5 *1 (-546))) (-2225 (*1 *1) (-5 *1 (-546))) (-2224 (*1 *1) (-5 *1 (-546))) (-2223 (*1 *1) (-5 *1 (-546))) (-2222 (*1 *1) (-5 *1 (-546))) (-2221 (*1 *1) (-5 *1 (-546))) (-2220 (*1 *1) (-5 *1 (-546))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 19 T ELT) (($ (-542)) 12 T ELT) (((-542) $) 11 T ELT) (($ (-101)) NIL T ELT) (((-101) $) 14 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-547) (-13 (-1013) (-427 (-542)) (-427 (-101)))) (T -547))
+NIL
+((-2566 (((-85) $ $) NIL T ELT)) (-1695 (((-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) $ (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) 40 T ELT)) (-3595 (($ (-584 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2196 (((-1184) $ (-1072) (-1072)) NIL (|has| $ (-6 -3992)) ELT)) (-3784 ((|#1| $ (-1072) |#1|) 50 T ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-3706 (($ (-1 (-85) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-2229 (((-3 |#1| #1="failed") (-1072) $) 53 T ELT)) (-3720 (($) NIL T CONST)) (-1699 (($ $ (-1072)) 25 T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT)) (-3401 (((-3 |#1| #1#) (-1072) $) 54 T ELT) (($ (-1 (-85) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3991)) ELT) (($ (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) $) NIL (|has| $ (-6 -3991)) ELT)) (-3402 (($ (-1 (-85) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3991)) ELT) (($ (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT)) (-3838 (((-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) $ (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) NIL (|has| $ (-6 -3991)) ELT) (((-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) $ (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT)) (-1696 (((-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) $) 39 T ELT)) (-1574 ((|#1| $ (-1072) |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3110 ((|#1| $ (-1072)) NIL T ELT)) (-2887 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-584 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-2269 (($ $) 55 T ELT)) (-1700 (($ (-335)) 23 T ELT) (($ (-335) (-1072)) 22 T ELT)) (-3538 (((-335) $) 41 T ELT)) (-2198 (((-1072) $) NIL (|has| (-1072) (-757)) ELT)) (-2606 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-584 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT) (((-85) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT)) (-2199 (((-1072) $) NIL (|has| (-1072) (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (($ (-1 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2230 (((-584 (-1072)) $) 46 T ELT)) (-2231 (((-85) (-1072) $) NIL T ELT)) (-1697 (((-1072) $) 42 T ELT)) (-1272 (((-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3605 (($ (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2201 (((-584 (-1072)) $) NIL T ELT)) (-2202 (((-85) (-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3797 ((|#1| $) NIL (|has| (-1072) (-757)) ELT)) (-1352 (((-3 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2197 (($ $ |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-1273 (((-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-85) (-1 (-85) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) (-584 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-248 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-584 (-248 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2200 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2203 (((-584 |#1|) $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) 44 T ELT)) (-3796 ((|#1| $ (-1072) |#1|) NIL T ELT) ((|#1| $ (-1072)) 49 T ELT)) (-1464 (($ (-584 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT) (((-695) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (((-695) (-1 (-85) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-3396 (($ $) NIL T ELT)) (-3968 (((-473) $) NIL (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-554 (-473))) ELT)) (-3526 (($ (-584 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)))) NIL T ELT)) (-3942 (((-773) $) 21 T ELT)) (-1698 (($ $) 26 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1274 (($ (-584 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)))) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-85) (-1 (-85) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 20 T ELT)) (-3953 (((-695) $) 48 (|has| $ (-6 -3991)) ELT)))
+(((-548 |#1|) (-13 (-313 (-335) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) (-1106 (-1072) |#1|) (-10 -8 (-6 -3991) (-15 -2269 ($ $)))) (-1013)) (T -548))
+((-2269 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-1013)))))
+((-3242 (((-85) (-2 (|:| -3856 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2230 (((-584 |#2|) $) 20 T ELT)) (-2231 (((-85) |#2| $) 12 T ELT)))
+(((-549 |#1| |#2| |#3|) (-10 -7 (-15 -2230 ((-584 |#2|) |#1|)) (-15 -2231 ((-85) |#2| |#1|)) (-15 -3242 ((-85) (-2 (|:| -3856 |#2|) (|:| |entry| |#3|)) |#1|))) (-550 |#2| |#3|) (-1013) (-1013)) (T -549))
+NIL
+((-2566 (((-85) $ $) 19 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3991)) ELT)) (-3706 (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3991)) ELT)) (-2229 (((-3 |#2| "failed") |#1| $) 65 T ELT)) (-3720 (($) 7 T CONST)) (-1351 (($ $) 62 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3991))) ELT)) (-3401 (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3991)) ELT) (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3991)) ELT) (((-3 |#2| "failed") |#1| $) 66 T ELT)) (-3402 (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3991))) ELT) (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3991)) ELT)) (-3838 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3991))) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3991)) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3991)) ELT)) (-2887 (((-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3991)) ELT)) (-2606 (((-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3991))) ELT)) (-1947 (($ (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 35 T ELT)) (-3239 (((-1072) $) 22 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-2230 (((-584 |#1|) $) 67 T ELT)) (-2231 (((-85) |#1| $) 68 T ELT)) (-1272 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3605 (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-3240 (((-1033) $) 21 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) ELT)) (-1352 (((-3 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 55 T ELT)) (-1273 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-248 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-1464 (($) 53 T ELT) (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1944 (((-695) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3991))) ELT)) (-3396 (($ $) 10 T ELT)) (-3968 (((-473) $) 63 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-554 (-473))) ELT)) (-3526 (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) 54 T ELT)) (-3942 (((-773) $) 17 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1274 (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 18 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-550 |#1| |#2|) (-113) (-1013) (-1013)) (T -550))
+((-2231 (*1 *2 *3 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-85)))) (-2230 (*1 *2 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-584 *3)))) (-3401 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-2229 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))))
+(-13 (-183 (-2 (|:| -3856 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -2231 ((-85) |t#1| $)) (-15 -2230 ((-584 |t#1|) $)) (-15 -3401 ((-3 |t#2| "failed") |t#1| $)) (-15 -2229 ((-3 |t#2| "failed") |t#1| $))))
+(((-34) . T) ((-76 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72))) ((-553 (-773)) OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-553 (-773)))) ((-124 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T) ((-554 (-473)) |has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-554 (-473))) ((-183 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T) ((-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ((-426 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T) ((-453 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ((-13) . T) ((-1013) |has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-2232 (((-3 (-1089) "failed") $) 46 T ELT)) (-1311 (((-1184) $ (-695)) 22 T ELT)) (-3415 (((-695) $) 20 T ELT)) (-3591 (((-86) $) 9 T ELT)) (-2529 (($ $ $) NIL T ELT)) (-2855 (($ $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2233 (($ (-86) (-584 |#1|) (-695)) 32 T ELT) (($ (-1089)) 33 T ELT)) (-2631 (((-85) $ (-86)) 15 T ELT) (((-85) $ (-1089)) 13 T ELT)) (-2601 (((-695) $) 17 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3968 (((-801 (-484)) $) 99 (|has| |#1| (-554 (-801 (-484)))) ELT) (((-801 (-327)) $) 106 (|has| |#1| (-554 (-801 (-327)))) ELT) (((-473) $) 92 (|has| |#1| (-554 (-473))) ELT)) (-3942 (((-773) $) 74 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2234 (((-584 |#1|) $) 19 T ELT)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 51 T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) 53 T ELT)))
+(((-551 |#1|) (-13 (-105) (-757) (-795 |#1|) (-10 -8 (-15 -3591 ((-86) $)) (-15 -2234 ((-584 |#1|) $)) (-15 -2601 ((-695) $)) (-15 -2233 ($ (-86) (-584 |#1|) (-695))) (-15 -2233 ($ (-1089))) (-15 -2232 ((-3 (-1089) "failed") $)) (-15 -2631 ((-85) $ (-86))) (-15 -2631 ((-85) $ (-1089))) (IF (|has| |#1| (-554 (-473))) (-6 (-554 (-473))) |%noBranch|))) (-1013)) (T -551))
+((-3591 (*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-551 *3)) (-4 *3 (-1013)))) (-2234 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-551 *3)) (-4 *3 (-1013)))) (-2601 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-551 *3)) (-4 *3 (-1013)))) (-2233 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-86)) (-5 *3 (-584 *5)) (-5 *4 (-695)) (-4 *5 (-1013)) (-5 *1 (-551 *5)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-551 *3)) (-4 *3 (-1013)))) (-2232 (*1 *2 *1) (|partial| -12 (-5 *2 (-1089)) (-5 *1 (-551 *3)) (-4 *3 (-1013)))) (-2631 (*1 *2 *1 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-551 *4)) (-4 *4 (-1013)))) (-2631 (*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-85)) (-5 *1 (-551 *4)) (-4 *4 (-1013)))))
+((-2235 (((-551 |#2|) |#1|) 17 T ELT)) (-2236 (((-3 |#1| "failed") (-551 |#2|)) 21 T ELT)))
+(((-552 |#1| |#2|) (-10 -7 (-15 -2235 ((-551 |#2|) |#1|)) (-15 -2236 ((-3 |#1| "failed") (-551 |#2|)))) (-1013) (-1013)) (T -552))
+((-2236 (*1 *2 *3) (|partial| -12 (-5 *3 (-551 *4)) (-4 *4 (-1013)) (-4 *2 (-1013)) (-5 *1 (-552 *2 *4)))) (-2235 (*1 *2 *3) (-12 (-5 *2 (-551 *4)) (-5 *1 (-552 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
+((-3942 ((|#1| $) 6 T ELT)))
+(((-553 |#1|) (-113) (-1128)) (T -553))
+((-3942 (*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-1128)))))
+(-13 (-10 -8 (-15 -3942 (|t#1| $))))
+((-3968 ((|#1| $) 6 T ELT)))
+(((-554 |#1|) (-113) (-1128)) (T -554))
+((-3968 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-1128)))))
+(-13 (-10 -8 (-15 -3968 (|t#1| $))))
+((-2237 (((-3 (-1084 (-347 |#2|)) #1="failed") (-347 |#2|) (-347 |#2|) (-347 |#2|) (-1 (-345 |#2|) |#2|)) 15 T ELT) (((-3 (-1084 (-347 |#2|)) #1#) (-347 |#2|) (-347 |#2|) (-347 |#2|)) 16 T ELT)))
+(((-555 |#1| |#2|) (-10 -7 (-15 -2237 ((-3 (-1084 (-347 |#2|)) #1="failed") (-347 |#2|) (-347 |#2|) (-347 |#2|))) (-15 -2237 ((-3 (-1084 (-347 |#2|)) #1#) (-347 |#2|) (-347 |#2|) (-347 |#2|) (-1 (-345 |#2|) |#2|)))) (-13 (-120) (-27) (-951 (-484)) (-951 (-347 (-484)))) (-1154 |#1|)) (T -555))
+((-2237 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-120) (-27) (-951 (-484)) (-951 (-347 (-484))))) (-5 *2 (-1084 (-347 *6))) (-5 *1 (-555 *5 *6)) (-5 *3 (-347 *6)))) (-2237 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-120) (-27) (-951 (-484)) (-951 (-347 (-484))))) (-4 *5 (-1154 *4)) (-5 *2 (-1084 (-347 *5))) (-5 *1 (-555 *4 *5)) (-5 *3 (-347 *5)))))
+((-3942 (($ |#1|) 6 T ELT)))
+(((-556 |#1|) (-113) (-1128)) (T -556))
+((-3942 (*1 *1 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-1128)))))
+(-13 (-10 -8 (-15 -3942 ($ |t#1|))))
+((-2566 (((-85) $ $) NIL T ELT)) (-2311 (($ $) NIL T ELT)) (-2238 (($) 11 T CONST)) (-2853 (($) 13 T CONST)) (-3133 (((-695)) 36 T ELT)) (-2992 (($) NIL T ELT)) (-2559 (($ $ $) 25 T ELT)) (-2558 (($ $) 23 T ELT)) (-2008 (((-831) $) 43 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2398 (($ (-831)) 42 T ELT)) (-2851 (($ $ $) 26 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2852 (($) 9 T CONST)) (-2850 (($ $ $) 27 T ELT)) (-3942 (((-773) $) 34 T ELT)) (-3562 (((-85) $ (|[\|\|]| -2852)) 20 T ELT) (((-85) $ (|[\|\|]| -2238)) 22 T ELT) (((-85) $ (|[\|\|]| -2853)) 18 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2560 (($ $ $) 24 T ELT)) (-2309 (($ $ $) NIL T ELT)) (-3054 (((-85) $ $) 16 T ELT)) (-2310 (($ $ $) NIL T ELT)))
+(((-557) (-13 (-881) (-317) (-10 -8 (-15 -2238 ($) -3948) (-15 -3562 ((-85) $ (|[\|\|]| -2852))) (-15 -3562 ((-85) $ (|[\|\|]| -2238))) (-15 -3562 ((-85) $ (|[\|\|]| -2853)))))) (T -557))
+((-2238 (*1 *1) (-5 *1 (-557))) (-3562 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2852)) (-5 *2 (-85)) (-5 *1 (-557)))) (-3562 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2238)) (-5 *2 (-85)) (-5 *1 (-557)))) (-3562 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2853)) (-5 *2 (-85)) (-5 *1 (-557)))))
+((-3968 (($ |#1|) 6 T ELT)))
+(((-558 |#1|) (-113) (-1128)) (T -558))
+((-3968 (*1 *1 *2) (-12 (-4 *1 (-558 *2)) (-4 *2 (-1128)))))
+(-13 (-10 -8 (-15 -3968 ($ |t#1|))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3619 (((-484) $) NIL (|has| |#1| (-756)) ELT)) (-3720 (($) NIL T CONST)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-3183 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-2408 (((-85) $) NIL T ELT)) (-2996 ((|#1| $) 13 T ELT)) (-3184 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-2529 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2855 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2995 ((|#3| $) 15 T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT)) (-3123 (((-695)) 20 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3379 (($ $) NIL (|has| |#1| (-756)) ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) 12 T CONST)) (-2564 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3945 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
+(((-559 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-756)) (-6 (-756)) |%noBranch|) (-15 -3945 ($ $ |#3|)) (-15 -3945 ($ |#1| |#3|)) (-15 -2996 (|#1| $)) (-15 -2995 (|#3| $)))) (-38 |#2|) (-146) (|SubsetCategory| (-664) |#2|)) (T -559))
+((-3945 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-559 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-664) *4)))) (-3945 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-559 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-664) *4)))) (-2996 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-559 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-664) *3)))) (-2995 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-664) *4)) (-5 *1 (-559 *3 *4 *2)) (-4 *3 (-38 *4)))))
+((-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) 10 T ELT)))
+(((-560 |#1| |#2|) (-10 -7 (-15 -3942 (|#1| |#2|)) (-15 -3942 (|#1| (-484))) (-15 -3942 ((-773) |#1|))) (-561 |#2|) (-962)) (T -560))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 47 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 48 T ELT)))
+(((-561 |#1|) (-113) (-962)) (T -561))
+((-3942 (*1 *1 *2) (-12 (-4 *1 (-561 *2)) (-4 *2 (-962)))))
+(-13 (-962) (-591 |t#1|) (-10 -8 (-15 -3942 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-484)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-664) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
+((-2239 ((|#2| |#2| (-1089) (-1089)) 16 T ELT)))
+(((-562 |#1| |#2|) (-10 -7 (-15 -2239 (|#2| |#2| (-1089) (-1089)))) (-13 (-257) (-120) (-951 (-484)) (-581 (-484))) (-13 (-1114) (-872) (-29 |#1|))) (T -562))
+((-2239 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) (-5 *1 (-562 *4 *2)) (-4 *2 (-13 (-1114) (-872) (-29 *4))))))
+((-2566 (((-85) $ $) 64 T ELT)) (-3185 (((-85) $) 58 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-2240 ((|#1| $) 55 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3747 (((-2 (|:| -1760 $) (|:| -1759 (-347 |#2|))) (-347 |#2|)) 111 (|has| |#1| (-311)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) 99 T ELT) (((-3 |#2| #1#) $) 95 T ELT)) (-3153 (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3955 (($ $) 27 T ELT)) (-3463 (((-3 $ #1#) $) 88 T ELT)) (-2561 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3768 (((-484) $) 22 T ELT)) (-2408 (((-85) $) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3933 (((-85) $) 40 T ELT)) (-2891 (($ |#1| (-484)) 24 T ELT)) (-3171 ((|#1| $) 57 T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-311)) ELT)) (-3141 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) 101 (|has| |#1| (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 116 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3462 (((-3 $ #1#) $ $) 93 T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-1605 (((-695) $) 115 (|has| |#1| (-311)) ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 114 (|has| |#1| (-311)) ELT)) (-3754 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#2| (-812 (-1089))) ELT)) (-3944 (((-484) $) 38 T ELT)) (-3968 (((-347 |#2|) $) 47 T ELT)) (-3942 (((-773) $) 69 T ELT) (($ (-484)) 35 T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-3673 ((|#1| $ (-484)) 72 T ELT)) (-2700 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3123 (((-695)) 32 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-2658 (($) 9 T CONST)) (-2664 (($) 14 T CONST)) (-2667 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#2| (-812 (-1089))) ELT)) (-3054 (((-85) $ $) 21 T ELT)) (-3833 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) 90 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 49 T ELT)))
+(((-563 |#1| |#2|) (-13 (-184 |#2|) (-495) (-554 (-347 |#2|)) (-352 |#1|) (-951 |#2|) (-10 -8 (-15 -3933 ((-85) $)) (-15 -3944 ((-484) $)) (-15 -3768 ((-484) $)) (-15 -3955 ($ $)) (-15 -3171 (|#1| $)) (-15 -2240 (|#1| $)) (-15 -3673 (|#1| $ (-484))) (-15 -2891 ($ |#1| (-484))) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-311)) (PROGN (-6 (-257)) (-15 -3747 ((-2 (|:| -1760 $) (|:| -1759 (-347 |#2|))) (-347 |#2|)))) |%noBranch|))) (-495) (-1154 |#1|)) (T -563))
+((-3933 (*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-85)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1154 *3)))) (-3944 (*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-484)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1154 *3)))) (-3768 (*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-484)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1154 *3)))) (-3955 (*1 *1 *1) (-12 (-4 *2 (-495)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1154 *2)))) (-3171 (*1 *2 *1) (-12 (-4 *2 (-495)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1154 *2)))) (-2240 (*1 *2 *1) (-12 (-4 *2 (-495)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1154 *2)))) (-3673 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *2 (-495)) (-5 *1 (-563 *2 *4)) (-4 *4 (-1154 *2)))) (-2891 (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-4 *2 (-495)) (-5 *1 (-563 *2 *4)) (-4 *4 (-1154 *2)))) (-3747 (*1 *2 *3) (-12 (-4 *4 (-311)) (-4 *4 (-495)) (-4 *5 (-1154 *4)) (-5 *2 (-2 (|:| -1760 (-563 *4 *5)) (|:| -1759 (-347 *5)))) (-5 *1 (-563 *4 *5)) (-5 *3 (-347 *5)))))
+((-3678 (((-584 |#6|) (-584 |#4|) (-85)) 54 T ELT)) (-2241 ((|#6| |#6|) 48 T ELT)))
+(((-564 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2241 (|#6| |#6|)) (-15 -3678 ((-584 |#6|) (-584 |#4|) (-85)))) (-389) (-718) (-757) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|) (-1020 |#1| |#2| |#3| |#4|)) (T -564))
+((-3678 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 *10)) (-5 *1 (-564 *5 *6 *7 *8 *9 *10)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *10 (-1020 *5 *6 *7 *8)))) (-2241 (*1 *2 *2) (-12 (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-564 *3 *4 *5 *6 *7 *2)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *2 (-1020 *3 *4 *5 *6)))))
+((-2242 (((-85) |#3| (-695) (-584 |#3|)) 30 T ELT)) (-2243 (((-3 (-2 (|:| |polfac| (-584 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-584 (-1084 |#3|)))) "failed") |#3| (-584 (-1084 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1777 (-584 (-2 (|:| |irr| |#4|) (|:| -2393 (-484)))))) (-584 |#3|) (-584 |#1|) (-584 |#3|)) 68 T ELT)))
+(((-565 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2242 ((-85) |#3| (-695) (-584 |#3|))) (-15 -2243 ((-3 (-2 (|:| |polfac| (-584 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-584 (-1084 |#3|)))) "failed") |#3| (-584 (-1084 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1777 (-584 (-2 (|:| |irr| |#4|) (|:| -2393 (-484)))))) (-584 |#3|) (-584 |#1|) (-584 |#3|)))) (-757) (-718) (-257) (-862 |#3| |#2| |#1|)) (T -565))
+((-2243 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1777 (-584 (-2 (|:| |irr| *10) (|:| -2393 (-484))))))) (-5 *6 (-584 *3)) (-5 *7 (-584 *8)) (-4 *8 (-757)) (-4 *3 (-257)) (-4 *10 (-862 *3 *9 *8)) (-4 *9 (-718)) (-5 *2 (-2 (|:| |polfac| (-584 *10)) (|:| |correct| *3) (|:| |corrfact| (-584 (-1084 *3))))) (-5 *1 (-565 *8 *9 *3 *10)) (-5 *4 (-584 (-1084 *3))))) (-2242 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-695)) (-5 *5 (-584 *3)) (-4 *3 (-257)) (-4 *6 (-757)) (-4 *7 (-718)) (-5 *2 (-85)) (-5 *1 (-565 *6 *7 *3 *8)) (-4 *8 (-862 *3 *7 *6)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3524 (((-1048) $) 12 T ELT)) (-3525 (((-1048) $) 10 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-566) (-13 (-995) (-10 -8 (-15 -3525 ((-1048) $)) (-15 -3524 ((-1048) $))))) (T -566))
+((-3525 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-566)))) (-3524 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-566)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3930 (((-584 |#1|) $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3463 (((-3 $ "failed") $) NIL T ELT)) (-2408 (((-85) $) NIL T ELT)) (-3932 (($ $) 77 T ELT)) (-3938 (((-607 |#1| |#2|) $) 60 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) 81 T ELT)) (-2244 (((-584 (-248 |#2|)) $ $) 42 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3939 (($ (-607 |#1| |#2|)) 56 T ELT)) (-3007 (($ $ $) NIL T ELT)) (-2433 (($ $ $) NIL T ELT)) (-3942 (((-773) $) 66 T ELT) (((-1194 |#1| |#2|) $) NIL T ELT) (((-1199 |#1| |#2|) $) 74 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2664 (($) 61 T CONST)) (-2245 (((-584 (-2 (|:| |k| (-615 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-2246 (((-584 (-607 |#1| |#2|)) (-584 |#1|)) 73 T ELT)) (-2663 (((-584 (-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-3054 (((-85) $ $) 62 T ELT)) (-3945 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ $ $) 52 T ELT)))
+(((-567 |#1| |#2| |#3|) (-13 (-410) (-10 -8 (-15 -3939 ($ (-607 |#1| |#2|))) (-15 -3938 ((-607 |#1| |#2|) $)) (-15 -2663 ((-584 (-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|))) $)) (-15 -3942 ((-1194 |#1| |#2|) $)) (-15 -3942 ((-1199 |#1| |#2|) $)) (-15 -3932 ($ $)) (-15 -3930 ((-584 |#1|) $)) (-15 -2246 ((-584 (-607 |#1| |#2|)) (-584 |#1|))) (-15 -2245 ((-584 (-2 (|:| |k| (-615 |#1|)) (|:| |c| |#2|))) $)) (-15 -2244 ((-584 (-248 |#2|)) $ $)))) (-757) (-13 (-146) (-655 (-347 (-484)))) (-831)) (T -567))
+((-3939 (*1 *1 *2) (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-347 (-484))))) (-5 *1 (-567 *3 *4 *5)) (-14 *5 (-831)))) (-3938 (*1 *2 *1) (-12 (-5 *2 (-607 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-347 (-484))))) (-14 *5 (-831)))) (-2663 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |k| (-804 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-347 (-484))))) (-14 *5 (-831)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-347 (-484))))) (-14 *5 (-831)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-1199 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-347 (-484))))) (-14 *5 (-831)))) (-3932 (*1 *1 *1) (-12 (-5 *1 (-567 *2 *3 *4)) (-4 *2 (-757)) (-4 *3 (-13 (-146) (-655 (-347 (-484))))) (-14 *4 (-831)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-347 (-484))))) (-14 *5 (-831)))) (-2246 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-757)) (-5 *2 (-584 (-607 *4 *5))) (-5 *1 (-567 *4 *5 *6)) (-4 *5 (-13 (-146) (-655 (-347 (-484))))) (-14 *6 (-831)))) (-2245 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |k| (-615 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-347 (-484))))) (-14 *5 (-831)))) (-2244 (*1 *2 *1 *1) (-12 (-5 *2 (-584 (-248 *4))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-347 (-484))))) (-14 *5 (-831)))))
+((-3678 (((-584 (-1059 |#1| (-469 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|)))) (-584 (-704 |#1| (-774 |#2|))) (-85)) 103 T ELT) (((-584 (-959 |#1| |#2|)) (-584 (-704 |#1| (-774 |#2|))) (-85)) 77 T ELT)) (-2247 (((-85) (-584 (-704 |#1| (-774 |#2|)))) 26 T ELT)) (-2251 (((-584 (-1059 |#1| (-469 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|)))) (-584 (-704 |#1| (-774 |#2|))) (-85)) 102 T ELT)) (-2250 (((-584 (-959 |#1| |#2|)) (-584 (-704 |#1| (-774 |#2|))) (-85)) 76 T ELT)) (-2249 (((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|)))) 30 T ELT)) (-2248 (((-3 (-584 (-704 |#1| (-774 |#2|))) "failed") (-584 (-704 |#1| (-774 |#2|)))) 29 T ELT)))
+(((-568 |#1| |#2|) (-10 -7 (-15 -2247 ((-85) (-584 (-704 |#1| (-774 |#2|))))) (-15 -2248 ((-3 (-584 (-704 |#1| (-774 |#2|))) "failed") (-584 (-704 |#1| (-774 |#2|))))) (-15 -2249 ((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|))))) (-15 -2250 ((-584 (-959 |#1| |#2|)) (-584 (-704 |#1| (-774 |#2|))) (-85))) (-15 -2251 ((-584 (-1059 |#1| (-469 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|)))) (-584 (-704 |#1| (-774 |#2|))) (-85))) (-15 -3678 ((-584 (-959 |#1| |#2|)) (-584 (-704 |#1| (-774 |#2|))) (-85))) (-15 -3678 ((-584 (-1059 |#1| (-469 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|)))) (-584 (-704 |#1| (-774 |#2|))) (-85)))) (-389) (-584 (-1089))) (T -568))
+((-3678 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-389)) (-14 *6 (-584 (-1089))) (-5 *2 (-584 (-1059 *5 (-469 (-774 *6)) (-774 *6) (-704 *5 (-774 *6))))) (-5 *1 (-568 *5 *6)))) (-3678 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-389)) (-14 *6 (-584 (-1089))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-568 *5 *6)))) (-2251 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-389)) (-14 *6 (-584 (-1089))) (-5 *2 (-584 (-1059 *5 (-469 (-774 *6)) (-774 *6) (-704 *5 (-774 *6))))) (-5 *1 (-568 *5 *6)))) (-2250 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-389)) (-14 *6 (-584 (-1089))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-568 *5 *6)))) (-2249 (*1 *2 *2) (-12 (-5 *2 (-584 (-704 *3 (-774 *4)))) (-4 *3 (-389)) (-14 *4 (-584 (-1089))) (-5 *1 (-568 *3 *4)))) (-2248 (*1 *2 *2) (|partial| -12 (-5 *2 (-584 (-704 *3 (-774 *4)))) (-4 *3 (-389)) (-14 *4 (-584 (-1089))) (-5 *1 (-568 *3 *4)))) (-2247 (*1 *2 *3) (-12 (-5 *3 (-584 (-704 *4 (-774 *5)))) (-4 *4 (-389)) (-14 *5 (-584 (-1089))) (-5 *2 (-85)) (-5 *1 (-568 *4 *5)))))
+((-3591 (((-86) (-86)) 88 T ELT)) (-2255 ((|#2| |#2|) 28 T ELT)) (-2830 ((|#2| |#2| (-1004 |#2|)) 84 T ELT) ((|#2| |#2| (-1089)) 50 T ELT)) (-2253 ((|#2| |#2|) 27 T ELT)) (-2254 ((|#2| |#2|) 29 T ELT)) (-2252 (((-85) (-86)) 33 T ELT)) (-2257 ((|#2| |#2|) 24 T ELT)) (-2258 ((|#2| |#2|) 26 T ELT)) (-2256 ((|#2| |#2|) 25 T ELT)))
+(((-569 |#1| |#2|) (-10 -7 (-15 -2252 ((-85) (-86))) (-15 -3591 ((-86) (-86))) (-15 -2258 (|#2| |#2|)) (-15 -2257 (|#2| |#2|)) (-15 -2256 (|#2| |#2|)) (-15 -2255 (|#2| |#2|)) (-15 -2253 (|#2| |#2|)) (-15 -2254 (|#2| |#2|)) (-15 -2830 (|#2| |#2| (-1089))) (-15 -2830 (|#2| |#2| (-1004 |#2|)))) (-495) (-13 (-361 |#1|) (-916) (-1114))) (T -569))
+((-2830 (*1 *2 *2 *3) (-12 (-5 *3 (-1004 *2)) (-4 *2 (-13 (-361 *4) (-916) (-1114))) (-4 *4 (-495)) (-5 *1 (-569 *4 *2)))) (-2830 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-361 *4) (-916) (-1114))))) (-2254 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-361 *3) (-916) (-1114))))) (-2253 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-361 *3) (-916) (-1114))))) (-2255 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-361 *3) (-916) (-1114))))) (-2256 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-361 *3) (-916) (-1114))))) (-2257 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-361 *3) (-916) (-1114))))) (-2258 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-361 *3) (-916) (-1114))))) (-3591 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-569 *3 *4)) (-4 *4 (-13 (-361 *3) (-916) (-1114))))) (-2252 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-569 *4 *5)) (-4 *5 (-13 (-361 *4) (-916) (-1114))))))
+((-3488 (($ $) 38 T ELT)) (-3635 (($ $) 21 T ELT)) (-3486 (($ $) 37 T ELT)) (-3634 (($ $) 22 T ELT)) (-3490 (($ $) 36 T ELT)) (-3633 (($ $) 23 T ELT)) (-3623 (($) 48 T ELT)) (-3938 (($ $) 45 T ELT)) (-2255 (($ $) 17 T ELT)) (-2830 (($ $ (-1004 $)) 7 T ELT) (($ $ (-1089)) 6 T ELT)) (-3939 (($ $) 46 T ELT)) (-2253 (($ $) 15 T ELT)) (-2254 (($ $) 16 T ELT)) (-3491 (($ $) 35 T ELT)) (-3632 (($ $) 24 T ELT)) (-3489 (($ $) 34 T ELT)) (-3631 (($ $) 25 T ELT)) (-3487 (($ $) 33 T ELT)) (-3630 (($ $) 26 T ELT)) (-3494 (($ $) 44 T ELT)) (-3482 (($ $) 32 T ELT)) (-3492 (($ $) 43 T ELT)) (-3480 (($ $) 31 T ELT)) (-3496 (($ $) 42 T ELT)) (-3484 (($ $) 30 T ELT)) (-3497 (($ $) 41 T ELT)) (-3485 (($ $) 29 T ELT)) (-3495 (($ $) 40 T ELT)) (-3483 (($ $) 28 T ELT)) (-3493 (($ $) 39 T ELT)) (-3481 (($ $) 27 T ELT)) (-2257 (($ $) 19 T ELT)) (-2258 (($ $) 20 T ELT)) (-2256 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT)))
+(((-570) (-113)) (T -570))
+((-2258 (*1 *1 *1) (-4 *1 (-570))) (-2257 (*1 *1 *1) (-4 *1 (-570))) (-2256 (*1 *1 *1) (-4 *1 (-570))) (-2255 (*1 *1 *1) (-4 *1 (-570))) (-2254 (*1 *1 *1) (-4 *1 (-570))) (-2253 (*1 *1 *1) (-4 *1 (-570))))
+(-13 (-872) (-1114) (-10 -8 (-15 -2258 ($ $)) (-15 -2257 ($ $)) (-15 -2256 ($ $)) (-15 -2255 ($ $)) (-15 -2254 ($ $)) (-15 -2253 ($ $))))
+(((-35) . T) ((-66) . T) ((-239) . T) ((-430) . T) ((-872) . T) ((-1114) . T) ((-1117) . T))
+((-2268 (((-418 |#1| |#2|) (-206 |#1| |#2|)) 65 T ELT)) (-2261 (((-584 (-206 |#1| |#2|)) (-584 (-418 |#1| |#2|))) 90 T ELT)) (-2262 (((-418 |#1| |#2|) (-584 (-418 |#1| |#2|)) (-774 |#1|)) 92 T ELT) (((-418 |#1| |#2|) (-584 (-418 |#1| |#2|)) (-584 (-418 |#1| |#2|)) (-774 |#1|)) 91 T ELT)) (-2259 (((-2 (|:| |gblist| (-584 (-206 |#1| |#2|))) (|:| |gvlist| (-584 (-484)))) (-584 (-418 |#1| |#2|))) 136 T ELT)) (-2266 (((-584 (-418 |#1| |#2|)) (-774 |#1|) (-584 (-418 |#1| |#2|)) (-584 (-418 |#1| |#2|))) 105 T ELT)) (-2260 (((-2 (|:| |glbase| (-584 (-206 |#1| |#2|))) (|:| |glval| (-584 (-484)))) (-584 (-206 |#1| |#2|))) 147 T ELT)) (-2264 (((-1178 |#2|) (-418 |#1| |#2|) (-584 (-418 |#1| |#2|))) 70 T ELT)) (-2263 (((-584 (-418 |#1| |#2|)) (-584 (-418 |#1| |#2|))) 47 T ELT)) (-2267 (((-206 |#1| |#2|) (-206 |#1| |#2|) (-584 (-206 |#1| |#2|))) 61 T ELT)) (-2265 (((-206 |#1| |#2|) (-584 |#2|) (-206 |#1| |#2|) (-584 (-206 |#1| |#2|))) 113 T ELT)))
+(((-571 |#1| |#2|) (-10 -7 (-15 -2259 ((-2 (|:| |gblist| (-584 (-206 |#1| |#2|))) (|:| |gvlist| (-584 (-484)))) (-584 (-418 |#1| |#2|)))) (-15 -2260 ((-2 (|:| |glbase| (-584 (-206 |#1| |#2|))) (|:| |glval| (-584 (-484)))) (-584 (-206 |#1| |#2|)))) (-15 -2261 ((-584 (-206 |#1| |#2|)) (-584 (-418 |#1| |#2|)))) (-15 -2262 ((-418 |#1| |#2|) (-584 (-418 |#1| |#2|)) (-584 (-418 |#1| |#2|)) (-774 |#1|))) (-15 -2262 ((-418 |#1| |#2|) (-584 (-418 |#1| |#2|)) (-774 |#1|))) (-15 -2263 ((-584 (-418 |#1| |#2|)) (-584 (-418 |#1| |#2|)))) (-15 -2264 ((-1178 |#2|) (-418 |#1| |#2|) (-584 (-418 |#1| |#2|)))) (-15 -2265 ((-206 |#1| |#2|) (-584 |#2|) (-206 |#1| |#2|) (-584 (-206 |#1| |#2|)))) (-15 -2266 ((-584 (-418 |#1| |#2|)) (-774 |#1|) (-584 (-418 |#1| |#2|)) (-584 (-418 |#1| |#2|)))) (-15 -2267 ((-206 |#1| |#2|) (-206 |#1| |#2|) (-584 (-206 |#1| |#2|)))) (-15 -2268 ((-418 |#1| |#2|) (-206 |#1| |#2|)))) (-584 (-1089)) (-389)) (T -571))
+((-2268 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1089))) (-4 *5 (-389)) (-5 *2 (-418 *4 *5)) (-5 *1 (-571 *4 *5)))) (-2267 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-206 *4 *5))) (-5 *2 (-206 *4 *5)) (-14 *4 (-584 (-1089))) (-4 *5 (-389)) (-5 *1 (-571 *4 *5)))) (-2266 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-584 (-418 *4 *5))) (-5 *3 (-774 *4)) (-14 *4 (-584 (-1089))) (-4 *5 (-389)) (-5 *1 (-571 *4 *5)))) (-2265 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-206 *5 *6))) (-4 *6 (-389)) (-5 *2 (-206 *5 *6)) (-14 *5 (-584 (-1089))) (-5 *1 (-571 *5 *6)))) (-2264 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-418 *5 *6))) (-5 *3 (-418 *5 *6)) (-14 *5 (-584 (-1089))) (-4 *6 (-389)) (-5 *2 (-1178 *6)) (-5 *1 (-571 *5 *6)))) (-2263 (*1 *2 *2) (-12 (-5 *2 (-584 (-418 *3 *4))) (-14 *3 (-584 (-1089))) (-4 *4 (-389)) (-5 *1 (-571 *3 *4)))) (-2262 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-418 *5 *6))) (-5 *4 (-774 *5)) (-14 *5 (-584 (-1089))) (-5 *2 (-418 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-389)))) (-2262 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-584 (-418 *5 *6))) (-5 *4 (-774 *5)) (-14 *5 (-584 (-1089))) (-5 *2 (-418 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-389)))) (-2261 (*1 *2 *3) (-12 (-5 *3 (-584 (-418 *4 *5))) (-14 *4 (-584 (-1089))) (-4 *5 (-389)) (-5 *2 (-584 (-206 *4 *5))) (-5 *1 (-571 *4 *5)))) (-2260 (*1 *2 *3) (-12 (-14 *4 (-584 (-1089))) (-4 *5 (-389)) (-5 *2 (-2 (|:| |glbase| (-584 (-206 *4 *5))) (|:| |glval| (-584 (-484))))) (-5 *1 (-571 *4 *5)) (-5 *3 (-584 (-206 *4 *5))))) (-2259 (*1 *2 *3) (-12 (-5 *3 (-584 (-418 *4 *5))) (-14 *4 (-584 (-1089))) (-4 *5 (-389)) (-5 *2 (-2 (|:| |gblist| (-584 (-206 *4 *5))) (|:| |gvlist| (-584 (-484))))) (-5 *1 (-571 *4 *5)))))
+((-2566 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-72))) ELT)) (-3595 (($) NIL T ELT) (($ (-584 (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))))) NIL T ELT)) (-2196 (((-1184) $ (-1072) (-1072)) NIL (|has| $ (-6 -3992)) ELT)) (-3784 (((-51) $ (-1072) (-51)) NIL T ELT) (((-51) $ (-1089) (-51)) 16 T ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3856 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3991)) ELT)) (-3706 (($ (-1 (-85) (-2 (|:| -3856 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3991)) ELT)) (-2229 (((-3 (-51) #1="failed") (-1072) $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-1013))) ELT)) (-3401 (($ (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) $) NIL (|has| $ (-6 -3991)) ELT) (($ (-1 (-85) (-2 (|:| -3856 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3991)) ELT) (((-3 (-51) #1#) (-1072) $) NIL T ELT)) (-3402 (($ (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3856 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3991)) ELT)) (-3838 (((-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-1 (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3856 (-1072)) (|:| |entry| (-51)))) $ (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3856 (-1072)) (|:| |entry| (-51)))) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (((-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-1 (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3856 (-1072)) (|:| |entry| (-51)))) $ (-2 (|:| -3856 (-1072)) (|:| |entry| (-51)))) NIL (|has| $ (-6 -3991)) ELT) (((-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-1 (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3856 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3991)) ELT)) (-1574 (((-51) $ (-1072) (-51)) NIL (|has| $ (-6 -3992)) ELT)) (-3110 (((-51) $ (-1072)) NIL T ELT)) (-2887 (((-584 (-2 (|:| -3856 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3991)) ELT) (((-584 (-51)) $) NIL (|has| $ (-6 -3991)) ELT)) (-2269 (($ $) NIL T ELT)) (-2198 (((-1072) $) NIL (|has| (-1072) (-757)) ELT)) (-2606 (((-584 (-2 (|:| -3856 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3991)) ELT) (((-584 (-51)) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (((-85) (-51) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-51) (-1013))) ELT)) (-2199 (((-1072) $) NIL (|has| (-1072) (-757)) ELT)) (-1947 (($ (-1 (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3856 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3992)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3856 (-1072)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-2270 (($ (-335)) 8 T ELT)) (-3239 (((-1072) $) NIL (OR (|has| (-51) (-1013)) (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-1013))) ELT)) (-2230 (((-584 (-1072)) $) NIL T ELT)) (-2231 (((-85) (-1072) $) NIL T ELT)) (-1272 (((-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) $) NIL T ELT)) (-3605 (($ (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) $) NIL T ELT)) (-2201 (((-584 (-1072)) $) NIL T ELT)) (-2202 (((-85) (-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL (OR (|has| (-51) (-1013)) (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-1013))) ELT)) (-3797 (((-51) $) NIL (|has| (-1072) (-757)) ELT)) (-1352 (((-3 (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) #1#) (-1 (-85) (-2 (|:| -3856 (-1072)) (|:| |entry| (-51)))) $) NIL T ELT)) (-2197 (($ $ (-51)) NIL (|has| $ (-6 -3992)) ELT)) (-1273 (((-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3856 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3991)) ELT) (((-85) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 (-2 (|:| -3856 (-1072)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-259 (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (($ $ (-248 (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-259 (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (($ $ (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-2 (|:| -3856 (-1072)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-259 (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (($ $ (-584 (-2 (|:| -3856 (-1072)) (|:| |entry| (-51)))) (-584 (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-259 (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (($ $ (-584 (-51)) (-584 (-51))) NIL (-12 (|has| (-51) (-259 (-51))) (|has| (-51) (-1013))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-259 (-51))) (|has| (-51) (-1013))) ELT) (($ $ (-248 (-51))) NIL (-12 (|has| (-51) (-259 (-51))) (|has| (-51) (-1013))) ELT) (($ $ (-584 (-248 (-51)))) NIL (-12 (|has| (-51) (-259 (-51))) (|has| (-51) (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2200 (((-85) (-51) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-51) (-1013))) ELT)) (-2203 (((-584 (-51)) $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) NIL T ELT)) (-3796 (((-51) $ (-1072)) NIL T ELT) (((-51) $ (-1072) (-51)) NIL T ELT) (((-51) $ (-1089)) 14 T ELT)) (-1464 (($) NIL T ELT) (($ (-584 (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))))) NIL T ELT)) (-1944 (((-695) (-1 (-85) (-2 (|:| -3856 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-1013))) ELT) (((-695) (-51) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-51) (-1013))) ELT) (((-695) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -3991)) ELT)) (-3396 (($ $) NIL T ELT)) (-3968 (((-473) $) NIL (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-554 (-473))) ELT)) (-3526 (($ (-584 (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))))) NIL T ELT)) (-3942 (((-773) $) NIL (OR (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-553 (-773))) (|has| (-51) (-553 (-773)))) ELT)) (-1263 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-72))) ELT)) (-1274 (($ (-584 (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))))) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3856 (-1072)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3991)) ELT) (((-85) (-1 (-85) (-51)) $) NIL (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| (-51))) (-72))) ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-572) (-13 (-1106 (-1072) (-51)) (-241 (-1089) (-51)) (-10 -8 (-15 -2270 ($ (-335))) (-15 -2269 ($ $)) (-15 -3784 ((-51) $ (-1089) (-51)))))) (T -572))
+((-2270 (*1 *1 *2) (-12 (-5 *2 (-335)) (-5 *1 (-572)))) (-2269 (*1 *1 *1) (-5 *1 (-572))) (-3784 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1089)) (-5 *1 (-572)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1770 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1310 (((-3 $ #1#) $ $) NIL T ELT)) (-3220 (((-1178 (-631 |#1|))) NIL (|has| |#2| (-358 |#1|)) ELT) (((-1178 (-631 |#1|)) (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1727 (((-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3720 (($) NIL T CONST)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2010 (-584 $))) #1#)) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1701 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1786 (((-631 |#1|)) NIL (|has| |#2| (-358 |#1|)) ELT) (((-631 |#1|) (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1725 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1784 (((-631 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT) (((-631 |#1|) $ (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2402 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1898 (((-1084 (-858 |#1|))) NIL (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-311))) ELT)) (-2405 (($ $ (-831)) NIL T ELT)) (-1723 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1703 (((-1084 |#1|) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1788 ((|#1|) NIL (|has| |#2| (-358 |#1|)) ELT) ((|#1| (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1721 (((-1084 |#1|) $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1715 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1790 (($ (-1178 |#1|)) NIL (|has| |#2| (-358 |#1|)) ELT) (($ (-1178 |#1|) (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3463 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-3106 (((-831)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1712 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2431 (($ $ (-831)) NIL T ELT)) (-1708 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1706 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1710 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2010 (-584 $))) #1#)) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1702 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1787 (((-631 |#1|)) NIL (|has| |#2| (-358 |#1|)) ELT) (((-631 |#1|) (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1726 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1785 (((-631 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT) (((-631 |#1|) $ (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2403 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1902 (((-1084 (-858 |#1|))) NIL (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-311))) ELT)) (-2404 (($ $ (-831)) NIL T ELT)) (-1724 ((|#1| $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1704 (((-1084 |#1|) $) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-1789 ((|#1|) NIL (|has| |#2| (-358 |#1|)) ELT) ((|#1| (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1722 (((-1084 |#1|) $) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1716 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-1707 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1709 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1711 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1714 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3796 ((|#1| $ (-484)) NIL (|has| |#2| (-358 |#1|)) ELT)) (-3221 (((-631 |#1|) (-1178 $)) NIL (|has| |#2| (-358 |#1|)) ELT) (((-1178 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT) (((-631 |#1|) (-1178 $) (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT) (((-1178 |#1|) $ (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3968 (($ (-1178 |#1|)) NIL (|has| |#2| (-358 |#1|)) ELT) (((-1178 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT)) (-1890 (((-584 (-858 |#1|))) NIL (|has| |#2| (-358 |#1|)) ELT) (((-584 (-858 |#1|)) (-1178 $)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2433 (($ $ $) NIL T ELT)) (-1720 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-3942 (((-773) $) NIL T ELT) ((|#2| $) 11 T ELT) (($ |#2|) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2010 (((-1178 $)) NIL (|has| |#2| (-358 |#1|)) ELT)) (-1705 (((-584 (-1178 |#1|))) NIL (OR (-12 (|has| |#2| (-315 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-495)))) ELT)) (-2434 (($ $ $ $) NIL T ELT)) (-1718 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2543 (($ (-631 |#1|) $) NIL (|has| |#2| (-358 |#1|)) ELT)) (-2432 (($ $ $) NIL T ELT)) (-1719 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1717 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-1713 (((-85)) NIL (|has| |#2| (-315 |#1|)) ELT)) (-2658 (($) 18 T CONST)) (-3054 (((-85) $ $) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 19 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 10 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-573 |#1| |#2|) (-13 (-684 |#1|) (-553 |#2|) (-10 -8 (-15 -3942 ($ |#2|)) (IF (|has| |#2| (-358 |#1|)) (-6 (-358 |#1|)) |%noBranch|) (IF (|has| |#2| (-315 |#1|)) (-6 (-315 |#1|)) |%noBranch|))) (-146) (-684 |#1|)) (T -573))
+((-3942 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-573 *3 *2)) (-4 *2 (-684 *3)))))
+((-3945 (($ $ |#2|) 10 T ELT)))
+(((-574 |#1| |#2|) (-10 -7 (-15 -3945 (|#1| |#1| |#2|))) (-575 |#2|) (-146)) (T -574))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3526 (($ $ $) 39 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3945 (($ $ |#1|) 38 (|has| |#1| (-311)) ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT)))
+(((-575 |#1|) (-113) (-146)) (T -575))
+((-3526 (*1 *1 *1 *1) (-12 (-4 *1 (-575 *2)) (-4 *2 (-146)))) (-3945 (*1 *1 *1 *2) (-12 (-4 *1 (-575 *2)) (-4 *2 (-146)) (-4 *2 (-311)))))
+(-13 (-655 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3526 ($ $ $)) (IF (|has| |t#1| (-311)) (-15 -3945 ($ $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1013) . T) ((-1128) . T))
+((-2272 (((-3 (-751 |#2|) #1="failed") |#2| (-248 |#2|) (-1072)) 105 T ELT) (((-3 (-751 |#2|) (-2 (|:| |leftHandLimit| (-3 (-751 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-751 |#2|) #1#))) #1#) |#2| (-248 (-751 |#2|))) 130 T ELT)) (-2271 (((-3 (-744 |#2|) #1#) |#2| (-248 (-744 |#2|))) 135 T ELT)))
+(((-576 |#1| |#2|) (-10 -7 (-15 -2272 ((-3 (-751 |#2|) (-2 (|:| |leftHandLimit| (-3 (-751 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-751 |#2|) #1#))) #1#) |#2| (-248 (-751 |#2|)))) (-15 -2271 ((-3 (-744 |#2|) #1#) |#2| (-248 (-744 |#2|)))) (-15 -2272 ((-3 (-751 |#2|) #1#) |#2| (-248 |#2|) (-1072)))) (-13 (-389) (-951 (-484)) (-581 (-484))) (-13 (-27) (-1114) (-361 |#1|))) (T -576))
+((-2272 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-248 *3)) (-5 *5 (-1072)) (-4 *3 (-13 (-27) (-1114) (-361 *6))) (-4 *6 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-751 *3)) (-5 *1 (-576 *6 *3)))) (-2271 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-248 (-744 *3))) (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-744 *3)) (-5 *1 (-576 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5))))) (-2272 (*1 *2 *3 *4) (-12 (-5 *4 (-248 (-751 *3))) (-4 *3 (-13 (-27) (-1114) (-361 *5))) (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-3 (-751 *3) (-2 (|:| |leftHandLimit| (-3 (-751 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-751 *3) #1#))) "failed")) (-5 *1 (-576 *5 *3)))))
+((-2272 (((-3 (-751 (-347 (-858 |#1|))) #1="failed") (-347 (-858 |#1|)) (-248 (-347 (-858 |#1|))) (-1072)) 86 T ELT) (((-3 (-751 (-347 (-858 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-751 (-347 (-858 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-751 (-347 (-858 |#1|))) #1#))) #1#) (-347 (-858 |#1|)) (-248 (-347 (-858 |#1|)))) 20 T ELT) (((-3 (-751 (-347 (-858 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-751 (-347 (-858 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-751 (-347 (-858 |#1|))) #1#))) #1#) (-347 (-858 |#1|)) (-248 (-751 (-858 |#1|)))) 35 T ELT)) (-2271 (((-744 (-347 (-858 |#1|))) (-347 (-858 |#1|)) (-248 (-347 (-858 |#1|)))) 23 T ELT) (((-744 (-347 (-858 |#1|))) (-347 (-858 |#1|)) (-248 (-744 (-858 |#1|)))) 43 T ELT)))
+(((-577 |#1|) (-10 -7 (-15 -2272 ((-3 (-751 (-347 (-858 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-751 (-347 (-858 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-751 (-347 (-858 |#1|))) #1#))) #1#) (-347 (-858 |#1|)) (-248 (-751 (-858 |#1|))))) (-15 -2272 ((-3 (-751 (-347 (-858 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-751 (-347 (-858 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-751 (-347 (-858 |#1|))) #1#))) #1#) (-347 (-858 |#1|)) (-248 (-347 (-858 |#1|))))) (-15 -2271 ((-744 (-347 (-858 |#1|))) (-347 (-858 |#1|)) (-248 (-744 (-858 |#1|))))) (-15 -2271 ((-744 (-347 (-858 |#1|))) (-347 (-858 |#1|)) (-248 (-347 (-858 |#1|))))) (-15 -2272 ((-3 (-751 (-347 (-858 |#1|))) #1#) (-347 (-858 |#1|)) (-248 (-347 (-858 |#1|))) (-1072)))) (-389)) (T -577))
+((-2272 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-248 (-347 (-858 *6)))) (-5 *5 (-1072)) (-5 *3 (-347 (-858 *6))) (-4 *6 (-389)) (-5 *2 (-751 *3)) (-5 *1 (-577 *6)))) (-2271 (*1 *2 *3 *4) (-12 (-5 *4 (-248 (-347 (-858 *5)))) (-5 *3 (-347 (-858 *5))) (-4 *5 (-389)) (-5 *2 (-744 *3)) (-5 *1 (-577 *5)))) (-2271 (*1 *2 *3 *4) (-12 (-5 *4 (-248 (-744 (-858 *5)))) (-4 *5 (-389)) (-5 *2 (-744 (-347 (-858 *5)))) (-5 *1 (-577 *5)) (-5 *3 (-347 (-858 *5))))) (-2272 (*1 *2 *3 *4) (-12 (-5 *4 (-248 (-347 (-858 *5)))) (-5 *3 (-347 (-858 *5))) (-4 *5 (-389)) (-5 *2 (-3 (-751 *3) (-2 (|:| |leftHandLimit| (-3 (-751 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-751 *3) #1#))) #2="failed")) (-5 *1 (-577 *5)))) (-2272 (*1 *2 *3 *4) (-12 (-5 *4 (-248 (-751 (-858 *5)))) (-4 *5 (-389)) (-5 *2 (-3 (-751 (-347 (-858 *5))) (-2 (|:| |leftHandLimit| (-3 (-751 (-347 (-858 *5))) #1#)) (|:| |rightHandLimit| (-3 (-751 (-347 (-858 *5))) #1#))) #2#)) (-5 *1 (-577 *5)) (-5 *3 (-347 (-858 *5))))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3133 (((-695)) NIL T ELT)) (-2992 (($) NIL T ELT)) (-2529 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2855 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2008 (((-831) $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2398 (($ (-831)) 11 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2849 (($ (-168 |#1|)) 12 T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-774 |#1|)) 7 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)))
+(((-578 |#1|) (-13 (-753) (-556 (-774 |#1|)) (-10 -8 (-15 -2849 ($ (-168 |#1|))))) (-584 (-1089))) (T -578))
+((-2849 (*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-584 (-1089))) (-5 *1 (-578 *3)))))
+((-2275 (((-3 (-1178 (-347 |#1|)) #1="failed") (-1178 |#2|) |#2|) 64 (-2558 (|has| |#1| (-311))) ELT) (((-3 (-1178 |#1|) #1#) (-1178 |#2|) |#2|) 49 (|has| |#1| (-311)) ELT)) (-2273 (((-85) (-1178 |#2|)) 33 T ELT)) (-2274 (((-3 (-1178 |#1|) #1#) (-1178 |#2|)) 40 T ELT)))
+(((-579 |#1| |#2|) (-10 -7 (-15 -2273 ((-85) (-1178 |#2|))) (-15 -2274 ((-3 (-1178 |#1|) #1="failed") (-1178 |#2|))) (IF (|has| |#1| (-311)) (-15 -2275 ((-3 (-1178 |#1|) #1#) (-1178 |#2|) |#2|)) (-15 -2275 ((-3 (-1178 (-347 |#1|)) #1#) (-1178 |#2|) |#2|)))) (-495) (-13 (-962) (-581 |#1|))) (T -579))
+((-2275 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-962) (-581 *5))) (-2558 (-4 *5 (-311))) (-4 *5 (-495)) (-5 *2 (-1178 (-347 *5))) (-5 *1 (-579 *5 *4)))) (-2275 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-962) (-581 *5))) (-4 *5 (-311)) (-4 *5 (-495)) (-5 *2 (-1178 *5)) (-5 *1 (-579 *5 *4)))) (-2274 (*1 *2 *3) (|partial| -12 (-5 *3 (-1178 *5)) (-4 *5 (-13 (-962) (-581 *4))) (-4 *4 (-495)) (-5 *2 (-1178 *4)) (-5 *1 (-579 *4 *5)))) (-2273 (*1 *2 *3) (-12 (-5 *3 (-1178 *5)) (-4 *5 (-13 (-962) (-581 *4))) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-579 *4 *5)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3770 (((-584 (-783 (-578 |#2|) |#1|)) $) NIL T ELT)) (-1310 (((-3 $ "failed") $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3955 (($ $) NIL T ELT)) (-2891 (($ |#1| (-578 |#2|)) NIL T ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2276 (($ (-584 |#1|)) 25 T ELT)) (-1982 (((-578 |#2|) $) NIL T ELT)) (-3171 ((|#1| $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3907 (((-107)) 16 T ELT)) (-3221 (((-1178 |#1|) $) 44 T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-578 |#2|)) 11 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) 20 T CONST)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ |#1|) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) 17 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
+(((-580 |#1| |#2|) (-13 (-1186 |#1|) (-556 (-578 |#2|)) (-447 |#1| (-578 |#2|)) (-10 -8 (-15 -2276 ($ (-584 |#1|))) (-15 -3221 ((-1178 |#1|) $)))) (-311) (-584 (-1089))) (T -580))
+((-2276 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-311)) (-5 *1 (-580 *3 *4)) (-14 *4 (-584 (-1089))))) (-3221 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-580 *3 *4)) (-4 *3 (-311)) (-14 *4 (-584 (-1089))))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-2277 (((-631 |#1|) (-631 $)) 35 T ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) 34 T ELT)) (-2278 (((-631 |#1|) (-1178 $)) 37 T ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 36 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ |#1| $) 32 T ELT)))
+(((-581 |#1|) (-113) (-962)) (T -581))
+((-2278 (*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-631 *4)))) (-2278 (*1 *2 *3 *1) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-2 (|:| |mat| (-631 *4)) (|:| |vec| (-1178 *4)))))) (-2277 (*1 *2 *3) (-12 (-5 *3 (-631 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-631 *4)))) (-2277 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *1)) (-5 *4 (-1178 *1)) (-4 *1 (-581 *5)) (-4 *5 (-962)) (-5 *2 (-2 (|:| |mat| (-631 *5)) (|:| |vec| (-1178 *5)))))))
+(-13 (-591 |t#1|) (-10 -8 (-15 -2278 ((-631 |t#1|) (-1178 $))) (-15 -2278 ((-2 (|:| |mat| (-631 |t#1|)) (|:| |vec| (-1178 |t#1|))) (-1178 $) $)) (-15 -2277 ((-631 |t#1|) (-631 $))) (-15 -2277 ((-2 (|:| |mat| (-631 |t#1|)) (|:| |vec| (-1178 |t#1|))) (-631 $) (-1178 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1310 (((-3 $ "failed") $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-2279 (($ (-584 |#1|)) 23 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3796 ((|#1| $ (-580 |#1| |#2|)) 46 T ELT)) (-3907 (((-107)) 13 T ELT)) (-3221 (((-1178 |#1|) $) 42 T ELT)) (-3942 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) 18 T CONST)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ |#1|) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) 14 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
+(((-582 |#1| |#2|) (-13 (-1186 |#1|) (-241 (-580 |#1| |#2|) |#1|) (-10 -8 (-15 -2279 ($ (-584 |#1|))) (-15 -3221 ((-1178 |#1|) $)))) (-311) (-584 (-1089))) (T -582))
+((-2279 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-311)) (-5 *1 (-582 *3 *4)) (-14 *4 (-584 (-1089))))) (-3221 (*1 *2 *1) (-12 (-5 *2 (-1178 *3)) (-5 *1 (-582 *3 *4)) (-4 *3 (-311)) (-14 *4 (-584 (-1089))))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT) (($ $ |#1|) 20 T ELT)))
+(((-583 |#1|) (-113) (-1025)) (T -583))
+NIL
+(-13 (-589 |t#1|) (-964 |t#1|))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 |#1|) . T) ((-964 |#1|) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3398 ((|#1| $) NIL T ELT)) (-3791 ((|#1| $) NIL T ELT)) (-3793 (($ $) NIL T ELT)) (-2196 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-3781 (($ $ (-484)) 71 (|has| $ (-6 -3992)) ELT)) (-1730 (((-85) $) NIL (|has| |#1| (-757)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1728 (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-757))) ELT) (($ (-1 (-85) |#1| |#1|) $) 68 (|has| $ (-6 -3992)) ELT)) (-2907 (($ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3438 (((-85) $ (-695)) NIL T ELT)) (-3023 ((|#1| $ |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3783 (($ $ $) 26 (|has| $ (-6 -3992)) ELT)) (-3782 ((|#1| $ |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3785 ((|#1| $ |#1|) 24 (|has| $ (-6 -3992)) ELT)) (-3784 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3992)) ELT) ((|#1| $ #2="first" |#1|) 25 (|has| $ (-6 -3992)) ELT) (($ $ #3="rest" $) 27 (|has| $ (-6 -3992)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -3992)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3992)) ELT) ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3024 (($ $ (-584 $)) NIL (|has| $ (-6 -3992)) ELT)) (-2282 (($ $ $) 77 (|has| |#1| (-1013)) ELT)) (-2281 (($ $ $) 78 (|has| |#1| (-1013)) ELT)) (-2280 (($ $ $) 81 (|has| |#1| (-1013)) ELT)) (-1568 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3706 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3792 ((|#1| $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-2295 (($ $) 31 (|has| $ (-6 -3992)) ELT)) (-2296 (($ $) 32 T ELT)) (-3795 (($ $) 21 T ELT) (($ $ (-695)) 36 T ELT)) (-2366 (($ $) 66 (|has| |#1| (-1013)) ELT)) (-1351 (($ $) 76 (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3401 (($ |#1| $) NIL (|has| |#1| (-1013)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3402 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3838 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-1574 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3110 ((|#1| $ (-484)) NIL T ELT)) (-3439 (((-85) $) NIL T ELT)) (-3415 (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) (-1 (-85) |#1|) $) NIL T ELT)) (-2887 (((-584 |#1|) $) 30 (|has| $ (-6 -3991)) ELT)) (-2284 (((-85) $) 9 T ELT)) (-3029 (((-584 $) $) NIL T ELT)) (-3025 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-2285 (($) 7 T CONST)) (-3610 (($ (-695) |#1|) NIL T ELT)) (-3715 (((-85) $ (-695)) NIL T ELT)) (-2198 (((-484) $) 35 (|has| (-484) (-757)) ELT)) (-2529 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2854 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 69 T ELT)) (-3514 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2606 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) 64 (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2199 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2855 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3530 (($ |#1|) NIL T ELT)) (-3712 (((-85) $ (-695)) NIL T ELT)) (-3028 (((-584 |#1|) $) NIL T ELT)) (-3523 (((-85) $) NIL T ELT)) (-3239 (((-1072) $) 62 (|has| |#1| (-1013)) ELT)) (-3794 ((|#1| $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3605 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2302 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2201 (((-584 (-484)) $) NIL T ELT)) (-2202 (((-85) (-484) $) NIL T ELT)) (-3240 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3797 ((|#1| $) 16 T ELT) (($ $ (-695)) NIL T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2197 (($ $ |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3440 (((-85) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 15 T ELT)) (-2200 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2203 (((-584 |#1|) $) NIL T ELT)) (-3399 (((-85) $) 20 T ELT)) (-3561 (($) 19 T ELT)) (-3796 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) 18 T ELT) (($ $ #3#) 23 T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT) ((|#1| $ (-484)) 80 T ELT) ((|#1| $ (-484) |#1|) NIL T ELT)) (-3027 (((-484) $ $) NIL T ELT)) (-1569 (($ $ (-1145 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-2303 (($ $ (-1145 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-3629 (((-85) $) 39 T ELT)) (-3788 (($ $) NIL T ELT)) (-3786 (($ $) NIL (|has| $ (-6 -3992)) ELT)) (-3789 (((-695) $) NIL T ELT)) (-3790 (($ $) 44 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-1729 (($ $ $ (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-3396 (($ $) 40 T ELT)) (-3968 (((-473) $) 89 (|has| |#1| (-554 (-473))) ELT)) (-3526 (($ (-584 |#1|)) 29 T ELT)) (-3457 (($ |#1| $) 10 T ELT)) (-3787 (($ $ $) 65 T ELT) (($ $ |#1|) NIL T ELT)) (-3798 (($ $ $) 75 T ELT) (($ |#1| $) 14 T ELT) (($ (-584 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3942 (((-773) $) 54 (|has| |#1| (-553 (-773))) ELT)) (-3518 (((-584 $) $) NIL T ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2283 (($ $ $) 11 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2564 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3054 (((-85) $ $) 58 (|has| |#1| (-72)) ELT)) (-2682 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3953 (((-695) $) 13 (|has| $ (-6 -3991)) ELT)))
+(((-584 |#1|) (-13 (-609 |#1|) (-10 -8 (-15 -2285 ($) -3948) (-15 -2284 ((-85) $)) (-15 -3457 ($ |#1| $)) (-15 -2283 ($ $ $)) (IF (|has| |#1| (-1013)) (PROGN (-15 -2282 ($ $ $)) (-15 -2281 ($ $ $)) (-15 -2280 ($ $ $))) |%noBranch|))) (-1128)) (T -584))
+((-2285 (*1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1128)))) (-2284 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-584 *3)) (-4 *3 (-1128)))) (-3457 (*1 *1 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1128)))) (-2283 (*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1128)))) (-2282 (*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1013)) (-4 *2 (-1128)))) (-2281 (*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1013)) (-4 *2 (-1128)))) (-2280 (*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1013)) (-4 *2 (-1128)))))
+((-3837 (((-584 |#2|) (-1 |#2| |#1| |#2|) (-584 |#1|) |#2|) 16 T ELT)) (-3838 ((|#2| (-1 |#2| |#1| |#2|) (-584 |#1|) |#2|) 18 T ELT)) (-3954 (((-584 |#2|) (-1 |#2| |#1|) (-584 |#1|)) 13 T ELT)))
+(((-585 |#1| |#2|) (-10 -7 (-15 -3837 ((-584 |#2|) (-1 |#2| |#1| |#2|) (-584 |#1|) |#2|)) (-15 -3838 (|#2| (-1 |#2| |#1| |#2|) (-584 |#1|) |#2|)) (-15 -3954 ((-584 |#2|) (-1 |#2| |#1|) (-584 |#1|)))) (-1128) (-1128)) (T -585))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-584 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-584 *6)) (-5 *1 (-585 *5 *6)))) (-3838 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-584 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-585 *5 *2)))) (-3837 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-584 *6)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-5 *2 (-584 *5)) (-5 *1 (-585 *6 *5)))))
+((-3418 ((|#2| (-584 |#1|) (-584 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-584 |#1|) (-584 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|) |#2|) 17 T ELT) ((|#2| (-584 |#1|) (-584 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|)) 12 T ELT)))
+(((-586 |#1| |#2|) (-10 -7 (-15 -3418 ((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|))) (-15 -3418 (|#2| (-584 |#1|) (-584 |#2|) |#1|)) (-15 -3418 ((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|) |#2|)) (-15 -3418 (|#2| (-584 |#1|) (-584 |#2|) |#1| |#2|)) (-15 -3418 ((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|) (-1 |#2| |#1|))) (-15 -3418 (|#2| (-584 |#1|) (-584 |#2|) |#1| (-1 |#2| |#1|)))) (-1013) (-1128)) (T -586))
+((-3418 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1013)) (-4 *2 (-1128)) (-5 *1 (-586 *5 *2)))) (-3418 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-584 *5)) (-5 *4 (-584 *6)) (-4 *5 (-1013)) (-4 *6 (-1128)) (-5 *1 (-586 *5 *6)))) (-3418 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-4 *5 (-1013)) (-4 *2 (-1128)) (-5 *1 (-586 *5 *2)))) (-3418 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 *5)) (-4 *6 (-1013)) (-4 *5 (-1128)) (-5 *2 (-1 *5 *6)) (-5 *1 (-586 *6 *5)))) (-3418 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-4 *5 (-1013)) (-4 *2 (-1128)) (-5 *1 (-586 *5 *2)))) (-3418 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *6)) (-4 *5 (-1013)) (-4 *6 (-1128)) (-5 *2 (-1 *6 *5)) (-5 *1 (-586 *5 *6)))))
+((-3954 (((-584 |#3|) (-1 |#3| |#1| |#2|) (-584 |#1|) (-584 |#2|)) 21 T ELT)))
+(((-587 |#1| |#2| |#3|) (-10 -7 (-15 -3954 ((-584 |#3|) (-1 |#3| |#1| |#2|) (-584 |#1|) (-584 |#2|)))) (-1128) (-1128) (-1128)) (T -587))
+((-3954 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-584 *6)) (-5 *5 (-584 *7)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-584 *8)) (-5 *1 (-587 *6 *7 *8)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 11 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-588 |#1|) (-13 (-995) (-553 |#1|)) (-1013)) (T -588))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT)))
+(((-589 |#1|) (-113) (-1025)) (T -589))
+((* (*1 *1 *2 *1) (-12 (-4 *1 (-589 *2)) (-4 *2 (-1025)))))
+(-13 (-1013) (-10 -8 (-15 * ($ |t#1| $))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2286 (($ |#1| |#1| $) 45 T ELT)) (-1568 (($ (-1 (-85) |#1|) $) 61 (|has| $ (-6 -3991)) ELT)) (-3706 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3720 (($) NIL T CONST)) (-2366 (($ $) 47 T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3401 (($ |#1| $) 58 (|has| $ (-6 -3991)) ELT) (($ (-1 (-85) |#1|) $) 60 (|has| $ (-6 -3991)) ELT)) (-3402 (($ |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2887 (((-584 |#1|) $) 9 (|has| $ (-6 -3991)) ELT)) (-2606 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 41 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3239 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-1272 ((|#1| $) 49 T ELT)) (-3605 (($ |#1| $) 30 T ELT) (($ |#1| $ (-695)) 44 T ELT)) (-3240 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1273 ((|#1| $) 52 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3399 (((-85) $) 23 T ELT)) (-3561 (($) 29 T ELT)) (-2287 (((-85) $) 56 T ELT)) (-2365 (((-584 (-2 (|:| |entry| |#1|) (|:| -1944 (-695)))) $) 69 T ELT)) (-1464 (($) 26 T ELT) (($ (-584 |#1|)) 19 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) 65 (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3396 (($ $) 20 T ELT)) (-3968 (((-473) $) 36 (|has| |#1| (-554 (-473))) ELT)) (-3526 (($ (-584 |#1|)) NIL T ELT)) (-3942 (((-773) $) 14 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1274 (($ (-584 |#1|)) 24 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 71 (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) 17 (|has| $ (-6 -3991)) ELT)))
+(((-590 |#1|) (-13 (-635 |#1|) (-10 -8 (-6 -3991) (-15 -2287 ((-85) $)) (-15 -2286 ($ |#1| |#1| $)))) (-1013)) (T -590))
+((-2287 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-590 *3)) (-4 *3 (-1013)))) (-2286 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-590 *2)) (-4 *2 (-1013)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ |#1| $) 32 T ELT)))
+(((-591 |#1|) (-113) (-970)) (T -591))
+NIL
+(-13 (-21) (-589 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3133 (((-695) $) 17 T ELT)) (-2293 (($ $ |#1|) 68 T ELT)) (-2295 (($ $) 39 T ELT)) (-2296 (($ $) 37 T ELT)) (-3154 (((-3 |#1| "failed") $) 60 T ELT)) (-3153 ((|#1| $) NIL T ELT)) (-2291 (($ |#1| |#2| $) 77 T ELT) (($ $ $) 79 T ELT)) (-3529 (((-773) $ (-1 (-773) (-773) (-773)) (-1 (-773) (-773) (-773)) (-484)) 55 T ELT)) (-2297 ((|#1| $ (-484)) 35 T ELT)) (-2298 ((|#2| $ (-484)) 34 T ELT)) (-2288 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-2289 (($ (-1 |#2| |#2|) $) 46 T ELT)) (-2294 (($) 13 T ELT)) (-2300 (($ |#1| |#2|) 24 T ELT)) (-2299 (($ (-584 (-2 (|:| |gen| |#1|) (|:| -3939 |#2|)))) 25 T ELT)) (-2301 (((-584 (-2 (|:| |gen| |#1|) (|:| -3939 |#2|))) $) 14 T ELT)) (-2292 (($ |#1| $) 69 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2290 (((-85) $ $) 74 T ELT)) (-3942 (((-773) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 27 T ELT)))
+(((-592 |#1| |#2| |#3|) (-13 (-1013) (-951 |#1|) (-10 -8 (-15 -3529 ((-773) $ (-1 (-773) (-773) (-773)) (-1 (-773) (-773) (-773)) (-484))) (-15 -2301 ((-584 (-2 (|:| |gen| |#1|) (|:| -3939 |#2|))) $)) (-15 -2300 ($ |#1| |#2|)) (-15 -2299 ($ (-584 (-2 (|:| |gen| |#1|) (|:| -3939 |#2|))))) (-15 -2298 (|#2| $ (-484))) (-15 -2297 (|#1| $ (-484))) (-15 -2296 ($ $)) (-15 -2295 ($ $)) (-15 -3133 ((-695) $)) (-15 -2294 ($)) (-15 -2293 ($ $ |#1|)) (-15 -2292 ($ |#1| $)) (-15 -2291 ($ |#1| |#2| $)) (-15 -2291 ($ $ $)) (-15 -2290 ((-85) $ $)) (-15 -2289 ($ (-1 |#2| |#2|) $)) (-15 -2288 ($ (-1 |#1| |#1|) $)))) (-1013) (-23) |#2|) (T -592))
+((-3529 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-773) (-773) (-773))) (-5 *4 (-484)) (-5 *2 (-773)) (-5 *1 (-592 *5 *6 *7)) (-4 *5 (-1013)) (-4 *6 (-23)) (-14 *7 *6))) (-2301 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3939 *4)))) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4))) (-2300 (*1 *1 *2 *3) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2299 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3939 *4)))) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-592 *3 *4 *5)))) (-2298 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *2 (-23)) (-5 *1 (-592 *4 *2 *5)) (-4 *4 (-1013)) (-14 *5 *2))) (-2297 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *2 (-1013)) (-5 *1 (-592 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2296 (*1 *1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2295 (*1 *1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-3133 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4))) (-2294 (*1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2293 (*1 *1 *1 *2) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2292 (*1 *1 *2 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2291 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2291 (*1 *1 *1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2290 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4))) (-2289 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1013)))) (-2288 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-592 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
+((-2199 (((-484) $) 30 T ELT)) (-2302 (($ |#2| $ (-484)) 26 T ELT) (($ $ $ (-484)) NIL T ELT)) (-2201 (((-584 (-484)) $) 12 T ELT)) (-2202 (((-85) (-484) $) 17 T ELT)) (-3798 (($ $ |#2|) 23 T ELT) (($ |#2| $) 24 T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)))
+(((-593 |#1| |#2|) (-10 -7 (-15 -2302 (|#1| |#1| |#1| (-484))) (-15 -2302 (|#1| |#2| |#1| (-484))) (-15 -3798 (|#1| (-584 |#1|))) (-15 -3798 (|#1| |#1| |#1|)) (-15 -3798 (|#1| |#2| |#1|)) (-15 -3798 (|#1| |#1| |#2|)) (-15 -2199 ((-484) |#1|)) (-15 -2201 ((-584 (-484)) |#1|)) (-15 -2202 ((-85) (-484) |#1|))) (-594 |#2|) (-1128)) (T -593))
+NIL
+((-2566 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-2196 (((-1184) $ (-484) (-484)) 44 (|has| $ (-6 -3992)) ELT)) (-3784 ((|#1| $ (-484) |#1|) 56 (|has| $ (-6 -3992)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 64 (|has| $ (-6 -3992)) ELT)) (-3706 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3991)) ELT)) (-3720 (($) 7 T CONST)) (-1351 (($ $) 84 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3402 (($ |#1| $) 83 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3991)) ELT)) (-3838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3991)) ELT)) (-1574 ((|#1| $ (-484) |#1|) 57 (|has| $ (-6 -3992)) ELT)) (-3110 ((|#1| $ (-484)) 55 T ELT)) (-2887 (((-584 |#1|) $) 30 (|has| $ (-6 -3991)) ELT)) (-3610 (($ (-695) |#1|) 74 T ELT)) (-2198 (((-484) $) 47 (|has| (-484) (-757)) ELT)) (-2606 (((-584 |#1|) $) 29 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-2199 (((-484) $) 48 (|has| (-484) (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3239 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-2302 (($ |#1| $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2201 (((-584 (-484)) $) 50 T ELT)) (-2202 (((-85) (-484) $) 51 T ELT)) (-3240 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3797 ((|#1| $) 46 (|has| (-484) (-757)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2197 (($ $ |#1|) 45 (|has| $ (-6 -3992)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2200 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2203 (((-584 |#1|) $) 52 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-3796 ((|#1| $ (-484) |#1|) 54 T ELT) ((|#1| $ (-484)) 53 T ELT) (($ $ (-1145 (-484))) 75 T ELT)) (-2303 (($ $ (-484)) 68 T ELT) (($ $ (-1145 (-484))) 67 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3396 (($ $) 10 T ELT)) (-3968 (((-473) $) 85 (|has| |#1| (-554 (-473))) ELT)) (-3526 (($ (-584 |#1|)) 76 T ELT)) (-3798 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-584 $)) 70 T ELT)) (-3942 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-594 |#1|) (-113) (-1128)) (T -594))
+((-3610 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-4 *1 (-594 *3)) (-4 *3 (-1128)))) (-3798 (*1 *1 *1 *2) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1128)))) (-3798 (*1 *1 *2 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1128)))) (-3798 (*1 *1 *1 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1128)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-594 *3)) (-4 *3 (-1128)))) (-3954 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-594 *3)) (-4 *3 (-1128)))) (-2303 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-594 *3)) (-4 *3 (-1128)))) (-2303 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 (-484))) (-4 *1 (-594 *3)) (-4 *3 (-1128)))) (-2302 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-594 *2)) (-4 *2 (-1128)))) (-2302 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-594 *3)) (-4 *3 (-1128)))) (-3784 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1145 (-484))) (|has| *1 (-6 -3992)) (-4 *1 (-594 *2)) (-4 *2 (-1128)))))
+(-13 (-539 (-484) |t#1|) (-124 |t#1|) (-241 (-1145 (-484)) $) (-10 -8 (-15 -3610 ($ (-695) |t#1|)) (-15 -3798 ($ $ |t#1|)) (-15 -3798 ($ |t#1| $)) (-15 -3798 ($ $ $)) (-15 -3798 ($ (-584 $))) (-15 -3954 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2303 ($ $ (-484))) (-15 -2303 ($ $ (-1145 (-484)))) (-15 -2302 ($ |t#1| $ (-484))) (-15 -2302 ($ $ $ (-484))) (IF (|has| $ (-6 -3992)) (-15 -3784 (|t#1| $ (-1145 (-484)) |t#1|)) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-539 (-484) |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 15 T ELT)) (-1310 (((-3 $ "failed") $ $) NIL T ELT)) (-3619 (((-484) $) NIL (|has| |#1| (-715)) ELT)) (-3720 (($) NIL T CONST)) (-3183 (((-85) $) NIL (|has| |#1| (-715)) ELT)) (-2996 ((|#1| $) 23 T ELT)) (-3184 (((-85) $) NIL (|has| |#1| (-715)) ELT)) (-2529 (($ $ $) NIL (|has| |#1| (-715)) ELT)) (-2855 (($ $ $) NIL (|has| |#1| (-715)) ELT)) (-3239 (((-1072) $) 48 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2995 ((|#3| $) 24 T ELT)) (-3942 (((-773) $) 43 T ELT)) (-1263 (((-85) $ $) 22 T ELT)) (-3379 (($ $) NIL (|has| |#1| (-715)) ELT)) (-2658 (($) 10 T CONST)) (-2564 (((-85) $ $) NIL (|has| |#1| (-715)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-715)) ELT)) (-3054 (((-85) $ $) 20 T ELT)) (-2682 (((-85) $ $) NIL (|has| |#1| (-715)) ELT)) (-2683 (((-85) $ $) 26 (|has| |#1| (-715)) ELT)) (-3945 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-3833 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) 29 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT)))
+(((-595 |#1| |#2| |#3|) (-13 (-655 |#2|) (-10 -8 (IF (|has| |#1| (-715)) (-6 (-715)) |%noBranch|) (-15 -3945 ($ $ |#3|)) (-15 -3945 ($ |#1| |#3|)) (-15 -2996 (|#1| $)) (-15 -2995 (|#3| $)))) (-655 |#2|) (-146) (|SubsetCategory| (-664) |#2|)) (T -595))
+((-3945 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-595 *3 *4 *2)) (-4 *3 (-655 *4)) (-4 *2 (|SubsetCategory| (-664) *4)))) (-3945 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-595 *2 *4 *3)) (-4 *2 (-655 *4)) (-4 *3 (|SubsetCategory| (-664) *4)))) (-2996 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-655 *3)) (-5 *1 (-595 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-664) *3)))) (-2995 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-664) *4)) (-5 *1 (-595 *3 *4 *2)) (-4 *3 (-655 *4)))))
+((-3569 (((-3 |#2| #1="failed") |#3| |#2| (-1089) |#2| (-584 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2010 (-584 |#2|))) #1#) |#3| |#2| (-1089)) 44 T ELT)))
+(((-596 |#1| |#2| |#3|) (-10 -7 (-15 -3569 ((-3 (-2 (|:| |particular| |#2|) (|:| -2010 (-584 |#2|))) #1="failed") |#3| |#2| (-1089))) (-15 -3569 ((-3 |#2| #1#) |#3| |#2| (-1089) |#2| (-584 |#2|)))) (-13 (-257) (-951 (-484)) (-581 (-484)) (-120)) (-13 (-29 |#1|) (-1114) (-872)) (-601 |#2|)) (T -596))
+((-3569 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-584 *2)) (-4 *2 (-13 (-29 *6) (-1114) (-872))) (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *1 (-596 *6 *2 *3)) (-4 *3 (-601 *2)))) (-3569 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1089)) (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-4 *4 (-13 (-29 *6) (-1114) (-872))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2010 (-584 *4)))) (-5 *1 (-596 *6 *4 *3)) (-4 *3 (-601 *4)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-2304 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2306 (($ $ $) 28 (|has| |#1| (-311)) ELT)) (-2307 (($ $ (-695)) 31 (|has| |#1| (-311)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-2534 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2535 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2536 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2531 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2533 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2547 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3154 (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3153 (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3955 (($ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-389)) ELT)) (-2408 (((-85) $) NIL T ELT)) (-2891 (($ |#1| (-695)) NIL T ELT)) (-2545 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2544 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2818 (((-695) $) NIL T ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2537 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2539 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2546 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3171 ((|#1| $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3462 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-3796 ((|#1| $ |#1|) 24 T ELT)) (-2308 (($ $ $) 33 (|has| |#1| (-311)) ELT)) (-3944 (((-695) $) NIL T ELT)) (-2815 ((|#1| $) NIL (|has| |#1| (-389)) ELT)) (-3942 (((-773) $) 20 T ELT) (($ (-484)) NIL T ELT) (($ (-347 (-484))) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (($ |#1|) NIL T ELT)) (-3813 (((-584 |#1|) $) NIL T ELT)) (-3673 ((|#1| $ (-695)) NIL T ELT)) (-3123 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2543 ((|#1| $ |#1| |#1|) 23 T ELT)) (-2518 (($ $) NIL T ELT)) (-2658 (($) 21 T CONST)) (-2664 (($) 8 T CONST)) (-2667 (($) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-597 |#1| |#2|) (-601 |#1|) (-962) (-1 |#1| |#1|)) (T -597))
+NIL
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-2304 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2306 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2307 (($ $ (-695)) NIL (|has| |#1| (-311)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-2534 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2535 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2536 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2531 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2533 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2547 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3154 (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3153 (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3955 (($ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-389)) ELT)) (-2408 (((-85) $) NIL T ELT)) (-2891 (($ |#1| (-695)) NIL T ELT)) (-2545 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2544 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2818 (((-695) $) NIL T ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2537 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2539 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2546 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3171 ((|#1| $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3462 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-3796 ((|#1| $ |#1|) NIL T ELT)) (-2308 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3944 (((-695) $) NIL T ELT)) (-2815 ((|#1| $) NIL (|has| |#1| (-389)) ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-347 (-484))) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (($ |#1|) NIL T ELT)) (-3813 (((-584 |#1|) $) NIL T ELT)) (-3673 ((|#1| $ (-695)) NIL T ELT)) (-3123 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2543 ((|#1| $ |#1| |#1|) NIL T ELT)) (-2518 (($ $) NIL T ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-2667 (($) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-598 |#1|) (-601 |#1|) (-190)) (T -598))
+NIL
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-2304 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2306 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2307 (($ $ (-695)) NIL (|has| |#1| (-311)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-2534 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2535 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2536 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2531 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2533 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2547 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3154 (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3153 (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3955 (($ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-389)) ELT)) (-2408 (((-85) $) NIL T ELT)) (-2891 (($ |#1| (-695)) NIL T ELT)) (-2545 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2544 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2818 (((-695) $) NIL T ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2537 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2539 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2546 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3171 ((|#1| $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3462 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-3796 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-2308 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3944 (((-695) $) NIL T ELT)) (-2815 ((|#1| $) NIL (|has| |#1| (-389)) ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-347 (-484))) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (($ |#1|) NIL T ELT)) (-3813 (((-584 |#1|) $) NIL T ELT)) (-3673 ((|#1| $ (-695)) NIL T ELT)) (-3123 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2543 ((|#1| $ |#1| |#1|) NIL T ELT)) (-2518 (($ $) NIL T ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-2667 (($) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-599 |#1| |#2|) (-13 (-601 |#1|) (-241 |#2| |#2|)) (-190) (-13 (-591 |#1|) (-10 -8 (-15 -3754 ($ $))))) (T -599))
+NIL
+((-2304 (($ $) 29 T ELT)) (-2518 (($ $) 27 T ELT)) (-2667 (($) 13 T ELT)))
+(((-600 |#1| |#2|) (-10 -7 (-15 -2304 (|#1| |#1|)) (-15 -2518 (|#1| |#1|)) (-15 -2667 (|#1|))) (-601 |#2|) (-962)) (T -600))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-2304 (($ $) 94 (|has| |#1| (-311)) ELT)) (-2306 (($ $ $) 96 (|has| |#1| (-311)) ELT)) (-2307 (($ $ (-695)) 95 (|has| |#1| (-311)) ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-2534 (($ $ $) 56 (|has| |#1| (-311)) ELT)) (-2535 (($ $ $) 57 (|has| |#1| (-311)) ELT)) (-2536 (($ $ $) 59 (|has| |#1| (-311)) ELT)) (-2532 (($ $ $) 54 (|has| |#1| (-311)) ELT)) (-2531 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) 53 (|has| |#1| (-311)) ELT)) (-2533 (((-3 $ #1="failed") $ $) 55 (|has| |#1| (-311)) ELT)) (-2547 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 58 (|has| |#1| (-311)) ELT)) (-3154 (((-3 (-484) #2="failed") $) 86 (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #2#) $) 83 (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #2#) $) 80 T ELT)) (-3153 (((-484) $) 85 (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) 82 (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) 81 T ELT)) (-3955 (($ $) 75 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-3499 (($ $) 66 (|has| |#1| (-389)) ELT)) (-2408 (((-85) $) 42 T ELT)) (-2891 (($ |#1| (-695)) 73 T ELT)) (-2545 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 68 (|has| |#1| (-495)) ELT)) (-2544 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 69 (|has| |#1| (-495)) ELT)) (-2818 (((-695) $) 77 T ELT)) (-2540 (($ $ $) 63 (|has| |#1| (-311)) ELT)) (-2541 (($ $ $) 64 (|has| |#1| (-311)) ELT)) (-2530 (($ $ $) 52 (|has| |#1| (-311)) ELT)) (-2538 (($ $ $) 61 (|has| |#1| (-311)) ELT)) (-2537 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) 60 (|has| |#1| (-311)) ELT)) (-2539 (((-3 $ #1#) $ $) 62 (|has| |#1| (-311)) ELT)) (-2546 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 65 (|has| |#1| (-311)) ELT)) (-3171 ((|#1| $) 76 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3462 (((-3 $ #1#) $ |#1|) 70 (|has| |#1| (-495)) ELT)) (-3796 ((|#1| $ |#1|) 99 T ELT)) (-2308 (($ $ $) 93 (|has| |#1| (-311)) ELT)) (-3944 (((-695) $) 78 T ELT)) (-2815 ((|#1| $) 67 (|has| |#1| (-389)) ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ (-347 (-484))) 84 (|has| |#1| (-951 (-347 (-484)))) ELT) (($ |#1|) 79 T ELT)) (-3813 (((-584 |#1|) $) 72 T ELT)) (-3673 ((|#1| $ (-695)) 74 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2543 ((|#1| $ |#1| |#1|) 71 T ELT)) (-2518 (($ $) 97 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-2667 (($) 98 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT)))
+(((-601 |#1|) (-113) (-962)) (T -601))
+((-2667 (*1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)))) (-2518 (*1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)))) (-2306 (*1 *1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-2307 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-601 *3)) (-4 *3 (-962)) (-4 *3 (-311)))) (-2304 (*1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-2308 (*1 *1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-311)))))
+(-13 (-762 |t#1|) (-241 |t#1| |t#1|) (-10 -8 (-15 -2667 ($)) (-15 -2518 ($ $)) (IF (|has| |t#1| (-311)) (PROGN (-15 -2306 ($ $ $)) (-15 -2307 ($ $ (-695))) (-15 -2304 ($ $)) (-15 -2308 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((-556 (-484)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-241 |#1| |#1|) . T) ((-352 |#1|) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-664) . T) ((-951 (-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((-951 (-484)) |has| |#1| (-951 (-484))) ((-951 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-762 |#1|) . T))
+((-2305 (((-584 (-598 (-347 |#2|))) (-598 (-347 |#2|))) 86 (|has| |#1| (-27)) ELT)) (-3728 (((-584 (-598 (-347 |#2|))) (-598 (-347 |#2|))) 85 (|has| |#1| (-27)) ELT) (((-584 (-598 (-347 |#2|))) (-598 (-347 |#2|)) (-1 (-584 |#1|) |#2|)) 19 T ELT)))
+(((-602 |#1| |#2|) (-10 -7 (-15 -3728 ((-584 (-598 (-347 |#2|))) (-598 (-347 |#2|)) (-1 (-584 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3728 ((-584 (-598 (-347 |#2|))) (-598 (-347 |#2|)))) (-15 -2305 ((-584 (-598 (-347 |#2|))) (-598 (-347 |#2|))))) |%noBranch|)) (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484)))) (-1154 |#1|)) (T -602))
+((-2305 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-4 *5 (-1154 *4)) (-5 *2 (-584 (-598 (-347 *5)))) (-5 *1 (-602 *4 *5)) (-5 *3 (-598 (-347 *5))))) (-3728 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-4 *5 (-1154 *4)) (-5 *2 (-584 (-598 (-347 *5)))) (-5 *1 (-602 *4 *5)) (-5 *3 (-598 (-347 *5))))) (-3728 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-4 *6 (-1154 *5)) (-5 *2 (-584 (-598 (-347 *6)))) (-5 *1 (-602 *5 *6)) (-5 *3 (-598 (-347 *6))))))
+((-2306 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-2307 ((|#2| |#2| (-695) (-1 |#1| |#1|)) 45 T ELT)) (-2308 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT)))
+(((-603 |#1| |#2|) (-10 -7 (-15 -2306 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2307 (|#2| |#2| (-695) (-1 |#1| |#1|))) (-15 -2308 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-311) (-601 |#1|)) (T -603))
+((-2308 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-311)) (-5 *1 (-603 *4 *2)) (-4 *2 (-601 *4)))) (-2307 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-695)) (-5 *4 (-1 *5 *5)) (-4 *5 (-311)) (-5 *1 (-603 *5 *2)) (-4 *2 (-601 *5)))) (-2306 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-311)) (-5 *1 (-603 *4 *2)) (-4 *2 (-601 *4)))))
+((-2309 (($ $ $) 9 T ELT)))
+(((-604 |#1|) (-10 -7 (-15 -2309 (|#1| |#1| |#1|))) (-605)) (T -604))
+NIL
+((-2311 (($ $) 8 T ELT)) (-2309 (($ $ $) 6 T ELT)) (-2310 (($ $ $) 7 T ELT)))
+(((-605) (-113)) (T -605))
+((-2311 (*1 *1 *1) (-4 *1 (-605))) (-2310 (*1 *1 *1 *1) (-4 *1 (-605))) (-2309 (*1 *1 *1 *1) (-4 *1 (-605))))
+(-13 (-1128) (-10 -8 (-15 -2311 ($ $)) (-15 -2310 ($ $ $)) (-15 -2309 ($ $ $))))
+(((-13) . T) ((-1128) . T))
+((-2312 (((-3 (-584 (-1084 |#1|)) "failed") (-584 (-1084 |#1|)) (-1084 |#1|)) 33 T ELT)))
+(((-606 |#1|) (-10 -7 (-15 -2312 ((-3 (-584 (-1084 |#1|)) "failed") (-584 (-1084 |#1|)) (-1084 |#1|)))) (-822)) (T -606))
+((-2312 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1084 *4))) (-5 *3 (-1084 *4)) (-4 *4 (-822)) (-5 *1 (-606 *4)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3930 (((-584 |#1|) $) 85 T ELT)) (-3943 (($ $ (-695)) 95 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3935 (((-1203 |#1| |#2|) (-1203 |#1| |#2|) $) 50 T ELT)) (-3154 (((-3 (-615 |#1|) #1#) $) NIL T ELT)) (-3153 (((-615 |#1|) $) NIL T ELT)) (-3955 (($ $) 94 T ELT)) (-2418 (((-695) $) NIL T ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3934 (($ (-615 |#1|) |#2|) 70 T ELT)) (-3932 (($ $) 90 T ELT)) (-3954 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3936 (((-1203 |#1| |#2|) (-1203 |#1| |#2|) $) 49 T ELT)) (-1747 (((-2 (|:| |k| (-615 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2892 (((-615 |#1|) $) NIL T ELT)) (-3171 ((|#2| $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3764 (($ $ |#1| $) 32 T ELT) (($ $ (-584 |#1|) (-584 $)) 34 T ELT)) (-3944 (((-695) $) 92 T ELT)) (-3526 (($ $ $) 20 T ELT) (($ (-615 |#1|) (-615 |#1|)) 79 T ELT) (($ (-615 |#1|) $) 77 T ELT) (($ $ (-615 |#1|)) 78 T ELT)) (-3942 (((-773) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1194 |#1| |#2|) $) 60 T ELT) (((-1203 |#1| |#2|) $) 43 T ELT) (($ (-615 |#1|)) 27 T ELT)) (-3813 (((-584 |#2|) $) NIL T ELT)) (-3673 ((|#2| $ (-615 |#1|)) NIL T ELT)) (-3950 ((|#2| (-1203 |#1| |#2|) $) 45 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) 23 T CONST)) (-2663 (((-584 (-2 (|:| |k| (-615 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3941 (((-3 $ #1#) (-1194 |#1| |#2|)) 62 T ELT)) (-1731 (($ (-615 |#1|)) 14 T ELT)) (-3054 (((-85) $ $) 46 T ELT)) (-3945 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3833 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) 31 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-615 |#1|)) NIL T ELT)))
+(((-607 |#1| |#2|) (-13 (-323 |#1| |#2|) (-332 |#2| (-615 |#1|)) (-10 -8 (-15 -3941 ((-3 $ "failed") (-1194 |#1| |#2|))) (-15 -3526 ($ (-615 |#1|) (-615 |#1|))) (-15 -3526 ($ (-615 |#1|) $)) (-15 -3526 ($ $ (-615 |#1|))))) (-757) (-146)) (T -607))
+((-3941 (*1 *1 *2) (|partial| -12 (-5 *2 (-1194 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *1 (-607 *3 *4)))) (-3526 (*1 *1 *2 *2) (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146)))) (-3526 (*1 *1 *2 *1) (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146)))) (-3526 (*1 *1 *1 *2) (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146)))))
+((-1730 (((-85) $) NIL T ELT) (((-85) (-1 (-85) |#2| |#2|) $) 59 T ELT)) (-1728 (($ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $) 12 T ELT)) (-1568 (($ (-1 (-85) |#2|) $) 29 T ELT)) (-2295 (($ $) 65 T ELT)) (-2366 (($ $) 74 T ELT)) (-3401 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 43 T ELT)) (-3838 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-3415 (((-484) |#2| $ (-484)) 71 T ELT) (((-484) |#2| $) NIL T ELT) (((-484) (-1 (-85) |#2|) $) 54 T ELT)) (-3610 (($ (-695) |#2|) 63 T ELT)) (-2854 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 31 T ELT)) (-3514 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 24 T ELT)) (-3954 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-3530 (($ |#2|) 15 T ELT)) (-3605 (($ $ $ (-484)) 42 T ELT) (($ |#2| $ (-484)) 40 T ELT)) (-1352 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 53 T ELT)) (-1569 (($ $ (-1145 (-484))) 51 T ELT) (($ $ (-484)) 44 T ELT)) (-1729 (($ $ $ (-484)) 70 T ELT)) (-3396 (($ $) 68 T ELT)) (-2683 (((-85) $ $) 76 T ELT)))
+(((-608 |#1| |#2|) (-10 -7 (-15 -3530 (|#1| |#2|)) (-15 -1569 (|#1| |#1| (-484))) (-15 -1569 (|#1| |#1| (-1145 (-484)))) (-15 -3401 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3605 (|#1| |#2| |#1| (-484))) (-15 -3605 (|#1| |#1| |#1| (-484))) (-15 -2854 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1568 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3401 (|#1| |#2| |#1|)) (-15 -2366 (|#1| |#1|)) (-15 -2854 (|#1| |#1| |#1|)) (-15 -3514 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1730 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3415 ((-484) (-1 (-85) |#2|) |#1|)) (-15 -3415 ((-484) |#2| |#1|)) (-15 -3415 ((-484) |#2| |#1| (-484))) (-15 -3514 (|#1| |#1| |#1|)) (-15 -1730 ((-85) |#1|)) (-15 -1729 (|#1| |#1| |#1| (-484))) (-15 -2295 (|#1| |#1|)) (-15 -1728 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1728 (|#1| |#1|)) (-15 -2683 ((-85) |#1| |#1|)) (-15 -3838 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3838 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3838 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1352 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3610 (|#1| (-695) |#2|)) (-15 -3954 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3954 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3396 (|#1| |#1|))) (-609 |#2|) (-1128)) (T -608))
+NIL
+((-2566 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3398 ((|#1| $) 52 T ELT)) (-3791 ((|#1| $) 71 T ELT)) (-3793 (($ $) 73 T ELT)) (-2196 (((-1184) $ (-484) (-484)) 107 (|has| $ (-6 -3992)) ELT)) (-3781 (($ $ (-484)) 58 (|has| $ (-6 -3992)) ELT)) (-1730 (((-85) $) 153 (|has| |#1| (-757)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) 147 T ELT)) (-1728 (($ $) 157 (-12 (|has| |#1| (-757)) (|has| $ (-6 -3992))) ELT) (($ (-1 (-85) |#1| |#1|) $) 156 (|has| $ (-6 -3992)) ELT)) (-2907 (($ $) 152 (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $) 146 T ELT)) (-3438 (((-85) $ (-695)) 90 T ELT)) (-3023 ((|#1| $ |#1|) 43 (|has| $ (-6 -3992)) ELT)) (-3783 (($ $ $) 62 (|has| $ (-6 -3992)) ELT)) (-3782 ((|#1| $ |#1|) 60 (|has| $ (-6 -3992)) ELT)) (-3785 ((|#1| $ |#1|) 64 (|has| $ (-6 -3992)) ELT)) (-3784 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3992)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3992)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3992)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3992)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 127 (|has| $ (-6 -3992)) ELT) ((|#1| $ (-484) |#1|) 96 (|has| $ (-6 -3992)) ELT)) (-3024 (($ $ (-584 $)) 45 (|has| $ (-6 -3992)) ELT)) (-1568 (($ (-1 (-85) |#1|) $) 140 T ELT)) (-3706 (($ (-1 (-85) |#1|) $) 112 (|has| $ (-6 -3991)) ELT)) (-3792 ((|#1| $) 72 T ELT)) (-3720 (($) 7 T CONST)) (-2295 (($ $) 155 (|has| $ (-6 -3992)) ELT)) (-2296 (($ $) 145 T ELT)) (-3795 (($ $) 79 T ELT) (($ $ (-695)) 77 T ELT)) (-2366 (($ $) 142 (|has| |#1| (-1013)) ELT)) (-1351 (($ $) 109 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3401 (($ |#1| $) 141 (|has| |#1| (-1013)) ELT) (($ (-1 (-85) |#1|) $) 136 T ELT)) (-3402 (($ (-1 (-85) |#1|) $) 113 (|has| $ (-6 -3991)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3838 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-1574 ((|#1| $ (-484) |#1|) 95 (|has| $ (-6 -3992)) ELT)) (-3110 ((|#1| $ (-484)) 97 T ELT)) (-3439 (((-85) $) 93 T ELT)) (-3415 (((-484) |#1| $ (-484)) 150 (|has| |#1| (-1013)) ELT) (((-484) |#1| $) 149 (|has| |#1| (-1013)) ELT) (((-484) (-1 (-85) |#1|) $) 148 T ELT)) (-2887 (((-584 |#1|) $) 30 (|has| $ (-6 -3991)) ELT)) (-3029 (((-584 $) $) 54 T ELT)) (-3025 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-3610 (($ (-695) |#1|) 119 T ELT)) (-3715 (((-85) $ (-695)) 91 T ELT)) (-2198 (((-484) $) 105 (|has| (-484) (-757)) ELT)) (-2529 (($ $ $) 163 (|has| |#1| (-757)) ELT)) (-2854 (($ $ $) 143 (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 139 T ELT)) (-3514 (($ $ $) 151 (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 144 T ELT)) (-2606 (((-584 |#1|) $) 29 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-2199 (((-484) $) 104 (|has| (-484) (-757)) ELT)) (-2855 (($ $ $) 162 (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3530 (($ |#1|) 133 T ELT)) (-3712 (((-85) $ (-695)) 92 T ELT)) (-3028 (((-584 |#1|) $) 49 T ELT)) (-3523 (((-85) $) 53 T ELT)) (-3239 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3794 ((|#1| $) 76 T ELT) (($ $ (-695)) 74 T ELT)) (-3605 (($ $ $ (-484)) 138 T ELT) (($ |#1| $ (-484)) 137 T ELT)) (-2302 (($ $ $ (-484)) 126 T ELT) (($ |#1| $ (-484)) 125 T ELT)) (-2201 (((-584 (-484)) $) 102 T ELT)) (-2202 (((-85) (-484) $) 101 T ELT)) (-3240 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3797 ((|#1| $) 82 T ELT) (($ $ (-695)) 80 T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2197 (($ $ |#1|) 106 (|has| $ (-6 -3992)) ELT)) (-3440 (((-85) $) 94 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2200 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2203 (((-584 |#1|) $) 100 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-3796 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1145 (-484))) 118 T ELT) ((|#1| $ (-484)) 99 T ELT) ((|#1| $ (-484) |#1|) 98 T ELT)) (-3027 (((-484) $ $) 48 T ELT)) (-1569 (($ $ (-1145 (-484))) 135 T ELT) (($ $ (-484)) 134 T ELT)) (-2303 (($ $ (-1145 (-484))) 124 T ELT) (($ $ (-484)) 123 T ELT)) (-3629 (((-85) $) 50 T ELT)) (-3788 (($ $) 68 T ELT)) (-3786 (($ $) 65 (|has| $ (-6 -3992)) ELT)) (-3789 (((-695) $) 69 T ELT)) (-3790 (($ $) 70 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-1729 (($ $ $ (-484)) 154 (|has| $ (-6 -3992)) ELT)) (-3396 (($ $) 10 T ELT)) (-3968 (((-473) $) 108 (|has| |#1| (-554 (-473))) ELT)) (-3526 (($ (-584 |#1|)) 117 T ELT)) (-3787 (($ $ $) 67 T ELT) (($ $ |#1|) 66 T ELT)) (-3798 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-584 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3942 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-3518 (((-584 $) $) 55 T ELT)) (-3026 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3991)) ELT)) (-2564 (((-85) $ $) 161 (|has| |#1| (-757)) ELT)) (-2565 (((-85) $ $) 159 (|has| |#1| (-757)) ELT)) (-3054 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2682 (((-85) $ $) 160 (|has| |#1| (-757)) ELT)) (-2683 (((-85) $ $) 158 (|has| |#1| (-757)) ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-609 |#1|) (-113) (-1128)) (T -609))
+((-3530 (*1 *1 *2) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1128)))))
+(-13 (-1063 |t#1|) (-321 |t#1|) (-237 |t#1|) (-10 -8 (-15 -3530 ($ |t#1|))))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-757)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-237 |#1|) . T) ((-321 |#1|) . T) ((-426 |#1|) . T) ((-539 (-484) |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-594 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-924 |#1|) . T) ((-1013) OR (|has| |#1| (-1013)) (|has| |#1| (-757))) ((-1063 |#1|) . T) ((-1128) . T) ((-1167 |#1|) . T))
+((-3569 (((-584 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2010 (-584 |#3|)))) |#4| (-584 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2010 (-584 |#3|))) |#4| |#3|) 60 T ELT)) (-3106 (((-695) |#4| |#3|) 18 T ELT)) (-3336 (((-3 |#3| #1#) |#4| |#3|) 21 T ELT)) (-2313 (((-85) |#4| |#3|) 14 T ELT)))
+(((-610 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3569 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2010 (-584 |#3|))) |#4| |#3|)) (-15 -3569 ((-584 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2010 (-584 |#3|)))) |#4| (-584 |#3|))) (-15 -3336 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2313 ((-85) |#4| |#3|)) (-15 -3106 ((-695) |#4| |#3|))) (-311) (-13 (-321 |#1|) (-10 -7 (-6 -3992))) (-13 (-321 |#1|) (-10 -7 (-6 -3992))) (-628 |#1| |#2| |#3|)) (T -610))
+((-3106 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-4 *6 (-13 (-321 *5) (-10 -7 (-6 -3992)))) (-4 *4 (-13 (-321 *5) (-10 -7 (-6 -3992)))) (-5 *2 (-695)) (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))) (-2313 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-4 *6 (-13 (-321 *5) (-10 -7 (-6 -3992)))) (-4 *4 (-13 (-321 *5) (-10 -7 (-6 -3992)))) (-5 *2 (-85)) (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))) (-3336 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-311)) (-4 *5 (-13 (-321 *4) (-10 -7 (-6 -3992)))) (-4 *2 (-13 (-321 *4) (-10 -7 (-6 -3992)))) (-5 *1 (-610 *4 *5 *2 *3)) (-4 *3 (-628 *4 *5 *2)))) (-3569 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-4 *6 (-13 (-321 *5) (-10 -7 (-6 -3992)))) (-4 *7 (-13 (-321 *5) (-10 -7 (-6 -3992)))) (-5 *2 (-584 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2010 (-584 *7))))) (-5 *1 (-610 *5 *6 *7 *3)) (-5 *4 (-584 *7)) (-4 *3 (-628 *5 *6 *7)))) (-3569 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-4 *6 (-13 (-321 *5) (-10 -7 (-6 -3992)))) (-4 *4 (-13 (-321 *5) (-10 -7 (-6 -3992)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2010 (-584 *4)))) (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))))
+((-3569 (((-584 (-2 (|:| |particular| (-3 (-1178 |#1|) #1="failed")) (|:| -2010 (-584 (-1178 |#1|))))) (-584 (-584 |#1|)) (-584 (-1178 |#1|))) 22 T ELT) (((-584 (-2 (|:| |particular| (-3 (-1178 |#1|) #1#)) (|:| -2010 (-584 (-1178 |#1|))))) (-631 |#1|) (-584 (-1178 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1178 |#1|) #1#)) (|:| -2010 (-584 (-1178 |#1|)))) (-584 (-584 |#1|)) (-1178 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1178 |#1|) #1#)) (|:| -2010 (-584 (-1178 |#1|)))) (-631 |#1|) (-1178 |#1|)) 14 T ELT)) (-3106 (((-695) (-631 |#1|) (-1178 |#1|)) 30 T ELT)) (-3336 (((-3 (-1178 |#1|) #1#) (-631 |#1|) (-1178 |#1|)) 24 T ELT)) (-2313 (((-85) (-631 |#1|) (-1178 |#1|)) 27 T ELT)))
+(((-611 |#1|) (-10 -7 (-15 -3569 ((-2 (|:| |particular| (-3 (-1178 |#1|) #1="failed")) (|:| -2010 (-584 (-1178 |#1|)))) (-631 |#1|) (-1178 |#1|))) (-15 -3569 ((-2 (|:| |particular| (-3 (-1178 |#1|) #1#)) (|:| -2010 (-584 (-1178 |#1|)))) (-584 (-584 |#1|)) (-1178 |#1|))) (-15 -3569 ((-584 (-2 (|:| |particular| (-3 (-1178 |#1|) #1#)) (|:| -2010 (-584 (-1178 |#1|))))) (-631 |#1|) (-584 (-1178 |#1|)))) (-15 -3569 ((-584 (-2 (|:| |particular| (-3 (-1178 |#1|) #1#)) (|:| -2010 (-584 (-1178 |#1|))))) (-584 (-584 |#1|)) (-584 (-1178 |#1|)))) (-15 -3336 ((-3 (-1178 |#1|) #1#) (-631 |#1|) (-1178 |#1|))) (-15 -2313 ((-85) (-631 |#1|) (-1178 |#1|))) (-15 -3106 ((-695) (-631 |#1|) (-1178 |#1|)))) (-311)) (T -611))
+((-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-5 *4 (-1178 *5)) (-4 *5 (-311)) (-5 *2 (-695)) (-5 *1 (-611 *5)))) (-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-5 *4 (-1178 *5)) (-4 *5 (-311)) (-5 *2 (-85)) (-5 *1 (-611 *5)))) (-3336 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1178 *4)) (-5 *3 (-631 *4)) (-4 *4 (-311)) (-5 *1 (-611 *4)))) (-3569 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-584 *5))) (-4 *5 (-311)) (-5 *2 (-584 (-2 (|:| |particular| (-3 (-1178 *5) #1="failed")) (|:| -2010 (-584 (-1178 *5)))))) (-5 *1 (-611 *5)) (-5 *4 (-584 (-1178 *5))))) (-3569 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-4 *5 (-311)) (-5 *2 (-584 (-2 (|:| |particular| (-3 (-1178 *5) #1#)) (|:| -2010 (-584 (-1178 *5)))))) (-5 *1 (-611 *5)) (-5 *4 (-584 (-1178 *5))))) (-3569 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-584 *5))) (-4 *5 (-311)) (-5 *2 (-2 (|:| |particular| (-3 (-1178 *5) #1#)) (|:| -2010 (-584 (-1178 *5))))) (-5 *1 (-611 *5)) (-5 *4 (-1178 *5)))) (-3569 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| |particular| (-3 (-1178 *5) #1#)) (|:| -2010 (-584 (-1178 *5))))) (-5 *1 (-611 *5)) (-5 *4 (-1178 *5)))))
+((-2314 (((-2 (|:| |particular| (-3 (-1178 (-347 |#4|)) "failed")) (|:| -2010 (-584 (-1178 (-347 |#4|))))) (-584 |#4|) (-584 |#3|)) 51 T ELT)))
+(((-612 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2314 ((-2 (|:| |particular| (-3 (-1178 (-347 |#4|)) "failed")) (|:| -2010 (-584 (-1178 (-347 |#4|))))) (-584 |#4|) (-584 |#3|)))) (-495) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -612))
+((-2314 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *7)) (-4 *7 (-757)) (-4 *8 (-862 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-718)) (-5 *2 (-2 (|:| |particular| (-3 (-1178 (-347 *8)) "failed")) (|:| -2010 (-584 (-1178 (-347 *8)))))) (-5 *1 (-612 *5 *6 *7 *8)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1770 (((-3 $ #1="failed")) NIL (|has| |#2| (-495)) ELT)) (-3326 ((|#2| $) NIL T ELT)) (-3118 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1#) $ $) NIL T ELT)) (-3220 (((-1178 (-631 |#2|))) NIL T ELT) (((-1178 (-631 |#2|)) (-1178 $)) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-1727 (((-1178 $)) 41 T ELT)) (-3329 (($ |#2|) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3107 (($ $) NIL (|has| |#2| (-257)) ELT)) (-3109 (((-197 |#1| |#2|) $ (-484)) NIL T ELT)) (-1904 (((-3 (-2 (|:| |particular| $) (|:| -2010 (-584 $))) #1#)) NIL (|has| |#2| (-495)) ELT)) (-1701 (((-3 $ #1#)) NIL (|has| |#2| (-495)) ELT)) (-1786 (((-631 |#2|)) NIL T ELT) (((-631 |#2|) (-1178 $)) NIL T ELT)) (-1725 ((|#2| $) NIL T ELT)) (-1784 (((-631 |#2|) $) NIL T ELT) (((-631 |#2|) $ (-1178 $)) NIL T ELT)) (-2402 (((-3 $ #1#) $) NIL (|has| |#2| (-495)) ELT)) (-1898 (((-1084 (-858 |#2|))) NIL (|has| |#2| (-311)) ELT)) (-2405 (($ $ (-831)) NIL T ELT)) (-1723 ((|#2| $) NIL T ELT)) (-1703 (((-1084 |#2|) $) NIL (|has| |#2| (-495)) ELT)) (-1788 ((|#2|) NIL T ELT) ((|#2| (-1178 $)) NIL T ELT)) (-1721 (((-1084 |#2|) $) NIL T ELT)) (-1715 (((-85)) NIL T ELT)) (-3154 (((-3 (-484) #1#) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3153 (((-484) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) ((|#2| $) NIL T ELT)) (-1790 (($ (-1178 |#2|)) NIL T ELT) (($ (-1178 |#2|) (-1178 $)) NIL T ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-3106 (((-695) $) NIL (|has| |#2| (-495)) ELT) (((-831)) 42 T ELT)) (-3110 ((|#2| $ (-484) (-484)) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-2431 (($ $ (-831)) NIL T ELT)) (-2887 (((-584 |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2408 (((-85) $) NIL T ELT)) (-3105 (((-695) $) NIL (|has| |#2| (-495)) ELT)) (-3104 (((-584 (-197 |#1| |#2|)) $) NIL (|has| |#2| (-495)) ELT)) (-3112 (((-695) $) NIL T ELT)) (-1708 (((-85)) NIL T ELT)) (-3111 (((-695) $) NIL T ELT)) (-3323 ((|#2| $) NIL (|has| |#2| (-6 (-3993 #2="*"))) ELT)) (-3116 (((-484) $) NIL T ELT)) (-3114 (((-484) $) NIL T ELT)) (-2606 (((-584 |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT)) (-3115 (((-484) $) NIL T ELT)) (-3113 (((-484) $) NIL T ELT)) (-3121 (($ (-584 (-584 |#2|))) NIL T ELT)) (-1947 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3590 (((-584 (-584 |#2|)) $) NIL T ELT)) (-1706 (((-85)) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-1905 (((-3 (-2 (|:| |particular| $) (|:| -2010 (-584 $))) #1#)) NIL (|has| |#2| (-495)) ELT)) (-1702 (((-3 $ #1#)) NIL (|has| |#2| (-495)) ELT)) (-1787 (((-631 |#2|)) NIL T ELT) (((-631 |#2|) (-1178 $)) NIL T ELT)) (-1726 ((|#2| $) NIL T ELT)) (-1785 (((-631 |#2|) $) NIL T ELT) (((-631 |#2|) $ (-1178 $)) NIL T ELT)) (-2278 (((-631 (-484)) (-1178 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL T ELT) (((-631 |#2|) (-1178 $)) NIL T ELT)) (-2403 (((-3 $ #1#) $) NIL (|has| |#2| (-495)) ELT)) (-1902 (((-1084 (-858 |#2|))) NIL (|has| |#2| (-311)) ELT)) (-2404 (($ $ (-831)) NIL T ELT)) (-1724 ((|#2| $) NIL T ELT)) (-1704 (((-1084 |#2|) $) NIL (|has| |#2| (-495)) ELT)) (-1789 ((|#2|) NIL T ELT) ((|#2| (-1178 $)) NIL T ELT)) (-1722 (((-1084 |#2|) $) NIL T ELT)) (-1716 (((-85)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-1707 (((-85)) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-3586 (((-3 $ #1#) $) NIL (|has| |#2| (-311)) ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1714 (((-85)) NIL T ELT)) (-3462 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) NIL T ELT)) (-3796 ((|#2| $ (-484) (-484) |#2|) NIL T ELT) ((|#2| $ (-484) (-484)) 27 T ELT) ((|#2| $ (-484)) NIL T ELT)) (-3754 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#2| (-812 (-1089))) ELT)) (-3325 ((|#2| $) NIL T ELT)) (-3328 (($ (-584 |#2|)) NIL T ELT)) (-3119 (((-85) $) NIL T ELT)) (-3327 (((-197 |#1| |#2|) $) NIL T ELT)) (-3324 ((|#2| $) NIL (|has| |#2| (-6 (-3993 #2#))) ELT)) (-1944 (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT)) (-3396 (($ $) NIL T ELT)) (-3221 (((-631 |#2|) (-1178 $)) NIL T ELT) (((-1178 |#2|) $) NIL T ELT) (((-631 |#2|) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 |#2|) $ (-1178 $)) 30 T ELT)) (-3968 (($ (-1178 |#2|)) NIL T ELT) (((-1178 |#2|) $) NIL T ELT)) (-1890 (((-584 (-858 |#2|))) NIL T ELT) (((-584 (-858 |#2|)) (-1178 $)) NIL T ELT)) (-2433 (($ $ $) NIL T ELT)) (-1720 (((-85)) NIL T ELT)) (-3108 (((-197 |#1| |#2|) $ (-484)) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-347 (-484))) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) (($ |#2|) NIL T ELT) (((-631 |#2|) $) NIL T ELT)) (-3123 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2010 (((-1178 $)) 40 T ELT)) (-1705 (((-584 (-1178 |#2|))) NIL (|has| |#2| (-495)) ELT)) (-2434 (($ $ $ $) NIL T ELT)) (-1718 (((-85)) NIL T ELT)) (-2543 (($ (-631 |#2|) $) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3117 (((-85) $) NIL T ELT)) (-2432 (($ $ $) NIL T ELT)) (-1719 (((-85)) NIL T ELT)) (-1717 (((-85)) NIL T ELT)) (-1713 (((-85)) NIL T ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-2667 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#2| (-812 (-1089))) ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL (|has| |#2| (-311)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-197 |#1| |#2|) $ (-197 |#1| |#2|)) NIL T ELT) (((-197 |#1| |#2|) (-197 |#1| |#2|) $) NIL T ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-613 |#1| |#2|) (-13 (-1036 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-553 (-631 |#2|)) (-358 |#2|)) (-831) (-146)) (T -613))
+NIL
+((-2566 (((-85) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3245 (((-584 (-1048)) $) 12 T ELT)) (-3942 (((-773) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-614) (-13 (-995) (-10 -8 (-15 -3245 ((-584 (-1048)) $))))) (T -614))
+((-3245 (*1 *2 *1) (-12 (-5 *2 (-584 (-1048))) (-5 *1 (-614)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3930 (((-584 |#1|) $) NIL T ELT)) (-3134 (($ $) 62 T ELT)) (-2662 (((-85) $) NIL T ELT)) (-3154 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3153 ((|#1| $) NIL T ELT)) (-2529 (($ $ $) NIL T ELT)) (-2855 (($ $ $) NIL T ELT)) (-2317 (((-3 $ #1#) (-740 |#1|)) 28 T ELT)) (-2319 (((-85) (-740 |#1|)) 18 T ELT)) (-2318 (($ (-740 |#1|)) 29 T ELT)) (-2509 (((-85) $ $) 36 T ELT)) (-3829 (((-831) $) 43 T ELT)) (-3135 (($ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3728 (((-584 $) (-740 |#1|)) 20 T ELT)) (-3942 (((-773) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-740 |#1|) $) 47 T ELT) (((-619 |#1|) $) 52 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2316 (((-58 (-584 $)) (-584 |#1|) (-831)) 67 T ELT)) (-2315 (((-584 $) (-584 |#1|) (-831)) 70 T ELT)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 63 T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) 46 T ELT)))
+(((-615 |#1|) (-13 (-757) (-951 |#1|) (-10 -8 (-15 -2662 ((-85) $)) (-15 -3135 ($ $)) (-15 -3134 ($ $)) (-15 -3829 ((-831) $)) (-15 -2509 ((-85) $ $)) (-15 -3942 ((-740 |#1|) $)) (-15 -3942 ((-619 |#1|) $)) (-15 -3728 ((-584 $) (-740 |#1|))) (-15 -2319 ((-85) (-740 |#1|))) (-15 -2318 ($ (-740 |#1|))) (-15 -2317 ((-3 $ "failed") (-740 |#1|))) (-15 -3930 ((-584 |#1|) $)) (-15 -2316 ((-58 (-584 $)) (-584 |#1|) (-831))) (-15 -2315 ((-584 $) (-584 |#1|) (-831))))) (-757)) (T -615))
+((-2662 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-3135 (*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-757)))) (-3134 (*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-757)))) (-3829 (*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-2509 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-3728 (*1 *2 *3) (-12 (-5 *3 (-740 *4)) (-4 *4 (-757)) (-5 *2 (-584 (-615 *4))) (-5 *1 (-615 *4)))) (-2319 (*1 *2 *3) (-12 (-5 *3 (-740 *4)) (-4 *4 (-757)) (-5 *2 (-85)) (-5 *1 (-615 *4)))) (-2318 (*1 *1 *2) (-12 (-5 *2 (-740 *3)) (-4 *3 (-757)) (-5 *1 (-615 *3)))) (-2317 (*1 *1 *2) (|partial| -12 (-5 *2 (-740 *3)) (-4 *3 (-757)) (-5 *1 (-615 *3)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-2316 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-831)) (-4 *5 (-757)) (-5 *2 (-58 (-584 (-615 *5)))) (-5 *1 (-615 *5)))) (-2315 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-831)) (-4 *5 (-757)) (-5 *2 (-584 (-615 *5))) (-5 *1 (-615 *5)))))
+((-3398 ((|#2| $) 100 T ELT)) (-3793 (($ $) 121 T ELT)) (-3438 (((-85) $ (-695)) 35 T ELT)) (-3795 (($ $) 109 T ELT) (($ $ (-695)) 112 T ELT)) (-3439 (((-85) $) 122 T ELT)) (-3029 (((-584 $) $) 96 T ELT)) (-3025 (((-85) $ $) 92 T ELT)) (-3715 (((-85) $ (-695)) 33 T ELT)) (-2198 (((-484) $) 66 T ELT)) (-2199 (((-484) $) 65 T ELT)) (-3712 (((-85) $ (-695)) 31 T ELT)) (-3523 (((-85) $) 98 T ELT)) (-3794 ((|#2| $) 113 T ELT) (($ $ (-695)) 117 T ELT)) (-2302 (($ $ $ (-484)) 83 T ELT) (($ |#2| $ (-484)) 82 T ELT)) (-2201 (((-584 (-484)) $) 64 T ELT)) (-2202 (((-85) (-484) $) 59 T ELT)) (-3797 ((|#2| $) NIL T ELT) (($ $ (-695)) 108 T ELT)) (-3765 (($ $ (-484)) 125 T ELT)) (-3440 (((-85) $) 124 T ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 42 T ELT)) (-2203 (((-584 |#2|) $) 46 T ELT)) (-3796 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 107 T ELT) (($ $ "rest") 111 T ELT) ((|#2| $ "last") 120 T ELT) (($ $ (-1145 (-484))) 79 T ELT) ((|#2| $ (-484)) 57 T ELT) ((|#2| $ (-484) |#2|) 58 T ELT)) (-3027 (((-484) $ $) 91 T ELT)) (-2303 (($ $ (-1145 (-484))) 78 T ELT) (($ $ (-484)) 72 T ELT)) (-3629 (((-85) $) 87 T ELT)) (-3788 (($ $) 105 T ELT)) (-3789 (((-695) $) 104 T ELT)) (-3790 (($ $) 103 T ELT)) (-3526 (($ (-584 |#2|)) 53 T ELT)) (-2889 (($ $) 126 T ELT)) (-3518 (((-584 $) $) 90 T ELT)) (-3026 (((-85) $ $) 89 T ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 41 T ELT)) (-3054 (((-85) $ $) 20 T ELT)) (-3953 (((-695) $) 39 T ELT)))
+(((-616 |#1| |#2|) (-10 -7 (-15 -3054 ((-85) |#1| |#1|)) (-15 -2889 (|#1| |#1|)) (-15 -3765 (|#1| |#1| (-484))) (-15 -3438 ((-85) |#1| (-695))) (-15 -3715 ((-85) |#1| (-695))) (-15 -3712 ((-85) |#1| (-695))) (-15 -3439 ((-85) |#1|)) (-15 -3440 ((-85) |#1|)) (-15 -3796 (|#2| |#1| (-484) |#2|)) (-15 -3796 (|#2| |#1| (-484))) (-15 -2203 ((-584 |#2|) |#1|)) (-15 -2202 ((-85) (-484) |#1|)) (-15 -2201 ((-584 (-484)) |#1|)) (-15 -2199 ((-484) |#1|)) (-15 -2198 ((-484) |#1|)) (-15 -3526 (|#1| (-584 |#2|))) (-15 -3796 (|#1| |#1| (-1145 (-484)))) (-15 -2303 (|#1| |#1| (-484))) (-15 -2303 (|#1| |#1| (-1145 (-484)))) (-15 -2302 (|#1| |#2| |#1| (-484))) (-15 -2302 (|#1| |#1| |#1| (-484))) (-15 -3788 (|#1| |#1|)) (-15 -3789 ((-695) |#1|)) (-15 -3790 (|#1| |#1|)) (-15 -3793 (|#1| |#1|)) (-15 -3794 (|#1| |#1| (-695))) (-15 -3796 (|#2| |#1| "last")) (-15 -3794 (|#2| |#1|)) (-15 -3795 (|#1| |#1| (-695))) (-15 -3796 (|#1| |#1| "rest")) (-15 -3795 (|#1| |#1|)) (-15 -3797 (|#1| |#1| (-695))) (-15 -3796 (|#2| |#1| "first")) (-15 -3797 (|#2| |#1|)) (-15 -3025 ((-85) |#1| |#1|)) (-15 -3026 ((-85) |#1| |#1|)) (-15 -3027 ((-484) |#1| |#1|)) (-15 -3629 ((-85) |#1|)) (-15 -3796 (|#2| |#1| "value")) (-15 -3398 (|#2| |#1|)) (-15 -3523 ((-85) |#1|)) (-15 -3029 ((-584 |#1|) |#1|)) (-15 -3518 ((-584 |#1|) |#1|)) (-15 -1945 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1946 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3953 ((-695) |#1|))) (-617 |#2|) (-1128)) (T -616))
+NIL
+((-2566 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3398 ((|#1| $) 52 T ELT)) (-3791 ((|#1| $) 71 T ELT)) (-3793 (($ $) 73 T ELT)) (-2196 (((-1184) $ (-484) (-484)) 107 (|has| $ (-6 -3992)) ELT)) (-3781 (($ $ (-484)) 58 (|has| $ (-6 -3992)) ELT)) (-3438 (((-85) $ (-695)) 90 T ELT)) (-3023 ((|#1| $ |#1|) 43 (|has| $ (-6 -3992)) ELT)) (-3783 (($ $ $) 62 (|has| $ (-6 -3992)) ELT)) (-3782 ((|#1| $ |#1|) 60 (|has| $ (-6 -3992)) ELT)) (-3785 ((|#1| $ |#1|) 64 (|has| $ (-6 -3992)) ELT)) (-3784 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3992)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3992)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3992)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3992)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 127 (|has| $ (-6 -3992)) ELT) ((|#1| $ (-484) |#1|) 96 (|has| $ (-6 -3992)) ELT)) (-3024 (($ $ (-584 $)) 45 (|has| $ (-6 -3992)) ELT)) (-3706 (($ (-1 (-85) |#1|) $) 112 T ELT)) (-3792 ((|#1| $) 72 T ELT)) (-3720 (($) 7 T CONST)) (-2321 (($ $) 135 T ELT)) (-3795 (($ $) 79 T ELT) (($ $ (-695)) 77 T ELT)) (-1351 (($ $) 109 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3402 (($ |#1| $) 110 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT) (($ (-1 (-85) |#1|) $) 113 T ELT)) (-3838 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-1574 ((|#1| $ (-484) |#1|) 95 (|has| $ (-6 -3992)) ELT)) (-3110 ((|#1| $ (-484)) 97 T ELT)) (-3439 (((-85) $) 93 T ELT)) (-2887 (((-584 |#1|) $) 30 (|has| $ (-6 -3991)) ELT)) (-2320 (((-695) $) 134 T ELT)) (-3029 (((-584 $) $) 54 T ELT)) (-3025 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-3610 (($ (-695) |#1|) 119 T ELT)) (-3715 (((-85) $ (-695)) 91 T ELT)) (-2198 (((-484) $) 105 (|has| (-484) (-757)) ELT)) (-2606 (((-584 |#1|) $) 29 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-2199 (((-484) $) 104 (|has| (-484) (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3712 (((-85) $ (-695)) 92 T ELT)) (-3028 (((-584 |#1|) $) 49 T ELT)) (-3523 (((-85) $) 53 T ELT)) (-2323 (($ $) 137 T ELT)) (-2324 (((-85) $) 138 T ELT)) (-3239 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3794 ((|#1| $) 76 T ELT) (($ $ (-695)) 74 T ELT)) (-2302 (($ $ $ (-484)) 126 T ELT) (($ |#1| $ (-484)) 125 T ELT)) (-2201 (((-584 (-484)) $) 102 T ELT)) (-2202 (((-85) (-484) $) 101 T ELT)) (-3240 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-2322 ((|#1| $) 136 T ELT)) (-3797 ((|#1| $) 82 T ELT) (($ $ (-695)) 80 T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2197 (($ $ |#1|) 106 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-484)) 133 T ELT)) (-3440 (((-85) $) 94 T ELT)) (-2325 (((-85) $) 139 T ELT)) (-2326 (((-85) $) 140 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2200 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2203 (((-584 |#1|) $) 100 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-3796 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1145 (-484))) 118 T ELT) ((|#1| $ (-484)) 99 T ELT) ((|#1| $ (-484) |#1|) 98 T ELT)) (-3027 (((-484) $ $) 48 T ELT)) (-2303 (($ $ (-1145 (-484))) 124 T ELT) (($ $ (-484)) 123 T ELT)) (-3629 (((-85) $) 50 T ELT)) (-3788 (($ $) 68 T ELT)) (-3786 (($ $) 65 (|has| $ (-6 -3992)) ELT)) (-3789 (((-695) $) 69 T ELT)) (-3790 (($ $) 70 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3396 (($ $) 10 T ELT)) (-3968 (((-473) $) 108 (|has| |#1| (-554 (-473))) ELT)) (-3526 (($ (-584 |#1|)) 117 T ELT)) (-3787 (($ $ $) 67 (|has| $ (-6 -3992)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3992)) ELT)) (-3798 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-584 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-2889 (($ $) 132 T ELT)) (-3942 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-3518 (((-584 $) $) 55 T ELT)) (-3026 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-617 |#1|) (-113) (-1128)) (T -617))
+((-3402 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-617 *3)) (-4 *3 (-1128)))) (-3706 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-617 *3)) (-4 *3 (-1128)))) (-2326 (*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))) (-2325 (*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))) (-2324 (*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))) (-2323 (*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1128)))) (-2322 (*1 *2 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1128)))) (-2321 (*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1128)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1128)) (-5 *2 (-695)))) (-3765 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-617 *3)) (-4 *3 (-1128)))) (-2889 (*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1128)))))
+(-13 (-1063 |t#1|) (-10 -8 (-15 -3402 ($ (-1 (-85) |t#1|) $)) (-15 -3706 ($ (-1 (-85) |t#1|) $)) (-15 -2326 ((-85) $)) (-15 -2325 ((-85) $)) (-15 -2324 ((-85) $)) (-15 -2323 ($ $)) (-15 -2322 (|t#1| $)) (-15 -2321 ($ $)) (-15 -2320 ((-695) $)) (-15 -3765 ($ $ (-484))) (-15 -2889 ($ $))))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-539 (-484) |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-594 |#1|) . T) ((-924 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1063 |#1|) . T) ((-1128) . T) ((-1167 |#1|) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3175 (((-420) $) 15 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 24 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3230 (((-1048) $) 17 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-618) (-13 (-995) (-10 -8 (-15 -3175 ((-420) $)) (-15 -3230 ((-1048) $))))) (T -618))
+((-3175 (*1 *2 *1) (-12 (-5 *2 (-420)) (-5 *1 (-618)))) (-3230 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-618)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3930 (((-584 |#1|) $) 15 T ELT)) (-3134 (($ $) 19 T ELT)) (-2662 (((-85) $) 20 T ELT)) (-3154 (((-3 |#1| "failed") $) 23 T ELT)) (-3153 ((|#1| $) 21 T ELT)) (-3795 (($ $) 37 T ELT)) (-3932 (($ $) 25 T ELT)) (-2529 (($ $ $) NIL T ELT)) (-2855 (($ $ $) NIL T ELT)) (-2509 (((-85) $ $) 46 T ELT)) (-3829 (((-831) $) 40 T ELT)) (-3135 (($ $) 18 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3797 ((|#1| $) 36 T ELT)) (-3942 (((-773) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-740 |#1|) $) 28 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 13 T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT)))
+(((-619 |#1|) (-13 (-757) (-951 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3942 ((-740 |#1|) $)) (-15 -3797 (|#1| $)) (-15 -3135 ($ $)) (-15 -3829 ((-831) $)) (-15 -2509 ((-85) $ $)) (-15 -3932 ($ $)) (-15 -3795 ($ $)) (-15 -2662 ((-85) $)) (-15 -3134 ($ $)) (-15 -3930 ((-584 |#1|) $)))) (-757)) (T -619))
+((* (*1 *1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) (-3797 (*1 *2 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3135 (*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3829 (*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) (-2509 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) (-3932 (*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3795 (*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-2662 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) (-3134 (*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-619 *3)) (-4 *3 (-757)))))
+((-2335 ((|#1| (-1 |#1| (-695) |#1|) (-695) |#1|) 11 T ELT)) (-2327 ((|#1| (-1 |#1| |#1|) (-695) |#1|) 9 T ELT)))
+(((-620 |#1|) (-10 -7 (-15 -2327 (|#1| (-1 |#1| |#1|) (-695) |#1|)) (-15 -2335 (|#1| (-1 |#1| (-695) |#1|) (-695) |#1|))) (-1013)) (T -620))
+((-2335 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-695) *2)) (-5 *4 (-695)) (-4 *2 (-1013)) (-5 *1 (-620 *2)))) (-2327 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-695)) (-4 *2 (-1013)) (-5 *1 (-620 *2)))))
+((-2329 ((|#2| |#1| |#2|) 9 T ELT)) (-2328 ((|#1| |#1| |#2|) 8 T ELT)))
+(((-621 |#1| |#2|) (-10 -7 (-15 -2328 (|#1| |#1| |#2|)) (-15 -2329 (|#2| |#1| |#2|))) (-1013) (-1013)) (T -621))
+((-2329 (*1 *2 *3 *2) (-12 (-5 *1 (-621 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-2328 (*1 *2 *2 *3) (-12 (-5 *1 (-621 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
+((-2330 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT)))
+(((-622 |#1| |#2| |#3|) (-10 -7 (-15 -2330 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1013) (-1013) (-1013)) (T -622))
+((-2330 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)) (-5 *1 (-622 *5 *6 *2)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3315 (((-1129) $) 22 T ELT)) (-3314 (((-584 (-1129)) $) 20 T ELT)) (-2331 (($ (-584 (-1129)) (-1129)) 15 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 30 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT) (((-1129) $) 23 T ELT) (($ (-1028)) 11 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-623) (-13 (-995) (-553 (-1129)) (-10 -8 (-15 -3942 ($ (-1028))) (-15 -2331 ($ (-584 (-1129)) (-1129))) (-15 -3314 ((-584 (-1129)) $)) (-15 -3315 ((-1129) $))))) (T -623))
+((-3942 (*1 *1 *2) (-12 (-5 *2 (-1028)) (-5 *1 (-623)))) (-2331 (*1 *1 *2 *3) (-12 (-5 *2 (-584 (-1129))) (-5 *3 (-1129)) (-5 *1 (-623)))) (-3314 (*1 *2 *1) (-12 (-5 *2 (-584 (-1129))) (-5 *1 (-623)))) (-3315 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-623)))))
+((-2335 (((-1 |#1| (-695) |#1|) (-1 |#1| (-695) |#1|)) 26 T ELT)) (-2332 (((-1 |#1|) |#1|) 8 T ELT)) (-2334 ((|#1| |#1|) 19 T ELT)) (-2333 (((-584 |#1|) (-1 (-584 |#1|) (-584 |#1|)) (-484)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-3942 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-695)) 23 T ELT)))
+(((-624 |#1|) (-10 -7 (-15 -2332 ((-1 |#1|) |#1|)) (-15 -3942 ((-1 |#1|) |#1|)) (-15 -2333 (|#1| (-1 |#1| |#1|))) (-15 -2333 ((-584 |#1|) (-1 (-584 |#1|) (-584 |#1|)) (-484))) (-15 -2334 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-695))) (-15 -2335 ((-1 |#1| (-695) |#1|) (-1 |#1| (-695) |#1|)))) (-1013)) (T -624))
+((-2335 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-695) *3)) (-4 *3 (-1013)) (-5 *1 (-624 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *4 (-1013)) (-5 *1 (-624 *4)))) (-2334 (*1 *2 *2) (-12 (-5 *1 (-624 *2)) (-4 *2 (-1013)))) (-2333 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-584 *5) (-584 *5))) (-5 *4 (-484)) (-5 *2 (-584 *5)) (-5 *1 (-624 *5)) (-4 *5 (-1013)))) (-2333 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-624 *2)) (-4 *2 (-1013)))) (-3942 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1013)))) (-2332 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1013)))))
+((-2338 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-2337 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-3948 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-2336 (((-1 |#2| |#1|) |#2|) 11 T ELT)))
+(((-625 |#1| |#2|) (-10 -7 (-15 -2336 ((-1 |#2| |#1|) |#2|)) (-15 -2337 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3948 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2338 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1013) (-1013)) (T -625))
+((-2338 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-5 *2 (-1 *5 *4)) (-5 *1 (-625 *4 *5)))) (-3948 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1013)) (-5 *2 (-1 *5 *4)) (-5 *1 (-625 *4 *5)) (-4 *4 (-1013)))) (-2337 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-5 *2 (-1 *5)) (-5 *1 (-625 *4 *5)))) (-2336 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-625 *4 *3)) (-4 *4 (-1013)) (-4 *3 (-1013)))))
+((-2343 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-2339 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-2340 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-2341 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-2342 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT)))
+(((-626 |#1| |#2| |#3|) (-10 -7 (-15 -2339 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2340 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2341 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2342 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2343 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1013) (-1013) (-1013)) (T -626))
+((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-1 *7 *5)) (-5 *1 (-626 *5 *6 *7)))) (-2343 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-626 *4 *5 *6)))) (-2342 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-626 *4 *5 *6)) (-4 *4 (-1013)))) (-2341 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-626 *4 *5 *6)) (-4 *5 (-1013)))) (-2340 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *5)) (-5 *1 (-626 *4 *5 *6)))) (-2339 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1013)) (-4 *4 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *5)) (-5 *1 (-626 *5 *4 *6)))))
+((-3834 (($ (-695) (-695)) 42 T ELT)) (-2348 (($ $ $) 73 T ELT)) (-3410 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-3118 (((-85) $) 36 T ELT)) (-2347 (($ $ (-484) (-484)) 84 T ELT)) (-2346 (($ $ (-484) (-484)) 85 T ELT)) (-2345 (($ $ (-484) (-484) (-484) (-484)) 90 T ELT)) (-2350 (($ $) 71 T ELT)) (-3120 (((-85) $) 15 T ELT)) (-2344 (($ $ (-484) (-484) $) 91 T ELT)) (-3784 ((|#2| $ (-484) (-484) |#2|) NIL T ELT) (($ $ (-584 (-484)) (-584 (-484)) $) 89 T ELT)) (-3329 (($ (-695) |#2|) 55 T ELT)) (-3121 (($ (-584 (-584 |#2|))) 51 T ELT) (($ (-695) (-695) (-1 |#2| (-484) (-484))) 53 T ELT)) (-3590 (((-584 (-584 |#2|)) $) 80 T ELT)) (-2349 (($ $ $) 72 T ELT)) (-3462 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-3796 ((|#2| $ (-484) (-484)) NIL T ELT) ((|#2| $ (-484) (-484) |#2|) NIL T ELT) (($ $ (-584 (-484)) (-584 (-484))) 88 T ELT)) (-3328 (($ (-584 |#2|)) 56 T ELT) (($ (-584 $)) 58 T ELT)) (-3119 (((-85) $) 28 T ELT)) (-3942 (($ |#4|) 63 T ELT) (((-773) $) NIL T ELT)) (-3117 (((-85) $) 38 T ELT)) (-3945 (($ $ |#2|) 124 T ELT)) (-3833 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-3835 (($ $ $) 93 T ELT)) (** (($ $ (-695)) 111 T ELT) (($ $ (-484)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-484) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT)))
+(((-627 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3942 ((-773) |#1|)) (-15 ** (|#1| |#1| (-484))) (-15 -3945 (|#1| |#1| |#2|)) (-15 -3462 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-695))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3833 (|#1| |#1| |#1|)) (-15 -3835 (|#1| |#1| |#1|)) (-15 -2344 (|#1| |#1| (-484) (-484) |#1|)) (-15 -2345 (|#1| |#1| (-484) (-484) (-484) (-484))) (-15 -2346 (|#1| |#1| (-484) (-484))) (-15 -2347 (|#1| |#1| (-484) (-484))) (-15 -3784 (|#1| |#1| (-584 (-484)) (-584 (-484)) |#1|)) (-15 -3796 (|#1| |#1| (-584 (-484)) (-584 (-484)))) (-15 -3590 ((-584 (-584 |#2|)) |#1|)) (-15 -2348 (|#1| |#1| |#1|)) (-15 -2349 (|#1| |#1| |#1|)) (-15 -2350 (|#1| |#1|)) (-15 -3410 (|#1| |#1|)) (-15 -3410 (|#1| |#3|)) (-15 -3942 (|#1| |#4|)) (-15 -3328 (|#1| (-584 |#1|))) (-15 -3328 (|#1| (-584 |#2|))) (-15 -3329 (|#1| (-695) |#2|)) (-15 -3121 (|#1| (-695) (-695) (-1 |#2| (-484) (-484)))) (-15 -3121 (|#1| (-584 (-584 |#2|)))) (-15 -3834 (|#1| (-695) (-695))) (-15 -3117 ((-85) |#1|)) (-15 -3118 ((-85) |#1|)) (-15 -3119 ((-85) |#1|)) (-15 -3120 ((-85) |#1|)) (-15 -3784 (|#2| |#1| (-484) (-484) |#2|)) (-15 -3796 (|#2| |#1| (-484) (-484) |#2|)) (-15 -3796 (|#2| |#1| (-484) (-484)))) (-628 |#2| |#3| |#4|) (-962) (-321 |#2|) (-321 |#2|)) (T -627))
+NIL
+((-2566 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3834 (($ (-695) (-695)) 103 T ELT)) (-2348 (($ $ $) 92 T ELT)) (-3410 (($ |#2|) 96 T ELT) (($ $) 95 T ELT)) (-3118 (((-85) $) 105 T ELT)) (-2347 (($ $ (-484) (-484)) 88 T ELT)) (-2346 (($ $ (-484) (-484)) 87 T ELT)) (-2345 (($ $ (-484) (-484) (-484) (-484)) 86 T ELT)) (-2350 (($ $) 94 T ELT)) (-3120 (((-85) $) 107 T ELT)) (-2344 (($ $ (-484) (-484) $) 85 T ELT)) (-3784 ((|#1| $ (-484) (-484) |#1|) 48 T ELT) (($ $ (-584 (-484)) (-584 (-484)) $) 89 T ELT)) (-1255 (($ $ (-484) |#2|) 46 T ELT)) (-1254 (($ $ (-484) |#3|) 45 T ELT)) (-3329 (($ (-695) |#1|) 100 T ELT)) (-3720 (($) 7 T CONST)) (-3107 (($ $) 72 (|has| |#1| (-257)) ELT)) (-3109 ((|#2| $ (-484)) 50 T ELT)) (-3106 (((-695) $) 71 (|has| |#1| (-495)) ELT)) (-1574 ((|#1| $ (-484) (-484) |#1|) 47 T ELT)) (-3110 ((|#1| $ (-484) (-484)) 52 T ELT)) (-2887 (((-584 |#1|) $) 30 T ELT)) (-3105 (((-695) $) 70 (|has| |#1| (-495)) ELT)) (-3104 (((-584 |#3|) $) 69 (|has| |#1| (-495)) ELT)) (-3112 (((-695) $) 55 T ELT)) (-3610 (($ (-695) (-695) |#1|) 61 T ELT)) (-3111 (((-695) $) 54 T ELT)) (-3323 ((|#1| $) 67 (|has| |#1| (-6 (-3993 #1="*"))) ELT)) (-3116 (((-484) $) 59 T ELT)) (-3114 (((-484) $) 57 T ELT)) (-2606 (((-584 |#1|) $) 29 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3115 (((-484) $) 58 T ELT)) (-3113 (((-484) $) 56 T ELT)) (-3121 (($ (-584 (-584 |#1|))) 102 T ELT) (($ (-695) (-695) (-1 |#1| (-484) (-484))) 101 T ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3954 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3590 (((-584 (-584 |#1|)) $) 91 T ELT)) (-3239 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3586 (((-3 $ "failed") $) 66 (|has| |#1| (-311)) ELT)) (-2349 (($ $ $) 93 T ELT)) (-3240 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-2197 (($ $ |#1|) 60 T ELT)) (-3462 (((-3 $ "failed") $ |#1|) 74 (|has| |#1| (-495)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-3796 ((|#1| $ (-484) (-484)) 53 T ELT) ((|#1| $ (-484) (-484) |#1|) 51 T ELT) (($ $ (-584 (-484)) (-584 (-484))) 90 T ELT)) (-3328 (($ (-584 |#1|)) 99 T ELT) (($ (-584 $)) 98 T ELT)) (-3119 (((-85) $) 106 T ELT)) (-3324 ((|#1| $) 68 (|has| |#1| (-6 (-3993 #1#))) ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3396 (($ $) 10 T ELT)) (-3108 ((|#3| $ (-484)) 49 T ELT)) (-3942 (($ |#3|) 97 T ELT) (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3991)) ELT)) (-3117 (((-85) $) 104 T ELT)) (-3054 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3945 (($ $ |#1|) 73 (|has| |#1| (-311)) ELT)) (-3833 (($ $ $) 83 T ELT) (($ $) 82 T ELT)) (-3835 (($ $ $) 84 T ELT)) (** (($ $ (-695)) 75 T ELT) (($ $ (-484)) 65 (|has| |#1| (-311)) ELT)) (* (($ $ $) 81 T ELT) (($ |#1| $) 80 T ELT) (($ $ |#1|) 79 T ELT) (($ (-484) $) 78 T ELT) ((|#3| $ |#3|) 77 T ELT) ((|#2| |#2| $) 76 T ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-628 |#1| |#2| |#3|) (-113) (-962) (-321 |t#1|) (-321 |t#1|)) (T -628))
+((-3120 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-85)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-85)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-85)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-85)))) (-3834 (*1 *1 *2 *2) (-12 (-5 *2 (-695)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3121 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3121 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-1 *4 (-484) (-484))) (-4 *4 (-962)) (-4 *1 (-628 *4 *5 *6)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)))) (-3329 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3328 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3328 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3942 (*1 *1 *2) (-12 (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *2)) (-4 *4 (-321 *3)) (-4 *2 (-321 *3)))) (-3410 (*1 *1 *2) (-12 (-4 *3 (-962)) (-4 *1 (-628 *3 *2 *4)) (-4 *2 (-321 *3)) (-4 *4 (-321 *3)))) (-3410 (*1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (-2350 (*1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (-2349 (*1 *1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (-2348 (*1 *1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (-3590 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-584 (-584 *3))))) (-3796 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-584 (-484))) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3784 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-584 (-484))) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-2347 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-484)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-2346 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-484)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-2345 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-2344 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-484)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3835 (*1 *1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (-3833 (*1 *1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (-3833 (*1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-628 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *2 (-321 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-628 *3 *2 *4)) (-4 *3 (-962)) (-4 *2 (-321 *3)) (-4 *4 (-321 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)))) (-3462 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)) (-4 *2 (-495)))) (-3945 (*1 *1 *1 *2) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)) (-4 *2 (-311)))) (-3107 (*1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)) (-4 *2 (-257)))) (-3106 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-4 *3 (-495)) (-5 *2 (-695)))) (-3105 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-4 *3 (-495)) (-5 *2 (-695)))) (-3104 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-4 *3 (-495)) (-5 *2 (-584 *5)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)) (|has| *2 (-6 (-3993 #1="*"))) (-4 *2 (-962)))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)) (|has| *2 (-6 (-3993 #1#))) (-4 *2 (-962)))) (-3586 (*1 *1 *1) (|partial| -12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2)) (-4 *2 (-311)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-4 *3 (-311)))))
+(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -3992) (-6 -3991) (-15 -3120 ((-85) $)) (-15 -3119 ((-85) $)) (-15 -3118 ((-85) $)) (-15 -3117 ((-85) $)) (-15 -3834 ($ (-695) (-695))) (-15 -3121 ($ (-584 (-584 |t#1|)))) (-15 -3121 ($ (-695) (-695) (-1 |t#1| (-484) (-484)))) (-15 -3329 ($ (-695) |t#1|)) (-15 -3328 ($ (-584 |t#1|))) (-15 -3328 ($ (-584 $))) (-15 -3942 ($ |t#3|)) (-15 -3410 ($ |t#2|)) (-15 -3410 ($ $)) (-15 -2350 ($ $)) (-15 -2349 ($ $ $)) (-15 -2348 ($ $ $)) (-15 -3590 ((-584 (-584 |t#1|)) $)) (-15 -3796 ($ $ (-584 (-484)) (-584 (-484)))) (-15 -3784 ($ $ (-584 (-484)) (-584 (-484)) $)) (-15 -2347 ($ $ (-484) (-484))) (-15 -2346 ($ $ (-484) (-484))) (-15 -2345 ($ $ (-484) (-484) (-484) (-484))) (-15 -2344 ($ $ (-484) (-484) $)) (-15 -3835 ($ $ $)) (-15 -3833 ($ $ $)) (-15 -3833 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-484) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-695))) (IF (|has| |t#1| (-495)) (-15 -3462 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-311)) (-15 -3945 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-257)) (-15 -3107 ($ $)) |%noBranch|) (IF (|has| |t#1| (-495)) (PROGN (-15 -3106 ((-695) $)) (-15 -3105 ((-695) $)) (-15 -3104 ((-584 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-3993 "*"))) (PROGN (-15 -3324 (|t#1| $)) (-15 -3323 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-311)) (PROGN (-15 -3586 ((-3 $ "failed") $)) (-15 ** ($ $ (-484)))) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-57 |#1| |#2| |#3|) . T) ((-1128) . T))
+((-3838 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-3954 (((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT)))
+(((-629 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3954 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3954 ((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|)) (-15 -3838 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-962) (-321 |#1|) (-321 |#1|) (-628 |#1| |#2| |#3|) (-962) (-321 |#5|) (-321 |#5|) (-628 |#5| |#6| |#7|)) (T -629))
+((-3838 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-962)) (-4 *2 (-962)) (-4 *6 (-321 *5)) (-4 *7 (-321 *5)) (-4 *8 (-321 *2)) (-4 *9 (-321 *2)) (-5 *1 (-629 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-628 *5 *6 *7)) (-4 *10 (-628 *2 *8 *9)))) (-3954 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-321 *5)) (-4 *7 (-321 *5)) (-4 *2 (-628 *8 *9 *10)) (-5 *1 (-629 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-628 *5 *6 *7)) (-4 *9 (-321 *8)) (-4 *10 (-321 *8)))) (-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-321 *5)) (-4 *7 (-321 *5)) (-4 *2 (-628 *8 *9 *10)) (-5 *1 (-629 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-628 *5 *6 *7)) (-4 *9 (-321 *8)) (-4 *10 (-321 *8)))))
+((-3107 ((|#4| |#4|) 90 (|has| |#1| (-257)) ELT)) (-3106 (((-695) |#4|) 92 (|has| |#1| (-495)) ELT)) (-3105 (((-695) |#4|) 94 (|has| |#1| (-495)) ELT)) (-3104 (((-584 |#3|) |#4|) 101 (|has| |#1| (-495)) ELT)) (-2378 (((-2 (|:| -1971 |#1|) (|:| -2900 |#1|)) |#1| |#1|) 124 (|has| |#1| (-257)) ELT)) (-3323 ((|#1| |#4|) 52 T ELT)) (-2355 (((-3 |#4| #1="failed") |#4|) 84 (|has| |#1| (-495)) ELT)) (-3586 (((-3 |#4| #1#) |#4|) 98 (|has| |#1| (-311)) ELT)) (-2354 ((|#4| |#4|) 76 (|has| |#1| (-495)) ELT)) (-2352 ((|#4| |#4| |#1| (-484) (-484)) 60 T ELT)) (-2351 ((|#4| |#4| (-484) (-484)) 55 T ELT)) (-2353 ((|#4| |#4| |#1| (-484) (-484)) 65 T ELT)) (-3324 ((|#1| |#4|) 96 T ELT)) (-2518 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 80 (|has| |#1| (-495)) ELT)))
+(((-630 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3324 (|#1| |#4|)) (-15 -3323 (|#1| |#4|)) (-15 -2351 (|#4| |#4| (-484) (-484))) (-15 -2352 (|#4| |#4| |#1| (-484) (-484))) (-15 -2353 (|#4| |#4| |#1| (-484) (-484))) (IF (|has| |#1| (-495)) (PROGN (-15 -3106 ((-695) |#4|)) (-15 -3105 ((-695) |#4|)) (-15 -3104 ((-584 |#3|) |#4|)) (-15 -2354 (|#4| |#4|)) (-15 -2355 ((-3 |#4| #1="failed") |#4|)) (-15 -2518 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-257)) (PROGN (-15 -3107 (|#4| |#4|)) (-15 -2378 ((-2 (|:| -1971 |#1|) (|:| -2900 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-311)) (-15 -3586 ((-3 |#4| #1#) |#4|)) |%noBranch|)) (-146) (-321 |#1|) (-321 |#1|) (-628 |#1| |#2| |#3|)) (T -630))
+((-3586 (*1 *2 *2) (|partial| -12 (-4 *3 (-311)) (-4 *3 (-146)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-2378 (*1 *2 *3 *3) (-12 (-4 *3 (-257)) (-4 *3 (-146)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *2 (-2 (|:| -1971 *3) (|:| -2900 *3))) (-5 *1 (-630 *3 *4 *5 *6)) (-4 *6 (-628 *3 *4 *5)))) (-3107 (*1 *2 *2) (-12 (-4 *3 (-257)) (-4 *3 (-146)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-2518 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-2355 (*1 *2 *2) (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-2354 (*1 *2 *2) (-12 (-4 *3 (-495)) (-4 *3 (-146)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-3104 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-584 *6)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3105 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-695)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3106 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-695)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-2353 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-484)) (-4 *3 (-146)) (-4 *5 (-321 *3)) (-4 *6 (-321 *3)) (-5 *1 (-630 *3 *5 *6 *2)) (-4 *2 (-628 *3 *5 *6)))) (-2352 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-484)) (-4 *3 (-146)) (-4 *5 (-321 *3)) (-4 *6 (-321 *3)) (-5 *1 (-630 *3 *5 *6 *2)) (-4 *2 (-628 *3 *5 *6)))) (-2351 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-484)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *1 (-630 *4 *5 *6 *2)) (-4 *2 (-628 *4 *5 *6)))) (-3323 (*1 *2 *3) (-12 (-4 *4 (-321 *2)) (-4 *5 (-321 *2)) (-4 *2 (-146)) (-5 *1 (-630 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5)))) (-3324 (*1 *2 *3) (-12 (-4 *4 (-321 *2)) (-4 *5 (-321 *2)) (-4 *2 (-146)) (-5 *1 (-630 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5)))))
+((-2566 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3834 (($ (-695) (-695)) 63 T ELT)) (-2348 (($ $ $) NIL T ELT)) (-3410 (($ (-1178 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3118 (((-85) $) NIL T ELT)) (-2347 (($ $ (-484) (-484)) 22 T ELT)) (-2346 (($ $ (-484) (-484)) NIL T ELT)) (-2345 (($ $ (-484) (-484) (-484) (-484)) NIL T ELT)) (-2350 (($ $) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-2344 (($ $ (-484) (-484) $) NIL T ELT)) (-3784 ((|#1| $ (-484) (-484) |#1|) NIL T ELT) (($ $ (-584 (-484)) (-584 (-484)) $) NIL T ELT)) (-1255 (($ $ (-484) (-1178 |#1|)) NIL T ELT)) (-1254 (($ $ (-484) (-1178 |#1|)) NIL T ELT)) (-3329 (($ (-695) |#1|) 37 T ELT)) (-3720 (($) NIL T CONST)) (-3107 (($ $) 46 (|has| |#1| (-257)) ELT)) (-3109 (((-1178 |#1|) $ (-484)) NIL T ELT)) (-3106 (((-695) $) 48 (|has| |#1| (-495)) ELT)) (-1574 ((|#1| $ (-484) (-484) |#1|) 68 T ELT)) (-3110 ((|#1| $ (-484) (-484)) NIL T ELT)) (-2887 (((-584 |#1|) $) NIL T ELT)) (-3105 (((-695) $) 50 (|has| |#1| (-495)) ELT)) (-3104 (((-584 (-1178 |#1|)) $) 53 (|has| |#1| (-495)) ELT)) (-3112 (((-695) $) 32 T ELT)) (-3610 (($ (-695) (-695) |#1|) 28 T ELT)) (-3111 (((-695) $) 33 T ELT)) (-3323 ((|#1| $) 44 (|has| |#1| (-6 (-3993 #1="*"))) ELT)) (-3116 (((-484) $) 10 T ELT)) (-3114 (((-484) $) 11 T ELT)) (-2606 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3115 (((-484) $) 14 T ELT)) (-3113 (((-484) $) 64 T ELT)) (-3121 (($ (-584 (-584 |#1|))) NIL T ELT) (($ (-695) (-695) (-1 |#1| (-484) (-484))) NIL T ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3590 (((-584 (-584 |#1|)) $) 75 T ELT)) (-3239 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3586 (((-3 $ #2="failed") $) 57 (|has| |#1| (-311)) ELT)) (-2349 (($ $ $) NIL T ELT)) (-3240 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-2197 (($ $ |#1|) NIL T ELT)) (-3462 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) NIL T ELT)) (-3796 ((|#1| $ (-484) (-484)) NIL T ELT) ((|#1| $ (-484) (-484) |#1|) NIL T ELT) (($ $ (-584 (-484)) (-584 (-484))) NIL T ELT)) (-3328 (($ (-584 |#1|)) NIL T ELT) (($ (-584 $)) NIL T ELT) (($ (-1178 |#1|)) 69 T ELT)) (-3119 (((-85) $) NIL T ELT)) (-3324 ((|#1| $) 42 (|has| |#1| (-6 (-3993 #1#))) ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3396 (($ $) NIL T ELT)) (-3968 (((-473) $) 79 (|has| |#1| (-554 (-473))) ELT)) (-3108 (((-1178 |#1|) $ (-484)) NIL T ELT)) (-3942 (($ (-1178 |#1|)) NIL T ELT) (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3117 (((-85) $) NIL T ELT)) (-3054 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3945 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3833 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-695)) 38 T ELT) (($ $ (-484)) 61 (|has| |#1| (-311)) ELT)) (* (($ $ $) 24 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-484) $) NIL T ELT) (((-1178 |#1|) $ (-1178 |#1|)) NIL T ELT) (((-1178 |#1|) (-1178 |#1|) $) NIL T ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-631 |#1|) (-13 (-628 |#1| (-1178 |#1|) (-1178 |#1|)) (-10 -8 (-15 -3328 ($ (-1178 |#1|))) (IF (|has| |#1| (-554 (-473))) (-6 (-554 (-473))) |%noBranch|) (IF (|has| |#1| (-311)) (-15 -3586 ((-3 $ "failed") $)) |%noBranch|))) (-962)) (T -631))
+((-3586 (*1 *1 *1) (|partial| -12 (-5 *1 (-631 *2)) (-4 *2 (-311)) (-4 *2 (-962)))) (-3328 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-962)) (-5 *1 (-631 *3)))))
+((-2361 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|)) 37 T ELT)) (-2360 (((-631 |#1|) (-631 |#1|) (-631 |#1|) |#1|) 32 T ELT)) (-2362 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|) (-695)) 43 T ELT)) (-2357 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|)) 25 T ELT)) (-2358 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|)) 29 T ELT) (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 27 T ELT)) (-2359 (((-631 |#1|) (-631 |#1|) |#1| (-631 |#1|)) 31 T ELT)) (-2356 (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 23 T ELT)) (** (((-631 |#1|) (-631 |#1|) (-695)) 46 T ELT)))
+(((-632 |#1|) (-10 -7 (-15 -2356 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2357 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2358 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2358 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2359 ((-631 |#1|) (-631 |#1|) |#1| (-631 |#1|))) (-15 -2360 ((-631 |#1|) (-631 |#1|) (-631 |#1|) |#1|)) (-15 -2361 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2362 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|) (-695))) (-15 ** ((-631 |#1|) (-631 |#1|) (-695)))) (-962)) (T -632))
+((** (*1 *2 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-632 *4)))) (-2362 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-632 *4)))) (-2361 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2360 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2359 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2358 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2358 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2357 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2356 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))))
+((-3154 (((-3 |#1| "failed") $) 18 T ELT)) (-3153 ((|#1| $) NIL T ELT)) (-2363 (($) 7 T CONST)) (-2364 (($ |#1|) 8 T ELT)) (-3942 (($ |#1|) 16 T ELT) (((-773) $) 23 T ELT)) (-3562 (((-85) $ (|[\|\|]| |#1|)) 14 T ELT) (((-85) $ (|[\|\|]| -2363)) 11 T ELT)) (-3568 ((|#1| $) 15 T ELT)))
+(((-633 |#1|) (-13 (-1174) (-951 |#1|) (-553 (-773)) (-10 -8 (-15 -2364 ($ |#1|)) (-15 -3562 ((-85) $ (|[\|\|]| |#1|))) (-15 -3562 ((-85) $ (|[\|\|]| -2363))) (-15 -3568 (|#1| $)) (-15 -2363 ($) -3948))) (-553 (-773))) (T -633))
+((-2364 (*1 *1 *2) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773))))) (-3562 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-553 (-773))) (-5 *2 (-85)) (-5 *1 (-633 *4)))) (-3562 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2363)) (-5 *2 (-85)) (-5 *1 (-633 *4)) (-4 *4 (-553 (-773))))) (-3568 (*1 *2 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773))))) (-2363 (*1 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773))))))
+((-3737 (((-2 (|:| |num| (-631 |#1|)) (|:| |den| |#1|)) (-631 |#2|)) 20 T ELT)) (-3735 ((|#1| (-631 |#2|)) 9 T ELT)) (-3736 (((-631 |#1|) (-631 |#2|)) 18 T ELT)))
+(((-634 |#1| |#2|) (-10 -7 (-15 -3735 (|#1| (-631 |#2|))) (-15 -3736 ((-631 |#1|) (-631 |#2|))) (-15 -3737 ((-2 (|:| |num| (-631 |#1|)) (|:| |den| |#1|)) (-631 |#2|)))) (-495) (-905 |#1|)) (T -634))
+((-3737 (*1 *2 *3) (-12 (-5 *3 (-631 *5)) (-4 *5 (-905 *4)) (-4 *4 (-495)) (-5 *2 (-2 (|:| |num| (-631 *4)) (|:| |den| *4))) (-5 *1 (-634 *4 *5)))) (-3736 (*1 *2 *3) (-12 (-5 *3 (-631 *5)) (-4 *5 (-905 *4)) (-4 *4 (-495)) (-5 *2 (-631 *4)) (-5 *1 (-634 *4 *5)))) (-3735 (*1 *2 *3) (-12 (-5 *3 (-631 *4)) (-4 *4 (-905 *2)) (-4 *2 (-495)) (-5 *1 (-634 *2 *4)))))
+((-2566 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-1568 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3991)) ELT)) (-3706 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3991)) ELT)) (-3720 (($) 7 T CONST)) (-2366 (($ $) 66 T ELT)) (-1351 (($ $) 62 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3401 (($ |#1| $) 51 (|has| $ (-6 -3991)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3991)) ELT)) (-3402 (($ |#1| $) 61 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3991)) ELT)) (-3838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3991)) ELT)) (-2887 (((-584 |#1|) $) 30 (|has| $ (-6 -3991)) ELT)) (-2606 (((-584 |#1|) $) 29 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3239 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-1272 ((|#1| $) 43 T ELT)) (-3605 (($ |#1| $) 44 T ELT) (($ |#1| $ (-695)) 67 T ELT)) (-3240 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1273 ((|#1| $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-2365 (((-584 (-2 (|:| |entry| |#1|) (|:| -1944 (-695)))) $) 65 T ELT)) (-1464 (($) 53 T ELT) (($ (-584 |#1|)) 52 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3396 (($ $) 10 T ELT)) (-3968 (((-473) $) 63 (|has| |#1| (-554 (-473))) ELT)) (-3526 (($ (-584 |#1|)) 54 T ELT)) (-3942 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1274 (($ (-584 |#1|)) 46 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-635 |#1|) (-113) (-1013)) (T -635))
+((-3605 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-635 *2)) (-4 *2 (-1013)))) (-2366 (*1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1013)))) (-2365 (*1 *2 *1) (-12 (-4 *1 (-635 *3)) (-4 *3 (-1013)) (-5 *2 (-584 (-2 (|:| |entry| *3) (|:| -1944 (-695))))))))
+(-13 (-193 |t#1|) (-10 -8 (-15 -3605 ($ |t#1| $ (-695))) (-15 -2366 ($ $)) (-15 -2365 ((-584 (-2 (|:| |entry| |t#1|) (|:| -1944 (-695)))) $))))
+(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-193 |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
+((-2369 (((-584 |#1|) (-584 (-2 (|:| -3728 |#1|) (|:| -3944 (-484)))) (-484)) 66 T ELT)) (-2367 ((|#1| |#1| (-484)) 63 T ELT)) (-3141 ((|#1| |#1| |#1| (-484)) 46 T ELT)) (-3728 (((-584 |#1|) |#1| (-484)) 49 T ELT)) (-2370 ((|#1| |#1| (-484) |#1| (-484)) 40 T ELT)) (-2368 (((-584 (-2 (|:| -3728 |#1|) (|:| -3944 (-484)))) |#1| (-484)) 62 T ELT)))
+(((-636 |#1|) (-10 -7 (-15 -3141 (|#1| |#1| |#1| (-484))) (-15 -2367 (|#1| |#1| (-484))) (-15 -3728 ((-584 |#1|) |#1| (-484))) (-15 -2368 ((-584 (-2 (|:| -3728 |#1|) (|:| -3944 (-484)))) |#1| (-484))) (-15 -2369 ((-584 |#1|) (-584 (-2 (|:| -3728 |#1|) (|:| -3944 (-484)))) (-484))) (-15 -2370 (|#1| |#1| (-484) |#1| (-484)))) (-1154 (-484))) (T -636))
+((-2370 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-636 *2)) (-4 *2 (-1154 *3)))) (-2369 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-2 (|:| -3728 *5) (|:| -3944 (-484))))) (-5 *4 (-484)) (-4 *5 (-1154 *4)) (-5 *2 (-584 *5)) (-5 *1 (-636 *5)))) (-2368 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-5 *2 (-584 (-2 (|:| -3728 *3) (|:| -3944 *4)))) (-5 *1 (-636 *3)) (-4 *3 (-1154 *4)))) (-3728 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-5 *2 (-584 *3)) (-5 *1 (-636 *3)) (-4 *3 (-1154 *4)))) (-2367 (*1 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-636 *2)) (-4 *2 (-1154 *3)))) (-3141 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-636 *2)) (-4 *2 (-1154 *3)))))
+((-2374 (((-1 (-855 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 17 T ELT)) (-2371 (((-1046 (-179)) (-1046 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-584 (-221))) 53 T ELT) (((-1046 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-584 (-221))) 55 T ELT) (((-1046 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1001 (-179)) (-1001 (-179)) (-584 (-221))) 57 T ELT)) (-2373 (((-1046 (-179)) (-264 (-484)) (-264 (-484)) (-264 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-584 (-221))) NIL T ELT)) (-2372 (((-1046 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1001 (-179)) (-1001 (-179)) (-584 (-221))) 58 T ELT)))
+(((-637) (-10 -7 (-15 -2371 ((-1046 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1001 (-179)) (-1001 (-179)) (-584 (-221)))) (-15 -2371 ((-1046 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-584 (-221)))) (-15 -2371 ((-1046 (-179)) (-1046 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-584 (-221)))) (-15 -2372 ((-1046 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1001 (-179)) (-1001 (-179)) (-584 (-221)))) (-15 -2373 ((-1046 (-179)) (-264 (-484)) (-264 (-484)) (-264 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-584 (-221)))) (-15 -2374 ((-1 (-855 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -637))
+((-2374 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1 (-179) (-179) (-179) (-179))) (-5 *2 (-1 (-855 (-179)) (-179) (-179))) (-5 *1 (-637)))) (-2373 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-264 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) (-5 *6 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-637)))) (-2372 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined")) (-5 *5 (-1001 (-179))) (-5 *6 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-637)))) (-2371 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1046 (-179))) (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1001 (-179))) (-5 *5 (-584 (-221))) (-5 *1 (-637)))) (-2371 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1001 (-179))) (-5 *5 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-637)))) (-2371 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1#)) (-5 *5 (-1001 (-179))) (-5 *6 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-637)))))
+((-3728 (((-345 (-1084 |#4|)) (-1084 |#4|)) 87 T ELT) (((-345 |#4|) |#4|) 270 T ELT)))
+(((-638 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3728 ((-345 |#4|) |#4|)) (-15 -3728 ((-345 (-1084 |#4|)) (-1084 |#4|)))) (-757) (-718) (-298) (-862 |#3| |#2| |#1|)) (T -638))
+((-3728 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-298)) (-4 *7 (-862 *6 *5 *4)) (-5 *2 (-345 (-1084 *7))) (-5 *1 (-638 *4 *5 *6 *7)) (-5 *3 (-1084 *7)))) (-3728 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-298)) (-5 *2 (-345 *3)) (-5 *1 (-638 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4)))))
+((-2377 (((-631 |#1|) (-631 |#1|) |#1| |#1|) 85 T ELT)) (-3107 (((-631 |#1|) (-631 |#1|) |#1|) 66 T ELT)) (-2376 (((-631 |#1|) (-631 |#1|) |#1|) 86 T ELT)) (-2375 (((-631 |#1|) (-631 |#1|)) 67 T ELT)) (-2378 (((-2 (|:| -1971 |#1|) (|:| -2900 |#1|)) |#1| |#1|) 84 T ELT)))
+(((-639 |#1|) (-10 -7 (-15 -2375 ((-631 |#1|) (-631 |#1|))) (-15 -3107 ((-631 |#1|) (-631 |#1|) |#1|)) (-15 -2376 ((-631 |#1|) (-631 |#1|) |#1|)) (-15 -2377 ((-631 |#1|) (-631 |#1|) |#1| |#1|)) (-15 -2378 ((-2 (|:| -1971 |#1|) (|:| -2900 |#1|)) |#1| |#1|))) (-257)) (T -639))
+((-2378 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1971 *3) (|:| -2900 *3))) (-5 *1 (-639 *3)) (-4 *3 (-257)))) (-2377 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-257)) (-5 *1 (-639 *3)))) (-2376 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-257)) (-5 *1 (-639 *3)))) (-3107 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-257)) (-5 *1 (-639 *3)))) (-2375 (*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-257)) (-5 *1 (-639 *3)))))
+((-2384 (((-1 |#4| |#2| |#3|) |#1| (-1089) (-1089)) 19 T ELT)) (-2379 (((-1 |#4| |#2| |#3|) (-1089)) 12 T ELT)))
+(((-640 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2379 ((-1 |#4| |#2| |#3|) (-1089))) (-15 -2384 ((-1 |#4| |#2| |#3|) |#1| (-1089) (-1089)))) (-554 (-473)) (-1128) (-1128) (-1128)) (T -640))
+((-2384 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1089)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *3 *5 *6 *7)) (-4 *3 (-554 (-473))) (-4 *5 (-1128)) (-4 *6 (-1128)) (-4 *7 (-1128)))) (-2379 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *4 *5 *6 *7)) (-4 *4 (-554 (-473))) (-4 *5 (-1128)) (-4 *6 (-1128)) (-4 *7 (-1128)))))
+((-2380 (((-1 (-179) (-179) (-179)) |#1| (-1089) (-1089)) 43 T ELT) (((-1 (-179) (-179)) |#1| (-1089)) 48 T ELT)))
+(((-641 |#1|) (-10 -7 (-15 -2380 ((-1 (-179) (-179)) |#1| (-1089))) (-15 -2380 ((-1 (-179) (-179) (-179)) |#1| (-1089) (-1089)))) (-554 (-473))) (T -641))
+((-2380 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1089)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-641 *3)) (-4 *3 (-554 (-473))))) (-2380 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-641 *3)) (-4 *3 (-554 (-473))))))
+((-2381 (((-1089) |#1| (-1089) (-584 (-1089))) 10 T ELT) (((-1089) |#1| (-1089) (-1089) (-1089)) 13 T ELT) (((-1089) |#1| (-1089) (-1089)) 12 T ELT) (((-1089) |#1| (-1089)) 11 T ELT)))
+(((-642 |#1|) (-10 -7 (-15 -2381 ((-1089) |#1| (-1089))) (-15 -2381 ((-1089) |#1| (-1089) (-1089))) (-15 -2381 ((-1089) |#1| (-1089) (-1089) (-1089))) (-15 -2381 ((-1089) |#1| (-1089) (-584 (-1089))))) (-554 (-473))) (T -642))
+((-2381 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-584 (-1089))) (-5 *2 (-1089)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-473))))) (-2381 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-473))))) (-2381 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-473))))) (-2381 (*1 *2 *3 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-473))))))
+((-2382 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT)))
+(((-643 |#1| |#2|) (-10 -7 (-15 -2382 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1128) (-1128)) (T -643))
+((-2382 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-643 *3 *4)) (-4 *3 (-1128)) (-4 *4 (-1128)))))
+((-2383 (((-1 |#3| |#2|) (-1089)) 11 T ELT)) (-2384 (((-1 |#3| |#2|) |#1| (-1089)) 21 T ELT)))
+(((-644 |#1| |#2| |#3|) (-10 -7 (-15 -2383 ((-1 |#3| |#2|) (-1089))) (-15 -2384 ((-1 |#3| |#2|) |#1| (-1089)))) (-554 (-473)) (-1128) (-1128)) (T -644))
+((-2384 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *3 *5 *6)) (-4 *3 (-554 (-473))) (-4 *5 (-1128)) (-4 *6 (-1128)))) (-2383 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *4 *5 *6)) (-4 *4 (-554 (-473))) (-4 *5 (-1128)) (-4 *6 (-1128)))))
+((-2387 (((-3 (-584 (-1084 |#4|)) #1="failed") (-1084 |#4|) (-584 |#2|) (-584 (-1084 |#4|)) (-584 |#3|) (-584 |#4|) (-584 (-584 (-2 (|:| -3076 (-695)) (|:| |pcoef| |#4|)))) (-584 (-695)) (-1178 (-584 (-1084 |#3|))) |#3|) 92 T ELT)) (-2386 (((-3 (-584 (-1084 |#4|)) #1#) (-1084 |#4|) (-584 |#2|) (-584 (-1084 |#3|)) (-584 |#3|) (-584 |#4|) (-584 (-695)) |#3|) 110 T ELT)) (-2385 (((-3 (-584 (-1084 |#4|)) #1#) (-1084 |#4|) (-584 |#2|) (-584 |#3|) (-584 (-695)) (-584 (-1084 |#4|)) (-1178 (-584 (-1084 |#3|))) |#3|) 48 T ELT)))
+(((-645 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2385 ((-3 (-584 (-1084 |#4|)) #1="failed") (-1084 |#4|) (-584 |#2|) (-584 |#3|) (-584 (-695)) (-584 (-1084 |#4|)) (-1178 (-584 (-1084 |#3|))) |#3|)) (-15 -2386 ((-3 (-584 (-1084 |#4|)) #1#) (-1084 |#4|) (-584 |#2|) (-584 (-1084 |#3|)) (-584 |#3|) (-584 |#4|) (-584 (-695)) |#3|)) (-15 -2387 ((-3 (-584 (-1084 |#4|)) #1#) (-1084 |#4|) (-584 |#2|) (-584 (-1084 |#4|)) (-584 |#3|) (-584 |#4|) (-584 (-584 (-2 (|:| -3076 (-695)) (|:| |pcoef| |#4|)))) (-584 (-695)) (-1178 (-584 (-1084 |#3|))) |#3|))) (-718) (-757) (-257) (-862 |#3| |#1| |#2|)) (T -645))
+((-2387 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-584 (-1084 *13))) (-5 *3 (-1084 *13)) (-5 *4 (-584 *12)) (-5 *5 (-584 *10)) (-5 *6 (-584 *13)) (-5 *7 (-584 (-584 (-2 (|:| -3076 (-695)) (|:| |pcoef| *13))))) (-5 *8 (-584 (-695))) (-5 *9 (-1178 (-584 (-1084 *10)))) (-4 *12 (-757)) (-4 *10 (-257)) (-4 *13 (-862 *10 *11 *12)) (-4 *11 (-718)) (-5 *1 (-645 *11 *12 *10 *13)))) (-2386 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-584 *11)) (-5 *5 (-584 (-1084 *9))) (-5 *6 (-584 *9)) (-5 *7 (-584 *12)) (-5 *8 (-584 (-695))) (-4 *11 (-757)) (-4 *9 (-257)) (-4 *12 (-862 *9 *10 *11)) (-4 *10 (-718)) (-5 *2 (-584 (-1084 *12))) (-5 *1 (-645 *10 *11 *9 *12)) (-5 *3 (-1084 *12)))) (-2385 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-584 (-1084 *11))) (-5 *3 (-1084 *11)) (-5 *4 (-584 *10)) (-5 *5 (-584 *8)) (-5 *6 (-584 (-695))) (-5 *7 (-1178 (-584 (-1084 *8)))) (-4 *10 (-757)) (-4 *8 (-257)) (-4 *11 (-862 *8 *9 *10)) (-4 *9 (-718)) (-5 *1 (-645 *9 *10 *8 *11)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3955 (($ $) 54 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-2891 (($ |#1| (-695)) 52 T ELT)) (-2818 (((-695) $) 56 T ELT)) (-3171 ((|#1| $) 55 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3944 (((-695) $) 57 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 51 (|has| |#1| (-146)) ELT)) (-3673 ((|#1| $ (-695)) 53 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 59 T ELT) (($ |#1| $) 58 T ELT)))
+(((-646 |#1|) (-113) (-962)) (T -646))
+((-3944 (*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-2818 (*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-3171 (*1 *2 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-962)))) (-3955 (*1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-962)))) (-3673 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-646 *2)) (-4 *2 (-962)))) (-2891 (*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-646 *2)) (-4 *2 (-962)))))
+(-13 (-962) (-82 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3944 ((-695) $)) (-15 -2818 ((-695) $)) (-15 -3171 (|t#1| $)) (-15 -3955 ($ $)) (-15 -3673 (|t#1| $ (-695))) (-15 -2891 ($ |t#1| (-695)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-484)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
+((-3954 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT)))
+(((-647 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3954 (|#6| (-1 |#4| |#1|) |#3|))) (-495) (-1154 |#1|) (-1154 (-347 |#2|)) (-495) (-1154 |#4|) (-1154 (-347 |#5|))) (T -647))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-495)) (-4 *7 (-495)) (-4 *6 (-1154 *5)) (-4 *2 (-1154 (-347 *8))) (-5 *1 (-647 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1154 (-347 *6))) (-4 *8 (-1154 *7)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2388 (((-1072) (-773)) 36 T ELT)) (-3613 (((-1184) (-1072)) 29 T ELT)) (-2390 (((-1072) (-773)) 26 T ELT)) (-2389 (((-1072) (-773)) 27 T ELT)) (-3942 (((-773) $) NIL T ELT) (((-1072) (-773)) 25 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-648) (-13 (-1013) (-10 -7 (-15 -3942 ((-1072) (-773))) (-15 -2390 ((-1072) (-773))) (-15 -2389 ((-1072) (-773))) (-15 -2388 ((-1072) (-773))) (-15 -3613 ((-1184) (-1072)))))) (T -648))
+((-3942 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1072)) (-5 *1 (-648)))) (-2390 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1072)) (-5 *1 (-648)))) (-2389 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1072)) (-5 *1 (-648)))) (-2388 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1072)) (-5 *1 (-648)))) (-3613 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-648)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3771 (($ $) NIL T ELT)) (-3967 (((-345 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-2562 (($ $ $) NIL T ELT)) (-3838 (($ |#1| |#2|) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-3719 (((-85) $) NIL T ELT)) (-2408 (((-85) $) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2612 ((|#2| $) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3728 (((-345 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2400 (((-3 $ #1#) $ $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) ((|#1| $) NIL T ELT)) (-3123 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ $) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT)))
+(((-649 |#1| |#2| |#3| |#4| |#5|) (-13 (-311) (-10 -8 (-15 -2612 (|#2| $)) (-15 -3942 (|#1| $)) (-15 -3838 ($ |#1| |#2|)) (-15 -2400 ((-3 $ #1="failed") $ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -649))
+((-2612 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-649 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-3942 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3838 (*1 *1 *2 *3) (-12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2400 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 37 T ELT)) (-3763 (((-1178 |#1|) $ (-695)) NIL T ELT)) (-3079 (((-584 (-994)) $) NIL T ELT)) (-3761 (($ (-1084 |#1|)) NIL T ELT)) (-3081 (((-1084 $) $ (-994)) NIL T ELT) (((-1084 |#1|) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2061 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2817 (((-695) $) NIL T ELT) (((-695) $ (-584 (-994))) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3751 (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3771 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3967 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2702 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3133 (((-695)) 55 (|has| |#1| (-317)) ELT)) (-3757 (($ $ (-695)) NIL T ELT)) (-3756 (($ $ (-695)) NIL T ELT)) (-2397 ((|#2| |#2|) 51 T ELT)) (-3747 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-389)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-994) #1#) $) NIL T ELT)) (-3153 ((|#1| $) NIL T ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-994) $) NIL T ELT)) (-3752 (($ $ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) NIL (|has| |#1| (-146)) ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3955 (($ $) 72 T ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3838 (($ |#2|) 49 T ELT)) (-3463 (((-3 $ #1#) $) 98 T ELT)) (-2992 (($) 59 (|has| |#1| (-317)) ELT)) (-2561 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3755 (($ $ $) NIL T ELT)) (-3749 (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3748 (((-2 (|:| -3950 |#1|) (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3499 (($ $) NIL (|has| |#1| (-389)) ELT) (($ $ (-994)) NIL (|has| |#1| (-389)) ELT)) (-2816 (((-584 $) $) NIL T ELT)) (-3719 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-2393 (((-870 $)) 89 T ELT)) (-1622 (($ $ |#1| (-695) $) NIL T ELT)) (-2794 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (-12 (|has| (-994) (-797 (-327))) (|has| |#1| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (-12 (|has| (-994) (-797 (-484))) (|has| |#1| (-797 (-484)))) ELT)) (-3768 (((-695) $ $) NIL (|has| |#1| (-495)) ELT)) (-2408 (((-85) $) NIL T ELT)) (-2418 (((-695) $) NIL T ELT)) (-3441 (((-633 $) $) NIL (|has| |#1| (-1065)) ELT)) (-3082 (($ (-1084 |#1|) (-994)) NIL T ELT) (($ (-1084 $) (-994)) NIL T ELT)) (-3773 (($ $ (-695)) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2891 (($ |#1| (-695)) 86 T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT)) (-3759 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $ (-994)) NIL T ELT) (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-2612 ((|#2|) 52 T ELT)) (-2818 (((-695) $) NIL T ELT) (((-695) $ (-994)) NIL T ELT) (((-584 (-695)) $ (-584 (-994))) NIL T ELT)) (-1623 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3762 (((-1084 |#1|) $) NIL T ELT)) (-3080 (((-3 (-994) #1#) $) NIL T ELT)) (-2008 (((-831) $) NIL (|has| |#1| (-317)) ELT)) (-3077 ((|#2| $) 48 T ELT)) (-2278 (((-631 (-484)) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-2892 (($ $) NIL T ELT)) (-3171 ((|#1| $) 35 T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3758 (((-2 (|:| -1971 $) (|:| -2900 $)) $ (-695)) NIL T ELT)) (-2821 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-2 (|:| |var| (-994)) (|:| -2399 (-695))) #1#) $) NIL T ELT)) (-3808 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3442 (($) NIL (|has| |#1| (-1065)) CONST)) (-2398 (($ (-831)) NIL (|has| |#1| (-317)) ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1795 (((-85) $) NIL T ELT)) (-1794 ((|#1| $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-389)) ELT)) (-3141 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-2391 (($ $) 88 (|has| |#1| (-298)) ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3728 (((-345 $) $) NIL (|has| |#1| (-822)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3462 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) 97 (|has| |#1| (-495)) ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3764 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-994) |#1|) NIL T ELT) (($ $ (-584 (-994)) (-584 |#1|)) NIL T ELT) (($ $ (-994) $) NIL T ELT) (($ $ (-584 (-994)) (-584 $)) NIL T ELT)) (-1605 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-3796 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-347 $) (-347 $) (-347 $)) NIL (|has| |#1| (-495)) ELT) ((|#1| (-347 $) |#1|) NIL (|has| |#1| (-311)) ELT) (((-347 $) $ (-347 $)) NIL (|has| |#1| (-495)) ELT)) (-3760 (((-3 $ #1#) $ (-695)) NIL T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 99 (|has| |#1| (-311)) ELT)) (-3753 (($ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3754 (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT)) (-3944 (((-695) $) 39 T ELT) (((-695) $ (-994)) NIL T ELT) (((-584 (-695)) $ (-584 (-994))) NIL T ELT)) (-3968 (((-801 (-327)) $) NIL (-12 (|has| (-994) (-554 (-801 (-327)))) (|has| |#1| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) NIL (-12 (|has| (-994) (-554 (-801 (-484)))) (|has| |#1| (-554 (-801 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-994) (-554 (-473))) (|has| |#1| (-554 (-473)))) ELT)) (-2815 ((|#1| $) NIL (|has| |#1| (-389)) ELT) (($ $ (-994)) NIL (|has| |#1| (-389)) ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-2392 (((-870 $)) 43 T ELT)) (-3750 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT) (((-3 (-347 $) #1#) (-347 $) $) NIL (|has| |#1| (-495)) ELT)) (-3942 (((-773) $) 69 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) 66 T ELT) (($ (-994)) NIL T ELT) (($ |#2|) 76 T ELT) (($ (-347 (-484))) NIL (OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3813 (((-584 |#1|) $) NIL T ELT)) (-3673 ((|#1| $ (-695)) 71 T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT)) (-2700 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3123 (((-695)) NIL T CONST)) (-1621 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2658 (($) 26 T CONST)) (-2396 (((-1178 |#1|) $) 84 T ELT)) (-2395 (($ (-1178 |#1|)) 58 T ELT)) (-2664 (($) 9 T CONST)) (-2667 (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT)) (-2394 (((-1178 |#1|) $) NIL T ELT)) (-3054 (((-85) $ $) 77 T ELT)) (-3945 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3833 (($ $) 80 T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) 40 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 93 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 65 T ELT) (($ $ $) 83 T ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ |#1| $) 63 T ELT) (($ $ |#1|) NIL T ELT)))
+(((-650 |#1| |#2|) (-13 (-1154 |#1|) (-556 |#2|) (-10 -8 (-15 -2397 (|#2| |#2|)) (-15 -2612 (|#2|)) (-15 -3838 ($ |#2|)) (-15 -3077 (|#2| $)) (-15 -2396 ((-1178 |#1|) $)) (-15 -2395 ($ (-1178 |#1|))) (-15 -2394 ((-1178 |#1|) $)) (-15 -2393 ((-870 $))) (-15 -2392 ((-870 $))) (IF (|has| |#1| (-298)) (-15 -2391 ($ $)) |%noBranch|) (IF (|has| |#1| (-317)) (-6 (-317)) |%noBranch|))) (-962) (-1154 |#1|)) (T -650))
+((-2397 (*1 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1154 *3)))) (-2612 (*1 *2) (-12 (-4 *2 (-1154 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-962)))) (-3838 (*1 *1 *2) (-12 (-4 *3 (-962)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1154 *3)))) (-3077 (*1 *2 *1) (-12 (-4 *2 (-1154 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-962)))) (-2396 (*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-1178 *3)) (-5 *1 (-650 *3 *4)) (-4 *4 (-1154 *3)))) (-2395 (*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-962)) (-5 *1 (-650 *3 *4)) (-4 *4 (-1154 *3)))) (-2394 (*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-1178 *3)) (-5 *1 (-650 *3 *4)) (-4 *4 (-1154 *3)))) (-2393 (*1 *2) (-12 (-4 *3 (-962)) (-5 *2 (-870 (-650 *3 *4))) (-5 *1 (-650 *3 *4)) (-4 *4 (-1154 *3)))) (-2392 (*1 *2) (-12 (-4 *3 (-962)) (-5 *2 (-870 (-650 *3 *4))) (-5 *1 (-650 *3 *4)) (-4 *4 (-1154 *3)))) (-2391 (*1 *1 *1) (-12 (-4 *2 (-298)) (-4 *2 (-962)) (-5 *1 (-650 *2 *3)) (-4 *3 (-1154 *2)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-2529 (($ $ $) NIL T ELT)) (-2855 (($ $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2398 ((|#1| $) 13 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2399 ((|#2| $) 12 T ELT)) (-3526 (($ |#1| |#2|) 16 T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-2 (|:| -2398 |#1|) (|:| -2399 |#2|))) 15 T ELT) (((-2 (|:| -2398 |#1|) (|:| -2399 |#2|)) $) 14 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) 11 T ELT)))
+(((-651 |#1| |#2| |#3|) (-13 (-757) (-427 (-2 (|:| -2398 |#1|) (|:| -2399 |#2|))) (-10 -8 (-15 -2399 (|#2| $)) (-15 -2398 (|#1| $)) (-15 -3526 ($ |#1| |#2|)))) (-757) (-1013) (-1 (-85) (-2 (|:| -2398 |#1|) (|:| -2399 |#2|)) (-2 (|:| -2398 |#1|) (|:| -2399 |#2|)))) (T -651))
+((-2399 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-651 *3 *2 *4)) (-4 *3 (-757)) (-14 *4 (-1 (-85) (-2 (|:| -2398 *3) (|:| -2399 *2)) (-2 (|:| -2398 *3) (|:| -2399 *2)))))) (-2398 (*1 *2 *1) (-12 (-4 *2 (-757)) (-5 *1 (-651 *2 *3 *4)) (-4 *3 (-1013)) (-14 *4 (-1 (-85) (-2 (|:| -2398 *2) (|:| -2399 *3)) (-2 (|:| -2398 *2) (|:| -2399 *3)))))) (-3526 (*1 *1 *2 *3) (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-757)) (-4 *3 (-1013)) (-14 *4 (-1 (-85) (-2 (|:| -2398 *2) (|:| -2399 *3)) (-2 (|:| -2398 *2) (|:| -2399 *3)))))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 66 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#1| #1#) $) 101 T ELT) (((-3 (-86) #1#) $) 107 T ELT)) (-3153 ((|#1| $) NIL T ELT) (((-86) $) 39 T ELT)) (-3463 (((-3 $ #1#) $) 102 T ELT)) (-2514 ((|#2| (-86) |#2|) 93 T ELT)) (-2408 (((-85) $) NIL T ELT)) (-2513 (($ |#1| (-309 (-86))) 14 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2515 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-2516 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-3796 ((|#2| $ |#2|) 33 T ELT)) (-2517 ((|#1| |#1|) 112 (|has| |#1| (-146)) ELT)) (-3942 (((-773) $) 73 T ELT) (($ (-484)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-86)) 23 T ELT)) (-2700 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3123 (((-695)) 37 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2518 (($ $) 111 (|has| |#1| (-146)) ELT) (($ $ $) 115 (|has| |#1| (-146)) ELT)) (-2658 (($) 21 T CONST)) (-2664 (($) 9 T CONST)) (-3054 (((-85) $ $) NIL T ELT)) (-3833 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) 83 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ (-86) (-484)) NIL T ELT) (($ $ (-484)) 64 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 110 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 108 (|has| |#1| (-146)) ELT) (($ $ |#1|) 109 (|has| |#1| (-146)) ELT)))
+(((-652 |#1| |#2|) (-13 (-962) (-951 |#1|) (-951 (-86)) (-241 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2518 ($ $)) (-15 -2518 ($ $ $)) (-15 -2517 (|#1| |#1|))) |%noBranch|) (-15 -2516 ($ $ (-1 |#2| |#2|))) (-15 -2515 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-86) (-484))) (-15 ** ($ $ (-484))) (-15 -2514 (|#2| (-86) |#2|)) (-15 -2513 ($ |#1| (-309 (-86)))))) (-962) (-591 |#1|)) (T -652))
+((-2518 (*1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2)))) (-2518 (*1 *1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2)))) (-2517 (*1 *2 *2) (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2)))) (-2516 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-962)) (-5 *1 (-652 *3 *4)))) (-2515 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-962)) (-5 *1 (-652 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-484)) (-4 *4 (-962)) (-5 *1 (-652 *4 *5)) (-4 *5 (-591 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *3 (-962)) (-5 *1 (-652 *3 *4)) (-4 *4 (-591 *3)))) (-2514 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-4 *4 (-962)) (-5 *1 (-652 *4 *2)) (-4 *2 (-591 *4)))) (-2513 (*1 *1 *2 *3) (-12 (-5 *3 (-309 (-86))) (-4 *2 (-962)) (-5 *1 (-652 *2 *4)) (-4 *4 (-591 *2)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 33 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3838 (($ |#1| |#2|) 25 T ELT)) (-3463 (((-3 $ #1#) $) 51 T ELT)) (-2408 (((-85) $) 35 T ELT)) (-2612 ((|#2| $) 12 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) 52 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2400 (((-3 $ #1#) $ $) 50 T ELT)) (-3942 (((-773) $) 24 T ELT) (($ (-484)) 19 T ELT) ((|#1| $) 13 T ELT)) (-3123 (((-695)) 28 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) 16 T CONST)) (-2664 (($) 30 T CONST)) (-3054 (((-85) $ $) 41 T ELT)) (-3833 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-3835 (($ $ $) 43 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 21 T ELT) (($ $ $) 20 T ELT)))
+(((-653 |#1| |#2| |#3| |#4| |#5|) (-13 (-962) (-10 -8 (-15 -2612 (|#2| $)) (-15 -3942 (|#1| $)) (-15 -3838 ($ |#1| |#2|)) (-15 -2400 ((-3 $ #1="failed") $ $)) (-15 -3463 ((-3 $ #1#) $)) (-15 -2482 ($ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -653))
+((-3463 (*1 *1 *1) (|partial| -12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-2612 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-653 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-3942 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3838 (*1 *1 *2 *3) (-12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2400 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2482 (*1 *1 *1) (-12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))))
+((* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT)))
+(((-654 |#1| |#2|) (-10 -7 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|))) (-655 |#2|) (-146)) (T -654))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT)))
+(((-655 |#1|) (-113) (-146)) (T -655))
+NIL
+(-13 (-82 |t#1| |t#1|) (-583 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-2439 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-3843 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-3720 (($) NIL T CONST)) (-3463 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-2408 (((-85) $) NIL T ELT)) (-2401 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) 16 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3764 ((|#1| $ |#1|) 24 T ELT) (((-744 |#1|) $ (-744 |#1|)) 32 T ELT)) (-3007 (($ $ $) NIL T ELT)) (-2433 (($ $ $) NIL T ELT)) (-3942 (((-773) $) 39 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2664 (($) 9 T CONST)) (-3054 (((-85) $ $) 48 T ELT)) (-3945 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ $ $) 14 T ELT)))
+(((-656 |#1|) (-13 (-410) (-10 -8 (-15 -2401 ($ |#1| |#1| |#1| |#1|)) (-15 -2439 ($ |#1|)) (-15 -3843 ($ |#1|)) (-15 -3463 ($)) (-15 -2439 ($ $ |#1|)) (-15 -3843 ($ $ |#1|)) (-15 -3463 ($ $)) (-15 -3764 (|#1| $ |#1|)) (-15 -3764 ((-744 |#1|) $ (-744 |#1|))))) (-311)) (T -656))
+((-2401 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-311)))) (-2439 (*1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-311)))) (-3843 (*1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-311)))) (-3463 (*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-311)))) (-2439 (*1 *1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-311)))) (-3843 (*1 *1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-311)))) (-3463 (*1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-311)))) (-3764 (*1 *2 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-311)))) (-3764 (*1 *2 *1 *2) (-12 (-5 *2 (-744 *3)) (-4 *3 (-311)) (-5 *1 (-656 *3)))))
+((-2405 (($ $ (-831)) 19 T ELT)) (-2404 (($ $ (-831)) 20 T ELT)) (** (($ $ (-831)) 10 T ELT)))
+(((-657 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-831))) (-15 -2404 (|#1| |#1| (-831))) (-15 -2405 (|#1| |#1| (-831)))) (-658)) (T -657))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-2405 (($ $ (-831)) 19 T ELT)) (-2404 (($ $ (-831)) 18 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (** (($ $ (-831)) 17 T ELT)) (* (($ $ $) 20 T ELT)))
+(((-658) (-113)) (T -658))
+((* (*1 *1 *1 *1) (-4 *1 (-658))) (-2405 (*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831)))) (-2404 (*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831)))))
+(-13 (-1013) (-10 -8 (-15 * ($ $ $)) (-15 -2405 ($ $ (-831))) (-15 -2404 ($ $ (-831))) (-15 ** ($ $ (-831)))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
+((-2405 (($ $ (-831)) NIL T ELT) (($ $ (-695)) 18 T ELT)) (-2408 (((-85) $) 10 T ELT)) (-2404 (($ $ (-831)) NIL T ELT) (($ $ (-695)) 19 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 16 T ELT)))
+(((-659 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-695))) (-15 -2404 (|#1| |#1| (-695))) (-15 -2405 (|#1| |#1| (-695))) (-15 -2408 ((-85) |#1|)) (-15 ** (|#1| |#1| (-831))) (-15 -2404 (|#1| |#1| (-831))) (-15 -2405 (|#1| |#1| (-831)))) (-660)) (T -659))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-2402 (((-3 $ "failed") $) 22 T ELT)) (-2405 (($ $ (-831)) 19 T ELT) (($ $ (-695)) 27 T ELT)) (-3463 (((-3 $ "failed") $) 24 T ELT)) (-2408 (((-85) $) 28 T ELT)) (-2403 (((-3 $ "failed") $) 23 T ELT)) (-2404 (($ $ (-831)) 18 T ELT) (($ $ (-695)) 26 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2664 (($) 29 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 25 T ELT)) (* (($ $ $) 20 T ELT)))
+(((-660) (-113)) (T -660))
+((-2664 (*1 *1) (-4 *1 (-660))) (-2408 (*1 *2 *1) (-12 (-4 *1 (-660)) (-5 *2 (-85)))) (-2405 (*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695)))) (-2404 (*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695)))) (-3463 (*1 *1 *1) (|partial| -4 *1 (-660))) (-2403 (*1 *1 *1) (|partial| -4 *1 (-660))) (-2402 (*1 *1 *1) (|partial| -4 *1 (-660))))
+(-13 (-658) (-10 -8 (-15 -2664 ($) -3948) (-15 -2408 ((-85) $)) (-15 -2405 ($ $ (-695))) (-15 -2404 ($ $ (-695))) (-15 ** ($ $ (-695))) (-15 -3463 ((-3 $ "failed") $)) (-15 -2403 ((-3 $ "failed") $)) (-15 -2402 ((-3 $ "failed") $))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-658) . T) ((-1013) . T) ((-1128) . T))
+((-3133 (((-695)) 39 T ELT)) (-3154 (((-3 (-484) #1="failed") $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 26 T ELT)) (-3153 (((-484) $) NIL T ELT) (((-347 (-484)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-3838 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-347 |#3|)) 49 T ELT)) (-3463 (((-3 $ #1#) $) 69 T ELT)) (-2992 (($) 43 T ELT)) (-3129 ((|#2| $) 21 T ELT)) (-2407 (($) 18 T ELT)) (-3754 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-2406 (((-631 |#2|) (-1178 $) (-1 |#2| |#2|)) 64 T ELT)) (-3968 (((-1178 |#2|) $) NIL T ELT) (($ (-1178 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-2447 ((|#3| $) 36 T ELT)) (-2010 (((-1178 $)) 33 T ELT)))
+(((-661 |#1| |#2| |#3|) (-10 -7 (-15 -3754 (|#1| |#1|)) (-15 -3754 (|#1| |#1| (-695))) (-15 -3754 (|#1| |#1| (-1089))) (-15 -3754 (|#1| |#1| (-584 (-1089)))) (-15 -3754 (|#1| |#1| (-1089) (-695))) (-15 -3754 (|#1| |#1| (-584 (-1089)) (-584 (-695)))) (-15 -2992 (|#1|)) (-15 -3133 ((-695))) (-15 -3754 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3754 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2406 ((-631 |#2|) (-1178 |#1|) (-1 |#2| |#2|))) (-15 -3838 ((-3 |#1| #1="failed") (-347 |#3|))) (-15 -3968 (|#1| |#3|)) (-15 -3838 (|#1| |#3|)) (-15 -2407 (|#1|)) (-15 -3154 ((-3 |#2| #1#) |#1|)) (-15 -3153 (|#2| |#1|)) (-15 -3153 ((-347 (-484)) |#1|)) (-15 -3154 ((-3 (-347 (-484)) #1#) |#1|)) (-15 -3153 ((-484) |#1|)) (-15 -3154 ((-3 (-484) #1#) |#1|)) (-15 -3968 (|#3| |#1|)) (-15 -3968 (|#1| (-1178 |#2|))) (-15 -3968 ((-1178 |#2|) |#1|)) (-15 -2010 ((-1178 |#1|))) (-15 -2447 (|#3| |#1|)) (-15 -3129 (|#2| |#1|)) (-15 -3463 ((-3 |#1| #1#) |#1|))) (-662 |#2| |#3|) (-146) (-1154 |#2|)) (T -661))
+((-3133 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-695)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-662 *4 *5)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 112 (|has| |#1| (-311)) ELT)) (-2061 (($ $) 113 (|has| |#1| (-311)) ELT)) (-2059 (((-85) $) 115 (|has| |#1| (-311)) ELT)) (-1780 (((-631 |#1|) (-1178 $)) 59 T ELT) (((-631 |#1|)) 75 T ELT)) (-3326 ((|#1| $) 65 T ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) 165 (|has| |#1| (-298)) ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3771 (($ $) 132 (|has| |#1| (-311)) ELT)) (-3967 (((-345 $) $) 133 (|has| |#1| (-311)) ELT)) (-1606 (((-85) $ $) 123 (|has| |#1| (-311)) ELT)) (-3133 (((-695)) 106 (|has| |#1| (-317)) ELT)) (-3720 (($) 22 T CONST)) (-3154 (((-3 (-484) #1="failed") $) 192 (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) 190 (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) 187 T ELT)) (-3153 (((-484) $) 191 (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) 189 (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) 188 T ELT)) (-1790 (($ (-1178 |#1|) (-1178 $)) 61 T ELT) (($ (-1178 |#1|)) 78 T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) 171 (|has| |#1| (-298)) ELT)) (-2562 (($ $ $) 127 (|has| |#1| (-311)) ELT)) (-1779 (((-631 |#1|) $ (-1178 $)) 66 T ELT) (((-631 |#1|) $) 73 T ELT)) (-2277 (((-631 (-484)) (-631 $)) 184 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 183 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) 182 T ELT) (((-631 |#1|) (-631 $)) 181 T ELT)) (-3838 (($ |#2|) 176 T ELT) (((-3 $ "failed") (-347 |#2|)) 173 (|has| |#1| (-311)) ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-3106 (((-831)) 67 T ELT)) (-2992 (($) 109 (|has| |#1| (-317)) ELT)) (-2561 (($ $ $) 126 (|has| |#1| (-311)) ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) 121 (|has| |#1| (-311)) ELT)) (-2831 (($) 167 (|has| |#1| (-298)) ELT)) (-1678 (((-85) $) 168 (|has| |#1| (-298)) ELT)) (-1762 (($ $ (-695)) 159 (|has| |#1| (-298)) ELT) (($ $) 158 (|has| |#1| (-298)) ELT)) (-3719 (((-85) $) 134 (|has| |#1| (-311)) ELT)) (-3768 (((-831) $) 170 (|has| |#1| (-298)) ELT) (((-744 (-831)) $) 156 (|has| |#1| (-298)) ELT)) (-2408 (((-85) $) 42 T ELT)) (-3129 ((|#1| $) 64 T ELT)) (-3441 (((-633 $) $) 160 (|has| |#1| (-298)) ELT)) (-1603 (((-3 (-584 $) #2="failed") (-584 $) $) 130 (|has| |#1| (-311)) ELT)) (-2012 ((|#2| $) 57 (|has| |#1| (-311)) ELT)) (-2008 (((-831) $) 108 (|has| |#1| (-317)) ELT)) (-3077 ((|#2| $) 174 T ELT)) (-2278 (((-631 (-484)) (-1178 $)) 186 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 185 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 180 T ELT) (((-631 |#1|) (-1178 $)) 179 T ELT)) (-1889 (($ (-584 $)) 119 (|has| |#1| (-311)) ELT) (($ $ $) 118 (|has| |#1| (-311)) ELT)) (-3239 (((-1072) $) 11 T ELT)) (-2482 (($ $) 135 (|has| |#1| (-311)) ELT)) (-3442 (($) 161 (|has| |#1| (-298)) CONST)) (-2398 (($ (-831)) 107 (|has| |#1| (-317)) ELT)) (-3240 (((-1033) $) 12 T ELT)) (-2407 (($) 178 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 120 (|has| |#1| (-311)) ELT)) (-3141 (($ (-584 $)) 117 (|has| |#1| (-311)) ELT) (($ $ $) 116 (|has| |#1| (-311)) ELT)) (-1674 (((-584 (-2 (|:| -3728 (-484)) (|:| -2399 (-484))))) 164 (|has| |#1| (-298)) ELT)) (-3728 (((-345 $) $) 131 (|has| |#1| (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 129 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) 128 (|has| |#1| (-311)) ELT)) (-3462 (((-3 $ "failed") $ $) 111 (|has| |#1| (-311)) ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) 122 (|has| |#1| (-311)) ELT)) (-1605 (((-695) $) 124 (|has| |#1| (-311)) ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 125 (|has| |#1| (-311)) ELT)) (-3753 ((|#1| (-1178 $)) 60 T ELT) ((|#1|) 74 T ELT)) (-1763 (((-695) $) 169 (|has| |#1| (-298)) ELT) (((-3 (-695) "failed") $ $) 157 (|has| |#1| (-298)) ELT)) (-3754 (($ $ (-695)) 154 (OR (-2560 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $) 152 (OR (-2560 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 148 (-2560 (|has| |#1| (-812 (-1089))) (|has| |#1| (-311))) ELT) (($ $ (-1089) (-695)) 147 (-2560 (|has| |#1| (-812 (-1089))) (|has| |#1| (-311))) ELT) (($ $ (-584 (-1089))) 146 (-2560 (|has| |#1| (-812 (-1089))) (|has| |#1| (-311))) ELT) (($ $ (-1089)) 144 (-2560 (|has| |#1| (-812 (-1089))) (|has| |#1| (-311))) ELT) (($ $ (-1 |#1| |#1|)) 143 (|has| |#1| (-311)) ELT) (($ $ (-1 |#1| |#1|) (-695)) 142 (|has| |#1| (-311)) ELT)) (-2406 (((-631 |#1|) (-1178 $) (-1 |#1| |#1|)) 172 (|has| |#1| (-311)) ELT)) (-3182 ((|#2|) 177 T ELT)) (-1672 (($) 166 (|has| |#1| (-298)) ELT)) (-3221 (((-1178 |#1|) $ (-1178 $)) 63 T ELT) (((-631 |#1|) (-1178 $) (-1178 $)) 62 T ELT) (((-1178 |#1|) $) 80 T ELT) (((-631 |#1|) (-1178 $)) 79 T ELT)) (-3968 (((-1178 |#1|) $) 77 T ELT) (($ (-1178 |#1|)) 76 T ELT) ((|#2| $) 193 T ELT) (($ |#2|) 175 T ELT)) (-2701 (((-3 (-1178 $) "failed") (-631 $)) 163 (|has| |#1| (-298)) ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 50 T ELT) (($ $) 110 (|has| |#1| (-311)) ELT) (($ (-347 (-484))) 105 (OR (|has| |#1| (-311)) (|has| |#1| (-951 (-347 (-484))))) ELT)) (-2700 (($ $) 162 (|has| |#1| (-298)) ELT) (((-633 $) $) 56 (|has| |#1| (-118)) ELT)) (-2447 ((|#2| $) 58 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2010 (((-1178 $)) 81 T ELT)) (-2060 (((-85) $ $) 114 (|has| |#1| (-311)) ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-2667 (($ $ (-695)) 155 (OR (-2560 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $) 153 (OR (-2560 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 151 (-2560 (|has| |#1| (-812 (-1089))) (|has| |#1| (-311))) ELT) (($ $ (-1089) (-695)) 150 (-2560 (|has| |#1| (-812 (-1089))) (|has| |#1| (-311))) ELT) (($ $ (-584 (-1089))) 149 (-2560 (|has| |#1| (-812 (-1089))) (|has| |#1| (-311))) ELT) (($ $ (-1089)) 145 (-2560 (|has| |#1| (-812 (-1089))) (|has| |#1| (-311))) ELT) (($ $ (-1 |#1| |#1|)) 141 (|has| |#1| (-311)) ELT) (($ $ (-1 |#1| |#1|) (-695)) 140 (|has| |#1| (-311)) ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3945 (($ $ $) 139 (|has| |#1| (-311)) ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 136 (|has| |#1| (-311)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT) (($ (-347 (-484)) $) 138 (|has| |#1| (-311)) ELT) (($ $ (-347 (-484))) 137 (|has| |#1| (-311)) ELT)))
+(((-662 |#1| |#2|) (-113) (-146) (-1154 |t#1|)) (T -662))
+((-2407 (*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-662 *2 *3)) (-4 *3 (-1154 *2)))) (-3182 (*1 *2) (-12 (-4 *1 (-662 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1154 *3)))) (-3838 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1154 *3)))) (-3968 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1154 *3)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-662 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1154 *3)))) (-3838 (*1 *1 *2) (|partial| -12 (-5 *2 (-347 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-311)) (-4 *3 (-146)) (-4 *1 (-662 *3 *4)))) (-2406 (*1 *2 *3 *4) (-12 (-5 *3 (-1178 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-311)) (-4 *1 (-662 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1154 *5)) (-5 *2 (-631 *5)))))
+(-13 (-350 |t#1| |t#2|) (-146) (-554 |t#2|) (-352 |t#1|) (-326 |t#1|) (-10 -8 (-15 -2407 ($)) (-15 -3182 (|t#2|)) (-15 -3838 ($ |t#2|)) (-15 -3968 ($ |t#2|)) (-15 -3077 (|t#2| $)) (IF (|has| |t#1| (-317)) (-6 (-317)) |%noBranch|) (IF (|has| |t#1| (-311)) (PROGN (-6 (-311)) (-6 (-184 |t#1|)) (-15 -3838 ((-3 $ "failed") (-347 |t#2|))) (-15 -2406 ((-631 |t#1|) (-1178 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-298)) (-6 (-298)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-484))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-298)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) OR (|has| |#1| (-951 (-347 (-484)))) (|has| |#1| (-298)) (|has| |#1| (-311))) ((-556 (-484)) . T) ((-556 |#1|) . T) ((-556 $) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-553 (-773)) . T) ((-146) . T) ((-554 |#2|) . T) ((-186 $) OR (|has| |#1| (-298)) (-12 (|has| |#1| (-189)) (|has| |#1| (-311))) (-12 (|has| |#1| (-190)) (|has| |#1| (-311)))) ((-184 |#1|) |has| |#1| (-311)) ((-190) OR (|has| |#1| (-298)) (-12 (|has| |#1| (-190)) (|has| |#1| (-311)))) ((-189) OR (|has| |#1| (-298)) (-12 (|has| |#1| (-189)) (|has| |#1| (-311))) (-12 (|has| |#1| (-190)) (|has| |#1| (-311)))) ((-225 |#1|) |has| |#1| (-311)) ((-201) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-245) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-257) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-311) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-342) |has| |#1| (-298)) ((-317) OR (|has| |#1| (-298)) (|has| |#1| (-317))) ((-298) |has| |#1| (-298)) ((-319 |#1| |#2|) . T) ((-350 |#1| |#2|) . T) ((-326 |#1|) . T) ((-352 |#1|) . T) ((-389) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-495) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-13) . T) ((-589 (-347 (-484))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-591 (-484)) |has| |#1| (-581 (-484))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-583 |#1|) . T) ((-583 $) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-581 (-484)) |has| |#1| (-581 (-484))) ((-581 |#1|) . T) ((-655 (-347 (-484))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-655 |#1|) . T) ((-655 $) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-664) . T) ((-807 $ (-1089)) OR (-12 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) (-12 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089))))) ((-810 (-1089)) -12 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089)))) ((-812 (-1089)) OR (-12 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) (-12 (|has| |#1| (-311)) (|has| |#1| (-810 (-1089))))) ((-833) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-951 (-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((-951 (-484)) |has| |#1| (-951 (-484))) ((-951 |#1|) . T) ((-964 (-347 (-484))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-347 (-484))) OR (|has| |#1| (-298)) (|has| |#1| (-311))) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) |has| |#1| (-298)) ((-1128) . T) ((-1133) OR (|has| |#1| (-298)) (|has| |#1| (-311))))
+((-3720 (($) 11 T CONST)) (-3463 (((-3 $ "failed") $) 14 T ELT)) (-2408 (((-85) $) 10 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 20 T ELT)))
+(((-663 |#1|) (-10 -7 (-15 -3463 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-695))) (-15 -2408 ((-85) |#1|)) (-15 -3720 (|#1|) -3948) (-15 ** (|#1| |#1| (-831)))) (-664)) (T -663))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3720 (($) 23 T CONST)) (-3463 (((-3 $ "failed") $) 20 T ELT)) (-2408 (((-85) $) 22 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2664 (($) 24 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 21 T ELT)) (* (($ $ $) 18 T ELT)))
+(((-664) (-113)) (T -664))
+((-2664 (*1 *1) (-4 *1 (-664))) (-3720 (*1 *1) (-4 *1 (-664))) (-2408 (*1 *2 *1) (-12 (-4 *1 (-664)) (-5 *2 (-85)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-664)) (-5 *2 (-695)))) (-3463 (*1 *1 *1) (|partial| -4 *1 (-664))))
+(-13 (-1025) (-10 -8 (-15 -2664 ($) -3948) (-15 -3720 ($) -3948) (-15 -2408 ((-85) $)) (-15 ** ($ $ (-695))) (-15 -3463 ((-3 $ "failed") $))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1025) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-2410 ((|#1| $) 16 T ELT)) (-2409 (($ (-1 |#1| |#1| |#1|) |#1|) 11 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3796 ((|#1| $ |#1| |#1|) 14 T ELT)) (-3942 (((-773) $) NIL T ELT) (((-1022 |#1|) $) 17 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-665 |#1|) (-13 (-666 |#1|) (-1013) (-553 (-1022 |#1|)) (-10 -8 (-15 -2409 ($ (-1 |#1| |#1| |#1|) |#1|)))) (-72)) (T -665))
+((-2409 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-665 *3)))))
+((-2410 ((|#1| $) 8 T ELT)) (-3796 ((|#1| $ |#1| |#1|) 6 T ELT)))
+(((-666 |#1|) (-113) (-72)) (T -666))
+((-2410 (*1 *2 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-72)))))
+(-13 (-1023 |t#1|) (-10 -8 (-15 -2410 (|t#1| $)) (-6 (|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (SEQ (-3054 (|f| |x| (-2410 |f|)) |x|) (|exit| 1 (-3054 (|f| (-2410 |f|) |x|) |x|))))))))
+(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1023 |#1|) . T) ((-1128) . T))
+((-2411 (((-2 (|:| -3087 (-345 |#2|)) (|:| |special| (-345 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-3414 (((-2 (|:| -3087 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-2412 ((|#2| (-347 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-3431 (((-2 (|:| |poly| |#2|) (|:| -3087 (-347 |#2|)) (|:| |special| (-347 |#2|))) (-347 |#2|) (-1 |#2| |#2|)) 48 T ELT)))
+(((-667 |#1| |#2|) (-10 -7 (-15 -3414 ((-2 (|:| -3087 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2411 ((-2 (|:| -3087 (-345 |#2|)) (|:| |special| (-345 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2412 (|#2| (-347 |#2|) (-1 |#2| |#2|))) (-15 -3431 ((-2 (|:| |poly| |#2|) (|:| -3087 (-347 |#2|)) (|:| |special| (-347 |#2|))) (-347 |#2|) (-1 |#2| |#2|)))) (-311) (-1154 |#1|)) (T -667))
+((-3431 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3087 (-347 *6)) (|:| |special| (-347 *6)))) (-5 *1 (-667 *5 *6)) (-5 *3 (-347 *6)))) (-2412 (*1 *2 *3 *4) (-12 (-5 *3 (-347 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1154 *5)) (-5 *1 (-667 *5 *2)) (-4 *5 (-311)))) (-2411 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| -3087 (-345 *3)) (|:| |special| (-345 *3)))) (-5 *1 (-667 *5 *3)))) (-3414 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-311)) (-5 *2 (-2 (|:| -3087 *3) (|:| |special| *3))) (-5 *1 (-667 *5 *3)))))
+((-2413 ((|#7| (-584 |#5|) |#6|) NIL T ELT)) (-3954 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT)))
+(((-668 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3954 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2413 (|#7| (-584 |#5|) |#6|))) (-757) (-718) (-718) (-962) (-962) (-862 |#4| |#2| |#1|) (-862 |#5| |#3| |#1|)) (T -668))
+((-2413 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *9)) (-4 *9 (-962)) (-4 *5 (-757)) (-4 *6 (-718)) (-4 *8 (-962)) (-4 *2 (-862 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-718)) (-4 *4 (-862 *8 *6 *5)))) (-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-962)) (-4 *9 (-962)) (-4 *5 (-757)) (-4 *6 (-718)) (-4 *2 (-862 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-718)) (-4 *4 (-862 *8 *6 *5)))))
+((-3954 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT)))
+(((-669 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3954 (|#7| (-1 |#2| |#1|) |#6|))) (-757) (-757) (-718) (-718) (-962) (-862 |#5| |#3| |#1|) (-862 |#5| |#4| |#2|)) (T -669))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-757)) (-4 *6 (-757)) (-4 *7 (-718)) (-4 *9 (-962)) (-4 *2 (-862 *9 *8 *6)) (-5 *1 (-669 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-718)) (-4 *4 (-862 *9 *7 *5)))))
+((-3728 (((-345 |#4|) |#4|) 42 T ELT)))
+(((-670 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3728 ((-345 |#4|) |#4|))) (-718) (-13 (-757) (-10 -8 (-15 -3968 ((-1089) $)) (-15 -3827 ((-3 $ "failed") (-1089))))) (-257) (-862 (-858 |#3|) |#1| |#2|)) (T -670))
+((-3728 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-13 (-757) (-10 -8 (-15 -3968 ((-1089) $)) (-15 -3827 ((-3 $ "failed") (-1089)))))) (-4 *6 (-257)) (-5 *2 (-345 *3)) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-862 (-858 *6) *4 *5)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3079 (((-584 (-774 |#1|)) $) NIL T ELT)) (-3081 (((-1084 $) $ (-774 |#1|)) NIL T ELT) (((-1084 |#2|) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL (|has| |#2| (-495)) ELT)) (-2061 (($ $) NIL (|has| |#2| (-495)) ELT)) (-2059 (((-85) $) NIL (|has| |#2| (-495)) ELT)) (-2817 (((-695) $) NIL T ELT) (((-695) $ (-584 (-774 |#1|))) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-3771 (($ $) NIL (|has| |#2| (-389)) ELT)) (-3967 (((-345 $) $) NIL (|has| |#2| (-389)) ELT)) (-2702 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-3153 ((|#2| $) NIL T ELT) (((-347 (-484)) $) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) (((-484) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-774 |#1|) $) NIL T ELT)) (-3752 (($ $ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3955 (($ $) NIL T ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#2| (-389)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-389)) ELT)) (-2816 (((-584 $) $) NIL T ELT)) (-3719 (((-85) $) NIL (|has| |#2| (-822)) ELT)) (-1622 (($ $ |#2| (-469 (-774 |#1|)) $) NIL T ELT)) (-2794 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-327))) (|has| |#2| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-484))) (|has| |#2| (-797 (-484)))) ELT)) (-2408 (((-85) $) NIL T ELT)) (-2418 (((-695) $) NIL T ELT)) (-3082 (($ (-1084 |#2|) (-774 |#1|)) NIL T ELT) (($ (-1084 $) (-774 |#1|)) NIL T ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2891 (($ |#2| (-469 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-3759 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $ (-774 |#1|)) NIL T ELT)) (-2818 (((-469 (-774 |#1|)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-1623 (($ (-1 (-469 (-774 |#1|)) (-469 (-774 |#1|))) $) NIL T ELT)) (-3954 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3080 (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-2278 (((-631 (-484)) (-1178 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL T ELT) (((-631 |#2|) (-1178 $)) NIL T ELT)) (-2892 (($ $) NIL T ELT)) (-3171 ((|#2| $) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2821 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-2 (|:| |var| (-774 |#1|)) (|:| -2399 (-695))) #1#) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1795 (((-85) $) NIL T ELT)) (-1794 ((|#2| $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#2| (-389)) ELT)) (-3141 (($ (-584 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-3728 (((-345 $) $) NIL (|has| |#2| (-822)) ELT)) (-3462 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT)) (-3764 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-774 |#1|) |#2|) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 |#2|)) NIL T ELT) (($ $ (-774 |#1|) $) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 $)) NIL T ELT)) (-3753 (($ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3754 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3944 (((-469 (-774 |#1|)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-3968 (((-801 (-327)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-327)))) (|has| |#2| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-484)))) (|has| |#2| (-554 (-801 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-774 |#1|) (-554 (-473))) (|has| |#2| (-554 (-473)))) ELT)) (-2815 ((|#2| $) NIL (|has| |#2| (-389)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-389)) ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-774 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-495)) ELT) (($ (-347 (-484))) NIL (OR (|has| |#2| (-38 (-347 (-484)))) (|has| |#2| (-951 (-347 (-484))))) ELT)) (-3813 (((-584 |#2|) $) NIL T ELT)) (-3673 ((|#2| $ (-469 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-2700 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3123 (((-695)) NIL T CONST)) (-1621 (($ $ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL (|has| |#2| (-495)) ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-2667 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL (|has| |#2| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) NIL (|has| |#2| (-38 (-347 (-484)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
+(((-671 |#1| |#2|) (-862 |#2| (-469 (-774 |#1|)) (-774 |#1|)) (-584 (-1089)) (-962)) (T -671))
+NIL
+((-2414 (((-2 (|:| -2481 (-858 |#3|)) (|:| -2056 (-858 |#3|))) |#4|) 14 T ELT)) (-2984 ((|#4| |#4| |#2|) 33 T ELT)) (-2417 ((|#4| (-347 (-858 |#3|)) |#2|) 62 T ELT)) (-2416 ((|#4| (-1084 (-858 |#3|)) |#2|) 74 T ELT)) (-2415 ((|#4| (-1084 |#4|) |#2|) 49 T ELT)) (-2983 ((|#4| |#4| |#2|) 52 T ELT)) (-3728 (((-345 |#4|) |#4|) 40 T ELT)))
+(((-672 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2414 ((-2 (|:| -2481 (-858 |#3|)) (|:| -2056 (-858 |#3|))) |#4|)) (-15 -2983 (|#4| |#4| |#2|)) (-15 -2415 (|#4| (-1084 |#4|) |#2|)) (-15 -2984 (|#4| |#4| |#2|)) (-15 -2416 (|#4| (-1084 (-858 |#3|)) |#2|)) (-15 -2417 (|#4| (-347 (-858 |#3|)) |#2|)) (-15 -3728 ((-345 |#4|) |#4|))) (-718) (-13 (-757) (-10 -8 (-15 -3968 ((-1089) $)))) (-495) (-862 (-347 (-858 |#3|)) |#1| |#2|)) (T -672))
+((-3728 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-13 (-757) (-10 -8 (-15 -3968 ((-1089) $))))) (-4 *6 (-495)) (-5 *2 (-345 *3)) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-862 (-347 (-858 *6)) *4 *5)))) (-2417 (*1 *2 *3 *4) (-12 (-4 *6 (-495)) (-4 *2 (-862 *3 *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) (-5 *3 (-347 (-858 *6))) (-4 *5 (-718)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3968 ((-1089) $))))))) (-2416 (*1 *2 *3 *4) (-12 (-5 *3 (-1084 (-858 *6))) (-4 *6 (-495)) (-4 *2 (-862 (-347 (-858 *6)) *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) (-4 *5 (-718)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3968 ((-1089) $))))))) (-2984 (*1 *2 *2 *3) (-12 (-4 *4 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3968 ((-1089) $))))) (-4 *5 (-495)) (-5 *1 (-672 *4 *3 *5 *2)) (-4 *2 (-862 (-347 (-858 *5)) *4 *3)))) (-2415 (*1 *2 *3 *4) (-12 (-5 *3 (-1084 *2)) (-4 *2 (-862 (-347 (-858 *6)) *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) (-4 *5 (-718)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3968 ((-1089) $))))) (-4 *6 (-495)))) (-2983 (*1 *2 *2 *3) (-12 (-4 *4 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3968 ((-1089) $))))) (-4 *5 (-495)) (-5 *1 (-672 *4 *3 *5 *2)) (-4 *2 (-862 (-347 (-858 *5)) *4 *3)))) (-2414 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-13 (-757) (-10 -8 (-15 -3968 ((-1089) $))))) (-4 *6 (-495)) (-5 *2 (-2 (|:| -2481 (-858 *6)) (|:| -2056 (-858 *6)))) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-862 (-347 (-858 *6)) *4 *5)))))
+((-3728 (((-345 |#4|) |#4|) 54 T ELT)))
+(((-673 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3728 ((-345 |#4|) |#4|))) (-718) (-757) (-13 (-257) (-120)) (-862 (-347 |#3|) |#1| |#2|)) (T -673))
+((-3728 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-13 (-257) (-120))) (-5 *2 (-345 *3)) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-862 (-347 *6) *4 *5)))))
+((-3954 (((-675 |#2| |#3|) (-1 |#2| |#1|) (-675 |#1| |#3|)) 18 T ELT)))
+(((-674 |#1| |#2| |#3|) (-10 -7 (-15 -3954 ((-675 |#2| |#3|) (-1 |#2| |#1|) (-675 |#1| |#3|)))) (-962) (-962) (-664)) (T -674))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-675 *5 *7)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *7 (-664)) (-5 *2 (-675 *6 *7)) (-5 *1 (-674 *5 *6 *7)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 36 T ELT)) (-3770 (((-584 (-2 (|:| -3950 |#1|) (|:| -3934 |#2|))) $) 37 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3133 (((-695)) 22 (-12 (|has| |#2| (-317)) (|has| |#1| (-317))) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#2| #1#) $) 76 T ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3153 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-3955 (($ $) 99 (|has| |#2| (-757)) ELT)) (-3463 (((-3 $ #1#) $) 83 T ELT)) (-2992 (($) 48 (-12 (|has| |#2| (-317)) (|has| |#1| (-317))) ELT)) (-2408 (((-85) $) NIL T ELT)) (-2418 (((-695) $) 70 T ELT)) (-2819 (((-584 $) $) 52 T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2891 (($ |#1| |#2|) 17 T ELT)) (-3954 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-2008 (((-831) $) 43 (-12 (|has| |#2| (-317)) (|has| |#1| (-317))) ELT)) (-2892 ((|#2| $) 98 (|has| |#2| (-757)) ELT)) (-3171 ((|#1| $) 97 (|has| |#2| (-757)) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2398 (($ (-831)) 35 (-12 (|has| |#2| (-317)) (|has| |#1| (-317))) ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 96 T ELT) (($ (-484)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-584 (-2 (|:| -3950 |#1|) (|:| -3934 |#2|)))) 11 T ELT)) (-3813 (((-584 |#1|) $) 54 T ELT)) (-3673 ((|#1| $ |#2|) 114 T ELT)) (-2700 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3123 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) 12 T CONST)) (-2664 (($) 44 T CONST)) (-3054 (((-85) $ $) 104 T ELT)) (-3833 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) 33 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 66 T ELT) (($ $ $) 117 T ELT) (($ |#1| $) 63 (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT)))
+(((-675 |#1| |#2|) (-13 (-962) (-951 |#2|) (-951 |#1|) (-10 -8 (-15 -2891 ($ |#1| |#2|)) (-15 -3673 (|#1| $ |#2|)) (-15 -3942 ($ (-584 (-2 (|:| -3950 |#1|) (|:| -3934 |#2|))))) (-15 -3770 ((-584 (-2 (|:| -3950 |#1|) (|:| -3934 |#2|))) $)) (-15 -3954 ($ (-1 |#1| |#1|) $)) (-15 -3933 ((-85) $)) (-15 -3813 ((-584 |#1|) $)) (-15 -2819 ((-584 $) $)) (-15 -2418 ((-695) $)) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-317)) (IF (|has| |#2| (-317)) (-6 (-317)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-757)) (PROGN (-15 -2892 (|#2| $)) (-15 -3171 (|#1| $)) (-15 -3955 ($ $))) |%noBranch|))) (-962) (-664)) (T -675))
+((-2891 (*1 *1 *2 *3) (-12 (-5 *1 (-675 *2 *3)) (-4 *2 (-962)) (-4 *3 (-664)))) (-3673 (*1 *2 *1 *3) (-12 (-4 *2 (-962)) (-5 *1 (-675 *2 *3)) (-4 *3 (-664)))) (-3942 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| -3950 *3) (|:| -3934 *4)))) (-4 *3 (-962)) (-4 *4 (-664)) (-5 *1 (-675 *3 *4)))) (-3770 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| -3950 *3) (|:| -3934 *4)))) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-3954 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-675 *3 *4)) (-4 *4 (-664)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-3813 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-2819 (*1 *2 *1) (-12 (-5 *2 (-584 (-675 *3 *4))) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-2418 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-2892 (*1 *2 *1) (-12 (-4 *2 (-664)) (-4 *2 (-757)) (-5 *1 (-675 *3 *2)) (-4 *3 (-962)))) (-3171 (*1 *2 *1) (-12 (-4 *2 (-962)) (-5 *1 (-675 *2 *3)) (-4 *3 (-757)) (-4 *3 (-664)))) (-3955 (*1 *1 *1) (-12 (-5 *1 (-675 *2 *3)) (-4 *3 (-757)) (-4 *2 (-962)) (-4 *3 (-664)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3231 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-3233 (($ $ $) 99 T ELT)) (-3232 (((-85) $ $) 107 T ELT)) (-3236 (($ (-584 |#1|)) 26 T ELT) (($) 17 T ELT)) (-1568 (($ (-1 (-85) |#1|) $) 86 (|has| $ (-6 -3991)) ELT)) (-3706 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3720 (($) NIL T CONST)) (-2366 (($ $) 88 T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3401 (($ |#1| $) 71 (|has| $ (-6 -3991)) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3991)) ELT) (($ |#1| $ (-484)) 78 T ELT) (($ (-1 (-85) |#1|) $ (-484)) 81 T ELT)) (-3402 (($ |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (($ |#1| $ (-484)) 83 T ELT) (($ (-1 (-85) |#1|) $ (-484)) 84 T ELT)) (-3838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2887 (((-584 |#1|) $) 32 (|has| $ (-6 -3991)) ELT)) (-3238 (((-85) $ $) 106 T ELT)) (-2419 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-584 |#1|)) 23 T ELT)) (-2606 (((-584 |#1|) $) 38 T ELT)) (-3242 (((-85) |#1| $) 66 (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 91 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3235 (($ $ $) 97 T ELT)) (-1272 ((|#1| $) 63 T ELT)) (-3605 (($ |#1| $) 64 T ELT) (($ |#1| $ (-695)) 89 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1273 ((|#1| $) 62 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3399 (((-85) $) 57 T ELT)) (-3561 (($) 14 T ELT)) (-2365 (((-584 (-2 (|:| |entry| |#1|) (|:| -1944 (-695)))) $) 56 T ELT)) (-3234 (($ $ |#1|) NIL T ELT) (($ $ $) 98 T ELT)) (-1464 (($) 16 T ELT) (($ (-584 |#1|)) 25 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) 69 (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3396 (($ $) 82 T ELT)) (-3968 (((-473) $) 36 (|has| |#1| (-554 (-473))) ELT)) (-3526 (($ (-584 |#1|)) 22 T ELT)) (-3942 (((-773) $) 50 T ELT)) (-3237 (($ (-584 |#1|)) 27 T ELT) (($) 18 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1274 (($ (-584 |#1|)) 24 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 103 T ELT)) (-3953 (((-695) $) 68 (|has| $ (-6 -3991)) ELT)))
+(((-676 |#1|) (-13 (-677 |#1|) (-10 -8 (-6 -3991) (-6 -3992) (-15 -2419 ($)) (-15 -2419 ($ |#1|)) (-15 -2419 ($ (-584 |#1|))) (-15 -2606 ((-584 |#1|) $)) (-15 -3402 ($ |#1| $ (-484))) (-15 -3402 ($ (-1 (-85) |#1|) $ (-484))) (-15 -3401 ($ |#1| $ (-484))) (-15 -3401 ($ (-1 (-85) |#1|) $ (-484))))) (-1013)) (T -676))
+((-2419 (*1 *1) (-12 (-5 *1 (-676 *2)) (-4 *2 (-1013)))) (-2419 (*1 *1 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-1013)))) (-2419 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-5 *1 (-676 *3)))) (-2606 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-676 *3)) (-4 *3 (-1013)))) (-3402 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-676 *2)) (-4 *2 (-1013)))) (-3402 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-484)) (-4 *4 (-1013)) (-5 *1 (-676 *4)))) (-3401 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-676 *2)) (-4 *2 (-1013)))) (-3401 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-484)) (-4 *4 (-1013)) (-5 *1 (-676 *4)))))
+((-2566 (((-85) $ $) 19 T ELT)) (-3231 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3233 (($ $ $) 77 T ELT)) (-3232 (((-85) $ $) 78 T ELT)) (-3236 (($ (-584 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1568 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3991)) ELT)) (-3706 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3991)) ELT)) (-3720 (($) 7 T CONST)) (-2366 (($ $) 66 T ELT)) (-1351 (($ $) 62 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3401 (($ |#1| $) 51 (|has| $ (-6 -3991)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3991)) ELT)) (-3402 (($ |#1| $) 61 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3991)) ELT)) (-3838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3991)) ELT)) (-2887 (((-584 |#1|) $) 30 (|has| $ (-6 -3991)) ELT)) (-3238 (((-85) $ $) 69 T ELT)) (-2606 (((-584 |#1|) $) 29 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3239 (((-1072) $) 22 T ELT)) (-3235 (($ $ $) 74 T ELT)) (-1272 ((|#1| $) 43 T ELT)) (-3605 (($ |#1| $) 44 T ELT) (($ |#1| $ (-695)) 67 T ELT)) (-3240 (((-1033) $) 21 T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1273 ((|#1| $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-2365 (((-584 (-2 (|:| |entry| |#1|) (|:| -1944 (-695)))) $) 65 T ELT)) (-3234 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1464 (($) 53 T ELT) (($ (-584 |#1|)) 52 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3396 (($ $) 10 T ELT)) (-3968 (((-473) $) 63 (|has| |#1| (-554 (-473))) ELT)) (-3526 (($ (-584 |#1|)) 54 T ELT)) (-3942 (((-773) $) 17 T ELT)) (-3237 (($ (-584 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1263 (((-85) $ $) 20 T ELT)) (-1274 (($ (-584 |#1|)) 46 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 18 T ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-677 |#1|) (-113) (-1013)) (T -677))
+NIL
+(-13 (-635 |t#1|) (-1011 |t#1|))
+(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-553 (-773)) . T) ((-124 |#1|) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-193 |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-635 |#1|) . T) ((-1011 |#1|) . T) ((-1013) . T) ((-1128) . T))
+((-2420 (((-1184) (-1072)) 8 T ELT)))
+(((-678) (-10 -7 (-15 -2420 ((-1184) (-1072))))) (T -678))
+((-2420 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-678)))))
+((-2421 (((-584 |#1|) (-584 |#1|) (-584 |#1|)) 15 T ELT)))
+(((-679 |#1|) (-10 -7 (-15 -2421 ((-584 |#1|) (-584 |#1|) (-584 |#1|)))) (-757)) (T -679))
+((-2421 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-679 *3)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-3079 (((-584 |#2|) $) 157 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 150 (|has| |#1| (-495)) ELT)) (-2061 (($ $) 149 (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) 147 (|has| |#1| (-495)) ELT)) (-3488 (($ $) 106 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) 89 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3035 (($ $) 88 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3486 (($ $) 105 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) 90 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3490 (($ $) 104 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) 91 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3720 (($) 22 T CONST)) (-3955 (($ $) 141 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-3810 (((-858 |#1|) $ (-695)) 119 T ELT) (((-858 |#1|) $ (-695) (-695)) 118 T ELT)) (-2890 (((-85) $) 158 T ELT)) (-3623 (($) 116 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3768 (((-695) $ |#2|) 121 T ELT) (((-695) $ |#2| (-695)) 120 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-3009 (($ $ (-484)) 87 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3933 (((-85) $) 139 T ELT)) (-2891 (($ $ (-584 |#2|) (-584 (-469 |#2|))) 156 T ELT) (($ $ |#2| (-469 |#2|)) 155 T ELT) (($ |#1| (-469 |#2|)) 140 T ELT) (($ $ |#2| (-695)) 123 T ELT) (($ $ (-584 |#2|) (-584 (-695))) 122 T ELT)) (-3954 (($ (-1 |#1| |#1|) $) 138 T ELT)) (-3938 (($ $) 113 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2892 (($ $) 136 T ELT)) (-3171 ((|#1| $) 135 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3808 (($ $ |#2|) 117 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3765 (($ $ (-695)) 124 T ELT)) (-3462 (((-3 $ "failed") $ $) 151 (|has| |#1| (-495)) ELT)) (-3939 (($ $) 114 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3764 (($ $ |#2| $) 132 T ELT) (($ $ (-584 |#2|) (-584 $)) 131 T ELT) (($ $ (-584 (-248 $))) 130 T ELT) (($ $ (-248 $)) 129 T ELT) (($ $ $ $) 128 T ELT) (($ $ (-584 $) (-584 $)) 127 T ELT)) (-3754 (($ $ (-584 |#2|) (-584 (-695))) 50 T ELT) (($ $ |#2| (-695)) 49 T ELT) (($ $ (-584 |#2|)) 48 T ELT) (($ $ |#2|) 46 T ELT)) (-3944 (((-469 |#2|) $) 137 T ELT)) (-3491 (($ $) 103 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) 92 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3489 (($ $) 102 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) 93 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3487 (($ $) 101 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3630 (($ $) 94 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2889 (($ $) 159 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 154 (|has| |#1| (-146)) ELT) (($ $) 152 (|has| |#1| (-495)) ELT) (($ (-347 (-484))) 144 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3673 ((|#1| $ (-469 |#2|)) 142 T ELT) (($ $ |#2| (-695)) 126 T ELT) (($ $ (-584 |#2|) (-584 (-695))) 125 T ELT)) (-2700 (((-633 $) $) 153 (|has| |#1| (-118)) ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-3494 (($ $) 112 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) 100 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2060 (((-85) $ $) 148 (|has| |#1| (-495)) ELT)) (-3492 (($ $) 111 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3480 (($ $) 99 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) 110 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) 98 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3497 (($ $) 109 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) 97 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3495 (($ $) 108 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) 96 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3493 (($ $) 107 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) 95 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-2667 (($ $ (-584 |#2|) (-584 (-695))) 53 T ELT) (($ $ |#2| (-695)) 52 T ELT) (($ $ (-584 |#2|)) 51 T ELT) (($ $ |#2|) 47 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3945 (($ $ |#1|) 143 (|has| |#1| (-311)) ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ $) 115 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 86 (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-484))) 146 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) 145 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ |#1| $) 134 T ELT) (($ $ |#1|) 133 T ELT)))
+(((-680 |#1| |#2|) (-113) (-962) (-757)) (T -680))
+((-3673 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *2)) (-4 *4 (-962)) (-4 *2 (-757)))) (-3673 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *5)) (-5 *3 (-584 (-695))) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757)))) (-3765 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-680 *3 *4)) (-4 *3 (-962)) (-4 *4 (-757)))) (-2891 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *2)) (-4 *4 (-962)) (-4 *2 (-757)))) (-2891 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *5)) (-5 *3 (-584 (-695))) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757)))) (-3768 (*1 *2 *1 *3) (-12 (-4 *1 (-680 *4 *3)) (-4 *4 (-962)) (-4 *3 (-757)) (-5 *2 (-695)))) (-3768 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-695)) (-4 *1 (-680 *4 *3)) (-4 *4 (-962)) (-4 *3 (-757)))) (-3810 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757)) (-5 *2 (-858 *4)))) (-3810 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757)) (-5 *2 (-858 *4)))) (-3808 (*1 *1 *1 *2) (-12 (-4 *1 (-680 *3 *2)) (-4 *3 (-962)) (-4 *2 (-757)) (-4 *3 (-38 (-347 (-484)))))))
+(-13 (-810 |t#2|) (-887 |t#1| (-469 |t#2|) |t#2|) (-453 |t#2| $) (-259 $) (-10 -8 (-15 -3673 ($ $ |t#2| (-695))) (-15 -3673 ($ $ (-584 |t#2|) (-584 (-695)))) (-15 -3765 ($ $ (-695))) (-15 -2891 ($ $ |t#2| (-695))) (-15 -2891 ($ $ (-584 |t#2|) (-584 (-695)))) (-15 -3768 ((-695) $ |t#2|)) (-15 -3768 ((-695) $ |t#2| (-695))) (-15 -3810 ((-858 |t#1|) $ (-695))) (-15 -3810 ((-858 |t#1|) $ (-695) (-695))) (IF (|has| |t#1| (-38 (-347 (-484)))) (PROGN (-15 -3808 ($ $ |t#2|)) (-6 (-916)) (-6 (-1114))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| (-469 |#2|)) . T) ((-25) . T) ((-38 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-35) |has| |#1| (-38 (-347 (-484)))) ((-66) |has| |#1| (-38 (-347 (-484)))) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-556 (-484)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) |has| |#1| (-495)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-239) |has| |#1| (-38 (-347 (-484)))) ((-245) |has| |#1| (-495)) ((-259 $) . T) ((-430) |has| |#1| (-38 (-347 (-484)))) ((-453 |#2| $) . T) ((-453 $ $) . T) ((-495) |has| |#1| (-495)) ((-13) . T) ((-589 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-495)) ((-655 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-495)) ((-664) . T) ((-807 $ |#2|) . T) ((-810 |#2|) . T) ((-812 |#2|) . T) ((-887 |#1| (-469 |#2|) |#2|) . T) ((-916) |has| |#1| (-38 (-347 (-484)))) ((-964 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-969 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1114) |has| |#1| (-38 (-347 (-484)))) ((-1117) |has| |#1| (-38 (-347 (-484)))) ((-1128) . T))
+((-3728 (((-345 (-1084 |#4|)) (-1084 |#4|)) 30 T ELT) (((-345 |#4|) |#4|) 26 T ELT)))
+(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3728 ((-345 |#4|) |#4|)) (-15 -3728 ((-345 (-1084 |#4|)) (-1084 |#4|)))) (-757) (-718) (-13 (-257) (-120)) (-862 |#3| |#2| |#1|)) (T -681))
+((-3728 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-13 (-257) (-120))) (-4 *7 (-862 *6 *5 *4)) (-5 *2 (-345 (-1084 *7))) (-5 *1 (-681 *4 *5 *6 *7)) (-5 *3 (-1084 *7)))) (-3728 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-13 (-257) (-120))) (-5 *2 (-345 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4)))))
+((-2424 (((-345 |#4|) |#4| |#2|) 142 T ELT)) (-2422 (((-345 |#4|) |#4|) NIL T ELT)) (-3967 (((-345 (-1084 |#4|)) (-1084 |#4|)) 129 T ELT) (((-345 |#4|) |#4|) 52 T ELT)) (-2426 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-584 (-2 (|:| -3728 (-1084 |#4|)) (|:| -2399 (-484)))))) (-1084 |#4|) (-584 |#2|) (-584 (-584 |#3|))) 81 T ELT)) (-2430 (((-1084 |#3|) (-1084 |#3|) (-484)) 169 T ELT)) (-2429 (((-584 (-695)) (-1084 |#4|) (-584 |#2|) (-695)) 75 T ELT)) (-3077 (((-3 (-584 (-1084 |#4|)) "failed") (-1084 |#4|) (-1084 |#3|) (-1084 |#3|) |#4| (-584 |#2|) (-584 (-695)) (-584 |#3|)) 79 T ELT)) (-2427 (((-2 (|:| |upol| (-1084 |#3|)) (|:| |Lval| (-584 |#3|)) (|:| |Lfact| (-584 (-2 (|:| -3728 (-1084 |#3|)) (|:| -2399 (-484))))) (|:| |ctpol| |#3|)) (-1084 |#4|) (-584 |#2|) (-584 (-584 |#3|))) 27 T ELT)) (-2425 (((-2 (|:| -2002 (-1084 |#4|)) (|:| |polval| (-1084 |#3|))) (-1084 |#4|) (-1084 |#3|) (-484)) 72 T ELT)) (-2423 (((-484) (-584 (-2 (|:| -3728 (-1084 |#3|)) (|:| -2399 (-484))))) 165 T ELT)) (-2428 ((|#4| (-484) (-345 |#4|)) 73 T ELT)) (-3353 (((-85) (-584 (-2 (|:| -3728 (-1084 |#3|)) (|:| -2399 (-484)))) (-584 (-2 (|:| -3728 (-1084 |#3|)) (|:| -2399 (-484))))) NIL T ELT)))
+(((-682 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3967 ((-345 |#4|) |#4|)) (-15 -3967 ((-345 (-1084 |#4|)) (-1084 |#4|))) (-15 -2422 ((-345 |#4|) |#4|)) (-15 -2423 ((-484) (-584 (-2 (|:| -3728 (-1084 |#3|)) (|:| -2399 (-484)))))) (-15 -2424 ((-345 |#4|) |#4| |#2|)) (-15 -2425 ((-2 (|:| -2002 (-1084 |#4|)) (|:| |polval| (-1084 |#3|))) (-1084 |#4|) (-1084 |#3|) (-484))) (-15 -2426 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-584 (-2 (|:| -3728 (-1084 |#4|)) (|:| -2399 (-484)))))) (-1084 |#4|) (-584 |#2|) (-584 (-584 |#3|)))) (-15 -2427 ((-2 (|:| |upol| (-1084 |#3|)) (|:| |Lval| (-584 |#3|)) (|:| |Lfact| (-584 (-2 (|:| -3728 (-1084 |#3|)) (|:| -2399 (-484))))) (|:| |ctpol| |#3|)) (-1084 |#4|) (-584 |#2|) (-584 (-584 |#3|)))) (-15 -2428 (|#4| (-484) (-345 |#4|))) (-15 -3353 ((-85) (-584 (-2 (|:| -3728 (-1084 |#3|)) (|:| -2399 (-484)))) (-584 (-2 (|:| -3728 (-1084 |#3|)) (|:| -2399 (-484)))))) (-15 -3077 ((-3 (-584 (-1084 |#4|)) "failed") (-1084 |#4|) (-1084 |#3|) (-1084 |#3|) |#4| (-584 |#2|) (-584 (-695)) (-584 |#3|))) (-15 -2429 ((-584 (-695)) (-1084 |#4|) (-584 |#2|) (-695))) (-15 -2430 ((-1084 |#3|) (-1084 |#3|) (-484)))) (-718) (-757) (-257) (-862 |#3| |#1| |#2|)) (T -682))
+((-2430 (*1 *2 *2 *3) (-12 (-5 *2 (-1084 *6)) (-5 *3 (-484)) (-4 *6 (-257)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-2429 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1084 *9)) (-5 *4 (-584 *7)) (-4 *7 (-757)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-4 *8 (-257)) (-5 *2 (-584 (-695))) (-5 *1 (-682 *6 *7 *8 *9)) (-5 *5 (-695)))) (-3077 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1084 *11)) (-5 *6 (-584 *10)) (-5 *7 (-584 (-695))) (-5 *8 (-584 *11)) (-4 *10 (-757)) (-4 *11 (-257)) (-4 *9 (-718)) (-4 *5 (-862 *11 *9 *10)) (-5 *2 (-584 (-1084 *5))) (-5 *1 (-682 *9 *10 *11 *5)) (-5 *3 (-1084 *5)))) (-3353 (*1 *2 *3 *3) (-12 (-5 *3 (-584 (-2 (|:| -3728 (-1084 *6)) (|:| -2399 (-484))))) (-4 *6 (-257)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-2428 (*1 *2 *3 *4) (-12 (-5 *3 (-484)) (-5 *4 (-345 *2)) (-4 *2 (-862 *7 *5 *6)) (-5 *1 (-682 *5 *6 *7 *2)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-257)))) (-2427 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1084 *9)) (-5 *4 (-584 *7)) (-5 *5 (-584 (-584 *8))) (-4 *7 (-757)) (-4 *8 (-257)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-5 *2 (-2 (|:| |upol| (-1084 *8)) (|:| |Lval| (-584 *8)) (|:| |Lfact| (-584 (-2 (|:| -3728 (-1084 *8)) (|:| -2399 (-484))))) (|:| |ctpol| *8))) (-5 *1 (-682 *6 *7 *8 *9)))) (-2426 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-584 *7)) (-5 *5 (-584 (-584 *8))) (-4 *7 (-757)) (-4 *8 (-257)) (-4 *6 (-718)) (-4 *9 (-862 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-584 (-2 (|:| -3728 (-1084 *9)) (|:| -2399 (-484))))))) (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1084 *9)))) (-2425 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-484)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-257)) (-4 *9 (-862 *8 *6 *7)) (-5 *2 (-2 (|:| -2002 (-1084 *9)) (|:| |polval| (-1084 *8)))) (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1084 *9)) (-5 *4 (-1084 *8)))) (-2424 (*1 *2 *3 *4) (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-257)) (-5 *2 (-345 *3)) (-5 *1 (-682 *5 *4 *6 *3)) (-4 *3 (-862 *6 *5 *4)))) (-2423 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3728 (-1084 *6)) (|:| -2399 (-484))))) (-4 *6 (-257)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-484)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-2422 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)) (-5 *2 (-345 *3)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-862 *6 *4 *5)))) (-3967 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-345 (-1084 *7))) (-5 *1 (-682 *4 *5 *6 *7)) (-5 *3 (-1084 *7)))) (-3967 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)) (-5 *2 (-345 *3)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-862 *6 *4 *5)))))
+((-2431 (($ $ (-831)) 17 T ELT)))
+(((-683 |#1| |#2|) (-10 -7 (-15 -2431 (|#1| |#1| (-831)))) (-684 |#2|) (-146)) (T -683))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-2405 (($ $ (-831)) 36 T ELT)) (-2431 (($ $ (-831)) 43 T ELT)) (-2404 (($ $ (-831)) 37 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-2433 (($ $ $) 33 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2434 (($ $ $ $) 34 T ELT)) (-2432 (($ $ $) 32 T ELT)) (-2658 (($) 23 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 38 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT)))
+(((-684 |#1|) (-113) (-146)) (T -684))
+((-2431 (*1 *1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-684 *3)) (-4 *3 (-146)))))
+(-13 (-686) (-655 |t#1|) (-10 -8 (-15 -2431 ($ $ (-831)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-658) . T) ((-686) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1013) . T) ((-1128) . T))
+((-2433 (($ $ $) 10 T ELT)) (-2434 (($ $ $ $) 9 T ELT)) (-2432 (($ $ $) 12 T ELT)))
+(((-685 |#1|) (-10 -7 (-15 -2432 (|#1| |#1| |#1|)) (-15 -2433 (|#1| |#1| |#1|)) (-15 -2434 (|#1| |#1| |#1| |#1|))) (-686)) (T -685))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-2405 (($ $ (-831)) 36 T ELT)) (-2404 (($ $ (-831)) 37 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-2433 (($ $ $) 33 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2434 (($ $ $ $) 34 T ELT)) (-2432 (($ $ $) 32 T ELT)) (-2658 (($) 23 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 38 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 35 T ELT)))
+(((-686) (-113)) (T -686))
+((-2434 (*1 *1 *1 *1 *1) (-4 *1 (-686))) (-2433 (*1 *1 *1 *1) (-4 *1 (-686))) (-2432 (*1 *1 *1 *1) (-4 *1 (-686))))
+(-13 (-21) (-658) (-10 -8 (-15 -2434 ($ $ $ $)) (-15 -2433 ($ $ $)) (-15 -2432 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-658) . T) ((-1013) . T) ((-1128) . T))
+((-3942 (((-773) $) NIL T ELT) (($ (-484)) 10 T ELT)))
+(((-687 |#1|) (-10 -7 (-15 -3942 (|#1| (-484))) (-15 -3942 ((-773) |#1|))) (-688)) (T -687))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-2402 (((-3 $ #1="failed") $) 48 T ELT)) (-2405 (($ $ (-831)) 36 T ELT) (($ $ (-695)) 43 T ELT)) (-3463 (((-3 $ #1#) $) 46 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-2403 (((-3 $ #1#) $) 47 T ELT)) (-2404 (($ $ (-831)) 37 T ELT) (($ $ (-695)) 44 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-2433 (($ $ $) 33 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT)) (-3123 (((-695)) 40 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2434 (($ $ $ $) 34 T ELT)) (-2432 (($ $ $) 32 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 41 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 38 T ELT) (($ $ (-695)) 45 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 35 T ELT)))
+(((-688) (-113)) (T -688))
+((-3123 (*1 *2) (-12 (-4 *1 (-688)) (-5 *2 (-695)))) (-3942 (*1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-688)))))
+(-13 (-686) (-660) (-10 -8 (-15 -3123 ((-695)) -3948) (-15 -3942 ($ (-484)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-658) . T) ((-660) . T) ((-686) . T) ((-1013) . T) ((-1128) . T))
+((-2436 (((-584 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-484)) (|:| |outvect| (-584 (-631 (-142 |#1|)))))) (-631 (-142 (-347 (-484)))) |#1|) 33 T ELT)) (-2435 (((-584 (-142 |#1|)) (-631 (-142 (-347 (-484)))) |#1|) 23 T ELT)) (-2447 (((-858 (-142 (-347 (-484)))) (-631 (-142 (-347 (-484)))) (-1089)) 20 T ELT) (((-858 (-142 (-347 (-484)))) (-631 (-142 (-347 (-484))))) 19 T ELT)))
+(((-689 |#1|) (-10 -7 (-15 -2447 ((-858 (-142 (-347 (-484)))) (-631 (-142 (-347 (-484)))))) (-15 -2447 ((-858 (-142 (-347 (-484)))) (-631 (-142 (-347 (-484)))) (-1089))) (-15 -2435 ((-584 (-142 |#1|)) (-631 (-142 (-347 (-484)))) |#1|)) (-15 -2436 ((-584 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-484)) (|:| |outvect| (-584 (-631 (-142 |#1|)))))) (-631 (-142 (-347 (-484)))) |#1|))) (-13 (-311) (-756))) (T -689))
+((-2436 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-142 (-347 (-484))))) (-5 *2 (-584 (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-484)) (|:| |outvect| (-584 (-631 (-142 *4))))))) (-5 *1 (-689 *4)) (-4 *4 (-13 (-311) (-756))))) (-2435 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-142 (-347 (-484))))) (-5 *2 (-584 (-142 *4))) (-5 *1 (-689 *4)) (-4 *4 (-13 (-311) (-756))))) (-2447 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-142 (-347 (-484))))) (-5 *4 (-1089)) (-5 *2 (-858 (-142 (-347 (-484))))) (-5 *1 (-689 *5)) (-4 *5 (-13 (-311) (-756))))) (-2447 (*1 *2 *3) (-12 (-5 *3 (-631 (-142 (-347 (-484))))) (-5 *2 (-858 (-142 (-347 (-484))))) (-5 *1 (-689 *4)) (-4 *4 (-13 (-311) (-756))))))
+((-2614 (((-148 (-484)) |#1|) 27 T ELT)))
+(((-690 |#1|) (-10 -7 (-15 -2614 ((-148 (-484)) |#1|))) (-344)) (T -690))
+((-2614 (*1 *2 *3) (-12 (-5 *2 (-148 (-484))) (-5 *1 (-690 *3)) (-4 *3 (-344)))))
+((-2540 ((|#1| |#1| |#1|) 28 T ELT)) (-2541 ((|#1| |#1| |#1|) 27 T ELT)) (-2530 ((|#1| |#1| |#1|) 38 T ELT)) (-2538 ((|#1| |#1| |#1|) 33 T ELT)) (-2539 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-2546 (((-2 (|:| -1971 |#1|) (|:| -2900 |#1|)) |#1| |#1|) 26 T ELT)))
+(((-691 |#1| |#2|) (-10 -7 (-15 -2546 ((-2 (|:| -1971 |#1|) (|:| -2900 |#1|)) |#1| |#1|)) (-15 -2541 (|#1| |#1| |#1|)) (-15 -2540 (|#1| |#1| |#1|)) (-15 -2539 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2538 (|#1| |#1| |#1|)) (-15 -2530 (|#1| |#1| |#1|))) (-646 |#2|) (-311)) (T -691))
+((-2530 (*1 *2 *2 *2) (-12 (-4 *3 (-311)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2538 (*1 *2 *2 *2) (-12 (-4 *3 (-311)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2539 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-311)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2540 (*1 *2 *2 *2) (-12 (-4 *3 (-311)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2541 (*1 *2 *2 *2) (-12 (-4 *3 (-311)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2546 (*1 *2 *3 *3) (-12 (-4 *4 (-311)) (-5 *2 (-2 (|:| -1971 *3) (|:| -2900 *3))) (-5 *1 (-691 *3 *4)) (-4 *3 (-646 *4)))))
+((-2553 (((-633 (-1137)) $ (-1137)) 27 T ELT)) (-2554 (((-633 (-488)) $ (-488)) 26 T ELT)) (-2552 (((-695) $ (-102)) 28 T ELT)) (-2555 (((-633 (-101)) $ (-101)) 25 T ELT)) (-1998 (((-633 (-1137)) $) 12 T ELT)) (-1994 (((-633 (-1135)) $) 8 T ELT)) (-1996 (((-633 (-1134)) $) 10 T ELT)) (-1999 (((-633 (-488)) $) 13 T ELT)) (-1995 (((-633 (-486)) $) 9 T ELT)) (-1997 (((-633 (-485)) $) 11 T ELT)) (-1993 (((-695) $ (-102)) 7 T ELT)) (-2000 (((-633 (-101)) $) 14 T ELT)) (-2437 (((-85) $) 32 T ELT)) (-2438 (((-633 $) |#1| (-866)) 33 T ELT)) (-1698 (($ $) 6 T ELT)))
+(((-692 |#1|) (-113) (-1013)) (T -692))
+((-2438 (*1 *2 *3 *4) (-12 (-5 *4 (-866)) (-4 *3 (-1013)) (-5 *2 (-633 *1)) (-4 *1 (-692 *3)))) (-2437 (*1 *2 *1) (-12 (-4 *1 (-692 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))))
+(-13 (-512) (-10 -8 (-15 -2438 ((-633 $) |t#1| (-866))) (-15 -2437 ((-85) $))))
+(((-147) . T) ((-465) . T) ((-512) . T) ((-771) . T))
+((-3915 (((-2 (|:| -2010 (-631 (-484))) (|:| |basisDen| (-484)) (|:| |basisInv| (-631 (-484)))) (-484)) 72 T ELT)) (-3914 (((-2 (|:| -2010 (-631 (-484))) (|:| |basisDen| (-484)) (|:| |basisInv| (-631 (-484))))) 70 T ELT)) (-3753 (((-484)) 86 T ELT)))
+(((-693 |#1| |#2|) (-10 -7 (-15 -3753 ((-484))) (-15 -3914 ((-2 (|:| -2010 (-631 (-484))) (|:| |basisDen| (-484)) (|:| |basisInv| (-631 (-484)))))) (-15 -3915 ((-2 (|:| -2010 (-631 (-484))) (|:| |basisDen| (-484)) (|:| |basisInv| (-631 (-484)))) (-484)))) (-1154 (-484)) (-350 (-484) |#1|)) (T -693))
+((-3915 (*1 *2 *3) (-12 (-5 *3 (-484)) (-4 *4 (-1154 *3)) (-5 *2 (-2 (|:| -2010 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-693 *4 *5)) (-4 *5 (-350 *3 *4)))) (-3914 (*1 *2) (-12 (-4 *3 (-1154 (-484))) (-5 *2 (-2 (|:| -2010 (-631 (-484))) (|:| |basisDen| (-484)) (|:| |basisInv| (-631 (-484))))) (-5 *1 (-693 *3 *4)) (-4 *4 (-350 (-484) *3)))) (-3753 (*1 *2) (-12 (-4 *3 (-1154 *2)) (-5 *2 (-484)) (-5 *1 (-693 *3 *4)) (-4 *4 (-350 *2 *3)))))
+((-2506 (((-584 (-584 (-248 (-347 (-858 |#1|))))) (-584 (-858 |#1|))) 19 T ELT) (((-584 (-584 (-248 (-347 (-858 |#1|))))) (-584 (-858 |#1|)) (-584 (-1089))) 18 T ELT)) (-3569 (((-584 (-584 (-248 (-347 (-858 |#1|))))) (-584 (-858 |#1|))) 21 T ELT) (((-584 (-584 (-248 (-347 (-858 |#1|))))) (-584 (-858 |#1|)) (-584 (-1089))) 20 T ELT)))
+(((-694 |#1|) (-10 -7 (-15 -2506 ((-584 (-584 (-248 (-347 (-858 |#1|))))) (-584 (-858 |#1|)) (-584 (-1089)))) (-15 -2506 ((-584 (-584 (-248 (-347 (-858 |#1|))))) (-584 (-858 |#1|)))) (-15 -3569 ((-584 (-584 (-248 (-347 (-858 |#1|))))) (-584 (-858 |#1|)) (-584 (-1089)))) (-15 -3569 ((-584 (-584 (-248 (-347 (-858 |#1|))))) (-584 (-858 |#1|))))) (-495)) (T -694))
+((-3569 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-495)) (-5 *2 (-584 (-584 (-248 (-347 (-858 *4)))))) (-5 *1 (-694 *4)))) (-3569 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1089))) (-4 *5 (-495)) (-5 *2 (-584 (-584 (-248 (-347 (-858 *5)))))) (-5 *1 (-694 *5)))) (-2506 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-495)) (-5 *2 (-584 (-584 (-248 (-347 (-858 *4)))))) (-5 *1 (-694 *4)))) (-2506 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1089))) (-4 *5 (-495)) (-5 *2 (-584 (-584 (-248 (-347 (-858 *5)))))) (-5 *1 (-694 *5)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-2481 (($ $ $) 10 T ELT)) (-1310 (((-3 $ #1="failed") $ $) 15 T ELT)) (-2439 (($ $ (-484)) 11 T ELT)) (-3720 (($) NIL T CONST)) (-2562 (($ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2992 (($ $) NIL T ELT)) (-2561 (($ $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2408 (((-85) $) NIL T ELT)) (-2529 (($ $ $) NIL T ELT)) (-2855 (($ $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3141 (($ $ $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) 6 T CONST)) (-2664 (($) NIL T CONST)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ $ $) NIL T ELT)))
+(((-695) (-13 (-718) (-664) (-10 -8 (-15 -2561 ($ $ $)) (-15 -2562 ($ $ $)) (-15 -3141 ($ $ $)) (-15 -2877 ((-2 (|:| -1971 $) (|:| -2900 $)) $ $)) (-15 -3462 ((-3 $ "failed") $ $)) (-15 -2439 ($ $ (-484))) (-15 -2992 ($ $)) (-6 (-3993 "*"))))) (T -695))
+((-2561 (*1 *1 *1 *1) (-5 *1 (-695))) (-2562 (*1 *1 *1 *1) (-5 *1 (-695))) (-3141 (*1 *1 *1 *1) (-5 *1 (-695))) (-2877 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1971 (-695)) (|:| -2900 (-695)))) (-5 *1 (-695)))) (-3462 (*1 *1 *1 *1) (|partial| -5 *1 (-695))) (-2439 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-695)))) (-2992 (*1 *1 *1) (-5 *1 (-695))))
+((-484) (|%not| (|%ilt| |#1| 0)))
+((-3569 (((-3 |#2| "failed") |#2| |#2| (-86) (-1089)) 37 T ELT)))
+(((-696 |#1| |#2|) (-10 -7 (-15 -3569 ((-3 |#2| "failed") |#2| |#2| (-86) (-1089)))) (-13 (-257) (-951 (-484)) (-581 (-484)) (-120)) (-13 (-29 |#1|) (-1114) (-872))) (T -696))
+((-3569 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *1 (-696 *5 *2)) (-4 *2 (-13 (-29 *5) (-1114) (-872))))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 7 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 9 T ELT)))
+(((-697) (-1013)) (T -697))
+NIL
+((-3942 (((-697) |#1|) 8 T ELT)))
+(((-698 |#1|) (-10 -7 (-15 -3942 ((-697) |#1|))) (-1128)) (T -698))
+((-3942 (*1 *2 *3) (-12 (-5 *2 (-697)) (-5 *1 (-698 *3)) (-4 *3 (-1128)))))
+((-3129 ((|#2| |#4|) 35 T ELT)))
+(((-699 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3129 (|#2| |#4|))) (-389) (-1154 |#1|) (-662 |#1| |#2|) (-1154 |#3|)) (T -699))
+((-3129 (*1 *2 *3) (-12 (-4 *4 (-389)) (-4 *5 (-662 *4 *2)) (-4 *2 (-1154 *4)) (-5 *1 (-699 *4 *2 *5 *3)) (-4 *3 (-1154 *5)))))
+((-3463 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-2442 (((-1184) (-1072) (-1072) |#4| |#5|) 33 T ELT)) (-2440 ((|#4| |#4| |#5|) 74 T ELT)) (-2441 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#5|) 79 T ELT)) (-2443 (((-584 (-2 (|:| |val| (-85)) (|:| -1598 |#5|))) |#4| |#5|) 16 T ELT)))
+(((-700 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3463 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2440 (|#4| |#4| |#5|)) (-15 -2441 ((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#5|)) (-15 -2442 ((-1184) (-1072) (-1072) |#4| |#5|)) (-15 -2443 ((-584 (-2 (|:| |val| (-85)) (|:| -1598 |#5|))) |#4| |#5|))) (-389) (-718) (-757) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -700))
+((-2443 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1598 *4)))) (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-2442 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1072)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *4 (-977 *6 *7 *8)) (-5 *2 (-1184)) (-5 *1 (-700 *6 *7 *8 *4 *5)) (-4 *5 (-983 *6 *7 *8 *4)))) (-2441 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4)))) (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-2440 (*1 *2 *2 *3) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *2 (-977 *4 *5 *6)) (-5 *1 (-700 *4 *5 *6 *2 *3)) (-4 *3 (-983 *4 *5 *6 *2)))) (-3463 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
+((-3154 (((-3 (-1084 (-1084 |#1|)) "failed") |#4|) 53 T ELT)) (-2444 (((-584 |#4|) |#4|) 22 T ELT)) (-3924 ((|#4| |#4|) 17 T ELT)))
+(((-701 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2444 ((-584 |#4|) |#4|)) (-15 -3154 ((-3 (-1084 (-1084 |#1|)) "failed") |#4|)) (-15 -3924 (|#4| |#4|))) (-298) (-279 |#1|) (-1154 |#2|) (-1154 |#3|) (-831)) (T -701))
+((-3924 (*1 *2 *2) (-12 (-4 *3 (-298)) (-4 *4 (-279 *3)) (-4 *5 (-1154 *4)) (-5 *1 (-701 *3 *4 *5 *2 *6)) (-4 *2 (-1154 *5)) (-14 *6 (-831)))) (-3154 (*1 *2 *3) (|partial| -12 (-4 *4 (-298)) (-4 *5 (-279 *4)) (-4 *6 (-1154 *5)) (-5 *2 (-1084 (-1084 *4))) (-5 *1 (-701 *4 *5 *6 *3 *7)) (-4 *3 (-1154 *6)) (-14 *7 (-831)))) (-2444 (*1 *2 *3) (-12 (-4 *4 (-298)) (-4 *5 (-279 *4)) (-4 *6 (-1154 *5)) (-5 *2 (-584 *3)) (-5 *1 (-701 *4 *5 *6 *3 *7)) (-4 *3 (-1154 *6)) (-14 *7 (-831)))))
+((-2445 (((-2 (|:| |deter| (-584 (-1084 |#5|))) (|:| |dterm| (-584 (-584 (-2 (|:| -3076 (-695)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-584 |#1|)) (|:| |nlead| (-584 |#5|))) (-1084 |#5|) (-584 |#1|) (-584 |#5|)) 72 T ELT)) (-2446 (((-584 (-695)) |#1|) 20 T ELT)))
+(((-702 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2445 ((-2 (|:| |deter| (-584 (-1084 |#5|))) (|:| |dterm| (-584 (-584 (-2 (|:| -3076 (-695)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-584 |#1|)) (|:| |nlead| (-584 |#5|))) (-1084 |#5|) (-584 |#1|) (-584 |#5|))) (-15 -2446 ((-584 (-695)) |#1|))) (-1154 |#4|) (-718) (-757) (-257) (-862 |#4| |#2| |#3|)) (T -702))
+((-2446 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)) (-5 *2 (-584 (-695))) (-5 *1 (-702 *3 *4 *5 *6 *7)) (-4 *3 (-1154 *6)) (-4 *7 (-862 *6 *4 *5)))) (-2445 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1154 *9)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-257)) (-4 *10 (-862 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-584 (-1084 *10))) (|:| |dterm| (-584 (-584 (-2 (|:| -3076 (-695)) (|:| |pcoef| *10))))) (|:| |nfacts| (-584 *6)) (|:| |nlead| (-584 *10)))) (-5 *1 (-702 *6 *7 *8 *9 *10)) (-5 *3 (-1084 *10)) (-5 *4 (-584 *6)) (-5 *5 (-584 *10)))))
+((-2449 (((-584 (-2 (|:| |outval| |#1|) (|:| |outmult| (-484)) (|:| |outvect| (-584 (-631 |#1|))))) (-631 (-347 (-484))) |#1|) 31 T ELT)) (-2448 (((-584 |#1|) (-631 (-347 (-484))) |#1|) 21 T ELT)) (-2447 (((-858 (-347 (-484))) (-631 (-347 (-484))) (-1089)) 18 T ELT) (((-858 (-347 (-484))) (-631 (-347 (-484)))) 17 T ELT)))
+(((-703 |#1|) (-10 -7 (-15 -2447 ((-858 (-347 (-484))) (-631 (-347 (-484))))) (-15 -2447 ((-858 (-347 (-484))) (-631 (-347 (-484))) (-1089))) (-15 -2448 ((-584 |#1|) (-631 (-347 (-484))) |#1|)) (-15 -2449 ((-584 (-2 (|:| |outval| |#1|) (|:| |outmult| (-484)) (|:| |outvect| (-584 (-631 |#1|))))) (-631 (-347 (-484))) |#1|))) (-13 (-311) (-756))) (T -703))
+((-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-347 (-484)))) (-5 *2 (-584 (-2 (|:| |outval| *4) (|:| |outmult| (-484)) (|:| |outvect| (-584 (-631 *4)))))) (-5 *1 (-703 *4)) (-4 *4 (-13 (-311) (-756))))) (-2448 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-347 (-484)))) (-5 *2 (-584 *4)) (-5 *1 (-703 *4)) (-4 *4 (-13 (-311) (-756))))) (-2447 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-347 (-484)))) (-5 *4 (-1089)) (-5 *2 (-858 (-347 (-484)))) (-5 *1 (-703 *5)) (-4 *5 (-13 (-311) (-756))))) (-2447 (*1 *2 *3) (-12 (-5 *3 (-631 (-347 (-484)))) (-5 *2 (-858 (-347 (-484)))) (-5 *1 (-703 *4)) (-4 *4 (-13 (-311) (-756))))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 36 T ELT)) (-3079 (((-584 |#2|) $) NIL T ELT)) (-3081 (((-1084 $) $ |#2|) NIL T ELT) (((-1084 |#1|) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2061 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2817 (((-695) $) NIL T ELT) (((-695) $ (-584 |#2|)) NIL T ELT)) (-3793 (($ $) 30 T ELT)) (-3163 (((-85) $ $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3751 (($ $ $) 110 (|has| |#1| (-495)) ELT)) (-3145 (((-584 $) $ $) 123 (|has| |#1| (-495)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3771 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3967 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2702 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 $ #1#) (-858 (-347 (-484)))) NIL (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#2| (-554 (-1089)))) ELT) (((-3 $ #1#) (-858 (-484))) NIL (OR (-12 (|has| |#1| (-38 (-484))) (|has| |#2| (-554 (-1089))) (-2558 (|has| |#1| (-38 (-347 (-484)))))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#2| (-554 (-1089))))) ELT) (((-3 $ #1#) (-858 |#1|)) NIL (OR (-12 (|has| |#2| (-554 (-1089))) (-2558 (|has| |#1| (-38 (-347 (-484))))) (-2558 (|has| |#1| (-38 (-484))))) (-12 (|has| |#1| (-38 (-484))) (|has| |#2| (-554 (-1089))) (-2558 (|has| |#1| (-38 (-347 (-484))))) (-2558 (|has| |#1| (-483)))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#2| (-554 (-1089))) (-2558 (|has| |#1| (-905 (-484)))))) ELT) (((-3 (-1038 |#1| |#2|) #1#) $) 21 T ELT)) (-3153 ((|#1| $) NIL T ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) ((|#2| $) NIL T ELT) (($ (-858 (-347 (-484)))) NIL (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#2| (-554 (-1089)))) ELT) (($ (-858 (-484))) NIL (OR (-12 (|has| |#1| (-38 (-484))) (|has| |#2| (-554 (-1089))) (-2558 (|has| |#1| (-38 (-347 (-484)))))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#2| (-554 (-1089))))) ELT) (($ (-858 |#1|)) NIL (OR (-12 (|has| |#2| (-554 (-1089))) (-2558 (|has| |#1| (-38 (-347 (-484))))) (-2558 (|has| |#1| (-38 (-484))))) (-12 (|has| |#1| (-38 (-484))) (|has| |#2| (-554 (-1089))) (-2558 (|has| |#1| (-38 (-347 (-484))))) (-2558 (|has| |#1| (-483)))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#2| (-554 (-1089))) (-2558 (|has| |#1| (-905 (-484)))))) ELT) (((-1038 |#1| |#2|) $) NIL T ELT)) (-3752 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT) (($ $ $) 121 (|has| |#1| (-495)) ELT)) (-3955 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3690 (((-85) $ $) NIL T ELT) (((-85) $ (-584 $)) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-3169 (((-85) $) NIL T ELT)) (-3748 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 81 T ELT)) (-3140 (($ $) 136 (|has| |#1| (-389)) ELT)) (-3499 (($ $) NIL (|has| |#1| (-389)) ELT) (($ $ |#2|) NIL (|has| |#1| (-389)) ELT)) (-2816 (((-584 $) $) NIL T ELT)) (-3719 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-3151 (($ $) NIL (|has| |#1| (-495)) ELT)) (-3152 (($ $) NIL (|has| |#1| (-495)) ELT)) (-3162 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3161 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1622 (($ $ |#1| (-469 |#2|) $) NIL T ELT)) (-2794 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (-12 (|has| |#1| (-797 (-327))) (|has| |#2| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (-12 (|has| |#1| (-797 (-484))) (|has| |#2| (-797 (-484)))) ELT)) (-2408 (((-85) $) 57 T ELT)) (-2418 (((-695) $) NIL T ELT)) (-3691 (((-85) $ $) NIL T ELT) (((-85) $ (-584 $)) NIL T ELT)) (-3142 (($ $ $ $ $) 107 (|has| |#1| (-495)) ELT)) (-3177 ((|#2| $) 22 T ELT)) (-3082 (($ (-1084 |#1|) |#2|) NIL T ELT) (($ (-1084 $) |#2|) NIL T ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2891 (($ |#1| (-469 |#2|)) NIL T ELT) (($ $ |#2| (-695)) 38 T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-3156 (($ $ $) 63 T ELT)) (-3759 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $ |#2|) NIL T ELT)) (-3170 (((-85) $) NIL T ELT)) (-2818 (((-469 |#2|) $) NIL T ELT) (((-695) $ |#2|) NIL T ELT) (((-584 (-695)) $ (-584 |#2|)) NIL T ELT)) (-3176 (((-695) $) 23 T ELT)) (-1623 (($ (-1 (-469 |#2|) (-469 |#2|)) $) NIL T ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3080 (((-3 |#2| #1#) $) NIL T ELT)) (-3137 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3138 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3165 (((-584 $) $) NIL T ELT)) (-3168 (($ $) 39 T ELT)) (-3139 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3166 (((-584 $) $) 43 T ELT)) (-2278 (((-631 (-484)) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-3167 (($ $) 41 T ELT)) (-2892 (($ $) NIL T ELT)) (-3171 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3155 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3477 (-695))) $ $) 96 T ELT)) (-3157 (((-2 (|:| -3950 $) (|:| |gap| (-695)) (|:| -1971 $) (|:| -2900 $)) $ $) 78 T ELT) (((-2 (|:| -3950 $) (|:| |gap| (-695)) (|:| -1971 $) (|:| -2900 $)) $ $ |#2|) NIL T ELT)) (-3158 (((-2 (|:| -3950 $) (|:| |gap| (-695)) (|:| -2900 $)) $ $) NIL T ELT) (((-2 (|:| -3950 $) (|:| |gap| (-695)) (|:| -2900 $)) $ $ |#2|) NIL T ELT)) (-3160 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3159 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3187 (($ $ $) 125 (|has| |#1| (-495)) ELT)) (-3173 (((-584 $) $) 32 T ELT)) (-2821 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-2 (|:| |var| |#2|) (|:| -2399 (-695))) #1#) $) NIL T ELT)) (-3687 (((-85) $ $) NIL T ELT) (((-85) $ (-584 $)) NIL T ELT)) (-3682 (($ $ $) NIL T ELT)) (-3442 (($ $) 24 T ELT)) (-3695 (((-85) $ $) NIL T ELT)) (-3688 (((-85) $ $) NIL T ELT) (((-85) $ (-584 $)) NIL T ELT)) (-3683 (($ $ $) NIL T ELT)) (-3175 (($ $) 26 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3146 (((-2 (|:| -3141 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-495)) ELT)) (-3147 (((-2 (|:| -3141 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-495)) ELT)) (-1795 (((-85) $) 56 T ELT)) (-1794 ((|#1| $) 58 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-389)) ELT)) (-3141 ((|#1| |#1| $) 133 (|has| |#1| (-389)) ELT) (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3728 (((-345 $) $) NIL (|has| |#1| (-822)) ELT)) (-3148 (((-2 (|:| -3141 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-495)) ELT)) (-3462 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) 98 (|has| |#1| (-495)) ELT)) (-3149 (($ $ |#1|) 129 (|has| |#1| (-495)) ELT) (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3150 (($ $ |#1|) 128 (|has| |#1| (-495)) ELT) (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3764 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-584 |#2|) (-584 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-584 |#2|) (-584 $)) NIL T ELT)) (-3753 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3754 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3944 (((-469 |#2|) $) NIL T ELT) (((-695) $ |#2|) 45 T ELT) (((-584 (-695)) $ (-584 |#2|)) NIL T ELT)) (-3174 (($ $) NIL T ELT)) (-3172 (($ $) 35 T ELT)) (-3968 (((-801 (-327)) $) NIL (-12 (|has| |#1| (-554 (-801 (-327)))) (|has| |#2| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) NIL (-12 (|has| |#1| (-554 (-801 (-484)))) (|has| |#2| (-554 (-801 (-484))))) ELT) (((-473) $) NIL (-12 (|has| |#1| (-554 (-473))) (|has| |#2| (-554 (-473)))) ELT) (($ (-858 (-347 (-484)))) NIL (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#2| (-554 (-1089)))) ELT) (($ (-858 (-484))) NIL (OR (-12 (|has| |#1| (-38 (-484))) (|has| |#2| (-554 (-1089))) (-2558 (|has| |#1| (-38 (-347 (-484)))))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#2| (-554 (-1089))))) ELT) (($ (-858 |#1|)) NIL (|has| |#2| (-554 (-1089))) ELT) (((-1072) $) NIL (-12 (|has| |#1| (-951 (-484))) (|has| |#2| (-554 (-1089)))) ELT) (((-858 |#1|) $) NIL (|has| |#2| (-554 (-1089))) ELT)) (-2815 ((|#1| $) 132 (|has| |#1| (-389)) ELT) (($ $ |#2|) NIL (|has| |#1| (-389)) ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-858 |#1|) $) NIL (|has| |#2| (-554 (-1089))) ELT) (((-1038 |#1| |#2|) $) 18 T ELT) (($ (-1038 |#1| |#2|)) 19 T ELT) (($ (-347 (-484))) NIL (OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3813 (((-584 |#1|) $) NIL T ELT)) (-3673 ((|#1| $ (-469 |#2|)) NIL T ELT) (($ $ |#2| (-695)) 47 T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-2700 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3123 (((-695)) NIL T CONST)) (-1621 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2658 (($) 13 T CONST)) (-3164 (((-3 (-85) #1#) $ $) NIL T ELT)) (-2664 (($) 37 T CONST)) (-3143 (($ $ $ $ (-695)) 105 (|has| |#1| (-495)) ELT)) (-3144 (($ $ $ (-695)) 104 (|has| |#1| (-495)) ELT)) (-2667 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-3835 (($ $ $) 85 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 70 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT)))
+(((-704 |#1| |#2|) (-13 (-977 |#1| (-469 |#2|) |#2|) (-553 (-1038 |#1| |#2|)) (-951 (-1038 |#1| |#2|))) (-962) (-757)) (T -704))
+NIL
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 12 T ELT)) (-3763 (((-1178 |#1|) $ (-695)) NIL T ELT)) (-3079 (((-584 (-994)) $) NIL T ELT)) (-3761 (($ (-1084 |#1|)) NIL T ELT)) (-3081 (((-1084 $) $ (-994)) NIL T ELT) (((-1084 |#1|) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2061 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2817 (((-695) $) NIL T ELT) (((-695) $ (-584 (-994))) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2453 (((-584 $) $ $) 54 (|has| |#1| (-495)) ELT)) (-3751 (($ $ $) 50 (|has| |#1| (-495)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3771 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3967 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2702 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3757 (($ $ (-695)) NIL T ELT)) (-3756 (($ $ (-695)) NIL T ELT)) (-3747 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-389)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-994) #1#) $) NIL T ELT) (((-3 (-1084 |#1|) #1#) $) 10 T ELT)) (-3153 ((|#1| $) NIL T ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-994) $) NIL T ELT) (((-1084 |#1|) $) NIL T ELT)) (-3752 (($ $ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 58 (|has| |#1| (-146)) ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3955 (($ $) NIL T ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2561 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3755 (($ $ $) NIL T ELT)) (-3749 (($ $ $) 87 (|has| |#1| (-495)) ELT)) (-3748 (((-2 (|:| -3950 |#1|) (|:| -1971 $) (|:| -2900 $)) $ $) 86 (|has| |#1| (-495)) ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3499 (($ $) NIL (|has| |#1| (-389)) ELT) (($ $ (-994)) NIL (|has| |#1| (-389)) ELT)) (-2816 (((-584 $) $) NIL T ELT)) (-3719 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1622 (($ $ |#1| (-695) $) NIL T ELT)) (-2794 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (-12 (|has| (-994) (-797 (-327))) (|has| |#1| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (-12 (|has| (-994) (-797 (-484))) (|has| |#1| (-797 (-484)))) ELT)) (-3768 (((-695) $ $) NIL (|has| |#1| (-495)) ELT)) (-2408 (((-85) $) NIL T ELT)) (-2418 (((-695) $) NIL T ELT)) (-3441 (((-633 $) $) NIL (|has| |#1| (-1065)) ELT)) (-3082 (($ (-1084 |#1|) (-994)) NIL T ELT) (($ (-1084 $) (-994)) NIL T ELT)) (-3773 (($ $ (-695)) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2891 (($ |#1| (-695)) NIL T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT)) (-3156 (($ $ $) 27 T ELT)) (-3759 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $ (-994)) NIL T ELT) (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-2818 (((-695) $) NIL T ELT) (((-695) $ (-994)) NIL T ELT) (((-584 (-695)) $ (-584 (-994))) NIL T ELT)) (-1623 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3762 (((-1084 |#1|) $) NIL T ELT)) (-3080 (((-3 (-994) #1#) $) NIL T ELT)) (-2278 (((-631 (-484)) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-2892 (($ $) NIL T ELT)) (-3171 ((|#1| $) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3155 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3477 (-695))) $ $) 37 T ELT)) (-2455 (($ $ $) 41 T ELT)) (-2454 (($ $ $) 47 T ELT)) (-3157 (((-2 (|:| -3950 |#1|) (|:| |gap| (-695)) (|:| -1971 $) (|:| -2900 $)) $ $) 46 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3187 (($ $ $) 56 (|has| |#1| (-495)) ELT)) (-3758 (((-2 (|:| -1971 $) (|:| -2900 $)) $ (-695)) NIL T ELT)) (-2821 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-2 (|:| |var| (-994)) (|:| -2399 (-695))) #1#) $) NIL T ELT)) (-3808 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3442 (($) NIL (|has| |#1| (-1065)) CONST)) (-3240 (((-1033) $) NIL T ELT)) (-3146 (((-2 (|:| -3141 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-495)) ELT)) (-3147 (((-2 (|:| -3141 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-495)) ELT)) (-2450 (((-2 (|:| -3752 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-495)) ELT)) (-2451 (((-2 (|:| -3752 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-495)) ELT)) (-1795 (((-85) $) 13 T ELT)) (-1794 ((|#1| $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-389)) ELT)) (-3141 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3734 (($ $ (-695) |#1| $) 26 T ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3728 (((-345 $) $) NIL (|has| |#1| (-822)) ELT)) (-3148 (((-2 (|:| -3141 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-495)) ELT)) (-2452 (((-2 (|:| -3752 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-495)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3462 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3764 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-994) |#1|) NIL T ELT) (($ $ (-584 (-994)) (-584 |#1|)) NIL T ELT) (($ $ (-994) $) NIL T ELT) (($ $ (-584 (-994)) (-584 $)) NIL T ELT)) (-1605 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-3796 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-347 $) (-347 $) (-347 $)) NIL (|has| |#1| (-495)) ELT) ((|#1| (-347 $) |#1|) NIL (|has| |#1| (-311)) ELT) (((-347 $) $ (-347 $)) NIL (|has| |#1| (-495)) ELT)) (-3760 (((-3 $ #1#) $ (-695)) NIL T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3753 (($ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3754 (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT)) (-3944 (((-695) $) NIL T ELT) (((-695) $ (-994)) NIL T ELT) (((-584 (-695)) $ (-584 (-994))) NIL T ELT)) (-3968 (((-801 (-327)) $) NIL (-12 (|has| (-994) (-554 (-801 (-327)))) (|has| |#1| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) NIL (-12 (|has| (-994) (-554 (-801 (-484)))) (|has| |#1| (-554 (-801 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-994) (-554 (-473))) (|has| |#1| (-554 (-473)))) ELT)) (-2815 ((|#1| $) NIL (|has| |#1| (-389)) ELT) (($ $ (-994)) NIL (|has| |#1| (-389)) ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3750 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT) (((-3 (-347 $) #1#) (-347 $) $) NIL (|has| |#1| (-495)) ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-994)) NIL T ELT) (((-1084 |#1|) $) 7 T ELT) (($ (-1084 |#1|)) 8 T ELT) (($ (-347 (-484))) NIL (OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3813 (((-584 |#1|) $) NIL T ELT)) (-3673 ((|#1| $ (-695)) NIL T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT)) (-2700 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3123 (((-695)) NIL T CONST)) (-1621 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2658 (($) 28 T CONST)) (-2664 (($) 32 T CONST)) (-2667 (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3833 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT)))
+(((-705 |#1|) (-13 (-1154 |#1|) (-553 (-1084 |#1|)) (-951 (-1084 |#1|)) (-10 -8 (-15 -3734 ($ $ (-695) |#1| $)) (-15 -3156 ($ $ $)) (-15 -3155 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3477 (-695))) $ $)) (-15 -2455 ($ $ $)) (-15 -3157 ((-2 (|:| -3950 |#1|) (|:| |gap| (-695)) (|:| -1971 $) (|:| -2900 $)) $ $)) (-15 -2454 ($ $ $)) (IF (|has| |#1| (-495)) (PROGN (-15 -2453 ((-584 $) $ $)) (-15 -3187 ($ $ $)) (-15 -3148 ((-2 (|:| -3141 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3147 ((-2 (|:| -3141 $) (|:| |coef1| $)) $ $)) (-15 -3146 ((-2 (|:| -3141 $) (|:| |coef2| $)) $ $)) (-15 -2452 ((-2 (|:| -3752 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2451 ((-2 (|:| -3752 |#1|) (|:| |coef1| $)) $ $)) (-15 -2450 ((-2 (|:| -3752 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-962)) (T -705))
+((-3734 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-695)) (-5 *1 (-705 *3)) (-4 *3 (-962)))) (-3156 (*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962)))) (-3155 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-705 *3)) (|:| |polden| *3) (|:| -3477 (-695)))) (-5 *1 (-705 *3)) (-4 *3 (-962)))) (-2455 (*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962)))) (-3157 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3950 *3) (|:| |gap| (-695)) (|:| -1971 (-705 *3)) (|:| -2900 (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-962)))) (-2454 (*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962)))) (-2453 (*1 *2 *1 *1) (-12 (-5 *2 (-584 (-705 *3))) (-5 *1 (-705 *3)) (-4 *3 (-495)) (-4 *3 (-962)))) (-3187 (*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-495)) (-4 *2 (-962)))) (-3148 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3141 (-705 *3)) (|:| |coef1| (-705 *3)) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-495)) (-4 *3 (-962)))) (-3147 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3141 (-705 *3)) (|:| |coef1| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-495)) (-4 *3 (-962)))) (-3146 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3141 (-705 *3)) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-495)) (-4 *3 (-962)))) (-2452 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3752 *3) (|:| |coef1| (-705 *3)) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-495)) (-4 *3 (-962)))) (-2451 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3752 *3) (|:| |coef1| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-495)) (-4 *3 (-962)))) (-2450 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3752 *3) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-495)) (-4 *3 (-962)))))
+((-3954 (((-705 |#2|) (-1 |#2| |#1|) (-705 |#1|)) 13 T ELT)))
+(((-706 |#1| |#2|) (-10 -7 (-15 -3954 ((-705 |#2|) (-1 |#2| |#1|) (-705 |#1|)))) (-962) (-962)) (T -706))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-705 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-5 *2 (-705 *6)) (-5 *1 (-706 *5 *6)))))
+((-2457 ((|#1| (-695) |#1|) 33 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2799 ((|#1| (-695) |#1|) 23 T ELT)) (-2456 ((|#1| (-695) |#1|) 35 (|has| |#1| (-38 (-347 (-484)))) ELT)))
+(((-707 |#1|) (-10 -7 (-15 -2799 (|#1| (-695) |#1|)) (IF (|has| |#1| (-38 (-347 (-484)))) (PROGN (-15 -2456 (|#1| (-695) |#1|)) (-15 -2457 (|#1| (-695) |#1|))) |%noBranch|)) (-146)) (T -707))
+((-2457 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-146)))) (-2456 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-146)))) (-2799 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-146)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3677 (((-584 (-2 (|:| -3857 $) (|:| -1700 (-584 |#4|)))) (-584 |#4|)) 90 T ELT)) (-3678 (((-584 $) (-584 |#4|)) 91 T ELT) (((-584 $) (-584 |#4|) (-85)) 118 T ELT)) (-3079 (((-584 |#3|) $) 37 T ELT)) (-2906 (((-85) $) 30 T ELT)) (-2897 (((-85) $) 21 (|has| |#1| (-495)) ELT)) (-3689 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3684 ((|#4| |#4| $) 97 T ELT)) (-3771 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| $) 133 T ELT)) (-2907 (((-2 (|:| |under| $) (|:| -3127 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3706 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3991)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3720 (($) 46 T CONST)) (-2902 (((-85) $) 26 (|has| |#1| (-495)) ELT)) (-2904 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2903 (((-85) $ $) 27 (|has| |#1| (-495)) ELT)) (-2905 (((-85) $) 29 (|has| |#1| (-495)) ELT)) (-3685 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2898 (((-584 |#4|) (-584 |#4|) $) 22 (|has| |#1| (-495)) ELT)) (-2899 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-3154 (((-3 $ "failed") (-584 |#4|)) 40 T ELT)) (-3153 (($ (-584 |#4|)) 39 T ELT)) (-3795 (((-3 $ #1#) $) 87 T ELT)) (-3681 ((|#4| |#4| $) 94 T ELT)) (-1351 (($ $) 69 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3402 (($ |#4| $) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3991))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3991)) ELT)) (-2900 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-495)) ELT)) (-3690 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3679 ((|#4| |#4| $) 92 T ELT)) (-3838 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3991))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3991)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3991)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3692 (((-2 (|:| -3857 (-584 |#4|)) (|:| -1700 (-584 |#4|))) $) 110 T ELT)) (-3194 (((-85) |#4| $) 143 T ELT)) (-3192 (((-85) |#4| $) 140 T ELT)) (-3195 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-2887 (((-584 |#4|) $) 53 (|has| $ (-6 -3991)) ELT)) (-3691 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3177 ((|#3| $) 38 T ELT)) (-2606 (((-584 |#4|) $) 54 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3991))) ELT)) (-1947 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2912 (((-584 |#3|) $) 36 T ELT)) (-2911 (((-85) |#3| $) 35 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3188 (((-3 |#4| (-584 $)) |#4| |#4| $) 135 T ELT)) (-3187 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| |#4| $) 134 T ELT)) (-3794 (((-3 |#4| #1#) $) 88 T ELT)) (-3189 (((-584 $) |#4| $) 136 T ELT)) (-3191 (((-3 (-85) (-584 $)) |#4| $) 139 T ELT)) (-3190 (((-584 (-2 (|:| |val| (-85)) (|:| -1598 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3235 (((-584 $) |#4| $) 132 T ELT) (((-584 $) (-584 |#4|) $) 131 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 130 T ELT) (((-584 $) |#4| (-584 $)) 129 T ELT)) (-3436 (($ |#4| $) 124 T ELT) (($ (-584 |#4|) $) 123 T ELT)) (-3693 (((-584 |#4|) $) 112 T ELT)) (-3687 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3682 ((|#4| |#4| $) 95 T ELT)) (-3695 (((-85) $ $) 115 T ELT)) (-2901 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3688 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3683 ((|#4| |#4| $) 96 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3797 (((-3 |#4| #1#) $) 89 T ELT)) (-1352 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3675 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3765 (($ $ |#4|) 82 T ELT) (((-584 $) |#4| $) 122 T ELT) (((-584 $) |#4| (-584 $)) 121 T ELT) (((-584 $) (-584 |#4|) $) 120 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 119 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 |#4|) (-584 |#4|)) 60 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-248 |#4|)) 58 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-584 (-248 |#4|))) 57 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT)) (-1220 (((-85) $ $) 42 T ELT)) (-3399 (((-85) $) 45 T ELT)) (-3561 (($) 44 T ELT)) (-3944 (((-695) $) 111 T ELT)) (-1944 (((-695) |#4| $) 55 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3991))) ELT) (((-695) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3991)) ELT)) (-3396 (($ $) 43 T ELT)) (-3968 (((-473) $) 70 (|has| |#4| (-554 (-473))) ELT)) (-3526 (($ (-584 |#4|)) 61 T ELT)) (-2908 (($ $ |#3|) 32 T ELT)) (-2910 (($ $ |#3|) 34 T ELT)) (-3680 (($ $) 93 T ELT)) (-2909 (($ $ |#3|) 33 T ELT)) (-3942 (((-773) $) 13 T ELT) (((-584 |#4|) $) 41 T ELT)) (-3674 (((-695) $) 81 (|has| |#3| (-317)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3694 (((-3 (-2 (|:| |bas| $) (|:| -3320 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3320 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3686 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) 103 T ELT)) (-3186 (((-584 $) |#4| $) 128 T ELT) (((-584 $) |#4| (-584 $)) 127 T ELT) (((-584 $) (-584 |#4|) $) 126 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 125 T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3991)) ELT)) (-3676 (((-584 |#3|) $) 86 T ELT)) (-3193 (((-85) |#4| $) 142 T ELT)) (-3929 (((-85) |#3| $) 85 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3953 (((-695) $) 47 (|has| $ (-6 -3991)) ELT)))
+(((-708 |#1| |#2| |#3| |#4|) (-113) (-389) (-718) (-757) (-977 |t#1| |t#2| |t#3|)) (T -708))
+NIL
+(-13 (-983 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-473)) |has| |#4| (-554 (-473))) ((-259 |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ((-426 |#4|) . T) ((-453 |#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-983 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1123 |#1| |#2| |#3| |#4|) . T) ((-1128) . T))
+((-2460 (((-3 (-327) #1="failed") (-264 |#1|) (-831)) 60 (-12 (|has| |#1| (-495)) (|has| |#1| (-757))) ELT) (((-3 (-327) #1#) (-264 |#1|)) 52 (-12 (|has| |#1| (-495)) (|has| |#1| (-757))) ELT) (((-3 (-327) #1#) (-347 (-858 |#1|)) (-831)) 39 (|has| |#1| (-495)) ELT) (((-3 (-327) #1#) (-347 (-858 |#1|))) 35 (|has| |#1| (-495)) ELT) (((-3 (-327) #1#) (-858 |#1|) (-831)) 30 (|has| |#1| (-962)) ELT) (((-3 (-327) #1#) (-858 |#1|)) 24 (|has| |#1| (-962)) ELT)) (-2458 (((-327) (-264 |#1|) (-831)) 92 (-12 (|has| |#1| (-495)) (|has| |#1| (-757))) ELT) (((-327) (-264 |#1|)) 87 (-12 (|has| |#1| (-495)) (|has| |#1| (-757))) ELT) (((-327) (-347 (-858 |#1|)) (-831)) 84 (|has| |#1| (-495)) ELT) (((-327) (-347 (-858 |#1|))) 81 (|has| |#1| (-495)) ELT) (((-327) (-858 |#1|) (-831)) 80 (|has| |#1| (-962)) ELT) (((-327) (-858 |#1|)) 77 (|has| |#1| (-962)) ELT) (((-327) |#1| (-831)) 73 T ELT) (((-327) |#1|) 22 T ELT)) (-2461 (((-3 (-142 (-327)) #1#) (-264 (-142 |#1|)) (-831)) 68 (-12 (|has| |#1| (-495)) (|has| |#1| (-757))) ELT) (((-3 (-142 (-327)) #1#) (-264 (-142 |#1|))) 58 (-12 (|has| |#1| (-495)) (|has| |#1| (-757))) ELT) (((-3 (-142 (-327)) #1#) (-264 |#1|) (-831)) 61 (-12 (|has| |#1| (-495)) (|has| |#1| (-757))) ELT) (((-3 (-142 (-327)) #1#) (-264 |#1|)) 59 (-12 (|has| |#1| (-495)) (|has| |#1| (-757))) ELT) (((-3 (-142 (-327)) #1#) (-347 (-858 (-142 |#1|))) (-831)) 44 (|has| |#1| (-495)) ELT) (((-3 (-142 (-327)) #1#) (-347 (-858 (-142 |#1|)))) 43 (|has| |#1| (-495)) ELT) (((-3 (-142 (-327)) #1#) (-347 (-858 |#1|)) (-831)) 38 (|has| |#1| (-495)) ELT) (((-3 (-142 (-327)) #1#) (-347 (-858 |#1|))) 37 (|has| |#1| (-495)) ELT) (((-3 (-142 (-327)) #1#) (-858 |#1|) (-831)) 28 (|has| |#1| (-962)) ELT) (((-3 (-142 (-327)) #1#) (-858 |#1|)) 26 (|has| |#1| (-962)) ELT) (((-3 (-142 (-327)) #1#) (-858 (-142 |#1|)) (-831)) 18 (|has| |#1| (-146)) ELT) (((-3 (-142 (-327)) #1#) (-858 (-142 |#1|))) 15 (|has| |#1| (-146)) ELT)) (-2459 (((-142 (-327)) (-264 (-142 |#1|)) (-831)) 95 (-12 (|has| |#1| (-495)) (|has| |#1| (-757))) ELT) (((-142 (-327)) (-264 (-142 |#1|))) 94 (-12 (|has| |#1| (-495)) (|has| |#1| (-757))) ELT) (((-142 (-327)) (-264 |#1|) (-831)) 93 (-12 (|has| |#1| (-495)) (|has| |#1| (-757))) ELT) (((-142 (-327)) (-264 |#1|)) 91 (-12 (|has| |#1| (-495)) (|has| |#1| (-757))) ELT) (((-142 (-327)) (-347 (-858 (-142 |#1|))) (-831)) 86 (|has| |#1| (-495)) ELT) (((-142 (-327)) (-347 (-858 (-142 |#1|)))) 85 (|has| |#1| (-495)) ELT) (((-142 (-327)) (-347 (-858 |#1|)) (-831)) 83 (|has| |#1| (-495)) ELT) (((-142 (-327)) (-347 (-858 |#1|))) 82 (|has| |#1| (-495)) ELT) (((-142 (-327)) (-858 |#1|) (-831)) 79 (|has| |#1| (-962)) ELT) (((-142 (-327)) (-858 |#1|)) 78 (|has| |#1| (-962)) ELT) (((-142 (-327)) (-858 (-142 |#1|)) (-831)) 75 (|has| |#1| (-146)) ELT) (((-142 (-327)) (-858 (-142 |#1|))) 74 (|has| |#1| (-146)) ELT) (((-142 (-327)) (-142 |#1|) (-831)) 17 (|has| |#1| (-146)) ELT) (((-142 (-327)) (-142 |#1|)) 13 (|has| |#1| (-146)) ELT) (((-142 (-327)) |#1| (-831)) 27 T ELT) (((-142 (-327)) |#1|) 25 T ELT)))
+(((-709 |#1|) (-10 -7 (-15 -2458 ((-327) |#1|)) (-15 -2458 ((-327) |#1| (-831))) (-15 -2459 ((-142 (-327)) |#1|)) (-15 -2459 ((-142 (-327)) |#1| (-831))) (IF (|has| |#1| (-146)) (PROGN (-15 -2459 ((-142 (-327)) (-142 |#1|))) (-15 -2459 ((-142 (-327)) (-142 |#1|) (-831))) (-15 -2459 ((-142 (-327)) (-858 (-142 |#1|)))) (-15 -2459 ((-142 (-327)) (-858 (-142 |#1|)) (-831)))) |%noBranch|) (IF (|has| |#1| (-962)) (PROGN (-15 -2458 ((-327) (-858 |#1|))) (-15 -2458 ((-327) (-858 |#1|) (-831))) (-15 -2459 ((-142 (-327)) (-858 |#1|))) (-15 -2459 ((-142 (-327)) (-858 |#1|) (-831)))) |%noBranch|) (IF (|has| |#1| (-495)) (PROGN (-15 -2458 ((-327) (-347 (-858 |#1|)))) (-15 -2458 ((-327) (-347 (-858 |#1|)) (-831))) (-15 -2459 ((-142 (-327)) (-347 (-858 |#1|)))) (-15 -2459 ((-142 (-327)) (-347 (-858 |#1|)) (-831))) (-15 -2459 ((-142 (-327)) (-347 (-858 (-142 |#1|))))) (-15 -2459 ((-142 (-327)) (-347 (-858 (-142 |#1|))) (-831))) (IF (|has| |#1| (-757)) (PROGN (-15 -2458 ((-327) (-264 |#1|))) (-15 -2458 ((-327) (-264 |#1|) (-831))) (-15 -2459 ((-142 (-327)) (-264 |#1|))) (-15 -2459 ((-142 (-327)) (-264 |#1|) (-831))) (-15 -2459 ((-142 (-327)) (-264 (-142 |#1|)))) (-15 -2459 ((-142 (-327)) (-264 (-142 |#1|)) (-831)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-15 -2461 ((-3 (-142 (-327)) #1="failed") (-858 (-142 |#1|)))) (-15 -2461 ((-3 (-142 (-327)) #1#) (-858 (-142 |#1|)) (-831)))) |%noBranch|) (IF (|has| |#1| (-962)) (PROGN (-15 -2460 ((-3 (-327) #1#) (-858 |#1|))) (-15 -2460 ((-3 (-327) #1#) (-858 |#1|) (-831))) (-15 -2461 ((-3 (-142 (-327)) #1#) (-858 |#1|))) (-15 -2461 ((-3 (-142 (-327)) #1#) (-858 |#1|) (-831)))) |%noBranch|) (IF (|has| |#1| (-495)) (PROGN (-15 -2460 ((-3 (-327) #1#) (-347 (-858 |#1|)))) (-15 -2460 ((-3 (-327) #1#) (-347 (-858 |#1|)) (-831))) (-15 -2461 ((-3 (-142 (-327)) #1#) (-347 (-858 |#1|)))) (-15 -2461 ((-3 (-142 (-327)) #1#) (-347 (-858 |#1|)) (-831))) (-15 -2461 ((-3 (-142 (-327)) #1#) (-347 (-858 (-142 |#1|))))) (-15 -2461 ((-3 (-142 (-327)) #1#) (-347 (-858 (-142 |#1|))) (-831))) (IF (|has| |#1| (-757)) (PROGN (-15 -2460 ((-3 (-327) #1#) (-264 |#1|))) (-15 -2460 ((-3 (-327) #1#) (-264 |#1|) (-831))) (-15 -2461 ((-3 (-142 (-327)) #1#) (-264 |#1|))) (-15 -2461 ((-3 (-142 (-327)) #1#) (-264 |#1|) (-831))) (-15 -2461 ((-3 (-142 (-327)) #1#) (-264 (-142 |#1|)))) (-15 -2461 ((-3 (-142 (-327)) #1#) (-264 (-142 |#1|)) (-831)))) |%noBranch|)) |%noBranch|)) (-554 (-327))) (T -709))
+((-2461 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-264 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-757)) (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) (-2461 (*1 *2 *3) (|partial| -12 (-5 *3 (-264 (-142 *4))) (-4 *4 (-495)) (-4 *4 (-757)) (-4 *4 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) (-2461 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-264 *5)) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-757)) (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) (-2461 (*1 *2 *3) (|partial| -12 (-5 *3 (-264 *4)) (-4 *4 (-495)) (-4 *4 (-757)) (-4 *4 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) (-2460 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-264 *5)) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-757)) (-4 *5 (-554 *2)) (-5 *2 (-327)) (-5 *1 (-709 *5)))) (-2460 (*1 *2 *3) (|partial| -12 (-5 *3 (-264 *4)) (-4 *4 (-495)) (-4 *4 (-757)) (-4 *4 (-554 *2)) (-5 *2 (-327)) (-5 *1 (-709 *4)))) (-2461 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-347 (-858 (-142 *5)))) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) (-2461 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-858 (-142 *4)))) (-4 *4 (-495)) (-4 *4 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) (-2461 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) (-2461 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-495)) (-4 *4 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) (-2460 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-554 *2)) (-5 *2 (-327)) (-5 *1 (-709 *5)))) (-2460 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-495)) (-4 *4 (-554 *2)) (-5 *2 (-327)) (-5 *1 (-709 *4)))) (-2461 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) (-2461 (*1 *2 *3) (|partial| -12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) (-2460 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 *2)) (-5 *2 (-327)) (-5 *1 (-709 *5)))) (-2460 (*1 *2 *3) (|partial| -12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 *2)) (-5 *2 (-327)) (-5 *1 (-709 *4)))) (-2461 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-858 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-146)) (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) (-2461 (*1 *2 *3) (|partial| -12 (-5 *3 (-858 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) (-2459 (*1 *2 *3 *4) (-12 (-5 *3 (-264 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-757)) (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) (-2459 (*1 *2 *3) (-12 (-5 *3 (-264 (-142 *4))) (-4 *4 (-495)) (-4 *4 (-757)) (-4 *4 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) (-2459 (*1 *2 *3 *4) (-12 (-5 *3 (-264 *5)) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-757)) (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) (-2459 (*1 *2 *3) (-12 (-5 *3 (-264 *4)) (-4 *4 (-495)) (-4 *4 (-757)) (-4 *4 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) (-2458 (*1 *2 *3 *4) (-12 (-5 *3 (-264 *5)) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-757)) (-4 *5 (-554 *2)) (-5 *2 (-327)) (-5 *1 (-709 *5)))) (-2458 (*1 *2 *3) (-12 (-5 *3 (-264 *4)) (-4 *4 (-495)) (-4 *4 (-757)) (-4 *4 (-554 *2)) (-5 *2 (-327)) (-5 *1 (-709 *4)))) (-2459 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-858 (-142 *5)))) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) (-2459 (*1 *2 *3) (-12 (-5 *3 (-347 (-858 (-142 *4)))) (-4 *4 (-495)) (-4 *4 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) (-2459 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) (-2459 (*1 *2 *3) (-12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-495)) (-4 *4 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) (-2458 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-554 *2)) (-5 *2 (-327)) (-5 *1 (-709 *5)))) (-2458 (*1 *2 *3) (-12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-495)) (-4 *4 (-554 *2)) (-5 *2 (-327)) (-5 *1 (-709 *4)))) (-2459 (*1 *2 *3 *4) (-12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) (-2459 (*1 *2 *3) (-12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) (-2458 (*1 *2 *3 *4) (-12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 *2)) (-5 *2 (-327)) (-5 *1 (-709 *5)))) (-2458 (*1 *2 *3) (-12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 *2)) (-5 *2 (-327)) (-5 *1 (-709 *4)))) (-2459 (*1 *2 *3 *4) (-12 (-5 *3 (-858 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-146)) (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) (-2459 (*1 *2 *3) (-12 (-5 *3 (-858 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) (-2459 (*1 *2 *3 *4) (-12 (-5 *3 (-142 *5)) (-5 *4 (-831)) (-4 *5 (-146)) (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))) (-2459 (*1 *2 *3) (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *4)))) (-2459 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-5 *2 (-142 (-327))) (-5 *1 (-709 *3)) (-4 *3 (-554 (-327))))) (-2459 (*1 *2 *3) (-12 (-5 *2 (-142 (-327))) (-5 *1 (-709 *3)) (-4 *3 (-554 (-327))))) (-2458 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-5 *2 (-327)) (-5 *1 (-709 *3)) (-4 *3 (-554 *2)))) (-2458 (*1 *2 *3) (-12 (-5 *2 (-327)) (-5 *1 (-709 *3)) (-4 *3 (-554 *2)))))
+((-2465 (((-831) (-1072)) 90 T ELT)) (-2467 (((-3 (-327) "failed") (-1072)) 36 T ELT)) (-2466 (((-327) (-1072)) 34 T ELT)) (-2463 (((-831) (-1072)) 64 T ELT)) (-2464 (((-1072) (-831)) 74 T ELT)) (-2462 (((-1072) (-831)) 63 T ELT)))
+(((-710) (-10 -7 (-15 -2462 ((-1072) (-831))) (-15 -2463 ((-831) (-1072))) (-15 -2464 ((-1072) (-831))) (-15 -2465 ((-831) (-1072))) (-15 -2466 ((-327) (-1072))) (-15 -2467 ((-3 (-327) "failed") (-1072))))) (T -710))
+((-2467 (*1 *2 *3) (|partial| -12 (-5 *3 (-1072)) (-5 *2 (-327)) (-5 *1 (-710)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-327)) (-5 *1 (-710)))) (-2465 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-831)) (-5 *1 (-710)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1072)) (-5 *1 (-710)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-831)) (-5 *1 (-710)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1072)) (-5 *1 (-710)))))
+((-2470 (((-1184) (-1178 (-327)) (-484) (-327) (-2 (|:| |tryValue| (-327)) (|:| |did| (-327)) (|:| -1473 (-327))) (-327) (-1178 (-327)) (-1 (-1184) (-1178 (-327)) (-1178 (-327)) (-327)) (-1178 (-327)) (-1178 (-327)) (-1178 (-327)) (-1178 (-327)) (-1178 (-327)) (-1178 (-327)) (-1178 (-327))) 54 T ELT) (((-1184) (-1178 (-327)) (-484) (-327) (-2 (|:| |tryValue| (-327)) (|:| |did| (-327)) (|:| -1473 (-327))) (-327) (-1178 (-327)) (-1 (-1184) (-1178 (-327)) (-1178 (-327)) (-327))) 51 T ELT)) (-2471 (((-1184) (-1178 (-327)) (-484) (-327) (-327) (-484) (-1 (-1184) (-1178 (-327)) (-1178 (-327)) (-327))) 61 T ELT)) (-2469 (((-1184) (-1178 (-327)) (-484) (-327) (-327) (-327) (-327) (-484) (-1 (-1184) (-1178 (-327)) (-1178 (-327)) (-327))) 49 T ELT)) (-2468 (((-1184) (-1178 (-327)) (-484) (-327) (-327) (-1 (-1184) (-1178 (-327)) (-1178 (-327)) (-327)) (-1178 (-327)) (-1178 (-327)) (-1178 (-327)) (-1178 (-327))) 63 T ELT) (((-1184) (-1178 (-327)) (-484) (-327) (-327) (-1 (-1184) (-1178 (-327)) (-1178 (-327)) (-327))) 62 T ELT)))
+(((-711) (-10 -7 (-15 -2468 ((-1184) (-1178 (-327)) (-484) (-327) (-327) (-1 (-1184) (-1178 (-327)) (-1178 (-327)) (-327)))) (-15 -2468 ((-1184) (-1178 (-327)) (-484) (-327) (-327) (-1 (-1184) (-1178 (-327)) (-1178 (-327)) (-327)) (-1178 (-327)) (-1178 (-327)) (-1178 (-327)) (-1178 (-327)))) (-15 -2469 ((-1184) (-1178 (-327)) (-484) (-327) (-327) (-327) (-327) (-484) (-1 (-1184) (-1178 (-327)) (-1178 (-327)) (-327)))) (-15 -2470 ((-1184) (-1178 (-327)) (-484) (-327) (-2 (|:| |tryValue| (-327)) (|:| |did| (-327)) (|:| -1473 (-327))) (-327) (-1178 (-327)) (-1 (-1184) (-1178 (-327)) (-1178 (-327)) (-327)))) (-15 -2470 ((-1184) (-1178 (-327)) (-484) (-327) (-2 (|:| |tryValue| (-327)) (|:| |did| (-327)) (|:| -1473 (-327))) (-327) (-1178 (-327)) (-1 (-1184) (-1178 (-327)) (-1178 (-327)) (-327)) (-1178 (-327)) (-1178 (-327)) (-1178 (-327)) (-1178 (-327)) (-1178 (-327)) (-1178 (-327)) (-1178 (-327)))) (-15 -2471 ((-1184) (-1178 (-327)) (-484) (-327) (-327) (-484) (-1 (-1184) (-1178 (-327)) (-1178 (-327)) (-327)))))) (T -711))
+((-2471 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1184) (-1178 *5) (-1178 *5) (-327))) (-5 *3 (-1178 (-327))) (-5 *5 (-327)) (-5 *2 (-1184)) (-5 *1 (-711)))) (-2470 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-484)) (-5 *6 (-2 (|:| |tryValue| (-327)) (|:| |did| (-327)) (|:| -1473 (-327)))) (-5 *7 (-1 (-1184) (-1178 *5) (-1178 *5) (-327))) (-5 *3 (-1178 (-327))) (-5 *5 (-327)) (-5 *2 (-1184)) (-5 *1 (-711)))) (-2470 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-484)) (-5 *6 (-2 (|:| |tryValue| (-327)) (|:| |did| (-327)) (|:| -1473 (-327)))) (-5 *7 (-1 (-1184) (-1178 *5) (-1178 *5) (-327))) (-5 *3 (-1178 (-327))) (-5 *5 (-327)) (-5 *2 (-1184)) (-5 *1 (-711)))) (-2469 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1184) (-1178 *5) (-1178 *5) (-327))) (-5 *3 (-1178 (-327))) (-5 *5 (-327)) (-5 *2 (-1184)) (-5 *1 (-711)))) (-2468 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1184) (-1178 *5) (-1178 *5) (-327))) (-5 *3 (-1178 (-327))) (-5 *5 (-327)) (-5 *2 (-1184)) (-5 *1 (-711)))) (-2468 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1184) (-1178 *5) (-1178 *5) (-327))) (-5 *3 (-1178 (-327))) (-5 *5 (-327)) (-5 *2 (-1184)) (-5 *1 (-711)))))
+((-2480 (((-2 (|:| -3398 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484)) 65 T ELT)) (-2477 (((-2 (|:| -3398 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484)) 40 T ELT)) (-2479 (((-2 (|:| -3398 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484)) 64 T ELT)) (-2476 (((-2 (|:| -3398 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484)) 38 T ELT)) (-2478 (((-2 (|:| -3398 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484)) 63 T ELT)) (-2475 (((-2 (|:| -3398 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484)) 24 T ELT)) (-2474 (((-2 (|:| -3398 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484) (-484)) 41 T ELT)) (-2473 (((-2 (|:| -3398 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484) (-484)) 39 T ELT)) (-2472 (((-2 (|:| -3398 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484) (-484)) 37 T ELT)))
+(((-712) (-10 -7 (-15 -2472 ((-2 (|:| -3398 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484) (-484))) (-15 -2473 ((-2 (|:| -3398 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484) (-484))) (-15 -2474 ((-2 (|:| -3398 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484) (-484))) (-15 -2475 ((-2 (|:| -3398 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484))) (-15 -2476 ((-2 (|:| -3398 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484))) (-15 -2477 ((-2 (|:| -3398 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484))) (-15 -2478 ((-2 (|:| -3398 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484))) (-15 -2479 ((-2 (|:| -3398 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484))) (-15 -2480 ((-2 (|:| -3398 (-327)) (|:| -1594 (-327)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-327) (-327)) (-327) (-327) (-327) (-327) (-484) (-484))))) (T -712))
+((-2480 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3398 *4) (|:| -1594 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-484)))) (-2479 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3398 *4) (|:| -1594 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-484)))) (-2478 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3398 *4) (|:| -1594 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-484)))) (-2477 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3398 *4) (|:| -1594 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-484)))) (-2476 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3398 *4) (|:| -1594 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-484)))) (-2475 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3398 *4) (|:| -1594 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-484)))) (-2474 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3398 *4) (|:| -1594 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-484)))) (-2473 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3398 *4) (|:| -1594 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-484)))) (-2472 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327)) (-5 *2 (-2 (|:| -3398 *4) (|:| -1594 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-484)))))
+((-3701 (((-1124 |#1|) |#1| (-179) (-484)) 69 T ELT)))
+(((-713 |#1|) (-10 -7 (-15 -3701 ((-1124 |#1|) |#1| (-179) (-484)))) (-888)) (T -713))
+((-3701 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-179)) (-5 *5 (-484)) (-5 *2 (-1124 *3)) (-5 *1 (-713 *3)) (-4 *3 (-888)))))
+((-3619 (((-484) $) 17 T ELT)) (-3184 (((-85) $) 10 T ELT)) (-3379 (($ $) 19 T ELT)))
+(((-714 |#1|) (-10 -7 (-15 -3379 (|#1| |#1|)) (-15 -3619 ((-484) |#1|)) (-15 -3184 ((-85) |#1|))) (-715)) (T -714))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 31 T ELT)) (-1310 (((-3 $ "failed") $ $) 34 T ELT)) (-3619 (((-484) $) 37 T ELT)) (-3720 (($) 30 T CONST)) (-3183 (((-85) $) 28 T ELT)) (-3184 (((-85) $) 38 T ELT)) (-2529 (($ $ $) 23 T ELT)) (-2855 (($ $ $) 22 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3379 (($ $) 36 T ELT)) (-2658 (($) 29 T CONST)) (-2564 (((-85) $ $) 21 T ELT)) (-2565 (((-85) $ $) 19 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-2682 (((-85) $ $) 20 T ELT)) (-2683 (((-85) $ $) 18 T ELT)) (-3833 (($ $ $) 41 T ELT) (($ $) 40 T ELT)) (-3835 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT) (($ (-484) $) 39 T ELT)))
+(((-715) (-113)) (T -715))
+((-3184 (*1 *2 *1) (-12 (-4 *1 (-715)) (-5 *2 (-85)))) (-3619 (*1 *2 *1) (-12 (-4 *1 (-715)) (-5 *2 (-484)))) (-3379 (*1 *1 *1) (-4 *1 (-715))))
+(-13 (-722) (-21) (-10 -8 (-15 -3184 ((-85) $)) (-15 -3619 ((-484) $)) (-15 -3379 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-757) . T) ((-760) . T) ((-1013) . T) ((-1128) . T))
+((-3183 (((-85) $) 10 T ELT)))
+(((-716 |#1|) (-10 -7 (-15 -3183 ((-85) |#1|))) (-717)) (T -716))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 31 T ELT)) (-3720 (($) 30 T CONST)) (-3183 (((-85) $) 28 T ELT)) (-2529 (($ $ $) 23 T ELT)) (-2855 (($ $ $) 22 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 29 T CONST)) (-2564 (((-85) $ $) 21 T ELT)) (-2565 (((-85) $ $) 19 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-2682 (((-85) $ $) 20 T ELT)) (-2683 (((-85) $ $) 18 T ELT)) (-3835 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT)))
(((-717) (-113)) (T -717))
-((-2479 (*1 *1 *1 *1) (-4 *1 (-717))))
-(-13 (-721) (-10 -8 (-15 -2479 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-756) . T) ((-759) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) 7 T ELT)) (-2527 (($ $ $) 23 T ELT)) (-2853 (($ $ $) 22 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2562 (((-85) $ $) 21 T ELT)) (-2563 (((-85) $ $) 19 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 20 T ELT)) (-2681 (((-85) $ $) 18 T ELT)) (-3833 (($ $ $) 25 T ELT)) (* (($ (-830) $) 26 T ELT)))
+((-3183 (*1 *2 *1) (-12 (-4 *1 (-717)) (-5 *2 (-85)))))
+(-13 (-719) (-23) (-10 -8 (-15 -3183 ((-85) $))))
+(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-719) . T) ((-757) . T) ((-760) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 31 T ELT)) (-2481 (($ $ $) 35 T ELT)) (-1310 (((-3 $ "failed") $ $) 34 T ELT)) (-3720 (($) 30 T CONST)) (-3183 (((-85) $) 28 T ELT)) (-2529 (($ $ $) 23 T ELT)) (-2855 (($ $ $) 22 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 29 T CONST)) (-2564 (((-85) $ $) 21 T ELT)) (-2565 (((-85) $ $) 19 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-2682 (((-85) $ $) 20 T ELT)) (-2683 (((-85) $ $) 18 T ELT)) (-3835 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT)))
(((-718) (-113)) (T -718))
-NIL
-(-13 (-756) (-25))
-(((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-756) . T) ((-759) . T) ((-1012) . T) ((-1127) . T))
-((-3183 (((-85) $) 42 T ELT)) (-3152 (((-3 (-483) #1="failed") $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 45 T ELT)) (-3151 (((-483) $) NIL T ELT) (((-347 (-483)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-3020 (((-3 (-347 (-483)) #1#) $) 78 T ELT)) (-3019 (((-85) $) 72 T ELT)) (-3018 (((-347 (-483)) $) 76 T ELT)) (-3127 ((|#2| $) 26 T ELT)) (-3952 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-2480 (($ $) 58 T ELT)) (-3966 (((-472) $) 67 T ELT)) (-3005 (($ $) 21 T ELT)) (-3940 (((-772) $) 53 T ELT) (($ (-483)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-347 (-483))) NIL T ELT)) (-3121 (((-694)) 10 T CONST)) (-3377 ((|#2| $) 71 T ELT)) (-3052 (((-85) $ $) 30 T ELT)) (-2681 (((-85) $ $) 69 T ELT)) (-3831 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 31 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT)))
-(((-719 |#1| |#2|) (-10 -7 (-15 -2681 ((-85) |#1| |#1|)) (-15 -3966 ((-472) |#1|)) (-15 -2480 (|#1| |#1|)) (-15 -3020 ((-3 (-347 (-483)) #1="failed") |#1|)) (-15 -3018 ((-347 (-483)) |#1|)) (-15 -3019 ((-85) |#1|)) (-15 -3377 (|#2| |#1|)) (-15 -3127 (|#2| |#1|)) (-15 -3005 (|#1| |#1|)) (-15 -3952 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3152 ((-3 |#2| #1#) |#1|)) (-15 -3151 (|#2| |#1|)) (-15 -3151 ((-347 (-483)) |#1|)) (-15 -3152 ((-3 (-347 (-483)) #1#) |#1|)) (-15 -3940 (|#1| (-347 (-483)))) (-15 -3151 ((-483) |#1|)) (-15 -3152 ((-3 (-483) #1#) |#1|)) (-15 -3940 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3121 ((-694)) -3946) (-15 -3940 (|#1| (-483))) (-15 * (|#1| |#1| |#1|)) (-15 -3831 (|#1| |#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 * (|#1| (-483) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 -3183 ((-85) |#1|)) (-15 * (|#1| (-830) |#1|)) (-15 -3833 (|#1| |#1| |#1|)) (-15 -3940 ((-772) |#1|)) (-15 -3052 ((-85) |#1| |#1|))) (-720 |#2|) (-146)) (T -719))
-((-3121 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-719 *3 *4)) (-4 *3 (-720 *4)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3131 (((-694)) 65 (|has| |#1| (-317)) ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 (-483) #1="failed") $) 107 (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) 104 (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) 101 T ELT)) (-3151 (((-483) $) 106 (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) 103 (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) 102 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3637 ((|#1| $) 91 T ELT)) (-3020 (((-3 (-347 (-483)) "failed") $) 78 (|has| |#1| (-482)) ELT)) (-3019 (((-85) $) 80 (|has| |#1| (-482)) ELT)) (-3018 (((-347 (-483)) $) 79 (|has| |#1| (-482)) ELT)) (-2990 (($) 68 (|has| |#1| (-317)) ELT)) (-2406 (((-85) $) 42 T ELT)) (-2485 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 82 T ELT)) (-3127 ((|#1| $) 83 T ELT)) (-2527 (($ $ $) 69 (|has| |#1| (-756)) ELT)) (-2853 (($ $ $) 70 (|has| |#1| (-756)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 93 T ELT)) (-2006 (((-830) $) 67 (|has| |#1| (-317)) ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 77 (|has| |#1| (-311)) ELT)) (-2396 (($ (-830)) 66 (|has| |#1| (-317)) ELT)) (-2482 ((|#1| $) 88 T ELT)) (-2483 ((|#1| $) 89 T ELT)) (-2484 ((|#1| $) 90 T ELT)) (-3002 ((|#1| $) 84 T ELT)) (-3003 ((|#1| $) 85 T ELT)) (-3004 ((|#1| $) 86 T ELT)) (-2481 ((|#1| $) 87 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3762 (($ $ (-583 |#1|) (-583 |#1|)) 99 (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) 98 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) 97 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-248 |#1|))) 96 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-1088)) (-583 |#1|)) 95 (|has| |#1| (-452 (-1088) |#1|)) ELT) (($ $ (-1088) |#1|) 94 (|has| |#1| (-452 (-1088) |#1|)) ELT)) (-3794 (($ $ |#1|) 100 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3966 (((-472) $) 75 (|has| |#1| (-553 (-472))) ELT)) (-3005 (($ $) 92 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 50 T ELT) (($ (-347 (-483))) 105 (|has| |#1| (-950 (-347 (-483)))) ELT)) (-2698 (((-632 $) $) 76 (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-3377 ((|#1| $) 81 (|has| |#1| (-972)) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2562 (((-85) $ $) 71 (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) 73 (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 72 (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) 74 (|has| |#1| (-756)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT)))
-(((-720 |#1|) (-113) (-146)) (T -720))
-((-3005 (*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3637 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-2484 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-2483 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-2482 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-2481 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3003 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3002 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-2485 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3377 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)) (-4 *2 (-972)))) (-3019 (*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-85)))) (-3018 (*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-347 (-483))))) (-3020 (*1 *2 *1) (|partial| -12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-347 (-483))))) (-2480 (*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)) (-4 *2 (-311)))))
-(-13 (-38 |t#1|) (-352 |t#1|) (-287 |t#1|) (-10 -8 (-15 -3005 ($ $)) (-15 -3637 (|t#1| $)) (-15 -2484 (|t#1| $)) (-15 -2483 (|t#1| $)) (-15 -2482 (|t#1| $)) (-15 -2481 (|t#1| $)) (-15 -3004 (|t#1| $)) (-15 -3003 (|t#1| $)) (-15 -3002 (|t#1| $)) (-15 -3127 (|t#1| $)) (-15 -2485 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-317)) (-6 (-317)) |%noBranch|) (IF (|has| |t#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |t#1| (-553 (-472))) (-6 (-553 (-472))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-972)) (-15 -3377 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-482)) (PROGN (-15 -3019 ((-85) $)) (-15 -3018 ((-347 (-483)) $)) (-15 -3020 ((-3 (-347 (-483)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-311)) (-15 -2480 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((-555 (-483)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-259 |#1|) |has| |#1| (-259 |#1|)) ((-317) |has| |#1| (-317)) ((-287 |#1|) . T) ((-352 |#1|) . T) ((-452 (-1088) |#1|) |has| |#1| (-452 (-1088) |#1|)) ((-452 |#1| |#1|) |has| |#1| (-259 |#1|)) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-663) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-950 (-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((-950 (-483)) |has| |#1| (-950 (-483))) ((-950 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 31 T ELT)) (-1309 (((-3 $ "failed") $ $) 34 T ELT)) (-3718 (($) 30 T CONST)) (-3181 (((-85) $) 28 T ELT)) (-2527 (($ $ $) 23 T ELT)) (-2853 (($ $ $) 22 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 29 T CONST)) (-2562 (((-85) $ $) 21 T ELT)) (-2563 (((-85) $ $) 19 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 20 T ELT)) (-2681 (((-85) $ $) 18 T ELT)) (-3833 (($ $ $) 25 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT)))
-(((-721) (-113)) (T -721))
-NIL
-(-13 (-716) (-104))
-(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-716) . T) ((-718) . T) ((-756) . T) ((-759) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3131 (((-694)) NIL (|has| |#1| (-317)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-909 |#1|) #1#) $) 35 T ELT) (((-3 (-483) #1#) $) NIL (OR (|has| (-909 |#1|) (-950 (-483))) (|has| |#1| (-950 (-483)))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (OR (|has| (-909 |#1|) (-950 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ELT)) (-3151 ((|#1| $) NIL T ELT) (((-909 |#1|) $) 33 T ELT) (((-483) $) NIL (OR (|has| (-909 |#1|) (-950 (-483))) (|has| |#1| (-950 (-483)))) ELT) (((-347 (-483)) $) NIL (OR (|has| (-909 |#1|) (-950 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3637 ((|#1| $) 16 T ELT)) (-3020 (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-482)) ELT)) (-3019 (((-85) $) NIL (|has| |#1| (-482)) ELT)) (-3018 (((-347 (-483)) $) NIL (|has| |#1| (-482)) ELT)) (-2990 (($) NIL (|has| |#1| (-317)) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2485 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-909 |#1|) (-909 |#1|)) 29 T ELT)) (-3127 ((|#1| $) NIL T ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2006 (((-830) $) NIL (|has| |#1| (-317)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2396 (($ (-830)) NIL (|has| |#1| (-317)) ELT)) (-2482 ((|#1| $) 22 T ELT)) (-2483 ((|#1| $) 20 T ELT)) (-2484 ((|#1| $) 18 T ELT)) (-3002 ((|#1| $) 26 T ELT)) (-3003 ((|#1| $) 25 T ELT)) (-3004 ((|#1| $) 24 T ELT)) (-2481 ((|#1| $) 23 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3762 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-248 |#1|))) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-1088)) (-583 |#1|)) NIL (|has| |#1| (-452 (-1088) |#1|)) ELT) (($ $ (-1088) |#1|) NIL (|has| |#1| (-452 (-1088) |#1|)) ELT)) (-3794 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3966 (((-472) $) NIL (|has| |#1| (-553 (-472))) ELT)) (-3005 (($ $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-909 |#1|)) 30 T ELT) (($ (-347 (-483))) NIL (OR (|has| (-909 |#1|) (-950 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-3377 ((|#1| $) NIL (|has| |#1| (-972)) ELT)) (-2656 (($) 8 T CONST)) (-2662 (($) 12 T CONST)) (-2562 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-722 |#1|) (-13 (-720 |#1|) (-352 (-909 |#1|)) (-10 -8 (-15 -2485 ($ (-909 |#1|) (-909 |#1|))))) (-146)) (T -722))
-((-2485 (*1 *1 *2 *2) (-12 (-5 *2 (-909 *3)) (-4 *3 (-146)) (-5 *1 (-722 *3)))))
-((-3952 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT)))
-(((-723 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3952 (|#3| (-1 |#4| |#2|) |#1|))) (-720 |#2|) (-146) (-720 |#4|) (-146)) (T -723))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-720 *6)) (-5 *1 (-723 *4 *5 *2 *6)) (-4 *4 (-720 *5)))))
-((-2486 (((-2 (|:| |particular| |#2|) (|:| -2008 (-583 |#2|))) |#3| |#2| (-1088)) 19 T ELT)))
-(((-724 |#1| |#2| |#3|) (-10 -7 (-15 -2486 ((-2 (|:| |particular| |#2|) (|:| -2008 (-583 |#2|))) |#3| |#2| (-1088)))) (-13 (-257) (-950 (-483)) (-580 (-483)) (-120)) (-13 (-29 |#1|) (-1113) (-871)) (-600 |#2|)) (T -724))
-((-2486 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1088)) (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-4 *4 (-13 (-29 *6) (-1113) (-871))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2008 (-583 *4)))) (-5 *1 (-724 *6 *4 *3)) (-4 *3 (-600 *4)))))
-((-3567 (((-3 |#2| #1="failed") |#2| (-86) (-248 |#2|) (-583 |#2|)) 28 T ELT) (((-3 |#2| #1#) (-248 |#2|) (-86) (-248 |#2|) (-583 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2008 (-583 |#2|))) |#2| #1#) |#2| (-86) (-1088)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2008 (-583 |#2|))) |#2| #1#) (-248 |#2|) (-86) (-1088)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1177 |#2|)) (|:| -2008 (-583 (-1177 |#2|)))) #1#) (-583 |#2|) (-583 (-86)) (-1088)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1177 |#2|)) (|:| -2008 (-583 (-1177 |#2|)))) #1#) (-583 (-248 |#2|)) (-583 (-86)) (-1088)) 26 T ELT) (((-3 (-583 (-1177 |#2|)) #1#) (-630 |#2|) (-1088)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1177 |#2|)) (|:| -2008 (-583 (-1177 |#2|)))) #1#) (-630 |#2|) (-1177 |#2|) (-1088)) 35 T ELT)))
-(((-725 |#1| |#2|) (-10 -7 (-15 -3567 ((-3 (-2 (|:| |particular| (-1177 |#2|)) (|:| -2008 (-583 (-1177 |#2|)))) #1="failed") (-630 |#2|) (-1177 |#2|) (-1088))) (-15 -3567 ((-3 (-583 (-1177 |#2|)) #1#) (-630 |#2|) (-1088))) (-15 -3567 ((-3 (-2 (|:| |particular| (-1177 |#2|)) (|:| -2008 (-583 (-1177 |#2|)))) #1#) (-583 (-248 |#2|)) (-583 (-86)) (-1088))) (-15 -3567 ((-3 (-2 (|:| |particular| (-1177 |#2|)) (|:| -2008 (-583 (-1177 |#2|)))) #1#) (-583 |#2|) (-583 (-86)) (-1088))) (-15 -3567 ((-3 (-2 (|:| |particular| |#2|) (|:| -2008 (-583 |#2|))) |#2| #1#) (-248 |#2|) (-86) (-1088))) (-15 -3567 ((-3 (-2 (|:| |particular| |#2|) (|:| -2008 (-583 |#2|))) |#2| #1#) |#2| (-86) (-1088))) (-15 -3567 ((-3 |#2| #1#) (-248 |#2|) (-86) (-248 |#2|) (-583 |#2|))) (-15 -3567 ((-3 |#2| #1#) |#2| (-86) (-248 |#2|) (-583 |#2|)))) (-13 (-257) (-950 (-483)) (-580 (-483)) (-120)) (-13 (-29 |#1|) (-1113) (-871))) (T -725))
-((-3567 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-248 *2)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1113) (-871))) (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *1 (-725 *6 *2)))) (-3567 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-248 *2)) (-5 *4 (-86)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1113) (-871))) (-5 *1 (-725 *6 *2)) (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))))) (-3567 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-86)) (-5 *5 (-1088)) (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2008 (-583 *3))) *3 #1="failed")) (-5 *1 (-725 *6 *3)) (-4 *3 (-13 (-29 *6) (-1113) (-871))))) (-3567 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-248 *7)) (-5 *4 (-86)) (-5 *5 (-1088)) (-4 *7 (-13 (-29 *6) (-1113) (-871))) (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2008 (-583 *7))) *7 #1#)) (-5 *1 (-725 *6 *7)))) (-3567 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-86))) (-5 *5 (-1088)) (-4 *7 (-13 (-29 *6) (-1113) (-871))) (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *2 (-2 (|:| |particular| (-1177 *7)) (|:| -2008 (-583 (-1177 *7))))) (-5 *1 (-725 *6 *7)))) (-3567 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 (-248 *7))) (-5 *4 (-583 (-86))) (-5 *5 (-1088)) (-4 *7 (-13 (-29 *6) (-1113) (-871))) (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *2 (-2 (|:| |particular| (-1177 *7)) (|:| -2008 (-583 (-1177 *7))))) (-5 *1 (-725 *6 *7)))) (-3567 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-630 *6)) (-5 *4 (-1088)) (-4 *6 (-13 (-29 *5) (-1113) (-871))) (-4 *5 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *2 (-583 (-1177 *6))) (-5 *1 (-725 *5 *6)))) (-3567 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-630 *7)) (-5 *5 (-1088)) (-4 *7 (-13 (-29 *6) (-1113) (-871))) (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *2 (-2 (|:| |particular| (-1177 *7)) (|:| -2008 (-583 (-1177 *7))))) (-5 *1 (-725 *6 *7)) (-5 *4 (-1177 *7)))))
-((-3464 ((|#2| |#2| (-1088)) 17 T ELT)) (-2487 ((|#2| |#2| (-1088)) 56 T ELT)) (-2488 (((-1 |#2| |#2|) (-1088)) 11 T ELT)))
-(((-726 |#1| |#2|) (-10 -7 (-15 -3464 (|#2| |#2| (-1088))) (-15 -2487 (|#2| |#2| (-1088))) (-15 -2488 ((-1 |#2| |#2|) (-1088)))) (-13 (-257) (-950 (-483)) (-580 (-483)) (-120)) (-13 (-29 |#1|) (-1113) (-871))) (T -726))
-((-2488 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *2 (-1 *5 *5)) (-5 *1 (-726 *4 *5)) (-4 *5 (-13 (-29 *4) (-1113) (-871))))) (-2487 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *1 (-726 *4 *2)) (-4 *2 (-13 (-29 *4) (-1113) (-871))))) (-3464 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *1 (-726 *4 *2)) (-4 *2 (-13 (-29 *4) (-1113) (-871))))))
-((-2489 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2008 (-583 |#4|))) (-597 |#4|) |#4|) 33 T ELT)))
-(((-727 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2489 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2008 (-583 |#4|))) (-597 |#4|) |#4|))) (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483)))) (-1153 |#1|) (-1153 (-347 |#2|)) (-290 |#1| |#2| |#3|)) (T -727))
-((-2489 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *4)) (-4 *4 (-290 *5 *6 *7)) (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-347 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2008 (-583 *4)))) (-5 *1 (-727 *5 *6 *7 *4)))))
-((-3735 (((-2 (|:| -3261 |#3|) (|:| |rh| (-583 (-347 |#2|)))) |#4| (-583 (-347 |#2|))) 53 T ELT)) (-2491 (((-583 (-2 (|:| -3767 |#2|) (|:| -3221 |#2|))) |#4| |#2|) 62 T ELT) (((-583 (-2 (|:| -3767 |#2|) (|:| -3221 |#2|))) |#4|) 61 T ELT) (((-583 (-2 (|:| -3767 |#2|) (|:| -3221 |#2|))) |#3| |#2|) 20 T ELT) (((-583 (-2 (|:| -3767 |#2|) (|:| -3221 |#2|))) |#3|) 21 T ELT)) (-2492 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-2490 ((|#2| |#3| (-583 (-347 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-347 |#2|)) 105 T ELT)))
-(((-728 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2490 ((-3 |#2| "failed") |#3| (-347 |#2|))) (-15 -2490 (|#2| |#3| (-583 (-347 |#2|)))) (-15 -2491 ((-583 (-2 (|:| -3767 |#2|) (|:| -3221 |#2|))) |#3|)) (-15 -2491 ((-583 (-2 (|:| -3767 |#2|) (|:| -3221 |#2|))) |#3| |#2|)) (-15 -2492 (|#2| |#3| |#1|)) (-15 -2491 ((-583 (-2 (|:| -3767 |#2|) (|:| -3221 |#2|))) |#4|)) (-15 -2491 ((-583 (-2 (|:| -3767 |#2|) (|:| -3221 |#2|))) |#4| |#2|)) (-15 -2492 (|#2| |#4| |#1|)) (-15 -3735 ((-2 (|:| -3261 |#3|) (|:| |rh| (-583 (-347 |#2|)))) |#4| (-583 (-347 |#2|))))) (-13 (-311) (-120) (-950 (-347 (-483)))) (-1153 |#1|) (-600 |#2|) (-600 (-347 |#2|))) (T -728))
-((-3735 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *6 (-1153 *5)) (-5 *2 (-2 (|:| -3261 *7) (|:| |rh| (-583 (-347 *6))))) (-5 *1 (-728 *5 *6 *7 *3)) (-5 *4 (-583 (-347 *6))) (-4 *7 (-600 *6)) (-4 *3 (-600 (-347 *6))))) (-2492 (*1 *2 *3 *4) (-12 (-4 *2 (-1153 *4)) (-5 *1 (-728 *4 *2 *5 *3)) (-4 *4 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *5 (-600 *2)) (-4 *3 (-600 (-347 *2))))) (-2491 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *4 (-1153 *5)) (-5 *2 (-583 (-2 (|:| -3767 *4) (|:| -3221 *4)))) (-5 *1 (-728 *5 *4 *6 *3)) (-4 *6 (-600 *4)) (-4 *3 (-600 (-347 *4))))) (-2491 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *5 (-1153 *4)) (-5 *2 (-583 (-2 (|:| -3767 *5) (|:| -3221 *5)))) (-5 *1 (-728 *4 *5 *6 *3)) (-4 *6 (-600 *5)) (-4 *3 (-600 (-347 *5))))) (-2492 (*1 *2 *3 *4) (-12 (-4 *2 (-1153 *4)) (-5 *1 (-728 *4 *2 *3 *5)) (-4 *4 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *3 (-600 *2)) (-4 *5 (-600 (-347 *2))))) (-2491 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *4 (-1153 *5)) (-5 *2 (-583 (-2 (|:| -3767 *4) (|:| -3221 *4)))) (-5 *1 (-728 *5 *4 *3 *6)) (-4 *3 (-600 *4)) (-4 *6 (-600 (-347 *4))))) (-2491 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *5 (-1153 *4)) (-5 *2 (-583 (-2 (|:| -3767 *5) (|:| -3221 *5)))) (-5 *1 (-728 *4 *5 *3 *6)) (-4 *3 (-600 *5)) (-4 *6 (-600 (-347 *5))))) (-2490 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-347 *2))) (-4 *2 (-1153 *5)) (-5 *1 (-728 *5 *2 *3 *6)) (-4 *5 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *3 (-600 *2)) (-4 *6 (-600 (-347 *2))))) (-2490 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-347 *2)) (-4 *2 (-1153 *5)) (-5 *1 (-728 *5 *2 *3 *6)) (-4 *5 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *3 (-600 *2)) (-4 *6 (-600 *4)))))
-((-2500 (((-583 (-2 (|:| |frac| (-347 |#2|)) (|:| -3261 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1083 |#2|)) (-1 (-345 |#2|) |#2|)) 156 T ELT)) (-2501 (((-583 (-2 (|:| |poly| |#2|) (|:| -3261 |#3|))) |#3| (-1 (-583 |#1|) |#2|)) 52 T ELT)) (-2494 (((-583 (-2 (|:| |deg| (-694)) (|:| -3261 |#2|))) |#3|) 123 T ELT)) (-2493 ((|#2| |#3|) 42 T ELT)) (-2495 (((-583 (-2 (|:| -3946 |#1|) (|:| -3261 |#3|))) |#3| (-1 (-583 |#1|) |#2|)) 100 T ELT)) (-2496 ((|#3| |#3| (-347 |#2|)) 71 T ELT) ((|#3| |#3| |#2|) 97 T ELT)))
-(((-729 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2493 (|#2| |#3|)) (-15 -2494 ((-583 (-2 (|:| |deg| (-694)) (|:| -3261 |#2|))) |#3|)) (-15 -2495 ((-583 (-2 (|:| -3946 |#1|) (|:| -3261 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -2501 ((-583 (-2 (|:| |poly| |#2|) (|:| -3261 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -2500 ((-583 (-2 (|:| |frac| (-347 |#2|)) (|:| -3261 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1083 |#2|)) (-1 (-345 |#2|) |#2|))) (-15 -2496 (|#3| |#3| |#2|)) (-15 -2496 (|#3| |#3| (-347 |#2|)))) (-13 (-311) (-120) (-950 (-347 (-483)))) (-1153 |#1|) (-600 |#2|) (-600 (-347 |#2|))) (T -729))
-((-2496 (*1 *2 *2 *3) (-12 (-5 *3 (-347 *5)) (-4 *4 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *5 (-1153 *4)) (-5 *1 (-729 *4 *5 *2 *6)) (-4 *2 (-600 *5)) (-4 *6 (-600 *3)))) (-2496 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *3 (-1153 *4)) (-5 *1 (-729 *4 *3 *2 *5)) (-4 *2 (-600 *3)) (-4 *5 (-600 (-347 *3))))) (-2500 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-583 *7) *7 (-1083 *7))) (-5 *5 (-1 (-345 *7) *7)) (-4 *7 (-1153 *6)) (-4 *6 (-13 (-311) (-120) (-950 (-347 (-483))))) (-5 *2 (-583 (-2 (|:| |frac| (-347 *7)) (|:| -3261 *3)))) (-5 *1 (-729 *6 *7 *3 *8)) (-4 *3 (-600 *7)) (-4 *8 (-600 (-347 *7))))) (-2501 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *6 (-1153 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3261 *3)))) (-5 *1 (-729 *5 *6 *3 *7)) (-4 *3 (-600 *6)) (-4 *7 (-600 (-347 *6))))) (-2495 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *6 (-1153 *5)) (-5 *2 (-583 (-2 (|:| -3946 *5) (|:| -3261 *3)))) (-5 *1 (-729 *5 *6 *3 *7)) (-4 *3 (-600 *6)) (-4 *7 (-600 (-347 *6))))) (-2494 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *5 (-1153 *4)) (-5 *2 (-583 (-2 (|:| |deg| (-694)) (|:| -3261 *5)))) (-5 *1 (-729 *4 *5 *3 *6)) (-4 *3 (-600 *5)) (-4 *6 (-600 (-347 *5))))) (-2493 (*1 *2 *3) (-12 (-4 *2 (-1153 *4)) (-5 *1 (-729 *4 *2 *3 *5)) (-4 *4 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *3 (-600 *2)) (-4 *5 (-600 (-347 *2))))))
-((-2497 (((-2 (|:| -2008 (-583 (-347 |#2|))) (|:| |mat| (-630 |#1|))) (-598 |#2| (-347 |#2|)) (-583 (-347 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-347 |#2|) #1="failed")) (|:| -2008 (-583 (-347 |#2|)))) (-598 |#2| (-347 |#2|)) (-347 |#2|)) 145 T ELT) (((-2 (|:| -2008 (-583 (-347 |#2|))) (|:| |mat| (-630 |#1|))) (-597 (-347 |#2|)) (-583 (-347 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-347 |#2|) #1#)) (|:| -2008 (-583 (-347 |#2|)))) (-597 (-347 |#2|)) (-347 |#2|)) 138 T ELT)) (-2498 ((|#2| (-598 |#2| (-347 |#2|))) 86 T ELT) ((|#2| (-597 (-347 |#2|))) 89 T ELT)))
-(((-730 |#1| |#2|) (-10 -7 (-15 -2497 ((-2 (|:| |particular| (-3 (-347 |#2|) #1="failed")) (|:| -2008 (-583 (-347 |#2|)))) (-597 (-347 |#2|)) (-347 |#2|))) (-15 -2497 ((-2 (|:| -2008 (-583 (-347 |#2|))) (|:| |mat| (-630 |#1|))) (-597 (-347 |#2|)) (-583 (-347 |#2|)))) (-15 -2497 ((-2 (|:| |particular| (-3 (-347 |#2|) #1#)) (|:| -2008 (-583 (-347 |#2|)))) (-598 |#2| (-347 |#2|)) (-347 |#2|))) (-15 -2497 ((-2 (|:| -2008 (-583 (-347 |#2|))) (|:| |mat| (-630 |#1|))) (-598 |#2| (-347 |#2|)) (-583 (-347 |#2|)))) (-15 -2498 (|#2| (-597 (-347 |#2|)))) (-15 -2498 (|#2| (-598 |#2| (-347 |#2|))))) (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483)))) (-1153 |#1|)) (T -730))
-((-2498 (*1 *2 *3) (-12 (-5 *3 (-598 *2 (-347 *2))) (-4 *2 (-1153 *4)) (-5 *1 (-730 *4 *2)) (-4 *4 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))))) (-2498 (*1 *2 *3) (-12 (-5 *3 (-597 (-347 *2))) (-4 *2 (-1153 *4)) (-5 *1 (-730 *4 *2)) (-4 *4 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))))) (-2497 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *6 (-347 *6))) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-5 *2 (-2 (|:| -2008 (-583 (-347 *6))) (|:| |mat| (-630 *5)))) (-5 *1 (-730 *5 *6)) (-5 *4 (-583 (-347 *6))))) (-2497 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *6 (-347 *6))) (-5 *4 (-347 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2008 (-583 *4)))) (-5 *1 (-730 *5 *6)))) (-2497 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-347 *6))) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-5 *2 (-2 (|:| -2008 (-583 (-347 *6))) (|:| |mat| (-630 *5)))) (-5 *1 (-730 *5 *6)) (-5 *4 (-583 (-347 *6))))) (-2497 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-347 *6))) (-5 *4 (-347 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2008 (-583 *4)))) (-5 *1 (-730 *5 *6)))))
-((-2499 (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#1|))) |#5| |#4|) 49 T ELT)))
-(((-731 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2499 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#1|))) |#5| |#4|))) (-311) (-600 |#1|) (-1153 |#1|) (-661 |#1| |#3|) (-600 |#4|)) (T -731))
-((-2499 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-4 *7 (-1153 *5)) (-4 *4 (-661 *5 *7)) (-5 *2 (-2 (|:| |mat| (-630 *6)) (|:| |vec| (-1177 *5)))) (-5 *1 (-731 *5 *6 *7 *4 *3)) (-4 *6 (-600 *5)) (-4 *3 (-600 *4)))))
-((-2500 (((-583 (-2 (|:| |frac| (-347 |#2|)) (|:| -3261 (-598 |#2| (-347 |#2|))))) (-598 |#2| (-347 |#2|)) (-1 (-345 |#2|) |#2|)) 47 T ELT)) (-2502 (((-583 (-347 |#2|)) (-598 |#2| (-347 |#2|)) (-1 (-345 |#2|) |#2|)) 163 (|has| |#1| (-27)) ELT) (((-583 (-347 |#2|)) (-598 |#2| (-347 |#2|))) 164 (|has| |#1| (-27)) ELT) (((-583 (-347 |#2|)) (-597 (-347 |#2|)) (-1 (-345 |#2|) |#2|)) 165 (|has| |#1| (-27)) ELT) (((-583 (-347 |#2|)) (-597 (-347 |#2|))) 166 (|has| |#1| (-27)) ELT) (((-583 (-347 |#2|)) (-598 |#2| (-347 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-345 |#2|) |#2|)) 38 T ELT) (((-583 (-347 |#2|)) (-598 |#2| (-347 |#2|)) (-1 (-583 |#1|) |#2|)) 39 T ELT) (((-583 (-347 |#2|)) (-597 (-347 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-345 |#2|) |#2|)) 36 T ELT) (((-583 (-347 |#2|)) (-597 (-347 |#2|)) (-1 (-583 |#1|) |#2|)) 37 T ELT)) (-2501 (((-583 (-2 (|:| |poly| |#2|) (|:| -3261 (-598 |#2| (-347 |#2|))))) (-598 |#2| (-347 |#2|)) (-1 (-583 |#1|) |#2|)) 96 T ELT)))
-(((-732 |#1| |#2|) (-10 -7 (-15 -2502 ((-583 (-347 |#2|)) (-597 (-347 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -2502 ((-583 (-347 |#2|)) (-597 (-347 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-345 |#2|) |#2|))) (-15 -2502 ((-583 (-347 |#2|)) (-598 |#2| (-347 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -2502 ((-583 (-347 |#2|)) (-598 |#2| (-347 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-345 |#2|) |#2|))) (-15 -2500 ((-583 (-2 (|:| |frac| (-347 |#2|)) (|:| -3261 (-598 |#2| (-347 |#2|))))) (-598 |#2| (-347 |#2|)) (-1 (-345 |#2|) |#2|))) (-15 -2501 ((-583 (-2 (|:| |poly| |#2|) (|:| -3261 (-598 |#2| (-347 |#2|))))) (-598 |#2| (-347 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2502 ((-583 (-347 |#2|)) (-597 (-347 |#2|)))) (-15 -2502 ((-583 (-347 |#2|)) (-597 (-347 |#2|)) (-1 (-345 |#2|) |#2|))) (-15 -2502 ((-583 (-347 |#2|)) (-598 |#2| (-347 |#2|)))) (-15 -2502 ((-583 (-347 |#2|)) (-598 |#2| (-347 |#2|)) (-1 (-345 |#2|) |#2|)))) |%noBranch|)) (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483)))) (-1153 |#1|)) (T -732))
-((-2502 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *6 (-347 *6))) (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1153 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-5 *2 (-583 (-347 *6))) (-5 *1 (-732 *5 *6)))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-598 *5 (-347 *5))) (-4 *5 (-1153 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-5 *2 (-583 (-347 *5))) (-5 *1 (-732 *4 *5)))) (-2502 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-347 *6))) (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1153 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-5 *2 (-583 (-347 *6))) (-5 *1 (-732 *5 *6)))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-597 (-347 *5))) (-4 *5 (-1153 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-5 *2 (-583 (-347 *5))) (-5 *1 (-732 *4 *5)))) (-2501 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-4 *6 (-1153 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3261 (-598 *6 (-347 *6)))))) (-5 *1 (-732 *5 *6)) (-5 *3 (-598 *6 (-347 *6))))) (-2500 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-5 *2 (-583 (-2 (|:| |frac| (-347 *6)) (|:| -3261 (-598 *6 (-347 *6)))))) (-5 *1 (-732 *5 *6)) (-5 *3 (-598 *6 (-347 *6))))) (-2502 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-598 *7 (-347 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-345 *7) *7)) (-4 *6 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-4 *7 (-1153 *6)) (-5 *2 (-583 (-347 *7))) (-5 *1 (-732 *6 *7)))) (-2502 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *6 (-347 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-4 *6 (-1153 *5)) (-5 *2 (-583 (-347 *6))) (-5 *1 (-732 *5 *6)))) (-2502 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 (-347 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-345 *7) *7)) (-4 *6 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-4 *7 (-1153 *6)) (-5 *2 (-583 (-347 *7))) (-5 *1 (-732 *6 *7)))) (-2502 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-347 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))) (-4 *6 (-1153 *5)) (-5 *2 (-583 (-347 *6))) (-5 *1 (-732 *5 *6)))))
-((-2503 (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#1|))) (-630 |#2|) (-1177 |#1|)) 110 T ELT) (((-2 (|:| A (-630 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-630 |#1|)) (|:| |g| (-1177 |#1|)) (|:| -3261 |#2|) (|:| |rh| |#1|))))) (-630 |#1|) (-1177 |#1|)) 15 T ELT)) (-2504 (((-2 (|:| |particular| (-3 (-1177 |#1|) #1="failed")) (|:| -2008 (-583 (-1177 |#1|)))) (-630 |#2|) (-1177 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2008 (-583 |#1|))) |#2| |#1|)) 116 T ELT)) (-3567 (((-3 (-2 (|:| |particular| (-1177 |#1|)) (|:| -2008 (-630 |#1|))) #1#) (-630 |#1|) (-1177 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2008 (-583 |#1|))) #1#) |#2| |#1|)) 54 T ELT)))
-(((-733 |#1| |#2|) (-10 -7 (-15 -2503 ((-2 (|:| A (-630 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-630 |#1|)) (|:| |g| (-1177 |#1|)) (|:| -3261 |#2|) (|:| |rh| |#1|))))) (-630 |#1|) (-1177 |#1|))) (-15 -2503 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#1|))) (-630 |#2|) (-1177 |#1|))) (-15 -3567 ((-3 (-2 (|:| |particular| (-1177 |#1|)) (|:| -2008 (-630 |#1|))) #1="failed") (-630 |#1|) (-1177 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2008 (-583 |#1|))) #1#) |#2| |#1|))) (-15 -2504 ((-2 (|:| |particular| (-3 (-1177 |#1|) #1#)) (|:| -2008 (-583 (-1177 |#1|)))) (-630 |#2|) (-1177 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2008 (-583 |#1|))) |#2| |#1|)))) (-311) (-600 |#1|)) (T -733))
-((-2504 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2008 (-583 *6))) *7 *6)) (-4 *6 (-311)) (-4 *7 (-600 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1177 *6) "failed")) (|:| -2008 (-583 (-1177 *6))))) (-5 *1 (-733 *6 *7)) (-5 *4 (-1177 *6)))) (-3567 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2008 (-583 *6))) "failed") *7 *6)) (-4 *6 (-311)) (-4 *7 (-600 *6)) (-5 *2 (-2 (|:| |particular| (-1177 *6)) (|:| -2008 (-630 *6)))) (-5 *1 (-733 *6 *7)) (-5 *3 (-630 *6)) (-5 *4 (-1177 *6)))) (-2503 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-4 *6 (-600 *5)) (-5 *2 (-2 (|:| |mat| (-630 *6)) (|:| |vec| (-1177 *5)))) (-5 *1 (-733 *5 *6)) (-5 *3 (-630 *6)) (-5 *4 (-1177 *5)))) (-2503 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-5 *2 (-2 (|:| A (-630 *5)) (|:| |eqs| (-583 (-2 (|:| C (-630 *5)) (|:| |g| (-1177 *5)) (|:| -3261 *6) (|:| |rh| *5)))))) (-5 *1 (-733 *5 *6)) (-5 *3 (-630 *5)) (-5 *4 (-1177 *5)) (-4 *6 (-600 *5)))))
-((-2505 (((-630 |#1|) (-583 |#1|) (-694)) 14 T ELT) (((-630 |#1|) (-583 |#1|)) 15 T ELT)) (-2506 (((-3 (-1177 |#1|) #1="failed") |#2| |#1| (-583 |#1|)) 39 T ELT)) (-3334 (((-3 |#1| #1#) |#2| |#1| (-583 |#1|) (-1 |#1| |#1|)) 46 T ELT)))
-(((-734 |#1| |#2|) (-10 -7 (-15 -2505 ((-630 |#1|) (-583 |#1|))) (-15 -2505 ((-630 |#1|) (-583 |#1|) (-694))) (-15 -2506 ((-3 (-1177 |#1|) #1="failed") |#2| |#1| (-583 |#1|))) (-15 -3334 ((-3 |#1| #1#) |#2| |#1| (-583 |#1|) (-1 |#1| |#1|)))) (-311) (-600 |#1|)) (T -734))
-((-3334 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-583 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-311)) (-5 *1 (-734 *2 *3)) (-4 *3 (-600 *2)))) (-2506 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-583 *4)) (-4 *4 (-311)) (-5 *2 (-1177 *4)) (-5 *1 (-734 *4 *3)) (-4 *3 (-600 *4)))) (-2505 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-694)) (-4 *5 (-311)) (-5 *2 (-630 *5)) (-5 *1 (-734 *5 *6)) (-4 *6 (-600 *5)))) (-2505 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-311)) (-5 *2 (-630 *4)) (-5 *1 (-734 *4 *5)) (-4 *5 (-600 *4)))))
-((-2564 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3183 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3701 (($ (-830)) NIL (|has| |#2| (-961)) ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-2479 (($ $ $) NIL (|has| |#2| (-717)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3131 (((-694)) NIL (|has| |#2| (-317)) ELT)) (-3782 ((|#2| $ (-483) |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL (-12 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (-12 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1012)) ELT)) (-3151 (((-483) $) NIL (-12 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) ELT) (((-347 (-483)) $) NIL (-12 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012))) ELT) ((|#2| $) NIL (|has| |#2| (-1012)) ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (-12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (-12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-630 $)) NIL (|has| |#2| (-961)) ELT)) (-3461 (((-3 $ #1#) $) NIL (|has| |#2| (-961)) ELT)) (-2990 (($) NIL (|has| |#2| (-317)) ELT)) (-1573 ((|#2| $ (-483) |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#2| $ (-483)) NIL T ELT)) (-3181 (((-85) $) NIL (|has| |#2| (-717)) ELT)) (-2885 (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2406 (((-85) $) NIL (|has| |#2| (-961)) ELT)) (-2196 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-2604 (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2197 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-1946 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2006 (((-830) $) NIL (|has| |#2| (-317)) ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (-12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (-12 (|has| |#2| (-580 (-483))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-1177 $)) NIL (|has| |#2| (-961)) ELT)) (-3237 (((-1071) $) NIL (|has| |#2| (-1012)) ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-2396 (($ (-830)) NIL (|has| |#2| (-317)) ELT)) (-3238 (((-1032) $) NIL (|has| |#2| (-1012)) ELT)) (-3795 ((|#2| $) NIL (|has| (-483) (-756)) ELT)) (-2195 (($ $ |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2201 (((-583 |#2|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#2| $ (-483) |#2|) NIL T ELT) ((|#2| $ (-483)) NIL T ELT)) (-3830 ((|#2| $ $) NIL (|has| |#2| (-961)) ELT)) (-1465 (($ (-1177 |#2|)) NIL T ELT)) (-3905 (((-107)) NIL (|has| |#2| (-311)) ELT)) (-3752 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1088)) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-1943 (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3940 (((-1177 |#2|) $) NIL T ELT) (($ (-483)) NIL (OR (-12 (|has| |#2| (-950 (-483))) (|has| |#2| (-1012))) (|has| |#2| (-961))) ELT) (($ (-347 (-483))) NIL (-12 (|has| |#2| (-950 (-347 (-483)))) (|has| |#2| (-1012))) ELT) (($ |#2|) NIL (|has| |#2| (-1012)) ELT) (((-772) $) NIL (|has| |#2| (-552 (-772))) ELT)) (-3121 (((-694)) NIL (|has| |#2| (-961)) CONST)) (-1262 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2656 (($) NIL (|has| |#2| (-23)) CONST)) (-2662 (($) NIL (|has| |#2| (-961)) CONST)) (-2665 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1088)) NIL (-12 (|has| |#2| (-811 (-1088))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-2562 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-2680 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2681 (((-85) $ $) 11 (|has| |#2| (-756)) ELT)) (-3943 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3831 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3833 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-694)) NIL (|has| |#2| (-961)) ELT) (($ $ (-830)) NIL (|has| |#2| (-961)) ELT)) (* (($ $ $) NIL (|has| |#2| (-961)) ELT) (($ $ |#2|) NIL (|has| |#2| (-663)) ELT) (($ |#2| $) NIL (|has| |#2| (-663)) ELT) (($ (-483) $) NIL (|has| |#2| (-21)) ELT) (($ (-694) $) NIL (|has| |#2| (-23)) ELT) (($ (-830) $) NIL (|has| |#2| (-25)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-735 |#1| |#2| |#3|) (-196 |#1| |#2|) (-694) (-717) (-1 (-85) (-1177 |#2|) (-1177 |#2|))) (T -735))
-NIL
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1485 (((-583 (-694)) $) NIL T ELT) (((-583 (-694)) $ (-1088)) NIL T ELT)) (-1519 (((-694) $) NIL T ELT) (((-694) $ (-1088)) NIL T ELT)) (-3077 (((-583 (-738 (-1088))) $) NIL T ELT)) (-3079 (((-1083 $) $ (-738 (-1088))) NIL T ELT) (((-1083 |#1|) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2815 (((-694) $) NIL T ELT) (((-694) $ (-583 (-738 (-1088)))) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3769 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-1481 (($ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-738 (-1088)) #1#) $) NIL T ELT) (((-3 (-1088) #1#) $) NIL T ELT) (((-3 (-1037 |#1| (-1088)) #1#) $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-738 (-1088)) $) NIL T ELT) (((-1088) $) NIL T ELT) (((-1037 |#1| (-1088)) $) NIL T ELT)) (-3750 (($ $ $ (-738 (-1088))) NIL (|has| |#1| (-146)) ELT)) (-3953 (($ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-389)) ELT) (($ $ (-738 (-1088))) NIL (|has| |#1| (-389)) ELT)) (-2814 (((-583 $) $) NIL T ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1621 (($ $ |#1| (-468 (-738 (-1088))) $) NIL T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (-12 (|has| (-738 (-1088)) (-796 (-327))) (|has| |#1| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (-12 (|has| (-738 (-1088)) (-796 (-483))) (|has| |#1| (-796 (-483)))) ELT)) (-3766 (((-694) $ (-1088)) NIL T ELT) (((-694) $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2416 (((-694) $) NIL T ELT)) (-3080 (($ (-1083 |#1|) (-738 (-1088))) NIL T ELT) (($ (-1083 $) (-738 (-1088))) NIL T ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-468 (-738 (-1088)))) NIL T ELT) (($ $ (-738 (-1088)) (-694)) NIL T ELT) (($ $ (-583 (-738 (-1088))) (-583 (-694))) NIL T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ (-738 (-1088))) NIL T ELT)) (-2816 (((-468 (-738 (-1088))) $) NIL T ELT) (((-694) $ (-738 (-1088))) NIL T ELT) (((-583 (-694)) $ (-583 (-738 (-1088)))) NIL T ELT)) (-1622 (($ (-1 (-468 (-738 (-1088))) (-468 (-738 (-1088)))) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1520 (((-1 $ (-694)) (-1088)) NIL T ELT) (((-1 $ (-694)) $) NIL (|has| |#1| (-190)) ELT)) (-3078 (((-3 (-738 (-1088)) #1#) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-1483 (((-738 (-1088)) $) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1484 (((-85) $) NIL T ELT)) (-2819 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2818 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-2 (|:| |var| (-738 (-1088))) (|:| -2397 (-694))) #1#) $) NIL T ELT)) (-1482 (($ $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1794 (((-85) $) NIL T ELT)) (-1793 ((|#1| $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-389)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-821)) ELT)) (-3460 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-3762 (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-738 (-1088)) |#1|) NIL T ELT) (($ $ (-583 (-738 (-1088))) (-583 |#1|)) NIL T ELT) (($ $ (-738 (-1088)) $) NIL T ELT) (($ $ (-583 (-738 (-1088))) (-583 $)) NIL T ELT) (($ $ (-1088) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 (-1088)) (-583 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1088) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 (-1088)) (-583 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3751 (($ $ (-738 (-1088))) NIL (|has| |#1| (-146)) ELT)) (-3752 (($ $ (-583 (-738 (-1088))) (-583 (-694))) NIL T ELT) (($ $ (-738 (-1088)) (-694)) NIL T ELT) (($ $ (-583 (-738 (-1088)))) NIL T ELT) (($ $ (-738 (-1088))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-1486 (((-583 (-1088)) $) NIL T ELT)) (-3942 (((-468 (-738 (-1088))) $) NIL T ELT) (((-694) $ (-738 (-1088))) NIL T ELT) (((-583 (-694)) $ (-583 (-738 (-1088)))) NIL T ELT) (((-694) $ (-1088)) NIL T ELT)) (-3966 (((-800 (-327)) $) NIL (-12 (|has| (-738 (-1088)) (-553 (-800 (-327)))) (|has| |#1| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) NIL (-12 (|has| (-738 (-1088)) (-553 (-800 (-483)))) (|has| |#1| (-553 (-800 (-483))))) ELT) (((-472) $) NIL (-12 (|has| (-738 (-1088)) (-553 (-472))) (|has| |#1| (-553 (-472)))) ELT)) (-2813 ((|#1| $) NIL (|has| |#1| (-389)) ELT) (($ $ (-738 (-1088))) NIL (|has| |#1| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-738 (-1088))) NIL T ELT) (($ (-1088)) NIL T ELT) (($ (-1037 |#1| (-1088))) NIL T ELT) (($ (-347 (-483))) NIL (OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3811 (((-583 |#1|) $) NIL T ELT)) (-3671 ((|#1| $ (-468 (-738 (-1088)))) NIL T ELT) (($ $ (-738 (-1088)) (-694)) NIL T ELT) (($ $ (-583 (-738 (-1088))) (-583 (-694))) NIL T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1620 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-583 (-738 (-1088))) (-583 (-694))) NIL T ELT) (($ $ (-738 (-1088)) (-694)) NIL T ELT) (($ $ (-583 (-738 (-1088)))) NIL T ELT) (($ $ (-738 (-1088))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-736 |#1|) (-13 (-213 |#1| (-1088) (-738 (-1088)) (-468 (-738 (-1088)))) (-950 (-1037 |#1| (-1088)))) (-961)) (T -736))
-NIL
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#2| (-311)) ELT)) (-2059 (($ $) NIL (|has| |#2| (-311)) ELT)) (-2057 (((-85) $) NIL (|has| |#2| (-311)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL (|has| |#2| (-311)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#2| (-311)) ELT)) (-1605 (((-85) $ $) NIL (|has| |#2| (-311)) ELT)) (-3718 (($) NIL T CONST)) (-2560 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2559 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| |#2| (-311)) ELT)) (-3717 (((-85) $) NIL (|has| |#2| (-311)) ELT)) (-2406 (((-85) $) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#2| (-311)) ELT)) (-1888 (($ (-583 $)) NIL (|has| |#2| (-311)) ELT) (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) 20 (|has| |#2| (-311)) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-311)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#2| (-311)) ELT) (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#2| (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-3460 (((-3 $ #1#) $ $) NIL (|has| |#2| (-311)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#2| (-311)) ELT)) (-1604 (((-694) $) NIL (|has| |#2| (-311)) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-3752 (($ $) 13 T ELT) (($ $ (-694)) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-347 (-483))) NIL (|has| |#2| (-311)) ELT) (($ $) NIL (|has| |#2| (-311)) ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| |#2| (-311)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ $) 15 (|has| |#2| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT) (($ $ (-483)) 18 (|has| |#2| (-311)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-347 (-483)) $) NIL (|has| |#2| (-311)) ELT) (($ $ (-347 (-483))) NIL (|has| |#2| (-311)) ELT)))
-(((-737 |#1| |#2| |#3|) (-13 (-82 $ $) (-190) (-427 |#2|) (-10 -7 (IF (|has| |#2| (-311)) (-6 (-311)) |%noBranch|))) (-1012) (-809 |#1|) |#1|) (T -737))
-NIL
-((-2564 (((-85) $ $) NIL T ELT)) (-1519 (((-694) $) NIL T ELT)) (-3825 ((|#1| $) 10 T ELT)) (-3152 (((-3 |#1| "failed") $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT)) (-3766 (((-694) $) 11 T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-1520 (($ |#1| (-694)) 9 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3752 (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2665 (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT)))
-(((-738 |#1|) (-228 |#1|) (-756)) (T -738))
-NIL
-((-2564 (((-85) $ $) NIL T ELT)) (-3928 (((-583 |#1|) $) 39 T ELT)) (-3131 (((-694) $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3933 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 29 T ELT)) (-3152 (((-3 |#1| #1#) $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT)) (-3793 (($ $) 43 T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-1747 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2295 ((|#1| $ (-483)) NIL T ELT)) (-2296 (((-694) $ (-483)) NIL T ELT)) (-3930 (($ $) 55 T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-2286 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2287 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3934 (((-3 $ #1#) $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 26 T ELT)) (-2507 (((-85) $ $) 52 T ELT)) (-3827 (((-694) $) 35 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1748 (($ $ $) NIL T ELT)) (-1749 (($ $ $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3795 ((|#1| $) 42 T ELT)) (-1776 (((-583 (-2 (|:| |gen| |#1|) (|:| -3937 (-694)))) $) NIL T ELT)) (-2875 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-2561 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2662 (($) 7 T CONST)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 54 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ |#1| (-694)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-739 |#1|) (-13 (-333 |#1|) (-754) (-10 -8 (-15 -3795 (|#1| $)) (-15 -3793 ($ $)) (-15 -3930 ($ $)) (-15 -2507 ((-85) $ $)) (-15 -3934 ((-3 $ #1="failed") $ |#1|)) (-15 -3933 ((-3 $ #1#) $ |#1|)) (-15 -2561 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $)) (-15 -3827 ((-694) $)) (-15 -3928 ((-583 |#1|) $)))) (-756)) (T -739))
-((-3795 (*1 *2 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) (-3793 (*1 *1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) (-3930 (*1 *1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) (-2507 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-739 *3)) (-4 *3 (-756)))) (-3934 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) (-3933 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) (-2561 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-739 *3)) (|:| |rm| (-739 *3)))) (-5 *1 (-739 *3)) (-4 *3 (-756)))) (-3827 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-739 *3)) (-4 *3 (-756)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-739 *3)) (-4 *3 (-756)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3617 (((-483) $) 66 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3181 (((-85) $) 64 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3182 (((-85) $) 65 T ELT)) (-2527 (($ $ $) 58 T ELT)) (-2853 (($ $ $) 59 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-3377 (($ $) 67 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2562 (((-85) $ $) 60 T ELT)) (-2563 (((-85) $ $) 62 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 61 T ELT)) (-2681 (((-85) $ $) 63 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT)))
-(((-740) (-113)) (T -740))
-NIL
-(-13 (-494) (-755))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-483)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-245) . T) ((-494) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-755) . T) ((-756) . T) ((-759) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3953 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2508 ((|#1| $) 10 T ELT)) (-2509 (($ |#1|) 9 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2889 (($ |#2| (-694)) NIL T ELT)) (-2816 (((-694) $) NIL T ELT)) (-3169 ((|#2| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3752 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-694)) NIL (|has| |#1| (-190)) ELT)) (-3942 (((-694) $) NIL T ELT)) (-3940 (((-772) $) 17 T ELT) (($ (-483)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-146)) ELT)) (-3671 ((|#2| $ (-694)) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-694)) NIL (|has| |#1| (-190)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
-(((-741 |#1| |#2|) (-13 (-645 |#2|) (-10 -8 (IF (|has| |#1| (-190)) (-6 (-190)) |%noBranch|) (-15 -2509 ($ |#1|)) (-15 -2508 (|#1| $)))) (-645 |#2|) (-961)) (T -741))
-((-2509 (*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-741 *2 *3)) (-4 *2 (-645 *3)))) (-2508 (*1 *2 *1) (-12 (-4 *2 (-645 *3)) (-5 *1 (-741 *2 *3)) (-4 *3 (-961)))))
-((-2564 (((-85) $ $) 19 T ELT)) (-3229 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3231 (($ $ $) 77 T ELT)) (-3230 (((-85) $ $) 78 T ELT)) (-3234 (($ (-583 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1567 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3989)) ELT)) (-3718 (($) 7 T CONST)) (-2364 (($ $) 66 T ELT)) (-1350 (($ $) 62 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3399 (($ |#1| $) 51 (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3989)) ELT)) (-3400 (($ |#1| $) 61 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3989)) ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-3236 (((-85) $ $) 69 T ELT)) (-2527 ((|#1| $) 83 T ELT)) (-2852 (($ $ $) 86 T ELT)) (-3512 (($ $ $) 85 T ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-2853 ((|#1| $) 84 T ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3237 (((-1071) $) 22 T ELT)) (-3233 (($ $ $) 74 T ELT)) (-1271 ((|#1| $) 43 T ELT)) (-3603 (($ |#1| $) 44 T ELT) (($ |#1| $ (-694)) 67 T ELT)) (-3238 (((-1032) $) 21 T ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1272 ((|#1| $) 45 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-2363 (((-583 (-2 (|:| |entry| |#1|) (|:| -1943 (-694)))) $) 65 T ELT)) (-3232 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1463 (($) 53 T ELT) (($ (-583 |#1|)) 52 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 63 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 54 T ELT)) (-3940 (((-772) $) 17 T ELT)) (-3235 (($ (-583 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1262 (((-85) $ $) 20 T ELT)) (-1273 (($ (-583 |#1|)) 46 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 T ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-742 |#1|) (-113) (-756)) (T -742))
-((-2527 (*1 *2 *1) (-12 (-4 *1 (-742 *2)) (-4 *2 (-756)))))
-(-13 (-676 |t#1|) (-881 |t#1|) (-10 -8 (-15 -2527 (|t#1| $))))
-(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-552 (-772)) . T) ((-124 |#1|) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-193 |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-634 |#1|) . T) ((-676 |#1|) . T) ((-881 |#1|) . T) ((-1010 |#1|) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3617 (((-483) $) NIL (|has| |#1| (-755)) ELT)) (-3718 (($) NIL (|has| |#1| (-21)) CONST)) (-3152 (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) 15 T ELT)) (-3151 (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) 9 T ELT)) (-3461 (((-3 $ #1#) $) 42 (|has| |#1| (-755)) ELT)) (-3020 (((-3 (-347 (-483)) #1#) $) 51 (|has| |#1| (-482)) ELT)) (-3019 (((-85) $) 46 (|has| |#1| (-482)) ELT)) (-3018 (((-347 (-483)) $) 48 (|has| |#1| (-482)) ELT)) (-3181 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-2406 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-3182 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2510 (($) 13 T ELT)) (-2520 (((-85) $) 12 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2521 (((-85) $) 11 T ELT)) (-3940 (((-772) $) 18 T ELT) (($ (-347 (-483))) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (($ |#1|) 8 T ELT) (($ (-483)) NIL (OR (|has| |#1| (-755)) (|has| |#1| (-950 (-483)))) ELT)) (-3121 (((-694)) 36 (|has| |#1| (-755)) CONST)) (-1262 (((-85) $ $) 53 T ELT)) (-3377 (($ $) NIL (|has| |#1| (-755)) ELT)) (-2656 (($) 23 (|has| |#1| (-21)) CONST)) (-2662 (($) 33 (|has| |#1| (-755)) CONST)) (-2562 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3052 (((-85) $ $) 21 T ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2681 (((-85) $ $) 45 (|has| |#1| (-755)) ELT)) (-3831 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 29 (|has| |#1| (-21)) ELT)) (-3833 (($ $ $) 31 (|has| |#1| (-21)) ELT)) (** (($ $ (-830)) NIL (|has| |#1| (-755)) ELT) (($ $ (-694)) NIL (|has| |#1| (-755)) ELT)) (* (($ $ $) 39 (|has| |#1| (-755)) ELT) (($ (-483) $) 27 (|has| |#1| (-21)) ELT) (($ (-694) $) NIL (|has| |#1| (-21)) ELT) (($ (-830) $) NIL (|has| |#1| (-21)) ELT)))
-(((-743 |#1|) (-13 (-1012) (-352 |#1|) (-10 -8 (-15 -2510 ($)) (-15 -2521 ((-85) $)) (-15 -2520 ((-85) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-755)) (-6 (-755)) |%noBranch|) (IF (|has| |#1| (-482)) (PROGN (-15 -3019 ((-85) $)) (-15 -3018 ((-347 (-483)) $)) (-15 -3020 ((-3 (-347 (-483)) "failed") $))) |%noBranch|))) (-1012)) (T -743))
-((-2510 (*1 *1) (-12 (-5 *1 (-743 *2)) (-4 *2 (-1012)))) (-2521 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-1012)))) (-2520 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-1012)))) (-3019 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-482)) (-4 *3 (-1012)))) (-3018 (*1 *2 *1) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-743 *3)) (-4 *3 (-482)) (-4 *3 (-1012)))) (-3020 (*1 *2 *1) (|partial| -12 (-5 *2 (-347 (-483))) (-5 *1 (-743 *3)) (-4 *3 (-482)) (-4 *3 (-1012)))))
-((-3952 (((-743 |#2|) (-1 |#2| |#1|) (-743 |#1|) (-743 |#2|)) 12 T ELT) (((-743 |#2|) (-1 |#2| |#1|) (-743 |#1|)) 13 T ELT)))
-(((-744 |#1| |#2|) (-10 -7 (-15 -3952 ((-743 |#2|) (-1 |#2| |#1|) (-743 |#1|))) (-15 -3952 ((-743 |#2|) (-1 |#2| |#1|) (-743 |#1|) (-743 |#2|)))) (-1012) (-1012)) (T -744))
-((-3952 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-743 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *1 (-744 *5 *6)))) (-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *2 (-743 *6)) (-5 *1 (-744 *5 *6)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-86) #1#) $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT) (((-86) $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2512 ((|#1| (-86) |#1|) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2511 (($ |#1| (-309 (-86))) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2513 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-2514 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-3794 ((|#1| $ |#1|) NIL T ELT)) (-2515 ((|#1| |#1|) NIL (|has| |#1| (-146)) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-86)) NIL T ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2516 (($ $) NIL (|has| |#1| (-146)) ELT) (($ $ $) NIL (|has| |#1| (-146)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ (-86) (-483)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT)))
-(((-745 |#1|) (-13 (-961) (-950 |#1|) (-950 (-86)) (-241 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2516 ($ $)) (-15 -2516 ($ $ $)) (-15 -2515 (|#1| |#1|))) |%noBranch|) (-15 -2514 ($ $ (-1 |#1| |#1|))) (-15 -2513 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-86) (-483))) (-15 ** ($ $ (-483))) (-15 -2512 (|#1| (-86) |#1|)) (-15 -2511 ($ |#1| (-309 (-86)))))) (-961)) (T -745))
-((-2516 (*1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961)))) (-2516 (*1 *1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961)))) (-2515 (*1 *2 *2) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961)))) (-2514 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-745 *3)))) (-2513 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-745 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-483)) (-5 *1 (-745 *4)) (-4 *4 (-961)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-745 *3)) (-4 *3 (-961)))) (-2512 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-745 *2)) (-4 *2 (-961)))) (-2511 (*1 *1 *2 *3) (-12 (-5 *3 (-309 (-86))) (-5 *1 (-745 *2)) (-4 *2 (-961)))))
-((-2629 (((-85) $ |#2|) 14 T ELT)) (-3940 (((-772) $) 11 T ELT)))
-(((-746 |#1| |#2|) (-10 -7 (-15 -2629 ((-85) |#1| |#2|)) (-15 -3940 ((-772) |#1|))) (-747 |#2|) (-1012)) (T -746))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3536 ((|#1| $) 19 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2629 (((-85) $ |#1|) 17 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2517 (((-55) $) 18 T ELT)) (-3052 (((-85) $ $) 8 T ELT)))
-(((-747 |#1|) (-113) (-1012)) (T -747))
-((-3536 (*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-1012)))) (-2517 (*1 *2 *1) (-12 (-4 *1 (-747 *3)) (-4 *3 (-1012)) (-5 *2 (-55)))) (-2629 (*1 *2 *1 *3) (-12 (-4 *1 (-747 *3)) (-4 *3 (-1012)) (-5 *2 (-85)))))
-(-13 (-1012) (-10 -8 (-15 -3536 (|t#1| $)) (-15 -2517 ((-55) $)) (-15 -2629 ((-85) $ |t#1|))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T))
-((-2518 (((-167 (-439)) (-1071)) 9 T ELT)))
-(((-748) (-10 -7 (-15 -2518 ((-167 (-439)) (-1071))))) (T -748))
-((-2518 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-167 (-439))) (-5 *1 (-748)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3314 (((-1027) $) 10 T ELT)) (-3536 (((-444) $) 9 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2629 (((-85) $ (-444)) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3524 (($ (-444) (-1027)) 8 T ELT)) (-3940 (((-772) $) 25 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2517 (((-55) $) 20 T ELT)) (-3052 (((-85) $ $) 12 T ELT)))
-(((-749) (-13 (-747 (-444)) (-10 -8 (-15 -3314 ((-1027) $)) (-15 -3524 ($ (-444) (-1027)))))) (T -749))
-((-3314 (*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-749)))) (-3524 (*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-1027)) (-5 *1 (-749)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-2519 (((-1032) $) 31 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3617 (((-483) $) NIL (|has| |#1| (-755)) ELT)) (-3718 (($) NIL (|has| |#1| (-21)) CONST)) (-3152 (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) 18 T ELT)) (-3151 (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) 9 T ELT)) (-3461 (((-3 $ #1#) $) 57 (|has| |#1| (-755)) ELT)) (-3020 (((-3 (-347 (-483)) #1#) $) 65 (|has| |#1| (-482)) ELT)) (-3019 (((-85) $) 60 (|has| |#1| (-482)) ELT)) (-3018 (((-347 (-483)) $) 63 (|has| |#1| (-482)) ELT)) (-3181 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-2523 (($) 14 T ELT)) (-2406 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-3182 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-2522 (($) 16 T ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2520 (((-85) $) 12 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2521 (((-85) $) 11 T ELT)) (-3940 (((-772) $) 24 T ELT) (($ (-347 (-483))) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (($ |#1|) 8 T ELT) (($ (-483)) NIL (OR (|has| |#1| (-755)) (|has| |#1| (-950 (-483)))) ELT)) (-3121 (((-694)) 50 (|has| |#1| (-755)) CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-3377 (($ $) NIL (|has| |#1| (-755)) ELT)) (-2656 (($) 37 (|has| |#1| (-21)) CONST)) (-2662 (($) 47 (|has| |#1| (-755)) CONST)) (-2562 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3052 (((-85) $ $) 35 T ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2681 (((-85) $ $) 59 (|has| |#1| (-755)) ELT)) (-3831 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3833 (($ $ $) 45 (|has| |#1| (-21)) ELT)) (** (($ $ (-830)) NIL (|has| |#1| (-755)) ELT) (($ $ (-694)) NIL (|has| |#1| (-755)) ELT)) (* (($ $ $) 54 (|has| |#1| (-755)) ELT) (($ (-483) $) 41 (|has| |#1| (-21)) ELT) (($ (-694) $) NIL (|has| |#1| (-21)) ELT) (($ (-830) $) NIL (|has| |#1| (-21)) ELT)))
-(((-750 |#1|) (-13 (-1012) (-352 |#1|) (-10 -8 (-15 -2523 ($)) (-15 -2522 ($)) (-15 -2521 ((-85) $)) (-15 -2520 ((-85) $)) (-15 -2519 ((-1032) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-755)) (-6 (-755)) |%noBranch|) (IF (|has| |#1| (-482)) (PROGN (-15 -3019 ((-85) $)) (-15 -3018 ((-347 (-483)) $)) (-15 -3020 ((-3 (-347 (-483)) "failed") $))) |%noBranch|))) (-1012)) (T -750))
-((-2523 (*1 *1) (-12 (-5 *1 (-750 *2)) (-4 *2 (-1012)))) (-2522 (*1 *1) (-12 (-5 *1 (-750 *2)) (-4 *2 (-1012)))) (-2521 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-1012)))) (-2520 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-1012)))) (-2519 (*1 *2 *1) (-12 (-5 *2 (-1032)) (-5 *1 (-750 *3)) (-4 *3 (-1012)))) (-3019 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-482)) (-4 *3 (-1012)))) (-3018 (*1 *2 *1) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-750 *3)) (-4 *3 (-482)) (-4 *3 (-1012)))) (-3020 (*1 *2 *1) (|partial| -12 (-5 *2 (-347 (-483))) (-5 *1 (-750 *3)) (-4 *3 (-482)) (-4 *3 (-1012)))))
-((-3952 (((-750 |#2|) (-1 |#2| |#1|) (-750 |#1|) (-750 |#2|) (-750 |#2|)) 13 T ELT) (((-750 |#2|) (-1 |#2| |#1|) (-750 |#1|)) 14 T ELT)))
-(((-751 |#1| |#2|) (-10 -7 (-15 -3952 ((-750 |#2|) (-1 |#2| |#1|) (-750 |#1|))) (-15 -3952 ((-750 |#2|) (-1 |#2| |#1|) (-750 |#1|) (-750 |#2|) (-750 |#2|)))) (-1012) (-1012)) (T -751))
-((-3952 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-750 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-750 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *1 (-751 *5 *6)))) (-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-750 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *2 (-750 *6)) (-5 *1 (-751 *5 *6)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3131 (((-694)) 27 T ELT)) (-2990 (($) 30 T ELT)) (-2527 (($ $ $) 23 T ELT) (($) 26 T CONST)) (-2853 (($ $ $) 22 T ELT) (($) 25 T CONST)) (-2006 (((-830) $) 29 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2396 (($ (-830)) 28 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2562 (((-85) $ $) 21 T ELT)) (-2563 (((-85) $ $) 19 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 20 T ELT)) (-2681 (((-85) $ $) 18 T ELT)))
-(((-752) (-113)) (T -752))
-((-2527 (*1 *1) (-4 *1 (-752))) (-2853 (*1 *1) (-4 *1 (-752))))
-(-13 (-756) (-317) (-10 -8 (-15 -2527 ($) -3946) (-15 -2853 ($) -3946)))
-(((-72) . T) ((-552 (-772)) . T) ((-317) . T) ((-13) . T) ((-756) . T) ((-759) . T) ((-1012) . T) ((-1127) . T))
-((-2525 (((-85) (-1177 |#2|) (-1177 |#2|)) 19 T ELT)) (-2526 (((-85) (-1177 |#2|) (-1177 |#2|)) 20 T ELT)) (-2524 (((-85) (-1177 |#2|) (-1177 |#2|)) 16 T ELT)))
-(((-753 |#1| |#2|) (-10 -7 (-15 -2524 ((-85) (-1177 |#2|) (-1177 |#2|))) (-15 -2525 ((-85) (-1177 |#2|) (-1177 |#2|))) (-15 -2526 ((-85) (-1177 |#2|) (-1177 |#2|)))) (-694) (-716)) (T -753))
-((-2526 (*1 *2 *3 *3) (-12 (-5 *3 (-1177 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5)) (-14 *4 (-694)))) (-2525 (*1 *2 *3 *3) (-12 (-5 *3 (-1177 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5)) (-14 *4 (-694)))) (-2524 (*1 *2 *3 *3) (-12 (-5 *3 (-1177 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5)) (-14 *4 (-694)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3718 (($) 29 T CONST)) (-3461 (((-3 $ "failed") $) 32 T ELT)) (-2406 (((-85) $) 30 T ELT)) (-2527 (($ $ $) 23 T ELT)) (-2853 (($ $ $) 22 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2662 (($) 28 T CONST)) (-2562 (((-85) $ $) 21 T ELT)) (-2563 (((-85) $ $) 19 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 20 T ELT)) (-2681 (((-85) $ $) 18 T ELT)) (** (($ $ (-830)) 26 T ELT) (($ $ (-694)) 31 T ELT)) (* (($ $ $) 25 T ELT)))
-(((-754) (-113)) (T -754))
-NIL
-(-13 (-766) (-663))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-663) . T) ((-766) . T) ((-756) . T) ((-759) . T) ((-1024) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 31 T ELT)) (-1309 (((-3 $ "failed") $ $) 34 T ELT)) (-3617 (((-483) $) 37 T ELT)) (-3718 (($) 30 T CONST)) (-3461 (((-3 $ "failed") $) 53 T ELT)) (-3181 (((-85) $) 28 T ELT)) (-2406 (((-85) $) 51 T ELT)) (-3182 (((-85) $) 38 T ELT)) (-2527 (($ $ $) 23 T ELT)) (-2853 (($ $ $) 22 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 54 T ELT)) (-3121 (((-694)) 55 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-3377 (($ $) 36 T ELT)) (-2656 (($) 29 T CONST)) (-2662 (($) 50 T CONST)) (-2562 (((-85) $ $) 21 T ELT)) (-2563 (((-85) $ $) 19 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 20 T ELT)) (-2681 (((-85) $ $) 18 T ELT)) (-3831 (($ $ $) 41 T ELT) (($ $) 40 T ELT)) (-3833 (($ $ $) 25 T ELT)) (** (($ $ (-694)) 52 T ELT) (($ $ (-830)) 48 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT) (($ (-483) $) 39 T ELT) (($ $ $) 49 T ELT)))
+((-2481 (*1 *1 *1 *1) (-4 *1 (-718))))
+(-13 (-722) (-10 -8 (-15 -2481 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-757) . T) ((-760) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) 7 T ELT)) (-2529 (($ $ $) 23 T ELT)) (-2855 (($ $ $) 22 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2564 (((-85) $ $) 21 T ELT)) (-2565 (((-85) $ $) 19 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-2682 (((-85) $ $) 20 T ELT)) (-2683 (((-85) $ $) 18 T ELT)) (-3835 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT)))
+(((-719) (-113)) (T -719))
+NIL
+(-13 (-757) (-25))
+(((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-757) . T) ((-760) . T) ((-1013) . T) ((-1128) . T))
+((-3185 (((-85) $) 42 T ELT)) (-3154 (((-3 (-484) #1="failed") $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 45 T ELT)) (-3153 (((-484) $) NIL T ELT) (((-347 (-484)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-3022 (((-3 (-347 (-484)) #1#) $) 78 T ELT)) (-3021 (((-85) $) 72 T ELT)) (-3020 (((-347 (-484)) $) 76 T ELT)) (-3129 ((|#2| $) 26 T ELT)) (-3954 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-2482 (($ $) 58 T ELT)) (-3968 (((-473) $) 67 T ELT)) (-3007 (($ $) 21 T ELT)) (-3942 (((-773) $) 53 T ELT) (($ (-484)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-347 (-484))) NIL T ELT)) (-3123 (((-695)) 10 T CONST)) (-3379 ((|#2| $) 71 T ELT)) (-3054 (((-85) $ $) 30 T ELT)) (-2683 (((-85) $ $) 69 T ELT)) (-3833 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) 31 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT)))
+(((-720 |#1| |#2|) (-10 -7 (-15 -2683 ((-85) |#1| |#1|)) (-15 -3968 ((-473) |#1|)) (-15 -2482 (|#1| |#1|)) (-15 -3022 ((-3 (-347 (-484)) #1="failed") |#1|)) (-15 -3020 ((-347 (-484)) |#1|)) (-15 -3021 ((-85) |#1|)) (-15 -3379 (|#2| |#1|)) (-15 -3129 (|#2| |#1|)) (-15 -3007 (|#1| |#1|)) (-15 -3954 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3154 ((-3 |#2| #1#) |#1|)) (-15 -3153 (|#2| |#1|)) (-15 -3153 ((-347 (-484)) |#1|)) (-15 -3154 ((-3 (-347 (-484)) #1#) |#1|)) (-15 -3942 (|#1| (-347 (-484)))) (-15 -3153 ((-484) |#1|)) (-15 -3154 ((-3 (-484) #1#) |#1|)) (-15 -3942 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3123 ((-695)) -3948) (-15 -3942 (|#1| (-484))) (-15 * (|#1| |#1| |#1|)) (-15 -3833 (|#1| |#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 -3185 ((-85) |#1|)) (-15 * (|#1| (-831) |#1|)) (-15 -3835 (|#1| |#1| |#1|)) (-15 -3942 ((-773) |#1|)) (-15 -3054 ((-85) |#1| |#1|))) (-721 |#2|) (-146)) (T -720))
+((-3123 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-720 *3 *4)) (-4 *3 (-721 *4)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3133 (((-695)) 65 (|has| |#1| (-317)) ELT)) (-3720 (($) 22 T CONST)) (-3154 (((-3 (-484) #1="failed") $) 107 (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) 104 (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) 101 T ELT)) (-3153 (((-484) $) 106 (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) 103 (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) 102 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-3639 ((|#1| $) 91 T ELT)) (-3022 (((-3 (-347 (-484)) "failed") $) 78 (|has| |#1| (-483)) ELT)) (-3021 (((-85) $) 80 (|has| |#1| (-483)) ELT)) (-3020 (((-347 (-484)) $) 79 (|has| |#1| (-483)) ELT)) (-2992 (($) 68 (|has| |#1| (-317)) ELT)) (-2408 (((-85) $) 42 T ELT)) (-2487 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 82 T ELT)) (-3129 ((|#1| $) 83 T ELT)) (-2529 (($ $ $) 69 (|has| |#1| (-757)) ELT)) (-2855 (($ $ $) 70 (|has| |#1| (-757)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 93 T ELT)) (-2008 (((-831) $) 67 (|has| |#1| (-317)) ELT)) (-3239 (((-1072) $) 11 T ELT)) (-2482 (($ $) 77 (|has| |#1| (-311)) ELT)) (-2398 (($ (-831)) 66 (|has| |#1| (-317)) ELT)) (-2484 ((|#1| $) 88 T ELT)) (-2485 ((|#1| $) 89 T ELT)) (-2486 ((|#1| $) 90 T ELT)) (-3004 ((|#1| $) 84 T ELT)) (-3005 ((|#1| $) 85 T ELT)) (-3006 ((|#1| $) 86 T ELT)) (-2483 ((|#1| $) 87 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3764 (($ $ (-584 |#1|) (-584 |#1|)) 99 (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) 98 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) 97 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-248 |#1|))) 96 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-1089)) (-584 |#1|)) 95 (|has| |#1| (-453 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) 94 (|has| |#1| (-453 (-1089) |#1|)) ELT)) (-3796 (($ $ |#1|) 100 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3968 (((-473) $) 75 (|has| |#1| (-554 (-473))) ELT)) (-3007 (($ $) 92 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 50 T ELT) (($ (-347 (-484))) 105 (|has| |#1| (-951 (-347 (-484)))) ELT)) (-2700 (((-633 $) $) 76 (|has| |#1| (-118)) ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-3379 ((|#1| $) 81 (|has| |#1| (-973)) ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-2564 (((-85) $ $) 71 (|has| |#1| (-757)) ELT)) (-2565 (((-85) $ $) 73 (|has| |#1| (-757)) ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-2682 (((-85) $ $) 72 (|has| |#1| (-757)) ELT)) (-2683 (((-85) $ $) 74 (|has| |#1| (-757)) ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT)))
+(((-721 |#1|) (-113) (-146)) (T -721))
+((-3007 (*1 *1 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3639 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-2486 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-2485 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-2484 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-2483 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3006 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3129 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-2487 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3379 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)) (-4 *2 (-973)))) (-3021 (*1 *2 *1) (-12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85)))) (-3020 (*1 *2 *1) (-12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-347 (-484))))) (-3022 (*1 *2 *1) (|partial| -12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-347 (-484))))) (-2482 (*1 *1 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)) (-4 *2 (-311)))))
+(-13 (-38 |t#1|) (-352 |t#1|) (-287 |t#1|) (-10 -8 (-15 -3007 ($ $)) (-15 -3639 (|t#1| $)) (-15 -2486 (|t#1| $)) (-15 -2485 (|t#1| $)) (-15 -2484 (|t#1| $)) (-15 -2483 (|t#1| $)) (-15 -3006 (|t#1| $)) (-15 -3005 (|t#1| $)) (-15 -3004 (|t#1| $)) (-15 -3129 (|t#1| $)) (-15 -2487 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-317)) (-6 (-317)) |%noBranch|) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#1| (-554 (-473))) (-6 (-554 (-473))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-973)) (-15 -3379 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-483)) (PROGN (-15 -3021 ((-85) $)) (-15 -3020 ((-347 (-484)) $)) (-15 -3022 ((-3 (-347 (-484)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-311)) (-15 -2482 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((-556 (-484)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-259 |#1|) |has| |#1| (-259 |#1|)) ((-317) |has| |#1| (-317)) ((-287 |#1|) . T) ((-352 |#1|) . T) ((-453 (-1089) |#1|) |has| |#1| (-453 (-1089) |#1|)) ((-453 |#1| |#1|) |has| |#1| (-259 |#1|)) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-664) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-951 (-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((-951 (-484)) |has| |#1| (-951 (-484))) ((-951 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 31 T ELT)) (-1310 (((-3 $ "failed") $ $) 34 T ELT)) (-3720 (($) 30 T CONST)) (-3183 (((-85) $) 28 T ELT)) (-2529 (($ $ $) 23 T ELT)) (-2855 (($ $ $) 22 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 29 T CONST)) (-2564 (((-85) $ $) 21 T ELT)) (-2565 (((-85) $ $) 19 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-2682 (((-85) $ $) 20 T ELT)) (-2683 (((-85) $ $) 18 T ELT)) (-3835 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT)))
+(((-722) (-113)) (T -722))
+NIL
+(-13 (-717) (-104))
+(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-717) . T) ((-719) . T) ((-757) . T) ((-760) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3133 (((-695)) NIL (|has| |#1| (-317)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-910 |#1|) #1#) $) 35 T ELT) (((-3 (-484) #1#) $) NIL (OR (|has| (-910 |#1|) (-951 (-484))) (|has| |#1| (-951 (-484)))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (OR (|has| (-910 |#1|) (-951 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ELT)) (-3153 ((|#1| $) NIL T ELT) (((-910 |#1|) $) 33 T ELT) (((-484) $) NIL (OR (|has| (-910 |#1|) (-951 (-484))) (|has| |#1| (-951 (-484)))) ELT) (((-347 (-484)) $) NIL (OR (|has| (-910 |#1|) (-951 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-3639 ((|#1| $) 16 T ELT)) (-3022 (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-483)) ELT)) (-3021 (((-85) $) NIL (|has| |#1| (-483)) ELT)) (-3020 (((-347 (-484)) $) NIL (|has| |#1| (-483)) ELT)) (-2992 (($) NIL (|has| |#1| (-317)) ELT)) (-2408 (((-85) $) NIL T ELT)) (-2487 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-910 |#1|) (-910 |#1|)) 29 T ELT)) (-3129 ((|#1| $) NIL T ELT)) (-2529 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2855 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2008 (((-831) $) NIL (|has| |#1| (-317)) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2398 (($ (-831)) NIL (|has| |#1| (-317)) ELT)) (-2484 ((|#1| $) 22 T ELT)) (-2485 ((|#1| $) 20 T ELT)) (-2486 ((|#1| $) 18 T ELT)) (-3004 ((|#1| $) 26 T ELT)) (-3005 ((|#1| $) 25 T ELT)) (-3006 ((|#1| $) 24 T ELT)) (-2483 ((|#1| $) 23 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3764 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-248 |#1|))) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-1089)) (-584 |#1|)) NIL (|has| |#1| (-453 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) NIL (|has| |#1| (-453 (-1089) |#1|)) ELT)) (-3796 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3968 (((-473) $) NIL (|has| |#1| (-554 (-473))) ELT)) (-3007 (($ $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-910 |#1|)) 30 T ELT) (($ (-347 (-484))) NIL (OR (|has| (-910 |#1|) (-951 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ELT)) (-2700 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3123 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3379 ((|#1| $) NIL (|has| |#1| (-973)) ELT)) (-2658 (($) 8 T CONST)) (-2664 (($) 12 T CONST)) (-2564 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-723 |#1|) (-13 (-721 |#1|) (-352 (-910 |#1|)) (-10 -8 (-15 -2487 ($ (-910 |#1|) (-910 |#1|))))) (-146)) (T -723))
+((-2487 (*1 *1 *2 *2) (-12 (-5 *2 (-910 *3)) (-4 *3 (-146)) (-5 *1 (-723 *3)))))
+((-3954 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT)))
+(((-724 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3954 (|#3| (-1 |#4| |#2|) |#1|))) (-721 |#2|) (-146) (-721 |#4|) (-146)) (T -724))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-721 *6)) (-5 *1 (-724 *4 *5 *2 *6)) (-4 *4 (-721 *5)))))
+((-2488 (((-2 (|:| |particular| |#2|) (|:| -2010 (-584 |#2|))) |#3| |#2| (-1089)) 19 T ELT)))
+(((-725 |#1| |#2| |#3|) (-10 -7 (-15 -2488 ((-2 (|:| |particular| |#2|) (|:| -2010 (-584 |#2|))) |#3| |#2| (-1089)))) (-13 (-257) (-951 (-484)) (-581 (-484)) (-120)) (-13 (-29 |#1|) (-1114) (-872)) (-601 |#2|)) (T -725))
+((-2488 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1089)) (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-4 *4 (-13 (-29 *6) (-1114) (-872))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2010 (-584 *4)))) (-5 *1 (-725 *6 *4 *3)) (-4 *3 (-601 *4)))))
+((-3569 (((-3 |#2| #1="failed") |#2| (-86) (-248 |#2|) (-584 |#2|)) 28 T ELT) (((-3 |#2| #1#) (-248 |#2|) (-86) (-248 |#2|) (-584 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2010 (-584 |#2|))) |#2| #1#) |#2| (-86) (-1089)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2010 (-584 |#2|))) |#2| #1#) (-248 |#2|) (-86) (-1089)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1178 |#2|)) (|:| -2010 (-584 (-1178 |#2|)))) #1#) (-584 |#2|) (-584 (-86)) (-1089)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1178 |#2|)) (|:| -2010 (-584 (-1178 |#2|)))) #1#) (-584 (-248 |#2|)) (-584 (-86)) (-1089)) 26 T ELT) (((-3 (-584 (-1178 |#2|)) #1#) (-631 |#2|) (-1089)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1178 |#2|)) (|:| -2010 (-584 (-1178 |#2|)))) #1#) (-631 |#2|) (-1178 |#2|) (-1089)) 35 T ELT)))
+(((-726 |#1| |#2|) (-10 -7 (-15 -3569 ((-3 (-2 (|:| |particular| (-1178 |#2|)) (|:| -2010 (-584 (-1178 |#2|)))) #1="failed") (-631 |#2|) (-1178 |#2|) (-1089))) (-15 -3569 ((-3 (-584 (-1178 |#2|)) #1#) (-631 |#2|) (-1089))) (-15 -3569 ((-3 (-2 (|:| |particular| (-1178 |#2|)) (|:| -2010 (-584 (-1178 |#2|)))) #1#) (-584 (-248 |#2|)) (-584 (-86)) (-1089))) (-15 -3569 ((-3 (-2 (|:| |particular| (-1178 |#2|)) (|:| -2010 (-584 (-1178 |#2|)))) #1#) (-584 |#2|) (-584 (-86)) (-1089))) (-15 -3569 ((-3 (-2 (|:| |particular| |#2|) (|:| -2010 (-584 |#2|))) |#2| #1#) (-248 |#2|) (-86) (-1089))) (-15 -3569 ((-3 (-2 (|:| |particular| |#2|) (|:| -2010 (-584 |#2|))) |#2| #1#) |#2| (-86) (-1089))) (-15 -3569 ((-3 |#2| #1#) (-248 |#2|) (-86) (-248 |#2|) (-584 |#2|))) (-15 -3569 ((-3 |#2| #1#) |#2| (-86) (-248 |#2|) (-584 |#2|)))) (-13 (-257) (-951 (-484)) (-581 (-484)) (-120)) (-13 (-29 |#1|) (-1114) (-872))) (T -726))
+((-3569 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-248 *2)) (-5 *5 (-584 *2)) (-4 *2 (-13 (-29 *6) (-1114) (-872))) (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *1 (-726 *6 *2)))) (-3569 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-248 *2)) (-5 *4 (-86)) (-5 *5 (-584 *2)) (-4 *2 (-13 (-29 *6) (-1114) (-872))) (-5 *1 (-726 *6 *2)) (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))))) (-3569 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-86)) (-5 *5 (-1089)) (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2010 (-584 *3))) *3 #1="failed")) (-5 *1 (-726 *6 *3)) (-4 *3 (-13 (-29 *6) (-1114) (-872))))) (-3569 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-248 *7)) (-5 *4 (-86)) (-5 *5 (-1089)) (-4 *7 (-13 (-29 *6) (-1114) (-872))) (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2010 (-584 *7))) *7 #1#)) (-5 *1 (-726 *6 *7)))) (-3569 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-584 *7)) (-5 *4 (-584 (-86))) (-5 *5 (-1089)) (-4 *7 (-13 (-29 *6) (-1114) (-872))) (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *2 (-2 (|:| |particular| (-1178 *7)) (|:| -2010 (-584 (-1178 *7))))) (-5 *1 (-726 *6 *7)))) (-3569 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-584 (-248 *7))) (-5 *4 (-584 (-86))) (-5 *5 (-1089)) (-4 *7 (-13 (-29 *6) (-1114) (-872))) (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *2 (-2 (|:| |particular| (-1178 *7)) (|:| -2010 (-584 (-1178 *7))))) (-5 *1 (-726 *6 *7)))) (-3569 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-631 *6)) (-5 *4 (-1089)) (-4 *6 (-13 (-29 *5) (-1114) (-872))) (-4 *5 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *2 (-584 (-1178 *6))) (-5 *1 (-726 *5 *6)))) (-3569 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-631 *7)) (-5 *5 (-1089)) (-4 *7 (-13 (-29 *6) (-1114) (-872))) (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *2 (-2 (|:| |particular| (-1178 *7)) (|:| -2010 (-584 (-1178 *7))))) (-5 *1 (-726 *6 *7)) (-5 *4 (-1178 *7)))))
+((-3466 ((|#2| |#2| (-1089)) 17 T ELT)) (-2489 ((|#2| |#2| (-1089)) 56 T ELT)) (-2490 (((-1 |#2| |#2|) (-1089)) 11 T ELT)))
+(((-727 |#1| |#2|) (-10 -7 (-15 -3466 (|#2| |#2| (-1089))) (-15 -2489 (|#2| |#2| (-1089))) (-15 -2490 ((-1 |#2| |#2|) (-1089)))) (-13 (-257) (-951 (-484)) (-581 (-484)) (-120)) (-13 (-29 |#1|) (-1114) (-872))) (T -727))
+((-2490 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *2 (-1 *5 *5)) (-5 *1 (-727 *4 *5)) (-4 *5 (-13 (-29 *4) (-1114) (-872))))) (-2489 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *1 (-727 *4 *2)) (-4 *2 (-13 (-29 *4) (-1114) (-872))))) (-3466 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *1 (-727 *4 *2)) (-4 *2 (-13 (-29 *4) (-1114) (-872))))))
+((-2491 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2010 (-584 |#4|))) (-598 |#4|) |#4|) 33 T ELT)))
+(((-728 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2491 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2010 (-584 |#4|))) (-598 |#4|) |#4|))) (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484)))) (-1154 |#1|) (-1154 (-347 |#2|)) (-290 |#1| |#2| |#3|)) (T -728))
+((-2491 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *4)) (-4 *4 (-290 *5 *6 *7)) (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-347 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2010 (-584 *4)))) (-5 *1 (-728 *5 *6 *7 *4)))))
+((-3737 (((-2 (|:| -3263 |#3|) (|:| |rh| (-584 (-347 |#2|)))) |#4| (-584 (-347 |#2|))) 53 T ELT)) (-2493 (((-584 (-2 (|:| -3769 |#2|) (|:| -3223 |#2|))) |#4| |#2|) 62 T ELT) (((-584 (-2 (|:| -3769 |#2|) (|:| -3223 |#2|))) |#4|) 61 T ELT) (((-584 (-2 (|:| -3769 |#2|) (|:| -3223 |#2|))) |#3| |#2|) 20 T ELT) (((-584 (-2 (|:| -3769 |#2|) (|:| -3223 |#2|))) |#3|) 21 T ELT)) (-2494 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-2492 ((|#2| |#3| (-584 (-347 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-347 |#2|)) 105 T ELT)))
+(((-729 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2492 ((-3 |#2| "failed") |#3| (-347 |#2|))) (-15 -2492 (|#2| |#3| (-584 (-347 |#2|)))) (-15 -2493 ((-584 (-2 (|:| -3769 |#2|) (|:| -3223 |#2|))) |#3|)) (-15 -2493 ((-584 (-2 (|:| -3769 |#2|) (|:| -3223 |#2|))) |#3| |#2|)) (-15 -2494 (|#2| |#3| |#1|)) (-15 -2493 ((-584 (-2 (|:| -3769 |#2|) (|:| -3223 |#2|))) |#4|)) (-15 -2493 ((-584 (-2 (|:| -3769 |#2|) (|:| -3223 |#2|))) |#4| |#2|)) (-15 -2494 (|#2| |#4| |#1|)) (-15 -3737 ((-2 (|:| -3263 |#3|) (|:| |rh| (-584 (-347 |#2|)))) |#4| (-584 (-347 |#2|))))) (-13 (-311) (-120) (-951 (-347 (-484)))) (-1154 |#1|) (-601 |#2|) (-601 (-347 |#2|))) (T -729))
+((-3737 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *6 (-1154 *5)) (-5 *2 (-2 (|:| -3263 *7) (|:| |rh| (-584 (-347 *6))))) (-5 *1 (-729 *5 *6 *7 *3)) (-5 *4 (-584 (-347 *6))) (-4 *7 (-601 *6)) (-4 *3 (-601 (-347 *6))))) (-2494 (*1 *2 *3 *4) (-12 (-4 *2 (-1154 *4)) (-5 *1 (-729 *4 *2 *5 *3)) (-4 *4 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *5 (-601 *2)) (-4 *3 (-601 (-347 *2))))) (-2493 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *4 (-1154 *5)) (-5 *2 (-584 (-2 (|:| -3769 *4) (|:| -3223 *4)))) (-5 *1 (-729 *5 *4 *6 *3)) (-4 *6 (-601 *4)) (-4 *3 (-601 (-347 *4))))) (-2493 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *5 (-1154 *4)) (-5 *2 (-584 (-2 (|:| -3769 *5) (|:| -3223 *5)))) (-5 *1 (-729 *4 *5 *6 *3)) (-4 *6 (-601 *5)) (-4 *3 (-601 (-347 *5))))) (-2494 (*1 *2 *3 *4) (-12 (-4 *2 (-1154 *4)) (-5 *1 (-729 *4 *2 *3 *5)) (-4 *4 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *3 (-601 *2)) (-4 *5 (-601 (-347 *2))))) (-2493 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *4 (-1154 *5)) (-5 *2 (-584 (-2 (|:| -3769 *4) (|:| -3223 *4)))) (-5 *1 (-729 *5 *4 *3 *6)) (-4 *3 (-601 *4)) (-4 *6 (-601 (-347 *4))))) (-2493 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *5 (-1154 *4)) (-5 *2 (-584 (-2 (|:| -3769 *5) (|:| -3223 *5)))) (-5 *1 (-729 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-601 (-347 *5))))) (-2492 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-347 *2))) (-4 *2 (-1154 *5)) (-5 *1 (-729 *5 *2 *3 *6)) (-4 *5 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *3 (-601 *2)) (-4 *6 (-601 (-347 *2))))) (-2492 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-347 *2)) (-4 *2 (-1154 *5)) (-5 *1 (-729 *5 *2 *3 *6)) (-4 *5 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *3 (-601 *2)) (-4 *6 (-601 *4)))))
+((-2502 (((-584 (-2 (|:| |frac| (-347 |#2|)) (|:| -3263 |#3|))) |#3| (-1 (-584 |#2|) |#2| (-1084 |#2|)) (-1 (-345 |#2|) |#2|)) 156 T ELT)) (-2503 (((-584 (-2 (|:| |poly| |#2|) (|:| -3263 |#3|))) |#3| (-1 (-584 |#1|) |#2|)) 52 T ELT)) (-2496 (((-584 (-2 (|:| |deg| (-695)) (|:| -3263 |#2|))) |#3|) 123 T ELT)) (-2495 ((|#2| |#3|) 42 T ELT)) (-2497 (((-584 (-2 (|:| -3948 |#1|) (|:| -3263 |#3|))) |#3| (-1 (-584 |#1|) |#2|)) 100 T ELT)) (-2498 ((|#3| |#3| (-347 |#2|)) 71 T ELT) ((|#3| |#3| |#2|) 97 T ELT)))
+(((-730 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2495 (|#2| |#3|)) (-15 -2496 ((-584 (-2 (|:| |deg| (-695)) (|:| -3263 |#2|))) |#3|)) (-15 -2497 ((-584 (-2 (|:| -3948 |#1|) (|:| -3263 |#3|))) |#3| (-1 (-584 |#1|) |#2|))) (-15 -2503 ((-584 (-2 (|:| |poly| |#2|) (|:| -3263 |#3|))) |#3| (-1 (-584 |#1|) |#2|))) (-15 -2502 ((-584 (-2 (|:| |frac| (-347 |#2|)) (|:| -3263 |#3|))) |#3| (-1 (-584 |#2|) |#2| (-1084 |#2|)) (-1 (-345 |#2|) |#2|))) (-15 -2498 (|#3| |#3| |#2|)) (-15 -2498 (|#3| |#3| (-347 |#2|)))) (-13 (-311) (-120) (-951 (-347 (-484)))) (-1154 |#1|) (-601 |#2|) (-601 (-347 |#2|))) (T -730))
+((-2498 (*1 *2 *2 *3) (-12 (-5 *3 (-347 *5)) (-4 *4 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *5 (-1154 *4)) (-5 *1 (-730 *4 *5 *2 *6)) (-4 *2 (-601 *5)) (-4 *6 (-601 *3)))) (-2498 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *3 (-1154 *4)) (-5 *1 (-730 *4 *3 *2 *5)) (-4 *2 (-601 *3)) (-4 *5 (-601 (-347 *3))))) (-2502 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-584 *7) *7 (-1084 *7))) (-5 *5 (-1 (-345 *7) *7)) (-4 *7 (-1154 *6)) (-4 *6 (-13 (-311) (-120) (-951 (-347 (-484))))) (-5 *2 (-584 (-2 (|:| |frac| (-347 *7)) (|:| -3263 *3)))) (-5 *1 (-730 *6 *7 *3 *8)) (-4 *3 (-601 *7)) (-4 *8 (-601 (-347 *7))))) (-2503 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *6 (-1154 *5)) (-5 *2 (-584 (-2 (|:| |poly| *6) (|:| -3263 *3)))) (-5 *1 (-730 *5 *6 *3 *7)) (-4 *3 (-601 *6)) (-4 *7 (-601 (-347 *6))))) (-2497 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *6 (-1154 *5)) (-5 *2 (-584 (-2 (|:| -3948 *5) (|:| -3263 *3)))) (-5 *1 (-730 *5 *6 *3 *7)) (-4 *3 (-601 *6)) (-4 *7 (-601 (-347 *6))))) (-2496 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *5 (-1154 *4)) (-5 *2 (-584 (-2 (|:| |deg| (-695)) (|:| -3263 *5)))) (-5 *1 (-730 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-601 (-347 *5))))) (-2495 (*1 *2 *3) (-12 (-4 *2 (-1154 *4)) (-5 *1 (-730 *4 *2 *3 *5)) (-4 *4 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *3 (-601 *2)) (-4 *5 (-601 (-347 *2))))))
+((-2499 (((-2 (|:| -2010 (-584 (-347 |#2|))) (|:| |mat| (-631 |#1|))) (-599 |#2| (-347 |#2|)) (-584 (-347 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-347 |#2|) #1="failed")) (|:| -2010 (-584 (-347 |#2|)))) (-599 |#2| (-347 |#2|)) (-347 |#2|)) 145 T ELT) (((-2 (|:| -2010 (-584 (-347 |#2|))) (|:| |mat| (-631 |#1|))) (-598 (-347 |#2|)) (-584 (-347 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-347 |#2|) #1#)) (|:| -2010 (-584 (-347 |#2|)))) (-598 (-347 |#2|)) (-347 |#2|)) 138 T ELT)) (-2500 ((|#2| (-599 |#2| (-347 |#2|))) 86 T ELT) ((|#2| (-598 (-347 |#2|))) 89 T ELT)))
+(((-731 |#1| |#2|) (-10 -7 (-15 -2499 ((-2 (|:| |particular| (-3 (-347 |#2|) #1="failed")) (|:| -2010 (-584 (-347 |#2|)))) (-598 (-347 |#2|)) (-347 |#2|))) (-15 -2499 ((-2 (|:| -2010 (-584 (-347 |#2|))) (|:| |mat| (-631 |#1|))) (-598 (-347 |#2|)) (-584 (-347 |#2|)))) (-15 -2499 ((-2 (|:| |particular| (-3 (-347 |#2|) #1#)) (|:| -2010 (-584 (-347 |#2|)))) (-599 |#2| (-347 |#2|)) (-347 |#2|))) (-15 -2499 ((-2 (|:| -2010 (-584 (-347 |#2|))) (|:| |mat| (-631 |#1|))) (-599 |#2| (-347 |#2|)) (-584 (-347 |#2|)))) (-15 -2500 (|#2| (-598 (-347 |#2|)))) (-15 -2500 (|#2| (-599 |#2| (-347 |#2|))))) (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484)))) (-1154 |#1|)) (T -731))
+((-2500 (*1 *2 *3) (-12 (-5 *3 (-599 *2 (-347 *2))) (-4 *2 (-1154 *4)) (-5 *1 (-731 *4 *2)) (-4 *4 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))))) (-2500 (*1 *2 *3) (-12 (-5 *3 (-598 (-347 *2))) (-4 *2 (-1154 *4)) (-5 *1 (-731 *4 *2)) (-4 *4 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))))) (-2499 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6 (-347 *6))) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-5 *2 (-2 (|:| -2010 (-584 (-347 *6))) (|:| |mat| (-631 *5)))) (-5 *1 (-731 *5 *6)) (-5 *4 (-584 (-347 *6))))) (-2499 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6 (-347 *6))) (-5 *4 (-347 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2010 (-584 *4)))) (-5 *1 (-731 *5 *6)))) (-2499 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-347 *6))) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-5 *2 (-2 (|:| -2010 (-584 (-347 *6))) (|:| |mat| (-631 *5)))) (-5 *1 (-731 *5 *6)) (-5 *4 (-584 (-347 *6))))) (-2499 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-347 *6))) (-5 *4 (-347 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2010 (-584 *4)))) (-5 *1 (-731 *5 *6)))))
+((-2501 (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#1|))) |#5| |#4|) 49 T ELT)))
+(((-732 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2501 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#1|))) |#5| |#4|))) (-311) (-601 |#1|) (-1154 |#1|) (-662 |#1| |#3|) (-601 |#4|)) (T -732))
+((-2501 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-4 *7 (-1154 *5)) (-4 *4 (-662 *5 *7)) (-5 *2 (-2 (|:| |mat| (-631 *6)) (|:| |vec| (-1178 *5)))) (-5 *1 (-732 *5 *6 *7 *4 *3)) (-4 *6 (-601 *5)) (-4 *3 (-601 *4)))))
+((-2502 (((-584 (-2 (|:| |frac| (-347 |#2|)) (|:| -3263 (-599 |#2| (-347 |#2|))))) (-599 |#2| (-347 |#2|)) (-1 (-345 |#2|) |#2|)) 47 T ELT)) (-2504 (((-584 (-347 |#2|)) (-599 |#2| (-347 |#2|)) (-1 (-345 |#2|) |#2|)) 163 (|has| |#1| (-27)) ELT) (((-584 (-347 |#2|)) (-599 |#2| (-347 |#2|))) 164 (|has| |#1| (-27)) ELT) (((-584 (-347 |#2|)) (-598 (-347 |#2|)) (-1 (-345 |#2|) |#2|)) 165 (|has| |#1| (-27)) ELT) (((-584 (-347 |#2|)) (-598 (-347 |#2|))) 166 (|has| |#1| (-27)) ELT) (((-584 (-347 |#2|)) (-599 |#2| (-347 |#2|)) (-1 (-584 |#1|) |#2|) (-1 (-345 |#2|) |#2|)) 38 T ELT) (((-584 (-347 |#2|)) (-599 |#2| (-347 |#2|)) (-1 (-584 |#1|) |#2|)) 39 T ELT) (((-584 (-347 |#2|)) (-598 (-347 |#2|)) (-1 (-584 |#1|) |#2|) (-1 (-345 |#2|) |#2|)) 36 T ELT) (((-584 (-347 |#2|)) (-598 (-347 |#2|)) (-1 (-584 |#1|) |#2|)) 37 T ELT)) (-2503 (((-584 (-2 (|:| |poly| |#2|) (|:| -3263 (-599 |#2| (-347 |#2|))))) (-599 |#2| (-347 |#2|)) (-1 (-584 |#1|) |#2|)) 96 T ELT)))
+(((-733 |#1| |#2|) (-10 -7 (-15 -2504 ((-584 (-347 |#2|)) (-598 (-347 |#2|)) (-1 (-584 |#1|) |#2|))) (-15 -2504 ((-584 (-347 |#2|)) (-598 (-347 |#2|)) (-1 (-584 |#1|) |#2|) (-1 (-345 |#2|) |#2|))) (-15 -2504 ((-584 (-347 |#2|)) (-599 |#2| (-347 |#2|)) (-1 (-584 |#1|) |#2|))) (-15 -2504 ((-584 (-347 |#2|)) (-599 |#2| (-347 |#2|)) (-1 (-584 |#1|) |#2|) (-1 (-345 |#2|) |#2|))) (-15 -2502 ((-584 (-2 (|:| |frac| (-347 |#2|)) (|:| -3263 (-599 |#2| (-347 |#2|))))) (-599 |#2| (-347 |#2|)) (-1 (-345 |#2|) |#2|))) (-15 -2503 ((-584 (-2 (|:| |poly| |#2|) (|:| -3263 (-599 |#2| (-347 |#2|))))) (-599 |#2| (-347 |#2|)) (-1 (-584 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2504 ((-584 (-347 |#2|)) (-598 (-347 |#2|)))) (-15 -2504 ((-584 (-347 |#2|)) (-598 (-347 |#2|)) (-1 (-345 |#2|) |#2|))) (-15 -2504 ((-584 (-347 |#2|)) (-599 |#2| (-347 |#2|)))) (-15 -2504 ((-584 (-347 |#2|)) (-599 |#2| (-347 |#2|)) (-1 (-345 |#2|) |#2|)))) |%noBranch|)) (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484)))) (-1154 |#1|)) (T -733))
+((-2504 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6 (-347 *6))) (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1154 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-5 *2 (-584 (-347 *6))) (-5 *1 (-733 *5 *6)))) (-2504 (*1 *2 *3) (-12 (-5 *3 (-599 *5 (-347 *5))) (-4 *5 (-1154 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-5 *2 (-584 (-347 *5))) (-5 *1 (-733 *4 *5)))) (-2504 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-347 *6))) (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1154 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-5 *2 (-584 (-347 *6))) (-5 *1 (-733 *5 *6)))) (-2504 (*1 *2 *3) (-12 (-5 *3 (-598 (-347 *5))) (-4 *5 (-1154 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-5 *2 (-584 (-347 *5))) (-5 *1 (-733 *4 *5)))) (-2503 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-4 *6 (-1154 *5)) (-5 *2 (-584 (-2 (|:| |poly| *6) (|:| -3263 (-599 *6 (-347 *6)))))) (-5 *1 (-733 *5 *6)) (-5 *3 (-599 *6 (-347 *6))))) (-2502 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-5 *2 (-584 (-2 (|:| |frac| (-347 *6)) (|:| -3263 (-599 *6 (-347 *6)))))) (-5 *1 (-733 *5 *6)) (-5 *3 (-599 *6 (-347 *6))))) (-2504 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 *7 (-347 *7))) (-5 *4 (-1 (-584 *6) *7)) (-5 *5 (-1 (-345 *7) *7)) (-4 *6 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-4 *7 (-1154 *6)) (-5 *2 (-584 (-347 *7))) (-5 *1 (-733 *6 *7)))) (-2504 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6 (-347 *6))) (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-4 *6 (-1154 *5)) (-5 *2 (-584 (-347 *6))) (-5 *1 (-733 *5 *6)))) (-2504 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-598 (-347 *7))) (-5 *4 (-1 (-584 *6) *7)) (-5 *5 (-1 (-345 *7) *7)) (-4 *6 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-4 *7 (-1154 *6)) (-5 *2 (-584 (-347 *7))) (-5 *1 (-733 *6 *7)))) (-2504 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-347 *6))) (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))) (-4 *6 (-1154 *5)) (-5 *2 (-584 (-347 *6))) (-5 *1 (-733 *5 *6)))))
+((-2505 (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#1|))) (-631 |#2|) (-1178 |#1|)) 110 T ELT) (((-2 (|:| A (-631 |#1|)) (|:| |eqs| (-584 (-2 (|:| C (-631 |#1|)) (|:| |g| (-1178 |#1|)) (|:| -3263 |#2|) (|:| |rh| |#1|))))) (-631 |#1|) (-1178 |#1|)) 15 T ELT)) (-2506 (((-2 (|:| |particular| (-3 (-1178 |#1|) #1="failed")) (|:| -2010 (-584 (-1178 |#1|)))) (-631 |#2|) (-1178 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2010 (-584 |#1|))) |#2| |#1|)) 116 T ELT)) (-3569 (((-3 (-2 (|:| |particular| (-1178 |#1|)) (|:| -2010 (-631 |#1|))) #1#) (-631 |#1|) (-1178 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2010 (-584 |#1|))) #1#) |#2| |#1|)) 54 T ELT)))
+(((-734 |#1| |#2|) (-10 -7 (-15 -2505 ((-2 (|:| A (-631 |#1|)) (|:| |eqs| (-584 (-2 (|:| C (-631 |#1|)) (|:| |g| (-1178 |#1|)) (|:| -3263 |#2|) (|:| |rh| |#1|))))) (-631 |#1|) (-1178 |#1|))) (-15 -2505 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#1|))) (-631 |#2|) (-1178 |#1|))) (-15 -3569 ((-3 (-2 (|:| |particular| (-1178 |#1|)) (|:| -2010 (-631 |#1|))) #1="failed") (-631 |#1|) (-1178 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2010 (-584 |#1|))) #1#) |#2| |#1|))) (-15 -2506 ((-2 (|:| |particular| (-3 (-1178 |#1|) #1#)) (|:| -2010 (-584 (-1178 |#1|)))) (-631 |#2|) (-1178 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2010 (-584 |#1|))) |#2| |#1|)))) (-311) (-601 |#1|)) (T -734))
+((-2506 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2010 (-584 *6))) *7 *6)) (-4 *6 (-311)) (-4 *7 (-601 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1178 *6) "failed")) (|:| -2010 (-584 (-1178 *6))))) (-5 *1 (-734 *6 *7)) (-5 *4 (-1178 *6)))) (-3569 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2010 (-584 *6))) "failed") *7 *6)) (-4 *6 (-311)) (-4 *7 (-601 *6)) (-5 *2 (-2 (|:| |particular| (-1178 *6)) (|:| -2010 (-631 *6)))) (-5 *1 (-734 *6 *7)) (-5 *3 (-631 *6)) (-5 *4 (-1178 *6)))) (-2505 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-4 *6 (-601 *5)) (-5 *2 (-2 (|:| |mat| (-631 *6)) (|:| |vec| (-1178 *5)))) (-5 *1 (-734 *5 *6)) (-5 *3 (-631 *6)) (-5 *4 (-1178 *5)))) (-2505 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-5 *2 (-2 (|:| A (-631 *5)) (|:| |eqs| (-584 (-2 (|:| C (-631 *5)) (|:| |g| (-1178 *5)) (|:| -3263 *6) (|:| |rh| *5)))))) (-5 *1 (-734 *5 *6)) (-5 *3 (-631 *5)) (-5 *4 (-1178 *5)) (-4 *6 (-601 *5)))))
+((-2507 (((-631 |#1|) (-584 |#1|) (-695)) 14 T ELT) (((-631 |#1|) (-584 |#1|)) 15 T ELT)) (-2508 (((-3 (-1178 |#1|) #1="failed") |#2| |#1| (-584 |#1|)) 39 T ELT)) (-3336 (((-3 |#1| #1#) |#2| |#1| (-584 |#1|) (-1 |#1| |#1|)) 46 T ELT)))
+(((-735 |#1| |#2|) (-10 -7 (-15 -2507 ((-631 |#1|) (-584 |#1|))) (-15 -2507 ((-631 |#1|) (-584 |#1|) (-695))) (-15 -2508 ((-3 (-1178 |#1|) #1="failed") |#2| |#1| (-584 |#1|))) (-15 -3336 ((-3 |#1| #1#) |#2| |#1| (-584 |#1|) (-1 |#1| |#1|)))) (-311) (-601 |#1|)) (T -735))
+((-3336 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-584 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-311)) (-5 *1 (-735 *2 *3)) (-4 *3 (-601 *2)))) (-2508 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-584 *4)) (-4 *4 (-311)) (-5 *2 (-1178 *4)) (-5 *1 (-735 *4 *3)) (-4 *3 (-601 *4)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-695)) (-4 *5 (-311)) (-5 *2 (-631 *5)) (-5 *1 (-735 *5 *6)) (-4 *6 (-601 *5)))) (-2507 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-311)) (-5 *2 (-631 *4)) (-5 *1 (-735 *4 *5)) (-4 *5 (-601 *4)))))
+((-2566 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3185 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3703 (($ (-831)) NIL (|has| |#2| (-962)) ELT)) (-2196 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-2481 (($ $ $) NIL (|has| |#2| (-718)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3133 (((-695)) NIL (|has| |#2| (-317)) ELT)) (-3784 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3992)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 (-484) #1#) $) NIL (-12 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (-12 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1013)) ELT)) (-3153 (((-484) $) NIL (-12 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) ELT) (((-347 (-484)) $) NIL (-12 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013))) ELT) ((|#2| $) NIL (|has| |#2| (-1013)) ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL (-12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (-12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-631 $)) NIL (|has| |#2| (-962)) ELT)) (-3463 (((-3 $ #1#) $) NIL (|has| |#2| (-962)) ELT)) (-2992 (($) NIL (|has| |#2| (-317)) ELT)) (-1574 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3992)) ELT)) (-3110 ((|#2| $ (-484)) NIL T ELT)) (-3183 (((-85) $) NIL (|has| |#2| (-718)) ELT)) (-2887 (((-584 |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2408 (((-85) $) NIL (|has| |#2| (-962)) ELT)) (-2198 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2529 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-2606 (((-584 |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT)) (-2199 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2855 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-1947 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2008 (((-831) $) NIL (|has| |#2| (-317)) ELT)) (-2278 (((-631 (-484)) (-1178 $)) NIL (-12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| |#2| (-581 (-484))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-1178 $)) NIL (|has| |#2| (-962)) ELT)) (-3239 (((-1072) $) NIL (|has| |#2| (-1013)) ELT)) (-2201 (((-584 (-484)) $) NIL T ELT)) (-2202 (((-85) (-484) $) NIL T ELT)) (-2398 (($ (-831)) NIL (|has| |#2| (-317)) ELT)) (-3240 (((-1033) $) NIL (|has| |#2| (-1013)) ELT)) (-3797 ((|#2| $) NIL (|has| (-484) (-757)) ELT)) (-2197 (($ $ |#2|) NIL (|has| $ (-6 -3992)) ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2200 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT)) (-2203 (((-584 |#2|) $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) NIL T ELT)) (-3796 ((|#2| $ (-484) |#2|) NIL T ELT) ((|#2| $ (-484)) NIL T ELT)) (-3832 ((|#2| $ $) NIL (|has| |#2| (-962)) ELT)) (-1466 (($ (-1178 |#2|)) NIL T ELT)) (-3907 (((-107)) NIL (|has| |#2| (-311)) ELT)) (-3754 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-1944 (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT)) (-3396 (($ $) NIL T ELT)) (-3942 (((-1178 |#2|) $) NIL T ELT) (($ (-484)) NIL (OR (-12 (|has| |#2| (-951 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-962))) ELT) (($ (-347 (-484))) NIL (-12 (|has| |#2| (-951 (-347 (-484)))) (|has| |#2| (-1013))) ELT) (($ |#2|) NIL (|has| |#2| (-1013)) ELT) (((-773) $) NIL (|has| |#2| (-553 (-773))) ELT)) (-3123 (((-695)) NIL (|has| |#2| (-962)) CONST)) (-1263 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2658 (($) NIL (|has| |#2| (-23)) CONST)) (-2664 (($) NIL (|has| |#2| (-962)) CONST)) (-2667 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#2| (-812 (-1089))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-2564 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-3054 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-2682 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2683 (((-85) $ $) 11 (|has| |#2| (-757)) ELT)) (-3945 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3833 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3835 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-695)) NIL (|has| |#2| (-962)) ELT) (($ $ (-831)) NIL (|has| |#2| (-962)) ELT)) (* (($ $ $) NIL (|has| |#2| (-962)) ELT) (($ $ |#2|) NIL (|has| |#2| (-664)) ELT) (($ |#2| $) NIL (|has| |#2| (-664)) ELT) (($ (-484) $) NIL (|has| |#2| (-21)) ELT) (($ (-695) $) NIL (|has| |#2| (-23)) ELT) (($ (-831) $) NIL (|has| |#2| (-25)) ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-736 |#1| |#2| |#3|) (-196 |#1| |#2|) (-695) (-718) (-1 (-85) (-1178 |#2|) (-1178 |#2|))) (T -736))
+NIL
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1486 (((-584 (-695)) $) NIL T ELT) (((-584 (-695)) $ (-1089)) NIL T ELT)) (-1520 (((-695) $) NIL T ELT) (((-695) $ (-1089)) NIL T ELT)) (-3079 (((-584 (-739 (-1089))) $) NIL T ELT)) (-3081 (((-1084 $) $ (-739 (-1089))) NIL T ELT) (((-1084 |#1|) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2061 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2817 (((-695) $) NIL T ELT) (((-695) $ (-584 (-739 (-1089)))) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3771 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3967 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2702 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-1482 (($ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-739 (-1089)) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL T ELT) (((-3 (-1038 |#1| (-1089)) #1#) $) NIL T ELT)) (-3153 ((|#1| $) NIL T ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-739 (-1089)) $) NIL T ELT) (((-1089) $) NIL T ELT) (((-1038 |#1| (-1089)) $) NIL T ELT)) (-3752 (($ $ $ (-739 (-1089))) NIL (|has| |#1| (-146)) ELT)) (-3955 (($ $) NIL T ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-389)) ELT) (($ $ (-739 (-1089))) NIL (|has| |#1| (-389)) ELT)) (-2816 (((-584 $) $) NIL T ELT)) (-3719 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1622 (($ $ |#1| (-469 (-739 (-1089))) $) NIL T ELT)) (-2794 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (-12 (|has| (-739 (-1089)) (-797 (-327))) (|has| |#1| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (-12 (|has| (-739 (-1089)) (-797 (-484))) (|has| |#1| (-797 (-484)))) ELT)) (-3768 (((-695) $ (-1089)) NIL T ELT) (((-695) $) NIL T ELT)) (-2408 (((-85) $) NIL T ELT)) (-2418 (((-695) $) NIL T ELT)) (-3082 (($ (-1084 |#1|) (-739 (-1089))) NIL T ELT) (($ (-1084 $) (-739 (-1089))) NIL T ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2891 (($ |#1| (-469 (-739 (-1089)))) NIL T ELT) (($ $ (-739 (-1089)) (-695)) NIL T ELT) (($ $ (-584 (-739 (-1089))) (-584 (-695))) NIL T ELT)) (-3759 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $ (-739 (-1089))) NIL T ELT)) (-2818 (((-469 (-739 (-1089))) $) NIL T ELT) (((-695) $ (-739 (-1089))) NIL T ELT) (((-584 (-695)) $ (-584 (-739 (-1089)))) NIL T ELT)) (-1623 (($ (-1 (-469 (-739 (-1089))) (-469 (-739 (-1089)))) $) NIL T ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1521 (((-1 $ (-695)) (-1089)) NIL T ELT) (((-1 $ (-695)) $) NIL (|has| |#1| (-190)) ELT)) (-3080 (((-3 (-739 (-1089)) #1#) $) NIL T ELT)) (-2278 (((-631 (-484)) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-2892 (($ $) NIL T ELT)) (-3171 ((|#1| $) NIL T ELT)) (-1484 (((-739 (-1089)) $) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-1485 (((-85) $) NIL T ELT)) (-2821 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-2 (|:| |var| (-739 (-1089))) (|:| -2399 (-695))) #1#) $) NIL T ELT)) (-1483 (($ $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1795 (((-85) $) NIL T ELT)) (-1794 ((|#1| $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-389)) ELT)) (-3141 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3728 (((-345 $) $) NIL (|has| |#1| (-822)) ELT)) (-3462 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3764 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-739 (-1089)) |#1|) NIL T ELT) (($ $ (-584 (-739 (-1089))) (-584 |#1|)) NIL T ELT) (($ $ (-739 (-1089)) $) NIL T ELT) (($ $ (-584 (-739 (-1089))) (-584 $)) NIL T ELT) (($ $ (-1089) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 (-1089)) (-584 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1089) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 (-1089)) (-584 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3753 (($ $ (-739 (-1089))) NIL (|has| |#1| (-146)) ELT)) (-3754 (($ $ (-584 (-739 (-1089))) (-584 (-695))) NIL T ELT) (($ $ (-739 (-1089)) (-695)) NIL T ELT) (($ $ (-584 (-739 (-1089)))) NIL T ELT) (($ $ (-739 (-1089))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-1487 (((-584 (-1089)) $) NIL T ELT)) (-3944 (((-469 (-739 (-1089))) $) NIL T ELT) (((-695) $ (-739 (-1089))) NIL T ELT) (((-584 (-695)) $ (-584 (-739 (-1089)))) NIL T ELT) (((-695) $ (-1089)) NIL T ELT)) (-3968 (((-801 (-327)) $) NIL (-12 (|has| (-739 (-1089)) (-554 (-801 (-327)))) (|has| |#1| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) NIL (-12 (|has| (-739 (-1089)) (-554 (-801 (-484)))) (|has| |#1| (-554 (-801 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-739 (-1089)) (-554 (-473))) (|has| |#1| (-554 (-473)))) ELT)) (-2815 ((|#1| $) NIL (|has| |#1| (-389)) ELT) (($ $ (-739 (-1089))) NIL (|has| |#1| (-389)) ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-739 (-1089))) NIL T ELT) (($ (-1089)) NIL T ELT) (($ (-1038 |#1| (-1089))) NIL T ELT) (($ (-347 (-484))) NIL (OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3813 (((-584 |#1|) $) NIL T ELT)) (-3673 ((|#1| $ (-469 (-739 (-1089)))) NIL T ELT) (($ $ (-739 (-1089)) (-695)) NIL T ELT) (($ $ (-584 (-739 (-1089))) (-584 (-695))) NIL T ELT)) (-2700 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3123 (((-695)) NIL T CONST)) (-1621 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-2667 (($ $ (-584 (-739 (-1089))) (-584 (-695))) NIL T ELT) (($ $ (-739 (-1089)) (-695)) NIL T ELT) (($ $ (-584 (-739 (-1089)))) NIL T ELT) (($ $ (-739 (-1089))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
+(((-737 |#1|) (-13 (-213 |#1| (-1089) (-739 (-1089)) (-469 (-739 (-1089)))) (-951 (-1038 |#1| (-1089)))) (-962)) (T -737))
+NIL
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL (|has| |#2| (-311)) ELT)) (-2061 (($ $) NIL (|has| |#2| (-311)) ELT)) (-2059 (((-85) $) NIL (|has| |#2| (-311)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3771 (($ $) NIL (|has| |#2| (-311)) ELT)) (-3967 (((-345 $) $) NIL (|has| |#2| (-311)) ELT)) (-1606 (((-85) $ $) NIL (|has| |#2| (-311)) ELT)) (-3720 (($) NIL T CONST)) (-2562 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2561 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL (|has| |#2| (-311)) ELT)) (-3719 (((-85) $) NIL (|has| |#2| (-311)) ELT)) (-2408 (((-85) $) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#2| (-311)) ELT)) (-1889 (($ (-584 $)) NIL (|has| |#2| (-311)) ELT) (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) 20 (|has| |#2| (-311)) ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#2| (-311)) ELT)) (-3141 (($ (-584 $)) NIL (|has| |#2| (-311)) ELT) (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-3728 (((-345 $) $) NIL (|has| |#2| (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-3462 (((-3 $ #1#) $ $) NIL (|has| |#2| (-311)) ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#2| (-311)) ELT)) (-1605 (((-695) $) NIL (|has| |#2| (-311)) ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-3754 (($ $) 13 T ELT) (($ $ (-695)) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-347 (-484))) NIL (|has| |#2| (-311)) ELT) (($ $) NIL (|has| |#2| (-311)) ELT)) (-3123 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL (|has| |#2| (-311)) ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-2667 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ $) 15 (|has| |#2| (-311)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT) (($ $ (-484)) 18 (|has| |#2| (-311)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-347 (-484)) $) NIL (|has| |#2| (-311)) ELT) (($ $ (-347 (-484))) NIL (|has| |#2| (-311)) ELT)))
+(((-738 |#1| |#2| |#3|) (-13 (-82 $ $) (-190) (-427 |#2|) (-10 -7 (IF (|has| |#2| (-311)) (-6 (-311)) |%noBranch|))) (-1013) (-810 |#1|) |#1|) (T -738))
+NIL
+((-2566 (((-85) $ $) NIL T ELT)) (-1520 (((-695) $) NIL T ELT)) (-3827 ((|#1| $) 10 T ELT)) (-3154 (((-3 |#1| "failed") $) NIL T ELT)) (-3153 ((|#1| $) NIL T ELT)) (-3768 (((-695) $) 11 T ELT)) (-2529 (($ $ $) NIL T ELT)) (-2855 (($ $ $) NIL T ELT)) (-1521 (($ |#1| (-695)) 9 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3754 (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2667 (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)))
+(((-739 |#1|) (-228 |#1|) (-757)) (T -739))
+NIL
+((-2566 (((-85) $ $) NIL T ELT)) (-3930 (((-584 |#1|) $) 39 T ELT)) (-3133 (((-695) $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3935 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 29 T ELT)) (-3154 (((-3 |#1| #1#) $) NIL T ELT)) (-3153 ((|#1| $) NIL T ELT)) (-3795 (($ $) 43 T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-1748 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-2408 (((-85) $) NIL T ELT)) (-2297 ((|#1| $ (-484)) NIL T ELT)) (-2298 (((-695) $ (-484)) NIL T ELT)) (-3932 (($ $) 55 T ELT)) (-2529 (($ $ $) NIL T ELT)) (-2855 (($ $ $) NIL T ELT)) (-2288 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2289 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3936 (((-3 $ #1#) $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 26 T ELT)) (-2509 (((-85) $ $) 52 T ELT)) (-3829 (((-695) $) 35 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-1749 (($ $ $) NIL T ELT)) (-1750 (($ $ $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3797 ((|#1| $) 42 T ELT)) (-1777 (((-584 (-2 (|:| |gen| |#1|) (|:| -3939 (-695)))) $) NIL T ELT)) (-2877 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-2563 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2664 (($) 7 T CONST)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) 54 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ |#1| (-695)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
+(((-740 |#1|) (-13 (-333 |#1|) (-755) (-10 -8 (-15 -3797 (|#1| $)) (-15 -3795 ($ $)) (-15 -3932 ($ $)) (-15 -2509 ((-85) $ $)) (-15 -3936 ((-3 $ #1="failed") $ |#1|)) (-15 -3935 ((-3 $ #1#) $ |#1|)) (-15 -2563 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $)) (-15 -3829 ((-695) $)) (-15 -3930 ((-584 |#1|) $)))) (-757)) (T -740))
+((-3797 (*1 *2 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-3795 (*1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-3932 (*1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-2509 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-740 *3)) (-4 *3 (-757)))) (-3936 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-3935 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-2563 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-740 *3)) (|:| |rm| (-740 *3)))) (-5 *1 (-740 *3)) (-4 *3 (-757)))) (-3829 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-740 *3)) (-4 *3 (-757)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-740 *3)) (-4 *3 (-757)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 53 T ELT)) (-2061 (($ $) 52 T ELT)) (-2059 (((-85) $) 50 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3619 (((-484) $) 66 T ELT)) (-3720 (($) 22 T CONST)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-3183 (((-85) $) 64 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-3184 (((-85) $) 65 T ELT)) (-2529 (($ $ $) 58 T ELT)) (-2855 (($ $ $) 59 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3462 (((-3 $ "failed") $ $) 54 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2060 (((-85) $ $) 51 T ELT)) (-3379 (($ $) 67 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-2564 (((-85) $ $) 60 T ELT)) (-2565 (((-85) $ $) 62 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-2682 (((-85) $ $) 61 T ELT)) (-2683 (((-85) $ $) 63 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT)))
+(((-741) (-113)) (T -741))
+NIL
+(-13 (-495) (-756))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-484)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-245) . T) ((-495) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3955 (($ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2510 ((|#1| $) 10 T ELT)) (-2511 (($ |#1|) 9 T ELT)) (-2408 (((-85) $) NIL T ELT)) (-2891 (($ |#2| (-695)) NIL T ELT)) (-2818 (((-695) $) NIL T ELT)) (-3171 ((|#2| $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3754 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-695)) NIL (|has| |#1| (-190)) ELT)) (-3944 (((-695) $) NIL T ELT)) (-3942 (((-773) $) 17 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-146)) ELT)) (-3673 ((|#2| $ (-695)) NIL T ELT)) (-3123 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-2667 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-695)) NIL (|has| |#1| (-190)) ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
+(((-742 |#1| |#2|) (-13 (-646 |#2|) (-10 -8 (IF (|has| |#1| (-190)) (-6 (-190)) |%noBranch|) (-15 -2511 ($ |#1|)) (-15 -2510 (|#1| $)))) (-646 |#2|) (-962)) (T -742))
+((-2511 (*1 *1 *2) (-12 (-4 *3 (-962)) (-5 *1 (-742 *2 *3)) (-4 *2 (-646 *3)))) (-2510 (*1 *2 *1) (-12 (-4 *2 (-646 *3)) (-5 *1 (-742 *2 *3)) (-4 *3 (-962)))))
+((-2566 (((-85) $ $) 19 T ELT)) (-3231 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3233 (($ $ $) 77 T ELT)) (-3232 (((-85) $ $) 78 T ELT)) (-3236 (($ (-584 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1568 (($ (-1 (-85) |#1|) $) 49 (|has| $ (-6 -3991)) ELT)) (-3706 (($ (-1 (-85) |#1|) $) 59 (|has| $ (-6 -3991)) ELT)) (-3720 (($) 7 T CONST)) (-2366 (($ $) 66 T ELT)) (-1351 (($ $) 62 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3401 (($ |#1| $) 51 (|has| $ (-6 -3991)) ELT) (($ (-1 (-85) |#1|) $) 50 (|has| $ (-6 -3991)) ELT)) (-3402 (($ |#1| $) 61 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT) (($ (-1 (-85) |#1|) $) 58 (|has| $ (-6 -3991)) ELT)) (-3838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3991)) ELT)) (-2887 (((-584 |#1|) $) 30 (|has| $ (-6 -3991)) ELT)) (-3238 (((-85) $ $) 69 T ELT)) (-2529 ((|#1| $) 83 T ELT)) (-2854 (($ $ $) 86 T ELT)) (-3514 (($ $ $) 85 T ELT)) (-2606 (((-584 |#1|) $) 29 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-2855 ((|#1| $) 84 T ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3239 (((-1072) $) 22 T ELT)) (-3235 (($ $ $) 74 T ELT)) (-1272 ((|#1| $) 43 T ELT)) (-3605 (($ |#1| $) 44 T ELT) (($ |#1| $ (-695)) 67 T ELT)) (-3240 (((-1033) $) 21 T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 55 T ELT)) (-1273 ((|#1| $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-2365 (((-584 (-2 (|:| |entry| |#1|) (|:| -1944 (-695)))) $) 65 T ELT)) (-3234 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1464 (($) 53 T ELT) (($ (-584 |#1|)) 52 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3396 (($ $) 10 T ELT)) (-3968 (((-473) $) 63 (|has| |#1| (-554 (-473))) ELT)) (-3526 (($ (-584 |#1|)) 54 T ELT)) (-3942 (((-773) $) 17 T ELT)) (-3237 (($ (-584 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1263 (((-85) $ $) 20 T ELT)) (-1274 (($ (-584 |#1|)) 46 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 18 T ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-743 |#1|) (-113) (-757)) (T -743))
+((-2529 (*1 *2 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-757)))))
+(-13 (-677 |t#1|) (-882 |t#1|) (-10 -8 (-15 -2529 (|t#1| $))))
+(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-553 (-773)) . T) ((-124 |#1|) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-193 |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-635 |#1|) . T) ((-677 |#1|) . T) ((-882 |#1|) . T) ((-1011 |#1|) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3619 (((-484) $) NIL (|has| |#1| (-756)) ELT)) (-3720 (($) NIL (|has| |#1| (-21)) CONST)) (-3154 (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) 15 T ELT)) (-3153 (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) 9 T ELT)) (-3463 (((-3 $ #1#) $) 42 (|has| |#1| (-756)) ELT)) (-3022 (((-3 (-347 (-484)) #1#) $) 51 (|has| |#1| (-483)) ELT)) (-3021 (((-85) $) 46 (|has| |#1| (-483)) ELT)) (-3020 (((-347 (-484)) $) 48 (|has| |#1| (-483)) ELT)) (-3183 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-2408 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-3184 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-2529 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2855 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2512 (($) 13 T ELT)) (-2522 (((-85) $) 12 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2523 (((-85) $) 11 T ELT)) (-3942 (((-773) $) 18 T ELT) (($ (-347 (-484))) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (($ |#1|) 8 T ELT) (($ (-484)) NIL (OR (|has| |#1| (-756)) (|has| |#1| (-951 (-484)))) ELT)) (-3123 (((-695)) 36 (|has| |#1| (-756)) CONST)) (-1263 (((-85) $ $) 53 T ELT)) (-3379 (($ $) NIL (|has| |#1| (-756)) ELT)) (-2658 (($) 23 (|has| |#1| (-21)) CONST)) (-2664 (($) 33 (|has| |#1| (-756)) CONST)) (-2564 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3054 (((-85) $ $) 21 T ELT)) (-2682 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2683 (((-85) $ $) 45 (|has| |#1| (-756)) ELT)) (-3833 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 29 (|has| |#1| (-21)) ELT)) (-3835 (($ $ $) 31 (|has| |#1| (-21)) ELT)) (** (($ $ (-831)) NIL (|has| |#1| (-756)) ELT) (($ $ (-695)) NIL (|has| |#1| (-756)) ELT)) (* (($ $ $) 39 (|has| |#1| (-756)) ELT) (($ (-484) $) 27 (|has| |#1| (-21)) ELT) (($ (-695) $) NIL (|has| |#1| (-21)) ELT) (($ (-831) $) NIL (|has| |#1| (-21)) ELT)))
+(((-744 |#1|) (-13 (-1013) (-352 |#1|) (-10 -8 (-15 -2512 ($)) (-15 -2523 ((-85) $)) (-15 -2522 ((-85) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |#1| (-483)) (PROGN (-15 -3021 ((-85) $)) (-15 -3020 ((-347 (-484)) $)) (-15 -3022 ((-3 (-347 (-484)) "failed") $))) |%noBranch|))) (-1013)) (T -744))
+((-2512 (*1 *1) (-12 (-5 *1 (-744 *2)) (-4 *2 (-1013)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-1013)))) (-2522 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-1013)))) (-3021 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) (-3020 (*1 *2 *1) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-744 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) (-3022 (*1 *2 *1) (|partial| -12 (-5 *2 (-347 (-484))) (-5 *1 (-744 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))))
+((-3954 (((-744 |#2|) (-1 |#2| |#1|) (-744 |#1|) (-744 |#2|)) 12 T ELT) (((-744 |#2|) (-1 |#2| |#1|) (-744 |#1|)) 13 T ELT)))
+(((-745 |#1| |#2|) (-10 -7 (-15 -3954 ((-744 |#2|) (-1 |#2| |#1|) (-744 |#1|))) (-15 -3954 ((-744 |#2|) (-1 |#2| |#1|) (-744 |#1|) (-744 |#2|)))) (-1013) (-1013)) (T -745))
+((-3954 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-744 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *1 (-745 *5 *6)))) (-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-744 *6)) (-5 *1 (-745 *5 *6)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-86) #1#) $) NIL T ELT)) (-3153 ((|#1| $) NIL T ELT) (((-86) $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2514 ((|#1| (-86) |#1|) NIL T ELT)) (-2408 (((-85) $) NIL T ELT)) (-2513 (($ |#1| (-309 (-86))) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2515 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-2516 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-3796 ((|#1| $ |#1|) NIL T ELT)) (-2517 ((|#1| |#1|) NIL (|has| |#1| (-146)) ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-86)) NIL T ELT)) (-2700 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3123 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2518 (($ $) NIL (|has| |#1| (-146)) ELT) (($ $ $) NIL (|has| |#1| (-146)) ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-3054 (((-85) $ $) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ (-86) (-484)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT)))
+(((-746 |#1|) (-13 (-962) (-951 |#1|) (-951 (-86)) (-241 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2518 ($ $)) (-15 -2518 ($ $ $)) (-15 -2517 (|#1| |#1|))) |%noBranch|) (-15 -2516 ($ $ (-1 |#1| |#1|))) (-15 -2515 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-86) (-484))) (-15 ** ($ $ (-484))) (-15 -2514 (|#1| (-86) |#1|)) (-15 -2513 ($ |#1| (-309 (-86)))))) (-962)) (T -746))
+((-2518 (*1 *1 *1) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962)))) (-2518 (*1 *1 *1 *1) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962)))) (-2517 (*1 *2 *2) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962)))) (-2516 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-746 *3)))) (-2515 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-746 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-484)) (-5 *1 (-746 *4)) (-4 *4 (-962)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-746 *3)) (-4 *3 (-962)))) (-2514 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-746 *2)) (-4 *2 (-962)))) (-2513 (*1 *1 *2 *3) (-12 (-5 *3 (-309 (-86))) (-5 *1 (-746 *2)) (-4 *2 (-962)))))
+((-2631 (((-85) $ |#2|) 14 T ELT)) (-3942 (((-773) $) 11 T ELT)))
+(((-747 |#1| |#2|) (-10 -7 (-15 -2631 ((-85) |#1| |#2|)) (-15 -3942 ((-773) |#1|))) (-748 |#2|) (-1013)) (T -747))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3538 ((|#1| $) 19 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-2631 (((-85) $ |#1|) 17 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2519 (((-55) $) 18 T ELT)) (-3054 (((-85) $ $) 8 T ELT)))
+(((-748 |#1|) (-113) (-1013)) (T -748))
+((-3538 (*1 *2 *1) (-12 (-4 *1 (-748 *2)) (-4 *2 (-1013)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-748 *3)) (-4 *3 (-1013)) (-5 *2 (-55)))) (-2631 (*1 *2 *1 *3) (-12 (-4 *1 (-748 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))))
+(-13 (-1013) (-10 -8 (-15 -3538 (|t#1| $)) (-15 -2519 ((-55) $)) (-15 -2631 ((-85) $ |t#1|))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
+((-2520 (((-167 (-439)) (-1072)) 9 T ELT)))
+(((-749) (-10 -7 (-15 -2520 ((-167 (-439)) (-1072))))) (T -749))
+((-2520 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-167 (-439))) (-5 *1 (-749)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3316 (((-1028) $) 10 T ELT)) (-3538 (((-444) $) 9 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2631 (((-85) $ (-444)) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3526 (($ (-444) (-1028)) 8 T ELT)) (-3942 (((-773) $) 25 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2519 (((-55) $) 20 T ELT)) (-3054 (((-85) $ $) 12 T ELT)))
+(((-750) (-13 (-748 (-444)) (-10 -8 (-15 -3316 ((-1028) $)) (-15 -3526 ($ (-444) (-1028)))))) (T -750))
+((-3316 (*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-750)))) (-3526 (*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-1028)) (-5 *1 (-750)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-2521 (((-1033) $) 31 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3619 (((-484) $) NIL (|has| |#1| (-756)) ELT)) (-3720 (($) NIL (|has| |#1| (-21)) CONST)) (-3154 (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) 18 T ELT)) (-3153 (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) 9 T ELT)) (-3463 (((-3 $ #1#) $) 57 (|has| |#1| (-756)) ELT)) (-3022 (((-3 (-347 (-484)) #1#) $) 65 (|has| |#1| (-483)) ELT)) (-3021 (((-85) $) 60 (|has| |#1| (-483)) ELT)) (-3020 (((-347 (-484)) $) 63 (|has| |#1| (-483)) ELT)) (-3183 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-2525 (($) 14 T ELT)) (-2408 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-3184 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-2524 (($) 16 T ELT)) (-2529 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2855 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2522 (((-85) $) 12 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2523 (((-85) $) 11 T ELT)) (-3942 (((-773) $) 24 T ELT) (($ (-347 (-484))) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (($ |#1|) 8 T ELT) (($ (-484)) NIL (OR (|has| |#1| (-756)) (|has| |#1| (-951 (-484)))) ELT)) (-3123 (((-695)) 50 (|has| |#1| (-756)) CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3379 (($ $) NIL (|has| |#1| (-756)) ELT)) (-2658 (($) 37 (|has| |#1| (-21)) CONST)) (-2664 (($) 47 (|has| |#1| (-756)) CONST)) (-2564 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3054 (((-85) $ $) 35 T ELT)) (-2682 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2683 (((-85) $ $) 59 (|has| |#1| (-756)) ELT)) (-3833 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3835 (($ $ $) 45 (|has| |#1| (-21)) ELT)) (** (($ $ (-831)) NIL (|has| |#1| (-756)) ELT) (($ $ (-695)) NIL (|has| |#1| (-756)) ELT)) (* (($ $ $) 54 (|has| |#1| (-756)) ELT) (($ (-484) $) 41 (|has| |#1| (-21)) ELT) (($ (-695) $) NIL (|has| |#1| (-21)) ELT) (($ (-831) $) NIL (|has| |#1| (-21)) ELT)))
+(((-751 |#1|) (-13 (-1013) (-352 |#1|) (-10 -8 (-15 -2525 ($)) (-15 -2524 ($)) (-15 -2523 ((-85) $)) (-15 -2522 ((-85) $)) (-15 -2521 ((-1033) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |#1| (-483)) (PROGN (-15 -3021 ((-85) $)) (-15 -3020 ((-347 (-484)) $)) (-15 -3022 ((-3 (-347 (-484)) "failed") $))) |%noBranch|))) (-1013)) (T -751))
+((-2525 (*1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-1013)))) (-2524 (*1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-1013)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-1013)))) (-2522 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-1013)))) (-2521 (*1 *2 *1) (-12 (-5 *2 (-1033)) (-5 *1 (-751 *3)) (-4 *3 (-1013)))) (-3021 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) (-3020 (*1 *2 *1) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-751 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) (-3022 (*1 *2 *1) (|partial| -12 (-5 *2 (-347 (-484))) (-5 *1 (-751 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))))
+((-3954 (((-751 |#2|) (-1 |#2| |#1|) (-751 |#1|) (-751 |#2|) (-751 |#2|)) 13 T ELT) (((-751 |#2|) (-1 |#2| |#1|) (-751 |#1|)) 14 T ELT)))
+(((-752 |#1| |#2|) (-10 -7 (-15 -3954 ((-751 |#2|) (-1 |#2| |#1|) (-751 |#1|))) (-15 -3954 ((-751 |#2|) (-1 |#2| |#1|) (-751 |#1|) (-751 |#2|) (-751 |#2|)))) (-1013) (-1013)) (T -752))
+((-3954 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-751 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-751 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *1 (-752 *5 *6)))) (-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-751 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-751 *6)) (-5 *1 (-752 *5 *6)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3133 (((-695)) 27 T ELT)) (-2992 (($) 30 T ELT)) (-2529 (($ $ $) 23 T ELT) (($) 26 T CONST)) (-2855 (($ $ $) 22 T ELT) (($) 25 T CONST)) (-2008 (((-831) $) 29 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-2398 (($ (-831)) 28 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2564 (((-85) $ $) 21 T ELT)) (-2565 (((-85) $ $) 19 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-2682 (((-85) $ $) 20 T ELT)) (-2683 (((-85) $ $) 18 T ELT)))
+(((-753) (-113)) (T -753))
+((-2529 (*1 *1) (-4 *1 (-753))) (-2855 (*1 *1) (-4 *1 (-753))))
+(-13 (-757) (-317) (-10 -8 (-15 -2529 ($) -3948) (-15 -2855 ($) -3948)))
+(((-72) . T) ((-553 (-773)) . T) ((-317) . T) ((-13) . T) ((-757) . T) ((-760) . T) ((-1013) . T) ((-1128) . T))
+((-2527 (((-85) (-1178 |#2|) (-1178 |#2|)) 19 T ELT)) (-2528 (((-85) (-1178 |#2|) (-1178 |#2|)) 20 T ELT)) (-2526 (((-85) (-1178 |#2|) (-1178 |#2|)) 16 T ELT)))
+(((-754 |#1| |#2|) (-10 -7 (-15 -2526 ((-85) (-1178 |#2|) (-1178 |#2|))) (-15 -2527 ((-85) (-1178 |#2|) (-1178 |#2|))) (-15 -2528 ((-85) (-1178 |#2|) (-1178 |#2|)))) (-695) (-717)) (T -754))
+((-2528 (*1 *2 *3 *3) (-12 (-5 *3 (-1178 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5)) (-14 *4 (-695)))) (-2527 (*1 *2 *3 *3) (-12 (-5 *3 (-1178 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5)) (-14 *4 (-695)))) (-2526 (*1 *2 *3 *3) (-12 (-5 *3 (-1178 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5)) (-14 *4 (-695)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3720 (($) 29 T CONST)) (-3463 (((-3 $ "failed") $) 32 T ELT)) (-2408 (((-85) $) 30 T ELT)) (-2529 (($ $ $) 23 T ELT)) (-2855 (($ $ $) 22 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2664 (($) 28 T CONST)) (-2564 (((-85) $ $) 21 T ELT)) (-2565 (((-85) $ $) 19 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-2682 (((-85) $ $) 20 T ELT)) (-2683 (((-85) $ $) 18 T ELT)) (** (($ $ (-831)) 26 T ELT) (($ $ (-695)) 31 T ELT)) (* (($ $ $) 25 T ELT)))
(((-755) (-113)) (T -755))
NIL
-(-13 (-714) (-961) (-663))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-483)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-756) . T) ((-759) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) 7 T ELT)) (-2527 (($ $ $) 23 T ELT)) (-2853 (($ $ $) 22 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2562 (((-85) $ $) 21 T ELT)) (-2563 (((-85) $ $) 19 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 20 T ELT)) (-2681 (((-85) $ $) 18 T ELT)))
+(-13 (-767) (-664))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-664) . T) ((-767) . T) ((-757) . T) ((-760) . T) ((-1025) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 31 T ELT)) (-1310 (((-3 $ "failed") $ $) 34 T ELT)) (-3619 (((-484) $) 37 T ELT)) (-3720 (($) 30 T CONST)) (-3463 (((-3 $ "failed") $) 53 T ELT)) (-3183 (((-85) $) 28 T ELT)) (-2408 (((-85) $) 51 T ELT)) (-3184 (((-85) $) 38 T ELT)) (-2529 (($ $ $) 23 T ELT)) (-2855 (($ $ $) 22 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 54 T ELT)) (-3123 (((-695)) 55 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-3379 (($ $) 36 T ELT)) (-2658 (($) 29 T CONST)) (-2664 (($) 50 T CONST)) (-2564 (((-85) $ $) 21 T ELT)) (-2565 (((-85) $ $) 19 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-2682 (((-85) $ $) 20 T ELT)) (-2683 (((-85) $ $) 18 T ELT)) (-3833 (($ $ $) 41 T ELT) (($ $) 40 T ELT)) (-3835 (($ $ $) 25 T ELT)) (** (($ $ (-695)) 52 T ELT) (($ $ (-831)) 48 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT) (($ (-484) $) 39 T ELT) (($ $ $) 49 T ELT)))
(((-756) (-113)) (T -756))
NIL
-(-13 (-1012) (-759))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-759) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3940 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 12 T ELT)))
-(((-757 |#1| |#2|) (-13 (-759) (-427 |#1|) (-10 -7 (IF (|has| |#1| (-552 (-772))) (-6 (-552 (-772))) |%noBranch|))) (-1127) (-1 (-85) |#1| |#1|)) (T -757))
-NIL
-((-2527 (($ $ $) 16 T ELT)) (-2853 (($ $ $) 15 T ELT)) (-1262 (((-85) $ $) 17 T ELT)) (-2562 (((-85) $ $) 12 T ELT)) (-2563 (((-85) $ $) 9 T ELT)) (-3052 (((-85) $ $) 14 T ELT)) (-2680 (((-85) $ $) 11 T ELT)))
-(((-758 |#1|) (-10 -7 (-15 -2527 (|#1| |#1| |#1|)) (-15 -2853 (|#1| |#1| |#1|)) (-15 -2562 ((-85) |#1| |#1|)) (-15 -2680 ((-85) |#1| |#1|)) (-15 -2563 ((-85) |#1| |#1|)) (-15 -1262 ((-85) |#1| |#1|)) (-15 -3052 ((-85) |#1| |#1|))) (-759)) (T -758))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-2527 (($ $ $) 10 T ELT)) (-2853 (($ $ $) 11 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2562 (((-85) $ $) 12 T ELT)) (-2563 (((-85) $ $) 14 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 13 T ELT)) (-2681 (((-85) $ $) 15 T ELT)))
-(((-759) (-113)) (T -759))
-((-2681 (*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) (-2563 (*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) (-2680 (*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) (-2562 (*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) (-2853 (*1 *1 *1 *1) (-4 *1 (-759))) (-2527 (*1 *1 *1 *1) (-4 *1 (-759))))
-(-13 (-72) (-10 -8 (-15 -2681 ((-85) $ $)) (-15 -2563 ((-85) $ $)) (-15 -2680 ((-85) $ $)) (-15 -2562 ((-85) $ $)) (-15 -2853 ($ $ $)) (-15 -2527 ($ $ $))))
-(((-72) . T) ((-13) . T) ((-1127) . T))
-((-2532 (($ $ $) 49 T ELT)) (-2533 (($ $ $) 48 T ELT)) (-2534 (($ $ $) 46 T ELT)) (-2530 (($ $ $) 55 T ELT)) (-2529 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 50 T ELT)) (-2531 (((-3 $ #1="failed") $ $) 53 T ELT)) (-3152 (((-3 (-483) #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 29 T ELT)) (-3497 (($ $) 39 T ELT)) (-2538 (($ $ $) 43 T ELT)) (-2539 (($ $ $) 42 T ELT)) (-2528 (($ $ $) 51 T ELT)) (-2536 (($ $ $) 57 T ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 45 T ELT)) (-2537 (((-3 $ #1#) $ $) 52 T ELT)) (-3460 (((-3 $ #1#) $ |#2|) 32 T ELT)) (-2813 ((|#2| $) 36 T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ |#2|) 13 T ELT)) (-3811 (((-583 |#2|) $) 21 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT)))
-(((-760 |#1| |#2|) (-10 -7 (-15 -2528 (|#1| |#1| |#1|)) (-15 -2529 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2405 |#1|)) |#1| |#1|)) (-15 -2530 (|#1| |#1| |#1|)) (-15 -2531 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2532 (|#1| |#1| |#1|)) (-15 -2533 (|#1| |#1| |#1|)) (-15 -2534 (|#1| |#1| |#1|)) (-15 -2535 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2405 |#1|)) |#1| |#1|)) (-15 -2536 (|#1| |#1| |#1|)) (-15 -2537 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2538 (|#1| |#1| |#1|)) (-15 -2539 (|#1| |#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -2813 (|#2| |#1|)) (-15 -3460 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3811 ((-583 |#2|) |#1|)) (-15 -3940 (|#1| |#2|)) (-15 -3152 ((-3 |#2| #1#) |#1|)) (-15 -3152 ((-3 (-347 (-483)) #1#) |#1|)) (-15 -3940 (|#1| (-347 (-483)))) (-15 -3152 ((-3 (-483) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3940 (|#1| (-483))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-483) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|)) (-15 -3940 ((-772) |#1|))) (-761 |#2|) (-961)) (T -760))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-2532 (($ $ $) 56 (|has| |#1| (-311)) ELT)) (-2533 (($ $ $) 57 (|has| |#1| (-311)) ELT)) (-2534 (($ $ $) 59 (|has| |#1| (-311)) ELT)) (-2530 (($ $ $) 54 (|has| |#1| (-311)) ELT)) (-2529 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 53 (|has| |#1| (-311)) ELT)) (-2531 (((-3 $ "failed") $ $) 55 (|has| |#1| (-311)) ELT)) (-2545 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 58 (|has| |#1| (-311)) ELT)) (-3152 (((-3 (-483) #1="failed") $) 86 (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) 83 (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) 80 T ELT)) (-3151 (((-483) $) 85 (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) 82 (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) 81 T ELT)) (-3953 (($ $) 75 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3497 (($ $) 66 (|has| |#1| (-389)) ELT)) (-2406 (((-85) $) 42 T ELT)) (-2889 (($ |#1| (-694)) 73 T ELT)) (-2543 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 68 (|has| |#1| (-494)) ELT)) (-2542 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 69 (|has| |#1| (-494)) ELT)) (-2816 (((-694) $) 77 T ELT)) (-2538 (($ $ $) 63 (|has| |#1| (-311)) ELT)) (-2539 (($ $ $) 64 (|has| |#1| (-311)) ELT)) (-2528 (($ $ $) 52 (|has| |#1| (-311)) ELT)) (-2536 (($ $ $) 61 (|has| |#1| (-311)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 60 (|has| |#1| (-311)) ELT)) (-2537 (((-3 $ "failed") $ $) 62 (|has| |#1| (-311)) ELT)) (-2544 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 65 (|has| |#1| (-311)) ELT)) (-3169 ((|#1| $) 76 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3460 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-494)) ELT)) (-3942 (((-694) $) 78 T ELT)) (-2813 ((|#1| $) 67 (|has| |#1| (-389)) ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ (-347 (-483))) 84 (|has| |#1| (-950 (-347 (-483)))) ELT) (($ |#1|) 79 T ELT)) (-3811 (((-583 |#1|) $) 72 T ELT)) (-3671 ((|#1| $ (-694)) 74 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2541 ((|#1| $ |#1| |#1|) 71 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT)))
-(((-761 |#1|) (-113) (-961)) (T -761))
-((-3942 (*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-2816 (*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)))) (-3953 (*1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)))) (-3671 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-761 *2)) (-4 *2 (-961)))) (-2889 (*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-761 *2)) (-4 *2 (-961)))) (-3811 (*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-583 *3)))) (-2541 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)))) (-3460 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-494)))) (-2542 (*1 *2 *1 *1) (-12 (-4 *3 (-494)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1))) (-4 *1 (-761 *3)))) (-2543 (*1 *2 *1 *1) (-12 (-4 *3 (-494)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1))) (-4 *1 (-761 *3)))) (-2813 (*1 *2 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-389)))) (-3497 (*1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-389)))) (-2544 (*1 *2 *1 *1) (-12 (-4 *3 (-311)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1))) (-4 *1 (-761 *3)))) (-2539 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311)))) (-2538 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311)))) (-2537 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311)))) (-2536 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311)))) (-2535 (*1 *2 *1 *1) (-12 (-4 *3 (-311)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2405 *1))) (-4 *1 (-761 *3)))) (-2534 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311)))) (-2545 (*1 *2 *1 *1) (-12 (-4 *3 (-311)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1))) (-4 *1 (-761 *3)))) (-2533 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311)))) (-2532 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311)))) (-2531 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311)))) (-2530 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311)))) (-2529 (*1 *2 *1 *1) (-12 (-4 *3 (-311)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2405 *1))) (-4 *1 (-761 *3)))) (-2528 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311)))))
-(-13 (-961) (-82 |t#1| |t#1|) (-352 |t#1|) (-10 -8 (-15 -3942 ((-694) $)) (-15 -2816 ((-694) $)) (-15 -3169 (|t#1| $)) (-15 -3953 ($ $)) (-15 -3671 (|t#1| $ (-694))) (-15 -2889 ($ |t#1| (-694))) (-15 -3811 ((-583 |t#1|) $)) (-15 -2541 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-494)) (PROGN (-15 -3460 ((-3 $ "failed") $ |t#1|)) (-15 -2542 ((-2 (|:| -1970 $) (|:| -2898 $)) $ $)) (-15 -2543 ((-2 (|:| -1970 $) (|:| -2898 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-389)) (PROGN (-15 -2813 (|t#1| $)) (-15 -3497 ($ $))) |%noBranch|) (IF (|has| |t#1| (-311)) (PROGN (-15 -2544 ((-2 (|:| -1970 $) (|:| -2898 $)) $ $)) (-15 -2539 ($ $ $)) (-15 -2538 ($ $ $)) (-15 -2537 ((-3 $ "failed") $ $)) (-15 -2536 ($ $ $)) (-15 -2535 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $)) (-15 -2534 ($ $ $)) (-15 -2545 ((-2 (|:| -1970 $) (|:| -2898 $)) $ $)) (-15 -2533 ($ $ $)) (-15 -2532 ($ $ $)) (-15 -2531 ((-3 $ "failed") $ $)) (-15 -2530 ($ $ $)) (-15 -2529 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $)) (-15 -2528 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 (-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((-555 (-483)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-352 |#1|) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-663) . T) ((-950 (-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((-950 (-483)) |has| |#1| (-950 (-483))) ((-950 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T))
-((-2540 ((|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-2545 (((-2 (|:| -1970 |#2|) (|:| -2898 |#2|)) |#2| |#2| (-69 |#1|)) 46 (|has| |#1| (-311)) ELT)) (-2543 (((-2 (|:| -1970 |#2|) (|:| -2898 |#2|)) |#2| |#2| (-69 |#1|)) 43 (|has| |#1| (-494)) ELT)) (-2542 (((-2 (|:| -1970 |#2|) (|:| -2898 |#2|)) |#2| |#2| (-69 |#1|)) 42 (|has| |#1| (-494)) ELT)) (-2544 (((-2 (|:| -1970 |#2|) (|:| -2898 |#2|)) |#2| |#2| (-69 |#1|)) 45 (|has| |#1| (-311)) ELT)) (-2541 ((|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|)) 33 T ELT)))
-(((-762 |#1| |#2|) (-10 -7 (-15 -2540 (|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|))) (-15 -2541 (|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-494)) (PROGN (-15 -2542 ((-2 (|:| -1970 |#2|) (|:| -2898 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2543 ((-2 (|:| -1970 |#2|) (|:| -2898 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|) (IF (|has| |#1| (-311)) (PROGN (-15 -2544 ((-2 (|:| -1970 |#2|) (|:| -2898 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2545 ((-2 (|:| -1970 |#2|) (|:| -2898 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|)) (-961) (-761 |#1|)) (T -762))
-((-2545 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-311)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3))) (-5 *1 (-762 *5 *3)) (-4 *3 (-761 *5)))) (-2544 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-311)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3))) (-5 *1 (-762 *5 *3)) (-4 *3 (-761 *5)))) (-2543 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-494)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3))) (-5 *1 (-762 *5 *3)) (-4 *3 (-761 *5)))) (-2542 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-494)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3))) (-5 *1 (-762 *5 *3)) (-4 *3 (-761 *5)))) (-2541 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-961)) (-5 *1 (-762 *2 *3)) (-4 *3 (-761 *2)))) (-2540 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-961)) (-5 *1 (-762 *5 *2)) (-4 *2 (-761 *5)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2532 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2529 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2531 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2545 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 34 (|has| |#1| (-311)) ELT)) (-3152 (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3151 (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) NIL T ELT)) (-3953 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3527 (((-772) $ (-772)) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-694)) NIL T ELT)) (-2543 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 30 (|has| |#1| (-494)) ELT)) (-2542 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 28 (|has| |#1| (-494)) ELT)) (-2816 (((-694) $) NIL T ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2528 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2536 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2537 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2544 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 32 (|has| |#1| (-311)) ELT)) (-3169 ((|#1| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3460 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT)) (-3942 (((-694) $) NIL T ELT)) (-2813 ((|#1| $) NIL (|has| |#1| (-389)) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-347 (-483))) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (($ |#1|) NIL T ELT)) (-3811 (((-583 |#1|) $) NIL T ELT)) (-3671 ((|#1| $ (-694)) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2541 ((|#1| $ |#1| |#1|) 15 T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) 23 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) 19 T ELT) (($ $ (-694)) 24 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-763 |#1| |#2| |#3|) (-13 (-761 |#1|) (-10 -8 (-15 -3527 ((-772) $ (-772))))) (-961) (-69 |#1|) (-1 |#1| |#1|)) (T -763))
-((-3527 (*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-763 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-69 *3)) (-14 *5 (-1 *3 *3)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2532 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2533 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2534 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2530 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2529 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-2531 (((-3 $ #1#) $ $) NIL (|has| |#2| (-311)) ELT)) (-2545 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-3152 (((-3 (-483) #1#) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3151 (((-483) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) ((|#2| $) NIL T ELT)) (-3953 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#2| (-389)) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2889 (($ |#2| (-694)) 17 T ELT)) (-2543 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#2| (-494)) ELT)) (-2542 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#2| (-494)) ELT)) (-2816 (((-694) $) NIL T ELT)) (-2538 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2539 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2528 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2536 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-2537 (((-3 $ #1#) $ $) NIL (|has| |#2| (-311)) ELT)) (-2544 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-3169 ((|#2| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3460 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-494)) ELT)) (-3942 (((-694) $) NIL T ELT)) (-2813 ((|#2| $) NIL (|has| |#2| (-389)) ELT)) (-3940 (((-772) $) 24 T ELT) (($ (-483)) NIL T ELT) (($ (-347 (-483))) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) (($ |#2|) NIL T ELT) (($ (-1174 |#1|)) 19 T ELT)) (-3811 (((-583 |#2|) $) NIL T ELT)) (-3671 ((|#2| $ (-694)) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2541 ((|#2| $ |#2| |#2|) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) 13 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
-(((-764 |#1| |#2| |#3| |#4|) (-13 (-761 |#2|) (-555 (-1174 |#1|))) (-1088) (-961) (-69 |#2|) (-1 |#2| |#2|)) (T -764))
-NIL
-((-2548 ((|#1| (-694) |#1|) 45 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2547 ((|#1| (-694) (-694) |#1|) 36 T ELT) ((|#1| (-694) |#1|) 24 T ELT)) (-2546 ((|#1| (-694) |#1|) 40 T ELT)) (-2796 ((|#1| (-694) |#1|) 38 T ELT)) (-2795 ((|#1| (-694) |#1|) 37 T ELT)))
-(((-765 |#1|) (-10 -7 (-15 -2795 (|#1| (-694) |#1|)) (-15 -2796 (|#1| (-694) |#1|)) (-15 -2546 (|#1| (-694) |#1|)) (-15 -2547 (|#1| (-694) |#1|)) (-15 -2547 (|#1| (-694) (-694) |#1|)) (IF (|has| |#1| (-38 (-347 (-483)))) (-15 -2548 (|#1| (-694) |#1|)) |%noBranch|)) (-146)) (T -765))
-((-2548 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-146)))) (-2547 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))) (-2547 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))) (-2546 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))) (-2796 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))) (-2795 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-2527 (($ $ $) 23 T ELT)) (-2853 (($ $ $) 22 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2562 (((-85) $ $) 21 T ELT)) (-2563 (((-85) $ $) 19 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 20 T ELT)) (-2681 (((-85) $ $) 18 T ELT)) (** (($ $ (-830)) 26 T ELT)) (* (($ $ $) 25 T ELT)))
-(((-766) (-113)) (T -766))
-NIL
-(-13 (-756) (-1024))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-756) . T) ((-759) . T) ((-1024) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3396 (((-483) $) 14 T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 20 T ELT) (($ (-483)) 13 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 10 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 12 T ELT)))
-(((-767) (-13 (-756) (-10 -8 (-15 -3940 ($ (-483))) (-15 -3396 ((-483) $))))) (T -767))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-767)))) (-3396 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-767)))))
-((-2549 (((-1183) (-583 (-51))) 23 T ELT)) (-3454 (((-1183) (-1071) (-772)) 13 T ELT) (((-1183) (-772)) 8 T ELT) (((-1183) (-1071)) 10 T ELT)))
-(((-768) (-10 -7 (-15 -3454 ((-1183) (-1071))) (-15 -3454 ((-1183) (-772))) (-15 -3454 ((-1183) (-1071) (-772))) (-15 -2549 ((-1183) (-583 (-51)))))) (T -768))
-((-2549 (*1 *2 *3) (-12 (-5 *3 (-583 (-51))) (-5 *2 (-1183)) (-5 *1 (-768)))) (-3454 (*1 *2 *3 *4) (-12 (-5 *3 (-1071)) (-5 *4 (-772)) (-5 *2 (-1183)) (-5 *1 (-768)))) (-3454 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1183)) (-5 *1 (-768)))) (-3454 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-768)))))
-((-2551 (((-632 (-1136)) $ (-1136)) 15 T ELT)) (-2552 (((-632 (-487)) $ (-487)) 12 T ELT)) (-2550 (((-694) $ (-102)) 30 T ELT)))
-(((-769 |#1|) (-10 -7 (-15 -2550 ((-694) |#1| (-102))) (-15 -2551 ((-632 (-1136)) |#1| (-1136))) (-15 -2552 ((-632 (-487)) |#1| (-487)))) (-770)) (T -769))
-NIL
-((-2551 (((-632 (-1136)) $ (-1136)) 8 T ELT)) (-2552 (((-632 (-487)) $ (-487)) 9 T ELT)) (-2550 (((-694) $ (-102)) 7 T ELT)) (-2553 (((-632 (-101)) $ (-101)) 10 T ELT)) (-1697 (($ $) 6 T ELT)))
-(((-770) (-113)) (T -770))
-((-2553 (*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-101))) (-5 *3 (-101)))) (-2552 (*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-487))) (-5 *3 (-487)))) (-2551 (*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-1136))) (-5 *3 (-1136)))) (-2550 (*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *3 (-102)) (-5 *2 (-694)))))
-(-13 (-147) (-10 -8 (-15 -2553 ((-632 (-101)) $ (-101))) (-15 -2552 ((-632 (-487)) $ (-487))) (-15 -2551 ((-632 (-1136)) $ (-1136))) (-15 -2550 ((-694) $ (-102)))))
+(-13 (-715) (-962) (-664))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-484)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-757) . T) ((-760) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) 7 T ELT)) (-2529 (($ $ $) 23 T ELT)) (-2855 (($ $ $) 22 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2564 (((-85) $ $) 21 T ELT)) (-2565 (((-85) $ $) 19 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-2682 (((-85) $ $) 20 T ELT)) (-2683 (((-85) $ $) 18 T ELT)))
+(((-757) (-113)) (T -757))
+NIL
+(-13 (-1013) (-760))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-760) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-2529 (($ $ $) NIL T ELT)) (-2855 (($ $ $) NIL T ELT)) (-3942 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) 12 T ELT)))
+(((-758 |#1| |#2|) (-13 (-760) (-427 |#1|) (-10 -7 (IF (|has| |#1| (-553 (-773))) (-6 (-553 (-773))) |%noBranch|))) (-1128) (-1 (-85) |#1| |#1|)) (T -758))
+NIL
+((-2529 (($ $ $) 16 T ELT)) (-2855 (($ $ $) 15 T ELT)) (-1263 (((-85) $ $) 17 T ELT)) (-2564 (((-85) $ $) 12 T ELT)) (-2565 (((-85) $ $) 9 T ELT)) (-3054 (((-85) $ $) 14 T ELT)) (-2682 (((-85) $ $) 11 T ELT)))
+(((-759 |#1|) (-10 -7 (-15 -2529 (|#1| |#1| |#1|)) (-15 -2855 (|#1| |#1| |#1|)) (-15 -2564 ((-85) |#1| |#1|)) (-15 -2682 ((-85) |#1| |#1|)) (-15 -2565 ((-85) |#1| |#1|)) (-15 -1263 ((-85) |#1| |#1|)) (-15 -3054 ((-85) |#1| |#1|))) (-760)) (T -759))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-2529 (($ $ $) 10 T ELT)) (-2855 (($ $ $) 11 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2564 (((-85) $ $) 12 T ELT)) (-2565 (((-85) $ $) 14 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-2682 (((-85) $ $) 13 T ELT)) (-2683 (((-85) $ $) 15 T ELT)))
+(((-760) (-113)) (T -760))
+((-2683 (*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) (-2565 (*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) (-2682 (*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) (-2564 (*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) (-2855 (*1 *1 *1 *1) (-4 *1 (-760))) (-2529 (*1 *1 *1 *1) (-4 *1 (-760))))
+(-13 (-72) (-10 -8 (-15 -2683 ((-85) $ $)) (-15 -2565 ((-85) $ $)) (-15 -2682 ((-85) $ $)) (-15 -2564 ((-85) $ $)) (-15 -2855 ($ $ $)) (-15 -2529 ($ $ $))))
+(((-72) . T) ((-13) . T) ((-1128) . T))
+((-2534 (($ $ $) 49 T ELT)) (-2535 (($ $ $) 48 T ELT)) (-2536 (($ $ $) 46 T ELT)) (-2532 (($ $ $) 55 T ELT)) (-2531 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) 50 T ELT)) (-2533 (((-3 $ #1="failed") $ $) 53 T ELT)) (-3154 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 29 T ELT)) (-3499 (($ $) 39 T ELT)) (-2540 (($ $ $) 43 T ELT)) (-2541 (($ $ $) 42 T ELT)) (-2530 (($ $ $) 51 T ELT)) (-2538 (($ $ $) 57 T ELT)) (-2537 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) 45 T ELT)) (-2539 (((-3 $ #1#) $ $) 52 T ELT)) (-3462 (((-3 $ #1#) $ |#2|) 32 T ELT)) (-2815 ((|#2| $) 36 T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ |#2|) 13 T ELT)) (-3813 (((-584 |#2|) $) 21 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT)))
+(((-761 |#1| |#2|) (-10 -7 (-15 -2530 (|#1| |#1| |#1|)) (-15 -2531 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2407 |#1|)) |#1| |#1|)) (-15 -2532 (|#1| |#1| |#1|)) (-15 -2533 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2534 (|#1| |#1| |#1|)) (-15 -2535 (|#1| |#1| |#1|)) (-15 -2536 (|#1| |#1| |#1|)) (-15 -2537 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2407 |#1|)) |#1| |#1|)) (-15 -2538 (|#1| |#1| |#1|)) (-15 -2539 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2540 (|#1| |#1| |#1|)) (-15 -2541 (|#1| |#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -2815 (|#2| |#1|)) (-15 -3462 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3813 ((-584 |#2|) |#1|)) (-15 -3942 (|#1| |#2|)) (-15 -3154 ((-3 |#2| #1#) |#1|)) (-15 -3154 ((-3 (-347 (-484)) #1#) |#1|)) (-15 -3942 (|#1| (-347 (-484)))) (-15 -3154 ((-3 (-484) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3942 (|#1| (-484))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|)) (-15 -3942 ((-773) |#1|))) (-762 |#2|) (-962)) (T -761))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-2534 (($ $ $) 56 (|has| |#1| (-311)) ELT)) (-2535 (($ $ $) 57 (|has| |#1| (-311)) ELT)) (-2536 (($ $ $) 59 (|has| |#1| (-311)) ELT)) (-2532 (($ $ $) 54 (|has| |#1| (-311)) ELT)) (-2531 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) 53 (|has| |#1| (-311)) ELT)) (-2533 (((-3 $ "failed") $ $) 55 (|has| |#1| (-311)) ELT)) (-2547 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 58 (|has| |#1| (-311)) ELT)) (-3154 (((-3 (-484) #1="failed") $) 86 (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) 83 (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) 80 T ELT)) (-3153 (((-484) $) 85 (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) 82 (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) 81 T ELT)) (-3955 (($ $) 75 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-3499 (($ $) 66 (|has| |#1| (-389)) ELT)) (-2408 (((-85) $) 42 T ELT)) (-2891 (($ |#1| (-695)) 73 T ELT)) (-2545 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 68 (|has| |#1| (-495)) ELT)) (-2544 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 69 (|has| |#1| (-495)) ELT)) (-2818 (((-695) $) 77 T ELT)) (-2540 (($ $ $) 63 (|has| |#1| (-311)) ELT)) (-2541 (($ $ $) 64 (|has| |#1| (-311)) ELT)) (-2530 (($ $ $) 52 (|has| |#1| (-311)) ELT)) (-2538 (($ $ $) 61 (|has| |#1| (-311)) ELT)) (-2537 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) 60 (|has| |#1| (-311)) ELT)) (-2539 (((-3 $ "failed") $ $) 62 (|has| |#1| (-311)) ELT)) (-2546 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 65 (|has| |#1| (-311)) ELT)) (-3171 ((|#1| $) 76 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3462 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-495)) ELT)) (-3944 (((-695) $) 78 T ELT)) (-2815 ((|#1| $) 67 (|has| |#1| (-389)) ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ (-347 (-484))) 84 (|has| |#1| (-951 (-347 (-484)))) ELT) (($ |#1|) 79 T ELT)) (-3813 (((-584 |#1|) $) 72 T ELT)) (-3673 ((|#1| $ (-695)) 74 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2543 ((|#1| $ |#1| |#1|) 71 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT)))
+(((-762 |#1|) (-113) (-962)) (T -762))
+((-3944 (*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-2818 (*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-3171 (*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-3955 (*1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-3673 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-2891 (*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-3813 (*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-584 *3)))) (-2543 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-3462 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-495)))) (-2544 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2900 *1))) (-4 *1 (-762 *3)))) (-2545 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2900 *1))) (-4 *1 (-762 *3)))) (-2815 (*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-389)))) (-3499 (*1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-389)))) (-2546 (*1 *2 *1 *1) (-12 (-4 *3 (-311)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2900 *1))) (-4 *1 (-762 *3)))) (-2541 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-2540 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-2539 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-2538 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-2537 (*1 *2 *1 *1) (-12 (-4 *3 (-311)) (-4 *3 (-962)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2407 *1))) (-4 *1 (-762 *3)))) (-2536 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-2547 (*1 *2 *1 *1) (-12 (-4 *3 (-311)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2900 *1))) (-4 *1 (-762 *3)))) (-2535 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-2534 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-2533 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-2532 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-2531 (*1 *2 *1 *1) (-12 (-4 *3 (-311)) (-4 *3 (-962)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2407 *1))) (-4 *1 (-762 *3)))) (-2530 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))))
+(-13 (-962) (-82 |t#1| |t#1|) (-352 |t#1|) (-10 -8 (-15 -3944 ((-695) $)) (-15 -2818 ((-695) $)) (-15 -3171 (|t#1| $)) (-15 -3955 ($ $)) (-15 -3673 (|t#1| $ (-695))) (-15 -2891 ($ |t#1| (-695))) (-15 -3813 ((-584 |t#1|) $)) (-15 -2543 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-495)) (PROGN (-15 -3462 ((-3 $ "failed") $ |t#1|)) (-15 -2544 ((-2 (|:| -1971 $) (|:| -2900 $)) $ $)) (-15 -2545 ((-2 (|:| -1971 $) (|:| -2900 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-389)) (PROGN (-15 -2815 (|t#1| $)) (-15 -3499 ($ $))) |%noBranch|) (IF (|has| |t#1| (-311)) (PROGN (-15 -2546 ((-2 (|:| -1971 $) (|:| -2900 $)) $ $)) (-15 -2541 ($ $ $)) (-15 -2540 ($ $ $)) (-15 -2539 ((-3 $ "failed") $ $)) (-15 -2538 ($ $ $)) (-15 -2537 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $)) (-15 -2536 ($ $ $)) (-15 -2547 ((-2 (|:| -1971 $) (|:| -2900 $)) $ $)) (-15 -2535 ($ $ $)) (-15 -2534 ($ $ $)) (-15 -2533 ((-3 $ "failed") $ $)) (-15 -2532 ($ $ $)) (-15 -2531 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $)) (-15 -2530 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((-556 (-484)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-352 |#1|) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-664) . T) ((-951 (-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((-951 (-484)) |has| |#1| (-951 (-484))) ((-951 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
+((-2542 ((|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-2547 (((-2 (|:| -1971 |#2|) (|:| -2900 |#2|)) |#2| |#2| (-69 |#1|)) 46 (|has| |#1| (-311)) ELT)) (-2545 (((-2 (|:| -1971 |#2|) (|:| -2900 |#2|)) |#2| |#2| (-69 |#1|)) 43 (|has| |#1| (-495)) ELT)) (-2544 (((-2 (|:| -1971 |#2|) (|:| -2900 |#2|)) |#2| |#2| (-69 |#1|)) 42 (|has| |#1| (-495)) ELT)) (-2546 (((-2 (|:| -1971 |#2|) (|:| -2900 |#2|)) |#2| |#2| (-69 |#1|)) 45 (|has| |#1| (-311)) ELT)) (-2543 ((|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|)) 33 T ELT)))
+(((-763 |#1| |#2|) (-10 -7 (-15 -2542 (|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|))) (-15 -2543 (|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-495)) (PROGN (-15 -2544 ((-2 (|:| -1971 |#2|) (|:| -2900 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2545 ((-2 (|:| -1971 |#2|) (|:| -2900 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|) (IF (|has| |#1| (-311)) (PROGN (-15 -2546 ((-2 (|:| -1971 |#2|) (|:| -2900 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2547 ((-2 (|:| -1971 |#2|) (|:| -2900 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|)) (-962) (-762 |#1|)) (T -763))
+((-2547 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-311)) (-4 *5 (-962)) (-5 *2 (-2 (|:| -1971 *3) (|:| -2900 *3))) (-5 *1 (-763 *5 *3)) (-4 *3 (-762 *5)))) (-2546 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-311)) (-4 *5 (-962)) (-5 *2 (-2 (|:| -1971 *3) (|:| -2900 *3))) (-5 *1 (-763 *5 *3)) (-4 *3 (-762 *5)))) (-2545 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-495)) (-4 *5 (-962)) (-5 *2 (-2 (|:| -1971 *3) (|:| -2900 *3))) (-5 *1 (-763 *5 *3)) (-4 *3 (-762 *5)))) (-2544 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-495)) (-4 *5 (-962)) (-5 *2 (-2 (|:| -1971 *3) (|:| -2900 *3))) (-5 *1 (-763 *5 *3)) (-4 *3 (-762 *5)))) (-2543 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-962)) (-5 *1 (-763 *2 *3)) (-4 *3 (-762 *2)))) (-2542 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-962)) (-5 *1 (-763 *5 *2)) (-4 *2 (-762 *5)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-2534 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2535 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2536 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2531 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2533 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2547 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 34 (|has| |#1| (-311)) ELT)) (-3154 (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3153 (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3955 (($ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3529 (((-773) $ (-773)) NIL T ELT)) (-2408 (((-85) $) NIL T ELT)) (-2891 (($ |#1| (-695)) NIL T ELT)) (-2545 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 30 (|has| |#1| (-495)) ELT)) (-2544 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 28 (|has| |#1| (-495)) ELT)) (-2818 (((-695) $) NIL T ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2530 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2537 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-2539 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2546 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 32 (|has| |#1| (-311)) ELT)) (-3171 ((|#1| $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3462 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-3944 (((-695) $) NIL T ELT)) (-2815 ((|#1| $) NIL (|has| |#1| (-389)) ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-347 (-484))) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (($ |#1|) NIL T ELT)) (-3813 (((-584 |#1|) $) NIL T ELT)) (-3673 ((|#1| $ (-695)) NIL T ELT)) (-3123 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2543 ((|#1| $ |#1| |#1|) 15 T ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) 23 T CONST)) (-3054 (((-85) $ $) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 19 T ELT) (($ $ (-695)) 24 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-764 |#1| |#2| |#3|) (-13 (-762 |#1|) (-10 -8 (-15 -3529 ((-773) $ (-773))))) (-962) (-69 |#1|) (-1 |#1| |#1|)) (T -764))
+((-3529 (*1 *2 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-764 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-69 *3)) (-14 *5 (-1 *3 *3)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-2534 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2535 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2536 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2532 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2531 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-2533 (((-3 $ #1#) $ $) NIL (|has| |#2| (-311)) ELT)) (-2547 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-3154 (((-3 (-484) #1#) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3153 (((-484) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) ((|#2| $) NIL T ELT)) (-3955 (($ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#2| (-389)) ELT)) (-2408 (((-85) $) NIL T ELT)) (-2891 (($ |#2| (-695)) 17 T ELT)) (-2545 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| |#2| (-495)) ELT)) (-2544 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| |#2| (-495)) ELT)) (-2818 (((-695) $) NIL T ELT)) (-2540 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2541 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2530 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2538 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-2537 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-2539 (((-3 $ #1#) $ $) NIL (|has| |#2| (-311)) ELT)) (-2546 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-3171 ((|#2| $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3462 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT)) (-3944 (((-695) $) NIL T ELT)) (-2815 ((|#2| $) NIL (|has| |#2| (-389)) ELT)) (-3942 (((-773) $) 24 T ELT) (($ (-484)) NIL T ELT) (($ (-347 (-484))) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) (($ |#2|) NIL T ELT) (($ (-1175 |#1|)) 19 T ELT)) (-3813 (((-584 |#2|) $) NIL T ELT)) (-3673 ((|#2| $ (-695)) NIL T ELT)) (-3123 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2543 ((|#2| $ |#2| |#2|) NIL T ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) 13 T CONST)) (-3054 (((-85) $ $) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
+(((-765 |#1| |#2| |#3| |#4|) (-13 (-762 |#2|) (-556 (-1175 |#1|))) (-1089) (-962) (-69 |#2|) (-1 |#2| |#2|)) (T -765))
+NIL
+((-2550 ((|#1| (-695) |#1|) 45 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2549 ((|#1| (-695) (-695) |#1|) 36 T ELT) ((|#1| (-695) |#1|) 24 T ELT)) (-2548 ((|#1| (-695) |#1|) 40 T ELT)) (-2798 ((|#1| (-695) |#1|) 38 T ELT)) (-2797 ((|#1| (-695) |#1|) 37 T ELT)))
+(((-766 |#1|) (-10 -7 (-15 -2797 (|#1| (-695) |#1|)) (-15 -2798 (|#1| (-695) |#1|)) (-15 -2548 (|#1| (-695) |#1|)) (-15 -2549 (|#1| (-695) |#1|)) (-15 -2549 (|#1| (-695) (-695) |#1|)) (IF (|has| |#1| (-38 (-347 (-484)))) (-15 -2550 (|#1| (-695) |#1|)) |%noBranch|)) (-146)) (T -766))
+((-2550 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-146)))) (-2549 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))) (-2549 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))) (-2548 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))) (-2798 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))) (-2797 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-2529 (($ $ $) 23 T ELT)) (-2855 (($ $ $) 22 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2564 (((-85) $ $) 21 T ELT)) (-2565 (((-85) $ $) 19 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-2682 (((-85) $ $) 20 T ELT)) (-2683 (((-85) $ $) 18 T ELT)) (** (($ $ (-831)) 26 T ELT)) (* (($ $ $) 25 T ELT)))
+(((-767) (-113)) (T -767))
+NIL
+(-13 (-757) (-1025))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-757) . T) ((-760) . T) ((-1025) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3398 (((-484) $) 14 T ELT)) (-2529 (($ $ $) NIL T ELT)) (-2855 (($ $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 20 T ELT) (($ (-484)) 13 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 10 T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) 12 T ELT)))
+(((-768) (-13 (-757) (-10 -8 (-15 -3942 ($ (-484))) (-15 -3398 ((-484) $))))) (T -768))
+((-3942 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-768)))) (-3398 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-768)))))
+((-2551 (((-1184) (-584 (-51))) 23 T ELT)) (-3456 (((-1184) (-1072) (-773)) 13 T ELT) (((-1184) (-773)) 8 T ELT) (((-1184) (-1072)) 10 T ELT)))
+(((-769) (-10 -7 (-15 -3456 ((-1184) (-1072))) (-15 -3456 ((-1184) (-773))) (-15 -3456 ((-1184) (-1072) (-773))) (-15 -2551 ((-1184) (-584 (-51)))))) (T -769))
+((-2551 (*1 *2 *3) (-12 (-5 *3 (-584 (-51))) (-5 *2 (-1184)) (-5 *1 (-769)))) (-3456 (*1 *2 *3 *4) (-12 (-5 *3 (-1072)) (-5 *4 (-773)) (-5 *2 (-1184)) (-5 *1 (-769)))) (-3456 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1184)) (-5 *1 (-769)))) (-3456 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-769)))))
+((-2553 (((-633 (-1137)) $ (-1137)) 15 T ELT)) (-2554 (((-633 (-488)) $ (-488)) 12 T ELT)) (-2552 (((-695) $ (-102)) 30 T ELT)))
+(((-770 |#1|) (-10 -7 (-15 -2552 ((-695) |#1| (-102))) (-15 -2553 ((-633 (-1137)) |#1| (-1137))) (-15 -2554 ((-633 (-488)) |#1| (-488)))) (-771)) (T -770))
+NIL
+((-2553 (((-633 (-1137)) $ (-1137)) 8 T ELT)) (-2554 (((-633 (-488)) $ (-488)) 9 T ELT)) (-2552 (((-695) $ (-102)) 7 T ELT)) (-2555 (((-633 (-101)) $ (-101)) 10 T ELT)) (-1698 (($ $) 6 T ELT)))
+(((-771) (-113)) (T -771))
+((-2555 (*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-101))) (-5 *3 (-101)))) (-2554 (*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-488))) (-5 *3 (-488)))) (-2553 (*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-1137))) (-5 *3 (-1137)))) (-2552 (*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *3 (-102)) (-5 *2 (-695)))))
+(-13 (-147) (-10 -8 (-15 -2555 ((-633 (-101)) $ (-101))) (-15 -2554 ((-633 (-488)) $ (-488))) (-15 -2553 ((-633 (-1137)) $ (-1137))) (-15 -2552 ((-695) $ (-102)))))
(((-147) . T))
-((-2551 (((-632 (-1136)) $ (-1136)) NIL T ELT)) (-2552 (((-632 (-487)) $ (-487)) NIL T ELT)) (-2550 (((-694) $ (-102)) NIL T ELT)) (-2553 (((-632 (-101)) $ (-101)) 22 T ELT)) (-2555 (($ (-335)) 12 T ELT) (($ (-1071)) 14 T ELT)) (-2554 (((-85) $) 19 T ELT)) (-3940 (((-772) $) 26 T ELT)) (-1697 (($ $) 23 T ELT)))
-(((-771) (-13 (-770) (-552 (-772)) (-10 -8 (-15 -2555 ($ (-335))) (-15 -2555 ($ (-1071))) (-15 -2554 ((-85) $))))) (T -771))
-((-2555 (*1 *1 *2) (-12 (-5 *2 (-335)) (-5 *1 (-771)))) (-2555 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-771)))) (-2554 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-771)))))
-((-2564 (((-85) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-2585 (($ $ $) 125 T ELT)) (-2600 (((-483) $) 31 T ELT) (((-483)) 36 T ELT)) (-2595 (($ (-483)) 53 T ELT)) (-2592 (($ $ $) 54 T ELT) (($ (-583 $)) 84 T ELT)) (-2576 (($ $ (-583 $)) 82 T ELT)) (-2597 (((-483) $) 34 T ELT)) (-2579 (($ $ $) 73 T ELT)) (-3526 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-2598 (((-483) $) 33 T ELT)) (-2580 (($ $ $) 72 T ELT)) (-3529 (($ $) 114 T ELT)) (-2583 (($ $ $) 129 T ELT)) (-2566 (($ (-583 $)) 61 T ELT)) (-3534 (($ $ (-583 $)) 79 T ELT)) (-2594 (($ (-483) (-483)) 55 T ELT)) (-2607 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-3132 (($ $ (-483)) 43 T ELT) (($ $) 46 T ELT)) (-2560 (($ $ $) 97 T ELT)) (-2581 (($ $ $) 132 T ELT)) (-2575 (($ $) 115 T ELT)) (-2559 (($ $ $) 98 T ELT)) (-2571 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-2833 (((-1183) $) 10 T ELT)) (-2574 (($ $) 118 T ELT) (($ $ (-694)) 122 T ELT)) (-2577 (($ $ $) 75 T ELT)) (-2578 (($ $ $) 74 T ELT)) (-2591 (($ $ (-583 $)) 110 T ELT)) (-2589 (($ $ $) 113 T ELT)) (-2568 (($ (-583 $)) 59 T ELT)) (-2569 (($ $) 70 T ELT) (($ (-583 $)) 71 T ELT)) (-2572 (($ $ $) 123 T ELT)) (-2573 (($ $) 116 T ELT)) (-2584 (($ $ $) 128 T ELT)) (-3527 (($ (-483)) 21 T ELT) (($ (-1088)) 23 T ELT) (($ (-1071)) 30 T ELT) (($ (-179)) 25 T ELT)) (-2557 (($ $ $) 101 T ELT)) (-2556 (($ $) 102 T ELT)) (-2602 (((-1183) (-1071)) 15 T ELT)) (-2603 (($ (-1071)) 14 T ELT)) (-3119 (($ (-583 (-583 $))) 58 T ELT)) (-3133 (($ $ (-483)) 42 T ELT) (($ $) 45 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2587 (($ $ $) 131 T ELT)) (-3464 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-2588 (((-85) $) 108 T ELT)) (-2590 (($ $ (-583 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-2596 (($ (-483)) 39 T ELT)) (-2599 (((-483) $) 32 T ELT) (((-483)) 35 T ELT)) (-2593 (($ $ $) 40 T ELT) (($ (-583 $)) 83 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3460 (($ $ $) 99 T ELT)) (-3559 (($) 13 T ELT)) (-3794 (($ $ (-583 $)) 109 T ELT)) (-2601 (((-1071) (-1071)) 8 T ELT)) (-3830 (($ $) 117 T ELT) (($ $ (-694)) 121 T ELT)) (-2561 (($ $ $) 96 T ELT)) (-3752 (($ $ (-694)) 139 T ELT)) (-2567 (($ (-583 $)) 60 T ELT)) (-3940 (((-772) $) 19 T ELT)) (-3767 (($ $ (-483)) 41 T ELT) (($ $) 44 T ELT)) (-2570 (($ $) 68 T ELT) (($ (-583 $)) 69 T ELT)) (-3235 (($ $) 66 T ELT) (($ (-583 $)) 67 T ELT)) (-2586 (($ $) 124 T ELT)) (-2565 (($ (-583 $)) 65 T ELT)) (-3097 (($ $ $) 105 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2582 (($ $ $) 130 T ELT)) (-2558 (($ $ $) 100 T ELT)) (-3731 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-2562 (($ $ $) 89 T ELT)) (-2563 (($ $ $) 87 T ELT)) (-3052 (((-85) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-2680 (($ $ $) 88 T ELT)) (-2681 (($ $ $) 86 T ELT)) (-3943 (($ $ $) 94 T ELT)) (-3831 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-3833 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT)))
-(((-772) (-13 (-1012) (-10 -8 (-15 -2833 ((-1183) $)) (-15 -2603 ($ (-1071))) (-15 -2602 ((-1183) (-1071))) (-15 -3527 ($ (-483))) (-15 -3527 ($ (-1088))) (-15 -3527 ($ (-1071))) (-15 -3527 ($ (-179))) (-15 -3559 ($)) (-15 -2601 ((-1071) (-1071))) (-15 -2600 ((-483) $)) (-15 -2599 ((-483) $)) (-15 -2600 ((-483))) (-15 -2599 ((-483))) (-15 -2598 ((-483) $)) (-15 -2597 ((-483) $)) (-15 -2596 ($ (-483))) (-15 -2595 ($ (-483))) (-15 -2594 ($ (-483) (-483))) (-15 -3133 ($ $ (-483))) (-15 -3132 ($ $ (-483))) (-15 -3767 ($ $ (-483))) (-15 -3133 ($ $)) (-15 -3132 ($ $)) (-15 -3767 ($ $)) (-15 -2593 ($ $ $)) (-15 -2592 ($ $ $)) (-15 -2593 ($ (-583 $))) (-15 -2592 ($ (-583 $))) (-15 -2591 ($ $ (-583 $))) (-15 -2590 ($ $ (-583 $))) (-15 -2590 ($ $ $ $)) (-15 -2589 ($ $ $)) (-15 -2588 ((-85) $)) (-15 -3794 ($ $ (-583 $))) (-15 -3529 ($ $)) (-15 -2587 ($ $ $)) (-15 -2586 ($ $)) (-15 -3119 ($ (-583 (-583 $)))) (-15 -2585 ($ $ $)) (-15 -2607 ($ $)) (-15 -2607 ($ $ $)) (-15 -2584 ($ $ $)) (-15 -2583 ($ $ $)) (-15 -2582 ($ $ $)) (-15 -2581 ($ $ $)) (-15 -3752 ($ $ (-694))) (-15 -3097 ($ $ $)) (-15 -2580 ($ $ $)) (-15 -2579 ($ $ $)) (-15 -2578 ($ $ $)) (-15 -2577 ($ $ $)) (-15 -3534 ($ $ (-583 $))) (-15 -2576 ($ $ (-583 $))) (-15 -2575 ($ $)) (-15 -3830 ($ $)) (-15 -3830 ($ $ (-694))) (-15 -2574 ($ $)) (-15 -2574 ($ $ (-694))) (-15 -2573 ($ $)) (-15 -2572 ($ $ $)) (-15 -3526 ($ $)) (-15 -3526 ($ $ $)) (-15 -3526 ($ $ $ $)) (-15 -2571 ($ $)) (-15 -2571 ($ $ $)) (-15 -2571 ($ $ $ $)) (-15 -3464 ($ $)) (-15 -3464 ($ $ $)) (-15 -3464 ($ $ $ $)) (-15 -3235 ($ $)) (-15 -3235 ($ (-583 $))) (-15 -2570 ($ $)) (-15 -2570 ($ (-583 $))) (-15 -2569 ($ $)) (-15 -2569 ($ (-583 $))) (-15 -2568 ($ (-583 $))) (-15 -2567 ($ (-583 $))) (-15 -2566 ($ (-583 $))) (-15 -2565 ($ (-583 $))) (-15 -3052 ($ $ $)) (-15 -2564 ($ $ $)) (-15 -2681 ($ $ $)) (-15 -2563 ($ $ $)) (-15 -2680 ($ $ $)) (-15 -2562 ($ $ $)) (-15 -3833 ($ $ $)) (-15 -3831 ($ $ $)) (-15 -3831 ($ $)) (-15 * ($ $ $)) (-15 -3943 ($ $ $)) (-15 ** ($ $ $)) (-15 -2561 ($ $ $)) (-15 -2560 ($ $ $)) (-15 -2559 ($ $ $)) (-15 -3460 ($ $ $)) (-15 -2558 ($ $ $)) (-15 -2557 ($ $ $)) (-15 -2556 ($ $)) (-15 -3731 ($ $ $)) (-15 -3731 ($ $))))) (T -772))
-((-2833 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-772)))) (-2603 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-772)))) (-2602 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-772)))) (-3527 (*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772)))) (-3527 (*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-772)))) (-3527 (*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-772)))) (-3527 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-772)))) (-3559 (*1 *1) (-5 *1 (-772))) (-2601 (*1 *2 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-772)))) (-2600 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-772)))) (-2599 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-772)))) (-2600 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772)))) (-2599 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772)))) (-2598 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-772)))) (-2597 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-772)))) (-2596 (*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772)))) (-2595 (*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772)))) (-2594 (*1 *1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772)))) (-3133 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772)))) (-3132 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772)))) (-3767 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772)))) (-3133 (*1 *1 *1) (-5 *1 (-772))) (-3132 (*1 *1 *1) (-5 *1 (-772))) (-3767 (*1 *1 *1) (-5 *1 (-772))) (-2593 (*1 *1 *1 *1) (-5 *1 (-772))) (-2592 (*1 *1 *1 *1) (-5 *1 (-772))) (-2593 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2592 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2591 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2590 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2590 (*1 *1 *1 *1 *1) (-5 *1 (-772))) (-2589 (*1 *1 *1 *1) (-5 *1 (-772))) (-2588 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-772)))) (-3794 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-3529 (*1 *1 *1) (-5 *1 (-772))) (-2587 (*1 *1 *1 *1) (-5 *1 (-772))) (-2586 (*1 *1 *1) (-5 *1 (-772))) (-3119 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-772)))) (-5 *1 (-772)))) (-2585 (*1 *1 *1 *1) (-5 *1 (-772))) (-2607 (*1 *1 *1) (-5 *1 (-772))) (-2607 (*1 *1 *1 *1) (-5 *1 (-772))) (-2584 (*1 *1 *1 *1) (-5 *1 (-772))) (-2583 (*1 *1 *1 *1) (-5 *1 (-772))) (-2582 (*1 *1 *1 *1) (-5 *1 (-772))) (-2581 (*1 *1 *1 *1) (-5 *1 (-772))) (-3752 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772)))) (-3097 (*1 *1 *1 *1) (-5 *1 (-772))) (-2580 (*1 *1 *1 *1) (-5 *1 (-772))) (-2579 (*1 *1 *1 *1) (-5 *1 (-772))) (-2578 (*1 *1 *1 *1) (-5 *1 (-772))) (-2577 (*1 *1 *1 *1) (-5 *1 (-772))) (-3534 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2576 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2575 (*1 *1 *1) (-5 *1 (-772))) (-3830 (*1 *1 *1) (-5 *1 (-772))) (-3830 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772)))) (-2574 (*1 *1 *1) (-5 *1 (-772))) (-2574 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772)))) (-2573 (*1 *1 *1) (-5 *1 (-772))) (-2572 (*1 *1 *1 *1) (-5 *1 (-772))) (-3526 (*1 *1 *1) (-5 *1 (-772))) (-3526 (*1 *1 *1 *1) (-5 *1 (-772))) (-3526 (*1 *1 *1 *1 *1) (-5 *1 (-772))) (-2571 (*1 *1 *1) (-5 *1 (-772))) (-2571 (*1 *1 *1 *1) (-5 *1 (-772))) (-2571 (*1 *1 *1 *1 *1) (-5 *1 (-772))) (-3464 (*1 *1 *1) (-5 *1 (-772))) (-3464 (*1 *1 *1 *1) (-5 *1 (-772))) (-3464 (*1 *1 *1 *1 *1) (-5 *1 (-772))) (-3235 (*1 *1 *1) (-5 *1 (-772))) (-3235 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2570 (*1 *1 *1) (-5 *1 (-772))) (-2570 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2569 (*1 *1 *1) (-5 *1 (-772))) (-2569 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2568 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2567 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2566 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2565 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-3052 (*1 *1 *1 *1) (-5 *1 (-772))) (-2564 (*1 *1 *1 *1) (-5 *1 (-772))) (-2681 (*1 *1 *1 *1) (-5 *1 (-772))) (-2563 (*1 *1 *1 *1) (-5 *1 (-772))) (-2680 (*1 *1 *1 *1) (-5 *1 (-772))) (-2562 (*1 *1 *1 *1) (-5 *1 (-772))) (-3833 (*1 *1 *1 *1) (-5 *1 (-772))) (-3831 (*1 *1 *1 *1) (-5 *1 (-772))) (-3831 (*1 *1 *1) (-5 *1 (-772))) (* (*1 *1 *1 *1) (-5 *1 (-772))) (-3943 (*1 *1 *1 *1) (-5 *1 (-772))) (** (*1 *1 *1 *1) (-5 *1 (-772))) (-2561 (*1 *1 *1 *1) (-5 *1 (-772))) (-2560 (*1 *1 *1 *1) (-5 *1 (-772))) (-2559 (*1 *1 *1 *1) (-5 *1 (-772))) (-3460 (*1 *1 *1 *1) (-5 *1 (-772))) (-2558 (*1 *1 *1 *1) (-5 *1 (-772))) (-2557 (*1 *1 *1 *1) (-5 *1 (-772))) (-2556 (*1 *1 *1) (-5 *1 (-772))) (-3731 (*1 *1 *1 *1) (-5 *1 (-772))) (-3731 (*1 *1 *1) (-5 *1 (-772))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3825 (((-3 $ "failed") (-1088)) 36 T ELT)) (-3131 (((-694)) 32 T ELT)) (-2990 (($) NIL T ELT)) (-2527 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2853 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2006 (((-830) $) 29 T ELT)) (-3237 (((-1071) $) 43 T ELT)) (-2396 (($ (-830)) 28 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3966 (((-1088) $) 13 T ELT) (((-472) $) 19 T ELT) (((-800 (-327)) $) 26 T ELT) (((-800 (-483)) $) 22 T ELT)) (-3940 (((-772) $) 16 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 40 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 38 T ELT)))
-(((-773 |#1|) (-13 (-752) (-553 (-1088)) (-553 (-472)) (-553 (-800 (-327))) (-553 (-800 (-483))) (-10 -8 (-15 -3825 ((-3 $ "failed") (-1088))))) (-583 (-1088))) (T -773))
-((-3825 (*1 *1 *2) (|partial| -12 (-5 *2 (-1088)) (-5 *1 (-773 *3)) (-14 *3 (-583 *2)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3536 (((-444) $) 12 T ELT)) (-2604 (((-583 (-378)) $) 14 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 22 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 17 T ELT)))
-(((-774) (-13 (-1012) (-10 -8 (-15 -3536 ((-444) $)) (-15 -2604 ((-583 (-378)) $))))) (T -774))
-((-3536 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-774)))) (-2604 (*1 *2 *1) (-12 (-5 *2 (-583 (-378))) (-5 *1 (-774)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-857 |#1|)) NIL T ELT) (((-857 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3121 (((-694)) NIL T CONST)) (-3917 (((-1183) (-694)) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT)))
-(((-775 |#1| |#2| |#3| |#4|) (-13 (-961) (-427 (-857 |#1|)) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-311)) (-15 -3943 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3917 ((-1183) (-694))))) (-961) (-583 (-1088)) (-583 (-694)) (-694)) (T -775))
-((-3943 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-775 *2 *3 *4 *5)) (-4 *2 (-311)) (-4 *2 (-961)) (-14 *3 (-583 (-1088))) (-14 *4 (-583 (-694))) (-14 *5 (-694)))) (-3917 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1183)) (-5 *1 (-775 *4 *5 *6 *7)) (-4 *4 (-961)) (-14 *5 (-583 (-1088))) (-14 *6 (-583 *3)) (-14 *7 *3))))
-((-2605 (((-3 (-148 |#3|) #1="failed") (-694) (-694) |#2| |#2|) 38 T ELT)) (-2606 (((-3 (-347 |#3|) #1#) (-694) (-694) |#2| |#2|) 29 T ELT)))
-(((-776 |#1| |#2| |#3|) (-10 -7 (-15 -2606 ((-3 (-347 |#3|) #1="failed") (-694) (-694) |#2| |#2|)) (-15 -2605 ((-3 (-148 |#3|) #1#) (-694) (-694) |#2| |#2|))) (-311) (-1170 |#1|) (-1153 |#1|)) (T -776))
-((-2605 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-694)) (-4 *5 (-311)) (-5 *2 (-148 *6)) (-5 *1 (-776 *5 *4 *6)) (-4 *4 (-1170 *5)) (-4 *6 (-1153 *5)))) (-2606 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-694)) (-4 *5 (-311)) (-5 *2 (-347 *6)) (-5 *1 (-776 *5 *4 *6)) (-4 *4 (-1170 *5)) (-4 *6 (-1153 *5)))))
-((-2606 (((-3 (-347 (-1146 |#2| |#1|)) #1="failed") (-694) (-694) (-1167 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-347 (-1146 |#2| |#1|)) #1#) (-694) (-694) (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) 28 T ELT)))
-(((-777 |#1| |#2| |#3|) (-10 -7 (-15 -2606 ((-3 (-347 (-1146 |#2| |#1|)) #1="failed") (-694) (-694) (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|))) (-15 -2606 ((-3 (-347 (-1146 |#2| |#1|)) #1#) (-694) (-694) (-1167 |#1| |#2| |#3|)))) (-311) (-1088) |#1|) (T -777))
-((-2606 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-694)) (-5 *4 (-1167 *5 *6 *7)) (-4 *5 (-311)) (-14 *6 (-1088)) (-14 *7 *5) (-5 *2 (-347 (-1146 *6 *5))) (-5 *1 (-777 *5 *6 *7)))) (-2606 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-694)) (-5 *4 (-1167 *5 *6 *7)) (-4 *5 (-311)) (-14 *6 (-1088)) (-14 *7 *5) (-5 *2 (-347 (-1146 *6 *5))) (-5 *1 (-777 *5 *6 *7)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3033 (($ $ (-483)) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2607 (($ (-1083 (-483)) (-483)) NIL T ELT)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2608 (($ $) NIL T ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3766 (((-694) $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2610 (((-483)) NIL T ELT)) (-2609 (((-483) $) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3763 (($ $ (-483)) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-2611 (((-1067 (-483)) $) NIL T ELT)) (-2887 (($ $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3764 (((-483) $ (-483)) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT)))
-(((-778 |#1|) (-779 |#1|) (-483)) (T -778))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3033 (($ $ (-483)) 76 T ELT)) (-1605 (((-85) $ $) 73 T ELT)) (-3718 (($) 22 T CONST)) (-2607 (($ (-1083 (-483)) (-483)) 75 T ELT)) (-2560 (($ $ $) 69 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2608 (($ $) 78 T ELT)) (-2559 (($ $ $) 70 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 64 T ELT)) (-3766 (((-694) $) 83 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-1602 (((-3 (-583 $) #1="failed") (-583 $) $) 66 T ELT)) (-2610 (((-483)) 80 T ELT)) (-2609 (((-483) $) 79 T ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3763 (($ $ (-483)) 82 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 63 T ELT)) (-1604 (((-694) $) 72 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 71 T ELT)) (-2611 (((-1067 (-483)) $) 84 T ELT)) (-2887 (($ $) 81 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-3764 (((-483) $ (-483)) 77 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT)))
-(((-779 |#1|) (-113) (-483)) (T -779))
-((-2611 (*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-1067 (-483))))) (-3766 (*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-694)))) (-3763 (*1 *1 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-483)))) (-2887 (*1 *1 *1) (-4 *1 (-779 *2))) (-2610 (*1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-483)))) (-2609 (*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-483)))) (-2608 (*1 *1 *1) (-4 *1 (-779 *2))) (-3764 (*1 *2 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-483)))) (-3033 (*1 *1 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-483)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *3 (-483)) (-4 *1 (-779 *4)))))
-(-13 (-257) (-120) (-10 -8 (-15 -2611 ((-1067 (-483)) $)) (-15 -3766 ((-694) $)) (-15 -3763 ($ $ (-483))) (-15 -2887 ($ $)) (-15 -2610 ((-483))) (-15 -2609 ((-483) $)) (-15 -2608 ($ $)) (-15 -3764 ((-483) $ (-483))) (-15 -3033 ($ $ (-483))) (-15 -2607 ($ (-1083 (-483)) (-483)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-555 (-483)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-245) . T) ((-257) . T) ((-389) . T) ((-494) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3124 (((-778 |#1|) $) NIL (|has| (-778 |#1|) (-257)) ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-778 |#1|) (-821)) ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| (-778 |#1|) (-821)) ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3617 (((-483) $) NIL (|has| (-778 |#1|) (-740)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-778 |#1|) #1#) $) NIL T ELT) (((-3 (-1088) #1#) $) NIL (|has| (-778 |#1|) (-950 (-1088))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| (-778 |#1|) (-950 (-483))) ELT) (((-3 (-483) #1#) $) NIL (|has| (-778 |#1|) (-950 (-483))) ELT)) (-3151 (((-778 |#1|) $) NIL T ELT) (((-1088) $) NIL (|has| (-778 |#1|) (-950 (-1088))) ELT) (((-347 (-483)) $) NIL (|has| (-778 |#1|) (-950 (-483))) ELT) (((-483) $) NIL (|has| (-778 |#1|) (-950 (-483))) ELT)) (-3724 (($ $) NIL T ELT) (($ (-483) $) NIL T ELT)) (-2560 (($ $ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| (-778 |#1|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| (-778 |#1|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-778 |#1|))) (|:| |vec| (-1177 (-778 |#1|)))) (-630 $) (-1177 $)) NIL T ELT) (((-630 (-778 |#1|)) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) NIL (|has| (-778 |#1|) (-482)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-3181 (((-85) $) NIL (|has| (-778 |#1|) (-740)) ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (|has| (-778 |#1|) (-796 (-483))) ELT) (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (|has| (-778 |#1|) (-796 (-327))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2992 (($ $) NIL T ELT)) (-2994 (((-778 |#1|) $) NIL T ELT)) (-3439 (((-632 $) $) NIL (|has| (-778 |#1|) (-1064)) ELT)) (-3182 (((-85) $) NIL (|has| (-778 |#1|) (-740)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2527 (($ $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-3952 (($ (-1 (-778 |#1|) (-778 |#1|)) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| (-778 |#1|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| (-778 |#1|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-778 |#1|))) (|:| |vec| (-1177 (-778 |#1|)))) (-1177 $) $) NIL T ELT) (((-630 (-778 |#1|)) (-1177 $)) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL (|has| (-778 |#1|) (-1064)) CONST)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3123 (($ $) NIL (|has| (-778 |#1|) (-257)) ELT)) (-3125 (((-778 |#1|) $) NIL (|has| (-778 |#1|) (-482)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-778 |#1|) (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-778 |#1|) (-821)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3762 (($ $ (-583 (-778 |#1|)) (-583 (-778 |#1|))) NIL (|has| (-778 |#1|) (-259 (-778 |#1|))) ELT) (($ $ (-778 |#1|) (-778 |#1|)) NIL (|has| (-778 |#1|) (-259 (-778 |#1|))) ELT) (($ $ (-248 (-778 |#1|))) NIL (|has| (-778 |#1|) (-259 (-778 |#1|))) ELT) (($ $ (-583 (-248 (-778 |#1|)))) NIL (|has| (-778 |#1|) (-259 (-778 |#1|))) ELT) (($ $ (-583 (-1088)) (-583 (-778 |#1|))) NIL (|has| (-778 |#1|) (-452 (-1088) (-778 |#1|))) ELT) (($ $ (-1088) (-778 |#1|)) NIL (|has| (-778 |#1|) (-452 (-1088) (-778 |#1|))) ELT)) (-1604 (((-694) $) NIL T ELT)) (-3794 (($ $ (-778 |#1|)) NIL (|has| (-778 |#1|) (-241 (-778 |#1|) (-778 |#1|))) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-3752 (($ $ (-1 (-778 |#1|) (-778 |#1|))) NIL T ELT) (($ $ (-1 (-778 |#1|) (-778 |#1|)) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-778 |#1|) (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| (-778 |#1|) (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| (-778 |#1|) (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| (-778 |#1|) (-811 (-1088))) ELT) (($ $) NIL (|has| (-778 |#1|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-778 |#1|) (-189)) ELT)) (-2991 (($ $) NIL T ELT)) (-2993 (((-778 |#1|) $) NIL T ELT)) (-3966 (((-800 (-483)) $) NIL (|has| (-778 |#1|) (-553 (-800 (-483)))) ELT) (((-800 (-327)) $) NIL (|has| (-778 |#1|) (-553 (-800 (-327)))) ELT) (((-472) $) NIL (|has| (-778 |#1|) (-553 (-472))) ELT) (((-327) $) NIL (|has| (-778 |#1|) (-933)) ELT) (((-179) $) NIL (|has| (-778 |#1|) (-933)) ELT)) (-2612 (((-148 (-347 (-483))) $) NIL T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-778 |#1|) (-821))) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ (-778 |#1|)) NIL T ELT) (($ (-1088)) NIL (|has| (-778 |#1|) (-950 (-1088))) ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-778 |#1|) (-821))) (|has| (-778 |#1|) (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-3126 (((-778 |#1|) $) NIL (|has| (-778 |#1|) (-482)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3764 (((-347 (-483)) $ (-483)) NIL T ELT)) (-3377 (($ $) NIL (|has| (-778 |#1|) (-740)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-1 (-778 |#1|) (-778 |#1|))) NIL T ELT) (($ $ (-1 (-778 |#1|) (-778 |#1|)) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-778 |#1|) (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| (-778 |#1|) (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| (-778 |#1|) (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| (-778 |#1|) (-811 (-1088))) ELT) (($ $) NIL (|has| (-778 |#1|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-778 |#1|) (-189)) ELT)) (-2562 (((-85) $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-3943 (($ $ $) NIL T ELT) (($ (-778 |#1|) (-778 |#1|)) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ (-778 |#1|) $) NIL T ELT) (($ $ (-778 |#1|)) NIL T ELT)))
-(((-780 |#1|) (-13 (-904 (-778 |#1|)) (-10 -8 (-15 -3764 ((-347 (-483)) $ (-483))) (-15 -2612 ((-148 (-347 (-483))) $)) (-15 -3724 ($ $)) (-15 -3724 ($ (-483) $)))) (-483)) (T -780))
-((-3764 (*1 *2 *1 *3) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-780 *4)) (-14 *4 *3) (-5 *3 (-483)))) (-2612 (*1 *2 *1) (-12 (-5 *2 (-148 (-347 (-483)))) (-5 *1 (-780 *3)) (-14 *3 (-483)))) (-3724 (*1 *1 *1) (-12 (-5 *1 (-780 *2)) (-14 *2 (-483)))) (-3724 (*1 *1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-780 *3)) (-14 *3 *2))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3124 ((|#2| $) NIL (|has| |#2| (-257)) ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3617 (((-483) $) NIL (|has| |#2| (-740)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1088) #1#) $) NIL (|has| |#2| (-950 (-1088))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#2| (-950 (-483))) ELT)) (-3151 ((|#2| $) NIL T ELT) (((-1088) $) NIL (|has| |#2| (-950 (-1088))) ELT) (((-347 (-483)) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-483) $) NIL (|has| |#2| (-950 (-483))) ELT)) (-3724 (($ $) 35 T ELT) (($ (-483) $) 38 T ELT)) (-2560 (($ $ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) 64 T ELT)) (-2990 (($) NIL (|has| |#2| (-482)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-3181 (((-85) $) NIL (|has| |#2| (-740)) ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (|has| |#2| (-796 (-483))) ELT) (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (|has| |#2| (-796 (-327))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2992 (($ $) NIL T ELT)) (-2994 ((|#2| $) NIL T ELT)) (-3439 (((-632 $) $) NIL (|has| |#2| (-1064)) ELT)) (-3182 (((-85) $) NIL (|has| |#2| (-740)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2527 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-3952 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL T ELT) (((-630 |#2|) (-1177 $)) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) 60 T ELT)) (-3440 (($) NIL (|has| |#2| (-1064)) CONST)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3123 (($ $) NIL (|has| |#2| (-257)) ELT)) (-3125 ((|#2| $) NIL (|has| |#2| (-482)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3762 (($ $ (-583 |#2|) (-583 |#2|)) NIL (|has| |#2| (-259 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-259 |#2|)) ELT) (($ $ (-248 |#2|)) NIL (|has| |#2| (-259 |#2|)) ELT) (($ $ (-583 (-248 |#2|))) NIL (|has| |#2| (-259 |#2|)) ELT) (($ $ (-583 (-1088)) (-583 |#2|)) NIL (|has| |#2| (-452 (-1088) |#2|)) ELT) (($ $ (-1088) |#2|) NIL (|has| |#2| (-452 (-1088) |#2|)) ELT)) (-1604 (((-694) $) NIL T ELT)) (-3794 (($ $ |#2|) NIL (|has| |#2| (-241 |#2| |#2|)) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-3752 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT)) (-2991 (($ $) NIL T ELT)) (-2993 ((|#2| $) NIL T ELT)) (-3966 (((-800 (-483)) $) NIL (|has| |#2| (-553 (-800 (-483)))) ELT) (((-800 (-327)) $) NIL (|has| |#2| (-553 (-800 (-327)))) ELT) (((-472) $) NIL (|has| |#2| (-553 (-472))) ELT) (((-327) $) NIL (|has| |#2| (-933)) ELT) (((-179) $) NIL (|has| |#2| (-933)) ELT)) (-2612 (((-148 (-347 (-483))) $) 78 T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3940 (((-772) $) 105 T ELT) (($ (-483)) 20 T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1088)) NIL (|has| |#2| (-950 (-1088))) ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-3126 ((|#2| $) NIL (|has| |#2| (-482)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3764 (((-347 (-483)) $ (-483)) 71 T ELT)) (-3377 (($ $) NIL (|has| |#2| (-740)) ELT)) (-2656 (($) 15 T CONST)) (-2662 (($) 17 T CONST)) (-2665 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT)) (-2562 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-3052 (((-85) $ $) 46 T ELT)) (-2680 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-3943 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-3831 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-3833 (($ $ $) 48 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) 61 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT)))
-(((-781 |#1| |#2|) (-13 (-904 |#2|) (-10 -8 (-15 -3764 ((-347 (-483)) $ (-483))) (-15 -2612 ((-148 (-347 (-483))) $)) (-15 -3724 ($ $)) (-15 -3724 ($ (-483) $)))) (-483) (-779 |#1|)) (T -781))
-((-3764 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-347 (-483))) (-5 *1 (-781 *4 *5)) (-5 *3 (-483)) (-4 *5 (-779 *4)))) (-2612 (*1 *2 *1) (-12 (-14 *3 (-483)) (-5 *2 (-148 (-347 (-483)))) (-5 *1 (-781 *3 *4)) (-4 *4 (-779 *3)))) (-3724 (*1 *1 *1) (-12 (-14 *2 (-483)) (-5 *1 (-781 *2 *3)) (-4 *3 (-779 *2)))) (-3724 (*1 *1 *2 *1) (-12 (-5 *2 (-483)) (-14 *3 *2) (-5 *1 (-781 *3 *4)) (-4 *4 (-779 *3)))))
-((-2564 (((-85) $ $) NIL (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) ELT)) (-3790 ((|#2| $) 12 T ELT)) (-2613 (($ |#1| |#2|) 9 T ELT)) (-3237 (((-1071) $) NIL (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) ELT)) (-3238 (((-1032) $) NIL (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) ELT)) (-3795 ((|#1| $) 11 T ELT)) (-3524 (($ |#1| |#2|) 10 T ELT)) (-3940 (((-772) $) 18 (OR (-12 (|has| |#1| (-552 (-772))) (|has| |#2| (-552 (-772)))) (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012)))) ELT)) (-1262 (((-85) $ $) NIL (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) ELT)) (-3052 (((-85) $ $) 23 (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))) ELT)))
-(((-782 |#1| |#2|) (-13 (-1127) (-10 -8 (IF (|has| |#1| (-552 (-772))) (IF (|has| |#2| (-552 (-772))) (-6 (-552 (-772))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1012)) (IF (|has| |#2| (-1012)) (-6 (-1012)) |%noBranch|) |%noBranch|) (-15 -2613 ($ |#1| |#2|)) (-15 -3524 ($ |#1| |#2|)) (-15 -3795 (|#1| $)) (-15 -3790 (|#2| $)))) (-1127) (-1127)) (T -782))
-((-2613 (*1 *1 *2 *3) (-12 (-5 *1 (-782 *2 *3)) (-4 *2 (-1127)) (-4 *3 (-1127)))) (-3524 (*1 *1 *2 *3) (-12 (-5 *1 (-782 *2 *3)) (-4 *2 (-1127)) (-4 *3 (-1127)))) (-3795 (*1 *2 *1) (-12 (-4 *2 (-1127)) (-5 *1 (-782 *2 *3)) (-4 *3 (-1127)))) (-3790 (*1 *2 *1) (-12 (-4 *2 (-1127)) (-5 *1 (-782 *3 *2)) (-4 *3 (-1127)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-2953 (((-483) $) 16 T ELT)) (-2615 (($ (-130)) 13 T ELT)) (-2614 (($ (-130)) 14 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2952 (((-130) $) 15 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2617 (($ (-130)) 11 T ELT)) (-2618 (($ (-130)) 10 T ELT)) (-3940 (((-772) $) 24 T ELT) (($ (-130)) 17 T ELT)) (-2616 (($ (-130)) 12 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-783) (-13 (-1012) (-555 (-130)) (-10 -8 (-15 -2618 ($ (-130))) (-15 -2617 ($ (-130))) (-15 -2616 ($ (-130))) (-15 -2615 ($ (-130))) (-15 -2614 ($ (-130))) (-15 -2952 ((-130) $)) (-15 -2953 ((-483) $))))) (T -783))
-((-2618 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2617 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2616 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2615 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2614 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2952 (*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2953 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-783)))))
-((-3940 (((-264 (-483)) (-347 (-857 (-48)))) 23 T ELT) (((-264 (-483)) (-857 (-48))) 18 T ELT)))
-(((-784) (-10 -7 (-15 -3940 ((-264 (-483)) (-857 (-48)))) (-15 -3940 ((-264 (-483)) (-347 (-857 (-48))))))) (T -784))
-((-3940 (*1 *2 *3) (-12 (-5 *3 (-347 (-857 (-48)))) (-5 *2 (-264 (-483))) (-5 *1 (-784)))) (-3940 (*1 *2 *3) (-12 (-5 *3 (-857 (-48))) (-5 *2 (-264 (-483))) (-5 *1 (-784)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 18 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3560 (((-85) $ (|[\|\|]| (-444))) 9 T ELT) (((-85) $ (|[\|\|]| (-1071))) 13 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3566 (((-444) $) 10 T ELT) (((-1071) $) 14 T ELT)) (-3052 (((-85) $ $) 15 T ELT)))
-(((-785) (-13 (-994) (-1173) (-10 -8 (-15 -3560 ((-85) $ (|[\|\|]| (-444)))) (-15 -3566 ((-444) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-1071)))) (-15 -3566 ((-1071) $))))) (T -785))
-((-3560 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-444))) (-5 *2 (-85)) (-5 *1 (-785)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-785)))) (-3560 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1071))) (-5 *2 (-85)) (-5 *1 (-785)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-785)))))
-((-3952 (((-787 |#2|) (-1 |#2| |#1|) (-787 |#1|)) 15 T ELT)))
-(((-786 |#1| |#2|) (-10 -7 (-15 -3952 ((-787 |#2|) (-1 |#2| |#1|) (-787 |#1|)))) (-1127) (-1127)) (T -786))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-787 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-787 *6)) (-5 *1 (-786 *5 *6)))))
-((-3365 (($ |#1| |#1|) 8 T ELT)) (-2621 ((|#1| $ (-694)) 15 T ELT)))
-(((-787 |#1|) (-10 -8 (-15 -3365 ($ |#1| |#1|)) (-15 -2621 (|#1| $ (-694)))) (-1127)) (T -787))
-((-2621 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-787 *2)) (-4 *2 (-1127)))) (-3365 (*1 *1 *2 *2) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1127)))))
-((-3952 (((-789 |#2|) (-1 |#2| |#1|) (-789 |#1|)) 15 T ELT)))
-(((-788 |#1| |#2|) (-10 -7 (-15 -3952 ((-789 |#2|) (-1 |#2| |#1|) (-789 |#1|)))) (-1127) (-1127)) (T -788))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-789 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-789 *6)) (-5 *1 (-788 *5 *6)))))
-((-3365 (($ |#1| |#1| |#1|) 8 T ELT)) (-2621 ((|#1| $ (-694)) 15 T ELT)))
-(((-789 |#1|) (-10 -8 (-15 -3365 ($ |#1| |#1| |#1|)) (-15 -2621 (|#1| $ (-694)))) (-1127)) (T -789))
-((-2621 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-789 *2)) (-4 *2 (-1127)))) (-3365 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-789 *2)) (-4 *2 (-1127)))))
-((-2619 (((-583 (-1093)) (-1071)) 9 T ELT)))
-(((-790) (-10 -7 (-15 -2619 ((-583 (-1093)) (-1071))))) (T -790))
-((-2619 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-583 (-1093))) (-5 *1 (-790)))))
-((-3952 (((-792 |#2|) (-1 |#2| |#1|) (-792 |#1|)) 15 T ELT)))
-(((-791 |#1| |#2|) (-10 -7 (-15 -3952 ((-792 |#2|) (-1 |#2| |#1|) (-792 |#1|)))) (-1127) (-1127)) (T -791))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-792 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-792 *6)) (-5 *1 (-791 *5 *6)))))
-((-2620 (($ |#1| |#1| |#1|) 8 T ELT)) (-2621 ((|#1| $ (-694)) 15 T ELT)))
-(((-792 |#1|) (-10 -8 (-15 -2620 ($ |#1| |#1| |#1|)) (-15 -2621 (|#1| $ (-694)))) (-1127)) (T -792))
-((-2621 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-792 *2)) (-4 *2 (-1127)))) (-2620 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1127)))))
-((-2624 (((-1067 (-583 (-483))) (-583 (-483)) (-1067 (-583 (-483)))) 41 T ELT)) (-2623 (((-1067 (-583 (-483))) (-583 (-483)) (-583 (-483))) 31 T ELT)) (-2625 (((-1067 (-583 (-483))) (-583 (-483))) 53 T ELT) (((-1067 (-583 (-483))) (-583 (-483)) (-583 (-483))) 50 T ELT)) (-2626 (((-1067 (-583 (-483))) (-483)) 55 T ELT)) (-2622 (((-1067 (-583 (-830))) (-1067 (-583 (-830)))) 22 T ELT)) (-3005 (((-583 (-830)) (-583 (-830))) 18 T ELT)))
-(((-793) (-10 -7 (-15 -3005 ((-583 (-830)) (-583 (-830)))) (-15 -2622 ((-1067 (-583 (-830))) (-1067 (-583 (-830))))) (-15 -2623 ((-1067 (-583 (-483))) (-583 (-483)) (-583 (-483)))) (-15 -2624 ((-1067 (-583 (-483))) (-583 (-483)) (-1067 (-583 (-483))))) (-15 -2625 ((-1067 (-583 (-483))) (-583 (-483)) (-583 (-483)))) (-15 -2625 ((-1067 (-583 (-483))) (-583 (-483)))) (-15 -2626 ((-1067 (-583 (-483))) (-483))))) (T -793))
-((-2626 (*1 *2 *3) (-12 (-5 *2 (-1067 (-583 (-483)))) (-5 *1 (-793)) (-5 *3 (-483)))) (-2625 (*1 *2 *3) (-12 (-5 *2 (-1067 (-583 (-483)))) (-5 *1 (-793)) (-5 *3 (-583 (-483))))) (-2625 (*1 *2 *3 *3) (-12 (-5 *2 (-1067 (-583 (-483)))) (-5 *1 (-793)) (-5 *3 (-583 (-483))))) (-2624 (*1 *2 *3 *2) (-12 (-5 *2 (-1067 (-583 (-483)))) (-5 *3 (-583 (-483))) (-5 *1 (-793)))) (-2623 (*1 *2 *3 *3) (-12 (-5 *2 (-1067 (-583 (-483)))) (-5 *1 (-793)) (-5 *3 (-583 (-483))))) (-2622 (*1 *2 *2) (-12 (-5 *2 (-1067 (-583 (-830)))) (-5 *1 (-793)))) (-3005 (*1 *2 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-793)))))
-((-3966 (((-800 (-327)) $) 9 (|has| |#1| (-553 (-800 (-327)))) ELT) (((-800 (-483)) $) 8 (|has| |#1| (-553 (-800 (-483)))) ELT)))
-(((-794 |#1|) (-113) (-1127)) (T -794))
-NIL
-(-13 (-10 -7 (IF (|has| |t#1| (-553 (-800 (-483)))) (-6 (-553 (-800 (-483)))) |%noBranch|) (IF (|has| |t#1| (-553 (-800 (-327)))) (-6 (-553 (-800 (-327)))) |%noBranch|)))
-(((-553 (-800 (-327))) |has| |#1| (-553 (-800 (-327)))) ((-553 (-800 (-483))) |has| |#1| (-553 (-800 (-483)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3608 (($) 14 T ELT)) (-2628 (($ (-798 |#1| |#2|) (-798 |#1| |#3|)) 28 T ELT)) (-2627 (((-798 |#1| |#3|) $) 16 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2636 (((-85) $) 22 T ELT)) (-2635 (($) 19 T ELT)) (-3940 (((-772) $) 31 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2846 (((-798 |#1| |#2|) $) 15 T ELT)) (-3052 (((-85) $ $) 26 T ELT)))
-(((-795 |#1| |#2| |#3|) (-13 (-1012) (-10 -8 (-15 -2636 ((-85) $)) (-15 -2635 ($)) (-15 -3608 ($)) (-15 -2628 ($ (-798 |#1| |#2|) (-798 |#1| |#3|))) (-15 -2846 ((-798 |#1| |#2|) $)) (-15 -2627 ((-798 |#1| |#3|) $)))) (-1012) (-1012) (-608 |#2|)) (T -795))
-((-2636 (*1 *2 *1) (-12 (-4 *4 (-1012)) (-5 *2 (-85)) (-5 *1 (-795 *3 *4 *5)) (-4 *3 (-1012)) (-4 *5 (-608 *4)))) (-2635 (*1 *1) (-12 (-4 *3 (-1012)) (-5 *1 (-795 *2 *3 *4)) (-4 *2 (-1012)) (-4 *4 (-608 *3)))) (-3608 (*1 *1) (-12 (-4 *3 (-1012)) (-5 *1 (-795 *2 *3 *4)) (-4 *2 (-1012)) (-4 *4 (-608 *3)))) (-2628 (*1 *1 *2 *3) (-12 (-5 *2 (-798 *4 *5)) (-5 *3 (-798 *4 *6)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-608 *5)) (-5 *1 (-795 *4 *5 *6)))) (-2846 (*1 *2 *1) (-12 (-4 *4 (-1012)) (-5 *2 (-798 *3 *4)) (-5 *1 (-795 *3 *4 *5)) (-4 *3 (-1012)) (-4 *5 (-608 *4)))) (-2627 (*1 *2 *1) (-12 (-4 *4 (-1012)) (-5 *2 (-798 *3 *5)) (-5 *1 (-795 *3 *4 *5)) (-4 *3 (-1012)) (-4 *5 (-608 *4)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-2792 (((-798 |#1| $) $ (-800 |#1|) (-798 |#1| $)) 17 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT)))
-(((-796 |#1|) (-113) (-1012)) (T -796))
-((-2792 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-798 *4 *1)) (-5 *3 (-800 *4)) (-4 *1 (-796 *4)) (-4 *4 (-1012)))))
-(-13 (-1012) (-10 -8 (-15 -2792 ((-798 |t#1| $) $ (-800 |t#1|) (-798 |t#1| $)))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T))
-((-2629 (((-85) (-583 |#2|) |#3|) 23 T ELT) (((-85) |#2| |#3|) 18 T ELT)) (-2630 (((-798 |#1| |#2|) |#2| |#3|) 45 (-12 (-2556 (|has| |#2| (-950 (-1088)))) (-2556 (|has| |#2| (-961)))) ELT) (((-583 (-248 (-857 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-961)) (-2556 (|has| |#2| (-950 (-1088))))) ELT) (((-583 (-248 |#2|)) |#2| |#3|) 36 (|has| |#2| (-950 (-1088))) ELT) (((-795 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|) 21 T ELT)))
-(((-797 |#1| |#2| |#3|) (-10 -7 (-15 -2629 ((-85) |#2| |#3|)) (-15 -2629 ((-85) (-583 |#2|) |#3|)) (-15 -2630 ((-795 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|)) (IF (|has| |#2| (-950 (-1088))) (-15 -2630 ((-583 (-248 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-961)) (-15 -2630 ((-583 (-248 (-857 |#2|))) |#2| |#3|)) (-15 -2630 ((-798 |#1| |#2|) |#2| |#3|))))) (-1012) (-796 |#1|) (-553 (-800 |#1|))) (T -797))
-((-2630 (*1 *2 *3 *4) (-12 (-4 *5 (-1012)) (-5 *2 (-798 *5 *3)) (-5 *1 (-797 *5 *3 *4)) (-2556 (-4 *3 (-950 (-1088)))) (-2556 (-4 *3 (-961))) (-4 *3 (-796 *5)) (-4 *4 (-553 (-800 *5))))) (-2630 (*1 *2 *3 *4) (-12 (-4 *5 (-1012)) (-5 *2 (-583 (-248 (-857 *3)))) (-5 *1 (-797 *5 *3 *4)) (-4 *3 (-961)) (-2556 (-4 *3 (-950 (-1088)))) (-4 *3 (-796 *5)) (-4 *4 (-553 (-800 *5))))) (-2630 (*1 *2 *3 *4) (-12 (-4 *5 (-1012)) (-5 *2 (-583 (-248 *3))) (-5 *1 (-797 *5 *3 *4)) (-4 *3 (-950 (-1088))) (-4 *3 (-796 *5)) (-4 *4 (-553 (-800 *5))))) (-2630 (*1 *2 *3 *4) (-12 (-4 *5 (-1012)) (-4 *6 (-796 *5)) (-5 *2 (-795 *5 *6 (-583 *6))) (-5 *1 (-797 *5 *6 *4)) (-5 *3 (-583 *6)) (-4 *4 (-553 (-800 *5))))) (-2629 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-4 *6 (-796 *5)) (-4 *5 (-1012)) (-5 *2 (-85)) (-5 *1 (-797 *5 *6 *4)) (-4 *4 (-553 (-800 *5))))) (-2629 (*1 *2 *3 *4) (-12 (-4 *5 (-1012)) (-5 *2 (-85)) (-5 *1 (-797 *5 *3 *4)) (-4 *3 (-796 *5)) (-4 *4 (-553 (-800 *5))))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3229 (($ $ $) 40 T ELT)) (-2657 (((-3 (-85) #1="failed") $ (-800 |#1|)) 37 T ELT)) (-3608 (($) 12 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2632 (($ (-800 |#1|) |#2| $) 20 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2634 (((-3 |#2| #1#) (-800 |#1|) $) 51 T ELT)) (-2636 (((-85) $) 15 T ELT)) (-2635 (($) 13 T ELT)) (-3252 (((-583 (-2 (|:| -3854 (-1088)) (|:| |entry| |#2|))) $) 25 T ELT)) (-3524 (($ (-583 (-2 (|:| -3854 (-1088)) (|:| |entry| |#2|)))) 23 T ELT)) (-3940 (((-772) $) 45 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2631 (($ (-800 |#1|) |#2| $ |#2|) 49 T ELT)) (-2633 (($ (-800 |#1|) |#2| $) 48 T ELT)) (-3052 (((-85) $ $) 42 T ELT)))
-(((-798 |#1| |#2|) (-13 (-1012) (-10 -8 (-15 -2636 ((-85) $)) (-15 -2635 ($)) (-15 -3608 ($)) (-15 -3229 ($ $ $)) (-15 -2634 ((-3 |#2| #1="failed") (-800 |#1|) $)) (-15 -2633 ($ (-800 |#1|) |#2| $)) (-15 -2632 ($ (-800 |#1|) |#2| $)) (-15 -2631 ($ (-800 |#1|) |#2| $ |#2|)) (-15 -3252 ((-583 (-2 (|:| -3854 (-1088)) (|:| |entry| |#2|))) $)) (-15 -3524 ($ (-583 (-2 (|:| -3854 (-1088)) (|:| |entry| |#2|))))) (-15 -2657 ((-3 (-85) #1#) $ (-800 |#1|))))) (-1012) (-1012)) (T -798))
-((-2636 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-798 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-2635 (*1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) (-3608 (*1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) (-3229 (*1 *1 *1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) (-2634 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-800 *4)) (-4 *4 (-1012)) (-4 *2 (-1012)) (-5 *1 (-798 *4 *2)))) (-2633 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-800 *4)) (-4 *4 (-1012)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1012)))) (-2632 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-800 *4)) (-4 *4 (-1012)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1012)))) (-2631 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-800 *4)) (-4 *4 (-1012)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1012)))) (-3252 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3854 (-1088)) (|:| |entry| *4)))) (-5 *1 (-798 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-3524 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3854 (-1088)) (|:| |entry| *4)))) (-4 *4 (-1012)) (-5 *1 (-798 *3 *4)) (-4 *3 (-1012)))) (-2657 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-800 *4)) (-4 *4 (-1012)) (-5 *2 (-85)) (-5 *1 (-798 *4 *5)) (-4 *5 (-1012)))))
-((-3952 (((-798 |#1| |#3|) (-1 |#3| |#2|) (-798 |#1| |#2|)) 22 T ELT)))
-(((-799 |#1| |#2| |#3|) (-10 -7 (-15 -3952 ((-798 |#1| |#3|) (-1 |#3| |#2|) (-798 |#1| |#2|)))) (-1012) (-1012) (-1012)) (T -799))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-798 *5 *6)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-798 *5 *7)) (-5 *1 (-799 *5 *6 *7)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-2644 (($ $ (-583 (-51))) 74 T ELT)) (-3077 (((-583 $) $) 139 T ELT)) (-2641 (((-2 (|:| |var| (-583 (-1088))) (|:| |pred| (-51))) $) 30 T ELT)) (-3255 (((-85) $) 35 T ELT)) (-2642 (($ $ (-583 (-1088)) (-51)) 31 T ELT)) (-2645 (($ $ (-583 (-51))) 73 T ELT)) (-3152 (((-3 |#1| #1="failed") $) 71 T ELT) (((-3 (-1088) #1#) $) 167 T ELT)) (-3151 ((|#1| $) 68 T ELT) (((-1088) $) NIL T ELT)) (-2639 (($ $) 126 T ELT)) (-2651 (((-85) $) 55 T ELT)) (-2646 (((-583 (-51)) $) 50 T ELT)) (-2643 (($ (-1088) (-85) (-85) (-85)) 75 T ELT)) (-2637 (((-3 (-583 $) #1#) (-583 $)) 82 T ELT)) (-2648 (((-85) $) 58 T ELT)) (-2649 (((-85) $) 57 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2819 (((-3 (-583 $) #1#) $) 41 T ELT)) (-2654 (((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $) 48 T ELT)) (-2821 (((-3 (-2 (|:| |val| $) (|:| -2397 $)) #1#) $) 97 T ELT)) (-2818 (((-3 (-583 $) #1#) $) 40 T ELT)) (-2655 (((-3 (-583 $) #1#) $ (-86)) 124 T ELT) (((-3 (-2 (|:| -2509 (-86)) (|:| |arg| (-583 $))) #1#) $) 107 T ELT)) (-2653 (((-3 (-583 $) #1#) $) 42 T ELT)) (-2820 (((-3 (-2 (|:| |val| $) (|:| -2397 (-694))) #1#) $) 45 T ELT)) (-2652 (((-85) $) 34 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2640 (((-85) $) 28 T ELT)) (-2647 (((-85) $) 52 T ELT)) (-2638 (((-583 (-51)) $) 130 T ELT)) (-2650 (((-85) $) 56 T ELT)) (-3794 (($ (-86) (-583 $)) 104 T ELT)) (-3317 (((-694) $) 33 T ELT)) (-3394 (($ $) 72 T ELT)) (-3966 (($ (-583 $)) 69 T ELT)) (-3947 (((-85) $) 32 T ELT)) (-3940 (((-772) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1088)) 76 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2658 (($ $ (-51)) 129 T ELT)) (-2656 (($) 103 T CONST)) (-2662 (($) 83 T CONST)) (-3052 (((-85) $ $) 93 T ELT)) (-3943 (($ $ $) 117 T ELT)) (-3833 (($ $ $) 121 T ELT)) (** (($ $ (-694)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT)))
-(((-800 |#1|) (-13 (-1012) (-950 |#1|) (-950 (-1088)) (-10 -8 (-15 -2656 ($) -3946) (-15 -2662 ($) -3946) (-15 -2818 ((-3 (-583 $) #1="failed") $)) (-15 -2819 ((-3 (-583 $) #1#) $)) (-15 -2655 ((-3 (-583 $) #1#) $ (-86))) (-15 -2655 ((-3 (-2 (|:| -2509 (-86)) (|:| |arg| (-583 $))) #1#) $)) (-15 -2820 ((-3 (-2 (|:| |val| $) (|:| -2397 (-694))) #1#) $)) (-15 -2654 ((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $)) (-15 -2653 ((-3 (-583 $) #1#) $)) (-15 -2821 ((-3 (-2 (|:| |val| $) (|:| -2397 $)) #1#) $)) (-15 -3794 ($ (-86) (-583 $))) (-15 -3833 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-694))) (-15 ** ($ $ $)) (-15 -3943 ($ $ $)) (-15 -3317 ((-694) $)) (-15 -3966 ($ (-583 $))) (-15 -3394 ($ $)) (-15 -2652 ((-85) $)) (-15 -2651 ((-85) $)) (-15 -3255 ((-85) $)) (-15 -3947 ((-85) $)) (-15 -2650 ((-85) $)) (-15 -2649 ((-85) $)) (-15 -2648 ((-85) $)) (-15 -2647 ((-85) $)) (-15 -2646 ((-583 (-51)) $)) (-15 -2645 ($ $ (-583 (-51)))) (-15 -2644 ($ $ (-583 (-51)))) (-15 -2643 ($ (-1088) (-85) (-85) (-85))) (-15 -2642 ($ $ (-583 (-1088)) (-51))) (-15 -2641 ((-2 (|:| |var| (-583 (-1088))) (|:| |pred| (-51))) $)) (-15 -2640 ((-85) $)) (-15 -2639 ($ $)) (-15 -2658 ($ $ (-51))) (-15 -2638 ((-583 (-51)) $)) (-15 -3077 ((-583 $) $)) (-15 -2637 ((-3 (-583 $) #1#) (-583 $))))) (-1012)) (T -800))
-((-2656 (*1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1012)))) (-2662 (*1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1012)))) (-2818 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2819 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2655 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-583 (-800 *4))) (-5 *1 (-800 *4)) (-4 *4 (-1012)))) (-2655 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2509 (-86)) (|:| |arg| (-583 (-800 *3))))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2820 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-800 *3)) (|:| -2397 (-694)))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2654 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-800 *3)) (|:| |den| (-800 *3)))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2653 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2821 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-800 *3)) (|:| -2397 (-800 *3)))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-3794 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 (-800 *4))) (-5 *1 (-800 *4)) (-4 *4 (-1012)))) (-3833 (*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1012)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1012)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1012)))) (-3943 (*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1012)))) (-3317 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-3966 (*1 *1 *2) (-12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-3394 (*1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1012)))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2651 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-3255 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2649 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2648 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2647 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2646 (*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2645 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2644 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2643 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-85)) (-5 *1 (-800 *4)) (-4 *4 (-1012)))) (-2642 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1088))) (-5 *3 (-51)) (-5 *1 (-800 *4)) (-4 *4 (-1012)))) (-2641 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-583 (-1088))) (|:| |pred| (-51)))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2640 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2639 (*1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1012)))) (-2658 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2638 (*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))) (-2637 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))))
-((-3204 (((-800 |#1|) (-800 |#1|) (-583 (-1088)) (-1 (-85) (-583 |#2|))) 32 T ELT) (((-800 |#1|) (-800 |#1|) (-583 (-1 (-85) |#2|))) 46 T ELT) (((-800 |#1|) (-800 |#1|) (-1 (-85) |#2|)) 35 T ELT)) (-2657 (((-85) (-583 |#2|) (-800 |#1|)) 42 T ELT) (((-85) |#2| (-800 |#1|)) 36 T ELT)) (-3525 (((-1 (-85) |#2|) (-800 |#1|)) 16 T ELT)) (-2659 (((-583 |#2|) (-800 |#1|)) 24 T ELT)) (-2658 (((-800 |#1|) (-800 |#1|) |#2|) 20 T ELT)))
-(((-801 |#1| |#2|) (-10 -7 (-15 -3204 ((-800 |#1|) (-800 |#1|) (-1 (-85) |#2|))) (-15 -3204 ((-800 |#1|) (-800 |#1|) (-583 (-1 (-85) |#2|)))) (-15 -3204 ((-800 |#1|) (-800 |#1|) (-583 (-1088)) (-1 (-85) (-583 |#2|)))) (-15 -3525 ((-1 (-85) |#2|) (-800 |#1|))) (-15 -2657 ((-85) |#2| (-800 |#1|))) (-15 -2657 ((-85) (-583 |#2|) (-800 |#1|))) (-15 -2658 ((-800 |#1|) (-800 |#1|) |#2|)) (-15 -2659 ((-583 |#2|) (-800 |#1|)))) (-1012) (-1127)) (T -801))
-((-2659 (*1 *2 *3) (-12 (-5 *3 (-800 *4)) (-4 *4 (-1012)) (-5 *2 (-583 *5)) (-5 *1 (-801 *4 *5)) (-4 *5 (-1127)))) (-2658 (*1 *2 *2 *3) (-12 (-5 *2 (-800 *4)) (-4 *4 (-1012)) (-5 *1 (-801 *4 *3)) (-4 *3 (-1127)))) (-2657 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-800 *5)) (-4 *5 (-1012)) (-4 *6 (-1127)) (-5 *2 (-85)) (-5 *1 (-801 *5 *6)))) (-2657 (*1 *2 *3 *4) (-12 (-5 *4 (-800 *5)) (-4 *5 (-1012)) (-5 *2 (-85)) (-5 *1 (-801 *5 *3)) (-4 *3 (-1127)))) (-3525 (*1 *2 *3) (-12 (-5 *3 (-800 *4)) (-4 *4 (-1012)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-801 *4 *5)) (-4 *5 (-1127)))) (-3204 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-800 *5)) (-5 *3 (-583 (-1088))) (-5 *4 (-1 (-85) (-583 *6))) (-4 *5 (-1012)) (-4 *6 (-1127)) (-5 *1 (-801 *5 *6)))) (-3204 (*1 *2 *2 *3) (-12 (-5 *2 (-800 *4)) (-5 *3 (-583 (-1 (-85) *5))) (-4 *4 (-1012)) (-4 *5 (-1127)) (-5 *1 (-801 *4 *5)))) (-3204 (*1 *2 *2 *3) (-12 (-5 *2 (-800 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1012)) (-4 *5 (-1127)) (-5 *1 (-801 *4 *5)))))
-((-3952 (((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)) 19 T ELT)))
-(((-802 |#1| |#2|) (-10 -7 (-15 -3952 ((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)))) (-1012) (-1012)) (T -802))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *2 (-800 *6)) (-5 *1 (-802 *5 *6)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3928 (((-583 |#1|) $) 20 T ELT)) (-2660 (((-85) $) 49 T ELT)) (-3152 (((-3 (-614 |#1|) "failed") $) 55 T ELT)) (-3151 (((-614 |#1|) $) 53 T ELT)) (-3793 (($ $) 24 T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3827 (((-694) $) 60 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3795 (((-614 |#1|) $) 22 T ELT)) (-3940 (((-772) $) 47 T ELT) (($ (-614 |#1|)) 27 T ELT) (((-739 |#1|) $) 36 T ELT) (($ |#1|) 26 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2662 (($) 11 T CONST)) (-2661 (((-583 (-614 |#1|)) $) 28 T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 14 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 66 T ELT)))
-(((-803 |#1|) (-13 (-756) (-950 (-614 |#1|)) (-10 -8 (-15 -2662 ($) -3946) (-15 -3940 ((-739 |#1|) $)) (-15 -3940 ($ |#1|)) (-15 -3795 ((-614 |#1|) $)) (-15 -3827 ((-694) $)) (-15 -2661 ((-583 (-614 |#1|)) $)) (-15 -3793 ($ $)) (-15 -2660 ((-85) $)) (-15 -3928 ((-583 |#1|) $)))) (-756)) (T -803))
-((-2662 (*1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) (-3940 (*1 *1 *2) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756)))) (-3795 (*1 *2 *1) (-12 (-5 *2 (-614 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) (-3827 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) (-2661 (*1 *2 *1) (-12 (-5 *2 (-583 (-614 *3))) (-5 *1 (-803 *3)) (-4 *3 (-756)))) (-3793 (*1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756)))) (-2660 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756)))))
-((-3468 ((|#1| |#1| |#1|) 19 T ELT)))
-(((-804 |#1| |#2|) (-10 -7 (-15 -3468 (|#1| |#1| |#1|))) (-1153 |#2|) (-961)) (T -804))
-((-3468 (*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-804 *2 *3)) (-4 *2 (-1153 *3)))))
-((-2665 ((|#2| $ |#3|) 10 T ELT)))
-(((-805 |#1| |#2| |#3|) (-10 -7 (-15 -2665 (|#2| |#1| |#3|))) (-806 |#2| |#3|) (-1127) (-1127)) (T -805))
-NIL
-((-3752 ((|#1| $ |#2|) 7 T ELT)) (-2665 ((|#1| $ |#2|) 6 T ELT)))
-(((-806 |#1| |#2|) (-113) (-1127) (-1127)) (T -806))
-((-3752 (*1 *2 *1 *3) (-12 (-4 *1 (-806 *2 *3)) (-4 *3 (-1127)) (-4 *2 (-1127)))) (-2665 (*1 *2 *1 *3) (-12 (-4 *1 (-806 *2 *3)) (-4 *3 (-1127)) (-4 *2 (-1127)))))
-(-13 (-1127) (-10 -8 (-15 -3752 (|t#1| $ |t#2|)) (-15 -2665 (|t#1| $ |t#2|))))
-(((-13) . T) ((-1127) . T))
-((-2664 ((|#1| |#1| (-694)) 26 T ELT)) (-2663 (((-3 |#1| #1="failed") |#1| |#1|) 23 T ELT)) (-3429 (((-3 (-2 (|:| -3133 |#1|) (|:| -3132 |#1|)) #1#) |#1| (-694) (-694)) 29 T ELT) (((-583 |#1|) |#1|) 38 T ELT)))
-(((-807 |#1| |#2|) (-10 -7 (-15 -3429 ((-583 |#1|) |#1|)) (-15 -3429 ((-3 (-2 (|:| -3133 |#1|) (|:| -3132 |#1|)) #1="failed") |#1| (-694) (-694))) (-15 -2663 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2664 (|#1| |#1| (-694)))) (-1153 |#2|) (-311)) (T -807))
-((-2664 (*1 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-311)) (-5 *1 (-807 *2 *4)) (-4 *2 (-1153 *4)))) (-2663 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-311)) (-5 *1 (-807 *2 *3)) (-4 *2 (-1153 *3)))) (-3429 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-694)) (-4 *5 (-311)) (-5 *2 (-2 (|:| -3133 *3) (|:| -3132 *3))) (-5 *1 (-807 *3 *5)) (-4 *3 (-1153 *5)))) (-3429 (*1 *2 *3) (-12 (-4 *4 (-311)) (-5 *2 (-583 *3)) (-5 *1 (-807 *3 *4)) (-4 *3 (-1153 *4)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3752 (($ $ (-583 |#2|) (-583 (-694))) 44 T ELT) (($ $ |#2| (-694)) 43 T ELT) (($ $ (-583 |#2|)) 42 T ELT) (($ $ |#2|) 40 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2665 (($ $ (-583 |#2|) (-583 (-694))) 47 T ELT) (($ $ |#2| (-694)) 46 T ELT) (($ $ (-583 |#2|)) 45 T ELT) (($ $ |#2|) 41 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT)))
-(((-808 |#1| |#2|) (-113) (-961) (-1012)) (T -808))
-NIL
-(-13 (-82 |t#1| |t#1|) (-811 |t#2|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-654 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-806 $ |#2|) . T) ((-811 |#2|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3752 (($ $ (-583 |#1|) (-583 (-694))) 50 T ELT) (($ $ |#1| (-694)) 49 T ELT) (($ $ (-583 |#1|)) 48 T ELT) (($ $ |#1|) 46 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-583 |#1|) (-583 (-694))) 53 T ELT) (($ $ |#1| (-694)) 52 T ELT) (($ $ (-583 |#1|)) 51 T ELT) (($ $ |#1|) 47 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT)))
-(((-809 |#1|) (-113) (-1012)) (T -809))
-NIL
-(-13 (-961) (-811 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-483)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-806 $ |#1|) . T) ((-811 |#1|) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T))
-((-3752 (($ $ |#2|) NIL T ELT) (($ $ (-583 |#2|)) 10 T ELT) (($ $ |#2| (-694)) 12 T ELT) (($ $ (-583 |#2|) (-583 (-694))) 15 T ELT)) (-2665 (($ $ |#2|) 16 T ELT) (($ $ (-583 |#2|)) 18 T ELT) (($ $ |#2| (-694)) 19 T ELT) (($ $ (-583 |#2|) (-583 (-694))) 21 T ELT)))
-(((-810 |#1| |#2|) (-10 -7 (-15 -2665 (|#1| |#1| (-583 |#2|) (-583 (-694)))) (-15 -2665 (|#1| |#1| |#2| (-694))) (-15 -2665 (|#1| |#1| (-583 |#2|))) (-15 -3752 (|#1| |#1| (-583 |#2|) (-583 (-694)))) (-15 -3752 (|#1| |#1| |#2| (-694))) (-15 -3752 (|#1| |#1| (-583 |#2|))) (-15 -2665 (|#1| |#1| |#2|)) (-15 -3752 (|#1| |#1| |#2|))) (-811 |#2|) (-1012)) (T -810))
-NIL
-((-3752 (($ $ |#1|) 7 T ELT) (($ $ (-583 |#1|)) 15 T ELT) (($ $ |#1| (-694)) 14 T ELT) (($ $ (-583 |#1|) (-583 (-694))) 13 T ELT)) (-2665 (($ $ |#1|) 6 T ELT) (($ $ (-583 |#1|)) 12 T ELT) (($ $ |#1| (-694)) 11 T ELT) (($ $ (-583 |#1|) (-583 (-694))) 10 T ELT)))
-(((-811 |#1|) (-113) (-1012)) (T -811))
-((-3752 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-811 *3)) (-4 *3 (-1012)))) (-3752 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-811 *2)) (-4 *2 (-1012)))) (-3752 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-694))) (-4 *1 (-811 *4)) (-4 *4 (-1012)))) (-2665 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-811 *3)) (-4 *3 (-1012)))) (-2665 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-811 *2)) (-4 *2 (-1012)))) (-2665 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-694))) (-4 *1 (-811 *4)) (-4 *4 (-1012)))))
-(-13 (-806 $ |t#1|) (-10 -8 (-15 -3752 ($ $ (-583 |t#1|))) (-15 -3752 ($ $ |t#1| (-694))) (-15 -3752 ($ $ (-583 |t#1|) (-583 (-694)))) (-15 -2665 ($ $ (-583 |t#1|))) (-15 -2665 ($ $ |t#1| (-694))) (-15 -2665 ($ $ (-583 |t#1|) (-583 (-694))))))
-(((-13) . T) ((-806 $ |#1|) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3396 ((|#1| $) 26 T ELT)) (-3021 ((|#1| $ |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-1290 (($ $ $) NIL (|has| $ (-6 -3990)) ELT)) (-1291 (($ $ $) NIL (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3990)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3990)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) NIL (|has| $ (-6 -3990)) ELT)) (-3718 (($) NIL T CONST)) (-3132 (($ $) 25 T ELT)) (-2666 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3027 (((-583 $) $) NIL T ELT)) (-3023 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3133 (($ $) 23 T ELT)) (-3026 (((-583 |#1|) $) NIL T ELT)) (-3521 (((-85) $) 20 T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3025 (((-483) $ $) NIL T ELT)) (-3627 (((-85) $) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3940 (((-1114 |#1|) $) 9 T ELT) (((-772) $) 29 (|has| |#1| (-552 (-772))) ELT)) (-3516 (((-583 $) $) NIL T ELT)) (-3024 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 21 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-812 |#1|) (-13 (-92 |#1|) (-552 (-1114 |#1|)) (-10 -8 (-15 -2666 ($ |#1|)) (-15 -2666 ($ $ $)))) (-1012)) (T -812))
-((-2666 (*1 *1 *2) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1012)))) (-2666 (*1 *1 *1 *1) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1012)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-2682 (((-1008 |#1|) $) 61 T ELT)) (-2905 (((-583 $) (-583 $)) 104 T ELT)) (-3617 (((-483) $) 84 T ELT)) (-3718 (($) NIL T CONST)) (-3461 (((-3 $ "failed") $) NIL T ELT)) (-3766 (((-694) $) 81 T ELT)) (-2686 (((-1008 |#1|) $ |#1|) 71 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2669 (((-85) $) 89 T ELT)) (-2671 (((-694) $) 85 T ELT)) (-2527 (($ $ $) NIL (OR (|has| |#1| (-317)) (|has| |#1| (-756))) ELT)) (-2853 (($ $ $) NIL (OR (|has| |#1| (-317)) (|has| |#1| (-756))) ELT)) (-2675 (((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $) 56 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) 131 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2668 (((-1008 |#1|) $) 136 (|has| |#1| (-317)) ELT)) (-2670 (((-85) $) 82 T ELT)) (-3794 ((|#1| $ |#1|) 69 T ELT)) (-3942 (((-694) $) 63 T ELT)) (-2677 (($ (-583 (-583 |#1|))) 119 T ELT)) (-2672 (((-884) $) 75 T ELT)) (-2678 (($ (-583 |#1|)) 32 T ELT)) (-3005 (($ $ $) NIL T ELT)) (-2431 (($ $ $) NIL T ELT)) (-2674 (($ (-583 (-583 |#1|))) 58 T ELT)) (-2673 (($ (-583 (-583 |#1|))) 124 T ELT)) (-2667 (($ (-583 |#1|)) 133 T ELT)) (-3940 (((-772) $) 118 T ELT) (($ (-583 (-583 |#1|))) 92 T ELT) (($ (-583 |#1|)) 93 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2662 (($) 24 T CONST)) (-2562 (((-85) $ $) NIL (OR (|has| |#1| (-317)) (|has| |#1| (-756))) ELT)) (-2563 (((-85) $ $) NIL (OR (|has| |#1| (-317)) (|has| |#1| (-756))) ELT)) (-3052 (((-85) $ $) 67 T ELT)) (-2680 (((-85) $ $) NIL (OR (|has| |#1| (-317)) (|has| |#1| (-756))) ELT)) (-2681 (((-85) $ $) 91 T ELT)) (-3943 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ $ $) 33 T ELT)))
-(((-813 |#1|) (-13 (-815 |#1|) (-10 -8 (-15 -2675 ((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $)) (-15 -2674 ($ (-583 (-583 |#1|)))) (-15 -3940 ($ (-583 (-583 |#1|)))) (-15 -3940 ($ (-583 |#1|))) (-15 -2673 ($ (-583 (-583 |#1|)))) (-15 -3942 ((-694) $)) (-15 -2672 ((-884) $)) (-15 -3766 ((-694) $)) (-15 -2671 ((-694) $)) (-15 -3617 ((-483) $)) (-15 -2670 ((-85) $)) (-15 -2669 ((-85) $)) (-15 -2905 ((-583 $) (-583 $))) (IF (|has| |#1| (-317)) (-15 -2668 ((-1008 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-482)) (-15 -2667 ($ (-583 |#1|))) (IF (|has| |#1| (-317)) (-15 -2667 ($ (-583 |#1|))) |%noBranch|)))) (-1012)) (T -813))
-((-2675 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-583 *3)) (|:| |image| (-583 *3)))) (-5 *1 (-813 *3)) (-4 *3 (-1012)))) (-2674 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1012)) (-5 *1 (-813 *3)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1012)) (-5 *1 (-813 *3)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-5 *1 (-813 *3)))) (-2673 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1012)) (-5 *1 (-813 *3)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1012)))) (-2672 (*1 *2 *1) (-12 (-5 *2 (-884)) (-5 *1 (-813 *3)) (-4 *3 (-1012)))) (-3766 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1012)))) (-2671 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1012)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-813 *3)) (-4 *3 (-1012)))) (-2670 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-813 *3)) (-4 *3 (-1012)))) (-2669 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-813 *3)) (-4 *3 (-1012)))) (-2905 (*1 *2 *2) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-813 *3)) (-4 *3 (-1012)))) (-2668 (*1 *2 *1) (-12 (-5 *2 (-1008 *3)) (-5 *1 (-813 *3)) (-4 *3 (-317)) (-4 *3 (-1012)))) (-2667 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-5 *1 (-813 *3)))))
-((-2676 ((|#2| (-1054 |#1| |#2|)) 48 T ELT)))
-(((-814 |#1| |#2|) (-10 -7 (-15 -2676 (|#2| (-1054 |#1| |#2|)))) (-830) (-13 (-961) (-10 -7 (-6 (-3991 "*"))))) (T -814))
-((-2676 (*1 *2 *3) (-12 (-5 *3 (-1054 *4 *2)) (-14 *4 (-830)) (-4 *2 (-13 (-961) (-10 -7 (-6 (-3991 "*"))))) (-5 *1 (-814 *4 *2)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-2682 (((-1008 |#1|) $) 42 T ELT)) (-3718 (($) 23 T CONST)) (-3461 (((-3 $ "failed") $) 20 T ELT)) (-2686 (((-1008 |#1|) $ |#1|) 41 T ELT)) (-2406 (((-85) $) 22 T ELT)) (-2527 (($ $ $) 35 (OR (|has| |#1| (-756)) (|has| |#1| (-317))) ELT)) (-2853 (($ $ $) 36 (OR (|has| |#1| (-756)) (|has| |#1| (-317))) ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 30 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3794 ((|#1| $ |#1|) 45 T ELT)) (-2677 (($ (-583 (-583 |#1|))) 43 T ELT)) (-2678 (($ (-583 |#1|)) 44 T ELT)) (-3005 (($ $ $) 27 T ELT)) (-2431 (($ $ $) 26 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-2562 (((-85) $ $) 37 (OR (|has| |#1| (-756)) (|has| |#1| (-317))) ELT)) (-2563 (((-85) $ $) 39 (OR (|has| |#1| (-756)) (|has| |#1| (-317))) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 38 (OR (|has| |#1| (-756)) (|has| |#1| (-317))) ELT)) (-2681 (((-85) $ $) 40 T ELT)) (-3943 (($ $ $) 29 T ELT)) (** (($ $ (-830)) 17 T ELT) (($ $ (-694)) 21 T ELT) (($ $ (-483)) 28 T ELT)) (* (($ $ $) 18 T ELT)))
-(((-815 |#1|) (-113) (-1012)) (T -815))
-((-2678 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-4 *1 (-815 *3)))) (-2677 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1012)) (-4 *1 (-815 *3)))) (-2682 (*1 *2 *1) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1012)) (-5 *2 (-1008 *3)))) (-2686 (*1 *2 *1 *3) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1012)) (-5 *2 (-1008 *3)))) (-2681 (*1 *2 *1 *1) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1012)) (-5 *2 (-85)))))
-(-13 (-410) (-241 |t#1| |t#1|) (-10 -8 (-15 -2678 ($ (-583 |t#1|))) (-15 -2677 ($ (-583 (-583 |t#1|)))) (-15 -2682 ((-1008 |t#1|) $)) (-15 -2686 ((-1008 |t#1|) $ |t#1|)) (-15 -2681 ((-85) $ $)) (IF (|has| |t#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |t#1| (-317)) (-6 (-756)) |%noBranch|)))
-(((-72) . T) ((-552 (-772)) . T) ((-241 |#1| |#1|) . T) ((-410) . T) ((-13) . T) ((-663) . T) ((-756) OR (|has| |#1| (-756)) (|has| |#1| (-317))) ((-759) OR (|has| |#1| (-756)) (|has| |#1| (-317))) ((-1024) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-2688 (((-583 (-583 (-694))) $) 163 T ELT)) (-2684 (((-583 (-694)) (-813 |#1|) $) 191 T ELT)) (-2683 (((-583 (-694)) (-813 |#1|) $) 192 T ELT)) (-2682 (((-1008 |#1|) $) 155 T ELT)) (-2689 (((-583 (-813 |#1|)) $) 152 T ELT)) (-2990 (((-813 |#1|) $ (-483)) 157 T ELT) (((-813 |#1|) $) 158 T ELT)) (-2687 (($ (-583 (-813 |#1|))) 165 T ELT)) (-3766 (((-694) $) 159 T ELT)) (-2685 (((-1008 (-1008 |#1|)) $) 189 T ELT)) (-2686 (((-1008 |#1|) $ |#1|) 180 T ELT) (((-1008 (-1008 |#1|)) $ (-1008 |#1|)) 201 T ELT) (((-1008 (-583 |#1|)) $ (-583 |#1|)) 204 T ELT)) (-3240 (((-85) (-813 |#1|) $) 140 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2679 (((-1183) $) 145 T ELT) (((-1183) $ (-483) (-483)) 205 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2691 (((-583 (-813 |#1|)) $) 146 T ELT)) (-3794 (((-813 |#1|) $ (-694)) 153 T ELT)) (-3942 (((-694) $) 160 T ELT)) (-3940 (((-772) $) 177 T ELT) (((-583 (-813 |#1|)) $) 28 T ELT) (($ (-583 (-813 |#1|))) 164 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2690 (((-583 |#1|) $) 162 T ELT)) (-3052 (((-85) $ $) 198 T ELT)) (-2680 (((-85) $ $) 195 T ELT)) (-2681 (((-85) $ $) 194 T ELT)))
-(((-816 |#1|) (-13 (-1012) (-10 -8 (-15 -3940 ((-583 (-813 |#1|)) $)) (-15 -2691 ((-583 (-813 |#1|)) $)) (-15 -3794 ((-813 |#1|) $ (-694))) (-15 -2990 ((-813 |#1|) $ (-483))) (-15 -2990 ((-813 |#1|) $)) (-15 -3766 ((-694) $)) (-15 -3942 ((-694) $)) (-15 -2690 ((-583 |#1|) $)) (-15 -2689 ((-583 (-813 |#1|)) $)) (-15 -2688 ((-583 (-583 (-694))) $)) (-15 -3940 ($ (-583 (-813 |#1|)))) (-15 -2687 ($ (-583 (-813 |#1|)))) (-15 -2686 ((-1008 |#1|) $ |#1|)) (-15 -2685 ((-1008 (-1008 |#1|)) $)) (-15 -2686 ((-1008 (-1008 |#1|)) $ (-1008 |#1|))) (-15 -2686 ((-1008 (-583 |#1|)) $ (-583 |#1|))) (-15 -3240 ((-85) (-813 |#1|) $)) (-15 -2684 ((-583 (-694)) (-813 |#1|) $)) (-15 -2683 ((-583 (-694)) (-813 |#1|) $)) (-15 -2682 ((-1008 |#1|) $)) (-15 -2681 ((-85) $ $)) (-15 -2680 ((-85) $ $)) (-15 -2679 ((-1183) $)) (-15 -2679 ((-1183) $ (-483) (-483))))) (-1012)) (T -816))
-((-3940 (*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1012)))) (-2691 (*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1012)))) (-3794 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-813 *4)) (-5 *1 (-816 *4)) (-4 *4 (-1012)))) (-2990 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *2 (-813 *4)) (-5 *1 (-816 *4)) (-4 *4 (-1012)))) (-2990 (*1 *2 *1) (-12 (-5 *2 (-813 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1012)))) (-3766 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-816 *3)) (-4 *3 (-1012)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-816 *3)) (-4 *3 (-1012)))) (-2690 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1012)))) (-2689 (*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1012)))) (-2688 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-694)))) (-5 *1 (-816 *3)) (-4 *3 (-1012)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-583 (-813 *3))) (-4 *3 (-1012)) (-5 *1 (-816 *3)))) (-2687 (*1 *1 *2) (-12 (-5 *2 (-583 (-813 *3))) (-4 *3 (-1012)) (-5 *1 (-816 *3)))) (-2686 (*1 *2 *1 *3) (-12 (-5 *2 (-1008 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1012)))) (-2685 (*1 *2 *1) (-12 (-5 *2 (-1008 (-1008 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1012)))) (-2686 (*1 *2 *1 *3) (-12 (-4 *4 (-1012)) (-5 *2 (-1008 (-1008 *4))) (-5 *1 (-816 *4)) (-5 *3 (-1008 *4)))) (-2686 (*1 *2 *1 *3) (-12 (-4 *4 (-1012)) (-5 *2 (-1008 (-583 *4))) (-5 *1 (-816 *4)) (-5 *3 (-583 *4)))) (-3240 (*1 *2 *3 *1) (-12 (-5 *3 (-813 *4)) (-4 *4 (-1012)) (-5 *2 (-85)) (-5 *1 (-816 *4)))) (-2684 (*1 *2 *3 *1) (-12 (-5 *3 (-813 *4)) (-4 *4 (-1012)) (-5 *2 (-583 (-694))) (-5 *1 (-816 *4)))) (-2683 (*1 *2 *3 *1) (-12 (-5 *3 (-813 *4)) (-4 *4 (-1012)) (-5 *2 (-583 (-694))) (-5 *1 (-816 *4)))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-1008 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1012)))) (-2681 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-816 *3)) (-4 *3 (-1012)))) (-2680 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-816 *3)) (-4 *3 (-1012)))) (-2679 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-816 *3)) (-4 *3 (-1012)))) (-2679 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-483)) (-5 *2 (-1183)) (-5 *1 (-816 *4)) (-4 *4 (-1012)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-3926 (((-85) $) NIL T ELT)) (-3923 (((-694)) NIL T ELT)) (-3324 (($ $ (-830)) NIL (|has| $ (-317)) ELT) (($ $) NIL T ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 $ #1#) $) NIL T ELT)) (-3151 (($ $) NIL T ELT)) (-1789 (($ (-1177 $)) NIL T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) NIL T ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-2829 (($) NIL T ELT)) (-1677 (((-85) $) NIL T ELT)) (-1761 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-3766 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2009 (($) NIL (|has| $ (-317)) ELT)) (-2007 (((-85) $) NIL (|has| $ (-317)) ELT)) (-3127 (($ $ (-830)) NIL (|has| $ (-317)) ELT) (($ $) NIL T ELT)) (-3439 (((-632 $) $) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2010 (((-1083 $) $ (-830)) NIL (|has| $ (-317)) ELT) (((-1083 $) $) NIL T ELT)) (-2006 (((-830) $) NIL T ELT)) (-1624 (((-1083 $) $) NIL (|has| $ (-317)) ELT)) (-1623 (((-3 (-1083 $) #1#) $ $) NIL (|has| $ (-317)) ELT) (((-1083 $) $) NIL (|has| $ (-317)) ELT)) (-1625 (($ $ (-1083 $)) NIL (|has| $ (-317)) ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL T CONST)) (-2396 (($ (-830)) NIL T ELT)) (-3925 (((-85) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2405 (($) NIL (|has| $ (-317)) ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) NIL T ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-3924 (((-830)) NIL T ELT) (((-743 (-830))) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-1762 (((-3 (-694) #1#) $ $) NIL T ELT) (((-694) $) NIL T ELT)) (-3905 (((-107)) NIL T ELT)) (-3752 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3942 (((-830) $) NIL T ELT) (((-743 (-830)) $) NIL T ELT)) (-3180 (((-1083 $)) NIL T ELT)) (-1671 (($) NIL T ELT)) (-1626 (($) NIL (|has| $ (-317)) ELT)) (-3219 (((-630 $) (-1177 $)) NIL T ELT) (((-1177 $) $) NIL T ELT)) (-3966 (((-483) $) NIL T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT)) (-2698 (((-632 $) $) NIL T ELT) (($ $) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $) (-830)) NIL T ELT) (((-1177 $)) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3927 (((-85) $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-3922 (($ $ (-694)) NIL (|has| $ (-317)) ELT) (($ $) NIL (|has| $ (-317)) ELT)) (-2665 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT)))
-(((-817 |#1|) (-13 (-298) (-279 $) (-553 (-483))) (-830)) (T -817))
-NIL
-((-2693 (((-3 (-583 (-1083 |#4|)) #1="failed") (-583 (-1083 |#4|)) (-1083 |#4|)) 164 T ELT)) (-2696 ((|#1|) 101 T ELT)) (-2695 (((-345 (-1083 |#4|)) (-1083 |#4|)) 173 T ELT)) (-2697 (((-345 (-1083 |#4|)) (-583 |#3|) (-1083 |#4|)) 83 T ELT)) (-2694 (((-345 (-1083 |#4|)) (-1083 |#4|)) 183 T ELT)) (-2692 (((-3 (-583 (-1083 |#4|)) #1#) (-583 (-1083 |#4|)) (-1083 |#4|) |#3|) 117 T ELT)))
-(((-818 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2693 ((-3 (-583 (-1083 |#4|)) #1="failed") (-583 (-1083 |#4|)) (-1083 |#4|))) (-15 -2694 ((-345 (-1083 |#4|)) (-1083 |#4|))) (-15 -2695 ((-345 (-1083 |#4|)) (-1083 |#4|))) (-15 -2696 (|#1|)) (-15 -2692 ((-3 (-583 (-1083 |#4|)) #1#) (-583 (-1083 |#4|)) (-1083 |#4|) |#3|)) (-15 -2697 ((-345 (-1083 |#4|)) (-583 |#3|) (-1083 |#4|)))) (-821) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -818))
-((-2697 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *7)) (-4 *7 (-756)) (-4 *5 (-821)) (-4 *6 (-717)) (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-345 (-1083 *8))) (-5 *1 (-818 *5 *6 *7 *8)) (-5 *4 (-1083 *8)))) (-2692 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-583 (-1083 *7))) (-5 *3 (-1083 *7)) (-4 *7 (-861 *5 *6 *4)) (-4 *5 (-821)) (-4 *6 (-717)) (-4 *4 (-756)) (-5 *1 (-818 *5 *6 *4 *7)))) (-2696 (*1 *2) (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-821)) (-5 *1 (-818 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-2695 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-345 (-1083 *7))) (-5 *1 (-818 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-2694 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-345 (-1083 *7))) (-5 *1 (-818 *4 *5 *6 *7)) (-5 *3 (-1083 *7)))) (-2693 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1083 *7))) (-5 *3 (-1083 *7)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-818 *4 *5 *6 *7)))))
-((-2693 (((-3 (-583 (-1083 |#2|)) "failed") (-583 (-1083 |#2|)) (-1083 |#2|)) 39 T ELT)) (-2696 ((|#1|) 71 T ELT)) (-2695 (((-345 (-1083 |#2|)) (-1083 |#2|)) 125 T ELT)) (-2697 (((-345 (-1083 |#2|)) (-1083 |#2|)) 109 T ELT)) (-2694 (((-345 (-1083 |#2|)) (-1083 |#2|)) 136 T ELT)))
-(((-819 |#1| |#2|) (-10 -7 (-15 -2693 ((-3 (-583 (-1083 |#2|)) "failed") (-583 (-1083 |#2|)) (-1083 |#2|))) (-15 -2694 ((-345 (-1083 |#2|)) (-1083 |#2|))) (-15 -2695 ((-345 (-1083 |#2|)) (-1083 |#2|))) (-15 -2696 (|#1|)) (-15 -2697 ((-345 (-1083 |#2|)) (-1083 |#2|)))) (-821) (-1153 |#1|)) (T -819))
-((-2697 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-1153 *4)) (-5 *2 (-345 (-1083 *5))) (-5 *1 (-819 *4 *5)) (-5 *3 (-1083 *5)))) (-2696 (*1 *2) (-12 (-4 *2 (-821)) (-5 *1 (-819 *2 *3)) (-4 *3 (-1153 *2)))) (-2695 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-1153 *4)) (-5 *2 (-345 (-1083 *5))) (-5 *1 (-819 *4 *5)) (-5 *3 (-1083 *5)))) (-2694 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-1153 *4)) (-5 *2 (-345 (-1083 *5))) (-5 *1 (-819 *4 *5)) (-5 *3 (-1083 *5)))) (-2693 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1083 *5))) (-5 *3 (-1083 *5)) (-4 *5 (-1153 *4)) (-4 *4 (-821)) (-5 *1 (-819 *4 *5)))))
-((-2700 (((-3 (-583 (-1083 $)) "failed") (-583 (-1083 $)) (-1083 $)) 46 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 18 T ELT)) (-2698 (((-632 $) $) 40 T ELT)))
-(((-820 |#1|) (-10 -7 (-15 -2698 ((-632 |#1|) |#1|)) (-15 -2700 ((-3 (-583 (-1083 |#1|)) "failed") (-583 (-1083 |#1|)) (-1083 |#1|))) (-15 -2704 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)))) (-821)) (T -820))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) 73 T ELT)) (-3769 (($ $) 64 T ELT)) (-3965 (((-345 $) $) 65 T ELT)) (-2700 (((-3 (-583 (-1083 $)) "failed") (-583 (-1083 $)) (-1083 $)) 70 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3717 (((-85) $) 66 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) 71 T ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) 72 T ELT)) (-3726 (((-345 $) $) 63 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-2699 (((-3 (-1177 $) "failed") (-630 $)) 69 (|has| $ (-118)) ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT)) (-2698 (((-632 $) $) 68 (|has| $ (-118)) ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT)))
-(((-821) (-113)) (T -821))
-((-2704 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-821)))) (-2703 (*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-345 (-1083 *1))) (-5 *3 (-1083 *1)))) (-2702 (*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-345 (-1083 *1))) (-5 *3 (-1083 *1)))) (-2701 (*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-345 (-1083 *1))) (-5 *3 (-1083 *1)))) (-2700 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1083 *1))) (-5 *3 (-1083 *1)) (-4 *1 (-821)))) (-2699 (*1 *2 *3) (|partial| -12 (-5 *3 (-630 *1)) (-4 *1 (-118)) (-4 *1 (-821)) (-5 *2 (-1177 *1)))) (-2698 (*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-118)) (-4 *1 (-821)))))
-(-13 (-1132) (-10 -8 (-15 -2703 ((-345 (-1083 $)) (-1083 $))) (-15 -2702 ((-345 (-1083 $)) (-1083 $))) (-15 -2701 ((-345 (-1083 $)) (-1083 $))) (-15 -2704 ((-1083 $) (-1083 $) (-1083 $))) (-15 -2700 ((-3 (-583 (-1083 $)) "failed") (-583 (-1083 $)) (-1083 $))) (IF (|has| $ (-118)) (PROGN (-15 -2699 ((-3 (-1177 $) "failed") (-630 $))) (-15 -2698 ((-632 $) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-483)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-245) . T) ((-389) . T) ((-494) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) . T))
-((-2706 (((-3 (-2 (|:| -3766 (-694)) (|:| -2379 |#5|)) #1="failed") (-282 |#2| |#3| |#4| |#5|)) 78 T ELT)) (-2705 (((-85) (-282 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-3766 (((-3 (-694) #1#) (-282 |#2| |#3| |#4| |#5|)) 15 T ELT)))
-(((-822 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3766 ((-3 (-694) #1="failed") (-282 |#2| |#3| |#4| |#5|))) (-15 -2705 ((-85) (-282 |#2| |#3| |#4| |#5|))) (-15 -2706 ((-3 (-2 (|:| -3766 (-694)) (|:| -2379 |#5|)) #1#) (-282 |#2| |#3| |#4| |#5|)))) (-13 (-494) (-950 (-483))) (-361 |#1|) (-1153 |#2|) (-1153 (-347 |#3|)) (-290 |#2| |#3| |#4|)) (T -822))
-((-2706 (*1 *2 *3) (|partial| -12 (-5 *3 (-282 *5 *6 *7 *8)) (-4 *5 (-361 *4)) (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-347 *6))) (-4 *8 (-290 *5 *6 *7)) (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *2 (-2 (|:| -3766 (-694)) (|:| -2379 *8))) (-5 *1 (-822 *4 *5 *6 *7 *8)))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-282 *5 *6 *7 *8)) (-4 *5 (-361 *4)) (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-347 *6))) (-4 *8 (-290 *5 *6 *7)) (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *2 (-85)) (-5 *1 (-822 *4 *5 *6 *7 *8)))) (-3766 (*1 *2 *3) (|partial| -12 (-5 *3 (-282 *5 *6 *7 *8)) (-4 *5 (-361 *4)) (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-347 *6))) (-4 *8 (-290 *5 *6 *7)) (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *2 (-694)) (-5 *1 (-822 *4 *5 *6 *7 *8)))))
-((-2706 (((-3 (-2 (|:| -3766 (-694)) (|:| -2379 |#3|)) #1="failed") (-282 (-347 (-483)) |#1| |#2| |#3|)) 64 T ELT)) (-2705 (((-85) (-282 (-347 (-483)) |#1| |#2| |#3|)) 16 T ELT)) (-3766 (((-3 (-694) #1#) (-282 (-347 (-483)) |#1| |#2| |#3|)) 14 T ELT)))
-(((-823 |#1| |#2| |#3|) (-10 -7 (-15 -3766 ((-3 (-694) #1="failed") (-282 (-347 (-483)) |#1| |#2| |#3|))) (-15 -2705 ((-85) (-282 (-347 (-483)) |#1| |#2| |#3|))) (-15 -2706 ((-3 (-2 (|:| -3766 (-694)) (|:| -2379 |#3|)) #1#) (-282 (-347 (-483)) |#1| |#2| |#3|)))) (-1153 (-347 (-483))) (-1153 (-347 |#1|)) (-290 (-347 (-483)) |#1| |#2|)) (T -823))
-((-2706 (*1 *2 *3) (|partial| -12 (-5 *3 (-282 (-347 (-483)) *4 *5 *6)) (-4 *4 (-1153 (-347 (-483)))) (-4 *5 (-1153 (-347 *4))) (-4 *6 (-290 (-347 (-483)) *4 *5)) (-5 *2 (-2 (|:| -3766 (-694)) (|:| -2379 *6))) (-5 *1 (-823 *4 *5 *6)))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-282 (-347 (-483)) *4 *5 *6)) (-4 *4 (-1153 (-347 (-483)))) (-4 *5 (-1153 (-347 *4))) (-4 *6 (-290 (-347 (-483)) *4 *5)) (-5 *2 (-85)) (-5 *1 (-823 *4 *5 *6)))) (-3766 (*1 *2 *3) (|partial| -12 (-5 *3 (-282 (-347 (-483)) *4 *5 *6)) (-4 *4 (-1153 (-347 (-483)))) (-4 *5 (-1153 (-347 *4))) (-4 *6 (-290 (-347 (-483)) *4 *5)) (-5 *2 (-694)) (-5 *1 (-823 *4 *5 *6)))))
-((-2711 ((|#2| |#2|) 26 T ELT)) (-2709 (((-483) (-583 (-2 (|:| |den| (-483)) (|:| |gcdnum| (-483))))) 15 T ELT)) (-2707 (((-830) (-483)) 38 T ELT)) (-2710 (((-483) |#2|) 45 T ELT)) (-2708 (((-483) |#2|) 21 T ELT) (((-2 (|:| |den| (-483)) (|:| |gcdnum| (-483))) |#1|) 20 T ELT)))
-(((-824 |#1| |#2|) (-10 -7 (-15 -2707 ((-830) (-483))) (-15 -2708 ((-2 (|:| |den| (-483)) (|:| |gcdnum| (-483))) |#1|)) (-15 -2708 ((-483) |#2|)) (-15 -2709 ((-483) (-583 (-2 (|:| |den| (-483)) (|:| |gcdnum| (-483)))))) (-15 -2710 ((-483) |#2|)) (-15 -2711 (|#2| |#2|))) (-1153 (-347 (-483))) (-1153 (-347 |#1|))) (T -824))
-((-2711 (*1 *2 *2) (-12 (-4 *3 (-1153 (-347 (-483)))) (-5 *1 (-824 *3 *2)) (-4 *2 (-1153 (-347 *3))))) (-2710 (*1 *2 *3) (-12 (-4 *4 (-1153 (-347 *2))) (-5 *2 (-483)) (-5 *1 (-824 *4 *3)) (-4 *3 (-1153 (-347 *4))))) (-2709 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |den| (-483)) (|:| |gcdnum| (-483))))) (-4 *4 (-1153 (-347 *2))) (-5 *2 (-483)) (-5 *1 (-824 *4 *5)) (-4 *5 (-1153 (-347 *4))))) (-2708 (*1 *2 *3) (-12 (-4 *4 (-1153 (-347 *2))) (-5 *2 (-483)) (-5 *1 (-824 *4 *3)) (-4 *3 (-1153 (-347 *4))))) (-2708 (*1 *2 *3) (-12 (-4 *3 (-1153 (-347 (-483)))) (-5 *2 (-2 (|:| |den| (-483)) (|:| |gcdnum| (-483)))) (-5 *1 (-824 *3 *4)) (-4 *4 (-1153 (-347 *3))))) (-2707 (*1 *2 *3) (-12 (-5 *3 (-483)) (-4 *4 (-1153 (-347 *3))) (-5 *2 (-830)) (-5 *1 (-824 *4 *5)) (-4 *5 (-1153 (-347 *4))))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3124 ((|#1| $) 99 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2560 (($ $ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) 93 T ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-2719 (($ |#1| (-345 |#1|)) 91 T ELT)) (-2713 (((-1083 |#1|) |#1| |#1|) 52 T ELT)) (-2712 (($ $) 60 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2714 (((-483) $) 96 T ELT)) (-2715 (($ $ (-483)) 98 T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-2716 ((|#1| $) 95 T ELT)) (-2717 (((-345 |#1|) $) 94 T ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) 92 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-2718 (($ $) 49 T ELT)) (-3940 (((-772) $) 123 T ELT) (($ (-483)) 72 T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ |#1|) 40 T ELT) (((-347 |#1|) $) 77 T ELT) (($ (-347 (-345 |#1|))) 85 T ELT)) (-3121 (((-694)) 70 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-2656 (($) 24 T CONST)) (-2662 (($) 12 T CONST)) (-3052 (((-85) $ $) 86 T ELT)) (-3943 (($ $ $) NIL T ELT)) (-3831 (($ $) 107 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 48 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 109 T ELT) (($ $ $) 47 T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ |#1| $) 108 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-825 |#1|) (-13 (-311) (-38 |#1|) (-10 -8 (-15 -3940 ((-347 |#1|) $)) (-15 -3940 ($ (-347 (-345 |#1|)))) (-15 -2718 ($ $)) (-15 -2717 ((-345 |#1|) $)) (-15 -2716 (|#1| $)) (-15 -2715 ($ $ (-483))) (-15 -2714 ((-483) $)) (-15 -2713 ((-1083 |#1|) |#1| |#1|)) (-15 -2712 ($ $)) (-15 -2719 ($ |#1| (-345 |#1|))) (-15 -3124 (|#1| $)))) (-257)) (T -825))
-((-3940 (*1 *2 *1) (-12 (-5 *2 (-347 *3)) (-5 *1 (-825 *3)) (-4 *3 (-257)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-347 (-345 *3))) (-4 *3 (-257)) (-5 *1 (-825 *3)))) (-2718 (*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-257)))) (-2717 (*1 *2 *1) (-12 (-5 *2 (-345 *3)) (-5 *1 (-825 *3)) (-4 *3 (-257)))) (-2716 (*1 *2 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-257)))) (-2715 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-825 *3)) (-4 *3 (-257)))) (-2714 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-825 *3)) (-4 *3 (-257)))) (-2713 (*1 *2 *3 *3) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-825 *3)) (-4 *3 (-257)))) (-2712 (*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-257)))) (-2719 (*1 *1 *2 *3) (-12 (-5 *3 (-345 *2)) (-4 *2 (-257)) (-5 *1 (-825 *2)))) (-3124 (*1 *2 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-257)))))
-((-2719 (((-51) (-857 |#1|) (-345 (-857 |#1|)) (-1088)) 17 T ELT) (((-51) (-347 (-857 |#1|)) (-1088)) 18 T ELT)))
-(((-826 |#1|) (-10 -7 (-15 -2719 ((-51) (-347 (-857 |#1|)) (-1088))) (-15 -2719 ((-51) (-857 |#1|) (-345 (-857 |#1|)) (-1088)))) (-13 (-257) (-120))) (T -826))
-((-2719 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-345 (-857 *6))) (-5 *5 (-1088)) (-5 *3 (-857 *6)) (-4 *6 (-13 (-257) (-120))) (-5 *2 (-51)) (-5 *1 (-826 *6)))) (-2719 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-51)) (-5 *1 (-826 *5)))))
-((-2720 ((|#4| (-583 |#4|)) 148 T ELT) (((-1083 |#4|) (-1083 |#4|) (-1083 |#4|)) 85 T ELT) ((|#4| |#4| |#4|) 147 T ELT)) (-3139 (((-1083 |#4|) (-583 (-1083 |#4|))) 141 T ELT) (((-1083 |#4|) (-1083 |#4|) (-1083 |#4|)) 61 T ELT) ((|#4| (-583 |#4|)) 70 T ELT) ((|#4| |#4| |#4|) 108 T ELT)))
-(((-827 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3139 (|#4| |#4| |#4|)) (-15 -3139 (|#4| (-583 |#4|))) (-15 -3139 ((-1083 |#4|) (-1083 |#4|) (-1083 |#4|))) (-15 -3139 ((-1083 |#4|) (-583 (-1083 |#4|)))) (-15 -2720 (|#4| |#4| |#4|)) (-15 -2720 ((-1083 |#4|) (-1083 |#4|) (-1083 |#4|))) (-15 -2720 (|#4| (-583 |#4|)))) (-717) (-756) (-257) (-861 |#3| |#1| |#2|)) (T -827))
-((-2720 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *6 *4 *5)) (-5 *1 (-827 *4 *5 *6 *2)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-257)))) (-2720 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-257)) (-5 *1 (-827 *3 *4 *5 *6)))) (-2720 (*1 *2 *2 *2) (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-257)) (-5 *1 (-827 *3 *4 *5 *2)) (-4 *2 (-861 *5 *3 *4)))) (-3139 (*1 *2 *3) (-12 (-5 *3 (-583 (-1083 *7))) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-257)) (-5 *2 (-1083 *7)) (-5 *1 (-827 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) (-3139 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-257)) (-5 *1 (-827 *3 *4 *5 *6)))) (-3139 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *6 *4 *5)) (-5 *1 (-827 *4 *5 *6 *2)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-257)))) (-3139 (*1 *2 *2 *2) (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-257)) (-5 *1 (-827 *3 *4 *5 *2)) (-4 *2 (-861 *5 *3 *4)))))
-((-2733 (((-816 (-483)) (-884)) 38 T ELT) (((-816 (-483)) (-583 (-483))) 34 T ELT)) (-2721 (((-816 (-483)) (-583 (-483))) 66 T ELT) (((-816 (-483)) (-830)) 67 T ELT)) (-2732 (((-816 (-483))) 39 T ELT)) (-2730 (((-816 (-483))) 53 T ELT) (((-816 (-483)) (-583 (-483))) 52 T ELT)) (-2729 (((-816 (-483))) 51 T ELT) (((-816 (-483)) (-583 (-483))) 50 T ELT)) (-2728 (((-816 (-483))) 49 T ELT) (((-816 (-483)) (-583 (-483))) 48 T ELT)) (-2727 (((-816 (-483))) 47 T ELT) (((-816 (-483)) (-583 (-483))) 46 T ELT)) (-2726 (((-816 (-483))) 45 T ELT) (((-816 (-483)) (-583 (-483))) 44 T ELT)) (-2731 (((-816 (-483))) 55 T ELT) (((-816 (-483)) (-583 (-483))) 54 T ELT)) (-2725 (((-816 (-483)) (-583 (-483))) 71 T ELT) (((-816 (-483)) (-830)) 73 T ELT)) (-2724 (((-816 (-483)) (-583 (-483))) 68 T ELT) (((-816 (-483)) (-830)) 69 T ELT)) (-2722 (((-816 (-483)) (-583 (-483))) 64 T ELT) (((-816 (-483)) (-830)) 65 T ELT)) (-2723 (((-816 (-483)) (-583 (-830))) 57 T ELT)))
-(((-828) (-10 -7 (-15 -2721 ((-816 (-483)) (-830))) (-15 -2721 ((-816 (-483)) (-583 (-483)))) (-15 -2722 ((-816 (-483)) (-830))) (-15 -2722 ((-816 (-483)) (-583 (-483)))) (-15 -2723 ((-816 (-483)) (-583 (-830)))) (-15 -2724 ((-816 (-483)) (-830))) (-15 -2724 ((-816 (-483)) (-583 (-483)))) (-15 -2725 ((-816 (-483)) (-830))) (-15 -2725 ((-816 (-483)) (-583 (-483)))) (-15 -2726 ((-816 (-483)) (-583 (-483)))) (-15 -2726 ((-816 (-483)))) (-15 -2727 ((-816 (-483)) (-583 (-483)))) (-15 -2727 ((-816 (-483)))) (-15 -2728 ((-816 (-483)) (-583 (-483)))) (-15 -2728 ((-816 (-483)))) (-15 -2729 ((-816 (-483)) (-583 (-483)))) (-15 -2729 ((-816 (-483)))) (-15 -2730 ((-816 (-483)) (-583 (-483)))) (-15 -2730 ((-816 (-483)))) (-15 -2731 ((-816 (-483)) (-583 (-483)))) (-15 -2731 ((-816 (-483)))) (-15 -2732 ((-816 (-483)))) (-15 -2733 ((-816 (-483)) (-583 (-483)))) (-15 -2733 ((-816 (-483)) (-884))))) (T -828))
-((-2733 (*1 *2 *3) (-12 (-5 *3 (-884)) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2732 (*1 *2) (-12 (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2731 (*1 *2) (-12 (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2730 (*1 *2) (-12 (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2729 (*1 *2) (-12 (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2728 (*1 *2) (-12 (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2727 (*1 *2) (-12 (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2726 (*1 *2) (-12 (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2726 (*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2724 (*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2724 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2723 (*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2722 (*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2722 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2721 (*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))) (-2721 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-483))) (-5 *1 (-828)))))
-((-2735 (((-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1088))) 14 T ELT)) (-2734 (((-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1088))) 13 T ELT)))
-(((-829 |#1|) (-10 -7 (-15 -2734 ((-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1088)))) (-15 -2735 ((-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1088))))) (-389)) (T -829))
-((-2735 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-857 *4))) (-5 *3 (-583 (-1088))) (-4 *4 (-389)) (-5 *1 (-829 *4)))) (-2734 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-857 *4))) (-5 *3 (-583 (-1088))) (-4 *4 (-389)) (-5 *1 (-829 *4)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3461 (((-3 $ "failed") $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3139 (($ $ $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ $ $) NIL T ELT)))
-(((-830) (-13 (-718) (-663) (-10 -8 (-15 -3139 ($ $ $)) (-6 (-3991 "*"))))) (T -830))
-((-3139 (*1 *1 *1 *1) (-5 *1 (-830))))
-((-694) (|%ilt| 0 |#1|))
-((-3940 (((-264 |#1|) (-414)) 16 T ELT)))
-(((-831 |#1|) (-10 -7 (-15 -3940 ((-264 |#1|) (-414)))) (-494)) (T -831))
-((-3940 (*1 *2 *3) (-12 (-5 *3 (-414)) (-5 *2 (-264 *4)) (-5 *1 (-831 *4)) (-4 *4 (-494)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 64 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 63 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT)))
-(((-832) (-113)) (T -832))
-((-2737 (*1 *2 *3) (-12 (-4 *1 (-832)) (-5 *2 (-2 (|:| -3948 (-583 *1)) (|:| -2405 *1))) (-5 *3 (-583 *1)))) (-2736 (*1 *2 *3 *1) (-12 (-4 *1 (-832)) (-5 *2 (-632 (-583 *1))) (-5 *3 (-583 *1)))))
-(-13 (-389) (-10 -8 (-15 -2737 ((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $))) (-15 -2736 ((-632 (-583 $)) (-583 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-483)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-245) . T) ((-389) . T) ((-494) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T))
-((-3101 (((-1083 |#2|) (-583 |#2|) (-583 |#2|)) 17 T ELT) (((-1146 |#1| |#2|) (-1146 |#1| |#2|) (-583 |#2|) (-583 |#2|)) 13 T ELT)))
-(((-833 |#1| |#2|) (-10 -7 (-15 -3101 ((-1146 |#1| |#2|) (-1146 |#1| |#2|) (-583 |#2|) (-583 |#2|))) (-15 -3101 ((-1083 |#2|) (-583 |#2|) (-583 |#2|)))) (-1088) (-311)) (T -833))
-((-3101 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-311)) (-5 *2 (-1083 *5)) (-5 *1 (-833 *4 *5)) (-14 *4 (-1088)))) (-3101 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1146 *4 *5)) (-5 *3 (-583 *5)) (-14 *4 (-1088)) (-4 *5 (-311)) (-5 *1 (-833 *4 *5)))))
-((-2738 ((|#2| (-583 |#1|) (-583 |#1|)) 28 T ELT)))
-(((-834 |#1| |#2|) (-10 -7 (-15 -2738 (|#2| (-583 |#1|) (-583 |#1|)))) (-311) (-1153 |#1|)) (T -834))
-((-2738 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-311)) (-4 *2 (-1153 *4)) (-5 *1 (-834 *4 *2)))))
-((-2740 (((-483) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|))))))))) (-1071)) 175 T ELT)) (-2759 ((|#4| |#4|) 194 T ELT)) (-2744 (((-583 (-347 (-857 |#1|))) (-583 (-1088))) 146 T ELT)) (-2758 (((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483)))) (-630 |#4|) (-583 (-347 (-857 |#1|))) (-583 (-583 |#4|)) (-694) (-694) (-483)) 88 T ELT)) (-2748 (((-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|)))))) (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|)))))) (-583 |#4|)) 69 T ELT)) (-2757 (((-630 |#4|) (-630 |#4|) (-583 |#4|)) 65 T ELT)) (-2741 (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|))))))))) (-1071)) 187 T ELT)) (-2739 (((-483) (-630 |#4|) (-830) (-1071)) 167 T ELT) (((-483) (-630 |#4|) (-583 (-1088)) (-830) (-1071)) 166 T ELT) (((-483) (-630 |#4|) (-583 |#4|) (-830) (-1071)) 165 T ELT) (((-483) (-630 |#4|) (-1071)) 154 T ELT) (((-483) (-630 |#4|) (-583 (-1088)) (-1071)) 153 T ELT) (((-483) (-630 |#4|) (-583 |#4|) (-1071)) 152 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|))))))))) (-630 |#4|) (-830)) 151 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|))))))))) (-630 |#4|) (-583 (-1088)) (-830)) 150 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|))))))))) (-630 |#4|) (-583 |#4|) (-830)) 149 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|))))))))) (-630 |#4|)) 148 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|))))))))) (-630 |#4|) (-583 (-1088))) 147 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|))))))))) (-630 |#4|) (-583 |#4|)) 143 T ELT)) (-2745 ((|#4| (-857 |#1|)) 80 T ELT)) (-2755 (((-85) (-583 |#4|) (-583 (-583 |#4|))) 191 T ELT)) (-2754 (((-583 (-583 (-483))) (-483) (-483)) 161 T ELT)) (-2753 (((-583 (-583 |#4|)) (-583 (-583 |#4|))) 106 T ELT)) (-2752 (((-694) (-583 (-2 (|:| -3104 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483)))))) (|:| |fgb| (-583 |#4|))))) 100 T ELT)) (-2751 (((-694) (-583 (-2 (|:| -3104 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483)))))) (|:| |fgb| (-583 |#4|))))) 99 T ELT)) (-2760 (((-85) (-583 (-857 |#1|))) 19 T ELT) (((-85) (-583 |#4|)) 15 T ELT)) (-2746 (((-2 (|:| |sysok| (-85)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|)) 84 T ELT)) (-2750 (((-583 |#4|) |#4|) 57 T ELT)) (-2743 (((-583 (-347 (-857 |#1|))) (-583 |#4|)) 142 T ELT) (((-630 (-347 (-857 |#1|))) (-630 |#4|)) 66 T ELT) (((-347 (-857 |#1|)) |#4|) 139 T ELT)) (-2742 (((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|)))))))))) (|:| |rgsz| (-483))) (-630 |#4|) (-583 (-347 (-857 |#1|))) (-694) (-1071) (-483)) 112 T ELT)) (-2747 (((-583 (-2 (|:| -3104 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483)))))) (|:| |fgb| (-583 |#4|)))) (-630 |#4|) (-694)) 98 T ELT)) (-2756 (((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483))))) (-630 |#4|) (-694)) 121 T ELT)) (-2749 (((-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|)))))) (-2 (|:| |mat| (-630 (-347 (-857 |#1|)))) (|:| |vec| (-583 (-347 (-857 |#1|)))) (|:| -3104 (-694)) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483))))) 56 T ELT)))
-(((-835 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2739 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|))))))))) (-630 |#4|) (-583 |#4|))) (-15 -2739 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|))))))))) (-630 |#4|) (-583 (-1088)))) (-15 -2739 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|))))))))) (-630 |#4|))) (-15 -2739 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|))))))))) (-630 |#4|) (-583 |#4|) (-830))) (-15 -2739 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|))))))))) (-630 |#4|) (-583 (-1088)) (-830))) (-15 -2739 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|))))))))) (-630 |#4|) (-830))) (-15 -2739 ((-483) (-630 |#4|) (-583 |#4|) (-1071))) (-15 -2739 ((-483) (-630 |#4|) (-583 (-1088)) (-1071))) (-15 -2739 ((-483) (-630 |#4|) (-1071))) (-15 -2739 ((-483) (-630 |#4|) (-583 |#4|) (-830) (-1071))) (-15 -2739 ((-483) (-630 |#4|) (-583 (-1088)) (-830) (-1071))) (-15 -2739 ((-483) (-630 |#4|) (-830) (-1071))) (-15 -2740 ((-483) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|))))))))) (-1071))) (-15 -2741 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|))))))))) (-1071))) (-15 -2742 ((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|)))))))))) (|:| |rgsz| (-483))) (-630 |#4|) (-583 (-347 (-857 |#1|))) (-694) (-1071) (-483))) (-15 -2743 ((-347 (-857 |#1|)) |#4|)) (-15 -2743 ((-630 (-347 (-857 |#1|))) (-630 |#4|))) (-15 -2743 ((-583 (-347 (-857 |#1|))) (-583 |#4|))) (-15 -2744 ((-583 (-347 (-857 |#1|))) (-583 (-1088)))) (-15 -2745 (|#4| (-857 |#1|))) (-15 -2746 ((-2 (|:| |sysok| (-85)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|))) (-15 -2747 ((-583 (-2 (|:| -3104 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483)))))) (|:| |fgb| (-583 |#4|)))) (-630 |#4|) (-694))) (-15 -2748 ((-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|)))))) (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|)))))) (-583 |#4|))) (-15 -2749 ((-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|)))))) (-2 (|:| |mat| (-630 (-347 (-857 |#1|)))) (|:| |vec| (-583 (-347 (-857 |#1|)))) (|:| -3104 (-694)) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483)))))) (-15 -2750 ((-583 |#4|) |#4|)) (-15 -2751 ((-694) (-583 (-2 (|:| -3104 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -2752 ((-694) (-583 (-2 (|:| -3104 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -2753 ((-583 (-583 |#4|)) (-583 (-583 |#4|)))) (-15 -2754 ((-583 (-583 (-483))) (-483) (-483))) (-15 -2755 ((-85) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -2756 ((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483))))) (-630 |#4|) (-694))) (-15 -2757 ((-630 |#4|) (-630 |#4|) (-583 |#4|))) (-15 -2758 ((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 |#1|)))) (|:| -2008 (-583 (-1177 (-347 (-857 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483)))) (-630 |#4|) (-583 (-347 (-857 |#1|))) (-583 (-583 |#4|)) (-694) (-694) (-483))) (-15 -2759 (|#4| |#4|)) (-15 -2760 ((-85) (-583 |#4|))) (-15 -2760 ((-85) (-583 (-857 |#1|))))) (-13 (-257) (-120)) (-13 (-756) (-553 (-1088))) (-717) (-861 |#1| |#3| |#2|)) (T -835))
-((-2760 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 (-85)) (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5)))) (-2760 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 (-85)) (-5 *1 (-835 *4 *5 *6 *7)))) (-2759 (*1 *2 *2) (-12 (-4 *3 (-13 (-257) (-120))) (-4 *4 (-13 (-756) (-553 (-1088)))) (-4 *5 (-717)) (-5 *1 (-835 *3 *4 *5 *2)) (-4 *2 (-861 *3 *5 *4)))) (-2758 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483))))) (-5 *4 (-630 *12)) (-5 *5 (-583 (-347 (-857 *9)))) (-5 *6 (-583 (-583 *12))) (-5 *7 (-694)) (-5 *8 (-483)) (-4 *9 (-13 (-257) (-120))) (-4 *12 (-861 *9 *11 *10)) (-4 *10 (-13 (-756) (-553 (-1088)))) (-4 *11 (-717)) (-5 *2 (-2 (|:| |eqzro| (-583 *12)) (|:| |neqzro| (-583 *12)) (|:| |wcond| (-583 (-857 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 *9)))) (|:| -2008 (-583 (-1177 (-347 (-857 *9))))))))) (-5 *1 (-835 *9 *10 *11 *12)))) (-2757 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *7)) (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *1 (-835 *4 *5 *6 *7)))) (-2756 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-694)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-756) (-553 (-1088)))) (-4 *7 (-717)) (-5 *2 (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483)))))) (-5 *1 (-835 *5 *6 *7 *8)))) (-2755 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-756) (-553 (-1088)))) (-4 *7 (-717)) (-5 *2 (-85)) (-5 *1 (-835 *5 *6 *7 *8)))) (-2754 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 (-583 (-583 (-483)))) (-5 *1 (-835 *4 *5 *6 *7)) (-5 *3 (-483)) (-4 *7 (-861 *4 *6 *5)))) (-2753 (*1 *2 *2) (-12 (-5 *2 (-583 (-583 *6))) (-4 *6 (-861 *3 *5 *4)) (-4 *3 (-13 (-257) (-120))) (-4 *4 (-13 (-756) (-553 (-1088)))) (-4 *5 (-717)) (-5 *1 (-835 *3 *4 *5 *6)))) (-2752 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3104 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 (-694)) (-5 *1 (-835 *4 *5 *6 *7)))) (-2751 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3104 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 (-694)) (-5 *1 (-835 *4 *5 *6 *7)))) (-2750 (*1 *2 *3) (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 (-583 *3)) (-5 *1 (-835 *4 *5 *6 *3)) (-4 *3 (-861 *4 *6 *5)))) (-2749 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |mat| (-630 (-347 (-857 *4)))) (|:| |vec| (-583 (-347 (-857 *4)))) (|:| -3104 (-694)) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483))))) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 (-2 (|:| |partsol| (-1177 (-347 (-857 *4)))) (|:| -2008 (-583 (-1177 (-347 (-857 *4))))))) (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5)))) (-2748 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1177 (-347 (-857 *4)))) (|:| -2008 (-583 (-1177 (-347 (-857 *4))))))) (-5 *3 (-583 *7)) (-4 *4 (-13 (-257) (-120))) (-4 *7 (-861 *4 *6 *5)) (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *1 (-835 *4 *5 *6 *7)))) (-2747 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-756) (-553 (-1088)))) (-4 *7 (-717)) (-5 *2 (-583 (-2 (|:| -3104 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483)))))) (|:| |fgb| (-583 *8))))) (-5 *1 (-835 *5 *6 *7 *8)) (-5 *4 (-694)))) (-2746 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-4 *7 (-861 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-583 *7)) (|:| |n0| (-583 *7)))) (-5 *1 (-835 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2745 (*1 *2 *3) (-12 (-5 *3 (-857 *4)) (-4 *4 (-13 (-257) (-120))) (-4 *2 (-861 *4 *6 *5)) (-5 *1 (-835 *4 *5 *6 *2)) (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)))) (-2744 (*1 *2 *3) (-12 (-5 *3 (-583 (-1088))) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 (-583 (-347 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5)))) (-2743 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 (-583 (-347 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7)))) (-2743 (*1 *2 *3) (-12 (-5 *3 (-630 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 (-630 (-347 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7)))) (-2743 (*1 *2 *3) (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 (-347 (-857 *4))) (-5 *1 (-835 *4 *5 *6 *3)) (-4 *3 (-861 *4 *6 *5)))) (-2742 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-630 *11)) (-5 *4 (-583 (-347 (-857 *8)))) (-5 *5 (-694)) (-5 *6 (-1071)) (-4 *8 (-13 (-257) (-120))) (-4 *11 (-861 *8 *10 *9)) (-4 *9 (-13 (-756) (-553 (-1088)))) (-4 *10 (-717)) (-5 *2 (-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 *11)) (|:| |neqzro| (-583 *11)) (|:| |wcond| (-583 (-857 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 *8)))) (|:| -2008 (-583 (-1177 (-347 (-857 *8)))))))))) (|:| |rgsz| (-483)))) (-5 *1 (-835 *8 *9 *10 *11)) (-5 *7 (-483)))) (-2741 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-857 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 *4)))) (|:| -2008 (-583 (-1177 (-347 (-857 *4)))))))))) (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5)))) (-2740 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-857 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 *5)))) (|:| -2008 (-583 (-1177 (-347 (-857 *5)))))))))) (-5 *4 (-1071)) (-4 *5 (-13 (-257) (-120))) (-4 *8 (-861 *5 *7 *6)) (-4 *6 (-13 (-756) (-553 (-1088)))) (-4 *7 (-717)) (-5 *2 (-483)) (-5 *1 (-835 *5 *6 *7 *8)))) (-2739 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *9)) (-5 *4 (-830)) (-5 *5 (-1071)) (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-257) (-120))) (-4 *7 (-13 (-756) (-553 (-1088)))) (-4 *8 (-717)) (-5 *2 (-483)) (-5 *1 (-835 *6 *7 *8 *9)))) (-2739 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-630 *10)) (-5 *4 (-583 (-1088))) (-5 *5 (-830)) (-5 *6 (-1071)) (-4 *10 (-861 *7 *9 *8)) (-4 *7 (-13 (-257) (-120))) (-4 *8 (-13 (-756) (-553 (-1088)))) (-4 *9 (-717)) (-5 *2 (-483)) (-5 *1 (-835 *7 *8 *9 *10)))) (-2739 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-630 *10)) (-5 *4 (-583 *10)) (-5 *5 (-830)) (-5 *6 (-1071)) (-4 *10 (-861 *7 *9 *8)) (-4 *7 (-13 (-257) (-120))) (-4 *8 (-13 (-756) (-553 (-1088)))) (-4 *9 (-717)) (-5 *2 (-483)) (-5 *1 (-835 *7 *8 *9 *10)))) (-2739 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-1071)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-756) (-553 (-1088)))) (-4 *7 (-717)) (-5 *2 (-483)) (-5 *1 (-835 *5 *6 *7 *8)))) (-2739 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 (-1088))) (-5 *5 (-1071)) (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-257) (-120))) (-4 *7 (-13 (-756) (-553 (-1088)))) (-4 *8 (-717)) (-5 *2 (-483)) (-5 *1 (-835 *6 *7 *8 *9)))) (-2739 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 *9)) (-5 *5 (-1071)) (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-257) (-120))) (-4 *7 (-13 (-756) (-553 (-1088)))) (-4 *8 (-717)) (-5 *2 (-483)) (-5 *1 (-835 *6 *7 *8 *9)))) (-2739 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-830)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-756) (-553 (-1088)))) (-4 *7 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-857 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 *5)))) (|:| -2008 (-583 (-1177 (-347 (-857 *5)))))))))) (-5 *1 (-835 *5 *6 *7 *8)))) (-2739 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 (-1088))) (-5 *5 (-830)) (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-257) (-120))) (-4 *7 (-13 (-756) (-553 (-1088)))) (-4 *8 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-857 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 *6)))) (|:| -2008 (-583 (-1177 (-347 (-857 *6)))))))))) (-5 *1 (-835 *6 *7 *8 *9)))) (-2739 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *9)) (-5 *5 (-830)) (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-257) (-120))) (-4 *7 (-13 (-756) (-553 (-1088)))) (-4 *8 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-857 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 *6)))) (|:| -2008 (-583 (-1177 (-347 (-857 *6)))))))))) (-5 *1 (-835 *6 *7 *8 *9)) (-5 *4 (-583 *9)))) (-2739 (*1 *2 *3) (-12 (-5 *3 (-630 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-857 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 *4)))) (|:| -2008 (-583 (-1177 (-347 (-857 *4)))))))))) (-5 *1 (-835 *4 *5 *6 *7)))) (-2739 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-583 (-1088))) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-756) (-553 (-1088)))) (-4 *7 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-857 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 *5)))) (|:| -2008 (-583 (-1177 (-347 (-857 *5)))))))))) (-5 *1 (-835 *5 *6 *7 *8)))) (-2739 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-756) (-553 (-1088)))) (-4 *7 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-857 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1177 (-347 (-857 *5)))) (|:| -2008 (-583 (-1177 (-347 (-857 *5)))))))))) (-5 *1 (-835 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
-((-3868 (($ $ (-1000 (-179))) 125 T ELT) (($ $ (-1000 (-179)) (-1000 (-179))) 126 T ELT)) (-2892 (((-1000 (-179)) $) 73 T ELT)) (-2893 (((-1000 (-179)) $) 72 T ELT)) (-2784 (((-1000 (-179)) $) 74 T ELT)) (-2765 (((-483) (-483)) 66 T ELT)) (-2769 (((-483) (-483)) 61 T ELT)) (-2767 (((-483) (-483)) 64 T ELT)) (-2763 (((-85) (-85)) 68 T ELT)) (-2766 (((-483)) 65 T ELT)) (-3129 (($ $ (-1000 (-179))) 129 T ELT) (($ $) 130 T ELT)) (-2786 (($ (-1 (-854 (-179)) (-179)) (-1000 (-179))) 148 T ELT) (($ (-1 (-854 (-179)) (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179))) 149 T ELT)) (-2772 (($ (-1 (-179) (-179)) (-1000 (-179))) 156 T ELT) (($ (-1 (-179) (-179))) 160 T ELT)) (-2785 (($ (-1 (-179) (-179)) (-1000 (-179))) 144 T ELT) (($ (-1 (-179) (-179)) (-1000 (-179)) (-1000 (-179))) 145 T ELT) (($ (-583 (-1 (-179) (-179))) (-1000 (-179))) 153 T ELT) (($ (-583 (-1 (-179) (-179))) (-1000 (-179)) (-1000 (-179))) 154 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1000 (-179))) 146 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179))) 147 T ELT) (($ $ (-1000 (-179))) 131 T ELT)) (-2771 (((-85) $) 69 T ELT)) (-2762 (((-483)) 70 T ELT)) (-2770 (((-483)) 59 T ELT)) (-2768 (((-483)) 62 T ELT)) (-2894 (((-583 (-583 (-854 (-179)))) $) 35 T ELT)) (-2761 (((-85) (-85)) 71 T ELT)) (-3940 (((-772) $) 174 T ELT)) (-2764 (((-85)) 67 T ELT)))
-(((-836) (-13 (-866) (-10 -8 (-15 -2785 ($ (-1 (-179) (-179)) (-1000 (-179)))) (-15 -2785 ($ (-1 (-179) (-179)) (-1000 (-179)) (-1000 (-179)))) (-15 -2785 ($ (-583 (-1 (-179) (-179))) (-1000 (-179)))) (-15 -2785 ($ (-583 (-1 (-179) (-179))) (-1000 (-179)) (-1000 (-179)))) (-15 -2785 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1000 (-179)))) (-15 -2785 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179)))) (-15 -2786 ($ (-1 (-854 (-179)) (-179)) (-1000 (-179)))) (-15 -2786 ($ (-1 (-854 (-179)) (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179)))) (-15 -2772 ($ (-1 (-179) (-179)) (-1000 (-179)))) (-15 -2772 ($ (-1 (-179) (-179)))) (-15 -2785 ($ $ (-1000 (-179)))) (-15 -2771 ((-85) $)) (-15 -3868 ($ $ (-1000 (-179)))) (-15 -3868 ($ $ (-1000 (-179)) (-1000 (-179)))) (-15 -3129 ($ $ (-1000 (-179)))) (-15 -3129 ($ $)) (-15 -2784 ((-1000 (-179)) $)) (-15 -2770 ((-483))) (-15 -2769 ((-483) (-483))) (-15 -2768 ((-483))) (-15 -2767 ((-483) (-483))) (-15 -2766 ((-483))) (-15 -2765 ((-483) (-483))) (-15 -2764 ((-85))) (-15 -2763 ((-85) (-85))) (-15 -2762 ((-483))) (-15 -2761 ((-85) (-85)))))) (T -836))
-((-2785 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-836)))) (-2785 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-836)))) (-2785 (*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1 (-179) (-179)))) (-5 *3 (-1000 (-179))) (-5 *1 (-836)))) (-2785 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-1 (-179) (-179)))) (-5 *3 (-1000 (-179))) (-5 *1 (-836)))) (-2785 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-836)))) (-2785 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-836)))) (-2786 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-836)))) (-2786 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-836)))) (-2772 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-836)))) (-2772 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-836)))) (-2785 (*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-836)))) (-2771 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-836)))) (-3868 (*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-836)))) (-3868 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-836)))) (-3129 (*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-836)))) (-3129 (*1 *1 *1) (-5 *1 (-836))) (-2784 (*1 *2 *1) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-836)))) (-2770 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-836)))) (-2769 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-836)))) (-2768 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-836)))) (-2767 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-836)))) (-2766 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-836)))) (-2765 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-836)))) (-2764 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836)))) (-2763 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836)))) (-2762 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-836)))) (-2761 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836)))))
-((-2772 (((-836) |#1| (-1088)) 17 T ELT) (((-836) |#1| (-1088) (-1000 (-179))) 21 T ELT)) (-2785 (((-836) |#1| |#1| (-1088) (-1000 (-179))) 19 T ELT) (((-836) |#1| (-1088) (-1000 (-179))) 15 T ELT)))
-(((-837 |#1|) (-10 -7 (-15 -2785 ((-836) |#1| (-1088) (-1000 (-179)))) (-15 -2785 ((-836) |#1| |#1| (-1088) (-1000 (-179)))) (-15 -2772 ((-836) |#1| (-1088) (-1000 (-179)))) (-15 -2772 ((-836) |#1| (-1088)))) (-553 (-472))) (T -837))
-((-2772 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-5 *2 (-836)) (-5 *1 (-837 *3)) (-4 *3 (-553 (-472))))) (-2772 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1088)) (-5 *5 (-1000 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3)) (-4 *3 (-553 (-472))))) (-2785 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1088)) (-5 *5 (-1000 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3)) (-4 *3 (-553 (-472))))) (-2785 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1088)) (-5 *5 (-1000 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3)) (-4 *3 (-553 (-472))))))
-((-3868 (($ $ (-1000 (-179)) (-1000 (-179)) (-1000 (-179))) 123 T ELT)) (-2891 (((-1000 (-179)) $) 64 T ELT)) (-2892 (((-1000 (-179)) $) 63 T ELT)) (-2893 (((-1000 (-179)) $) 62 T ELT)) (-2783 (((-583 (-583 (-179))) $) 69 T ELT)) (-2784 (((-1000 (-179)) $) 65 T ELT)) (-2777 (((-483) (-483)) 57 T ELT)) (-2781 (((-483) (-483)) 52 T ELT)) (-2779 (((-483) (-483)) 55 T ELT)) (-2775 (((-85) (-85)) 59 T ELT)) (-2778 (((-483)) 56 T ELT)) (-3129 (($ $ (-1000 (-179))) 126 T ELT) (($ $) 127 T ELT)) (-2786 (($ (-1 (-854 (-179)) (-179)) (-1000 (-179))) 133 T ELT) (($ (-1 (-854 (-179)) (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179))) 134 T ELT)) (-2785 (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1000 (-179))) 140 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179))) 141 T ELT) (($ $ (-1000 (-179))) 129 T ELT)) (-2774 (((-483)) 60 T ELT)) (-2782 (((-483)) 50 T ELT)) (-2780 (((-483)) 53 T ELT)) (-2894 (((-583 (-583 (-854 (-179)))) $) 157 T ELT)) (-2773 (((-85) (-85)) 61 T ELT)) (-3940 (((-772) $) 155 T ELT)) (-2776 (((-85)) 58 T ELT)))
-(((-838) (-13 (-887) (-10 -8 (-15 -2786 ($ (-1 (-854 (-179)) (-179)) (-1000 (-179)))) (-15 -2786 ($ (-1 (-854 (-179)) (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179)))) (-15 -2785 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1000 (-179)))) (-15 -2785 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179)) (-1000 (-179)))) (-15 -2785 ($ $ (-1000 (-179)))) (-15 -3868 ($ $ (-1000 (-179)) (-1000 (-179)) (-1000 (-179)))) (-15 -3129 ($ $ (-1000 (-179)))) (-15 -3129 ($ $)) (-15 -2784 ((-1000 (-179)) $)) (-15 -2783 ((-583 (-583 (-179))) $)) (-15 -2782 ((-483))) (-15 -2781 ((-483) (-483))) (-15 -2780 ((-483))) (-15 -2779 ((-483) (-483))) (-15 -2778 ((-483))) (-15 -2777 ((-483) (-483))) (-15 -2776 ((-85))) (-15 -2775 ((-85) (-85))) (-15 -2774 ((-483))) (-15 -2773 ((-85) (-85)))))) (T -838))
-((-2786 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-838)))) (-2786 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-838)))) (-2785 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-838)))) (-2785 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-838)))) (-2785 (*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-838)))) (-3868 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-838)))) (-3129 (*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-838)))) (-3129 (*1 *1 *1) (-5 *1 (-838))) (-2784 (*1 *2 *1) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-838)))) (-2783 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-179)))) (-5 *1 (-838)))) (-2782 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-838)))) (-2781 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-838)))) (-2780 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-838)))) (-2779 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-838)))) (-2778 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-838)))) (-2777 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-838)))) (-2776 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838)))) (-2775 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838)))) (-2774 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-838)))) (-2773 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838)))))
-((-2787 (((-583 (-1000 (-179))) (-583 (-583 (-854 (-179))))) 34 T ELT)))
-(((-839) (-10 -7 (-15 -2787 ((-583 (-1000 (-179))) (-583 (-583 (-854 (-179)))))))) (T -839))
-((-2787 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-583 (-1000 (-179)))) (-5 *1 (-839)))))
-((-2789 (((-264 (-483)) (-1088)) 16 T ELT)) (-2790 (((-264 (-483)) (-1088)) 14 T ELT)) (-3946 (((-264 (-483)) (-1088)) 12 T ELT)) (-2788 (((-264 (-483)) (-1088) (-444)) 19 T ELT)))
-(((-840) (-10 -7 (-15 -2788 ((-264 (-483)) (-1088) (-444))) (-15 -3946 ((-264 (-483)) (-1088))) (-15 -2789 ((-264 (-483)) (-1088))) (-15 -2790 ((-264 (-483)) (-1088))))) (T -840))
-((-2790 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-264 (-483))) (-5 *1 (-840)))) (-2789 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-264 (-483))) (-5 *1 (-840)))) (-3946 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-264 (-483))) (-5 *1 (-840)))) (-2788 (*1 *2 *3 *4) (-12 (-5 *3 (-1088)) (-5 *4 (-444)) (-5 *2 (-264 (-483))) (-5 *1 (-840)))))
-((-2789 ((|#2| |#2|) 28 T ELT)) (-2790 ((|#2| |#2|) 29 T ELT)) (-3946 ((|#2| |#2|) 27 T ELT)) (-2788 ((|#2| |#2| (-444)) 26 T ELT)))
-(((-841 |#1| |#2|) (-10 -7 (-15 -2788 (|#2| |#2| (-444))) (-15 -3946 (|#2| |#2|)) (-15 -2789 (|#2| |#2|)) (-15 -2790 (|#2| |#2|))) (-1012) (-361 |#1|)) (T -841))
-((-2790 (*1 *2 *2) (-12 (-4 *3 (-1012)) (-5 *1 (-841 *3 *2)) (-4 *2 (-361 *3)))) (-2789 (*1 *2 *2) (-12 (-4 *3 (-1012)) (-5 *1 (-841 *3 *2)) (-4 *2 (-361 *3)))) (-3946 (*1 *2 *2) (-12 (-4 *3 (-1012)) (-5 *1 (-841 *3 *2)) (-4 *2 (-361 *3)))) (-2788 (*1 *2 *2 *3) (-12 (-5 *3 (-444)) (-4 *4 (-1012)) (-5 *1 (-841 *4 *2)) (-4 *2 (-361 *4)))))
-((-2792 (((-798 |#1| |#3|) |#2| (-800 |#1|) (-798 |#1| |#3|)) 25 T ELT)) (-2791 (((-1 (-85) |#2|) (-1 (-85) |#3|)) 13 T ELT)))
-(((-842 |#1| |#2| |#3|) (-10 -7 (-15 -2791 ((-1 (-85) |#2|) (-1 (-85) |#3|))) (-15 -2792 ((-798 |#1| |#3|) |#2| (-800 |#1|) (-798 |#1| |#3|)))) (-1012) (-796 |#1|) (-13 (-1012) (-950 |#2|))) (T -842))
-((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *6)) (-5 *4 (-800 *5)) (-4 *5 (-1012)) (-4 *6 (-13 (-1012) (-950 *3))) (-4 *3 (-796 *5)) (-5 *1 (-842 *5 *3 *6)))) (-2791 (*1 *2 *3) (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1012) (-950 *5))) (-4 *5 (-796 *4)) (-4 *4 (-1012)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-842 *4 *5 *6)))))
-((-2792 (((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)) 30 T ELT)))
-(((-843 |#1| |#2| |#3|) (-10 -7 (-15 -2792 ((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)))) (-1012) (-13 (-494) (-796 |#1|)) (-13 (-361 |#2|) (-553 (-800 |#1|)) (-796 |#1|) (-950 (-550 $)))) (T -843))
-((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1012)) (-4 *3 (-13 (-361 *6) (-553 *4) (-796 *5) (-950 (-550 $)))) (-5 *4 (-800 *5)) (-4 *6 (-13 (-494) (-796 *5))) (-5 *1 (-843 *5 *6 *3)))))
-((-2792 (((-798 (-483) |#1|) |#1| (-800 (-483)) (-798 (-483) |#1|)) 13 T ELT)))
-(((-844 |#1|) (-10 -7 (-15 -2792 ((-798 (-483) |#1|) |#1| (-800 (-483)) (-798 (-483) |#1|)))) (-482)) (T -844))
-((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 (-483) *3)) (-5 *4 (-800 (-483))) (-4 *3 (-482)) (-5 *1 (-844 *3)))))
-((-2792 (((-798 |#1| |#2|) (-550 |#2|) (-800 |#1|) (-798 |#1| |#2|)) 57 T ELT)))
-(((-845 |#1| |#2|) (-10 -7 (-15 -2792 ((-798 |#1| |#2|) (-550 |#2|) (-800 |#1|) (-798 |#1| |#2|)))) (-1012) (-13 (-1012) (-950 (-550 $)) (-553 (-800 |#1|)) (-796 |#1|))) (T -845))
-((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *6)) (-5 *3 (-550 *6)) (-4 *5 (-1012)) (-4 *6 (-13 (-1012) (-950 (-550 $)) (-553 *4) (-796 *5))) (-5 *4 (-800 *5)) (-5 *1 (-845 *5 *6)))))
-((-2792 (((-795 |#1| |#2| |#3|) |#3| (-800 |#1|) (-795 |#1| |#2| |#3|)) 17 T ELT)))
-(((-846 |#1| |#2| |#3|) (-10 -7 (-15 -2792 ((-795 |#1| |#2| |#3|) |#3| (-800 |#1|) (-795 |#1| |#2| |#3|)))) (-1012) (-796 |#1|) (-608 |#2|)) (T -846))
-((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-795 *5 *6 *3)) (-5 *4 (-800 *5)) (-4 *5 (-1012)) (-4 *6 (-796 *5)) (-4 *3 (-608 *6)) (-5 *1 (-846 *5 *6 *3)))))
-((-2792 (((-798 |#1| |#5|) |#5| (-800 |#1|) (-798 |#1| |#5|)) 17 (|has| |#3| (-796 |#1|)) ELT) (((-798 |#1| |#5|) |#5| (-800 |#1|) (-798 |#1| |#5|) (-1 (-798 |#1| |#5|) |#3| (-800 |#1|) (-798 |#1| |#5|))) 16 T ELT)))
-(((-847 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2792 ((-798 |#1| |#5|) |#5| (-800 |#1|) (-798 |#1| |#5|) (-1 (-798 |#1| |#5|) |#3| (-800 |#1|) (-798 |#1| |#5|)))) (IF (|has| |#3| (-796 |#1|)) (-15 -2792 ((-798 |#1| |#5|) |#5| (-800 |#1|) (-798 |#1| |#5|))) |%noBranch|)) (-1012) (-717) (-756) (-13 (-961) (-796 |#1|)) (-13 (-861 |#4| |#2| |#3|) (-553 (-800 |#1|)))) (T -847))
-((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1012)) (-4 *3 (-13 (-861 *8 *6 *7) (-553 *4))) (-5 *4 (-800 *5)) (-4 *7 (-796 *5)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-13 (-961) (-796 *5))) (-5 *1 (-847 *5 *6 *7 *8 *3)))) (-2792 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-798 *6 *3) *8 (-800 *6) (-798 *6 *3))) (-4 *8 (-756)) (-5 *2 (-798 *6 *3)) (-5 *4 (-800 *6)) (-4 *6 (-1012)) (-4 *3 (-13 (-861 *9 *7 *8) (-553 *4))) (-4 *7 (-717)) (-4 *9 (-13 (-961) (-796 *6))) (-5 *1 (-847 *6 *7 *8 *9 *3)))))
-((-3204 (((-264 (-483)) (-1088) (-583 (-1 (-85) |#1|))) 18 T ELT) (((-264 (-483)) (-1088) (-1 (-85) |#1|)) 15 T ELT)))
-(((-848 |#1|) (-10 -7 (-15 -3204 ((-264 (-483)) (-1088) (-1 (-85) |#1|))) (-15 -3204 ((-264 (-483)) (-1088) (-583 (-1 (-85) |#1|))))) (-1127)) (T -848))
-((-3204 (*1 *2 *3 *4) (-12 (-5 *3 (-1088)) (-5 *4 (-583 (-1 (-85) *5))) (-4 *5 (-1127)) (-5 *2 (-264 (-483))) (-5 *1 (-848 *5)))) (-3204 (*1 *2 *3 *4) (-12 (-5 *3 (-1088)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1127)) (-5 *2 (-264 (-483))) (-5 *1 (-848 *5)))))
-((-3204 ((|#2| |#2| (-583 (-1 (-85) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-85) |#3|)) 13 T ELT)))
-(((-849 |#1| |#2| |#3|) (-10 -7 (-15 -3204 (|#2| |#2| (-1 (-85) |#3|))) (-15 -3204 (|#2| |#2| (-583 (-1 (-85) |#3|))))) (-1012) (-361 |#1|) (-1127)) (T -849))
-((-3204 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1 (-85) *5))) (-4 *5 (-1127)) (-4 *4 (-1012)) (-5 *1 (-849 *4 *2 *5)) (-4 *2 (-361 *4)))) (-3204 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1127)) (-4 *4 (-1012)) (-5 *1 (-849 *4 *2 *5)) (-4 *2 (-361 *4)))))
-((-2792 (((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)) 25 T ELT)))
-(((-850 |#1| |#2| |#3|) (-10 -7 (-15 -2792 ((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)))) (-1012) (-13 (-494) (-796 |#1|) (-553 (-800 |#1|))) (-904 |#2|)) (T -850))
-((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1012)) (-4 *3 (-904 *6)) (-4 *6 (-13 (-494) (-796 *5) (-553 *4))) (-5 *4 (-800 *5)) (-5 *1 (-850 *5 *6 *3)))))
-((-2792 (((-798 |#1| (-1088)) (-1088) (-800 |#1|) (-798 |#1| (-1088))) 18 T ELT)))
-(((-851 |#1|) (-10 -7 (-15 -2792 ((-798 |#1| (-1088)) (-1088) (-800 |#1|) (-798 |#1| (-1088))))) (-1012)) (T -851))
-((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 (-1088))) (-5 *3 (-1088)) (-5 *4 (-800 *5)) (-4 *5 (-1012)) (-5 *1 (-851 *5)))))
-((-2793 (((-798 |#1| |#3|) (-583 |#3|) (-583 (-800 |#1|)) (-798 |#1| |#3|) (-1 (-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|))) 34 T ELT)) (-2792 (((-798 |#1| |#3|) (-583 |#3|) (-583 (-800 |#1|)) (-1 |#3| (-583 |#3|)) (-798 |#1| |#3|) (-1 (-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|))) 33 T ELT)))
-(((-852 |#1| |#2| |#3|) (-10 -7 (-15 -2792 ((-798 |#1| |#3|) (-583 |#3|) (-583 (-800 |#1|)) (-1 |#3| (-583 |#3|)) (-798 |#1| |#3|) (-1 (-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)))) (-15 -2793 ((-798 |#1| |#3|) (-583 |#3|) (-583 (-800 |#1|)) (-798 |#1| |#3|) (-1 (-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|))))) (-1012) (-961) (-13 (-961) (-553 (-800 |#1|)) (-950 |#2|))) (T -852))
-((-2793 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-800 *6))) (-5 *5 (-1 (-798 *6 *8) *8 (-800 *6) (-798 *6 *8))) (-4 *6 (-1012)) (-4 *8 (-13 (-961) (-553 (-800 *6)) (-950 *7))) (-5 *2 (-798 *6 *8)) (-4 *7 (-961)) (-5 *1 (-852 *6 *7 *8)))) (-2792 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-583 (-800 *7))) (-5 *5 (-1 *9 (-583 *9))) (-5 *6 (-1 (-798 *7 *9) *9 (-800 *7) (-798 *7 *9))) (-4 *7 (-1012)) (-4 *9 (-13 (-961) (-553 (-800 *7)) (-950 *8))) (-5 *2 (-798 *7 *9)) (-5 *3 (-583 *9)) (-4 *8 (-961)) (-5 *1 (-852 *7 *8 *9)))))
-((-2801 (((-1083 (-347 (-483))) (-483)) 80 T ELT)) (-2800 (((-1083 (-483)) (-483)) 83 T ELT)) (-3328 (((-1083 (-483)) (-483)) 77 T ELT)) (-2799 (((-483) (-1083 (-483))) 73 T ELT)) (-2798 (((-1083 (-347 (-483))) (-483)) 66 T ELT)) (-2797 (((-1083 (-483)) (-483)) 49 T ELT)) (-2796 (((-1083 (-483)) (-483)) 85 T ELT)) (-2795 (((-1083 (-483)) (-483)) 84 T ELT)) (-2794 (((-1083 (-347 (-483))) (-483)) 68 T ELT)))
-(((-853) (-10 -7 (-15 -2794 ((-1083 (-347 (-483))) (-483))) (-15 -2795 ((-1083 (-483)) (-483))) (-15 -2796 ((-1083 (-483)) (-483))) (-15 -2797 ((-1083 (-483)) (-483))) (-15 -2798 ((-1083 (-347 (-483))) (-483))) (-15 -2799 ((-483) (-1083 (-483)))) (-15 -3328 ((-1083 (-483)) (-483))) (-15 -2800 ((-1083 (-483)) (-483))) (-15 -2801 ((-1083 (-347 (-483))) (-483))))) (T -853))
-((-2801 (*1 *2 *3) (-12 (-5 *2 (-1083 (-347 (-483)))) (-5 *1 (-853)) (-5 *3 (-483)))) (-2800 (*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-853)) (-5 *3 (-483)))) (-3328 (*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-853)) (-5 *3 (-483)))) (-2799 (*1 *2 *3) (-12 (-5 *3 (-1083 (-483))) (-5 *2 (-483)) (-5 *1 (-853)))) (-2798 (*1 *2 *3) (-12 (-5 *2 (-1083 (-347 (-483)))) (-5 *1 (-853)) (-5 *3 (-483)))) (-2797 (*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-853)) (-5 *3 (-483)))) (-2796 (*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-853)) (-5 *3 (-483)))) (-2795 (*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-853)) (-5 *3 (-483)))) (-2794 (*1 *2 *3) (-12 (-5 *2 (-1083 (-347 (-483)))) (-5 *1 (-853)) (-5 *3 (-483)))))
-((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3832 (($ (-694)) NIL (|has| |#1| (-23)) ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1727 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3990)) (|has| |#1| (-756))) ELT)) (-2905 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-3782 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3718 (($) NIL T CONST)) (-2293 (($ $) NIL (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) NIL T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3400 (($ |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) NIL T ELT)) (-3413 (((-483) (-1 (-85) |#1|) $) NIL T ELT) (((-483) |#1| $) NIL (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) NIL (|has| |#1| (-1012)) ELT)) (-3700 (($ (-583 |#1|)) 9 T ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3829 (((-630 |#1|) $ $) NIL (|has| |#1| (-961)) ELT)) (-3608 (($ (-694) |#1|) NIL T ELT)) (-2196 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3512 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2197 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3826 ((|#1| $) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-961))) ELT)) (-3827 ((|#1| $) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-961))) ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-2300 (($ |#1| $ (-483)) NIL T ELT) (($ $ $ (-483)) NIL T ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3795 ((|#1| $) NIL (|has| (-483) (-756)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2195 (($ $ |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3763 (($ $ (-583 |#1|)) 25 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#1| $ (-483) |#1|) NIL T ELT) ((|#1| $ (-483)) 18 T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-3830 ((|#1| $ $) NIL (|has| |#1| (-961)) ELT)) (-3905 (((-830) $) 13 T ELT)) (-2301 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-3828 (($ $ $) 23 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1728 (($ $ $ (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| |#1| (-553 (-472))) ELT) (($ (-583 |#1|)) 14 T ELT)) (-3524 (($ (-583 |#1|)) NIL T ELT)) (-3796 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-583 $)) NIL T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3831 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3833 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-483) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-663)) ELT) (($ $ |#1|) NIL (|has| |#1| (-663)) ELT)) (-3951 (((-694) $) 11 (|has| $ (-6 -3989)) ELT)))
-(((-854 |#1|) (-893 |#1|) (-961)) (T -854))
-NIL
-((-2804 (((-418 |#1| |#2|) (-857 |#2|)) 22 T ELT)) (-2807 (((-206 |#1| |#2|) (-857 |#2|)) 35 T ELT)) (-2805 (((-857 |#2|) (-418 |#1| |#2|)) 27 T ELT)) (-2803 (((-206 |#1| |#2|) (-418 |#1| |#2|)) 57 T ELT)) (-2806 (((-857 |#2|) (-206 |#1| |#2|)) 32 T ELT)) (-2802 (((-418 |#1| |#2|) (-206 |#1| |#2|)) 48 T ELT)))
-(((-855 |#1| |#2|) (-10 -7 (-15 -2802 ((-418 |#1| |#2|) (-206 |#1| |#2|))) (-15 -2803 ((-206 |#1| |#2|) (-418 |#1| |#2|))) (-15 -2804 ((-418 |#1| |#2|) (-857 |#2|))) (-15 -2805 ((-857 |#2|) (-418 |#1| |#2|))) (-15 -2806 ((-857 |#2|) (-206 |#1| |#2|))) (-15 -2807 ((-206 |#1| |#2|) (-857 |#2|)))) (-583 (-1088)) (-961)) (T -855))
-((-2807 (*1 *2 *3) (-12 (-5 *3 (-857 *5)) (-4 *5 (-961)) (-5 *2 (-206 *4 *5)) (-5 *1 (-855 *4 *5)) (-14 *4 (-583 (-1088))))) (-2806 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1088))) (-4 *5 (-961)) (-5 *2 (-857 *5)) (-5 *1 (-855 *4 *5)))) (-2805 (*1 *2 *3) (-12 (-5 *3 (-418 *4 *5)) (-14 *4 (-583 (-1088))) (-4 *5 (-961)) (-5 *2 (-857 *5)) (-5 *1 (-855 *4 *5)))) (-2804 (*1 *2 *3) (-12 (-5 *3 (-857 *5)) (-4 *5 (-961)) (-5 *2 (-418 *4 *5)) (-5 *1 (-855 *4 *5)) (-14 *4 (-583 (-1088))))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-418 *4 *5)) (-14 *4 (-583 (-1088))) (-4 *5 (-961)) (-5 *2 (-206 *4 *5)) (-5 *1 (-855 *4 *5)))) (-2802 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1088))) (-4 *5 (-961)) (-5 *2 (-418 *4 *5)) (-5 *1 (-855 *4 *5)))))
-((-2808 (((-583 |#2|) |#2| |#2|) 10 T ELT)) (-2811 (((-694) (-583 |#1|)) 47 (|has| |#1| (-755)) ELT)) (-2809 (((-583 |#2|) |#2|) 11 T ELT)) (-2812 (((-694) (-583 |#1|) (-483) (-483)) 45 (|has| |#1| (-755)) ELT)) (-2810 ((|#1| |#2|) 37 (|has| |#1| (-755)) ELT)))
-(((-856 |#1| |#2|) (-10 -7 (-15 -2808 ((-583 |#2|) |#2| |#2|)) (-15 -2809 ((-583 |#2|) |#2|)) (IF (|has| |#1| (-755)) (PROGN (-15 -2810 (|#1| |#2|)) (-15 -2811 ((-694) (-583 |#1|))) (-15 -2812 ((-694) (-583 |#1|) (-483) (-483)))) |%noBranch|)) (-311) (-1153 |#1|)) (T -856))
-((-2812 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-483)) (-4 *5 (-755)) (-4 *5 (-311)) (-5 *2 (-694)) (-5 *1 (-856 *5 *6)) (-4 *6 (-1153 *5)))) (-2811 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-755)) (-4 *4 (-311)) (-5 *2 (-694)) (-5 *1 (-856 *4 *5)) (-4 *5 (-1153 *4)))) (-2810 (*1 *2 *3) (-12 (-4 *2 (-311)) (-4 *2 (-755)) (-5 *1 (-856 *2 *3)) (-4 *3 (-1153 *2)))) (-2809 (*1 *2 *3) (-12 (-4 *4 (-311)) (-5 *2 (-583 *3)) (-5 *1 (-856 *4 *3)) (-4 *3 (-1153 *4)))) (-2808 (*1 *2 *3 *3) (-12 (-4 *4 (-311)) (-5 *2 (-583 *3)) (-5 *1 (-856 *4 *3)) (-4 *3 (-1153 *4)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3077 (((-583 (-1088)) $) 16 T ELT)) (-3079 (((-1083 $) $ (-1088)) 21 T ELT) (((-1083 |#1|) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2815 (((-694) $) NIL T ELT) (((-694) $ (-583 (-1088))) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3769 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) 8 T ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-1088) #1#) $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-1088) $) NIL T ELT)) (-3750 (($ $ $ (-1088)) NIL (|has| |#1| (-146)) ELT)) (-3953 (($ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-389)) ELT) (($ $ (-1088)) NIL (|has| |#1| (-389)) ELT)) (-2814 (((-583 $) $) NIL T ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1621 (($ $ |#1| (-468 (-1088)) $) NIL T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (-12 (|has| (-1088) (-796 (-327))) (|has| |#1| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (-12 (|has| (-1088) (-796 (-483))) (|has| |#1| (-796 (-483)))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2416 (((-694) $) NIL T ELT)) (-3080 (($ (-1083 |#1|) (-1088)) NIL T ELT) (($ (-1083 $) (-1088)) NIL T ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-468 (-1088))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ (-1088)) NIL T ELT)) (-2816 (((-468 (-1088)) $) NIL T ELT) (((-694) $ (-1088)) NIL T ELT) (((-583 (-694)) $ (-583 (-1088))) NIL T ELT)) (-1622 (($ (-1 (-468 (-1088)) (-468 (-1088))) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3078 (((-3 (-1088) #1#) $) 19 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2819 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2818 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-2 (|:| |var| (-1088)) (|:| -2397 (-694))) #1#) $) NIL T ELT)) (-3806 (($ $ (-1088)) 29 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1794 (((-85) $) NIL T ELT)) (-1793 ((|#1| $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-389)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-821)) ELT)) (-3460 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-3762 (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-1088) |#1|) NIL T ELT) (($ $ (-583 (-1088)) (-583 |#1|)) NIL T ELT) (($ $ (-1088) $) NIL T ELT) (($ $ (-583 (-1088)) (-583 $)) NIL T ELT)) (-3751 (($ $ (-1088)) NIL (|has| |#1| (-146)) ELT)) (-3752 (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088))) NIL T ELT) (($ $ (-1088)) NIL T ELT)) (-3942 (((-468 (-1088)) $) NIL T ELT) (((-694) $ (-1088)) NIL T ELT) (((-583 (-694)) $ (-583 (-1088))) NIL T ELT)) (-3966 (((-800 (-327)) $) NIL (-12 (|has| (-1088) (-553 (-800 (-327)))) (|has| |#1| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) NIL (-12 (|has| (-1088) (-553 (-800 (-483)))) (|has| |#1| (-553 (-800 (-483))))) ELT) (((-472) $) NIL (-12 (|has| (-1088) (-553 (-472))) (|has| |#1| (-553 (-472)))) ELT)) (-2813 ((|#1| $) NIL (|has| |#1| (-389)) ELT) (($ $ (-1088)) NIL (|has| |#1| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3940 (((-772) $) 25 T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1088)) 27 T ELT) (($ (-347 (-483))) NIL (OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3811 (((-583 |#1|) $) NIL T ELT)) (-3671 ((|#1| $ (-468 (-1088))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1620 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088))) NIL T ELT) (($ $ (-1088)) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-857 |#1|) (-13 (-861 |#1| (-468 (-1088)) (-1088)) (-10 -8 (IF (|has| |#1| (-38 (-347 (-483)))) (-15 -3806 ($ $ (-1088))) |%noBranch|))) (-961)) (T -857))
-((-3806 (*1 *1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-857 *3)) (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)))))
-((-3952 (((-857 |#2|) (-1 |#2| |#1|) (-857 |#1|)) 19 T ELT)))
-(((-858 |#1| |#2|) (-10 -7 (-15 -3952 ((-857 |#2|) (-1 |#2| |#1|) (-857 |#1|)))) (-961) (-961)) (T -858))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-857 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-857 *6)) (-5 *1 (-858 *5 *6)))))
-((-3079 (((-1146 |#1| (-857 |#2|)) (-857 |#2|) (-1174 |#1|)) 18 T ELT)))
-(((-859 |#1| |#2|) (-10 -7 (-15 -3079 ((-1146 |#1| (-857 |#2|)) (-857 |#2|) (-1174 |#1|)))) (-1088) (-961)) (T -859))
-((-3079 (*1 *2 *3 *4) (-12 (-5 *4 (-1174 *5)) (-14 *5 (-1088)) (-4 *6 (-961)) (-5 *2 (-1146 *5 (-857 *6))) (-5 *1 (-859 *5 *6)) (-5 *3 (-857 *6)))))
-((-2815 (((-694) $) 88 T ELT) (((-694) $ (-583 |#4|)) 93 T ELT)) (-3769 (($ $) 214 T ELT)) (-3965 (((-345 $) $) 206 T ELT)) (-2700 (((-3 (-583 (-1083 $)) #1="failed") (-583 (-1083 $)) (-1083 $)) 141 T ELT)) (-3152 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL T ELT) (((-3 (-483) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) 74 T ELT)) (-3151 ((|#2| $) NIL T ELT) (((-347 (-483)) $) NIL T ELT) (((-483) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-3750 (($ $ $ |#4|) 95 T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL T ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) 131 T ELT) (((-630 |#2|) (-630 $)) 121 T ELT)) (-3497 (($ $) 221 T ELT) (($ $ |#4|) 224 T ELT)) (-2814 (((-583 $) $) 77 T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 240 T ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) 233 T ELT)) (-2817 (((-583 $) $) 34 T ELT)) (-2889 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-694)) NIL T ELT) (($ $ (-583 |#4|) (-583 (-694))) 71 T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ |#4|) 203 T ELT)) (-2819 (((-3 (-583 $) #1#) $) 52 T ELT)) (-2818 (((-3 (-583 $) #1#) $) 39 T ELT)) (-2820 (((-3 (-2 (|:| |var| |#4|) (|:| -2397 (-694))) #1#) $) 57 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 134 T ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) 147 T ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) 145 T ELT)) (-3726 (((-345 $) $) 165 T ELT)) (-3762 (($ $ (-583 (-248 $))) 24 T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-583 |#4|) (-583 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-583 |#4|) (-583 $)) NIL T ELT)) (-3751 (($ $ |#4|) 97 T ELT)) (-3966 (((-800 (-327)) $) 254 T ELT) (((-800 (-483)) $) 247 T ELT) (((-472) $) 262 T ELT)) (-2813 ((|#2| $) NIL T ELT) (($ $ |#4|) 216 T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) 185 T ELT)) (-3671 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-694)) 62 T ELT) (($ $ (-583 |#4|) (-583 (-694))) 69 T ELT)) (-2698 (((-632 $) $) 195 T ELT)) (-1262 (((-85) $ $) 227 T ELT)))
-(((-860 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2704 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -3965 ((-345 |#1|) |#1|)) (-15 -3769 (|#1| |#1|)) (-15 -2698 ((-632 |#1|) |#1|)) (-15 -3966 ((-472) |#1|)) (-15 -3966 ((-800 (-483)) |#1|)) (-15 -3966 ((-800 (-327)) |#1|)) (-15 -2792 ((-798 (-483) |#1|) |#1| (-800 (-483)) (-798 (-483) |#1|))) (-15 -2792 ((-798 (-327) |#1|) |#1| (-800 (-327)) (-798 (-327) |#1|))) (-15 -3726 ((-345 |#1|) |#1|)) (-15 -2702 ((-345 (-1083 |#1|)) (-1083 |#1|))) (-15 -2701 ((-345 (-1083 |#1|)) (-1083 |#1|))) (-15 -2700 ((-3 (-583 (-1083 |#1|)) #1="failed") (-583 (-1083 |#1|)) (-1083 |#1|))) (-15 -2699 ((-3 (-1177 |#1|) #1#) (-630 |#1|))) (-15 -3497 (|#1| |#1| |#4|)) (-15 -2813 (|#1| |#1| |#4|)) (-15 -3751 (|#1| |#1| |#4|)) (-15 -3750 (|#1| |#1| |#1| |#4|)) (-15 -2814 ((-583 |#1|) |#1|)) (-15 -2815 ((-694) |#1| (-583 |#4|))) (-15 -2815 ((-694) |#1|)) (-15 -2820 ((-3 (-2 (|:| |var| |#4|) (|:| -2397 (-694))) #1#) |#1|)) (-15 -2819 ((-3 (-583 |#1|) #1#) |#1|)) (-15 -2818 ((-3 (-583 |#1|) #1#) |#1|)) (-15 -2889 (|#1| |#1| (-583 |#4|) (-583 (-694)))) (-15 -2889 (|#1| |#1| |#4| (-694))) (-15 -3757 ((-2 (|:| -1970 |#1|) (|:| -2898 |#1|)) |#1| |#1| |#4|)) (-15 -2817 ((-583 |#1|) |#1|)) (-15 -3671 (|#1| |#1| (-583 |#4|) (-583 (-694)))) (-15 -3671 (|#1| |#1| |#4| (-694))) (-15 -2275 ((-630 |#2|) (-630 |#1|))) (-15 -2275 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 |#1|) (-1177 |#1|))) (-15 -2275 ((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 |#1|) (-1177 |#1|))) (-15 -2275 ((-630 (-483)) (-630 |#1|))) (-15 -3152 ((-3 |#4| #1#) |#1|)) (-15 -3151 (|#4| |#1|)) (-15 -3762 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -3762 (|#1| |#1| |#4| |#1|)) (-15 -3762 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -3762 (|#1| |#1| |#4| |#2|)) (-15 -3762 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3762 (|#1| |#1| |#1| |#1|)) (-15 -3762 (|#1| |#1| (-248 |#1|))) (-15 -3762 (|#1| |#1| (-583 (-248 |#1|)))) (-15 -2889 (|#1| |#2| |#3|)) (-15 -3671 (|#2| |#1| |#3|)) (-15 -3152 ((-3 (-483) #1#) |#1|)) (-15 -3151 ((-483) |#1|)) (-15 -3152 ((-3 (-347 (-483)) #1#) |#1|)) (-15 -3151 ((-347 (-483)) |#1|)) (-15 -3151 (|#2| |#1|)) (-15 -3152 ((-3 |#2| #1#) |#1|)) (-15 -2813 (|#2| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -1262 ((-85) |#1| |#1|))) (-861 |#2| |#3| |#4|) (-961) (-717) (-756)) (T -860))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3077 (((-583 |#3|) $) 121 T ELT)) (-3079 (((-1083 $) $ |#3|) 136 T ELT) (((-1083 |#1|) $) 135 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 98 (|has| |#1| (-494)) ELT)) (-2059 (($ $) 99 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) 101 (|has| |#1| (-494)) ELT)) (-2815 (((-694) $) 123 T ELT) (((-694) $ (-583 |#3|)) 122 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) 111 (|has| |#1| (-821)) ELT)) (-3769 (($ $) 109 (|has| |#1| (-389)) ELT)) (-3965 (((-345 $) $) 108 (|has| |#1| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1="failed") (-583 (-1083 $)) (-1083 $)) 114 (|has| |#1| (-821)) ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 |#1| #2="failed") $) 179 T ELT) (((-3 (-347 (-483)) #2#) $) 176 (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 (-483) #2#) $) 174 (|has| |#1| (-950 (-483))) ELT) (((-3 |#3| #2#) $) 151 T ELT)) (-3151 ((|#1| $) 178 T ELT) (((-347 (-483)) $) 177 (|has| |#1| (-950 (-347 (-483)))) ELT) (((-483) $) 175 (|has| |#1| (-950 (-483))) ELT) ((|#3| $) 152 T ELT)) (-3750 (($ $ $ |#3|) 119 (|has| |#1| (-146)) ELT)) (-3953 (($ $) 169 T ELT)) (-2275 (((-630 (-483)) (-630 $)) 147 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 146 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) 145 T ELT) (((-630 |#1|) (-630 $)) 144 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3497 (($ $) 191 (|has| |#1| (-389)) ELT) (($ $ |#3|) 116 (|has| |#1| (-389)) ELT)) (-2814 (((-583 $) $) 120 T ELT)) (-3717 (((-85) $) 107 (|has| |#1| (-821)) ELT)) (-1621 (($ $ |#1| |#2| $) 187 T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 95 (-12 (|has| |#3| (-796 (-327))) (|has| |#1| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) 94 (-12 (|has| |#3| (-796 (-483))) (|has| |#1| (-796 (-483)))) ELT)) (-2406 (((-85) $) 42 T ELT)) (-2416 (((-694) $) 184 T ELT)) (-3080 (($ (-1083 |#1|) |#3|) 128 T ELT) (($ (-1083 $) |#3|) 127 T ELT)) (-2817 (((-583 $) $) 137 T ELT)) (-3931 (((-85) $) 167 T ELT)) (-2889 (($ |#1| |#2|) 168 T ELT) (($ $ |#3| (-694)) 130 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 129 T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ |#3|) 131 T ELT)) (-2816 ((|#2| $) 185 T ELT) (((-694) $ |#3|) 133 T ELT) (((-583 (-694)) $ (-583 |#3|)) 132 T ELT)) (-1622 (($ (-1 |#2| |#2|) $) 186 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 166 T ELT)) (-3078 (((-3 |#3| "failed") $) 134 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) 149 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 148 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 143 T ELT) (((-630 |#1|) (-1177 $)) 142 T ELT)) (-2890 (($ $) 164 T ELT)) (-3169 ((|#1| $) 163 T ELT)) (-1888 (($ (-583 $)) 105 (|has| |#1| (-389)) ELT) (($ $ $) 104 (|has| |#1| (-389)) ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2819 (((-3 (-583 $) "failed") $) 125 T ELT)) (-2818 (((-3 (-583 $) "failed") $) 126 T ELT)) (-2820 (((-3 (-2 (|:| |var| |#3|) (|:| -2397 (-694))) "failed") $) 124 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-1794 (((-85) $) 181 T ELT)) (-1793 ((|#1| $) 182 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 106 (|has| |#1| (-389)) ELT)) (-3139 (($ (-583 $)) 103 (|has| |#1| (-389)) ELT) (($ $ $) 102 (|has| |#1| (-389)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) 113 (|has| |#1| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) 112 (|has| |#1| (-821)) ELT)) (-3726 (((-345 $) $) 110 (|has| |#1| (-821)) ELT)) (-3460 (((-3 $ "failed") $ |#1|) 189 (|has| |#1| (-494)) ELT) (((-3 $ "failed") $ $) 97 (|has| |#1| (-494)) ELT)) (-3762 (($ $ (-583 (-248 $))) 160 T ELT) (($ $ (-248 $)) 159 T ELT) (($ $ $ $) 158 T ELT) (($ $ (-583 $) (-583 $)) 157 T ELT) (($ $ |#3| |#1|) 156 T ELT) (($ $ (-583 |#3|) (-583 |#1|)) 155 T ELT) (($ $ |#3| $) 154 T ELT) (($ $ (-583 |#3|) (-583 $)) 153 T ELT)) (-3751 (($ $ |#3|) 118 (|has| |#1| (-146)) ELT)) (-3752 (($ $ (-583 |#3|) (-583 (-694))) 50 T ELT) (($ $ |#3| (-694)) 49 T ELT) (($ $ (-583 |#3|)) 48 T ELT) (($ $ |#3|) 46 T ELT)) (-3942 ((|#2| $) 165 T ELT) (((-694) $ |#3|) 141 T ELT) (((-583 (-694)) $ (-583 |#3|)) 140 T ELT)) (-3966 (((-800 (-327)) $) 93 (-12 (|has| |#3| (-553 (-800 (-327)))) (|has| |#1| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) 92 (-12 (|has| |#3| (-553 (-800 (-483)))) (|has| |#1| (-553 (-800 (-483))))) ELT) (((-472) $) 91 (-12 (|has| |#3| (-553 (-472))) (|has| |#1| (-553 (-472)))) ELT)) (-2813 ((|#1| $) 190 (|has| |#1| (-389)) ELT) (($ $ |#3|) 117 (|has| |#1| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) 115 (-2558 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 180 T ELT) (($ |#3|) 150 T ELT) (($ $) 96 (|has| |#1| (-494)) ELT) (($ (-347 (-483))) 89 (OR (|has| |#1| (-950 (-347 (-483)))) (|has| |#1| (-38 (-347 (-483))))) ELT)) (-3811 (((-583 |#1|) $) 183 T ELT)) (-3671 ((|#1| $ |#2|) 170 T ELT) (($ $ |#3| (-694)) 139 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 138 T ELT)) (-2698 (((-632 $) $) 90 (OR (-2558 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3121 (((-694)) 38 T CONST)) (-1620 (($ $ $ (-694)) 188 (|has| |#1| (-146)) ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 100 (|has| |#1| (-494)) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-583 |#3|) (-583 (-694))) 53 T ELT) (($ $ |#3| (-694)) 52 T ELT) (($ $ (-583 |#3|)) 51 T ELT) (($ $ |#3|) 47 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#1|) 171 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-483))) 173 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) 172 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ |#1| $) 162 T ELT) (($ $ |#1|) 161 T ELT)))
-(((-861 |#1| |#2| |#3|) (-113) (-961) (-717) (-756)) (T -861))
-((-3497 (*1 *1 *1) (-12 (-4 *1 (-861 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-389)))) (-3942 (*1 *2 *1 *3) (-12 (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-694)))) (-3942 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 (-694))))) (-3671 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-861 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *2 (-756)))) (-3671 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-694))) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)))) (-2817 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-861 *3 *4 *5)))) (-3079 (*1 *2 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-1083 *1)) (-4 *1 (-861 *4 *5 *3)))) (-3079 (*1 *2 *1) (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-1083 *3)))) (-3078 (*1 *2 *1) (|partial| -12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-2816 (*1 *2 *1 *3) (-12 (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-694)))) (-2816 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 (-694))))) (-3757 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1))) (-4 *1 (-861 *4 *5 *3)))) (-2889 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-861 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *2 (-756)))) (-2889 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-694))) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)))) (-3080 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 *4)) (-4 *4 (-961)) (-4 *1 (-861 *4 *5 *3)) (-4 *5 (-717)) (-4 *3 (-756)))) (-3080 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)))) (-2818 (*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-861 *3 *4 *5)))) (-2819 (*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-861 *3 *4 *5)))) (-2820 (*1 *2 *1) (|partial| -12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| |var| *5) (|:| -2397 (-694)))))) (-2815 (*1 *2 *1) (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-694)))) (-2815 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-694)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *5)))) (-2814 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-861 *3 *4 *5)))) (-3750 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *3 (-146)))) (-3751 (*1 *1 *1 *2) (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *3 (-146)))) (-2813 (*1 *1 *1 *2) (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *3 (-389)))) (-3497 (*1 *1 *1 *2) (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *3 (-389)))) (-3769 (*1 *1 *1) (-12 (-4 *1 (-861 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-389)))) (-3965 (*1 *2 *1) (-12 (-4 *3 (-389)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-345 *1)) (-4 *1 (-861 *3 *4 *5)))))
-(-13 (-809 |t#3|) (-276 |t#1| |t#2|) (-259 $) (-452 |t#3| |t#1|) (-452 |t#3| $) (-950 |t#3|) (-326 |t#1|) (-10 -8 (-15 -3942 ((-694) $ |t#3|)) (-15 -3942 ((-583 (-694)) $ (-583 |t#3|))) (-15 -3671 ($ $ |t#3| (-694))) (-15 -3671 ($ $ (-583 |t#3|) (-583 (-694)))) (-15 -2817 ((-583 $) $)) (-15 -3079 ((-1083 $) $ |t#3|)) (-15 -3079 ((-1083 |t#1|) $)) (-15 -3078 ((-3 |t#3| "failed") $)) (-15 -2816 ((-694) $ |t#3|)) (-15 -2816 ((-583 (-694)) $ (-583 |t#3|))) (-15 -3757 ((-2 (|:| -1970 $) (|:| -2898 $)) $ $ |t#3|)) (-15 -2889 ($ $ |t#3| (-694))) (-15 -2889 ($ $ (-583 |t#3|) (-583 (-694)))) (-15 -3080 ($ (-1083 |t#1|) |t#3|)) (-15 -3080 ($ (-1083 $) |t#3|)) (-15 -2818 ((-3 (-583 $) "failed") $)) (-15 -2819 ((-3 (-583 $) "failed") $)) (-15 -2820 ((-3 (-2 (|:| |var| |t#3|) (|:| -2397 (-694))) "failed") $)) (-15 -2815 ((-694) $)) (-15 -2815 ((-694) $ (-583 |t#3|))) (-15 -3077 ((-583 |t#3|) $)) (-15 -2814 ((-583 $) $)) (IF (|has| |t#1| (-553 (-472))) (IF (|has| |t#3| (-553 (-472))) (-6 (-553 (-472))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-553 (-800 (-483)))) (IF (|has| |t#3| (-553 (-800 (-483)))) (-6 (-553 (-800 (-483)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-553 (-800 (-327)))) (IF (|has| |t#3| (-553 (-800 (-327)))) (-6 (-553 (-800 (-327)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-796 (-483))) (IF (|has| |t#3| (-796 (-483))) (-6 (-796 (-483))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-796 (-327))) (IF (|has| |t#3| (-796 (-327))) (-6 (-796 (-327))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3750 ($ $ $ |t#3|)) (-15 -3751 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-389)) (PROGN (-6 (-389)) (-15 -2813 ($ $ |t#3|)) (-15 -3497 ($ $)) (-15 -3497 ($ $ |t#3|)) (-15 -3965 ((-345 $) $)) (-15 -3769 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -3987)) (-6 -3987) |%noBranch|) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) OR (|has| |#1| (-950 (-347 (-483)))) (|has| |#1| (-38 (-347 (-483))))) ((-555 (-483)) . T) ((-555 |#1|) . T) ((-555 |#3|) . T) ((-555 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-553 (-472)) -12 (|has| |#1| (-553 (-472))) (|has| |#3| (-553 (-472)))) ((-553 (-800 (-327))) -12 (|has| |#1| (-553 (-800 (-327)))) (|has| |#3| (-553 (-800 (-327))))) ((-553 (-800 (-483))) -12 (|has| |#1| (-553 (-800 (-483)))) (|has| |#3| (-553 (-800 (-483))))) ((-245) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-259 $) . T) ((-276 |#1| |#2|) . T) ((-326 |#1|) . T) ((-352 |#1|) . T) ((-389) OR (|has| |#1| (-821)) (|has| |#1| (-389))) ((-452 |#3| |#1|) . T) ((-452 |#3| $) . T) ((-452 $ $) . T) ((-494) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-13) . T) ((-588 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-590 (-483)) |has| |#1| (-580 (-483))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-580 (-483)) |has| |#1| (-580 (-483))) ((-580 |#1|) . T) ((-654 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-663) . T) ((-806 $ |#3|) . T) ((-809 |#3|) . T) ((-811 |#3|) . T) ((-796 (-327)) -12 (|has| |#1| (-796 (-327))) (|has| |#3| (-796 (-327)))) ((-796 (-483)) -12 (|has| |#1| (-796 (-483))) (|has| |#3| (-796 (-483)))) ((-821) |has| |#1| (-821)) ((-950 (-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((-950 (-483)) |has| |#1| (-950 (-483))) ((-950 |#1|) . T) ((-950 |#3|) . T) ((-963 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-968 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) |has| |#1| (-821)))
-((-3077 (((-583 |#2|) |#5|) 40 T ELT)) (-3079 (((-1083 |#5|) |#5| |#2| (-1083 |#5|)) 23 T ELT) (((-347 (-1083 |#5|)) |#5| |#2|) 16 T ELT)) (-3080 ((|#5| (-347 (-1083 |#5|)) |#2|) 30 T ELT)) (-3078 (((-3 |#2| #1="failed") |#5|) 70 T ELT)) (-2819 (((-3 (-583 |#5|) #1#) |#5|) 64 T ELT)) (-2821 (((-3 (-2 (|:| |val| |#5|) (|:| -2397 (-483))) #1#) |#5|) 53 T ELT)) (-2818 (((-3 (-583 |#5|) #1#) |#5|) 66 T ELT)) (-2820 (((-3 (-2 (|:| |var| |#2|) (|:| -2397 (-483))) #1#) |#5|) 56 T ELT)))
-(((-862 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3077 ((-583 |#2|) |#5|)) (-15 -3078 ((-3 |#2| #1="failed") |#5|)) (-15 -3079 ((-347 (-1083 |#5|)) |#5| |#2|)) (-15 -3080 (|#5| (-347 (-1083 |#5|)) |#2|)) (-15 -3079 ((-1083 |#5|) |#5| |#2| (-1083 |#5|))) (-15 -2818 ((-3 (-583 |#5|) #1#) |#5|)) (-15 -2819 ((-3 (-583 |#5|) #1#) |#5|)) (-15 -2820 ((-3 (-2 (|:| |var| |#2|) (|:| -2397 (-483))) #1#) |#5|)) (-15 -2821 ((-3 (-2 (|:| |val| |#5|) (|:| -2397 (-483))) #1#) |#5|))) (-717) (-756) (-961) (-861 |#3| |#1| |#2|) (-13 (-311) (-10 -8 (-15 -3940 ($ |#4|)) (-15 -2994 (|#4| $)) (-15 -2993 (|#4| $))))) (T -862))
-((-2821 (*1 *2 *3) (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2397 (-483)))) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $))))))) (-2820 (*1 *2 *3) (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2397 (-483)))) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $))))))) (-2819 (*1 *2 *3) (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $))))))) (-2818 (*1 *2 *3) (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $))))))) (-3079 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $))))) (-4 *7 (-861 *6 *5 *4)) (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961)) (-5 *1 (-862 *5 *4 *6 *7 *3)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-1083 *2))) (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961)) (-4 *2 (-13 (-311) (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $))))) (-5 *1 (-862 *5 *4 *6 *7 *2)) (-4 *7 (-861 *6 *5 *4)))) (-3079 (*1 *2 *3 *4) (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *5 *4)) (-5 *2 (-347 (-1083 *3))) (-5 *1 (-862 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $))))))) (-3078 (*1 *2 *3) (|partial| -12 (-4 *4 (-717)) (-4 *5 (-961)) (-4 *6 (-861 *5 *4 *2)) (-4 *2 (-756)) (-5 *1 (-862 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3940 ($ *6)) (-15 -2994 (*6 $)) (-15 -2993 (*6 $))))))) (-3077 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-583 *5)) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $))))))))
-((-3952 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT)))
-(((-863 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3952 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-717) (-756) (-961) (-861 |#3| |#1| |#2|) (-13 (-1012) (-10 -8 (-15 -3833 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-694)))))) (T -863))
-((-3952 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-756)) (-4 *8 (-961)) (-4 *6 (-717)) (-4 *2 (-13 (-1012) (-10 -8 (-15 -3833 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-694)))))) (-5 *1 (-863 *6 *7 *8 *5 *2)) (-4 *5 (-861 *8 *6 *7)))))
-((-2822 (((-2 (|:| -2397 (-694)) (|:| -3948 |#5|) (|:| |radicand| |#5|)) |#3| (-694)) 48 T ELT)) (-2823 (((-2 (|:| -2397 (-694)) (|:| -3948 |#5|) (|:| |radicand| |#5|)) (-347 (-483)) (-694)) 43 T ELT)) (-2825 (((-2 (|:| -2397 (-694)) (|:| -3948 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-694)) 64 T ELT)) (-2824 (((-2 (|:| -2397 (-694)) (|:| -3948 |#5|) (|:| |radicand| |#5|)) |#5| (-694)) 73 (|has| |#3| (-389)) ELT)))
-(((-864 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2822 ((-2 (|:| -2397 (-694)) (|:| -3948 |#5|) (|:| |radicand| |#5|)) |#3| (-694))) (-15 -2823 ((-2 (|:| -2397 (-694)) (|:| -3948 |#5|) (|:| |radicand| |#5|)) (-347 (-483)) (-694))) (IF (|has| |#3| (-389)) (-15 -2824 ((-2 (|:| -2397 (-694)) (|:| -3948 |#5|) (|:| |radicand| |#5|)) |#5| (-694))) |%noBranch|) (-15 -2825 ((-2 (|:| -2397 (-694)) (|:| -3948 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-694)))) (-717) (-756) (-494) (-861 |#3| |#1| |#2|) (-13 (-311) (-10 -8 (-15 -3940 ($ |#4|)) (-15 -2994 (|#4| $)) (-15 -2993 (|#4| $))))) (T -864))
-((-2825 (*1 *2 *3 *4) (-12 (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-494)) (-4 *3 (-861 *7 *5 *6)) (-5 *2 (-2 (|:| -2397 (-694)) (|:| -3948 *3) (|:| |radicand| (-583 *3)))) (-5 *1 (-864 *5 *6 *7 *3 *8)) (-5 *4 (-694)) (-4 *8 (-13 (-311) (-10 -8 (-15 -3940 ($ *3)) (-15 -2994 (*3 $)) (-15 -2993 (*3 $))))))) (-2824 (*1 *2 *3 *4) (-12 (-4 *7 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-494)) (-4 *8 (-861 *7 *5 *6)) (-5 *2 (-2 (|:| -2397 (-694)) (|:| -3948 *3) (|:| |radicand| *3))) (-5 *1 (-864 *5 *6 *7 *8 *3)) (-5 *4 (-694)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3940 ($ *8)) (-15 -2994 (*8 $)) (-15 -2993 (*8 $))))))) (-2823 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-483))) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-494)) (-4 *8 (-861 *7 *5 *6)) (-5 *2 (-2 (|:| -2397 (-694)) (|:| -3948 *9) (|:| |radicand| *9))) (-5 *1 (-864 *5 *6 *7 *8 *9)) (-5 *4 (-694)) (-4 *9 (-13 (-311) (-10 -8 (-15 -3940 ($ *8)) (-15 -2994 (*8 $)) (-15 -2993 (*8 $))))))) (-2822 (*1 *2 *3 *4) (-12 (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-494)) (-4 *7 (-861 *3 *5 *6)) (-5 *2 (-2 (|:| -2397 (-694)) (|:| -3948 *8) (|:| |radicand| *8))) (-5 *1 (-864 *5 *6 *3 *7 *8)) (-5 *4 (-694)) (-4 *8 (-13 (-311) (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $))))))))
-((-2564 (((-85) $ $) NIL T ELT)) (-2826 (($ (-1032)) 8 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 15 T ELT) (((-1032) $) 12 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 11 T ELT)))
-(((-865) (-13 (-1012) (-552 (-1032)) (-10 -8 (-15 -2826 ($ (-1032)))))) (T -865))
-((-2826 (*1 *1 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-865)))))
-((-2892 (((-1000 (-179)) $) 8 T ELT)) (-2893 (((-1000 (-179)) $) 9 T ELT)) (-2894 (((-583 (-583 (-854 (-179)))) $) 10 T ELT)) (-3940 (((-772) $) 6 T ELT)))
-(((-866) (-113)) (T -866))
-((-2894 (*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-583 (-583 (-854 (-179))))))) (-2893 (*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-1000 (-179))))) (-2892 (*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-1000 (-179))))))
-(-13 (-552 (-772)) (-10 -8 (-15 -2894 ((-583 (-583 (-854 (-179)))) $)) (-15 -2893 ((-1000 (-179)) $)) (-15 -2892 ((-1000 (-179)) $))))
-(((-552 (-772)) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 80 (|has| |#1| (-494)) ELT)) (-2059 (($ $) 81 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) 35 T ELT)) (-3151 (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) NIL T ELT)) (-3953 (($ $) 32 T ELT)) (-3461 (((-3 $ #1#) $) 43 T ELT)) (-3497 (($ $) NIL (|has| |#1| (-389)) ELT)) (-1621 (($ $ |#1| |#2| $) 64 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2416 (((-694) $) 18 T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| |#2|) NIL T ELT)) (-2816 ((|#2| $) 25 T ELT)) (-1622 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2890 (($ $) 29 T ELT)) (-3169 ((|#1| $) 27 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1794 (((-85) $) 52 T ELT)) (-1793 ((|#1| $) NIL T ELT)) (-3732 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-104)) (|has| |#1| (-494))) ELT)) (-3460 (((-3 $ #1#) $ $) 92 (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ |#1|) 87 (|has| |#1| (-494)) ELT)) (-3942 ((|#2| $) 23 T ELT)) (-2813 ((|#1| $) NIL (|has| |#1| (-389)) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) 47 T ELT) (($ $) NIL (|has| |#1| (-494)) ELT) (($ |#1|) 42 T ELT) (($ (-347 (-483))) NIL (OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ELT)) (-3811 (((-583 |#1|) $) NIL T ELT)) (-3671 ((|#1| $ |#2|) 38 T ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 15 T CONST)) (-1620 (($ $ $ (-694)) 76 (|has| |#1| (-146)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) 86 (|has| |#1| (-494)) ELT)) (-2656 (($) 28 T CONST)) (-2662 (($) 12 T CONST)) (-3052 (((-85) $ $) 85 T ELT)) (-3943 (($ $ |#1|) 93 (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) 71 T ELT) (($ $ (-694)) 69 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 68 T ELT) (($ $ |#1|) 66 T ELT) (($ |#1| $) 65 T ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)))
-(((-867 |#1| |#2|) (-13 (-276 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-494)) (IF (|has| |#2| (-104)) (-15 -3732 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3987)) (-6 -3987) |%noBranch|))) (-961) (-716)) (T -867))
-((-3732 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-867 *3 *2)) (-4 *2 (-104)) (-4 *3 (-494)) (-4 *3 (-961)) (-4 *2 (-716)))))
-((-2827 (((-3 (-630 |#1|) "failed") |#2| (-830)) 18 T ELT)))
-(((-868 |#1| |#2|) (-10 -7 (-15 -2827 ((-3 (-630 |#1|) "failed") |#2| (-830)))) (-494) (-600 |#1|)) (T -868))
-((-2827 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-830)) (-4 *5 (-494)) (-5 *2 (-630 *5)) (-5 *1 (-868 *5 *3)) (-4 *3 (-600 *5)))))
-((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1727 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3990)) (|has| |#1| (-756))) ELT)) (-2905 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-3782 ((|#1| $ (-483) |#1|) 20 (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3718 (($) NIL T CONST)) (-2293 (($ $) NIL (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) NIL T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3400 (($ |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 ((|#1| $ (-483) |#1|) 19 (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) 17 T ELT)) (-3413 (((-483) (-1 (-85) |#1|) $) NIL T ELT) (((-483) |#1| $) NIL (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) NIL (|has| |#1| (-1012)) ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3608 (($ (-694) |#1|) 16 T ELT)) (-2196 (((-483) $) 11 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3512 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2197 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-2300 (($ |#1| $ (-483)) NIL T ELT) (($ $ $ (-483)) NIL T ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3795 ((|#1| $) NIL (|has| (-483) (-756)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2195 (($ $ |#1|) 21 (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) 13 T ELT)) (-3794 ((|#1| $ (-483) |#1|) NIL T ELT) ((|#1| $ (-483)) 18 T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-2301 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1728 (($ $ $ (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) 22 T ELT)) (-3966 (((-472) $) NIL (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 15 T ELT)) (-3796 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3951 (((-694) $) 8 (|has| $ (-6 -3989)) ELT)))
-(((-869 |#1|) (-19 |#1|) (-1127)) (T -869))
-NIL
-((-3835 (((-869 |#2|) (-1 |#2| |#1| |#2|) (-869 |#1|) |#2|) 16 T ELT)) (-3836 ((|#2| (-1 |#2| |#1| |#2|) (-869 |#1|) |#2|) 18 T ELT)) (-3952 (((-869 |#2|) (-1 |#2| |#1|) (-869 |#1|)) 13 T ELT)))
-(((-870 |#1| |#2|) (-10 -7 (-15 -3835 ((-869 |#2|) (-1 |#2| |#1| |#2|) (-869 |#1|) |#2|)) (-15 -3836 (|#2| (-1 |#2| |#1| |#2|) (-869 |#1|) |#2|)) (-15 -3952 ((-869 |#2|) (-1 |#2| |#1|) (-869 |#1|)))) (-1127) (-1127)) (T -870))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-869 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-869 *6)) (-5 *1 (-870 *5 *6)))) (-3836 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-869 *5)) (-4 *5 (-1127)) (-4 *2 (-1127)) (-5 *1 (-870 *5 *2)))) (-3835 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-869 *6)) (-4 *6 (-1127)) (-4 *5 (-1127)) (-5 *2 (-869 *5)) (-5 *1 (-870 *6 *5)))))
-((-2828 (($ $ (-1003 $)) 7 T ELT) (($ $ (-1088)) 6 T ELT)))
-(((-871) (-113)) (T -871))
-((-2828 (*1 *1 *1 *2) (-12 (-5 *2 (-1003 *1)) (-4 *1 (-871)))) (-2828 (*1 *1 *1 *2) (-12 (-4 *1 (-871)) (-5 *2 (-1088)))))
-(-13 (-10 -8 (-15 -2828 ($ $ (-1088))) (-15 -2828 ($ $ (-1003 $)))))
-((-2829 (((-2 (|:| -3948 (-583 (-483))) (|:| |poly| (-583 (-1083 |#1|))) (|:| |prim| (-1083 |#1|))) (-583 (-857 |#1|)) (-583 (-1088)) (-1088)) 26 T ELT) (((-2 (|:| -3948 (-583 (-483))) (|:| |poly| (-583 (-1083 |#1|))) (|:| |prim| (-1083 |#1|))) (-583 (-857 |#1|)) (-583 (-1088))) 27 T ELT) (((-2 (|:| |coef1| (-483)) (|:| |coef2| (-483)) (|:| |prim| (-1083 |#1|))) (-857 |#1|) (-1088) (-857 |#1|) (-1088)) 49 T ELT)))
-(((-872 |#1|) (-10 -7 (-15 -2829 ((-2 (|:| |coef1| (-483)) (|:| |coef2| (-483)) (|:| |prim| (-1083 |#1|))) (-857 |#1|) (-1088) (-857 |#1|) (-1088))) (-15 -2829 ((-2 (|:| -3948 (-583 (-483))) (|:| |poly| (-583 (-1083 |#1|))) (|:| |prim| (-1083 |#1|))) (-583 (-857 |#1|)) (-583 (-1088)))) (-15 -2829 ((-2 (|:| -3948 (-583 (-483))) (|:| |poly| (-583 (-1083 |#1|))) (|:| |prim| (-1083 |#1|))) (-583 (-857 |#1|)) (-583 (-1088)) (-1088)))) (-13 (-311) (-120))) (T -872))
-((-2829 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1088))) (-5 *5 (-1088)) (-4 *6 (-13 (-311) (-120))) (-5 *2 (-2 (|:| -3948 (-583 (-483))) (|:| |poly| (-583 (-1083 *6))) (|:| |prim| (-1083 *6)))) (-5 *1 (-872 *6)))) (-2829 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1088))) (-4 *5 (-13 (-311) (-120))) (-5 *2 (-2 (|:| -3948 (-583 (-483))) (|:| |poly| (-583 (-1083 *5))) (|:| |prim| (-1083 *5)))) (-5 *1 (-872 *5)))) (-2829 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-857 *5)) (-5 *4 (-1088)) (-4 *5 (-13 (-311) (-120))) (-5 *2 (-2 (|:| |coef1| (-483)) (|:| |coef2| (-483)) (|:| |prim| (-1083 *5)))) (-5 *1 (-872 *5)))))
-((-2832 (((-583 |#1|) |#1| |#1|) 47 T ELT)) (-3717 (((-85) |#1|) 44 T ELT)) (-2831 ((|#1| |#1|) 80 T ELT)) (-2830 ((|#1| |#1|) 79 T ELT)))
-(((-873 |#1|) (-10 -7 (-15 -3717 ((-85) |#1|)) (-15 -2830 (|#1| |#1|)) (-15 -2831 (|#1| |#1|)) (-15 -2832 ((-583 |#1|) |#1| |#1|))) (-482)) (T -873))
-((-2832 (*1 *2 *3 *3) (-12 (-5 *2 (-583 *3)) (-5 *1 (-873 *3)) (-4 *3 (-482)))) (-2831 (*1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-482)))) (-2830 (*1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-482)))) (-3717 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-873 *3)) (-4 *3 (-482)))))
-((-2833 (((-1183) (-772)) 9 T ELT)))
-(((-874) (-10 -7 (-15 -2833 ((-1183) (-772))))) (T -874))
-((-2833 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1183)) (-5 *1 (-874)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) ELT)) (-2479 (($ $ $) 65 (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) ELT)) (-1309 (((-3 $ #1="failed") $ $) 52 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) ELT)) (-3131 (((-694)) 36 (-12 (|has| |#1| (-317)) (|has| |#2| (-317))) ELT)) (-2834 ((|#2| $) 22 T ELT)) (-2835 ((|#1| $) 21 T ELT)) (-3718 (($) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) CONST)) (-3461 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) ELT)) (-2990 (($) NIL (-12 (|has| |#1| (-317)) (|has| |#2| (-317))) ELT)) (-3181 (((-85) $) NIL (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) ELT)) (-2406 (((-85) $) NIL (OR (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) ELT)) (-2527 (($ $ $) NIL (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-2853 (($ $ $) NIL (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-2836 (($ |#1| |#2|) 20 T ELT)) (-2006 (((-830) $) NIL (-12 (|has| |#1| (-317)) (|has| |#2| (-317))) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) 39 (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) ELT)) (-2396 (($ (-830)) NIL (-12 (|has| |#1| (-317)) (|has| |#2| (-317))) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3005 (($ $ $) NIL (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) ELT)) (-2431 (($ $ $) NIL (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) ELT)) (-3940 (((-772) $) 14 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 42 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) CONST)) (-2662 (($) 25 (OR (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) CONST)) (-2562 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-2563 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-3052 (((-85) $ $) 19 T ELT)) (-2680 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-2681 (((-85) $ $) 69 (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-3943 (($ $ $) NIL (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) ELT)) (-3831 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT)) (-3833 (($ $ $) 45 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) ELT)) (** (($ $ (-483)) NIL (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) ELT) (($ $ (-694)) 32 (OR (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) ELT) (($ $ (-830)) NIL (OR (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) ELT)) (* (($ (-483) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ (-694) $) 48 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) ELT) (($ (-830) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) ELT) (($ $ $) 28 (OR (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) ELT)))
-(((-875 |#1| |#2|) (-13 (-1012) (-10 -8 (IF (|has| |#1| (-317)) (IF (|has| |#2| (-317)) (-6 (-317)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-663)) (IF (|has| |#2| (-663)) (-6 (-663)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-104)) (IF (|has| |#2| (-104)) (-6 (-104)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-410)) (IF (|has| |#2| (-410)) (-6 (-410)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-717)) (IF (|has| |#2| (-717)) (-6 (-717)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-756)) (IF (|has| |#2| (-756)) (-6 (-756)) |%noBranch|) |%noBranch|) (-15 -2836 ($ |#1| |#2|)) (-15 -2835 (|#1| $)) (-15 -2834 (|#2| $)))) (-1012) (-1012)) (T -875))
-((-2836 (*1 *1 *2 *3) (-12 (-5 *1 (-875 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) (-2835 (*1 *2 *1) (-12 (-4 *2 (-1012)) (-5 *1 (-875 *2 *3)) (-4 *3 (-1012)))) (-2834 (*1 *2 *1) (-12 (-4 *2 (-1012)) (-5 *1 (-875 *3 *2)) (-4 *3 (-1012)))))
-((-3396 (((-1014) $) 13 T ELT)) (-2837 (($ (-444) (-1014)) 15 T ELT)) (-3536 (((-444) $) 11 T ELT)) (-3940 (((-772) $) 25 T ELT)))
-(((-876) (-13 (-552 (-772)) (-10 -8 (-15 -3536 ((-444) $)) (-15 -3396 ((-1014) $)) (-15 -2837 ($ (-444) (-1014)))))) (T -876))
-((-3536 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-876)))) (-3396 (*1 *2 *1) (-12 (-5 *2 (-1014)) (-5 *1 (-876)))) (-2837 (*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-1014)) (-5 *1 (-876)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-2309 (($ $) 29 T ELT)) (-2851 (($) 17 T CONST)) (-2557 (($ $ $) NIL T ELT)) (-2556 (($ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2842 (((-632 (-782 $ $)) $) 62 T ELT)) (-2844 (((-632 $) $) 52 T ELT)) (-2841 (((-632 (-782 $ $)) $) 63 T ELT)) (-2840 (((-632 (-782 $ $)) $) 64 T ELT)) (-2845 (((-632 |#1|) $) 43 T ELT)) (-2843 (((-632 (-782 $ $)) $) 61 T ELT)) (-2849 (($ $ $) 38 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2850 (($) 16 T CONST)) (-2848 (($ $ $) 39 T ELT)) (-2838 (($ $ $) 36 T ELT)) (-2839 (($ $ $) 34 T ELT)) (-3940 (((-772) $) 66 T ELT) (($ |#1|) 12 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2558 (($ $ $) NIL T ELT)) (-2307 (($ $ $) 37 T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2308 (($ $ $) 35 T ELT)))
-(((-877 |#1|) (-13 (-880) (-555 |#1|) (-10 -8 (-15 -2845 ((-632 |#1|) $)) (-15 -2844 ((-632 $) $)) (-15 -2843 ((-632 (-782 $ $)) $)) (-15 -2842 ((-632 (-782 $ $)) $)) (-15 -2841 ((-632 (-782 $ $)) $)) (-15 -2840 ((-632 (-782 $ $)) $)) (-15 -2839 ($ $ $)) (-15 -2838 ($ $ $)))) (-1012)) (T -877))
-((-2845 (*1 *2 *1) (-12 (-5 *2 (-632 *3)) (-5 *1 (-877 *3)) (-4 *3 (-1012)))) (-2844 (*1 *2 *1) (-12 (-5 *2 (-632 (-877 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1012)))) (-2843 (*1 *2 *1) (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) (-4 *3 (-1012)))) (-2842 (*1 *2 *1) (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) (-4 *3 (-1012)))) (-2841 (*1 *2 *1) (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) (-4 *3 (-1012)))) (-2840 (*1 *2 *1) (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) (-4 *3 (-1012)))) (-2839 (*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1012)))) (-2838 (*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1012)))))
-((-3643 (((-877 |#1|) (-877 |#1|)) 46 T ELT)) (-2847 (((-877 |#1|) (-877 |#1|)) 22 T ELT)) (-2846 (((-1008 |#1|) (-877 |#1|)) 41 T ELT)))
-(((-878 |#1|) (-13 (-1127) (-10 -7 (-15 -2847 ((-877 |#1|) (-877 |#1|))) (-15 -2846 ((-1008 |#1|) (-877 |#1|))) (-15 -3643 ((-877 |#1|) (-877 |#1|))))) (-1012)) (T -878))
-((-2847 (*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-1012)) (-5 *1 (-878 *3)))) (-2846 (*1 *2 *3) (-12 (-5 *3 (-877 *4)) (-4 *4 (-1012)) (-5 *2 (-1008 *4)) (-5 *1 (-878 *4)))) (-3643 (*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-1012)) (-5 *1 (-878 *3)))))
-((-3952 (((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)) 29 T ELT)))
-(((-879 |#1| |#2|) (-13 (-1127) (-10 -7 (-15 -3952 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|))))) (-1012) (-1012)) (T -879))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *2 (-877 *6)) (-5 *1 (-879 *5 *6)))))
-((-2564 (((-85) $ $) 19 T ELT)) (-2309 (($ $) 8 T ELT)) (-2851 (($) 17 T CONST)) (-2557 (($ $ $) 9 T ELT)) (-2556 (($ $) 11 T ELT)) (-3237 (((-1071) $) 23 T ELT)) (-2849 (($ $ $) 15 T ELT)) (-3238 (((-1032) $) 22 T ELT)) (-2850 (($) 16 T CONST)) (-2848 (($ $ $) 14 T ELT)) (-3940 (((-772) $) 21 T ELT)) (-1262 (((-85) $ $) 20 T ELT)) (-2558 (($ $ $) 10 T ELT)) (-2307 (($ $ $) 6 T ELT)) (-3052 (((-85) $ $) 18 T ELT)) (-2308 (($ $ $) 7 T ELT)))
-(((-880) (-113)) (T -880))
-((-2851 (*1 *1) (-4 *1 (-880))) (-2850 (*1 *1) (-4 *1 (-880))) (-2849 (*1 *1 *1 *1) (-4 *1 (-880))) (-2848 (*1 *1 *1 *1) (-4 *1 (-880))))
-(-13 (-84) (-1012) (-10 -8 (-15 -2851 ($) -3946) (-15 -2850 ($) -3946) (-15 -2849 ($ $ $)) (-15 -2848 ($ $ $))))
-(((-72) . T) ((-84) . T) ((-552 (-772)) . T) ((-13) . T) ((-604) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3718 (($) 7 T CONST)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-2852 (($ $ $) 47 T ELT)) (-3512 (($ $ $) 48 T ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-2853 ((|#1| $) 49 T ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-1271 ((|#1| $) 43 T ELT)) (-3603 (($ |#1| $) 44 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1272 ((|#1| $) 45 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1273 (($ (-583 |#1|)) 46 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-881 |#1|) (-113) (-756)) (T -881))
-((-2853 (*1 *2 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756)))) (-3512 (*1 *1 *1 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756)))) (-2852 (*1 *1 *1 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756)))))
-(-13 (-76 |t#1|) (-10 -8 (-6 -3989) (-15 -2853 (|t#1| $)) (-15 -3512 ($ $ $)) (-15 -2852 ($ $ $))))
-(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T))
-((-2865 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3139 |#2|)) |#2| |#2|) 105 T ELT)) (-3749 ((|#2| |#2| |#2|) 103 T ELT)) (-2866 (((-2 (|:| |coef2| |#2|) (|:| -3139 |#2|)) |#2| |#2|) 107 T ELT)) (-2867 (((-2 (|:| |coef1| |#2|) (|:| -3139 |#2|)) |#2| |#2|) 109 T ELT)) (-2874 (((-2 (|:| |coef2| |#2|) (|:| -2872 |#1|)) |#2| |#2|) 132 (|has| |#1| (-389)) ELT)) (-2881 (((-2 (|:| |coef2| |#2|) (|:| -3750 |#1|)) |#2| |#2|) 56 T ELT)) (-2855 (((-2 (|:| |coef2| |#2|) (|:| -3750 |#1|)) |#2| |#2|) 80 T ELT)) (-2856 (((-2 (|:| |coef1| |#2|) (|:| -3750 |#1|)) |#2| |#2|) 82 T ELT)) (-2864 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-2859 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694)) 89 T ELT)) (-2869 (((-2 (|:| |coef2| |#2|) (|:| -3751 |#1|)) |#2|) 121 T ELT)) (-2862 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694)) 92 T ELT)) (-2871 (((-583 (-694)) |#2| |#2|) 102 T ELT)) (-2879 ((|#1| |#2| |#2|) 50 T ELT)) (-2873 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2872 |#1|)) |#2| |#2|) 130 (|has| |#1| (-389)) ELT)) (-2872 ((|#1| |#2| |#2|) 128 (|has| |#1| (-389)) ELT)) (-2880 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3750 |#1|)) |#2| |#2|) 54 T ELT)) (-2854 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3750 |#1|)) |#2| |#2|) 79 T ELT)) (-3750 ((|#1| |#2| |#2|) 76 T ELT)) (-3746 (((-2 (|:| -3948 |#1|) (|:| -1970 |#2|) (|:| -2898 |#2|)) |#2| |#2|) 41 T ELT)) (-2878 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-2863 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-3185 ((|#2| |#2| |#2|) 93 T ELT)) (-2858 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694)) 87 T ELT)) (-2857 ((|#2| |#2| |#2| (-694)) 85 T ELT)) (-3139 ((|#2| |#2| |#2|) 136 (|has| |#1| (-389)) ELT)) (-3460 (((-1177 |#2|) (-1177 |#2|) |#1|) 22 T ELT)) (-2875 (((-2 (|:| -1970 |#2|) (|:| -2898 |#2|)) |#2| |#2|) 46 T ELT)) (-2868 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3751 |#1|)) |#2|) 119 T ELT)) (-3751 ((|#1| |#2|) 116 T ELT)) (-2861 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694)) 91 T ELT)) (-2860 ((|#2| |#2| |#2| (-694)) 90 T ELT)) (-2870 (((-583 |#2|) |#2| |#2|) 99 T ELT)) (-2877 ((|#2| |#2| |#1| |#1| (-694)) 62 T ELT)) (-2876 ((|#1| |#1| |#1| (-694)) 61 T ELT)) (* (((-1177 |#2|) |#1| (-1177 |#2|)) 17 T ELT)))
-(((-882 |#1| |#2|) (-10 -7 (-15 -3750 (|#1| |#2| |#2|)) (-15 -2854 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3750 |#1|)) |#2| |#2|)) (-15 -2855 ((-2 (|:| |coef2| |#2|) (|:| -3750 |#1|)) |#2| |#2|)) (-15 -2856 ((-2 (|:| |coef1| |#2|) (|:| -3750 |#1|)) |#2| |#2|)) (-15 -2857 (|#2| |#2| |#2| (-694))) (-15 -2858 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694))) (-15 -2859 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694))) (-15 -2860 (|#2| |#2| |#2| (-694))) (-15 -2861 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694))) (-15 -2862 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694))) (-15 -3185 (|#2| |#2| |#2|)) (-15 -2863 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2864 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3749 (|#2| |#2| |#2|)) (-15 -2865 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3139 |#2|)) |#2| |#2|)) (-15 -2866 ((-2 (|:| |coef2| |#2|) (|:| -3139 |#2|)) |#2| |#2|)) (-15 -2867 ((-2 (|:| |coef1| |#2|) (|:| -3139 |#2|)) |#2| |#2|)) (-15 -3751 (|#1| |#2|)) (-15 -2868 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3751 |#1|)) |#2|)) (-15 -2869 ((-2 (|:| |coef2| |#2|) (|:| -3751 |#1|)) |#2|)) (-15 -2870 ((-583 |#2|) |#2| |#2|)) (-15 -2871 ((-583 (-694)) |#2| |#2|)) (IF (|has| |#1| (-389)) (PROGN (-15 -2872 (|#1| |#2| |#2|)) (-15 -2873 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2872 |#1|)) |#2| |#2|)) (-15 -2874 ((-2 (|:| |coef2| |#2|) (|:| -2872 |#1|)) |#2| |#2|)) (-15 -3139 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1177 |#2|) |#1| (-1177 |#2|))) (-15 -3460 ((-1177 |#2|) (-1177 |#2|) |#1|)) (-15 -3746 ((-2 (|:| -3948 |#1|) (|:| -1970 |#2|) (|:| -2898 |#2|)) |#2| |#2|)) (-15 -2875 ((-2 (|:| -1970 |#2|) (|:| -2898 |#2|)) |#2| |#2|)) (-15 -2876 (|#1| |#1| |#1| (-694))) (-15 -2877 (|#2| |#2| |#1| |#1| (-694))) (-15 -2878 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2879 (|#1| |#2| |#2|)) (-15 -2880 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3750 |#1|)) |#2| |#2|)) (-15 -2881 ((-2 (|:| |coef2| |#2|) (|:| -3750 |#1|)) |#2| |#2|))) (-494) (-1153 |#1|)) (T -882))
-((-2881 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3750 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-2880 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3750 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-2879 (*1 *2 *3 *3) (-12 (-4 *2 (-494)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1153 *2)))) (-2878 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-494)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1153 *3)))) (-2877 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-694)) (-4 *3 (-494)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1153 *3)))) (-2876 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *2 (-494)) (-5 *1 (-882 *2 *4)) (-4 *4 (-1153 *2)))) (-2875 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-3746 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| -3948 *4) (|:| -1970 *3) (|:| -2898 *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-3460 (*1 *2 *2 *3) (-12 (-5 *2 (-1177 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-494)) (-5 *1 (-882 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1177 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-494)) (-5 *1 (-882 *3 *4)))) (-3139 (*1 *2 *2 *2) (-12 (-4 *3 (-389)) (-4 *3 (-494)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1153 *3)))) (-2874 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2872 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-2873 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2872 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-2872 (*1 *2 *3 *3) (-12 (-4 *2 (-494)) (-4 *2 (-389)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1153 *2)))) (-2871 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-583 (-694))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-2870 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-583 *3)) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-2869 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3751 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-2868 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3751 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-3751 (*1 *2 *3) (-12 (-4 *2 (-494)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1153 *2)))) (-2867 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3139 *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-2866 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3139 *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-2865 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3139 *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-3749 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1153 *3)))) (-2864 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-2863 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-3185 (*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1153 *3)))) (-2862 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3)) (-4 *3 (-1153 *5)))) (-2861 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3)) (-4 *3 (-1153 *5)))) (-2860 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-494)) (-5 *1 (-882 *4 *2)) (-4 *2 (-1153 *4)))) (-2859 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3)) (-4 *3 (-1153 *5)))) (-2858 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3)) (-4 *3 (-1153 *5)))) (-2857 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-494)) (-5 *1 (-882 *4 *2)) (-4 *2 (-1153 *4)))) (-2856 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3750 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-2855 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3750 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-2854 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3750 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))) (-3750 (*1 *2 *3 *3) (-12 (-4 *2 (-494)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1153 *2)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3313 (((-1128) $) 14 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3201 (((-1047) $) 11 T ELT)) (-3940 (((-772) $) 21 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-883) (-13 (-994) (-10 -8 (-15 -3201 ((-1047) $)) (-15 -3313 ((-1128) $))))) (T -883))
-((-3201 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-883)))) (-3313 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-883)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 40 T ELT)) (-1309 (((-3 $ "failed") $ $) 54 T ELT)) (-3718 (($) NIL T CONST)) (-2883 (((-583 (-782 (-830) (-830))) $) 64 T ELT)) (-3181 (((-85) $) NIL T ELT)) (-2882 (((-830) $) 91 T ELT)) (-2885 (((-583 (-830)) $) 17 T ELT)) (-2884 (((-1067 $) (-694)) 39 T ELT)) (-2886 (($ (-583 (-830))) 16 T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3005 (($ $) 67 T ELT)) (-3940 (((-772) $) 87 T ELT) (((-583 (-830)) $) 11 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 10 T CONST)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 44 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 42 T ELT)) (-3833 (($ $ $) 46 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) 49 T ELT)) (-3951 (((-694) $) 22 T ELT)))
-(((-884) (-13 (-721) (-552 (-583 (-830))) (-10 -8 (-15 -2886 ($ (-583 (-830)))) (-15 -2885 ((-583 (-830)) $)) (-15 -3951 ((-694) $)) (-15 -2884 ((-1067 $) (-694))) (-15 -2883 ((-583 (-782 (-830) (-830))) $)) (-15 -2882 ((-830) $)) (-15 -3005 ($ $))))) (T -884))
-((-2886 (*1 *1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-884)))) (-2885 (*1 *2 *1) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-884)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-884)))) (-2884 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1067 (-884))) (-5 *1 (-884)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-583 (-782 (-830) (-830)))) (-5 *1 (-884)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-884)))) (-3005 (*1 *1 *1) (-5 *1 (-884))))
-((-3943 (($ $ |#2|) 31 T ELT)) (-3831 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-347 (-483)) $) 27 T ELT) (($ $ (-347 (-483))) 29 T ELT)))
-(((-885 |#1| |#2| |#3| |#4|) (-10 -7 (-15 * (|#1| |#1| (-347 (-483)))) (-15 * (|#1| (-347 (-483)) |#1|)) (-15 -3943 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3831 (|#1| |#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 * (|#1| (-483) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|))) (-886 |#2| |#3| |#4|) (-961) (-716) (-756)) (T -885))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3077 (((-583 |#3|) $) 93 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 69 (|has| |#1| (-494)) ELT)) (-2059 (($ $) 70 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) 72 (|has| |#1| (-494)) ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3953 (($ $) 78 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2888 (((-85) $) 92 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3931 (((-85) $) 80 T ELT)) (-2889 (($ |#1| |#2|) 79 T ELT) (($ $ |#3| |#2|) 95 T ELT) (($ $ (-583 |#3|) (-583 |#2|)) 94 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-2890 (($ $) 83 T ELT)) (-3169 ((|#1| $) 84 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3460 (((-3 $ "failed") $ $) 68 (|has| |#1| (-494)) ELT)) (-3942 ((|#2| $) 82 T ELT)) (-2887 (($ $) 91 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ (-347 (-483))) 75 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $) 67 (|has| |#1| (-494)) ELT) (($ |#1|) 65 (|has| |#1| (-146)) ELT)) (-3671 ((|#1| $ |#2|) 77 T ELT)) (-2698 (((-632 $) $) 66 (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 71 (|has| |#1| (-494)) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-347 (-483)) $) 74 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 73 (|has| |#1| (-38 (-347 (-483)))) ELT)))
-(((-886 |#1| |#2| |#3|) (-113) (-961) (-716) (-756)) (T -886))
-((-3169 (*1 *2 *1) (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *3 (-716)) (-4 *4 (-756)) (-4 *2 (-961)))) (-2890 (*1 *1 *1) (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *4 (-756)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-886 *3 *2 *4)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *2 (-716)))) (-2889 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-886 *4 *3 *2)) (-4 *4 (-961)) (-4 *3 (-716)) (-4 *2 (-756)))) (-2889 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 *5)) (-4 *1 (-886 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-716)) (-4 *6 (-756)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-886 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-716)) (-4 *5 (-756)) (-5 *2 (-583 *5)))) (-2888 (*1 *2 *1) (-12 (-4 *1 (-886 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-716)) (-4 *5 (-756)) (-5 *2 (-85)))) (-2887 (*1 *1 *1) (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *4 (-756)))))
-(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2889 ($ $ |t#3| |t#2|)) (-15 -2889 ($ $ (-583 |t#3|) (-583 |t#2|))) (-15 -2890 ($ $)) (-15 -3169 (|t#1| $)) (-15 -3942 (|t#2| $)) (-15 -3077 ((-583 |t#3|) $)) (-15 -2888 ((-85) $)) (-15 -2887 ($ $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-494)) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-555 (-483)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) |has| |#1| (-494)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-245) |has| |#1| (-494)) ((-494) |has| |#1| (-494)) ((-13) . T) ((-588 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-494)) ((-654 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-494)) ((-663) . T) ((-963 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-968 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T))
-((-2891 (((-1000 (-179)) $) 8 T ELT)) (-2892 (((-1000 (-179)) $) 9 T ELT)) (-2893 (((-1000 (-179)) $) 10 T ELT)) (-2894 (((-583 (-583 (-854 (-179)))) $) 11 T ELT)) (-3940 (((-772) $) 6 T ELT)))
-(((-887) (-113)) (T -887))
-((-2894 (*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-583 (-583 (-854 (-179))))))) (-2893 (*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1000 (-179))))) (-2892 (*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1000 (-179))))) (-2891 (*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1000 (-179))))))
-(-13 (-552 (-772)) (-10 -8 (-15 -2894 ((-583 (-583 (-854 (-179)))) $)) (-15 -2893 ((-1000 (-179)) $)) (-15 -2892 ((-1000 (-179)) $)) (-15 -2891 ((-1000 (-179)) $))))
-(((-552 (-772)) . T))
-((-3077 (((-583 |#4|) $) 23 T ELT)) (-2904 (((-85) $) 55 T ELT)) (-2895 (((-85) $) 54 T ELT)) (-2905 (((-2 (|:| |under| $) (|:| -3125 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-2900 (((-85) $) 56 T ELT)) (-2902 (((-85) $ $) 62 T ELT)) (-2901 (((-85) $ $) 65 T ELT)) (-2903 (((-85) $) 60 T ELT)) (-2896 (((-583 |#5|) (-583 |#5|) $) 98 T ELT)) (-2897 (((-583 |#5|) (-583 |#5|) $) 95 T ELT)) (-2898 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-2910 (((-583 |#4|) $) 27 T ELT)) (-2909 (((-85) |#4| $) 34 T ELT)) (-2899 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-2906 (($ $ |#4|) 39 T ELT)) (-2908 (($ $ |#4|) 38 T ELT)) (-2907 (($ $ |#4|) 40 T ELT)) (-3052 (((-85) $ $) 46 T ELT)))
-(((-888 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2895 ((-85) |#1|)) (-15 -2896 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -2897 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -2898 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2899 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2900 ((-85) |#1|)) (-15 -2901 ((-85) |#1| |#1|)) (-15 -2902 ((-85) |#1| |#1|)) (-15 -2903 ((-85) |#1|)) (-15 -2904 ((-85) |#1|)) (-15 -2905 ((-2 (|:| |under| |#1|) (|:| -3125 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2906 (|#1| |#1| |#4|)) (-15 -2907 (|#1| |#1| |#4|)) (-15 -2908 (|#1| |#1| |#4|)) (-15 -2909 ((-85) |#4| |#1|)) (-15 -2910 ((-583 |#4|) |#1|)) (-15 -3077 ((-583 |#4|) |#1|)) (-15 -3052 ((-85) |#1| |#1|))) (-889 |#2| |#3| |#4| |#5|) (-961) (-717) (-756) (-976 |#2| |#3| |#4|)) (T -888))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3077 (((-583 |#3|) $) 37 T ELT)) (-2904 (((-85) $) 30 T ELT)) (-2895 (((-85) $) 21 (|has| |#1| (-494)) ELT)) (-2905 (((-2 (|:| |under| $) (|:| -3125 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3704 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3989)) ELT)) (-3718 (($) 46 T CONST)) (-2900 (((-85) $) 26 (|has| |#1| (-494)) ELT)) (-2902 (((-85) $ $) 28 (|has| |#1| (-494)) ELT)) (-2901 (((-85) $ $) 27 (|has| |#1| (-494)) ELT)) (-2903 (((-85) $) 29 (|has| |#1| (-494)) ELT)) (-2896 (((-583 |#4|) (-583 |#4|) $) 22 (|has| |#1| (-494)) ELT)) (-2897 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-494)) ELT)) (-3152 (((-3 $ "failed") (-583 |#4|)) 40 T ELT)) (-3151 (($ (-583 |#4|)) 39 T ELT)) (-1350 (($ $) 69 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3400 (($ |#4| $) 68 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3989)) ELT)) (-2898 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-494)) ELT)) (-3836 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3989)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3989)) ELT)) (-2885 (((-583 |#4|) $) 53 (|has| $ (-6 -3989)) ELT)) (-3175 ((|#3| $) 38 T ELT)) (-2604 (((-583 |#4|) $) 54 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2910 (((-583 |#3|) $) 36 T ELT)) (-2909 (((-85) |#3| $) 35 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2899 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-494)) ELT)) (-3238 (((-1032) $) 12 T ELT)) (-1351 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-1944 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 |#4|) (-583 |#4|)) 60 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-248 |#4|)) 58 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-583 (-248 |#4|))) 57 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT)) (-1219 (((-85) $ $) 42 T ELT)) (-3397 (((-85) $) 45 T ELT)) (-3559 (($) 44 T ELT)) (-1943 (((-694) |#4| $) 55 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) (((-694) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) 43 T ELT)) (-3966 (((-472) $) 70 (|has| |#4| (-553 (-472))) ELT)) (-3524 (($ (-583 |#4|)) 61 T ELT)) (-2906 (($ $ |#3|) 32 T ELT)) (-2908 (($ $ |#3|) 34 T ELT)) (-2907 (($ $ |#3|) 33 T ELT)) (-3940 (((-772) $) 13 T ELT) (((-583 |#4|) $) 41 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3951 (((-694) $) 47 (|has| $ (-6 -3989)) ELT)))
-(((-889 |#1| |#2| |#3| |#4|) (-113) (-961) (-717) (-756) (-976 |t#1| |t#2| |t#3|)) (T -889))
-((-3152 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *1 (-889 *3 *4 *5 *6)))) (-3151 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *1 (-889 *3 *4 *5 *6)))) (-3175 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-976 *3 *4 *2)) (-4 *2 (-756)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-583 *5)))) (-2910 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-583 *5)))) (-2909 (*1 *2 *3 *1) (-12 (-4 *1 (-889 *4 *5 *3 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-4 *6 (-976 *4 *5 *3)) (-5 *2 (-85)))) (-2908 (*1 *1 *1 *2) (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *5 (-976 *3 *4 *2)))) (-2907 (*1 *1 *1 *2) (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *5 (-976 *3 *4 *2)))) (-2906 (*1 *1 *1 *2) (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *5 (-976 *3 *4 *2)))) (-2905 (*1 *2 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-4 *6 (-976 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3125 *1) (|:| |upper| *1))) (-4 *1 (-889 *4 *5 *3 *6)))) (-2904 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85)))) (-2903 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-5 *2 (-85)))) (-2902 (*1 *2 *1 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-5 *2 (-85)))) (-2901 (*1 *2 *1 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-5 *2 (-85)))) (-2900 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-5 *2 (-85)))) (-2899 (*1 *2 *3 *1) (-12 (-4 *1 (-889 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-4 *4 (-494)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2898 (*1 *2 *3 *1) (-12 (-4 *1 (-889 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-4 *4 (-494)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2897 (*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)))) (-2896 (*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)))) (-2895 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-5 *2 (-85)))))
-(-13 (-1012) (-124 |t#4|) (-552 (-583 |t#4|)) (-10 -8 (-6 -3989) (-15 -3152 ((-3 $ "failed") (-583 |t#4|))) (-15 -3151 ($ (-583 |t#4|))) (-15 -3175 (|t#3| $)) (-15 -3077 ((-583 |t#3|) $)) (-15 -2910 ((-583 |t#3|) $)) (-15 -2909 ((-85) |t#3| $)) (-15 -2908 ($ $ |t#3|)) (-15 -2907 ($ $ |t#3|)) (-15 -2906 ($ $ |t#3|)) (-15 -2905 ((-2 (|:| |under| $) (|:| -3125 $) (|:| |upper| $)) $ |t#3|)) (-15 -2904 ((-85) $)) (IF (|has| |t#1| (-494)) (PROGN (-15 -2903 ((-85) $)) (-15 -2902 ((-85) $ $)) (-15 -2901 ((-85) $ $)) (-15 -2900 ((-85) $)) (-15 -2899 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2898 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2897 ((-583 |t#4|) (-583 |t#4|) $)) (-15 -2896 ((-583 |t#4|) (-583 |t#4|) $)) (-15 -2895 ((-85) $))) |%noBranch|)))
-(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-472)) |has| |#4| (-553 (-472))) ((-259 |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ((-426 |#4|) . T) ((-452 |#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ((-13) . T) ((-1012) . T) ((-1127) . T))
-((-2912 (((-583 |#4|) |#4| |#4|) 135 T ELT)) (-2935 (((-583 |#4|) (-583 |#4|) (-85)) 123 (|has| |#1| (-389)) ELT) (((-583 |#4|) (-583 |#4|)) 124 (|has| |#1| (-389)) ELT)) (-2922 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 44 T ELT)) (-2921 (((-85) |#4|) 43 T ELT)) (-2934 (((-583 |#4|) |#4|) 120 (|has| |#1| (-389)) ELT)) (-2917 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-85) |#4|) (-583 |#4|)) 24 T ELT)) (-2918 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-85) |#4|)) (-583 |#4|)) 30 T ELT)) (-2919 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-85) |#4|)) (-583 |#4|)) 31 T ELT)) (-2930 (((-3 (-2 (|:| |bas| (-413 |#1| |#2| |#3| |#4|)) (|:| -3318 (-583 |#4|))) "failed") (-583 |#4|)) 90 T ELT)) (-2932 (((-583 |#4|) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-2933 (((-583 |#4|) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 127 T ELT)) (-2911 (((-583 |#4|) (-583 |#4|)) 126 T ELT)) (-2927 (((-583 |#4|) (-583 |#4|) (-583 |#4|) (-85)) 59 T ELT) (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 61 T ELT)) (-2928 ((|#4| |#4| (-583 |#4|)) 60 T ELT)) (-2936 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 131 (|has| |#1| (-389)) ELT)) (-2938 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 134 (|has| |#1| (-389)) ELT)) (-2937 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 133 (|has| |#1| (-389)) ELT)) (-2913 (((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|))) 105 T ELT) (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 107 T ELT) (((-583 |#4|) (-583 |#4|) |#4|) 139 T ELT) (((-583 |#4|) |#4| |#4|) 136 T ELT) (((-583 |#4|) (-583 |#4|)) 106 T ELT)) (-2941 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 117 (-12 (|has| |#1| (-120)) (|has| |#1| (-257))) ELT)) (-2920 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 52 T ELT)) (-2916 (((-85) (-583 |#4|)) 79 T ELT)) (-2915 (((-85) (-583 |#4|) (-583 (-583 |#4|))) 67 T ELT)) (-2924 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 37 T ELT)) (-2923 (((-85) |#4|) 36 T ELT)) (-2940 (((-583 |#4|) (-583 |#4|)) 116 (-12 (|has| |#1| (-120)) (|has| |#1| (-257))) ELT)) (-2939 (((-583 |#4|) (-583 |#4|)) 115 (-12 (|has| |#1| (-120)) (|has| |#1| (-257))) ELT)) (-2929 (((-583 |#4|) (-583 |#4|)) 83 T ELT)) (-2931 (((-583 |#4|) (-583 |#4|)) 97 T ELT)) (-2914 (((-85) (-583 |#4|) (-583 |#4|)) 65 T ELT)) (-2926 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 50 T ELT)) (-2925 (((-85) |#4|) 45 T ELT)))
-(((-890 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2913 ((-583 |#4|) (-583 |#4|))) (-15 -2913 ((-583 |#4|) |#4| |#4|)) (-15 -2911 ((-583 |#4|) (-583 |#4|))) (-15 -2912 ((-583 |#4|) |#4| |#4|)) (-15 -2913 ((-583 |#4|) (-583 |#4|) |#4|)) (-15 -2913 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2913 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|)))) (-15 -2914 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -2915 ((-85) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -2916 ((-85) (-583 |#4|))) (-15 -2917 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-85) |#4|) (-583 |#4|))) (-15 -2918 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-85) |#4|)) (-583 |#4|))) (-15 -2919 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-85) |#4|)) (-583 |#4|))) (-15 -2920 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2921 ((-85) |#4|)) (-15 -2922 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2923 ((-85) |#4|)) (-15 -2924 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2925 ((-85) |#4|)) (-15 -2926 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2927 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2927 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-85))) (-15 -2928 (|#4| |#4| (-583 |#4|))) (-15 -2929 ((-583 |#4|) (-583 |#4|))) (-15 -2930 ((-3 (-2 (|:| |bas| (-413 |#1| |#2| |#3| |#4|)) (|:| -3318 (-583 |#4|))) "failed") (-583 |#4|))) (-15 -2931 ((-583 |#4|) (-583 |#4|))) (-15 -2932 ((-583 |#4|) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2933 ((-583 |#4|) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-389)) (PROGN (-15 -2934 ((-583 |#4|) |#4|)) (-15 -2935 ((-583 |#4|) (-583 |#4|))) (-15 -2935 ((-583 |#4|) (-583 |#4|) (-85))) (-15 -2936 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2937 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2938 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |%noBranch|) (IF (|has| |#1| (-257)) (IF (|has| |#1| (-120)) (PROGN (-15 -2939 ((-583 |#4|) (-583 |#4|))) (-15 -2940 ((-583 |#4|) (-583 |#4|))) (-15 -2941 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |%noBranch|) |%noBranch|)) (-494) (-717) (-756) (-976 |#1| |#2| |#3|)) (T -890))
-((-2941 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-257)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2940 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-257)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2939 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-257)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2938 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-389)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2937 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-389)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2936 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-389)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2935 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-85)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *7)))) (-2935 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-389)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2934 (*1 *2 *3) (-12 (-4 *4 (-389)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *3)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))) (-2933 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-890 *5 *6 *7 *8)))) (-2932 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-583 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-976 *6 *7 *8)) (-4 *6 (-494)) (-4 *7 (-717)) (-4 *8 (-756)) (-5 *1 (-890 *6 *7 *8 *9)))) (-2931 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2930 (*1 *2 *3) (|partial| -12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-413 *4 *5 *6 *7)) (|:| -3318 (-583 *7)))) (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2929 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2928 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *2)))) (-2927 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-85)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *7)))) (-2927 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2926 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2925 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))) (-2924 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2923 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))) (-2922 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2921 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))) (-2920 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2919 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-85) *8))) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-2918 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-85) *8))) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-2917 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-2916 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *7)))) (-2915 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *5 *6 *7 *8)))) (-2914 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *7)))) (-2913 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-583 *7) (-583 *7))) (-5 *2 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *7)))) (-2913 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2913 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *3)))) (-2912 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *3)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))) (-2911 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2913 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *3)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))) (-2913 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))))
-((-2942 (((-2 (|:| R (-630 |#1|)) (|:| A (-630 |#1|)) (|:| |Ainv| (-630 |#1|))) (-630 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-2944 (((-583 (-2 (|:| C (-630 |#1|)) (|:| |g| (-1177 |#1|)))) (-630 |#1|) (-1177 |#1|)) 45 T ELT)) (-2943 (((-630 |#1|) (-630 |#1|) (-630 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 16 T ELT)))
-(((-891 |#1|) (-10 -7 (-15 -2942 ((-2 (|:| R (-630 |#1|)) (|:| A (-630 |#1|)) (|:| |Ainv| (-630 |#1|))) (-630 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2943 ((-630 |#1|) (-630 |#1|) (-630 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2944 ((-583 (-2 (|:| C (-630 |#1|)) (|:| |g| (-1177 |#1|)))) (-630 |#1|) (-1177 |#1|)))) (-311)) (T -891))
-((-2944 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-5 *2 (-583 (-2 (|:| C (-630 *5)) (|:| |g| (-1177 *5))))) (-5 *1 (-891 *5)) (-5 *3 (-630 *5)) (-5 *4 (-1177 *5)))) (-2943 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-630 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-311)) (-5 *1 (-891 *5)))) (-2942 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-311)) (-5 *2 (-2 (|:| R (-630 *6)) (|:| A (-630 *6)) (|:| |Ainv| (-630 *6)))) (-5 *1 (-891 *6)) (-5 *3 (-630 *6)))))
-((-3965 (((-345 |#4|) |#4|) 61 T ELT)))
-(((-892 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3965 ((-345 |#4|) |#4|))) (-756) (-717) (-389) (-861 |#3| |#2| |#1|)) (T -892))
-((-3965 (*1 *2 *3) (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-389)) (-5 *2 (-345 *3)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4)))))
-((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3832 (($ (-694)) 121 (|has| |#1| (-23)) ELT)) (-2194 (((-1183) $ (-483) (-483)) 44 (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-756)) ELT)) (-1727 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -3990)) ELT) (($ $) 97 (-12 (|has| |#1| (-756)) (|has| $ (-6 -3990))) ELT)) (-2905 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-756)) ELT)) (-3782 ((|#1| $ (-483) |#1|) 56 (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) 64 (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3989)) ELT)) (-3718 (($) 7 T CONST)) (-2293 (($ $) 99 (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) 109 T ELT)) (-1350 (($ $) 84 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3400 (($ |#1| $) 83 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3989)) ELT)) (-1573 ((|#1| $ (-483) |#1|) 57 (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) 55 T ELT)) (-3413 (((-483) (-1 (-85) |#1|) $) 106 T ELT) (((-483) |#1| $) 105 (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) 104 (|has| |#1| (-1012)) ELT)) (-3700 (($ (-583 |#1|)) 127 T ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-3829 (((-630 |#1|) $ $) 114 (|has| |#1| (-961)) ELT)) (-3608 (($ (-694) |#1|) 74 T ELT)) (-2196 (((-483) $) 47 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) 91 (|has| |#1| (-756)) ELT)) (-3512 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-756)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-2197 (((-483) $) 48 (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) 92 (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3826 ((|#1| $) 111 (-12 (|has| |#1| (-961)) (|has| |#1| (-915))) ELT)) (-3827 ((|#1| $) 112 (-12 (|has| |#1| (-961)) (|has| |#1| (-915))) ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-2300 (($ |#1| $ (-483)) 66 T ELT) (($ $ $ (-483)) 65 T ELT)) (-2199 (((-583 (-483)) $) 50 T ELT)) (-2200 (((-85) (-483) $) 51 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-3795 ((|#1| $) 46 (|has| (-483) (-756)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2195 (($ $ |#1|) 45 (|has| $ (-6 -3990)) ELT)) (-3763 (($ $ (-583 |#1|)) 125 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-2198 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) 52 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#1| $ (-483) |#1|) 54 T ELT) ((|#1| $ (-483)) 53 T ELT) (($ $ (-1144 (-483))) 75 T ELT)) (-3830 ((|#1| $ $) 115 (|has| |#1| (-961)) ELT)) (-3905 (((-830) $) 126 T ELT)) (-2301 (($ $ (-483)) 68 T ELT) (($ $ (-1144 (-483))) 67 T ELT)) (-3828 (($ $ $) 113 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1728 (($ $ $ (-483)) 100 (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 85 (|has| |#1| (-553 (-472))) ELT) (($ (-583 |#1|)) 128 T ELT)) (-3524 (($ (-583 |#1|)) 76 T ELT)) (-3796 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) 93 (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) 95 (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2680 (((-85) $ $) 94 (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) 96 (|has| |#1| (-756)) ELT)) (-3831 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-3833 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-483) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-663)) ELT) (($ $ |#1|) 116 (|has| |#1| (-663)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-893 |#1|) (-113) (-961)) (T -893))
-((-3700 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-893 *3)))) (-3905 (*1 *2 *1) (-12 (-4 *1 (-893 *3)) (-4 *3 (-961)) (-5 *2 (-830)))) (-3828 (*1 *1 *1 *1) (-12 (-4 *1 (-893 *2)) (-4 *2 (-961)))) (-3763 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-893 *3)) (-4 *3 (-961)))))
-(-13 (-1176 |t#1|) (-557 (-583 |t#1|)) (-10 -8 (-15 -3700 ($ (-583 |t#1|))) (-15 -3905 ((-830) $)) (-15 -3828 ($ $ $)) (-15 -3763 ($ $ (-583 |t#1|)))))
-(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-756)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-756)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-557 (-583 |#1|)) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-241 (-483) |#1|) . T) ((-241 (-1144 (-483)) $) . T) ((-243 (-483) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-321 |#1|) . T) ((-426 |#1|) . T) ((-538 (-483) |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-593 |#1|) . T) ((-19 |#1|) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-1012) OR (|has| |#1| (-1012)) (|has| |#1| (-756))) ((-1127) . T) ((-1176 |#1|) . T))
-((-3952 (((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|)) 17 T ELT)))
-(((-894 |#1| |#2|) (-10 -7 (-15 -3952 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|)))) (-961) (-961)) (T -894))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-854 *6)) (-5 *1 (-894 *5 *6)))))
-((-2947 ((|#1| (-854 |#1|)) 14 T ELT)) (-2946 ((|#1| (-854 |#1|)) 13 T ELT)) (-2945 ((|#1| (-854 |#1|)) 12 T ELT)) (-2949 ((|#1| (-854 |#1|)) 16 T ELT)) (-2953 ((|#1| (-854 |#1|)) 24 T ELT)) (-2948 ((|#1| (-854 |#1|)) 15 T ELT)) (-2950 ((|#1| (-854 |#1|)) 17 T ELT)) (-2952 ((|#1| (-854 |#1|)) 23 T ELT)) (-2951 ((|#1| (-854 |#1|)) 22 T ELT)))
-(((-895 |#1|) (-10 -7 (-15 -2945 (|#1| (-854 |#1|))) (-15 -2946 (|#1| (-854 |#1|))) (-15 -2947 (|#1| (-854 |#1|))) (-15 -2948 (|#1| (-854 |#1|))) (-15 -2949 (|#1| (-854 |#1|))) (-15 -2950 (|#1| (-854 |#1|))) (-15 -2951 (|#1| (-854 |#1|))) (-15 -2952 (|#1| (-854 |#1|))) (-15 -2953 (|#1| (-854 |#1|)))) (-961)) (T -895))
-((-2953 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2952 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2951 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2950 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2949 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2948 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2947 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2946 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2945 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))))
-((-2971 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-2959 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-2969 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-2957 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-2973 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-2961 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-2954 (((-3 |#1| "failed") |#1| (-694)) 1 T ELT)) (-2956 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-2955 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-2974 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-2962 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-2972 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-2960 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-2970 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-2958 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-2977 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-2965 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-2975 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-2963 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-2979 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-2967 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-2980 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-2968 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-2978 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-2966 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-2976 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-2964 (((-3 |#1| "failed") |#1|) 11 T ELT)))
-(((-896 |#1|) (-113) (-1113)) (T -896))
-((-2980 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2979 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2978 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2977 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2976 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2975 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2974 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2973 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2972 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2971 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2970 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2969 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2968 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2967 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2966 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2965 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2964 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2963 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2962 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2961 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2960 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2959 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2958 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2957 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2956 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2955 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))) (-2954 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-694)) (-4 *1 (-896 *2)) (-4 *2 (-1113)))))
-(-13 (-10 -7 (-15 -2954 ((-3 |t#1| "failed") |t#1| (-694))) (-15 -2955 ((-3 |t#1| "failed") |t#1|)) (-15 -2956 ((-3 |t#1| "failed") |t#1|)) (-15 -2957 ((-3 |t#1| "failed") |t#1|)) (-15 -2958 ((-3 |t#1| "failed") |t#1|)) (-15 -2959 ((-3 |t#1| "failed") |t#1|)) (-15 -2960 ((-3 |t#1| "failed") |t#1|)) (-15 -2961 ((-3 |t#1| "failed") |t#1|)) (-15 -2962 ((-3 |t#1| "failed") |t#1|)) (-15 -2963 ((-3 |t#1| "failed") |t#1|)) (-15 -2964 ((-3 |t#1| "failed") |t#1|)) (-15 -2965 ((-3 |t#1| "failed") |t#1|)) (-15 -2966 ((-3 |t#1| "failed") |t#1|)) (-15 -2967 ((-3 |t#1| "failed") |t#1|)) (-15 -2968 ((-3 |t#1| "failed") |t#1|)) (-15 -2969 ((-3 |t#1| "failed") |t#1|)) (-15 -2970 ((-3 |t#1| "failed") |t#1|)) (-15 -2971 ((-3 |t#1| "failed") |t#1|)) (-15 -2972 ((-3 |t#1| "failed") |t#1|)) (-15 -2973 ((-3 |t#1| "failed") |t#1|)) (-15 -2974 ((-3 |t#1| "failed") |t#1|)) (-15 -2975 ((-3 |t#1| "failed") |t#1|)) (-15 -2976 ((-3 |t#1| "failed") |t#1|)) (-15 -2977 ((-3 |t#1| "failed") |t#1|)) (-15 -2978 ((-3 |t#1| "failed") |t#1|)) (-15 -2979 ((-3 |t#1| "failed") |t#1|)) (-15 -2980 ((-3 |t#1| "failed") |t#1|))))
-((-2982 ((|#4| |#4| (-583 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-2981 ((|#4| |#4| (-583 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-3952 ((|#4| (-1 |#4| (-857 |#1|)) |#4|) 33 T ELT)))
-(((-897 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2981 (|#4| |#4| |#3|)) (-15 -2981 (|#4| |#4| (-583 |#3|))) (-15 -2982 (|#4| |#4| |#3|)) (-15 -2982 (|#4| |#4| (-583 |#3|))) (-15 -3952 (|#4| (-1 |#4| (-857 |#1|)) |#4|))) (-961) (-717) (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $)) (-15 -3825 ((-3 $ "failed") (-1088))))) (-861 (-857 |#1|) |#2| |#3|)) (T -897))
-((-3952 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-857 *4))) (-4 *4 (-961)) (-4 *2 (-861 (-857 *4) *5 *6)) (-4 *5 (-717)) (-4 *6 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $)) (-15 -3825 ((-3 $ #1="failed") (-1088)))))) (-5 *1 (-897 *4 *5 *6 *2)))) (-2982 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $)) (-15 -3825 ((-3 $ #1#) (-1088)))))) (-4 *4 (-961)) (-4 *5 (-717)) (-5 *1 (-897 *4 *5 *6 *2)) (-4 *2 (-861 (-857 *4) *5 *6)))) (-2982 (*1 *2 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $)) (-15 -3825 ((-3 $ #1#) (-1088)))))) (-5 *1 (-897 *4 *5 *3 *2)) (-4 *2 (-861 (-857 *4) *5 *3)))) (-2981 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $)) (-15 -3825 ((-3 $ #1#) (-1088)))))) (-4 *4 (-961)) (-4 *5 (-717)) (-5 *1 (-897 *4 *5 *6 *2)) (-4 *2 (-861 (-857 *4) *5 *6)))) (-2981 (*1 *2 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $)) (-15 -3825 ((-3 $ #1#) (-1088)))))) (-5 *1 (-897 *4 *5 *3 *2)) (-4 *2 (-861 (-857 *4) *5 *3)))))
-((-2983 ((|#2| |#3|) 35 T ELT)) (-3913 (((-2 (|:| -2008 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) |#2|) 79 T ELT)) (-3912 (((-2 (|:| -2008 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) 100 T ELT)))
-(((-898 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3912 ((-2 (|:| -2008 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))))) (-15 -3913 ((-2 (|:| -2008 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) |#2|)) (-15 -2983 (|#2| |#3|))) (-298) (-1153 |#1|) (-1153 |#2|) (-661 |#2| |#3|)) (T -898))
-((-2983 (*1 *2 *3) (-12 (-4 *3 (-1153 *2)) (-4 *2 (-1153 *4)) (-5 *1 (-898 *4 *2 *3 *5)) (-4 *4 (-298)) (-4 *5 (-661 *2 *3)))) (-3913 (*1 *2 *3) (-12 (-4 *4 (-298)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 *3)) (-5 *2 (-2 (|:| -2008 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-5 *1 (-898 *4 *3 *5 *6)) (-4 *6 (-661 *3 *5)))) (-3912 (*1 *2) (-12 (-4 *3 (-298)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 *4)) (-5 *2 (-2 (|:| -2008 (-630 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-630 *4)))) (-5 *1 (-898 *3 *4 *5 *6)) (-4 *6 (-661 *4 *5)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3395 (((-3 (-85) #1="failed") $) 71 T ELT)) (-3643 (($ $) 36 (-12 (|has| |#1| (-120)) (|has| |#1| (-257))) ELT)) (-2987 (($ $ (-3 (-85) #1#)) 72 T ELT)) (-2988 (($ (-583 |#4|) |#4|) 25 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2984 (($ $) 69 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3397 (((-85) $) 70 T ELT)) (-3559 (($) 30 T ELT)) (-2985 ((|#4| $) 74 T ELT)) (-2986 (((-583 |#4|) $) 73 T ELT)) (-3940 (((-772) $) 68 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-899 |#1| |#2| |#3| |#4|) (-13 (-1012) (-552 (-772)) (-10 -8 (-15 -3559 ($)) (-15 -2988 ($ (-583 |#4|) |#4|)) (-15 -3395 ((-3 (-85) #1="failed") $)) (-15 -2987 ($ $ (-3 (-85) #1#))) (-15 -3397 ((-85) $)) (-15 -2986 ((-583 |#4|) $)) (-15 -2985 (|#4| $)) (-15 -2984 ($ $)) (IF (|has| |#1| (-257)) (IF (|has| |#1| (-120)) (-15 -3643 ($ $)) |%noBranch|) |%noBranch|))) (-389) (-756) (-717) (-861 |#1| |#3| |#2|)) (T -899))
-((-3559 (*1 *1) (-12 (-4 *2 (-389)) (-4 *3 (-756)) (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5)) (-4 *5 (-861 *2 *4 *3)))) (-2988 (*1 *1 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-861 *4 *6 *5)) (-4 *4 (-389)) (-4 *5 (-756)) (-4 *6 (-717)) (-5 *1 (-899 *4 *5 *6 *3)))) (-3395 (*1 *2 *1) (|partial| -12 (-4 *3 (-389)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))) (-2987 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-389)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))) (-3397 (*1 *2 *1) (-12 (-4 *3 (-389)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))) (-2986 (*1 *2 *1) (-12 (-4 *3 (-389)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-583 *6)) (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))) (-2985 (*1 *2 *1) (-12 (-4 *2 (-861 *3 *5 *4)) (-5 *1 (-899 *3 *4 *5 *2)) (-4 *3 (-389)) (-4 *4 (-756)) (-4 *5 (-717)))) (-2984 (*1 *1 *1) (-12 (-4 *2 (-389)) (-4 *3 (-756)) (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5)) (-4 *5 (-861 *2 *4 *3)))) (-3643 (*1 *1 *1) (-12 (-4 *2 (-120)) (-4 *2 (-257)) (-4 *2 (-389)) (-4 *3 (-756)) (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5)) (-4 *5 (-861 *2 *4 *3)))))
-((-2989 (((-899 (-347 (-483)) (-773 |#1|) (-197 |#2| (-694)) (-206 |#1| (-347 (-483)))) (-899 (-347 (-483)) (-773 |#1|) (-197 |#2| (-694)) (-206 |#1| (-347 (-483))))) 82 T ELT)))
-(((-900 |#1| |#2|) (-10 -7 (-15 -2989 ((-899 (-347 (-483)) (-773 |#1|) (-197 |#2| (-694)) (-206 |#1| (-347 (-483)))) (-899 (-347 (-483)) (-773 |#1|) (-197 |#2| (-694)) (-206 |#1| (-347 (-483))))))) (-583 (-1088)) (-694)) (T -900))
-((-2989 (*1 *2 *2) (-12 (-5 *2 (-899 (-347 (-483)) (-773 *3) (-197 *4 (-694)) (-206 *3 (-347 (-483))))) (-14 *3 (-583 (-1088))) (-14 *4 (-694)) (-5 *1 (-900 *3 *4)))))
-((-3264 (((-85) |#5| |#5|) 44 T ELT)) (-3267 (((-85) |#5| |#5|) 59 T ELT)) (-3272 (((-85) |#5| (-583 |#5|)) 81 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3268 (((-85) (-583 |#4|) (-583 |#4|)) 65 T ELT)) (-3274 (((-85) (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) 70 T ELT)) (-3263 (((-1183)) 32 T ELT)) (-3262 (((-1183) (-1071) (-1071) (-1071)) 28 T ELT)) (-3273 (((-583 |#5|) (-583 |#5|)) 100 T ELT)) (-3275 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|)))) 92 T ELT)) (-3276 (((-583 (-2 (|:| -3261 (-583 |#4|)) (|:| -1597 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-85) (-85)) 122 T ELT)) (-3266 (((-85) |#5| |#5|) 53 T ELT)) (-3271 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3269 (((-85) (-583 |#4|) (-583 |#4|)) 64 T ELT)) (-3270 (((-85) (-583 |#4|) (-583 |#4|)) 66 T ELT)) (-3693 (((-85) (-583 |#4|) (-583 |#4|)) 67 T ELT)) (-3277 (((-3 (-2 (|:| -3261 (-583 |#4|)) (|:| -1597 |#5|) (|:| |ineq| (-583 |#4|))) #1#) (-583 |#4|) |#5| (-583 |#4|) (-85) (-85) (-85) (-85) (-85)) 117 T ELT)) (-3265 (((-583 |#5|) (-583 |#5|)) 49 T ELT)))
-(((-901 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3262 ((-1183) (-1071) (-1071) (-1071))) (-15 -3263 ((-1183))) (-15 -3264 ((-85) |#5| |#5|)) (-15 -3265 ((-583 |#5|) (-583 |#5|))) (-15 -3266 ((-85) |#5| |#5|)) (-15 -3267 ((-85) |#5| |#5|)) (-15 -3268 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3269 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3270 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3693 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3271 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3272 ((-85) |#5| |#5|)) (-15 -3272 ((-85) |#5| (-583 |#5|))) (-15 -3273 ((-583 |#5|) (-583 |#5|))) (-15 -3274 ((-85) (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|)))) (-15 -3275 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) (-15 -3276 ((-583 (-2 (|:| -3261 (-583 |#4|)) (|:| -1597 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-85) (-85))) (-15 -3277 ((-3 (-2 (|:| -3261 (-583 |#4|)) (|:| -1597 |#5|) (|:| |ineq| (-583 |#4|))) #1#) (-583 |#4|) |#5| (-583 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-389) (-717) (-756) (-976 |#1| |#2| |#3|) (-982 |#1| |#2| |#3| |#4|)) (T -901))
-((-3277 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-976 *6 *7 *8)) (-5 *2 (-2 (|:| -3261 (-583 *9)) (|:| -1597 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-901 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-982 *6 *7 *8 *9)))) (-3276 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-85)) (-4 *10 (-982 *6 *7 *8 *9)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-976 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -3261 (-583 *9)) (|:| -1597 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-901 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) (-3275 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -1597 *7)))) (-4 *6 (-976 *3 *4 *5)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-901 *3 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1597 *8))) (-4 *7 (-976 *4 *5 *6)) (-4 *8 (-982 *4 *5 *6 *7)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)))) (-3273 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *1 (-901 *3 *4 *5 *6 *7)))) (-3272 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-982 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-901 *5 *6 *7 *8 *3)))) (-3272 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-3271 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-3693 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-3270 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-3269 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-3268 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-3267 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-3266 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-3265 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *1 (-901 *3 *4 *5 *6 *7)))) (-3264 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-3263 (*1 *2) (-12 (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-1183)) (-5 *1 (-901 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))) (-3262 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1071)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-901 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))))
-((-3825 (((-1088) $) 15 T ELT)) (-3396 (((-1071) $) 16 T ELT)) (-3221 (($ (-1088) (-1071)) 14 T ELT)) (-3940 (((-772) $) 13 T ELT)))
-(((-902) (-13 (-552 (-772)) (-10 -8 (-15 -3221 ($ (-1088) (-1071))) (-15 -3825 ((-1088) $)) (-15 -3396 ((-1071) $))))) (T -902))
-((-3221 (*1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-1071)) (-5 *1 (-902)))) (-3825 (*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-902)))) (-3396 (*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-902)))))
-((-3152 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-1088) #1#) $) 72 T ELT) (((-3 (-347 (-483)) #1#) $) NIL T ELT) (((-3 (-483) #1#) $) 102 T ELT)) (-3151 ((|#2| $) NIL T ELT) (((-1088) $) 67 T ELT) (((-347 (-483)) $) NIL T ELT) (((-483) $) 99 T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL T ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) 121 T ELT) (((-630 |#2|) (-630 $)) 35 T ELT)) (-2990 (($) 105 T ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) 82 T ELT) (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 91 T ELT)) (-2992 (($ $) 10 T ELT)) (-3439 (((-632 $) $) 27 T ELT)) (-3952 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3440 (($) 16 T CONST)) (-3123 (($ $) 61 T ELT)) (-3752 (($ $ (-1 |#2| |#2|)) 43 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1088)) NIL T ELT) (($ $ (-583 (-1088))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2991 (($ $) 12 T ELT)) (-3966 (((-800 (-483)) $) 77 T ELT) (((-800 (-327)) $) 86 T ELT) (((-472) $) 47 T ELT) (((-327) $) 51 T ELT) (((-179) $) 55 T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) 97 T ELT) (($ |#2|) NIL T ELT) (($ (-1088)) 64 T ELT)) (-3121 (((-694)) 38 T CONST)) (-2681 (((-85) $ $) 57 T ELT)))
-(((-903 |#1| |#2|) (-10 -7 (-15 -2681 ((-85) |#1| |#1|)) (-15 -3752 (|#1| |#1| (-694))) (-15 -3752 (|#1| |#1|)) (-15 -3752 (|#1| |#1| (-583 (-1088)) (-583 (-694)))) (-15 -3752 (|#1| |#1| (-1088) (-694))) (-15 -3752 (|#1| |#1| (-583 (-1088)))) (-15 -3752 (|#1| |#1| (-1088))) (-15 -3440 (|#1|) -3946) (-15 -3439 ((-632 |#1|) |#1|)) (-15 -3152 ((-3 (-483) #1="failed") |#1|)) (-15 -3151 ((-483) |#1|)) (-15 -3152 ((-3 (-347 (-483)) #1#) |#1|)) (-15 -3151 ((-347 (-483)) |#1|)) (-15 -3966 ((-179) |#1|)) (-15 -3966 ((-327) |#1|)) (-15 -3966 ((-472) |#1|)) (-15 -3940 (|#1| (-1088))) (-15 -3152 ((-3 (-1088) #1#) |#1|)) (-15 -3151 ((-1088) |#1|)) (-15 -2990 (|#1|)) (-15 -3123 (|#1| |#1|)) (-15 -2991 (|#1| |#1|)) (-15 -2992 (|#1| |#1|)) (-15 -2792 ((-798 (-327) |#1|) |#1| (-800 (-327)) (-798 (-327) |#1|))) (-15 -2792 ((-798 (-483) |#1|) |#1| (-800 (-483)) (-798 (-483) |#1|))) (-15 -3966 ((-800 (-327)) |#1|)) (-15 -3966 ((-800 (-483)) |#1|)) (-15 -2275 ((-630 |#2|) (-630 |#1|))) (-15 -2275 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 |#1|) (-1177 |#1|))) (-15 -2275 ((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 |#1|) (-1177 |#1|))) (-15 -2275 ((-630 (-483)) (-630 |#1|))) (-15 -3752 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3752 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3952 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3152 ((-3 |#2| #1#) |#1|)) (-15 -3151 (|#2| |#1|)) (-15 -3940 (|#1| |#2|)) (-15 -3940 (|#1| (-347 (-483)))) (-15 -3940 (|#1| |#1|)) (-15 -3121 ((-694)) -3946) (-15 -3940 (|#1| (-483))) (-15 -3940 ((-772) |#1|))) (-904 |#2|) (-494)) (T -903))
-((-3121 (*1 *2) (-12 (-4 *4 (-494)) (-5 *2 (-694)) (-5 *1 (-903 *3 *4)) (-4 *3 (-904 *4)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3124 ((|#1| $) 171 (|has| |#1| (-257)) ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) 162 (|has| |#1| (-821)) ELT)) (-3769 (($ $) 89 T ELT)) (-3965 (((-345 $) $) 88 T ELT)) (-2700 (((-3 (-583 (-1083 $)) #1="failed") (-583 (-1083 $)) (-1083 $)) 165 (|has| |#1| (-821)) ELT)) (-1605 (((-85) $ $) 73 T ELT)) (-3617 (((-483) $) 152 (|has| |#1| (-740)) ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 |#1| #2="failed") $) 201 T ELT) (((-3 (-1088) #2#) $) 160 (|has| |#1| (-950 (-1088))) ELT) (((-3 (-347 (-483)) #2#) $) 143 (|has| |#1| (-950 (-483))) ELT) (((-3 (-483) #2#) $) 141 (|has| |#1| (-950 (-483))) ELT)) (-3151 ((|#1| $) 202 T ELT) (((-1088) $) 161 (|has| |#1| (-950 (-1088))) ELT) (((-347 (-483)) $) 144 (|has| |#1| (-950 (-483))) ELT) (((-483) $) 142 (|has| |#1| (-950 (-483))) ELT)) (-2560 (($ $ $) 69 T ELT)) (-2275 (((-630 (-483)) (-630 $)) 186 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 185 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) 184 T ELT) (((-630 |#1|) (-630 $)) 183 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2990 (($) 169 (|has| |#1| (-482)) ELT)) (-2559 (($ $ $) 70 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 64 T ELT)) (-3717 (((-85) $) 87 T ELT)) (-3181 (((-85) $) 154 (|has| |#1| (-740)) ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) 178 (|has| |#1| (-796 (-483))) ELT) (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 177 (|has| |#1| (-796 (-327))) ELT)) (-2406 (((-85) $) 42 T ELT)) (-2992 (($ $) 173 T ELT)) (-2994 ((|#1| $) 175 T ELT)) (-3439 (((-632 $) $) 140 (|has| |#1| (-1064)) ELT)) (-3182 (((-85) $) 153 (|has| |#1| (-740)) ELT)) (-1602 (((-3 (-583 $) #3="failed") (-583 $) $) 66 T ELT)) (-2527 (($ $ $) 145 (|has| |#1| (-756)) ELT)) (-2853 (($ $ $) 146 (|has| |#1| (-756)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 193 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) 188 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 187 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 182 T ELT) (((-630 |#1|) (-1177 $)) 181 T ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 86 T ELT)) (-3440 (($) 139 (|has| |#1| (-1064)) CONST)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3123 (($ $) 170 (|has| |#1| (-257)) ELT)) (-3125 ((|#1| $) 167 (|has| |#1| (-482)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) 164 (|has| |#1| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) 163 (|has| |#1| (-821)) ELT)) (-3726 (((-345 $) $) 90 T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 67 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 63 T ELT)) (-3762 (($ $ (-583 |#1|) (-583 |#1|)) 199 (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) 198 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) 197 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-248 |#1|))) 196 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-1088)) (-583 |#1|)) 195 (|has| |#1| (-452 (-1088) |#1|)) ELT) (($ $ (-1088) |#1|) 194 (|has| |#1| (-452 (-1088) |#1|)) ELT)) (-1604 (((-694) $) 72 T ELT)) (-3794 (($ $ |#1|) 200 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 71 T ELT)) (-3752 (($ $ (-1 |#1| |#1|)) 192 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 191 T ELT) (($ $) 138 (|has| |#1| (-189)) ELT) (($ $ (-694)) 136 (|has| |#1| (-189)) ELT) (($ $ (-1088)) 134 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) 132 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) 131 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 130 (|has| |#1| (-811 (-1088))) ELT)) (-2991 (($ $) 172 T ELT)) (-2993 ((|#1| $) 174 T ELT)) (-3966 (((-800 (-483)) $) 180 (|has| |#1| (-553 (-800 (-483)))) ELT) (((-800 (-327)) $) 179 (|has| |#1| (-553 (-800 (-327)))) ELT) (((-472) $) 157 (|has| |#1| (-553 (-472))) ELT) (((-327) $) 156 (|has| |#1| (-933)) ELT) (((-179) $) 155 (|has| |#1| (-933)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) 166 (-2558 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-483))) 82 T ELT) (($ |#1|) 205 T ELT) (($ (-1088)) 159 (|has| |#1| (-950 (-1088))) ELT)) (-2698 (((-632 $) $) 158 (OR (|has| |#1| (-118)) (-2558 (|has| $ (-118)) (|has| |#1| (-821)))) ELT)) (-3121 (((-694)) 38 T CONST)) (-3126 ((|#1| $) 168 (|has| |#1| (-482)) ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-3377 (($ $) 151 (|has| |#1| (-740)) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-1 |#1| |#1|)) 190 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 189 T ELT) (($ $) 137 (|has| |#1| (-189)) ELT) (($ $ (-694)) 135 (|has| |#1| (-189)) ELT) (($ $ (-1088)) 133 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) 129 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) 128 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 127 (|has| |#1| (-811 (-1088))) ELT)) (-2562 (((-85) $ $) 147 (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) 149 (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 148 (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) 150 (|has| |#1| (-756)) ELT)) (-3943 (($ $ $) 81 T ELT) (($ |#1| |#1|) 176 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 85 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-483))) 84 T ELT) (($ (-347 (-483)) $) 83 T ELT) (($ |#1| $) 204 T ELT) (($ $ |#1|) 203 T ELT)))
-(((-904 |#1|) (-113) (-494)) (T -904))
-((-3943 (*1 *1 *2 *2) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494)))) (-2994 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494)))) (-2993 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494)))) (-2992 (*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494)))) (-2991 (*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494)))) (-3124 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494)) (-4 *2 (-257)))) (-3123 (*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494)) (-4 *2 (-257)))) (-2990 (*1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-482)) (-4 *2 (-494)))) (-3126 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494)) (-4 *2 (-482)))) (-3125 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494)) (-4 *2 (-482)))))
-(-13 (-311) (-38 |t#1|) (-950 |t#1|) (-287 |t#1|) (-184 |t#1|) (-326 |t#1|) (-794 |t#1|) (-340 |t#1|) (-10 -8 (-15 -3943 ($ |t#1| |t#1|)) (-15 -2994 (|t#1| $)) (-15 -2993 (|t#1| $)) (-15 -2992 ($ $)) (-15 -2991 ($ $)) (IF (|has| |t#1| (-1064)) (-6 (-1064)) |%noBranch|) (IF (|has| |t#1| (-950 (-483))) (PROGN (-6 (-950 (-483))) (-6 (-950 (-347 (-483))))) |%noBranch|) (IF (|has| |t#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |t#1| (-740)) (-6 (-740)) |%noBranch|) (IF (|has| |t#1| (-933)) (-6 (-933)) |%noBranch|) (IF (|has| |t#1| (-553 (-472))) (-6 (-553 (-472))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-950 (-1088))) (-6 (-950 (-1088))) |%noBranch|) (IF (|has| |t#1| (-257)) (PROGN (-15 -3124 (|t#1| $)) (-15 -3123 ($ $))) |%noBranch|) (IF (|has| |t#1| (-482)) (PROGN (-15 -2990 ($)) (-15 -3126 (|t#1| $)) (-15 -3125 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-483))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) . T) ((-555 (-483)) . T) ((-555 (-1088)) |has| |#1| (-950 (-1088))) ((-555 |#1|) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-553 (-179)) |has| |#1| (-933)) ((-553 (-327)) |has| |#1| (-933)) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-553 (-800 (-327))) |has| |#1| (-553 (-800 (-327)))) ((-553 (-800 (-483))) |has| |#1| (-553 (-800 (-483)))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) . T) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-245) . T) ((-257) . T) ((-259 |#1|) |has| |#1| (-259 |#1|)) ((-311) . T) ((-287 |#1|) . T) ((-326 |#1|) . T) ((-340 |#1|) . T) ((-389) . T) ((-452 (-1088) |#1|) |has| |#1| (-452 (-1088) |#1|)) ((-452 |#1| |#1|) |has| |#1| (-259 |#1|)) ((-494) . T) ((-13) . T) ((-588 (-347 (-483))) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) . T) ((-590 (-483)) |has| |#1| (-580 (-483))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) . T) ((-582 |#1|) . T) ((-582 $) . T) ((-580 (-483)) |has| |#1| (-580 (-483))) ((-580 |#1|) . T) ((-654 (-347 (-483))) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-663) . T) ((-714) |has| |#1| (-740)) ((-716) |has| |#1| (-740)) ((-718) |has| |#1| (-740)) ((-721) |has| |#1| (-740)) ((-740) |has| |#1| (-740)) ((-755) |has| |#1| (-740)) ((-756) OR (|has| |#1| (-756)) (|has| |#1| (-740))) ((-759) OR (|has| |#1| (-756)) (|has| |#1| (-740))) ((-806 $ (-1088)) OR (|has| |#1| (-811 (-1088))) (|has| |#1| (-809 (-1088)))) ((-809 (-1088)) |has| |#1| (-809 (-1088))) ((-811 (-1088)) OR (|has| |#1| (-811 (-1088))) (|has| |#1| (-809 (-1088)))) ((-796 (-327)) |has| |#1| (-796 (-327))) ((-796 (-483)) |has| |#1| (-796 (-483))) ((-794 |#1|) . T) ((-821) |has| |#1| (-821)) ((-832) . T) ((-933) |has| |#1| (-933)) ((-950 (-347 (-483))) |has| |#1| (-950 (-483))) ((-950 (-483)) |has| |#1| (-950 (-483))) ((-950 (-1088)) |has| |#1| (-950 (-1088))) ((-950 |#1|) . T) ((-963 (-347 (-483))) . T) ((-963 |#1|) . T) ((-963 $) . T) ((-968 (-347 (-483))) . T) ((-968 |#1|) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1064) |has| |#1| (-1064)) ((-1127) . T) ((-1132) . T))
-((-3952 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT)))
-(((-905 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3952 (|#4| (-1 |#2| |#1|) |#3|))) (-494) (-494) (-904 |#1|) (-904 |#2|)) (T -905))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-494)) (-4 *6 (-494)) (-4 *2 (-904 *6)) (-5 *1 (-905 *5 *6 *4 *2)) (-4 *4 (-904 *5)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ "failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2995 (($ (-1054 |#1| |#2|)) 11 T ELT)) (-3119 (((-1054 |#1| |#2|) $) 12 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3794 ((|#2| $ (-197 |#1| |#2|)) 16 T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT)))
-(((-906 |#1| |#2|) (-13 (-21) (-241 (-197 |#1| |#2|) |#2|) (-10 -8 (-15 -2995 ($ (-1054 |#1| |#2|))) (-15 -3119 ((-1054 |#1| |#2|) $)))) (-830) (-311)) (T -906))
-((-2995 (*1 *1 *2) (-12 (-5 *2 (-1054 *3 *4)) (-14 *3 (-830)) (-4 *4 (-311)) (-5 *1 (-906 *3 *4)))) (-3119 (*1 *2 *1) (-12 (-5 *2 (-1054 *3 *4)) (-5 *1 (-906 *3 *4)) (-14 *3 (-830)) (-4 *4 (-311)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3201 (((-1047) $) 10 T ELT)) (-3940 (((-772) $) 16 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-907) (-13 (-994) (-10 -8 (-15 -3201 ((-1047) $))))) (T -907))
-((-3201 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-907)))))
-((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3718 (($) 7 T CONST)) (-2998 (($ $) 50 T ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3827 (((-694) $) 49 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-1271 ((|#1| $) 43 T ELT)) (-3603 (($ |#1| $) 44 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-2997 ((|#1| $) 48 T ELT)) (-1272 ((|#1| $) 45 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3000 ((|#1| |#1| $) 52 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-2999 ((|#1| $) 51 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1273 (($ (-583 |#1|)) 46 T ELT)) (-2996 ((|#1| $) 47 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-908 |#1|) (-113) (-1127)) (T -908))
-((-3000 (*1 *2 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1127)))) (-2999 (*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1127)))) (-2998 (*1 *1 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1127)))) (-3827 (*1 *2 *1) (-12 (-4 *1 (-908 *3)) (-4 *3 (-1127)) (-5 *2 (-694)))) (-2997 (*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1127)))) (-2996 (*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1127)))))
-(-13 (-76 |t#1|) (-10 -8 (-6 -3989) (-15 -3000 (|t#1| |t#1| $)) (-15 -2999 (|t#1| $)) (-15 -2998 ($ $)) (-15 -3827 ((-694) $)) (-15 -2997 (|t#1| $)) (-15 -2996 (|t#1| $))))
-(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3151 (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3637 ((|#1| $) 12 T ELT)) (-3020 (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-482)) ELT)) (-3019 (((-85) $) NIL (|has| |#1| (-482)) ELT)) (-3018 (((-347 (-483)) $) NIL (|has| |#1| (-482)) ELT)) (-3001 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3127 ((|#1| $) NIL T ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3002 ((|#1| $) 15 T ELT)) (-3003 ((|#1| $) 14 T ELT)) (-3004 ((|#1| $) 13 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3762 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-248 |#1|))) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-1088)) (-583 |#1|)) NIL (|has| |#1| (-452 (-1088) |#1|)) ELT) (($ $ (-1088) |#1|) NIL (|has| |#1| (-452 (-1088) |#1|)) ELT)) (-3794 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3752 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT)) (-3966 (((-472) $) NIL (|has| |#1| (-553 (-472))) ELT)) (-3005 (($ $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-347 (-483))) NIL (OR (|has| |#1| (-311)) (|has| |#1| (-950 (-347 (-483))))) ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-3377 ((|#1| $) NIL (|has| |#1| (-972)) ELT)) (-2656 (($) 8 T CONST)) (-2662 (($) 10 T CONST)) (-2665 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT)) (-2562 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL (|has| |#1| (-311)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-311)) ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-311)) ELT)))
-(((-909 |#1|) (-911 |#1|) (-146)) (T -909))
-NIL
-((-3183 (((-85) $) 43 T ELT)) (-3152 (((-3 (-483) #1="failed") $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 46 T ELT)) (-3151 (((-483) $) NIL T ELT) (((-347 (-483)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-3020 (((-3 (-347 (-483)) #1#) $) 78 T ELT)) (-3019 (((-85) $) 72 T ELT)) (-3018 (((-347 (-483)) $) 76 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3127 ((|#2| $) 22 T ELT)) (-3952 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-2480 (($ $) 58 T ELT)) (-3752 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1088)) NIL T ELT) (($ $ (-583 (-1088))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3966 (((-472) $) 67 T ELT)) (-3005 (($ $) 17 T ELT)) (-3940 (((-772) $) 53 T ELT) (($ (-483)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-347 (-483))) NIL T ELT)) (-3121 (((-694)) 10 T CONST)) (-3377 ((|#2| $) 71 T ELT)) (-3052 (((-85) $ $) 26 T ELT)) (-2681 (((-85) $ $) 69 T ELT)) (-3831 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-3833 (($ $ $) 27 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT)))
-(((-910 |#1| |#2|) (-10 -7 (-15 -3940 (|#1| (-347 (-483)))) (-15 -3752 (|#1| |#1| (-694))) (-15 -3752 (|#1| |#1|)) (-15 -3752 (|#1| |#1| (-583 (-1088)) (-583 (-694)))) (-15 -3752 (|#1| |#1| (-1088) (-694))) (-15 -3752 (|#1| |#1| (-583 (-1088)))) (-15 -3752 (|#1| |#1| (-1088))) (-15 -2681 ((-85) |#1| |#1|)) (-15 * (|#1| (-347 (-483)) |#1|)) (-15 * (|#1| |#1| (-347 (-483)))) (-15 -2480 (|#1| |#1|)) (-15 -3966 ((-472) |#1|)) (-15 -3020 ((-3 (-347 (-483)) #1="failed") |#1|)) (-15 -3018 ((-347 (-483)) |#1|)) (-15 -3019 ((-85) |#1|)) (-15 -3377 (|#2| |#1|)) (-15 -3127 (|#2| |#1|)) (-15 -3005 (|#1| |#1|)) (-15 -3952 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3752 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3752 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3152 ((-3 |#2| #1#) |#1|)) (-15 -3151 (|#2| |#1|)) (-15 -3151 ((-347 (-483)) |#1|)) (-15 -3152 ((-3 (-347 (-483)) #1#) |#1|)) (-15 -3151 ((-483) |#1|)) (-15 -3152 ((-3 (-483) #1#) |#1|)) (-15 -3940 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3121 ((-694)) -3946) (-15 -3940 (|#1| (-483))) (-15 -2406 ((-85) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3831 (|#1| |#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 * (|#1| (-483) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 -3183 ((-85) |#1|)) (-15 * (|#1| (-830) |#1|)) (-15 -3833 (|#1| |#1| |#1|)) (-15 -3940 ((-772) |#1|)) (-15 -3052 ((-85) |#1| |#1|))) (-911 |#2|) (-146)) (T -910))
-((-3121 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-910 *3 *4)) (-4 *3 (-911 *4)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 (-483) #1="failed") $) 141 (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) 139 (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) 136 T ELT)) (-3151 (((-483) $) 140 (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) 138 (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) 137 T ELT)) (-2275 (((-630 (-483)) (-630 $)) 121 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 120 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) 119 T ELT) (((-630 |#1|) (-630 $)) 118 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3637 ((|#1| $) 109 T ELT)) (-3020 (((-3 (-347 (-483)) "failed") $) 105 (|has| |#1| (-482)) ELT)) (-3019 (((-85) $) 107 (|has| |#1| (-482)) ELT)) (-3018 (((-347 (-483)) $) 106 (|has| |#1| (-482)) ELT)) (-3001 (($ |#1| |#1| |#1| |#1|) 110 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3127 ((|#1| $) 111 T ELT)) (-2527 (($ $ $) 93 (|has| |#1| (-756)) ELT)) (-2853 (($ $ $) 94 (|has| |#1| (-756)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 124 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) 123 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 122 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 117 T ELT) (((-630 |#1|) (-1177 $)) 116 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 102 (|has| |#1| (-311)) ELT)) (-3002 ((|#1| $) 112 T ELT)) (-3003 ((|#1| $) 113 T ELT)) (-3004 ((|#1| $) 114 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3762 (($ $ (-583 |#1|) (-583 |#1|)) 130 (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) 129 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) 128 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-248 |#1|))) 127 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-583 (-1088)) (-583 |#1|)) 126 (|has| |#1| (-452 (-1088) |#1|)) ELT) (($ $ (-1088) |#1|) 125 (|has| |#1| (-452 (-1088) |#1|)) ELT)) (-3794 (($ $ |#1|) 131 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3752 (($ $ (-1 |#1| |#1|)) 135 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 134 T ELT) (($ $) 92 (|has| |#1| (-189)) ELT) (($ $ (-694)) 90 (|has| |#1| (-189)) ELT) (($ $ (-1088)) 88 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) 86 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) 85 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 84 (|has| |#1| (-811 (-1088))) ELT)) (-3966 (((-472) $) 103 (|has| |#1| (-553 (-472))) ELT)) (-3005 (($ $) 115 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 50 T ELT) (($ (-347 (-483))) 80 (OR (|has| |#1| (-311)) (|has| |#1| (-950 (-347 (-483))))) ELT)) (-2698 (((-632 $) $) 104 (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-3377 ((|#1| $) 108 (|has| |#1| (-972)) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-1 |#1| |#1|)) 133 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 132 T ELT) (($ $) 91 (|has| |#1| (-189)) ELT) (($ $ (-694)) 89 (|has| |#1| (-189)) ELT) (($ $ (-1088)) 87 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) 83 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) 82 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 81 (|has| |#1| (-811 (-1088))) ELT)) (-2562 (((-85) $ $) 95 (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) 97 (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 96 (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) 98 (|has| |#1| (-756)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 101 (|has| |#1| (-311)) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT) (($ $ (-347 (-483))) 100 (|has| |#1| (-311)) ELT) (($ (-347 (-483)) $) 99 (|has| |#1| (-311)) ELT)))
-(((-911 |#1|) (-113) (-146)) (T -911))
-((-3005 (*1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3003 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3002 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3001 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3637 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3377 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)) (-4 *2 (-972)))) (-3019 (*1 *2 *1) (-12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-85)))) (-3018 (*1 *2 *1) (-12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-347 (-483))))) (-3020 (*1 *2 *1) (|partial| -12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-347 (-483))))))
-(-13 (-38 |t#1|) (-352 |t#1|) (-184 |t#1|) (-287 |t#1|) (-326 |t#1|) (-10 -8 (-15 -3005 ($ $)) (-15 -3004 (|t#1| $)) (-15 -3003 (|t#1| $)) (-15 -3002 (|t#1| $)) (-15 -3127 (|t#1| $)) (-15 -3001 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3637 (|t#1| $)) (IF (|has| |t#1| (-245)) (-6 (-245)) |%noBranch|) (IF (|has| |t#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |t#1| (-311)) (-6 (-201)) |%noBranch|) (IF (|has| |t#1| (-553 (-472))) (-6 (-553 (-472))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-972)) (-15 -3377 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-482)) (PROGN (-15 -3019 ((-85) $)) (-15 -3018 ((-347 (-483)) $)) (-15 -3020 ((-3 (-347 (-483)) "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-483))) |has| |#1| (-311)) ((-38 |#1|) . T) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) |has| |#1| (-311)) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-311)) (|has| |#1| (-245))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) OR (|has| |#1| (-950 (-347 (-483)))) (|has| |#1| (-311))) ((-555 (-483)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) |has| |#1| (-311)) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-245) OR (|has| |#1| (-311)) (|has| |#1| (-245))) ((-259 |#1|) |has| |#1| (-259 |#1|)) ((-287 |#1|) . T) ((-326 |#1|) . T) ((-352 |#1|) . T) ((-452 (-1088) |#1|) |has| |#1| (-452 (-1088) |#1|)) ((-452 |#1| |#1|) |has| |#1| (-259 |#1|)) ((-13) . T) ((-588 (-347 (-483))) |has| |#1| (-311)) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) |has| |#1| (-311)) ((-590 (-483)) |has| |#1| (-580 (-483))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) |has| |#1| (-311)) ((-582 |#1|) . T) ((-580 (-483)) |has| |#1| (-580 (-483))) ((-580 |#1|) . T) ((-654 (-347 (-483))) |has| |#1| (-311)) ((-654 |#1|) . T) ((-663) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-806 $ (-1088)) OR (|has| |#1| (-811 (-1088))) (|has| |#1| (-809 (-1088)))) ((-809 (-1088)) |has| |#1| (-809 (-1088))) ((-811 (-1088)) OR (|has| |#1| (-811 (-1088))) (|has| |#1| (-809 (-1088)))) ((-950 (-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((-950 (-483)) |has| |#1| (-950 (-483))) ((-950 |#1|) . T) ((-963 (-347 (-483))) |has| |#1| (-311)) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-311)) (|has| |#1| (-245))) ((-968 (-347 (-483))) |has| |#1| (-311)) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-311)) (|has| |#1| (-245))) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T))
-((-3952 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT)))
-(((-912 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3952 (|#3| (-1 |#4| |#2|) |#1|))) (-911 |#2|) (-146) (-911 |#4|) (-146)) (T -912))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-911 *6)) (-5 *1 (-912 *4 *5 *2 *6)) (-4 *4 (-911 *5)))))
-((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3718 (($) NIL T CONST)) (-2998 (($ $) 24 T ELT)) (-3006 (($ (-583 |#1|)) 34 T ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3827 (((-694) $) 27 T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-1271 ((|#1| $) 29 T ELT)) (-3603 (($ |#1| $) 18 T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-2997 ((|#1| $) 28 T ELT)) (-1272 ((|#1| $) 23 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3000 ((|#1| |#1| $) 17 T ELT)) (-3397 (((-85) $) 19 T ELT)) (-3559 (($) NIL T ELT)) (-2999 ((|#1| $) 22 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1273 (($ (-583 |#1|)) NIL T ELT)) (-2996 ((|#1| $) 31 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-913 |#1|) (-13 (-908 |#1|) (-10 -8 (-15 -3006 ($ (-583 |#1|))))) (-1012)) (T -913))
-((-3006 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-5 *1 (-913 *3)))))
-((-3033 (($ $) 12 T ELT)) (-3007 (($ $ (-483)) 13 T ELT)))
-(((-914 |#1|) (-10 -7 (-15 -3033 (|#1| |#1|)) (-15 -3007 (|#1| |#1| (-483)))) (-915)) (T -914))
-NIL
-((-3033 (($ $) 6 T ELT)) (-3007 (($ $ (-483)) 7 T ELT)) (** (($ $ (-347 (-483))) 8 T ELT)))
-(((-915) (-113)) (T -915))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-915)) (-5 *2 (-347 (-483))))) (-3007 (*1 *1 *1 *2) (-12 (-4 *1 (-915)) (-5 *2 (-483)))) (-3033 (*1 *1 *1) (-4 *1 (-915))))
-(-13 (-10 -8 (-15 -3033 ($ $)) (-15 -3007 ($ $ (-483))) (-15 ** ($ $ (-347 (-483))))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1644 (((-2 (|:| |num| (-1177 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2059 (($ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2057 (((-85) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1779 (((-630 (-347 |#2|)) (-1177 $)) NIL T ELT) (((-630 (-347 |#2|))) NIL T ELT)) (-3324 (((-347 |#2|) $) NIL T ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3965 (((-345 $) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1605 (((-85) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3131 (((-694)) NIL (|has| (-347 |#2|) (-317)) ELT)) (-1658 (((-85)) NIL T ELT)) (-1657 (((-85) |#1|) 162 T ELT) (((-85) |#2|) 166 T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL (|has| (-347 |#2|) (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| (-347 |#2|) (-950 (-347 (-483)))) ELT) (((-3 (-347 |#2|) #1#) $) NIL T ELT)) (-3151 (((-483) $) NIL (|has| (-347 |#2|) (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| (-347 |#2|) (-950 (-347 (-483)))) ELT) (((-347 |#2|) $) NIL T ELT)) (-1789 (($ (-1177 (-347 |#2|)) (-1177 $)) NIL T ELT) (($ (-1177 (-347 |#2|))) 79 T ELT) (($ (-1177 |#2|) |#2|) NIL T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-347 |#2|) (-298)) ELT)) (-2560 (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1778 (((-630 (-347 |#2|)) $ (-1177 $)) NIL T ELT) (((-630 (-347 |#2|)) $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| (-347 |#2|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| (-347 |#2|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-347 |#2|))) (|:| |vec| (-1177 (-347 |#2|)))) (-630 $) (-1177 $)) NIL T ELT) (((-630 (-347 |#2|)) (-630 $)) NIL T ELT)) (-1649 (((-1177 $) (-1177 $)) NIL T ELT)) (-3836 (($ |#3|) 73 T ELT) (((-3 $ #1#) (-347 |#3|)) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-1636 (((-583 (-583 |#1|))) NIL (|has| |#1| (-317)) ELT)) (-1661 (((-85) |#1| |#1|) NIL T ELT)) (-3104 (((-830)) NIL T ELT)) (-2990 (($) NIL (|has| (-347 |#2|) (-317)) ELT)) (-1656 (((-85)) NIL T ELT)) (-1655 (((-85) |#1|) 61 T ELT) (((-85) |#2|) 164 T ELT)) (-2559 (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3497 (($ $) NIL T ELT)) (-2829 (($) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1677 (((-85) $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1761 (($ $ (-694)) NIL (|has| (-347 |#2|) (-298)) ELT) (($ $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-3717 (((-85) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3766 (((-830) $) NIL (|has| (-347 |#2|) (-298)) ELT) (((-743 (-830)) $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-2406 (((-85) $) NIL T ELT)) (-3371 (((-694)) NIL T ELT)) (-1650 (((-1177 $) (-1177 $)) NIL T ELT)) (-3127 (((-347 |#2|) $) NIL T ELT)) (-1637 (((-583 (-857 |#1|)) (-1088)) NIL (|has| |#1| (-311)) ELT)) (-3439 (((-632 $) $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2010 ((|#3| $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2006 (((-830) $) NIL (|has| (-347 |#2|) (-317)) ELT)) (-3075 ((|#3| $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| (-347 |#2|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| (-347 |#2|) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-347 |#2|))) (|:| |vec| (-1177 (-347 |#2|)))) (-1177 $) $) NIL T ELT) (((-630 (-347 |#2|)) (-1177 $)) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1645 (((-630 (-347 |#2|))) 57 T ELT)) (-1647 (((-630 (-347 |#2|))) 56 T ELT)) (-2480 (($ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1642 (($ (-1177 |#2|) |#2|) 80 T ELT)) (-1646 (((-630 (-347 |#2|))) 55 T ELT)) (-1648 (((-630 (-347 |#2|))) 54 T ELT)) (-1641 (((-2 (|:| |num| (-630 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-1643 (((-2 (|:| |num| (-1177 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-1654 (((-1177 $)) 51 T ELT)) (-3912 (((-1177 $)) 50 T ELT)) (-1653 (((-85) $) NIL T ELT)) (-1652 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3440 (($) NIL (|has| (-347 |#2|) (-298)) CONST)) (-2396 (($ (-830)) NIL (|has| (-347 |#2|) (-317)) ELT)) (-1639 (((-3 |#2| #1#)) 70 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1663 (((-694)) NIL T ELT)) (-2405 (($) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3139 (($ (-583 $)) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) NIL (|has| (-347 |#2|) (-298)) ELT)) (-3726 (((-345 $) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-347 |#2|) (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3460 (((-3 $ #1#) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1604 (((-694) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3794 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1640 (((-3 |#2| #1#)) 68 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3751 (((-347 |#2|) (-1177 $)) NIL T ELT) (((-347 |#2|)) 47 T ELT)) (-1762 (((-694) $) NIL (|has| (-347 |#2|) (-298)) ELT) (((-3 (-694) #1#) $ $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-3752 (($ $ (-1 (-347 |#2|) (-347 |#2|))) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 (-347 |#2|) (-347 |#2|)) (-694)) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088))))) ELT) (($ $ (-1088) (-694)) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088))))) ELT) (($ $ (-583 (-1088))) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088))))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088))))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT) (($ $) NIL (OR (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT)) (-2404 (((-630 (-347 |#2|)) (-1177 $) (-1 (-347 |#2|) (-347 |#2|))) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3180 ((|#3|) 58 T ELT)) (-1671 (($) NIL (|has| (-347 |#2|) (-298)) ELT)) (-3219 (((-1177 (-347 |#2|)) $ (-1177 $)) NIL T ELT) (((-630 (-347 |#2|)) (-1177 $) (-1177 $)) NIL T ELT) (((-1177 (-347 |#2|)) $) 81 T ELT) (((-630 (-347 |#2|)) (-1177 $)) NIL T ELT)) (-3966 (((-1177 (-347 |#2|)) $) NIL T ELT) (($ (-1177 (-347 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1651 (((-1177 $) (-1177 $)) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-347 |#2|)) NIL T ELT) (($ (-347 (-483))) NIL (OR (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-950 (-347 (-483))))) ELT) (($ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2698 (($ $) NIL (|has| (-347 |#2|) (-298)) ELT) (((-632 $) $) NIL (|has| (-347 |#2|) (-118)) ELT)) (-2445 ((|#3| $) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1660 (((-85)) 65 T ELT)) (-1659 (((-85) |#1|) 167 T ELT) (((-85) |#2|) 168 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1638 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1662 (((-85)) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-1 (-347 |#2|) (-347 |#2|))) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 (-347 |#2|) (-347 |#2|)) (-694)) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088))))) ELT) (($ $ (-1088) (-694)) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088))))) ELT) (($ $ (-583 (-1088))) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088))))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-809 (-1088)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-811 (-1088))))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT) (($ $) NIL (OR (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL (|has| (-347 |#2|) (-311)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 |#2|)) NIL T ELT) (($ (-347 |#2|) $) NIL T ELT) (($ (-347 (-483)) $) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-347 (-483))) NIL (|has| (-347 |#2|) (-311)) ELT)))
-(((-916 |#1| |#2| |#3| |#4| |#5|) (-290 |#1| |#2| |#3|) (-1132) (-1153 |#1|) (-1153 (-347 |#2|)) (-347 |#2|) (-694)) (T -916))
-NIL
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3013 (((-583 (-483)) $) 73 T ELT)) (-3009 (($ (-583 (-483))) 81 T ELT)) (-3124 (((-483) $) 48 (|has| (-483) (-257)) ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-821)) ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-821)) ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3617 (((-483) $) NIL (|has| (-483) (-740)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) 60 T ELT) (((-3 (-1088) #1#) $) NIL (|has| (-483) (-950 (-1088))) ELT) (((-3 (-347 (-483)) #1#) $) 57 (|has| (-483) (-950 (-483))) ELT) (((-3 (-483) #1#) $) 60 (|has| (-483) (-950 (-483))) ELT)) (-3151 (((-483) $) NIL T ELT) (((-1088) $) NIL (|has| (-483) (-950 (-1088))) ELT) (((-347 (-483)) $) NIL (|has| (-483) (-950 (-483))) ELT) (((-483) $) NIL (|has| (-483) (-950 (-483))) ELT)) (-2560 (($ $ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| (-483) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| (-483) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL T ELT) (((-630 (-483)) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2990 (($) NIL (|has| (-483) (-482)) ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-3011 (((-583 (-483)) $) 79 T ELT)) (-3181 (((-85) $) NIL (|has| (-483) (-740)) ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (|has| (-483) (-796 (-483))) ELT) (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (|has| (-483) (-796 (-327))) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2992 (($ $) NIL T ELT)) (-2994 (((-483) $) 45 T ELT)) (-3439 (((-632 $) $) NIL (|has| (-483) (-1064)) ELT)) (-3182 (((-85) $) NIL (|has| (-483) (-740)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2527 (($ $ $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| (-483) (-756)) ELT)) (-3952 (($ (-1 (-483) (-483)) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| (-483) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| (-483) (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL T ELT) (((-630 (-483)) (-1177 $)) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL T ELT)) (-3440 (($) NIL (|has| (-483) (-1064)) CONST)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3123 (($ $) NIL (|has| (-483) (-257)) ELT) (((-347 (-483)) $) 50 T ELT)) (-3012 (((-1067 (-483)) $) 78 T ELT)) (-3008 (($ (-583 (-483)) (-583 (-483))) 82 T ELT)) (-3125 (((-483) $) 64 (|has| (-483) (-482)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| (-483) (-821)) ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3762 (($ $ (-583 (-483)) (-583 (-483))) NIL (|has| (-483) (-259 (-483))) ELT) (($ $ (-483) (-483)) NIL (|has| (-483) (-259 (-483))) ELT) (($ $ (-248 (-483))) NIL (|has| (-483) (-259 (-483))) ELT) (($ $ (-583 (-248 (-483)))) NIL (|has| (-483) (-259 (-483))) ELT) (($ $ (-583 (-1088)) (-583 (-483))) NIL (|has| (-483) (-452 (-1088) (-483))) ELT) (($ $ (-1088) (-483)) NIL (|has| (-483) (-452 (-1088) (-483))) ELT)) (-1604 (((-694) $) NIL T ELT)) (-3794 (($ $ (-483)) NIL (|has| (-483) (-241 (-483) (-483))) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-3752 (($ $ (-1 (-483) (-483))) NIL T ELT) (($ $ (-1 (-483) (-483)) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $) 15 (|has| (-483) (-189)) ELT) (($ $ (-694)) NIL (|has| (-483) (-189)) ELT)) (-2991 (($ $) NIL T ELT)) (-2993 (((-483) $) 47 T ELT)) (-3010 (((-583 (-483)) $) 80 T ELT)) (-3966 (((-800 (-483)) $) NIL (|has| (-483) (-553 (-800 (-483)))) ELT) (((-800 (-327)) $) NIL (|has| (-483) (-553 (-800 (-327)))) ELT) (((-472) $) NIL (|has| (-483) (-553 (-472))) ELT) (((-327) $) NIL (|has| (-483) (-933)) ELT) (((-179) $) NIL (|has| (-483) (-933)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-483) (-821))) ELT)) (-3940 (((-772) $) 108 T ELT) (($ (-483)) 51 T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) 27 T ELT) (($ (-483)) 51 T ELT) (($ (-1088)) NIL (|has| (-483) (-950 (-1088))) ELT) (((-347 (-483)) $) 25 T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-483) (-821))) (|has| (-483) (-118))) ELT)) (-3121 (((-694)) 13 T CONST)) (-3126 (((-483) $) 62 (|has| (-483) (-482)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3377 (($ $) NIL (|has| (-483) (-740)) ELT)) (-2656 (($) 14 T CONST)) (-2662 (($) 17 T CONST)) (-2665 (($ $ (-1 (-483) (-483))) NIL T ELT) (($ $ (-1 (-483) (-483)) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| (-483) (-811 (-1088))) ELT) (($ $) NIL (|has| (-483) (-189)) ELT) (($ $ (-694)) NIL (|has| (-483) (-189)) ELT)) (-2562 (((-85) $ $) NIL (|has| (-483) (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| (-483) (-756)) ELT)) (-3052 (((-85) $ $) 21 T ELT)) (-2680 (((-85) $ $) NIL (|has| (-483) (-756)) ELT)) (-2681 (((-85) $ $) 40 (|has| (-483) (-756)) ELT)) (-3943 (($ $ $) 36 T ELT) (($ (-483) (-483)) 38 T ELT)) (-3831 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-3833 (($ $ $) 28 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ (-483) $) 32 T ELT) (($ $ (-483)) NIL T ELT)))
-(((-917 |#1|) (-13 (-904 (-483)) (-552 (-347 (-483))) (-10 -8 (-15 -3123 ((-347 (-483)) $)) (-15 -3013 ((-583 (-483)) $)) (-15 -3012 ((-1067 (-483)) $)) (-15 -3011 ((-583 (-483)) $)) (-15 -3010 ((-583 (-483)) $)) (-15 -3009 ($ (-583 (-483)))) (-15 -3008 ($ (-583 (-483)) (-583 (-483)))))) (-483)) (T -917))
-((-3123 (*1 *2 *1) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-917 *3)) (-14 *3 (-483)))) (-3013 (*1 *2 *1) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-917 *3)) (-14 *3 (-483)))) (-3012 (*1 *2 *1) (-12 (-5 *2 (-1067 (-483))) (-5 *1 (-917 *3)) (-14 *3 (-483)))) (-3011 (*1 *2 *1) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-917 *3)) (-14 *3 (-483)))) (-3010 (*1 *2 *1) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-917 *3)) (-14 *3 (-483)))) (-3009 (*1 *1 *2) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-917 *3)) (-14 *3 (-483)))) (-3008 (*1 *1 *2 *2) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-917 *3)) (-14 *3 (-483)))))
-((-3014 (((-51) (-347 (-483)) (-483)) 9 T ELT)))
-(((-918) (-10 -7 (-15 -3014 ((-51) (-347 (-483)) (-483))))) (T -918))
-((-3014 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-483))) (-5 *4 (-483)) (-5 *2 (-51)) (-5 *1 (-918)))))
-((-3131 (((-483)) 21 T ELT)) (-3017 (((-483)) 26 T ELT)) (-3016 (((-1183) (-483)) 24 T ELT)) (-3015 (((-483) (-483)) 27 T ELT) (((-483)) 20 T ELT)))
-(((-919) (-10 -7 (-15 -3015 ((-483))) (-15 -3131 ((-483))) (-15 -3015 ((-483) (-483))) (-15 -3016 ((-1183) (-483))) (-15 -3017 ((-483))))) (T -919))
-((-3017 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-919)))) (-3016 (*1 *2 *3) (-12 (-5 *3 (-483)) (-5 *2 (-1183)) (-5 *1 (-919)))) (-3015 (*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-919)))) (-3131 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-919)))) (-3015 (*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-919)))))
-((-3727 (((-345 |#1|) |#1|) 43 T ELT)) (-3726 (((-345 |#1|) |#1|) 41 T ELT)))
-(((-920 |#1|) (-10 -7 (-15 -3726 ((-345 |#1|) |#1|)) (-15 -3727 ((-345 |#1|) |#1|))) (-1153 (-347 (-483)))) (T -920))
-((-3727 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1153 (-347 (-483)))))) (-3726 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1153 (-347 (-483)))))))
-((-3020 (((-3 (-347 (-483)) "failed") |#1|) 15 T ELT)) (-3019 (((-85) |#1|) 14 T ELT)) (-3018 (((-347 (-483)) |#1|) 10 T ELT)))
-(((-921 |#1|) (-10 -7 (-15 -3018 ((-347 (-483)) |#1|)) (-15 -3019 ((-85) |#1|)) (-15 -3020 ((-3 (-347 (-483)) "failed") |#1|))) (-950 (-347 (-483)))) (T -921))
-((-3020 (*1 *2 *3) (|partial| -12 (-5 *2 (-347 (-483))) (-5 *1 (-921 *3)) (-4 *3 (-950 *2)))) (-3019 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-921 *3)) (-4 *3 (-950 (-347 (-483)))))) (-3018 (*1 *2 *3) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-921 *3)) (-4 *3 (-950 *2)))))
-((-3782 ((|#2| $ #1="value" |#2|) 12 T ELT)) (-3794 ((|#2| $ #1#) 10 T ELT)) (-3024 (((-85) $ $) 18 T ELT)))
-(((-922 |#1| |#2|) (-10 -7 (-15 -3782 (|#2| |#1| #1="value" |#2|)) (-15 -3024 ((-85) |#1| |#1|)) (-15 -3794 (|#2| |#1| #1#))) (-923 |#2|) (-1127)) (T -922))
-NIL
-((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3396 ((|#1| $) 52 T ELT)) (-3021 ((|#1| $ |#1|) 43 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ "value" |#1|) 44 (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) 45 (|has| $ (-6 -3990)) ELT)) (-3718 (($) 7 T CONST)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-3027 (((-583 $) $) 54 T ELT)) (-3023 (((-85) $ $) 46 (|has| |#1| (-1012)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3026 (((-583 |#1|) $) 49 T ELT)) (-3521 (((-85) $) 53 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#1| $ "value") 51 T ELT)) (-3025 (((-483) $ $) 48 T ELT)) (-3627 (((-85) $) 50 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3516 (((-583 $) $) 55 T ELT)) (-3024 (((-85) $ $) 47 (|has| |#1| (-1012)) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-923 |#1|) (-113) (-1127)) (T -923))
-((-3516 (*1 *2 *1) (-12 (-4 *3 (-1127)) (-5 *2 (-583 *1)) (-4 *1 (-923 *3)))) (-3027 (*1 *2 *1) (-12 (-4 *3 (-1127)) (-5 *2 (-583 *1)) (-4 *1 (-923 *3)))) (-3521 (*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1127)) (-5 *2 (-85)))) (-3396 (*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1127)))) (-3794 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-923 *2)) (-4 *2 (-1127)))) (-3627 (*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1127)) (-5 *2 (-85)))) (-3026 (*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1127)) (-5 *2 (-583 *3)))) (-3025 (*1 *2 *1 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1127)) (-5 *2 (-483)))) (-3024 (*1 *2 *1 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1127)) (-4 *3 (-1012)) (-5 *2 (-85)))) (-3023 (*1 *2 *1 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1127)) (-4 *3 (-1012)) (-5 *2 (-85)))) (-3022 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *1)) (|has| *1 (-6 -3990)) (-4 *1 (-923 *3)) (-4 *3 (-1127)))) (-3782 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -3990)) (-4 *1 (-923 *2)) (-4 *2 (-1127)))) (-3021 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-923 *2)) (-4 *2 (-1127)))))
-(-13 (-426 |t#1|) (-10 -8 (-15 -3516 ((-583 $) $)) (-15 -3027 ((-583 $) $)) (-15 -3521 ((-85) $)) (-15 -3396 (|t#1| $)) (-15 -3794 (|t#1| $ "value")) (-15 -3627 ((-85) $)) (-15 -3026 ((-583 |t#1|) $)) (-15 -3025 ((-483) $ $)) (IF (|has| |t#1| (-1012)) (PROGN (-15 -3024 ((-85) $ $)) (-15 -3023 ((-85) $ $))) |%noBranch|) (IF (|has| $ (-6 -3990)) (PROGN (-15 -3022 ($ $ (-583 $))) (-15 -3782 (|t#1| $ "value" |t#1|)) (-15 -3021 (|t#1| $ |t#1|))) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T))
-((-3033 (($ $) 9 T ELT) (($ $ (-830)) 49 T ELT) (($ (-347 (-483))) 13 T ELT) (($ (-483)) 15 T ELT)) (-3178 (((-3 $ #1="failed") (-1083 $) (-830) (-772)) 24 T ELT) (((-3 $ #1#) (-1083 $) (-830)) 32 T ELT)) (-3007 (($ $ (-483)) 58 T ELT)) (-3121 (((-694)) 18 T CONST)) (-3179 (((-583 $) (-1083 $)) NIL T ELT) (((-583 $) (-1083 (-347 (-483)))) 63 T ELT) (((-583 $) (-1083 (-483))) 68 T ELT) (((-583 $) (-857 $)) 72 T ELT) (((-583 $) (-857 (-347 (-483)))) 76 T ELT) (((-583 $) (-857 (-483))) 80 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT) (($ $ (-347 (-483))) 53 T ELT)))
-(((-924 |#1|) (-10 -7 (-15 -3033 (|#1| (-483))) (-15 -3033 (|#1| (-347 (-483)))) (-15 -3033 (|#1| |#1| (-830))) (-15 -3179 ((-583 |#1|) (-857 (-483)))) (-15 -3179 ((-583 |#1|) (-857 (-347 (-483))))) (-15 -3179 ((-583 |#1|) (-857 |#1|))) (-15 -3179 ((-583 |#1|) (-1083 (-483)))) (-15 -3179 ((-583 |#1|) (-1083 (-347 (-483))))) (-15 -3179 ((-583 |#1|) (-1083 |#1|))) (-15 -3178 ((-3 |#1| #1="failed") (-1083 |#1|) (-830))) (-15 -3178 ((-3 |#1| #1#) (-1083 |#1|) (-830) (-772))) (-15 ** (|#1| |#1| (-347 (-483)))) (-15 -3007 (|#1| |#1| (-483))) (-15 -3033 (|#1| |#1|)) (-15 ** (|#1| |#1| (-483))) (-15 -3121 ((-694)) -3946) (-15 ** (|#1| |#1| (-694))) (-15 ** (|#1| |#1| (-830)))) (-925)) (T -924))
-((-3121 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-924 *3)) (-4 *3 (-925)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 109 T ELT)) (-2059 (($ $) 110 T ELT)) (-2057 (((-85) $) 112 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3769 (($ $) 129 T ELT)) (-3965 (((-345 $) $) 130 T ELT)) (-3033 (($ $) 93 T ELT) (($ $ (-830)) 79 T ELT) (($ (-347 (-483))) 78 T ELT) (($ (-483)) 77 T ELT)) (-1605 (((-85) $ $) 120 T ELT)) (-3617 (((-483) $) 146 T ELT)) (-3718 (($) 22 T CONST)) (-3178 (((-3 $ "failed") (-1083 $) (-830) (-772)) 87 T ELT) (((-3 $ "failed") (-1083 $) (-830)) 86 T ELT)) (-3152 (((-3 (-483) #1="failed") $) 106 (|has| (-347 (-483)) (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) 104 (|has| (-347 (-483)) (-950 (-347 (-483)))) ELT) (((-3 (-347 (-483)) #1#) $) 101 T ELT)) (-3151 (((-483) $) 105 (|has| (-347 (-483)) (-950 (-483))) ELT) (((-347 (-483)) $) 103 (|has| (-347 (-483)) (-950 (-347 (-483)))) ELT) (((-347 (-483)) $) 102 T ELT)) (-3029 (($ $ (-772)) 76 T ELT)) (-3028 (($ $ (-772)) 75 T ELT)) (-2560 (($ $ $) 124 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2559 (($ $ $) 123 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 118 T ELT)) (-3717 (((-85) $) 131 T ELT)) (-3181 (((-85) $) 144 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3007 (($ $ (-483)) 92 T ELT)) (-3182 (((-85) $) 145 T ELT)) (-1602 (((-3 (-583 $) #2="failed") (-583 $) $) 127 T ELT)) (-2527 (($ $ $) 138 T ELT)) (-2853 (($ $ $) 139 T ELT)) (-3030 (((-3 (-1083 $) "failed") $) 88 T ELT)) (-3032 (((-3 (-772) "failed") $) 90 T ELT)) (-3031 (((-3 (-1083 $) "failed") $) 89 T ELT)) (-1888 (($ (-583 $)) 116 T ELT) (($ $ $) 115 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 132 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 117 T ELT)) (-3139 (($ (-583 $)) 114 T ELT) (($ $ $) 113 T ELT)) (-3726 (((-345 $) $) 128 T ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 126 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 125 T ELT)) (-3460 (((-3 $ "failed") $ $) 108 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 119 T ELT)) (-1604 (((-694) $) 121 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 122 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ (-347 (-483))) 136 T ELT) (($ $) 107 T ELT) (($ (-347 (-483))) 100 T ELT) (($ (-483)) 99 T ELT) (($ (-347 (-483))) 96 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 111 T ELT)) (-3764 (((-347 (-483)) $ $) 74 T ELT)) (-3179 (((-583 $) (-1083 $)) 85 T ELT) (((-583 $) (-1083 (-347 (-483)))) 84 T ELT) (((-583 $) (-1083 (-483))) 83 T ELT) (((-583 $) (-857 $)) 82 T ELT) (((-583 $) (-857 (-347 (-483)))) 81 T ELT) (((-583 $) (-857 (-483))) 80 T ELT)) (-3377 (($ $) 147 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2562 (((-85) $ $) 140 T ELT)) (-2563 (((-85) $ $) 142 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 141 T ELT)) (-2681 (((-85) $ $) 143 T ELT)) (-3943 (($ $ $) 137 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 133 T ELT) (($ $ (-347 (-483))) 91 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-347 (-483)) $) 135 T ELT) (($ $ (-347 (-483))) 134 T ELT) (($ (-483) $) 98 T ELT) (($ $ (-483)) 97 T ELT) (($ (-347 (-483)) $) 95 T ELT) (($ $ (-347 (-483))) 94 T ELT)))
-(((-925) (-113)) (T -925))
-((-3033 (*1 *1 *1) (-4 *1 (-925))) (-3032 (*1 *2 *1) (|partial| -12 (-4 *1 (-925)) (-5 *2 (-772)))) (-3031 (*1 *2 *1) (|partial| -12 (-5 *2 (-1083 *1)) (-4 *1 (-925)))) (-3030 (*1 *2 *1) (|partial| -12 (-5 *2 (-1083 *1)) (-4 *1 (-925)))) (-3178 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1083 *1)) (-5 *3 (-830)) (-5 *4 (-772)) (-4 *1 (-925)))) (-3178 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1083 *1)) (-5 *3 (-830)) (-4 *1 (-925)))) (-3179 (*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-925)) (-5 *2 (-583 *1)))) (-3179 (*1 *2 *3) (-12 (-5 *3 (-1083 (-347 (-483)))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) (-3179 (*1 *2 *3) (-12 (-5 *3 (-1083 (-483))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) (-3179 (*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-925)) (-5 *2 (-583 *1)))) (-3179 (*1 *2 *3) (-12 (-5 *3 (-857 (-347 (-483)))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) (-3179 (*1 *2 *3) (-12 (-5 *3 (-857 (-483))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) (-3033 (*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-830)))) (-3033 (*1 *1 *2) (-12 (-5 *2 (-347 (-483))) (-4 *1 (-925)))) (-3033 (*1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-925)))) (-3029 (*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-772)))) (-3028 (*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-772)))) (-3764 (*1 *2 *1 *1) (-12 (-4 *1 (-925)) (-5 *2 (-347 (-483))))))
-(-13 (-120) (-755) (-146) (-311) (-352 (-347 (-483))) (-38 (-483)) (-38 (-347 (-483))) (-915) (-10 -8 (-15 -3032 ((-3 (-772) "failed") $)) (-15 -3031 ((-3 (-1083 $) "failed") $)) (-15 -3030 ((-3 (-1083 $) "failed") $)) (-15 -3178 ((-3 $ "failed") (-1083 $) (-830) (-772))) (-15 -3178 ((-3 $ "failed") (-1083 $) (-830))) (-15 -3179 ((-583 $) (-1083 $))) (-15 -3179 ((-583 $) (-1083 (-347 (-483))))) (-15 -3179 ((-583 $) (-1083 (-483)))) (-15 -3179 ((-583 $) (-857 $))) (-15 -3179 ((-583 $) (-857 (-347 (-483))))) (-15 -3179 ((-583 $) (-857 (-483)))) (-15 -3033 ($ $ (-830))) (-15 -3033 ($ $)) (-15 -3033 ($ (-347 (-483)))) (-15 -3033 ($ (-483))) (-15 -3029 ($ $ (-772))) (-15 -3028 ($ $ (-772))) (-15 -3764 ((-347 (-483)) $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-483))) . T) ((-38 (-483)) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) . T) ((-82 (-483) (-483)) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-555 (-347 (-483))) . T) ((-555 (-483)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-201) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-352 (-347 (-483))) . T) ((-389) . T) ((-494) . T) ((-13) . T) ((-588 (-347 (-483))) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 (-347 (-483))) . T) ((-590 (-483)) . T) ((-590 $) . T) ((-582 (-347 (-483))) . T) ((-582 (-483)) . T) ((-582 $) . T) ((-654 (-347 (-483))) . T) ((-654 (-483)) . T) ((-654 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-755) . T) ((-756) . T) ((-759) . T) ((-832) . T) ((-915) . T) ((-950 (-347 (-483))) . T) ((-950 (-483)) |has| (-347 (-483)) (-950 (-483))) ((-963 (-347 (-483))) . T) ((-963 (-483)) . T) ((-963 $) . T) ((-968 (-347 (-483))) . T) ((-968 (-483)) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) . T))
-((-3034 (((-2 (|:| |ans| |#2|) (|:| -3132 |#2|) (|:| |sol?| (-85))) (-483) |#2| |#2| (-1088) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2132 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 67 T ELT)))
-(((-926 |#1| |#2|) (-10 -7 (-15 -3034 ((-2 (|:| |ans| |#2|) (|:| -3132 |#2|) (|:| |sol?| (-85))) (-483) |#2| |#2| (-1088) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2132 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-389) (-120) (-950 (-483)) (-580 (-483))) (-13 (-1113) (-27) (-361 |#1|))) (T -926))
-((-3034 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1088)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2132 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1113) (-27) (-361 *8))) (-4 *8 (-13 (-389) (-120) (-950 *3) (-580 *3))) (-5 *3 (-483)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3132 *4) (|:| |sol?| (-85)))) (-5 *1 (-926 *8 *4)))))
-((-3035 (((-3 (-583 |#2|) #1="failed") (-483) |#2| |#2| |#2| (-1088) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2132 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 55 T ELT)))
-(((-927 |#1| |#2|) (-10 -7 (-15 -3035 ((-3 (-583 |#2|) #1="failed") (-483) |#2| |#2| |#2| (-1088) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2132 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-389) (-120) (-950 (-483)) (-580 (-483))) (-13 (-1113) (-27) (-361 |#1|))) (T -927))
-((-3035 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1088)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2132 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1113) (-27) (-361 *8))) (-4 *8 (-13 (-389) (-120) (-950 *3) (-580 *3))) (-5 *3 (-483)) (-5 *2 (-583 *4)) (-5 *1 (-927 *8 *4)))))
-((-3038 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3261 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-483)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-483) (-1 |#2| |#2|)) 39 T ELT)) (-3036 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-347 |#2|)) (|:| |c| (-347 |#2|)) (|:| -3089 |#2|)) "failed") (-347 |#2|) (-347 |#2|) (-1 |#2| |#2|)) 71 T ELT)) (-3037 (((-2 (|:| |ans| (-347 |#2|)) (|:| |nosol| (-85))) (-347 |#2|) (-347 |#2|)) 76 T ELT)))
-(((-928 |#1| |#2|) (-10 -7 (-15 -3036 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-347 |#2|)) (|:| |c| (-347 |#2|)) (|:| -3089 |#2|)) "failed") (-347 |#2|) (-347 |#2|) (-1 |#2| |#2|))) (-15 -3037 ((-2 (|:| |ans| (-347 |#2|)) (|:| |nosol| (-85))) (-347 |#2|) (-347 |#2|))) (-15 -3038 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3261 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-483)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-483) (-1 |#2| |#2|)))) (-13 (-311) (-120) (-950 (-483))) (-1153 |#1|)) (T -928))
-((-3038 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1153 *6)) (-4 *6 (-13 (-311) (-120) (-950 *4))) (-5 *4 (-483)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-85)))) (|:| -3261 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-928 *6 *3)))) (-3037 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-311) (-120) (-950 (-483)))) (-4 *5 (-1153 *4)) (-5 *2 (-2 (|:| |ans| (-347 *5)) (|:| |nosol| (-85)))) (-5 *1 (-928 *4 *5)) (-5 *3 (-347 *5)))) (-3036 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-311) (-120) (-950 (-483)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-347 *6)) (|:| |c| (-347 *6)) (|:| -3089 *6))) (-5 *1 (-928 *5 *6)) (-5 *3 (-347 *6)))))
-((-3039 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-347 |#2|)) (|:| |h| |#2|) (|:| |c1| (-347 |#2|)) (|:| |c2| (-347 |#2|)) (|:| -3089 |#2|)) #1="failed") (-347 |#2|) (-347 |#2|) (-347 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-3040 (((-3 (-583 (-347 |#2|)) #1#) (-347 |#2|) (-347 |#2|) (-347 |#2|)) 34 T ELT)))
-(((-929 |#1| |#2|) (-10 -7 (-15 -3039 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-347 |#2|)) (|:| |h| |#2|) (|:| |c1| (-347 |#2|)) (|:| |c2| (-347 |#2|)) (|:| -3089 |#2|)) #1="failed") (-347 |#2|) (-347 |#2|) (-347 |#2|) (-1 |#2| |#2|))) (-15 -3040 ((-3 (-583 (-347 |#2|)) #1#) (-347 |#2|) (-347 |#2|) (-347 |#2|)))) (-13 (-311) (-120) (-950 (-483))) (-1153 |#1|)) (T -929))
-((-3040 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-311) (-120) (-950 (-483)))) (-4 *5 (-1153 *4)) (-5 *2 (-583 (-347 *5))) (-5 *1 (-929 *4 *5)) (-5 *3 (-347 *5)))) (-3039 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-13 (-311) (-120) (-950 (-483)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-347 *6)) (|:| |h| *6) (|:| |c1| (-347 *6)) (|:| |c2| (-347 *6)) (|:| -3089 *6))) (-5 *1 (-929 *5 *6)) (-5 *3 (-347 *6)))))
-((-3041 (((-1 |#1|) (-583 (-2 (|:| -3396 |#1|) (|:| -1519 (-483))))) 34 T ELT)) (-3096 (((-1 |#1|) (-1008 |#1|)) 42 T ELT)) (-3042 (((-1 |#1|) (-1177 |#1|) (-1177 (-483)) (-483)) 31 T ELT)))
-(((-930 |#1|) (-10 -7 (-15 -3096 ((-1 |#1|) (-1008 |#1|))) (-15 -3041 ((-1 |#1|) (-583 (-2 (|:| -3396 |#1|) (|:| -1519 (-483)))))) (-15 -3042 ((-1 |#1|) (-1177 |#1|) (-1177 (-483)) (-483)))) (-1012)) (T -930))
-((-3042 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1177 *6)) (-5 *4 (-1177 (-483))) (-5 *5 (-483)) (-4 *6 (-1012)) (-5 *2 (-1 *6)) (-5 *1 (-930 *6)))) (-3041 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3396 *4) (|:| -1519 (-483))))) (-4 *4 (-1012)) (-5 *2 (-1 *4)) (-5 *1 (-930 *4)))) (-3096 (*1 *2 *3) (-12 (-5 *3 (-1008 *4)) (-4 *4 (-1012)) (-5 *2 (-1 *4)) (-5 *1 (-930 *4)))))
-((-3766 (((-694) (-282 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT)))
-(((-931 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3766 ((-694) (-282 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-311) (-1153 |#1|) (-1153 (-347 |#2|)) (-290 |#1| |#2| |#3|) (-13 (-317) (-311))) (T -931))
-((-3766 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-282 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-311)) (-4 *7 (-1153 *6)) (-4 *4 (-1153 (-347 *7))) (-4 *8 (-290 *6 *7 *4)) (-4 *9 (-13 (-317) (-311))) (-5 *2 (-694)) (-5 *1 (-931 *6 *7 *4 *8 *9)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3589 (((-1047) $) 10 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3228 (((-1047) $) 12 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-932) (-13 (-994) (-10 -8 (-15 -3589 ((-1047) $)) (-15 -3228 ((-1047) $))))) (T -932))
-((-3589 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-932)))) (-3228 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-932)))))
-((-3966 (((-179) $) 6 T ELT) (((-327) $) 9 T ELT)))
-(((-933) (-113)) (T -933))
-NIL
-(-13 (-553 (-179)) (-553 (-327)))
-(((-553 (-179)) . T) ((-553 (-327)) . T))
-((-3129 (((-3 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) "failed") |#1| (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) 32 T ELT) (((-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) |#1| (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) (-347 (-483))) 29 T ELT)) (-3045 (((-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) |#1| (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) (-347 (-483))) 34 T ELT) (((-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) |#1| (-347 (-483))) 30 T ELT) (((-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) |#1| (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) 33 T ELT) (((-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) |#1|) 28 T ELT)) (-3044 (((-583 (-347 (-483))) (-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))) 20 T ELT)) (-3043 (((-347 (-483)) (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) 17 T ELT)))
-(((-934 |#1|) (-10 -7 (-15 -3045 ((-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) |#1|)) (-15 -3045 ((-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) |#1| (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))) (-15 -3045 ((-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) |#1| (-347 (-483)))) (-15 -3045 ((-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) |#1| (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) (-347 (-483)))) (-15 -3129 ((-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) |#1| (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) (-347 (-483)))) (-15 -3129 ((-3 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) "failed") |#1| (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))) (-15 -3043 ((-347 (-483)) (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))) (-15 -3044 ((-583 (-347 (-483))) (-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))))) (-1153 (-483))) (T -934))
-((-3044 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))) (-5 *2 (-583 (-347 (-483)))) (-5 *1 (-934 *4)) (-4 *4 (-1153 (-483))))) (-3043 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) (-5 *2 (-347 (-483))) (-5 *1 (-934 *4)) (-4 *4 (-1153 (-483))))) (-3129 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) (-5 *1 (-934 *3)) (-4 *3 (-1153 (-483))))) (-3129 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) (-5 *4 (-347 (-483))) (-5 *1 (-934 *3)) (-4 *3 (-1153 (-483))))) (-3045 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-347 (-483))) (-5 *2 (-583 (-2 (|:| -3133 *5) (|:| -3132 *5)))) (-5 *1 (-934 *3)) (-4 *3 (-1153 (-483))) (-5 *4 (-2 (|:| -3133 *5) (|:| -3132 *5))))) (-3045 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))) (-5 *1 (-934 *3)) (-4 *3 (-1153 (-483))) (-5 *4 (-347 (-483))))) (-3045 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))) (-5 *1 (-934 *3)) (-4 *3 (-1153 (-483))) (-5 *4 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))))) (-3045 (*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))) (-5 *1 (-934 *3)) (-4 *3 (-1153 (-483))))))
-((-3129 (((-3 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) "failed") |#1| (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) 35 T ELT) (((-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) |#1| (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) (-347 (-483))) 32 T ELT)) (-3045 (((-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) |#1| (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) (-347 (-483))) 30 T ELT) (((-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) |#1| (-347 (-483))) 26 T ELT) (((-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) |#1| (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) 28 T ELT) (((-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) |#1|) 24 T ELT)))
-(((-935 |#1|) (-10 -7 (-15 -3045 ((-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) |#1|)) (-15 -3045 ((-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) |#1| (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))) (-15 -3045 ((-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) |#1| (-347 (-483)))) (-15 -3045 ((-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) |#1| (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) (-347 (-483)))) (-15 -3129 ((-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) |#1| (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) (-347 (-483)))) (-15 -3129 ((-3 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) "failed") |#1| (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))) (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))))) (-1153 (-347 (-483)))) (T -935))
-((-3129 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) (-5 *1 (-935 *3)) (-4 *3 (-1153 (-347 (-483)))))) (-3129 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))) (-5 *4 (-347 (-483))) (-5 *1 (-935 *3)) (-4 *3 (-1153 *4)))) (-3045 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-347 (-483))) (-5 *2 (-583 (-2 (|:| -3133 *5) (|:| -3132 *5)))) (-5 *1 (-935 *3)) (-4 *3 (-1153 *5)) (-5 *4 (-2 (|:| -3133 *5) (|:| -3132 *5))))) (-3045 (*1 *2 *3 *4) (-12 (-5 *4 (-347 (-483))) (-5 *2 (-583 (-2 (|:| -3133 *4) (|:| -3132 *4)))) (-5 *1 (-935 *3)) (-4 *3 (-1153 *4)))) (-3045 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))) (-5 *1 (-935 *3)) (-4 *3 (-1153 (-347 (-483)))) (-5 *4 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))))) (-3045 (*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))) (-5 *1 (-935 *3)) (-4 *3 (-1153 (-347 (-483)))))))
-((-3567 (((-583 (-327)) (-857 (-483)) (-327)) 28 T ELT) (((-583 (-327)) (-857 (-347 (-483))) (-327)) 27 T ELT)) (-3963 (((-583 (-583 (-327))) (-583 (-857 (-483))) (-583 (-1088)) (-327)) 37 T ELT)))
-(((-936) (-10 -7 (-15 -3567 ((-583 (-327)) (-857 (-347 (-483))) (-327))) (-15 -3567 ((-583 (-327)) (-857 (-483)) (-327))) (-15 -3963 ((-583 (-583 (-327))) (-583 (-857 (-483))) (-583 (-1088)) (-327))))) (T -936))
-((-3963 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-857 (-483)))) (-5 *4 (-583 (-1088))) (-5 *2 (-583 (-583 (-327)))) (-5 *1 (-936)) (-5 *5 (-327)))) (-3567 (*1 *2 *3 *4) (-12 (-5 *3 (-857 (-483))) (-5 *2 (-583 (-327))) (-5 *1 (-936)) (-5 *4 (-327)))) (-3567 (*1 *2 *3 *4) (-12 (-5 *3 (-857 (-347 (-483)))) (-5 *2 (-583 (-327))) (-5 *1 (-936)) (-5 *4 (-327)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 75 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-3033 (($ $) NIL T ELT) (($ $ (-830)) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ (-483)) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3617 (((-483) $) 70 T ELT)) (-3718 (($) NIL T CONST)) (-3178 (((-3 $ #1#) (-1083 $) (-830) (-772)) NIL T ELT) (((-3 $ #1#) (-1083 $) (-830)) 55 T ELT)) (-3152 (((-3 (-347 (-483)) #1#) $) NIL (|has| (-347 (-483)) (-950 (-347 (-483)))) ELT) (((-3 (-347 (-483)) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 115 T ELT) (((-3 (-483) #1#) $) NIL (OR (|has| (-347 (-483)) (-950 (-483))) (|has| |#1| (-950 (-483)))) ELT)) (-3151 (((-347 (-483)) $) 17 (|has| (-347 (-483)) (-950 (-347 (-483)))) ELT) (((-347 (-483)) $) 17 T ELT) ((|#1| $) 116 T ELT) (((-483) $) NIL (OR (|has| (-347 (-483)) (-950 (-483))) (|has| |#1| (-950 (-483)))) ELT)) (-3029 (($ $ (-772)) 47 T ELT)) (-3028 (($ $ (-772)) 48 T ELT)) (-2560 (($ $ $) NIL T ELT)) (-3177 (((-347 (-483)) $ $) 21 T ELT)) (-3461 (((-3 $ #1#) $) 88 T ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-3181 (((-85) $) 66 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3007 (($ $ (-483)) NIL T ELT)) (-3182 (((-85) $) 69 T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3030 (((-3 (-1083 $) #1#) $) 83 T ELT)) (-3032 (((-3 (-772) #1#) $) 82 T ELT)) (-3031 (((-3 (-1083 $) #1#) $) 80 T ELT)) (-3046 (((-3 (-973 $ (-1083 $)) #1#) $) 78 T ELT)) (-1888 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) 89 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-3940 (((-772) $) 87 T ELT) (($ (-483)) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ $) 63 T ELT) (($ (-347 (-483))) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ |#1|) 118 T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-3764 (((-347 (-483)) $ $) 27 T ELT)) (-3179 (((-583 $) (-1083 $)) 61 T ELT) (((-583 $) (-1083 (-347 (-483)))) NIL T ELT) (((-583 $) (-1083 (-483))) NIL T ELT) (((-583 $) (-857 $)) NIL T ELT) (((-583 $) (-857 (-347 (-483)))) NIL T ELT) (((-583 $) (-857 (-483))) NIL T ELT)) (-3047 (($ (-973 $ (-1083 $)) (-772)) 46 T ELT)) (-3377 (($ $) 22 T ELT)) (-2656 (($) 32 T CONST)) (-2662 (($) 39 T CONST)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 76 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 24 T ELT)) (-3943 (($ $ $) 37 T ELT)) (-3831 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-3833 (($ $ $) 111 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 71 T ELT) (($ $ $) 103 T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ (-483) $) 71 T ELT) (($ $ (-483)) NIL T ELT) (($ (-347 (-483)) $) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT) (($ |#1| $) 101 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-937 |#1|) (-13 (-925) (-352 |#1|) (-38 |#1|) (-10 -8 (-15 -3047 ($ (-973 $ (-1083 $)) (-772))) (-15 -3046 ((-3 (-973 $ (-1083 $)) "failed") $)) (-15 -3177 ((-347 (-483)) $ $)))) (-13 (-755) (-311) (-933))) (T -937))
-((-3047 (*1 *1 *2 *3) (-12 (-5 *2 (-973 (-937 *4) (-1083 (-937 *4)))) (-5 *3 (-772)) (-5 *1 (-937 *4)) (-4 *4 (-13 (-755) (-311) (-933))))) (-3046 (*1 *2 *1) (|partial| -12 (-5 *2 (-973 (-937 *3) (-1083 (-937 *3)))) (-5 *1 (-937 *3)) (-4 *3 (-13 (-755) (-311) (-933))))) (-3177 (*1 *2 *1 *1) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-937 *3)) (-4 *3 (-13 (-755) (-311) (-933))))))
-((-3048 (((-2 (|:| -3261 |#2|) (|:| -2509 (-583 |#1|))) |#2| (-583 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT)))
-(((-938 |#1| |#2|) (-10 -7 (-15 -3048 (|#2| |#2| |#1|)) (-15 -3048 ((-2 (|:| -3261 |#2|) (|:| -2509 (-583 |#1|))) |#2| (-583 |#1|)))) (-311) (-600 |#1|)) (T -938))
-((-3048 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-5 *2 (-2 (|:| -3261 *3) (|:| -2509 (-583 *5)))) (-5 *1 (-938 *5 *3)) (-5 *4 (-583 *5)) (-4 *3 (-600 *5)))) (-3048 (*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-938 *3 *2)) (-4 *2 (-600 *3)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3049 ((|#1| $ |#1|) 12 T ELT)) (-3051 (($ |#1|) 10 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3050 ((|#1| $) 11 T ELT)) (-3940 (((-772) $) 17 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 9 T ELT)))
-(((-939 |#1|) (-13 (-1012) (-10 -8 (-15 -3051 ($ |#1|)) (-15 -3050 (|#1| $)) (-15 -3049 (|#1| $ |#1|)) (-15 -3052 ((-85) $ $)))) (-1127)) (T -939))
-((-3052 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-939 *3)) (-4 *3 (-1127)))) (-3051 (*1 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1127)))) (-3050 (*1 *2 *1) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1127)))) (-3049 (*1 *2 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1127)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3675 (((-583 (-2 (|:| -3855 $) (|:| -1699 (-583 |#4|)))) (-583 |#4|)) NIL T ELT)) (-3676 (((-583 $) (-583 |#4|)) 114 T ELT) (((-583 $) (-583 |#4|) (-85)) 115 T ELT) (((-583 $) (-583 |#4|) (-85) (-85)) 113 T ELT) (((-583 $) (-583 |#4|) (-85) (-85) (-85) (-85)) 116 T ELT)) (-3077 (((-583 |#3|) $) NIL T ELT)) (-2904 (((-85) $) NIL T ELT)) (-2895 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3687 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3682 ((|#4| |#4| $) NIL T ELT)) (-3769 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 $))) |#4| $) 108 T ELT)) (-2905 (((-2 (|:| |under| $) (|:| -3125 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3704 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT) (((-3 |#4| #1="failed") $ |#3|) 63 T ELT)) (-3718 (($) NIL T CONST)) (-2900 (((-85) $) 29 (|has| |#1| (-494)) ELT)) (-2902 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2901 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2903 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3683 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2896 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-494)) ELT)) (-2897 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-494)) ELT)) (-3152 (((-3 $ #1#) (-583 |#4|)) NIL T ELT)) (-3151 (($ (-583 |#4|)) NIL T ELT)) (-3793 (((-3 $ #1#) $) 45 T ELT)) (-3679 ((|#4| |#4| $) 66 T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT)) (-3400 (($ |#4| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2898 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 81 (|has| |#1| (-494)) ELT)) (-3688 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3677 ((|#4| |#4| $) NIL T ELT)) (-3836 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3989)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3989)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3690 (((-2 (|:| -3855 (-583 |#4|)) (|:| -1699 (-583 |#4|))) $) NIL T ELT)) (-3192 (((-85) |#4| $) NIL T ELT)) (-3190 (((-85) |#4| $) NIL T ELT)) (-3193 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3432 (((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-85) (-85)) 129 T ELT)) (-2885 (((-583 |#4|) $) 18 (|has| $ (-6 -3989)) ELT)) (-3689 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3175 ((|#3| $) 38 T ELT)) (-2604 (((-583 |#4|) $) 19 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#4| $) 27 (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT)) (-1946 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2910 (((-583 |#3|) $) NIL T ELT)) (-2909 (((-85) |#3| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3186 (((-3 |#4| (-583 $)) |#4| |#4| $) NIL T ELT)) (-3185 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 $))) |#4| |#4| $) 106 T ELT)) (-3792 (((-3 |#4| #1#) $) 42 T ELT)) (-3187 (((-583 $) |#4| $) 89 T ELT)) (-3189 (((-3 (-85) (-583 $)) |#4| $) NIL T ELT)) (-3188 (((-583 (-2 (|:| |val| (-85)) (|:| -1597 $))) |#4| $) 99 T ELT) (((-85) |#4| $) 61 T ELT)) (-3233 (((-583 $) |#4| $) 111 T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) 112 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT)) (-3433 (((-583 $) (-583 |#4|) (-85) (-85) (-85)) 124 T ELT)) (-3434 (($ |#4| $) 78 T ELT) (($ (-583 |#4|) $) 79 T ELT) (((-583 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 75 T ELT)) (-3691 (((-583 |#4|) $) NIL T ELT)) (-3685 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3680 ((|#4| |#4| $) NIL T ELT)) (-3693 (((-85) $ $) NIL T ELT)) (-2899 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-494)) ELT)) (-3686 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3681 ((|#4| |#4| $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3795 (((-3 |#4| #1#) $) 40 T ELT)) (-1351 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3673 (((-3 $ #1#) $ |#4|) 56 T ELT)) (-3763 (($ $ |#4|) NIL T ELT) (((-583 $) |#4| $) 91 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) 85 T ELT)) (-1944 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-248 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-583 (-248 |#4|))) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) 17 T ELT)) (-3559 (($) 14 T ELT)) (-3942 (((-694) $) NIL T ELT)) (-1943 (((-694) |#4| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT) (((-694) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) 13 T ELT)) (-3966 (((-472) $) NIL (|has| |#4| (-553 (-472))) ELT)) (-3524 (($ (-583 |#4|)) 22 T ELT)) (-2906 (($ $ |#3|) 49 T ELT)) (-2908 (($ $ |#3|) 51 T ELT)) (-3678 (($ $) NIL T ELT)) (-2907 (($ $ |#3|) NIL T ELT)) (-3940 (((-772) $) 35 T ELT) (((-583 |#4|) $) 46 T ELT)) (-3672 (((-694) $) NIL (|has| |#3| (-317)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3692 (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3684 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) NIL T ELT)) (-3184 (((-583 $) |#4| $) 88 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3674 (((-583 |#3|) $) NIL T ELT)) (-3191 (((-85) |#4| $) NIL T ELT)) (-3927 (((-85) |#3| $) 62 T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-940 |#1| |#2| |#3| |#4|) (-13 (-982 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3434 ((-583 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3676 ((-583 $) (-583 |#4|) (-85) (-85))) (-15 -3676 ((-583 $) (-583 |#4|) (-85) (-85) (-85) (-85))) (-15 -3433 ((-583 $) (-583 |#4|) (-85) (-85) (-85))) (-15 -3432 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-85) (-85))))) (-389) (-717) (-756) (-976 |#1| |#2| |#3|)) (T -940))
-((-3434 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *3))) (-5 *1 (-940 *5 *6 *7 *3)) (-4 *3 (-976 *5 *6 *7)))) (-3676 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8))) (-5 *1 (-940 *5 *6 *7 *8)))) (-3676 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8))) (-5 *1 (-940 *5 *6 *7 *8)))) (-3433 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8))) (-5 *1 (-940 *5 *6 *7 *8)))) (-3432 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-940 *5 *6 *7 *8))))) (-5 *1 (-940 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
-((-3053 (((-583 (-2 (|:| |radval| (-264 (-483))) (|:| |radmult| (-483)) (|:| |radvect| (-583 (-630 (-264 (-483))))))) (-630 (-347 (-857 (-483))))) 67 T ELT)) (-3054 (((-583 (-630 (-264 (-483)))) (-264 (-483)) (-630 (-347 (-857 (-483))))) 52 T ELT)) (-3055 (((-583 (-264 (-483))) (-630 (-347 (-857 (-483))))) 45 T ELT)) (-3059 (((-583 (-630 (-264 (-483)))) (-630 (-347 (-857 (-483))))) 85 T ELT)) (-3057 (((-630 (-264 (-483))) (-630 (-264 (-483)))) 38 T ELT)) (-3058 (((-583 (-630 (-264 (-483)))) (-583 (-630 (-264 (-483))))) 74 T ELT)) (-3056 (((-3 (-630 (-264 (-483))) "failed") (-630 (-347 (-857 (-483))))) 82 T ELT)))
-(((-941) (-10 -7 (-15 -3053 ((-583 (-2 (|:| |radval| (-264 (-483))) (|:| |radmult| (-483)) (|:| |radvect| (-583 (-630 (-264 (-483))))))) (-630 (-347 (-857 (-483)))))) (-15 -3054 ((-583 (-630 (-264 (-483)))) (-264 (-483)) (-630 (-347 (-857 (-483)))))) (-15 -3055 ((-583 (-264 (-483))) (-630 (-347 (-857 (-483)))))) (-15 -3056 ((-3 (-630 (-264 (-483))) "failed") (-630 (-347 (-857 (-483)))))) (-15 -3057 ((-630 (-264 (-483))) (-630 (-264 (-483))))) (-15 -3058 ((-583 (-630 (-264 (-483)))) (-583 (-630 (-264 (-483)))))) (-15 -3059 ((-583 (-630 (-264 (-483)))) (-630 (-347 (-857 (-483)))))))) (T -941))
-((-3059 (*1 *2 *3) (-12 (-5 *3 (-630 (-347 (-857 (-483))))) (-5 *2 (-583 (-630 (-264 (-483))))) (-5 *1 (-941)))) (-3058 (*1 *2 *2) (-12 (-5 *2 (-583 (-630 (-264 (-483))))) (-5 *1 (-941)))) (-3057 (*1 *2 *2) (-12 (-5 *2 (-630 (-264 (-483)))) (-5 *1 (-941)))) (-3056 (*1 *2 *3) (|partial| -12 (-5 *3 (-630 (-347 (-857 (-483))))) (-5 *2 (-630 (-264 (-483)))) (-5 *1 (-941)))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-630 (-347 (-857 (-483))))) (-5 *2 (-583 (-264 (-483)))) (-5 *1 (-941)))) (-3054 (*1 *2 *3 *4) (-12 (-5 *4 (-630 (-347 (-857 (-483))))) (-5 *2 (-583 (-630 (-264 (-483))))) (-5 *1 (-941)) (-5 *3 (-264 (-483))))) (-3053 (*1 *2 *3) (-12 (-5 *3 (-630 (-347 (-857 (-483))))) (-5 *2 (-583 (-2 (|:| |radval| (-264 (-483))) (|:| |radmult| (-483)) (|:| |radvect| (-583 (-630 (-264 (-483)))))))) (-5 *1 (-941)))))
-((-3063 (((-583 (-630 |#1|)) (-583 (-630 |#1|))) 69 T ELT) (((-630 |#1|) (-630 |#1|)) 68 T ELT) (((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-583 (-630 |#1|))) 67 T ELT) (((-630 |#1|) (-630 |#1|) (-630 |#1|)) 64 T ELT)) (-3062 (((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-830)) 62 T ELT) (((-630 |#1|) (-630 |#1|) (-830)) 61 T ELT)) (-3064 (((-583 (-630 (-483))) (-583 (-583 (-483)))) 80 T ELT) (((-583 (-630 (-483))) (-583 (-813 (-483))) (-483)) 79 T ELT) (((-630 (-483)) (-583 (-483))) 76 T ELT) (((-630 (-483)) (-813 (-483)) (-483)) 74 T ELT)) (-3061 (((-630 (-857 |#1|)) (-694)) 94 T ELT)) (-3060 (((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-830)) 48 (|has| |#1| (-6 (-3991 #1="*"))) ELT) (((-630 |#1|) (-630 |#1|) (-830)) 46 (|has| |#1| (-6 (-3991 #1#))) ELT)))
-(((-942 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-3991 #1="*"))) (-15 -3060 ((-630 |#1|) (-630 |#1|) (-830))) |%noBranch|) (IF (|has| |#1| (-6 (-3991 #1#))) (-15 -3060 ((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-830))) |%noBranch|) (-15 -3061 ((-630 (-857 |#1|)) (-694))) (-15 -3062 ((-630 |#1|) (-630 |#1|) (-830))) (-15 -3062 ((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-830))) (-15 -3063 ((-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -3063 ((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-583 (-630 |#1|)))) (-15 -3063 ((-630 |#1|) (-630 |#1|))) (-15 -3063 ((-583 (-630 |#1|)) (-583 (-630 |#1|)))) (-15 -3064 ((-630 (-483)) (-813 (-483)) (-483))) (-15 -3064 ((-630 (-483)) (-583 (-483)))) (-15 -3064 ((-583 (-630 (-483))) (-583 (-813 (-483))) (-483))) (-15 -3064 ((-583 (-630 (-483))) (-583 (-583 (-483)))))) (-961)) (T -942))
-((-3064 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-483)))) (-5 *2 (-583 (-630 (-483)))) (-5 *1 (-942 *4)) (-4 *4 (-961)))) (-3064 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-813 (-483)))) (-5 *4 (-483)) (-5 *2 (-583 (-630 *4))) (-5 *1 (-942 *5)) (-4 *5 (-961)))) (-3064 (*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-630 (-483))) (-5 *1 (-942 *4)) (-4 *4 (-961)))) (-3064 (*1 *2 *3 *4) (-12 (-5 *3 (-813 (-483))) (-5 *4 (-483)) (-5 *2 (-630 *4)) (-5 *1 (-942 *5)) (-4 *5 (-961)))) (-3063 (*1 *2 *2) (-12 (-5 *2 (-583 (-630 *3))) (-4 *3 (-961)) (-5 *1 (-942 *3)))) (-3063 (*1 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-942 *3)))) (-3063 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-630 *3))) (-4 *3 (-961)) (-5 *1 (-942 *3)))) (-3063 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-942 *3)))) (-3062 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-630 *4))) (-5 *3 (-830)) (-4 *4 (-961)) (-5 *1 (-942 *4)))) (-3062 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *4)) (-5 *3 (-830)) (-4 *4 (-961)) (-5 *1 (-942 *4)))) (-3061 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-630 (-857 *4))) (-5 *1 (-942 *4)) (-4 *4 (-961)))) (-3060 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-630 *4))) (-5 *3 (-830)) (|has| *4 (-6 (-3991 "*"))) (-4 *4 (-961)) (-5 *1 (-942 *4)))) (-3060 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *4)) (-5 *3 (-830)) (|has| *4 (-6 (-3991 "*"))) (-4 *4 (-961)) (-5 *1 (-942 *4)))))
-((-3068 (((-630 |#1|) (-583 (-630 |#1|)) (-1177 |#1|)) 69 (|has| |#1| (-257)) ELT)) (-3412 (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-1177 (-1177 |#1|))) 107 (|has| |#1| (-311)) ELT) (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-1177 |#1|)) 104 (|has| |#1| (-311)) ELT)) (-3072 (((-1177 |#1|) (-583 (-1177 |#1|)) (-483)) 113 (-12 (|has| |#1| (-311)) (|has| |#1| (-317))) ELT)) (-3071 (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-830)) 119 (-12 (|has| |#1| (-311)) (|has| |#1| (-317))) ELT) (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-85)) 118 (-12 (|has| |#1| (-311)) (|has| |#1| (-317))) ELT) (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|))) 117 (-12 (|has| |#1| (-311)) (|has| |#1| (-317))) ELT) (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-85) (-483) (-483)) 116 (-12 (|has| |#1| (-311)) (|has| |#1| (-317))) ELT)) (-3070 (((-85) (-583 (-630 |#1|))) 101 (|has| |#1| (-311)) ELT) (((-85) (-583 (-630 |#1|)) (-483)) 100 (|has| |#1| (-311)) ELT)) (-3067 (((-1177 (-1177 |#1|)) (-583 (-630 |#1|)) (-1177 |#1|)) 66 (|has| |#1| (-257)) ELT)) (-3066 (((-630 |#1|) (-583 (-630 |#1|)) (-630 |#1|)) 46 T ELT)) (-3065 (((-630 |#1|) (-1177 (-1177 |#1|))) 39 T ELT)) (-3069 (((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|)) (-483)) 93 (|has| |#1| (-311)) ELT) (((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|))) 92 (|has| |#1| (-311)) ELT) (((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|)) (-85) (-483)) 91 (|has| |#1| (-311)) ELT)))
-(((-943 |#1|) (-10 -7 (-15 -3065 ((-630 |#1|) (-1177 (-1177 |#1|)))) (-15 -3066 ((-630 |#1|) (-583 (-630 |#1|)) (-630 |#1|))) (IF (|has| |#1| (-257)) (PROGN (-15 -3067 ((-1177 (-1177 |#1|)) (-583 (-630 |#1|)) (-1177 |#1|))) (-15 -3068 ((-630 |#1|) (-583 (-630 |#1|)) (-1177 |#1|)))) |%noBranch|) (IF (|has| |#1| (-311)) (PROGN (-15 -3069 ((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|)) (-85) (-483))) (-15 -3069 ((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|)))) (-15 -3069 ((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|)) (-483))) (-15 -3070 ((-85) (-583 (-630 |#1|)) (-483))) (-15 -3070 ((-85) (-583 (-630 |#1|)))) (-15 -3412 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-1177 |#1|))) (-15 -3412 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-1177 (-1177 |#1|))))) |%noBranch|) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-311)) (PROGN (-15 -3071 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-85) (-483) (-483))) (-15 -3071 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)))) (-15 -3071 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-85))) (-15 -3071 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-830))) (-15 -3072 ((-1177 |#1|) (-583 (-1177 |#1|)) (-483)))) |%noBranch|) |%noBranch|)) (-961)) (T -943))
-((-3072 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1177 *5))) (-5 *4 (-483)) (-5 *2 (-1177 *5)) (-5 *1 (-943 *5)) (-4 *5 (-311)) (-4 *5 (-317)) (-4 *5 (-961)))) (-3071 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-4 *5 (-311)) (-4 *5 (-317)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))) (-3071 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-311)) (-4 *5 (-317)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))) (-3071 (*1 *2 *3) (-12 (-4 *4 (-311)) (-4 *4 (-317)) (-4 *4 (-961)) (-5 *2 (-583 (-583 (-630 *4)))) (-5 *1 (-943 *4)) (-5 *3 (-583 (-630 *4))))) (-3071 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-85)) (-5 *5 (-483)) (-4 *6 (-311)) (-4 *6 (-317)) (-4 *6 (-961)) (-5 *2 (-583 (-583 (-630 *6)))) (-5 *1 (-943 *6)) (-5 *3 (-583 (-630 *6))))) (-3412 (*1 *2 *3 *4) (-12 (-5 *4 (-1177 (-1177 *5))) (-4 *5 (-311)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))) (-3412 (*1 *2 *3 *4) (-12 (-5 *4 (-1177 *5)) (-4 *5 (-311)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))) (-3070 (*1 *2 *3) (-12 (-5 *3 (-583 (-630 *4))) (-4 *4 (-311)) (-4 *4 (-961)) (-5 *2 (-85)) (-5 *1 (-943 *4)))) (-3070 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-483)) (-4 *5 (-311)) (-4 *5 (-961)) (-5 *2 (-85)) (-5 *1 (-943 *5)))) (-3069 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-483)) (-5 *2 (-630 *5)) (-5 *1 (-943 *5)) (-4 *5 (-311)) (-4 *5 (-961)))) (-3069 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-630 *4))) (-5 *2 (-630 *4)) (-5 *1 (-943 *4)) (-4 *4 (-311)) (-4 *4 (-961)))) (-3069 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-630 *6))) (-5 *4 (-85)) (-5 *5 (-483)) (-5 *2 (-630 *6)) (-5 *1 (-943 *6)) (-4 *6 (-311)) (-4 *6 (-961)))) (-3068 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-1177 *5)) (-4 *5 (-257)) (-4 *5 (-961)) (-5 *2 (-630 *5)) (-5 *1 (-943 *5)))) (-3067 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-630 *5))) (-4 *5 (-257)) (-4 *5 (-961)) (-5 *2 (-1177 (-1177 *5))) (-5 *1 (-943 *5)) (-5 *4 (-1177 *5)))) (-3066 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-630 *4))) (-5 *2 (-630 *4)) (-4 *4 (-961)) (-5 *1 (-943 *4)))) (-3065 (*1 *2 *3) (-12 (-5 *3 (-1177 (-1177 *4))) (-4 *4 (-961)) (-5 *2 (-630 *4)) (-5 *1 (-943 *4)))))
-((-3073 ((|#1| (-830) |#1|) 18 T ELT)))
-(((-944 |#1|) (-10 -7 (-15 -3073 (|#1| (-830) |#1|))) (-13 (-1012) (-10 -8 (-15 -3833 ($ $ $))))) (T -944))
-((-3073 (*1 *2 *3 *2) (-12 (-5 *3 (-830)) (-5 *1 (-944 *2)) (-4 *2 (-13 (-1012) (-10 -8 (-15 -3833 ($ $ $))))))))
-((-3074 ((|#1| |#1| (-830)) 18 T ELT)))
-(((-945 |#1|) (-10 -7 (-15 -3074 (|#1| |#1| (-830)))) (-13 (-1012) (-10 -8 (-15 * ($ $ $))))) (T -945))
-((-3074 (*1 *2 *2 *3) (-12 (-5 *3 (-830)) (-5 *1 (-945 *2)) (-4 *2 (-13 (-1012) (-10 -8 (-15 * ($ $ $))))))))
-((-3940 ((|#1| (-261)) 11 T ELT) (((-1183) |#1|) 9 T ELT)))
-(((-946 |#1|) (-10 -7 (-15 -3940 ((-1183) |#1|)) (-15 -3940 (|#1| (-261)))) (-1127)) (T -946))
-((-3940 (*1 *2 *3) (-12 (-5 *3 (-261)) (-5 *1 (-946 *2)) (-4 *2 (-1127)))) (-3940 (*1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *1 (-946 *3)) (-4 *3 (-1127)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3836 (($ |#4|) 24 T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3075 ((|#4| $) 26 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 45 T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 25 T ELT)) (-3121 (((-694)) 42 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 21 T CONST)) (-2662 (($) 22 T CONST)) (-3052 (((-85) $ $) 39 T ELT)) (-3831 (($ $) 30 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 28 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 35 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 37 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-947 |#1| |#2| |#3| |#4| |#5|) (-13 (-146) (-38 |#1|) (-10 -8 (-15 -3836 ($ |#4|)) (-15 -3940 ($ |#4|)) (-15 -3075 (|#4| $)))) (-311) (-717) (-756) (-861 |#1| |#2| |#3|) (-583 |#4|)) (T -947))
-((-3836 (*1 *1 *2) (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *2 (-861 *3 *4 *5)) (-14 *6 (-583 *2)))) (-3940 (*1 *1 *2) (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *2 (-861 *3 *4 *5)) (-14 *6 (-583 *2)))) (-3075 (*1 *2 *1) (-12 (-4 *2 (-861 *3 *4 *5)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-14 *6 (-583 *2)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3201 (((-1047) $) 11 T ELT)) (-3940 (((-772) $) 17 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-948) (-13 (-994) (-10 -8 (-15 -3201 ((-1047) $))))) (T -948))
-((-3201 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-948)))))
-((-3151 ((|#2| $) 10 T ELT)))
-(((-949 |#1| |#2|) (-10 -7 (-15 -3151 (|#2| |#1|))) (-950 |#2|) (-1127)) (T -949))
-NIL
-((-3152 (((-3 |#1| "failed") $) 9 T ELT)) (-3151 ((|#1| $) 8 T ELT)) (-3940 (($ |#1|) 6 T ELT)))
-(((-950 |#1|) (-113) (-1127)) (T -950))
-((-3152 (*1 *2 *1) (|partial| -12 (-4 *1 (-950 *2)) (-4 *2 (-1127)))) (-3151 (*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-1127)))))
-(-13 (-555 |t#1|) (-10 -8 (-15 -3152 ((-3 |t#1| "failed") $)) (-15 -3151 (|t#1| $))))
-(((-555 |#1|) . T))
-((-3076 (((-583 (-583 (-248 (-347 (-857 |#2|))))) (-583 (-857 |#2|)) (-583 (-1088))) 38 T ELT)))
-(((-951 |#1| |#2|) (-10 -7 (-15 -3076 ((-583 (-583 (-248 (-347 (-857 |#2|))))) (-583 (-857 |#2|)) (-583 (-1088))))) (-494) (-13 (-494) (-950 |#1|))) (T -951))
-((-3076 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1088))) (-4 *6 (-13 (-494) (-950 *5))) (-4 *5 (-494)) (-5 *2 (-583 (-583 (-248 (-347 (-857 *6)))))) (-5 *1 (-951 *5 *6)))))
-((-3077 (((-583 (-1088)) (-347 (-857 |#1|))) 17 T ELT)) (-3079 (((-347 (-1083 (-347 (-857 |#1|)))) (-347 (-857 |#1|)) (-1088)) 24 T ELT)) (-3080 (((-347 (-857 |#1|)) (-347 (-1083 (-347 (-857 |#1|)))) (-1088)) 26 T ELT)) (-3078 (((-3 (-1088) "failed") (-347 (-857 |#1|))) 20 T ELT)) (-3762 (((-347 (-857 |#1|)) (-347 (-857 |#1|)) (-583 (-248 (-347 (-857 |#1|))))) 32 T ELT) (((-347 (-857 |#1|)) (-347 (-857 |#1|)) (-248 (-347 (-857 |#1|)))) 33 T ELT) (((-347 (-857 |#1|)) (-347 (-857 |#1|)) (-583 (-1088)) (-583 (-347 (-857 |#1|)))) 28 T ELT) (((-347 (-857 |#1|)) (-347 (-857 |#1|)) (-1088) (-347 (-857 |#1|))) 29 T ELT)) (-3940 (((-347 (-857 |#1|)) |#1|) 11 T ELT)))
-(((-952 |#1|) (-10 -7 (-15 -3077 ((-583 (-1088)) (-347 (-857 |#1|)))) (-15 -3078 ((-3 (-1088) "failed") (-347 (-857 |#1|)))) (-15 -3079 ((-347 (-1083 (-347 (-857 |#1|)))) (-347 (-857 |#1|)) (-1088))) (-15 -3080 ((-347 (-857 |#1|)) (-347 (-1083 (-347 (-857 |#1|)))) (-1088))) (-15 -3762 ((-347 (-857 |#1|)) (-347 (-857 |#1|)) (-1088) (-347 (-857 |#1|)))) (-15 -3762 ((-347 (-857 |#1|)) (-347 (-857 |#1|)) (-583 (-1088)) (-583 (-347 (-857 |#1|))))) (-15 -3762 ((-347 (-857 |#1|)) (-347 (-857 |#1|)) (-248 (-347 (-857 |#1|))))) (-15 -3762 ((-347 (-857 |#1|)) (-347 (-857 |#1|)) (-583 (-248 (-347 (-857 |#1|)))))) (-15 -3940 ((-347 (-857 |#1|)) |#1|))) (-494)) (T -952))
-((-3940 (*1 *2 *3) (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-952 *3)) (-4 *3 (-494)))) (-3762 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-248 (-347 (-857 *4))))) (-5 *2 (-347 (-857 *4))) (-4 *4 (-494)) (-5 *1 (-952 *4)))) (-3762 (*1 *2 *2 *3) (-12 (-5 *3 (-248 (-347 (-857 *4)))) (-5 *2 (-347 (-857 *4))) (-4 *4 (-494)) (-5 *1 (-952 *4)))) (-3762 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-1088))) (-5 *4 (-583 (-347 (-857 *5)))) (-5 *2 (-347 (-857 *5))) (-4 *5 (-494)) (-5 *1 (-952 *5)))) (-3762 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-347 (-857 *4))) (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *1 (-952 *4)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-1083 (-347 (-857 *5))))) (-5 *4 (-1088)) (-5 *2 (-347 (-857 *5))) (-5 *1 (-952 *5)) (-4 *5 (-494)))) (-3079 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-494)) (-5 *2 (-347 (-1083 (-347 (-857 *5))))) (-5 *1 (-952 *5)) (-5 *3 (-347 (-857 *5))))) (-3078 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-494)) (-5 *2 (-1088)) (-5 *1 (-952 *4)))) (-3077 (*1 *2 *3) (-12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-494)) (-5 *2 (-583 (-1088))) (-5 *1 (-952 *4)))))
-((-3081 (((-327)) 17 T ELT)) (-3096 (((-1 (-327)) (-327) (-327)) 22 T ELT)) (-3089 (((-1 (-327)) (-694)) 48 T ELT)) (-3082 (((-327)) 37 T ELT)) (-3085 (((-1 (-327)) (-327) (-327)) 38 T ELT)) (-3083 (((-327)) 29 T ELT)) (-3086 (((-1 (-327)) (-327)) 30 T ELT)) (-3084 (((-327) (-694)) 43 T ELT)) (-3087 (((-1 (-327)) (-694)) 44 T ELT)) (-3088 (((-1 (-327)) (-694) (-694)) 47 T ELT)) (-3378 (((-1 (-327)) (-694) (-694)) 45 T ELT)))
-(((-953) (-10 -7 (-15 -3081 ((-327))) (-15 -3082 ((-327))) (-15 -3083 ((-327))) (-15 -3084 ((-327) (-694))) (-15 -3096 ((-1 (-327)) (-327) (-327))) (-15 -3085 ((-1 (-327)) (-327) (-327))) (-15 -3086 ((-1 (-327)) (-327))) (-15 -3087 ((-1 (-327)) (-694))) (-15 -3378 ((-1 (-327)) (-694) (-694))) (-15 -3088 ((-1 (-327)) (-694) (-694))) (-15 -3089 ((-1 (-327)) (-694))))) (T -953))
-((-3089 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-327))) (-5 *1 (-953)))) (-3088 (*1 *2 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-327))) (-5 *1 (-953)))) (-3378 (*1 *2 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-327))) (-5 *1 (-953)))) (-3087 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-327))) (-5 *1 (-953)))) (-3086 (*1 *2 *3) (-12 (-5 *2 (-1 (-327))) (-5 *1 (-953)) (-5 *3 (-327)))) (-3085 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-327))) (-5 *1 (-953)) (-5 *3 (-327)))) (-3096 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-327))) (-5 *1 (-953)) (-5 *3 (-327)))) (-3084 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-327)) (-5 *1 (-953)))) (-3083 (*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-953)))) (-3082 (*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-953)))) (-3081 (*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-953)))))
-((-3726 (((-345 |#1|) |#1|) 33 T ELT)))
-(((-954 |#1|) (-10 -7 (-15 -3726 ((-345 |#1|) |#1|))) (-1153 (-347 (-857 (-483))))) (T -954))
-((-3726 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-954 *3)) (-4 *3 (-1153 (-347 (-857 (-483))))))))
-((-3090 (((-347 (-345 (-857 |#1|))) (-347 (-857 |#1|))) 14 T ELT)))
-(((-955 |#1|) (-10 -7 (-15 -3090 ((-347 (-345 (-857 |#1|))) (-347 (-857 |#1|))))) (-257)) (T -955))
-((-3090 (*1 *2 *3) (-12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-257)) (-5 *2 (-347 (-345 (-857 *4)))) (-5 *1 (-955 *4)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3718 (($) 22 T CONST)) (-3094 ((|#1| $) 28 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3093 ((|#1| $) 27 T ELT)) (-3091 ((|#1|) 25 T CONST)) (-3940 (((-772) $) 13 T ELT)) (-3092 ((|#1| $) 26 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT)))
-(((-956 |#1|) (-113) (-23)) (T -956))
-((-3094 (*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23)))) (-3093 (*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23)))) (-3092 (*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23)))) (-3091 (*1 *2) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23)))))
-(-13 (-23) (-10 -8 (-15 -3094 (|t#1| $)) (-15 -3093 (|t#1| $)) (-15 -3092 (|t#1| $)) (-15 -3091 (|t#1|) -3946)))
-(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3095 (($) 30 T CONST)) (-3718 (($) 22 T CONST)) (-3094 ((|#1| $) 28 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3093 ((|#1| $) 27 T ELT)) (-3091 ((|#1|) 25 T CONST)) (-3940 (((-772) $) 13 T ELT)) (-3092 ((|#1| $) 26 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT)))
+((-2553 (((-633 (-1137)) $ (-1137)) NIL T ELT)) (-2554 (((-633 (-488)) $ (-488)) NIL T ELT)) (-2552 (((-695) $ (-102)) NIL T ELT)) (-2555 (((-633 (-101)) $ (-101)) 22 T ELT)) (-2557 (($ (-335)) 12 T ELT) (($ (-1072)) 14 T ELT)) (-2556 (((-85) $) 19 T ELT)) (-3942 (((-773) $) 26 T ELT)) (-1698 (($ $) 23 T ELT)))
+(((-772) (-13 (-771) (-553 (-773)) (-10 -8 (-15 -2557 ($ (-335))) (-15 -2557 ($ (-1072))) (-15 -2556 ((-85) $))))) (T -772))
+((-2557 (*1 *1 *2) (-12 (-5 *2 (-335)) (-5 *1 (-772)))) (-2557 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-772)))) (-2556 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-772)))))
+((-2566 (((-85) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-2587 (($ $ $) 125 T ELT)) (-2602 (((-484) $) 31 T ELT) (((-484)) 36 T ELT)) (-2597 (($ (-484)) 53 T ELT)) (-2594 (($ $ $) 54 T ELT) (($ (-584 $)) 84 T ELT)) (-2578 (($ $ (-584 $)) 82 T ELT)) (-2599 (((-484) $) 34 T ELT)) (-2581 (($ $ $) 73 T ELT)) (-3528 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-2600 (((-484) $) 33 T ELT)) (-2582 (($ $ $) 72 T ELT)) (-3531 (($ $) 114 T ELT)) (-2585 (($ $ $) 129 T ELT)) (-2568 (($ (-584 $)) 61 T ELT)) (-3536 (($ $ (-584 $)) 79 T ELT)) (-2596 (($ (-484) (-484)) 55 T ELT)) (-2609 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-3134 (($ $ (-484)) 43 T ELT) (($ $) 46 T ELT)) (-2562 (($ $ $) 97 T ELT)) (-2583 (($ $ $) 132 T ELT)) (-2577 (($ $) 115 T ELT)) (-2561 (($ $ $) 98 T ELT)) (-2573 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-2835 (((-1184) $) 10 T ELT)) (-2576 (($ $) 118 T ELT) (($ $ (-695)) 122 T ELT)) (-2579 (($ $ $) 75 T ELT)) (-2580 (($ $ $) 74 T ELT)) (-2593 (($ $ (-584 $)) 110 T ELT)) (-2591 (($ $ $) 113 T ELT)) (-2570 (($ (-584 $)) 59 T ELT)) (-2571 (($ $) 70 T ELT) (($ (-584 $)) 71 T ELT)) (-2574 (($ $ $) 123 T ELT)) (-2575 (($ $) 116 T ELT)) (-2586 (($ $ $) 128 T ELT)) (-3529 (($ (-484)) 21 T ELT) (($ (-1089)) 23 T ELT) (($ (-1072)) 30 T ELT) (($ (-179)) 25 T ELT)) (-2559 (($ $ $) 101 T ELT)) (-2558 (($ $) 102 T ELT)) (-2604 (((-1184) (-1072)) 15 T ELT)) (-2605 (($ (-1072)) 14 T ELT)) (-3121 (($ (-584 (-584 $))) 58 T ELT)) (-3135 (($ $ (-484)) 42 T ELT) (($ $) 45 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2589 (($ $ $) 131 T ELT)) (-3466 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-2590 (((-85) $) 108 T ELT)) (-2592 (($ $ (-584 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-2598 (($ (-484)) 39 T ELT)) (-2601 (((-484) $) 32 T ELT) (((-484)) 35 T ELT)) (-2595 (($ $ $) 40 T ELT) (($ (-584 $)) 83 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3462 (($ $ $) 99 T ELT)) (-3561 (($) 13 T ELT)) (-3796 (($ $ (-584 $)) 109 T ELT)) (-2603 (((-1072) (-1072)) 8 T ELT)) (-3832 (($ $) 117 T ELT) (($ $ (-695)) 121 T ELT)) (-2563 (($ $ $) 96 T ELT)) (-3754 (($ $ (-695)) 139 T ELT)) (-2569 (($ (-584 $)) 60 T ELT)) (-3942 (((-773) $) 19 T ELT)) (-3769 (($ $ (-484)) 41 T ELT) (($ $) 44 T ELT)) (-2572 (($ $) 68 T ELT) (($ (-584 $)) 69 T ELT)) (-3237 (($ $) 66 T ELT) (($ (-584 $)) 67 T ELT)) (-2588 (($ $) 124 T ELT)) (-2567 (($ (-584 $)) 65 T ELT)) (-3099 (($ $ $) 105 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2584 (($ $ $) 130 T ELT)) (-2560 (($ $ $) 100 T ELT)) (-3733 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-2564 (($ $ $) 89 T ELT)) (-2565 (($ $ $) 87 T ELT)) (-3054 (((-85) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-2682 (($ $ $) 88 T ELT)) (-2683 (($ $ $) 86 T ELT)) (-3945 (($ $ $) 94 T ELT)) (-3833 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-3835 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT)))
+(((-773) (-13 (-1013) (-10 -8 (-15 -2835 ((-1184) $)) (-15 -2605 ($ (-1072))) (-15 -2604 ((-1184) (-1072))) (-15 -3529 ($ (-484))) (-15 -3529 ($ (-1089))) (-15 -3529 ($ (-1072))) (-15 -3529 ($ (-179))) (-15 -3561 ($)) (-15 -2603 ((-1072) (-1072))) (-15 -2602 ((-484) $)) (-15 -2601 ((-484) $)) (-15 -2602 ((-484))) (-15 -2601 ((-484))) (-15 -2600 ((-484) $)) (-15 -2599 ((-484) $)) (-15 -2598 ($ (-484))) (-15 -2597 ($ (-484))) (-15 -2596 ($ (-484) (-484))) (-15 -3135 ($ $ (-484))) (-15 -3134 ($ $ (-484))) (-15 -3769 ($ $ (-484))) (-15 -3135 ($ $)) (-15 -3134 ($ $)) (-15 -3769 ($ $)) (-15 -2595 ($ $ $)) (-15 -2594 ($ $ $)) (-15 -2595 ($ (-584 $))) (-15 -2594 ($ (-584 $))) (-15 -2593 ($ $ (-584 $))) (-15 -2592 ($ $ (-584 $))) (-15 -2592 ($ $ $ $)) (-15 -2591 ($ $ $)) (-15 -2590 ((-85) $)) (-15 -3796 ($ $ (-584 $))) (-15 -3531 ($ $)) (-15 -2589 ($ $ $)) (-15 -2588 ($ $)) (-15 -3121 ($ (-584 (-584 $)))) (-15 -2587 ($ $ $)) (-15 -2609 ($ $)) (-15 -2609 ($ $ $)) (-15 -2586 ($ $ $)) (-15 -2585 ($ $ $)) (-15 -2584 ($ $ $)) (-15 -2583 ($ $ $)) (-15 -3754 ($ $ (-695))) (-15 -3099 ($ $ $)) (-15 -2582 ($ $ $)) (-15 -2581 ($ $ $)) (-15 -2580 ($ $ $)) (-15 -2579 ($ $ $)) (-15 -3536 ($ $ (-584 $))) (-15 -2578 ($ $ (-584 $))) (-15 -2577 ($ $)) (-15 -3832 ($ $)) (-15 -3832 ($ $ (-695))) (-15 -2576 ($ $)) (-15 -2576 ($ $ (-695))) (-15 -2575 ($ $)) (-15 -2574 ($ $ $)) (-15 -3528 ($ $)) (-15 -3528 ($ $ $)) (-15 -3528 ($ $ $ $)) (-15 -2573 ($ $)) (-15 -2573 ($ $ $)) (-15 -2573 ($ $ $ $)) (-15 -3466 ($ $)) (-15 -3466 ($ $ $)) (-15 -3466 ($ $ $ $)) (-15 -3237 ($ $)) (-15 -3237 ($ (-584 $))) (-15 -2572 ($ $)) (-15 -2572 ($ (-584 $))) (-15 -2571 ($ $)) (-15 -2571 ($ (-584 $))) (-15 -2570 ($ (-584 $))) (-15 -2569 ($ (-584 $))) (-15 -2568 ($ (-584 $))) (-15 -2567 ($ (-584 $))) (-15 -3054 ($ $ $)) (-15 -2566 ($ $ $)) (-15 -2683 ($ $ $)) (-15 -2565 ($ $ $)) (-15 -2682 ($ $ $)) (-15 -2564 ($ $ $)) (-15 -3835 ($ $ $)) (-15 -3833 ($ $ $)) (-15 -3833 ($ $)) (-15 * ($ $ $)) (-15 -3945 ($ $ $)) (-15 ** ($ $ $)) (-15 -2563 ($ $ $)) (-15 -2562 ($ $ $)) (-15 -2561 ($ $ $)) (-15 -3462 ($ $ $)) (-15 -2560 ($ $ $)) (-15 -2559 ($ $ $)) (-15 -2558 ($ $)) (-15 -3733 ($ $ $)) (-15 -3733 ($ $))))) (T -773))
+((-2835 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-773)))) (-2605 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-773)))) (-2604 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-773)))) (-3529 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773)))) (-3529 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-773)))) (-3529 (*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-773)))) (-3529 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-773)))) (-3561 (*1 *1) (-5 *1 (-773))) (-2603 (*1 *2 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-773)))) (-2602 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-773)))) (-2601 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-773)))) (-2602 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773)))) (-2601 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773)))) (-2600 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-773)))) (-2599 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-773)))) (-2598 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773)))) (-2597 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773)))) (-2596 (*1 *1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773)))) (-3135 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773)))) (-3134 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773)))) (-3769 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773)))) (-3135 (*1 *1 *1) (-5 *1 (-773))) (-3134 (*1 *1 *1) (-5 *1 (-773))) (-3769 (*1 *1 *1) (-5 *1 (-773))) (-2595 (*1 *1 *1 *1) (-5 *1 (-773))) (-2594 (*1 *1 *1 *1) (-5 *1 (-773))) (-2595 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2594 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2593 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2592 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2592 (*1 *1 *1 *1 *1) (-5 *1 (-773))) (-2591 (*1 *1 *1 *1) (-5 *1 (-773))) (-2590 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-773)))) (-3796 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-3531 (*1 *1 *1) (-5 *1 (-773))) (-2589 (*1 *1 *1 *1) (-5 *1 (-773))) (-2588 (*1 *1 *1) (-5 *1 (-773))) (-3121 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-773)))) (-5 *1 (-773)))) (-2587 (*1 *1 *1 *1) (-5 *1 (-773))) (-2609 (*1 *1 *1) (-5 *1 (-773))) (-2609 (*1 *1 *1 *1) (-5 *1 (-773))) (-2586 (*1 *1 *1 *1) (-5 *1 (-773))) (-2585 (*1 *1 *1 *1) (-5 *1 (-773))) (-2584 (*1 *1 *1 *1) (-5 *1 (-773))) (-2583 (*1 *1 *1 *1) (-5 *1 (-773))) (-3754 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773)))) (-3099 (*1 *1 *1 *1) (-5 *1 (-773))) (-2582 (*1 *1 *1 *1) (-5 *1 (-773))) (-2581 (*1 *1 *1 *1) (-5 *1 (-773))) (-2580 (*1 *1 *1 *1) (-5 *1 (-773))) (-2579 (*1 *1 *1 *1) (-5 *1 (-773))) (-3536 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2578 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2577 (*1 *1 *1) (-5 *1 (-773))) (-3832 (*1 *1 *1) (-5 *1 (-773))) (-3832 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773)))) (-2576 (*1 *1 *1) (-5 *1 (-773))) (-2576 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773)))) (-2575 (*1 *1 *1) (-5 *1 (-773))) (-2574 (*1 *1 *1 *1) (-5 *1 (-773))) (-3528 (*1 *1 *1) (-5 *1 (-773))) (-3528 (*1 *1 *1 *1) (-5 *1 (-773))) (-3528 (*1 *1 *1 *1 *1) (-5 *1 (-773))) (-2573 (*1 *1 *1) (-5 *1 (-773))) (-2573 (*1 *1 *1 *1) (-5 *1 (-773))) (-2573 (*1 *1 *1 *1 *1) (-5 *1 (-773))) (-3466 (*1 *1 *1) (-5 *1 (-773))) (-3466 (*1 *1 *1 *1) (-5 *1 (-773))) (-3466 (*1 *1 *1 *1 *1) (-5 *1 (-773))) (-3237 (*1 *1 *1) (-5 *1 (-773))) (-3237 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2572 (*1 *1 *1) (-5 *1 (-773))) (-2572 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2571 (*1 *1 *1) (-5 *1 (-773))) (-2571 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2570 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2569 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2568 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2567 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-3054 (*1 *1 *1 *1) (-5 *1 (-773))) (-2566 (*1 *1 *1 *1) (-5 *1 (-773))) (-2683 (*1 *1 *1 *1) (-5 *1 (-773))) (-2565 (*1 *1 *1 *1) (-5 *1 (-773))) (-2682 (*1 *1 *1 *1) (-5 *1 (-773))) (-2564 (*1 *1 *1 *1) (-5 *1 (-773))) (-3835 (*1 *1 *1 *1) (-5 *1 (-773))) (-3833 (*1 *1 *1 *1) (-5 *1 (-773))) (-3833 (*1 *1 *1) (-5 *1 (-773))) (* (*1 *1 *1 *1) (-5 *1 (-773))) (-3945 (*1 *1 *1 *1) (-5 *1 (-773))) (** (*1 *1 *1 *1) (-5 *1 (-773))) (-2563 (*1 *1 *1 *1) (-5 *1 (-773))) (-2562 (*1 *1 *1 *1) (-5 *1 (-773))) (-2561 (*1 *1 *1 *1) (-5 *1 (-773))) (-3462 (*1 *1 *1 *1) (-5 *1 (-773))) (-2560 (*1 *1 *1 *1) (-5 *1 (-773))) (-2559 (*1 *1 *1 *1) (-5 *1 (-773))) (-2558 (*1 *1 *1) (-5 *1 (-773))) (-3733 (*1 *1 *1 *1) (-5 *1 (-773))) (-3733 (*1 *1 *1) (-5 *1 (-773))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3827 (((-3 $ "failed") (-1089)) 36 T ELT)) (-3133 (((-695)) 32 T ELT)) (-2992 (($) NIL T ELT)) (-2529 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2855 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2008 (((-831) $) 29 T ELT)) (-3239 (((-1072) $) 43 T ELT)) (-2398 (($ (-831)) 28 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3968 (((-1089) $) 13 T ELT) (((-473) $) 19 T ELT) (((-801 (-327)) $) 26 T ELT) (((-801 (-484)) $) 22 T ELT)) (-3942 (((-773) $) 16 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 40 T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) 38 T ELT)))
+(((-774 |#1|) (-13 (-753) (-554 (-1089)) (-554 (-473)) (-554 (-801 (-327))) (-554 (-801 (-484))) (-10 -8 (-15 -3827 ((-3 $ "failed") (-1089))))) (-584 (-1089))) (T -774))
+((-3827 (*1 *1 *2) (|partial| -12 (-5 *2 (-1089)) (-5 *1 (-774 *3)) (-14 *3 (-584 *2)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3538 (((-444) $) 12 T ELT)) (-2606 (((-584 (-378)) $) 14 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 22 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 17 T ELT)))
+(((-775) (-13 (-1013) (-10 -8 (-15 -3538 ((-444) $)) (-15 -2606 ((-584 (-378)) $))))) (T -775))
+((-3538 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-775)))) (-2606 (*1 *2 *1) (-12 (-5 *2 (-584 (-378))) (-5 *1 (-775)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2408 (((-85) $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-858 |#1|)) NIL T ELT) (((-858 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3123 (((-695)) NIL T CONST)) (-3919 (((-1184) (-695)) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT)))
+(((-776 |#1| |#2| |#3| |#4|) (-13 (-962) (-427 (-858 |#1|)) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-311)) (-15 -3945 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3919 ((-1184) (-695))))) (-962) (-584 (-1089)) (-584 (-695)) (-695)) (T -776))
+((-3945 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-776 *2 *3 *4 *5)) (-4 *2 (-311)) (-4 *2 (-962)) (-14 *3 (-584 (-1089))) (-14 *4 (-584 (-695))) (-14 *5 (-695)))) (-3919 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1184)) (-5 *1 (-776 *4 *5 *6 *7)) (-4 *4 (-962)) (-14 *5 (-584 (-1089))) (-14 *6 (-584 *3)) (-14 *7 *3))))
+((-2607 (((-3 (-148 |#3|) #1="failed") (-695) (-695) |#2| |#2|) 38 T ELT)) (-2608 (((-3 (-347 |#3|) #1#) (-695) (-695) |#2| |#2|) 29 T ELT)))
+(((-777 |#1| |#2| |#3|) (-10 -7 (-15 -2608 ((-3 (-347 |#3|) #1="failed") (-695) (-695) |#2| |#2|)) (-15 -2607 ((-3 (-148 |#3|) #1#) (-695) (-695) |#2| |#2|))) (-311) (-1171 |#1|) (-1154 |#1|)) (T -777))
+((-2607 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-695)) (-4 *5 (-311)) (-5 *2 (-148 *6)) (-5 *1 (-777 *5 *4 *6)) (-4 *4 (-1171 *5)) (-4 *6 (-1154 *5)))) (-2608 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-695)) (-4 *5 (-311)) (-5 *2 (-347 *6)) (-5 *1 (-777 *5 *4 *6)) (-4 *4 (-1171 *5)) (-4 *6 (-1154 *5)))))
+((-2608 (((-3 (-347 (-1147 |#2| |#1|)) #1="failed") (-695) (-695) (-1168 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-347 (-1147 |#2| |#1|)) #1#) (-695) (-695) (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) 28 T ELT)))
+(((-778 |#1| |#2| |#3|) (-10 -7 (-15 -2608 ((-3 (-347 (-1147 |#2| |#1|)) #1="failed") (-695) (-695) (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) (-15 -2608 ((-3 (-347 (-1147 |#2| |#1|)) #1#) (-695) (-695) (-1168 |#1| |#2| |#3|)))) (-311) (-1089) |#1|) (T -778))
+((-2608 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-695)) (-5 *4 (-1168 *5 *6 *7)) (-4 *5 (-311)) (-14 *6 (-1089)) (-14 *7 *5) (-5 *2 (-347 (-1147 *6 *5))) (-5 *1 (-778 *5 *6 *7)))) (-2608 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-695)) (-5 *4 (-1168 *5 *6 *7)) (-4 *5 (-311)) (-14 *6 (-1089)) (-14 *7 *5) (-5 *2 (-347 (-1147 *6 *5))) (-5 *1 (-778 *5 *6 *7)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3035 (($ $ (-484)) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-2609 (($ (-1084 (-484)) (-484)) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2610 (($ $) NIL T ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-3768 (((-695) $) NIL T ELT)) (-2408 (((-85) $) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2612 (((-484)) NIL T ELT)) (-2611 (((-484) $) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3765 (($ $ (-484)) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-2613 (((-1068 (-484)) $) NIL T ELT)) (-2889 (($ $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT)) (-3123 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-3766 (((-484) $ (-484)) NIL T ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-3054 (((-85) $ $) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT)))
+(((-779 |#1|) (-780 |#1|) (-484)) (T -779))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 53 T ELT)) (-2061 (($ $) 52 T ELT)) (-2059 (((-85) $) 50 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3035 (($ $ (-484)) 76 T ELT)) (-1606 (((-85) $ $) 73 T ELT)) (-3720 (($) 22 T CONST)) (-2609 (($ (-1084 (-484)) (-484)) 75 T ELT)) (-2562 (($ $ $) 69 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2610 (($ $) 78 T ELT)) (-2561 (($ $ $) 70 T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) 64 T ELT)) (-3768 (((-695) $) 83 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-1603 (((-3 (-584 $) #1="failed") (-584 $) $) 66 T ELT)) (-2612 (((-484)) 80 T ELT)) (-2611 (((-484) $) 79 T ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3141 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3765 (($ $ (-484)) 82 T ELT)) (-3462 (((-3 $ "failed") $ $) 54 T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) 63 T ELT)) (-1605 (((-695) $) 72 T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 71 T ELT)) (-2613 (((-1068 (-484)) $) 84 T ELT)) (-2889 (($ $) 81 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2060 (((-85) $ $) 51 T ELT)) (-3766 (((-484) $ (-484)) 77 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT)))
+(((-780 |#1|) (-113) (-484)) (T -780))
+((-2613 (*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-1068 (-484))))) (-3768 (*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-695)))) (-3765 (*1 *1 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-484)))) (-2889 (*1 *1 *1) (-4 *1 (-780 *2))) (-2612 (*1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-484)))) (-2611 (*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-484)))) (-2610 (*1 *1 *1) (-4 *1 (-780 *2))) (-3766 (*1 *2 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-484)))) (-3035 (*1 *1 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-484)))) (-2609 (*1 *1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *3 (-484)) (-4 *1 (-780 *4)))))
+(-13 (-257) (-120) (-10 -8 (-15 -2613 ((-1068 (-484)) $)) (-15 -3768 ((-695) $)) (-15 -3765 ($ $ (-484))) (-15 -2889 ($ $)) (-15 -2612 ((-484))) (-15 -2611 ((-484) $)) (-15 -2610 ($ $)) (-15 -3766 ((-484) $ (-484))) (-15 -3035 ($ $ (-484))) (-15 -2609 ($ (-1084 (-484)) (-484)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-556 (-484)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-245) . T) ((-257) . T) ((-389) . T) ((-495) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3126 (((-779 |#1|) $) NIL (|has| (-779 |#1|) (-257)) ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-779 |#1|) (-822)) ELT)) (-3771 (($ $) NIL T ELT)) (-3967 (((-345 $) $) NIL T ELT)) (-2702 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| (-779 |#1|) (-822)) ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3619 (((-484) $) NIL (|has| (-779 |#1|) (-741)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 (-779 |#1|) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL (|has| (-779 |#1|) (-951 (-1089))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| (-779 |#1|) (-951 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-779 |#1|) (-951 (-484))) ELT)) (-3153 (((-779 |#1|) $) NIL T ELT) (((-1089) $) NIL (|has| (-779 |#1|) (-951 (-1089))) ELT) (((-347 (-484)) $) NIL (|has| (-779 |#1|) (-951 (-484))) ELT) (((-484) $) NIL (|has| (-779 |#1|) (-951 (-484))) ELT)) (-3726 (($ $) NIL T ELT) (($ (-484) $) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL (|has| (-779 |#1|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| (-779 |#1|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-779 |#1|))) (|:| |vec| (-1178 (-779 |#1|)))) (-631 $) (-1178 $)) NIL T ELT) (((-631 (-779 |#1|)) (-631 $)) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2992 (($) NIL (|has| (-779 |#1|) (-483)) ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-3719 (((-85) $) NIL T ELT)) (-3183 (((-85) $) NIL (|has| (-779 |#1|) (-741)) ELT)) (-2794 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (|has| (-779 |#1|) (-797 (-484))) ELT) (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (|has| (-779 |#1|) (-797 (-327))) ELT)) (-2408 (((-85) $) NIL T ELT)) (-2994 (($ $) NIL T ELT)) (-2996 (((-779 |#1|) $) NIL T ELT)) (-3441 (((-633 $) $) NIL (|has| (-779 |#1|) (-1065)) ELT)) (-3184 (((-85) $) NIL (|has| (-779 |#1|) (-741)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2529 (($ $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-2855 (($ $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-3954 (($ (-1 (-779 |#1|) (-779 |#1|)) $) NIL T ELT)) (-2278 (((-631 (-484)) (-1178 $)) NIL (|has| (-779 |#1|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-779 |#1|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-779 |#1|))) (|:| |vec| (-1178 (-779 |#1|)))) (-1178 $) $) NIL T ELT) (((-631 (-779 |#1|)) (-1178 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) NIL T ELT)) (-3442 (($) NIL (|has| (-779 |#1|) (-1065)) CONST)) (-3240 (((-1033) $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3125 (($ $) NIL (|has| (-779 |#1|) (-257)) ELT)) (-3127 (((-779 |#1|) $) NIL (|has| (-779 |#1|) (-483)) ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-779 |#1|) (-822)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-779 |#1|) (-822)) ELT)) (-3728 (((-345 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3764 (($ $ (-584 (-779 |#1|)) (-584 (-779 |#1|))) NIL (|has| (-779 |#1|) (-259 (-779 |#1|))) ELT) (($ $ (-779 |#1|) (-779 |#1|)) NIL (|has| (-779 |#1|) (-259 (-779 |#1|))) ELT) (($ $ (-248 (-779 |#1|))) NIL (|has| (-779 |#1|) (-259 (-779 |#1|))) ELT) (($ $ (-584 (-248 (-779 |#1|)))) NIL (|has| (-779 |#1|) (-259 (-779 |#1|))) ELT) (($ $ (-584 (-1089)) (-584 (-779 |#1|))) NIL (|has| (-779 |#1|) (-453 (-1089) (-779 |#1|))) ELT) (($ $ (-1089) (-779 |#1|)) NIL (|has| (-779 |#1|) (-453 (-1089) (-779 |#1|))) ELT)) (-1605 (((-695) $) NIL T ELT)) (-3796 (($ $ (-779 |#1|)) NIL (|has| (-779 |#1|) (-241 (-779 |#1|) (-779 |#1|))) ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-3754 (($ $ (-1 (-779 |#1|) (-779 |#1|))) NIL T ELT) (($ $ (-1 (-779 |#1|) (-779 |#1|)) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-779 |#1|) (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| (-779 |#1|) (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| (-779 |#1|) (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| (-779 |#1|) (-812 (-1089))) ELT) (($ $) NIL (|has| (-779 |#1|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-779 |#1|) (-189)) ELT)) (-2993 (($ $) NIL T ELT)) (-2995 (((-779 |#1|) $) NIL T ELT)) (-3968 (((-801 (-484)) $) NIL (|has| (-779 |#1|) (-554 (-801 (-484)))) ELT) (((-801 (-327)) $) NIL (|has| (-779 |#1|) (-554 (-801 (-327)))) ELT) (((-473) $) NIL (|has| (-779 |#1|) (-554 (-473))) ELT) (((-327) $) NIL (|has| (-779 |#1|) (-934)) ELT) (((-179) $) NIL (|has| (-779 |#1|) (-934)) ELT)) (-2614 (((-148 (-347 (-484))) $) NIL T ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-779 |#1|) (-822))) ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ (-779 |#1|)) NIL T ELT) (($ (-1089)) NIL (|has| (-779 |#1|) (-951 (-1089))) ELT)) (-2700 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-779 |#1|) (-822))) (|has| (-779 |#1|) (-118))) ELT)) (-3123 (((-695)) NIL T CONST)) (-3128 (((-779 |#1|) $) NIL (|has| (-779 |#1|) (-483)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-3766 (((-347 (-484)) $ (-484)) NIL T ELT)) (-3379 (($ $) NIL (|has| (-779 |#1|) (-741)) ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-2667 (($ $ (-1 (-779 |#1|) (-779 |#1|))) NIL T ELT) (($ $ (-1 (-779 |#1|) (-779 |#1|)) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-779 |#1|) (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| (-779 |#1|) (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| (-779 |#1|) (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| (-779 |#1|) (-812 (-1089))) ELT) (($ $) NIL (|has| (-779 |#1|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-779 |#1|) (-189)) ELT)) (-2564 (((-85) $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-2565 (((-85) $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-2683 (((-85) $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-3945 (($ $ $) NIL T ELT) (($ (-779 |#1|) (-779 |#1|)) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ (-779 |#1|) $) NIL T ELT) (($ $ (-779 |#1|)) NIL T ELT)))
+(((-781 |#1|) (-13 (-905 (-779 |#1|)) (-10 -8 (-15 -3766 ((-347 (-484)) $ (-484))) (-15 -2614 ((-148 (-347 (-484))) $)) (-15 -3726 ($ $)) (-15 -3726 ($ (-484) $)))) (-484)) (T -781))
+((-3766 (*1 *2 *1 *3) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-781 *4)) (-14 *4 *3) (-5 *3 (-484)))) (-2614 (*1 *2 *1) (-12 (-5 *2 (-148 (-347 (-484)))) (-5 *1 (-781 *3)) (-14 *3 (-484)))) (-3726 (*1 *1 *1) (-12 (-5 *1 (-781 *2)) (-14 *2 (-484)))) (-3726 (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-781 *3)) (-14 *3 *2))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3126 ((|#2| $) NIL (|has| |#2| (-257)) ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-3771 (($ $) NIL T ELT)) (-3967 (((-345 $) $) NIL T ELT)) (-2702 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3619 (((-484) $) NIL (|has| |#2| (-741)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL (|has| |#2| (-951 (-1089))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-951 (-484))) ELT)) (-3153 ((|#2| $) NIL T ELT) (((-1089) $) NIL (|has| |#2| (-951 (-1089))) ELT) (((-347 (-484)) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-484) $) NIL (|has| |#2| (-951 (-484))) ELT)) (-3726 (($ $) 35 T ELT) (($ (-484) $) 38 T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3463 (((-3 $ #1#) $) 64 T ELT)) (-2992 (($) NIL (|has| |#2| (-483)) ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-3719 (((-85) $) NIL T ELT)) (-3183 (((-85) $) NIL (|has| |#2| (-741)) ELT)) (-2794 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (|has| |#2| (-797 (-484))) ELT) (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (|has| |#2| (-797 (-327))) ELT)) (-2408 (((-85) $) NIL T ELT)) (-2994 (($ $) NIL T ELT)) (-2996 ((|#2| $) NIL T ELT)) (-3441 (((-633 $) $) NIL (|has| |#2| (-1065)) ELT)) (-3184 (((-85) $) NIL (|has| |#2| (-741)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2529 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-2855 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-3954 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2278 (((-631 (-484)) (-1178 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL T ELT) (((-631 |#2|) (-1178 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) 60 T ELT)) (-3442 (($) NIL (|has| |#2| (-1065)) CONST)) (-3240 (((-1033) $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3125 (($ $) NIL (|has| |#2| (-257)) ELT)) (-3127 ((|#2| $) NIL (|has| |#2| (-483)) ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-3728 (((-345 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3764 (($ $ (-584 |#2|) (-584 |#2|)) NIL (|has| |#2| (-259 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-259 |#2|)) ELT) (($ $ (-248 |#2|)) NIL (|has| |#2| (-259 |#2|)) ELT) (($ $ (-584 (-248 |#2|))) NIL (|has| |#2| (-259 |#2|)) ELT) (($ $ (-584 (-1089)) (-584 |#2|)) NIL (|has| |#2| (-453 (-1089) |#2|)) ELT) (($ $ (-1089) |#2|) NIL (|has| |#2| (-453 (-1089) |#2|)) ELT)) (-1605 (((-695) $) NIL T ELT)) (-3796 (($ $ |#2|) NIL (|has| |#2| (-241 |#2| |#2|)) ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-3754 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT)) (-2993 (($ $) NIL T ELT)) (-2995 ((|#2| $) NIL T ELT)) (-3968 (((-801 (-484)) $) NIL (|has| |#2| (-554 (-801 (-484)))) ELT) (((-801 (-327)) $) NIL (|has| |#2| (-554 (-801 (-327)))) ELT) (((-473) $) NIL (|has| |#2| (-554 (-473))) ELT) (((-327) $) NIL (|has| |#2| (-934)) ELT) (((-179) $) NIL (|has| |#2| (-934)) ELT)) (-2614 (((-148 (-347 (-484))) $) 78 T ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3942 (((-773) $) 105 T ELT) (($ (-484)) 20 T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1089)) NIL (|has| |#2| (-951 (-1089))) ELT)) (-2700 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3123 (((-695)) NIL T CONST)) (-3128 ((|#2| $) NIL (|has| |#2| (-483)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-3766 (((-347 (-484)) $ (-484)) 71 T ELT)) (-3379 (($ $) NIL (|has| |#2| (-741)) ELT)) (-2658 (($) 15 T CONST)) (-2664 (($) 17 T CONST)) (-2667 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT)) (-2564 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-3054 (((-85) $ $) 46 T ELT)) (-2682 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-3945 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-3833 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-3835 (($ $ $) 48 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) 61 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT)))
+(((-782 |#1| |#2|) (-13 (-905 |#2|) (-10 -8 (-15 -3766 ((-347 (-484)) $ (-484))) (-15 -2614 ((-148 (-347 (-484))) $)) (-15 -3726 ($ $)) (-15 -3726 ($ (-484) $)))) (-484) (-780 |#1|)) (T -782))
+((-3766 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-347 (-484))) (-5 *1 (-782 *4 *5)) (-5 *3 (-484)) (-4 *5 (-780 *4)))) (-2614 (*1 *2 *1) (-12 (-14 *3 (-484)) (-5 *2 (-148 (-347 (-484)))) (-5 *1 (-782 *3 *4)) (-4 *4 (-780 *3)))) (-3726 (*1 *1 *1) (-12 (-14 *2 (-484)) (-5 *1 (-782 *2 *3)) (-4 *3 (-780 *2)))) (-3726 (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-14 *3 *2) (-5 *1 (-782 *3 *4)) (-4 *4 (-780 *3)))))
+((-2566 (((-85) $ $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3792 ((|#2| $) 12 T ELT)) (-2615 (($ |#1| |#2|) 9 T ELT)) (-3239 (((-1072) $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3240 (((-1033) $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3797 ((|#1| $) 11 T ELT)) (-3526 (($ |#1| |#2|) 10 T ELT)) (-3942 (((-773) $) 18 (OR (-12 (|has| |#1| (-553 (-773))) (|has| |#2| (-553 (-773)))) (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013)))) ELT)) (-1263 (((-85) $ $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3054 (((-85) $ $) 23 (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)))
+(((-783 |#1| |#2|) (-13 (-1128) (-10 -8 (IF (|has| |#1| (-553 (-773))) (IF (|has| |#2| (-553 (-773))) (-6 (-553 (-773))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1013)) (IF (|has| |#2| (-1013)) (-6 (-1013)) |%noBranch|) |%noBranch|) (-15 -2615 ($ |#1| |#2|)) (-15 -3526 ($ |#1| |#2|)) (-15 -3797 (|#1| $)) (-15 -3792 (|#2| $)))) (-1128) (-1128)) (T -783))
+((-2615 (*1 *1 *2 *3) (-12 (-5 *1 (-783 *2 *3)) (-4 *2 (-1128)) (-4 *3 (-1128)))) (-3526 (*1 *1 *2 *3) (-12 (-5 *1 (-783 *2 *3)) (-4 *2 (-1128)) (-4 *3 (-1128)))) (-3797 (*1 *2 *1) (-12 (-4 *2 (-1128)) (-5 *1 (-783 *2 *3)) (-4 *3 (-1128)))) (-3792 (*1 *2 *1) (-12 (-4 *2 (-1128)) (-5 *1 (-783 *3 *2)) (-4 *3 (-1128)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-2955 (((-484) $) 16 T ELT)) (-2617 (($ (-130)) 13 T ELT)) (-2616 (($ (-130)) 14 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2954 (((-130) $) 15 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2619 (($ (-130)) 11 T ELT)) (-2620 (($ (-130)) 10 T ELT)) (-3942 (((-773) $) 24 T ELT) (($ (-130)) 17 T ELT)) (-2618 (($ (-130)) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-784) (-13 (-1013) (-556 (-130)) (-10 -8 (-15 -2620 ($ (-130))) (-15 -2619 ($ (-130))) (-15 -2618 ($ (-130))) (-15 -2617 ($ (-130))) (-15 -2616 ($ (-130))) (-15 -2954 ((-130) $)) (-15 -2955 ((-484) $))))) (T -784))
+((-2620 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2619 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2618 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2617 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2616 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2954 (*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2955 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-784)))))
+((-3942 (((-264 (-484)) (-347 (-858 (-48)))) 23 T ELT) (((-264 (-484)) (-858 (-48))) 18 T ELT)))
+(((-785) (-10 -7 (-15 -3942 ((-264 (-484)) (-858 (-48)))) (-15 -3942 ((-264 (-484)) (-347 (-858 (-48))))))) (T -785))
+((-3942 (*1 *2 *3) (-12 (-5 *3 (-347 (-858 (-48)))) (-5 *2 (-264 (-484))) (-5 *1 (-785)))) (-3942 (*1 *2 *3) (-12 (-5 *3 (-858 (-48))) (-5 *2 (-264 (-484))) (-5 *1 (-785)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3562 (((-85) $ (|[\|\|]| (-444))) 9 T ELT) (((-85) $ (|[\|\|]| (-1072))) 13 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3568 (((-444) $) 10 T ELT) (((-1072) $) 14 T ELT)) (-3054 (((-85) $ $) 15 T ELT)))
+(((-786) (-13 (-995) (-1174) (-10 -8 (-15 -3562 ((-85) $ (|[\|\|]| (-444)))) (-15 -3568 ((-444) $)) (-15 -3562 ((-85) $ (|[\|\|]| (-1072)))) (-15 -3568 ((-1072) $))))) (T -786))
+((-3562 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-444))) (-5 *2 (-85)) (-5 *1 (-786)))) (-3568 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-786)))) (-3562 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-85)) (-5 *1 (-786)))) (-3568 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-786)))))
+((-3954 (((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|)) 15 T ELT)))
+(((-787 |#1| |#2|) (-10 -7 (-15 -3954 ((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|)))) (-1128) (-1128)) (T -787))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-788 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-788 *6)) (-5 *1 (-787 *5 *6)))))
+((-3367 (($ |#1| |#1|) 8 T ELT)) (-2623 ((|#1| $ (-695)) 15 T ELT)))
+(((-788 |#1|) (-10 -8 (-15 -3367 ($ |#1| |#1|)) (-15 -2623 (|#1| $ (-695)))) (-1128)) (T -788))
+((-2623 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-788 *2)) (-4 *2 (-1128)))) (-3367 (*1 *1 *2 *2) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1128)))))
+((-3954 (((-790 |#2|) (-1 |#2| |#1|) (-790 |#1|)) 15 T ELT)))
+(((-789 |#1| |#2|) (-10 -7 (-15 -3954 ((-790 |#2|) (-1 |#2| |#1|) (-790 |#1|)))) (-1128) (-1128)) (T -789))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-790 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-790 *6)) (-5 *1 (-789 *5 *6)))))
+((-3367 (($ |#1| |#1| |#1|) 8 T ELT)) (-2623 ((|#1| $ (-695)) 15 T ELT)))
+(((-790 |#1|) (-10 -8 (-15 -3367 ($ |#1| |#1| |#1|)) (-15 -2623 (|#1| $ (-695)))) (-1128)) (T -790))
+((-2623 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-790 *2)) (-4 *2 (-1128)))) (-3367 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-790 *2)) (-4 *2 (-1128)))))
+((-2621 (((-584 (-1094)) (-1072)) 9 T ELT)))
+(((-791) (-10 -7 (-15 -2621 ((-584 (-1094)) (-1072))))) (T -791))
+((-2621 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-584 (-1094))) (-5 *1 (-791)))))
+((-3954 (((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|)) 15 T ELT)))
+(((-792 |#1| |#2|) (-10 -7 (-15 -3954 ((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|)))) (-1128) (-1128)) (T -792))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-793 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-793 *6)) (-5 *1 (-792 *5 *6)))))
+((-2622 (($ |#1| |#1| |#1|) 8 T ELT)) (-2623 ((|#1| $ (-695)) 15 T ELT)))
+(((-793 |#1|) (-10 -8 (-15 -2622 ($ |#1| |#1| |#1|)) (-15 -2623 (|#1| $ (-695)))) (-1128)) (T -793))
+((-2623 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-793 *2)) (-4 *2 (-1128)))) (-2622 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1128)))))
+((-2626 (((-1068 (-584 (-484))) (-584 (-484)) (-1068 (-584 (-484)))) 41 T ELT)) (-2625 (((-1068 (-584 (-484))) (-584 (-484)) (-584 (-484))) 31 T ELT)) (-2627 (((-1068 (-584 (-484))) (-584 (-484))) 53 T ELT) (((-1068 (-584 (-484))) (-584 (-484)) (-584 (-484))) 50 T ELT)) (-2628 (((-1068 (-584 (-484))) (-484)) 55 T ELT)) (-2624 (((-1068 (-584 (-831))) (-1068 (-584 (-831)))) 22 T ELT)) (-3007 (((-584 (-831)) (-584 (-831))) 18 T ELT)))
+(((-794) (-10 -7 (-15 -3007 ((-584 (-831)) (-584 (-831)))) (-15 -2624 ((-1068 (-584 (-831))) (-1068 (-584 (-831))))) (-15 -2625 ((-1068 (-584 (-484))) (-584 (-484)) (-584 (-484)))) (-15 -2626 ((-1068 (-584 (-484))) (-584 (-484)) (-1068 (-584 (-484))))) (-15 -2627 ((-1068 (-584 (-484))) (-584 (-484)) (-584 (-484)))) (-15 -2627 ((-1068 (-584 (-484))) (-584 (-484)))) (-15 -2628 ((-1068 (-584 (-484))) (-484))))) (T -794))
+((-2628 (*1 *2 *3) (-12 (-5 *2 (-1068 (-584 (-484)))) (-5 *1 (-794)) (-5 *3 (-484)))) (-2627 (*1 *2 *3) (-12 (-5 *2 (-1068 (-584 (-484)))) (-5 *1 (-794)) (-5 *3 (-584 (-484))))) (-2627 (*1 *2 *3 *3) (-12 (-5 *2 (-1068 (-584 (-484)))) (-5 *1 (-794)) (-5 *3 (-584 (-484))))) (-2626 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 (-584 (-484)))) (-5 *3 (-584 (-484))) (-5 *1 (-794)))) (-2625 (*1 *2 *3 *3) (-12 (-5 *2 (-1068 (-584 (-484)))) (-5 *1 (-794)) (-5 *3 (-584 (-484))))) (-2624 (*1 *2 *2) (-12 (-5 *2 (-1068 (-584 (-831)))) (-5 *1 (-794)))) (-3007 (*1 *2 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-794)))))
+((-3968 (((-801 (-327)) $) 9 (|has| |#1| (-554 (-801 (-327)))) ELT) (((-801 (-484)) $) 8 (|has| |#1| (-554 (-801 (-484)))) ELT)))
+(((-795 |#1|) (-113) (-1128)) (T -795))
+NIL
+(-13 (-10 -7 (IF (|has| |t#1| (-554 (-801 (-484)))) (-6 (-554 (-801 (-484)))) |%noBranch|) (IF (|has| |t#1| (-554 (-801 (-327)))) (-6 (-554 (-801 (-327)))) |%noBranch|)))
+(((-554 (-801 (-327))) |has| |#1| (-554 (-801 (-327)))) ((-554 (-801 (-484))) |has| |#1| (-554 (-801 (-484)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3610 (($) 14 T ELT)) (-2630 (($ (-799 |#1| |#2|) (-799 |#1| |#3|)) 28 T ELT)) (-2629 (((-799 |#1| |#3|) $) 16 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2638 (((-85) $) 22 T ELT)) (-2637 (($) 19 T ELT)) (-3942 (((-773) $) 31 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2848 (((-799 |#1| |#2|) $) 15 T ELT)) (-3054 (((-85) $ $) 26 T ELT)))
+(((-796 |#1| |#2| |#3|) (-13 (-1013) (-10 -8 (-15 -2638 ((-85) $)) (-15 -2637 ($)) (-15 -3610 ($)) (-15 -2630 ($ (-799 |#1| |#2|) (-799 |#1| |#3|))) (-15 -2848 ((-799 |#1| |#2|) $)) (-15 -2629 ((-799 |#1| |#3|) $)))) (-1013) (-1013) (-609 |#2|)) (T -796))
+((-2638 (*1 *2 *1) (-12 (-4 *4 (-1013)) (-5 *2 (-85)) (-5 *1 (-796 *3 *4 *5)) (-4 *3 (-1013)) (-4 *5 (-609 *4)))) (-2637 (*1 *1) (-12 (-4 *3 (-1013)) (-5 *1 (-796 *2 *3 *4)) (-4 *2 (-1013)) (-4 *4 (-609 *3)))) (-3610 (*1 *1) (-12 (-4 *3 (-1013)) (-5 *1 (-796 *2 *3 *4)) (-4 *2 (-1013)) (-4 *4 (-609 *3)))) (-2630 (*1 *1 *2 *3) (-12 (-5 *2 (-799 *4 *5)) (-5 *3 (-799 *4 *6)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-609 *5)) (-5 *1 (-796 *4 *5 *6)))) (-2848 (*1 *2 *1) (-12 (-4 *4 (-1013)) (-5 *2 (-799 *3 *4)) (-5 *1 (-796 *3 *4 *5)) (-4 *3 (-1013)) (-4 *5 (-609 *4)))) (-2629 (*1 *2 *1) (-12 (-4 *4 (-1013)) (-5 *2 (-799 *3 *5)) (-5 *1 (-796 *3 *4 *5)) (-4 *3 (-1013)) (-4 *5 (-609 *4)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-2794 (((-799 |#1| $) $ (-801 |#1|) (-799 |#1| $)) 17 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3054 (((-85) $ $) 8 T ELT)))
+(((-797 |#1|) (-113) (-1013)) (T -797))
+((-2794 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-799 *4 *1)) (-5 *3 (-801 *4)) (-4 *1 (-797 *4)) (-4 *4 (-1013)))))
+(-13 (-1013) (-10 -8 (-15 -2794 ((-799 |t#1| $) $ (-801 |t#1|) (-799 |t#1| $)))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
+((-2631 (((-85) (-584 |#2|) |#3|) 23 T ELT) (((-85) |#2| |#3|) 18 T ELT)) (-2632 (((-799 |#1| |#2|) |#2| |#3|) 45 (-12 (-2558 (|has| |#2| (-951 (-1089)))) (-2558 (|has| |#2| (-962)))) ELT) (((-584 (-248 (-858 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-962)) (-2558 (|has| |#2| (-951 (-1089))))) ELT) (((-584 (-248 |#2|)) |#2| |#3|) 36 (|has| |#2| (-951 (-1089))) ELT) (((-796 |#1| |#2| (-584 |#2|)) (-584 |#2|) |#3|) 21 T ELT)))
+(((-798 |#1| |#2| |#3|) (-10 -7 (-15 -2631 ((-85) |#2| |#3|)) (-15 -2631 ((-85) (-584 |#2|) |#3|)) (-15 -2632 ((-796 |#1| |#2| (-584 |#2|)) (-584 |#2|) |#3|)) (IF (|has| |#2| (-951 (-1089))) (-15 -2632 ((-584 (-248 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-962)) (-15 -2632 ((-584 (-248 (-858 |#2|))) |#2| |#3|)) (-15 -2632 ((-799 |#1| |#2|) |#2| |#3|))))) (-1013) (-797 |#1|) (-554 (-801 |#1|))) (T -798))
+((-2632 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-5 *2 (-799 *5 *3)) (-5 *1 (-798 *5 *3 *4)) (-2558 (-4 *3 (-951 (-1089)))) (-2558 (-4 *3 (-962))) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5))))) (-2632 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-5 *2 (-584 (-248 (-858 *3)))) (-5 *1 (-798 *5 *3 *4)) (-4 *3 (-962)) (-2558 (-4 *3 (-951 (-1089)))) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5))))) (-2632 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-5 *2 (-584 (-248 *3))) (-5 *1 (-798 *5 *3 *4)) (-4 *3 (-951 (-1089))) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5))))) (-2632 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-4 *6 (-797 *5)) (-5 *2 (-796 *5 *6 (-584 *6))) (-5 *1 (-798 *5 *6 *4)) (-5 *3 (-584 *6)) (-4 *4 (-554 (-801 *5))))) (-2631 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *6)) (-4 *6 (-797 *5)) (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-798 *5 *6 *4)) (-4 *4 (-554 (-801 *5))))) (-2631 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-798 *5 *3 *4)) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5))))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3231 (($ $ $) 40 T ELT)) (-2659 (((-3 (-85) #1="failed") $ (-801 |#1|)) 37 T ELT)) (-3610 (($) 12 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2634 (($ (-801 |#1|) |#2| $) 20 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2636 (((-3 |#2| #1#) (-801 |#1|) $) 51 T ELT)) (-2638 (((-85) $) 15 T ELT)) (-2637 (($) 13 T ELT)) (-3254 (((-584 (-2 (|:| -3856 (-1089)) (|:| |entry| |#2|))) $) 25 T ELT)) (-3526 (($ (-584 (-2 (|:| -3856 (-1089)) (|:| |entry| |#2|)))) 23 T ELT)) (-3942 (((-773) $) 45 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2633 (($ (-801 |#1|) |#2| $ |#2|) 49 T ELT)) (-2635 (($ (-801 |#1|) |#2| $) 48 T ELT)) (-3054 (((-85) $ $) 42 T ELT)))
+(((-799 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -2638 ((-85) $)) (-15 -2637 ($)) (-15 -3610 ($)) (-15 -3231 ($ $ $)) (-15 -2636 ((-3 |#2| #1="failed") (-801 |#1|) $)) (-15 -2635 ($ (-801 |#1|) |#2| $)) (-15 -2634 ($ (-801 |#1|) |#2| $)) (-15 -2633 ($ (-801 |#1|) |#2| $ |#2|)) (-15 -3254 ((-584 (-2 (|:| -3856 (-1089)) (|:| |entry| |#2|))) $)) (-15 -3526 ($ (-584 (-2 (|:| -3856 (-1089)) (|:| |entry| |#2|))))) (-15 -2659 ((-3 (-85) #1#) $ (-801 |#1|))))) (-1013) (-1013)) (T -799))
+((-2638 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-799 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-2637 (*1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-3610 (*1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-3231 (*1 *1 *1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-2636 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-801 *4)) (-4 *4 (-1013)) (-4 *2 (-1013)) (-5 *1 (-799 *4 *2)))) (-2635 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-801 *4)) (-4 *4 (-1013)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1013)))) (-2634 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-801 *4)) (-4 *4 (-1013)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1013)))) (-2633 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-801 *4)) (-4 *4 (-1013)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1013)))) (-3254 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| -3856 (-1089)) (|:| |entry| *4)))) (-5 *1 (-799 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3526 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| -3856 (-1089)) (|:| |entry| *4)))) (-4 *4 (-1013)) (-5 *1 (-799 *3 *4)) (-4 *3 (-1013)))) (-2659 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-801 *4)) (-4 *4 (-1013)) (-5 *2 (-85)) (-5 *1 (-799 *4 *5)) (-4 *5 (-1013)))))
+((-3954 (((-799 |#1| |#3|) (-1 |#3| |#2|) (-799 |#1| |#2|)) 22 T ELT)))
+(((-800 |#1| |#2| |#3|) (-10 -7 (-15 -3954 ((-799 |#1| |#3|) (-1 |#3| |#2|) (-799 |#1| |#2|)))) (-1013) (-1013) (-1013)) (T -800))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-799 *5 *6)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-799 *5 *7)) (-5 *1 (-800 *5 *6 *7)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-2646 (($ $ (-584 (-51))) 74 T ELT)) (-3079 (((-584 $) $) 139 T ELT)) (-2643 (((-2 (|:| |var| (-584 (-1089))) (|:| |pred| (-51))) $) 30 T ELT)) (-3257 (((-85) $) 35 T ELT)) (-2644 (($ $ (-584 (-1089)) (-51)) 31 T ELT)) (-2647 (($ $ (-584 (-51))) 73 T ELT)) (-3154 (((-3 |#1| #1="failed") $) 71 T ELT) (((-3 (-1089) #1#) $) 167 T ELT)) (-3153 ((|#1| $) 68 T ELT) (((-1089) $) NIL T ELT)) (-2641 (($ $) 126 T ELT)) (-2653 (((-85) $) 55 T ELT)) (-2648 (((-584 (-51)) $) 50 T ELT)) (-2645 (($ (-1089) (-85) (-85) (-85)) 75 T ELT)) (-2639 (((-3 (-584 $) #1#) (-584 $)) 82 T ELT)) (-2650 (((-85) $) 58 T ELT)) (-2651 (((-85) $) 57 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2821 (((-3 (-584 $) #1#) $) 41 T ELT)) (-2656 (((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $) 48 T ELT)) (-2823 (((-3 (-2 (|:| |val| $) (|:| -2399 $)) #1#) $) 97 T ELT)) (-2820 (((-3 (-584 $) #1#) $) 40 T ELT)) (-2657 (((-3 (-584 $) #1#) $ (-86)) 124 T ELT) (((-3 (-2 (|:| -2511 (-86)) (|:| |arg| (-584 $))) #1#) $) 107 T ELT)) (-2655 (((-3 (-584 $) #1#) $) 42 T ELT)) (-2822 (((-3 (-2 (|:| |val| $) (|:| -2399 (-695))) #1#) $) 45 T ELT)) (-2654 (((-85) $) 34 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2642 (((-85) $) 28 T ELT)) (-2649 (((-85) $) 52 T ELT)) (-2640 (((-584 (-51)) $) 130 T ELT)) (-2652 (((-85) $) 56 T ELT)) (-3796 (($ (-86) (-584 $)) 104 T ELT)) (-3319 (((-695) $) 33 T ELT)) (-3396 (($ $) 72 T ELT)) (-3968 (($ (-584 $)) 69 T ELT)) (-3949 (((-85) $) 32 T ELT)) (-3942 (((-773) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1089)) 76 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2660 (($ $ (-51)) 129 T ELT)) (-2658 (($) 103 T CONST)) (-2664 (($) 83 T CONST)) (-3054 (((-85) $ $) 93 T ELT)) (-3945 (($ $ $) 117 T ELT)) (-3835 (($ $ $) 121 T ELT)) (** (($ $ (-695)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT)))
+(((-801 |#1|) (-13 (-1013) (-951 |#1|) (-951 (-1089)) (-10 -8 (-15 -2658 ($) -3948) (-15 -2664 ($) -3948) (-15 -2820 ((-3 (-584 $) #1="failed") $)) (-15 -2821 ((-3 (-584 $) #1#) $)) (-15 -2657 ((-3 (-584 $) #1#) $ (-86))) (-15 -2657 ((-3 (-2 (|:| -2511 (-86)) (|:| |arg| (-584 $))) #1#) $)) (-15 -2822 ((-3 (-2 (|:| |val| $) (|:| -2399 (-695))) #1#) $)) (-15 -2656 ((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $)) (-15 -2655 ((-3 (-584 $) #1#) $)) (-15 -2823 ((-3 (-2 (|:| |val| $) (|:| -2399 $)) #1#) $)) (-15 -3796 ($ (-86) (-584 $))) (-15 -3835 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-695))) (-15 ** ($ $ $)) (-15 -3945 ($ $ $)) (-15 -3319 ((-695) $)) (-15 -3968 ($ (-584 $))) (-15 -3396 ($ $)) (-15 -2654 ((-85) $)) (-15 -2653 ((-85) $)) (-15 -3257 ((-85) $)) (-15 -3949 ((-85) $)) (-15 -2652 ((-85) $)) (-15 -2651 ((-85) $)) (-15 -2650 ((-85) $)) (-15 -2649 ((-85) $)) (-15 -2648 ((-584 (-51)) $)) (-15 -2647 ($ $ (-584 (-51)))) (-15 -2646 ($ $ (-584 (-51)))) (-15 -2645 ($ (-1089) (-85) (-85) (-85))) (-15 -2644 ($ $ (-584 (-1089)) (-51))) (-15 -2643 ((-2 (|:| |var| (-584 (-1089))) (|:| |pred| (-51))) $)) (-15 -2642 ((-85) $)) (-15 -2641 ($ $)) (-15 -2660 ($ $ (-51))) (-15 -2640 ((-584 (-51)) $)) (-15 -3079 ((-584 $) $)) (-15 -2639 ((-3 (-584 $) #1#) (-584 $))))) (-1013)) (T -801))
+((-2658 (*1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1013)))) (-2664 (*1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1013)))) (-2820 (*1 *2 *1) (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2821 (*1 *2 *1) (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2657 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-584 (-801 *4))) (-5 *1 (-801 *4)) (-4 *4 (-1013)))) (-2657 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2511 (-86)) (|:| |arg| (-584 (-801 *3))))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2822 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-801 *3)) (|:| -2399 (-695)))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2656 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-801 *3)) (|:| |den| (-801 *3)))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2655 (*1 *2 *1) (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2823 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-801 *3)) (|:| -2399 (-801 *3)))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-3796 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 (-801 *4))) (-5 *1 (-801 *4)) (-4 *4 (-1013)))) (-3835 (*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1013)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1013)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1013)))) (-3945 (*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1013)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-3968 (*1 *1 *2) (-12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-3396 (*1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1013)))) (-2654 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2653 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-3257 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2651 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2649 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2648 (*1 *2 *1) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2647 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2646 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2645 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-85)) (-5 *1 (-801 *4)) (-4 *4 (-1013)))) (-2644 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1089))) (-5 *3 (-51)) (-5 *1 (-801 *4)) (-4 *4 (-1013)))) (-2643 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-584 (-1089))) (|:| |pred| (-51)))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2642 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2641 (*1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1013)))) (-2660 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2640 (*1 *2 *1) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-3079 (*1 *2 *1) (-12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))) (-2639 (*1 *2 *2) (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))))
+((-3206 (((-801 |#1|) (-801 |#1|) (-584 (-1089)) (-1 (-85) (-584 |#2|))) 32 T ELT) (((-801 |#1|) (-801 |#1|) (-584 (-1 (-85) |#2|))) 46 T ELT) (((-801 |#1|) (-801 |#1|) (-1 (-85) |#2|)) 35 T ELT)) (-2659 (((-85) (-584 |#2|) (-801 |#1|)) 42 T ELT) (((-85) |#2| (-801 |#1|)) 36 T ELT)) (-3527 (((-1 (-85) |#2|) (-801 |#1|)) 16 T ELT)) (-2661 (((-584 |#2|) (-801 |#1|)) 24 T ELT)) (-2660 (((-801 |#1|) (-801 |#1|) |#2|) 20 T ELT)))
+(((-802 |#1| |#2|) (-10 -7 (-15 -3206 ((-801 |#1|) (-801 |#1|) (-1 (-85) |#2|))) (-15 -3206 ((-801 |#1|) (-801 |#1|) (-584 (-1 (-85) |#2|)))) (-15 -3206 ((-801 |#1|) (-801 |#1|) (-584 (-1089)) (-1 (-85) (-584 |#2|)))) (-15 -3527 ((-1 (-85) |#2|) (-801 |#1|))) (-15 -2659 ((-85) |#2| (-801 |#1|))) (-15 -2659 ((-85) (-584 |#2|) (-801 |#1|))) (-15 -2660 ((-801 |#1|) (-801 |#1|) |#2|)) (-15 -2661 ((-584 |#2|) (-801 |#1|)))) (-1013) (-1128)) (T -802))
+((-2661 (*1 *2 *3) (-12 (-5 *3 (-801 *4)) (-4 *4 (-1013)) (-5 *2 (-584 *5)) (-5 *1 (-802 *4 *5)) (-4 *5 (-1128)))) (-2660 (*1 *2 *2 *3) (-12 (-5 *2 (-801 *4)) (-4 *4 (-1013)) (-5 *1 (-802 *4 *3)) (-4 *3 (-1128)))) (-2659 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-801 *5)) (-4 *5 (-1013)) (-4 *6 (-1128)) (-5 *2 (-85)) (-5 *1 (-802 *5 *6)))) (-2659 (*1 *2 *3 *4) (-12 (-5 *4 (-801 *5)) (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-802 *5 *3)) (-4 *3 (-1128)))) (-3527 (*1 *2 *3) (-12 (-5 *3 (-801 *4)) (-4 *4 (-1013)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-802 *4 *5)) (-4 *5 (-1128)))) (-3206 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-801 *5)) (-5 *3 (-584 (-1089))) (-5 *4 (-1 (-85) (-584 *6))) (-4 *5 (-1013)) (-4 *6 (-1128)) (-5 *1 (-802 *5 *6)))) (-3206 (*1 *2 *2 *3) (-12 (-5 *2 (-801 *4)) (-5 *3 (-584 (-1 (-85) *5))) (-4 *4 (-1013)) (-4 *5 (-1128)) (-5 *1 (-802 *4 *5)))) (-3206 (*1 *2 *2 *3) (-12 (-5 *2 (-801 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1013)) (-4 *5 (-1128)) (-5 *1 (-802 *4 *5)))))
+((-3954 (((-801 |#2|) (-1 |#2| |#1|) (-801 |#1|)) 19 T ELT)))
+(((-803 |#1| |#2|) (-10 -7 (-15 -3954 ((-801 |#2|) (-1 |#2| |#1|) (-801 |#1|)))) (-1013) (-1013)) (T -803))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-801 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-801 *6)) (-5 *1 (-803 *5 *6)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3930 (((-584 |#1|) $) 20 T ELT)) (-2662 (((-85) $) 49 T ELT)) (-3154 (((-3 (-615 |#1|) "failed") $) 55 T ELT)) (-3153 (((-615 |#1|) $) 53 T ELT)) (-3795 (($ $) 24 T ELT)) (-2529 (($ $ $) NIL T ELT)) (-2855 (($ $ $) NIL T ELT)) (-3829 (((-695) $) 60 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3797 (((-615 |#1|) $) 22 T ELT)) (-3942 (((-773) $) 47 T ELT) (($ (-615 |#1|)) 27 T ELT) (((-740 |#1|) $) 36 T ELT) (($ |#1|) 26 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2664 (($) 11 T CONST)) (-2663 (((-584 (-615 |#1|)) $) 28 T ELT)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 14 T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) 66 T ELT)))
+(((-804 |#1|) (-13 (-757) (-951 (-615 |#1|)) (-10 -8 (-15 -2664 ($) -3948) (-15 -3942 ((-740 |#1|) $)) (-15 -3942 ($ |#1|)) (-15 -3797 ((-615 |#1|) $)) (-15 -3829 ((-695) $)) (-15 -2663 ((-584 (-615 |#1|)) $)) (-15 -3795 ($ $)) (-15 -2662 ((-85) $)) (-15 -3930 ((-584 |#1|) $)))) (-757)) (T -804))
+((-2664 (*1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-3942 (*1 *1 *2) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757)))) (-3797 (*1 *2 *1) (-12 (-5 *2 (-615 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-3829 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-2663 (*1 *2 *1) (-12 (-5 *2 (-584 (-615 *3))) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-3795 (*1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757)))) (-2662 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757)))))
+((-3470 ((|#1| |#1| |#1|) 19 T ELT)))
+(((-805 |#1| |#2|) (-10 -7 (-15 -3470 (|#1| |#1| |#1|))) (-1154 |#2|) (-962)) (T -805))
+((-3470 (*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-805 *2 *3)) (-4 *2 (-1154 *3)))))
+((-2667 ((|#2| $ |#3|) 10 T ELT)))
+(((-806 |#1| |#2| |#3|) (-10 -7 (-15 -2667 (|#2| |#1| |#3|))) (-807 |#2| |#3|) (-1128) (-1128)) (T -806))
+NIL
+((-3754 ((|#1| $ |#2|) 7 T ELT)) (-2667 ((|#1| $ |#2|) 6 T ELT)))
+(((-807 |#1| |#2|) (-113) (-1128) (-1128)) (T -807))
+((-3754 (*1 *2 *1 *3) (-12 (-4 *1 (-807 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1128)))) (-2667 (*1 *2 *1 *3) (-12 (-4 *1 (-807 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1128)))))
+(-13 (-1128) (-10 -8 (-15 -3754 (|t#1| $ |t#2|)) (-15 -2667 (|t#1| $ |t#2|))))
+(((-13) . T) ((-1128) . T))
+((-2666 ((|#1| |#1| (-695)) 26 T ELT)) (-2665 (((-3 |#1| #1="failed") |#1| |#1|) 23 T ELT)) (-3431 (((-3 (-2 (|:| -3135 |#1|) (|:| -3134 |#1|)) #1#) |#1| (-695) (-695)) 29 T ELT) (((-584 |#1|) |#1|) 38 T ELT)))
+(((-808 |#1| |#2|) (-10 -7 (-15 -3431 ((-584 |#1|) |#1|)) (-15 -3431 ((-3 (-2 (|:| -3135 |#1|) (|:| -3134 |#1|)) #1="failed") |#1| (-695) (-695))) (-15 -2665 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2666 (|#1| |#1| (-695)))) (-1154 |#2|) (-311)) (T -808))
+((-2666 (*1 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-311)) (-5 *1 (-808 *2 *4)) (-4 *2 (-1154 *4)))) (-2665 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-311)) (-5 *1 (-808 *2 *3)) (-4 *2 (-1154 *3)))) (-3431 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-695)) (-4 *5 (-311)) (-5 *2 (-2 (|:| -3135 *3) (|:| -3134 *3))) (-5 *1 (-808 *3 *5)) (-4 *3 (-1154 *5)))) (-3431 (*1 *2 *3) (-12 (-4 *4 (-311)) (-5 *2 (-584 *3)) (-5 *1 (-808 *3 *4)) (-4 *3 (-1154 *4)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3754 (($ $ (-584 |#2|) (-584 (-695))) 44 T ELT) (($ $ |#2| (-695)) 43 T ELT) (($ $ (-584 |#2|)) 42 T ELT) (($ $ |#2|) 40 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-2667 (($ $ (-584 |#2|) (-584 (-695))) 47 T ELT) (($ $ |#2| (-695)) 46 T ELT) (($ $ (-584 |#2|)) 45 T ELT) (($ $ |#2|) 41 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT)))
+(((-809 |#1| |#2|) (-113) (-962) (-1013)) (T -809))
+NIL
+(-13 (-82 |t#1| |t#1|) (-812 |t#2|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-655 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-807 $ |#2|) . T) ((-812 |#2|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3754 (($ $ (-584 |#1|) (-584 (-695))) 50 T ELT) (($ $ |#1| (-695)) 49 T ELT) (($ $ (-584 |#1|)) 48 T ELT) (($ $ |#1|) 46 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-2667 (($ $ (-584 |#1|) (-584 (-695))) 53 T ELT) (($ $ |#1| (-695)) 52 T ELT) (($ $ (-584 |#1|)) 51 T ELT) (($ $ |#1|) 47 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT)))
+(((-810 |#1|) (-113) (-1013)) (T -810))
+NIL
+(-13 (-962) (-812 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-484)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-807 $ |#1|) . T) ((-812 |#1|) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
+((-3754 (($ $ |#2|) NIL T ELT) (($ $ (-584 |#2|)) 10 T ELT) (($ $ |#2| (-695)) 12 T ELT) (($ $ (-584 |#2|) (-584 (-695))) 15 T ELT)) (-2667 (($ $ |#2|) 16 T ELT) (($ $ (-584 |#2|)) 18 T ELT) (($ $ |#2| (-695)) 19 T ELT) (($ $ (-584 |#2|) (-584 (-695))) 21 T ELT)))
+(((-811 |#1| |#2|) (-10 -7 (-15 -2667 (|#1| |#1| (-584 |#2|) (-584 (-695)))) (-15 -2667 (|#1| |#1| |#2| (-695))) (-15 -2667 (|#1| |#1| (-584 |#2|))) (-15 -3754 (|#1| |#1| (-584 |#2|) (-584 (-695)))) (-15 -3754 (|#1| |#1| |#2| (-695))) (-15 -3754 (|#1| |#1| (-584 |#2|))) (-15 -2667 (|#1| |#1| |#2|)) (-15 -3754 (|#1| |#1| |#2|))) (-812 |#2|) (-1013)) (T -811))
+NIL
+((-3754 (($ $ |#1|) 7 T ELT) (($ $ (-584 |#1|)) 15 T ELT) (($ $ |#1| (-695)) 14 T ELT) (($ $ (-584 |#1|) (-584 (-695))) 13 T ELT)) (-2667 (($ $ |#1|) 6 T ELT) (($ $ (-584 |#1|)) 12 T ELT) (($ $ |#1| (-695)) 11 T ELT) (($ $ (-584 |#1|) (-584 (-695))) 10 T ELT)))
+(((-812 |#1|) (-113) (-1013)) (T -812))
+((-3754 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-812 *3)) (-4 *3 (-1013)))) (-3754 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-812 *2)) (-4 *2 (-1013)))) (-3754 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 (-695))) (-4 *1 (-812 *4)) (-4 *4 (-1013)))) (-2667 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-812 *3)) (-4 *3 (-1013)))) (-2667 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-812 *2)) (-4 *2 (-1013)))) (-2667 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 (-695))) (-4 *1 (-812 *4)) (-4 *4 (-1013)))))
+(-13 (-807 $ |t#1|) (-10 -8 (-15 -3754 ($ $ (-584 |t#1|))) (-15 -3754 ($ $ |t#1| (-695))) (-15 -3754 ($ $ (-584 |t#1|) (-584 (-695)))) (-15 -2667 ($ $ (-584 |t#1|))) (-15 -2667 ($ $ |t#1| (-695))) (-15 -2667 ($ $ (-584 |t#1|) (-584 (-695))))))
+(((-13) . T) ((-807 $ |#1|) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3398 ((|#1| $) 26 T ELT)) (-3023 ((|#1| $ |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-1291 (($ $ $) NIL (|has| $ (-6 -3992)) ELT)) (-1292 (($ $ $) NIL (|has| $ (-6 -3992)) ELT)) (-3784 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3992)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3992)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3992)) ELT)) (-3024 (($ $ (-584 $)) NIL (|has| $ (-6 -3992)) ELT)) (-3720 (($) NIL T CONST)) (-3134 (($ $) 25 T ELT)) (-2668 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-2887 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3029 (((-584 $) $) NIL T ELT)) (-3025 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-2606 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3135 (($ $) 23 T ELT)) (-3028 (((-584 |#1|) $) NIL T ELT)) (-3523 (((-85) $) 20 T ELT)) (-3239 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3240 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) NIL T ELT)) (-3796 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3027 (((-484) $ $) NIL T ELT)) (-3629 (((-85) $) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3396 (($ $) NIL T ELT)) (-3942 (((-1115 |#1|) $) 9 T ELT) (((-773) $) 29 (|has| |#1| (-553 (-773))) ELT)) (-3518 (((-584 $) $) NIL T ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 21 (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-813 |#1|) (-13 (-92 |#1|) (-553 (-1115 |#1|)) (-10 -8 (-15 -2668 ($ |#1|)) (-15 -2668 ($ $ $)))) (-1013)) (T -813))
+((-2668 (*1 *1 *2) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1013)))) (-2668 (*1 *1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1013)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-2684 (((-1009 |#1|) $) 61 T ELT)) (-2907 (((-584 $) (-584 $)) 104 T ELT)) (-3619 (((-484) $) 84 T ELT)) (-3720 (($) NIL T CONST)) (-3463 (((-3 $ "failed") $) NIL T ELT)) (-3768 (((-695) $) 81 T ELT)) (-2688 (((-1009 |#1|) $ |#1|) 71 T ELT)) (-2408 (((-85) $) NIL T ELT)) (-2671 (((-85) $) 89 T ELT)) (-2673 (((-695) $) 85 T ELT)) (-2529 (($ $ $) NIL (OR (|has| |#1| (-317)) (|has| |#1| (-757))) ELT)) (-2855 (($ $ $) NIL (OR (|has| |#1| (-317)) (|has| |#1| (-757))) ELT)) (-2677 (((-2 (|:| |preimage| (-584 |#1|)) (|:| |image| (-584 |#1|))) $) 56 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) 131 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2670 (((-1009 |#1|) $) 136 (|has| |#1| (-317)) ELT)) (-2672 (((-85) $) 82 T ELT)) (-3796 ((|#1| $ |#1|) 69 T ELT)) (-3944 (((-695) $) 63 T ELT)) (-2679 (($ (-584 (-584 |#1|))) 119 T ELT)) (-2674 (((-885) $) 75 T ELT)) (-2680 (($ (-584 |#1|)) 32 T ELT)) (-3007 (($ $ $) NIL T ELT)) (-2433 (($ $ $) NIL T ELT)) (-2676 (($ (-584 (-584 |#1|))) 58 T ELT)) (-2675 (($ (-584 (-584 |#1|))) 124 T ELT)) (-2669 (($ (-584 |#1|)) 133 T ELT)) (-3942 (((-773) $) 118 T ELT) (($ (-584 (-584 |#1|))) 92 T ELT) (($ (-584 |#1|)) 93 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2664 (($) 24 T CONST)) (-2564 (((-85) $ $) NIL (OR (|has| |#1| (-317)) (|has| |#1| (-757))) ELT)) (-2565 (((-85) $ $) NIL (OR (|has| |#1| (-317)) (|has| |#1| (-757))) ELT)) (-3054 (((-85) $ $) 67 T ELT)) (-2682 (((-85) $ $) NIL (OR (|has| |#1| (-317)) (|has| |#1| (-757))) ELT)) (-2683 (((-85) $ $) 91 T ELT)) (-3945 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ $ $) 33 T ELT)))
+(((-814 |#1|) (-13 (-816 |#1|) (-10 -8 (-15 -2677 ((-2 (|:| |preimage| (-584 |#1|)) (|:| |image| (-584 |#1|))) $)) (-15 -2676 ($ (-584 (-584 |#1|)))) (-15 -3942 ($ (-584 (-584 |#1|)))) (-15 -3942 ($ (-584 |#1|))) (-15 -2675 ($ (-584 (-584 |#1|)))) (-15 -3944 ((-695) $)) (-15 -2674 ((-885) $)) (-15 -3768 ((-695) $)) (-15 -2673 ((-695) $)) (-15 -3619 ((-484) $)) (-15 -2672 ((-85) $)) (-15 -2671 ((-85) $)) (-15 -2907 ((-584 $) (-584 $))) (IF (|has| |#1| (-317)) (-15 -2670 ((-1009 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-483)) (-15 -2669 ($ (-584 |#1|))) (IF (|has| |#1| (-317)) (-15 -2669 ($ (-584 |#1|))) |%noBranch|)))) (-1013)) (T -814))
+((-2677 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-584 *3)) (|:| |image| (-584 *3)))) (-5 *1 (-814 *3)) (-4 *3 (-1013)))) (-2676 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1013)) (-5 *1 (-814 *3)))) (-3942 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1013)) (-5 *1 (-814 *3)))) (-3942 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-5 *1 (-814 *3)))) (-2675 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1013)) (-5 *1 (-814 *3)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1013)))) (-2674 (*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-814 *3)) (-4 *3 (-1013)))) (-3768 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1013)))) (-2673 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1013)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-814 *3)) (-4 *3 (-1013)))) (-2672 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-814 *3)) (-4 *3 (-1013)))) (-2671 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-814 *3)) (-4 *3 (-1013)))) (-2907 (*1 *2 *2) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1013)))) (-2670 (*1 *2 *1) (-12 (-5 *2 (-1009 *3)) (-5 *1 (-814 *3)) (-4 *3 (-317)) (-4 *3 (-1013)))) (-2669 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-5 *1 (-814 *3)))))
+((-2678 ((|#2| (-1055 |#1| |#2|)) 48 T ELT)))
+(((-815 |#1| |#2|) (-10 -7 (-15 -2678 (|#2| (-1055 |#1| |#2|)))) (-831) (-13 (-962) (-10 -7 (-6 (-3993 "*"))))) (T -815))
+((-2678 (*1 *2 *3) (-12 (-5 *3 (-1055 *4 *2)) (-14 *4 (-831)) (-4 *2 (-13 (-962) (-10 -7 (-6 (-3993 "*"))))) (-5 *1 (-815 *4 *2)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-2684 (((-1009 |#1|) $) 42 T ELT)) (-3720 (($) 23 T CONST)) (-3463 (((-3 $ "failed") $) 20 T ELT)) (-2688 (((-1009 |#1|) $ |#1|) 41 T ELT)) (-2408 (((-85) $) 22 T ELT)) (-2529 (($ $ $) 35 (OR (|has| |#1| (-757)) (|has| |#1| (-317))) ELT)) (-2855 (($ $ $) 36 (OR (|has| |#1| (-757)) (|has| |#1| (-317))) ELT)) (-3239 (((-1072) $) 11 T ELT)) (-2482 (($ $) 30 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3796 ((|#1| $ |#1|) 45 T ELT)) (-2679 (($ (-584 (-584 |#1|))) 43 T ELT)) (-2680 (($ (-584 |#1|)) 44 T ELT)) (-3007 (($ $ $) 27 T ELT)) (-2433 (($ $ $) 26 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2664 (($) 24 T CONST)) (-2564 (((-85) $ $) 37 (OR (|has| |#1| (-757)) (|has| |#1| (-317))) ELT)) (-2565 (((-85) $ $) 39 (OR (|has| |#1| (-757)) (|has| |#1| (-317))) ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-2682 (((-85) $ $) 38 (OR (|has| |#1| (-757)) (|has| |#1| (-317))) ELT)) (-2683 (((-85) $ $) 40 T ELT)) (-3945 (($ $ $) 29 T ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 21 T ELT) (($ $ (-484)) 28 T ELT)) (* (($ $ $) 18 T ELT)))
+(((-816 |#1|) (-113) (-1013)) (T -816))
+((-2680 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-4 *1 (-816 *3)))) (-2679 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1013)) (-4 *1 (-816 *3)))) (-2684 (*1 *2 *1) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1013)) (-5 *2 (-1009 *3)))) (-2688 (*1 *2 *1 *3) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1013)) (-5 *2 (-1009 *3)))) (-2683 (*1 *2 *1 *1) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))))
+(-13 (-410) (-241 |t#1| |t#1|) (-10 -8 (-15 -2680 ($ (-584 |t#1|))) (-15 -2679 ($ (-584 (-584 |t#1|)))) (-15 -2684 ((-1009 |t#1|) $)) (-15 -2688 ((-1009 |t#1|) $ |t#1|)) (-15 -2683 ((-85) $ $)) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#1| (-317)) (-6 (-757)) |%noBranch|)))
+(((-72) . T) ((-553 (-773)) . T) ((-241 |#1| |#1|) . T) ((-410) . T) ((-13) . T) ((-664) . T) ((-757) OR (|has| |#1| (-757)) (|has| |#1| (-317))) ((-760) OR (|has| |#1| (-757)) (|has| |#1| (-317))) ((-1025) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-2690 (((-584 (-584 (-695))) $) 163 T ELT)) (-2686 (((-584 (-695)) (-814 |#1|) $) 191 T ELT)) (-2685 (((-584 (-695)) (-814 |#1|) $) 192 T ELT)) (-2684 (((-1009 |#1|) $) 155 T ELT)) (-2691 (((-584 (-814 |#1|)) $) 152 T ELT)) (-2992 (((-814 |#1|) $ (-484)) 157 T ELT) (((-814 |#1|) $) 158 T ELT)) (-2689 (($ (-584 (-814 |#1|))) 165 T ELT)) (-3768 (((-695) $) 159 T ELT)) (-2687 (((-1009 (-1009 |#1|)) $) 189 T ELT)) (-2688 (((-1009 |#1|) $ |#1|) 180 T ELT) (((-1009 (-1009 |#1|)) $ (-1009 |#1|)) 201 T ELT) (((-1009 (-584 |#1|)) $ (-584 |#1|)) 204 T ELT)) (-3242 (((-85) (-814 |#1|) $) 140 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2681 (((-1184) $) 145 T ELT) (((-1184) $ (-484) (-484)) 205 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2693 (((-584 (-814 |#1|)) $) 146 T ELT)) (-3796 (((-814 |#1|) $ (-695)) 153 T ELT)) (-3944 (((-695) $) 160 T ELT)) (-3942 (((-773) $) 177 T ELT) (((-584 (-814 |#1|)) $) 28 T ELT) (($ (-584 (-814 |#1|))) 164 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2692 (((-584 |#1|) $) 162 T ELT)) (-3054 (((-85) $ $) 198 T ELT)) (-2682 (((-85) $ $) 195 T ELT)) (-2683 (((-85) $ $) 194 T ELT)))
+(((-817 |#1|) (-13 (-1013) (-10 -8 (-15 -3942 ((-584 (-814 |#1|)) $)) (-15 -2693 ((-584 (-814 |#1|)) $)) (-15 -3796 ((-814 |#1|) $ (-695))) (-15 -2992 ((-814 |#1|) $ (-484))) (-15 -2992 ((-814 |#1|) $)) (-15 -3768 ((-695) $)) (-15 -3944 ((-695) $)) (-15 -2692 ((-584 |#1|) $)) (-15 -2691 ((-584 (-814 |#1|)) $)) (-15 -2690 ((-584 (-584 (-695))) $)) (-15 -3942 ($ (-584 (-814 |#1|)))) (-15 -2689 ($ (-584 (-814 |#1|)))) (-15 -2688 ((-1009 |#1|) $ |#1|)) (-15 -2687 ((-1009 (-1009 |#1|)) $)) (-15 -2688 ((-1009 (-1009 |#1|)) $ (-1009 |#1|))) (-15 -2688 ((-1009 (-584 |#1|)) $ (-584 |#1|))) (-15 -3242 ((-85) (-814 |#1|) $)) (-15 -2686 ((-584 (-695)) (-814 |#1|) $)) (-15 -2685 ((-584 (-695)) (-814 |#1|) $)) (-15 -2684 ((-1009 |#1|) $)) (-15 -2683 ((-85) $ $)) (-15 -2682 ((-85) $ $)) (-15 -2681 ((-1184) $)) (-15 -2681 ((-1184) $ (-484) (-484))))) (-1013)) (T -817))
+((-3942 (*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1013)))) (-2693 (*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1013)))) (-3796 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-814 *4)) (-5 *1 (-817 *4)) (-4 *4 (-1013)))) (-2992 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *2 (-814 *4)) (-5 *1 (-817 *4)) (-4 *4 (-1013)))) (-2992 (*1 *2 *1) (-12 (-5 *2 (-814 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1013)))) (-3768 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-817 *3)) (-4 *3 (-1013)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-817 *3)) (-4 *3 (-1013)))) (-2692 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1013)))) (-2691 (*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1013)))) (-2690 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-695)))) (-5 *1 (-817 *3)) (-4 *3 (-1013)))) (-3942 (*1 *1 *2) (-12 (-5 *2 (-584 (-814 *3))) (-4 *3 (-1013)) (-5 *1 (-817 *3)))) (-2689 (*1 *1 *2) (-12 (-5 *2 (-584 (-814 *3))) (-4 *3 (-1013)) (-5 *1 (-817 *3)))) (-2688 (*1 *2 *1 *3) (-12 (-5 *2 (-1009 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1013)))) (-2687 (*1 *2 *1) (-12 (-5 *2 (-1009 (-1009 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1013)))) (-2688 (*1 *2 *1 *3) (-12 (-4 *4 (-1013)) (-5 *2 (-1009 (-1009 *4))) (-5 *1 (-817 *4)) (-5 *3 (-1009 *4)))) (-2688 (*1 *2 *1 *3) (-12 (-4 *4 (-1013)) (-5 *2 (-1009 (-584 *4))) (-5 *1 (-817 *4)) (-5 *3 (-584 *4)))) (-3242 (*1 *2 *3 *1) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1013)) (-5 *2 (-85)) (-5 *1 (-817 *4)))) (-2686 (*1 *2 *3 *1) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1013)) (-5 *2 (-584 (-695))) (-5 *1 (-817 *4)))) (-2685 (*1 *2 *3 *1) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1013)) (-5 *2 (-584 (-695))) (-5 *1 (-817 *4)))) (-2684 (*1 *2 *1) (-12 (-5 *2 (-1009 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1013)))) (-2683 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-817 *3)) (-4 *3 (-1013)))) (-2682 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-817 *3)) (-4 *3 (-1013)))) (-2681 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-817 *3)) (-4 *3 (-1013)))) (-2681 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-817 *4)) (-4 *4 (-1013)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-3928 (((-85) $) NIL T ELT)) (-3925 (((-695)) NIL T ELT)) (-3326 (($ $ (-831)) NIL (|has| $ (-317)) ELT) (($ $) NIL T ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3771 (($ $) NIL T ELT)) (-3967 (((-345 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3133 (((-695)) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 $ #1#) $) NIL T ELT)) (-3153 (($ $) NIL T ELT)) (-1790 (($ (-1178 $)) NIL T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2992 (($) NIL T ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-2831 (($) NIL T ELT)) (-1678 (((-85) $) NIL T ELT)) (-1762 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3719 (((-85) $) NIL T ELT)) (-3768 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-2408 (((-85) $) NIL T ELT)) (-2011 (($) NIL (|has| $ (-317)) ELT)) (-2009 (((-85) $) NIL (|has| $ (-317)) ELT)) (-3129 (($ $ (-831)) NIL (|has| $ (-317)) ELT) (($ $) NIL T ELT)) (-3441 (((-633 $) $) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2012 (((-1084 $) $ (-831)) NIL (|has| $ (-317)) ELT) (((-1084 $) $) NIL T ELT)) (-2008 (((-831) $) NIL T ELT)) (-1625 (((-1084 $) $) NIL (|has| $ (-317)) ELT)) (-1624 (((-3 (-1084 $) #1#) $ $) NIL (|has| $ (-317)) ELT) (((-1084 $) $) NIL (|has| $ (-317)) ELT)) (-1626 (($ $ (-1084 $)) NIL (|has| $ (-317)) ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) NIL T ELT)) (-3442 (($) NIL T CONST)) (-2398 (($ (-831)) NIL T ELT)) (-3927 (((-85) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2407 (($) NIL (|has| $ (-317)) ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1674 (((-584 (-2 (|:| -3728 (-484)) (|:| -2399 (-484))))) NIL T ELT)) (-3728 (((-345 $) $) NIL T ELT)) (-3926 (((-831)) NIL T ELT) (((-744 (-831))) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-1763 (((-3 (-695) #1#) $ $) NIL T ELT) (((-695) $) NIL T ELT)) (-3907 (((-107)) NIL T ELT)) (-3754 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3944 (((-831) $) NIL T ELT) (((-744 (-831)) $) NIL T ELT)) (-3182 (((-1084 $)) NIL T ELT)) (-1672 (($) NIL T ELT)) (-1627 (($) NIL (|has| $ (-317)) ELT)) (-3221 (((-631 $) (-1178 $)) NIL T ELT) (((-1178 $) $) NIL T ELT)) (-3968 (((-484) $) NIL T ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT)) (-2700 (((-633 $) $) NIL T ELT) (($ $) NIL T ELT)) (-3123 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2010 (((-1178 $) (-831)) NIL T ELT) (((-1178 $)) NIL T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-3929 (((-85) $) NIL T ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-3924 (($ $ (-695)) NIL (|has| $ (-317)) ELT) (($ $) NIL (|has| $ (-317)) ELT)) (-2667 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ $) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT)))
+(((-818 |#1|) (-13 (-298) (-279 $) (-554 (-484))) (-831)) (T -818))
+NIL
+((-2695 (((-3 (-584 (-1084 |#4|)) #1="failed") (-584 (-1084 |#4|)) (-1084 |#4|)) 164 T ELT)) (-2698 ((|#1|) 101 T ELT)) (-2697 (((-345 (-1084 |#4|)) (-1084 |#4|)) 173 T ELT)) (-2699 (((-345 (-1084 |#4|)) (-584 |#3|) (-1084 |#4|)) 83 T ELT)) (-2696 (((-345 (-1084 |#4|)) (-1084 |#4|)) 183 T ELT)) (-2694 (((-3 (-584 (-1084 |#4|)) #1#) (-584 (-1084 |#4|)) (-1084 |#4|) |#3|) 117 T ELT)))
+(((-819 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2695 ((-3 (-584 (-1084 |#4|)) #1="failed") (-584 (-1084 |#4|)) (-1084 |#4|))) (-15 -2696 ((-345 (-1084 |#4|)) (-1084 |#4|))) (-15 -2697 ((-345 (-1084 |#4|)) (-1084 |#4|))) (-15 -2698 (|#1|)) (-15 -2694 ((-3 (-584 (-1084 |#4|)) #1#) (-584 (-1084 |#4|)) (-1084 |#4|) |#3|)) (-15 -2699 ((-345 (-1084 |#4|)) (-584 |#3|) (-1084 |#4|)))) (-822) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -819))
+((-2699 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *7)) (-4 *7 (-757)) (-4 *5 (-822)) (-4 *6 (-718)) (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-345 (-1084 *8))) (-5 *1 (-819 *5 *6 *7 *8)) (-5 *4 (-1084 *8)))) (-2694 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-584 (-1084 *7))) (-5 *3 (-1084 *7)) (-4 *7 (-862 *5 *6 *4)) (-4 *5 (-822)) (-4 *6 (-718)) (-4 *4 (-757)) (-5 *1 (-819 *5 *6 *4 *7)))) (-2698 (*1 *2) (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-822)) (-5 *1 (-819 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-2697 (*1 *2 *3) (-12 (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-345 (-1084 *7))) (-5 *1 (-819 *4 *5 *6 *7)) (-5 *3 (-1084 *7)))) (-2696 (*1 *2 *3) (-12 (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-345 (-1084 *7))) (-5 *1 (-819 *4 *5 *6 *7)) (-5 *3 (-1084 *7)))) (-2695 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1084 *7))) (-5 *3 (-1084 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-819 *4 *5 *6 *7)))))
+((-2695 (((-3 (-584 (-1084 |#2|)) "failed") (-584 (-1084 |#2|)) (-1084 |#2|)) 39 T ELT)) (-2698 ((|#1|) 71 T ELT)) (-2697 (((-345 (-1084 |#2|)) (-1084 |#2|)) 125 T ELT)) (-2699 (((-345 (-1084 |#2|)) (-1084 |#2|)) 109 T ELT)) (-2696 (((-345 (-1084 |#2|)) (-1084 |#2|)) 136 T ELT)))
+(((-820 |#1| |#2|) (-10 -7 (-15 -2695 ((-3 (-584 (-1084 |#2|)) "failed") (-584 (-1084 |#2|)) (-1084 |#2|))) (-15 -2696 ((-345 (-1084 |#2|)) (-1084 |#2|))) (-15 -2697 ((-345 (-1084 |#2|)) (-1084 |#2|))) (-15 -2698 (|#1|)) (-15 -2699 ((-345 (-1084 |#2|)) (-1084 |#2|)))) (-822) (-1154 |#1|)) (T -820))
+((-2699 (*1 *2 *3) (-12 (-4 *4 (-822)) (-4 *5 (-1154 *4)) (-5 *2 (-345 (-1084 *5))) (-5 *1 (-820 *4 *5)) (-5 *3 (-1084 *5)))) (-2698 (*1 *2) (-12 (-4 *2 (-822)) (-5 *1 (-820 *2 *3)) (-4 *3 (-1154 *2)))) (-2697 (*1 *2 *3) (-12 (-4 *4 (-822)) (-4 *5 (-1154 *4)) (-5 *2 (-345 (-1084 *5))) (-5 *1 (-820 *4 *5)) (-5 *3 (-1084 *5)))) (-2696 (*1 *2 *3) (-12 (-4 *4 (-822)) (-4 *5 (-1154 *4)) (-5 *2 (-345 (-1084 *5))) (-5 *1 (-820 *4 *5)) (-5 *3 (-1084 *5)))) (-2695 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1084 *5))) (-5 *3 (-1084 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-822)) (-5 *1 (-820 *4 *5)))))
+((-2702 (((-3 (-584 (-1084 $)) "failed") (-584 (-1084 $)) (-1084 $)) 46 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 18 T ELT)) (-2700 (((-633 $) $) 40 T ELT)))
+(((-821 |#1|) (-10 -7 (-15 -2700 ((-633 |#1|) |#1|)) (-15 -2702 ((-3 (-584 (-1084 |#1|)) "failed") (-584 (-1084 |#1|)) (-1084 |#1|))) (-15 -2706 ((-1084 |#1|) (-1084 |#1|) (-1084 |#1|)))) (-822)) (T -821))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 53 T ELT)) (-2061 (($ $) 52 T ELT)) (-2059 (((-85) $) 50 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) 73 T ELT)) (-3771 (($ $) 64 T ELT)) (-3967 (((-345 $) $) 65 T ELT)) (-2702 (((-3 (-584 (-1084 $)) "failed") (-584 (-1084 $)) (-1084 $)) 70 T ELT)) (-3720 (($) 22 T CONST)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-3719 (((-85) $) 66 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3141 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) 71 T ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) 72 T ELT)) (-3728 (((-345 $) $) 63 T ELT)) (-3462 (((-3 $ "failed") $ $) 54 T ELT)) (-2701 (((-3 (-1178 $) "failed") (-631 $)) 69 (|has| $ (-118)) ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT)) (-2700 (((-633 $) $) 68 (|has| $ (-118)) ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2060 (((-85) $ $) 51 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT)))
+(((-822) (-113)) (T -822))
+((-2706 (*1 *2 *2 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-822)))) (-2705 (*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-345 (-1084 *1))) (-5 *3 (-1084 *1)))) (-2704 (*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-345 (-1084 *1))) (-5 *3 (-1084 *1)))) (-2703 (*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-345 (-1084 *1))) (-5 *3 (-1084 *1)))) (-2702 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1084 *1))) (-5 *3 (-1084 *1)) (-4 *1 (-822)))) (-2701 (*1 *2 *3) (|partial| -12 (-5 *3 (-631 *1)) (-4 *1 (-118)) (-4 *1 (-822)) (-5 *2 (-1178 *1)))) (-2700 (*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-118)) (-4 *1 (-822)))))
+(-13 (-1133) (-10 -8 (-15 -2705 ((-345 (-1084 $)) (-1084 $))) (-15 -2704 ((-345 (-1084 $)) (-1084 $))) (-15 -2703 ((-345 (-1084 $)) (-1084 $))) (-15 -2706 ((-1084 $) (-1084 $) (-1084 $))) (-15 -2702 ((-3 (-584 (-1084 $)) "failed") (-584 (-1084 $)) (-1084 $))) (IF (|has| $ (-118)) (PROGN (-15 -2701 ((-3 (-1178 $) "failed") (-631 $))) (-15 -2700 ((-633 $) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-484)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-245) . T) ((-389) . T) ((-495) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T))
+((-2708 (((-3 (-2 (|:| -3768 (-695)) (|:| -2381 |#5|)) #1="failed") (-282 |#2| |#3| |#4| |#5|)) 78 T ELT)) (-2707 (((-85) (-282 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-3768 (((-3 (-695) #1#) (-282 |#2| |#3| |#4| |#5|)) 15 T ELT)))
+(((-823 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3768 ((-3 (-695) #1="failed") (-282 |#2| |#3| |#4| |#5|))) (-15 -2707 ((-85) (-282 |#2| |#3| |#4| |#5|))) (-15 -2708 ((-3 (-2 (|:| -3768 (-695)) (|:| -2381 |#5|)) #1#) (-282 |#2| |#3| |#4| |#5|)))) (-13 (-495) (-951 (-484))) (-361 |#1|) (-1154 |#2|) (-1154 (-347 |#3|)) (-290 |#2| |#3| |#4|)) (T -823))
+((-2708 (*1 *2 *3) (|partial| -12 (-5 *3 (-282 *5 *6 *7 *8)) (-4 *5 (-361 *4)) (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-347 *6))) (-4 *8 (-290 *5 *6 *7)) (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *2 (-2 (|:| -3768 (-695)) (|:| -2381 *8))) (-5 *1 (-823 *4 *5 *6 *7 *8)))) (-2707 (*1 *2 *3) (-12 (-5 *3 (-282 *5 *6 *7 *8)) (-4 *5 (-361 *4)) (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-347 *6))) (-4 *8 (-290 *5 *6 *7)) (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *2 (-85)) (-5 *1 (-823 *4 *5 *6 *7 *8)))) (-3768 (*1 *2 *3) (|partial| -12 (-5 *3 (-282 *5 *6 *7 *8)) (-4 *5 (-361 *4)) (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-347 *6))) (-4 *8 (-290 *5 *6 *7)) (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *2 (-695)) (-5 *1 (-823 *4 *5 *6 *7 *8)))))
+((-2708 (((-3 (-2 (|:| -3768 (-695)) (|:| -2381 |#3|)) #1="failed") (-282 (-347 (-484)) |#1| |#2| |#3|)) 64 T ELT)) (-2707 (((-85) (-282 (-347 (-484)) |#1| |#2| |#3|)) 16 T ELT)) (-3768 (((-3 (-695) #1#) (-282 (-347 (-484)) |#1| |#2| |#3|)) 14 T ELT)))
+(((-824 |#1| |#2| |#3|) (-10 -7 (-15 -3768 ((-3 (-695) #1="failed") (-282 (-347 (-484)) |#1| |#2| |#3|))) (-15 -2707 ((-85) (-282 (-347 (-484)) |#1| |#2| |#3|))) (-15 -2708 ((-3 (-2 (|:| -3768 (-695)) (|:| -2381 |#3|)) #1#) (-282 (-347 (-484)) |#1| |#2| |#3|)))) (-1154 (-347 (-484))) (-1154 (-347 |#1|)) (-290 (-347 (-484)) |#1| |#2|)) (T -824))
+((-2708 (*1 *2 *3) (|partial| -12 (-5 *3 (-282 (-347 (-484)) *4 *5 *6)) (-4 *4 (-1154 (-347 (-484)))) (-4 *5 (-1154 (-347 *4))) (-4 *6 (-290 (-347 (-484)) *4 *5)) (-5 *2 (-2 (|:| -3768 (-695)) (|:| -2381 *6))) (-5 *1 (-824 *4 *5 *6)))) (-2707 (*1 *2 *3) (-12 (-5 *3 (-282 (-347 (-484)) *4 *5 *6)) (-4 *4 (-1154 (-347 (-484)))) (-4 *5 (-1154 (-347 *4))) (-4 *6 (-290 (-347 (-484)) *4 *5)) (-5 *2 (-85)) (-5 *1 (-824 *4 *5 *6)))) (-3768 (*1 *2 *3) (|partial| -12 (-5 *3 (-282 (-347 (-484)) *4 *5 *6)) (-4 *4 (-1154 (-347 (-484)))) (-4 *5 (-1154 (-347 *4))) (-4 *6 (-290 (-347 (-484)) *4 *5)) (-5 *2 (-695)) (-5 *1 (-824 *4 *5 *6)))))
+((-2713 ((|#2| |#2|) 26 T ELT)) (-2711 (((-484) (-584 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484))))) 15 T ELT)) (-2709 (((-831) (-484)) 38 T ELT)) (-2712 (((-484) |#2|) 45 T ELT)) (-2710 (((-484) |#2|) 21 T ELT) (((-2 (|:| |den| (-484)) (|:| |gcdnum| (-484))) |#1|) 20 T ELT)))
+(((-825 |#1| |#2|) (-10 -7 (-15 -2709 ((-831) (-484))) (-15 -2710 ((-2 (|:| |den| (-484)) (|:| |gcdnum| (-484))) |#1|)) (-15 -2710 ((-484) |#2|)) (-15 -2711 ((-484) (-584 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484)))))) (-15 -2712 ((-484) |#2|)) (-15 -2713 (|#2| |#2|))) (-1154 (-347 (-484))) (-1154 (-347 |#1|))) (T -825))
+((-2713 (*1 *2 *2) (-12 (-4 *3 (-1154 (-347 (-484)))) (-5 *1 (-825 *3 *2)) (-4 *2 (-1154 (-347 *3))))) (-2712 (*1 *2 *3) (-12 (-4 *4 (-1154 (-347 *2))) (-5 *2 (-484)) (-5 *1 (-825 *4 *3)) (-4 *3 (-1154 (-347 *4))))) (-2711 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484))))) (-4 *4 (-1154 (-347 *2))) (-5 *2 (-484)) (-5 *1 (-825 *4 *5)) (-4 *5 (-1154 (-347 *4))))) (-2710 (*1 *2 *3) (-12 (-4 *4 (-1154 (-347 *2))) (-5 *2 (-484)) (-5 *1 (-825 *4 *3)) (-4 *3 (-1154 (-347 *4))))) (-2710 (*1 *2 *3) (-12 (-4 *3 (-1154 (-347 (-484)))) (-5 *2 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484)))) (-5 *1 (-825 *3 *4)) (-4 *4 (-1154 (-347 *3))))) (-2709 (*1 *2 *3) (-12 (-5 *3 (-484)) (-4 *4 (-1154 (-347 *3))) (-5 *2 (-831)) (-5 *1 (-825 *4 *5)) (-4 *5 (-1154 (-347 *4))))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3126 ((|#1| $) 99 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3771 (($ $) NIL T ELT)) (-3967 (((-345 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-2562 (($ $ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) 93 T ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-3719 (((-85) $) NIL T ELT)) (-2721 (($ |#1| (-345 |#1|)) 91 T ELT)) (-2715 (((-1084 |#1|) |#1| |#1|) 52 T ELT)) (-2714 (($ $) 60 T ELT)) (-2408 (((-85) $) NIL T ELT)) (-2716 (((-484) $) 96 T ELT)) (-2717 (($ $ (-484)) 98 T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-2718 ((|#1| $) 95 T ELT)) (-2719 (((-345 |#1|) $) 94 T ELT)) (-3728 (((-345 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) 92 T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-2720 (($ $) 49 T ELT)) (-3942 (((-773) $) 123 T ELT) (($ (-484)) 72 T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ |#1|) 40 T ELT) (((-347 |#1|) $) 77 T ELT) (($ (-347 (-345 |#1|))) 85 T ELT)) (-3123 (((-695)) 70 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-2658 (($) 24 T CONST)) (-2664 (($) 12 T CONST)) (-3054 (((-85) $ $) 86 T ELT)) (-3945 (($ $ $) NIL T ELT)) (-3833 (($ $) 107 T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) 48 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 109 T ELT) (($ $ $) 47 T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ |#1| $) 108 T ELT) (($ $ |#1|) NIL T ELT)))
+(((-826 |#1|) (-13 (-311) (-38 |#1|) (-10 -8 (-15 -3942 ((-347 |#1|) $)) (-15 -3942 ($ (-347 (-345 |#1|)))) (-15 -2720 ($ $)) (-15 -2719 ((-345 |#1|) $)) (-15 -2718 (|#1| $)) (-15 -2717 ($ $ (-484))) (-15 -2716 ((-484) $)) (-15 -2715 ((-1084 |#1|) |#1| |#1|)) (-15 -2714 ($ $)) (-15 -2721 ($ |#1| (-345 |#1|))) (-15 -3126 (|#1| $)))) (-257)) (T -826))
+((-3942 (*1 *2 *1) (-12 (-5 *2 (-347 *3)) (-5 *1 (-826 *3)) (-4 *3 (-257)))) (-3942 (*1 *1 *2) (-12 (-5 *2 (-347 (-345 *3))) (-4 *3 (-257)) (-5 *1 (-826 *3)))) (-2720 (*1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-257)))) (-2719 (*1 *2 *1) (-12 (-5 *2 (-345 *3)) (-5 *1 (-826 *3)) (-4 *3 (-257)))) (-2718 (*1 *2 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-257)))) (-2717 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-826 *3)) (-4 *3 (-257)))) (-2716 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-826 *3)) (-4 *3 (-257)))) (-2715 (*1 *2 *3 *3) (-12 (-5 *2 (-1084 *3)) (-5 *1 (-826 *3)) (-4 *3 (-257)))) (-2714 (*1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-257)))) (-2721 (*1 *1 *2 *3) (-12 (-5 *3 (-345 *2)) (-4 *2 (-257)) (-5 *1 (-826 *2)))) (-3126 (*1 *2 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-257)))))
+((-2721 (((-51) (-858 |#1|) (-345 (-858 |#1|)) (-1089)) 17 T ELT) (((-51) (-347 (-858 |#1|)) (-1089)) 18 T ELT)))
+(((-827 |#1|) (-10 -7 (-15 -2721 ((-51) (-347 (-858 |#1|)) (-1089))) (-15 -2721 ((-51) (-858 |#1|) (-345 (-858 |#1|)) (-1089)))) (-13 (-257) (-120))) (T -827))
+((-2721 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-345 (-858 *6))) (-5 *5 (-1089)) (-5 *3 (-858 *6)) (-4 *6 (-13 (-257) (-120))) (-5 *2 (-51)) (-5 *1 (-827 *6)))) (-2721 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-51)) (-5 *1 (-827 *5)))))
+((-2722 ((|#4| (-584 |#4|)) 148 T ELT) (((-1084 |#4|) (-1084 |#4|) (-1084 |#4|)) 85 T ELT) ((|#4| |#4| |#4|) 147 T ELT)) (-3141 (((-1084 |#4|) (-584 (-1084 |#4|))) 141 T ELT) (((-1084 |#4|) (-1084 |#4|) (-1084 |#4|)) 61 T ELT) ((|#4| (-584 |#4|)) 70 T ELT) ((|#4| |#4| |#4|) 108 T ELT)))
+(((-828 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3141 (|#4| |#4| |#4|)) (-15 -3141 (|#4| (-584 |#4|))) (-15 -3141 ((-1084 |#4|) (-1084 |#4|) (-1084 |#4|))) (-15 -3141 ((-1084 |#4|) (-584 (-1084 |#4|)))) (-15 -2722 (|#4| |#4| |#4|)) (-15 -2722 ((-1084 |#4|) (-1084 |#4|) (-1084 |#4|))) (-15 -2722 (|#4| (-584 |#4|)))) (-718) (-757) (-257) (-862 |#3| |#1| |#2|)) (T -828))
+((-2722 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *6 *4 *5)) (-5 *1 (-828 *4 *5 *6 *2)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)))) (-2722 (*1 *2 *2 *2) (-12 (-5 *2 (-1084 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-257)) (-5 *1 (-828 *3 *4 *5 *6)))) (-2722 (*1 *2 *2 *2) (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-257)) (-5 *1 (-828 *3 *4 *5 *2)) (-4 *2 (-862 *5 *3 *4)))) (-3141 (*1 *2 *3) (-12 (-5 *3 (-584 (-1084 *7))) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)) (-5 *2 (-1084 *7)) (-5 *1 (-828 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-3141 (*1 *2 *2 *2) (-12 (-5 *2 (-1084 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-257)) (-5 *1 (-828 *3 *4 *5 *6)))) (-3141 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *6 *4 *5)) (-5 *1 (-828 *4 *5 *6 *2)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)))) (-3141 (*1 *2 *2 *2) (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-257)) (-5 *1 (-828 *3 *4 *5 *2)) (-4 *2 (-862 *5 *3 *4)))))
+((-2735 (((-817 (-484)) (-885)) 38 T ELT) (((-817 (-484)) (-584 (-484))) 34 T ELT)) (-2723 (((-817 (-484)) (-584 (-484))) 66 T ELT) (((-817 (-484)) (-831)) 67 T ELT)) (-2734 (((-817 (-484))) 39 T ELT)) (-2732 (((-817 (-484))) 53 T ELT) (((-817 (-484)) (-584 (-484))) 52 T ELT)) (-2731 (((-817 (-484))) 51 T ELT) (((-817 (-484)) (-584 (-484))) 50 T ELT)) (-2730 (((-817 (-484))) 49 T ELT) (((-817 (-484)) (-584 (-484))) 48 T ELT)) (-2729 (((-817 (-484))) 47 T ELT) (((-817 (-484)) (-584 (-484))) 46 T ELT)) (-2728 (((-817 (-484))) 45 T ELT) (((-817 (-484)) (-584 (-484))) 44 T ELT)) (-2733 (((-817 (-484))) 55 T ELT) (((-817 (-484)) (-584 (-484))) 54 T ELT)) (-2727 (((-817 (-484)) (-584 (-484))) 71 T ELT) (((-817 (-484)) (-831)) 73 T ELT)) (-2726 (((-817 (-484)) (-584 (-484))) 68 T ELT) (((-817 (-484)) (-831)) 69 T ELT)) (-2724 (((-817 (-484)) (-584 (-484))) 64 T ELT) (((-817 (-484)) (-831)) 65 T ELT)) (-2725 (((-817 (-484)) (-584 (-831))) 57 T ELT)))
+(((-829) (-10 -7 (-15 -2723 ((-817 (-484)) (-831))) (-15 -2723 ((-817 (-484)) (-584 (-484)))) (-15 -2724 ((-817 (-484)) (-831))) (-15 -2724 ((-817 (-484)) (-584 (-484)))) (-15 -2725 ((-817 (-484)) (-584 (-831)))) (-15 -2726 ((-817 (-484)) (-831))) (-15 -2726 ((-817 (-484)) (-584 (-484)))) (-15 -2727 ((-817 (-484)) (-831))) (-15 -2727 ((-817 (-484)) (-584 (-484)))) (-15 -2728 ((-817 (-484)) (-584 (-484)))) (-15 -2728 ((-817 (-484)))) (-15 -2729 ((-817 (-484)) (-584 (-484)))) (-15 -2729 ((-817 (-484)))) (-15 -2730 ((-817 (-484)) (-584 (-484)))) (-15 -2730 ((-817 (-484)))) (-15 -2731 ((-817 (-484)) (-584 (-484)))) (-15 -2731 ((-817 (-484)))) (-15 -2732 ((-817 (-484)) (-584 (-484)))) (-15 -2732 ((-817 (-484)))) (-15 -2733 ((-817 (-484)) (-584 (-484)))) (-15 -2733 ((-817 (-484)))) (-15 -2734 ((-817 (-484)))) (-15 -2735 ((-817 (-484)) (-584 (-484)))) (-15 -2735 ((-817 (-484)) (-885))))) (T -829))
+((-2735 (*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2735 (*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2734 (*1 *2) (-12 (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2733 (*1 *2) (-12 (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2732 (*1 *2) (-12 (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2731 (*1 *2) (-12 (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2730 (*1 *2) (-12 (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2729 (*1 *2) (-12 (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2728 (*1 *2) (-12 (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2726 (*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2726 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2724 (*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2724 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2723 (*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))) (-2723 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-484))) (-5 *1 (-829)))))
+((-2737 (((-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1089))) 14 T ELT)) (-2736 (((-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1089))) 13 T ELT)))
+(((-830 |#1|) (-10 -7 (-15 -2736 ((-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1089)))) (-15 -2737 ((-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1089))))) (-389)) (T -830))
+((-2737 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-858 *4))) (-5 *3 (-584 (-1089))) (-4 *4 (-389)) (-5 *1 (-830 *4)))) (-2736 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-858 *4))) (-5 *3 (-584 (-1089))) (-4 *4 (-389)) (-5 *1 (-830 *4)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3463 (((-3 $ "failed") $) NIL T ELT)) (-2408 (((-85) $) NIL T ELT)) (-2529 (($ $ $) NIL T ELT)) (-2855 (($ $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3141 (($ $ $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2664 (($) NIL T CONST)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ $ $) NIL T ELT)))
+(((-831) (-13 (-719) (-664) (-10 -8 (-15 -3141 ($ $ $)) (-6 (-3993 "*"))))) (T -831))
+((-3141 (*1 *1 *1 *1) (-5 *1 (-831))))
+((-695) (|%ilt| 0 |#1|))
+((-3942 (((-264 |#1|) (-414)) 16 T ELT)))
+(((-832 |#1|) (-10 -7 (-15 -3942 ((-264 |#1|) (-414)))) (-495)) (T -832))
+((-3942 (*1 *2 *3) (-12 (-5 *3 (-414)) (-5 *2 (-264 *4)) (-5 *1 (-832 *4)) (-4 *4 (-495)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 53 T ELT)) (-2061 (($ $) 52 T ELT)) (-2059 (((-85) $) 50 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) 64 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3141 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3462 (((-3 $ "failed") $ $) 54 T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) 63 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2060 (((-85) $ $) 51 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT)))
+(((-833) (-113)) (T -833))
+((-2739 (*1 *2 *3) (-12 (-4 *1 (-833)) (-5 *2 (-2 (|:| -3950 (-584 *1)) (|:| -2407 *1))) (-5 *3 (-584 *1)))) (-2738 (*1 *2 *3 *1) (-12 (-4 *1 (-833)) (-5 *2 (-633 (-584 *1))) (-5 *3 (-584 *1)))))
+(-13 (-389) (-10 -8 (-15 -2739 ((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $))) (-15 -2738 ((-633 (-584 $)) (-584 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-484)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-245) . T) ((-389) . T) ((-495) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
+((-3103 (((-1084 |#2|) (-584 |#2|) (-584 |#2|)) 17 T ELT) (((-1147 |#1| |#2|) (-1147 |#1| |#2|) (-584 |#2|) (-584 |#2|)) 13 T ELT)))
+(((-834 |#1| |#2|) (-10 -7 (-15 -3103 ((-1147 |#1| |#2|) (-1147 |#1| |#2|) (-584 |#2|) (-584 |#2|))) (-15 -3103 ((-1084 |#2|) (-584 |#2|) (-584 |#2|)))) (-1089) (-311)) (T -834))
+((-3103 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *5)) (-4 *5 (-311)) (-5 *2 (-1084 *5)) (-5 *1 (-834 *4 *5)) (-14 *4 (-1089)))) (-3103 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1147 *4 *5)) (-5 *3 (-584 *5)) (-14 *4 (-1089)) (-4 *5 (-311)) (-5 *1 (-834 *4 *5)))))
+((-2740 ((|#2| (-584 |#1|) (-584 |#1|)) 28 T ELT)))
+(((-835 |#1| |#2|) (-10 -7 (-15 -2740 (|#2| (-584 |#1|) (-584 |#1|)))) (-311) (-1154 |#1|)) (T -835))
+((-2740 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-311)) (-4 *2 (-1154 *4)) (-5 *1 (-835 *4 *2)))))
+((-2742 (((-484) (-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2010 (-584 (-1178 (-347 (-858 |#1|))))))))) (-1072)) 175 T ELT)) (-2761 ((|#4| |#4|) 194 T ELT)) (-2746 (((-584 (-347 (-858 |#1|))) (-584 (-1089))) 146 T ELT)) (-2760 (((-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2010 (-584 (-1178 (-347 (-858 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484)))) (-631 |#4|) (-584 (-347 (-858 |#1|))) (-584 (-584 |#4|)) (-695) (-695) (-484)) 88 T ELT)) (-2750 (((-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2010 (-584 (-1178 (-347 (-858 |#1|)))))) (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2010 (-584 (-1178 (-347 (-858 |#1|)))))) (-584 |#4|)) 69 T ELT)) (-2759 (((-631 |#4|) (-631 |#4|) (-584 |#4|)) 65 T ELT)) (-2743 (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2010 (-584 (-1178 (-347 (-858 |#1|))))))))) (-1072)) 187 T ELT)) (-2741 (((-484) (-631 |#4|) (-831) (-1072)) 167 T ELT) (((-484) (-631 |#4|) (-584 (-1089)) (-831) (-1072)) 166 T ELT) (((-484) (-631 |#4|) (-584 |#4|) (-831) (-1072)) 165 T ELT) (((-484) (-631 |#4|) (-1072)) 154 T ELT) (((-484) (-631 |#4|) (-584 (-1089)) (-1072)) 153 T ELT) (((-484) (-631 |#4|) (-584 |#4|) (-1072)) 152 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2010 (-584 (-1178 (-347 (-858 |#1|))))))))) (-631 |#4|) (-831)) 151 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2010 (-584 (-1178 (-347 (-858 |#1|))))))))) (-631 |#4|) (-584 (-1089)) (-831)) 150 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2010 (-584 (-1178 (-347 (-858 |#1|))))))))) (-631 |#4|) (-584 |#4|) (-831)) 149 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2010 (-584 (-1178 (-347 (-858 |#1|))))))))) (-631 |#4|)) 148 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2010 (-584 (-1178 (-347 (-858 |#1|))))))))) (-631 |#4|) (-584 (-1089))) 147 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2010 (-584 (-1178 (-347 (-858 |#1|))))))))) (-631 |#4|) (-584 |#4|)) 143 T ELT)) (-2747 ((|#4| (-858 |#1|)) 80 T ELT)) (-2757 (((-85) (-584 |#4|) (-584 (-584 |#4|))) 191 T ELT)) (-2756 (((-584 (-584 (-484))) (-484) (-484)) 161 T ELT)) (-2755 (((-584 (-584 |#4|)) (-584 (-584 |#4|))) 106 T ELT)) (-2754 (((-695) (-584 (-2 (|:| -3106 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484)))))) (|:| |fgb| (-584 |#4|))))) 100 T ELT)) (-2753 (((-695) (-584 (-2 (|:| -3106 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484)))))) (|:| |fgb| (-584 |#4|))))) 99 T ELT)) (-2762 (((-85) (-584 (-858 |#1|))) 19 T ELT) (((-85) (-584 |#4|)) 15 T ELT)) (-2748 (((-2 (|:| |sysok| (-85)) (|:| |z0| (-584 |#4|)) (|:| |n0| (-584 |#4|))) (-584 |#4|) (-584 |#4|)) 84 T ELT)) (-2752 (((-584 |#4|) |#4|) 57 T ELT)) (-2745 (((-584 (-347 (-858 |#1|))) (-584 |#4|)) 142 T ELT) (((-631 (-347 (-858 |#1|))) (-631 |#4|)) 66 T ELT) (((-347 (-858 |#1|)) |#4|) 139 T ELT)) (-2744 (((-2 (|:| |rgl| (-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2010 (-584 (-1178 (-347 (-858 |#1|)))))))))) (|:| |rgsz| (-484))) (-631 |#4|) (-584 (-347 (-858 |#1|))) (-695) (-1072) (-484)) 112 T ELT)) (-2749 (((-584 (-2 (|:| -3106 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484)))))) (|:| |fgb| (-584 |#4|)))) (-631 |#4|) (-695)) 98 T ELT)) (-2758 (((-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484))))) (-631 |#4|) (-695)) 121 T ELT)) (-2751 (((-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2010 (-584 (-1178 (-347 (-858 |#1|)))))) (-2 (|:| |mat| (-631 (-347 (-858 |#1|)))) (|:| |vec| (-584 (-347 (-858 |#1|)))) (|:| -3106 (-695)) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484))))) 56 T ELT)))
+(((-836 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2741 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2010 (-584 (-1178 (-347 (-858 |#1|))))))))) (-631 |#4|) (-584 |#4|))) (-15 -2741 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2010 (-584 (-1178 (-347 (-858 |#1|))))))))) (-631 |#4|) (-584 (-1089)))) (-15 -2741 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2010 (-584 (-1178 (-347 (-858 |#1|))))))))) (-631 |#4|))) (-15 -2741 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2010 (-584 (-1178 (-347 (-858 |#1|))))))))) (-631 |#4|) (-584 |#4|) (-831))) (-15 -2741 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2010 (-584 (-1178 (-347 (-858 |#1|))))))))) (-631 |#4|) (-584 (-1089)) (-831))) (-15 -2741 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2010 (-584 (-1178 (-347 (-858 |#1|))))))))) (-631 |#4|) (-831))) (-15 -2741 ((-484) (-631 |#4|) (-584 |#4|) (-1072))) (-15 -2741 ((-484) (-631 |#4|) (-584 (-1089)) (-1072))) (-15 -2741 ((-484) (-631 |#4|) (-1072))) (-15 -2741 ((-484) (-631 |#4|) (-584 |#4|) (-831) (-1072))) (-15 -2741 ((-484) (-631 |#4|) (-584 (-1089)) (-831) (-1072))) (-15 -2741 ((-484) (-631 |#4|) (-831) (-1072))) (-15 -2742 ((-484) (-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2010 (-584 (-1178 (-347 (-858 |#1|))))))))) (-1072))) (-15 -2743 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2010 (-584 (-1178 (-347 (-858 |#1|))))))))) (-1072))) (-15 -2744 ((-2 (|:| |rgl| (-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2010 (-584 (-1178 (-347 (-858 |#1|)))))))))) (|:| |rgsz| (-484))) (-631 |#4|) (-584 (-347 (-858 |#1|))) (-695) (-1072) (-484))) (-15 -2745 ((-347 (-858 |#1|)) |#4|)) (-15 -2745 ((-631 (-347 (-858 |#1|))) (-631 |#4|))) (-15 -2745 ((-584 (-347 (-858 |#1|))) (-584 |#4|))) (-15 -2746 ((-584 (-347 (-858 |#1|))) (-584 (-1089)))) (-15 -2747 (|#4| (-858 |#1|))) (-15 -2748 ((-2 (|:| |sysok| (-85)) (|:| |z0| (-584 |#4|)) (|:| |n0| (-584 |#4|))) (-584 |#4|) (-584 |#4|))) (-15 -2749 ((-584 (-2 (|:| -3106 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484)))))) (|:| |fgb| (-584 |#4|)))) (-631 |#4|) (-695))) (-15 -2750 ((-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2010 (-584 (-1178 (-347 (-858 |#1|)))))) (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2010 (-584 (-1178 (-347 (-858 |#1|)))))) (-584 |#4|))) (-15 -2751 ((-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2010 (-584 (-1178 (-347 (-858 |#1|)))))) (-2 (|:| |mat| (-631 (-347 (-858 |#1|)))) (|:| |vec| (-584 (-347 (-858 |#1|)))) (|:| -3106 (-695)) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484)))))) (-15 -2752 ((-584 |#4|) |#4|)) (-15 -2753 ((-695) (-584 (-2 (|:| -3106 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484)))))) (|:| |fgb| (-584 |#4|)))))) (-15 -2754 ((-695) (-584 (-2 (|:| -3106 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484)))))) (|:| |fgb| (-584 |#4|)))))) (-15 -2755 ((-584 (-584 |#4|)) (-584 (-584 |#4|)))) (-15 -2756 ((-584 (-584 (-484))) (-484) (-484))) (-15 -2757 ((-85) (-584 |#4|) (-584 (-584 |#4|)))) (-15 -2758 ((-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484))))) (-631 |#4|) (-695))) (-15 -2759 ((-631 |#4|) (-631 |#4|) (-584 |#4|))) (-15 -2760 ((-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 |#1|)))) (|:| -2010 (-584 (-1178 (-347 (-858 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484)))) (-631 |#4|) (-584 (-347 (-858 |#1|))) (-584 (-584 |#4|)) (-695) (-695) (-484))) (-15 -2761 (|#4| |#4|)) (-15 -2762 ((-85) (-584 |#4|))) (-15 -2762 ((-85) (-584 (-858 |#1|))))) (-13 (-257) (-120)) (-13 (-757) (-554 (-1089))) (-718) (-862 |#1| |#3| |#2|)) (T -836))
+((-2762 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *2 (-85)) (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))) (-2762 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *2 (-85)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2761 (*1 *2 *2) (-12 (-4 *3 (-13 (-257) (-120))) (-4 *4 (-13 (-757) (-554 (-1089)))) (-4 *5 (-718)) (-5 *1 (-836 *3 *4 *5 *2)) (-4 *2 (-862 *3 *5 *4)))) (-2760 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484))))) (-5 *4 (-631 *12)) (-5 *5 (-584 (-347 (-858 *9)))) (-5 *6 (-584 (-584 *12))) (-5 *7 (-695)) (-5 *8 (-484)) (-4 *9 (-13 (-257) (-120))) (-4 *12 (-862 *9 *11 *10)) (-4 *10 (-13 (-757) (-554 (-1089)))) (-4 *11 (-718)) (-5 *2 (-2 (|:| |eqzro| (-584 *12)) (|:| |neqzro| (-584 *12)) (|:| |wcond| (-584 (-858 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 *9)))) (|:| -2010 (-584 (-1178 (-347 (-858 *9))))))))) (-5 *1 (-836 *9 *10 *11 *12)))) (-2759 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *7)) (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2758 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-695)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-757) (-554 (-1089)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| |det| *8) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484)))))) (-5 *1 (-836 *5 *6 *7 *8)))) (-2757 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-584 *8))) (-5 *3 (-584 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-757) (-554 (-1089)))) (-4 *7 (-718)) (-5 *2 (-85)) (-5 *1 (-836 *5 *6 *7 *8)))) (-2756 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *2 (-584 (-584 (-484)))) (-5 *1 (-836 *4 *5 *6 *7)) (-5 *3 (-484)) (-4 *7 (-862 *4 *6 *5)))) (-2755 (*1 *2 *2) (-12 (-5 *2 (-584 (-584 *6))) (-4 *6 (-862 *3 *5 *4)) (-4 *3 (-13 (-257) (-120))) (-4 *4 (-13 (-757) (-554 (-1089)))) (-4 *5 (-718)) (-5 *1 (-836 *3 *4 *5 *6)))) (-2754 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3106 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| *7) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484)))))) (|:| |fgb| (-584 *7))))) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *2 (-695)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2753 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3106 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| *7) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484)))))) (|:| |fgb| (-584 *7))))) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *2 (-695)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2752 (*1 *2 *3) (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *2 (-584 *3)) (-5 *1 (-836 *4 *5 *6 *3)) (-4 *3 (-862 *4 *6 *5)))) (-2751 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |mat| (-631 (-347 (-858 *4)))) (|:| |vec| (-584 (-347 (-858 *4)))) (|:| -3106 (-695)) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484))))) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *2 (-2 (|:| |partsol| (-1178 (-347 (-858 *4)))) (|:| -2010 (-584 (-1178 (-347 (-858 *4))))))) (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))) (-2750 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1178 (-347 (-858 *4)))) (|:| -2010 (-584 (-1178 (-347 (-858 *4))))))) (-5 *3 (-584 *7)) (-4 *4 (-13 (-257) (-120))) (-4 *7 (-862 *4 *6 *5)) (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2749 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-757) (-554 (-1089)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| -3106 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| *8) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484)))))) (|:| |fgb| (-584 *8))))) (-5 *1 (-836 *5 *6 *7 *8)) (-5 *4 (-695)))) (-2748 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-4 *7 (-862 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-584 *7)) (|:| |n0| (-584 *7)))) (-5 *1 (-836 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2747 (*1 *2 *3) (-12 (-5 *3 (-858 *4)) (-4 *4 (-13 (-257) (-120))) (-4 *2 (-862 *4 *6 *5)) (-5 *1 (-836 *4 *5 *6 *2)) (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)))) (-2746 (*1 *2 *3) (-12 (-5 *3 (-584 (-1089))) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *2 (-584 (-347 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))) (-2745 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *2 (-584 (-347 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7)))) (-2745 (*1 *2 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *2 (-631 (-347 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7)))) (-2745 (*1 *2 *3) (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *2 (-347 (-858 *4))) (-5 *1 (-836 *4 *5 *6 *3)) (-4 *3 (-862 *4 *6 *5)))) (-2744 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-631 *11)) (-5 *4 (-584 (-347 (-858 *8)))) (-5 *5 (-695)) (-5 *6 (-1072)) (-4 *8 (-13 (-257) (-120))) (-4 *11 (-862 *8 *10 *9)) (-4 *9 (-13 (-757) (-554 (-1089)))) (-4 *10 (-718)) (-5 *2 (-2 (|:| |rgl| (-584 (-2 (|:| |eqzro| (-584 *11)) (|:| |neqzro| (-584 *11)) (|:| |wcond| (-584 (-858 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 *8)))) (|:| -2010 (-584 (-1178 (-347 (-858 *8)))))))))) (|:| |rgsz| (-484)))) (-5 *1 (-836 *8 *9 *10 *11)) (-5 *7 (-484)))) (-2743 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *7)) (|:| |neqzro| (-584 *7)) (|:| |wcond| (-584 (-858 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 *4)))) (|:| -2010 (-584 (-1178 (-347 (-858 *4)))))))))) (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))) (-2742 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) (|:| |wcond| (-584 (-858 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 *5)))) (|:| -2010 (-584 (-1178 (-347 (-858 *5)))))))))) (-5 *4 (-1072)) (-4 *5 (-13 (-257) (-120))) (-4 *8 (-862 *5 *7 *6)) (-4 *6 (-13 (-757) (-554 (-1089)))) (-4 *7 (-718)) (-5 *2 (-484)) (-5 *1 (-836 *5 *6 *7 *8)))) (-2741 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *4 (-831)) (-5 *5 (-1072)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-257) (-120))) (-4 *7 (-13 (-757) (-554 (-1089)))) (-4 *8 (-718)) (-5 *2 (-484)) (-5 *1 (-836 *6 *7 *8 *9)))) (-2741 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-631 *10)) (-5 *4 (-584 (-1089))) (-5 *5 (-831)) (-5 *6 (-1072)) (-4 *10 (-862 *7 *9 *8)) (-4 *7 (-13 (-257) (-120))) (-4 *8 (-13 (-757) (-554 (-1089)))) (-4 *9 (-718)) (-5 *2 (-484)) (-5 *1 (-836 *7 *8 *9 *10)))) (-2741 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-631 *10)) (-5 *4 (-584 *10)) (-5 *5 (-831)) (-5 *6 (-1072)) (-4 *10 (-862 *7 *9 *8)) (-4 *7 (-13 (-257) (-120))) (-4 *8 (-13 (-757) (-554 (-1089)))) (-4 *9 (-718)) (-5 *2 (-484)) (-5 *1 (-836 *7 *8 *9 *10)))) (-2741 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-1072)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-757) (-554 (-1089)))) (-4 *7 (-718)) (-5 *2 (-484)) (-5 *1 (-836 *5 *6 *7 *8)))) (-2741 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 (-1089))) (-5 *5 (-1072)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-257) (-120))) (-4 *7 (-13 (-757) (-554 (-1089)))) (-4 *8 (-718)) (-5 *2 (-484)) (-5 *1 (-836 *6 *7 *8 *9)))) (-2741 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 *9)) (-5 *5 (-1072)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-257) (-120))) (-4 *7 (-13 (-757) (-554 (-1089)))) (-4 *8 (-718)) (-5 *2 (-484)) (-5 *1 (-836 *6 *7 *8 *9)))) (-2741 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-831)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-757) (-554 (-1089)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) (|:| |wcond| (-584 (-858 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 *5)))) (|:| -2010 (-584 (-1178 (-347 (-858 *5)))))))))) (-5 *1 (-836 *5 *6 *7 *8)))) (-2741 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 (-1089))) (-5 *5 (-831)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-257) (-120))) (-4 *7 (-13 (-757) (-554 (-1089)))) (-4 *8 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *9)) (|:| |neqzro| (-584 *9)) (|:| |wcond| (-584 (-858 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 *6)))) (|:| -2010 (-584 (-1178 (-347 (-858 *6)))))))))) (-5 *1 (-836 *6 *7 *8 *9)))) (-2741 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *5 (-831)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-257) (-120))) (-4 *7 (-13 (-757) (-554 (-1089)))) (-4 *8 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *9)) (|:| |neqzro| (-584 *9)) (|:| |wcond| (-584 (-858 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 *6)))) (|:| -2010 (-584 (-1178 (-347 (-858 *6)))))))))) (-5 *1 (-836 *6 *7 *8 *9)) (-5 *4 (-584 *9)))) (-2741 (*1 *2 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *7)) (|:| |neqzro| (-584 *7)) (|:| |wcond| (-584 (-858 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 *4)))) (|:| -2010 (-584 (-1178 (-347 (-858 *4)))))))))) (-5 *1 (-836 *4 *5 *6 *7)))) (-2741 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-584 (-1089))) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-757) (-554 (-1089)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) (|:| |wcond| (-584 (-858 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 *5)))) (|:| -2010 (-584 (-1178 (-347 (-858 *5)))))))))) (-5 *1 (-836 *5 *6 *7 *8)))) (-2741 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-757) (-554 (-1089)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) (|:| |wcond| (-584 (-858 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1178 (-347 (-858 *5)))) (|:| -2010 (-584 (-1178 (-347 (-858 *5)))))))))) (-5 *1 (-836 *5 *6 *7 *8)) (-5 *4 (-584 *8)))))
+((-3870 (($ $ (-1001 (-179))) 125 T ELT) (($ $ (-1001 (-179)) (-1001 (-179))) 126 T ELT)) (-2894 (((-1001 (-179)) $) 73 T ELT)) (-2895 (((-1001 (-179)) $) 72 T ELT)) (-2786 (((-1001 (-179)) $) 74 T ELT)) (-2767 (((-484) (-484)) 66 T ELT)) (-2771 (((-484) (-484)) 61 T ELT)) (-2769 (((-484) (-484)) 64 T ELT)) (-2765 (((-85) (-85)) 68 T ELT)) (-2768 (((-484)) 65 T ELT)) (-3131 (($ $ (-1001 (-179))) 129 T ELT) (($ $) 130 T ELT)) (-2788 (($ (-1 (-855 (-179)) (-179)) (-1001 (-179))) 148 T ELT) (($ (-1 (-855 (-179)) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179))) 149 T ELT)) (-2774 (($ (-1 (-179) (-179)) (-1001 (-179))) 156 T ELT) (($ (-1 (-179) (-179))) 160 T ELT)) (-2787 (($ (-1 (-179) (-179)) (-1001 (-179))) 144 T ELT) (($ (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179))) 145 T ELT) (($ (-584 (-1 (-179) (-179))) (-1001 (-179))) 153 T ELT) (($ (-584 (-1 (-179) (-179))) (-1001 (-179)) (-1001 (-179))) 154 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179))) 146 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179))) 147 T ELT) (($ $ (-1001 (-179))) 131 T ELT)) (-2773 (((-85) $) 69 T ELT)) (-2764 (((-484)) 70 T ELT)) (-2772 (((-484)) 59 T ELT)) (-2770 (((-484)) 62 T ELT)) (-2896 (((-584 (-584 (-855 (-179)))) $) 35 T ELT)) (-2763 (((-85) (-85)) 71 T ELT)) (-3942 (((-773) $) 174 T ELT)) (-2766 (((-85)) 67 T ELT)))
+(((-837) (-13 (-867) (-10 -8 (-15 -2787 ($ (-1 (-179) (-179)) (-1001 (-179)))) (-15 -2787 ($ (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -2787 ($ (-584 (-1 (-179) (-179))) (-1001 (-179)))) (-15 -2787 ($ (-584 (-1 (-179) (-179))) (-1001 (-179)) (-1001 (-179)))) (-15 -2787 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)))) (-15 -2787 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -2788 ($ (-1 (-855 (-179)) (-179)) (-1001 (-179)))) (-15 -2788 ($ (-1 (-855 (-179)) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -2774 ($ (-1 (-179) (-179)) (-1001 (-179)))) (-15 -2774 ($ (-1 (-179) (-179)))) (-15 -2787 ($ $ (-1001 (-179)))) (-15 -2773 ((-85) $)) (-15 -3870 ($ $ (-1001 (-179)))) (-15 -3870 ($ $ (-1001 (-179)) (-1001 (-179)))) (-15 -3131 ($ $ (-1001 (-179)))) (-15 -3131 ($ $)) (-15 -2786 ((-1001 (-179)) $)) (-15 -2772 ((-484))) (-15 -2771 ((-484) (-484))) (-15 -2770 ((-484))) (-15 -2769 ((-484) (-484))) (-15 -2768 ((-484))) (-15 -2767 ((-484) (-484))) (-15 -2766 ((-85))) (-15 -2765 ((-85) (-85))) (-15 -2764 ((-484))) (-15 -2763 ((-85) (-85)))))) (T -837))
+((-2787 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-837)))) (-2787 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-837)))) (-2787 (*1 *1 *2 *3) (-12 (-5 *2 (-584 (-1 (-179) (-179)))) (-5 *3 (-1001 (-179))) (-5 *1 (-837)))) (-2787 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-584 (-1 (-179) (-179)))) (-5 *3 (-1001 (-179))) (-5 *1 (-837)))) (-2787 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-837)))) (-2787 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-837)))) (-2788 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-837)))) (-2788 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-837)))) (-2774 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-837)))) (-2774 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-837)))) (-2787 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-837)))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-837)))) (-3870 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-837)))) (-3870 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-837)))) (-3131 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-837)))) (-3131 (*1 *1 *1) (-5 *1 (-837))) (-2786 (*1 *2 *1) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-837)))) (-2772 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-837)))) (-2771 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-837)))) (-2770 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-837)))) (-2769 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-837)))) (-2768 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-837)))) (-2767 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-837)))) (-2766 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837)))) (-2765 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837)))) (-2764 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-837)))) (-2763 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837)))))
+((-2774 (((-837) |#1| (-1089)) 17 T ELT) (((-837) |#1| (-1089) (-1001 (-179))) 21 T ELT)) (-2787 (((-837) |#1| |#1| (-1089) (-1001 (-179))) 19 T ELT) (((-837) |#1| (-1089) (-1001 (-179))) 15 T ELT)))
+(((-838 |#1|) (-10 -7 (-15 -2787 ((-837) |#1| (-1089) (-1001 (-179)))) (-15 -2787 ((-837) |#1| |#1| (-1089) (-1001 (-179)))) (-15 -2774 ((-837) |#1| (-1089) (-1001 (-179)))) (-15 -2774 ((-837) |#1| (-1089)))) (-554 (-473))) (T -838))
+((-2774 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-473))))) (-2774 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1089)) (-5 *5 (-1001 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-473))))) (-2787 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1089)) (-5 *5 (-1001 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-473))))) (-2787 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1089)) (-5 *5 (-1001 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-473))))))
+((-3870 (($ $ (-1001 (-179)) (-1001 (-179)) (-1001 (-179))) 123 T ELT)) (-2893 (((-1001 (-179)) $) 64 T ELT)) (-2894 (((-1001 (-179)) $) 63 T ELT)) (-2895 (((-1001 (-179)) $) 62 T ELT)) (-2785 (((-584 (-584 (-179))) $) 69 T ELT)) (-2786 (((-1001 (-179)) $) 65 T ELT)) (-2779 (((-484) (-484)) 57 T ELT)) (-2783 (((-484) (-484)) 52 T ELT)) (-2781 (((-484) (-484)) 55 T ELT)) (-2777 (((-85) (-85)) 59 T ELT)) (-2780 (((-484)) 56 T ELT)) (-3131 (($ $ (-1001 (-179))) 126 T ELT) (($ $) 127 T ELT)) (-2788 (($ (-1 (-855 (-179)) (-179)) (-1001 (-179))) 133 T ELT) (($ (-1 (-855 (-179)) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179))) 134 T ELT)) (-2787 (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179))) 140 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179))) 141 T ELT) (($ $ (-1001 (-179))) 129 T ELT)) (-2776 (((-484)) 60 T ELT)) (-2784 (((-484)) 50 T ELT)) (-2782 (((-484)) 53 T ELT)) (-2896 (((-584 (-584 (-855 (-179)))) $) 157 T ELT)) (-2775 (((-85) (-85)) 61 T ELT)) (-3942 (((-773) $) 155 T ELT)) (-2778 (((-85)) 58 T ELT)))
+(((-839) (-13 (-888) (-10 -8 (-15 -2788 ($ (-1 (-855 (-179)) (-179)) (-1001 (-179)))) (-15 -2788 ($ (-1 (-855 (-179)) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -2787 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)))) (-15 -2787 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -2787 ($ $ (-1001 (-179)))) (-15 -3870 ($ $ (-1001 (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -3131 ($ $ (-1001 (-179)))) (-15 -3131 ($ $)) (-15 -2786 ((-1001 (-179)) $)) (-15 -2785 ((-584 (-584 (-179))) $)) (-15 -2784 ((-484))) (-15 -2783 ((-484) (-484))) (-15 -2782 ((-484))) (-15 -2781 ((-484) (-484))) (-15 -2780 ((-484))) (-15 -2779 ((-484) (-484))) (-15 -2778 ((-85))) (-15 -2777 ((-85) (-85))) (-15 -2776 ((-484))) (-15 -2775 ((-85) (-85)))))) (T -839))
+((-2788 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-839)))) (-2788 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-839)))) (-2787 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-839)))) (-2787 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-839)))) (-2787 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-839)))) (-3870 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-839)))) (-3131 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-839)))) (-3131 (*1 *1 *1) (-5 *1 (-839))) (-2786 (*1 *2 *1) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-839)))) (-2785 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-179)))) (-5 *1 (-839)))) (-2784 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-839)))) (-2783 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-839)))) (-2782 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-839)))) (-2781 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-839)))) (-2780 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-839)))) (-2779 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-839)))) (-2778 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839)))) (-2777 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839)))) (-2776 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-839)))) (-2775 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839)))))
+((-2789 (((-584 (-1001 (-179))) (-584 (-584 (-855 (-179))))) 34 T ELT)))
+(((-840) (-10 -7 (-15 -2789 ((-584 (-1001 (-179))) (-584 (-584 (-855 (-179)))))))) (T -840))
+((-2789 (*1 *2 *3) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-584 (-1001 (-179)))) (-5 *1 (-840)))))
+((-2791 (((-264 (-484)) (-1089)) 16 T ELT)) (-2792 (((-264 (-484)) (-1089)) 14 T ELT)) (-3948 (((-264 (-484)) (-1089)) 12 T ELT)) (-2790 (((-264 (-484)) (-1089) (-444)) 19 T ELT)))
+(((-841) (-10 -7 (-15 -2790 ((-264 (-484)) (-1089) (-444))) (-15 -3948 ((-264 (-484)) (-1089))) (-15 -2791 ((-264 (-484)) (-1089))) (-15 -2792 ((-264 (-484)) (-1089))))) (T -841))
+((-2792 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-264 (-484))) (-5 *1 (-841)))) (-2791 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-264 (-484))) (-5 *1 (-841)))) (-3948 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-264 (-484))) (-5 *1 (-841)))) (-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-5 *4 (-444)) (-5 *2 (-264 (-484))) (-5 *1 (-841)))))
+((-2791 ((|#2| |#2|) 28 T ELT)) (-2792 ((|#2| |#2|) 29 T ELT)) (-3948 ((|#2| |#2|) 27 T ELT)) (-2790 ((|#2| |#2| (-444)) 26 T ELT)))
+(((-842 |#1| |#2|) (-10 -7 (-15 -2790 (|#2| |#2| (-444))) (-15 -3948 (|#2| |#2|)) (-15 -2791 (|#2| |#2|)) (-15 -2792 (|#2| |#2|))) (-1013) (-361 |#1|)) (T -842))
+((-2792 (*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-842 *3 *2)) (-4 *2 (-361 *3)))) (-2791 (*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-842 *3 *2)) (-4 *2 (-361 *3)))) (-3948 (*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-842 *3 *2)) (-4 *2 (-361 *3)))) (-2790 (*1 *2 *2 *3) (-12 (-5 *3 (-444)) (-4 *4 (-1013)) (-5 *1 (-842 *4 *2)) (-4 *2 (-361 *4)))))
+((-2794 (((-799 |#1| |#3|) |#2| (-801 |#1|) (-799 |#1| |#3|)) 25 T ELT)) (-2793 (((-1 (-85) |#2|) (-1 (-85) |#3|)) 13 T ELT)))
+(((-843 |#1| |#2| |#3|) (-10 -7 (-15 -2793 ((-1 (-85) |#2|) (-1 (-85) |#3|))) (-15 -2794 ((-799 |#1| |#3|) |#2| (-801 |#1|) (-799 |#1| |#3|)))) (-1013) (-797 |#1|) (-13 (-1013) (-951 |#2|))) (T -843))
+((-2794 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *6)) (-5 *4 (-801 *5)) (-4 *5 (-1013)) (-4 *6 (-13 (-1013) (-951 *3))) (-4 *3 (-797 *5)) (-5 *1 (-843 *5 *3 *6)))) (-2793 (*1 *2 *3) (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1013) (-951 *5))) (-4 *5 (-797 *4)) (-4 *4 (-1013)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-843 *4 *5 *6)))))
+((-2794 (((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)) 30 T ELT)))
+(((-844 |#1| |#2| |#3|) (-10 -7 (-15 -2794 ((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)))) (-1013) (-13 (-495) (-797 |#1|)) (-13 (-361 |#2|) (-554 (-801 |#1|)) (-797 |#1|) (-951 (-551 $)))) (T -844))
+((-2794 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1013)) (-4 *3 (-13 (-361 *6) (-554 *4) (-797 *5) (-951 (-551 $)))) (-5 *4 (-801 *5)) (-4 *6 (-13 (-495) (-797 *5))) (-5 *1 (-844 *5 *6 *3)))))
+((-2794 (((-799 (-484) |#1|) |#1| (-801 (-484)) (-799 (-484) |#1|)) 13 T ELT)))
+(((-845 |#1|) (-10 -7 (-15 -2794 ((-799 (-484) |#1|) |#1| (-801 (-484)) (-799 (-484) |#1|)))) (-483)) (T -845))
+((-2794 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 (-484) *3)) (-5 *4 (-801 (-484))) (-4 *3 (-483)) (-5 *1 (-845 *3)))))
+((-2794 (((-799 |#1| |#2|) (-551 |#2|) (-801 |#1|) (-799 |#1| |#2|)) 57 T ELT)))
+(((-846 |#1| |#2|) (-10 -7 (-15 -2794 ((-799 |#1| |#2|) (-551 |#2|) (-801 |#1|) (-799 |#1| |#2|)))) (-1013) (-13 (-1013) (-951 (-551 $)) (-554 (-801 |#1|)) (-797 |#1|))) (T -846))
+((-2794 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *6)) (-5 *3 (-551 *6)) (-4 *5 (-1013)) (-4 *6 (-13 (-1013) (-951 (-551 $)) (-554 *4) (-797 *5))) (-5 *4 (-801 *5)) (-5 *1 (-846 *5 *6)))))
+((-2794 (((-796 |#1| |#2| |#3|) |#3| (-801 |#1|) (-796 |#1| |#2| |#3|)) 17 T ELT)))
+(((-847 |#1| |#2| |#3|) (-10 -7 (-15 -2794 ((-796 |#1| |#2| |#3|) |#3| (-801 |#1|) (-796 |#1| |#2| |#3|)))) (-1013) (-797 |#1|) (-609 |#2|)) (T -847))
+((-2794 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-796 *5 *6 *3)) (-5 *4 (-801 *5)) (-4 *5 (-1013)) (-4 *6 (-797 *5)) (-4 *3 (-609 *6)) (-5 *1 (-847 *5 *6 *3)))))
+((-2794 (((-799 |#1| |#5|) |#5| (-801 |#1|) (-799 |#1| |#5|)) 17 (|has| |#3| (-797 |#1|)) ELT) (((-799 |#1| |#5|) |#5| (-801 |#1|) (-799 |#1| |#5|) (-1 (-799 |#1| |#5|) |#3| (-801 |#1|) (-799 |#1| |#5|))) 16 T ELT)))
+(((-848 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2794 ((-799 |#1| |#5|) |#5| (-801 |#1|) (-799 |#1| |#5|) (-1 (-799 |#1| |#5|) |#3| (-801 |#1|) (-799 |#1| |#5|)))) (IF (|has| |#3| (-797 |#1|)) (-15 -2794 ((-799 |#1| |#5|) |#5| (-801 |#1|) (-799 |#1| |#5|))) |%noBranch|)) (-1013) (-718) (-757) (-13 (-962) (-797 |#1|)) (-13 (-862 |#4| |#2| |#3|) (-554 (-801 |#1|)))) (T -848))
+((-2794 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1013)) (-4 *3 (-13 (-862 *8 *6 *7) (-554 *4))) (-5 *4 (-801 *5)) (-4 *7 (-797 *5)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-13 (-962) (-797 *5))) (-5 *1 (-848 *5 *6 *7 *8 *3)))) (-2794 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-799 *6 *3) *8 (-801 *6) (-799 *6 *3))) (-4 *8 (-757)) (-5 *2 (-799 *6 *3)) (-5 *4 (-801 *6)) (-4 *6 (-1013)) (-4 *3 (-13 (-862 *9 *7 *8) (-554 *4))) (-4 *7 (-718)) (-4 *9 (-13 (-962) (-797 *6))) (-5 *1 (-848 *6 *7 *8 *9 *3)))))
+((-3206 (((-264 (-484)) (-1089) (-584 (-1 (-85) |#1|))) 18 T ELT) (((-264 (-484)) (-1089) (-1 (-85) |#1|)) 15 T ELT)))
+(((-849 |#1|) (-10 -7 (-15 -3206 ((-264 (-484)) (-1089) (-1 (-85) |#1|))) (-15 -3206 ((-264 (-484)) (-1089) (-584 (-1 (-85) |#1|))))) (-1128)) (T -849))
+((-3206 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-5 *4 (-584 (-1 (-85) *5))) (-4 *5 (-1128)) (-5 *2 (-264 (-484))) (-5 *1 (-849 *5)))) (-3206 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1128)) (-5 *2 (-264 (-484))) (-5 *1 (-849 *5)))))
+((-3206 ((|#2| |#2| (-584 (-1 (-85) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-85) |#3|)) 13 T ELT)))
+(((-850 |#1| |#2| |#3|) (-10 -7 (-15 -3206 (|#2| |#2| (-1 (-85) |#3|))) (-15 -3206 (|#2| |#2| (-584 (-1 (-85) |#3|))))) (-1013) (-361 |#1|) (-1128)) (T -850))
+((-3206 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-1 (-85) *5))) (-4 *5 (-1128)) (-4 *4 (-1013)) (-5 *1 (-850 *4 *2 *5)) (-4 *2 (-361 *4)))) (-3206 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1128)) (-4 *4 (-1013)) (-5 *1 (-850 *4 *2 *5)) (-4 *2 (-361 *4)))))
+((-2794 (((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)) 25 T ELT)))
+(((-851 |#1| |#2| |#3|) (-10 -7 (-15 -2794 ((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)))) (-1013) (-13 (-495) (-797 |#1|) (-554 (-801 |#1|))) (-905 |#2|)) (T -851))
+((-2794 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1013)) (-4 *3 (-905 *6)) (-4 *6 (-13 (-495) (-797 *5) (-554 *4))) (-5 *4 (-801 *5)) (-5 *1 (-851 *5 *6 *3)))))
+((-2794 (((-799 |#1| (-1089)) (-1089) (-801 |#1|) (-799 |#1| (-1089))) 18 T ELT)))
+(((-852 |#1|) (-10 -7 (-15 -2794 ((-799 |#1| (-1089)) (-1089) (-801 |#1|) (-799 |#1| (-1089))))) (-1013)) (T -852))
+((-2794 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 (-1089))) (-5 *3 (-1089)) (-5 *4 (-801 *5)) (-4 *5 (-1013)) (-5 *1 (-852 *5)))))
+((-2795 (((-799 |#1| |#3|) (-584 |#3|) (-584 (-801 |#1|)) (-799 |#1| |#3|) (-1 (-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|))) 34 T ELT)) (-2794 (((-799 |#1| |#3|) (-584 |#3|) (-584 (-801 |#1|)) (-1 |#3| (-584 |#3|)) (-799 |#1| |#3|) (-1 (-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|))) 33 T ELT)))
+(((-853 |#1| |#2| |#3|) (-10 -7 (-15 -2794 ((-799 |#1| |#3|) (-584 |#3|) (-584 (-801 |#1|)) (-1 |#3| (-584 |#3|)) (-799 |#1| |#3|) (-1 (-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)))) (-15 -2795 ((-799 |#1| |#3|) (-584 |#3|) (-584 (-801 |#1|)) (-799 |#1| |#3|) (-1 (-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|))))) (-1013) (-962) (-13 (-962) (-554 (-801 |#1|)) (-951 |#2|))) (T -853))
+((-2795 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 (-801 *6))) (-5 *5 (-1 (-799 *6 *8) *8 (-801 *6) (-799 *6 *8))) (-4 *6 (-1013)) (-4 *8 (-13 (-962) (-554 (-801 *6)) (-951 *7))) (-5 *2 (-799 *6 *8)) (-4 *7 (-962)) (-5 *1 (-853 *6 *7 *8)))) (-2794 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-584 (-801 *7))) (-5 *5 (-1 *9 (-584 *9))) (-5 *6 (-1 (-799 *7 *9) *9 (-801 *7) (-799 *7 *9))) (-4 *7 (-1013)) (-4 *9 (-13 (-962) (-554 (-801 *7)) (-951 *8))) (-5 *2 (-799 *7 *9)) (-5 *3 (-584 *9)) (-4 *8 (-962)) (-5 *1 (-853 *7 *8 *9)))))
+((-2803 (((-1084 (-347 (-484))) (-484)) 80 T ELT)) (-2802 (((-1084 (-484)) (-484)) 83 T ELT)) (-3330 (((-1084 (-484)) (-484)) 77 T ELT)) (-2801 (((-484) (-1084 (-484))) 73 T ELT)) (-2800 (((-1084 (-347 (-484))) (-484)) 66 T ELT)) (-2799 (((-1084 (-484)) (-484)) 49 T ELT)) (-2798 (((-1084 (-484)) (-484)) 85 T ELT)) (-2797 (((-1084 (-484)) (-484)) 84 T ELT)) (-2796 (((-1084 (-347 (-484))) (-484)) 68 T ELT)))
+(((-854) (-10 -7 (-15 -2796 ((-1084 (-347 (-484))) (-484))) (-15 -2797 ((-1084 (-484)) (-484))) (-15 -2798 ((-1084 (-484)) (-484))) (-15 -2799 ((-1084 (-484)) (-484))) (-15 -2800 ((-1084 (-347 (-484))) (-484))) (-15 -2801 ((-484) (-1084 (-484)))) (-15 -3330 ((-1084 (-484)) (-484))) (-15 -2802 ((-1084 (-484)) (-484))) (-15 -2803 ((-1084 (-347 (-484))) (-484))))) (T -854))
+((-2803 (*1 *2 *3) (-12 (-5 *2 (-1084 (-347 (-484)))) (-5 *1 (-854)) (-5 *3 (-484)))) (-2802 (*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-854)) (-5 *3 (-484)))) (-3330 (*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-854)) (-5 *3 (-484)))) (-2801 (*1 *2 *3) (-12 (-5 *3 (-1084 (-484))) (-5 *2 (-484)) (-5 *1 (-854)))) (-2800 (*1 *2 *3) (-12 (-5 *2 (-1084 (-347 (-484)))) (-5 *1 (-854)) (-5 *3 (-484)))) (-2799 (*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-854)) (-5 *3 (-484)))) (-2798 (*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-854)) (-5 *3 (-484)))) (-2797 (*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-854)) (-5 *3 (-484)))) (-2796 (*1 *2 *3) (-12 (-5 *2 (-1084 (-347 (-484)))) (-5 *1 (-854)) (-5 *3 (-484)))))
+((-2566 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3834 (($ (-695)) NIL (|has| |#1| (-23)) ELT)) (-2196 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-757))) ELT)) (-2907 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3784 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3992)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3706 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3720 (($) NIL T CONST)) (-2295 (($ $) NIL (|has| $ (-6 -3992)) ELT)) (-2296 (($ $) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3402 (($ |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-1574 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3110 ((|#1| $ (-484)) NIL T ELT)) (-3415 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-3702 (($ (-584 |#1|)) 9 T ELT)) (-2887 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3831 (((-631 |#1|) $ $) NIL (|has| |#1| (-962)) ELT)) (-3610 (($ (-695) |#1|) NIL T ELT)) (-2198 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2529 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3514 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2606 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2199 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2855 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3828 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-962))) ELT)) (-3829 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-962))) ELT)) (-3239 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-2302 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2201 (((-584 (-484)) $) NIL T ELT)) (-2202 (((-85) (-484) $) NIL T ELT)) (-3240 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3797 ((|#1| $) NIL (|has| (-484) (-757)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2197 (($ $ |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 |#1|)) 25 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2200 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2203 (((-584 |#1|) $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) NIL T ELT)) (-3796 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) 18 T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-3832 ((|#1| $ $) NIL (|has| |#1| (-962)) ELT)) (-3907 (((-831) $) 13 T ELT)) (-2303 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-3830 (($ $ $) 23 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-1729 (($ $ $ (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-3396 (($ $) NIL T ELT)) (-3968 (((-473) $) NIL (|has| |#1| (-554 (-473))) ELT) (($ (-584 |#1|)) 14 T ELT)) (-3526 (($ (-584 |#1|)) NIL T ELT)) (-3798 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-584 $)) NIL T ELT)) (-3942 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2564 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3054 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2682 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3833 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3835 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-484) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-664)) ELT) (($ $ |#1|) NIL (|has| |#1| (-664)) ELT)) (-3953 (((-695) $) 11 (|has| $ (-6 -3991)) ELT)))
+(((-855 |#1|) (-894 |#1|) (-962)) (T -855))
+NIL
+((-2806 (((-418 |#1| |#2|) (-858 |#2|)) 22 T ELT)) (-2809 (((-206 |#1| |#2|) (-858 |#2|)) 35 T ELT)) (-2807 (((-858 |#2|) (-418 |#1| |#2|)) 27 T ELT)) (-2805 (((-206 |#1| |#2|) (-418 |#1| |#2|)) 57 T ELT)) (-2808 (((-858 |#2|) (-206 |#1| |#2|)) 32 T ELT)) (-2804 (((-418 |#1| |#2|) (-206 |#1| |#2|)) 48 T ELT)))
+(((-856 |#1| |#2|) (-10 -7 (-15 -2804 ((-418 |#1| |#2|) (-206 |#1| |#2|))) (-15 -2805 ((-206 |#1| |#2|) (-418 |#1| |#2|))) (-15 -2806 ((-418 |#1| |#2|) (-858 |#2|))) (-15 -2807 ((-858 |#2|) (-418 |#1| |#2|))) (-15 -2808 ((-858 |#2|) (-206 |#1| |#2|))) (-15 -2809 ((-206 |#1| |#2|) (-858 |#2|)))) (-584 (-1089)) (-962)) (T -856))
+((-2809 (*1 *2 *3) (-12 (-5 *3 (-858 *5)) (-4 *5 (-962)) (-5 *2 (-206 *4 *5)) (-5 *1 (-856 *4 *5)) (-14 *4 (-584 (-1089))))) (-2808 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1089))) (-4 *5 (-962)) (-5 *2 (-858 *5)) (-5 *1 (-856 *4 *5)))) (-2807 (*1 *2 *3) (-12 (-5 *3 (-418 *4 *5)) (-14 *4 (-584 (-1089))) (-4 *5 (-962)) (-5 *2 (-858 *5)) (-5 *1 (-856 *4 *5)))) (-2806 (*1 *2 *3) (-12 (-5 *3 (-858 *5)) (-4 *5 (-962)) (-5 *2 (-418 *4 *5)) (-5 *1 (-856 *4 *5)) (-14 *4 (-584 (-1089))))) (-2805 (*1 *2 *3) (-12 (-5 *3 (-418 *4 *5)) (-14 *4 (-584 (-1089))) (-4 *5 (-962)) (-5 *2 (-206 *4 *5)) (-5 *1 (-856 *4 *5)))) (-2804 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1089))) (-4 *5 (-962)) (-5 *2 (-418 *4 *5)) (-5 *1 (-856 *4 *5)))))
+((-2810 (((-584 |#2|) |#2| |#2|) 10 T ELT)) (-2813 (((-695) (-584 |#1|)) 47 (|has| |#1| (-756)) ELT)) (-2811 (((-584 |#2|) |#2|) 11 T ELT)) (-2814 (((-695) (-584 |#1|) (-484) (-484)) 45 (|has| |#1| (-756)) ELT)) (-2812 ((|#1| |#2|) 37 (|has| |#1| (-756)) ELT)))
+(((-857 |#1| |#2|) (-10 -7 (-15 -2810 ((-584 |#2|) |#2| |#2|)) (-15 -2811 ((-584 |#2|) |#2|)) (IF (|has| |#1| (-756)) (PROGN (-15 -2812 (|#1| |#2|)) (-15 -2813 ((-695) (-584 |#1|))) (-15 -2814 ((-695) (-584 |#1|) (-484) (-484)))) |%noBranch|)) (-311) (-1154 |#1|)) (T -857))
+((-2814 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-484)) (-4 *5 (-756)) (-4 *5 (-311)) (-5 *2 (-695)) (-5 *1 (-857 *5 *6)) (-4 *6 (-1154 *5)))) (-2813 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-756)) (-4 *4 (-311)) (-5 *2 (-695)) (-5 *1 (-857 *4 *5)) (-4 *5 (-1154 *4)))) (-2812 (*1 *2 *3) (-12 (-4 *2 (-311)) (-4 *2 (-756)) (-5 *1 (-857 *2 *3)) (-4 *3 (-1154 *2)))) (-2811 (*1 *2 *3) (-12 (-4 *4 (-311)) (-5 *2 (-584 *3)) (-5 *1 (-857 *4 *3)) (-4 *3 (-1154 *4)))) (-2810 (*1 *2 *3 *3) (-12 (-4 *4 (-311)) (-5 *2 (-584 *3)) (-5 *1 (-857 *4 *3)) (-4 *3 (-1154 *4)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3079 (((-584 (-1089)) $) 16 T ELT)) (-3081 (((-1084 $) $ (-1089)) 21 T ELT) (((-1084 |#1|) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2061 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2817 (((-695) $) NIL T ELT) (((-695) $ (-584 (-1089))) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3771 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3967 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2702 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#1| #1#) $) 8 T ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-1089) #1#) $) NIL T ELT)) (-3153 ((|#1| $) NIL T ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-1089) $) NIL T ELT)) (-3752 (($ $ $ (-1089)) NIL (|has| |#1| (-146)) ELT)) (-3955 (($ $) NIL T ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-389)) ELT) (($ $ (-1089)) NIL (|has| |#1| (-389)) ELT)) (-2816 (((-584 $) $) NIL T ELT)) (-3719 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1622 (($ $ |#1| (-469 (-1089)) $) NIL T ELT)) (-2794 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (-12 (|has| (-1089) (-797 (-327))) (|has| |#1| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (-12 (|has| (-1089) (-797 (-484))) (|has| |#1| (-797 (-484)))) ELT)) (-2408 (((-85) $) NIL T ELT)) (-2418 (((-695) $) NIL T ELT)) (-3082 (($ (-1084 |#1|) (-1089)) NIL T ELT) (($ (-1084 $) (-1089)) NIL T ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2891 (($ |#1| (-469 (-1089))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT)) (-3759 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $ (-1089)) NIL T ELT)) (-2818 (((-469 (-1089)) $) NIL T ELT) (((-695) $ (-1089)) NIL T ELT) (((-584 (-695)) $ (-584 (-1089))) NIL T ELT)) (-1623 (($ (-1 (-469 (-1089)) (-469 (-1089))) $) NIL T ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3080 (((-3 (-1089) #1#) $) 19 T ELT)) (-2278 (((-631 (-484)) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-2892 (($ $) NIL T ELT)) (-3171 ((|#1| $) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2821 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-2 (|:| |var| (-1089)) (|:| -2399 (-695))) #1#) $) NIL T ELT)) (-3808 (($ $ (-1089)) 29 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1795 (((-85) $) NIL T ELT)) (-1794 ((|#1| $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-389)) ELT)) (-3141 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3728 (((-345 $) $) NIL (|has| |#1| (-822)) ELT)) (-3462 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3764 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-1089) |#1|) NIL T ELT) (($ $ (-584 (-1089)) (-584 |#1|)) NIL T ELT) (($ $ (-1089) $) NIL T ELT) (($ $ (-584 (-1089)) (-584 $)) NIL T ELT)) (-3753 (($ $ (-1089)) NIL (|has| |#1| (-146)) ELT)) (-3754 (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT)) (-3944 (((-469 (-1089)) $) NIL T ELT) (((-695) $ (-1089)) NIL T ELT) (((-584 (-695)) $ (-584 (-1089))) NIL T ELT)) (-3968 (((-801 (-327)) $) NIL (-12 (|has| (-1089) (-554 (-801 (-327)))) (|has| |#1| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) NIL (-12 (|has| (-1089) (-554 (-801 (-484)))) (|has| |#1| (-554 (-801 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-1089) (-554 (-473))) (|has| |#1| (-554 (-473)))) ELT)) (-2815 ((|#1| $) NIL (|has| |#1| (-389)) ELT) (($ $ (-1089)) NIL (|has| |#1| (-389)) ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3942 (((-773) $) 25 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1089)) 27 T ELT) (($ (-347 (-484))) NIL (OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3813 (((-584 |#1|) $) NIL T ELT)) (-3673 ((|#1| $ (-469 (-1089))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT)) (-2700 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3123 (((-695)) NIL T CONST)) (-1621 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-2667 (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
+(((-858 |#1|) (-13 (-862 |#1| (-469 (-1089)) (-1089)) (-10 -8 (IF (|has| |#1| (-38 (-347 (-484)))) (-15 -3808 ($ $ (-1089))) |%noBranch|))) (-962)) (T -858))
+((-3808 (*1 *1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-858 *3)) (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)))))
+((-3954 (((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)) 19 T ELT)))
+(((-859 |#1| |#2|) (-10 -7 (-15 -3954 ((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)))) (-962) (-962)) (T -859))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-858 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-5 *2 (-858 *6)) (-5 *1 (-859 *5 *6)))))
+((-3081 (((-1147 |#1| (-858 |#2|)) (-858 |#2|) (-1175 |#1|)) 18 T ELT)))
+(((-860 |#1| |#2|) (-10 -7 (-15 -3081 ((-1147 |#1| (-858 |#2|)) (-858 |#2|) (-1175 |#1|)))) (-1089) (-962)) (T -860))
+((-3081 (*1 *2 *3 *4) (-12 (-5 *4 (-1175 *5)) (-14 *5 (-1089)) (-4 *6 (-962)) (-5 *2 (-1147 *5 (-858 *6))) (-5 *1 (-860 *5 *6)) (-5 *3 (-858 *6)))))
+((-2817 (((-695) $) 88 T ELT) (((-695) $ (-584 |#4|)) 93 T ELT)) (-3771 (($ $) 214 T ELT)) (-3967 (((-345 $) $) 206 T ELT)) (-2702 (((-3 (-584 (-1084 $)) #1="failed") (-584 (-1084 $)) (-1084 $)) 141 T ELT)) (-3154 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) 74 T ELT)) (-3153 ((|#2| $) NIL T ELT) (((-347 (-484)) $) NIL T ELT) (((-484) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-3752 (($ $ $ |#4|) 95 T ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) 131 T ELT) (((-631 |#2|) (-631 $)) 121 T ELT)) (-3499 (($ $) 221 T ELT) (($ $ |#4|) 224 T ELT)) (-2816 (((-584 $) $) 77 T ELT)) (-2794 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 240 T ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) 233 T ELT)) (-2819 (((-584 $) $) 34 T ELT)) (-2891 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-695)) NIL T ELT) (($ $ (-584 |#4|) (-584 (-695))) 71 T ELT)) (-3759 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $ |#4|) 203 T ELT)) (-2821 (((-3 (-584 $) #1#) $) 52 T ELT)) (-2820 (((-3 (-584 $) #1#) $) 39 T ELT)) (-2822 (((-3 (-2 (|:| |var| |#4|) (|:| -2399 (-695))) #1#) $) 57 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 134 T ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) 147 T ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) 145 T ELT)) (-3728 (((-345 $) $) 165 T ELT)) (-3764 (($ $ (-584 (-248 $))) 24 T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-584 |#4|) (-584 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-584 |#4|) (-584 $)) NIL T ELT)) (-3753 (($ $ |#4|) 97 T ELT)) (-3968 (((-801 (-327)) $) 254 T ELT) (((-801 (-484)) $) 247 T ELT) (((-473) $) 262 T ELT)) (-2815 ((|#2| $) NIL T ELT) (($ $ |#4|) 216 T ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) 185 T ELT)) (-3673 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-695)) 62 T ELT) (($ $ (-584 |#4|) (-584 (-695))) 69 T ELT)) (-2700 (((-633 $) $) 195 T ELT)) (-1263 (((-85) $ $) 227 T ELT)))
+(((-861 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2706 ((-1084 |#1|) (-1084 |#1|) (-1084 |#1|))) (-15 -3967 ((-345 |#1|) |#1|)) (-15 -3771 (|#1| |#1|)) (-15 -2700 ((-633 |#1|) |#1|)) (-15 -3968 ((-473) |#1|)) (-15 -3968 ((-801 (-484)) |#1|)) (-15 -3968 ((-801 (-327)) |#1|)) (-15 -2794 ((-799 (-484) |#1|) |#1| (-801 (-484)) (-799 (-484) |#1|))) (-15 -2794 ((-799 (-327) |#1|) |#1| (-801 (-327)) (-799 (-327) |#1|))) (-15 -3728 ((-345 |#1|) |#1|)) (-15 -2704 ((-345 (-1084 |#1|)) (-1084 |#1|))) (-15 -2703 ((-345 (-1084 |#1|)) (-1084 |#1|))) (-15 -2702 ((-3 (-584 (-1084 |#1|)) #1="failed") (-584 (-1084 |#1|)) (-1084 |#1|))) (-15 -2701 ((-3 (-1178 |#1|) #1#) (-631 |#1|))) (-15 -3499 (|#1| |#1| |#4|)) (-15 -2815 (|#1| |#1| |#4|)) (-15 -3753 (|#1| |#1| |#4|)) (-15 -3752 (|#1| |#1| |#1| |#4|)) (-15 -2816 ((-584 |#1|) |#1|)) (-15 -2817 ((-695) |#1| (-584 |#4|))) (-15 -2817 ((-695) |#1|)) (-15 -2822 ((-3 (-2 (|:| |var| |#4|) (|:| -2399 (-695))) #1#) |#1|)) (-15 -2821 ((-3 (-584 |#1|) #1#) |#1|)) (-15 -2820 ((-3 (-584 |#1|) #1#) |#1|)) (-15 -2891 (|#1| |#1| (-584 |#4|) (-584 (-695)))) (-15 -2891 (|#1| |#1| |#4| (-695))) (-15 -3759 ((-2 (|:| -1971 |#1|) (|:| -2900 |#1|)) |#1| |#1| |#4|)) (-15 -2819 ((-584 |#1|) |#1|)) (-15 -3673 (|#1| |#1| (-584 |#4|) (-584 (-695)))) (-15 -3673 (|#1| |#1| |#4| (-695))) (-15 -2277 ((-631 |#2|) (-631 |#1|))) (-15 -2277 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 |#1|) (-1178 |#1|))) (-15 -2277 ((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 |#1|) (-1178 |#1|))) (-15 -2277 ((-631 (-484)) (-631 |#1|))) (-15 -3154 ((-3 |#4| #1#) |#1|)) (-15 -3153 (|#4| |#1|)) (-15 -3764 (|#1| |#1| (-584 |#4|) (-584 |#1|))) (-15 -3764 (|#1| |#1| |#4| |#1|)) (-15 -3764 (|#1| |#1| (-584 |#4|) (-584 |#2|))) (-15 -3764 (|#1| |#1| |#4| |#2|)) (-15 -3764 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-15 -3764 (|#1| |#1| |#1| |#1|)) (-15 -3764 (|#1| |#1| (-248 |#1|))) (-15 -3764 (|#1| |#1| (-584 (-248 |#1|)))) (-15 -2891 (|#1| |#2| |#3|)) (-15 -3673 (|#2| |#1| |#3|)) (-15 -3154 ((-3 (-484) #1#) |#1|)) (-15 -3153 ((-484) |#1|)) (-15 -3154 ((-3 (-347 (-484)) #1#) |#1|)) (-15 -3153 ((-347 (-484)) |#1|)) (-15 -3153 (|#2| |#1|)) (-15 -3154 ((-3 |#2| #1#) |#1|)) (-15 -2815 (|#2| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -1263 ((-85) |#1| |#1|))) (-862 |#2| |#3| |#4|) (-962) (-718) (-757)) (T -861))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-3079 (((-584 |#3|) $) 121 T ELT)) (-3081 (((-1084 $) $ |#3|) 136 T ELT) (((-1084 |#1|) $) 135 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 98 (|has| |#1| (-495)) ELT)) (-2061 (($ $) 99 (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) 101 (|has| |#1| (-495)) ELT)) (-2817 (((-695) $) 123 T ELT) (((-695) $ (-584 |#3|)) 122 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) 111 (|has| |#1| (-822)) ELT)) (-3771 (($ $) 109 (|has| |#1| (-389)) ELT)) (-3967 (((-345 $) $) 108 (|has| |#1| (-389)) ELT)) (-2702 (((-3 (-584 (-1084 $)) #1="failed") (-584 (-1084 $)) (-1084 $)) 114 (|has| |#1| (-822)) ELT)) (-3720 (($) 22 T CONST)) (-3154 (((-3 |#1| #2="failed") $) 179 T ELT) (((-3 (-347 (-484)) #2#) $) 176 (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 (-484) #2#) $) 174 (|has| |#1| (-951 (-484))) ELT) (((-3 |#3| #2#) $) 151 T ELT)) (-3153 ((|#1| $) 178 T ELT) (((-347 (-484)) $) 177 (|has| |#1| (-951 (-347 (-484)))) ELT) (((-484) $) 175 (|has| |#1| (-951 (-484))) ELT) ((|#3| $) 152 T ELT)) (-3752 (($ $ $ |#3|) 119 (|has| |#1| (-146)) ELT)) (-3955 (($ $) 169 T ELT)) (-2277 (((-631 (-484)) (-631 $)) 147 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 146 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) 145 T ELT) (((-631 |#1|) (-631 $)) 144 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-3499 (($ $) 191 (|has| |#1| (-389)) ELT) (($ $ |#3|) 116 (|has| |#1| (-389)) ELT)) (-2816 (((-584 $) $) 120 T ELT)) (-3719 (((-85) $) 107 (|has| |#1| (-822)) ELT)) (-1622 (($ $ |#1| |#2| $) 187 T ELT)) (-2794 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 95 (-12 (|has| |#3| (-797 (-327))) (|has| |#1| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) 94 (-12 (|has| |#3| (-797 (-484))) (|has| |#1| (-797 (-484)))) ELT)) (-2408 (((-85) $) 42 T ELT)) (-2418 (((-695) $) 184 T ELT)) (-3082 (($ (-1084 |#1|) |#3|) 128 T ELT) (($ (-1084 $) |#3|) 127 T ELT)) (-2819 (((-584 $) $) 137 T ELT)) (-3933 (((-85) $) 167 T ELT)) (-2891 (($ |#1| |#2|) 168 T ELT) (($ $ |#3| (-695)) 130 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 129 T ELT)) (-3759 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $ |#3|) 131 T ELT)) (-2818 ((|#2| $) 185 T ELT) (((-695) $ |#3|) 133 T ELT) (((-584 (-695)) $ (-584 |#3|)) 132 T ELT)) (-1623 (($ (-1 |#2| |#2|) $) 186 T ELT)) (-3954 (($ (-1 |#1| |#1|) $) 166 T ELT)) (-3080 (((-3 |#3| "failed") $) 134 T ELT)) (-2278 (((-631 (-484)) (-1178 $)) 149 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 148 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 143 T ELT) (((-631 |#1|) (-1178 $)) 142 T ELT)) (-2892 (($ $) 164 T ELT)) (-3171 ((|#1| $) 163 T ELT)) (-1889 (($ (-584 $)) 105 (|has| |#1| (-389)) ELT) (($ $ $) 104 (|has| |#1| (-389)) ELT)) (-3239 (((-1072) $) 11 T ELT)) (-2821 (((-3 (-584 $) "failed") $) 125 T ELT)) (-2820 (((-3 (-584 $) "failed") $) 126 T ELT)) (-2822 (((-3 (-2 (|:| |var| |#3|) (|:| -2399 (-695))) "failed") $) 124 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-1795 (((-85) $) 181 T ELT)) (-1794 ((|#1| $) 182 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 106 (|has| |#1| (-389)) ELT)) (-3141 (($ (-584 $)) 103 (|has| |#1| (-389)) ELT) (($ $ $) 102 (|has| |#1| (-389)) ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) 113 (|has| |#1| (-822)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) 112 (|has| |#1| (-822)) ELT)) (-3728 (((-345 $) $) 110 (|has| |#1| (-822)) ELT)) (-3462 (((-3 $ "failed") $ |#1|) 189 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ $) 97 (|has| |#1| (-495)) ELT)) (-3764 (($ $ (-584 (-248 $))) 160 T ELT) (($ $ (-248 $)) 159 T ELT) (($ $ $ $) 158 T ELT) (($ $ (-584 $) (-584 $)) 157 T ELT) (($ $ |#3| |#1|) 156 T ELT) (($ $ (-584 |#3|) (-584 |#1|)) 155 T ELT) (($ $ |#3| $) 154 T ELT) (($ $ (-584 |#3|) (-584 $)) 153 T ELT)) (-3753 (($ $ |#3|) 118 (|has| |#1| (-146)) ELT)) (-3754 (($ $ (-584 |#3|) (-584 (-695))) 50 T ELT) (($ $ |#3| (-695)) 49 T ELT) (($ $ (-584 |#3|)) 48 T ELT) (($ $ |#3|) 46 T ELT)) (-3944 ((|#2| $) 165 T ELT) (((-695) $ |#3|) 141 T ELT) (((-584 (-695)) $ (-584 |#3|)) 140 T ELT)) (-3968 (((-801 (-327)) $) 93 (-12 (|has| |#3| (-554 (-801 (-327)))) (|has| |#1| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) 92 (-12 (|has| |#3| (-554 (-801 (-484)))) (|has| |#1| (-554 (-801 (-484))))) ELT) (((-473) $) 91 (-12 (|has| |#3| (-554 (-473))) (|has| |#1| (-554 (-473)))) ELT)) (-2815 ((|#1| $) 190 (|has| |#1| (-389)) ELT) (($ $ |#3|) 117 (|has| |#1| (-389)) ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) 115 (-2560 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 180 T ELT) (($ |#3|) 150 T ELT) (($ $) 96 (|has| |#1| (-495)) ELT) (($ (-347 (-484))) 89 (OR (|has| |#1| (-951 (-347 (-484)))) (|has| |#1| (-38 (-347 (-484))))) ELT)) (-3813 (((-584 |#1|) $) 183 T ELT)) (-3673 ((|#1| $ |#2|) 170 T ELT) (($ $ |#3| (-695)) 139 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 138 T ELT)) (-2700 (((-633 $) $) 90 (OR (-2560 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3123 (((-695)) 38 T CONST)) (-1621 (($ $ $ (-695)) 188 (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2060 (((-85) $ $) 100 (|has| |#1| (-495)) ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-2667 (($ $ (-584 |#3|) (-584 (-695))) 53 T ELT) (($ $ |#3| (-695)) 52 T ELT) (($ $ (-584 |#3|)) 51 T ELT) (($ $ |#3|) 47 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3945 (($ $ |#1|) 171 (|has| |#1| (-311)) ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-484))) 173 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) 172 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ |#1| $) 162 T ELT) (($ $ |#1|) 161 T ELT)))
+(((-862 |#1| |#2| |#3|) (-113) (-962) (-718) (-757)) (T -862))
+((-3499 (*1 *1 *1) (-12 (-4 *1 (-862 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-389)))) (-3944 (*1 *2 *1 *3) (-12 (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-695)))) (-3944 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 (-695))))) (-3673 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-862 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *2 (-757)))) (-3673 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 (-695))) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)))) (-2819 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-862 *3 *4 *5)))) (-3081 (*1 *2 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-1084 *1)) (-4 *1 (-862 *4 *5 *3)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-1084 *3)))) (-3080 (*1 *2 *1) (|partial| -12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-2818 (*1 *2 *1 *3) (-12 (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-695)))) (-2818 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 (-695))))) (-3759 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2900 *1))) (-4 *1 (-862 *4 *5 *3)))) (-2891 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-862 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *2 (-757)))) (-2891 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 (-695))) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)))) (-3082 (*1 *1 *2 *3) (-12 (-5 *2 (-1084 *4)) (-4 *4 (-962)) (-4 *1 (-862 *4 *5 *3)) (-4 *5 (-718)) (-4 *3 (-757)))) (-3082 (*1 *1 *2 *3) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)))) (-2820 (*1 *2 *1) (|partial| -12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-862 *3 *4 *5)))) (-2821 (*1 *2 *1) (|partial| -12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-862 *3 *4 *5)))) (-2822 (*1 *2 *1) (|partial| -12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| |var| *5) (|:| -2399 (-695)))))) (-2817 (*1 *2 *1) (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-695)))) (-2817 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-695)))) (-3079 (*1 *2 *1) (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *5)))) (-2816 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-862 *3 *4 *5)))) (-3752 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *3 (-146)))) (-3753 (*1 *1 *1 *2) (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *3 (-146)))) (-2815 (*1 *1 *1 *2) (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *3 (-389)))) (-3499 (*1 *1 *1 *2) (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *3 (-389)))) (-3771 (*1 *1 *1) (-12 (-4 *1 (-862 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-389)))) (-3967 (*1 *2 *1) (-12 (-4 *3 (-389)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-345 *1)) (-4 *1 (-862 *3 *4 *5)))))
+(-13 (-810 |t#3|) (-276 |t#1| |t#2|) (-259 $) (-453 |t#3| |t#1|) (-453 |t#3| $) (-951 |t#3|) (-326 |t#1|) (-10 -8 (-15 -3944 ((-695) $ |t#3|)) (-15 -3944 ((-584 (-695)) $ (-584 |t#3|))) (-15 -3673 ($ $ |t#3| (-695))) (-15 -3673 ($ $ (-584 |t#3|) (-584 (-695)))) (-15 -2819 ((-584 $) $)) (-15 -3081 ((-1084 $) $ |t#3|)) (-15 -3081 ((-1084 |t#1|) $)) (-15 -3080 ((-3 |t#3| "failed") $)) (-15 -2818 ((-695) $ |t#3|)) (-15 -2818 ((-584 (-695)) $ (-584 |t#3|))) (-15 -3759 ((-2 (|:| -1971 $) (|:| -2900 $)) $ $ |t#3|)) (-15 -2891 ($ $ |t#3| (-695))) (-15 -2891 ($ $ (-584 |t#3|) (-584 (-695)))) (-15 -3082 ($ (-1084 |t#1|) |t#3|)) (-15 -3082 ($ (-1084 $) |t#3|)) (-15 -2820 ((-3 (-584 $) "failed") $)) (-15 -2821 ((-3 (-584 $) "failed") $)) (-15 -2822 ((-3 (-2 (|:| |var| |t#3|) (|:| -2399 (-695))) "failed") $)) (-15 -2817 ((-695) $)) (-15 -2817 ((-695) $ (-584 |t#3|))) (-15 -3079 ((-584 |t#3|) $)) (-15 -2816 ((-584 $) $)) (IF (|has| |t#1| (-554 (-473))) (IF (|has| |t#3| (-554 (-473))) (-6 (-554 (-473))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-554 (-801 (-484)))) (IF (|has| |t#3| (-554 (-801 (-484)))) (-6 (-554 (-801 (-484)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-554 (-801 (-327)))) (IF (|has| |t#3| (-554 (-801 (-327)))) (-6 (-554 (-801 (-327)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-797 (-484))) (IF (|has| |t#3| (-797 (-484))) (-6 (-797 (-484))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-797 (-327))) (IF (|has| |t#3| (-797 (-327))) (-6 (-797 (-327))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3752 ($ $ $ |t#3|)) (-15 -3753 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-389)) (PROGN (-6 (-389)) (-15 -2815 ($ $ |t#3|)) (-15 -3499 ($ $)) (-15 -3499 ($ $ |t#3|)) (-15 -3967 ((-345 $) $)) (-15 -3771 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -3989)) (-6 -3989) |%noBranch|) (IF (|has| |t#1| (-822)) (-6 (-822)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) OR (|has| |#1| (-951 (-347 (-484)))) (|has| |#1| (-38 (-347 (-484))))) ((-556 (-484)) . T) ((-556 |#1|) . T) ((-556 |#3|) . T) ((-556 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-554 (-473)) -12 (|has| |#1| (-554 (-473))) (|has| |#3| (-554 (-473)))) ((-554 (-801 (-327))) -12 (|has| |#1| (-554 (-801 (-327)))) (|has| |#3| (-554 (-801 (-327))))) ((-554 (-801 (-484))) -12 (|has| |#1| (-554 (-801 (-484)))) (|has| |#3| (-554 (-801 (-484))))) ((-245) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-259 $) . T) ((-276 |#1| |#2|) . T) ((-326 |#1|) . T) ((-352 |#1|) . T) ((-389) OR (|has| |#1| (-822)) (|has| |#1| (-389))) ((-453 |#3| |#1|) . T) ((-453 |#3| $) . T) ((-453 $ $) . T) ((-495) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-13) . T) ((-589 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-591 (-484)) |has| |#1| (-581 (-484))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-581 (-484)) |has| |#1| (-581 (-484))) ((-581 |#1|) . T) ((-655 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-664) . T) ((-807 $ |#3|) . T) ((-810 |#3|) . T) ((-812 |#3|) . T) ((-797 (-327)) -12 (|has| |#1| (-797 (-327))) (|has| |#3| (-797 (-327)))) ((-797 (-484)) -12 (|has| |#1| (-797 (-484))) (|has| |#3| (-797 (-484)))) ((-822) |has| |#1| (-822)) ((-951 (-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((-951 (-484)) |has| |#1| (-951 (-484))) ((-951 |#1|) . T) ((-951 |#3|) . T) ((-964 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-969 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) |has| |#1| (-822)))
+((-3079 (((-584 |#2|) |#5|) 40 T ELT)) (-3081 (((-1084 |#5|) |#5| |#2| (-1084 |#5|)) 23 T ELT) (((-347 (-1084 |#5|)) |#5| |#2|) 16 T ELT)) (-3082 ((|#5| (-347 (-1084 |#5|)) |#2|) 30 T ELT)) (-3080 (((-3 |#2| #1="failed") |#5|) 70 T ELT)) (-2821 (((-3 (-584 |#5|) #1#) |#5|) 64 T ELT)) (-2823 (((-3 (-2 (|:| |val| |#5|) (|:| -2399 (-484))) #1#) |#5|) 53 T ELT)) (-2820 (((-3 (-584 |#5|) #1#) |#5|) 66 T ELT)) (-2822 (((-3 (-2 (|:| |var| |#2|) (|:| -2399 (-484))) #1#) |#5|) 56 T ELT)))
+(((-863 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3079 ((-584 |#2|) |#5|)) (-15 -3080 ((-3 |#2| #1="failed") |#5|)) (-15 -3081 ((-347 (-1084 |#5|)) |#5| |#2|)) (-15 -3082 (|#5| (-347 (-1084 |#5|)) |#2|)) (-15 -3081 ((-1084 |#5|) |#5| |#2| (-1084 |#5|))) (-15 -2820 ((-3 (-584 |#5|) #1#) |#5|)) (-15 -2821 ((-3 (-584 |#5|) #1#) |#5|)) (-15 -2822 ((-3 (-2 (|:| |var| |#2|) (|:| -2399 (-484))) #1#) |#5|)) (-15 -2823 ((-3 (-2 (|:| |val| |#5|) (|:| -2399 (-484))) #1#) |#5|))) (-718) (-757) (-962) (-862 |#3| |#1| |#2|) (-13 (-311) (-10 -8 (-15 -3942 ($ |#4|)) (-15 -2996 (|#4| $)) (-15 -2995 (|#4| $))))) (T -863))
+((-2823 (*1 *2 *3) (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2399 (-484)))) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3942 ($ *7)) (-15 -2996 (*7 $)) (-15 -2995 (*7 $))))))) (-2822 (*1 *2 *3) (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2399 (-484)))) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3942 ($ *7)) (-15 -2996 (*7 $)) (-15 -2995 (*7 $))))))) (-2821 (*1 *2 *3) (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *3)) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3942 ($ *7)) (-15 -2996 (*7 $)) (-15 -2995 (*7 $))))))) (-2820 (*1 *2 *3) (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *3)) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3942 ($ *7)) (-15 -2996 (*7 $)) (-15 -2995 (*7 $))))))) (-3081 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1084 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3942 ($ *7)) (-15 -2996 (*7 $)) (-15 -2995 (*7 $))))) (-4 *7 (-862 *6 *5 *4)) (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962)) (-5 *1 (-863 *5 *4 *6 *7 *3)))) (-3082 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-1084 *2))) (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962)) (-4 *2 (-13 (-311) (-10 -8 (-15 -3942 ($ *7)) (-15 -2996 (*7 $)) (-15 -2995 (*7 $))))) (-5 *1 (-863 *5 *4 *6 *7 *2)) (-4 *7 (-862 *6 *5 *4)))) (-3081 (*1 *2 *3 *4) (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *5 *4)) (-5 *2 (-347 (-1084 *3))) (-5 *1 (-863 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3942 ($ *7)) (-15 -2996 (*7 $)) (-15 -2995 (*7 $))))))) (-3080 (*1 *2 *3) (|partial| -12 (-4 *4 (-718)) (-4 *5 (-962)) (-4 *6 (-862 *5 *4 *2)) (-4 *2 (-757)) (-5 *1 (-863 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3942 ($ *6)) (-15 -2996 (*6 $)) (-15 -2995 (*6 $))))))) (-3079 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *5)) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3942 ($ *7)) (-15 -2996 (*7 $)) (-15 -2995 (*7 $))))))))
+((-3954 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT)))
+(((-864 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3954 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-718) (-757) (-962) (-862 |#3| |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -3835 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-695)))))) (T -864))
+((-3954 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-757)) (-4 *8 (-962)) (-4 *6 (-718)) (-4 *2 (-13 (-1013) (-10 -8 (-15 -3835 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-695)))))) (-5 *1 (-864 *6 *7 *8 *5 *2)) (-4 *5 (-862 *8 *6 *7)))))
+((-2824 (((-2 (|:| -2399 (-695)) (|:| -3950 |#5|) (|:| |radicand| |#5|)) |#3| (-695)) 48 T ELT)) (-2825 (((-2 (|:| -2399 (-695)) (|:| -3950 |#5|) (|:| |radicand| |#5|)) (-347 (-484)) (-695)) 43 T ELT)) (-2827 (((-2 (|:| -2399 (-695)) (|:| -3950 |#4|) (|:| |radicand| (-584 |#4|))) |#4| (-695)) 64 T ELT)) (-2826 (((-2 (|:| -2399 (-695)) (|:| -3950 |#5|) (|:| |radicand| |#5|)) |#5| (-695)) 73 (|has| |#3| (-389)) ELT)))
+(((-865 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2824 ((-2 (|:| -2399 (-695)) (|:| -3950 |#5|) (|:| |radicand| |#5|)) |#3| (-695))) (-15 -2825 ((-2 (|:| -2399 (-695)) (|:| -3950 |#5|) (|:| |radicand| |#5|)) (-347 (-484)) (-695))) (IF (|has| |#3| (-389)) (-15 -2826 ((-2 (|:| -2399 (-695)) (|:| -3950 |#5|) (|:| |radicand| |#5|)) |#5| (-695))) |%noBranch|) (-15 -2827 ((-2 (|:| -2399 (-695)) (|:| -3950 |#4|) (|:| |radicand| (-584 |#4|))) |#4| (-695)))) (-718) (-757) (-495) (-862 |#3| |#1| |#2|) (-13 (-311) (-10 -8 (-15 -3942 ($ |#4|)) (-15 -2996 (|#4| $)) (-15 -2995 (|#4| $))))) (T -865))
+((-2827 (*1 *2 *3 *4) (-12 (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-495)) (-4 *3 (-862 *7 *5 *6)) (-5 *2 (-2 (|:| -2399 (-695)) (|:| -3950 *3) (|:| |radicand| (-584 *3)))) (-5 *1 (-865 *5 *6 *7 *3 *8)) (-5 *4 (-695)) (-4 *8 (-13 (-311) (-10 -8 (-15 -3942 ($ *3)) (-15 -2996 (*3 $)) (-15 -2995 (*3 $))))))) (-2826 (*1 *2 *3 *4) (-12 (-4 *7 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-495)) (-4 *8 (-862 *7 *5 *6)) (-5 *2 (-2 (|:| -2399 (-695)) (|:| -3950 *3) (|:| |radicand| *3))) (-5 *1 (-865 *5 *6 *7 *8 *3)) (-5 *4 (-695)) (-4 *3 (-13 (-311) (-10 -8 (-15 -3942 ($ *8)) (-15 -2996 (*8 $)) (-15 -2995 (*8 $))))))) (-2825 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-484))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-495)) (-4 *8 (-862 *7 *5 *6)) (-5 *2 (-2 (|:| -2399 (-695)) (|:| -3950 *9) (|:| |radicand| *9))) (-5 *1 (-865 *5 *6 *7 *8 *9)) (-5 *4 (-695)) (-4 *9 (-13 (-311) (-10 -8 (-15 -3942 ($ *8)) (-15 -2996 (*8 $)) (-15 -2995 (*8 $))))))) (-2824 (*1 *2 *3 *4) (-12 (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-495)) (-4 *7 (-862 *3 *5 *6)) (-5 *2 (-2 (|:| -2399 (-695)) (|:| -3950 *8) (|:| |radicand| *8))) (-5 *1 (-865 *5 *6 *3 *7 *8)) (-5 *4 (-695)) (-4 *8 (-13 (-311) (-10 -8 (-15 -3942 ($ *7)) (-15 -2996 (*7 $)) (-15 -2995 (*7 $))))))))
+((-2566 (((-85) $ $) NIL T ELT)) (-2828 (($ (-1033)) 8 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 15 T ELT) (((-1033) $) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 11 T ELT)))
+(((-866) (-13 (-1013) (-553 (-1033)) (-10 -8 (-15 -2828 ($ (-1033)))))) (T -866))
+((-2828 (*1 *1 *2) (-12 (-5 *2 (-1033)) (-5 *1 (-866)))))
+((-2894 (((-1001 (-179)) $) 8 T ELT)) (-2895 (((-1001 (-179)) $) 9 T ELT)) (-2896 (((-584 (-584 (-855 (-179)))) $) 10 T ELT)) (-3942 (((-773) $) 6 T ELT)))
+(((-867) (-113)) (T -867))
+((-2896 (*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-584 (-584 (-855 (-179))))))) (-2895 (*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-1001 (-179))))) (-2894 (*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-1001 (-179))))))
+(-13 (-553 (-773)) (-10 -8 (-15 -2896 ((-584 (-584 (-855 (-179)))) $)) (-15 -2895 ((-1001 (-179)) $)) (-15 -2894 ((-1001 (-179)) $))))
+(((-553 (-773)) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 80 (|has| |#1| (-495)) ELT)) (-2061 (($ $) 81 (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) 35 T ELT)) (-3153 (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3955 (($ $) 32 T ELT)) (-3463 (((-3 $ #1#) $) 43 T ELT)) (-3499 (($ $) NIL (|has| |#1| (-389)) ELT)) (-1622 (($ $ |#1| |#2| $) 64 T ELT)) (-2408 (((-85) $) NIL T ELT)) (-2418 (((-695) $) 18 T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2891 (($ |#1| |#2|) NIL T ELT)) (-2818 ((|#2| $) 25 T ELT)) (-1623 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2892 (($ $) 29 T ELT)) (-3171 ((|#1| $) 27 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1795 (((-85) $) 52 T ELT)) (-1794 ((|#1| $) NIL T ELT)) (-3734 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-104)) (|has| |#1| (-495))) ELT)) (-3462 (((-3 $ #1#) $ $) 92 (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ |#1|) 87 (|has| |#1| (-495)) ELT)) (-3944 ((|#2| $) 23 T ELT)) (-2815 ((|#1| $) NIL (|has| |#1| (-389)) ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) 47 T ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ |#1|) 42 T ELT) (($ (-347 (-484))) NIL (OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ELT)) (-3813 (((-584 |#1|) $) NIL T ELT)) (-3673 ((|#1| $ |#2|) 38 T ELT)) (-2700 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3123 (((-695)) 15 T CONST)) (-1621 (($ $ $ (-695)) 76 (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) 86 (|has| |#1| (-495)) ELT)) (-2658 (($) 28 T CONST)) (-2664 (($) 12 T CONST)) (-3054 (((-85) $ $) 85 T ELT)) (-3945 (($ $ |#1|) 93 (|has| |#1| (-311)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 71 T ELT) (($ $ (-695)) 69 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 68 T ELT) (($ $ |#1|) 66 T ELT) (($ |#1| $) 65 T ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)))
+(((-868 |#1| |#2|) (-13 (-276 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-495)) (IF (|has| |#2| (-104)) (-15 -3734 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3989)) (-6 -3989) |%noBranch|))) (-962) (-717)) (T -868))
+((-3734 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-868 *3 *2)) (-4 *2 (-104)) (-4 *3 (-495)) (-4 *3 (-962)) (-4 *2 (-717)))))
+((-2829 (((-3 (-631 |#1|) "failed") |#2| (-831)) 18 T ELT)))
+(((-869 |#1| |#2|) (-10 -7 (-15 -2829 ((-3 (-631 |#1|) "failed") |#2| (-831)))) (-495) (-601 |#1|)) (T -869))
+((-2829 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-831)) (-4 *5 (-495)) (-5 *2 (-631 *5)) (-5 *1 (-869 *5 *3)) (-4 *3 (-601 *5)))))
+((-2566 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2196 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-757))) ELT)) (-2907 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3784 ((|#1| $ (-484) |#1|) 20 (|has| $ (-6 -3992)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3706 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3720 (($) NIL T CONST)) (-2295 (($ $) NIL (|has| $ (-6 -3992)) ELT)) (-2296 (($ $) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3402 (($ |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-1574 ((|#1| $ (-484) |#1|) 19 (|has| $ (-6 -3992)) ELT)) (-3110 ((|#1| $ (-484)) 17 T ELT)) (-3415 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-2887 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3610 (($ (-695) |#1|) 16 T ELT)) (-2198 (((-484) $) 11 (|has| (-484) (-757)) ELT)) (-2529 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3514 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2606 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2199 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2855 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-2302 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2201 (((-584 (-484)) $) NIL T ELT)) (-2202 (((-85) (-484) $) NIL T ELT)) (-3240 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3797 ((|#1| $) NIL (|has| (-484) (-757)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2197 (($ $ |#1|) 21 (|has| $ (-6 -3992)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2200 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2203 (((-584 |#1|) $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) 13 T ELT)) (-3796 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) 18 T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-2303 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-1729 (($ $ $ (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-3396 (($ $) 22 T ELT)) (-3968 (((-473) $) NIL (|has| |#1| (-554 (-473))) ELT)) (-3526 (($ (-584 |#1|)) 15 T ELT)) (-3798 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3942 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2564 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3054 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2682 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3953 (((-695) $) 8 (|has| $ (-6 -3991)) ELT)))
+(((-870 |#1|) (-19 |#1|) (-1128)) (T -870))
+NIL
+((-3837 (((-870 |#2|) (-1 |#2| |#1| |#2|) (-870 |#1|) |#2|) 16 T ELT)) (-3838 ((|#2| (-1 |#2| |#1| |#2|) (-870 |#1|) |#2|) 18 T ELT)) (-3954 (((-870 |#2|) (-1 |#2| |#1|) (-870 |#1|)) 13 T ELT)))
+(((-871 |#1| |#2|) (-10 -7 (-15 -3837 ((-870 |#2|) (-1 |#2| |#1| |#2|) (-870 |#1|) |#2|)) (-15 -3838 (|#2| (-1 |#2| |#1| |#2|) (-870 |#1|) |#2|)) (-15 -3954 ((-870 |#2|) (-1 |#2| |#1|) (-870 |#1|)))) (-1128) (-1128)) (T -871))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-870 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-870 *6)) (-5 *1 (-871 *5 *6)))) (-3838 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-870 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-871 *5 *2)))) (-3837 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-870 *6)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-5 *2 (-870 *5)) (-5 *1 (-871 *6 *5)))))
+((-2830 (($ $ (-1004 $)) 7 T ELT) (($ $ (-1089)) 6 T ELT)))
+(((-872) (-113)) (T -872))
+((-2830 (*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-872)))) (-2830 (*1 *1 *1 *2) (-12 (-4 *1 (-872)) (-5 *2 (-1089)))))
+(-13 (-10 -8 (-15 -2830 ($ $ (-1089))) (-15 -2830 ($ $ (-1004 $)))))
+((-2831 (((-2 (|:| -3950 (-584 (-484))) (|:| |poly| (-584 (-1084 |#1|))) (|:| |prim| (-1084 |#1|))) (-584 (-858 |#1|)) (-584 (-1089)) (-1089)) 26 T ELT) (((-2 (|:| -3950 (-584 (-484))) (|:| |poly| (-584 (-1084 |#1|))) (|:| |prim| (-1084 |#1|))) (-584 (-858 |#1|)) (-584 (-1089))) 27 T ELT) (((-2 (|:| |coef1| (-484)) (|:| |coef2| (-484)) (|:| |prim| (-1084 |#1|))) (-858 |#1|) (-1089) (-858 |#1|) (-1089)) 49 T ELT)))
+(((-873 |#1|) (-10 -7 (-15 -2831 ((-2 (|:| |coef1| (-484)) (|:| |coef2| (-484)) (|:| |prim| (-1084 |#1|))) (-858 |#1|) (-1089) (-858 |#1|) (-1089))) (-15 -2831 ((-2 (|:| -3950 (-584 (-484))) (|:| |poly| (-584 (-1084 |#1|))) (|:| |prim| (-1084 |#1|))) (-584 (-858 |#1|)) (-584 (-1089)))) (-15 -2831 ((-2 (|:| -3950 (-584 (-484))) (|:| |poly| (-584 (-1084 |#1|))) (|:| |prim| (-1084 |#1|))) (-584 (-858 |#1|)) (-584 (-1089)) (-1089)))) (-13 (-311) (-120))) (T -873))
+((-2831 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1089))) (-5 *5 (-1089)) (-4 *6 (-13 (-311) (-120))) (-5 *2 (-2 (|:| -3950 (-584 (-484))) (|:| |poly| (-584 (-1084 *6))) (|:| |prim| (-1084 *6)))) (-5 *1 (-873 *6)))) (-2831 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1089))) (-4 *5 (-13 (-311) (-120))) (-5 *2 (-2 (|:| -3950 (-584 (-484))) (|:| |poly| (-584 (-1084 *5))) (|:| |prim| (-1084 *5)))) (-5 *1 (-873 *5)))) (-2831 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-858 *5)) (-5 *4 (-1089)) (-4 *5 (-13 (-311) (-120))) (-5 *2 (-2 (|:| |coef1| (-484)) (|:| |coef2| (-484)) (|:| |prim| (-1084 *5)))) (-5 *1 (-873 *5)))))
+((-2834 (((-584 |#1|) |#1| |#1|) 47 T ELT)) (-3719 (((-85) |#1|) 44 T ELT)) (-2833 ((|#1| |#1|) 80 T ELT)) (-2832 ((|#1| |#1|) 79 T ELT)))
+(((-874 |#1|) (-10 -7 (-15 -3719 ((-85) |#1|)) (-15 -2832 (|#1| |#1|)) (-15 -2833 (|#1| |#1|)) (-15 -2834 ((-584 |#1|) |#1| |#1|))) (-483)) (T -874))
+((-2834 (*1 *2 *3 *3) (-12 (-5 *2 (-584 *3)) (-5 *1 (-874 *3)) (-4 *3 (-483)))) (-2833 (*1 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-483)))) (-2832 (*1 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-483)))) (-3719 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-874 *3)) (-4 *3 (-483)))))
+((-2835 (((-1184) (-773)) 9 T ELT)))
+(((-875) (-10 -7 (-15 -2835 ((-1184) (-773))))) (T -875))
+((-2835 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1184)) (-5 *1 (-875)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT)) (-2481 (($ $ $) 65 (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) ELT)) (-1310 (((-3 $ #1="failed") $ $) 52 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT)) (-3133 (((-695)) 36 (-12 (|has| |#1| (-317)) (|has| |#2| (-317))) ELT)) (-2836 ((|#2| $) 22 T ELT)) (-2837 ((|#1| $) 21 T ELT)) (-3720 (($) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) CONST)) (-3463 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT)) (-2992 (($) NIL (-12 (|has| |#1| (-317)) (|has| |#2| (-317))) ELT)) (-3183 (((-85) $) NIL (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) ELT)) (-2408 (((-85) $) NIL (OR (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT)) (-2529 (($ $ $) NIL (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-2855 (($ $ $) NIL (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-2838 (($ |#1| |#2|) 20 T ELT)) (-2008 (((-831) $) NIL (-12 (|has| |#1| (-317)) (|has| |#2| (-317))) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) 39 (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) ELT)) (-2398 (($ (-831)) NIL (-12 (|has| |#1| (-317)) (|has| |#2| (-317))) ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3007 (($ $ $) NIL (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) ELT)) (-2433 (($ $ $) NIL (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) ELT)) (-3942 (((-773) $) 14 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) 42 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) CONST)) (-2664 (($) 25 (OR (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) CONST)) (-2564 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-2565 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-3054 (((-85) $ $) 19 T ELT)) (-2682 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-2683 (((-85) $ $) 69 (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-3945 (($ $ $) NIL (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) ELT)) (-3833 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT)) (-3835 (($ $ $) 45 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT)) (** (($ $ (-484)) NIL (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) ELT) (($ $ (-695)) 32 (OR (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT) (($ $ (-831)) NIL (OR (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT)) (* (($ (-484) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ (-695) $) 48 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT) (($ (-831) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT) (($ $ $) 28 (OR (-12 (|has| |#1| (-410)) (|has| |#2| (-410))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT)))
+(((-876 |#1| |#2|) (-13 (-1013) (-10 -8 (IF (|has| |#1| (-317)) (IF (|has| |#2| (-317)) (-6 (-317)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-664)) (IF (|has| |#2| (-664)) (-6 (-664)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-104)) (IF (|has| |#2| (-104)) (-6 (-104)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-410)) (IF (|has| |#2| (-410)) (-6 (-410)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-718)) (IF (|has| |#2| (-718)) (-6 (-718)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-757)) (IF (|has| |#2| (-757)) (-6 (-757)) |%noBranch|) |%noBranch|) (-15 -2838 ($ |#1| |#2|)) (-15 -2837 (|#1| $)) (-15 -2836 (|#2| $)))) (-1013) (-1013)) (T -876))
+((-2838 (*1 *1 *2 *3) (-12 (-5 *1 (-876 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-2837 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1013)))) (-2836 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-876 *3 *2)) (-4 *3 (-1013)))))
+((-3398 (((-1015) $) 13 T ELT)) (-2839 (($ (-444) (-1015)) 15 T ELT)) (-3538 (((-444) $) 11 T ELT)) (-3942 (((-773) $) 25 T ELT)))
+(((-877) (-13 (-553 (-773)) (-10 -8 (-15 -3538 ((-444) $)) (-15 -3398 ((-1015) $)) (-15 -2839 ($ (-444) (-1015)))))) (T -877))
+((-3538 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-877)))) (-3398 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-877)))) (-2839 (*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-1015)) (-5 *1 (-877)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-2311 (($ $) 29 T ELT)) (-2853 (($) 17 T CONST)) (-2559 (($ $ $) NIL T ELT)) (-2558 (($ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2844 (((-633 (-783 $ $)) $) 62 T ELT)) (-2846 (((-633 $) $) 52 T ELT)) (-2843 (((-633 (-783 $ $)) $) 63 T ELT)) (-2842 (((-633 (-783 $ $)) $) 64 T ELT)) (-2847 (((-633 |#1|) $) 43 T ELT)) (-2845 (((-633 (-783 $ $)) $) 61 T ELT)) (-2851 (($ $ $) 38 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2852 (($) 16 T CONST)) (-2850 (($ $ $) 39 T ELT)) (-2840 (($ $ $) 36 T ELT)) (-2841 (($ $ $) 34 T ELT)) (-3942 (((-773) $) 66 T ELT) (($ |#1|) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2560 (($ $ $) NIL T ELT)) (-2309 (($ $ $) 37 T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2310 (($ $ $) 35 T ELT)))
+(((-878 |#1|) (-13 (-881) (-556 |#1|) (-10 -8 (-15 -2847 ((-633 |#1|) $)) (-15 -2846 ((-633 $) $)) (-15 -2845 ((-633 (-783 $ $)) $)) (-15 -2844 ((-633 (-783 $ $)) $)) (-15 -2843 ((-633 (-783 $ $)) $)) (-15 -2842 ((-633 (-783 $ $)) $)) (-15 -2841 ($ $ $)) (-15 -2840 ($ $ $)))) (-1013)) (T -878))
+((-2847 (*1 *2 *1) (-12 (-5 *2 (-633 *3)) (-5 *1 (-878 *3)) (-4 *3 (-1013)))) (-2846 (*1 *2 *1) (-12 (-5 *2 (-633 (-878 *3))) (-5 *1 (-878 *3)) (-4 *3 (-1013)))) (-2845 (*1 *2 *1) (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) (-4 *3 (-1013)))) (-2844 (*1 *2 *1) (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) (-4 *3 (-1013)))) (-2843 (*1 *2 *1) (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) (-4 *3 (-1013)))) (-2842 (*1 *2 *1) (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) (-4 *3 (-1013)))) (-2841 (*1 *1 *1 *1) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1013)))) (-2840 (*1 *1 *1 *1) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1013)))))
+((-3645 (((-878 |#1|) (-878 |#1|)) 46 T ELT)) (-2849 (((-878 |#1|) (-878 |#1|)) 22 T ELT)) (-2848 (((-1009 |#1|) (-878 |#1|)) 41 T ELT)))
+(((-879 |#1|) (-13 (-1128) (-10 -7 (-15 -2849 ((-878 |#1|) (-878 |#1|))) (-15 -2848 ((-1009 |#1|) (-878 |#1|))) (-15 -3645 ((-878 |#1|) (-878 |#1|))))) (-1013)) (T -879))
+((-2849 (*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-1013)) (-5 *1 (-879 *3)))) (-2848 (*1 *2 *3) (-12 (-5 *3 (-878 *4)) (-4 *4 (-1013)) (-5 *2 (-1009 *4)) (-5 *1 (-879 *4)))) (-3645 (*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-1013)) (-5 *1 (-879 *3)))))
+((-3954 (((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|)) 29 T ELT)))
+(((-880 |#1| |#2|) (-13 (-1128) (-10 -7 (-15 -3954 ((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|))))) (-1013) (-1013)) (T -880))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-878 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-878 *6)) (-5 *1 (-880 *5 *6)))))
+((-2566 (((-85) $ $) 19 T ELT)) (-2311 (($ $) 8 T ELT)) (-2853 (($) 17 T CONST)) (-2559 (($ $ $) 9 T ELT)) (-2558 (($ $) 11 T ELT)) (-3239 (((-1072) $) 23 T ELT)) (-2851 (($ $ $) 15 T ELT)) (-3240 (((-1033) $) 22 T ELT)) (-2852 (($) 16 T CONST)) (-2850 (($ $ $) 14 T ELT)) (-3942 (((-773) $) 21 T ELT)) (-1263 (((-85) $ $) 20 T ELT)) (-2560 (($ $ $) 10 T ELT)) (-2309 (($ $ $) 6 T ELT)) (-3054 (((-85) $ $) 18 T ELT)) (-2310 (($ $ $) 7 T ELT)))
+(((-881) (-113)) (T -881))
+((-2853 (*1 *1) (-4 *1 (-881))) (-2852 (*1 *1) (-4 *1 (-881))) (-2851 (*1 *1 *1 *1) (-4 *1 (-881))) (-2850 (*1 *1 *1 *1) (-4 *1 (-881))))
+(-13 (-84) (-1013) (-10 -8 (-15 -2853 ($) -3948) (-15 -2852 ($) -3948) (-15 -2851 ($ $ $)) (-15 -2850 ($ $ $))))
+(((-72) . T) ((-84) . T) ((-553 (-773)) . T) ((-13) . T) ((-605) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3720 (($) 7 T CONST)) (-2887 (((-584 |#1|) $) 30 (|has| $ (-6 -3991)) ELT)) (-2854 (($ $ $) 47 T ELT)) (-3514 (($ $ $) 48 T ELT)) (-2606 (((-584 |#1|) $) 29 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-2855 ((|#1| $) 49 T ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3239 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-1272 ((|#1| $) 43 T ELT)) (-3605 (($ |#1| $) 44 T ELT)) (-3240 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3396 (($ $) 10 T ELT)) (-3942 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1274 (($ (-584 |#1|)) 46 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-882 |#1|) (-113) (-757)) (T -882))
+((-2855 (*1 *2 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757)))) (-3514 (*1 *1 *1 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757)))) (-2854 (*1 *1 *1 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757)))))
+(-13 (-76 |t#1|) (-10 -8 (-6 -3991) (-15 -2855 (|t#1| $)) (-15 -3514 ($ $ $)) (-15 -2854 ($ $ $))))
+(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
+((-2867 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3141 |#2|)) |#2| |#2|) 105 T ELT)) (-3751 ((|#2| |#2| |#2|) 103 T ELT)) (-2868 (((-2 (|:| |coef2| |#2|) (|:| -3141 |#2|)) |#2| |#2|) 107 T ELT)) (-2869 (((-2 (|:| |coef1| |#2|) (|:| -3141 |#2|)) |#2| |#2|) 109 T ELT)) (-2876 (((-2 (|:| |coef2| |#2|) (|:| -2874 |#1|)) |#2| |#2|) 132 (|has| |#1| (-389)) ELT)) (-2883 (((-2 (|:| |coef2| |#2|) (|:| -3752 |#1|)) |#2| |#2|) 56 T ELT)) (-2857 (((-2 (|:| |coef2| |#2|) (|:| -3752 |#1|)) |#2| |#2|) 80 T ELT)) (-2858 (((-2 (|:| |coef1| |#2|) (|:| -3752 |#1|)) |#2| |#2|) 82 T ELT)) (-2866 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-2861 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695)) 89 T ELT)) (-2871 (((-2 (|:| |coef2| |#2|) (|:| -3753 |#1|)) |#2|) 121 T ELT)) (-2864 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695)) 92 T ELT)) (-2873 (((-584 (-695)) |#2| |#2|) 102 T ELT)) (-2881 ((|#1| |#2| |#2|) 50 T ELT)) (-2875 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2874 |#1|)) |#2| |#2|) 130 (|has| |#1| (-389)) ELT)) (-2874 ((|#1| |#2| |#2|) 128 (|has| |#1| (-389)) ELT)) (-2882 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3752 |#1|)) |#2| |#2|) 54 T ELT)) (-2856 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3752 |#1|)) |#2| |#2|) 79 T ELT)) (-3752 ((|#1| |#2| |#2|) 76 T ELT)) (-3748 (((-2 (|:| -3950 |#1|) (|:| -1971 |#2|) (|:| -2900 |#2|)) |#2| |#2|) 41 T ELT)) (-2880 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-2865 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-3187 ((|#2| |#2| |#2|) 93 T ELT)) (-2860 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695)) 87 T ELT)) (-2859 ((|#2| |#2| |#2| (-695)) 85 T ELT)) (-3141 ((|#2| |#2| |#2|) 136 (|has| |#1| (-389)) ELT)) (-3462 (((-1178 |#2|) (-1178 |#2|) |#1|) 22 T ELT)) (-2877 (((-2 (|:| -1971 |#2|) (|:| -2900 |#2|)) |#2| |#2|) 46 T ELT)) (-2870 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3753 |#1|)) |#2|) 119 T ELT)) (-3753 ((|#1| |#2|) 116 T ELT)) (-2863 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695)) 91 T ELT)) (-2862 ((|#2| |#2| |#2| (-695)) 90 T ELT)) (-2872 (((-584 |#2|) |#2| |#2|) 99 T ELT)) (-2879 ((|#2| |#2| |#1| |#1| (-695)) 62 T ELT)) (-2878 ((|#1| |#1| |#1| (-695)) 61 T ELT)) (* (((-1178 |#2|) |#1| (-1178 |#2|)) 17 T ELT)))
+(((-883 |#1| |#2|) (-10 -7 (-15 -3752 (|#1| |#2| |#2|)) (-15 -2856 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3752 |#1|)) |#2| |#2|)) (-15 -2857 ((-2 (|:| |coef2| |#2|) (|:| -3752 |#1|)) |#2| |#2|)) (-15 -2858 ((-2 (|:| |coef1| |#2|) (|:| -3752 |#1|)) |#2| |#2|)) (-15 -2859 (|#2| |#2| |#2| (-695))) (-15 -2860 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695))) (-15 -2861 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695))) (-15 -2862 (|#2| |#2| |#2| (-695))) (-15 -2863 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695))) (-15 -2864 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695))) (-15 -3187 (|#2| |#2| |#2|)) (-15 -2865 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2866 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3751 (|#2| |#2| |#2|)) (-15 -2867 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3141 |#2|)) |#2| |#2|)) (-15 -2868 ((-2 (|:| |coef2| |#2|) (|:| -3141 |#2|)) |#2| |#2|)) (-15 -2869 ((-2 (|:| |coef1| |#2|) (|:| -3141 |#2|)) |#2| |#2|)) (-15 -3753 (|#1| |#2|)) (-15 -2870 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3753 |#1|)) |#2|)) (-15 -2871 ((-2 (|:| |coef2| |#2|) (|:| -3753 |#1|)) |#2|)) (-15 -2872 ((-584 |#2|) |#2| |#2|)) (-15 -2873 ((-584 (-695)) |#2| |#2|)) (IF (|has| |#1| (-389)) (PROGN (-15 -2874 (|#1| |#2| |#2|)) (-15 -2875 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2874 |#1|)) |#2| |#2|)) (-15 -2876 ((-2 (|:| |coef2| |#2|) (|:| -2874 |#1|)) |#2| |#2|)) (-15 -3141 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1178 |#2|) |#1| (-1178 |#2|))) (-15 -3462 ((-1178 |#2|) (-1178 |#2|) |#1|)) (-15 -3748 ((-2 (|:| -3950 |#1|) (|:| -1971 |#2|) (|:| -2900 |#2|)) |#2| |#2|)) (-15 -2877 ((-2 (|:| -1971 |#2|) (|:| -2900 |#2|)) |#2| |#2|)) (-15 -2878 (|#1| |#1| |#1| (-695))) (-15 -2879 (|#2| |#2| |#1| |#1| (-695))) (-15 -2880 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2881 (|#1| |#2| |#2|)) (-15 -2882 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3752 |#1|)) |#2| |#2|)) (-15 -2883 ((-2 (|:| |coef2| |#2|) (|:| -3752 |#1|)) |#2| |#2|))) (-495) (-1154 |#1|)) (T -883))
+((-2883 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3752 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-2882 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3752 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-2881 (*1 *2 *3 *3) (-12 (-4 *2 (-495)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1154 *2)))) (-2880 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-495)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1154 *3)))) (-2879 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-695)) (-4 *3 (-495)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1154 *3)))) (-2878 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *2 (-495)) (-5 *1 (-883 *2 *4)) (-4 *4 (-1154 *2)))) (-2877 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -1971 *3) (|:| -2900 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-3748 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -3950 *4) (|:| -1971 *3) (|:| -2900 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-3462 (*1 *2 *2 *3) (-12 (-5 *2 (-1178 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-495)) (-5 *1 (-883 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1178 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-495)) (-5 *1 (-883 *3 *4)))) (-3141 (*1 *2 *2 *2) (-12 (-4 *3 (-389)) (-4 *3 (-495)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1154 *3)))) (-2876 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2874 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-2875 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2874 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-2874 (*1 *2 *3 *3) (-12 (-4 *2 (-495)) (-4 *2 (-389)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1154 *2)))) (-2873 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-584 (-695))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-2872 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-584 *3)) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-2871 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3753 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-2870 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3753 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-3753 (*1 *2 *3) (-12 (-4 *2 (-495)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1154 *2)))) (-2869 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3141 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-2868 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3141 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-2867 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3141 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-3751 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1154 *3)))) (-2866 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-2865 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-3187 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1154 *3)))) (-2864 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3)) (-4 *3 (-1154 *5)))) (-2863 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3)) (-4 *3 (-1154 *5)))) (-2862 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-495)) (-5 *1 (-883 *4 *2)) (-4 *2 (-1154 *4)))) (-2861 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3)) (-4 *3 (-1154 *5)))) (-2860 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3)) (-4 *3 (-1154 *5)))) (-2859 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-495)) (-5 *1 (-883 *4 *2)) (-4 *2 (-1154 *4)))) (-2858 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3752 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-2857 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3752 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-2856 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3752 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))) (-3752 (*1 *2 *3 *3) (-12 (-4 *2 (-495)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1154 *2)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3315 (((-1129) $) 14 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3203 (((-1048) $) 11 T ELT)) (-3942 (((-773) $) 21 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-884) (-13 (-995) (-10 -8 (-15 -3203 ((-1048) $)) (-15 -3315 ((-1129) $))))) (T -884))
+((-3203 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-884)))) (-3315 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-884)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 40 T ELT)) (-1310 (((-3 $ "failed") $ $) 54 T ELT)) (-3720 (($) NIL T CONST)) (-2885 (((-584 (-783 (-831) (-831))) $) 64 T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2884 (((-831) $) 91 T ELT)) (-2887 (((-584 (-831)) $) 17 T ELT)) (-2886 (((-1068 $) (-695)) 39 T ELT)) (-2888 (($ (-584 (-831))) 16 T ELT)) (-2529 (($ $ $) NIL T ELT)) (-2855 (($ $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3007 (($ $) 67 T ELT)) (-3942 (((-773) $) 87 T ELT) (((-584 (-831)) $) 11 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) 10 T CONST)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 44 T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) 42 T ELT)) (-3835 (($ $ $) 46 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 49 T ELT)) (-3953 (((-695) $) 22 T ELT)))
+(((-885) (-13 (-722) (-553 (-584 (-831))) (-10 -8 (-15 -2888 ($ (-584 (-831)))) (-15 -2887 ((-584 (-831)) $)) (-15 -3953 ((-695) $)) (-15 -2886 ((-1068 $) (-695))) (-15 -2885 ((-584 (-783 (-831) (-831))) $)) (-15 -2884 ((-831) $)) (-15 -3007 ($ $))))) (T -885))
+((-2888 (*1 *1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-885)))) (-2887 (*1 *2 *1) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-885)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-885)))) (-2886 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1068 (-885))) (-5 *1 (-885)))) (-2885 (*1 *2 *1) (-12 (-5 *2 (-584 (-783 (-831) (-831)))) (-5 *1 (-885)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-885)))) (-3007 (*1 *1 *1) (-5 *1 (-885))))
+((-3945 (($ $ |#2|) 31 T ELT)) (-3833 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-347 (-484)) $) 27 T ELT) (($ $ (-347 (-484))) 29 T ELT)))
+(((-886 |#1| |#2| |#3| |#4|) (-10 -7 (-15 * (|#1| |#1| (-347 (-484)))) (-15 * (|#1| (-347 (-484)) |#1|)) (-15 -3945 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3833 (|#1| |#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|))) (-887 |#2| |#3| |#4|) (-962) (-717) (-757)) (T -886))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-3079 (((-584 |#3|) $) 93 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 69 (|has| |#1| (-495)) ELT)) (-2061 (($ $) 70 (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) 72 (|has| |#1| (-495)) ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3955 (($ $) 78 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2890 (((-85) $) 92 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-3933 (((-85) $) 80 T ELT)) (-2891 (($ |#1| |#2|) 79 T ELT) (($ $ |#3| |#2|) 95 T ELT) (($ $ (-584 |#3|) (-584 |#2|)) 94 T ELT)) (-3954 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-2892 (($ $) 83 T ELT)) (-3171 ((|#1| $) 84 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3462 (((-3 $ "failed") $ $) 68 (|has| |#1| (-495)) ELT)) (-3944 ((|#2| $) 82 T ELT)) (-2889 (($ $) 91 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ (-347 (-484))) 75 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $) 67 (|has| |#1| (-495)) ELT) (($ |#1|) 65 (|has| |#1| (-146)) ELT)) (-3673 ((|#1| $ |#2|) 77 T ELT)) (-2700 (((-633 $) $) 66 (|has| |#1| (-118)) ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2060 (((-85) $ $) 71 (|has| |#1| (-495)) ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3945 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-347 (-484)) $) 74 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 73 (|has| |#1| (-38 (-347 (-484)))) ELT)))
+(((-887 |#1| |#2| |#3|) (-113) (-962) (-717) (-757)) (T -887))
+((-3171 (*1 *2 *1) (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *3 (-717)) (-4 *4 (-757)) (-4 *2 (-962)))) (-2892 (*1 *1 *1) (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *4 (-757)))) (-3944 (*1 *2 *1) (-12 (-4 *1 (-887 *3 *2 *4)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *2 (-717)))) (-2891 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-887 *4 *3 *2)) (-4 *4 (-962)) (-4 *3 (-717)) (-4 *2 (-757)))) (-2891 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 *5)) (-4 *1 (-887 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-717)) (-4 *6 (-757)))) (-3079 (*1 *2 *1) (-12 (-4 *1 (-887 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *5 (-757)) (-5 *2 (-584 *5)))) (-2890 (*1 *2 *1) (-12 (-4 *1 (-887 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *5 (-757)) (-5 *2 (-85)))) (-2889 (*1 *1 *1) (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *4 (-757)))))
+(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2891 ($ $ |t#3| |t#2|)) (-15 -2891 ($ $ (-584 |t#3|) (-584 |t#2|))) (-15 -2892 ($ $)) (-15 -3171 (|t#1| $)) (-15 -3944 (|t#2| $)) (-15 -3079 ((-584 |t#3|) $)) (-15 -2890 ((-85) $)) (-15 -2889 ($ $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-556 (-484)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) |has| |#1| (-495)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-245) |has| |#1| (-495)) ((-495) |has| |#1| (-495)) ((-13) . T) ((-589 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-495)) ((-655 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-495)) ((-664) . T) ((-964 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-969 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
+((-2893 (((-1001 (-179)) $) 8 T ELT)) (-2894 (((-1001 (-179)) $) 9 T ELT)) (-2895 (((-1001 (-179)) $) 10 T ELT)) (-2896 (((-584 (-584 (-855 (-179)))) $) 11 T ELT)) (-3942 (((-773) $) 6 T ELT)))
+(((-888) (-113)) (T -888))
+((-2896 (*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-584 (-584 (-855 (-179))))))) (-2895 (*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1001 (-179))))) (-2894 (*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1001 (-179))))) (-2893 (*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1001 (-179))))))
+(-13 (-553 (-773)) (-10 -8 (-15 -2896 ((-584 (-584 (-855 (-179)))) $)) (-15 -2895 ((-1001 (-179)) $)) (-15 -2894 ((-1001 (-179)) $)) (-15 -2893 ((-1001 (-179)) $))))
+(((-553 (-773)) . T))
+((-3079 (((-584 |#4|) $) 23 T ELT)) (-2906 (((-85) $) 55 T ELT)) (-2897 (((-85) $) 54 T ELT)) (-2907 (((-2 (|:| |under| $) (|:| -3127 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-2902 (((-85) $) 56 T ELT)) (-2904 (((-85) $ $) 62 T ELT)) (-2903 (((-85) $ $) 65 T ELT)) (-2905 (((-85) $) 60 T ELT)) (-2898 (((-584 |#5|) (-584 |#5|) $) 98 T ELT)) (-2899 (((-584 |#5|) (-584 |#5|) $) 95 T ELT)) (-2900 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-2912 (((-584 |#4|) $) 27 T ELT)) (-2911 (((-85) |#4| $) 34 T ELT)) (-2901 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-2908 (($ $ |#4|) 39 T ELT)) (-2910 (($ $ |#4|) 38 T ELT)) (-2909 (($ $ |#4|) 40 T ELT)) (-3054 (((-85) $ $) 46 T ELT)))
+(((-889 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2897 ((-85) |#1|)) (-15 -2898 ((-584 |#5|) (-584 |#5|) |#1|)) (-15 -2899 ((-584 |#5|) (-584 |#5|) |#1|)) (-15 -2900 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2901 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2902 ((-85) |#1|)) (-15 -2903 ((-85) |#1| |#1|)) (-15 -2904 ((-85) |#1| |#1|)) (-15 -2905 ((-85) |#1|)) (-15 -2906 ((-85) |#1|)) (-15 -2907 ((-2 (|:| |under| |#1|) (|:| -3127 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2908 (|#1| |#1| |#4|)) (-15 -2909 (|#1| |#1| |#4|)) (-15 -2910 (|#1| |#1| |#4|)) (-15 -2911 ((-85) |#4| |#1|)) (-15 -2912 ((-584 |#4|) |#1|)) (-15 -3079 ((-584 |#4|) |#1|)) (-15 -3054 ((-85) |#1| |#1|))) (-890 |#2| |#3| |#4| |#5|) (-962) (-718) (-757) (-977 |#2| |#3| |#4|)) (T -889))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3079 (((-584 |#3|) $) 37 T ELT)) (-2906 (((-85) $) 30 T ELT)) (-2897 (((-85) $) 21 (|has| |#1| (-495)) ELT)) (-2907 (((-2 (|:| |under| $) (|:| -3127 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3706 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3991)) ELT)) (-3720 (($) 46 T CONST)) (-2902 (((-85) $) 26 (|has| |#1| (-495)) ELT)) (-2904 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2903 (((-85) $ $) 27 (|has| |#1| (-495)) ELT)) (-2905 (((-85) $) 29 (|has| |#1| (-495)) ELT)) (-2898 (((-584 |#4|) (-584 |#4|) $) 22 (|has| |#1| (-495)) ELT)) (-2899 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-3154 (((-3 $ "failed") (-584 |#4|)) 40 T ELT)) (-3153 (($ (-584 |#4|)) 39 T ELT)) (-1351 (($ $) 69 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3402 (($ |#4| $) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3991))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3991)) ELT)) (-2900 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-495)) ELT)) (-3838 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3991))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3991)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3991)) ELT)) (-2887 (((-584 |#4|) $) 53 (|has| $ (-6 -3991)) ELT)) (-3177 ((|#3| $) 38 T ELT)) (-2606 (((-584 |#4|) $) 54 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3991))) ELT)) (-1947 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2912 (((-584 |#3|) $) 36 T ELT)) (-2911 (((-85) |#3| $) 35 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-2901 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3240 (((-1033) $) 12 T ELT)) (-1352 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 |#4|) (-584 |#4|)) 60 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-248 |#4|)) 58 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-584 (-248 |#4|))) 57 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT)) (-1220 (((-85) $ $) 42 T ELT)) (-3399 (((-85) $) 45 T ELT)) (-3561 (($) 44 T ELT)) (-1944 (((-695) |#4| $) 55 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3991))) ELT) (((-695) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3991)) ELT)) (-3396 (($ $) 43 T ELT)) (-3968 (((-473) $) 70 (|has| |#4| (-554 (-473))) ELT)) (-3526 (($ (-584 |#4|)) 61 T ELT)) (-2908 (($ $ |#3|) 32 T ELT)) (-2910 (($ $ |#3|) 34 T ELT)) (-2909 (($ $ |#3|) 33 T ELT)) (-3942 (((-773) $) 13 T ELT) (((-584 |#4|) $) 41 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3953 (((-695) $) 47 (|has| $ (-6 -3991)) ELT)))
+(((-890 |#1| |#2| |#3| |#4|) (-113) (-962) (-718) (-757) (-977 |t#1| |t#2| |t#3|)) (T -890))
+((-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *1 (-890 *3 *4 *5 *6)))) (-3153 (*1 *1 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *1 (-890 *3 *4 *5 *6)))) (-3177 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-977 *3 *4 *2)) (-4 *2 (-757)))) (-3079 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-584 *5)))) (-2912 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-584 *5)))) (-2911 (*1 *2 *3 *1) (-12 (-4 *1 (-890 *4 *5 *3 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-85)))) (-2910 (*1 *1 *1 *2) (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *5 (-977 *3 *4 *2)))) (-2909 (*1 *1 *1 *2) (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *5 (-977 *3 *4 *2)))) (-2908 (*1 *1 *1 *2) (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *5 (-977 *3 *4 *2)))) (-2907 (*1 *2 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3127 *1) (|:| |upper| *1))) (-4 *1 (-890 *4 *5 *3 *6)))) (-2906 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-2905 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))) (-2904 (*1 *2 *1 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))) (-2903 (*1 *2 *1 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))) (-2902 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))) (-2901 (*1 *2 *3 *1) (-12 (-4 *1 (-890 *4 *5 *6 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2900 (*1 *2 *3 *1) (-12 (-4 *1 (-890 *4 *5 *6 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2899 (*1 *2 *2 *1) (-12 (-5 *2 (-584 *6)) (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)))) (-2898 (*1 *2 *2 *1) (-12 (-5 *2 (-584 *6)) (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)))) (-2897 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))))
+(-13 (-1013) (-124 |t#4|) (-553 (-584 |t#4|)) (-10 -8 (-6 -3991) (-15 -3154 ((-3 $ "failed") (-584 |t#4|))) (-15 -3153 ($ (-584 |t#4|))) (-15 -3177 (|t#3| $)) (-15 -3079 ((-584 |t#3|) $)) (-15 -2912 ((-584 |t#3|) $)) (-15 -2911 ((-85) |t#3| $)) (-15 -2910 ($ $ |t#3|)) (-15 -2909 ($ $ |t#3|)) (-15 -2908 ($ $ |t#3|)) (-15 -2907 ((-2 (|:| |under| $) (|:| -3127 $) (|:| |upper| $)) $ |t#3|)) (-15 -2906 ((-85) $)) (IF (|has| |t#1| (-495)) (PROGN (-15 -2905 ((-85) $)) (-15 -2904 ((-85) $ $)) (-15 -2903 ((-85) $ $)) (-15 -2902 ((-85) $)) (-15 -2901 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2900 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2899 ((-584 |t#4|) (-584 |t#4|) $)) (-15 -2898 ((-584 |t#4|) (-584 |t#4|) $)) (-15 -2897 ((-85) $))) |%noBranch|)))
+(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-473)) |has| |#4| (-554 (-473))) ((-259 |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ((-426 |#4|) . T) ((-453 |#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-1013) . T) ((-1128) . T))
+((-2914 (((-584 |#4|) |#4| |#4|) 135 T ELT)) (-2937 (((-584 |#4|) (-584 |#4|) (-85)) 123 (|has| |#1| (-389)) ELT) (((-584 |#4|) (-584 |#4|)) 124 (|has| |#1| (-389)) ELT)) (-2924 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|)) 44 T ELT)) (-2923 (((-85) |#4|) 43 T ELT)) (-2936 (((-584 |#4|) |#4|) 120 (|has| |#1| (-389)) ELT)) (-2919 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-1 (-85) |#4|) (-584 |#4|)) 24 T ELT)) (-2920 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 (-1 (-85) |#4|)) (-584 |#4|)) 30 T ELT)) (-2921 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 (-1 (-85) |#4|)) (-584 |#4|)) 31 T ELT)) (-2932 (((-3 (-2 (|:| |bas| (-413 |#1| |#2| |#3| |#4|)) (|:| -3320 (-584 |#4|))) "failed") (-584 |#4|)) 90 T ELT)) (-2934 (((-584 |#4|) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-2935 (((-584 |#4|) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 127 T ELT)) (-2913 (((-584 |#4|) (-584 |#4|)) 126 T ELT)) (-2929 (((-584 |#4|) (-584 |#4|) (-584 |#4|) (-85)) 59 T ELT) (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 61 T ELT)) (-2930 ((|#4| |#4| (-584 |#4|)) 60 T ELT)) (-2938 (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 131 (|has| |#1| (-389)) ELT)) (-2940 (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 134 (|has| |#1| (-389)) ELT)) (-2939 (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 133 (|has| |#1| (-389)) ELT)) (-2915 (((-584 |#4|) (-584 |#4|) (-584 |#4|) (-1 (-584 |#4|) (-584 |#4|))) 105 T ELT) (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 107 T ELT) (((-584 |#4|) (-584 |#4|) |#4|) 139 T ELT) (((-584 |#4|) |#4| |#4|) 136 T ELT) (((-584 |#4|) (-584 |#4|)) 106 T ELT)) (-2943 (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 117 (-12 (|has| |#1| (-120)) (|has| |#1| (-257))) ELT)) (-2922 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|)) 52 T ELT)) (-2918 (((-85) (-584 |#4|)) 79 T ELT)) (-2917 (((-85) (-584 |#4|) (-584 (-584 |#4|))) 67 T ELT)) (-2926 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|)) 37 T ELT)) (-2925 (((-85) |#4|) 36 T ELT)) (-2942 (((-584 |#4|) (-584 |#4|)) 116 (-12 (|has| |#1| (-120)) (|has| |#1| (-257))) ELT)) (-2941 (((-584 |#4|) (-584 |#4|)) 115 (-12 (|has| |#1| (-120)) (|has| |#1| (-257))) ELT)) (-2931 (((-584 |#4|) (-584 |#4|)) 83 T ELT)) (-2933 (((-584 |#4|) (-584 |#4|)) 97 T ELT)) (-2916 (((-85) (-584 |#4|) (-584 |#4|)) 65 T ELT)) (-2928 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|)) 50 T ELT)) (-2927 (((-85) |#4|) 45 T ELT)))
+(((-891 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2915 ((-584 |#4|) (-584 |#4|))) (-15 -2915 ((-584 |#4|) |#4| |#4|)) (-15 -2913 ((-584 |#4|) (-584 |#4|))) (-15 -2914 ((-584 |#4|) |#4| |#4|)) (-15 -2915 ((-584 |#4|) (-584 |#4|) |#4|)) (-15 -2915 ((-584 |#4|) (-584 |#4|) (-584 |#4|))) (-15 -2915 ((-584 |#4|) (-584 |#4|) (-584 |#4|) (-1 (-584 |#4|) (-584 |#4|)))) (-15 -2916 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -2917 ((-85) (-584 |#4|) (-584 (-584 |#4|)))) (-15 -2918 ((-85) (-584 |#4|))) (-15 -2919 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-1 (-85) |#4|) (-584 |#4|))) (-15 -2920 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 (-1 (-85) |#4|)) (-584 |#4|))) (-15 -2921 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 (-1 (-85) |#4|)) (-584 |#4|))) (-15 -2922 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|))) (-15 -2923 ((-85) |#4|)) (-15 -2924 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|))) (-15 -2925 ((-85) |#4|)) (-15 -2926 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|))) (-15 -2927 ((-85) |#4|)) (-15 -2928 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|))) (-15 -2929 ((-584 |#4|) (-584 |#4|) (-584 |#4|))) (-15 -2929 ((-584 |#4|) (-584 |#4|) (-584 |#4|) (-85))) (-15 -2930 (|#4| |#4| (-584 |#4|))) (-15 -2931 ((-584 |#4|) (-584 |#4|))) (-15 -2932 ((-3 (-2 (|:| |bas| (-413 |#1| |#2| |#3| |#4|)) (|:| -3320 (-584 |#4|))) "failed") (-584 |#4|))) (-15 -2933 ((-584 |#4|) (-584 |#4|))) (-15 -2934 ((-584 |#4|) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2935 ((-584 |#4|) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-389)) (PROGN (-15 -2936 ((-584 |#4|) |#4|)) (-15 -2937 ((-584 |#4|) (-584 |#4|))) (-15 -2937 ((-584 |#4|) (-584 |#4|) (-85))) (-15 -2938 ((-584 |#4|) (-584 |#4|) (-584 |#4|))) (-15 -2939 ((-584 |#4|) (-584 |#4|) (-584 |#4|))) (-15 -2940 ((-584 |#4|) (-584 |#4|) (-584 |#4|)))) |%noBranch|) (IF (|has| |#1| (-257)) (IF (|has| |#1| (-120)) (PROGN (-15 -2941 ((-584 |#4|) (-584 |#4|))) (-15 -2942 ((-584 |#4|) (-584 |#4|))) (-15 -2943 ((-584 |#4|) (-584 |#4|) (-584 |#4|)))) |%noBranch|) |%noBranch|)) (-495) (-718) (-757) (-977 |#1| |#2| |#3|)) (T -891))
+((-2943 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-257)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2942 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-257)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2941 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-257)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2940 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-389)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2939 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-389)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2938 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-389)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2937 (*1 *2 *2 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-85)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2937 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-389)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2936 (*1 *2 *3) (-12 (-4 *4 (-389)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2935 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-891 *5 *6 *7 *8)))) (-2934 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-584 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-718)) (-4 *8 (-757)) (-5 *1 (-891 *6 *7 *8 *9)))) (-2933 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2932 (*1 *2 *3) (|partial| -12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-413 *4 *5 *6 *7)) (|:| -3320 (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2931 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2930 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *2)))) (-2929 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-85)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2929 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2928 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2927 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2926 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2925 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2924 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2923 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2922 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2921 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-1 (-85) *8))) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8)))) (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8)))) (-2920 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-1 (-85) *8))) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8)))) (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8)))) (-2919 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8)))) (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8)))) (-2918 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2917 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-584 *8))) (-5 *3 (-584 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *5 *6 *7 *8)))) (-2916 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2915 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-584 *7) (-584 *7))) (-5 *2 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2915 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2915 (*1 *2 *2 *3) (-12 (-5 *2 (-584 *3)) (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *3)))) (-2914 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2913 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2915 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2915 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
+((-2944 (((-2 (|:| R (-631 |#1|)) (|:| A (-631 |#1|)) (|:| |Ainv| (-631 |#1|))) (-631 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-2946 (((-584 (-2 (|:| C (-631 |#1|)) (|:| |g| (-1178 |#1|)))) (-631 |#1|) (-1178 |#1|)) 45 T ELT)) (-2945 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 16 T ELT)))
+(((-892 |#1|) (-10 -7 (-15 -2944 ((-2 (|:| R (-631 |#1|)) (|:| A (-631 |#1|)) (|:| |Ainv| (-631 |#1|))) (-631 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2945 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2946 ((-584 (-2 (|:| C (-631 |#1|)) (|:| |g| (-1178 |#1|)))) (-631 |#1|) (-1178 |#1|)))) (-311)) (T -892))
+((-2946 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-5 *2 (-584 (-2 (|:| C (-631 *5)) (|:| |g| (-1178 *5))))) (-5 *1 (-892 *5)) (-5 *3 (-631 *5)) (-5 *4 (-1178 *5)))) (-2945 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-631 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-311)) (-5 *1 (-892 *5)))) (-2944 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-311)) (-5 *2 (-2 (|:| R (-631 *6)) (|:| A (-631 *6)) (|:| |Ainv| (-631 *6)))) (-5 *1 (-892 *6)) (-5 *3 (-631 *6)))))
+((-3967 (((-345 |#4|) |#4|) 61 T ELT)))
+(((-893 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3967 ((-345 |#4|) |#4|))) (-757) (-718) (-389) (-862 |#3| |#2| |#1|)) (T -893))
+((-3967 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-389)) (-5 *2 (-345 *3)) (-5 *1 (-893 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4)))))
+((-2566 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3834 (($ (-695)) 121 (|has| |#1| (-23)) ELT)) (-2196 (((-1184) $ (-484) (-484)) 44 (|has| $ (-6 -3992)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-757)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -3992)) ELT) (($ $) 97 (-12 (|has| |#1| (-757)) (|has| $ (-6 -3992))) ELT)) (-2907 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-757)) ELT)) (-3784 ((|#1| $ (-484) |#1|) 56 (|has| $ (-6 -3992)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 64 (|has| $ (-6 -3992)) ELT)) (-3706 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3991)) ELT)) (-3720 (($) 7 T CONST)) (-2295 (($ $) 99 (|has| $ (-6 -3992)) ELT)) (-2296 (($ $) 109 T ELT)) (-1351 (($ $) 84 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3402 (($ |#1| $) 83 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3991)) ELT)) (-3838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3991)) ELT)) (-1574 ((|#1| $ (-484) |#1|) 57 (|has| $ (-6 -3992)) ELT)) (-3110 ((|#1| $ (-484)) 55 T ELT)) (-3415 (((-484) (-1 (-85) |#1|) $) 106 T ELT) (((-484) |#1| $) 105 (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) 104 (|has| |#1| (-1013)) ELT)) (-3702 (($ (-584 |#1|)) 127 T ELT)) (-2887 (((-584 |#1|) $) 30 (|has| $ (-6 -3991)) ELT)) (-3831 (((-631 |#1|) $ $) 114 (|has| |#1| (-962)) ELT)) (-3610 (($ (-695) |#1|) 74 T ELT)) (-2198 (((-484) $) 47 (|has| (-484) (-757)) ELT)) (-2529 (($ $ $) 91 (|has| |#1| (-757)) ELT)) (-3514 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-757)) ELT)) (-2606 (((-584 |#1|) $) 29 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-2199 (((-484) $) 48 (|has| (-484) (-757)) ELT)) (-2855 (($ $ $) 92 (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3828 ((|#1| $) 111 (-12 (|has| |#1| (-962)) (|has| |#1| (-916))) ELT)) (-3829 ((|#1| $) 112 (-12 (|has| |#1| (-962)) (|has| |#1| (-916))) ELT)) (-3239 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-2302 (($ |#1| $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2201 (((-584 (-484)) $) 50 T ELT)) (-2202 (((-85) (-484) $) 51 T ELT)) (-3240 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3797 ((|#1| $) 46 (|has| (-484) (-757)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2197 (($ $ |#1|) 45 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-584 |#1|)) 125 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2200 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2203 (((-584 |#1|) $) 52 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-3796 ((|#1| $ (-484) |#1|) 54 T ELT) ((|#1| $ (-484)) 53 T ELT) (($ $ (-1145 (-484))) 75 T ELT)) (-3832 ((|#1| $ $) 115 (|has| |#1| (-962)) ELT)) (-3907 (((-831) $) 126 T ELT)) (-2303 (($ $ (-484)) 68 T ELT) (($ $ (-1145 (-484))) 67 T ELT)) (-3830 (($ $ $) 113 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-1729 (($ $ $ (-484)) 100 (|has| $ (-6 -3992)) ELT)) (-3396 (($ $) 10 T ELT)) (-3968 (((-473) $) 85 (|has| |#1| (-554 (-473))) ELT) (($ (-584 |#1|)) 128 T ELT)) (-3526 (($ (-584 |#1|)) 76 T ELT)) (-3798 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-584 $)) 70 T ELT)) (-3942 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3991)) ELT)) (-2564 (((-85) $ $) 93 (|has| |#1| (-757)) ELT)) (-2565 (((-85) $ $) 95 (|has| |#1| (-757)) ELT)) (-3054 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2682 (((-85) $ $) 94 (|has| |#1| (-757)) ELT)) (-2683 (((-85) $ $) 96 (|has| |#1| (-757)) ELT)) (-3833 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-3835 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-484) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-664)) ELT) (($ $ |#1|) 116 (|has| |#1| (-664)) ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-894 |#1|) (-113) (-962)) (T -894))
+((-3702 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-962)) (-4 *1 (-894 *3)))) (-3907 (*1 *2 *1) (-12 (-4 *1 (-894 *3)) (-4 *3 (-962)) (-5 *2 (-831)))) (-3830 (*1 *1 *1 *1) (-12 (-4 *1 (-894 *2)) (-4 *2 (-962)))) (-3765 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-894 *3)) (-4 *3 (-962)))))
+(-13 (-1177 |t#1|) (-558 (-584 |t#1|)) (-10 -8 (-15 -3702 ($ (-584 |t#1|))) (-15 -3907 ((-831) $)) (-15 -3830 ($ $ $)) (-15 -3765 ($ $ (-584 |t#1|)))))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-757)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-558 (-584 |#1|)) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-321 |#1|) . T) ((-426 |#1|) . T) ((-539 (-484) |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-594 |#1|) . T) ((-19 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-1013) OR (|has| |#1| (-1013)) (|has| |#1| (-757))) ((-1128) . T) ((-1177 |#1|) . T))
+((-3954 (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)) 17 T ELT)))
+(((-895 |#1| |#2|) (-10 -7 (-15 -3954 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)))) (-962) (-962)) (T -895))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-5 *2 (-855 *6)) (-5 *1 (-895 *5 *6)))))
+((-2949 ((|#1| (-855 |#1|)) 14 T ELT)) (-2948 ((|#1| (-855 |#1|)) 13 T ELT)) (-2947 ((|#1| (-855 |#1|)) 12 T ELT)) (-2951 ((|#1| (-855 |#1|)) 16 T ELT)) (-2955 ((|#1| (-855 |#1|)) 24 T ELT)) (-2950 ((|#1| (-855 |#1|)) 15 T ELT)) (-2952 ((|#1| (-855 |#1|)) 17 T ELT)) (-2954 ((|#1| (-855 |#1|)) 23 T ELT)) (-2953 ((|#1| (-855 |#1|)) 22 T ELT)))
+(((-896 |#1|) (-10 -7 (-15 -2947 (|#1| (-855 |#1|))) (-15 -2948 (|#1| (-855 |#1|))) (-15 -2949 (|#1| (-855 |#1|))) (-15 -2950 (|#1| (-855 |#1|))) (-15 -2951 (|#1| (-855 |#1|))) (-15 -2952 (|#1| (-855 |#1|))) (-15 -2953 (|#1| (-855 |#1|))) (-15 -2954 (|#1| (-855 |#1|))) (-15 -2955 (|#1| (-855 |#1|)))) (-962)) (T -896))
+((-2955 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2954 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2953 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2952 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2951 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2950 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2949 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2948 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2947 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
+((-2973 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-2961 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-2971 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-2959 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-2975 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-2963 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-2956 (((-3 |#1| "failed") |#1| (-695)) 1 T ELT)) (-2958 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-2957 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-2976 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-2964 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-2974 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-2962 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-2972 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-2960 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-2979 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-2967 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-2977 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-2965 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-2981 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-2969 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-2982 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-2970 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-2980 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-2968 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-2978 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-2966 (((-3 |#1| "failed") |#1|) 11 T ELT)))
+(((-897 |#1|) (-113) (-1114)) (T -897))
+((-2982 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2981 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2980 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2979 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2978 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2977 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2976 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2975 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2974 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2973 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2972 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2971 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2970 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2969 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2968 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2967 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2966 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2965 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2964 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2963 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2962 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2961 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2960 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2959 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2958 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2957 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))) (-2956 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-695)) (-4 *1 (-897 *2)) (-4 *2 (-1114)))))
+(-13 (-10 -7 (-15 -2956 ((-3 |t#1| "failed") |t#1| (-695))) (-15 -2957 ((-3 |t#1| "failed") |t#1|)) (-15 -2958 ((-3 |t#1| "failed") |t#1|)) (-15 -2959 ((-3 |t#1| "failed") |t#1|)) (-15 -2960 ((-3 |t#1| "failed") |t#1|)) (-15 -2961 ((-3 |t#1| "failed") |t#1|)) (-15 -2962 ((-3 |t#1| "failed") |t#1|)) (-15 -2963 ((-3 |t#1| "failed") |t#1|)) (-15 -2964 ((-3 |t#1| "failed") |t#1|)) (-15 -2965 ((-3 |t#1| "failed") |t#1|)) (-15 -2966 ((-3 |t#1| "failed") |t#1|)) (-15 -2967 ((-3 |t#1| "failed") |t#1|)) (-15 -2968 ((-3 |t#1| "failed") |t#1|)) (-15 -2969 ((-3 |t#1| "failed") |t#1|)) (-15 -2970 ((-3 |t#1| "failed") |t#1|)) (-15 -2971 ((-3 |t#1| "failed") |t#1|)) (-15 -2972 ((-3 |t#1| "failed") |t#1|)) (-15 -2973 ((-3 |t#1| "failed") |t#1|)) (-15 -2974 ((-3 |t#1| "failed") |t#1|)) (-15 -2975 ((-3 |t#1| "failed") |t#1|)) (-15 -2976 ((-3 |t#1| "failed") |t#1|)) (-15 -2977 ((-3 |t#1| "failed") |t#1|)) (-15 -2978 ((-3 |t#1| "failed") |t#1|)) (-15 -2979 ((-3 |t#1| "failed") |t#1|)) (-15 -2980 ((-3 |t#1| "failed") |t#1|)) (-15 -2981 ((-3 |t#1| "failed") |t#1|)) (-15 -2982 ((-3 |t#1| "failed") |t#1|))))
+((-2984 ((|#4| |#4| (-584 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-2983 ((|#4| |#4| (-584 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-3954 ((|#4| (-1 |#4| (-858 |#1|)) |#4|) 33 T ELT)))
+(((-898 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2983 (|#4| |#4| |#3|)) (-15 -2983 (|#4| |#4| (-584 |#3|))) (-15 -2984 (|#4| |#4| |#3|)) (-15 -2984 (|#4| |#4| (-584 |#3|))) (-15 -3954 (|#4| (-1 |#4| (-858 |#1|)) |#4|))) (-962) (-718) (-13 (-757) (-10 -8 (-15 -3968 ((-1089) $)) (-15 -3827 ((-3 $ "failed") (-1089))))) (-862 (-858 |#1|) |#2| |#3|)) (T -898))
+((-3954 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-858 *4))) (-4 *4 (-962)) (-4 *2 (-862 (-858 *4) *5 *6)) (-4 *5 (-718)) (-4 *6 (-13 (-757) (-10 -8 (-15 -3968 ((-1089) $)) (-15 -3827 ((-3 $ #1="failed") (-1089)))))) (-5 *1 (-898 *4 *5 *6 *2)))) (-2984 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-13 (-757) (-10 -8 (-15 -3968 ((-1089) $)) (-15 -3827 ((-3 $ #1#) (-1089)))))) (-4 *4 (-962)) (-4 *5 (-718)) (-5 *1 (-898 *4 *5 *6 *2)) (-4 *2 (-862 (-858 *4) *5 *6)))) (-2984 (*1 *2 *2 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3968 ((-1089) $)) (-15 -3827 ((-3 $ #1#) (-1089)))))) (-5 *1 (-898 *4 *5 *3 *2)) (-4 *2 (-862 (-858 *4) *5 *3)))) (-2983 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-13 (-757) (-10 -8 (-15 -3968 ((-1089) $)) (-15 -3827 ((-3 $ #1#) (-1089)))))) (-4 *4 (-962)) (-4 *5 (-718)) (-5 *1 (-898 *4 *5 *6 *2)) (-4 *2 (-862 (-858 *4) *5 *6)))) (-2983 (*1 *2 *2 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3968 ((-1089) $)) (-15 -3827 ((-3 $ #1#) (-1089)))))) (-5 *1 (-898 *4 *5 *3 *2)) (-4 *2 (-862 (-858 *4) *5 *3)))))
+((-2985 ((|#2| |#3|) 35 T ELT)) (-3915 (((-2 (|:| -2010 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) |#2|) 79 T ELT)) (-3914 (((-2 (|:| -2010 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) 100 T ELT)))
+(((-899 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3914 ((-2 (|:| -2010 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))))) (-15 -3915 ((-2 (|:| -2010 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) |#2|)) (-15 -2985 (|#2| |#3|))) (-298) (-1154 |#1|) (-1154 |#2|) (-662 |#2| |#3|)) (T -899))
+((-2985 (*1 *2 *3) (-12 (-4 *3 (-1154 *2)) (-4 *2 (-1154 *4)) (-5 *1 (-899 *4 *2 *3 *5)) (-4 *4 (-298)) (-4 *5 (-662 *2 *3)))) (-3915 (*1 *2 *3) (-12 (-4 *4 (-298)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 *3)) (-5 *2 (-2 (|:| -2010 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-899 *4 *3 *5 *6)) (-4 *6 (-662 *3 *5)))) (-3914 (*1 *2) (-12 (-4 *3 (-298)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 *4)) (-5 *2 (-2 (|:| -2010 (-631 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-631 *4)))) (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-662 *4 *5)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3397 (((-3 (-85) #1="failed") $) 71 T ELT)) (-3645 (($ $) 36 (-12 (|has| |#1| (-120)) (|has| |#1| (-257))) ELT)) (-2989 (($ $ (-3 (-85) #1#)) 72 T ELT)) (-2990 (($ (-584 |#4|) |#4|) 25 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2986 (($ $) 69 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3399 (((-85) $) 70 T ELT)) (-3561 (($) 30 T ELT)) (-2987 ((|#4| $) 74 T ELT)) (-2988 (((-584 |#4|) $) 73 T ELT)) (-3942 (((-773) $) 68 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-900 |#1| |#2| |#3| |#4|) (-13 (-1013) (-553 (-773)) (-10 -8 (-15 -3561 ($)) (-15 -2990 ($ (-584 |#4|) |#4|)) (-15 -3397 ((-3 (-85) #1="failed") $)) (-15 -2989 ($ $ (-3 (-85) #1#))) (-15 -3399 ((-85) $)) (-15 -2988 ((-584 |#4|) $)) (-15 -2987 (|#4| $)) (-15 -2986 ($ $)) (IF (|has| |#1| (-257)) (IF (|has| |#1| (-120)) (-15 -3645 ($ $)) |%noBranch|) |%noBranch|))) (-389) (-757) (-718) (-862 |#1| |#3| |#2|)) (T -900))
+((-3561 (*1 *1) (-12 (-4 *2 (-389)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5)) (-4 *5 (-862 *2 *4 *3)))) (-2990 (*1 *1 *2 *3) (-12 (-5 *2 (-584 *3)) (-4 *3 (-862 *4 *6 *5)) (-4 *4 (-389)) (-4 *5 (-757)) (-4 *6 (-718)) (-5 *1 (-900 *4 *5 *6 *3)))) (-3397 (*1 *2 *1) (|partial| -12 (-4 *3 (-389)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))) (-2989 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-389)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))) (-3399 (*1 *2 *1) (-12 (-4 *3 (-389)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))) (-2988 (*1 *2 *1) (-12 (-4 *3 (-389)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-584 *6)) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))) (-2987 (*1 *2 *1) (-12 (-4 *2 (-862 *3 *5 *4)) (-5 *1 (-900 *3 *4 *5 *2)) (-4 *3 (-389)) (-4 *4 (-757)) (-4 *5 (-718)))) (-2986 (*1 *1 *1) (-12 (-4 *2 (-389)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5)) (-4 *5 (-862 *2 *4 *3)))) (-3645 (*1 *1 *1) (-12 (-4 *2 (-120)) (-4 *2 (-257)) (-4 *2 (-389)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5)) (-4 *5 (-862 *2 *4 *3)))))
+((-2991 (((-900 (-347 (-484)) (-774 |#1|) (-197 |#2| (-695)) (-206 |#1| (-347 (-484)))) (-900 (-347 (-484)) (-774 |#1|) (-197 |#2| (-695)) (-206 |#1| (-347 (-484))))) 82 T ELT)))
+(((-901 |#1| |#2|) (-10 -7 (-15 -2991 ((-900 (-347 (-484)) (-774 |#1|) (-197 |#2| (-695)) (-206 |#1| (-347 (-484)))) (-900 (-347 (-484)) (-774 |#1|) (-197 |#2| (-695)) (-206 |#1| (-347 (-484))))))) (-584 (-1089)) (-695)) (T -901))
+((-2991 (*1 *2 *2) (-12 (-5 *2 (-900 (-347 (-484)) (-774 *3) (-197 *4 (-695)) (-206 *3 (-347 (-484))))) (-14 *3 (-584 (-1089))) (-14 *4 (-695)) (-5 *1 (-901 *3 *4)))))
+((-3266 (((-85) |#5| |#5|) 44 T ELT)) (-3269 (((-85) |#5| |#5|) 59 T ELT)) (-3274 (((-85) |#5| (-584 |#5|)) 81 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3270 (((-85) (-584 |#4|) (-584 |#4|)) 65 T ELT)) (-3276 (((-85) (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|)) (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) 70 T ELT)) (-3265 (((-1184)) 32 T ELT)) (-3264 (((-1184) (-1072) (-1072) (-1072)) 28 T ELT)) (-3275 (((-584 |#5|) (-584 |#5|)) 100 T ELT)) (-3277 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|)))) 92 T ELT)) (-3278 (((-584 (-2 (|:| -3263 (-584 |#4|)) (|:| -1598 |#5|) (|:| |ineq| (-584 |#4|)))) (-584 |#4|) (-584 |#5|) (-85) (-85)) 122 T ELT)) (-3268 (((-85) |#5| |#5|) 53 T ELT)) (-3273 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3271 (((-85) (-584 |#4|) (-584 |#4|)) 64 T ELT)) (-3272 (((-85) (-584 |#4|) (-584 |#4|)) 66 T ELT)) (-3695 (((-85) (-584 |#4|) (-584 |#4|)) 67 T ELT)) (-3279 (((-3 (-2 (|:| -3263 (-584 |#4|)) (|:| -1598 |#5|) (|:| |ineq| (-584 |#4|))) #1#) (-584 |#4|) |#5| (-584 |#4|) (-85) (-85) (-85) (-85) (-85)) 117 T ELT)) (-3267 (((-584 |#5|) (-584 |#5|)) 49 T ELT)))
+(((-902 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3264 ((-1184) (-1072) (-1072) (-1072))) (-15 -3265 ((-1184))) (-15 -3266 ((-85) |#5| |#5|)) (-15 -3267 ((-584 |#5|) (-584 |#5|))) (-15 -3268 ((-85) |#5| |#5|)) (-15 -3269 ((-85) |#5| |#5|)) (-15 -3270 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3271 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3272 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3695 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3273 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3274 ((-85) |#5| |#5|)) (-15 -3274 ((-85) |#5| (-584 |#5|))) (-15 -3275 ((-584 |#5|) (-584 |#5|))) (-15 -3276 ((-85) (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|)) (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|)))) (-15 -3277 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) (-15 -3278 ((-584 (-2 (|:| -3263 (-584 |#4|)) (|:| -1598 |#5|) (|:| |ineq| (-584 |#4|)))) (-584 |#4|) (-584 |#5|) (-85) (-85))) (-15 -3279 ((-3 (-2 (|:| -3263 (-584 |#4|)) (|:| -1598 |#5|) (|:| |ineq| (-584 |#4|))) #1#) (-584 |#4|) |#5| (-584 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-389) (-718) (-757) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -902))
+((-3279 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| -3263 (-584 *9)) (|:| -1598 *4) (|:| |ineq| (-584 *9)))) (-5 *1 (-902 *6 *7 *8 *9 *4)) (-5 *3 (-584 *9)) (-4 *4 (-983 *6 *7 *8 *9)))) (-3278 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-584 *10)) (-5 *5 (-85)) (-4 *10 (-983 *6 *7 *8 *9)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-977 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| -3263 (-584 *9)) (|:| -1598 *10) (|:| |ineq| (-584 *9))))) (-5 *1 (-902 *6 *7 *8 *9 *10)) (-5 *3 (-584 *9)))) (-3277 (*1 *2 *2) (-12 (-5 *2 (-584 (-2 (|:| |val| (-584 *6)) (|:| -1598 *7)))) (-4 *6 (-977 *3 *4 *5)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-902 *3 *4 *5 *6 *7)))) (-3276 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1598 *8))) (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)))) (-3275 (*1 *2 *2) (-12 (-5 *2 (-584 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-902 *3 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-983 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-902 *5 *6 *7 *8 *3)))) (-3274 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3273 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3695 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3272 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3271 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3270 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3269 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3268 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3267 (*1 *2 *2) (-12 (-5 *2 (-584 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-902 *3 *4 *5 *6 *7)))) (-3266 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3265 (*1 *2) (-12 (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1184)) (-5 *1 (-902 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3264 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))))
+((-3827 (((-1089) $) 15 T ELT)) (-3398 (((-1072) $) 16 T ELT)) (-3223 (($ (-1089) (-1072)) 14 T ELT)) (-3942 (((-773) $) 13 T ELT)))
+(((-903) (-13 (-553 (-773)) (-10 -8 (-15 -3223 ($ (-1089) (-1072))) (-15 -3827 ((-1089) $)) (-15 -3398 ((-1072) $))))) (T -903))
+((-3223 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1072)) (-5 *1 (-903)))) (-3827 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-903)))) (-3398 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-903)))))
+((-3154 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-1089) #1#) $) 72 T ELT) (((-3 (-347 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) 102 T ELT)) (-3153 ((|#2| $) NIL T ELT) (((-1089) $) 67 T ELT) (((-347 (-484)) $) NIL T ELT) (((-484) $) 99 T ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) 121 T ELT) (((-631 |#2|) (-631 $)) 35 T ELT)) (-2992 (($) 105 T ELT)) (-2794 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) 82 T ELT) (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 91 T ELT)) (-2994 (($ $) 10 T ELT)) (-3441 (((-633 $) $) 27 T ELT)) (-3954 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3442 (($) 16 T CONST)) (-3125 (($ $) 61 T ELT)) (-3754 (($ $ (-1 |#2| |#2|)) 43 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-584 (-1089))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2993 (($ $) 12 T ELT)) (-3968 (((-801 (-484)) $) 77 T ELT) (((-801 (-327)) $) 86 T ELT) (((-473) $) 47 T ELT) (((-327) $) 51 T ELT) (((-179) $) 55 T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) 97 T ELT) (($ |#2|) NIL T ELT) (($ (-1089)) 64 T ELT)) (-3123 (((-695)) 38 T CONST)) (-2683 (((-85) $ $) 57 T ELT)))
+(((-904 |#1| |#2|) (-10 -7 (-15 -2683 ((-85) |#1| |#1|)) (-15 -3754 (|#1| |#1| (-695))) (-15 -3754 (|#1| |#1|)) (-15 -3754 (|#1| |#1| (-584 (-1089)) (-584 (-695)))) (-15 -3754 (|#1| |#1| (-1089) (-695))) (-15 -3754 (|#1| |#1| (-584 (-1089)))) (-15 -3754 (|#1| |#1| (-1089))) (-15 -3442 (|#1|) -3948) (-15 -3441 ((-633 |#1|) |#1|)) (-15 -3154 ((-3 (-484) #1="failed") |#1|)) (-15 -3153 ((-484) |#1|)) (-15 -3154 ((-3 (-347 (-484)) #1#) |#1|)) (-15 -3153 ((-347 (-484)) |#1|)) (-15 -3968 ((-179) |#1|)) (-15 -3968 ((-327) |#1|)) (-15 -3968 ((-473) |#1|)) (-15 -3942 (|#1| (-1089))) (-15 -3154 ((-3 (-1089) #1#) |#1|)) (-15 -3153 ((-1089) |#1|)) (-15 -2992 (|#1|)) (-15 -3125 (|#1| |#1|)) (-15 -2993 (|#1| |#1|)) (-15 -2994 (|#1| |#1|)) (-15 -2794 ((-799 (-327) |#1|) |#1| (-801 (-327)) (-799 (-327) |#1|))) (-15 -2794 ((-799 (-484) |#1|) |#1| (-801 (-484)) (-799 (-484) |#1|))) (-15 -3968 ((-801 (-327)) |#1|)) (-15 -3968 ((-801 (-484)) |#1|)) (-15 -2277 ((-631 |#2|) (-631 |#1|))) (-15 -2277 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 |#1|) (-1178 |#1|))) (-15 -2277 ((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 |#1|) (-1178 |#1|))) (-15 -2277 ((-631 (-484)) (-631 |#1|))) (-15 -3754 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3754 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3954 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3154 ((-3 |#2| #1#) |#1|)) (-15 -3153 (|#2| |#1|)) (-15 -3942 (|#1| |#2|)) (-15 -3942 (|#1| (-347 (-484)))) (-15 -3942 (|#1| |#1|)) (-15 -3123 ((-695)) -3948) (-15 -3942 (|#1| (-484))) (-15 -3942 ((-773) |#1|))) (-905 |#2|) (-495)) (T -904))
+((-3123 (*1 *2) (-12 (-4 *4 (-495)) (-5 *2 (-695)) (-5 *1 (-904 *3 *4)) (-4 *3 (-905 *4)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-3126 ((|#1| $) 171 (|has| |#1| (-257)) ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 53 T ELT)) (-2061 (($ $) 52 T ELT)) (-2059 (((-85) $) 50 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) 162 (|has| |#1| (-822)) ELT)) (-3771 (($ $) 89 T ELT)) (-3967 (((-345 $) $) 88 T ELT)) (-2702 (((-3 (-584 (-1084 $)) #1="failed") (-584 (-1084 $)) (-1084 $)) 165 (|has| |#1| (-822)) ELT)) (-1606 (((-85) $ $) 73 T ELT)) (-3619 (((-484) $) 152 (|has| |#1| (-741)) ELT)) (-3720 (($) 22 T CONST)) (-3154 (((-3 |#1| #2="failed") $) 201 T ELT) (((-3 (-1089) #2#) $) 160 (|has| |#1| (-951 (-1089))) ELT) (((-3 (-347 (-484)) #2#) $) 143 (|has| |#1| (-951 (-484))) ELT) (((-3 (-484) #2#) $) 141 (|has| |#1| (-951 (-484))) ELT)) (-3153 ((|#1| $) 202 T ELT) (((-1089) $) 161 (|has| |#1| (-951 (-1089))) ELT) (((-347 (-484)) $) 144 (|has| |#1| (-951 (-484))) ELT) (((-484) $) 142 (|has| |#1| (-951 (-484))) ELT)) (-2562 (($ $ $) 69 T ELT)) (-2277 (((-631 (-484)) (-631 $)) 186 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 185 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) 184 T ELT) (((-631 |#1|) (-631 $)) 183 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2992 (($) 169 (|has| |#1| (-483)) ELT)) (-2561 (($ $ $) 70 T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) 64 T ELT)) (-3719 (((-85) $) 87 T ELT)) (-3183 (((-85) $) 154 (|has| |#1| (-741)) ELT)) (-2794 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) 178 (|has| |#1| (-797 (-484))) ELT) (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 177 (|has| |#1| (-797 (-327))) ELT)) (-2408 (((-85) $) 42 T ELT)) (-2994 (($ $) 173 T ELT)) (-2996 ((|#1| $) 175 T ELT)) (-3441 (((-633 $) $) 140 (|has| |#1| (-1065)) ELT)) (-3184 (((-85) $) 153 (|has| |#1| (-741)) ELT)) (-1603 (((-3 (-584 $) #3="failed") (-584 $) $) 66 T ELT)) (-2529 (($ $ $) 145 (|has| |#1| (-757)) ELT)) (-2855 (($ $ $) 146 (|has| |#1| (-757)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 193 T ELT)) (-2278 (((-631 (-484)) (-1178 $)) 188 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 187 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 182 T ELT) (((-631 |#1|) (-1178 $)) 181 T ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-2482 (($ $) 86 T ELT)) (-3442 (($) 139 (|has| |#1| (-1065)) CONST)) (-3240 (((-1033) $) 12 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3141 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3125 (($ $) 170 (|has| |#1| (-257)) ELT)) (-3127 ((|#1| $) 167 (|has| |#1| (-483)) ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) 164 (|has| |#1| (-822)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) 163 (|has| |#1| (-822)) ELT)) (-3728 (((-345 $) $) 90 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 67 T ELT)) (-3462 (((-3 $ "failed") $ $) 54 T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) 63 T ELT)) (-3764 (($ $ (-584 |#1|) (-584 |#1|)) 199 (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) 198 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) 197 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-248 |#1|))) 196 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-1089)) (-584 |#1|)) 195 (|has| |#1| (-453 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) 194 (|has| |#1| (-453 (-1089) |#1|)) ELT)) (-1605 (((-695) $) 72 T ELT)) (-3796 (($ $ |#1|) 200 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 71 T ELT)) (-3754 (($ $ (-1 |#1| |#1|)) 192 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 191 T ELT) (($ $) 138 (|has| |#1| (-189)) ELT) (($ $ (-695)) 136 (|has| |#1| (-189)) ELT) (($ $ (-1089)) 134 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) 132 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) 131 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 130 (|has| |#1| (-812 (-1089))) ELT)) (-2993 (($ $) 172 T ELT)) (-2995 ((|#1| $) 174 T ELT)) (-3968 (((-801 (-484)) $) 180 (|has| |#1| (-554 (-801 (-484)))) ELT) (((-801 (-327)) $) 179 (|has| |#1| (-554 (-801 (-327)))) ELT) (((-473) $) 157 (|has| |#1| (-554 (-473))) ELT) (((-327) $) 156 (|has| |#1| (-934)) ELT) (((-179) $) 155 (|has| |#1| (-934)) ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) 166 (-2560 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-484))) 82 T ELT) (($ |#1|) 205 T ELT) (($ (-1089)) 159 (|has| |#1| (-951 (-1089))) ELT)) (-2700 (((-633 $) $) 158 (OR (|has| |#1| (-118)) (-2560 (|has| $ (-118)) (|has| |#1| (-822)))) ELT)) (-3123 (((-695)) 38 T CONST)) (-3128 ((|#1| $) 168 (|has| |#1| (-483)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2060 (((-85) $ $) 51 T ELT)) (-3379 (($ $) 151 (|has| |#1| (-741)) ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-2667 (($ $ (-1 |#1| |#1|)) 190 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 189 T ELT) (($ $) 137 (|has| |#1| (-189)) ELT) (($ $ (-695)) 135 (|has| |#1| (-189)) ELT) (($ $ (-1089)) 133 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) 129 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) 128 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 127 (|has| |#1| (-812 (-1089))) ELT)) (-2564 (((-85) $ $) 147 (|has| |#1| (-757)) ELT)) (-2565 (((-85) $ $) 149 (|has| |#1| (-757)) ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-2682 (((-85) $ $) 148 (|has| |#1| (-757)) ELT)) (-2683 (((-85) $ $) 150 (|has| |#1| (-757)) ELT)) (-3945 (($ $ $) 81 T ELT) (($ |#1| |#1|) 176 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 85 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-484))) 84 T ELT) (($ (-347 (-484)) $) 83 T ELT) (($ |#1| $) 204 T ELT) (($ $ |#1|) 203 T ELT)))
+(((-905 |#1|) (-113) (-495)) (T -905))
+((-3945 (*1 *1 *2 *2) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495)))) (-2996 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495)))) (-2995 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495)))) (-2994 (*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495)))) (-2993 (*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495)))) (-3126 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495)) (-4 *2 (-257)))) (-3125 (*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495)) (-4 *2 (-257)))) (-2992 (*1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-483)) (-4 *2 (-495)))) (-3128 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495)) (-4 *2 (-483)))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495)) (-4 *2 (-483)))))
+(-13 (-311) (-38 |t#1|) (-951 |t#1|) (-287 |t#1|) (-184 |t#1|) (-326 |t#1|) (-795 |t#1|) (-340 |t#1|) (-10 -8 (-15 -3945 ($ |t#1| |t#1|)) (-15 -2996 (|t#1| $)) (-15 -2995 (|t#1| $)) (-15 -2994 ($ $)) (-15 -2993 ($ $)) (IF (|has| |t#1| (-1065)) (-6 (-1065)) |%noBranch|) (IF (|has| |t#1| (-951 (-484))) (PROGN (-6 (-951 (-484))) (-6 (-951 (-347 (-484))))) |%noBranch|) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#1| (-741)) (-6 (-741)) |%noBranch|) (IF (|has| |t#1| (-934)) (-6 (-934)) |%noBranch|) (IF (|has| |t#1| (-554 (-473))) (-6 (-554 (-473))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-951 (-1089))) (-6 (-951 (-1089))) |%noBranch|) (IF (|has| |t#1| (-257)) (PROGN (-15 -3126 (|t#1| $)) (-15 -3125 ($ $))) |%noBranch|) (IF (|has| |t#1| (-483)) (PROGN (-15 -2992 ($)) (-15 -3128 (|t#1| $)) (-15 -3127 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-822)) (-6 (-822)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-484))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) . T) ((-556 (-484)) . T) ((-556 (-1089)) |has| |#1| (-951 (-1089))) ((-556 |#1|) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-554 (-179)) |has| |#1| (-934)) ((-554 (-327)) |has| |#1| (-934)) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-554 (-801 (-327))) |has| |#1| (-554 (-801 (-327)))) ((-554 (-801 (-484))) |has| |#1| (-554 (-801 (-484)))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) . T) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-245) . T) ((-257) . T) ((-259 |#1|) |has| |#1| (-259 |#1|)) ((-311) . T) ((-287 |#1|) . T) ((-326 |#1|) . T) ((-340 |#1|) . T) ((-389) . T) ((-453 (-1089) |#1|) |has| |#1| (-453 (-1089) |#1|)) ((-453 |#1| |#1|) |has| |#1| (-259 |#1|)) ((-495) . T) ((-13) . T) ((-589 (-347 (-484))) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) . T) ((-591 (-484)) |has| |#1| (-581 (-484))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-581 (-484)) |has| |#1| (-581 (-484))) ((-581 |#1|) . T) ((-655 (-347 (-484))) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-664) . T) ((-715) |has| |#1| (-741)) ((-717) |has| |#1| (-741)) ((-719) |has| |#1| (-741)) ((-722) |has| |#1| (-741)) ((-741) |has| |#1| (-741)) ((-756) |has| |#1| (-741)) ((-757) OR (|has| |#1| (-757)) (|has| |#1| (-741))) ((-760) OR (|has| |#1| (-757)) (|has| |#1| (-741))) ((-807 $ (-1089)) OR (|has| |#1| (-812 (-1089))) (|has| |#1| (-810 (-1089)))) ((-810 (-1089)) |has| |#1| (-810 (-1089))) ((-812 (-1089)) OR (|has| |#1| (-812 (-1089))) (|has| |#1| (-810 (-1089)))) ((-797 (-327)) |has| |#1| (-797 (-327))) ((-797 (-484)) |has| |#1| (-797 (-484))) ((-795 |#1|) . T) ((-822) |has| |#1| (-822)) ((-833) . T) ((-934) |has| |#1| (-934)) ((-951 (-347 (-484))) |has| |#1| (-951 (-484))) ((-951 (-484)) |has| |#1| (-951 (-484))) ((-951 (-1089)) |has| |#1| (-951 (-1089))) ((-951 |#1|) . T) ((-964 (-347 (-484))) . T) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-347 (-484))) . T) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) |has| |#1| (-1065)) ((-1128) . T) ((-1133) . T))
+((-3954 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT)))
+(((-906 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3954 (|#4| (-1 |#2| |#1|) |#3|))) (-495) (-495) (-905 |#1|) (-905 |#2|)) (T -906))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-495)) (-4 *6 (-495)) (-4 *2 (-905 *6)) (-5 *1 (-906 *5 *6 *4 *2)) (-4 *4 (-905 *5)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1310 (((-3 $ "failed") $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-2997 (($ (-1055 |#1| |#2|)) 11 T ELT)) (-3121 (((-1055 |#1| |#2|) $) 12 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3796 ((|#2| $ (-197 |#1| |#2|)) 16 T ELT)) (-3942 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) NIL T CONST)) (-3054 (((-85) $ $) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT)))
+(((-907 |#1| |#2|) (-13 (-21) (-241 (-197 |#1| |#2|) |#2|) (-10 -8 (-15 -2997 ($ (-1055 |#1| |#2|))) (-15 -3121 ((-1055 |#1| |#2|) $)))) (-831) (-311)) (T -907))
+((-2997 (*1 *1 *2) (-12 (-5 *2 (-1055 *3 *4)) (-14 *3 (-831)) (-4 *4 (-311)) (-5 *1 (-907 *3 *4)))) (-3121 (*1 *2 *1) (-12 (-5 *2 (-1055 *3 *4)) (-5 *1 (-907 *3 *4)) (-14 *3 (-831)) (-4 *4 (-311)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3203 (((-1048) $) 10 T ELT)) (-3942 (((-773) $) 16 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-908) (-13 (-995) (-10 -8 (-15 -3203 ((-1048) $))))) (T -908))
+((-3203 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-908)))))
+((-2566 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3720 (($) 7 T CONST)) (-3000 (($ $) 50 T ELT)) (-2887 (((-584 |#1|) $) 30 (|has| $ (-6 -3991)) ELT)) (-2606 (((-584 |#1|) $) 29 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3829 (((-695) $) 49 T ELT)) (-3239 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-1272 ((|#1| $) 43 T ELT)) (-3605 (($ |#1| $) 44 T ELT)) (-3240 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-2999 ((|#1| $) 48 T ELT)) (-1273 ((|#1| $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3002 ((|#1| |#1| $) 52 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-3001 ((|#1| $) 51 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3396 (($ $) 10 T ELT)) (-3942 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1274 (($ (-584 |#1|)) 46 T ELT)) (-2998 ((|#1| $) 47 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-909 |#1|) (-113) (-1128)) (T -909))
+((-3002 (*1 *2 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1128)))) (-3001 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1128)))) (-3000 (*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1128)))) (-3829 (*1 *2 *1) (-12 (-4 *1 (-909 *3)) (-4 *3 (-1128)) (-5 *2 (-695)))) (-2999 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1128)))) (-2998 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1128)))))
+(-13 (-76 |t#1|) (-10 -8 (-6 -3991) (-15 -3002 (|t#1| |t#1| $)) (-15 -3001 (|t#1| $)) (-15 -3000 ($ $)) (-15 -3829 ((-695) $)) (-15 -2999 (|t#1| $)) (-15 -2998 (|t#1| $))))
+(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3153 (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-3639 ((|#1| $) 12 T ELT)) (-3022 (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-483)) ELT)) (-3021 (((-85) $) NIL (|has| |#1| (-483)) ELT)) (-3020 (((-347 (-484)) $) NIL (|has| |#1| (-483)) ELT)) (-3003 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-2408 (((-85) $) NIL T ELT)) (-3129 ((|#1| $) NIL T ELT)) (-2529 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2855 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2278 (((-631 (-484)) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3004 ((|#1| $) 15 T ELT)) (-3005 ((|#1| $) 14 T ELT)) (-3006 ((|#1| $) 13 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3764 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-248 |#1|))) NIL (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-1089)) (-584 |#1|)) NIL (|has| |#1| (-453 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) NIL (|has| |#1| (-453 (-1089) |#1|)) ELT)) (-3796 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3754 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT)) (-3968 (((-473) $) NIL (|has| |#1| (-554 (-473))) ELT)) (-3007 (($ $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-347 (-484))) NIL (OR (|has| |#1| (-311)) (|has| |#1| (-951 (-347 (-484))))) ELT)) (-2700 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3123 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3379 ((|#1| $) NIL (|has| |#1| (-973)) ELT)) (-2658 (($) 8 T CONST)) (-2664 (($) 10 T CONST)) (-2667 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT)) (-2564 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-311)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-311)) ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-311)) ELT)))
+(((-910 |#1|) (-912 |#1|) (-146)) (T -910))
+NIL
+((-3185 (((-85) $) 43 T ELT)) (-3154 (((-3 (-484) #1="failed") $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 46 T ELT)) (-3153 (((-484) $) NIL T ELT) (((-347 (-484)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-3022 (((-3 (-347 (-484)) #1#) $) 78 T ELT)) (-3021 (((-85) $) 72 T ELT)) (-3020 (((-347 (-484)) $) 76 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-3129 ((|#2| $) 22 T ELT)) (-3954 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-2482 (($ $) 58 T ELT)) (-3754 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-584 (-1089))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3968 (((-473) $) 67 T ELT)) (-3007 (($ $) 17 T ELT)) (-3942 (((-773) $) 53 T ELT) (($ (-484)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-347 (-484))) NIL T ELT)) (-3123 (((-695)) 10 T CONST)) (-3379 ((|#2| $) 71 T ELT)) (-3054 (((-85) $ $) 26 T ELT)) (-2683 (((-85) $ $) 69 T ELT)) (-3833 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-3835 (($ $ $) 27 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT)))
+(((-911 |#1| |#2|) (-10 -7 (-15 -3942 (|#1| (-347 (-484)))) (-15 -3754 (|#1| |#1| (-695))) (-15 -3754 (|#1| |#1|)) (-15 -3754 (|#1| |#1| (-584 (-1089)) (-584 (-695)))) (-15 -3754 (|#1| |#1| (-1089) (-695))) (-15 -3754 (|#1| |#1| (-584 (-1089)))) (-15 -3754 (|#1| |#1| (-1089))) (-15 -2683 ((-85) |#1| |#1|)) (-15 * (|#1| (-347 (-484)) |#1|)) (-15 * (|#1| |#1| (-347 (-484)))) (-15 -2482 (|#1| |#1|)) (-15 -3968 ((-473) |#1|)) (-15 -3022 ((-3 (-347 (-484)) #1="failed") |#1|)) (-15 -3020 ((-347 (-484)) |#1|)) (-15 -3021 ((-85) |#1|)) (-15 -3379 (|#2| |#1|)) (-15 -3129 (|#2| |#1|)) (-15 -3007 (|#1| |#1|)) (-15 -3954 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3754 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3754 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3154 ((-3 |#2| #1#) |#1|)) (-15 -3153 (|#2| |#1|)) (-15 -3153 ((-347 (-484)) |#1|)) (-15 -3154 ((-3 (-347 (-484)) #1#) |#1|)) (-15 -3153 ((-484) |#1|)) (-15 -3154 ((-3 (-484) #1#) |#1|)) (-15 -3942 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3123 ((-695)) -3948) (-15 -3942 (|#1| (-484))) (-15 -2408 ((-85) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3833 (|#1| |#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 -3185 ((-85) |#1|)) (-15 * (|#1| (-831) |#1|)) (-15 -3835 (|#1| |#1| |#1|)) (-15 -3942 ((-773) |#1|)) (-15 -3054 ((-85) |#1| |#1|))) (-912 |#2|) (-146)) (T -911))
+((-3123 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-911 *3 *4)) (-4 *3 (-912 *4)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3154 (((-3 (-484) #1="failed") $) 141 (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) 139 (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) 136 T ELT)) (-3153 (((-484) $) 140 (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) 138 (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) 137 T ELT)) (-2277 (((-631 (-484)) (-631 $)) 121 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 120 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) 119 T ELT) (((-631 |#1|) (-631 $)) 118 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-3639 ((|#1| $) 109 T ELT)) (-3022 (((-3 (-347 (-484)) "failed") $) 105 (|has| |#1| (-483)) ELT)) (-3021 (((-85) $) 107 (|has| |#1| (-483)) ELT)) (-3020 (((-347 (-484)) $) 106 (|has| |#1| (-483)) ELT)) (-3003 (($ |#1| |#1| |#1| |#1|) 110 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-3129 ((|#1| $) 111 T ELT)) (-2529 (($ $ $) 93 (|has| |#1| (-757)) ELT)) (-2855 (($ $ $) 94 (|has| |#1| (-757)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 124 T ELT)) (-2278 (((-631 (-484)) (-1178 $)) 123 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 122 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 117 T ELT) (((-631 |#1|) (-1178 $)) 116 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-2482 (($ $) 102 (|has| |#1| (-311)) ELT)) (-3004 ((|#1| $) 112 T ELT)) (-3005 ((|#1| $) 113 T ELT)) (-3006 ((|#1| $) 114 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3764 (($ $ (-584 |#1|) (-584 |#1|)) 130 (|has| |#1| (-259 |#1|)) ELT) (($ $ |#1| |#1|) 129 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-248 |#1|)) 128 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-248 |#1|))) 127 (|has| |#1| (-259 |#1|)) ELT) (($ $ (-584 (-1089)) (-584 |#1|)) 126 (|has| |#1| (-453 (-1089) |#1|)) ELT) (($ $ (-1089) |#1|) 125 (|has| |#1| (-453 (-1089) |#1|)) ELT)) (-3796 (($ $ |#1|) 131 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3754 (($ $ (-1 |#1| |#1|)) 135 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 134 T ELT) (($ $) 92 (|has| |#1| (-189)) ELT) (($ $ (-695)) 90 (|has| |#1| (-189)) ELT) (($ $ (-1089)) 88 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) 86 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) 85 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 84 (|has| |#1| (-812 (-1089))) ELT)) (-3968 (((-473) $) 103 (|has| |#1| (-554 (-473))) ELT)) (-3007 (($ $) 115 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 50 T ELT) (($ (-347 (-484))) 80 (OR (|has| |#1| (-311)) (|has| |#1| (-951 (-347 (-484))))) ELT)) (-2700 (((-633 $) $) 104 (|has| |#1| (-118)) ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-3379 ((|#1| $) 108 (|has| |#1| (-973)) ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-2667 (($ $ (-1 |#1| |#1|)) 133 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 132 T ELT) (($ $) 91 (|has| |#1| (-189)) ELT) (($ $ (-695)) 89 (|has| |#1| (-189)) ELT) (($ $ (-1089)) 87 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) 83 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) 82 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 81 (|has| |#1| (-812 (-1089))) ELT)) (-2564 (((-85) $ $) 95 (|has| |#1| (-757)) ELT)) (-2565 (((-85) $ $) 97 (|has| |#1| (-757)) ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-2682 (((-85) $ $) 96 (|has| |#1| (-757)) ELT)) (-2683 (((-85) $ $) 98 (|has| |#1| (-757)) ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 101 (|has| |#1| (-311)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT) (($ $ (-347 (-484))) 100 (|has| |#1| (-311)) ELT) (($ (-347 (-484)) $) 99 (|has| |#1| (-311)) ELT)))
+(((-912 |#1|) (-113) (-146)) (T -912))
+((-3007 (*1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3006 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3129 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3003 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3639 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3379 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)) (-4 *2 (-973)))) (-3021 (*1 *2 *1) (-12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85)))) (-3020 (*1 *2 *1) (-12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-347 (-484))))) (-3022 (*1 *2 *1) (|partial| -12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-347 (-484))))))
+(-13 (-38 |t#1|) (-352 |t#1|) (-184 |t#1|) (-287 |t#1|) (-326 |t#1|) (-10 -8 (-15 -3007 ($ $)) (-15 -3006 (|t#1| $)) (-15 -3005 (|t#1| $)) (-15 -3004 (|t#1| $)) (-15 -3129 (|t#1| $)) (-15 -3003 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3639 (|t#1| $)) (IF (|has| |t#1| (-245)) (-6 (-245)) |%noBranch|) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#1| (-311)) (-6 (-201)) |%noBranch|) (IF (|has| |t#1| (-554 (-473))) (-6 (-554 (-473))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-973)) (-15 -3379 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-483)) (PROGN (-15 -3021 ((-85) $)) (-15 -3020 ((-347 (-484)) $)) (-15 -3022 ((-3 (-347 (-484)) "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-484))) |has| |#1| (-311)) ((-38 |#1|) . T) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) |has| |#1| (-311)) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-311)) (|has| |#1| (-245))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) OR (|has| |#1| (-951 (-347 (-484)))) (|has| |#1| (-311))) ((-556 (-484)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) |has| |#1| (-311)) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-245) OR (|has| |#1| (-311)) (|has| |#1| (-245))) ((-259 |#1|) |has| |#1| (-259 |#1|)) ((-287 |#1|) . T) ((-326 |#1|) . T) ((-352 |#1|) . T) ((-453 (-1089) |#1|) |has| |#1| (-453 (-1089) |#1|)) ((-453 |#1| |#1|) |has| |#1| (-259 |#1|)) ((-13) . T) ((-589 (-347 (-484))) |has| |#1| (-311)) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) |has| |#1| (-311)) ((-591 (-484)) |has| |#1| (-581 (-484))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) |has| |#1| (-311)) ((-583 |#1|) . T) ((-581 (-484)) |has| |#1| (-581 (-484))) ((-581 |#1|) . T) ((-655 (-347 (-484))) |has| |#1| (-311)) ((-655 |#1|) . T) ((-664) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-807 $ (-1089)) OR (|has| |#1| (-812 (-1089))) (|has| |#1| (-810 (-1089)))) ((-810 (-1089)) |has| |#1| (-810 (-1089))) ((-812 (-1089)) OR (|has| |#1| (-812 (-1089))) (|has| |#1| (-810 (-1089)))) ((-951 (-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((-951 (-484)) |has| |#1| (-951 (-484))) ((-951 |#1|) . T) ((-964 (-347 (-484))) |has| |#1| (-311)) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-311)) (|has| |#1| (-245))) ((-969 (-347 (-484))) |has| |#1| (-311)) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-311)) (|has| |#1| (-245))) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
+((-3954 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT)))
+(((-913 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3954 (|#3| (-1 |#4| |#2|) |#1|))) (-912 |#2|) (-146) (-912 |#4|) (-146)) (T -913))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-912 *6)) (-5 *1 (-913 *4 *5 *2 *6)) (-4 *4 (-912 *5)))))
+((-2566 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3720 (($) NIL T CONST)) (-3000 (($ $) 24 T ELT)) (-3008 (($ (-584 |#1|)) 34 T ELT)) (-2887 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2606 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3829 (((-695) $) 27 T ELT)) (-3239 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-1272 ((|#1| $) 29 T ELT)) (-3605 (($ |#1| $) 18 T ELT)) (-3240 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-2999 ((|#1| $) 28 T ELT)) (-1273 ((|#1| $) 23 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3002 ((|#1| |#1| $) 17 T ELT)) (-3399 (((-85) $) 19 T ELT)) (-3561 (($) NIL T ELT)) (-3001 ((|#1| $) 22 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3396 (($ $) NIL T ELT)) (-3942 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1274 (($ (-584 |#1|)) NIL T ELT)) (-2998 ((|#1| $) 31 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-914 |#1|) (-13 (-909 |#1|) (-10 -8 (-15 -3008 ($ (-584 |#1|))))) (-1013)) (T -914))
+((-3008 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-5 *1 (-914 *3)))))
+((-3035 (($ $) 12 T ELT)) (-3009 (($ $ (-484)) 13 T ELT)))
+(((-915 |#1|) (-10 -7 (-15 -3035 (|#1| |#1|)) (-15 -3009 (|#1| |#1| (-484)))) (-916)) (T -915))
+NIL
+((-3035 (($ $) 6 T ELT)) (-3009 (($ $ (-484)) 7 T ELT)) (** (($ $ (-347 (-484))) 8 T ELT)))
+(((-916) (-113)) (T -916))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-916)) (-5 *2 (-347 (-484))))) (-3009 (*1 *1 *1 *2) (-12 (-4 *1 (-916)) (-5 *2 (-484)))) (-3035 (*1 *1 *1) (-4 *1 (-916))))
+(-13 (-10 -8 (-15 -3035 ($ $)) (-15 -3009 ($ $ (-484))) (-15 ** ($ $ (-347 (-484))))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1645 (((-2 (|:| |num| (-1178 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2061 (($ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2059 (((-85) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1780 (((-631 (-347 |#2|)) (-1178 $)) NIL T ELT) (((-631 (-347 |#2|))) NIL T ELT)) (-3326 (((-347 |#2|) $) NIL T ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3771 (($ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3967 (((-345 $) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1606 (((-85) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3133 (((-695)) NIL (|has| (-347 |#2|) (-317)) ELT)) (-1659 (((-85)) NIL T ELT)) (-1658 (((-85) |#1|) 162 T ELT) (((-85) |#2|) 166 T ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 (-484) #1#) $) NIL (|has| (-347 |#2|) (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| (-347 |#2|) (-951 (-347 (-484)))) ELT) (((-3 (-347 |#2|) #1#) $) NIL T ELT)) (-3153 (((-484) $) NIL (|has| (-347 |#2|) (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| (-347 |#2|) (-951 (-347 (-484)))) ELT) (((-347 |#2|) $) NIL T ELT)) (-1790 (($ (-1178 (-347 |#2|)) (-1178 $)) NIL T ELT) (($ (-1178 (-347 |#2|))) 79 T ELT) (($ (-1178 |#2|) |#2|) NIL T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-347 |#2|) (-298)) ELT)) (-2562 (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1779 (((-631 (-347 |#2|)) $ (-1178 $)) NIL T ELT) (((-631 (-347 |#2|)) $) NIL T ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL (|has| (-347 |#2|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| (-347 |#2|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-347 |#2|))) (|:| |vec| (-1178 (-347 |#2|)))) (-631 $) (-1178 $)) NIL T ELT) (((-631 (-347 |#2|)) (-631 $)) NIL T ELT)) (-1650 (((-1178 $) (-1178 $)) NIL T ELT)) (-3838 (($ |#3|) 73 T ELT) (((-3 $ #1#) (-347 |#3|)) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-1637 (((-584 (-584 |#1|))) NIL (|has| |#1| (-317)) ELT)) (-1662 (((-85) |#1| |#1|) NIL T ELT)) (-3106 (((-831)) NIL T ELT)) (-2992 (($) NIL (|has| (-347 |#2|) (-317)) ELT)) (-1657 (((-85)) NIL T ELT)) (-1656 (((-85) |#1|) 61 T ELT) (((-85) |#2|) 164 T ELT)) (-2561 (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3499 (($ $) NIL T ELT)) (-2831 (($) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1678 (((-85) $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1762 (($ $ (-695)) NIL (|has| (-347 |#2|) (-298)) ELT) (($ $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-3719 (((-85) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3768 (((-831) $) NIL (|has| (-347 |#2|) (-298)) ELT) (((-744 (-831)) $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-2408 (((-85) $) NIL T ELT)) (-3373 (((-695)) NIL T ELT)) (-1651 (((-1178 $) (-1178 $)) NIL T ELT)) (-3129 (((-347 |#2|) $) NIL T ELT)) (-1638 (((-584 (-858 |#1|)) (-1089)) NIL (|has| |#1| (-311)) ELT)) (-3441 (((-633 $) $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2012 ((|#3| $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2008 (((-831) $) NIL (|has| (-347 |#2|) (-317)) ELT)) (-3077 ((|#3| $) NIL T ELT)) (-2278 (((-631 (-484)) (-1178 $)) NIL (|has| (-347 |#2|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-347 |#2|) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-347 |#2|))) (|:| |vec| (-1178 (-347 |#2|)))) (-1178 $) $) NIL T ELT) (((-631 (-347 |#2|)) (-1178 $)) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-1646 (((-631 (-347 |#2|))) 57 T ELT)) (-1648 (((-631 (-347 |#2|))) 56 T ELT)) (-2482 (($ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1643 (($ (-1178 |#2|) |#2|) 80 T ELT)) (-1647 (((-631 (-347 |#2|))) 55 T ELT)) (-1649 (((-631 (-347 |#2|))) 54 T ELT)) (-1642 (((-2 (|:| |num| (-631 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-1644 (((-2 (|:| |num| (-1178 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-1655 (((-1178 $)) 51 T ELT)) (-3914 (((-1178 $)) 50 T ELT)) (-1654 (((-85) $) NIL T ELT)) (-1653 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3442 (($) NIL (|has| (-347 |#2|) (-298)) CONST)) (-2398 (($ (-831)) NIL (|has| (-347 |#2|) (-317)) ELT)) (-1640 (((-3 |#2| #1#)) 70 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1664 (((-695)) NIL T ELT)) (-2407 (($) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3141 (($ (-584 $)) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1674 (((-584 (-2 (|:| -3728 (-484)) (|:| -2399 (-484))))) NIL (|has| (-347 |#2|) (-298)) ELT)) (-3728 (((-345 $) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-347 |#2|) (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3462 (((-3 $ #1#) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1605 (((-695) $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3796 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1641 (((-3 |#2| #1#)) 68 T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3753 (((-347 |#2|) (-1178 $)) NIL T ELT) (((-347 |#2|)) 47 T ELT)) (-1763 (((-695) $) NIL (|has| (-347 |#2|) (-298)) ELT) (((-3 (-695) #1#) $ $) NIL (|has| (-347 |#2|) (-298)) ELT)) (-3754 (($ $ (-1 (-347 |#2|) (-347 |#2|))) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 (-347 |#2|) (-347 |#2|)) (-695)) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089))))) ELT) (($ $ (-1089) (-695)) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089))))) ELT) (($ $ (-584 (-1089))) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089))))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089))))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT) (($ $) NIL (OR (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT)) (-2406 (((-631 (-347 |#2|)) (-1178 $) (-1 (-347 |#2|) (-347 |#2|))) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3182 ((|#3|) 58 T ELT)) (-1672 (($) NIL (|has| (-347 |#2|) (-298)) ELT)) (-3221 (((-1178 (-347 |#2|)) $ (-1178 $)) NIL T ELT) (((-631 (-347 |#2|)) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 (-347 |#2|)) $) 81 T ELT) (((-631 (-347 |#2|)) (-1178 $)) NIL T ELT)) (-3968 (((-1178 (-347 |#2|)) $) NIL T ELT) (($ (-1178 (-347 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (|has| (-347 |#2|) (-298)) ELT)) (-1652 (((-1178 $) (-1178 $)) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-347 |#2|)) NIL T ELT) (($ (-347 (-484))) NIL (OR (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-951 (-347 (-484))))) ELT) (($ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-2700 (($ $) NIL (|has| (-347 |#2|) (-298)) ELT) (((-633 $) $) NIL (|has| (-347 |#2|) (-118)) ELT)) (-2447 ((|#3| $) NIL T ELT)) (-3123 (((-695)) NIL T CONST)) (-1661 (((-85)) 65 T ELT)) (-1660 (((-85) |#1|) 167 T ELT) (((-85) |#2|) 168 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2010 (((-1178 $)) NIL T ELT)) (-2060 (((-85) $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-1639 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1663 (((-85)) NIL T ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-2667 (($ $ (-1 (-347 |#2|) (-347 |#2|))) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-1 (-347 |#2|) (-347 |#2|)) (-695)) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089))))) ELT) (($ $ (-1089) (-695)) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089))))) ELT) (($ $ (-584 (-1089))) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089))))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-810 (-1089)))) (-12 (|has| (-347 |#2|) (-311)) (|has| (-347 |#2|) (-812 (-1089))))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT) (($ $) NIL (OR (-12 (|has| (-347 |#2|) (-190)) (|has| (-347 |#2|) (-311))) (-12 (|has| (-347 |#2|) (-189)) (|has| (-347 |#2|) (-311))) (|has| (-347 |#2|) (-298))) ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ $) NIL (|has| (-347 |#2|) (-311)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL (|has| (-347 |#2|) (-311)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 |#2|)) NIL T ELT) (($ (-347 |#2|) $) NIL T ELT) (($ (-347 (-484)) $) NIL (|has| (-347 |#2|) (-311)) ELT) (($ $ (-347 (-484))) NIL (|has| (-347 |#2|) (-311)) ELT)))
+(((-917 |#1| |#2| |#3| |#4| |#5|) (-290 |#1| |#2| |#3|) (-1133) (-1154 |#1|) (-1154 (-347 |#2|)) (-347 |#2|) (-695)) (T -917))
+NIL
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3015 (((-584 (-484)) $) 73 T ELT)) (-3011 (($ (-584 (-484))) 81 T ELT)) (-3126 (((-484) $) 48 (|has| (-484) (-257)) ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-822)) ELT)) (-3771 (($ $) NIL T ELT)) (-3967 (((-345 $) $) NIL T ELT)) (-2702 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-822)) ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3619 (((-484) $) NIL (|has| (-484) (-741)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 (-484) #1#) $) 60 T ELT) (((-3 (-1089) #1#) $) NIL (|has| (-484) (-951 (-1089))) ELT) (((-3 (-347 (-484)) #1#) $) 57 (|has| (-484) (-951 (-484))) ELT) (((-3 (-484) #1#) $) 60 (|has| (-484) (-951 (-484))) ELT)) (-3153 (((-484) $) NIL T ELT) (((-1089) $) NIL (|has| (-484) (-951 (-1089))) ELT) (((-347 (-484)) $) NIL (|has| (-484) (-951 (-484))) ELT) (((-484) $) NIL (|has| (-484) (-951 (-484))) ELT)) (-2562 (($ $ $) NIL T ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL (|has| (-484) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| (-484) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL T ELT) (((-631 (-484)) (-631 $)) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2992 (($) NIL (|has| (-484) (-483)) ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-3719 (((-85) $) NIL T ELT)) (-3013 (((-584 (-484)) $) 79 T ELT)) (-3183 (((-85) $) NIL (|has| (-484) (-741)) ELT)) (-2794 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (|has| (-484) (-797 (-484))) ELT) (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (|has| (-484) (-797 (-327))) ELT)) (-2408 (((-85) $) NIL T ELT)) (-2994 (($ $) NIL T ELT)) (-2996 (((-484) $) 45 T ELT)) (-3441 (((-633 $) $) NIL (|has| (-484) (-1065)) ELT)) (-3184 (((-85) $) NIL (|has| (-484) (-741)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2529 (($ $ $) NIL (|has| (-484) (-757)) ELT)) (-2855 (($ $ $) NIL (|has| (-484) (-757)) ELT)) (-3954 (($ (-1 (-484) (-484)) $) NIL T ELT)) (-2278 (((-631 (-484)) (-1178 $)) NIL (|has| (-484) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| (-484) (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-631 (-484)) (-1178 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) NIL T ELT)) (-3442 (($) NIL (|has| (-484) (-1065)) CONST)) (-3240 (((-1033) $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3125 (($ $) NIL (|has| (-484) (-257)) ELT) (((-347 (-484)) $) 50 T ELT)) (-3014 (((-1068 (-484)) $) 78 T ELT)) (-3010 (($ (-584 (-484)) (-584 (-484))) 82 T ELT)) (-3127 (((-484) $) 64 (|has| (-484) (-483)) ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-822)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| (-484) (-822)) ELT)) (-3728 (((-345 $) $) NIL T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3764 (($ $ (-584 (-484)) (-584 (-484))) NIL (|has| (-484) (-259 (-484))) ELT) (($ $ (-484) (-484)) NIL (|has| (-484) (-259 (-484))) ELT) (($ $ (-248 (-484))) NIL (|has| (-484) (-259 (-484))) ELT) (($ $ (-584 (-248 (-484)))) NIL (|has| (-484) (-259 (-484))) ELT) (($ $ (-584 (-1089)) (-584 (-484))) NIL (|has| (-484) (-453 (-1089) (-484))) ELT) (($ $ (-1089) (-484)) NIL (|has| (-484) (-453 (-1089) (-484))) ELT)) (-1605 (((-695) $) NIL T ELT)) (-3796 (($ $ (-484)) NIL (|has| (-484) (-241 (-484) (-484))) ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-3754 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $) 15 (|has| (-484) (-189)) ELT) (($ $ (-695)) NIL (|has| (-484) (-189)) ELT)) (-2993 (($ $) NIL T ELT)) (-2995 (((-484) $) 47 T ELT)) (-3012 (((-584 (-484)) $) 80 T ELT)) (-3968 (((-801 (-484)) $) NIL (|has| (-484) (-554 (-801 (-484)))) ELT) (((-801 (-327)) $) NIL (|has| (-484) (-554 (-801 (-327)))) ELT) (((-473) $) NIL (|has| (-484) (-554 (-473))) ELT) (((-327) $) NIL (|has| (-484) (-934)) ELT) (((-179) $) NIL (|has| (-484) (-934)) ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-484) (-822))) ELT)) (-3942 (((-773) $) 108 T ELT) (($ (-484)) 51 T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) 27 T ELT) (($ (-484)) 51 T ELT) (($ (-1089)) NIL (|has| (-484) (-951 (-1089))) ELT) (((-347 (-484)) $) 25 T ELT)) (-2700 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-484) (-822))) (|has| (-484) (-118))) ELT)) (-3123 (((-695)) 13 T CONST)) (-3128 (((-484) $) 62 (|has| (-484) (-483)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-3379 (($ $) NIL (|has| (-484) (-741)) ELT)) (-2658 (($) 14 T CONST)) (-2664 (($) 17 T CONST)) (-2667 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| (-484) (-812 (-1089))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-695)) NIL (|has| (-484) (-189)) ELT)) (-2564 (((-85) $ $) NIL (|has| (-484) (-757)) ELT)) (-2565 (((-85) $ $) NIL (|has| (-484) (-757)) ELT)) (-3054 (((-85) $ $) 21 T ELT)) (-2682 (((-85) $ $) NIL (|has| (-484) (-757)) ELT)) (-2683 (((-85) $ $) 40 (|has| (-484) (-757)) ELT)) (-3945 (($ $ $) 36 T ELT) (($ (-484) (-484)) 38 T ELT)) (-3833 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-3835 (($ $ $) 28 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ (-484) $) 32 T ELT) (($ $ (-484)) NIL T ELT)))
+(((-918 |#1|) (-13 (-905 (-484)) (-553 (-347 (-484))) (-10 -8 (-15 -3125 ((-347 (-484)) $)) (-15 -3015 ((-584 (-484)) $)) (-15 -3014 ((-1068 (-484)) $)) (-15 -3013 ((-584 (-484)) $)) (-15 -3012 ((-584 (-484)) $)) (-15 -3011 ($ (-584 (-484)))) (-15 -3010 ($ (-584 (-484)) (-584 (-484)))))) (-484)) (T -918))
+((-3125 (*1 *2 *1) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-918 *3)) (-14 *3 (-484)))) (-3015 (*1 *2 *1) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-918 *3)) (-14 *3 (-484)))) (-3014 (*1 *2 *1) (-12 (-5 *2 (-1068 (-484))) (-5 *1 (-918 *3)) (-14 *3 (-484)))) (-3013 (*1 *2 *1) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-918 *3)) (-14 *3 (-484)))) (-3012 (*1 *2 *1) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-918 *3)) (-14 *3 (-484)))) (-3011 (*1 *1 *2) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-918 *3)) (-14 *3 (-484)))) (-3010 (*1 *1 *2 *2) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-918 *3)) (-14 *3 (-484)))))
+((-3016 (((-51) (-347 (-484)) (-484)) 9 T ELT)))
+(((-919) (-10 -7 (-15 -3016 ((-51) (-347 (-484)) (-484))))) (T -919))
+((-3016 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-484))) (-5 *4 (-484)) (-5 *2 (-51)) (-5 *1 (-919)))))
+((-3133 (((-484)) 21 T ELT)) (-3019 (((-484)) 26 T ELT)) (-3018 (((-1184) (-484)) 24 T ELT)) (-3017 (((-484) (-484)) 27 T ELT) (((-484)) 20 T ELT)))
+(((-920) (-10 -7 (-15 -3017 ((-484))) (-15 -3133 ((-484))) (-15 -3017 ((-484) (-484))) (-15 -3018 ((-1184) (-484))) (-15 -3019 ((-484))))) (T -920))
+((-3019 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-920)))) (-3018 (*1 *2 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-920)))) (-3017 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-920)))) (-3133 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-920)))) (-3017 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-920)))))
+((-3729 (((-345 |#1|) |#1|) 43 T ELT)) (-3728 (((-345 |#1|) |#1|) 41 T ELT)))
+(((-921 |#1|) (-10 -7 (-15 -3728 ((-345 |#1|) |#1|)) (-15 -3729 ((-345 |#1|) |#1|))) (-1154 (-347 (-484)))) (T -921))
+((-3729 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1154 (-347 (-484)))))) (-3728 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1154 (-347 (-484)))))))
+((-3022 (((-3 (-347 (-484)) "failed") |#1|) 15 T ELT)) (-3021 (((-85) |#1|) 14 T ELT)) (-3020 (((-347 (-484)) |#1|) 10 T ELT)))
+(((-922 |#1|) (-10 -7 (-15 -3020 ((-347 (-484)) |#1|)) (-15 -3021 ((-85) |#1|)) (-15 -3022 ((-3 (-347 (-484)) "failed") |#1|))) (-951 (-347 (-484)))) (T -922))
+((-3022 (*1 *2 *3) (|partial| -12 (-5 *2 (-347 (-484))) (-5 *1 (-922 *3)) (-4 *3 (-951 *2)))) (-3021 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-922 *3)) (-4 *3 (-951 (-347 (-484)))))) (-3020 (*1 *2 *3) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-922 *3)) (-4 *3 (-951 *2)))))
+((-3784 ((|#2| $ #1="value" |#2|) 12 T ELT)) (-3796 ((|#2| $ #1#) 10 T ELT)) (-3026 (((-85) $ $) 18 T ELT)))
+(((-923 |#1| |#2|) (-10 -7 (-15 -3784 (|#2| |#1| #1="value" |#2|)) (-15 -3026 ((-85) |#1| |#1|)) (-15 -3796 (|#2| |#1| #1#))) (-924 |#2|) (-1128)) (T -923))
+NIL
+((-2566 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3398 ((|#1| $) 52 T ELT)) (-3023 ((|#1| $ |#1|) 43 (|has| $ (-6 -3992)) ELT)) (-3784 ((|#1| $ "value" |#1|) 44 (|has| $ (-6 -3992)) ELT)) (-3024 (($ $ (-584 $)) 45 (|has| $ (-6 -3992)) ELT)) (-3720 (($) 7 T CONST)) (-2887 (((-584 |#1|) $) 30 (|has| $ (-6 -3991)) ELT)) (-3029 (((-584 $) $) 54 T ELT)) (-3025 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-2606 (((-584 |#1|) $) 29 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3028 (((-584 |#1|) $) 49 T ELT)) (-3523 (((-85) $) 53 T ELT)) (-3239 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3240 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-3796 ((|#1| $ "value") 51 T ELT)) (-3027 (((-484) $ $) 48 T ELT)) (-3629 (((-85) $) 50 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3396 (($ $) 10 T ELT)) (-3942 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-3518 (((-584 $) $) 55 T ELT)) (-3026 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-924 |#1|) (-113) (-1128)) (T -924))
+((-3518 (*1 *2 *1) (-12 (-4 *3 (-1128)) (-5 *2 (-584 *1)) (-4 *1 (-924 *3)))) (-3029 (*1 *2 *1) (-12 (-4 *3 (-1128)) (-5 *2 (-584 *1)) (-4 *1 (-924 *3)))) (-3523 (*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))) (-3398 (*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-1128)))) (-3796 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-924 *2)) (-4 *2 (-1128)))) (-3629 (*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))) (-3028 (*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1128)) (-5 *2 (-584 *3)))) (-3027 (*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1128)) (-5 *2 (-484)))) (-3026 (*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-85)))) (-3025 (*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-85)))) (-3024 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *1)) (|has| *1 (-6 -3992)) (-4 *1 (-924 *3)) (-4 *3 (-1128)))) (-3784 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -3992)) (-4 *1 (-924 *2)) (-4 *2 (-1128)))) (-3023 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-924 *2)) (-4 *2 (-1128)))))
+(-13 (-426 |t#1|) (-10 -8 (-15 -3518 ((-584 $) $)) (-15 -3029 ((-584 $) $)) (-15 -3523 ((-85) $)) (-15 -3398 (|t#1| $)) (-15 -3796 (|t#1| $ "value")) (-15 -3629 ((-85) $)) (-15 -3028 ((-584 |t#1|) $)) (-15 -3027 ((-484) $ $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -3026 ((-85) $ $)) (-15 -3025 ((-85) $ $))) |%noBranch|) (IF (|has| $ (-6 -3992)) (PROGN (-15 -3024 ($ $ (-584 $))) (-15 -3784 (|t#1| $ "value" |t#1|)) (-15 -3023 (|t#1| $ |t#1|))) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
+((-3035 (($ $) 9 T ELT) (($ $ (-831)) 49 T ELT) (($ (-347 (-484))) 13 T ELT) (($ (-484)) 15 T ELT)) (-3180 (((-3 $ #1="failed") (-1084 $) (-831) (-773)) 24 T ELT) (((-3 $ #1#) (-1084 $) (-831)) 32 T ELT)) (-3009 (($ $ (-484)) 58 T ELT)) (-3123 (((-695)) 18 T CONST)) (-3181 (((-584 $) (-1084 $)) NIL T ELT) (((-584 $) (-1084 (-347 (-484)))) 63 T ELT) (((-584 $) (-1084 (-484))) 68 T ELT) (((-584 $) (-858 $)) 72 T ELT) (((-584 $) (-858 (-347 (-484)))) 76 T ELT) (((-584 $) (-858 (-484))) 80 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT) (($ $ (-347 (-484))) 53 T ELT)))
+(((-925 |#1|) (-10 -7 (-15 -3035 (|#1| (-484))) (-15 -3035 (|#1| (-347 (-484)))) (-15 -3035 (|#1| |#1| (-831))) (-15 -3181 ((-584 |#1|) (-858 (-484)))) (-15 -3181 ((-584 |#1|) (-858 (-347 (-484))))) (-15 -3181 ((-584 |#1|) (-858 |#1|))) (-15 -3181 ((-584 |#1|) (-1084 (-484)))) (-15 -3181 ((-584 |#1|) (-1084 (-347 (-484))))) (-15 -3181 ((-584 |#1|) (-1084 |#1|))) (-15 -3180 ((-3 |#1| #1="failed") (-1084 |#1|) (-831))) (-15 -3180 ((-3 |#1| #1#) (-1084 |#1|) (-831) (-773))) (-15 ** (|#1| |#1| (-347 (-484)))) (-15 -3009 (|#1| |#1| (-484))) (-15 -3035 (|#1| |#1|)) (-15 ** (|#1| |#1| (-484))) (-15 -3123 ((-695)) -3948) (-15 ** (|#1| |#1| (-695))) (-15 ** (|#1| |#1| (-831)))) (-926)) (T -925))
+((-3123 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-925 *3)) (-4 *3 (-926)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 109 T ELT)) (-2061 (($ $) 110 T ELT)) (-2059 (((-85) $) 112 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3771 (($ $) 129 T ELT)) (-3967 (((-345 $) $) 130 T ELT)) (-3035 (($ $) 93 T ELT) (($ $ (-831)) 79 T ELT) (($ (-347 (-484))) 78 T ELT) (($ (-484)) 77 T ELT)) (-1606 (((-85) $ $) 120 T ELT)) (-3619 (((-484) $) 146 T ELT)) (-3720 (($) 22 T CONST)) (-3180 (((-3 $ "failed") (-1084 $) (-831) (-773)) 87 T ELT) (((-3 $ "failed") (-1084 $) (-831)) 86 T ELT)) (-3154 (((-3 (-484) #1="failed") $) 106 (|has| (-347 (-484)) (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) 104 (|has| (-347 (-484)) (-951 (-347 (-484)))) ELT) (((-3 (-347 (-484)) #1#) $) 101 T ELT)) (-3153 (((-484) $) 105 (|has| (-347 (-484)) (-951 (-484))) ELT) (((-347 (-484)) $) 103 (|has| (-347 (-484)) (-951 (-347 (-484)))) ELT) (((-347 (-484)) $) 102 T ELT)) (-3031 (($ $ (-773)) 76 T ELT)) (-3030 (($ $ (-773)) 75 T ELT)) (-2562 (($ $ $) 124 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2561 (($ $ $) 123 T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) 118 T ELT)) (-3719 (((-85) $) 131 T ELT)) (-3183 (((-85) $) 144 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-3009 (($ $ (-484)) 92 T ELT)) (-3184 (((-85) $) 145 T ELT)) (-1603 (((-3 (-584 $) #2="failed") (-584 $) $) 127 T ELT)) (-2529 (($ $ $) 138 T ELT)) (-2855 (($ $ $) 139 T ELT)) (-3032 (((-3 (-1084 $) "failed") $) 88 T ELT)) (-3034 (((-3 (-773) "failed") $) 90 T ELT)) (-3033 (((-3 (-1084 $) "failed") $) 89 T ELT)) (-1889 (($ (-584 $)) 116 T ELT) (($ $ $) 115 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-2482 (($ $) 132 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 117 T ELT)) (-3141 (($ (-584 $)) 114 T ELT) (($ $ $) 113 T ELT)) (-3728 (((-345 $) $) 128 T ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 126 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) 125 T ELT)) (-3462 (((-3 $ "failed") $ $) 108 T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) 119 T ELT)) (-1605 (((-695) $) 121 T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 122 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ (-347 (-484))) 136 T ELT) (($ $) 107 T ELT) (($ (-347 (-484))) 100 T ELT) (($ (-484)) 99 T ELT) (($ (-347 (-484))) 96 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2060 (((-85) $ $) 111 T ELT)) (-3766 (((-347 (-484)) $ $) 74 T ELT)) (-3181 (((-584 $) (-1084 $)) 85 T ELT) (((-584 $) (-1084 (-347 (-484)))) 84 T ELT) (((-584 $) (-1084 (-484))) 83 T ELT) (((-584 $) (-858 $)) 82 T ELT) (((-584 $) (-858 (-347 (-484)))) 81 T ELT) (((-584 $) (-858 (-484))) 80 T ELT)) (-3379 (($ $) 147 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-2564 (((-85) $ $) 140 T ELT)) (-2565 (((-85) $ $) 142 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-2682 (((-85) $ $) 141 T ELT)) (-2683 (((-85) $ $) 143 T ELT)) (-3945 (($ $ $) 137 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 133 T ELT) (($ $ (-347 (-484))) 91 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-347 (-484)) $) 135 T ELT) (($ $ (-347 (-484))) 134 T ELT) (($ (-484) $) 98 T ELT) (($ $ (-484)) 97 T ELT) (($ (-347 (-484)) $) 95 T ELT) (($ $ (-347 (-484))) 94 T ELT)))
+(((-926) (-113)) (T -926))
+((-3035 (*1 *1 *1) (-4 *1 (-926))) (-3034 (*1 *2 *1) (|partial| -12 (-4 *1 (-926)) (-5 *2 (-773)))) (-3033 (*1 *2 *1) (|partial| -12 (-5 *2 (-1084 *1)) (-4 *1 (-926)))) (-3032 (*1 *2 *1) (|partial| -12 (-5 *2 (-1084 *1)) (-4 *1 (-926)))) (-3180 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1084 *1)) (-5 *3 (-831)) (-5 *4 (-773)) (-4 *1 (-926)))) (-3180 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1084 *1)) (-5 *3 (-831)) (-4 *1 (-926)))) (-3181 (*1 *2 *3) (-12 (-5 *3 (-1084 *1)) (-4 *1 (-926)) (-5 *2 (-584 *1)))) (-3181 (*1 *2 *3) (-12 (-5 *3 (-1084 (-347 (-484)))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) (-3181 (*1 *2 *3) (-12 (-5 *3 (-1084 (-484))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) (-3181 (*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-926)) (-5 *2 (-584 *1)))) (-3181 (*1 *2 *3) (-12 (-5 *3 (-858 (-347 (-484)))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) (-3181 (*1 *2 *3) (-12 (-5 *3 (-858 (-484))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) (-3035 (*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-831)))) (-3035 (*1 *1 *2) (-12 (-5 *2 (-347 (-484))) (-4 *1 (-926)))) (-3035 (*1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-926)))) (-3031 (*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-773)))) (-3030 (*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-773)))) (-3766 (*1 *2 *1 *1) (-12 (-4 *1 (-926)) (-5 *2 (-347 (-484))))))
+(-13 (-120) (-756) (-146) (-311) (-352 (-347 (-484))) (-38 (-484)) (-38 (-347 (-484))) (-916) (-10 -8 (-15 -3034 ((-3 (-773) "failed") $)) (-15 -3033 ((-3 (-1084 $) "failed") $)) (-15 -3032 ((-3 (-1084 $) "failed") $)) (-15 -3180 ((-3 $ "failed") (-1084 $) (-831) (-773))) (-15 -3180 ((-3 $ "failed") (-1084 $) (-831))) (-15 -3181 ((-584 $) (-1084 $))) (-15 -3181 ((-584 $) (-1084 (-347 (-484))))) (-15 -3181 ((-584 $) (-1084 (-484)))) (-15 -3181 ((-584 $) (-858 $))) (-15 -3181 ((-584 $) (-858 (-347 (-484))))) (-15 -3181 ((-584 $) (-858 (-484)))) (-15 -3035 ($ $ (-831))) (-15 -3035 ($ $)) (-15 -3035 ($ (-347 (-484)))) (-15 -3035 ($ (-484))) (-15 -3031 ($ $ (-773))) (-15 -3030 ($ $ (-773))) (-15 -3766 ((-347 (-484)) $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-484))) . T) ((-38 (-484)) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) . T) ((-82 (-484) (-484)) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-556 (-347 (-484))) . T) ((-556 (-484)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-201) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-352 (-347 (-484))) . T) ((-389) . T) ((-495) . T) ((-13) . T) ((-589 (-347 (-484))) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 (-347 (-484))) . T) ((-591 (-484)) . T) ((-591 $) . T) ((-583 (-347 (-484))) . T) ((-583 (-484)) . T) ((-583 $) . T) ((-655 (-347 (-484))) . T) ((-655 (-484)) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-833) . T) ((-916) . T) ((-951 (-347 (-484))) . T) ((-951 (-484)) |has| (-347 (-484)) (-951 (-484))) ((-964 (-347 (-484))) . T) ((-964 (-484)) . T) ((-964 $) . T) ((-969 (-347 (-484))) . T) ((-969 (-484)) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T))
+((-3036 (((-2 (|:| |ans| |#2|) (|:| -3134 |#2|) (|:| |sol?| (-85))) (-484) |#2| |#2| (-1089) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-584 |#2|)) (-1 (-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 67 T ELT)))
+(((-927 |#1| |#2|) (-10 -7 (-15 -3036 ((-2 (|:| |ans| |#2|) (|:| -3134 |#2|) (|:| |sol?| (-85))) (-484) |#2| |#2| (-1089) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-584 |#2|)) (-1 (-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-389) (-120) (-951 (-484)) (-581 (-484))) (-13 (-1114) (-27) (-361 |#1|))) (T -927))
+((-3036 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1089)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-584 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2134 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1114) (-27) (-361 *8))) (-4 *8 (-13 (-389) (-120) (-951 *3) (-581 *3))) (-5 *3 (-484)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3134 *4) (|:| |sol?| (-85)))) (-5 *1 (-927 *8 *4)))))
+((-3037 (((-3 (-584 |#2|) #1="failed") (-484) |#2| |#2| |#2| (-1089) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-584 |#2|)) (-1 (-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 55 T ELT)))
+(((-928 |#1| |#2|) (-10 -7 (-15 -3037 ((-3 (-584 |#2|) #1="failed") (-484) |#2| |#2| |#2| (-1089) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-584 |#2|)) (-1 (-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-389) (-120) (-951 (-484)) (-581 (-484))) (-13 (-1114) (-27) (-361 |#1|))) (T -928))
+((-3037 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1089)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-584 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2134 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1114) (-27) (-361 *8))) (-4 *8 (-13 (-389) (-120) (-951 *3) (-581 *3))) (-5 *3 (-484)) (-5 *2 (-584 *4)) (-5 *1 (-928 *8 *4)))))
+((-3040 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3263 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-484)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-484) (-1 |#2| |#2|)) 39 T ELT)) (-3038 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-347 |#2|)) (|:| |c| (-347 |#2|)) (|:| -3091 |#2|)) "failed") (-347 |#2|) (-347 |#2|) (-1 |#2| |#2|)) 71 T ELT)) (-3039 (((-2 (|:| |ans| (-347 |#2|)) (|:| |nosol| (-85))) (-347 |#2|) (-347 |#2|)) 76 T ELT)))
+(((-929 |#1| |#2|) (-10 -7 (-15 -3038 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-347 |#2|)) (|:| |c| (-347 |#2|)) (|:| -3091 |#2|)) "failed") (-347 |#2|) (-347 |#2|) (-1 |#2| |#2|))) (-15 -3039 ((-2 (|:| |ans| (-347 |#2|)) (|:| |nosol| (-85))) (-347 |#2|) (-347 |#2|))) (-15 -3040 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3263 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-484)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-484) (-1 |#2| |#2|)))) (-13 (-311) (-120) (-951 (-484))) (-1154 |#1|)) (T -929))
+((-3040 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1154 *6)) (-4 *6 (-13 (-311) (-120) (-951 *4))) (-5 *4 (-484)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-85)))) (|:| -3263 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-929 *6 *3)))) (-3039 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-311) (-120) (-951 (-484)))) (-4 *5 (-1154 *4)) (-5 *2 (-2 (|:| |ans| (-347 *5)) (|:| |nosol| (-85)))) (-5 *1 (-929 *4 *5)) (-5 *3 (-347 *5)))) (-3038 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-311) (-120) (-951 (-484)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-347 *6)) (|:| |c| (-347 *6)) (|:| -3091 *6))) (-5 *1 (-929 *5 *6)) (-5 *3 (-347 *6)))))
+((-3041 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-347 |#2|)) (|:| |h| |#2|) (|:| |c1| (-347 |#2|)) (|:| |c2| (-347 |#2|)) (|:| -3091 |#2|)) #1="failed") (-347 |#2|) (-347 |#2|) (-347 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-3042 (((-3 (-584 (-347 |#2|)) #1#) (-347 |#2|) (-347 |#2|) (-347 |#2|)) 34 T ELT)))
+(((-930 |#1| |#2|) (-10 -7 (-15 -3041 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-347 |#2|)) (|:| |h| |#2|) (|:| |c1| (-347 |#2|)) (|:| |c2| (-347 |#2|)) (|:| -3091 |#2|)) #1="failed") (-347 |#2|) (-347 |#2|) (-347 |#2|) (-1 |#2| |#2|))) (-15 -3042 ((-3 (-584 (-347 |#2|)) #1#) (-347 |#2|) (-347 |#2|) (-347 |#2|)))) (-13 (-311) (-120) (-951 (-484))) (-1154 |#1|)) (T -930))
+((-3042 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-311) (-120) (-951 (-484)))) (-4 *5 (-1154 *4)) (-5 *2 (-584 (-347 *5))) (-5 *1 (-930 *4 *5)) (-5 *3 (-347 *5)))) (-3041 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-13 (-311) (-120) (-951 (-484)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-347 *6)) (|:| |h| *6) (|:| |c1| (-347 *6)) (|:| |c2| (-347 *6)) (|:| -3091 *6))) (-5 *1 (-930 *5 *6)) (-5 *3 (-347 *6)))))
+((-3043 (((-1 |#1|) (-584 (-2 (|:| -3398 |#1|) (|:| -1520 (-484))))) 34 T ELT)) (-3098 (((-1 |#1|) (-1009 |#1|)) 42 T ELT)) (-3044 (((-1 |#1|) (-1178 |#1|) (-1178 (-484)) (-484)) 31 T ELT)))
+(((-931 |#1|) (-10 -7 (-15 -3098 ((-1 |#1|) (-1009 |#1|))) (-15 -3043 ((-1 |#1|) (-584 (-2 (|:| -3398 |#1|) (|:| -1520 (-484)))))) (-15 -3044 ((-1 |#1|) (-1178 |#1|) (-1178 (-484)) (-484)))) (-1013)) (T -931))
+((-3044 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1178 *6)) (-5 *4 (-1178 (-484))) (-5 *5 (-484)) (-4 *6 (-1013)) (-5 *2 (-1 *6)) (-5 *1 (-931 *6)))) (-3043 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3398 *4) (|:| -1520 (-484))))) (-4 *4 (-1013)) (-5 *2 (-1 *4)) (-5 *1 (-931 *4)))) (-3098 (*1 *2 *3) (-12 (-5 *3 (-1009 *4)) (-4 *4 (-1013)) (-5 *2 (-1 *4)) (-5 *1 (-931 *4)))))
+((-3768 (((-695) (-282 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT)))
+(((-932 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3768 ((-695) (-282 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-311) (-1154 |#1|) (-1154 (-347 |#2|)) (-290 |#1| |#2| |#3|) (-13 (-317) (-311))) (T -932))
+((-3768 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-282 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-311)) (-4 *7 (-1154 *6)) (-4 *4 (-1154 (-347 *7))) (-4 *8 (-290 *6 *7 *4)) (-4 *9 (-13 (-317) (-311))) (-5 *2 (-695)) (-5 *1 (-932 *6 *7 *4 *8 *9)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3591 (((-1048) $) 10 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3230 (((-1048) $) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-933) (-13 (-995) (-10 -8 (-15 -3591 ((-1048) $)) (-15 -3230 ((-1048) $))))) (T -933))
+((-3591 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-933)))) (-3230 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-933)))))
+((-3968 (((-179) $) 6 T ELT) (((-327) $) 9 T ELT)))
+(((-934) (-113)) (T -934))
+NIL
+(-13 (-554 (-179)) (-554 (-327)))
+(((-554 (-179)) . T) ((-554 (-327)) . T))
+((-3131 (((-3 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))) "failed") |#1| (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))) (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))) 32 T ELT) (((-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))) |#1| (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))) (-347 (-484))) 29 T ELT)) (-3047 (((-584 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))) |#1| (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))) (-347 (-484))) 34 T ELT) (((-584 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))) |#1| (-347 (-484))) 30 T ELT) (((-584 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))) |#1| (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))) 33 T ELT) (((-584 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))) |#1|) 28 T ELT)) (-3046 (((-584 (-347 (-484))) (-584 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))))) 20 T ELT)) (-3045 (((-347 (-484)) (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))) 17 T ELT)))
+(((-935 |#1|) (-10 -7 (-15 -3047 ((-584 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))) |#1|)) (-15 -3047 ((-584 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))) |#1| (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))))) (-15 -3047 ((-584 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))) |#1| (-347 (-484)))) (-15 -3047 ((-584 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))) |#1| (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))) (-347 (-484)))) (-15 -3131 ((-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))) |#1| (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))) (-347 (-484)))) (-15 -3131 ((-3 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))) "failed") |#1| (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))) (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))))) (-15 -3045 ((-347 (-484)) (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))))) (-15 -3046 ((-584 (-347 (-484))) (-584 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))))))) (-1154 (-484))) (T -935))
+((-3046 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))))) (-5 *2 (-584 (-347 (-484)))) (-5 *1 (-935 *4)) (-4 *4 (-1154 (-484))))) (-3045 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))) (-5 *2 (-347 (-484))) (-5 *1 (-935 *4)) (-4 *4 (-1154 (-484))))) (-3131 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))) (-5 *1 (-935 *3)) (-4 *3 (-1154 (-484))))) (-3131 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))) (-5 *4 (-347 (-484))) (-5 *1 (-935 *3)) (-4 *3 (-1154 (-484))))) (-3047 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-347 (-484))) (-5 *2 (-584 (-2 (|:| -3135 *5) (|:| -3134 *5)))) (-5 *1 (-935 *3)) (-4 *3 (-1154 (-484))) (-5 *4 (-2 (|:| -3135 *5) (|:| -3134 *5))))) (-3047 (*1 *2 *3 *4) (-12 (-5 *2 (-584 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))))) (-5 *1 (-935 *3)) (-4 *3 (-1154 (-484))) (-5 *4 (-347 (-484))))) (-3047 (*1 *2 *3 *4) (-12 (-5 *2 (-584 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))))) (-5 *1 (-935 *3)) (-4 *3 (-1154 (-484))) (-5 *4 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))))) (-3047 (*1 *2 *3) (-12 (-5 *2 (-584 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))))) (-5 *1 (-935 *3)) (-4 *3 (-1154 (-484))))))
+((-3131 (((-3 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))) "failed") |#1| (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))) (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))) 35 T ELT) (((-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))) |#1| (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))) (-347 (-484))) 32 T ELT)) (-3047 (((-584 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))) |#1| (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))) (-347 (-484))) 30 T ELT) (((-584 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))) |#1| (-347 (-484))) 26 T ELT) (((-584 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))) |#1| (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))) 28 T ELT) (((-584 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))) |#1|) 24 T ELT)))
+(((-936 |#1|) (-10 -7 (-15 -3047 ((-584 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))) |#1|)) (-15 -3047 ((-584 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))) |#1| (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))))) (-15 -3047 ((-584 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))) |#1| (-347 (-484)))) (-15 -3047 ((-584 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))) |#1| (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))) (-347 (-484)))) (-15 -3131 ((-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))) |#1| (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))) (-347 (-484)))) (-15 -3131 ((-3 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))) "failed") |#1| (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))) (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))))) (-1154 (-347 (-484)))) (T -936))
+((-3131 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))) (-5 *1 (-936 *3)) (-4 *3 (-1154 (-347 (-484)))))) (-3131 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))) (-5 *4 (-347 (-484))) (-5 *1 (-936 *3)) (-4 *3 (-1154 *4)))) (-3047 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-347 (-484))) (-5 *2 (-584 (-2 (|:| -3135 *5) (|:| -3134 *5)))) (-5 *1 (-936 *3)) (-4 *3 (-1154 *5)) (-5 *4 (-2 (|:| -3135 *5) (|:| -3134 *5))))) (-3047 (*1 *2 *3 *4) (-12 (-5 *4 (-347 (-484))) (-5 *2 (-584 (-2 (|:| -3135 *4) (|:| -3134 *4)))) (-5 *1 (-936 *3)) (-4 *3 (-1154 *4)))) (-3047 (*1 *2 *3 *4) (-12 (-5 *2 (-584 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))))) (-5 *1 (-936 *3)) (-4 *3 (-1154 (-347 (-484)))) (-5 *4 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))))) (-3047 (*1 *2 *3) (-12 (-5 *2 (-584 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))))) (-5 *1 (-936 *3)) (-4 *3 (-1154 (-347 (-484)))))))
+((-3569 (((-584 (-327)) (-858 (-484)) (-327)) 28 T ELT) (((-584 (-327)) (-858 (-347 (-484))) (-327)) 27 T ELT)) (-3965 (((-584 (-584 (-327))) (-584 (-858 (-484))) (-584 (-1089)) (-327)) 37 T ELT)))
+(((-937) (-10 -7 (-15 -3569 ((-584 (-327)) (-858 (-347 (-484))) (-327))) (-15 -3569 ((-584 (-327)) (-858 (-484)) (-327))) (-15 -3965 ((-584 (-584 (-327))) (-584 (-858 (-484))) (-584 (-1089)) (-327))))) (T -937))
+((-3965 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-858 (-484)))) (-5 *4 (-584 (-1089))) (-5 *2 (-584 (-584 (-327)))) (-5 *1 (-937)) (-5 *5 (-327)))) (-3569 (*1 *2 *3 *4) (-12 (-5 *3 (-858 (-484))) (-5 *2 (-584 (-327))) (-5 *1 (-937)) (-5 *4 (-327)))) (-3569 (*1 *2 *3 *4) (-12 (-5 *3 (-858 (-347 (-484)))) (-5 *2 (-584 (-327))) (-5 *1 (-937)) (-5 *4 (-327)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 75 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3771 (($ $) NIL T ELT)) (-3967 (((-345 $) $) NIL T ELT)) (-3035 (($ $) NIL T ELT) (($ $ (-831)) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ (-484)) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3619 (((-484) $) 70 T ELT)) (-3720 (($) NIL T CONST)) (-3180 (((-3 $ #1#) (-1084 $) (-831) (-773)) NIL T ELT) (((-3 $ #1#) (-1084 $) (-831)) 55 T ELT)) (-3154 (((-3 (-347 (-484)) #1#) $) NIL (|has| (-347 (-484)) (-951 (-347 (-484)))) ELT) (((-3 (-347 (-484)) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 115 T ELT) (((-3 (-484) #1#) $) NIL (OR (|has| (-347 (-484)) (-951 (-484))) (|has| |#1| (-951 (-484)))) ELT)) (-3153 (((-347 (-484)) $) 17 (|has| (-347 (-484)) (-951 (-347 (-484)))) ELT) (((-347 (-484)) $) 17 T ELT) ((|#1| $) 116 T ELT) (((-484) $) NIL (OR (|has| (-347 (-484)) (-951 (-484))) (|has| |#1| (-951 (-484)))) ELT)) (-3031 (($ $ (-773)) 47 T ELT)) (-3030 (($ $ (-773)) 48 T ELT)) (-2562 (($ $ $) NIL T ELT)) (-3179 (((-347 (-484)) $ $) 21 T ELT)) (-3463 (((-3 $ #1#) $) 88 T ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-3719 (((-85) $) NIL T ELT)) (-3183 (((-85) $) 66 T ELT)) (-2408 (((-85) $) NIL T ELT)) (-3009 (($ $ (-484)) NIL T ELT)) (-3184 (((-85) $) 69 T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2529 (($ $ $) NIL T ELT)) (-2855 (($ $ $) NIL T ELT)) (-3032 (((-3 (-1084 $) #1#) $) 83 T ELT)) (-3034 (((-3 (-773) #1#) $) 82 T ELT)) (-3033 (((-3 (-1084 $) #1#) $) 80 T ELT)) (-3048 (((-3 (-974 $ (-1084 $)) #1#) $) 78 T ELT)) (-1889 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) 89 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3728 (((-345 $) $) NIL T ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-3942 (((-773) $) 87 T ELT) (($ (-484)) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ $) 63 T ELT) (($ (-347 (-484))) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ |#1|) 118 T ELT)) (-3123 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-3766 (((-347 (-484)) $ $) 27 T ELT)) (-3181 (((-584 $) (-1084 $)) 61 T ELT) (((-584 $) (-1084 (-347 (-484)))) NIL T ELT) (((-584 $) (-1084 (-484))) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT) (((-584 $) (-858 (-347 (-484)))) NIL T ELT) (((-584 $) (-858 (-484))) NIL T ELT)) (-3049 (($ (-974 $ (-1084 $)) (-773)) 46 T ELT)) (-3379 (($ $) 22 T ELT)) (-2658 (($) 32 T CONST)) (-2664 (($) 39 T CONST)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 76 T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) 24 T ELT)) (-3945 (($ $ $) 37 T ELT)) (-3833 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-3835 (($ $ $) 111 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 71 T ELT) (($ $ $) 103 T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ (-484) $) 71 T ELT) (($ $ (-484)) NIL T ELT) (($ (-347 (-484)) $) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT) (($ |#1| $) 101 T ELT) (($ $ |#1|) NIL T ELT)))
+(((-938 |#1|) (-13 (-926) (-352 |#1|) (-38 |#1|) (-10 -8 (-15 -3049 ($ (-974 $ (-1084 $)) (-773))) (-15 -3048 ((-3 (-974 $ (-1084 $)) "failed") $)) (-15 -3179 ((-347 (-484)) $ $)))) (-13 (-756) (-311) (-934))) (T -938))
+((-3049 (*1 *1 *2 *3) (-12 (-5 *2 (-974 (-938 *4) (-1084 (-938 *4)))) (-5 *3 (-773)) (-5 *1 (-938 *4)) (-4 *4 (-13 (-756) (-311) (-934))))) (-3048 (*1 *2 *1) (|partial| -12 (-5 *2 (-974 (-938 *3) (-1084 (-938 *3)))) (-5 *1 (-938 *3)) (-4 *3 (-13 (-756) (-311) (-934))))) (-3179 (*1 *2 *1 *1) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-938 *3)) (-4 *3 (-13 (-756) (-311) (-934))))))
+((-3050 (((-2 (|:| -3263 |#2|) (|:| -2511 (-584 |#1|))) |#2| (-584 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT)))
+(((-939 |#1| |#2|) (-10 -7 (-15 -3050 (|#2| |#2| |#1|)) (-15 -3050 ((-2 (|:| -3263 |#2|) (|:| -2511 (-584 |#1|))) |#2| (-584 |#1|)))) (-311) (-601 |#1|)) (T -939))
+((-3050 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-5 *2 (-2 (|:| -3263 *3) (|:| -2511 (-584 *5)))) (-5 *1 (-939 *5 *3)) (-5 *4 (-584 *5)) (-4 *3 (-601 *5)))) (-3050 (*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-939 *3 *2)) (-4 *2 (-601 *3)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3051 ((|#1| $ |#1|) 12 T ELT)) (-3053 (($ |#1|) 10 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3052 ((|#1| $) 11 T ELT)) (-3942 (((-773) $) 17 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 9 T ELT)))
+(((-940 |#1|) (-13 (-1013) (-10 -8 (-15 -3053 ($ |#1|)) (-15 -3052 (|#1| $)) (-15 -3051 (|#1| $ |#1|)) (-15 -3054 ((-85) $ $)))) (-1128)) (T -940))
+((-3054 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-940 *3)) (-4 *3 (-1128)))) (-3053 (*1 *1 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1128)))) (-3052 (*1 *2 *1) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1128)))) (-3051 (*1 *2 *1 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1128)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3677 (((-584 (-2 (|:| -3857 $) (|:| -1700 (-584 |#4|)))) (-584 |#4|)) NIL T ELT)) (-3678 (((-584 $) (-584 |#4|)) 114 T ELT) (((-584 $) (-584 |#4|) (-85)) 115 T ELT) (((-584 $) (-584 |#4|) (-85) (-85)) 113 T ELT) (((-584 $) (-584 |#4|) (-85) (-85) (-85) (-85)) 116 T ELT)) (-3079 (((-584 |#3|) $) NIL T ELT)) (-2906 (((-85) $) NIL T ELT)) (-2897 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3689 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3684 ((|#4| |#4| $) NIL T ELT)) (-3771 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| $) 108 T ELT)) (-2907 (((-2 (|:| |under| $) (|:| -3127 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3706 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3991)) ELT) (((-3 |#4| #1="failed") $ |#3|) 63 T ELT)) (-3720 (($) NIL T CONST)) (-2902 (((-85) $) 29 (|has| |#1| (-495)) ELT)) (-2904 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2903 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2905 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3685 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2898 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-2899 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-3154 (((-3 $ #1#) (-584 |#4|)) NIL T ELT)) (-3153 (($ (-584 |#4|)) NIL T ELT)) (-3795 (((-3 $ #1#) $) 45 T ELT)) (-3681 ((|#4| |#4| $) 66 T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#4| (-1013))) ELT)) (-3402 (($ |#4| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#4| (-1013))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2900 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 81 (|has| |#1| (-495)) ELT)) (-3690 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3679 ((|#4| |#4| $) NIL T ELT)) (-3838 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3991)) (|has| |#4| (-1013))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3991)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3991)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3692 (((-2 (|:| -3857 (-584 |#4|)) (|:| -1700 (-584 |#4|))) $) NIL T ELT)) (-3194 (((-85) |#4| $) NIL T ELT)) (-3192 (((-85) |#4| $) NIL T ELT)) (-3195 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3434 (((-2 (|:| |val| (-584 |#4|)) (|:| |towers| (-584 $))) (-584 |#4|) (-85) (-85)) 129 T ELT)) (-2887 (((-584 |#4|) $) 18 (|has| $ (-6 -3991)) ELT)) (-3691 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3177 ((|#3| $) 38 T ELT)) (-2606 (((-584 |#4|) $) 19 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#4| $) 27 (-12 (|has| $ (-6 -3991)) (|has| |#4| (-1013))) ELT)) (-1947 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2912 (((-584 |#3|) $) NIL T ELT)) (-2911 (((-85) |#3| $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3188 (((-3 |#4| (-584 $)) |#4| |#4| $) NIL T ELT)) (-3187 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| |#4| $) 106 T ELT)) (-3794 (((-3 |#4| #1#) $) 42 T ELT)) (-3189 (((-584 $) |#4| $) 89 T ELT)) (-3191 (((-3 (-85) (-584 $)) |#4| $) NIL T ELT)) (-3190 (((-584 (-2 (|:| |val| (-85)) (|:| -1598 $))) |#4| $) 99 T ELT) (((-85) |#4| $) 61 T ELT)) (-3235 (((-584 $) |#4| $) 111 T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) 112 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT)) (-3435 (((-584 $) (-584 |#4|) (-85) (-85) (-85)) 124 T ELT)) (-3436 (($ |#4| $) 78 T ELT) (($ (-584 |#4|) $) 79 T ELT) (((-584 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 75 T ELT)) (-3693 (((-584 |#4|) $) NIL T ELT)) (-3687 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3682 ((|#4| |#4| $) NIL T ELT)) (-3695 (((-85) $ $) NIL T ELT)) (-2901 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3688 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3683 ((|#4| |#4| $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3797 (((-3 |#4| #1#) $) 40 T ELT)) (-1352 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3675 (((-3 $ #1#) $ |#4|) 56 T ELT)) (-3765 (($ $ |#4|) NIL T ELT) (((-584 $) |#4| $) 91 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) 85 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-248 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-584 (-248 |#4|))) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3399 (((-85) $) 17 T ELT)) (-3561 (($) 14 T ELT)) (-3944 (((-695) $) NIL T ELT)) (-1944 (((-695) |#4| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#4| (-1013))) ELT) (((-695) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3396 (($ $) 13 T ELT)) (-3968 (((-473) $) NIL (|has| |#4| (-554 (-473))) ELT)) (-3526 (($ (-584 |#4|)) 22 T ELT)) (-2908 (($ $ |#3|) 49 T ELT)) (-2910 (($ $ |#3|) 51 T ELT)) (-3680 (($ $) NIL T ELT)) (-2909 (($ $ |#3|) NIL T ELT)) (-3942 (((-773) $) 35 T ELT) (((-584 |#4|) $) 46 T ELT)) (-3674 (((-695) $) NIL (|has| |#3| (-317)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3694 (((-3 (-2 (|:| |bas| $) (|:| -3320 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3320 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3686 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) NIL T ELT)) (-3186 (((-584 $) |#4| $) 88 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3676 (((-584 |#3|) $) NIL T ELT)) (-3193 (((-85) |#4| $) NIL T ELT)) (-3929 (((-85) |#3| $) 62 T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-941 |#1| |#2| |#3| |#4|) (-13 (-983 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3436 ((-584 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3678 ((-584 $) (-584 |#4|) (-85) (-85))) (-15 -3678 ((-584 $) (-584 |#4|) (-85) (-85) (-85) (-85))) (-15 -3435 ((-584 $) (-584 |#4|) (-85) (-85) (-85))) (-15 -3434 ((-2 (|:| |val| (-584 |#4|)) (|:| |towers| (-584 $))) (-584 |#4|) (-85) (-85))))) (-389) (-718) (-757) (-977 |#1| |#2| |#3|)) (T -941))
+((-3436 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *3))) (-5 *1 (-941 *5 *6 *7 *3)) (-4 *3 (-977 *5 *6 *7)))) (-3678 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8))) (-5 *1 (-941 *5 *6 *7 *8)))) (-3678 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8))) (-5 *1 (-941 *5 *6 *7 *8)))) (-3435 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8))) (-5 *1 (-941 *5 *6 *7 *8)))) (-3434 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-584 *8)) (|:| |towers| (-584 (-941 *5 *6 *7 *8))))) (-5 *1 (-941 *5 *6 *7 *8)) (-5 *3 (-584 *8)))))
+((-3055 (((-584 (-2 (|:| |radval| (-264 (-484))) (|:| |radmult| (-484)) (|:| |radvect| (-584 (-631 (-264 (-484))))))) (-631 (-347 (-858 (-484))))) 67 T ELT)) (-3056 (((-584 (-631 (-264 (-484)))) (-264 (-484)) (-631 (-347 (-858 (-484))))) 52 T ELT)) (-3057 (((-584 (-264 (-484))) (-631 (-347 (-858 (-484))))) 45 T ELT)) (-3061 (((-584 (-631 (-264 (-484)))) (-631 (-347 (-858 (-484))))) 85 T ELT)) (-3059 (((-631 (-264 (-484))) (-631 (-264 (-484)))) 38 T ELT)) (-3060 (((-584 (-631 (-264 (-484)))) (-584 (-631 (-264 (-484))))) 74 T ELT)) (-3058 (((-3 (-631 (-264 (-484))) "failed") (-631 (-347 (-858 (-484))))) 82 T ELT)))
+(((-942) (-10 -7 (-15 -3055 ((-584 (-2 (|:| |radval| (-264 (-484))) (|:| |radmult| (-484)) (|:| |radvect| (-584 (-631 (-264 (-484))))))) (-631 (-347 (-858 (-484)))))) (-15 -3056 ((-584 (-631 (-264 (-484)))) (-264 (-484)) (-631 (-347 (-858 (-484)))))) (-15 -3057 ((-584 (-264 (-484))) (-631 (-347 (-858 (-484)))))) (-15 -3058 ((-3 (-631 (-264 (-484))) "failed") (-631 (-347 (-858 (-484)))))) (-15 -3059 ((-631 (-264 (-484))) (-631 (-264 (-484))))) (-15 -3060 ((-584 (-631 (-264 (-484)))) (-584 (-631 (-264 (-484)))))) (-15 -3061 ((-584 (-631 (-264 (-484)))) (-631 (-347 (-858 (-484)))))))) (T -942))
+((-3061 (*1 *2 *3) (-12 (-5 *3 (-631 (-347 (-858 (-484))))) (-5 *2 (-584 (-631 (-264 (-484))))) (-5 *1 (-942)))) (-3060 (*1 *2 *2) (-12 (-5 *2 (-584 (-631 (-264 (-484))))) (-5 *1 (-942)))) (-3059 (*1 *2 *2) (-12 (-5 *2 (-631 (-264 (-484)))) (-5 *1 (-942)))) (-3058 (*1 *2 *3) (|partial| -12 (-5 *3 (-631 (-347 (-858 (-484))))) (-5 *2 (-631 (-264 (-484)))) (-5 *1 (-942)))) (-3057 (*1 *2 *3) (-12 (-5 *3 (-631 (-347 (-858 (-484))))) (-5 *2 (-584 (-264 (-484)))) (-5 *1 (-942)))) (-3056 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-347 (-858 (-484))))) (-5 *2 (-584 (-631 (-264 (-484))))) (-5 *1 (-942)) (-5 *3 (-264 (-484))))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-631 (-347 (-858 (-484))))) (-5 *2 (-584 (-2 (|:| |radval| (-264 (-484))) (|:| |radmult| (-484)) (|:| |radvect| (-584 (-631 (-264 (-484)))))))) (-5 *1 (-942)))))
+((-3065 (((-584 (-631 |#1|)) (-584 (-631 |#1|))) 69 T ELT) (((-631 |#1|) (-631 |#1|)) 68 T ELT) (((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-584 (-631 |#1|))) 67 T ELT) (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 64 T ELT)) (-3064 (((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-831)) 62 T ELT) (((-631 |#1|) (-631 |#1|) (-831)) 61 T ELT)) (-3066 (((-584 (-631 (-484))) (-584 (-584 (-484)))) 80 T ELT) (((-584 (-631 (-484))) (-584 (-814 (-484))) (-484)) 79 T ELT) (((-631 (-484)) (-584 (-484))) 76 T ELT) (((-631 (-484)) (-814 (-484)) (-484)) 74 T ELT)) (-3063 (((-631 (-858 |#1|)) (-695)) 94 T ELT)) (-3062 (((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-831)) 48 (|has| |#1| (-6 (-3993 #1="*"))) ELT) (((-631 |#1|) (-631 |#1|) (-831)) 46 (|has| |#1| (-6 (-3993 #1#))) ELT)))
+(((-943 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-3993 #1="*"))) (-15 -3062 ((-631 |#1|) (-631 |#1|) (-831))) |%noBranch|) (IF (|has| |#1| (-6 (-3993 #1#))) (-15 -3062 ((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-831))) |%noBranch|) (-15 -3063 ((-631 (-858 |#1|)) (-695))) (-15 -3064 ((-631 |#1|) (-631 |#1|) (-831))) (-15 -3064 ((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-831))) (-15 -3065 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -3065 ((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-584 (-631 |#1|)))) (-15 -3065 ((-631 |#1|) (-631 |#1|))) (-15 -3065 ((-584 (-631 |#1|)) (-584 (-631 |#1|)))) (-15 -3066 ((-631 (-484)) (-814 (-484)) (-484))) (-15 -3066 ((-631 (-484)) (-584 (-484)))) (-15 -3066 ((-584 (-631 (-484))) (-584 (-814 (-484))) (-484))) (-15 -3066 ((-584 (-631 (-484))) (-584 (-584 (-484)))))) (-962)) (T -943))
+((-3066 (*1 *2 *3) (-12 (-5 *3 (-584 (-584 (-484)))) (-5 *2 (-584 (-631 (-484)))) (-5 *1 (-943 *4)) (-4 *4 (-962)))) (-3066 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-814 (-484)))) (-5 *4 (-484)) (-5 *2 (-584 (-631 *4))) (-5 *1 (-943 *5)) (-4 *5 (-962)))) (-3066 (*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-631 (-484))) (-5 *1 (-943 *4)) (-4 *4 (-962)))) (-3066 (*1 *2 *3 *4) (-12 (-5 *3 (-814 (-484))) (-5 *4 (-484)) (-5 *2 (-631 *4)) (-5 *1 (-943 *5)) (-4 *5 (-962)))) (-3065 (*1 *2 *2) (-12 (-5 *2 (-584 (-631 *3))) (-4 *3 (-962)) (-5 *1 (-943 *3)))) (-3065 (*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-943 *3)))) (-3065 (*1 *2 *2 *2) (-12 (-5 *2 (-584 (-631 *3))) (-4 *3 (-962)) (-5 *1 (-943 *3)))) (-3065 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-943 *3)))) (-3064 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-631 *4))) (-5 *3 (-831)) (-4 *4 (-962)) (-5 *1 (-943 *4)))) (-3064 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-831)) (-4 *4 (-962)) (-5 *1 (-943 *4)))) (-3063 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-631 (-858 *4))) (-5 *1 (-943 *4)) (-4 *4 (-962)))) (-3062 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-631 *4))) (-5 *3 (-831)) (|has| *4 (-6 (-3993 "*"))) (-4 *4 (-962)) (-5 *1 (-943 *4)))) (-3062 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-831)) (|has| *4 (-6 (-3993 "*"))) (-4 *4 (-962)) (-5 *1 (-943 *4)))))
+((-3070 (((-631 |#1|) (-584 (-631 |#1|)) (-1178 |#1|)) 69 (|has| |#1| (-257)) ELT)) (-3414 (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-1178 (-1178 |#1|))) 107 (|has| |#1| (-311)) ELT) (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-1178 |#1|)) 104 (|has| |#1| (-311)) ELT)) (-3074 (((-1178 |#1|) (-584 (-1178 |#1|)) (-484)) 113 (-12 (|has| |#1| (-311)) (|has| |#1| (-317))) ELT)) (-3073 (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-831)) 119 (-12 (|has| |#1| (-311)) (|has| |#1| (-317))) ELT) (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-85)) 118 (-12 (|has| |#1| (-311)) (|has| |#1| (-317))) ELT) (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|))) 117 (-12 (|has| |#1| (-311)) (|has| |#1| (-317))) ELT) (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-85) (-484) (-484)) 116 (-12 (|has| |#1| (-311)) (|has| |#1| (-317))) ELT)) (-3072 (((-85) (-584 (-631 |#1|))) 101 (|has| |#1| (-311)) ELT) (((-85) (-584 (-631 |#1|)) (-484)) 100 (|has| |#1| (-311)) ELT)) (-3069 (((-1178 (-1178 |#1|)) (-584 (-631 |#1|)) (-1178 |#1|)) 66 (|has| |#1| (-257)) ELT)) (-3068 (((-631 |#1|) (-584 (-631 |#1|)) (-631 |#1|)) 46 T ELT)) (-3067 (((-631 |#1|) (-1178 (-1178 |#1|))) 39 T ELT)) (-3071 (((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)) (-484)) 93 (|has| |#1| (-311)) ELT) (((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|))) 92 (|has| |#1| (-311)) ELT) (((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)) (-85) (-484)) 91 (|has| |#1| (-311)) ELT)))
+(((-944 |#1|) (-10 -7 (-15 -3067 ((-631 |#1|) (-1178 (-1178 |#1|)))) (-15 -3068 ((-631 |#1|) (-584 (-631 |#1|)) (-631 |#1|))) (IF (|has| |#1| (-257)) (PROGN (-15 -3069 ((-1178 (-1178 |#1|)) (-584 (-631 |#1|)) (-1178 |#1|))) (-15 -3070 ((-631 |#1|) (-584 (-631 |#1|)) (-1178 |#1|)))) |%noBranch|) (IF (|has| |#1| (-311)) (PROGN (-15 -3071 ((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)) (-85) (-484))) (-15 -3071 ((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)))) (-15 -3071 ((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)) (-484))) (-15 -3072 ((-85) (-584 (-631 |#1|)) (-484))) (-15 -3072 ((-85) (-584 (-631 |#1|)))) (-15 -3414 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-1178 |#1|))) (-15 -3414 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-1178 (-1178 |#1|))))) |%noBranch|) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-311)) (PROGN (-15 -3073 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-85) (-484) (-484))) (-15 -3073 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)))) (-15 -3073 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-85))) (-15 -3073 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-831))) (-15 -3074 ((-1178 |#1|) (-584 (-1178 |#1|)) (-484)))) |%noBranch|) |%noBranch|)) (-962)) (T -944))
+((-3074 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-1178 *5))) (-5 *4 (-484)) (-5 *2 (-1178 *5)) (-5 *1 (-944 *5)) (-4 *5 (-311)) (-4 *5 (-317)) (-4 *5 (-962)))) (-3073 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-4 *5 (-311)) (-4 *5 (-317)) (-4 *5 (-962)) (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) (-3073 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-311)) (-4 *5 (-317)) (-4 *5 (-962)) (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) (-3073 (*1 *2 *3) (-12 (-4 *4 (-311)) (-4 *4 (-317)) (-4 *4 (-962)) (-5 *2 (-584 (-584 (-631 *4)))) (-5 *1 (-944 *4)) (-5 *3 (-584 (-631 *4))))) (-3073 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-85)) (-5 *5 (-484)) (-4 *6 (-311)) (-4 *6 (-317)) (-4 *6 (-962)) (-5 *2 (-584 (-584 (-631 *6)))) (-5 *1 (-944 *6)) (-5 *3 (-584 (-631 *6))))) (-3414 (*1 *2 *3 *4) (-12 (-5 *4 (-1178 (-1178 *5))) (-4 *5 (-311)) (-4 *5 (-962)) (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) (-3414 (*1 *2 *3 *4) (-12 (-5 *4 (-1178 *5)) (-4 *5 (-311)) (-4 *5 (-962)) (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) (-3072 (*1 *2 *3) (-12 (-5 *3 (-584 (-631 *4))) (-4 *4 (-311)) (-4 *4 (-962)) (-5 *2 (-85)) (-5 *1 (-944 *4)))) (-3072 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-484)) (-4 *5 (-311)) (-4 *5 (-962)) (-5 *2 (-85)) (-5 *1 (-944 *5)))) (-3071 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-484)) (-5 *2 (-631 *5)) (-5 *1 (-944 *5)) (-4 *5 (-311)) (-4 *5 (-962)))) (-3071 (*1 *2 *3 *3) (-12 (-5 *3 (-584 (-631 *4))) (-5 *2 (-631 *4)) (-5 *1 (-944 *4)) (-4 *4 (-311)) (-4 *4 (-962)))) (-3071 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-584 (-631 *6))) (-5 *4 (-85)) (-5 *5 (-484)) (-5 *2 (-631 *6)) (-5 *1 (-944 *6)) (-4 *6 (-311)) (-4 *6 (-962)))) (-3070 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-1178 *5)) (-4 *5 (-257)) (-4 *5 (-962)) (-5 *2 (-631 *5)) (-5 *1 (-944 *5)))) (-3069 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-631 *5))) (-4 *5 (-257)) (-4 *5 (-962)) (-5 *2 (-1178 (-1178 *5))) (-5 *1 (-944 *5)) (-5 *4 (-1178 *5)))) (-3068 (*1 *2 *3 *2) (-12 (-5 *3 (-584 (-631 *4))) (-5 *2 (-631 *4)) (-4 *4 (-962)) (-5 *1 (-944 *4)))) (-3067 (*1 *2 *3) (-12 (-5 *3 (-1178 (-1178 *4))) (-4 *4 (-962)) (-5 *2 (-631 *4)) (-5 *1 (-944 *4)))))
+((-3075 ((|#1| (-831) |#1|) 18 T ELT)))
+(((-945 |#1|) (-10 -7 (-15 -3075 (|#1| (-831) |#1|))) (-13 (-1013) (-10 -8 (-15 -3835 ($ $ $))))) (T -945))
+((-3075 (*1 *2 *3 *2) (-12 (-5 *3 (-831)) (-5 *1 (-945 *2)) (-4 *2 (-13 (-1013) (-10 -8 (-15 -3835 ($ $ $))))))))
+((-3076 ((|#1| |#1| (-831)) 18 T ELT)))
+(((-946 |#1|) (-10 -7 (-15 -3076 (|#1| |#1| (-831)))) (-13 (-1013) (-10 -8 (-15 * ($ $ $))))) (T -946))
+((-3076 (*1 *2 *2 *3) (-12 (-5 *3 (-831)) (-5 *1 (-946 *2)) (-4 *2 (-13 (-1013) (-10 -8 (-15 * ($ $ $))))))))
+((-3942 ((|#1| (-261)) 11 T ELT) (((-1184) |#1|) 9 T ELT)))
+(((-947 |#1|) (-10 -7 (-15 -3942 ((-1184) |#1|)) (-15 -3942 (|#1| (-261)))) (-1128)) (T -947))
+((-3942 (*1 *2 *3) (-12 (-5 *3 (-261)) (-5 *1 (-947 *2)) (-4 *2 (-1128)))) (-3942 (*1 *2 *3) (-12 (-5 *2 (-1184)) (-5 *1 (-947 *3)) (-4 *3 (-1128)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3838 (($ |#4|) 24 T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2408 (((-85) $) NIL T ELT)) (-3077 ((|#4| $) 26 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 45 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 25 T ELT)) (-3123 (((-695)) 42 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) 21 T CONST)) (-2664 (($) 22 T CONST)) (-3054 (((-85) $ $) 39 T ELT)) (-3833 (($ $) 30 T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) 28 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 35 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 37 T ELT) (($ $ |#1|) NIL T ELT)))
+(((-948 |#1| |#2| |#3| |#4| |#5|) (-13 (-146) (-38 |#1|) (-10 -8 (-15 -3838 ($ |#4|)) (-15 -3942 ($ |#4|)) (-15 -3077 (|#4| $)))) (-311) (-718) (-757) (-862 |#1| |#2| |#3|) (-584 |#4|)) (T -948))
+((-3838 (*1 *1 *2) (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *2 (-862 *3 *4 *5)) (-14 *6 (-584 *2)))) (-3942 (*1 *1 *2) (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *2 (-862 *3 *4 *5)) (-14 *6 (-584 *2)))) (-3077 (*1 *2 *1) (-12 (-4 *2 (-862 *3 *4 *5)) (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-14 *6 (-584 *2)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3203 (((-1048) $) 11 T ELT)) (-3942 (((-773) $) 17 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-949) (-13 (-995) (-10 -8 (-15 -3203 ((-1048) $))))) (T -949))
+((-3203 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-949)))))
+((-3153 ((|#2| $) 10 T ELT)))
+(((-950 |#1| |#2|) (-10 -7 (-15 -3153 (|#2| |#1|))) (-951 |#2|) (-1128)) (T -950))
+NIL
+((-3154 (((-3 |#1| "failed") $) 9 T ELT)) (-3153 ((|#1| $) 8 T ELT)) (-3942 (($ |#1|) 6 T ELT)))
+(((-951 |#1|) (-113) (-1128)) (T -951))
+((-3154 (*1 *2 *1) (|partial| -12 (-4 *1 (-951 *2)) (-4 *2 (-1128)))) (-3153 (*1 *2 *1) (-12 (-4 *1 (-951 *2)) (-4 *2 (-1128)))))
+(-13 (-556 |t#1|) (-10 -8 (-15 -3154 ((-3 |t#1| "failed") $)) (-15 -3153 (|t#1| $))))
+(((-556 |#1|) . T))
+((-3078 (((-584 (-584 (-248 (-347 (-858 |#2|))))) (-584 (-858 |#2|)) (-584 (-1089))) 38 T ELT)))
+(((-952 |#1| |#2|) (-10 -7 (-15 -3078 ((-584 (-584 (-248 (-347 (-858 |#2|))))) (-584 (-858 |#2|)) (-584 (-1089))))) (-495) (-13 (-495) (-951 |#1|))) (T -952))
+((-3078 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1089))) (-4 *6 (-13 (-495) (-951 *5))) (-4 *5 (-495)) (-5 *2 (-584 (-584 (-248 (-347 (-858 *6)))))) (-5 *1 (-952 *5 *6)))))
+((-3079 (((-584 (-1089)) (-347 (-858 |#1|))) 17 T ELT)) (-3081 (((-347 (-1084 (-347 (-858 |#1|)))) (-347 (-858 |#1|)) (-1089)) 24 T ELT)) (-3082 (((-347 (-858 |#1|)) (-347 (-1084 (-347 (-858 |#1|)))) (-1089)) 26 T ELT)) (-3080 (((-3 (-1089) "failed") (-347 (-858 |#1|))) 20 T ELT)) (-3764 (((-347 (-858 |#1|)) (-347 (-858 |#1|)) (-584 (-248 (-347 (-858 |#1|))))) 32 T ELT) (((-347 (-858 |#1|)) (-347 (-858 |#1|)) (-248 (-347 (-858 |#1|)))) 33 T ELT) (((-347 (-858 |#1|)) (-347 (-858 |#1|)) (-584 (-1089)) (-584 (-347 (-858 |#1|)))) 28 T ELT) (((-347 (-858 |#1|)) (-347 (-858 |#1|)) (-1089) (-347 (-858 |#1|))) 29 T ELT)) (-3942 (((-347 (-858 |#1|)) |#1|) 11 T ELT)))
+(((-953 |#1|) (-10 -7 (-15 -3079 ((-584 (-1089)) (-347 (-858 |#1|)))) (-15 -3080 ((-3 (-1089) "failed") (-347 (-858 |#1|)))) (-15 -3081 ((-347 (-1084 (-347 (-858 |#1|)))) (-347 (-858 |#1|)) (-1089))) (-15 -3082 ((-347 (-858 |#1|)) (-347 (-1084 (-347 (-858 |#1|)))) (-1089))) (-15 -3764 ((-347 (-858 |#1|)) (-347 (-858 |#1|)) (-1089) (-347 (-858 |#1|)))) (-15 -3764 ((-347 (-858 |#1|)) (-347 (-858 |#1|)) (-584 (-1089)) (-584 (-347 (-858 |#1|))))) (-15 -3764 ((-347 (-858 |#1|)) (-347 (-858 |#1|)) (-248 (-347 (-858 |#1|))))) (-15 -3764 ((-347 (-858 |#1|)) (-347 (-858 |#1|)) (-584 (-248 (-347 (-858 |#1|)))))) (-15 -3942 ((-347 (-858 |#1|)) |#1|))) (-495)) (T -953))
+((-3942 (*1 *2 *3) (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-953 *3)) (-4 *3 (-495)))) (-3764 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-248 (-347 (-858 *4))))) (-5 *2 (-347 (-858 *4))) (-4 *4 (-495)) (-5 *1 (-953 *4)))) (-3764 (*1 *2 *2 *3) (-12 (-5 *3 (-248 (-347 (-858 *4)))) (-5 *2 (-347 (-858 *4))) (-4 *4 (-495)) (-5 *1 (-953 *4)))) (-3764 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-584 (-1089))) (-5 *4 (-584 (-347 (-858 *5)))) (-5 *2 (-347 (-858 *5))) (-4 *5 (-495)) (-5 *1 (-953 *5)))) (-3764 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-347 (-858 *4))) (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-953 *4)))) (-3082 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-1084 (-347 (-858 *5))))) (-5 *4 (-1089)) (-5 *2 (-347 (-858 *5))) (-5 *1 (-953 *5)) (-4 *5 (-495)))) (-3081 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-495)) (-5 *2 (-347 (-1084 (-347 (-858 *5))))) (-5 *1 (-953 *5)) (-5 *3 (-347 (-858 *5))))) (-3080 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-495)) (-5 *2 (-1089)) (-5 *1 (-953 *4)))) (-3079 (*1 *2 *3) (-12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-495)) (-5 *2 (-584 (-1089))) (-5 *1 (-953 *4)))))
+((-3083 (((-327)) 17 T ELT)) (-3098 (((-1 (-327)) (-327) (-327)) 22 T ELT)) (-3091 (((-1 (-327)) (-695)) 48 T ELT)) (-3084 (((-327)) 37 T ELT)) (-3087 (((-1 (-327)) (-327) (-327)) 38 T ELT)) (-3085 (((-327)) 29 T ELT)) (-3088 (((-1 (-327)) (-327)) 30 T ELT)) (-3086 (((-327) (-695)) 43 T ELT)) (-3089 (((-1 (-327)) (-695)) 44 T ELT)) (-3090 (((-1 (-327)) (-695) (-695)) 47 T ELT)) (-3380 (((-1 (-327)) (-695) (-695)) 45 T ELT)))
+(((-954) (-10 -7 (-15 -3083 ((-327))) (-15 -3084 ((-327))) (-15 -3085 ((-327))) (-15 -3086 ((-327) (-695))) (-15 -3098 ((-1 (-327)) (-327) (-327))) (-15 -3087 ((-1 (-327)) (-327) (-327))) (-15 -3088 ((-1 (-327)) (-327))) (-15 -3089 ((-1 (-327)) (-695))) (-15 -3380 ((-1 (-327)) (-695) (-695))) (-15 -3090 ((-1 (-327)) (-695) (-695))) (-15 -3091 ((-1 (-327)) (-695))))) (T -954))
+((-3091 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-327))) (-5 *1 (-954)))) (-3090 (*1 *2 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-327))) (-5 *1 (-954)))) (-3380 (*1 *2 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-327))) (-5 *1 (-954)))) (-3089 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-327))) (-5 *1 (-954)))) (-3088 (*1 *2 *3) (-12 (-5 *2 (-1 (-327))) (-5 *1 (-954)) (-5 *3 (-327)))) (-3087 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-327))) (-5 *1 (-954)) (-5 *3 (-327)))) (-3098 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-327))) (-5 *1 (-954)) (-5 *3 (-327)))) (-3086 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-327)) (-5 *1 (-954)))) (-3085 (*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-954)))) (-3084 (*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-954)))) (-3083 (*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-954)))))
+((-3728 (((-345 |#1|) |#1|) 33 T ELT)))
+(((-955 |#1|) (-10 -7 (-15 -3728 ((-345 |#1|) |#1|))) (-1154 (-347 (-858 (-484))))) (T -955))
+((-3728 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-955 *3)) (-4 *3 (-1154 (-347 (-858 (-484))))))))
+((-3092 (((-347 (-345 (-858 |#1|))) (-347 (-858 |#1|))) 14 T ELT)))
+(((-956 |#1|) (-10 -7 (-15 -3092 ((-347 (-345 (-858 |#1|))) (-347 (-858 |#1|))))) (-257)) (T -956))
+((-3092 (*1 *2 *3) (-12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-257)) (-5 *2 (-347 (-345 (-858 *4)))) (-5 *1 (-956 *4)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-3720 (($) 22 T CONST)) (-3096 ((|#1| $) 28 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3095 ((|#1| $) 27 T ELT)) (-3093 ((|#1|) 25 T CONST)) (-3942 (((-773) $) 13 T ELT)) (-3094 ((|#1| $) 26 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3835 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT)))
(((-957 |#1|) (-113) (-23)) (T -957))
-((-3095 (*1 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))))
-(-13 (-956 |t#1|) (-10 -8 (-15 -3095 ($) -3946)))
-(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-956 |#1|) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3675 (((-583 (-2 (|:| -3855 $) (|:| -1699 (-583 (-703 |#1| (-773 |#2|)))))) (-583 (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3676 (((-583 $) (-583 (-703 |#1| (-773 |#2|)))) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-85)) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-85) (-85)) NIL T ELT)) (-3077 (((-583 (-773 |#2|)) $) NIL T ELT)) (-2904 (((-85) $) NIL T ELT)) (-2895 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3687 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3682 (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3769 (((-583 (-2 (|:| |val| (-703 |#1| (-773 |#2|))) (|:| -1597 $))) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-2905 (((-2 (|:| |under| $) (|:| -3125 $) (|:| |upper| $)) $ (-773 |#2|)) NIL T ELT)) (-3704 (($ (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-3 (-703 |#1| (-773 |#2|)) #1="failed") $ (-773 |#2|)) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2900 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2902 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2901 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2903 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3683 (((-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|))) $ (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) (-1 (-85) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-2896 (((-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|))) $) NIL (|has| |#1| (-494)) ELT)) (-2897 (((-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|))) $) NIL (|has| |#1| (-494)) ELT)) (-3152 (((-3 $ #1#) (-583 (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3151 (($ (-583 (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3793 (((-3 $ #1#) $) NIL T ELT)) (-3679 (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-703 |#1| (-773 |#2|)) (-1012))) ELT)) (-3400 (($ (-703 |#1| (-773 |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-703 |#1| (-773 |#2|)) (-1012))) ELT) (($ (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-2898 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-703 |#1| (-773 |#2|))) (|:| |den| |#1|)) (-703 |#1| (-773 |#2|)) $) NIL (|has| |#1| (-494)) ELT)) (-3688 (((-85) (-703 |#1| (-773 |#2|)) $ (-1 (-85) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3677 (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3836 (((-703 |#1| (-773 |#2|)) (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) $ (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) NIL (-12 (|has| $ (-6 -3989)) (|has| (-703 |#1| (-773 |#2|)) (-1012))) ELT) (((-703 |#1| (-773 |#2|)) (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) $ (-703 |#1| (-773 |#2|))) NIL (|has| $ (-6 -3989)) ELT) (((-703 |#1| (-773 |#2|)) (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $ (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) (-1 (-85) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3690 (((-2 (|:| -3855 (-583 (-703 |#1| (-773 |#2|)))) (|:| -1699 (-583 (-703 |#1| (-773 |#2|))))) $) NIL T ELT)) (-3192 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3190 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3193 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-2885 (((-583 (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3689 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3175 (((-773 |#2|) $) NIL T ELT)) (-2604 (((-583 (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-703 |#1| (-773 |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-703 |#1| (-773 |#2|)) (-1012))) ELT)) (-1946 (($ (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-2910 (((-583 (-773 |#2|)) $) NIL T ELT)) (-2909 (((-85) (-773 |#2|) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3186 (((-3 (-703 |#1| (-773 |#2|)) (-583 $)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3185 (((-583 (-2 (|:| |val| (-703 |#1| (-773 |#2|))) (|:| -1597 $))) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3792 (((-3 (-703 |#1| (-773 |#2|)) #1#) $) NIL T ELT)) (-3187 (((-583 $) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3189 (((-3 (-85) (-583 $)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3188 (((-583 (-2 (|:| |val| (-85)) (|:| -1597 $))) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3233 (((-583 $) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-583 $)) NIL T ELT) (((-583 $) (-703 |#1| (-773 |#2|)) (-583 $)) NIL T ELT)) (-3434 (($ (-703 |#1| (-773 |#2|)) $) NIL T ELT) (($ (-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3691 (((-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3685 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3680 (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3693 (((-85) $ $) NIL T ELT)) (-2899 (((-2 (|:| |num| (-703 |#1| (-773 |#2|))) (|:| |den| |#1|)) (-703 |#1| (-773 |#2|)) $) NIL (|has| |#1| (-494)) ELT)) (-3686 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3681 (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3795 (((-3 (-703 |#1| (-773 |#2|)) #1#) $) NIL T ELT)) (-1351 (((-3 (-703 |#1| (-773 |#2|)) #1#) (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3673 (((-3 $ #1#) $ (-703 |#1| (-773 |#2|))) NIL T ELT)) (-3763 (($ $ (-703 |#1| (-773 |#2|))) NIL T ELT) (((-583 $) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-583 $) (-703 |#1| (-773 |#2|)) (-583 $)) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-583 $)) NIL T ELT)) (-1944 (((-85) (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|)))) NIL (-12 (|has| (-703 |#1| (-773 |#2|)) (-259 (-703 |#1| (-773 |#2|)))) (|has| (-703 |#1| (-773 |#2|)) (-1012))) ELT) (($ $ (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) NIL (-12 (|has| (-703 |#1| (-773 |#2|)) (-259 (-703 |#1| (-773 |#2|)))) (|has| (-703 |#1| (-773 |#2|)) (-1012))) ELT) (($ $ (-248 (-703 |#1| (-773 |#2|)))) NIL (-12 (|has| (-703 |#1| (-773 |#2|)) (-259 (-703 |#1| (-773 |#2|)))) (|has| (-703 |#1| (-773 |#2|)) (-1012))) ELT) (($ $ (-583 (-248 (-703 |#1| (-773 |#2|))))) NIL (-12 (|has| (-703 |#1| (-773 |#2|)) (-259 (-703 |#1| (-773 |#2|)))) (|has| (-703 |#1| (-773 |#2|)) (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3942 (((-694) $) NIL T ELT)) (-1943 (((-694) (-703 |#1| (-773 |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-703 |#1| (-773 |#2|)) (-1012))) ELT) (((-694) (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| (-703 |#1| (-773 |#2|)) (-553 (-472))) ELT)) (-3524 (($ (-583 (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-2906 (($ $ (-773 |#2|)) NIL T ELT)) (-2908 (($ $ (-773 |#2|)) NIL T ELT)) (-3678 (($ $) NIL T ELT)) (-2907 (($ $ (-773 |#2|)) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (((-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3672 (((-694) $) NIL (|has| (-773 |#2|) (-317)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3692 (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 (-703 |#1| (-773 |#2|))))) #1#) (-583 (-703 |#1| (-773 |#2|))) (-1 (-85) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 (-703 |#1| (-773 |#2|))))) #1#) (-583 (-703 |#1| (-773 |#2|))) (-1 (-85) (-703 |#1| (-773 |#2|))) (-1 (-85) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3684 (((-85) $ (-1 (-85) (-703 |#1| (-773 |#2|)) (-583 (-703 |#1| (-773 |#2|))))) NIL T ELT)) (-3184 (((-583 $) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-583 $) (-703 |#1| (-773 |#2|)) (-583 $)) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-583 $)) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3674 (((-583 (-773 |#2|)) $) NIL T ELT)) (-3191 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3927 (((-85) (-773 |#2|) $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-958 |#1| |#2|) (-13 (-982 |#1| (-468 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|))) (-10 -8 (-15 -3676 ((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-85) (-85))))) (-389) (-583 (-1088))) (T -958))
-((-3676 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-389)) (-14 *6 (-583 (-1088))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-958 *5 *6)))))
-((-3096 (((-1 (-483)) (-1000 (-483))) 32 T ELT)) (-3100 (((-483) (-483) (-483) (-483) (-483)) 29 T ELT)) (-3098 (((-1 (-483)) |RationalNumber|) NIL T ELT)) (-3099 (((-1 (-483)) |RationalNumber|) NIL T ELT)) (-3097 (((-1 (-483)) (-483) |RationalNumber|) NIL T ELT)))
-(((-959) (-10 -7 (-15 -3096 ((-1 (-483)) (-1000 (-483)))) (-15 -3097 ((-1 (-483)) (-483) |RationalNumber|)) (-15 -3098 ((-1 (-483)) |RationalNumber|)) (-15 -3099 ((-1 (-483)) |RationalNumber|)) (-15 -3100 ((-483) (-483) (-483) (-483) (-483))))) (T -959))
-((-3100 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-959)))) (-3099 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-483))) (-5 *1 (-959)))) (-3098 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-483))) (-5 *1 (-959)))) (-3097 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-483))) (-5 *1 (-959)) (-5 *3 (-483)))) (-3096 (*1 *2 *3) (-12 (-5 *3 (-1000 (-483))) (-5 *2 (-1 (-483))) (-5 *1 (-959)))))
-((-3940 (((-772) $) NIL T ELT) (($ (-483)) 10 T ELT)))
-(((-960 |#1|) (-10 -7 (-15 -3940 (|#1| (-483))) (-15 -3940 ((-772) |#1|))) (-961)) (T -960))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT)))
-(((-961) (-113)) (T -961))
-((-3121 (*1 *2) (-12 (-4 *1 (-961)) (-5 *2 (-694)))))
-(-13 (-969) (-1059) (-590 $) (-555 (-483)) (-10 -7 (-15 -3121 ((-694)) -3946) (-6 -3986)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-483)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T))
-((-3101 (((-347 (-857 |#2|)) (-583 |#2|) (-583 |#2|) (-694) (-694)) 55 T ELT)))
-(((-962 |#1| |#2|) (-10 -7 (-15 -3101 ((-347 (-857 |#2|)) (-583 |#2|) (-583 |#2|) (-694) (-694)))) (-1088) (-311)) (T -962))
-((-3101 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-694)) (-4 *6 (-311)) (-5 *2 (-347 (-857 *6))) (-5 *1 (-962 *5 *6)) (-14 *5 (-1088)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (* (($ $ |#1|) 17 T ELT)))
-(((-963 |#1|) (-113) (-1024)) (T -963))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-963 *2)) (-4 *2 (-1024)))))
-(-13 (-1012) (-10 -8 (-15 * ($ $ |t#1|))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T))
-((-3116 (((-85) $) 38 T ELT)) (-3118 (((-85) $) 17 T ELT)) (-3110 (((-694) $) 13 T ELT)) (-3109 (((-694) $) 14 T ELT)) (-3117 (((-85) $) 30 T ELT)) (-3115 (((-85) $) 40 T ELT)))
-(((-964 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3109 ((-694) |#1|)) (-15 -3110 ((-694) |#1|)) (-15 -3115 ((-85) |#1|)) (-15 -3116 ((-85) |#1|)) (-15 -3117 ((-85) |#1|)) (-15 -3118 ((-85) |#1|))) (-965 |#2| |#3| |#4| |#5| |#6|) (-694) (-694) (-961) (-196 |#3| |#4|) (-196 |#2| |#4|)) (T -964))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3116 (((-85) $) 61 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3118 (((-85) $) 63 T ELT)) (-3718 (($) 22 T CONST)) (-3105 (($ $) 44 (|has| |#3| (-257)) ELT)) (-3107 ((|#4| $ (-483)) 49 T ELT)) (-3104 (((-694) $) 43 (|has| |#3| (-494)) ELT)) (-3108 ((|#3| $ (-483) (-483)) 51 T ELT)) (-2885 (((-583 |#3|) $) 75 (|has| $ (-6 -3989)) ELT)) (-3103 (((-694) $) 42 (|has| |#3| (-494)) ELT)) (-3102 (((-583 |#5|) $) 41 (|has| |#3| (-494)) ELT)) (-3110 (((-694) $) 55 T ELT)) (-3109 (((-694) $) 54 T ELT)) (-3114 (((-483) $) 59 T ELT)) (-3112 (((-483) $) 57 T ELT)) (-2604 (((-583 |#3|) $) 76 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#3| $) 78 (-12 (|has| |#3| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3113 (((-483) $) 58 T ELT)) (-3111 (((-483) $) 56 T ELT)) (-3119 (($ (-583 (-583 |#3|))) 64 T ELT)) (-1946 (($ (-1 |#3| |#3|) $) 71 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#3| |#3|) $) 70 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 47 T ELT)) (-3588 (((-583 (-583 |#3|)) $) 53 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3460 (((-3 $ "failed") $ |#3|) 46 (|has| |#3| (-494)) ELT)) (-1944 (((-85) (-1 (-85) |#3|) $) 73 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 |#3|) (-583 |#3|)) 82 (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ |#3| |#3|) 81 (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ (-248 |#3|)) 80 (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ (-583 (-248 |#3|))) 79 (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ELT)) (-1219 (((-85) $ $) 65 T ELT)) (-3397 (((-85) $) 68 T ELT)) (-3559 (($) 67 T ELT)) (-3794 ((|#3| $ (-483) (-483)) 52 T ELT) ((|#3| $ (-483) (-483) |#3|) 50 T ELT)) (-3117 (((-85) $) 62 T ELT)) (-1943 (((-694) |#3| $) 77 (-12 (|has| |#3| (-1012)) (|has| $ (-6 -3989))) ELT) (((-694) (-1 (-85) |#3|) $) 74 (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) 66 T ELT)) (-3106 ((|#5| $ (-483)) 48 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-1945 (((-85) (-1 (-85) |#3|) $) 72 (|has| $ (-6 -3989)) ELT)) (-3115 (((-85) $) 60 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#3|) 45 (|has| |#3| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ |#3| $) 32 T ELT) (($ $ |#3|) 36 T ELT)) (-3951 (((-694) $) 69 (|has| $ (-6 -3989)) ELT)))
-(((-965 |#1| |#2| |#3| |#4| |#5|) (-113) (-694) (-694) (-961) (-196 |t#2| |t#3|) (-196 |t#1| |t#3|)) (T -965))
-((-3952 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3119 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *5))) (-4 *5 (-961)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-483)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-483)))) (-3112 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-483)))) (-3111 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-483)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-694)))) (-3109 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-694)))) (-3588 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-583 (-583 *5))))) (-3794 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-483)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)) (-4 *2 (-961)))) (-3108 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-483)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)) (-4 *2 (-961)))) (-3794 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-483)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *2 (-961)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)))) (-3107 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-965 *4 *5 *6 *2 *7)) (-4 *6 (-961)) (-4 *7 (-196 *4 *6)) (-4 *2 (-196 *5 *6)))) (-3106 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-965 *4 *5 *6 *7 *2)) (-4 *6 (-961)) (-4 *7 (-196 *5 *6)) (-4 *2 (-196 *4 *6)))) (-3952 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3460 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-965 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-494)))) (-3943 (*1 *1 *1 *2) (-12 (-4 *1 (-965 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-311)))) (-3105 (*1 *1 *1) (-12 (-4 *1 (-965 *2 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *2 *4)) (-4 *4 (-257)))) (-3104 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-494)) (-5 *2 (-694)))) (-3103 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-494)) (-5 *2 (-694)))) (-3102 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-494)) (-5 *2 (-583 *7)))))
-(-13 (-82 |t#3| |t#3|) (-426 |t#3|) (-10 -8 (-6 -3989) (IF (|has| |t#3| (-146)) (-6 (-654 |t#3|)) |%noBranch|) (-15 -3119 ($ (-583 (-583 |t#3|)))) (-15 -3118 ((-85) $)) (-15 -3117 ((-85) $)) (-15 -3116 ((-85) $)) (-15 -3115 ((-85) $)) (-15 -3114 ((-483) $)) (-15 -3113 ((-483) $)) (-15 -3112 ((-483) $)) (-15 -3111 ((-483) $)) (-15 -3110 ((-694) $)) (-15 -3109 ((-694) $)) (-15 -3588 ((-583 (-583 |t#3|)) $)) (-15 -3794 (|t#3| $ (-483) (-483))) (-15 -3108 (|t#3| $ (-483) (-483))) (-15 -3794 (|t#3| $ (-483) (-483) |t#3|)) (-15 -3107 (|t#4| $ (-483))) (-15 -3106 (|t#5| $ (-483))) (-15 -3952 ($ (-1 |t#3| |t#3|) $)) (-15 -3952 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-494)) (-15 -3460 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-311)) (-15 -3943 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-257)) (-15 -3105 ($ $)) |%noBranch|) (IF (|has| |t#3| (-494)) (PROGN (-15 -3104 ((-694) $)) (-15 -3103 ((-694) $)) (-15 -3102 ((-583 |t#5|) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-72) . T) ((-82 |#3| |#3|) . T) ((-104) . T) ((-552 (-772)) . T) ((-259 |#3|) -12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ((-426 |#3|) . T) ((-452 |#3| |#3|) -12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ((-13) . T) ((-588 (-483)) . T) ((-588 |#3|) . T) ((-590 |#3|) . T) ((-582 |#3|) |has| |#3| (-146)) ((-654 |#3|) |has| |#3| (-146)) ((-963 |#3|) . T) ((-968 |#3|) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3116 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3118 (((-85) $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3105 (($ $) 47 (|has| |#3| (-257)) ELT)) (-3107 (((-197 |#2| |#3|) $ (-483)) 36 T ELT)) (-3120 (($ (-630 |#3|)) 45 T ELT)) (-3104 (((-694) $) 49 (|has| |#3| (-494)) ELT)) (-3108 ((|#3| $ (-483) (-483)) NIL T ELT)) (-2885 (((-583 |#3|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3103 (((-694) $) 51 (|has| |#3| (-494)) ELT)) (-3102 (((-583 (-197 |#1| |#3|)) $) 55 (|has| |#3| (-494)) ELT)) (-3110 (((-694) $) NIL T ELT)) (-3109 (((-694) $) NIL T ELT)) (-3114 (((-483) $) NIL T ELT)) (-3112 (((-483) $) NIL T ELT)) (-2604 (((-583 |#3|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#3| (-1012))) ELT)) (-3113 (((-483) $) NIL T ELT)) (-3111 (((-483) $) NIL T ELT)) (-3119 (($ (-583 (-583 |#3|))) 31 T ELT)) (-1946 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-3588 (((-583 (-583 |#3|)) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3460 (((-3 $ #1#) $ |#3|) NIL (|has| |#3| (-494)) ELT)) (-1944 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ (-248 |#3|)) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ (-583 (-248 |#3|))) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#3| $ (-483) (-483)) NIL T ELT) ((|#3| $ (-483) (-483) |#3|) NIL T ELT)) (-3905 (((-107)) 59 (|has| |#3| (-311)) ELT)) (-3117 (((-85) $) NIL T ELT)) (-1943 (((-694) |#3| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#3| (-1012))) ELT) (((-694) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) 66 (|has| |#3| (-553 (-472))) ELT)) (-3106 (((-197 |#1| |#3|) $ (-483)) 40 T ELT)) (-3940 (((-772) $) 19 T ELT) (((-630 |#3|) $) 42 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3115 (((-85) $) NIL T ELT)) (-2656 (($) 16 T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#3|) NIL (|has| |#3| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-966 |#1| |#2| |#3|) (-13 (-965 |#1| |#2| |#3| (-197 |#2| |#3|) (-197 |#1| |#3|)) (-552 (-630 |#3|)) (-10 -8 (IF (|has| |#3| (-311)) (-6 (-1185 |#3|)) |%noBranch|) (IF (|has| |#3| (-553 (-472))) (-6 (-553 (-472))) |%noBranch|) (-15 -3120 ($ (-630 |#3|))))) (-694) (-694) (-961)) (T -966))
-((-3120 (*1 *1 *2) (-12 (-5 *2 (-630 *5)) (-4 *5 (-961)) (-5 *1 (-966 *3 *4 *5)) (-14 *3 (-694)) (-14 *4 (-694)))))
-((-3836 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-3952 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT)))
-(((-967 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3952 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3836 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-694) (-694) (-961) (-196 |#2| |#3|) (-196 |#1| |#3|) (-965 |#1| |#2| |#3| |#4| |#5|) (-961) (-196 |#2| |#7|) (-196 |#1| |#7|) (-965 |#1| |#2| |#7| |#8| |#9|)) (T -967))
-((-3836 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-961)) (-4 *2 (-961)) (-14 *5 (-694)) (-14 *6 (-694)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *10 (-196 *6 *2)) (-4 *11 (-196 *5 *2)) (-5 *1 (-967 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-965 *5 *6 *7 *8 *9)) (-4 *12 (-965 *5 *6 *2 *10 *11)))) (-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-961)) (-4 *10 (-961)) (-14 *5 (-694)) (-14 *6 (-694)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *2 (-965 *5 *6 *10 *11 *12)) (-5 *1 (-967 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-965 *5 *6 *7 *8 *9)) (-4 *11 (-196 *6 *10)) (-4 *12 (-196 *5 *10)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ |#1|) 32 T ELT)))
-(((-968 |#1|) (-113) (-969)) (T -968))
-NIL
-(-13 (-21) (-963 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-963 |#1|) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT)))
-(((-969) (-113)) (T -969))
-NIL
-(-13 (-21) (-1024))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-1024) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-3825 (((-1088) $) 11 T ELT)) (-3730 ((|#1| $) 12 T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3221 (($ (-1088) |#1|) 10 T ELT)) (-3940 (((-772) $) 22 (|has| |#1| (-1012)) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-3052 (((-85) $ $) 17 (|has| |#1| (-1012)) ELT)))
-(((-970 |#1| |#2|) (-13 (-1127) (-10 -8 (-15 -3221 ($ (-1088) |#1|)) (-15 -3825 ((-1088) $)) (-15 -3730 (|#1| $)) (IF (|has| |#1| (-1012)) (-6 (-1012)) |%noBranch|))) (-1005 |#2|) (-1127)) (T -970))
-((-3221 (*1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-4 *4 (-1127)) (-5 *1 (-970 *3 *4)) (-4 *3 (-1005 *4)))) (-3825 (*1 *2 *1) (-12 (-4 *4 (-1127)) (-5 *2 (-1088)) (-5 *1 (-970 *3 *4)) (-4 *3 (-1005 *4)))) (-3730 (*1 *2 *1) (-12 (-4 *2 (-1005 *3)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1127)))))
-((-3765 (($ $) 17 T ELT)) (-3122 (($ $) 25 T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 54 T ELT)) (-3127 (($ $) 27 T ELT)) (-3123 (($ $) 12 T ELT)) (-3125 (($ $) 40 T ELT)) (-3966 (((-327) $) NIL T ELT) (((-179) $) NIL T ELT) (((-800 (-327)) $) 36 T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) 31 T ELT) (($ (-483)) NIL T ELT) (($ (-347 (-483))) 31 T ELT)) (-3121 (((-694)) 9 T CONST)) (-3126 (($ $) 44 T ELT)))
-(((-971 |#1|) (-10 -7 (-15 -3122 (|#1| |#1|)) (-15 -3765 (|#1| |#1|)) (-15 -3123 (|#1| |#1|)) (-15 -3125 (|#1| |#1|)) (-15 -3126 (|#1| |#1|)) (-15 -3127 (|#1| |#1|)) (-15 -2792 ((-798 (-327) |#1|) |#1| (-800 (-327)) (-798 (-327) |#1|))) (-15 -3966 ((-800 (-327)) |#1|)) (-15 -3940 (|#1| (-347 (-483)))) (-15 -3940 (|#1| (-483))) (-15 -3966 ((-179) |#1|)) (-15 -3966 ((-327) |#1|)) (-15 -3940 (|#1| (-347 (-483)))) (-15 -3940 (|#1| |#1|)) (-15 -3121 ((-694)) -3946) (-15 -3940 (|#1| (-483))) (-15 -3940 ((-772) |#1|))) (-972)) (T -971))
-((-3121 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-971 *3)) (-4 *3 (-972)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3124 (((-483) $) 106 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-3765 (($ $) 104 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3769 (($ $) 89 T ELT)) (-3965 (((-345 $) $) 88 T ELT)) (-3033 (($ $) 114 T ELT)) (-1605 (((-85) $ $) 73 T ELT)) (-3617 (((-483) $) 131 T ELT)) (-3718 (($) 22 T CONST)) (-3122 (($ $) 103 T ELT)) (-3152 (((-3 (-483) #1="failed") $) 119 T ELT) (((-3 (-347 (-483)) #1#) $) 116 T ELT)) (-3151 (((-483) $) 120 T ELT) (((-347 (-483)) $) 117 T ELT)) (-2560 (($ $ $) 69 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2559 (($ $ $) 70 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 64 T ELT)) (-3717 (((-85) $) 87 T ELT)) (-3181 (((-85) $) 129 T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 110 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3007 (($ $ (-483)) 113 T ELT)) (-3127 (($ $) 109 T ELT)) (-3182 (((-85) $) 130 T ELT)) (-1602 (((-3 (-583 $) #2="failed") (-583 $) $) 66 T ELT)) (-2527 (($ $ $) 123 T ELT)) (-2853 (($ $ $) 124 T ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 86 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3123 (($ $) 105 T ELT)) (-3125 (($ $) 107 T ELT)) (-3726 (((-345 $) $) 90 T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 67 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 63 T ELT)) (-1604 (((-694) $) 72 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 71 T ELT)) (-3966 (((-327) $) 122 T ELT) (((-179) $) 121 T ELT) (((-800 (-327)) $) 111 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-483))) 82 T ELT) (($ (-483)) 118 T ELT) (($ (-347 (-483))) 115 T ELT)) (-3121 (((-694)) 38 T CONST)) (-3126 (($ $) 108 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-3377 (($ $) 132 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2562 (((-85) $ $) 125 T ELT)) (-2563 (((-85) $ $) 127 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 126 T ELT)) (-2681 (((-85) $ $) 128 T ELT)) (-3943 (($ $ $) 81 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 85 T ELT) (($ $ (-347 (-483))) 112 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-483))) 84 T ELT) (($ (-347 (-483)) $) 83 T ELT)))
-(((-972) (-113)) (T -972))
-((-3127 (*1 *1 *1) (-4 *1 (-972))) (-3126 (*1 *1 *1) (-4 *1 (-972))) (-3125 (*1 *1 *1) (-4 *1 (-972))) (-3124 (*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-483)))) (-3123 (*1 *1 *1) (-4 *1 (-972))) (-3765 (*1 *1 *1) (-4 *1 (-972))) (-3122 (*1 *1 *1) (-4 *1 (-972))))
-(-13 (-311) (-755) (-933) (-950 (-483)) (-950 (-347 (-483))) (-915) (-553 (-800 (-327))) (-796 (-327)) (-120) (-10 -8 (-15 -3127 ($ $)) (-15 -3126 ($ $)) (-15 -3125 ($ $)) (-15 -3124 ((-483) $)) (-15 -3123 ($ $)) (-15 -3765 ($ $)) (-15 -3122 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-483))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-555 (-347 (-483))) . T) ((-555 (-483)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-553 (-179)) . T) ((-553 (-327)) . T) ((-553 (-800 (-327))) . T) ((-201) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-389) . T) ((-494) . T) ((-13) . T) ((-588 (-347 (-483))) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 (-347 (-483))) . T) ((-590 $) . T) ((-582 (-347 (-483))) . T) ((-582 $) . T) ((-654 (-347 (-483))) . T) ((-654 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-755) . T) ((-756) . T) ((-759) . T) ((-796 (-327)) . T) ((-832) . T) ((-915) . T) ((-933) . T) ((-950 (-347 (-483))) . T) ((-950 (-483)) . T) ((-963 (-347 (-483))) . T) ((-963 $) . T) ((-968 (-347 (-483))) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) |#2| $) 26 T ELT)) (-3131 ((|#1| $) 10 T ELT)) (-3617 (((-483) |#2| $) 119 T ELT)) (-3178 (((-3 $ #1="failed") |#2| (-830)) 76 T ELT)) (-3132 ((|#1| $) 31 T ELT)) (-3177 ((|#1| |#2| $ |#1|) 40 T ELT)) (-3129 (($ $) 28 T ELT)) (-3461 (((-3 |#2| #1#) |#2| $) 113 T ELT)) (-3181 (((-85) |#2| $) NIL T ELT)) (-3182 (((-85) |#2| $) NIL T ELT)) (-3128 (((-85) |#2| $) 27 T ELT)) (-3130 ((|#1| $) 120 T ELT)) (-3133 ((|#1| $) 30 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3180 ((|#2| $) 104 T ELT)) (-3940 (((-772) $) 95 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3764 ((|#1| |#2| $ |#1|) 41 T ELT)) (-3179 (((-583 $) |#2|) 78 T ELT)) (-3052 (((-85) $ $) 99 T ELT)))
-(((-973 |#1| |#2|) (-13 (-979 |#1| |#2|) (-10 -8 (-15 -3133 (|#1| $)) (-15 -3132 (|#1| $)) (-15 -3131 (|#1| $)) (-15 -3130 (|#1| $)) (-15 -3129 ($ $)) (-15 -3128 ((-85) |#2| $)) (-15 -3177 (|#1| |#2| $ |#1|)))) (-13 (-755) (-311)) (-1153 |#1|)) (T -973))
-((-3177 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-755) (-311))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2)))) (-3133 (*1 *2 *1) (-12 (-4 *2 (-13 (-755) (-311))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2)))) (-3132 (*1 *2 *1) (-12 (-4 *2 (-13 (-755) (-311))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2)))) (-3131 (*1 *2 *1) (-12 (-4 *2 (-13 (-755) (-311))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2)))) (-3130 (*1 *2 *1) (-12 (-4 *2 (-13 (-755) (-311))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2)))) (-3129 (*1 *1 *1) (-12 (-4 *2 (-13 (-755) (-311))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2)))) (-3128 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-755) (-311))) (-5 *2 (-85)) (-5 *1 (-973 *4 *3)) (-4 *3 (-1153 *4)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-2043 (($ $ $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2038 (($ $ $ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3617 (((-483) $) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3134 (($ (-1088)) 10 T ELT) (($ (-483)) 7 T ELT)) (-3152 (((-3 (-483) #1#) $) NIL T ELT)) (-3151 (((-483) $) NIL T ELT)) (-2560 (($ $ $) NIL T ELT)) (-2275 (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL T ELT) (((-630 (-483)) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3020 (((-3 (-347 (-483)) #1#) $) NIL T ELT)) (-3019 (((-85) $) NIL T ELT)) (-3018 (((-347 (-483)) $) NIL T ELT)) (-2990 (($) NIL T ELT) (($ $) NIL T ELT)) (-2559 (($ $ $) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-2036 (($ $ $ $) NIL T ELT)) (-2044 (($ $ $) NIL T ELT)) (-3181 (((-85) $) NIL T ELT)) (-1366 (($ $ $) NIL T ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2669 (((-85) $) NIL T ELT)) (-3439 (((-632 $) $) NIL T ELT)) (-3182 (((-85) $) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2037 (($ $ $ $) NIL T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-2040 (($ $) NIL T ELT)) (-3827 (($ $) NIL T ELT)) (-2276 (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL T ELT) (((-630 (-483)) (-1177 $)) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2035 (($ $ $) NIL T ELT)) (-3440 (($) NIL T CONST)) (-2042 (($ $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1364 (($ $) NIL T ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2670 (((-85) $) NIL T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-3752 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2041 (($ $) NIL T ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-483) $) 16 T ELT) (((-472) $) NIL T ELT) (((-800 (-483)) $) NIL T ELT) (((-327) $) NIL T ELT) (((-179) $) NIL T ELT) (($ (-1088)) 9 T ELT)) (-3940 (((-772) $) 23 T ELT) (($ (-483)) 6 T ELT) (($ $) NIL T ELT) (($ (-483)) 6 T ELT)) (-3121 (((-694)) NIL T CONST)) (-2045 (((-85) $ $) NIL T ELT)) (-3097 (($ $ $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2690 (($) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-2039 (($ $ $ $) NIL T ELT)) (-3377 (($ $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT)) (-3831 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-483) $) NIL T ELT)))
-(((-974) (-13 (-482) (-557 (-1088)) (-10 -8 (-6 -3976) (-6 -3981) (-6 -3977) (-15 -3134 ($ (-1088))) (-15 -3134 ($ (-483)))))) (T -974))
-((-3134 (*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-974)))) (-3134 (*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-974)))))
-((-3791 (($ $) 46 T ELT)) (-3161 (((-85) $ $) 82 T ELT)) (-3152 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL T ELT) (((-3 (-483) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 $ #1#) (-857 (-347 (-483)))) 247 T ELT) (((-3 $ #1#) (-857 (-483))) 246 T ELT) (((-3 $ #1#) (-857 |#2|)) 249 T ELT)) (-3151 ((|#2| $) NIL T ELT) (((-347 (-483)) $) NIL T ELT) (((-483) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-857 (-347 (-483)))) 235 T ELT) (($ (-857 (-483))) 231 T ELT) (($ (-857 |#2|)) 255 T ELT)) (-3953 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-3688 (((-85) $ $) 131 T ELT) (((-85) $ (-583 $)) 135 T ELT)) (-3167 (((-85) $) 60 T ELT)) (-3746 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 125 T ELT)) (-3138 (($ $) 160 T ELT)) (-3149 (($ $) 156 T ELT)) (-3150 (($ $) 155 T ELT)) (-3160 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-3159 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-3689 (((-85) $ $) 143 T ELT) (((-85) $ (-583 $)) 144 T ELT)) (-3175 ((|#4| $) 32 T ELT)) (-3154 (($ $ $) 128 T ELT)) (-3168 (((-85) $) 59 T ELT)) (-3174 (((-694) $) 35 T ELT)) (-3135 (($ $) 174 T ELT)) (-3136 (($ $) 171 T ELT)) (-3163 (((-583 $) $) 72 T ELT)) (-3166 (($ $) 62 T ELT)) (-3137 (($ $) 167 T ELT)) (-3164 (((-583 $) $) 69 T ELT)) (-3165 (($ $) 64 T ELT)) (-3169 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-3153 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3475 (-694))) $ $) 130 T ELT)) (-3155 (((-2 (|:| -3948 $) (|:| |gap| (-694)) (|:| -1970 $) (|:| -2898 $)) $ $) 126 T ELT) (((-2 (|:| -3948 $) (|:| |gap| (-694)) (|:| -1970 $) (|:| -2898 $)) $ $ |#4|) 127 T ELT)) (-3156 (((-2 (|:| -3948 $) (|:| |gap| (-694)) (|:| -2898 $)) $ $) 121 T ELT) (((-2 (|:| -3948 $) (|:| |gap| (-694)) (|:| -2898 $)) $ $ |#4|) 123 T ELT)) (-3158 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-3157 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-3171 (((-583 $) $) 54 T ELT)) (-3685 (((-85) $ $) 140 T ELT) (((-85) $ (-583 $)) 141 T ELT)) (-3680 (($ $ $) 116 T ELT)) (-3440 (($ $) 37 T ELT)) (-3693 (((-85) $ $) 80 T ELT)) (-3686 (((-85) $ $) 136 T ELT) (((-85) $ (-583 $)) 138 T ELT)) (-3681 (($ $ $) 112 T ELT)) (-3173 (($ $) 41 T ELT)) (-3139 ((|#2| |#2| $) 164 T ELT) (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3147 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-3148 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-3172 (($ $) 49 T ELT)) (-3170 (($ $) 55 T ELT)) (-3966 (((-800 (-327)) $) NIL T ELT) (((-800 (-483)) $) NIL T ELT) (((-472) $) NIL T ELT) (($ (-857 (-347 (-483)))) 237 T ELT) (($ (-857 (-483))) 233 T ELT) (($ (-857 |#2|)) 248 T ELT) (((-1071) $) 278 T ELT) (((-857 |#2|) $) 184 T ELT)) (-3940 (((-772) $) 29 T ELT) (($ (-483)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-857 |#2|) $) 185 T ELT) (($ (-347 (-483))) NIL T ELT) (($ $) NIL T ELT)) (-3162 (((-3 (-85) #1#) $ $) 79 T ELT)))
-(((-975 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3940 (|#1| |#1|)) (-15 -3139 (|#1| |#1| |#1|)) (-15 -3139 (|#1| (-583 |#1|))) (-15 -3940 (|#1| (-347 (-483)))) (-15 -3940 ((-857 |#2|) |#1|)) (-15 -3966 ((-857 |#2|) |#1|)) (-15 -3966 ((-1071) |#1|)) (-15 -3135 (|#1| |#1|)) (-15 -3136 (|#1| |#1|)) (-15 -3137 (|#1| |#1|)) (-15 -3138 (|#1| |#1|)) (-15 -3139 (|#2| |#2| |#1|)) (-15 -3147 (|#1| |#1| |#1|)) (-15 -3148 (|#1| |#1| |#1|)) (-15 -3147 (|#1| |#1| |#2|)) (-15 -3148 (|#1| |#1| |#2|)) (-15 -3149 (|#1| |#1|)) (-15 -3150 (|#1| |#1|)) (-15 -3966 (|#1| (-857 |#2|))) (-15 -3151 (|#1| (-857 |#2|))) (-15 -3152 ((-3 |#1| #1="failed") (-857 |#2|))) (-15 -3966 (|#1| (-857 (-483)))) (-15 -3151 (|#1| (-857 (-483)))) (-15 -3152 ((-3 |#1| #1#) (-857 (-483)))) (-15 -3966 (|#1| (-857 (-347 (-483))))) (-15 -3151 (|#1| (-857 (-347 (-483))))) (-15 -3152 ((-3 |#1| #1#) (-857 (-347 (-483))))) (-15 -3680 (|#1| |#1| |#1|)) (-15 -3681 (|#1| |#1| |#1|)) (-15 -3153 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3475 (-694))) |#1| |#1|)) (-15 -3154 (|#1| |#1| |#1|)) (-15 -3746 ((-2 (|:| -1970 |#1|) (|:| -2898 |#1|)) |#1| |#1|)) (-15 -3155 ((-2 (|:| -3948 |#1|) (|:| |gap| (-694)) (|:| -1970 |#1|) (|:| -2898 |#1|)) |#1| |#1| |#4|)) (-15 -3155 ((-2 (|:| -3948 |#1|) (|:| |gap| (-694)) (|:| -1970 |#1|) (|:| -2898 |#1|)) |#1| |#1|)) (-15 -3156 ((-2 (|:| -3948 |#1|) (|:| |gap| (-694)) (|:| -2898 |#1|)) |#1| |#1| |#4|)) (-15 -3156 ((-2 (|:| -3948 |#1|) (|:| |gap| (-694)) (|:| -2898 |#1|)) |#1| |#1|)) (-15 -3157 (|#1| |#1| |#1| |#4|)) (-15 -3158 (|#1| |#1| |#1| |#4|)) (-15 -3157 (|#1| |#1| |#1|)) (-15 -3158 (|#1| |#1| |#1|)) (-15 -3159 (|#1| |#1| |#1| |#4|)) (-15 -3160 (|#1| |#1| |#1| |#4|)) (-15 -3159 (|#1| |#1| |#1|)) (-15 -3160 (|#1| |#1| |#1|)) (-15 -3689 ((-85) |#1| (-583 |#1|))) (-15 -3689 ((-85) |#1| |#1|)) (-15 -3685 ((-85) |#1| (-583 |#1|))) (-15 -3685 ((-85) |#1| |#1|)) (-15 -3686 ((-85) |#1| (-583 |#1|))) (-15 -3686 ((-85) |#1| |#1|)) (-15 -3688 ((-85) |#1| (-583 |#1|))) (-15 -3688 ((-85) |#1| |#1|)) (-15 -3161 ((-85) |#1| |#1|)) (-15 -3693 ((-85) |#1| |#1|)) (-15 -3162 ((-3 (-85) #1#) |#1| |#1|)) (-15 -3163 ((-583 |#1|) |#1|)) (-15 -3164 ((-583 |#1|) |#1|)) (-15 -3165 (|#1| |#1|)) (-15 -3166 (|#1| |#1|)) (-15 -3167 ((-85) |#1|)) (-15 -3168 ((-85) |#1|)) (-15 -3953 (|#1| |#1| |#4|)) (-15 -3169 (|#1| |#1| |#4|)) (-15 -3170 (|#1| |#1|)) (-15 -3171 ((-583 |#1|) |#1|)) (-15 -3172 (|#1| |#1|)) (-15 -3791 (|#1| |#1|)) (-15 -3173 (|#1| |#1|)) (-15 -3440 (|#1| |#1|)) (-15 -3174 ((-694) |#1|)) (-15 -3175 (|#4| |#1|)) (-15 -3966 ((-472) |#1|)) (-15 -3966 ((-800 (-483)) |#1|)) (-15 -3966 ((-800 (-327)) |#1|)) (-15 -3940 (|#1| |#4|)) (-15 -3152 ((-3 |#4| #1#) |#1|)) (-15 -3151 (|#4| |#1|)) (-15 -3169 (|#2| |#1|)) (-15 -3953 (|#1| |#1|)) (-15 -3152 ((-3 (-483) #1#) |#1|)) (-15 -3151 ((-483) |#1|)) (-15 -3152 ((-3 (-347 (-483)) #1#) |#1|)) (-15 -3151 ((-347 (-483)) |#1|)) (-15 -3151 (|#2| |#1|)) (-15 -3152 ((-3 |#2| #1#) |#1|)) (-15 -3940 (|#1| |#2|)) (-15 -3940 (|#1| (-483))) (-15 -3940 ((-772) |#1|))) (-976 |#2| |#3| |#4|) (-961) (-717) (-756)) (T -975))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3077 (((-583 |#3|) $) 121 T ELT)) (-3079 (((-1083 $) $ |#3|) 136 T ELT) (((-1083 |#1|) $) 135 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 98 (|has| |#1| (-494)) ELT)) (-2059 (($ $) 99 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) 101 (|has| |#1| (-494)) ELT)) (-2815 (((-694) $) 123 T ELT) (((-694) $ (-583 |#3|)) 122 T ELT)) (-3791 (($ $) 291 T ELT)) (-3161 (((-85) $ $) 277 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3749 (($ $ $) 236 (|has| |#1| (-494)) ELT)) (-3143 (((-583 $) $ $) 231 (|has| |#1| (-494)) ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) 111 (|has| |#1| (-821)) ELT)) (-3769 (($ $) 109 (|has| |#1| (-389)) ELT)) (-3965 (((-345 $) $) 108 (|has| |#1| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1="failed") (-583 (-1083 $)) (-1083 $)) 114 (|has| |#1| (-821)) ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 |#1| #2="failed") $) 179 T ELT) (((-3 (-347 (-483)) #2#) $) 176 (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 (-483) #2#) $) 174 (|has| |#1| (-950 (-483))) ELT) (((-3 |#3| #2#) $) 151 T ELT) (((-3 $ "failed") (-857 (-347 (-483)))) 251 (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#3| (-553 (-1088)))) ELT) (((-3 $ "failed") (-857 (-483))) 248 (OR (-12 (-2556 (|has| |#1| (-38 (-347 (-483))))) (|has| |#1| (-38 (-483))) (|has| |#3| (-553 (-1088)))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#3| (-553 (-1088))))) ELT) (((-3 $ "failed") (-857 |#1|)) 245 (OR (-12 (-2556 (|has| |#1| (-38 (-347 (-483))))) (-2556 (|has| |#1| (-38 (-483)))) (|has| |#3| (-553 (-1088)))) (-12 (-2556 (|has| |#1| (-482))) (-2556 (|has| |#1| (-38 (-347 (-483))))) (|has| |#1| (-38 (-483))) (|has| |#3| (-553 (-1088)))) (-12 (-2556 (|has| |#1| (-904 (-483)))) (|has| |#1| (-38 (-347 (-483)))) (|has| |#3| (-553 (-1088))))) ELT)) (-3151 ((|#1| $) 178 T ELT) (((-347 (-483)) $) 177 (|has| |#1| (-950 (-347 (-483)))) ELT) (((-483) $) 175 (|has| |#1| (-950 (-483))) ELT) ((|#3| $) 152 T ELT) (($ (-857 (-347 (-483)))) 250 (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#3| (-553 (-1088)))) ELT) (($ (-857 (-483))) 247 (OR (-12 (-2556 (|has| |#1| (-38 (-347 (-483))))) (|has| |#1| (-38 (-483))) (|has| |#3| (-553 (-1088)))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#3| (-553 (-1088))))) ELT) (($ (-857 |#1|)) 244 (OR (-12 (-2556 (|has| |#1| (-38 (-347 (-483))))) (-2556 (|has| |#1| (-38 (-483)))) (|has| |#3| (-553 (-1088)))) (-12 (-2556 (|has| |#1| (-482))) (-2556 (|has| |#1| (-38 (-347 (-483))))) (|has| |#1| (-38 (-483))) (|has| |#3| (-553 (-1088)))) (-12 (-2556 (|has| |#1| (-904 (-483)))) (|has| |#1| (-38 (-347 (-483)))) (|has| |#3| (-553 (-1088))))) ELT)) (-3750 (($ $ $ |#3|) 119 (|has| |#1| (-146)) ELT) (($ $ $) 232 (|has| |#1| (-494)) ELT)) (-3953 (($ $) 169 T ELT) (($ $ |#3|) 286 T ELT)) (-2275 (((-630 (-483)) (-630 $)) 147 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 146 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) 145 T ELT) (((-630 |#1|) (-630 $)) 144 T ELT)) (-3688 (((-85) $ $) 276 T ELT) (((-85) $ (-583 $)) 275 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3167 (((-85) $) 284 T ELT)) (-3746 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 256 T ELT)) (-3138 (($ $) 225 (|has| |#1| (-389)) ELT)) (-3497 (($ $) 191 (|has| |#1| (-389)) ELT) (($ $ |#3|) 116 (|has| |#1| (-389)) ELT)) (-2814 (((-583 $) $) 120 T ELT)) (-3717 (((-85) $) 107 (|has| |#1| (-821)) ELT)) (-3149 (($ $) 241 (|has| |#1| (-494)) ELT)) (-3150 (($ $) 242 (|has| |#1| (-494)) ELT)) (-3160 (($ $ $) 268 T ELT) (($ $ $ |#3|) 266 T ELT)) (-3159 (($ $ $) 267 T ELT) (($ $ $ |#3|) 265 T ELT)) (-1621 (($ $ |#1| |#2| $) 187 T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 95 (-12 (|has| |#3| (-796 (-327))) (|has| |#1| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) 94 (-12 (|has| |#3| (-796 (-483))) (|has| |#1| (-796 (-483)))) ELT)) (-2406 (((-85) $) 42 T ELT)) (-2416 (((-694) $) 184 T ELT)) (-3689 (((-85) $ $) 270 T ELT) (((-85) $ (-583 $)) 269 T ELT)) (-3140 (($ $ $ $ $) 227 (|has| |#1| (-494)) ELT)) (-3175 ((|#3| $) 295 T ELT)) (-3080 (($ (-1083 |#1|) |#3|) 128 T ELT) (($ (-1083 $) |#3|) 127 T ELT)) (-2817 (((-583 $) $) 137 T ELT)) (-3931 (((-85) $) 167 T ELT)) (-2889 (($ |#1| |#2|) 168 T ELT) (($ $ |#3| (-694)) 130 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 129 T ELT)) (-3154 (($ $ $) 255 T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ |#3|) 131 T ELT)) (-3168 (((-85) $) 285 T ELT)) (-2816 ((|#2| $) 185 T ELT) (((-694) $ |#3|) 133 T ELT) (((-583 (-694)) $ (-583 |#3|)) 132 T ELT)) (-3174 (((-694) $) 294 T ELT)) (-1622 (($ (-1 |#2| |#2|) $) 186 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 166 T ELT)) (-3078 (((-3 |#3| #3="failed") $) 134 T ELT)) (-3135 (($ $) 222 (|has| |#1| (-389)) ELT)) (-3136 (($ $) 223 (|has| |#1| (-389)) ELT)) (-3163 (((-583 $) $) 280 T ELT)) (-3166 (($ $) 283 T ELT)) (-3137 (($ $) 224 (|has| |#1| (-389)) ELT)) (-3164 (((-583 $) $) 281 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) 149 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 148 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 143 T ELT) (((-630 |#1|) (-1177 $)) 142 T ELT)) (-3165 (($ $) 282 T ELT)) (-2890 (($ $) 164 T ELT)) (-3169 ((|#1| $) 163 T ELT) (($ $ |#3|) 287 T ELT)) (-1888 (($ (-583 $)) 105 (|has| |#1| (-389)) ELT) (($ $ $) 104 (|has| |#1| (-389)) ELT)) (-3153 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3475 (-694))) $ $) 254 T ELT)) (-3155 (((-2 (|:| -3948 $) (|:| |gap| (-694)) (|:| -1970 $) (|:| -2898 $)) $ $) 258 T ELT) (((-2 (|:| -3948 $) (|:| |gap| (-694)) (|:| -1970 $) (|:| -2898 $)) $ $ |#3|) 257 T ELT)) (-3156 (((-2 (|:| -3948 $) (|:| |gap| (-694)) (|:| -2898 $)) $ $) 260 T ELT) (((-2 (|:| -3948 $) (|:| |gap| (-694)) (|:| -2898 $)) $ $ |#3|) 259 T ELT)) (-3158 (($ $ $) 264 T ELT) (($ $ $ |#3|) 262 T ELT)) (-3157 (($ $ $) 263 T ELT) (($ $ $ |#3|) 261 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3185 (($ $ $) 230 (|has| |#1| (-494)) ELT)) (-3171 (((-583 $) $) 289 T ELT)) (-2819 (((-3 (-583 $) #3#) $) 125 T ELT)) (-2818 (((-3 (-583 $) #3#) $) 126 T ELT)) (-2820 (((-3 (-2 (|:| |var| |#3|) (|:| -2397 (-694))) #3#) $) 124 T ELT)) (-3685 (((-85) $ $) 272 T ELT) (((-85) $ (-583 $)) 271 T ELT)) (-3680 (($ $ $) 252 T ELT)) (-3440 (($ $) 293 T ELT)) (-3693 (((-85) $ $) 278 T ELT)) (-3686 (((-85) $ $) 274 T ELT) (((-85) $ (-583 $)) 273 T ELT)) (-3681 (($ $ $) 253 T ELT)) (-3173 (($ $) 292 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3144 (((-2 (|:| -3139 $) (|:| |coef2| $)) $ $) 233 (|has| |#1| (-494)) ELT)) (-3145 (((-2 (|:| -3139 $) (|:| |coef1| $)) $ $) 234 (|has| |#1| (-494)) ELT)) (-1794 (((-85) $) 181 T ELT)) (-1793 ((|#1| $) 182 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 106 (|has| |#1| (-389)) ELT)) (-3139 ((|#1| |#1| $) 226 (|has| |#1| (-389)) ELT) (($ (-583 $)) 103 (|has| |#1| (-389)) ELT) (($ $ $) 102 (|has| |#1| (-389)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) 113 (|has| |#1| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) 112 (|has| |#1| (-821)) ELT)) (-3726 (((-345 $) $) 110 (|has| |#1| (-821)) ELT)) (-3146 (((-2 (|:| -3139 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 235 (|has| |#1| (-494)) ELT)) (-3460 (((-3 $ "failed") $ |#1|) 189 (|has| |#1| (-494)) ELT) (((-3 $ "failed") $ $) 97 (|has| |#1| (-494)) ELT)) (-3147 (($ $ |#1|) 239 (|has| |#1| (-494)) ELT) (($ $ $) 237 (|has| |#1| (-494)) ELT)) (-3148 (($ $ |#1|) 240 (|has| |#1| (-494)) ELT) (($ $ $) 238 (|has| |#1| (-494)) ELT)) (-3762 (($ $ (-583 (-248 $))) 160 T ELT) (($ $ (-248 $)) 159 T ELT) (($ $ $ $) 158 T ELT) (($ $ (-583 $) (-583 $)) 157 T ELT) (($ $ |#3| |#1|) 156 T ELT) (($ $ (-583 |#3|) (-583 |#1|)) 155 T ELT) (($ $ |#3| $) 154 T ELT) (($ $ (-583 |#3|) (-583 $)) 153 T ELT)) (-3751 (($ $ |#3|) 118 (|has| |#1| (-146)) ELT)) (-3752 (($ $ (-583 |#3|) (-583 (-694))) 50 T ELT) (($ $ |#3| (-694)) 49 T ELT) (($ $ (-583 |#3|)) 48 T ELT) (($ $ |#3|) 46 T ELT)) (-3942 ((|#2| $) 165 T ELT) (((-694) $ |#3|) 141 T ELT) (((-583 (-694)) $ (-583 |#3|)) 140 T ELT)) (-3172 (($ $) 290 T ELT)) (-3170 (($ $) 288 T ELT)) (-3966 (((-800 (-327)) $) 93 (-12 (|has| |#3| (-553 (-800 (-327)))) (|has| |#1| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) 92 (-12 (|has| |#3| (-553 (-800 (-483)))) (|has| |#1| (-553 (-800 (-483))))) ELT) (((-472) $) 91 (-12 (|has| |#3| (-553 (-472))) (|has| |#1| (-553 (-472)))) ELT) (($ (-857 (-347 (-483)))) 249 (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#3| (-553 (-1088)))) ELT) (($ (-857 (-483))) 246 (OR (-12 (-2556 (|has| |#1| (-38 (-347 (-483))))) (|has| |#1| (-38 (-483))) (|has| |#3| (-553 (-1088)))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#3| (-553 (-1088))))) ELT) (($ (-857 |#1|)) 243 (|has| |#3| (-553 (-1088))) ELT) (((-1071) $) 221 (-12 (|has| |#1| (-950 (-483))) (|has| |#3| (-553 (-1088)))) ELT) (((-857 |#1|) $) 220 (|has| |#3| (-553 (-1088))) ELT)) (-2813 ((|#1| $) 190 (|has| |#1| (-389)) ELT) (($ $ |#3|) 117 (|has| |#1| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) 115 (-2558 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 180 T ELT) (($ |#3|) 150 T ELT) (((-857 |#1|) $) 219 (|has| |#3| (-553 (-1088))) ELT) (($ (-347 (-483))) 89 (OR (|has| |#1| (-950 (-347 (-483)))) (|has| |#1| (-38 (-347 (-483))))) ELT) (($ $) 96 (|has| |#1| (-494)) ELT)) (-3811 (((-583 |#1|) $) 183 T ELT)) (-3671 ((|#1| $ |#2|) 170 T ELT) (($ $ |#3| (-694)) 139 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 138 T ELT)) (-2698 (((-632 $) $) 90 (OR (-2558 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3121 (((-694)) 38 T CONST)) (-1620 (($ $ $ (-694)) 188 (|has| |#1| (-146)) ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 100 (|has| |#1| (-494)) ELT)) (-2656 (($) 23 T CONST)) (-3162 (((-3 (-85) "failed") $ $) 279 T ELT)) (-2662 (($) 43 T CONST)) (-3141 (($ $ $ $ (-694)) 228 (|has| |#1| (-494)) ELT)) (-3142 (($ $ $ (-694)) 229 (|has| |#1| (-494)) ELT)) (-2665 (($ $ (-583 |#3|) (-583 (-694))) 53 T ELT) (($ $ |#3| (-694)) 52 T ELT) (($ $ (-583 |#3|)) 51 T ELT) (($ $ |#3|) 47 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#1|) 171 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-483))) 173 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) 172 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ |#1| $) 162 T ELT) (($ $ |#1|) 161 T ELT)))
-(((-976 |#1| |#2| |#3|) (-113) (-961) (-717) (-756)) (T -976))
-((-3175 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3174 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-694)))) (-3440 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3173 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3791 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3172 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3171 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-976 *3 *4 *5)))) (-3170 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3169 (*1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3953 (*1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3168 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3167 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3166 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3165 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3164 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-976 *3 *4 *5)))) (-3163 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-976 *3 *4 *5)))) (-3162 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3693 (*1 *2 *1 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3161 (*1 *2 *1 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3688 (*1 *2 *1 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3688 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-976 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)))) (-3686 (*1 *2 *1 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3686 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-976 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)))) (-3685 (*1 *2 *1 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3685 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-976 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)))) (-3689 (*1 *2 *1 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3689 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-976 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)))) (-3160 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3159 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3160 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3159 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3158 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3157 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3158 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3157 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3156 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -3948 *1) (|:| |gap| (-694)) (|:| -2898 *1))) (-4 *1 (-976 *3 *4 *5)))) (-3156 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-2 (|:| -3948 *1) (|:| |gap| (-694)) (|:| -2898 *1))) (-4 *1 (-976 *4 *5 *3)))) (-3155 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -3948 *1) (|:| |gap| (-694)) (|:| -1970 *1) (|:| -2898 *1))) (-4 *1 (-976 *3 *4 *5)))) (-3155 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-2 (|:| -3948 *1) (|:| |gap| (-694)) (|:| -1970 *1) (|:| -2898 *1))) (-4 *1 (-976 *4 *5 *3)))) (-3746 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1))) (-4 *1 (-976 *3 *4 *5)))) (-3154 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3153 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3475 (-694)))) (-4 *1 (-976 *3 *4 *5)))) (-3681 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3680 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3152 (*1 *1 *2) (|partial| -12 (-5 *2 (-857 (-347 (-483)))) (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-38 (-347 (-483)))) (-4 *5 (-553 (-1088))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)))) (-3151 (*1 *1 *2) (-12 (-5 *2 (-857 (-347 (-483)))) (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-38 (-347 (-483)))) (-4 *5 (-553 (-1088))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)))) (-3966 (*1 *1 *2) (-12 (-5 *2 (-857 (-347 (-483)))) (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-38 (-347 (-483)))) (-4 *5 (-553 (-1088))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)))) (-3152 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-857 (-483))) (-4 *1 (-976 *3 *4 *5)) (-12 (-2556 (-4 *3 (-38 (-347 (-483))))) (-4 *3 (-38 (-483))) (-4 *5 (-553 (-1088)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 (-483))) (-4 *1 (-976 *3 *4 *5)) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *5 (-553 (-1088)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))))) (-3151 (*1 *1 *2) (OR (-12 (-5 *2 (-857 (-483))) (-4 *1 (-976 *3 *4 *5)) (-12 (-2556 (-4 *3 (-38 (-347 (-483))))) (-4 *3 (-38 (-483))) (-4 *5 (-553 (-1088)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 (-483))) (-4 *1 (-976 *3 *4 *5)) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *5 (-553 (-1088)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))))) (-3966 (*1 *1 *2) (OR (-12 (-5 *2 (-857 (-483))) (-4 *1 (-976 *3 *4 *5)) (-12 (-2556 (-4 *3 (-38 (-347 (-483))))) (-4 *3 (-38 (-483))) (-4 *5 (-553 (-1088)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 (-483))) (-4 *1 (-976 *3 *4 *5)) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *5 (-553 (-1088)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))))) (-3152 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-857 *3)) (-12 (-2556 (-4 *3 (-38 (-347 (-483))))) (-2556 (-4 *3 (-38 (-483)))) (-4 *5 (-553 (-1088)))) (-4 *3 (-961)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 *3)) (-12 (-2556 (-4 *3 (-482))) (-2556 (-4 *3 (-38 (-347 (-483))))) (-4 *3 (-38 (-483))) (-4 *5 (-553 (-1088)))) (-4 *3 (-961)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 *3)) (-12 (-2556 (-4 *3 (-904 (-483)))) (-4 *3 (-38 (-347 (-483)))) (-4 *5 (-553 (-1088)))) (-4 *3 (-961)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))))) (-3151 (*1 *1 *2) (OR (-12 (-5 *2 (-857 *3)) (-12 (-2556 (-4 *3 (-38 (-347 (-483))))) (-2556 (-4 *3 (-38 (-483)))) (-4 *5 (-553 (-1088)))) (-4 *3 (-961)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 *3)) (-12 (-2556 (-4 *3 (-482))) (-2556 (-4 *3 (-38 (-347 (-483))))) (-4 *3 (-38 (-483))) (-4 *5 (-553 (-1088)))) (-4 *3 (-961)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 *3)) (-12 (-2556 (-4 *3 (-904 (-483)))) (-4 *3 (-38 (-347 (-483)))) (-4 *5 (-553 (-1088)))) (-4 *3 (-961)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))))) (-3966 (*1 *1 *2) (-12 (-5 *2 (-857 *3)) (-4 *3 (-961)) (-4 *1 (-976 *3 *4 *5)) (-4 *5 (-553 (-1088))) (-4 *4 (-717)) (-4 *5 (-756)))) (-3150 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-494)))) (-3149 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-494)))) (-3148 (*1 *1 *1 *2) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-494)))) (-3147 (*1 *1 *1 *2) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-494)))) (-3148 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-494)))) (-3147 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-494)))) (-3749 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-494)))) (-3146 (*1 *2 *1 *1) (-12 (-4 *3 (-494)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -3139 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-976 *3 *4 *5)))) (-3145 (*1 *2 *1 *1) (-12 (-4 *3 (-494)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -3139 *1) (|:| |coef1| *1))) (-4 *1 (-976 *3 *4 *5)))) (-3144 (*1 *2 *1 *1) (-12 (-4 *3 (-494)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -3139 *1) (|:| |coef2| *1))) (-4 *1 (-976 *3 *4 *5)))) (-3750 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-494)))) (-3143 (*1 *2 *1 *1) (-12 (-4 *3 (-494)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-976 *3 *4 *5)))) (-3185 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-494)))) (-3142 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *3 (-494)))) (-3141 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *3 (-494)))) (-3140 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-494)))) (-3139 (*1 *2 *2 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-389)))) (-3138 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-389)))) (-3137 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-389)))) (-3136 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-389)))) (-3135 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-389)))))
-(-13 (-861 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3175 (|t#3| $)) (-15 -3174 ((-694) $)) (-15 -3440 ($ $)) (-15 -3173 ($ $)) (-15 -3791 ($ $)) (-15 -3172 ($ $)) (-15 -3171 ((-583 $) $)) (-15 -3170 ($ $)) (-15 -3169 ($ $ |t#3|)) (-15 -3953 ($ $ |t#3|)) (-15 -3168 ((-85) $)) (-15 -3167 ((-85) $)) (-15 -3166 ($ $)) (-15 -3165 ($ $)) (-15 -3164 ((-583 $) $)) (-15 -3163 ((-583 $) $)) (-15 -3162 ((-3 (-85) "failed") $ $)) (-15 -3693 ((-85) $ $)) (-15 -3161 ((-85) $ $)) (-15 -3688 ((-85) $ $)) (-15 -3688 ((-85) $ (-583 $))) (-15 -3686 ((-85) $ $)) (-15 -3686 ((-85) $ (-583 $))) (-15 -3685 ((-85) $ $)) (-15 -3685 ((-85) $ (-583 $))) (-15 -3689 ((-85) $ $)) (-15 -3689 ((-85) $ (-583 $))) (-15 -3160 ($ $ $)) (-15 -3159 ($ $ $)) (-15 -3160 ($ $ $ |t#3|)) (-15 -3159 ($ $ $ |t#3|)) (-15 -3158 ($ $ $)) (-15 -3157 ($ $ $)) (-15 -3158 ($ $ $ |t#3|)) (-15 -3157 ($ $ $ |t#3|)) (-15 -3156 ((-2 (|:| -3948 $) (|:| |gap| (-694)) (|:| -2898 $)) $ $)) (-15 -3156 ((-2 (|:| -3948 $) (|:| |gap| (-694)) (|:| -2898 $)) $ $ |t#3|)) (-15 -3155 ((-2 (|:| -3948 $) (|:| |gap| (-694)) (|:| -1970 $) (|:| -2898 $)) $ $)) (-15 -3155 ((-2 (|:| -3948 $) (|:| |gap| (-694)) (|:| -1970 $) (|:| -2898 $)) $ $ |t#3|)) (-15 -3746 ((-2 (|:| -1970 $) (|:| -2898 $)) $ $)) (-15 -3154 ($ $ $)) (-15 -3153 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3475 (-694))) $ $)) (-15 -3681 ($ $ $)) (-15 -3680 ($ $ $)) (IF (|has| |t#3| (-553 (-1088))) (PROGN (-6 (-552 (-857 |t#1|))) (-6 (-553 (-857 |t#1|))) (IF (|has| |t#1| (-38 (-347 (-483)))) (PROGN (-15 -3152 ((-3 $ "failed") (-857 (-347 (-483))))) (-15 -3151 ($ (-857 (-347 (-483))))) (-15 -3966 ($ (-857 (-347 (-483))))) (-15 -3152 ((-3 $ "failed") (-857 (-483)))) (-15 -3151 ($ (-857 (-483)))) (-15 -3966 ($ (-857 (-483)))) (IF (|has| |t#1| (-904 (-483))) |%noBranch| (PROGN (-15 -3152 ((-3 $ "failed") (-857 |t#1|))) (-15 -3151 ($ (-857 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-483))) (IF (|has| |t#1| (-38 (-347 (-483)))) |%noBranch| (PROGN (-15 -3152 ((-3 $ "failed") (-857 (-483)))) (-15 -3151 ($ (-857 (-483)))) (-15 -3966 ($ (-857 (-483)))) (IF (|has| |t#1| (-482)) |%noBranch| (PROGN (-15 -3152 ((-3 $ "failed") (-857 |t#1|))) (-15 -3151 ($ (-857 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-483))) |%noBranch| (IF (|has| |t#1| (-38 (-347 (-483)))) |%noBranch| (PROGN (-15 -3152 ((-3 $ "failed") (-857 |t#1|))) (-15 -3151 ($ (-857 |t#1|)))))) (-15 -3966 ($ (-857 |t#1|))) (IF (|has| |t#1| (-950 (-483))) (-6 (-553 (-1071))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-494)) (PROGN (-15 -3150 ($ $)) (-15 -3149 ($ $)) (-15 -3148 ($ $ |t#1|)) (-15 -3147 ($ $ |t#1|)) (-15 -3148 ($ $ $)) (-15 -3147 ($ $ $)) (-15 -3749 ($ $ $)) (-15 -3146 ((-2 (|:| -3139 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3145 ((-2 (|:| -3139 $) (|:| |coef1| $)) $ $)) (-15 -3144 ((-2 (|:| -3139 $) (|:| |coef2| $)) $ $)) (-15 -3750 ($ $ $)) (-15 -3143 ((-583 $) $ $)) (-15 -3185 ($ $ $)) (-15 -3142 ($ $ $ (-694))) (-15 -3141 ($ $ $ $ (-694))) (-15 -3140 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-389)) (PROGN (-15 -3139 (|t#1| |t#1| $)) (-15 -3138 ($ $)) (-15 -3137 ($ $)) (-15 -3136 ($ $)) (-15 -3135 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) OR (|has| |#1| (-950 (-347 (-483)))) (|has| |#1| (-38 (-347 (-483))))) ((-555 (-483)) . T) ((-555 |#1|) . T) ((-555 |#3|) . T) ((-555 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-552 (-772)) . T) ((-552 (-857 |#1|)) |has| |#3| (-553 (-1088))) ((-146) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-553 (-472)) -12 (|has| |#1| (-553 (-472))) (|has| |#3| (-553 (-472)))) ((-553 (-800 (-327))) -12 (|has| |#1| (-553 (-800 (-327)))) (|has| |#3| (-553 (-800 (-327))))) ((-553 (-800 (-483))) -12 (|has| |#1| (-553 (-800 (-483)))) (|has| |#3| (-553 (-800 (-483))))) ((-553 (-857 |#1|)) |has| |#3| (-553 (-1088))) ((-553 (-1071)) -12 (|has| |#1| (-950 (-483))) (|has| |#3| (-553 (-1088)))) ((-245) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-259 $) . T) ((-276 |#1| |#2|) . T) ((-326 |#1|) . T) ((-352 |#1|) . T) ((-389) OR (|has| |#1| (-821)) (|has| |#1| (-389))) ((-452 |#3| |#1|) . T) ((-452 |#3| $) . T) ((-452 $ $) . T) ((-494) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-13) . T) ((-588 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-590 (-483)) |has| |#1| (-580 (-483))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-580 (-483)) |has| |#1| (-580 (-483))) ((-580 |#1|) . T) ((-654 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389))) ((-663) . T) ((-806 $ |#3|) . T) ((-809 |#3|) . T) ((-811 |#3|) . T) ((-796 (-327)) -12 (|has| |#1| (-796 (-327))) (|has| |#3| (-796 (-327)))) ((-796 (-483)) -12 (|has| |#1| (-796 (-483))) (|has| |#3| (-796 (-483)))) ((-861 |#1| |#2| |#3|) . T) ((-821) |has| |#1| (-821)) ((-950 (-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((-950 (-483)) |has| |#1| (-950 (-483))) ((-950 |#1|) . T) ((-950 |#3|) . T) ((-963 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-968 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) |has| |#1| (-821)))
-((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3176 (((-583 (-1047)) $) 18 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 27 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3228 (((-1047) $) 20 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-977) (-13 (-994) (-10 -8 (-15 -3176 ((-583 (-1047)) $)) (-15 -3228 ((-1047) $))))) (T -977))
-((-3176 (*1 *2 *1) (-12 (-5 *2 (-583 (-1047))) (-5 *1 (-977)))) (-3228 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-977)))))
-((-3183 (((-85) |#3| $) 15 T ELT)) (-3178 (((-3 $ #1="failed") |#3| (-830)) 29 T ELT)) (-3461 (((-3 |#3| #1#) |#3| $) 45 T ELT)) (-3181 (((-85) |#3| $) 19 T ELT)) (-3182 (((-85) |#3| $) 17 T ELT)))
-(((-978 |#1| |#2| |#3|) (-10 -7 (-15 -3178 ((-3 |#1| #1="failed") |#3| (-830))) (-15 -3461 ((-3 |#3| #1#) |#3| |#1|)) (-15 -3181 ((-85) |#3| |#1|)) (-15 -3182 ((-85) |#3| |#1|)) (-15 -3183 ((-85) |#3| |#1|))) (-979 |#2| |#3|) (-13 (-755) (-311)) (-1153 |#2|)) (T -978))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) |#2| $) 25 T ELT)) (-3617 (((-483) |#2| $) 26 T ELT)) (-3178 (((-3 $ "failed") |#2| (-830)) 19 T ELT)) (-3177 ((|#1| |#2| $ |#1|) 17 T ELT)) (-3461 (((-3 |#2| "failed") |#2| $) 22 T ELT)) (-3181 (((-85) |#2| $) 23 T ELT)) (-3182 (((-85) |#2| $) 24 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3180 ((|#2| $) 21 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3764 ((|#1| |#2| $ |#1|) 18 T ELT)) (-3179 (((-583 $) |#2|) 20 T ELT)) (-3052 (((-85) $ $) 8 T ELT)))
-(((-979 |#1| |#2|) (-113) (-13 (-755) (-311)) (-1153 |t#1|)) (T -979))
-((-3617 (*1 *2 *3 *1) (-12 (-4 *1 (-979 *4 *3)) (-4 *4 (-13 (-755) (-311))) (-4 *3 (-1153 *4)) (-5 *2 (-483)))) (-3183 (*1 *2 *3 *1) (-12 (-4 *1 (-979 *4 *3)) (-4 *4 (-13 (-755) (-311))) (-4 *3 (-1153 *4)) (-5 *2 (-85)))) (-3182 (*1 *2 *3 *1) (-12 (-4 *1 (-979 *4 *3)) (-4 *4 (-13 (-755) (-311))) (-4 *3 (-1153 *4)) (-5 *2 (-85)))) (-3181 (*1 *2 *3 *1) (-12 (-4 *1 (-979 *4 *3)) (-4 *4 (-13 (-755) (-311))) (-4 *3 (-1153 *4)) (-5 *2 (-85)))) (-3461 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-979 *3 *2)) (-4 *3 (-13 (-755) (-311))) (-4 *2 (-1153 *3)))) (-3180 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *2)) (-4 *3 (-13 (-755) (-311))) (-4 *2 (-1153 *3)))) (-3179 (*1 *2 *3) (-12 (-4 *4 (-13 (-755) (-311))) (-4 *3 (-1153 *4)) (-5 *2 (-583 *1)) (-4 *1 (-979 *4 *3)))) (-3178 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-830)) (-4 *4 (-13 (-755) (-311))) (-4 *1 (-979 *4 *2)) (-4 *2 (-1153 *4)))) (-3764 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-979 *2 *3)) (-4 *2 (-13 (-755) (-311))) (-4 *3 (-1153 *2)))) (-3177 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-979 *2 *3)) (-4 *2 (-13 (-755) (-311))) (-4 *3 (-1153 *2)))))
-(-13 (-1012) (-10 -8 (-15 -3617 ((-483) |t#2| $)) (-15 -3183 ((-85) |t#2| $)) (-15 -3182 ((-85) |t#2| $)) (-15 -3181 ((-85) |t#2| $)) (-15 -3461 ((-3 |t#2| "failed") |t#2| $)) (-15 -3180 (|t#2| $)) (-15 -3179 ((-583 $) |t#2|)) (-15 -3178 ((-3 $ "failed") |t#2| (-830))) (-15 -3764 (|t#1| |t#2| $ |t#1|)) (-15 -3177 (|t#1| |t#2| $ |t#1|))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T))
-((-3430 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) (-694)) 114 T ELT)) (-3427 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5| (-694)) 63 T ELT)) (-3431 (((-1183) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) (-694)) 99 T ELT)) (-3425 (((-694) (-583 |#4|) (-583 |#5|)) 30 T ELT)) (-3428 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5| (-694)) 65 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5| (-694) (-85)) 67 T ELT)) (-3429 (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85) (-85) (-85) (-85)) 86 T ELT) (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85)) 87 T ELT)) (-3966 (((-1071) (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) 92 T ELT)) (-3426 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5| (-85)) 62 T ELT)) (-3424 (((-694) (-583 |#4|) (-583 |#5|)) 21 T ELT)))
-(((-980 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3424 ((-694) (-583 |#4|) (-583 |#5|))) (-15 -3425 ((-694) (-583 |#4|) (-583 |#5|))) (-15 -3426 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5| (-85))) (-15 -3427 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5| (-694))) (-15 -3427 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5|)) (-15 -3428 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5| (-694) (-85))) (-15 -3428 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5| (-694))) (-15 -3428 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5|)) (-15 -3429 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85))) (-15 -3429 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3430 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) (-694))) (-15 -3966 ((-1071) (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|)))) (-15 -3431 ((-1183) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) (-694)))) (-389) (-717) (-756) (-976 |#1| |#2| |#3|) (-982 |#1| |#2| |#3| |#4|)) (T -980))
-((-3431 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1597 *9)))) (-5 *4 (-694)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-1183)) (-5 *1 (-980 *5 *6 *7 *8 *9)))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1597 *8))) (-4 *7 (-976 *4 *5 *6)) (-4 *8 (-982 *4 *5 *6 *7)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1071)) (-5 *1 (-980 *4 *5 *6 *7 *8)))) (-3430 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -1597 *11)))))) (-5 *6 (-694)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -1597 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-976 *7 *8 *9)) (-4 *11 (-982 *7 *8 *9 *10)) (-4 *7 (-389)) (-4 *8 (-717)) (-4 *9 (-756)) (-5 *1 (-980 *7 *8 *9 *10 *11)))) (-3429 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-980 *5 *6 *7 *8 *9)))) (-3429 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-980 *5 *6 *7 *8 *9)))) (-3428 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) (-5 *1 (-980 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3428 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-694)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-976 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) (-5 *1 (-980 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3)))) (-3428 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-694)) (-5 *6 (-85)) (-4 *7 (-389)) (-4 *8 (-717)) (-4 *9 (-756)) (-4 *3 (-976 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) (-5 *1 (-980 *7 *8 *9 *3 *4)) (-4 *4 (-982 *7 *8 *9 *3)))) (-3427 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) (-5 *1 (-980 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3427 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-694)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-976 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) (-5 *1 (-980 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3)))) (-3426 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-976 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) (-5 *1 (-980 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3)))) (-3425 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-694)) (-5 *1 (-980 *5 *6 *7 *8 *9)))) (-3424 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-694)) (-5 *1 (-980 *5 *6 *7 *8 *9)))))
-((-3192 (((-85) |#5| $) 26 T ELT)) (-3190 (((-85) |#5| $) 29 T ELT)) (-3193 (((-85) |#5| $) 18 T ELT) (((-85) $) 52 T ELT)) (-3233 (((-583 $) |#5| $) NIL T ELT) (((-583 $) (-583 |#5|) $) 94 T ELT) (((-583 $) (-583 |#5|) (-583 $)) 92 T ELT) (((-583 $) |#5| (-583 $)) 95 T ELT)) (-3763 (($ $ |#5|) NIL T ELT) (((-583 $) |#5| $) NIL T ELT) (((-583 $) |#5| (-583 $)) 73 T ELT) (((-583 $) (-583 |#5|) $) 75 T ELT) (((-583 $) (-583 |#5|) (-583 $)) 77 T ELT)) (-3184 (((-583 $) |#5| $) NIL T ELT) (((-583 $) |#5| (-583 $)) 64 T ELT) (((-583 $) (-583 |#5|) $) 69 T ELT) (((-583 $) (-583 |#5|) (-583 $)) 71 T ELT)) (-3191 (((-85) |#5| $) 32 T ELT)))
-(((-981 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3763 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -3763 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -3763 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -3763 ((-583 |#1|) |#5| |#1|)) (-15 -3184 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -3184 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -3184 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -3184 ((-583 |#1|) |#5| |#1|)) (-15 -3233 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -3233 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -3233 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -3233 ((-583 |#1|) |#5| |#1|)) (-15 -3190 ((-85) |#5| |#1|)) (-15 -3193 ((-85) |#1|)) (-15 -3191 ((-85) |#5| |#1|)) (-15 -3192 ((-85) |#5| |#1|)) (-15 -3193 ((-85) |#5| |#1|)) (-15 -3763 (|#1| |#1| |#5|))) (-982 |#2| |#3| |#4| |#5|) (-389) (-717) (-756) (-976 |#2| |#3| |#4|)) (T -981))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3675 (((-583 (-2 (|:| -3855 $) (|:| -1699 (-583 |#4|)))) (-583 |#4|)) 90 T ELT)) (-3676 (((-583 $) (-583 |#4|)) 91 T ELT) (((-583 $) (-583 |#4|) (-85)) 118 T ELT)) (-3077 (((-583 |#3|) $) 37 T ELT)) (-2904 (((-85) $) 30 T ELT)) (-2895 (((-85) $) 21 (|has| |#1| (-494)) ELT)) (-3687 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3682 ((|#4| |#4| $) 97 T ELT)) (-3769 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 $))) |#4| $) 133 T ELT)) (-2905 (((-2 (|:| |under| $) (|:| -3125 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3704 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3989)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3718 (($) 46 T CONST)) (-2900 (((-85) $) 26 (|has| |#1| (-494)) ELT)) (-2902 (((-85) $ $) 28 (|has| |#1| (-494)) ELT)) (-2901 (((-85) $ $) 27 (|has| |#1| (-494)) ELT)) (-2903 (((-85) $) 29 (|has| |#1| (-494)) ELT)) (-3683 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2896 (((-583 |#4|) (-583 |#4|) $) 22 (|has| |#1| (-494)) ELT)) (-2897 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-494)) ELT)) (-3152 (((-3 $ "failed") (-583 |#4|)) 40 T ELT)) (-3151 (($ (-583 |#4|)) 39 T ELT)) (-3793 (((-3 $ #1#) $) 87 T ELT)) (-3679 ((|#4| |#4| $) 94 T ELT)) (-1350 (($ $) 69 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3400 (($ |#4| $) 68 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3989)) ELT)) (-2898 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-494)) ELT)) (-3688 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3677 ((|#4| |#4| $) 92 T ELT)) (-3836 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3989)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3989)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3690 (((-2 (|:| -3855 (-583 |#4|)) (|:| -1699 (-583 |#4|))) $) 110 T ELT)) (-3192 (((-85) |#4| $) 143 T ELT)) (-3190 (((-85) |#4| $) 140 T ELT)) (-3193 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-2885 (((-583 |#4|) $) 53 (|has| $ (-6 -3989)) ELT)) (-3689 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3175 ((|#3| $) 38 T ELT)) (-2604 (((-583 |#4|) $) 54 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2910 (((-583 |#3|) $) 36 T ELT)) (-2909 (((-85) |#3| $) 35 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3186 (((-3 |#4| (-583 $)) |#4| |#4| $) 135 T ELT)) (-3185 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 $))) |#4| |#4| $) 134 T ELT)) (-3792 (((-3 |#4| #1#) $) 88 T ELT)) (-3187 (((-583 $) |#4| $) 136 T ELT)) (-3189 (((-3 (-85) (-583 $)) |#4| $) 139 T ELT)) (-3188 (((-583 (-2 (|:| |val| (-85)) (|:| -1597 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3233 (((-583 $) |#4| $) 132 T ELT) (((-583 $) (-583 |#4|) $) 131 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 130 T ELT) (((-583 $) |#4| (-583 $)) 129 T ELT)) (-3434 (($ |#4| $) 124 T ELT) (($ (-583 |#4|) $) 123 T ELT)) (-3691 (((-583 |#4|) $) 112 T ELT)) (-3685 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3680 ((|#4| |#4| $) 95 T ELT)) (-3693 (((-85) $ $) 115 T ELT)) (-2899 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-494)) ELT)) (-3686 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3681 ((|#4| |#4| $) 96 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3795 (((-3 |#4| #1#) $) 89 T ELT)) (-1351 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3673 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3763 (($ $ |#4|) 82 T ELT) (((-583 $) |#4| $) 122 T ELT) (((-583 $) |#4| (-583 $)) 121 T ELT) (((-583 $) (-583 |#4|) $) 120 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 119 T ELT)) (-1944 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 |#4|) (-583 |#4|)) 60 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-248 |#4|)) 58 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-583 (-248 |#4|))) 57 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT)) (-1219 (((-85) $ $) 42 T ELT)) (-3397 (((-85) $) 45 T ELT)) (-3559 (($) 44 T ELT)) (-3942 (((-694) $) 111 T ELT)) (-1943 (((-694) |#4| $) 55 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) (((-694) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) 43 T ELT)) (-3966 (((-472) $) 70 (|has| |#4| (-553 (-472))) ELT)) (-3524 (($ (-583 |#4|)) 61 T ELT)) (-2906 (($ $ |#3|) 32 T ELT)) (-2908 (($ $ |#3|) 34 T ELT)) (-3678 (($ $) 93 T ELT)) (-2907 (($ $ |#3|) 33 T ELT)) (-3940 (((-772) $) 13 T ELT) (((-583 |#4|) $) 41 T ELT)) (-3672 (((-694) $) 81 (|has| |#3| (-317)) ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3692 (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3684 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) 103 T ELT)) (-3184 (((-583 $) |#4| $) 128 T ELT) (((-583 $) |#4| (-583 $)) 127 T ELT) (((-583 $) (-583 |#4|) $) 126 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 125 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3989)) ELT)) (-3674 (((-583 |#3|) $) 86 T ELT)) (-3191 (((-85) |#4| $) 142 T ELT)) (-3927 (((-85) |#3| $) 85 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3951 (((-694) $) 47 (|has| $ (-6 -3989)) ELT)))
-(((-982 |#1| |#2| |#3| |#4|) (-113) (-389) (-717) (-756) (-976 |t#1| |t#2| |t#3|)) (T -982))
-((-3193 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))) (-3192 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))) (-3191 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))) (-3193 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85)))) (-3190 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))) (-3189 (*1 *2 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-3 (-85) (-583 *1))) (-4 *1 (-982 *4 *5 *6 *3)))) (-3188 (*1 *2 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1597 *1)))) (-4 *1 (-982 *4 *5 *6 *3)))) (-3188 (*1 *2 *3 *1) (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))) (-3187 (*1 *2 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3)))) (-3186 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-3 *3 (-583 *1))) (-4 *1 (-982 *4 *5 *6 *3)))) (-3185 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *1)))) (-4 *1 (-982 *4 *5 *6 *3)))) (-3769 (*1 *2 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *1)))) (-4 *1 (-982 *4 *5 *6 *3)))) (-3233 (*1 *2 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3)))) (-3233 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *7)))) (-3233 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-982 *4 *5 *6 *7)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)))) (-3233 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)))) (-3184 (*1 *2 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3)))) (-3184 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)))) (-3184 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *7)))) (-3184 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-982 *4 *5 *6 *7)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)))) (-3434 (*1 *1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *5 *2)) (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-976 *3 *4 *5)))) (-3434 (*1 *1 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)))) (-3763 (*1 *2 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3)))) (-3763 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)))) (-3763 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *7)))) (-3763 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-982 *4 *5 *6 *7)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)))) (-3676 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-982 *5 *6 *7 *8)))))
-(-13 (-1122 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3193 ((-85) |t#4| $)) (-15 -3192 ((-85) |t#4| $)) (-15 -3191 ((-85) |t#4| $)) (-15 -3193 ((-85) $)) (-15 -3190 ((-85) |t#4| $)) (-15 -3189 ((-3 (-85) (-583 $)) |t#4| $)) (-15 -3188 ((-583 (-2 (|:| |val| (-85)) (|:| -1597 $))) |t#4| $)) (-15 -3188 ((-85) |t#4| $)) (-15 -3187 ((-583 $) |t#4| $)) (-15 -3186 ((-3 |t#4| (-583 $)) |t#4| |t#4| $)) (-15 -3185 ((-583 (-2 (|:| |val| |t#4|) (|:| -1597 $))) |t#4| |t#4| $)) (-15 -3769 ((-583 (-2 (|:| |val| |t#4|) (|:| -1597 $))) |t#4| $)) (-15 -3233 ((-583 $) |t#4| $)) (-15 -3233 ((-583 $) (-583 |t#4|) $)) (-15 -3233 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -3233 ((-583 $) |t#4| (-583 $))) (-15 -3184 ((-583 $) |t#4| $)) (-15 -3184 ((-583 $) |t#4| (-583 $))) (-15 -3184 ((-583 $) (-583 |t#4|) $)) (-15 -3184 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -3434 ($ |t#4| $)) (-15 -3434 ($ (-583 |t#4|) $)) (-15 -3763 ((-583 $) |t#4| $)) (-15 -3763 ((-583 $) |t#4| (-583 $))) (-15 -3763 ((-583 $) (-583 |t#4|) $)) (-15 -3763 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -3676 ((-583 $) (-583 |t#4|) (-85)))))
-(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-472)) |has| |#4| (-553 (-472))) ((-259 |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ((-426 |#4|) . T) ((-452 |#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ((-13) . T) ((-889 |#1| |#2| |#3| |#4|) . T) ((-1012) . T) ((-1122 |#1| |#2| |#3| |#4|) . T) ((-1127) . T))
-((-3200 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#5|) 86 T ELT)) (-3197 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#4| |#5|) 125 T ELT)) (-3199 (((-583 |#5|) |#4| |#5|) 74 T ELT)) (-3198 (((-583 (-2 (|:| |val| (-85)) (|:| -1597 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3281 (((-1183)) 36 T ELT)) (-3279 (((-1183)) 25 T ELT)) (-3280 (((-1183) (-1071) (-1071) (-1071)) 32 T ELT)) (-3278 (((-1183) (-1071) (-1071) (-1071)) 21 T ELT)) (-3194 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) |#4| |#4| |#5|) 106 T ELT)) (-3195 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) |#3| (-85)) 117 T ELT) (((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3196 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#4| |#5|) 112 T ELT)))
-(((-983 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3278 ((-1183) (-1071) (-1071) (-1071))) (-15 -3279 ((-1183))) (-15 -3280 ((-1183) (-1071) (-1071) (-1071))) (-15 -3281 ((-1183))) (-15 -3194 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) |#4| |#4| |#5|)) (-15 -3195 ((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3195 ((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) |#3| (-85))) (-15 -3196 ((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#4| |#5|)) (-15 -3197 ((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#4| |#5|)) (-15 -3198 ((-85) |#4| |#5|)) (-15 -3198 ((-583 (-2 (|:| |val| (-85)) (|:| -1597 |#5|))) |#4| |#5|)) (-15 -3199 ((-583 |#5|) |#4| |#5|)) (-15 -3200 ((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#5|))) (-389) (-717) (-756) (-976 |#1| |#2| |#3|) (-982 |#1| |#2| |#3| |#4|)) (T -983))
-((-3200 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4)))) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3199 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3198 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1597 *4)))) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3198 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3197 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4)))) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3196 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4)))) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3195 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1597 *9)))) (-5 *5 (-85)) (-4 *8 (-976 *6 *7 *4)) (-4 *9 (-982 *6 *7 *4 *8)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *4 (-756)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -1597 *9)))) (-5 *1 (-983 *6 *7 *4 *8 *9)))) (-3195 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-976 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4)))) (-5 *1 (-983 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3)))) (-3194 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3281 (*1 *2) (-12 (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-1183)) (-5 *1 (-983 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))) (-3280 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1071)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-983 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-3279 (*1 *2) (-12 (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-1183)) (-5 *1 (-983 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))) (-3278 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1071)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-983 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3313 (((-1128) $) 14 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3201 (((-1047) $) 11 T ELT)) (-3940 (((-772) $) 21 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-984) (-13 (-994) (-10 -8 (-15 -3201 ((-1047) $)) (-15 -3313 ((-1128) $))))) (T -984))
-((-3201 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-984)))) (-3313 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-984)))))
-((-3261 (((-85) $ $) 7 T ELT)))
-(((-985) (-13 (-1127) (-10 -8 (-15 -3261 ((-85) $ $))))) (T -985))
-((-3261 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-985)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3204 (($ $ (-583 (-1088)) (-1 (-85) (-583 |#3|))) 34 T ELT)) (-3205 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-583 (-1088))) 21 T ELT)) (-3522 ((|#3| $) 13 T ELT)) (-3152 (((-3 (-248 |#3|) "failed") $) 60 T ELT)) (-3151 (((-248 |#3|) $) NIL T ELT)) (-3202 (((-583 (-1088)) $) 16 T ELT)) (-3203 (((-800 |#1|) $) 11 T ELT)) (-3523 ((|#3| $) 12 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3794 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-830)) 41 T ELT)) (-3940 (((-772) $) 89 T ELT) (($ (-248 |#3|)) 22 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 38 T ELT)))
-(((-986 |#1| |#2| |#3|) (-13 (-1012) (-241 |#3| |#3|) (-950 (-248 |#3|)) (-10 -8 (-15 -3205 ($ |#3| |#3|)) (-15 -3205 ($ |#3| |#3| (-583 (-1088)))) (-15 -3204 ($ $ (-583 (-1088)) (-1 (-85) (-583 |#3|)))) (-15 -3203 ((-800 |#1|) $)) (-15 -3523 (|#3| $)) (-15 -3522 (|#3| $)) (-15 -3794 (|#3| $ |#3| (-830))) (-15 -3202 ((-583 (-1088)) $)))) (-1012) (-13 (-961) (-796 |#1|) (-553 (-800 |#1|))) (-13 (-361 |#2|) (-796 |#1|) (-553 (-800 |#1|)))) (T -986))
-((-3205 (*1 *1 *2 *2) (-12 (-4 *3 (-1012)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) (-5 *1 (-986 *3 *4 *2)) (-4 *2 (-13 (-361 *4) (-796 *3) (-553 (-800 *3)))))) (-3205 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-583 (-1088))) (-4 *4 (-1012)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-986 *4 *5 *2)) (-4 *2 (-13 (-361 *5) (-796 *4) (-553 (-800 *4)))))) (-3204 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1088))) (-5 *3 (-1 (-85) (-583 *6))) (-4 *6 (-13 (-361 *5) (-796 *4) (-553 (-800 *4)))) (-4 *4 (-1012)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-986 *4 *5 *6)))) (-3203 (*1 *2 *1) (-12 (-4 *3 (-1012)) (-4 *4 (-13 (-961) (-796 *3) (-553 *2))) (-5 *2 (-800 *3)) (-5 *1 (-986 *3 *4 *5)) (-4 *5 (-13 (-361 *4) (-796 *3) (-553 *2))))) (-3523 (*1 *2 *1) (-12 (-4 *3 (-1012)) (-4 *2 (-13 (-361 *4) (-796 *3) (-553 (-800 *3)))) (-5 *1 (-986 *3 *4 *2)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))))) (-3522 (*1 *2 *1) (-12 (-4 *3 (-1012)) (-4 *2 (-13 (-361 *4) (-796 *3) (-553 (-800 *3)))) (-5 *1 (-986 *3 *4 *2)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))))) (-3794 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-830)) (-4 *4 (-1012)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-986 *4 *5 *2)) (-4 *2 (-13 (-361 *5) (-796 *4) (-553 (-800 *4)))))) (-3202 (*1 *2 *1) (-12 (-4 *3 (-1012)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) (-5 *2 (-583 (-1088))) (-5 *1 (-986 *3 *4 *5)) (-4 *5 (-13 (-361 *4) (-796 *3) (-553 (-800 *3)))))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3536 (((-1088) $) 8 T ELT)) (-3237 (((-1071) $) 17 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 11 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 14 T ELT)))
-(((-987 |#1|) (-13 (-1012) (-10 -8 (-15 -3536 ((-1088) $)))) (-1088)) (T -987))
-((-3536 (*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-987 *3)) (-14 *3 *2))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3207 (($ (-583 (-986 |#1| |#2| |#3|))) 15 T ELT)) (-3206 (((-583 (-986 |#1| |#2| |#3|)) $) 22 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3794 ((|#3| $ |#3|) 25 T ELT) ((|#3| $ |#3| (-830)) 28 T ELT)) (-3940 (((-772) $) 18 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 21 T ELT)))
-(((-988 |#1| |#2| |#3|) (-13 (-1012) (-241 |#3| |#3|) (-10 -8 (-15 -3207 ($ (-583 (-986 |#1| |#2| |#3|)))) (-15 -3206 ((-583 (-986 |#1| |#2| |#3|)) $)) (-15 -3794 (|#3| $ |#3| (-830))))) (-1012) (-13 (-961) (-796 |#1|) (-553 (-800 |#1|))) (-13 (-361 |#2|) (-796 |#1|) (-553 (-800 |#1|)))) (T -988))
-((-3207 (*1 *1 *2) (-12 (-5 *2 (-583 (-986 *3 *4 *5))) (-4 *3 (-1012)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) (-4 *5 (-13 (-361 *4) (-796 *3) (-553 (-800 *3)))) (-5 *1 (-988 *3 *4 *5)))) (-3206 (*1 *2 *1) (-12 (-4 *3 (-1012)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) (-5 *2 (-583 (-986 *3 *4 *5))) (-5 *1 (-988 *3 *4 *5)) (-4 *5 (-13 (-361 *4) (-796 *3) (-553 (-800 *3)))))) (-3794 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-830)) (-4 *4 (-1012)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-988 *4 *5 *2)) (-4 *2 (-13 (-361 *5) (-796 *4) (-553 (-800 *4)))))))
-((-3208 (((-583 (-2 (|:| -1744 (-1083 |#1|)) (|:| -3219 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85)) 88 T ELT) (((-583 (-2 (|:| -1744 (-1083 |#1|)) (|:| -3219 (-583 (-857 |#1|))))) (-583 (-857 |#1|))) 92 T ELT) (((-583 (-2 (|:| -1744 (-1083 |#1|)) (|:| -3219 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85)) 90 T ELT)))
-(((-989 |#1| |#2|) (-10 -7 (-15 -3208 ((-583 (-2 (|:| -1744 (-1083 |#1|)) (|:| -3219 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85))) (-15 -3208 ((-583 (-2 (|:| -1744 (-1083 |#1|)) (|:| -3219 (-583 (-857 |#1|))))) (-583 (-857 |#1|)))) (-15 -3208 ((-583 (-2 (|:| -1744 (-1083 |#1|)) (|:| -3219 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85)))) (-13 (-257) (-120)) (-583 (-1088))) (T -989))
-((-3208 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-583 (-2 (|:| -1744 (-1083 *5)) (|:| -3219 (-583 (-857 *5)))))) (-5 *1 (-989 *5 *6)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1088))))) (-3208 (*1 *2 *3) (-12 (-4 *4 (-13 (-257) (-120))) (-5 *2 (-583 (-2 (|:| -1744 (-1083 *4)) (|:| -3219 (-583 (-857 *4)))))) (-5 *1 (-989 *4 *5)) (-5 *3 (-583 (-857 *4))) (-14 *5 (-583 (-1088))))) (-3208 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-583 (-2 (|:| -1744 (-1083 *5)) (|:| -3219 (-583 (-857 *5)))))) (-5 *1 (-989 *5 *6)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1088))))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 132 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-311)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-1779 (((-630 |#1|) (-1177 $)) NIL T ELT) (((-630 |#1|)) 117 T ELT)) (-3324 ((|#1| $) 121 T ELT)) (-1672 (((-1100 (-830) (-694)) (-483)) NIL (|has| |#1| (-298)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1605 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3131 (((-694)) 43 (|has| |#1| (-317)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3151 (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) NIL T ELT)) (-1789 (($ (-1177 |#1|) (-1177 $)) NIL T ELT) (($ (-1177 |#1|)) 46 T ELT)) (-1670 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-298)) ELT)) (-2560 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-1778 (((-630 |#1|) $ (-1177 $)) NIL T ELT) (((-630 |#1|) $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) 109 T ELT) (((-630 |#1|) (-630 $)) 104 T ELT)) (-3836 (($ |#2|) 62 T ELT) (((-3 $ #1#) (-347 |#2|)) NIL (|has| |#1| (-311)) ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3104 (((-830)) 80 T ELT)) (-2990 (($) 47 (|has| |#1| (-317)) ELT)) (-2559 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| |#1| (-311)) ELT)) (-2829 (($) NIL (|has| |#1| (-298)) ELT)) (-1677 (((-85) $) NIL (|has| |#1| (-298)) ELT)) (-1761 (($ $ (-694)) NIL (|has| |#1| (-298)) ELT) (($ $) NIL (|has| |#1| (-298)) ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-3766 (((-830) $) NIL (|has| |#1| (-298)) ELT) (((-743 (-830)) $) NIL (|has| |#1| (-298)) ELT)) (-2406 (((-85) $) NIL T ELT)) (-3127 ((|#1| $) NIL T ELT)) (-3439 (((-632 $) $) NIL (|has| |#1| (-298)) ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-2010 ((|#2| $) 87 (|has| |#1| (-311)) ELT)) (-2006 (((-830) $) 140 (|has| |#1| (-317)) ELT)) (-3075 ((|#2| $) 59 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3440 (($) NIL (|has| |#1| (-298)) CONST)) (-2396 (($ (-830)) 131 (|has| |#1| (-317)) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2405 (($) 123 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-311)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-1673 (((-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))) NIL (|has| |#1| (-298)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3460 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-1604 (((-694) $) NIL (|has| |#1| (-311)) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3751 ((|#1| (-1177 $)) NIL T ELT) ((|#1|) 113 T ELT)) (-1762 (((-694) $) NIL (|has| |#1| (-298)) ELT) (((-3 (-694) #1#) $ $) NIL (|has| |#1| (-298)) ELT)) (-3752 (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-1088)) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL (|has| |#1| (-311)) ELT)) (-2404 (((-630 |#1|) (-1177 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-311)) ELT)) (-3180 ((|#2|) 77 T ELT)) (-1671 (($) NIL (|has| |#1| (-298)) ELT)) (-3219 (((-1177 |#1|) $ (-1177 $)) 92 T ELT) (((-630 |#1|) (-1177 $) (-1177 $)) NIL T ELT) (((-1177 |#1|) $) 72 T ELT) (((-630 |#1|) (-1177 $)) 88 T ELT)) (-3966 (((-1177 |#1|) $) NIL T ELT) (($ (-1177 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (|has| |#1| (-298)) ELT)) (-3940 (((-772) $) 58 T ELT) (($ (-483)) 53 T ELT) (($ |#1|) 55 T ELT) (($ $) NIL (|has| |#1| (-311)) ELT) (($ (-347 (-483))) NIL (OR (|has| |#1| (-311)) (|has| |#1| (-950 (-347 (-483))))) ELT)) (-2698 (($ $) NIL (|has| |#1| (-298)) ELT) (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-2445 ((|#2| $) 85 T ELT)) (-3121 (((-694)) 79 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2008 (((-1177 $)) 84 T ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-2656 (($) 32 T CONST)) (-2662 (($) 19 T CONST)) (-2665 (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-1088)) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-811 (-1088)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL (|has| |#1| (-311)) ELT)) (-3052 (((-85) $ $) 64 T ELT)) (-3943 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 66 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL (|has| |#1| (-311)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 51 T ELT) (($ $ $) 70 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 48 T ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-311)) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-311)) ELT)))
-(((-990 |#1| |#2| |#3|) (-661 |#1| |#2|) (-146) (-1153 |#1|) |#2|) (T -990))
-NIL
-((-3726 (((-345 |#3|) |#3|) 18 T ELT)))
-(((-991 |#1| |#2| |#3|) (-10 -7 (-15 -3726 ((-345 |#3|) |#3|))) (-1153 (-347 (-483))) (-13 (-311) (-120) (-661 (-347 (-483)) |#1|)) (-1153 |#2|)) (T -991))
-((-3726 (*1 *2 *3) (-12 (-4 *4 (-1153 (-347 (-483)))) (-4 *5 (-13 (-311) (-120) (-661 (-347 (-483)) *4))) (-5 *2 (-345 *3)) (-5 *1 (-991 *4 *5 *3)) (-4 *3 (-1153 *5)))))
-((-3726 (((-345 |#3|) |#3|) 19 T ELT)))
-(((-992 |#1| |#2| |#3|) (-10 -7 (-15 -3726 ((-345 |#3|) |#3|))) (-1153 (-347 (-857 (-483)))) (-13 (-311) (-120) (-661 (-347 (-857 (-483))) |#1|)) (-1153 |#2|)) (T -992))
-((-3726 (*1 *2 *3) (-12 (-4 *4 (-1153 (-347 (-857 (-483))))) (-4 *5 (-13 (-311) (-120) (-661 (-347 (-857 (-483))) *4))) (-5 *2 (-345 *3)) (-5 *1 (-992 *4 *5 *3)) (-4 *3 (-1153 *5)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-2527 (($ $ $) 16 T ELT)) (-2853 (($ $ $) 17 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3209 (($) 6 T ELT)) (-3966 (((-1088) $) 20 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 15 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 9 T ELT)))
-(((-993) (-13 (-756) (-553 (-1088)) (-10 -8 (-15 -3209 ($))))) (T -993))
-((-3209 (*1 *1) (-5 *1 (-993))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-1093)) 20 T ELT) (((-1093) $) 19 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT)))
-(((-994) (-113)) (T -994))
+((-3096 (*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))) (-3095 (*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))) (-3094 (*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))) (-3093 (*1 *2) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))))
+(-13 (-23) (-10 -8 (-15 -3096 (|t#1| $)) (-15 -3095 (|t#1| $)) (-15 -3094 (|t#1| $)) (-15 -3093 (|t#1|) -3948)))
+(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-3097 (($) 30 T CONST)) (-3720 (($) 22 T CONST)) (-3096 ((|#1| $) 28 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3095 ((|#1| $) 27 T ELT)) (-3093 ((|#1|) 25 T CONST)) (-3942 (((-773) $) 13 T ELT)) (-3094 ((|#1| $) 26 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3835 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT)))
+(((-958 |#1|) (-113) (-23)) (T -958))
+((-3097 (*1 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23)))))
+(-13 (-957 |t#1|) (-10 -8 (-15 -3097 ($) -3948)))
+(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-957 |#1|) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3677 (((-584 (-2 (|:| -3857 $) (|:| -1700 (-584 (-704 |#1| (-774 |#2|)))))) (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3678 (((-584 $) (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-85)) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-85) (-85)) NIL T ELT)) (-3079 (((-584 (-774 |#2|)) $) NIL T ELT)) (-2906 (((-85) $) NIL T ELT)) (-2897 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3689 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3684 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3771 (((-584 (-2 (|:| |val| (-704 |#1| (-774 |#2|))) (|:| -1598 $))) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-2907 (((-2 (|:| |under| $) (|:| -3127 $) (|:| |upper| $)) $ (-774 |#2|)) NIL T ELT)) (-3706 (($ (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-3 (-704 |#1| (-774 |#2|)) #1="failed") $ (-774 |#2|)) NIL T ELT)) (-3720 (($) NIL T CONST)) (-2902 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2904 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2903 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2905 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3685 (((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|))) $ (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) (-1 (-85) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-2898 (((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|))) $) NIL (|has| |#1| (-495)) ELT)) (-2899 (((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|))) $) NIL (|has| |#1| (-495)) ELT)) (-3154 (((-3 $ #1#) (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3153 (($ (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3795 (((-3 $ #1#) $) NIL T ELT)) (-3681 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-704 |#1| (-774 |#2|)) (-1013))) ELT)) (-3402 (($ (-704 |#1| (-774 |#2|)) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-704 |#1| (-774 |#2|)) (-1013))) ELT) (($ (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-2900 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-704 |#1| (-774 |#2|))) (|:| |den| |#1|)) (-704 |#1| (-774 |#2|)) $) NIL (|has| |#1| (-495)) ELT)) (-3690 (((-85) (-704 |#1| (-774 |#2|)) $ (-1 (-85) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3679 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3838 (((-704 |#1| (-774 |#2|)) (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $ (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) NIL (-12 (|has| $ (-6 -3991)) (|has| (-704 |#1| (-774 |#2|)) (-1013))) ELT) (((-704 |#1| (-774 |#2|)) (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $ (-704 |#1| (-774 |#2|))) NIL (|has| $ (-6 -3991)) ELT) (((-704 |#1| (-774 |#2|)) (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $ (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) (-1 (-85) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3692 (((-2 (|:| -3857 (-584 (-704 |#1| (-774 |#2|)))) (|:| -1700 (-584 (-704 |#1| (-774 |#2|))))) $) NIL T ELT)) (-3194 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3192 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3195 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-2887 (((-584 (-704 |#1| (-774 |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-3691 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3177 (((-774 |#2|) $) NIL T ELT)) (-2606 (((-584 (-704 |#1| (-774 |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) (-704 |#1| (-774 |#2|)) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-704 |#1| (-774 |#2|)) (-1013))) ELT)) (-1947 (($ (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-2912 (((-584 (-774 |#2|)) $) NIL T ELT)) (-2911 (((-85) (-774 |#2|) $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3188 (((-3 (-704 |#1| (-774 |#2|)) (-584 $)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3187 (((-584 (-2 (|:| |val| (-704 |#1| (-774 |#2|))) (|:| -1598 $))) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3794 (((-3 (-704 |#1| (-774 |#2|)) #1#) $) NIL T ELT)) (-3189 (((-584 $) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3191 (((-3 (-85) (-584 $)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3190 (((-584 (-2 (|:| |val| (-85)) (|:| -1598 $))) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3235 (((-584 $) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-584 $)) NIL T ELT) (((-584 $) (-704 |#1| (-774 |#2|)) (-584 $)) NIL T ELT)) (-3436 (($ (-704 |#1| (-774 |#2|)) $) NIL T ELT) (($ (-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3693 (((-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3687 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3682 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3695 (((-85) $ $) NIL T ELT)) (-2901 (((-2 (|:| |num| (-704 |#1| (-774 |#2|))) (|:| |den| |#1|)) (-704 |#1| (-774 |#2|)) $) NIL (|has| |#1| (-495)) ELT)) (-3688 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3683 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3797 (((-3 (-704 |#1| (-774 |#2|)) #1#) $) NIL T ELT)) (-1352 (((-3 (-704 |#1| (-774 |#2|)) #1#) (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3675 (((-3 $ #1#) $ (-704 |#1| (-774 |#2|))) NIL T ELT)) (-3765 (($ $ (-704 |#1| (-774 |#2|))) NIL T ELT) (((-584 $) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-584 $) (-704 |#1| (-774 |#2|)) (-584 $)) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-584 $)) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|)))) NIL (-12 (|has| (-704 |#1| (-774 |#2|)) (-259 (-704 |#1| (-774 |#2|)))) (|has| (-704 |#1| (-774 |#2|)) (-1013))) ELT) (($ $ (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) NIL (-12 (|has| (-704 |#1| (-774 |#2|)) (-259 (-704 |#1| (-774 |#2|)))) (|has| (-704 |#1| (-774 |#2|)) (-1013))) ELT) (($ $ (-248 (-704 |#1| (-774 |#2|)))) NIL (-12 (|has| (-704 |#1| (-774 |#2|)) (-259 (-704 |#1| (-774 |#2|)))) (|has| (-704 |#1| (-774 |#2|)) (-1013))) ELT) (($ $ (-584 (-248 (-704 |#1| (-774 |#2|))))) NIL (-12 (|has| (-704 |#1| (-774 |#2|)) (-259 (-704 |#1| (-774 |#2|)))) (|has| (-704 |#1| (-774 |#2|)) (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) NIL T ELT)) (-3944 (((-695) $) NIL T ELT)) (-1944 (((-695) (-704 |#1| (-774 |#2|)) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-704 |#1| (-774 |#2|)) (-1013))) ELT) (((-695) (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-3396 (($ $) NIL T ELT)) (-3968 (((-473) $) NIL (|has| (-704 |#1| (-774 |#2|)) (-554 (-473))) ELT)) (-3526 (($ (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-2908 (($ $ (-774 |#2|)) NIL T ELT)) (-2910 (($ $ (-774 |#2|)) NIL T ELT)) (-3680 (($ $) NIL T ELT)) (-2909 (($ $ (-774 |#2|)) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (((-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3674 (((-695) $) NIL (|has| (-774 |#2|) (-317)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3694 (((-3 (-2 (|:| |bas| $) (|:| -3320 (-584 (-704 |#1| (-774 |#2|))))) #1#) (-584 (-704 |#1| (-774 |#2|))) (-1 (-85) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3320 (-584 (-704 |#1| (-774 |#2|))))) #1#) (-584 (-704 |#1| (-774 |#2|))) (-1 (-85) (-704 |#1| (-774 |#2|))) (-1 (-85) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3686 (((-85) $ (-1 (-85) (-704 |#1| (-774 |#2|)) (-584 (-704 |#1| (-774 |#2|))))) NIL T ELT)) (-3186 (((-584 $) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-584 $) (-704 |#1| (-774 |#2|)) (-584 $)) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-584 $)) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-3676 (((-584 (-774 |#2|)) $) NIL T ELT)) (-3193 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3929 (((-85) (-774 |#2|) $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-959 |#1| |#2|) (-13 (-983 |#1| (-469 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|))) (-10 -8 (-15 -3678 ((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-85) (-85))))) (-389) (-584 (-1089))) (T -959))
+((-3678 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-389)) (-14 *6 (-584 (-1089))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-959 *5 *6)))))
+((-3098 (((-1 (-484)) (-1001 (-484))) 32 T ELT)) (-3102 (((-484) (-484) (-484) (-484) (-484)) 29 T ELT)) (-3100 (((-1 (-484)) |RationalNumber|) NIL T ELT)) (-3101 (((-1 (-484)) |RationalNumber|) NIL T ELT)) (-3099 (((-1 (-484)) (-484) |RationalNumber|) NIL T ELT)))
+(((-960) (-10 -7 (-15 -3098 ((-1 (-484)) (-1001 (-484)))) (-15 -3099 ((-1 (-484)) (-484) |RationalNumber|)) (-15 -3100 ((-1 (-484)) |RationalNumber|)) (-15 -3101 ((-1 (-484)) |RationalNumber|)) (-15 -3102 ((-484) (-484) (-484) (-484) (-484))))) (T -960))
+((-3102 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-960)))) (-3101 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-960)))) (-3100 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-960)))) (-3099 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-960)) (-5 *3 (-484)))) (-3098 (*1 *2 *3) (-12 (-5 *3 (-1001 (-484))) (-5 *2 (-1 (-484))) (-5 *1 (-960)))))
+((-3942 (((-773) $) NIL T ELT) (($ (-484)) 10 T ELT)))
+(((-961 |#1|) (-10 -7 (-15 -3942 (|#1| (-484))) (-15 -3942 ((-773) |#1|))) (-962)) (T -961))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT)))
+(((-962) (-113)) (T -962))
+((-3123 (*1 *2) (-12 (-4 *1 (-962)) (-5 *2 (-695)))))
+(-13 (-970) (-1060) (-591 $) (-556 (-484)) (-10 -7 (-15 -3123 ((-695)) -3948) (-6 -3988)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-484)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
+((-3103 (((-347 (-858 |#2|)) (-584 |#2|) (-584 |#2|) (-695) (-695)) 55 T ELT)))
+(((-963 |#1| |#2|) (-10 -7 (-15 -3103 ((-347 (-858 |#2|)) (-584 |#2|) (-584 |#2|) (-695) (-695)))) (-1089) (-311)) (T -963))
+((-3103 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-695)) (-4 *6 (-311)) (-5 *2 (-347 (-858 *6))) (-5 *1 (-963 *5 *6)) (-14 *5 (-1089)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (* (($ $ |#1|) 17 T ELT)))
+(((-964 |#1|) (-113) (-1025)) (T -964))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1025)))))
+(-13 (-1013) (-10 -8 (-15 * ($ $ |t#1|))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
+((-3118 (((-85) $) 38 T ELT)) (-3120 (((-85) $) 17 T ELT)) (-3112 (((-695) $) 13 T ELT)) (-3111 (((-695) $) 14 T ELT)) (-3119 (((-85) $) 30 T ELT)) (-3117 (((-85) $) 40 T ELT)))
+(((-965 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3111 ((-695) |#1|)) (-15 -3112 ((-695) |#1|)) (-15 -3117 ((-85) |#1|)) (-15 -3118 ((-85) |#1|)) (-15 -3119 ((-85) |#1|)) (-15 -3120 ((-85) |#1|))) (-966 |#2| |#3| |#4| |#5| |#6|) (-695) (-695) (-962) (-196 |#3| |#4|) (-196 |#2| |#4|)) (T -965))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-3118 (((-85) $) 61 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3120 (((-85) $) 63 T ELT)) (-3720 (($) 22 T CONST)) (-3107 (($ $) 44 (|has| |#3| (-257)) ELT)) (-3109 ((|#4| $ (-484)) 49 T ELT)) (-3106 (((-695) $) 43 (|has| |#3| (-495)) ELT)) (-3110 ((|#3| $ (-484) (-484)) 51 T ELT)) (-2887 (((-584 |#3|) $) 75 (|has| $ (-6 -3991)) ELT)) (-3105 (((-695) $) 42 (|has| |#3| (-495)) ELT)) (-3104 (((-584 |#5|) $) 41 (|has| |#3| (-495)) ELT)) (-3112 (((-695) $) 55 T ELT)) (-3111 (((-695) $) 54 T ELT)) (-3116 (((-484) $) 59 T ELT)) (-3114 (((-484) $) 57 T ELT)) (-2606 (((-584 |#3|) $) 76 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#3| $) 78 (-12 (|has| |#3| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3115 (((-484) $) 58 T ELT)) (-3113 (((-484) $) 56 T ELT)) (-3121 (($ (-584 (-584 |#3|))) 64 T ELT)) (-1947 (($ (-1 |#3| |#3|) $) 71 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#3| |#3|) $) 70 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 47 T ELT)) (-3590 (((-584 (-584 |#3|)) $) 53 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3462 (((-3 $ "failed") $ |#3|) 46 (|has| |#3| (-495)) ELT)) (-1945 (((-85) (-1 (-85) |#3|) $) 73 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 |#3|) (-584 |#3|)) 82 (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ |#3| |#3|) 81 (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-248 |#3|)) 80 (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-584 (-248 |#3|))) 79 (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ELT)) (-1220 (((-85) $ $) 65 T ELT)) (-3399 (((-85) $) 68 T ELT)) (-3561 (($) 67 T ELT)) (-3796 ((|#3| $ (-484) (-484)) 52 T ELT) ((|#3| $ (-484) (-484) |#3|) 50 T ELT)) (-3119 (((-85) $) 62 T ELT)) (-1944 (((-695) |#3| $) 77 (-12 (|has| |#3| (-1013)) (|has| $ (-6 -3991))) ELT) (((-695) (-1 (-85) |#3|) $) 74 (|has| $ (-6 -3991)) ELT)) (-3396 (($ $) 66 T ELT)) (-3108 ((|#5| $ (-484)) 48 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-1946 (((-85) (-1 (-85) |#3|) $) 72 (|has| $ (-6 -3991)) ELT)) (-3117 (((-85) $) 60 T ELT)) (-2658 (($) 23 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3945 (($ $ |#3|) 45 (|has| |#3| (-311)) ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ |#3| $) 32 T ELT) (($ $ |#3|) 36 T ELT)) (-3953 (((-695) $) 69 (|has| $ (-6 -3991)) ELT)))
+(((-966 |#1| |#2| |#3| |#4| |#5|) (-113) (-695) (-695) (-962) (-196 |t#2| |t#3|) (-196 |t#1| |t#3|)) (T -966))
+((-3954 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3121 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *5))) (-4 *5 (-962)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))) (-3112 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-695)))) (-3111 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-695)))) (-3590 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-584 (-584 *5))))) (-3796 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)) (-4 *2 (-962)))) (-3110 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)) (-4 *2 (-962)))) (-3796 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-484)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *2 (-962)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)))) (-3109 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-966 *4 *5 *6 *2 *7)) (-4 *6 (-962)) (-4 *7 (-196 *4 *6)) (-4 *2 (-196 *5 *6)))) (-3108 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-966 *4 *5 *6 *7 *2)) (-4 *6 (-962)) (-4 *7 (-196 *5 *6)) (-4 *2 (-196 *4 *6)))) (-3954 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3462 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-966 *3 *4 *2 *5 *6)) (-4 *2 (-962)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-495)))) (-3945 (*1 *1 *1 *2) (-12 (-4 *1 (-966 *3 *4 *2 *5 *6)) (-4 *2 (-962)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-311)))) (-3107 (*1 *1 *1) (-12 (-4 *1 (-966 *2 *3 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *2 *4)) (-4 *4 (-257)))) (-3106 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-695)))) (-3105 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-695)))) (-3104 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-584 *7)))))
+(-13 (-82 |t#3| |t#3|) (-426 |t#3|) (-10 -8 (-6 -3991) (IF (|has| |t#3| (-146)) (-6 (-655 |t#3|)) |%noBranch|) (-15 -3121 ($ (-584 (-584 |t#3|)))) (-15 -3120 ((-85) $)) (-15 -3119 ((-85) $)) (-15 -3118 ((-85) $)) (-15 -3117 ((-85) $)) (-15 -3116 ((-484) $)) (-15 -3115 ((-484) $)) (-15 -3114 ((-484) $)) (-15 -3113 ((-484) $)) (-15 -3112 ((-695) $)) (-15 -3111 ((-695) $)) (-15 -3590 ((-584 (-584 |t#3|)) $)) (-15 -3796 (|t#3| $ (-484) (-484))) (-15 -3110 (|t#3| $ (-484) (-484))) (-15 -3796 (|t#3| $ (-484) (-484) |t#3|)) (-15 -3109 (|t#4| $ (-484))) (-15 -3108 (|t#5| $ (-484))) (-15 -3954 ($ (-1 |t#3| |t#3|) $)) (-15 -3954 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-495)) (-15 -3462 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-311)) (-15 -3945 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-257)) (-15 -3107 ($ $)) |%noBranch|) (IF (|has| |t#3| (-495)) (PROGN (-15 -3106 ((-695) $)) (-15 -3105 ((-695) $)) (-15 -3104 ((-584 |t#5|) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-72) . T) ((-82 |#3| |#3|) . T) ((-104) . T) ((-553 (-773)) . T) ((-259 |#3|) -12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ((-426 |#3|) . T) ((-453 |#3| |#3|) -12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ((-13) . T) ((-589 (-484)) . T) ((-589 |#3|) . T) ((-591 |#3|) . T) ((-583 |#3|) |has| |#3| (-146)) ((-655 |#3|) |has| |#3| (-146)) ((-964 |#3|) . T) ((-969 |#3|) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3118 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3107 (($ $) 47 (|has| |#3| (-257)) ELT)) (-3109 (((-197 |#2| |#3|) $ (-484)) 36 T ELT)) (-3122 (($ (-631 |#3|)) 45 T ELT)) (-3106 (((-695) $) 49 (|has| |#3| (-495)) ELT)) (-3110 ((|#3| $ (-484) (-484)) NIL T ELT)) (-2887 (((-584 |#3|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3105 (((-695) $) 51 (|has| |#3| (-495)) ELT)) (-3104 (((-584 (-197 |#1| |#3|)) $) 55 (|has| |#3| (-495)) ELT)) (-3112 (((-695) $) NIL T ELT)) (-3111 (((-695) $) NIL T ELT)) (-3116 (((-484) $) NIL T ELT)) (-3114 (((-484) $) NIL T ELT)) (-2606 (((-584 |#3|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#3| (-1013))) ELT)) (-3115 (((-484) $) NIL T ELT)) (-3113 (((-484) $) NIL T ELT)) (-3121 (($ (-584 (-584 |#3|))) 31 T ELT)) (-1947 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-3590 (((-584 (-584 |#3|)) $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3462 (((-3 $ #1#) $ |#3|) NIL (|has| |#3| (-495)) ELT)) (-1945 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 |#3|) (-584 |#3|)) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-248 |#3|)) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-584 (-248 |#3|))) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) NIL T ELT)) (-3796 ((|#3| $ (-484) (-484)) NIL T ELT) ((|#3| $ (-484) (-484) |#3|) NIL T ELT)) (-3907 (((-107)) 59 (|has| |#3| (-311)) ELT)) (-3119 (((-85) $) NIL T ELT)) (-1944 (((-695) |#3| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#3| (-1013))) ELT) (((-695) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3396 (($ $) NIL T ELT)) (-3968 (((-473) $) 66 (|has| |#3| (-554 (-473))) ELT)) (-3108 (((-197 |#1| |#3|) $ (-484)) 40 T ELT)) (-3942 (((-773) $) 19 T ELT) (((-631 |#3|) $) 42 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3117 (((-85) $) NIL T ELT)) (-2658 (($) 16 T CONST)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ |#3|) NIL (|has| |#3| (-311)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-967 |#1| |#2| |#3|) (-13 (-966 |#1| |#2| |#3| (-197 |#2| |#3|) (-197 |#1| |#3|)) (-553 (-631 |#3|)) (-10 -8 (IF (|has| |#3| (-311)) (-6 (-1186 |#3|)) |%noBranch|) (IF (|has| |#3| (-554 (-473))) (-6 (-554 (-473))) |%noBranch|) (-15 -3122 ($ (-631 |#3|))))) (-695) (-695) (-962)) (T -967))
+((-3122 (*1 *1 *2) (-12 (-5 *2 (-631 *5)) (-4 *5 (-962)) (-5 *1 (-967 *3 *4 *5)) (-14 *3 (-695)) (-14 *4 (-695)))))
+((-3838 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-3954 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT)))
+(((-968 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3954 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3838 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-695) (-695) (-962) (-196 |#2| |#3|) (-196 |#1| |#3|) (-966 |#1| |#2| |#3| |#4| |#5|) (-962) (-196 |#2| |#7|) (-196 |#1| |#7|) (-966 |#1| |#2| |#7| |#8| |#9|)) (T -968))
+((-3838 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-962)) (-4 *2 (-962)) (-14 *5 (-695)) (-14 *6 (-695)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *10 (-196 *6 *2)) (-4 *11 (-196 *5 *2)) (-5 *1 (-968 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-966 *5 *6 *7 *8 *9)) (-4 *12 (-966 *5 *6 *2 *10 *11)))) (-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-962)) (-4 *10 (-962)) (-14 *5 (-695)) (-14 *6 (-695)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *2 (-966 *5 *6 *10 *11 *12)) (-5 *1 (-968 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-966 *5 *6 *7 *8 *9)) (-4 *11 (-196 *6 *10)) (-4 *12 (-196 *5 *10)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ |#1|) 32 T ELT)))
+(((-969 |#1|) (-113) (-970)) (T -969))
+NIL
+(-13 (-21) (-964 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-964 |#1|) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT)))
+(((-970) (-113)) (T -970))
+NIL
+(-13 (-21) (-1025))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-1025) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3827 (((-1089) $) 11 T ELT)) (-3732 ((|#1| $) 12 T ELT)) (-3239 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3240 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3223 (($ (-1089) |#1|) 10 T ELT)) (-3942 (((-773) $) 22 (|has| |#1| (-1013)) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3054 (((-85) $ $) 17 (|has| |#1| (-1013)) ELT)))
+(((-971 |#1| |#2|) (-13 (-1128) (-10 -8 (-15 -3223 ($ (-1089) |#1|)) (-15 -3827 ((-1089) $)) (-15 -3732 (|#1| $)) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|))) (-1006 |#2|) (-1128)) (T -971))
+((-3223 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-4 *4 (-1128)) (-5 *1 (-971 *3 *4)) (-4 *3 (-1006 *4)))) (-3827 (*1 *2 *1) (-12 (-4 *4 (-1128)) (-5 *2 (-1089)) (-5 *1 (-971 *3 *4)) (-4 *3 (-1006 *4)))) (-3732 (*1 *2 *1) (-12 (-4 *2 (-1006 *3)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1128)))))
+((-3767 (($ $) 17 T ELT)) (-3124 (($ $) 25 T ELT)) (-2794 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 54 T ELT)) (-3129 (($ $) 27 T ELT)) (-3125 (($ $) 12 T ELT)) (-3127 (($ $) 40 T ELT)) (-3968 (((-327) $) NIL T ELT) (((-179) $) NIL T ELT) (((-801 (-327)) $) 36 T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) 31 T ELT) (($ (-484)) NIL T ELT) (($ (-347 (-484))) 31 T ELT)) (-3123 (((-695)) 9 T CONST)) (-3128 (($ $) 44 T ELT)))
+(((-972 |#1|) (-10 -7 (-15 -3124 (|#1| |#1|)) (-15 -3767 (|#1| |#1|)) (-15 -3125 (|#1| |#1|)) (-15 -3127 (|#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 -3129 (|#1| |#1|)) (-15 -2794 ((-799 (-327) |#1|) |#1| (-801 (-327)) (-799 (-327) |#1|))) (-15 -3968 ((-801 (-327)) |#1|)) (-15 -3942 (|#1| (-347 (-484)))) (-15 -3942 (|#1| (-484))) (-15 -3968 ((-179) |#1|)) (-15 -3968 ((-327) |#1|)) (-15 -3942 (|#1| (-347 (-484)))) (-15 -3942 (|#1| |#1|)) (-15 -3123 ((-695)) -3948) (-15 -3942 (|#1| (-484))) (-15 -3942 ((-773) |#1|))) (-973)) (T -972))
+((-3123 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-972 *3)) (-4 *3 (-973)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-3126 (((-484) $) 106 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 53 T ELT)) (-2061 (($ $) 52 T ELT)) (-2059 (((-85) $) 50 T ELT)) (-3767 (($ $) 104 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3771 (($ $) 89 T ELT)) (-3967 (((-345 $) $) 88 T ELT)) (-3035 (($ $) 114 T ELT)) (-1606 (((-85) $ $) 73 T ELT)) (-3619 (((-484) $) 131 T ELT)) (-3720 (($) 22 T CONST)) (-3124 (($ $) 103 T ELT)) (-3154 (((-3 (-484) #1="failed") $) 119 T ELT) (((-3 (-347 (-484)) #1#) $) 116 T ELT)) (-3153 (((-484) $) 120 T ELT) (((-347 (-484)) $) 117 T ELT)) (-2562 (($ $ $) 69 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2561 (($ $ $) 70 T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) 64 T ELT)) (-3719 (((-85) $) 87 T ELT)) (-3183 (((-85) $) 129 T ELT)) (-2794 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 110 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-3009 (($ $ (-484)) 113 T ELT)) (-3129 (($ $) 109 T ELT)) (-3184 (((-85) $) 130 T ELT)) (-1603 (((-3 (-584 $) #2="failed") (-584 $) $) 66 T ELT)) (-2529 (($ $ $) 123 T ELT)) (-2855 (($ $ $) 124 T ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-2482 (($ $) 86 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3141 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3125 (($ $) 105 T ELT)) (-3127 (($ $) 107 T ELT)) (-3728 (((-345 $) $) 90 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 67 T ELT)) (-3462 (((-3 $ "failed") $ $) 54 T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) 63 T ELT)) (-1605 (((-695) $) 72 T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 71 T ELT)) (-3968 (((-327) $) 122 T ELT) (((-179) $) 121 T ELT) (((-801 (-327)) $) 111 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-484))) 82 T ELT) (($ (-484)) 118 T ELT) (($ (-347 (-484))) 115 T ELT)) (-3123 (((-695)) 38 T CONST)) (-3128 (($ $) 108 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2060 (((-85) $ $) 51 T ELT)) (-3379 (($ $) 132 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-2564 (((-85) $ $) 125 T ELT)) (-2565 (((-85) $ $) 127 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-2682 (((-85) $ $) 126 T ELT)) (-2683 (((-85) $ $) 128 T ELT)) (-3945 (($ $ $) 81 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 85 T ELT) (($ $ (-347 (-484))) 112 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-484))) 84 T ELT) (($ (-347 (-484)) $) 83 T ELT)))
+(((-973) (-113)) (T -973))
+((-3129 (*1 *1 *1) (-4 *1 (-973))) (-3128 (*1 *1 *1) (-4 *1 (-973))) (-3127 (*1 *1 *1) (-4 *1 (-973))) (-3126 (*1 *2 *1) (-12 (-4 *1 (-973)) (-5 *2 (-484)))) (-3125 (*1 *1 *1) (-4 *1 (-973))) (-3767 (*1 *1 *1) (-4 *1 (-973))) (-3124 (*1 *1 *1) (-4 *1 (-973))))
+(-13 (-311) (-756) (-934) (-951 (-484)) (-951 (-347 (-484))) (-916) (-554 (-801 (-327))) (-797 (-327)) (-120) (-10 -8 (-15 -3129 ($ $)) (-15 -3128 ($ $)) (-15 -3127 ($ $)) (-15 -3126 ((-484) $)) (-15 -3125 ($ $)) (-15 -3767 ($ $)) (-15 -3124 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-556 (-347 (-484))) . T) ((-556 (-484)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-554 (-179)) . T) ((-554 (-327)) . T) ((-554 (-801 (-327))) . T) ((-201) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-389) . T) ((-495) . T) ((-13) . T) ((-589 (-347 (-484))) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 (-347 (-484))) . T) ((-591 $) . T) ((-583 (-347 (-484))) . T) ((-583 $) . T) ((-655 (-347 (-484))) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-797 (-327)) . T) ((-833) . T) ((-916) . T) ((-934) . T) ((-951 (-347 (-484))) . T) ((-951 (-484)) . T) ((-964 (-347 (-484))) . T) ((-964 $) . T) ((-969 (-347 (-484))) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) |#2| $) 26 T ELT)) (-3133 ((|#1| $) 10 T ELT)) (-3619 (((-484) |#2| $) 119 T ELT)) (-3180 (((-3 $ #1="failed") |#2| (-831)) 76 T ELT)) (-3134 ((|#1| $) 31 T ELT)) (-3179 ((|#1| |#2| $ |#1|) 40 T ELT)) (-3131 (($ $) 28 T ELT)) (-3463 (((-3 |#2| #1#) |#2| $) 113 T ELT)) (-3183 (((-85) |#2| $) NIL T ELT)) (-3184 (((-85) |#2| $) NIL T ELT)) (-3130 (((-85) |#2| $) 27 T ELT)) (-3132 ((|#1| $) 120 T ELT)) (-3135 ((|#1| $) 30 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3182 ((|#2| $) 104 T ELT)) (-3942 (((-773) $) 95 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3766 ((|#1| |#2| $ |#1|) 41 T ELT)) (-3181 (((-584 $) |#2|) 78 T ELT)) (-3054 (((-85) $ $) 99 T ELT)))
+(((-974 |#1| |#2|) (-13 (-980 |#1| |#2|) (-10 -8 (-15 -3135 (|#1| $)) (-15 -3134 (|#1| $)) (-15 -3133 (|#1| $)) (-15 -3132 (|#1| $)) (-15 -3131 ($ $)) (-15 -3130 ((-85) |#2| $)) (-15 -3179 (|#1| |#2| $ |#1|)))) (-13 (-756) (-311)) (-1154 |#1|)) (T -974))
+((-3179 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-756) (-311))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))) (-3135 (*1 *2 *1) (-12 (-4 *2 (-13 (-756) (-311))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))) (-3134 (*1 *2 *1) (-12 (-4 *2 (-13 (-756) (-311))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))) (-3133 (*1 *2 *1) (-12 (-4 *2 (-13 (-756) (-311))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))) (-3132 (*1 *2 *1) (-12 (-4 *2 (-13 (-756) (-311))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))) (-3131 (*1 *1 *1) (-12 (-4 *2 (-13 (-756) (-311))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))) (-3130 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-756) (-311))) (-5 *2 (-85)) (-5 *1 (-974 *4 *3)) (-4 *3 (-1154 *4)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-2045 (($ $ $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2040 (($ $ $ $) NIL T ELT)) (-3771 (($ $) NIL T ELT)) (-3967 (((-345 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3619 (((-484) $) NIL T ELT)) (-2439 (($ $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3136 (($ (-1089)) 10 T ELT) (($ (-484)) 7 T ELT)) (-3154 (((-3 (-484) #1#) $) NIL T ELT)) (-3153 (((-484) $) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2277 (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL T ELT) (((-631 (-484)) (-631 $)) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-3022 (((-3 (-347 (-484)) #1#) $) NIL T ELT)) (-3021 (((-85) $) NIL T ELT)) (-3020 (((-347 (-484)) $) NIL T ELT)) (-2992 (($) NIL T ELT) (($ $) NIL T ELT)) (-2561 (($ $ $) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-3719 (((-85) $) NIL T ELT)) (-2038 (($ $ $ $) NIL T ELT)) (-2046 (($ $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1367 (($ $ $) NIL T ELT)) (-2794 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL T ELT)) (-2408 (((-85) $) NIL T ELT)) (-2671 (((-85) $) NIL T ELT)) (-3441 (((-633 $) $) NIL T ELT)) (-3184 (((-85) $) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2039 (($ $ $ $) NIL T ELT)) (-2529 (($ $ $) NIL T ELT)) (-2855 (($ $ $) NIL T ELT)) (-2042 (($ $) NIL T ELT)) (-3829 (($ $) NIL T ELT)) (-2278 (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-631 (-484)) (-1178 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2037 (($ $ $) NIL T ELT)) (-3442 (($) NIL T CONST)) (-2044 (($ $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1365 (($ $) NIL T ELT)) (-3728 (((-345 $) $) NIL T ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2672 (((-85) $) NIL T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-3754 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2043 (($ $) NIL T ELT)) (-3396 (($ $) NIL T ELT)) (-3968 (((-484) $) 16 T ELT) (((-473) $) NIL T ELT) (((-801 (-484)) $) NIL T ELT) (((-327) $) NIL T ELT) (((-179) $) NIL T ELT) (($ (-1089)) 9 T ELT)) (-3942 (((-773) $) 23 T ELT) (($ (-484)) 6 T ELT) (($ $) NIL T ELT) (($ (-484)) 6 T ELT)) (-3123 (((-695)) NIL T CONST)) (-2047 (((-85) $ $) NIL T ELT)) (-3099 (($ $ $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2692 (($) NIL T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-2041 (($ $ $ $) NIL T ELT)) (-3379 (($ $) NIL T ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-2667 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-3833 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-484) $) NIL T ELT)))
+(((-975) (-13 (-483) (-558 (-1089)) (-10 -8 (-6 -3978) (-6 -3983) (-6 -3979) (-15 -3136 ($ (-1089))) (-15 -3136 ($ (-484)))))) (T -975))
+((-3136 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-975)))) (-3136 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-975)))))
+((-3793 (($ $) 46 T ELT)) (-3163 (((-85) $ $) 82 T ELT)) (-3154 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 $ #1#) (-858 (-347 (-484)))) 247 T ELT) (((-3 $ #1#) (-858 (-484))) 246 T ELT) (((-3 $ #1#) (-858 |#2|)) 249 T ELT)) (-3153 ((|#2| $) NIL T ELT) (((-347 (-484)) $) NIL T ELT) (((-484) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-858 (-347 (-484)))) 235 T ELT) (($ (-858 (-484))) 231 T ELT) (($ (-858 |#2|)) 255 T ELT)) (-3955 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-3690 (((-85) $ $) 131 T ELT) (((-85) $ (-584 $)) 135 T ELT)) (-3169 (((-85) $) 60 T ELT)) (-3748 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 125 T ELT)) (-3140 (($ $) 160 T ELT)) (-3151 (($ $) 156 T ELT)) (-3152 (($ $) 155 T ELT)) (-3162 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-3161 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-3691 (((-85) $ $) 143 T ELT) (((-85) $ (-584 $)) 144 T ELT)) (-3177 ((|#4| $) 32 T ELT)) (-3156 (($ $ $) 128 T ELT)) (-3170 (((-85) $) 59 T ELT)) (-3176 (((-695) $) 35 T ELT)) (-3137 (($ $) 174 T ELT)) (-3138 (($ $) 171 T ELT)) (-3165 (((-584 $) $) 72 T ELT)) (-3168 (($ $) 62 T ELT)) (-3139 (($ $) 167 T ELT)) (-3166 (((-584 $) $) 69 T ELT)) (-3167 (($ $) 64 T ELT)) (-3171 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-3155 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3477 (-695))) $ $) 130 T ELT)) (-3157 (((-2 (|:| -3950 $) (|:| |gap| (-695)) (|:| -1971 $) (|:| -2900 $)) $ $) 126 T ELT) (((-2 (|:| -3950 $) (|:| |gap| (-695)) (|:| -1971 $) (|:| -2900 $)) $ $ |#4|) 127 T ELT)) (-3158 (((-2 (|:| -3950 $) (|:| |gap| (-695)) (|:| -2900 $)) $ $) 121 T ELT) (((-2 (|:| -3950 $) (|:| |gap| (-695)) (|:| -2900 $)) $ $ |#4|) 123 T ELT)) (-3160 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-3159 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-3173 (((-584 $) $) 54 T ELT)) (-3687 (((-85) $ $) 140 T ELT) (((-85) $ (-584 $)) 141 T ELT)) (-3682 (($ $ $) 116 T ELT)) (-3442 (($ $) 37 T ELT)) (-3695 (((-85) $ $) 80 T ELT)) (-3688 (((-85) $ $) 136 T ELT) (((-85) $ (-584 $)) 138 T ELT)) (-3683 (($ $ $) 112 T ELT)) (-3175 (($ $) 41 T ELT)) (-3141 ((|#2| |#2| $) 164 T ELT) (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3149 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-3150 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-3174 (($ $) 49 T ELT)) (-3172 (($ $) 55 T ELT)) (-3968 (((-801 (-327)) $) NIL T ELT) (((-801 (-484)) $) NIL T ELT) (((-473) $) NIL T ELT) (($ (-858 (-347 (-484)))) 237 T ELT) (($ (-858 (-484))) 233 T ELT) (($ (-858 |#2|)) 248 T ELT) (((-1072) $) 278 T ELT) (((-858 |#2|) $) 184 T ELT)) (-3942 (((-773) $) 29 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-858 |#2|) $) 185 T ELT) (($ (-347 (-484))) NIL T ELT) (($ $) NIL T ELT)) (-3164 (((-3 (-85) #1#) $ $) 79 T ELT)))
+(((-976 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3942 (|#1| |#1|)) (-15 -3141 (|#1| |#1| |#1|)) (-15 -3141 (|#1| (-584 |#1|))) (-15 -3942 (|#1| (-347 (-484)))) (-15 -3942 ((-858 |#2|) |#1|)) (-15 -3968 ((-858 |#2|) |#1|)) (-15 -3968 ((-1072) |#1|)) (-15 -3137 (|#1| |#1|)) (-15 -3138 (|#1| |#1|)) (-15 -3139 (|#1| |#1|)) (-15 -3140 (|#1| |#1|)) (-15 -3141 (|#2| |#2| |#1|)) (-15 -3149 (|#1| |#1| |#1|)) (-15 -3150 (|#1| |#1| |#1|)) (-15 -3149 (|#1| |#1| |#2|)) (-15 -3150 (|#1| |#1| |#2|)) (-15 -3151 (|#1| |#1|)) (-15 -3152 (|#1| |#1|)) (-15 -3968 (|#1| (-858 |#2|))) (-15 -3153 (|#1| (-858 |#2|))) (-15 -3154 ((-3 |#1| #1="failed") (-858 |#2|))) (-15 -3968 (|#1| (-858 (-484)))) (-15 -3153 (|#1| (-858 (-484)))) (-15 -3154 ((-3 |#1| #1#) (-858 (-484)))) (-15 -3968 (|#1| (-858 (-347 (-484))))) (-15 -3153 (|#1| (-858 (-347 (-484))))) (-15 -3154 ((-3 |#1| #1#) (-858 (-347 (-484))))) (-15 -3682 (|#1| |#1| |#1|)) (-15 -3683 (|#1| |#1| |#1|)) (-15 -3155 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3477 (-695))) |#1| |#1|)) (-15 -3156 (|#1| |#1| |#1|)) (-15 -3748 ((-2 (|:| -1971 |#1|) (|:| -2900 |#1|)) |#1| |#1|)) (-15 -3157 ((-2 (|:| -3950 |#1|) (|:| |gap| (-695)) (|:| -1971 |#1|) (|:| -2900 |#1|)) |#1| |#1| |#4|)) (-15 -3157 ((-2 (|:| -3950 |#1|) (|:| |gap| (-695)) (|:| -1971 |#1|) (|:| -2900 |#1|)) |#1| |#1|)) (-15 -3158 ((-2 (|:| -3950 |#1|) (|:| |gap| (-695)) (|:| -2900 |#1|)) |#1| |#1| |#4|)) (-15 -3158 ((-2 (|:| -3950 |#1|) (|:| |gap| (-695)) (|:| -2900 |#1|)) |#1| |#1|)) (-15 -3159 (|#1| |#1| |#1| |#4|)) (-15 -3160 (|#1| |#1| |#1| |#4|)) (-15 -3159 (|#1| |#1| |#1|)) (-15 -3160 (|#1| |#1| |#1|)) (-15 -3161 (|#1| |#1| |#1| |#4|)) (-15 -3162 (|#1| |#1| |#1| |#4|)) (-15 -3161 (|#1| |#1| |#1|)) (-15 -3162 (|#1| |#1| |#1|)) (-15 -3691 ((-85) |#1| (-584 |#1|))) (-15 -3691 ((-85) |#1| |#1|)) (-15 -3687 ((-85) |#1| (-584 |#1|))) (-15 -3687 ((-85) |#1| |#1|)) (-15 -3688 ((-85) |#1| (-584 |#1|))) (-15 -3688 ((-85) |#1| |#1|)) (-15 -3690 ((-85) |#1| (-584 |#1|))) (-15 -3690 ((-85) |#1| |#1|)) (-15 -3163 ((-85) |#1| |#1|)) (-15 -3695 ((-85) |#1| |#1|)) (-15 -3164 ((-3 (-85) #1#) |#1| |#1|)) (-15 -3165 ((-584 |#1|) |#1|)) (-15 -3166 ((-584 |#1|) |#1|)) (-15 -3167 (|#1| |#1|)) (-15 -3168 (|#1| |#1|)) (-15 -3169 ((-85) |#1|)) (-15 -3170 ((-85) |#1|)) (-15 -3955 (|#1| |#1| |#4|)) (-15 -3171 (|#1| |#1| |#4|)) (-15 -3172 (|#1| |#1|)) (-15 -3173 ((-584 |#1|) |#1|)) (-15 -3174 (|#1| |#1|)) (-15 -3793 (|#1| |#1|)) (-15 -3175 (|#1| |#1|)) (-15 -3442 (|#1| |#1|)) (-15 -3176 ((-695) |#1|)) (-15 -3177 (|#4| |#1|)) (-15 -3968 ((-473) |#1|)) (-15 -3968 ((-801 (-484)) |#1|)) (-15 -3968 ((-801 (-327)) |#1|)) (-15 -3942 (|#1| |#4|)) (-15 -3154 ((-3 |#4| #1#) |#1|)) (-15 -3153 (|#4| |#1|)) (-15 -3171 (|#2| |#1|)) (-15 -3955 (|#1| |#1|)) (-15 -3154 ((-3 (-484) #1#) |#1|)) (-15 -3153 ((-484) |#1|)) (-15 -3154 ((-3 (-347 (-484)) #1#) |#1|)) (-15 -3153 ((-347 (-484)) |#1|)) (-15 -3153 (|#2| |#1|)) (-15 -3154 ((-3 |#2| #1#) |#1|)) (-15 -3942 (|#1| |#2|)) (-15 -3942 (|#1| (-484))) (-15 -3942 ((-773) |#1|))) (-977 |#2| |#3| |#4|) (-962) (-718) (-757)) (T -976))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-3079 (((-584 |#3|) $) 121 T ELT)) (-3081 (((-1084 $) $ |#3|) 136 T ELT) (((-1084 |#1|) $) 135 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 98 (|has| |#1| (-495)) ELT)) (-2061 (($ $) 99 (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) 101 (|has| |#1| (-495)) ELT)) (-2817 (((-695) $) 123 T ELT) (((-695) $ (-584 |#3|)) 122 T ELT)) (-3793 (($ $) 291 T ELT)) (-3163 (((-85) $ $) 277 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3751 (($ $ $) 236 (|has| |#1| (-495)) ELT)) (-3145 (((-584 $) $ $) 231 (|has| |#1| (-495)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) 111 (|has| |#1| (-822)) ELT)) (-3771 (($ $) 109 (|has| |#1| (-389)) ELT)) (-3967 (((-345 $) $) 108 (|has| |#1| (-389)) ELT)) (-2702 (((-3 (-584 (-1084 $)) #1="failed") (-584 (-1084 $)) (-1084 $)) 114 (|has| |#1| (-822)) ELT)) (-3720 (($) 22 T CONST)) (-3154 (((-3 |#1| #2="failed") $) 179 T ELT) (((-3 (-347 (-484)) #2#) $) 176 (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 (-484) #2#) $) 174 (|has| |#1| (-951 (-484))) ELT) (((-3 |#3| #2#) $) 151 T ELT) (((-3 $ "failed") (-858 (-347 (-484)))) 251 (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#3| (-554 (-1089)))) ELT) (((-3 $ "failed") (-858 (-484))) 248 (OR (-12 (-2558 (|has| |#1| (-38 (-347 (-484))))) (|has| |#1| (-38 (-484))) (|has| |#3| (-554 (-1089)))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#3| (-554 (-1089))))) ELT) (((-3 $ "failed") (-858 |#1|)) 245 (OR (-12 (-2558 (|has| |#1| (-38 (-347 (-484))))) (-2558 (|has| |#1| (-38 (-484)))) (|has| |#3| (-554 (-1089)))) (-12 (-2558 (|has| |#1| (-483))) (-2558 (|has| |#1| (-38 (-347 (-484))))) (|has| |#1| (-38 (-484))) (|has| |#3| (-554 (-1089)))) (-12 (-2558 (|has| |#1| (-905 (-484)))) (|has| |#1| (-38 (-347 (-484)))) (|has| |#3| (-554 (-1089))))) ELT)) (-3153 ((|#1| $) 178 T ELT) (((-347 (-484)) $) 177 (|has| |#1| (-951 (-347 (-484)))) ELT) (((-484) $) 175 (|has| |#1| (-951 (-484))) ELT) ((|#3| $) 152 T ELT) (($ (-858 (-347 (-484)))) 250 (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#3| (-554 (-1089)))) ELT) (($ (-858 (-484))) 247 (OR (-12 (-2558 (|has| |#1| (-38 (-347 (-484))))) (|has| |#1| (-38 (-484))) (|has| |#3| (-554 (-1089)))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#3| (-554 (-1089))))) ELT) (($ (-858 |#1|)) 244 (OR (-12 (-2558 (|has| |#1| (-38 (-347 (-484))))) (-2558 (|has| |#1| (-38 (-484)))) (|has| |#3| (-554 (-1089)))) (-12 (-2558 (|has| |#1| (-483))) (-2558 (|has| |#1| (-38 (-347 (-484))))) (|has| |#1| (-38 (-484))) (|has| |#3| (-554 (-1089)))) (-12 (-2558 (|has| |#1| (-905 (-484)))) (|has| |#1| (-38 (-347 (-484)))) (|has| |#3| (-554 (-1089))))) ELT)) (-3752 (($ $ $ |#3|) 119 (|has| |#1| (-146)) ELT) (($ $ $) 232 (|has| |#1| (-495)) ELT)) (-3955 (($ $) 169 T ELT) (($ $ |#3|) 286 T ELT)) (-2277 (((-631 (-484)) (-631 $)) 147 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 146 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) 145 T ELT) (((-631 |#1|) (-631 $)) 144 T ELT)) (-3690 (((-85) $ $) 276 T ELT) (((-85) $ (-584 $)) 275 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-3169 (((-85) $) 284 T ELT)) (-3748 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 256 T ELT)) (-3140 (($ $) 225 (|has| |#1| (-389)) ELT)) (-3499 (($ $) 191 (|has| |#1| (-389)) ELT) (($ $ |#3|) 116 (|has| |#1| (-389)) ELT)) (-2816 (((-584 $) $) 120 T ELT)) (-3719 (((-85) $) 107 (|has| |#1| (-822)) ELT)) (-3151 (($ $) 241 (|has| |#1| (-495)) ELT)) (-3152 (($ $) 242 (|has| |#1| (-495)) ELT)) (-3162 (($ $ $) 268 T ELT) (($ $ $ |#3|) 266 T ELT)) (-3161 (($ $ $) 267 T ELT) (($ $ $ |#3|) 265 T ELT)) (-1622 (($ $ |#1| |#2| $) 187 T ELT)) (-2794 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 95 (-12 (|has| |#3| (-797 (-327))) (|has| |#1| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) 94 (-12 (|has| |#3| (-797 (-484))) (|has| |#1| (-797 (-484)))) ELT)) (-2408 (((-85) $) 42 T ELT)) (-2418 (((-695) $) 184 T ELT)) (-3691 (((-85) $ $) 270 T ELT) (((-85) $ (-584 $)) 269 T ELT)) (-3142 (($ $ $ $ $) 227 (|has| |#1| (-495)) ELT)) (-3177 ((|#3| $) 295 T ELT)) (-3082 (($ (-1084 |#1|) |#3|) 128 T ELT) (($ (-1084 $) |#3|) 127 T ELT)) (-2819 (((-584 $) $) 137 T ELT)) (-3933 (((-85) $) 167 T ELT)) (-2891 (($ |#1| |#2|) 168 T ELT) (($ $ |#3| (-695)) 130 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 129 T ELT)) (-3156 (($ $ $) 255 T ELT)) (-3759 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $ |#3|) 131 T ELT)) (-3170 (((-85) $) 285 T ELT)) (-2818 ((|#2| $) 185 T ELT) (((-695) $ |#3|) 133 T ELT) (((-584 (-695)) $ (-584 |#3|)) 132 T ELT)) (-3176 (((-695) $) 294 T ELT)) (-1623 (($ (-1 |#2| |#2|) $) 186 T ELT)) (-3954 (($ (-1 |#1| |#1|) $) 166 T ELT)) (-3080 (((-3 |#3| #3="failed") $) 134 T ELT)) (-3137 (($ $) 222 (|has| |#1| (-389)) ELT)) (-3138 (($ $) 223 (|has| |#1| (-389)) ELT)) (-3165 (((-584 $) $) 280 T ELT)) (-3168 (($ $) 283 T ELT)) (-3139 (($ $) 224 (|has| |#1| (-389)) ELT)) (-3166 (((-584 $) $) 281 T ELT)) (-2278 (((-631 (-484)) (-1178 $)) 149 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 148 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 143 T ELT) (((-631 |#1|) (-1178 $)) 142 T ELT)) (-3167 (($ $) 282 T ELT)) (-2892 (($ $) 164 T ELT)) (-3171 ((|#1| $) 163 T ELT) (($ $ |#3|) 287 T ELT)) (-1889 (($ (-584 $)) 105 (|has| |#1| (-389)) ELT) (($ $ $) 104 (|has| |#1| (-389)) ELT)) (-3155 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3477 (-695))) $ $) 254 T ELT)) (-3157 (((-2 (|:| -3950 $) (|:| |gap| (-695)) (|:| -1971 $) (|:| -2900 $)) $ $) 258 T ELT) (((-2 (|:| -3950 $) (|:| |gap| (-695)) (|:| -1971 $) (|:| -2900 $)) $ $ |#3|) 257 T ELT)) (-3158 (((-2 (|:| -3950 $) (|:| |gap| (-695)) (|:| -2900 $)) $ $) 260 T ELT) (((-2 (|:| -3950 $) (|:| |gap| (-695)) (|:| -2900 $)) $ $ |#3|) 259 T ELT)) (-3160 (($ $ $) 264 T ELT) (($ $ $ |#3|) 262 T ELT)) (-3159 (($ $ $) 263 T ELT) (($ $ $ |#3|) 261 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3187 (($ $ $) 230 (|has| |#1| (-495)) ELT)) (-3173 (((-584 $) $) 289 T ELT)) (-2821 (((-3 (-584 $) #3#) $) 125 T ELT)) (-2820 (((-3 (-584 $) #3#) $) 126 T ELT)) (-2822 (((-3 (-2 (|:| |var| |#3|) (|:| -2399 (-695))) #3#) $) 124 T ELT)) (-3687 (((-85) $ $) 272 T ELT) (((-85) $ (-584 $)) 271 T ELT)) (-3682 (($ $ $) 252 T ELT)) (-3442 (($ $) 293 T ELT)) (-3695 (((-85) $ $) 278 T ELT)) (-3688 (((-85) $ $) 274 T ELT) (((-85) $ (-584 $)) 273 T ELT)) (-3683 (($ $ $) 253 T ELT)) (-3175 (($ $) 292 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3146 (((-2 (|:| -3141 $) (|:| |coef2| $)) $ $) 233 (|has| |#1| (-495)) ELT)) (-3147 (((-2 (|:| -3141 $) (|:| |coef1| $)) $ $) 234 (|has| |#1| (-495)) ELT)) (-1795 (((-85) $) 181 T ELT)) (-1794 ((|#1| $) 182 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 106 (|has| |#1| (-389)) ELT)) (-3141 ((|#1| |#1| $) 226 (|has| |#1| (-389)) ELT) (($ (-584 $)) 103 (|has| |#1| (-389)) ELT) (($ $ $) 102 (|has| |#1| (-389)) ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) 113 (|has| |#1| (-822)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) 112 (|has| |#1| (-822)) ELT)) (-3728 (((-345 $) $) 110 (|has| |#1| (-822)) ELT)) (-3148 (((-2 (|:| -3141 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 235 (|has| |#1| (-495)) ELT)) (-3462 (((-3 $ "failed") $ |#1|) 189 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ $) 97 (|has| |#1| (-495)) ELT)) (-3149 (($ $ |#1|) 239 (|has| |#1| (-495)) ELT) (($ $ $) 237 (|has| |#1| (-495)) ELT)) (-3150 (($ $ |#1|) 240 (|has| |#1| (-495)) ELT) (($ $ $) 238 (|has| |#1| (-495)) ELT)) (-3764 (($ $ (-584 (-248 $))) 160 T ELT) (($ $ (-248 $)) 159 T ELT) (($ $ $ $) 158 T ELT) (($ $ (-584 $) (-584 $)) 157 T ELT) (($ $ |#3| |#1|) 156 T ELT) (($ $ (-584 |#3|) (-584 |#1|)) 155 T ELT) (($ $ |#3| $) 154 T ELT) (($ $ (-584 |#3|) (-584 $)) 153 T ELT)) (-3753 (($ $ |#3|) 118 (|has| |#1| (-146)) ELT)) (-3754 (($ $ (-584 |#3|) (-584 (-695))) 50 T ELT) (($ $ |#3| (-695)) 49 T ELT) (($ $ (-584 |#3|)) 48 T ELT) (($ $ |#3|) 46 T ELT)) (-3944 ((|#2| $) 165 T ELT) (((-695) $ |#3|) 141 T ELT) (((-584 (-695)) $ (-584 |#3|)) 140 T ELT)) (-3174 (($ $) 290 T ELT)) (-3172 (($ $) 288 T ELT)) (-3968 (((-801 (-327)) $) 93 (-12 (|has| |#3| (-554 (-801 (-327)))) (|has| |#1| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) 92 (-12 (|has| |#3| (-554 (-801 (-484)))) (|has| |#1| (-554 (-801 (-484))))) ELT) (((-473) $) 91 (-12 (|has| |#3| (-554 (-473))) (|has| |#1| (-554 (-473)))) ELT) (($ (-858 (-347 (-484)))) 249 (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#3| (-554 (-1089)))) ELT) (($ (-858 (-484))) 246 (OR (-12 (-2558 (|has| |#1| (-38 (-347 (-484))))) (|has| |#1| (-38 (-484))) (|has| |#3| (-554 (-1089)))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#3| (-554 (-1089))))) ELT) (($ (-858 |#1|)) 243 (|has| |#3| (-554 (-1089))) ELT) (((-1072) $) 221 (-12 (|has| |#1| (-951 (-484))) (|has| |#3| (-554 (-1089)))) ELT) (((-858 |#1|) $) 220 (|has| |#3| (-554 (-1089))) ELT)) (-2815 ((|#1| $) 190 (|has| |#1| (-389)) ELT) (($ $ |#3|) 117 (|has| |#1| (-389)) ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) 115 (-2560 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 180 T ELT) (($ |#3|) 150 T ELT) (((-858 |#1|) $) 219 (|has| |#3| (-554 (-1089))) ELT) (($ (-347 (-484))) 89 (OR (|has| |#1| (-951 (-347 (-484)))) (|has| |#1| (-38 (-347 (-484))))) ELT) (($ $) 96 (|has| |#1| (-495)) ELT)) (-3813 (((-584 |#1|) $) 183 T ELT)) (-3673 ((|#1| $ |#2|) 170 T ELT) (($ $ |#3| (-695)) 139 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 138 T ELT)) (-2700 (((-633 $) $) 90 (OR (-2560 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3123 (((-695)) 38 T CONST)) (-1621 (($ $ $ (-695)) 188 (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2060 (((-85) $ $) 100 (|has| |#1| (-495)) ELT)) (-2658 (($) 23 T CONST)) (-3164 (((-3 (-85) "failed") $ $) 279 T ELT)) (-2664 (($) 43 T CONST)) (-3143 (($ $ $ $ (-695)) 228 (|has| |#1| (-495)) ELT)) (-3144 (($ $ $ (-695)) 229 (|has| |#1| (-495)) ELT)) (-2667 (($ $ (-584 |#3|) (-584 (-695))) 53 T ELT) (($ $ |#3| (-695)) 52 T ELT) (($ $ (-584 |#3|)) 51 T ELT) (($ $ |#3|) 47 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3945 (($ $ |#1|) 171 (|has| |#1| (-311)) ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-484))) 173 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) 172 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ |#1| $) 162 T ELT) (($ $ |#1|) 161 T ELT)))
+(((-977 |#1| |#2| |#3|) (-113) (-962) (-718) (-757)) (T -977))
+((-3177 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3176 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-695)))) (-3442 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3175 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3793 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3174 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3173 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-977 *3 *4 *5)))) (-3172 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3171 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3955 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3170 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3168 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3167 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3166 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-977 *3 *4 *5)))) (-3165 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-977 *3 *4 *5)))) (-3164 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3695 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3163 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3690 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3690 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)))) (-3688 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3688 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)))) (-3687 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3687 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)))) (-3691 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3691 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)))) (-3162 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3161 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3162 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3161 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3160 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3159 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3160 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3159 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3158 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3950 *1) (|:| |gap| (-695)) (|:| -2900 *1))) (-4 *1 (-977 *3 *4 *5)))) (-3158 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-2 (|:| -3950 *1) (|:| |gap| (-695)) (|:| -2900 *1))) (-4 *1 (-977 *4 *5 *3)))) (-3157 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3950 *1) (|:| |gap| (-695)) (|:| -1971 *1) (|:| -2900 *1))) (-4 *1 (-977 *3 *4 *5)))) (-3157 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-2 (|:| -3950 *1) (|:| |gap| (-695)) (|:| -1971 *1) (|:| -2900 *1))) (-4 *1 (-977 *4 *5 *3)))) (-3748 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2900 *1))) (-4 *1 (-977 *3 *4 *5)))) (-3156 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3155 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3477 (-695)))) (-4 *1 (-977 *3 *4 *5)))) (-3683 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3682 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-858 (-347 (-484)))) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-38 (-347 (-484)))) (-4 *5 (-554 (-1089))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)))) (-3153 (*1 *1 *2) (-12 (-5 *2 (-858 (-347 (-484)))) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-38 (-347 (-484)))) (-4 *5 (-554 (-1089))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)))) (-3968 (*1 *1 *2) (-12 (-5 *2 (-858 (-347 (-484)))) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-38 (-347 (-484)))) (-4 *5 (-554 (-1089))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)))) (-3154 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-858 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-2558 (-4 *3 (-38 (-347 (-484))))) (-4 *3 (-38 (-484))) (-4 *5 (-554 (-1089)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *5 (-554 (-1089)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3153 (*1 *1 *2) (OR (-12 (-5 *2 (-858 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-2558 (-4 *3 (-38 (-347 (-484))))) (-4 *3 (-38 (-484))) (-4 *5 (-554 (-1089)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *5 (-554 (-1089)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3968 (*1 *1 *2) (OR (-12 (-5 *2 (-858 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-2558 (-4 *3 (-38 (-347 (-484))))) (-4 *3 (-38 (-484))) (-4 *5 (-554 (-1089)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *5 (-554 (-1089)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3154 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-858 *3)) (-12 (-2558 (-4 *3 (-38 (-347 (-484))))) (-2558 (-4 *3 (-38 (-484)))) (-4 *5 (-554 (-1089)))) (-4 *3 (-962)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 *3)) (-12 (-2558 (-4 *3 (-483))) (-2558 (-4 *3 (-38 (-347 (-484))))) (-4 *3 (-38 (-484))) (-4 *5 (-554 (-1089)))) (-4 *3 (-962)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 *3)) (-12 (-2558 (-4 *3 (-905 (-484)))) (-4 *3 (-38 (-347 (-484)))) (-4 *5 (-554 (-1089)))) (-4 *3 (-962)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3153 (*1 *1 *2) (OR (-12 (-5 *2 (-858 *3)) (-12 (-2558 (-4 *3 (-38 (-347 (-484))))) (-2558 (-4 *3 (-38 (-484)))) (-4 *5 (-554 (-1089)))) (-4 *3 (-962)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 *3)) (-12 (-2558 (-4 *3 (-483))) (-2558 (-4 *3 (-38 (-347 (-484))))) (-4 *3 (-38 (-484))) (-4 *5 (-554 (-1089)))) (-4 *3 (-962)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 *3)) (-12 (-2558 (-4 *3 (-905 (-484)))) (-4 *3 (-38 (-347 (-484)))) (-4 *5 (-554 (-1089)))) (-4 *3 (-962)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3968 (*1 *1 *2) (-12 (-5 *2 (-858 *3)) (-4 *3 (-962)) (-4 *1 (-977 *3 *4 *5)) (-4 *5 (-554 (-1089))) (-4 *4 (-718)) (-4 *5 (-757)))) (-3152 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-495)))) (-3151 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-495)))) (-3150 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-495)))) (-3149 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-495)))) (-3150 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-495)))) (-3149 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-495)))) (-3751 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-495)))) (-3148 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3141 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-977 *3 *4 *5)))) (-3147 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3141 *1) (|:| |coef1| *1))) (-4 *1 (-977 *3 *4 *5)))) (-3146 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3141 *1) (|:| |coef2| *1))) (-4 *1 (-977 *3 *4 *5)))) (-3752 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-495)))) (-3145 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-977 *3 *4 *5)))) (-3187 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-495)))) (-3144 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *3 (-495)))) (-3143 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *3 (-495)))) (-3142 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-495)))) (-3141 (*1 *2 *2 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-389)))) (-3140 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-389)))) (-3139 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-389)))) (-3138 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-389)))) (-3137 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-389)))))
+(-13 (-862 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3177 (|t#3| $)) (-15 -3176 ((-695) $)) (-15 -3442 ($ $)) (-15 -3175 ($ $)) (-15 -3793 ($ $)) (-15 -3174 ($ $)) (-15 -3173 ((-584 $) $)) (-15 -3172 ($ $)) (-15 -3171 ($ $ |t#3|)) (-15 -3955 ($ $ |t#3|)) (-15 -3170 ((-85) $)) (-15 -3169 ((-85) $)) (-15 -3168 ($ $)) (-15 -3167 ($ $)) (-15 -3166 ((-584 $) $)) (-15 -3165 ((-584 $) $)) (-15 -3164 ((-3 (-85) "failed") $ $)) (-15 -3695 ((-85) $ $)) (-15 -3163 ((-85) $ $)) (-15 -3690 ((-85) $ $)) (-15 -3690 ((-85) $ (-584 $))) (-15 -3688 ((-85) $ $)) (-15 -3688 ((-85) $ (-584 $))) (-15 -3687 ((-85) $ $)) (-15 -3687 ((-85) $ (-584 $))) (-15 -3691 ((-85) $ $)) (-15 -3691 ((-85) $ (-584 $))) (-15 -3162 ($ $ $)) (-15 -3161 ($ $ $)) (-15 -3162 ($ $ $ |t#3|)) (-15 -3161 ($ $ $ |t#3|)) (-15 -3160 ($ $ $)) (-15 -3159 ($ $ $)) (-15 -3160 ($ $ $ |t#3|)) (-15 -3159 ($ $ $ |t#3|)) (-15 -3158 ((-2 (|:| -3950 $) (|:| |gap| (-695)) (|:| -2900 $)) $ $)) (-15 -3158 ((-2 (|:| -3950 $) (|:| |gap| (-695)) (|:| -2900 $)) $ $ |t#3|)) (-15 -3157 ((-2 (|:| -3950 $) (|:| |gap| (-695)) (|:| -1971 $) (|:| -2900 $)) $ $)) (-15 -3157 ((-2 (|:| -3950 $) (|:| |gap| (-695)) (|:| -1971 $) (|:| -2900 $)) $ $ |t#3|)) (-15 -3748 ((-2 (|:| -1971 $) (|:| -2900 $)) $ $)) (-15 -3156 ($ $ $)) (-15 -3155 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3477 (-695))) $ $)) (-15 -3683 ($ $ $)) (-15 -3682 ($ $ $)) (IF (|has| |t#3| (-554 (-1089))) (PROGN (-6 (-553 (-858 |t#1|))) (-6 (-554 (-858 |t#1|))) (IF (|has| |t#1| (-38 (-347 (-484)))) (PROGN (-15 -3154 ((-3 $ "failed") (-858 (-347 (-484))))) (-15 -3153 ($ (-858 (-347 (-484))))) (-15 -3968 ($ (-858 (-347 (-484))))) (-15 -3154 ((-3 $ "failed") (-858 (-484)))) (-15 -3153 ($ (-858 (-484)))) (-15 -3968 ($ (-858 (-484)))) (IF (|has| |t#1| (-905 (-484))) |%noBranch| (PROGN (-15 -3154 ((-3 $ "failed") (-858 |t#1|))) (-15 -3153 ($ (-858 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-484))) (IF (|has| |t#1| (-38 (-347 (-484)))) |%noBranch| (PROGN (-15 -3154 ((-3 $ "failed") (-858 (-484)))) (-15 -3153 ($ (-858 (-484)))) (-15 -3968 ($ (-858 (-484)))) (IF (|has| |t#1| (-483)) |%noBranch| (PROGN (-15 -3154 ((-3 $ "failed") (-858 |t#1|))) (-15 -3153 ($ (-858 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-484))) |%noBranch| (IF (|has| |t#1| (-38 (-347 (-484)))) |%noBranch| (PROGN (-15 -3154 ((-3 $ "failed") (-858 |t#1|))) (-15 -3153 ($ (-858 |t#1|)))))) (-15 -3968 ($ (-858 |t#1|))) (IF (|has| |t#1| (-951 (-484))) (-6 (-554 (-1072))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-495)) (PROGN (-15 -3152 ($ $)) (-15 -3151 ($ $)) (-15 -3150 ($ $ |t#1|)) (-15 -3149 ($ $ |t#1|)) (-15 -3150 ($ $ $)) (-15 -3149 ($ $ $)) (-15 -3751 ($ $ $)) (-15 -3148 ((-2 (|:| -3141 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3147 ((-2 (|:| -3141 $) (|:| |coef1| $)) $ $)) (-15 -3146 ((-2 (|:| -3141 $) (|:| |coef2| $)) $ $)) (-15 -3752 ($ $ $)) (-15 -3145 ((-584 $) $ $)) (-15 -3187 ($ $ $)) (-15 -3144 ($ $ $ (-695))) (-15 -3143 ($ $ $ $ (-695))) (-15 -3142 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-389)) (PROGN (-15 -3141 (|t#1| |t#1| $)) (-15 -3140 ($ $)) (-15 -3139 ($ $)) (-15 -3138 ($ $)) (-15 -3137 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) OR (|has| |#1| (-951 (-347 (-484)))) (|has| |#1| (-38 (-347 (-484))))) ((-556 (-484)) . T) ((-556 |#1|) . T) ((-556 |#3|) . T) ((-556 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-553 (-773)) . T) ((-553 (-858 |#1|)) |has| |#3| (-554 (-1089))) ((-146) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-554 (-473)) -12 (|has| |#1| (-554 (-473))) (|has| |#3| (-554 (-473)))) ((-554 (-801 (-327))) -12 (|has| |#1| (-554 (-801 (-327)))) (|has| |#3| (-554 (-801 (-327))))) ((-554 (-801 (-484))) -12 (|has| |#1| (-554 (-801 (-484)))) (|has| |#3| (-554 (-801 (-484))))) ((-554 (-858 |#1|)) |has| |#3| (-554 (-1089))) ((-554 (-1072)) -12 (|has| |#1| (-951 (-484))) (|has| |#3| (-554 (-1089)))) ((-245) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-259 $) . T) ((-276 |#1| |#2|) . T) ((-326 |#1|) . T) ((-352 |#1|) . T) ((-389) OR (|has| |#1| (-822)) (|has| |#1| (-389))) ((-453 |#3| |#1|) . T) ((-453 |#3| $) . T) ((-453 $ $) . T) ((-495) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-13) . T) ((-589 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-591 (-484)) |has| |#1| (-581 (-484))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-581 (-484)) |has| |#1| (-581 (-484))) ((-581 |#1|) . T) ((-655 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389))) ((-664) . T) ((-807 $ |#3|) . T) ((-810 |#3|) . T) ((-812 |#3|) . T) ((-797 (-327)) -12 (|has| |#1| (-797 (-327))) (|has| |#3| (-797 (-327)))) ((-797 (-484)) -12 (|has| |#1| (-797 (-484))) (|has| |#3| (-797 (-484)))) ((-862 |#1| |#2| |#3|) . T) ((-822) |has| |#1| (-822)) ((-951 (-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((-951 (-484)) |has| |#1| (-951 (-484))) ((-951 |#1|) . T) ((-951 |#3|) . T) ((-964 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-969 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-146))) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) |has| |#1| (-822)))
+((-2566 (((-85) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3178 (((-584 (-1048)) $) 18 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 27 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3230 (((-1048) $) 20 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-978) (-13 (-995) (-10 -8 (-15 -3178 ((-584 (-1048)) $)) (-15 -3230 ((-1048) $))))) (T -978))
+((-3178 (*1 *2 *1) (-12 (-5 *2 (-584 (-1048))) (-5 *1 (-978)))) (-3230 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-978)))))
+((-3185 (((-85) |#3| $) 15 T ELT)) (-3180 (((-3 $ #1="failed") |#3| (-831)) 29 T ELT)) (-3463 (((-3 |#3| #1#) |#3| $) 45 T ELT)) (-3183 (((-85) |#3| $) 19 T ELT)) (-3184 (((-85) |#3| $) 17 T ELT)))
+(((-979 |#1| |#2| |#3|) (-10 -7 (-15 -3180 ((-3 |#1| #1="failed") |#3| (-831))) (-15 -3463 ((-3 |#3| #1#) |#3| |#1|)) (-15 -3183 ((-85) |#3| |#1|)) (-15 -3184 ((-85) |#3| |#1|)) (-15 -3185 ((-85) |#3| |#1|))) (-980 |#2| |#3|) (-13 (-756) (-311)) (-1154 |#2|)) (T -979))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) |#2| $) 25 T ELT)) (-3619 (((-484) |#2| $) 26 T ELT)) (-3180 (((-3 $ "failed") |#2| (-831)) 19 T ELT)) (-3179 ((|#1| |#2| $ |#1|) 17 T ELT)) (-3463 (((-3 |#2| "failed") |#2| $) 22 T ELT)) (-3183 (((-85) |#2| $) 23 T ELT)) (-3184 (((-85) |#2| $) 24 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3182 ((|#2| $) 21 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3766 ((|#1| |#2| $ |#1|) 18 T ELT)) (-3181 (((-584 $) |#2|) 20 T ELT)) (-3054 (((-85) $ $) 8 T ELT)))
+(((-980 |#1| |#2|) (-113) (-13 (-756) (-311)) (-1154 |t#1|)) (T -980))
+((-3619 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-756) (-311))) (-4 *3 (-1154 *4)) (-5 *2 (-484)))) (-3185 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-756) (-311))) (-4 *3 (-1154 *4)) (-5 *2 (-85)))) (-3184 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-756) (-311))) (-4 *3 (-1154 *4)) (-5 *2 (-85)))) (-3183 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-756) (-311))) (-4 *3 (-1154 *4)) (-5 *2 (-85)))) (-3463 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-980 *3 *2)) (-4 *3 (-13 (-756) (-311))) (-4 *2 (-1154 *3)))) (-3182 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *2)) (-4 *3 (-13 (-756) (-311))) (-4 *2 (-1154 *3)))) (-3181 (*1 *2 *3) (-12 (-4 *4 (-13 (-756) (-311))) (-4 *3 (-1154 *4)) (-5 *2 (-584 *1)) (-4 *1 (-980 *4 *3)))) (-3180 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-831)) (-4 *4 (-13 (-756) (-311))) (-4 *1 (-980 *4 *2)) (-4 *2 (-1154 *4)))) (-3766 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-980 *2 *3)) (-4 *2 (-13 (-756) (-311))) (-4 *3 (-1154 *2)))) (-3179 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-980 *2 *3)) (-4 *2 (-13 (-756) (-311))) (-4 *3 (-1154 *2)))))
+(-13 (-1013) (-10 -8 (-15 -3619 ((-484) |t#2| $)) (-15 -3185 ((-85) |t#2| $)) (-15 -3184 ((-85) |t#2| $)) (-15 -3183 ((-85) |t#2| $)) (-15 -3463 ((-3 |t#2| "failed") |t#2| $)) (-15 -3182 (|t#2| $)) (-15 -3181 ((-584 $) |t#2|)) (-15 -3180 ((-3 $ "failed") |t#2| (-831))) (-15 -3766 (|t#1| |t#2| $ |t#1|)) (-15 -3179 (|t#1| |t#2| $ |t#1|))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
+((-3432 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) (-584 |#4|) (-584 |#5|) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) (-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) (-695)) 114 T ELT)) (-3429 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-695)) 63 T ELT)) (-3433 (((-1184) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) (-695)) 99 T ELT)) (-3427 (((-695) (-584 |#4|) (-584 |#5|)) 30 T ELT)) (-3430 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-695)) 65 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-695) (-85)) 67 T ELT)) (-3431 (((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85) (-85) (-85) (-85)) 86 T ELT) (((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85)) 87 T ELT)) (-3968 (((-1072) (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) 92 T ELT)) (-3428 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-85)) 62 T ELT)) (-3426 (((-695) (-584 |#4|) (-584 |#5|)) 21 T ELT)))
+(((-981 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3426 ((-695) (-584 |#4|) (-584 |#5|))) (-15 -3427 ((-695) (-584 |#4|) (-584 |#5|))) (-15 -3428 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-85))) (-15 -3429 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-695))) (-15 -3429 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5|)) (-15 -3430 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-695) (-85))) (-15 -3430 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-695))) (-15 -3430 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5|)) (-15 -3431 ((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85))) (-15 -3431 ((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3432 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) (-584 |#4|) (-584 |#5|) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) (-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) (-695))) (-15 -3968 ((-1072) (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|)))) (-15 -3433 ((-1184) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) (-695)))) (-389) (-718) (-757) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -981))
+((-3433 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1598 *9)))) (-5 *4 (-695)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-1184)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1598 *8))) (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1072)) (-5 *1 (-981 *4 *5 *6 *7 *8)))) (-3432 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-584 *11)) (|:| |todo| (-584 (-2 (|:| |val| *3) (|:| -1598 *11)))))) (-5 *6 (-695)) (-5 *2 (-584 (-2 (|:| |val| (-584 *10)) (|:| -1598 *11)))) (-5 *3 (-584 *10)) (-5 *4 (-584 *11)) (-4 *10 (-977 *7 *8 *9)) (-4 *11 (-983 *7 *8 *9 *10)) (-4 *7 (-389)) (-4 *8 (-718)) (-4 *9 (-757)) (-5 *1 (-981 *7 *8 *9 *10 *11)))) (-3431 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) (-3431 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) (-3430 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3430 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-695)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-3430 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-695)) (-5 *6 (-85)) (-4 *7 (-389)) (-4 *8 (-718)) (-4 *9 (-757)) (-4 *3 (-977 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) (-5 *1 (-981 *7 *8 *9 *3 *4)) (-4 *4 (-983 *7 *8 *9 *3)))) (-3429 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3429 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-695)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-3428 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-3427 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-695)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-695)) (-5 *1 (-981 *5 *6 *7 *8 *9)))))
+((-3194 (((-85) |#5| $) 26 T ELT)) (-3192 (((-85) |#5| $) 29 T ELT)) (-3195 (((-85) |#5| $) 18 T ELT) (((-85) $) 52 T ELT)) (-3235 (((-584 $) |#5| $) NIL T ELT) (((-584 $) (-584 |#5|) $) 94 T ELT) (((-584 $) (-584 |#5|) (-584 $)) 92 T ELT) (((-584 $) |#5| (-584 $)) 95 T ELT)) (-3765 (($ $ |#5|) NIL T ELT) (((-584 $) |#5| $) NIL T ELT) (((-584 $) |#5| (-584 $)) 73 T ELT) (((-584 $) (-584 |#5|) $) 75 T ELT) (((-584 $) (-584 |#5|) (-584 $)) 77 T ELT)) (-3186 (((-584 $) |#5| $) NIL T ELT) (((-584 $) |#5| (-584 $)) 64 T ELT) (((-584 $) (-584 |#5|) $) 69 T ELT) (((-584 $) (-584 |#5|) (-584 $)) 71 T ELT)) (-3193 (((-85) |#5| $) 32 T ELT)))
+(((-982 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3765 ((-584 |#1|) (-584 |#5|) (-584 |#1|))) (-15 -3765 ((-584 |#1|) (-584 |#5|) |#1|)) (-15 -3765 ((-584 |#1|) |#5| (-584 |#1|))) (-15 -3765 ((-584 |#1|) |#5| |#1|)) (-15 -3186 ((-584 |#1|) (-584 |#5|) (-584 |#1|))) (-15 -3186 ((-584 |#1|) (-584 |#5|) |#1|)) (-15 -3186 ((-584 |#1|) |#5| (-584 |#1|))) (-15 -3186 ((-584 |#1|) |#5| |#1|)) (-15 -3235 ((-584 |#1|) |#5| (-584 |#1|))) (-15 -3235 ((-584 |#1|) (-584 |#5|) (-584 |#1|))) (-15 -3235 ((-584 |#1|) (-584 |#5|) |#1|)) (-15 -3235 ((-584 |#1|) |#5| |#1|)) (-15 -3192 ((-85) |#5| |#1|)) (-15 -3195 ((-85) |#1|)) (-15 -3193 ((-85) |#5| |#1|)) (-15 -3194 ((-85) |#5| |#1|)) (-15 -3195 ((-85) |#5| |#1|)) (-15 -3765 (|#1| |#1| |#5|))) (-983 |#2| |#3| |#4| |#5|) (-389) (-718) (-757) (-977 |#2| |#3| |#4|)) (T -982))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3677 (((-584 (-2 (|:| -3857 $) (|:| -1700 (-584 |#4|)))) (-584 |#4|)) 90 T ELT)) (-3678 (((-584 $) (-584 |#4|)) 91 T ELT) (((-584 $) (-584 |#4|) (-85)) 118 T ELT)) (-3079 (((-584 |#3|) $) 37 T ELT)) (-2906 (((-85) $) 30 T ELT)) (-2897 (((-85) $) 21 (|has| |#1| (-495)) ELT)) (-3689 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3684 ((|#4| |#4| $) 97 T ELT)) (-3771 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| $) 133 T ELT)) (-2907 (((-2 (|:| |under| $) (|:| -3127 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3706 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3991)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3720 (($) 46 T CONST)) (-2902 (((-85) $) 26 (|has| |#1| (-495)) ELT)) (-2904 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2903 (((-85) $ $) 27 (|has| |#1| (-495)) ELT)) (-2905 (((-85) $) 29 (|has| |#1| (-495)) ELT)) (-3685 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2898 (((-584 |#4|) (-584 |#4|) $) 22 (|has| |#1| (-495)) ELT)) (-2899 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-3154 (((-3 $ "failed") (-584 |#4|)) 40 T ELT)) (-3153 (($ (-584 |#4|)) 39 T ELT)) (-3795 (((-3 $ #1#) $) 87 T ELT)) (-3681 ((|#4| |#4| $) 94 T ELT)) (-1351 (($ $) 69 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3402 (($ |#4| $) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3991))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3991)) ELT)) (-2900 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-495)) ELT)) (-3690 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3679 ((|#4| |#4| $) 92 T ELT)) (-3838 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3991))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3991)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3991)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3692 (((-2 (|:| -3857 (-584 |#4|)) (|:| -1700 (-584 |#4|))) $) 110 T ELT)) (-3194 (((-85) |#4| $) 143 T ELT)) (-3192 (((-85) |#4| $) 140 T ELT)) (-3195 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-2887 (((-584 |#4|) $) 53 (|has| $ (-6 -3991)) ELT)) (-3691 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3177 ((|#3| $) 38 T ELT)) (-2606 (((-584 |#4|) $) 54 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3991))) ELT)) (-1947 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2912 (((-584 |#3|) $) 36 T ELT)) (-2911 (((-85) |#3| $) 35 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3188 (((-3 |#4| (-584 $)) |#4| |#4| $) 135 T ELT)) (-3187 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| |#4| $) 134 T ELT)) (-3794 (((-3 |#4| #1#) $) 88 T ELT)) (-3189 (((-584 $) |#4| $) 136 T ELT)) (-3191 (((-3 (-85) (-584 $)) |#4| $) 139 T ELT)) (-3190 (((-584 (-2 (|:| |val| (-85)) (|:| -1598 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3235 (((-584 $) |#4| $) 132 T ELT) (((-584 $) (-584 |#4|) $) 131 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 130 T ELT) (((-584 $) |#4| (-584 $)) 129 T ELT)) (-3436 (($ |#4| $) 124 T ELT) (($ (-584 |#4|) $) 123 T ELT)) (-3693 (((-584 |#4|) $) 112 T ELT)) (-3687 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3682 ((|#4| |#4| $) 95 T ELT)) (-3695 (((-85) $ $) 115 T ELT)) (-2901 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3688 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3683 ((|#4| |#4| $) 96 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3797 (((-3 |#4| #1#) $) 89 T ELT)) (-1352 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3675 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3765 (($ $ |#4|) 82 T ELT) (((-584 $) |#4| $) 122 T ELT) (((-584 $) |#4| (-584 $)) 121 T ELT) (((-584 $) (-584 |#4|) $) 120 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 119 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 |#4|) (-584 |#4|)) 60 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-248 |#4|)) 58 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-584 (-248 |#4|))) 57 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT)) (-1220 (((-85) $ $) 42 T ELT)) (-3399 (((-85) $) 45 T ELT)) (-3561 (($) 44 T ELT)) (-3944 (((-695) $) 111 T ELT)) (-1944 (((-695) |#4| $) 55 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3991))) ELT) (((-695) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3991)) ELT)) (-3396 (($ $) 43 T ELT)) (-3968 (((-473) $) 70 (|has| |#4| (-554 (-473))) ELT)) (-3526 (($ (-584 |#4|)) 61 T ELT)) (-2908 (($ $ |#3|) 32 T ELT)) (-2910 (($ $ |#3|) 34 T ELT)) (-3680 (($ $) 93 T ELT)) (-2909 (($ $ |#3|) 33 T ELT)) (-3942 (((-773) $) 13 T ELT) (((-584 |#4|) $) 41 T ELT)) (-3674 (((-695) $) 81 (|has| |#3| (-317)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3694 (((-3 (-2 (|:| |bas| $) (|:| -3320 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3320 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3686 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) 103 T ELT)) (-3186 (((-584 $) |#4| $) 128 T ELT) (((-584 $) |#4| (-584 $)) 127 T ELT) (((-584 $) (-584 |#4|) $) 126 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 125 T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3991)) ELT)) (-3676 (((-584 |#3|) $) 86 T ELT)) (-3193 (((-85) |#4| $) 142 T ELT)) (-3929 (((-85) |#3| $) 85 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3953 (((-695) $) 47 (|has| $ (-6 -3991)) ELT)))
+(((-983 |#1| |#2| |#3| |#4|) (-113) (-389) (-718) (-757) (-977 |t#1| |t#2| |t#3|)) (T -983))
+((-3195 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3194 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3193 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3195 (*1 *2 *1) (-12 (-4 *1 (-983 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3192 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3191 (*1 *2 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-3 (-85) (-584 *1))) (-4 *1 (-983 *4 *5 *6 *3)))) (-3190 (*1 *2 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1598 *1)))) (-4 *1 (-983 *4 *5 *6 *3)))) (-3190 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3189 (*1 *2 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) (-3188 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-3 *3 (-584 *1))) (-4 *1 (-983 *4 *5 *6 *3)))) (-3187 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *1)))) (-4 *1 (-983 *4 *5 *6 *3)))) (-3771 (*1 *2 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *1)))) (-4 *1 (-983 *4 *5 *6 *3)))) (-3235 (*1 *2 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) (-3235 (*1 *2 *3 *1) (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *7)))) (-3235 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-983 *4 *5 *6 *7)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)))) (-3235 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)))) (-3186 (*1 *2 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) (-3186 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)))) (-3186 (*1 *2 *3 *1) (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *7)))) (-3186 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-983 *4 *5 *6 *7)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)))) (-3436 (*1 *1 *2 *1) (-12 (-4 *1 (-983 *3 *4 *5 *2)) (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-977 *3 *4 *5)))) (-3436 (*1 *1 *2 *1) (-12 (-5 *2 (-584 *6)) (-4 *1 (-983 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)))) (-3765 (*1 *2 *3 *1) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) (-3765 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)))) (-3765 (*1 *2 *3 *1) (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *7)))) (-3765 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-983 *4 *5 *6 *7)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)))) (-3678 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-983 *5 *6 *7 *8)))))
+(-13 (-1123 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3195 ((-85) |t#4| $)) (-15 -3194 ((-85) |t#4| $)) (-15 -3193 ((-85) |t#4| $)) (-15 -3195 ((-85) $)) (-15 -3192 ((-85) |t#4| $)) (-15 -3191 ((-3 (-85) (-584 $)) |t#4| $)) (-15 -3190 ((-584 (-2 (|:| |val| (-85)) (|:| -1598 $))) |t#4| $)) (-15 -3190 ((-85) |t#4| $)) (-15 -3189 ((-584 $) |t#4| $)) (-15 -3188 ((-3 |t#4| (-584 $)) |t#4| |t#4| $)) (-15 -3187 ((-584 (-2 (|:| |val| |t#4|) (|:| -1598 $))) |t#4| |t#4| $)) (-15 -3771 ((-584 (-2 (|:| |val| |t#4|) (|:| -1598 $))) |t#4| $)) (-15 -3235 ((-584 $) |t#4| $)) (-15 -3235 ((-584 $) (-584 |t#4|) $)) (-15 -3235 ((-584 $) (-584 |t#4|) (-584 $))) (-15 -3235 ((-584 $) |t#4| (-584 $))) (-15 -3186 ((-584 $) |t#4| $)) (-15 -3186 ((-584 $) |t#4| (-584 $))) (-15 -3186 ((-584 $) (-584 |t#4|) $)) (-15 -3186 ((-584 $) (-584 |t#4|) (-584 $))) (-15 -3436 ($ |t#4| $)) (-15 -3436 ($ (-584 |t#4|) $)) (-15 -3765 ((-584 $) |t#4| $)) (-15 -3765 ((-584 $) |t#4| (-584 $))) (-15 -3765 ((-584 $) (-584 |t#4|) $)) (-15 -3765 ((-584 $) (-584 |t#4|) (-584 $))) (-15 -3678 ((-584 $) (-584 |t#4|) (-85)))))
+(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-473)) |has| |#4| (-554 (-473))) ((-259 |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ((-426 |#4|) . T) ((-453 |#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1123 |#1| |#2| |#3| |#4|) . T) ((-1128) . T))
+((-3202 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#5|) 86 T ELT)) (-3199 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5|) 125 T ELT)) (-3201 (((-584 |#5|) |#4| |#5|) 74 T ELT)) (-3200 (((-584 (-2 (|:| |val| (-85)) (|:| -1598 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3283 (((-1184)) 36 T ELT)) (-3281 (((-1184)) 25 T ELT)) (-3282 (((-1184) (-1072) (-1072) (-1072)) 32 T ELT)) (-3280 (((-1184) (-1072) (-1072) (-1072)) 21 T ELT)) (-3196 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) |#4| |#4| |#5|) 106 T ELT)) (-3197 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) |#3| (-85)) 117 T ELT) (((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3198 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5|) 112 T ELT)))
+(((-984 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3280 ((-1184) (-1072) (-1072) (-1072))) (-15 -3281 ((-1184))) (-15 -3282 ((-1184) (-1072) (-1072) (-1072))) (-15 -3283 ((-1184))) (-15 -3196 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) |#4| |#4| |#5|)) (-15 -3197 ((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3197 ((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) |#3| (-85))) (-15 -3198 ((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5|)) (-15 -3199 ((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5|)) (-15 -3200 ((-85) |#4| |#5|)) (-15 -3200 ((-584 (-2 (|:| |val| (-85)) (|:| -1598 |#5|))) |#4| |#5|)) (-15 -3201 ((-584 |#5|) |#4| |#5|)) (-15 -3202 ((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#5|))) (-389) (-718) (-757) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -984))
+((-3202 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3201 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 *4)) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3200 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1598 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3200 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3199 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3198 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3197 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1598 *9)))) (-5 *5 (-85)) (-4 *8 (-977 *6 *7 *4)) (-4 *9 (-983 *6 *7 *4 *8)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *4 (-757)) (-5 *2 (-584 (-2 (|:| |val| *8) (|:| -1598 *9)))) (-5 *1 (-984 *6 *7 *4 *8 *9)))) (-3197 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4)))) (-5 *1 (-984 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-3196 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3283 (*1 *2) (-12 (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1184)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3282 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3281 (*1 *2) (-12 (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1184)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3280 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3315 (((-1129) $) 14 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3203 (((-1048) $) 11 T ELT)) (-3942 (((-773) $) 21 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-985) (-13 (-995) (-10 -8 (-15 -3203 ((-1048) $)) (-15 -3315 ((-1129) $))))) (T -985))
+((-3203 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-985)))) (-3315 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-985)))))
+((-3263 (((-85) $ $) 7 T ELT)))
+(((-986) (-13 (-1128) (-10 -8 (-15 -3263 ((-85) $ $))))) (T -986))
+((-3263 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-986)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3206 (($ $ (-584 (-1089)) (-1 (-85) (-584 |#3|))) 34 T ELT)) (-3207 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-584 (-1089))) 21 T ELT)) (-3524 ((|#3| $) 13 T ELT)) (-3154 (((-3 (-248 |#3|) "failed") $) 60 T ELT)) (-3153 (((-248 |#3|) $) NIL T ELT)) (-3204 (((-584 (-1089)) $) 16 T ELT)) (-3205 (((-801 |#1|) $) 11 T ELT)) (-3525 ((|#3| $) 12 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3796 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-831)) 41 T ELT)) (-3942 (((-773) $) 89 T ELT) (($ (-248 |#3|)) 22 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 38 T ELT)))
+(((-987 |#1| |#2| |#3|) (-13 (-1013) (-241 |#3| |#3|) (-951 (-248 |#3|)) (-10 -8 (-15 -3207 ($ |#3| |#3|)) (-15 -3207 ($ |#3| |#3| (-584 (-1089)))) (-15 -3206 ($ $ (-584 (-1089)) (-1 (-85) (-584 |#3|)))) (-15 -3205 ((-801 |#1|) $)) (-15 -3525 (|#3| $)) (-15 -3524 (|#3| $)) (-15 -3796 (|#3| $ |#3| (-831))) (-15 -3204 ((-584 (-1089)) $)))) (-1013) (-13 (-962) (-797 |#1|) (-554 (-801 |#1|))) (-13 (-361 |#2|) (-797 |#1|) (-554 (-801 |#1|)))) (T -987))
+((-3207 (*1 *1 *2 *2) (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-987 *3 *4 *2)) (-4 *2 (-13 (-361 *4) (-797 *3) (-554 (-801 *3)))))) (-3207 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-584 (-1089))) (-4 *4 (-1013)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-987 *4 *5 *2)) (-4 *2 (-13 (-361 *5) (-797 *4) (-554 (-801 *4)))))) (-3206 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1089))) (-5 *3 (-1 (-85) (-584 *6))) (-4 *6 (-13 (-361 *5) (-797 *4) (-554 (-801 *4)))) (-4 *4 (-1013)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-987 *4 *5 *6)))) (-3205 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-962) (-797 *3) (-554 *2))) (-5 *2 (-801 *3)) (-5 *1 (-987 *3 *4 *5)) (-4 *5 (-13 (-361 *4) (-797 *3) (-554 *2))))) (-3525 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *2 (-13 (-361 *4) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-987 *3 *4 *2)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))))) (-3524 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *2 (-13 (-361 *4) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-987 *3 *4 *2)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))))) (-3796 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-831)) (-4 *4 (-1013)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-987 *4 *5 *2)) (-4 *2 (-13 (-361 *5) (-797 *4) (-554 (-801 *4)))))) (-3204 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) (-5 *2 (-584 (-1089))) (-5 *1 (-987 *3 *4 *5)) (-4 *5 (-13 (-361 *4) (-797 *3) (-554 (-801 *3)))))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3538 (((-1089) $) 8 T ELT)) (-3239 (((-1072) $) 17 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 11 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 14 T ELT)))
+(((-988 |#1|) (-13 (-1013) (-10 -8 (-15 -3538 ((-1089) $)))) (-1089)) (T -988))
+((-3538 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-988 *3)) (-14 *3 *2))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3209 (($ (-584 (-987 |#1| |#2| |#3|))) 15 T ELT)) (-3208 (((-584 (-987 |#1| |#2| |#3|)) $) 22 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3796 ((|#3| $ |#3|) 25 T ELT) ((|#3| $ |#3| (-831)) 28 T ELT)) (-3942 (((-773) $) 18 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 21 T ELT)))
+(((-989 |#1| |#2| |#3|) (-13 (-1013) (-241 |#3| |#3|) (-10 -8 (-15 -3209 ($ (-584 (-987 |#1| |#2| |#3|)))) (-15 -3208 ((-584 (-987 |#1| |#2| |#3|)) $)) (-15 -3796 (|#3| $ |#3| (-831))))) (-1013) (-13 (-962) (-797 |#1|) (-554 (-801 |#1|))) (-13 (-361 |#2|) (-797 |#1|) (-554 (-801 |#1|)))) (T -989))
+((-3209 (*1 *1 *2) (-12 (-5 *2 (-584 (-987 *3 *4 *5))) (-4 *3 (-1013)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) (-4 *5 (-13 (-361 *4) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-989 *3 *4 *5)))) (-3208 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) (-5 *2 (-584 (-987 *3 *4 *5))) (-5 *1 (-989 *3 *4 *5)) (-4 *5 (-13 (-361 *4) (-797 *3) (-554 (-801 *3)))))) (-3796 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-831)) (-4 *4 (-1013)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-989 *4 *5 *2)) (-4 *2 (-13 (-361 *5) (-797 *4) (-554 (-801 *4)))))))
+((-3210 (((-584 (-2 (|:| -1745 (-1084 |#1|)) (|:| -3221 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85)) 88 T ELT) (((-584 (-2 (|:| -1745 (-1084 |#1|)) (|:| -3221 (-584 (-858 |#1|))))) (-584 (-858 |#1|))) 92 T ELT) (((-584 (-2 (|:| -1745 (-1084 |#1|)) (|:| -3221 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85)) 90 T ELT)))
+(((-990 |#1| |#2|) (-10 -7 (-15 -3210 ((-584 (-2 (|:| -1745 (-1084 |#1|)) (|:| -3221 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85))) (-15 -3210 ((-584 (-2 (|:| -1745 (-1084 |#1|)) (|:| -3221 (-584 (-858 |#1|))))) (-584 (-858 |#1|)))) (-15 -3210 ((-584 (-2 (|:| -1745 (-1084 |#1|)) (|:| -3221 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85)))) (-13 (-257) (-120)) (-584 (-1089))) (T -990))
+((-3210 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-584 (-2 (|:| -1745 (-1084 *5)) (|:| -3221 (-584 (-858 *5)))))) (-5 *1 (-990 *5 *6)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1089))))) (-3210 (*1 *2 *3) (-12 (-4 *4 (-13 (-257) (-120))) (-5 *2 (-584 (-2 (|:| -1745 (-1084 *4)) (|:| -3221 (-584 (-858 *4)))))) (-5 *1 (-990 *4 *5)) (-5 *3 (-584 (-858 *4))) (-14 *5 (-584 (-1089))))) (-3210 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-584 (-2 (|:| -1745 (-1084 *5)) (|:| -3221 (-584 (-858 *5)))))) (-5 *1 (-990 *5 *6)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1089))))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 132 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL (|has| |#1| (-311)) ELT)) (-2061 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2059 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-1780 (((-631 |#1|) (-1178 $)) NIL T ELT) (((-631 |#1|)) 117 T ELT)) (-3326 ((|#1| $) 121 T ELT)) (-1673 (((-1101 (-831) (-695)) (-484)) NIL (|has| |#1| (-298)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3771 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3967 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3133 (((-695)) 43 (|has| |#1| (-317)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3153 (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-1790 (($ (-1178 |#1|) (-1178 $)) NIL T ELT) (($ (-1178 |#1|)) 46 T ELT)) (-1671 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-298)) ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-1779 (((-631 |#1|) $ (-1178 $)) NIL T ELT) (((-631 |#1|) $) NIL T ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) 109 T ELT) (((-631 |#1|) (-631 $)) 104 T ELT)) (-3838 (($ |#2|) 62 T ELT) (((-3 $ #1#) (-347 |#2|)) NIL (|has| |#1| (-311)) ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-3106 (((-831)) 80 T ELT)) (-2992 (($) 47 (|has| |#1| (-317)) ELT)) (-2561 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-2831 (($) NIL (|has| |#1| (-298)) ELT)) (-1678 (((-85) $) NIL (|has| |#1| (-298)) ELT)) (-1762 (($ $ (-695)) NIL (|has| |#1| (-298)) ELT) (($ $) NIL (|has| |#1| (-298)) ELT)) (-3719 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-3768 (((-831) $) NIL (|has| |#1| (-298)) ELT) (((-744 (-831)) $) NIL (|has| |#1| (-298)) ELT)) (-2408 (((-85) $) NIL T ELT)) (-3129 ((|#1| $) NIL T ELT)) (-3441 (((-633 $) $) NIL (|has| |#1| (-298)) ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-2012 ((|#2| $) 87 (|has| |#1| (-311)) ELT)) (-2008 (((-831) $) 140 (|has| |#1| (-317)) ELT)) (-3077 ((|#2| $) 59 T ELT)) (-2278 (((-631 (-484)) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3442 (($) NIL (|has| |#1| (-298)) CONST)) (-2398 (($ (-831)) 131 (|has| |#1| (-317)) ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2407 (($) 123 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-311)) ELT)) (-3141 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-1674 (((-584 (-2 (|:| -3728 (-484)) (|:| -2399 (-484))))) NIL (|has| |#1| (-298)) ELT)) (-3728 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3462 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-1605 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3753 ((|#1| (-1178 $)) NIL T ELT) ((|#1|) 113 T ELT)) (-1763 (((-695) $) NIL (|has| |#1| (-298)) ELT) (((-3 (-695) #1#) $ $) NIL (|has| |#1| (-298)) ELT)) (-3754 (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL (|has| |#1| (-311)) ELT)) (-2406 (((-631 |#1|) (-1178 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-311)) ELT)) (-3182 ((|#2|) 77 T ELT)) (-1672 (($) NIL (|has| |#1| (-298)) ELT)) (-3221 (((-1178 |#1|) $ (-1178 $)) 92 T ELT) (((-631 |#1|) (-1178 $) (-1178 $)) NIL T ELT) (((-1178 |#1|) $) 72 T ELT) (((-631 |#1|) (-1178 $)) 88 T ELT)) (-3968 (((-1178 |#1|) $) NIL T ELT) (($ (-1178 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (|has| |#1| (-298)) ELT)) (-3942 (((-773) $) 58 T ELT) (($ (-484)) 53 T ELT) (($ |#1|) 55 T ELT) (($ $) NIL (|has| |#1| (-311)) ELT) (($ (-347 (-484))) NIL (OR (|has| |#1| (-311)) (|has| |#1| (-951 (-347 (-484))))) ELT)) (-2700 (($ $) NIL (|has| |#1| (-298)) ELT) (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-2447 ((|#2| $) 85 T ELT)) (-3123 (((-695)) 79 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2010 (((-1178 $)) 84 T ELT)) (-2060 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-2658 (($) 32 T CONST)) (-2664 (($) 19 T CONST)) (-2667 (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-311))) (|has| |#1| (-298))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-812 (-1089)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL (|has| |#1| (-311)) ELT)) (-3054 (((-85) $ $) 64 T ELT)) (-3945 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3833 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) 66 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-311)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 51 T ELT) (($ $ $) 70 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 48 T ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-311)) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-311)) ELT)))
+(((-991 |#1| |#2| |#3|) (-662 |#1| |#2|) (-146) (-1154 |#1|) |#2|) (T -991))
+NIL
+((-3728 (((-345 |#3|) |#3|) 18 T ELT)))
+(((-992 |#1| |#2| |#3|) (-10 -7 (-15 -3728 ((-345 |#3|) |#3|))) (-1154 (-347 (-484))) (-13 (-311) (-120) (-662 (-347 (-484)) |#1|)) (-1154 |#2|)) (T -992))
+((-3728 (*1 *2 *3) (-12 (-4 *4 (-1154 (-347 (-484)))) (-4 *5 (-13 (-311) (-120) (-662 (-347 (-484)) *4))) (-5 *2 (-345 *3)) (-5 *1 (-992 *4 *5 *3)) (-4 *3 (-1154 *5)))))
+((-3728 (((-345 |#3|) |#3|) 19 T ELT)))
+(((-993 |#1| |#2| |#3|) (-10 -7 (-15 -3728 ((-345 |#3|) |#3|))) (-1154 (-347 (-858 (-484)))) (-13 (-311) (-120) (-662 (-347 (-858 (-484))) |#1|)) (-1154 |#2|)) (T -993))
+((-3728 (*1 *2 *3) (-12 (-4 *4 (-1154 (-347 (-858 (-484))))) (-4 *5 (-13 (-311) (-120) (-662 (-347 (-858 (-484))) *4))) (-5 *2 (-345 *3)) (-5 *1 (-993 *4 *5 *3)) (-4 *3 (-1154 *5)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-2529 (($ $ $) 16 T ELT)) (-2855 (($ $ $) 17 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3211 (($) 6 T ELT)) (-3968 (((-1089) $) 20 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 15 T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) 9 T ELT)))
+(((-994) (-13 (-757) (-554 (-1089)) (-10 -8 (-15 -3211 ($))))) (T -994))
+((-3211 (*1 *1) (-5 *1 (-994))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-1094)) 20 T ELT) (((-1094) $) 19 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3054 (((-85) $ $) 8 T ELT)))
+(((-995) (-113)) (T -995))
NIL
(-13 (-64))
-(((-64) . T) ((-72) . T) ((-555 (-1093)) . T) ((-552 (-772)) . T) ((-552 (-1093)) . T) ((-427 (-1093)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T))
-((-3212 ((|#1| |#1| (-1 (-483) |#1| |#1|)) 41 T ELT) ((|#1| |#1| (-1 (-85) |#1|)) 33 T ELT)) (-3210 (((-1183)) 21 T ELT)) (-3211 (((-583 |#1|)) 13 T ELT)))
-(((-995 |#1|) (-10 -7 (-15 -3210 ((-1183))) (-15 -3211 ((-583 |#1|))) (-15 -3212 (|#1| |#1| (-1 (-85) |#1|))) (-15 -3212 (|#1| |#1| (-1 (-483) |#1| |#1|)))) (-105)) (T -995))
-((-3212 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-483) *2 *2)) (-4 *2 (-105)) (-5 *1 (-995 *2)))) (-3212 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-995 *2)))) (-3211 (*1 *2) (-12 (-5 *2 (-583 *3)) (-5 *1 (-995 *3)) (-4 *3 (-105)))) (-3210 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-995 *3)) (-4 *3 (-105)))))
-((-3215 (($ (-78) $) 20 T ELT)) (-3216 (((-632 (-78)) (-444) $) 19 T ELT)) (-3559 (($) 7 T ELT)) (-3214 (($) 21 T ELT)) (-3213 (($) 22 T ELT)) (-3217 (((-583 (-149)) $) 10 T ELT)) (-3940 (((-772) $) 25 T ELT)))
-(((-996) (-13 (-552 (-772)) (-10 -8 (-15 -3559 ($)) (-15 -3217 ((-583 (-149)) $)) (-15 -3216 ((-632 (-78)) (-444) $)) (-15 -3215 ($ (-78) $)) (-15 -3214 ($)) (-15 -3213 ($))))) (T -996))
-((-3559 (*1 *1) (-5 *1 (-996))) (-3217 (*1 *2 *1) (-12 (-5 *2 (-583 (-149))) (-5 *1 (-996)))) (-3216 (*1 *2 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-632 (-78))) (-5 *1 (-996)))) (-3215 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-996)))) (-3214 (*1 *1) (-5 *1 (-996))) (-3213 (*1 *1) (-5 *1 (-996))))
-((-3218 (((-1177 (-630 |#1|)) (-583 (-630 |#1|))) 45 T ELT) (((-1177 (-630 (-857 |#1|))) (-583 (-1088)) (-630 (-857 |#1|))) 75 T ELT) (((-1177 (-630 (-347 (-857 |#1|)))) (-583 (-1088)) (-630 (-347 (-857 |#1|)))) 92 T ELT)) (-3219 (((-1177 |#1|) (-630 |#1|) (-583 (-630 |#1|))) 39 T ELT)))
-(((-997 |#1|) (-10 -7 (-15 -3218 ((-1177 (-630 (-347 (-857 |#1|)))) (-583 (-1088)) (-630 (-347 (-857 |#1|))))) (-15 -3218 ((-1177 (-630 (-857 |#1|))) (-583 (-1088)) (-630 (-857 |#1|)))) (-15 -3218 ((-1177 (-630 |#1|)) (-583 (-630 |#1|)))) (-15 -3219 ((-1177 |#1|) (-630 |#1|) (-583 (-630 |#1|))))) (-311)) (T -997))
-((-3219 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-630 *5))) (-5 *3 (-630 *5)) (-4 *5 (-311)) (-5 *2 (-1177 *5)) (-5 *1 (-997 *5)))) (-3218 (*1 *2 *3) (-12 (-5 *3 (-583 (-630 *4))) (-4 *4 (-311)) (-5 *2 (-1177 (-630 *4))) (-5 *1 (-997 *4)))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1088))) (-4 *5 (-311)) (-5 *2 (-1177 (-630 (-857 *5)))) (-5 *1 (-997 *5)) (-5 *4 (-630 (-857 *5))))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1088))) (-4 *5 (-311)) (-5 *2 (-1177 (-630 (-347 (-857 *5))))) (-5 *1 (-997 *5)) (-5 *4 (-630 (-347 (-857 *5)))))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1485 (((-583 (-694)) $) NIL T ELT) (((-583 (-694)) $ (-1088)) NIL T ELT)) (-1519 (((-694) $) NIL T ELT) (((-694) $ (-1088)) NIL T ELT)) (-3077 (((-583 (-999 (-1088))) $) NIL T ELT)) (-3079 (((-1083 $) $ (-999 (-1088))) NIL T ELT) (((-1083 |#1|) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2815 (((-694) $) NIL T ELT) (((-694) $ (-583 (-999 (-1088)))) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3769 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-1481 (($ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-999 (-1088)) #1#) $) NIL T ELT) (((-3 (-1088) #1#) $) NIL T ELT) (((-3 (-1037 |#1| (-1088)) #1#) $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-999 (-1088)) $) NIL T ELT) (((-1088) $) NIL T ELT) (((-1037 |#1| (-1088)) $) NIL T ELT)) (-3750 (($ $ $ (-999 (-1088))) NIL (|has| |#1| (-146)) ELT)) (-3953 (($ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-389)) ELT) (($ $ (-999 (-1088))) NIL (|has| |#1| (-389)) ELT)) (-2814 (((-583 $) $) NIL T ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1621 (($ $ |#1| (-468 (-999 (-1088))) $) NIL T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (-12 (|has| (-999 (-1088)) (-796 (-327))) (|has| |#1| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (-12 (|has| (-999 (-1088)) (-796 (-483))) (|has| |#1| (-796 (-483)))) ELT)) (-3766 (((-694) $ (-1088)) NIL T ELT) (((-694) $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2416 (((-694) $) NIL T ELT)) (-3080 (($ (-1083 |#1|) (-999 (-1088))) NIL T ELT) (($ (-1083 $) (-999 (-1088))) NIL T ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-468 (-999 (-1088)))) NIL T ELT) (($ $ (-999 (-1088)) (-694)) NIL T ELT) (($ $ (-583 (-999 (-1088))) (-583 (-694))) NIL T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ (-999 (-1088))) NIL T ELT)) (-2816 (((-468 (-999 (-1088))) $) NIL T ELT) (((-694) $ (-999 (-1088))) NIL T ELT) (((-583 (-694)) $ (-583 (-999 (-1088)))) NIL T ELT)) (-1622 (($ (-1 (-468 (-999 (-1088))) (-468 (-999 (-1088)))) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1520 (((-1 $ (-694)) (-1088)) NIL T ELT) (((-1 $ (-694)) $) NIL (|has| |#1| (-190)) ELT)) (-3078 (((-3 (-999 (-1088)) #1#) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-1483 (((-999 (-1088)) $) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1484 (((-85) $) NIL T ELT)) (-2819 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2818 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-2 (|:| |var| (-999 (-1088))) (|:| -2397 (-694))) #1#) $) NIL T ELT)) (-1482 (($ $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1794 (((-85) $) NIL T ELT)) (-1793 ((|#1| $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-389)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-821)) ELT)) (-3460 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-3762 (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-999 (-1088)) |#1|) NIL T ELT) (($ $ (-583 (-999 (-1088))) (-583 |#1|)) NIL T ELT) (($ $ (-999 (-1088)) $) NIL T ELT) (($ $ (-583 (-999 (-1088))) (-583 $)) NIL T ELT) (($ $ (-1088) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 (-1088)) (-583 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1088) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 (-1088)) (-583 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3751 (($ $ (-999 (-1088))) NIL (|has| |#1| (-146)) ELT)) (-3752 (($ $ (-583 (-999 (-1088))) (-583 (-694))) NIL T ELT) (($ $ (-999 (-1088)) (-694)) NIL T ELT) (($ $ (-583 (-999 (-1088)))) NIL T ELT) (($ $ (-999 (-1088))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-1486 (((-583 (-1088)) $) NIL T ELT)) (-3942 (((-468 (-999 (-1088))) $) NIL T ELT) (((-694) $ (-999 (-1088))) NIL T ELT) (((-583 (-694)) $ (-583 (-999 (-1088)))) NIL T ELT) (((-694) $ (-1088)) NIL T ELT)) (-3966 (((-800 (-327)) $) NIL (-12 (|has| (-999 (-1088)) (-553 (-800 (-327)))) (|has| |#1| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) NIL (-12 (|has| (-999 (-1088)) (-553 (-800 (-483)))) (|has| |#1| (-553 (-800 (-483))))) ELT) (((-472) $) NIL (-12 (|has| (-999 (-1088)) (-553 (-472))) (|has| |#1| (-553 (-472)))) ELT)) (-2813 ((|#1| $) NIL (|has| |#1| (-389)) ELT) (($ $ (-999 (-1088))) NIL (|has| |#1| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-999 (-1088))) NIL T ELT) (($ (-1088)) NIL T ELT) (($ (-1037 |#1| (-1088))) NIL T ELT) (($ (-347 (-483))) NIL (OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3811 (((-583 |#1|) $) NIL T ELT)) (-3671 ((|#1| $ (-468 (-999 (-1088)))) NIL T ELT) (($ $ (-999 (-1088)) (-694)) NIL T ELT) (($ $ (-583 (-999 (-1088))) (-583 (-694))) NIL T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1620 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-583 (-999 (-1088))) (-583 (-694))) NIL T ELT) (($ $ (-999 (-1088)) (-694)) NIL T ELT) (($ $ (-583 (-999 (-1088)))) NIL T ELT) (($ $ (-999 (-1088))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-998 |#1|) (-13 (-213 |#1| (-1088) (-999 (-1088)) (-468 (-999 (-1088)))) (-950 (-1037 |#1| (-1088)))) (-961)) (T -998))
-NIL
-((-2564 (((-85) $ $) NIL T ELT)) (-1519 (((-694) $) NIL T ELT)) (-3825 ((|#1| $) 10 T ELT)) (-3152 (((-3 |#1| "failed") $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT)) (-3766 (((-694) $) 11 T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-1520 (($ |#1| (-694)) 9 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3752 (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2665 (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 16 T ELT)))
-(((-999 |#1|) (-228 |#1|) (-756)) (T -999))
-NIL
-((-2564 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-3730 (($ |#1| |#1|) 16 T ELT)) (-3952 (((-583 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-755)) ELT)) (-3224 ((|#1| $) 12 T ELT)) (-3226 ((|#1| $) 11 T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3222 (((-483) $) 15 T ELT)) (-3223 ((|#1| $) 14 T ELT)) (-3225 ((|#1| $) 13 T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3957 (((-583 |#1|) $) 42 (|has| |#1| (-755)) ELT) (((-583 |#1|) (-583 $)) 41 (|has| |#1| (-755)) ELT)) (-3966 (($ |#1|) 29 T ELT)) (-3940 (((-772) $) 28 (|has| |#1| (-1012)) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-3731 (($ |#1| |#1|) 10 T ELT)) (-3227 (($ $ (-483)) 17 T ELT)) (-3052 (((-85) $ $) 22 (|has| |#1| (-1012)) ELT)))
-(((-1000 |#1|) (-13 (-1005 |#1|) (-10 -7 (IF (|has| |#1| (-1012)) (-6 (-1012)) |%noBranch|) (IF (|has| |#1| (-755)) (-6 (-1006 |#1| (-583 |#1|))) |%noBranch|))) (-1127)) (T -1000))
-NIL
-((-3952 (((-583 |#2|) (-1 |#2| |#1|) (-1000 |#1|)) 27 (|has| |#1| (-755)) ELT) (((-1000 |#2|) (-1 |#2| |#1|) (-1000 |#1|)) 14 T ELT)))
-(((-1001 |#1| |#2|) (-10 -7 (-15 -3952 ((-1000 |#2|) (-1 |#2| |#1|) (-1000 |#1|))) (IF (|has| |#1| (-755)) (-15 -3952 ((-583 |#2|) (-1 |#2| |#1|) (-1000 |#1|))) |%noBranch|)) (-1127) (-1127)) (T -1001))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1000 *5)) (-4 *5 (-755)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-583 *6)) (-5 *1 (-1001 *5 *6)))) (-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1000 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-1000 *6)) (-5 *1 (-1001 *5 *6)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 16 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3220 (((-583 (-1047)) $) 10 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-1002) (-13 (-994) (-10 -8 (-15 -3220 ((-583 (-1047)) $))))) (T -1002))
-((-3220 (*1 *2 *1) (-12 (-5 *2 (-583 (-1047))) (-5 *1 (-1002)))))
-((-2564 (((-85) $ $) NIL (|has| (-1000 |#1|) (-1012)) ELT)) (-3825 (((-1088) $) NIL T ELT)) (-3730 (((-1000 |#1|) $) NIL T ELT)) (-3237 (((-1071) $) NIL (|has| (-1000 |#1|) (-1012)) ELT)) (-3238 (((-1032) $) NIL (|has| (-1000 |#1|) (-1012)) ELT)) (-3221 (($ (-1088) (-1000 |#1|)) NIL T ELT)) (-3940 (((-772) $) NIL (|has| (-1000 |#1|) (-1012)) ELT)) (-1262 (((-85) $ $) NIL (|has| (-1000 |#1|) (-1012)) ELT)) (-3052 (((-85) $ $) NIL (|has| (-1000 |#1|) (-1012)) ELT)))
-(((-1003 |#1|) (-13 (-1127) (-10 -8 (-15 -3221 ($ (-1088) (-1000 |#1|))) (-15 -3825 ((-1088) $)) (-15 -3730 ((-1000 |#1|) $)) (IF (|has| (-1000 |#1|) (-1012)) (-6 (-1012)) |%noBranch|))) (-1127)) (T -1003))
-((-3221 (*1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-1000 *4)) (-4 *4 (-1127)) (-5 *1 (-1003 *4)))) (-3825 (*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-1003 *3)) (-4 *3 (-1127)))) (-3730 (*1 *2 *1) (-12 (-5 *2 (-1000 *3)) (-5 *1 (-1003 *3)) (-4 *3 (-1127)))))
-((-3952 (((-1003 |#2|) (-1 |#2| |#1|) (-1003 |#1|)) 19 T ELT)))
-(((-1004 |#1| |#2|) (-10 -7 (-15 -3952 ((-1003 |#2|) (-1 |#2| |#1|) (-1003 |#1|)))) (-1127) (-1127)) (T -1004))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1003 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-1003 *6)) (-5 *1 (-1004 *5 *6)))))
-((-3730 (($ |#1| |#1|) 8 T ELT)) (-3224 ((|#1| $) 11 T ELT)) (-3226 ((|#1| $) 13 T ELT)) (-3222 (((-483) $) 9 T ELT)) (-3223 ((|#1| $) 10 T ELT)) (-3225 ((|#1| $) 12 T ELT)) (-3966 (($ |#1|) 6 T ELT)) (-3731 (($ |#1| |#1|) 15 T ELT)) (-3227 (($ $ (-483)) 14 T ELT)))
-(((-1005 |#1|) (-113) (-1127)) (T -1005))
-((-3731 (*1 *1 *2 *2) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127)))) (-3227 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-1005 *3)) (-4 *3 (-1127)))) (-3226 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127)))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127)))) (-3224 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127)))) (-3223 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127)))) (-3222 (*1 *2 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1127)) (-5 *2 (-483)))) (-3730 (*1 *1 *2 *2) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127)))))
-(-13 (-557 |t#1|) (-10 -8 (-15 -3731 ($ |t#1| |t#1|)) (-15 -3227 ($ $ (-483))) (-15 -3226 (|t#1| $)) (-15 -3225 (|t#1| $)) (-15 -3224 (|t#1| $)) (-15 -3223 (|t#1| $)) (-15 -3222 ((-483) $)) (-15 -3730 ($ |t#1| |t#1|))))
-(((-557 |#1|) . T))
-((-3730 (($ |#1| |#1|) 8 T ELT)) (-3952 ((|#2| (-1 |#1| |#1|) $) 17 T ELT)) (-3224 ((|#1| $) 11 T ELT)) (-3226 ((|#1| $) 13 T ELT)) (-3222 (((-483) $) 9 T ELT)) (-3223 ((|#1| $) 10 T ELT)) (-3225 ((|#1| $) 12 T ELT)) (-3957 ((|#2| (-583 $)) 19 T ELT) ((|#2| $) 18 T ELT)) (-3966 (($ |#1|) 6 T ELT)) (-3731 (($ |#1| |#1|) 15 T ELT)) (-3227 (($ $ (-483)) 14 T ELT)))
-(((-1006 |#1| |#2|) (-113) (-755) (-1062 |t#1|)) (T -1006))
-((-3957 (*1 *2 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-1006 *4 *2)) (-4 *4 (-755)) (-4 *2 (-1062 *4)))) (-3957 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *2)) (-4 *3 (-755)) (-4 *2 (-1062 *3)))) (-3952 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1006 *4 *2)) (-4 *4 (-755)) (-4 *2 (-1062 *4)))))
-(-13 (-1005 |t#1|) (-10 -8 (-15 -3957 (|t#2| (-583 $))) (-15 -3957 (|t#2| $)) (-15 -3952 (|t#2| (-1 |t#1| |t#1|) $))))
-(((-557 |#1|) . T) ((-1005 |#1|) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3792 (((-1047) $) 14 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 20 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-3228 (((-583 (-1047)) $) 12 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-1007) (-13 (-994) (-10 -8 (-15 -3228 ((-583 (-1047)) $)) (-15 -3792 ((-1047) $))))) (T -1007))
-((-3228 (*1 *2 *1) (-12 (-5 *2 (-583 (-1047))) (-5 *1 (-1007)))) (-3792 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1007)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-1799 (($) NIL (|has| |#1| (-317)) ELT)) (-3229 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 84 T ELT)) (-3231 (($ $ $) 81 T ELT)) (-3230 (((-85) $ $) 83 T ELT)) (-3131 (((-694)) NIL (|has| |#1| (-317)) ELT)) (-3234 (($ (-583 |#1|)) NIL T ELT) (($) 14 T ELT)) (-1567 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3718 (($) NIL T CONST)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3399 (($ |#1| $) 75 (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3400 (($ |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 42 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 40 (|has| $ (-6 -3989)) ELT)) (-2990 (($) NIL (|has| |#1| (-317)) ELT)) (-2885 (((-583 |#1|) $) 20 (|has| $ (-6 -3989)) ELT)) (-3236 (((-85) $ $) NIL T ELT)) (-2527 ((|#1| $) 56 (|has| |#1| (-756)) ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 74 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2853 ((|#1| $) 54 (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2006 (((-830) $) NIL (|has| |#1| (-317)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3233 (($ $ $) 79 T ELT)) (-1271 ((|#1| $) 26 T ELT)) (-3603 (($ |#1| $) 70 T ELT)) (-2396 (($ (-830)) NIL (|has| |#1| (-317)) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 32 T ELT)) (-1272 ((|#1| $) 28 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) 22 T ELT)) (-3559 (($) 12 T ELT)) (-3232 (($ $ |#1|) NIL T ELT) (($ $ $) 80 T ELT)) (-1463 (($) NIL T ELT) (($ (-583 |#1|)) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) 17 T ELT)) (-3966 (((-472) $) 51 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 63 T ELT)) (-1800 (($ $) NIL (|has| |#1| (-317)) ELT)) (-3940 (((-772) $) NIL T ELT)) (-1801 (((-694) $) NIL T ELT)) (-3235 (($ (-583 |#1|)) NIL T ELT) (($) 13 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-1273 (($ (-583 |#1|)) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 53 T ELT)) (-3951 (((-694) $) 11 (|has| $ (-6 -3989)) ELT)))
-(((-1008 |#1|) (-366 |#1|) (-1012)) (T -1008))
-NIL
-((-3229 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-3231 (($ $ $) 10 T ELT)) (-3232 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT)))
-(((-1009 |#1| |#2|) (-10 -7 (-15 -3229 (|#1| |#2| |#1|)) (-15 -3229 (|#1| |#1| |#2|)) (-15 -3229 (|#1| |#1| |#1|)) (-15 -3231 (|#1| |#1| |#1|)) (-15 -3232 (|#1| |#1| |#2|)) (-15 -3232 (|#1| |#1| |#1|))) (-1010 |#2|) (-1012)) (T -1009))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3229 (($ $ $) 22 T ELT) (($ $ |#1|) 21 T ELT) (($ |#1| $) 20 T ELT)) (-3231 (($ $ $) 24 T ELT)) (-3230 (((-85) $ $) 23 T ELT)) (-3234 (($) 29 T ELT) (($ (-583 |#1|)) 28 T ELT)) (-3704 (($ (-1 (-85) |#1|) $) 57 (|has| $ (-6 -3989)) ELT)) (-3718 (($) 37 T CONST)) (-1350 (($ $) 60 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3400 (($ |#1| $) 59 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#1|) $) 56 (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -3989)) ELT)) (-2885 (((-583 |#1|) $) 44 (|has| $ (-6 -3989)) ELT)) (-3236 (((-85) $ $) 32 T ELT)) (-2604 (((-583 |#1|) $) 45 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 47 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3233 (($ $ $) 27 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 53 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 42 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 |#1|) (-583 |#1|)) 51 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 49 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 (-248 |#1|))) 48 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 33 T ELT)) (-3397 (((-85) $) 36 T ELT)) (-3559 (($) 35 T ELT)) (-3232 (($ $ $) 26 T ELT) (($ $ |#1|) 25 T ELT)) (-1943 (((-694) |#1| $) 46 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) (((-694) (-1 (-85) |#1|) $) 43 (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) 34 T ELT)) (-3966 (((-472) $) 61 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 52 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-3235 (($) 31 T ELT) (($ (-583 |#1|)) 30 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 41 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3951 (((-694) $) 38 (|has| $ (-6 -3989)) ELT)))
-(((-1010 |#1|) (-113) (-1012)) (T -1010))
-((-3236 (*1 *2 *1 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1012)) (-5 *2 (-85)))) (-3235 (*1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) (-3235 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-4 *1 (-1010 *3)))) (-3234 (*1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) (-3234 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-4 *1 (-1010 *3)))) (-3233 (*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) (-3232 (*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) (-3232 (*1 *1 *1 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) (-3231 (*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) (-3230 (*1 *2 *1 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1012)) (-5 *2 (-85)))) (-3229 (*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) (-3229 (*1 *1 *1 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) (-3229 (*1 *1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))))
-(-13 (-1012) (-124 |t#1|) (-10 -8 (-6 -3979) (-15 -3236 ((-85) $ $)) (-15 -3235 ($)) (-15 -3235 ($ (-583 |t#1|))) (-15 -3234 ($)) (-15 -3234 ($ (-583 |t#1|))) (-15 -3233 ($ $ $)) (-15 -3232 ($ $ $)) (-15 -3232 ($ $ |t#1|)) (-15 -3231 ($ $ $)) (-15 -3230 ((-85) $ $)) (-15 -3229 ($ $ $)) (-15 -3229 ($ $ |t#1|)) (-15 -3229 ($ |t#1| $))))
-(((-34) . T) ((-72) . T) ((-552 (-772)) . T) ((-124 |#1|) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) . T) ((-1127) . T))
-((-3237 (((-1071) $) 10 T ELT)) (-3238 (((-1032) $) 8 T ELT)))
-(((-1011 |#1|) (-10 -7 (-15 -3237 ((-1071) |#1|)) (-15 -3238 ((-1032) |#1|))) (-1012)) (T -1011))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT)))
-(((-1012) (-113)) (T -1012))
-((-3238 (*1 *2 *1) (-12 (-4 *1 (-1012)) (-5 *2 (-1032)))) (-3237 (*1 *2 *1) (-12 (-4 *1 (-1012)) (-5 *2 (-1071)))))
-(-13 (-72) (-552 (-772)) (-10 -8 (-15 -3238 ((-1032) $)) (-15 -3237 ((-1071) $))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) 36 T ELT)) (-3242 (($ (-583 (-830))) 70 T ELT)) (-3244 (((-3 $ #1="failed") $ (-830) (-830)) 81 T ELT)) (-2990 (($) 40 T ELT)) (-3240 (((-85) (-830) $) 42 T ELT)) (-2006 (((-830) $) 64 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 (($ (-830)) 39 T ELT)) (-3245 (((-3 $ #1#) $ (-830)) 77 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3241 (((-1177 $)) 47 T ELT)) (-3243 (((-583 (-830)) $) 27 T ELT)) (-3239 (((-694) $ (-830) (-830)) 78 T ELT)) (-3940 (((-772) $) 32 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 24 T ELT)))
-(((-1013 |#1| |#2|) (-13 (-317) (-10 -8 (-15 -3245 ((-3 $ #1="failed") $ (-830))) (-15 -3244 ((-3 $ #1#) $ (-830) (-830))) (-15 -3243 ((-583 (-830)) $)) (-15 -3242 ($ (-583 (-830)))) (-15 -3241 ((-1177 $))) (-15 -3240 ((-85) (-830) $)) (-15 -3239 ((-694) $ (-830) (-830))))) (-830) (-830)) (T -1013))
-((-3245 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-830)) (-5 *1 (-1013 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3244 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-830)) (-5 *1 (-1013 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3243 (*1 *2 *1) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1013 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) (-3242 (*1 *1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1013 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) (-3241 (*1 *2) (-12 (-5 *2 (-1177 (-1013 *3 *4))) (-5 *1 (-1013 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) (-3240 (*1 *2 *3 *1) (-12 (-5 *3 (-830)) (-5 *2 (-85)) (-5 *1 (-1013 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3239 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-694)) (-5 *1 (-1013 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3255 (((-85) $) NIL T ELT)) (-3251 (((-1088) $) NIL T ELT)) (-3256 (((-85) $) NIL T ELT)) (-3529 (((-1071) $) NIL T ELT)) (-3258 (((-85) $) NIL T ELT)) (-3260 (((-85) $) NIL T ELT)) (-3257 (((-85) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3254 (((-85) $) NIL T ELT)) (-3250 (((-483) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3253 (((-85) $) NIL T ELT)) (-3249 (((-179) $) NIL T ELT)) (-3248 (((-772) $) NIL T ELT)) (-3261 (((-85) $ $) NIL T ELT)) (-3794 (($ $ (-483)) NIL T ELT) (($ $ (-583 (-483))) NIL T ELT)) (-3252 (((-583 $) $) NIL T ELT)) (-3966 (($ (-1071)) NIL T ELT) (($ (-1088)) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-179)) NIL T ELT) (($ (-772)) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-3246 (($ $) NIL T ELT)) (-3247 (($ $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3259 (((-85) $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3951 (((-483) $) NIL T ELT)))
-(((-1014) (-1015 (-1071) (-1088) (-483) (-179) (-772))) (T -1014))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3255 (((-85) $) 36 T ELT)) (-3251 ((|#2| $) 31 T ELT)) (-3256 (((-85) $) 37 T ELT)) (-3529 ((|#1| $) 32 T ELT)) (-3258 (((-85) $) 39 T ELT)) (-3260 (((-85) $) 41 T ELT)) (-3257 (((-85) $) 38 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3254 (((-85) $) 35 T ELT)) (-3250 ((|#3| $) 30 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3253 (((-85) $) 34 T ELT)) (-3249 ((|#4| $) 29 T ELT)) (-3248 ((|#5| $) 28 T ELT)) (-3261 (((-85) $ $) 42 T ELT)) (-3794 (($ $ (-483)) 44 T ELT) (($ $ (-583 (-483))) 43 T ELT)) (-3252 (((-583 $) $) 33 T ELT)) (-3966 (($ |#1|) 50 T ELT) (($ |#2|) 49 T ELT) (($ |#3|) 48 T ELT) (($ |#4|) 47 T ELT) (($ |#5|) 46 T ELT) (($ (-583 $)) 45 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-3246 (($ $) 26 T ELT)) (-3247 (($ $) 27 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3259 (((-85) $) 40 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3951 (((-483) $) 25 T ELT)))
-(((-1015 |#1| |#2| |#3| |#4| |#5|) (-113) (-1012) (-1012) (-1012) (-1012) (-1012)) (T -1015))
-((-3261 (*1 *2 *1 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))) (-3260 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))) (-3259 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))) (-3258 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))) (-3257 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))) (-3255 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))) (-3253 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))) (-3252 (*1 *2 *1) (-12 (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-583 *1)) (-4 *1 (-1015 *3 *4 *5 *6 *7)))) (-3529 (*1 *2 *1) (-12 (-4 *1 (-1015 *2 *3 *4 *5 *6)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)))) (-3251 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *2 *4 *5 *6)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)))) (-3250 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *2 *5 *6)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)))) (-3249 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *2 *6)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)))) (-3248 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *2)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)))) (-3247 (*1 *1 *1) (-12 (-4 *1 (-1015 *2 *3 *4 *5 *6)) (-4 *2 (-1012)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)))) (-3246 (*1 *1 *1) (-12 (-4 *1 (-1015 *2 *3 *4 *5 *6)) (-4 *2 (-1012)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-483)))))
-(-13 (-1012) (-557 |t#1|) (-557 |t#2|) (-557 |t#3|) (-557 |t#4|) (-557 |t#4|) (-557 |t#5|) (-557 (-583 $)) (-241 (-483) $) (-241 (-583 (-483)) $) (-10 -8 (-15 -3261 ((-85) $ $)) (-15 -3260 ((-85) $)) (-15 -3259 ((-85) $)) (-15 -3258 ((-85) $)) (-15 -3257 ((-85) $)) (-15 -3256 ((-85) $)) (-15 -3255 ((-85) $)) (-15 -3254 ((-85) $)) (-15 -3253 ((-85) $)) (-15 -3252 ((-583 $) $)) (-15 -3529 (|t#1| $)) (-15 -3251 (|t#2| $)) (-15 -3250 (|t#3| $)) (-15 -3249 (|t#4| $)) (-15 -3248 (|t#5| $)) (-15 -3247 ($ $)) (-15 -3246 ($ $)) (-15 -3951 ((-483) $))))
-(((-72) . T) ((-552 (-772)) . T) ((-557 (-583 $)) . T) ((-557 |#1|) . T) ((-557 |#2|) . T) ((-557 |#3|) . T) ((-557 |#4|) . T) ((-557 |#5|) . T) ((-241 (-483) $) . T) ((-241 (-583 (-483)) $) . T) ((-13) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3255 (((-85) $) 45 T ELT)) (-3251 ((|#2| $) 48 T ELT)) (-3256 (((-85) $) 20 T ELT)) (-3529 ((|#1| $) 21 T ELT)) (-3258 (((-85) $) 42 T ELT)) (-3260 (((-85) $) 14 T ELT)) (-3257 (((-85) $) 44 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3254 (((-85) $) 46 T ELT)) (-3250 ((|#3| $) 50 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3253 (((-85) $) 47 T ELT)) (-3249 ((|#4| $) 49 T ELT)) (-3248 ((|#5| $) 51 T ELT)) (-3261 (((-85) $ $) 41 T ELT)) (-3794 (($ $ (-483)) 62 T ELT) (($ $ (-583 (-483))) 64 T ELT)) (-3252 (((-583 $) $) 27 T ELT)) (-3966 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-583 $)) 52 T ELT)) (-3940 (((-772) $) 28 T ELT)) (-3246 (($ $) 26 T ELT)) (-3247 (($ $) 58 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3259 (((-85) $) 23 T ELT)) (-3052 (((-85) $ $) 40 T ELT)) (-3951 (((-483) $) 60 T ELT)))
-(((-1016 |#1| |#2| |#3| |#4| |#5|) (-1015 |#1| |#2| |#3| |#4| |#5|) (-1012) (-1012) (-1012) (-1012) (-1012)) (T -1016))
-NIL
-((-3264 (((-85) |#5| |#5|) 44 T ELT)) (-3267 (((-85) |#5| |#5|) 59 T ELT)) (-3272 (((-85) |#5| (-583 |#5|)) 82 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3268 (((-85) (-583 |#4|) (-583 |#4|)) 65 T ELT)) (-3274 (((-85) (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) 70 T ELT)) (-3263 (((-1183)) 32 T ELT)) (-3262 (((-1183) (-1071) (-1071) (-1071)) 28 T ELT)) (-3273 (((-583 |#5|) (-583 |#5|)) 101 T ELT)) (-3275 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|)))) 93 T ELT)) (-3276 (((-583 (-2 (|:| -3261 (-583 |#4|)) (|:| -1597 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-85) (-85)) 123 T ELT)) (-3266 (((-85) |#5| |#5|) 53 T ELT)) (-3271 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3269 (((-85) (-583 |#4|) (-583 |#4|)) 64 T ELT)) (-3270 (((-85) (-583 |#4|) (-583 |#4|)) 66 T ELT)) (-3693 (((-85) (-583 |#4|) (-583 |#4|)) 67 T ELT)) (-3277 (((-3 (-2 (|:| -3261 (-583 |#4|)) (|:| -1597 |#5|) (|:| |ineq| (-583 |#4|))) #1#) (-583 |#4|) |#5| (-583 |#4|) (-85) (-85) (-85) (-85) (-85)) 118 T ELT)) (-3265 (((-583 |#5|) (-583 |#5|)) 49 T ELT)))
-(((-1017 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3262 ((-1183) (-1071) (-1071) (-1071))) (-15 -3263 ((-1183))) (-15 -3264 ((-85) |#5| |#5|)) (-15 -3265 ((-583 |#5|) (-583 |#5|))) (-15 -3266 ((-85) |#5| |#5|)) (-15 -3267 ((-85) |#5| |#5|)) (-15 -3268 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3269 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3270 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3693 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3271 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3272 ((-85) |#5| |#5|)) (-15 -3272 ((-85) |#5| (-583 |#5|))) (-15 -3273 ((-583 |#5|) (-583 |#5|))) (-15 -3274 ((-85) (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|)))) (-15 -3275 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) (-15 -3276 ((-583 (-2 (|:| -3261 (-583 |#4|)) (|:| -1597 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-85) (-85))) (-15 -3277 ((-3 (-2 (|:| -3261 (-583 |#4|)) (|:| -1597 |#5|) (|:| |ineq| (-583 |#4|))) #1#) (-583 |#4|) |#5| (-583 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-389) (-717) (-756) (-976 |#1| |#2| |#3|) (-982 |#1| |#2| |#3| |#4|)) (T -1017))
-((-3277 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-976 *6 *7 *8)) (-5 *2 (-2 (|:| -3261 (-583 *9)) (|:| -1597 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-1017 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-982 *6 *7 *8 *9)))) (-3276 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-85)) (-4 *10 (-982 *6 *7 *8 *9)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-976 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -3261 (-583 *9)) (|:| -1597 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-1017 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) (-3275 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -1597 *7)))) (-4 *6 (-976 *3 *4 *5)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1017 *3 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1597 *8))) (-4 *7 (-976 *4 *5 *6)) (-4 *8 (-982 *4 *5 *6 *7)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *8)))) (-3273 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *1 (-1017 *3 *4 *5 *6 *7)))) (-3272 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-982 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1017 *5 *6 *7 *8 *3)))) (-3272 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-3271 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-3693 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-3270 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-3269 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-3268 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-3267 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-3266 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-3265 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *1 (-1017 *3 *4 *5 *6 *7)))) (-3264 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))) (-3263 (*1 *2) (-12 (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-1183)) (-5 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))) (-3262 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1071)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-1017 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))))
-((-3292 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#5|) 106 T ELT)) (-3282 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) |#4| |#4| |#5|) 79 T ELT)) (-3285 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#4| |#5|) 100 T ELT)) (-3287 (((-583 |#5|) |#4| |#5|) 122 T ELT)) (-3289 (((-583 |#5|) |#4| |#5|) 129 T ELT)) (-3291 (((-583 |#5|) |#4| |#5|) 130 T ELT)) (-3286 (((-583 (-2 (|:| |val| (-85)) (|:| -1597 |#5|))) |#4| |#5|) 107 T ELT)) (-3288 (((-583 (-2 (|:| |val| (-85)) (|:| -1597 |#5|))) |#4| |#5|) 128 T ELT)) (-3290 (((-583 (-2 (|:| |val| (-85)) (|:| -1597 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3283 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) |#3| (-85)) 91 T ELT) (((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3284 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#4| |#5|) 86 T ELT)) (-3281 (((-1183)) 36 T ELT)) (-3279 (((-1183)) 25 T ELT)) (-3280 (((-1183) (-1071) (-1071) (-1071)) 32 T ELT)) (-3278 (((-1183) (-1071) (-1071) (-1071)) 21 T ELT)))
-(((-1018 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3278 ((-1183) (-1071) (-1071) (-1071))) (-15 -3279 ((-1183))) (-15 -3280 ((-1183) (-1071) (-1071) (-1071))) (-15 -3281 ((-1183))) (-15 -3282 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) |#4| |#4| |#5|)) (-15 -3283 ((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3283 ((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) |#3| (-85))) (-15 -3284 ((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#4| |#5|)) (-15 -3285 ((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#4| |#5|)) (-15 -3290 ((-85) |#4| |#5|)) (-15 -3286 ((-583 (-2 (|:| |val| (-85)) (|:| -1597 |#5|))) |#4| |#5|)) (-15 -3287 ((-583 |#5|) |#4| |#5|)) (-15 -3288 ((-583 (-2 (|:| |val| (-85)) (|:| -1597 |#5|))) |#4| |#5|)) (-15 -3289 ((-583 |#5|) |#4| |#5|)) (-15 -3290 ((-583 (-2 (|:| |val| (-85)) (|:| -1597 |#5|))) |#4| |#5|)) (-15 -3291 ((-583 |#5|) |#4| |#5|)) (-15 -3292 ((-583 (-2 (|:| |val| |#4|) (|:| -1597 |#5|))) |#4| |#5|))) (-389) (-717) (-756) (-976 |#1| |#2| |#3|) (-982 |#1| |#2| |#3| |#4|)) (T -1018))
-((-3292 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4)))) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3291 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3290 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1597 *4)))) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3289 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3288 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1597 *4)))) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3287 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3286 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1597 *4)))) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3290 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3285 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4)))) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3284 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4)))) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3283 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1597 *9)))) (-5 *5 (-85)) (-4 *8 (-976 *6 *7 *4)) (-4 *9 (-982 *6 *7 *4 *8)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *4 (-756)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -1597 *9)))) (-5 *1 (-1018 *6 *7 *4 *8 *9)))) (-3283 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-976 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4)))) (-5 *1 (-1018 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3)))) (-3282 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))) (-3281 (*1 *2) (-12 (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-1183)) (-5 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))) (-3280 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1071)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))) (-3279 (*1 *2) (-12 (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-1183)) (-5 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))) (-3278 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1071)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-982 *4 *5 *6 *7)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3675 (((-583 (-2 (|:| -3855 $) (|:| -1699 (-583 |#4|)))) (-583 |#4|)) 90 T ELT)) (-3676 (((-583 $) (-583 |#4|)) 91 T ELT) (((-583 $) (-583 |#4|) (-85)) 118 T ELT)) (-3077 (((-583 |#3|) $) 37 T ELT)) (-2904 (((-85) $) 30 T ELT)) (-2895 (((-85) $) 21 (|has| |#1| (-494)) ELT)) (-3687 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3682 ((|#4| |#4| $) 97 T ELT)) (-3769 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 $))) |#4| $) 133 T ELT)) (-2905 (((-2 (|:| |under| $) (|:| -3125 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3704 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3989)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3718 (($) 46 T CONST)) (-2900 (((-85) $) 26 (|has| |#1| (-494)) ELT)) (-2902 (((-85) $ $) 28 (|has| |#1| (-494)) ELT)) (-2901 (((-85) $ $) 27 (|has| |#1| (-494)) ELT)) (-2903 (((-85) $) 29 (|has| |#1| (-494)) ELT)) (-3683 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2896 (((-583 |#4|) (-583 |#4|) $) 22 (|has| |#1| (-494)) ELT)) (-2897 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-494)) ELT)) (-3152 (((-3 $ "failed") (-583 |#4|)) 40 T ELT)) (-3151 (($ (-583 |#4|)) 39 T ELT)) (-3793 (((-3 $ #1#) $) 87 T ELT)) (-3679 ((|#4| |#4| $) 94 T ELT)) (-1350 (($ $) 69 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3400 (($ |#4| $) 68 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3989)) ELT)) (-2898 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-494)) ELT)) (-3688 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3677 ((|#4| |#4| $) 92 T ELT)) (-3836 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3989)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3989)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3690 (((-2 (|:| -3855 (-583 |#4|)) (|:| -1699 (-583 |#4|))) $) 110 T ELT)) (-3192 (((-85) |#4| $) 143 T ELT)) (-3190 (((-85) |#4| $) 140 T ELT)) (-3193 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-2885 (((-583 |#4|) $) 53 (|has| $ (-6 -3989)) ELT)) (-3689 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3175 ((|#3| $) 38 T ELT)) (-2604 (((-583 |#4|) $) 54 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2910 (((-583 |#3|) $) 36 T ELT)) (-2909 (((-85) |#3| $) 35 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3186 (((-3 |#4| (-583 $)) |#4| |#4| $) 135 T ELT)) (-3185 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 $))) |#4| |#4| $) 134 T ELT)) (-3792 (((-3 |#4| #1#) $) 88 T ELT)) (-3187 (((-583 $) |#4| $) 136 T ELT)) (-3189 (((-3 (-85) (-583 $)) |#4| $) 139 T ELT)) (-3188 (((-583 (-2 (|:| |val| (-85)) (|:| -1597 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3233 (((-583 $) |#4| $) 132 T ELT) (((-583 $) (-583 |#4|) $) 131 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 130 T ELT) (((-583 $) |#4| (-583 $)) 129 T ELT)) (-3434 (($ |#4| $) 124 T ELT) (($ (-583 |#4|) $) 123 T ELT)) (-3691 (((-583 |#4|) $) 112 T ELT)) (-3685 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3680 ((|#4| |#4| $) 95 T ELT)) (-3693 (((-85) $ $) 115 T ELT)) (-2899 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-494)) ELT)) (-3686 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3681 ((|#4| |#4| $) 96 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3795 (((-3 |#4| #1#) $) 89 T ELT)) (-1351 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3673 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3763 (($ $ |#4|) 82 T ELT) (((-583 $) |#4| $) 122 T ELT) (((-583 $) |#4| (-583 $)) 121 T ELT) (((-583 $) (-583 |#4|) $) 120 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 119 T ELT)) (-1944 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 |#4|) (-583 |#4|)) 60 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-248 |#4|)) 58 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-583 (-248 |#4|))) 57 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT)) (-1219 (((-85) $ $) 42 T ELT)) (-3397 (((-85) $) 45 T ELT)) (-3559 (($) 44 T ELT)) (-3942 (((-694) $) 111 T ELT)) (-1943 (((-694) |#4| $) 55 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) (((-694) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) 43 T ELT)) (-3966 (((-472) $) 70 (|has| |#4| (-553 (-472))) ELT)) (-3524 (($ (-583 |#4|)) 61 T ELT)) (-2906 (($ $ |#3|) 32 T ELT)) (-2908 (($ $ |#3|) 34 T ELT)) (-3678 (($ $) 93 T ELT)) (-2907 (($ $ |#3|) 33 T ELT)) (-3940 (((-772) $) 13 T ELT) (((-583 |#4|) $) 41 T ELT)) (-3672 (((-694) $) 81 (|has| |#3| (-317)) ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3692 (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3684 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) 103 T ELT)) (-3184 (((-583 $) |#4| $) 128 T ELT) (((-583 $) |#4| (-583 $)) 127 T ELT) (((-583 $) (-583 |#4|) $) 126 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 125 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3989)) ELT)) (-3674 (((-583 |#3|) $) 86 T ELT)) (-3191 (((-85) |#4| $) 142 T ELT)) (-3927 (((-85) |#3| $) 85 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3951 (((-694) $) 47 (|has| $ (-6 -3989)) ELT)))
-(((-1019 |#1| |#2| |#3| |#4|) (-113) (-389) (-717) (-756) (-976 |t#1| |t#2| |t#3|)) (T -1019))
-NIL
-(-13 (-982 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-472)) |has| |#4| (-553 (-472))) ((-259 |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ((-426 |#4|) . T) ((-452 |#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ((-13) . T) ((-889 |#1| |#2| |#3| |#4|) . T) ((-982 |#1| |#2| |#3| |#4|) . T) ((-1012) . T) ((-1122 |#1| |#2| |#3| |#4|) . T) ((-1127) . T))
-((-3303 (((-583 (-483)) (-483) (-483) (-483)) 40 T ELT)) (-3302 (((-583 (-483)) (-483) (-483) (-483)) 30 T ELT)) (-3301 (((-583 (-483)) (-483) (-483) (-483)) 35 T ELT)) (-3300 (((-483) (-483) (-483)) 22 T ELT)) (-3299 (((-1177 (-483)) (-583 (-483)) (-1177 (-483)) (-483)) 78 T ELT) (((-1177 (-483)) (-1177 (-483)) (-1177 (-483)) (-483)) 73 T ELT)) (-3298 (((-583 (-483)) (-583 (-830)) (-583 (-483)) (-85)) 56 T ELT)) (-3297 (((-630 (-483)) (-583 (-483)) (-583 (-483)) (-630 (-483))) 77 T ELT)) (-3296 (((-630 (-483)) (-583 (-830)) (-583 (-483))) 61 T ELT)) (-3295 (((-583 (-630 (-483))) (-583 (-830))) 66 T ELT)) (-3294 (((-583 (-483)) (-583 (-483)) (-583 (-483)) (-630 (-483))) 81 T ELT)) (-3293 (((-630 (-483)) (-583 (-483)) (-583 (-483)) (-583 (-483))) 91 T ELT)))
-(((-1020) (-10 -7 (-15 -3293 ((-630 (-483)) (-583 (-483)) (-583 (-483)) (-583 (-483)))) (-15 -3294 ((-583 (-483)) (-583 (-483)) (-583 (-483)) (-630 (-483)))) (-15 -3295 ((-583 (-630 (-483))) (-583 (-830)))) (-15 -3296 ((-630 (-483)) (-583 (-830)) (-583 (-483)))) (-15 -3297 ((-630 (-483)) (-583 (-483)) (-583 (-483)) (-630 (-483)))) (-15 -3298 ((-583 (-483)) (-583 (-830)) (-583 (-483)) (-85))) (-15 -3299 ((-1177 (-483)) (-1177 (-483)) (-1177 (-483)) (-483))) (-15 -3299 ((-1177 (-483)) (-583 (-483)) (-1177 (-483)) (-483))) (-15 -3300 ((-483) (-483) (-483))) (-15 -3301 ((-583 (-483)) (-483) (-483) (-483))) (-15 -3302 ((-583 (-483)) (-483) (-483) (-483))) (-15 -3303 ((-583 (-483)) (-483) (-483) (-483))))) (T -1020))
-((-3303 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-1020)) (-5 *3 (-483)))) (-3302 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-1020)) (-5 *3 (-483)))) (-3301 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-1020)) (-5 *3 (-483)))) (-3300 (*1 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-1020)))) (-3299 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1177 (-483))) (-5 *3 (-583 (-483))) (-5 *4 (-483)) (-5 *1 (-1020)))) (-3299 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1177 (-483))) (-5 *3 (-483)) (-5 *1 (-1020)))) (-3298 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-583 (-483))) (-5 *3 (-583 (-830))) (-5 *4 (-85)) (-5 *1 (-1020)))) (-3297 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-630 (-483))) (-5 *3 (-583 (-483))) (-5 *1 (-1020)))) (-3296 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-830))) (-5 *4 (-583 (-483))) (-5 *2 (-630 (-483))) (-5 *1 (-1020)))) (-3295 (*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-583 (-630 (-483)))) (-5 *1 (-1020)))) (-3294 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 (-483))) (-5 *3 (-630 (-483))) (-5 *1 (-1020)))) (-3293 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-630 (-483))) (-5 *1 (-1020)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3304 (($ (-1 |#1| |#1| |#1|)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3794 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-1021 |#1|) (-13 (-1022 |#1|) (-1012) (-10 -8 (-15 -3304 ($ (-1 |#1| |#1| |#1|))))) (-72)) (T -1021))
-((-3304 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-1021 *3)))))
-((-3794 ((|#1| $ |#1| |#1|) 6 T ELT)))
-(((-1022 |#1|) (-113) (-72)) (T -1022))
-NIL
-(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|) (|:| |y| |t#1|) (|:| |z| |t#1|)) (-3052 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))))))
-(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1127) . T))
-((** (($ $ (-830)) 10 T ELT)))
-(((-1023 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-830)))) (-1024)) (T -1023))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (** (($ $ (-830)) 17 T ELT)) (* (($ $ $) 18 T ELT)))
-(((-1024) (-113)) (T -1024))
-((* (*1 *1 *1 *1) (-4 *1 (-1024))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1024)) (-5 *2 (-830)))))
-(-13 (-1012) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-830)))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-3183 (((-85) $) NIL (|has| |#3| (-23)) ELT)) (-3701 (($ (-830)) NIL (|has| |#3| (-961)) ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-2479 (($ $ $) NIL (|has| |#3| (-717)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL (|has| |#3| (-104)) ELT)) (-3131 (((-694)) NIL (|has| |#3| (-317)) ELT)) (-3782 ((|#3| $ (-483) |#3|) NIL (|has| $ (-6 -3990)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL (-12 (|has| |#3| (-950 (-483))) (|has| |#3| (-1012))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (-12 (|has| |#3| (-950 (-347 (-483)))) (|has| |#3| (-1012))) ELT) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1012)) ELT)) (-3151 (((-483) $) NIL (-12 (|has| |#3| (-950 (-483))) (|has| |#3| (-1012))) ELT) (((-347 (-483)) $) NIL (-12 (|has| |#3| (-950 (-347 (-483)))) (|has| |#3| (-1012))) ELT) ((|#3| $) NIL (|has| |#3| (-1012)) ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (-12 (|has| |#3| (-580 (-483))) (|has| |#3| (-961))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (-12 (|has| |#3| (-580 (-483))) (|has| |#3| (-961))) ELT) (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1177 |#3|))) (-630 $) (-1177 $)) NIL (|has| |#3| (-961)) ELT) (((-630 |#3|) (-630 $)) NIL (|has| |#3| (-961)) ELT)) (-3461 (((-3 $ #1#) $) NIL (|has| |#3| (-961)) ELT)) (-2990 (($) NIL (|has| |#3| (-317)) ELT)) (-1573 ((|#3| $ (-483) |#3|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#3| $ (-483)) 12 T ELT)) (-3181 (((-85) $) NIL (|has| |#3| (-717)) ELT)) (-2885 (((-583 |#3|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2406 (((-85) $) NIL (|has| |#3| (-961)) ELT)) (-2196 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| |#3| (-756)) ELT)) (-2604 (((-583 |#3|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#3| (-1012))) ELT)) (-2197 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#3| (-756)) ELT)) (-1946 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2006 (((-830) $) NIL (|has| |#3| (-317)) ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (-12 (|has| |#3| (-580 (-483))) (|has| |#3| (-961))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (-12 (|has| |#3| (-580 (-483))) (|has| |#3| (-961))) ELT) (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1177 |#3|))) (-1177 $) $) NIL (|has| |#3| (-961)) ELT) (((-630 |#3|) (-1177 $)) NIL (|has| |#3| (-961)) ELT)) (-3237 (((-1071) $) NIL (|has| |#3| (-1012)) ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-2396 (($ (-830)) NIL (|has| |#3| (-317)) ELT)) (-3238 (((-1032) $) NIL (|has| |#3| (-1012)) ELT)) (-3795 ((|#3| $) NIL (|has| (-483) (-756)) ELT)) (-2195 (($ $ |#3|) NIL (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#3|))) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ (-248 |#3|)) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ELT) (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#3| (-1012))) ELT)) (-2201 (((-583 |#3|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#3| $ (-483) |#3|) NIL T ELT) ((|#3| $ (-483)) NIL T ELT)) (-3830 ((|#3| $ $) NIL (|has| |#3| (-961)) ELT)) (-1465 (($ (-1177 |#3|)) NIL T ELT)) (-3905 (((-107)) NIL (|has| |#3| (-311)) ELT)) (-3752 (($ $ (-694)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-961))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-961))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961))) ELT) (($ $ (-1088)) NIL (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961)) ELT) (($ $ (-1 |#3| |#3|) (-694)) NIL (|has| |#3| (-961)) ELT)) (-1943 (((-694) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#3| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#3| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3940 (((-1177 |#3|) $) NIL T ELT) (($ (-483)) NIL (OR (-12 (|has| |#3| (-950 (-483))) (|has| |#3| (-1012))) (|has| |#3| (-961))) ELT) (($ (-347 (-483))) NIL (-12 (|has| |#3| (-950 (-347 (-483)))) (|has| |#3| (-1012))) ELT) (($ |#3|) NIL (|has| |#3| (-1012)) ELT) (((-772) $) NIL (|has| |#3| (-552 (-772))) ELT)) (-3121 (((-694)) NIL (|has| |#3| (-961)) CONST)) (-1262 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2656 (($) NIL (|has| |#3| (-23)) CONST)) (-2662 (($) NIL (|has| |#3| (-961)) CONST)) (-2665 (($ $ (-694)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-961))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-961))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961))) ELT) (($ $ (-1088)) NIL (-12 (|has| |#3| (-811 (-1088))) (|has| |#3| (-961))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961)) ELT) (($ $ (-1 |#3| |#3|) (-694)) NIL (|has| |#3| (-961)) ELT)) (-2562 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-2680 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-2681 (((-85) $ $) 24 (|has| |#3| (-756)) ELT)) (-3943 (($ $ |#3|) NIL (|has| |#3| (-311)) ELT)) (-3831 (($ $ $) NIL (|has| |#3| (-21)) ELT) (($ $) NIL (|has| |#3| (-21)) ELT)) (-3833 (($ $ $) NIL (|has| |#3| (-25)) ELT)) (** (($ $ (-694)) NIL (|has| |#3| (-961)) ELT) (($ $ (-830)) NIL (|has| |#3| (-961)) ELT)) (* (($ $ $) NIL (|has| |#3| (-961)) ELT) (($ $ |#3|) NIL (|has| |#3| (-663)) ELT) (($ |#3| $) NIL (|has| |#3| (-663)) ELT) (($ (-483) $) NIL (|has| |#3| (-21)) ELT) (($ (-694) $) NIL (|has| |#3| (-23)) ELT) (($ (-830) $) NIL (|has| |#3| (-25)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-1025 |#1| |#2| |#3|) (-196 |#1| |#3|) (-694) (-694) (-717)) (T -1025))
-NIL
-((-3305 (((-583 (-1146 |#2| |#1|)) (-1146 |#2| |#1|) (-1146 |#2| |#1|)) 50 T ELT)) (-3311 (((-483) (-1146 |#2| |#1|)) 95 (|has| |#1| (-389)) ELT)) (-3309 (((-483) (-1146 |#2| |#1|)) 79 T ELT)) (-3306 (((-583 (-1146 |#2| |#1|)) (-1146 |#2| |#1|) (-1146 |#2| |#1|)) 58 T ELT)) (-3310 (((-483) (-1146 |#2| |#1|) (-1146 |#2| |#1|)) 81 (|has| |#1| (-389)) ELT)) (-3307 (((-583 |#1|) (-1146 |#2| |#1|) (-1146 |#2| |#1|)) 61 T ELT)) (-3308 (((-483) (-1146 |#2| |#1|) (-1146 |#2| |#1|)) 78 T ELT)))
-(((-1026 |#1| |#2|) (-10 -7 (-15 -3305 ((-583 (-1146 |#2| |#1|)) (-1146 |#2| |#1|) (-1146 |#2| |#1|))) (-15 -3306 ((-583 (-1146 |#2| |#1|)) (-1146 |#2| |#1|) (-1146 |#2| |#1|))) (-15 -3307 ((-583 |#1|) (-1146 |#2| |#1|) (-1146 |#2| |#1|))) (-15 -3308 ((-483) (-1146 |#2| |#1|) (-1146 |#2| |#1|))) (-15 -3309 ((-483) (-1146 |#2| |#1|))) (IF (|has| |#1| (-389)) (PROGN (-15 -3310 ((-483) (-1146 |#2| |#1|) (-1146 |#2| |#1|))) (-15 -3311 ((-483) (-1146 |#2| |#1|)))) |%noBranch|)) (-740) (-1088)) (T -1026))
-((-3311 (*1 *2 *3) (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-389)) (-4 *4 (-740)) (-14 *5 (-1088)) (-5 *2 (-483)) (-5 *1 (-1026 *4 *5)))) (-3310 (*1 *2 *3 *3) (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-389)) (-4 *4 (-740)) (-14 *5 (-1088)) (-5 *2 (-483)) (-5 *1 (-1026 *4 *5)))) (-3309 (*1 *2 *3) (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1088)) (-5 *2 (-483)) (-5 *1 (-1026 *4 *5)))) (-3308 (*1 *2 *3 *3) (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1088)) (-5 *2 (-483)) (-5 *1 (-1026 *4 *5)))) (-3307 (*1 *2 *3 *3) (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1088)) (-5 *2 (-583 *4)) (-5 *1 (-1026 *4 *5)))) (-3306 (*1 *2 *3 *3) (-12 (-4 *4 (-740)) (-14 *5 (-1088)) (-5 *2 (-583 (-1146 *5 *4))) (-5 *1 (-1026 *4 *5)) (-5 *3 (-1146 *5 *4)))) (-3305 (*1 *2 *3 *3) (-12 (-4 *4 (-740)) (-14 *5 (-1088)) (-5 *2 (-583 (-1146 *5 *4))) (-5 *1 (-1026 *4 *5)) (-5 *3 (-1146 *5 *4)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3313 (((-1093) $) 12 T ELT)) (-3312 (((-583 (-1093)) $) 14 T ELT)) (-3314 (($ (-583 (-1093)) (-1093)) 10 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 29 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 17 T ELT)))
-(((-1027) (-13 (-1012) (-10 -8 (-15 -3314 ($ (-583 (-1093)) (-1093))) (-15 -3313 ((-1093) $)) (-15 -3312 ((-583 (-1093)) $))))) (T -1027))
-((-3314 (*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1093))) (-5 *3 (-1093)) (-5 *1 (-1027)))) (-3313 (*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-1027)))) (-3312 (*1 *2 *1) (-12 (-5 *2 (-583 (-1093))) (-5 *1 (-1027)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3315 (($ (-444) (-1027)) 14 T ELT)) (-3314 (((-1027) $) 20 T ELT)) (-3536 (((-444) $) 17 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 27 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-1028) (-13 (-994) (-10 -8 (-15 -3315 ($ (-444) (-1027))) (-15 -3536 ((-444) $)) (-15 -3314 ((-1027) $))))) (T -1028))
-((-3315 (*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-1027)) (-5 *1 (-1028)))) (-3536 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-1028)))) (-3314 (*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-1028)))))
-((-3617 (((-3 (-483) #1="failed") |#2| (-1088) |#2| (-1071)) 19 T ELT) (((-3 (-483) #1#) |#2| (-1088) (-750 |#2|)) 17 T ELT) (((-3 (-483) #1#) |#2|) 60 T ELT)))
-(((-1029 |#1| |#2|) (-10 -7 (-15 -3617 ((-3 (-483) #1="failed") |#2|)) (-15 -3617 ((-3 (-483) #1#) |#2| (-1088) (-750 |#2|))) (-15 -3617 ((-3 (-483) #1#) |#2| (-1088) |#2| (-1071)))) (-13 (-494) (-950 (-483)) (-580 (-483)) (-389)) (-13 (-27) (-1113) (-361 |#1|))) (T -1029))
-((-3617 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-1071)) (-4 *6 (-13 (-494) (-950 *2) (-580 *2) (-389))) (-5 *2 (-483)) (-5 *1 (-1029 *6 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *6))))) (-3617 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-750 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *6))) (-4 *6 (-13 (-494) (-950 *2) (-580 *2) (-389))) (-5 *2 (-483)) (-5 *1 (-1029 *6 *3)))) (-3617 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-494) (-950 *2) (-580 *2) (-389))) (-5 *2 (-483)) (-5 *1 (-1029 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *4))))))
-((-3617 (((-3 (-483) #1="failed") (-347 (-857 |#1|)) (-1088) (-347 (-857 |#1|)) (-1071)) 38 T ELT) (((-3 (-483) #1#) (-347 (-857 |#1|)) (-1088) (-750 (-347 (-857 |#1|)))) 33 T ELT) (((-3 (-483) #1#) (-347 (-857 |#1|))) 14 T ELT)))
-(((-1030 |#1|) (-10 -7 (-15 -3617 ((-3 (-483) #1="failed") (-347 (-857 |#1|)))) (-15 -3617 ((-3 (-483) #1#) (-347 (-857 |#1|)) (-1088) (-750 (-347 (-857 |#1|))))) (-15 -3617 ((-3 (-483) #1#) (-347 (-857 |#1|)) (-1088) (-347 (-857 |#1|)) (-1071)))) (-389)) (T -1030))
-((-3617 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-347 (-857 *6))) (-5 *4 (-1088)) (-5 *5 (-1071)) (-4 *6 (-389)) (-5 *2 (-483)) (-5 *1 (-1030 *6)))) (-3617 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-750 (-347 (-857 *6)))) (-5 *3 (-347 (-857 *6))) (-4 *6 (-389)) (-5 *2 (-483)) (-5 *1 (-1030 *6)))) (-3617 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-389)) (-5 *2 (-483)) (-5 *1 (-1030 *4)))))
-((-3643 (((-264 (-483)) (-48)) 12 T ELT)))
-(((-1031) (-10 -7 (-15 -3643 ((-264 (-483)) (-48))))) (T -1031))
-((-3643 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-264 (-483))) (-5 *1 (-1031)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-2309 (($ $) 22 T ELT)) (-3183 (((-85) $) 49 T ELT)) (-3316 (($ $ $) 28 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 75 T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-2043 (($ $ $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2038 (($ $ $ $) 59 T ELT)) (-3769 (($ $) NIL T ELT)) (-3965 (((-345 $) $) NIL T ELT)) (-1605 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) 61 T ELT)) (-3617 (((-483) $) NIL T ELT)) (-2437 (($ $ $) 56 T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL T ELT)) (-3151 (((-483) $) NIL T ELT)) (-2560 (($ $ $) 42 T ELT)) (-2275 (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 70 T ELT) (((-630 (-483)) (-630 $)) 8 T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3020 (((-3 (-347 (-483)) #1#) $) NIL T ELT)) (-3019 (((-85) $) NIL T ELT)) (-3018 (((-347 (-483)) $) NIL T ELT)) (-2990 (($) 73 T ELT) (($ $) 72 T ELT)) (-2559 (($ $ $) 41 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL T ELT)) (-3717 (((-85) $) NIL T ELT)) (-2036 (($ $ $ $) NIL T ELT)) (-2044 (($ $ $) 71 T ELT)) (-3181 (((-85) $) 76 T ELT)) (-1366 (($ $ $) NIL T ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL T ELT)) (-2557 (($ $ $) 27 T ELT)) (-2406 (((-85) $) 50 T ELT)) (-2669 (((-85) $) 47 T ELT)) (-2556 (($ $) 23 T ELT)) (-3439 (((-632 $) $) NIL T ELT)) (-3182 (((-85) $) 60 T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2037 (($ $ $ $) 57 T ELT)) (-2527 (($ $ $) 52 T ELT) (($) 19 T CONST)) (-2853 (($ $ $) 51 T ELT) (($) 18 T CONST)) (-2040 (($ $) NIL T ELT)) (-2006 (((-830) $) 66 T ELT)) (-3827 (($ $) 55 T ELT)) (-2276 (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL T ELT) (((-630 (-483)) (-1177 $)) NIL T ELT)) (-1888 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2035 (($ $ $) NIL T ELT)) (-3440 (($) NIL T CONST)) (-2396 (($ (-830)) 65 T ELT)) (-2042 (($ $) 33 T ELT)) (-3238 (((-1032) $) 54 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL T ELT)) (-3139 (($ $ $) 45 T ELT) (($ (-583 $)) NIL T ELT)) (-1364 (($ $) NIL T ELT)) (-3726 (((-345 $) $) NIL T ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2670 (((-85) $) 48 T ELT)) (-1604 (((-694) $) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 44 T ELT)) (-3752 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2041 (($ $) 34 T ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-483) $) 12 T ELT) (((-472) $) NIL T ELT) (((-800 (-483)) $) NIL T ELT) (((-327) $) NIL T ELT) (((-179) $) NIL T ELT)) (-3940 (((-772) $) 11 T ELT) (($ (-483)) 13 T ELT) (($ $) NIL T ELT) (($ (-483)) 13 T ELT)) (-3121 (((-694)) NIL T CONST)) (-2045 (((-85) $ $) NIL T ELT)) (-3097 (($ $ $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2690 (($) 17 T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-2558 (($ $ $) 26 T ELT)) (-2039 (($ $ $ $) 58 T ELT)) (-3377 (($ $) 46 T ELT)) (-2307 (($ $ $) 25 T ELT)) (-2656 (($) 15 T CONST)) (-2662 (($) 16 T CONST)) (-2665 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2562 (((-85) $ $) 32 T ELT)) (-2563 (((-85) $ $) 30 T ELT)) (-3052 (((-85) $ $) 21 T ELT)) (-2680 (((-85) $ $) 31 T ELT)) (-2681 (((-85) $ $) 29 T ELT)) (-2308 (($ $ $) 24 T ELT)) (-3831 (($ $) 35 T ELT) (($ $ $) 37 T ELT)) (-3833 (($ $ $) 36 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 40 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 14 T ELT) (($ $ $) 38 T ELT) (($ (-483) $) 14 T ELT)))
-(((-1032) (-13 (-482) (-752) (-84) (-10 -8 (-6 -3976) (-6 -3981) (-6 -3977) (-15 -3316 ($ $ $))))) (T -1032))
-((-3316 (*1 *1 *1 *1) (-5 *1 (-1032))))
-((-483) (|%ismall?| |#1|))
-((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3318 ((|#1| $) 48 T ELT)) (-3718 (($) 7 T CONST)) (-3320 ((|#1| |#1| $) 50 T ELT)) (-3319 ((|#1| $) 49 T ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-1271 ((|#1| $) 43 T ELT)) (-3603 (($ |#1| $) 44 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-1272 ((|#1| $) 45 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3317 (((-694) $) 47 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1273 (($ (-583 |#1|)) 46 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-1033 |#1|) (-113) (-1127)) (T -1033))
-((-3320 (*1 *2 *2 *1) (-12 (-4 *1 (-1033 *2)) (-4 *2 (-1127)))) (-3319 (*1 *2 *1) (-12 (-4 *1 (-1033 *2)) (-4 *2 (-1127)))) (-3318 (*1 *2 *1) (-12 (-4 *1 (-1033 *2)) (-4 *2 (-1127)))) (-3317 (*1 *2 *1) (-12 (-4 *1 (-1033 *3)) (-4 *3 (-1127)) (-5 *2 (-694)))))
-(-13 (-76 |t#1|) (-10 -8 (-6 -3989) (-15 -3320 (|t#1| |t#1| $)) (-15 -3319 (|t#1| $)) (-15 -3318 (|t#1| $)) (-15 -3317 ((-694) $))))
-(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T))
-((-3324 ((|#3| $) 87 T ELT)) (-3152 (((-3 (-483) #1="failed") $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 50 T ELT)) (-3151 (((-483) $) NIL T ELT) (((-347 (-483)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL T ELT) (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1177 |#3|))) (-630 $) (-1177 $)) 84 T ELT) (((-630 |#3|) (-630 $)) 76 T ELT)) (-3752 (($ $ (-1 |#3| |#3|) (-694)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1088)) NIL T ELT) (($ $ (-583 (-1088))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT)) (-3323 ((|#3| $) 89 T ELT)) (-3325 ((|#4| $) 43 T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 24 T ELT) (($ $ (-483)) 95 T ELT)))
-(((-1034 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3752 (|#1| |#1| (-583 (-1088)) (-583 (-694)))) (-15 -3752 (|#1| |#1| (-1088) (-694))) (-15 -3752 (|#1| |#1| (-583 (-1088)))) (-15 -3752 (|#1| |#1| (-1088))) (-15 -3752 (|#1| |#1| (-694))) (-15 -3752 (|#1| |#1|)) (-15 ** (|#1| |#1| (-483))) (-15 -3323 (|#3| |#1|)) (-15 -3324 (|#3| |#1|)) (-15 -3325 (|#4| |#1|)) (-15 -2275 ((-630 |#3|) (-630 |#1|))) (-15 -2275 ((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1177 |#3|))) (-630 |#1|) (-1177 |#1|))) (-15 -2275 ((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 |#1|) (-1177 |#1|))) (-15 -2275 ((-630 (-483)) (-630 |#1|))) (-15 -3940 (|#1| |#3|)) (-15 -3152 ((-3 |#3| #1="failed") |#1|)) (-15 -3151 (|#3| |#1|)) (-15 -3151 ((-347 (-483)) |#1|)) (-15 -3152 ((-3 (-347 (-483)) #1#) |#1|)) (-15 -3940 (|#1| (-347 (-483)))) (-15 -3151 ((-483) |#1|)) (-15 -3152 ((-3 (-483) #1#) |#1|)) (-15 -3752 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3752 (|#1| |#1| (-1 |#3| |#3|) (-694))) (-15 -3940 (|#1| (-483))) (-15 ** (|#1| |#1| (-694))) (-15 ** (|#1| |#1| (-830))) (-15 -3940 ((-772) |#1|))) (-1035 |#2| |#3| |#4| |#5|) (-694) (-961) (-196 |#2| |#3|) (-196 |#2| |#3|)) (T -1034))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3324 ((|#2| $) 88 T ELT)) (-3116 (((-85) $) 129 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3118 (((-85) $) 127 T ELT)) (-3327 (($ |#2|) 91 T ELT)) (-3718 (($) 22 T CONST)) (-3105 (($ $) 146 (|has| |#2| (-257)) ELT)) (-3107 ((|#3| $ (-483)) 141 T ELT)) (-3152 (((-3 (-483) #1="failed") $) 107 (|has| |#2| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) 104 (|has| |#2| (-950 (-347 (-483)))) ELT) (((-3 |#2| #1#) $) 101 T ELT)) (-3151 (((-483) $) 106 (|has| |#2| (-950 (-483))) ELT) (((-347 (-483)) $) 103 (|has| |#2| (-950 (-347 (-483)))) ELT) ((|#2| $) 102 T ELT)) (-2275 (((-630 (-483)) (-630 $)) 97 (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 96 (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) 95 T ELT) (((-630 |#2|) (-630 $)) 94 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3104 (((-694) $) 147 (|has| |#2| (-494)) ELT)) (-3108 ((|#2| $ (-483) (-483)) 139 T ELT)) (-2885 (((-583 |#2|) $) 115 (|has| $ (-6 -3989)) ELT)) (-2406 (((-85) $) 42 T ELT)) (-3103 (((-694) $) 148 (|has| |#2| (-494)) ELT)) (-3102 (((-583 |#4|) $) 149 (|has| |#2| (-494)) ELT)) (-3110 (((-694) $) 135 T ELT)) (-3109 (((-694) $) 136 T ELT)) (-3321 ((|#2| $) 83 (|has| |#2| (-6 (-3991 #2="*"))) ELT)) (-3114 (((-483) $) 131 T ELT)) (-3112 (((-483) $) 133 T ELT)) (-2604 (((-583 |#2|) $) 114 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#2| $) 112 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3113 (((-483) $) 132 T ELT)) (-3111 (((-483) $) 134 T ELT)) (-3119 (($ (-583 (-583 |#2|))) 126 T ELT)) (-1946 (($ (-1 |#2| |#2|) $) 119 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#2| |#2| |#2|) $ $) 143 T ELT) (($ (-1 |#2| |#2|) $) 120 T ELT)) (-3588 (((-583 (-583 |#2|)) $) 137 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) 99 (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 98 (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) 93 T ELT) (((-630 |#2|) (-1177 $)) 92 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3584 (((-3 $ "failed") $) 82 (|has| |#2| (-311)) ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3460 (((-3 $ "failed") $ |#2|) 144 (|has| |#2| (-494)) ELT)) (-1944 (((-85) (-1 (-85) |#2|) $) 117 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#2|))) 111 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-248 |#2|)) 110 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) 109 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 108 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT)) (-1219 (((-85) $ $) 125 T ELT)) (-3397 (((-85) $) 122 T ELT)) (-3559 (($) 123 T ELT)) (-3794 ((|#2| $ (-483) (-483) |#2|) 140 T ELT) ((|#2| $ (-483) (-483)) 138 T ELT)) (-3752 (($ $ (-1 |#2| |#2|) (-694)) 63 T ELT) (($ $ (-1 |#2| |#2|)) 62 T ELT) (($ $) 53 (|has| |#2| (-189)) ELT) (($ $ (-694)) 51 (|has| |#2| (-189)) ELT) (($ $ (-1088)) 61 (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) 59 (|has| |#2| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) 58 (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 57 (|has| |#2| (-811 (-1088))) ELT)) (-3323 ((|#2| $) 87 T ELT)) (-3326 (($ (-583 |#2|)) 90 T ELT)) (-3117 (((-85) $) 128 T ELT)) (-3325 ((|#3| $) 89 T ELT)) (-3322 ((|#2| $) 84 (|has| |#2| (-6 (-3991 #2#))) ELT)) (-1943 (((-694) (-1 (-85) |#2|) $) 116 (|has| $ (-6 -3989)) ELT) (((-694) |#2| $) 113 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 124 T ELT)) (-3106 ((|#4| $ (-483)) 142 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ (-347 (-483))) 105 (|has| |#2| (-950 (-347 (-483)))) ELT) (($ |#2|) 100 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 118 (|has| $ (-6 -3989)) ELT)) (-3115 (((-85) $) 130 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-1 |#2| |#2|) (-694)) 65 T ELT) (($ $ (-1 |#2| |#2|)) 64 T ELT) (($ $) 52 (|has| |#2| (-189)) ELT) (($ $ (-694)) 50 (|has| |#2| (-189)) ELT) (($ $ (-1088)) 60 (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) 56 (|has| |#2| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) 55 (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 54 (|has| |#2| (-811 (-1088))) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#2|) 145 (|has| |#2| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 81 (|has| |#2| (-311)) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#2|) 151 T ELT) (($ |#2| $) 150 T ELT) ((|#4| $ |#4|) 86 T ELT) ((|#3| |#3| $) 85 T ELT)) (-3951 (((-694) $) 121 (|has| $ (-6 -3989)) ELT)))
-(((-1035 |#1| |#2| |#3| |#4|) (-113) (-694) (-961) (-196 |t#1| |t#2|) (-196 |t#1| |t#2|)) (T -1035))
-((-3327 (*1 *1 *2) (-12 (-4 *2 (-961)) (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)))) (-3326 (*1 *1 *2) (-12 (-5 *2 (-583 *4)) (-4 *4 (-961)) (-4 *1 (-1035 *3 *4 *5 *6)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)))) (-3325 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (-4 *2 (-961)))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (-4 *2 (-961)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1035 *3 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1035 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *2 (-196 *3 *4)) (-4 *5 (-196 *3 *4)))) (-3322 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (|has| *2 (-6 (-3991 #1="*"))) (-4 *2 (-961)))) (-3321 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (|has| *2 (-6 (-3991 #1#))) (-4 *2 (-961)))) (-3584 (*1 *1 *1) (|partial| -12 (-4 *1 (-1035 *2 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-196 *2 *3)) (-4 *5 (-196 *2 *3)) (-4 *3 (-311)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-1035 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)) (-4 *4 (-311)))))
-(-13 (-184 |t#2|) (-82 |t#2| |t#2|) (-965 |t#1| |t#1| |t#2| |t#3| |t#4|) (-352 |t#2|) (-326 |t#2|) (-10 -8 (IF (|has| |t#2| (-146)) (-6 (-654 |t#2|)) |%noBranch|) (-15 -3327 ($ |t#2|)) (-15 -3326 ($ (-583 |t#2|))) (-15 -3325 (|t#3| $)) (-15 -3324 (|t#2| $)) (-15 -3323 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-3991 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3322 (|t#2| $)) (-15 -3321 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-311)) (PROGN (-15 -3584 ((-3 $ "failed") $)) (-15 ** ($ $ (-483)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-3991 #1="*"))) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-555 (-347 (-483))) |has| |#2| (-950 (-347 (-483)))) ((-555 (-483)) . T) ((-555 |#2|) . T) ((-552 (-772)) . T) ((-186 $) OR (|has| |#2| (-189)) (|has| |#2| (-190))) ((-184 |#2|) . T) ((-190) |has| |#2| (-190)) ((-189) OR (|has| |#2| (-189)) (|has| |#2| (-190))) ((-225 |#2|) . T) ((-259 |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ((-326 |#2|) . T) ((-352 |#2|) . T) ((-426 |#2|) . T) ((-452 |#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ((-13) . T) ((-588 (-483)) . T) ((-588 |#2|) . T) ((-588 $) . T) ((-590 (-483)) |has| |#2| (-580 (-483))) ((-590 |#2|) . T) ((-590 $) . T) ((-582 |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-6 (-3991 #1#)))) ((-580 (-483)) |has| |#2| (-580 (-483))) ((-580 |#2|) . T) ((-654 |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-6 (-3991 #1#)))) ((-663) . T) ((-806 $ (-1088)) OR (|has| |#2| (-811 (-1088))) (|has| |#2| (-809 (-1088)))) ((-809 (-1088)) |has| |#2| (-809 (-1088))) ((-811 (-1088)) OR (|has| |#2| (-811 (-1088))) (|has| |#2| (-809 (-1088)))) ((-965 |#1| |#1| |#2| |#3| |#4|) . T) ((-950 (-347 (-483))) |has| |#2| (-950 (-347 (-483)))) ((-950 (-483)) |has| |#2| (-950 (-483))) ((-950 |#2|) . T) ((-963 |#2|) . T) ((-968 |#2|) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T))
-((-3330 ((|#4| |#4|) 81 T ELT)) (-3328 ((|#4| |#4|) 76 T ELT)) (-3332 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2008 (-583 |#3|))) |#4| |#3|) 91 T ELT)) (-3331 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-3329 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT)))
-(((-1036 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3328 (|#4| |#4|)) (-15 -3329 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3330 (|#4| |#4|)) (-15 -3331 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3332 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2008 (-583 |#3|))) |#4| |#3|))) (-257) (-321 |#1|) (-321 |#1|) (-627 |#1| |#2| |#3|)) (T -1036))
-((-3332 (*1 *2 *3 *4) (-12 (-4 *5 (-257)) (-4 *6 (-321 *5)) (-4 *4 (-321 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2008 (-583 *4)))) (-5 *1 (-1036 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) (-3331 (*1 *2 *3) (-12 (-4 *4 (-257)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1036 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3330 (*1 *2 *2) (-12 (-4 *3 (-257)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-1036 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-3329 (*1 *2 *3) (-12 (-4 *4 (-257)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1036 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3328 (*1 *2 *2) (-12 (-4 *3 (-257)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-1036 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 18 T ELT)) (-3077 (((-583 |#2|) $) 174 T ELT)) (-3079 (((-1083 $) $ |#2|) 60 T ELT) (((-1083 |#1|) $) 49 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 116 (|has| |#1| (-494)) ELT)) (-2059 (($ $) 118 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) 120 (|has| |#1| (-494)) ELT)) (-2815 (((-694) $) NIL T ELT) (((-694) $ (-583 |#2|)) 214 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3769 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) 167 T ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3151 ((|#1| $) 165 T ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) ((|#2| $) NIL T ELT)) (-3750 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3953 (($ $) 218 T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) 90 T ELT)) (-3497 (($ $) NIL (|has| |#1| (-389)) ELT) (($ $ |#2|) NIL (|has| |#1| (-389)) ELT)) (-2814 (((-583 $) $) NIL T ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1621 (($ $ |#1| (-468 |#2|) $) NIL T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (-12 (|has| |#1| (-796 (-327))) (|has| |#2| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (-12 (|has| |#1| (-796 (-483))) (|has| |#2| (-796 (-483)))) ELT)) (-2406 (((-85) $) 20 T ELT)) (-2416 (((-694) $) 30 T ELT)) (-3080 (($ (-1083 |#1|) |#2|) 54 T ELT) (($ (-1083 $) |#2|) 71 T ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) 38 T ELT)) (-2889 (($ |#1| (-468 |#2|)) 78 T ELT) (($ $ |#2| (-694)) 58 T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ |#2|) NIL T ELT)) (-2816 (((-468 |#2|) $) 205 T ELT) (((-694) $ |#2|) 206 T ELT) (((-583 (-694)) $ (-583 |#2|)) 207 T ELT)) (-1622 (($ (-1 (-468 |#2|) (-468 |#2|)) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-3078 (((-3 |#2| #1#) $) 177 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-2890 (($ $) 217 T ELT)) (-3169 ((|#1| $) 43 T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2819 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2818 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-2 (|:| |var| |#2|) (|:| -2397 (-694))) #1#) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1794 (((-85) $) 39 T ELT)) (-1793 ((|#1| $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 148 (|has| |#1| (-389)) ELT)) (-3139 (($ (-583 $)) 153 (|has| |#1| (-389)) ELT) (($ $ $) 138 (|has| |#1| (-389)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#1| (-821)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-821)) ELT)) (-3460 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-494)) ELT)) (-3762 (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-583 |#2|) (-583 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-583 |#2|) (-583 $)) 194 T ELT)) (-3751 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3752 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) 216 T ELT)) (-3942 (((-468 |#2|) $) 201 T ELT) (((-694) $ |#2|) 196 T ELT) (((-583 (-694)) $ (-583 |#2|)) 199 T ELT)) (-3966 (((-800 (-327)) $) NIL (-12 (|has| |#1| (-553 (-800 (-327)))) (|has| |#2| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) NIL (-12 (|has| |#1| (-553 (-800 (-483)))) (|has| |#2| (-553 (-800 (-483))))) ELT) (((-472) $) NIL (-12 (|has| |#1| (-553 (-472))) (|has| |#2| (-553 (-472)))) ELT)) (-2813 ((|#1| $) 134 (|has| |#1| (-389)) ELT) (($ $ |#2|) 137 (|has| |#1| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3940 (((-772) $) 159 T ELT) (($ (-483)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-494)) ELT) (($ (-347 (-483))) NIL (OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ELT)) (-3811 (((-583 |#1|) $) 162 T ELT)) (-3671 ((|#1| $ (-468 |#2|)) 80 T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3121 (((-694)) 87 T CONST)) (-1620 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) 123 (|has| |#1| (-494)) ELT)) (-2656 (($) 12 T CONST)) (-2662 (($) 14 T CONST)) (-2665 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3052 (((-85) $ $) 106 T ELT)) (-3943 (($ $ |#1|) 132 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-3833 (($ $ $) 55 T ELT)) (** (($ $ (-830)) 110 T ELT) (($ $ (-694)) 109 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-1037 |#1| |#2|) (-861 |#1| (-468 |#2|) |#2|) (-961) (-756)) (T -1037))
-NIL
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3077 (((-583 |#2|) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3486 (($ $) 149 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) 125 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3033 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3484 (($ $) 145 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) 121 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3488 (($ $) 153 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) 129 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) NIL T CONST)) (-3953 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3808 (((-857 |#1|) $ (-694)) NIL T ELT) (((-857 |#1|) $ (-694) (-694)) NIL T ELT)) (-2888 (((-85) $) NIL T ELT)) (-3621 (($) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3766 (((-694) $ |#2|) NIL T ELT) (((-694) $ |#2| (-694)) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3007 (($ $ (-483)) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ $ (-583 |#2|) (-583 (-468 |#2|))) NIL T ELT) (($ $ |#2| (-468 |#2|)) NIL T ELT) (($ |#1| (-468 |#2|)) NIL T ELT) (($ $ |#2| (-694)) 63 T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3936 (($ $) 119 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3806 (($ $ |#2|) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ |#2| |#1|) 171 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3670 (($ (-1 $) |#2| |#1|) 170 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3763 (($ $ (-694)) 17 T ELT)) (-3460 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-3937 (($ $) 117 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3762 (($ $ |#2| $) 104 T ELT) (($ $ (-583 |#2|) (-583 $)) 99 T ELT) (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT)) (-3752 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) 106 T ELT)) (-3942 (((-468 |#2|) $) NIL T ELT)) (-3333 (((-1 (-1067 |#3|) |#3|) (-583 |#2|) (-583 (-1067 |#3|))) 87 T ELT)) (-3489 (($ $) 155 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) 131 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) 151 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) 127 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) 147 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) 123 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2887 (($ $) 19 T ELT)) (-3940 (((-772) $) 194 T ELT) (($ (-483)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-494)) ELT) (($ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-3671 ((|#1| $ (-468 |#2|)) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) ((|#3| $ (-694)) 43 T ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-3492 (($ $) 161 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) 137 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3490 (($ $) 157 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) 133 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) 165 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) 141 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3495 (($ $) 167 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) 143 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) 163 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) 139 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) 159 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) 135 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2656 (($) 52 T CONST)) (-2662 (($) 62 T CONST)) (-2665 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#1|) 196 (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 66 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 109 (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-347 (-483))) 114 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) 112 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT)))
-(((-1038 |#1| |#2| |#3|) (-13 (-679 |#1| |#2|) (-10 -8 (-15 -3671 (|#3| $ (-694))) (-15 -3940 ($ |#2|)) (-15 -3940 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3333 ((-1 (-1067 |#3|) |#3|) (-583 |#2|) (-583 (-1067 |#3|)))) (IF (|has| |#1| (-38 (-347 (-483)))) (PROGN (-15 -3806 ($ $ |#2| |#1|)) (-15 -3670 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-961) (-756) (-861 |#1| (-468 |#2|) |#2|)) (T -1038))
-((-3671 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *2 (-861 *4 (-468 *5) *5)) (-5 *1 (-1038 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-756)))) (-3940 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *2 (-756)) (-5 *1 (-1038 *3 *2 *4)) (-4 *4 (-861 *3 (-468 *2) *2)))) (-3940 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *4 (-756)) (-5 *1 (-1038 *3 *4 *2)) (-4 *2 (-861 *3 (-468 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-756)) (-5 *1 (-1038 *3 *4 *2)) (-4 *2 (-861 *3 (-468 *4) *4)))) (-3333 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1067 *7))) (-4 *6 (-756)) (-4 *7 (-861 *5 (-468 *6) *6)) (-4 *5 (-961)) (-5 *2 (-1 (-1067 *7) *7)) (-5 *1 (-1038 *5 *6 *7)))) (-3806 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) (-4 *2 (-756)) (-5 *1 (-1038 *3 *2 *4)) (-4 *4 (-861 *3 (-468 *2) *2)))) (-3670 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1038 *4 *3 *5))) (-4 *4 (-38 (-347 (-483)))) (-4 *4 (-961)) (-4 *3 (-756)) (-5 *1 (-1038 *4 *3 *5)) (-4 *5 (-861 *4 (-468 *3) *3)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3675 (((-583 (-2 (|:| -3855 $) (|:| -1699 (-583 |#4|)))) (-583 |#4|)) 90 T ELT)) (-3676 (((-583 $) (-583 |#4|)) 91 T ELT) (((-583 $) (-583 |#4|) (-85)) 118 T ELT)) (-3077 (((-583 |#3|) $) 37 T ELT)) (-2904 (((-85) $) 30 T ELT)) (-2895 (((-85) $) 21 (|has| |#1| (-494)) ELT)) (-3687 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3682 ((|#4| |#4| $) 97 T ELT)) (-3769 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 $))) |#4| $) 133 T ELT)) (-2905 (((-2 (|:| |under| $) (|:| -3125 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3704 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3989)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3718 (($) 46 T CONST)) (-2900 (((-85) $) 26 (|has| |#1| (-494)) ELT)) (-2902 (((-85) $ $) 28 (|has| |#1| (-494)) ELT)) (-2901 (((-85) $ $) 27 (|has| |#1| (-494)) ELT)) (-2903 (((-85) $) 29 (|has| |#1| (-494)) ELT)) (-3683 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2896 (((-583 |#4|) (-583 |#4|) $) 22 (|has| |#1| (-494)) ELT)) (-2897 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-494)) ELT)) (-3152 (((-3 $ "failed") (-583 |#4|)) 40 T ELT)) (-3151 (($ (-583 |#4|)) 39 T ELT)) (-3793 (((-3 $ #1#) $) 87 T ELT)) (-3679 ((|#4| |#4| $) 94 T ELT)) (-1350 (($ $) 69 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3400 (($ |#4| $) 68 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3989)) ELT)) (-2898 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-494)) ELT)) (-3688 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3677 ((|#4| |#4| $) 92 T ELT)) (-3836 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3989)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3989)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3690 (((-2 (|:| -3855 (-583 |#4|)) (|:| -1699 (-583 |#4|))) $) 110 T ELT)) (-3192 (((-85) |#4| $) 143 T ELT)) (-3190 (((-85) |#4| $) 140 T ELT)) (-3193 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-2885 (((-583 |#4|) $) 53 (|has| $ (-6 -3989)) ELT)) (-3689 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3175 ((|#3| $) 38 T ELT)) (-2604 (((-583 |#4|) $) 54 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2910 (((-583 |#3|) $) 36 T ELT)) (-2909 (((-85) |#3| $) 35 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3186 (((-3 |#4| (-583 $)) |#4| |#4| $) 135 T ELT)) (-3185 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 $))) |#4| |#4| $) 134 T ELT)) (-3792 (((-3 |#4| #1#) $) 88 T ELT)) (-3187 (((-583 $) |#4| $) 136 T ELT)) (-3189 (((-3 (-85) (-583 $)) |#4| $) 139 T ELT)) (-3188 (((-583 (-2 (|:| |val| (-85)) (|:| -1597 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3233 (((-583 $) |#4| $) 132 T ELT) (((-583 $) (-583 |#4|) $) 131 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 130 T ELT) (((-583 $) |#4| (-583 $)) 129 T ELT)) (-3434 (($ |#4| $) 124 T ELT) (($ (-583 |#4|) $) 123 T ELT)) (-3691 (((-583 |#4|) $) 112 T ELT)) (-3685 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3680 ((|#4| |#4| $) 95 T ELT)) (-3693 (((-85) $ $) 115 T ELT)) (-2899 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-494)) ELT)) (-3686 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3681 ((|#4| |#4| $) 96 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3795 (((-3 |#4| #1#) $) 89 T ELT)) (-1351 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3673 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3763 (($ $ |#4|) 82 T ELT) (((-583 $) |#4| $) 122 T ELT) (((-583 $) |#4| (-583 $)) 121 T ELT) (((-583 $) (-583 |#4|) $) 120 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 119 T ELT)) (-1944 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 |#4|) (-583 |#4|)) 60 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-248 |#4|)) 58 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-583 (-248 |#4|))) 57 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT)) (-1219 (((-85) $ $) 42 T ELT)) (-3397 (((-85) $) 45 T ELT)) (-3559 (($) 44 T ELT)) (-3942 (((-694) $) 111 T ELT)) (-1943 (((-694) |#4| $) 55 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) (((-694) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) 43 T ELT)) (-3966 (((-472) $) 70 (|has| |#4| (-553 (-472))) ELT)) (-3524 (($ (-583 |#4|)) 61 T ELT)) (-2906 (($ $ |#3|) 32 T ELT)) (-2908 (($ $ |#3|) 34 T ELT)) (-3678 (($ $) 93 T ELT)) (-2907 (($ $ |#3|) 33 T ELT)) (-3940 (((-772) $) 13 T ELT) (((-583 |#4|) $) 41 T ELT)) (-3672 (((-694) $) 81 (|has| |#3| (-317)) ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3692 (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3684 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) 103 T ELT)) (-3184 (((-583 $) |#4| $) 128 T ELT) (((-583 $) |#4| (-583 $)) 127 T ELT) (((-583 $) (-583 |#4|) $) 126 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 125 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3989)) ELT)) (-3674 (((-583 |#3|) $) 86 T ELT)) (-3191 (((-85) |#4| $) 142 T ELT)) (-3927 (((-85) |#3| $) 85 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3951 (((-694) $) 47 (|has| $ (-6 -3989)) ELT)))
-(((-1039 |#1| |#2| |#3| |#4|) (-113) (-389) (-717) (-756) (-976 |t#1| |t#2| |t#3|)) (T -1039))
-NIL
-(-13 (-1019 |t#1| |t#2| |t#3| |t#4|) (-707 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-472)) |has| |#4| (-553 (-472))) ((-259 |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ((-426 |#4|) . T) ((-452 |#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ((-13) . T) ((-707 |#1| |#2| |#3| |#4|) . T) ((-889 |#1| |#2| |#3| |#4|) . T) ((-982 |#1| |#2| |#3| |#4|) . T) ((-1012) . T) ((-1019 |#1| |#2| |#3| |#4|) . T) ((-1122 |#1| |#2| |#3| |#4|) . T) ((-1127) . T))
-((-3567 (((-583 |#2|) |#1|) 15 T ELT)) (-3339 (((-583 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-583 |#2|) |#1|) 61 T ELT)) (-3337 (((-583 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-583 |#2|) |#1|) 59 T ELT)) (-3334 ((|#2| |#1|) 54 T ELT)) (-3335 (((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-3336 (((-583 |#2|) |#2| |#2|) 42 T ELT) (((-583 |#2|) |#1|) 58 T ELT)) (-3338 (((-583 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-583 |#2|) |#1|) 60 T ELT)) (-3343 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-3341 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-3340 ((|#2| |#2| |#2|) 50 T ELT)) (-3342 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT)))
-(((-1040 |#1| |#2|) (-10 -7 (-15 -3567 ((-583 |#2|) |#1|)) (-15 -3334 (|#2| |#1|)) (-15 -3335 ((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3336 ((-583 |#2|) |#1|)) (-15 -3337 ((-583 |#2|) |#1|)) (-15 -3338 ((-583 |#2|) |#1|)) (-15 -3339 ((-583 |#2|) |#1|)) (-15 -3336 ((-583 |#2|) |#2| |#2|)) (-15 -3337 ((-583 |#2|) |#2| |#2| |#2|)) (-15 -3338 ((-583 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3339 ((-583 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3340 (|#2| |#2| |#2|)) (-15 -3341 (|#2| |#2| |#2| |#2|)) (-15 -3342 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3343 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1153 |#2|) (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) (T -1040))
-((-3343 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) (-5 *1 (-1040 *3 *2)) (-4 *3 (-1153 *2)))) (-3342 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) (-5 *1 (-1040 *3 *2)) (-4 *3 (-1153 *2)))) (-3341 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) (-5 *1 (-1040 *3 *2)) (-4 *3 (-1153 *2)))) (-3340 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) (-5 *1 (-1040 *3 *2)) (-4 *3 (-1153 *2)))) (-3339 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) (-5 *2 (-583 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1153 *3)))) (-3338 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) (-5 *2 (-583 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1153 *3)))) (-3337 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) (-5 *2 (-583 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1153 *3)))) (-3336 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) (-5 *2 (-583 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1153 *3)))) (-3339 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) (-5 *2 (-583 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1153 *4)))) (-3338 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) (-5 *2 (-583 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1153 *4)))) (-3337 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) (-5 *2 (-583 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1153 *4)))) (-3336 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) (-5 *2 (-583 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1153 *4)))) (-3335 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) (-5 *2 (-2 (|:| |solns| (-583 *5)) (|:| |maps| (-583 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1040 *3 *5)) (-4 *3 (-1153 *5)))) (-3334 (*1 *2 *3) (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) (-5 *1 (-1040 *3 *2)) (-4 *3 (-1153 *2)))) (-3567 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483))))))) (-5 *2 (-583 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1153 *4)))))
-((-3344 (((-583 (-583 (-248 (-264 |#1|)))) (-583 (-248 (-347 (-857 |#1|))))) 119 T ELT) (((-583 (-583 (-248 (-264 |#1|)))) (-583 (-248 (-347 (-857 |#1|)))) (-583 (-1088))) 118 T ELT) (((-583 (-583 (-248 (-264 |#1|)))) (-583 (-347 (-857 |#1|)))) 116 T ELT) (((-583 (-583 (-248 (-264 |#1|)))) (-583 (-347 (-857 |#1|))) (-583 (-1088))) 113 T ELT) (((-583 (-248 (-264 |#1|))) (-248 (-347 (-857 |#1|)))) 97 T ELT) (((-583 (-248 (-264 |#1|))) (-248 (-347 (-857 |#1|))) (-1088)) 98 T ELT) (((-583 (-248 (-264 |#1|))) (-347 (-857 |#1|))) 92 T ELT) (((-583 (-248 (-264 |#1|))) (-347 (-857 |#1|)) (-1088)) 82 T ELT)) (-3345 (((-583 (-583 (-264 |#1|))) (-583 (-347 (-857 |#1|))) (-583 (-1088))) 111 T ELT) (((-583 (-264 |#1|)) (-347 (-857 |#1|)) (-1088)) 54 T ELT)) (-3346 (((-1078 (-583 (-264 |#1|)) (-583 (-248 (-264 |#1|)))) (-347 (-857 |#1|)) (-1088)) 123 T ELT) (((-1078 (-583 (-264 |#1|)) (-583 (-248 (-264 |#1|)))) (-248 (-347 (-857 |#1|))) (-1088)) 122 T ELT)))
-(((-1041 |#1|) (-10 -7 (-15 -3344 ((-583 (-248 (-264 |#1|))) (-347 (-857 |#1|)) (-1088))) (-15 -3344 ((-583 (-248 (-264 |#1|))) (-347 (-857 |#1|)))) (-15 -3344 ((-583 (-248 (-264 |#1|))) (-248 (-347 (-857 |#1|))) (-1088))) (-15 -3344 ((-583 (-248 (-264 |#1|))) (-248 (-347 (-857 |#1|))))) (-15 -3344 ((-583 (-583 (-248 (-264 |#1|)))) (-583 (-347 (-857 |#1|))) (-583 (-1088)))) (-15 -3344 ((-583 (-583 (-248 (-264 |#1|)))) (-583 (-347 (-857 |#1|))))) (-15 -3344 ((-583 (-583 (-248 (-264 |#1|)))) (-583 (-248 (-347 (-857 |#1|)))) (-583 (-1088)))) (-15 -3344 ((-583 (-583 (-248 (-264 |#1|)))) (-583 (-248 (-347 (-857 |#1|)))))) (-15 -3345 ((-583 (-264 |#1|)) (-347 (-857 |#1|)) (-1088))) (-15 -3345 ((-583 (-583 (-264 |#1|))) (-583 (-347 (-857 |#1|))) (-583 (-1088)))) (-15 -3346 ((-1078 (-583 (-264 |#1|)) (-583 (-248 (-264 |#1|)))) (-248 (-347 (-857 |#1|))) (-1088))) (-15 -3346 ((-1078 (-583 (-264 |#1|)) (-583 (-248 (-264 |#1|)))) (-347 (-857 |#1|)) (-1088)))) (-13 (-257) (-120))) (T -1041))
-((-3346 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-1078 (-583 (-264 *5)) (-583 (-248 (-264 *5))))) (-5 *1 (-1041 *5)))) (-3346 (*1 *2 *3 *4) (-12 (-5 *3 (-248 (-347 (-857 *5)))) (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-1078 (-583 (-264 *5)) (-583 (-248 (-264 *5))))) (-5 *1 (-1041 *5)))) (-3345 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-347 (-857 *5)))) (-5 *4 (-583 (-1088))) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-583 (-583 (-264 *5)))) (-5 *1 (-1041 *5)))) (-3345 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-583 (-264 *5))) (-5 *1 (-1041 *5)))) (-3344 (*1 *2 *3) (-12 (-5 *3 (-583 (-248 (-347 (-857 *4))))) (-4 *4 (-13 (-257) (-120))) (-5 *2 (-583 (-583 (-248 (-264 *4))))) (-5 *1 (-1041 *4)))) (-3344 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-248 (-347 (-857 *5))))) (-5 *4 (-583 (-1088))) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-583 (-583 (-248 (-264 *5))))) (-5 *1 (-1041 *5)))) (-3344 (*1 *2 *3) (-12 (-5 *3 (-583 (-347 (-857 *4)))) (-4 *4 (-13 (-257) (-120))) (-5 *2 (-583 (-583 (-248 (-264 *4))))) (-5 *1 (-1041 *4)))) (-3344 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-347 (-857 *5)))) (-5 *4 (-583 (-1088))) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-583 (-583 (-248 (-264 *5))))) (-5 *1 (-1041 *5)))) (-3344 (*1 *2 *3) (-12 (-5 *3 (-248 (-347 (-857 *4)))) (-4 *4 (-13 (-257) (-120))) (-5 *2 (-583 (-248 (-264 *4)))) (-5 *1 (-1041 *4)))) (-3344 (*1 *2 *3 *4) (-12 (-5 *3 (-248 (-347 (-857 *5)))) (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-583 (-248 (-264 *5)))) (-5 *1 (-1041 *5)))) (-3344 (*1 *2 *3) (-12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-13 (-257) (-120))) (-5 *2 (-583 (-248 (-264 *4)))) (-5 *1 (-1041 *4)))) (-3344 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-583 (-248 (-264 *5)))) (-5 *1 (-1041 *5)))))
-((-3348 (((-347 (-1083 (-264 |#1|))) (-1177 (-264 |#1|)) (-347 (-1083 (-264 |#1|))) (-483)) 36 T ELT)) (-3347 (((-347 (-1083 (-264 |#1|))) (-347 (-1083 (-264 |#1|))) (-347 (-1083 (-264 |#1|))) (-347 (-1083 (-264 |#1|)))) 48 T ELT)))
-(((-1042 |#1|) (-10 -7 (-15 -3347 ((-347 (-1083 (-264 |#1|))) (-347 (-1083 (-264 |#1|))) (-347 (-1083 (-264 |#1|))) (-347 (-1083 (-264 |#1|))))) (-15 -3348 ((-347 (-1083 (-264 |#1|))) (-1177 (-264 |#1|)) (-347 (-1083 (-264 |#1|))) (-483)))) (-494)) (T -1042))
-((-3348 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-347 (-1083 (-264 *5)))) (-5 *3 (-1177 (-264 *5))) (-5 *4 (-483)) (-4 *5 (-494)) (-5 *1 (-1042 *5)))) (-3347 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-347 (-1083 (-264 *3)))) (-4 *3 (-494)) (-5 *1 (-1042 *3)))))
-((-3567 (((-583 (-583 (-248 (-264 |#1|)))) (-583 (-248 (-264 |#1|))) (-583 (-1088))) 244 T ELT) (((-583 (-248 (-264 |#1|))) (-264 |#1|) (-1088)) 23 T ELT) (((-583 (-248 (-264 |#1|))) (-248 (-264 |#1|)) (-1088)) 29 T ELT) (((-583 (-248 (-264 |#1|))) (-248 (-264 |#1|))) 28 T ELT) (((-583 (-248 (-264 |#1|))) (-264 |#1|)) 24 T ELT)))
-(((-1043 |#1|) (-10 -7 (-15 -3567 ((-583 (-248 (-264 |#1|))) (-264 |#1|))) (-15 -3567 ((-583 (-248 (-264 |#1|))) (-248 (-264 |#1|)))) (-15 -3567 ((-583 (-248 (-264 |#1|))) (-248 (-264 |#1|)) (-1088))) (-15 -3567 ((-583 (-248 (-264 |#1|))) (-264 |#1|) (-1088))) (-15 -3567 ((-583 (-583 (-248 (-264 |#1|)))) (-583 (-248 (-264 |#1|))) (-583 (-1088))))) (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (T -1043))
-((-3567 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1088))) (-4 *5 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *2 (-583 (-583 (-248 (-264 *5))))) (-5 *1 (-1043 *5)) (-5 *3 (-583 (-248 (-264 *5)))))) (-3567 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *2 (-583 (-248 (-264 *5)))) (-5 *1 (-1043 *5)) (-5 *3 (-264 *5)))) (-3567 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *2 (-583 (-248 (-264 *5)))) (-5 *1 (-1043 *5)) (-5 *3 (-248 (-264 *5))))) (-3567 (*1 *2 *3) (-12 (-4 *4 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *2 (-583 (-248 (-264 *4)))) (-5 *1 (-1043 *4)) (-5 *3 (-248 (-264 *4))))) (-3567 (*1 *2 *3) (-12 (-4 *4 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *2 (-583 (-248 (-264 *4)))) (-5 *1 (-1043 *4)) (-5 *3 (-264 *4)))))
-((-3350 ((|#2| |#2|) 28 (|has| |#1| (-756)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 25 T ELT)) (-3349 ((|#2| |#2|) 27 (|has| |#1| (-756)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 22 T ELT)))
-(((-1044 |#1| |#2|) (-10 -7 (-15 -3349 (|#2| |#2| (-1 (-85) |#1| |#1|))) (-15 -3350 (|#2| |#2| (-1 (-85) |#1| |#1|))) (IF (|has| |#1| (-756)) (PROGN (-15 -3349 (|#2| |#2|)) (-15 -3350 (|#2| |#2|))) |%noBranch|)) (-1127) (-13 (-538 (-483) |#1|) (-10 -7 (-6 -3989) (-6 -3990)))) (T -1044))
-((-3350 (*1 *2 *2) (-12 (-4 *3 (-756)) (-4 *3 (-1127)) (-5 *1 (-1044 *3 *2)) (-4 *2 (-13 (-538 (-483) *3) (-10 -7 (-6 -3989) (-6 -3990)))))) (-3349 (*1 *2 *2) (-12 (-4 *3 (-756)) (-4 *3 (-1127)) (-5 *1 (-1044 *3 *2)) (-4 *2 (-13 (-538 (-483) *3) (-10 -7 (-6 -3989) (-6 -3990)))))) (-3350 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-1044 *4 *2)) (-4 *2 (-13 (-538 (-483) *4) (-10 -7 (-6 -3989) (-6 -3990)))))) (-3349 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-1044 *4 *2)) (-4 *2 (-13 (-538 (-483) *4) (-10 -7 (-6 -3989) (-6 -3990)))))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3882 (((-1077 3 |#1|) $) 141 T ELT)) (-3360 (((-85) $) 101 T ELT)) (-3361 (($ $ (-583 (-854 |#1|))) 44 T ELT) (($ $ (-583 (-583 |#1|))) 104 T ELT) (($ (-583 (-854 |#1|))) 103 T ELT) (((-583 (-854 |#1|)) $) 102 T ELT)) (-3366 (((-85) $) 72 T ELT)) (-3700 (($ $ (-854 |#1|)) 76 T ELT) (($ $ (-583 |#1|)) 81 T ELT) (($ $ (-694)) 83 T ELT) (($ (-854 |#1|)) 77 T ELT) (((-854 |#1|) $) 75 T ELT)) (-3352 (((-2 (|:| -3844 (-694)) (|:| |curves| (-694)) (|:| |polygons| (-694)) (|:| |constructs| (-694))) $) 139 T ELT)) (-3370 (((-694) $) 53 T ELT)) (-3371 (((-694) $) 52 T ELT)) (-3881 (($ $ (-694) (-854 |#1|)) 67 T ELT)) (-3358 (((-85) $) 111 T ELT)) (-3359 (($ $ (-583 (-583 (-854 |#1|))) (-583 (-145)) (-145)) 118 T ELT) (($ $ (-583 (-583 (-583 |#1|))) (-583 (-145)) (-145)) 120 T ELT) (($ $ (-583 (-583 (-854 |#1|))) (-85) (-85)) 115 T ELT) (($ $ (-583 (-583 (-583 |#1|))) (-85) (-85)) 127 T ELT) (($ (-583 (-583 (-854 |#1|)))) 116 T ELT) (($ (-583 (-583 (-854 |#1|))) (-85) (-85)) 117 T ELT) (((-583 (-583 (-854 |#1|))) $) 114 T ELT)) (-3512 (($ (-583 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-3353 (((-583 (-145)) $) 133 T ELT)) (-3357 (((-583 (-854 |#1|)) $) 130 T ELT)) (-3354 (((-583 (-583 (-145))) $) 132 T ELT)) (-3355 (((-583 (-583 (-583 (-854 |#1|)))) $) NIL T ELT)) (-3356 (((-583 (-583 (-583 (-694)))) $) 131 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3367 (((-694) $ (-583 (-854 |#1|))) 65 T ELT)) (-3364 (((-85) $) 84 T ELT)) (-3365 (($ $ (-583 (-854 |#1|))) 86 T ELT) (($ $ (-583 (-583 |#1|))) 92 T ELT) (($ (-583 (-854 |#1|))) 87 T ELT) (((-583 (-854 |#1|)) $) 85 T ELT)) (-3372 (($) 48 T ELT) (($ (-1077 3 |#1|)) 49 T ELT)) (-3394 (($ $) 63 T ELT)) (-3368 (((-583 $) $) 62 T ELT)) (-3748 (($ (-583 $)) 59 T ELT)) (-3369 (((-583 $) $) 61 T ELT)) (-3940 (((-772) $) 146 T ELT)) (-3362 (((-85) $) 94 T ELT)) (-3363 (($ $ (-583 (-854 |#1|))) 96 T ELT) (($ $ (-583 (-583 |#1|))) 99 T ELT) (($ (-583 (-854 |#1|))) 97 T ELT) (((-583 (-854 |#1|)) $) 95 T ELT)) (-3351 (($ $) 140 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-1045 |#1|) (-1046 |#1|) (-961)) (T -1045))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3882 (((-1077 3 |#1|) $) 17 T ELT)) (-3360 (((-85) $) 33 T ELT)) (-3361 (($ $ (-583 (-854 |#1|))) 37 T ELT) (($ $ (-583 (-583 |#1|))) 36 T ELT) (($ (-583 (-854 |#1|))) 35 T ELT) (((-583 (-854 |#1|)) $) 34 T ELT)) (-3366 (((-85) $) 48 T ELT)) (-3700 (($ $ (-854 |#1|)) 53 T ELT) (($ $ (-583 |#1|)) 52 T ELT) (($ $ (-694)) 51 T ELT) (($ (-854 |#1|)) 50 T ELT) (((-854 |#1|) $) 49 T ELT)) (-3352 (((-2 (|:| -3844 (-694)) (|:| |curves| (-694)) (|:| |polygons| (-694)) (|:| |constructs| (-694))) $) 19 T ELT)) (-3370 (((-694) $) 62 T ELT)) (-3371 (((-694) $) 63 T ELT)) (-3881 (($ $ (-694) (-854 |#1|)) 54 T ELT)) (-3358 (((-85) $) 25 T ELT)) (-3359 (($ $ (-583 (-583 (-854 |#1|))) (-583 (-145)) (-145)) 32 T ELT) (($ $ (-583 (-583 (-583 |#1|))) (-583 (-145)) (-145)) 31 T ELT) (($ $ (-583 (-583 (-854 |#1|))) (-85) (-85)) 30 T ELT) (($ $ (-583 (-583 (-583 |#1|))) (-85) (-85)) 29 T ELT) (($ (-583 (-583 (-854 |#1|)))) 28 T ELT) (($ (-583 (-583 (-854 |#1|))) (-85) (-85)) 27 T ELT) (((-583 (-583 (-854 |#1|))) $) 26 T ELT)) (-3512 (($ (-583 $)) 61 T ELT) (($ $ $) 60 T ELT)) (-3353 (((-583 (-145)) $) 20 T ELT)) (-3357 (((-583 (-854 |#1|)) $) 24 T ELT)) (-3354 (((-583 (-583 (-145))) $) 21 T ELT)) (-3355 (((-583 (-583 (-583 (-854 |#1|)))) $) 22 T ELT)) (-3356 (((-583 (-583 (-583 (-694)))) $) 23 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3367 (((-694) $ (-583 (-854 |#1|))) 55 T ELT)) (-3364 (((-85) $) 43 T ELT)) (-3365 (($ $ (-583 (-854 |#1|))) 47 T ELT) (($ $ (-583 (-583 |#1|))) 46 T ELT) (($ (-583 (-854 |#1|))) 45 T ELT) (((-583 (-854 |#1|)) $) 44 T ELT)) (-3372 (($) 65 T ELT) (($ (-1077 3 |#1|)) 64 T ELT)) (-3394 (($ $) 56 T ELT)) (-3368 (((-583 $) $) 57 T ELT)) (-3748 (($ (-583 $)) 59 T ELT)) (-3369 (((-583 $) $) 58 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-3362 (((-85) $) 38 T ELT)) (-3363 (($ $ (-583 (-854 |#1|))) 42 T ELT) (($ $ (-583 (-583 |#1|))) 41 T ELT) (($ (-583 (-854 |#1|))) 40 T ELT) (((-583 (-854 |#1|)) $) 39 T ELT)) (-3351 (($ $) 18 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT)))
-(((-1046 |#1|) (-113) (-961)) (T -1046))
-((-3940 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-772)))) (-3372 (*1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-961)))) (-3372 (*1 *1 *2) (-12 (-5 *2 (-1077 3 *3)) (-4 *3 (-961)) (-4 *1 (-1046 *3)))) (-3371 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-3512 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1046 *3)) (-4 *3 (-961)))) (-3512 (*1 *1 *1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-961)))) (-3748 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1046 *3)) (-4 *3 (-961)))) (-3369 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1046 *3)))) (-3368 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1046 *3)))) (-3394 (*1 *1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-961)))) (-3367 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-854 *4))) (-4 *1 (-1046 *4)) (-4 *4 (-961)) (-5 *2 (-694)))) (-3881 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-854 *4)) (-4 *1 (-1046 *4)) (-4 *4 (-961)))) (-3700 (*1 *1 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *1 (-1046 *3)) (-4 *3 (-961)))) (-3700 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-1046 *3)) (-4 *3 (-961)))) (-3700 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1046 *3)) (-4 *3 (-961)))) (-3700 (*1 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-961)) (-4 *1 (-1046 *3)))) (-3700 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-854 *3)))) (-3366 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-85)))) (-3365 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-961)))) (-3365 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-961)))) (-3365 (*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1046 *3)))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-85)))) (-3363 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-961)))) (-3363 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-961)))) (-3363 (*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1046 *3)))) (-3363 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))) (-3362 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-85)))) (-3361 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-961)))) (-3361 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-961)))) (-3361 (*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1046 *3)))) (-3361 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))) (-3360 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-85)))) (-3359 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-854 *5)))) (-5 *3 (-583 (-145))) (-5 *4 (-145)) (-4 *1 (-1046 *5)) (-4 *5 (-961)))) (-3359 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-583 (-145))) (-5 *4 (-145)) (-4 *1 (-1046 *5)) (-4 *5 (-961)))) (-3359 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-854 *4)))) (-5 *3 (-85)) (-4 *1 (-1046 *4)) (-4 *4 (-961)))) (-3359 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-85)) (-4 *1 (-1046 *4)) (-4 *4 (-961)))) (-3359 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-854 *3)))) (-4 *3 (-961)) (-4 *1 (-1046 *3)))) (-3359 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-854 *4)))) (-5 *3 (-85)) (-4 *4 (-961)) (-4 *1 (-1046 *4)))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-854 *3)))))) (-3358 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-85)))) (-3357 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))) (-3356 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-694))))))) (-3355 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-854 *3))))))) (-3354 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-145)))))) (-3353 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-145))))) (-3352 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3844 (-694)) (|:| |curves| (-694)) (|:| |polygons| (-694)) (|:| |constructs| (-694)))))) (-3351 (*1 *1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-961)))) (-3882 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-1077 3 *3)))))
-(-13 (-1012) (-10 -8 (-15 -3372 ($)) (-15 -3372 ($ (-1077 3 |t#1|))) (-15 -3371 ((-694) $)) (-15 -3370 ((-694) $)) (-15 -3512 ($ (-583 $))) (-15 -3512 ($ $ $)) (-15 -3748 ($ (-583 $))) (-15 -3369 ((-583 $) $)) (-15 -3368 ((-583 $) $)) (-15 -3394 ($ $)) (-15 -3367 ((-694) $ (-583 (-854 |t#1|)))) (-15 -3881 ($ $ (-694) (-854 |t#1|))) (-15 -3700 ($ $ (-854 |t#1|))) (-15 -3700 ($ $ (-583 |t#1|))) (-15 -3700 ($ $ (-694))) (-15 -3700 ($ (-854 |t#1|))) (-15 -3700 ((-854 |t#1|) $)) (-15 -3366 ((-85) $)) (-15 -3365 ($ $ (-583 (-854 |t#1|)))) (-15 -3365 ($ $ (-583 (-583 |t#1|)))) (-15 -3365 ($ (-583 (-854 |t#1|)))) (-15 -3365 ((-583 (-854 |t#1|)) $)) (-15 -3364 ((-85) $)) (-15 -3363 ($ $ (-583 (-854 |t#1|)))) (-15 -3363 ($ $ (-583 (-583 |t#1|)))) (-15 -3363 ($ (-583 (-854 |t#1|)))) (-15 -3363 ((-583 (-854 |t#1|)) $)) (-15 -3362 ((-85) $)) (-15 -3361 ($ $ (-583 (-854 |t#1|)))) (-15 -3361 ($ $ (-583 (-583 |t#1|)))) (-15 -3361 ($ (-583 (-854 |t#1|)))) (-15 -3361 ((-583 (-854 |t#1|)) $)) (-15 -3360 ((-85) $)) (-15 -3359 ($ $ (-583 (-583 (-854 |t#1|))) (-583 (-145)) (-145))) (-15 -3359 ($ $ (-583 (-583 (-583 |t#1|))) (-583 (-145)) (-145))) (-15 -3359 ($ $ (-583 (-583 (-854 |t#1|))) (-85) (-85))) (-15 -3359 ($ $ (-583 (-583 (-583 |t#1|))) (-85) (-85))) (-15 -3359 ($ (-583 (-583 (-854 |t#1|))))) (-15 -3359 ($ (-583 (-583 (-854 |t#1|))) (-85) (-85))) (-15 -3359 ((-583 (-583 (-854 |t#1|))) $)) (-15 -3358 ((-85) $)) (-15 -3357 ((-583 (-854 |t#1|)) $)) (-15 -3356 ((-583 (-583 (-583 (-694)))) $)) (-15 -3355 ((-583 (-583 (-583 (-854 |t#1|)))) $)) (-15 -3354 ((-583 (-583 (-145))) $)) (-15 -3353 ((-583 (-145)) $)) (-15 -3352 ((-2 (|:| -3844 (-694)) (|:| |curves| (-694)) (|:| |polygons| (-694)) (|:| |constructs| (-694))) $)) (-15 -3351 ($ $)) (-15 -3882 ((-1077 3 |t#1|) $)) (-15 -3940 ((-772) $))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 185 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) 7 T ELT)) (-3560 (((-85) $ (|[\|\|]| (-461))) 19 T ELT) (((-85) $ (|[\|\|]| (-172))) 23 T ELT) (((-85) $ (|[\|\|]| (-617))) 27 T ELT) (((-85) $ (|[\|\|]| (-1188))) 31 T ELT) (((-85) $ (|[\|\|]| (-111))) 35 T ELT) (((-85) $ (|[\|\|]| (-539))) 39 T ELT) (((-85) $ (|[\|\|]| (-106))) 43 T ELT) (((-85) $ (|[\|\|]| (-1028))) 47 T ELT) (((-85) $ (|[\|\|]| (-67))) 51 T ELT) (((-85) $ (|[\|\|]| (-622))) 55 T ELT) (((-85) $ (|[\|\|]| (-455))) 59 T ELT) (((-85) $ (|[\|\|]| (-977))) 63 T ELT) (((-85) $ (|[\|\|]| (-1189))) 67 T ELT) (((-85) $ (|[\|\|]| (-462))) 71 T ELT) (((-85) $ (|[\|\|]| (-1065))) 75 T ELT) (((-85) $ (|[\|\|]| (-127))) 79 T ELT) (((-85) $ (|[\|\|]| (-613))) 83 T ELT) (((-85) $ (|[\|\|]| (-262))) 87 T ELT) (((-85) $ (|[\|\|]| (-948))) 91 T ELT) (((-85) $ (|[\|\|]| (-154))) 95 T ELT) (((-85) $ (|[\|\|]| (-883))) 99 T ELT) (((-85) $ (|[\|\|]| (-984))) 103 T ELT) (((-85) $ (|[\|\|]| (-1002))) 107 T ELT) (((-85) $ (|[\|\|]| (-1007))) 111 T ELT) (((-85) $ (|[\|\|]| (-565))) 116 T ELT) (((-85) $ (|[\|\|]| (-1079))) 120 T ELT) (((-85) $ (|[\|\|]| (-129))) 124 T ELT) (((-85) $ (|[\|\|]| (-110))) 128 T ELT) (((-85) $ (|[\|\|]| (-415))) 132 T ELT) (((-85) $ (|[\|\|]| (-527))) 136 T ELT) (((-85) $ (|[\|\|]| (-444))) 140 T ELT) (((-85) $ (|[\|\|]| (-1071))) 144 T ELT) (((-85) $ (|[\|\|]| (-483))) 148 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3566 (((-461) $) 20 T ELT) (((-172) $) 24 T ELT) (((-617) $) 28 T ELT) (((-1188) $) 32 T ELT) (((-111) $) 36 T ELT) (((-539) $) 40 T ELT) (((-106) $) 44 T ELT) (((-1028) $) 48 T ELT) (((-67) $) 52 T ELT) (((-622) $) 56 T ELT) (((-455) $) 60 T ELT) (((-977) $) 64 T ELT) (((-1189) $) 68 T ELT) (((-462) $) 72 T ELT) (((-1065) $) 76 T ELT) (((-127) $) 80 T ELT) (((-613) $) 84 T ELT) (((-262) $) 88 T ELT) (((-948) $) 92 T ELT) (((-154) $) 96 T ELT) (((-883) $) 100 T ELT) (((-984) $) 104 T ELT) (((-1002) $) 108 T ELT) (((-1007) $) 112 T ELT) (((-565) $) 117 T ELT) (((-1079) $) 121 T ELT) (((-129) $) 125 T ELT) (((-110) $) 129 T ELT) (((-415) $) 133 T ELT) (((-527) $) 137 T ELT) (((-444) $) 141 T ELT) (((-1071) $) 145 T ELT) (((-483) $) 149 T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-1047) (-1049)) (T -1047))
-NIL
-((-3373 (((-583 (-1093)) (-1071)) 9 T ELT)))
-(((-1048) (-10 -7 (-15 -3373 ((-583 (-1093)) (-1071))))) (T -1048))
-((-3373 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-583 (-1093))) (-5 *1 (-1048)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-1093)) 20 T ELT) (((-1093) $) 19 T ELT)) (-3560 (((-85) $ (|[\|\|]| (-461))) 88 T ELT) (((-85) $ (|[\|\|]| (-172))) 86 T ELT) (((-85) $ (|[\|\|]| (-617))) 84 T ELT) (((-85) $ (|[\|\|]| (-1188))) 82 T ELT) (((-85) $ (|[\|\|]| (-111))) 80 T ELT) (((-85) $ (|[\|\|]| (-539))) 78 T ELT) (((-85) $ (|[\|\|]| (-106))) 76 T ELT) (((-85) $ (|[\|\|]| (-1028))) 74 T ELT) (((-85) $ (|[\|\|]| (-67))) 72 T ELT) (((-85) $ (|[\|\|]| (-622))) 70 T ELT) (((-85) $ (|[\|\|]| (-455))) 68 T ELT) (((-85) $ (|[\|\|]| (-977))) 66 T ELT) (((-85) $ (|[\|\|]| (-1189))) 64 T ELT) (((-85) $ (|[\|\|]| (-462))) 62 T ELT) (((-85) $ (|[\|\|]| (-1065))) 60 T ELT) (((-85) $ (|[\|\|]| (-127))) 58 T ELT) (((-85) $ (|[\|\|]| (-613))) 56 T ELT) (((-85) $ (|[\|\|]| (-262))) 54 T ELT) (((-85) $ (|[\|\|]| (-948))) 52 T ELT) (((-85) $ (|[\|\|]| (-154))) 50 T ELT) (((-85) $ (|[\|\|]| (-883))) 48 T ELT) (((-85) $ (|[\|\|]| (-984))) 46 T ELT) (((-85) $ (|[\|\|]| (-1002))) 44 T ELT) (((-85) $ (|[\|\|]| (-1007))) 42 T ELT) (((-85) $ (|[\|\|]| (-565))) 40 T ELT) (((-85) $ (|[\|\|]| (-1079))) 38 T ELT) (((-85) $ (|[\|\|]| (-129))) 36 T ELT) (((-85) $ (|[\|\|]| (-110))) 34 T ELT) (((-85) $ (|[\|\|]| (-415))) 32 T ELT) (((-85) $ (|[\|\|]| (-527))) 30 T ELT) (((-85) $ (|[\|\|]| (-444))) 28 T ELT) (((-85) $ (|[\|\|]| (-1071))) 26 T ELT) (((-85) $ (|[\|\|]| (-483))) 24 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3566 (((-461) $) 87 T ELT) (((-172) $) 85 T ELT) (((-617) $) 83 T ELT) (((-1188) $) 81 T ELT) (((-111) $) 79 T ELT) (((-539) $) 77 T ELT) (((-106) $) 75 T ELT) (((-1028) $) 73 T ELT) (((-67) $) 71 T ELT) (((-622) $) 69 T ELT) (((-455) $) 67 T ELT) (((-977) $) 65 T ELT) (((-1189) $) 63 T ELT) (((-462) $) 61 T ELT) (((-1065) $) 59 T ELT) (((-127) $) 57 T ELT) (((-613) $) 55 T ELT) (((-262) $) 53 T ELT) (((-948) $) 51 T ELT) (((-154) $) 49 T ELT) (((-883) $) 47 T ELT) (((-984) $) 45 T ELT) (((-1002) $) 43 T ELT) (((-1007) $) 41 T ELT) (((-565) $) 39 T ELT) (((-1079) $) 37 T ELT) (((-129) $) 35 T ELT) (((-110) $) 33 T ELT) (((-415) $) 31 T ELT) (((-527) $) 29 T ELT) (((-444) $) 27 T ELT) (((-1071) $) 25 T ELT) (((-483) $) 23 T ELT)) (-3052 (((-85) $ $) 8 T ELT)))
-(((-1049) (-113)) (T -1049))
-((-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-461))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-461)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-172)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-617))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-617)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1188))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1188)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-111)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-539))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-539)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-106)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1028))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1028)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-67)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-622))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-622)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-455))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-455)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-977))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-977)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1189)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-462))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-462)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1065))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1065)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-127)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-613))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-613)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-262))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-262)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-948))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-948)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-154)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-883))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-883)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-984))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-984)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1002))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1002)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1007))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1007)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-565))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-565)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1079))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1079)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-129)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-110)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-415))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-415)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-527)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-444))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-444)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1071))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1071)))) (-3560 (*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-483))) (-5 *2 (-85)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-483)))))
-(-13 (-994) (-1173) (-10 -8 (-15 -3560 ((-85) $ (|[\|\|]| (-461)))) (-15 -3566 ((-461) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-172)))) (-15 -3566 ((-172) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-617)))) (-15 -3566 ((-617) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-1188)))) (-15 -3566 ((-1188) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-111)))) (-15 -3566 ((-111) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-539)))) (-15 -3566 ((-539) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-106)))) (-15 -3566 ((-106) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-1028)))) (-15 -3566 ((-1028) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-67)))) (-15 -3566 ((-67) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-622)))) (-15 -3566 ((-622) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-455)))) (-15 -3566 ((-455) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-977)))) (-15 -3566 ((-977) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-1189)))) (-15 -3566 ((-1189) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-462)))) (-15 -3566 ((-462) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-1065)))) (-15 -3566 ((-1065) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-127)))) (-15 -3566 ((-127) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-613)))) (-15 -3566 ((-613) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-262)))) (-15 -3566 ((-262) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-948)))) (-15 -3566 ((-948) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-154)))) (-15 -3566 ((-154) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-883)))) (-15 -3566 ((-883) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-984)))) (-15 -3566 ((-984) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-1002)))) (-15 -3566 ((-1002) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-1007)))) (-15 -3566 ((-1007) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-565)))) (-15 -3566 ((-565) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-1079)))) (-15 -3566 ((-1079) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-129)))) (-15 -3566 ((-129) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-110)))) (-15 -3566 ((-110) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-415)))) (-15 -3566 ((-415) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-527)))) (-15 -3566 ((-527) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-444)))) (-15 -3566 ((-444) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-1071)))) (-15 -3566 ((-1071) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-483)))) (-15 -3566 ((-483) $))))
-(((-64) . T) ((-72) . T) ((-555 (-1093)) . T) ((-552 (-772)) . T) ((-552 (-1093)) . T) ((-427 (-1093)) . T) ((-13) . T) ((-1012) . T) ((-994) . T) ((-1127) . T) ((-1173) . T))
-((-3376 (((-1183) (-583 (-772))) 22 T ELT) (((-1183) (-772)) 21 T ELT)) (-3375 (((-1183) (-583 (-772))) 20 T ELT) (((-1183) (-772)) 19 T ELT)) (-3374 (((-1183) (-583 (-772))) 18 T ELT) (((-1183) (-772)) 10 T ELT) (((-1183) (-1071) (-772)) 16 T ELT)))
-(((-1050) (-10 -7 (-15 -3374 ((-1183) (-1071) (-772))) (-15 -3374 ((-1183) (-772))) (-15 -3375 ((-1183) (-772))) (-15 -3376 ((-1183) (-772))) (-15 -3374 ((-1183) (-583 (-772)))) (-15 -3375 ((-1183) (-583 (-772)))) (-15 -3376 ((-1183) (-583 (-772)))))) (T -1050))
-((-3376 (*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1183)) (-5 *1 (-1050)))) (-3375 (*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1183)) (-5 *1 (-1050)))) (-3374 (*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1183)) (-5 *1 (-1050)))) (-3376 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1183)) (-5 *1 (-1050)))) (-3375 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1183)) (-5 *1 (-1050)))) (-3374 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1183)) (-5 *1 (-1050)))) (-3374 (*1 *2 *3 *4) (-12 (-5 *3 (-1071)) (-5 *4 (-772)) (-5 *2 (-1183)) (-5 *1 (-1050)))))
-((-3380 (($ $ $) 10 T ELT)) (-3379 (($ $) 9 T ELT)) (-3383 (($ $ $) 13 T ELT)) (-3385 (($ $ $) 15 T ELT)) (-3382 (($ $ $) 12 T ELT)) (-3384 (($ $ $) 14 T ELT)) (-3387 (($ $) 17 T ELT)) (-3386 (($ $) 16 T ELT)) (-3377 (($ $) 6 T ELT)) (-3381 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-3378 (($ $ $) 8 T ELT)))
-(((-1051) (-113)) (T -1051))
-((-3387 (*1 *1 *1) (-4 *1 (-1051))) (-3386 (*1 *1 *1) (-4 *1 (-1051))) (-3385 (*1 *1 *1 *1) (-4 *1 (-1051))) (-3384 (*1 *1 *1 *1) (-4 *1 (-1051))) (-3383 (*1 *1 *1 *1) (-4 *1 (-1051))) (-3382 (*1 *1 *1 *1) (-4 *1 (-1051))) (-3381 (*1 *1 *1 *1) (-4 *1 (-1051))) (-3380 (*1 *1 *1 *1) (-4 *1 (-1051))) (-3379 (*1 *1 *1) (-4 *1 (-1051))) (-3378 (*1 *1 *1 *1) (-4 *1 (-1051))) (-3381 (*1 *1 *1) (-4 *1 (-1051))) (-3377 (*1 *1 *1) (-4 *1 (-1051))))
-(-13 (-10 -8 (-15 -3377 ($ $)) (-15 -3381 ($ $)) (-15 -3378 ($ $ $)) (-15 -3379 ($ $)) (-15 -3380 ($ $ $)) (-15 -3381 ($ $ $)) (-15 -3382 ($ $ $)) (-15 -3383 ($ $ $)) (-15 -3384 ($ $ $)) (-15 -3385 ($ $ $)) (-15 -3386 ($ $)) (-15 -3387 ($ $))))
-((-2564 (((-85) $ $) 44 T ELT)) (-3396 ((|#1| $) 17 T ELT)) (-3388 (((-85) $ $ (-1 (-85) |#2| |#2|)) 39 T ELT)) (-3395 (((-85) $) 19 T ELT)) (-3393 (($ $ |#1|) 30 T ELT)) (-3391 (($ $ (-85)) 32 T ELT)) (-3390 (($ $) 33 T ELT)) (-3392 (($ $ |#2|) 31 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3389 (((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|)) 38 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3397 (((-85) $) 16 T ELT)) (-3559 (($) 13 T ELT)) (-3394 (($ $) 29 T ELT)) (-3524 (($ |#1| |#2| (-85)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -1597 |#2|))) 23 T ELT) (((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -1597 |#2|)))) 26 T ELT) (((-583 $) |#1| (-583 |#2|)) 28 T ELT)) (-3916 ((|#2| $) 18 T ELT)) (-3940 (((-772) $) 53 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 42 T ELT)))
-(((-1052 |#1| |#2|) (-13 (-1012) (-10 -8 (-15 -3559 ($)) (-15 -3397 ((-85) $)) (-15 -3396 (|#1| $)) (-15 -3916 (|#2| $)) (-15 -3395 ((-85) $)) (-15 -3524 ($ |#1| |#2| (-85))) (-15 -3524 ($ |#1| |#2|)) (-15 -3524 ($ (-2 (|:| |val| |#1|) (|:| -1597 |#2|)))) (-15 -3524 ((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -1597 |#2|))))) (-15 -3524 ((-583 $) |#1| (-583 |#2|))) (-15 -3394 ($ $)) (-15 -3393 ($ $ |#1|)) (-15 -3392 ($ $ |#2|)) (-15 -3391 ($ $ (-85))) (-15 -3390 ($ $)) (-15 -3389 ((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|))) (-15 -3388 ((-85) $ $ (-1 (-85) |#2| |#2|))))) (-13 (-1012) (-34)) (-13 (-1012) (-34))) (T -1052))
-((-3559 (*1 *1) (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34))) (-4 *3 (-13 (-1012) (-34))))) (-3397 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34))) (-4 *4 (-13 (-1012) (-34))))) (-3396 (*1 *2 *1) (-12 (-4 *2 (-13 (-1012) (-34))) (-5 *1 (-1052 *2 *3)) (-4 *3 (-13 (-1012) (-34))))) (-3916 (*1 *2 *1) (-12 (-4 *2 (-13 (-1012) (-34))) (-5 *1 (-1052 *3 *2)) (-4 *3 (-13 (-1012) (-34))))) (-3395 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34))) (-4 *4 (-13 (-1012) (-34))))) (-3524 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34))) (-4 *3 (-13 (-1012) (-34))))) (-3524 (*1 *1 *2 *3) (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34))) (-4 *3 (-13 (-1012) (-34))))) (-3524 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1597 *4))) (-4 *3 (-13 (-1012) (-34))) (-4 *4 (-13 (-1012) (-34))) (-5 *1 (-1052 *3 *4)))) (-3524 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |val| *4) (|:| -1597 *5)))) (-4 *4 (-13 (-1012) (-34))) (-4 *5 (-13 (-1012) (-34))) (-5 *2 (-583 (-1052 *4 *5))) (-5 *1 (-1052 *4 *5)))) (-3524 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-13 (-1012) (-34))) (-5 *2 (-583 (-1052 *3 *5))) (-5 *1 (-1052 *3 *5)) (-4 *3 (-13 (-1012) (-34))))) (-3394 (*1 *1 *1) (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34))) (-4 *3 (-13 (-1012) (-34))))) (-3393 (*1 *1 *1 *2) (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34))) (-4 *3 (-13 (-1012) (-34))))) (-3392 (*1 *1 *1 *2) (-12 (-5 *1 (-1052 *3 *2)) (-4 *3 (-13 (-1012) (-34))) (-4 *2 (-13 (-1012) (-34))))) (-3391 (*1 *1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34))) (-4 *4 (-13 (-1012) (-34))))) (-3390 (*1 *1 *1) (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34))) (-4 *3 (-13 (-1012) (-34))))) (-3389 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1012) (-34))) (-4 *6 (-13 (-1012) (-34))) (-5 *2 (-85)) (-5 *1 (-1052 *5 *6)))) (-3388 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1012) (-34))) (-5 *2 (-85)) (-5 *1 (-1052 *4 *5)) (-4 *4 (-13 (-1012) (-34))))))
-((-2564 (((-85) $ $) NIL (|has| (-1052 |#1| |#2|) (-72)) ELT)) (-3396 (((-1052 |#1| |#2|) $) 27 T ELT)) (-3405 (($ $) 91 T ELT)) (-3401 (((-85) (-1052 |#1| |#2|) $ (-1 (-85) |#2| |#2|)) 100 T ELT)) (-3398 (($ $ $ (-583 (-1052 |#1| |#2|))) 108 T ELT) (($ $ $ (-583 (-1052 |#1| |#2|)) (-1 (-85) |#2| |#2|)) 109 T ELT)) (-3021 (((-1052 |#1| |#2|) $ (-1052 |#1| |#2|)) 46 (|has| $ (-6 -3990)) ELT)) (-3782 (((-1052 |#1| |#2|) $ #1="value" (-1052 |#1| |#2|)) NIL (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) 44 (|has| $ (-6 -3990)) ELT)) (-3718 (($) NIL T CONST)) (-3403 (((-583 (-2 (|:| |val| |#1|) (|:| -1597 |#2|))) $) 95 T ELT)) (-3399 (($ (-1052 |#1| |#2|) $) 42 T ELT)) (-3400 (($ (-1052 |#1| |#2|) $) 34 T ELT)) (-2885 (((-583 (-1052 |#1| |#2|)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3027 (((-583 $) $) 54 T ELT)) (-3402 (((-85) (-1052 |#1| |#2|) $) 97 T ELT)) (-3023 (((-85) $ $) NIL (|has| (-1052 |#1| |#2|) (-1012)) ELT)) (-2604 (((-583 (-1052 |#1| |#2|)) $) 58 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-1052 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-1052 |#1| |#2|) (-1012))) ELT)) (-1946 (($ (-1 (-1052 |#1| |#2|) (-1052 |#1| |#2|)) $) 50 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-1052 |#1| |#2|) (-1052 |#1| |#2|)) $) 49 T ELT)) (-3026 (((-583 (-1052 |#1| |#2|)) $) 56 T ELT)) (-3521 (((-85) $) 45 T ELT)) (-3237 (((-1071) $) NIL (|has| (-1052 |#1| |#2|) (-1012)) ELT)) (-3238 (((-1032) $) NIL (|has| (-1052 |#1| |#2|) (-1012)) ELT)) (-3406 (((-3 $ "failed") $) 89 T ELT)) (-1944 (((-85) (-1 (-85) (-1052 |#1| |#2|)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 (-1052 |#1| |#2|)))) NIL (-12 (|has| (-1052 |#1| |#2|) (-259 (-1052 |#1| |#2|))) (|has| (-1052 |#1| |#2|) (-1012))) ELT) (($ $ (-248 (-1052 |#1| |#2|))) NIL (-12 (|has| (-1052 |#1| |#2|) (-259 (-1052 |#1| |#2|))) (|has| (-1052 |#1| |#2|) (-1012))) ELT) (($ $ (-1052 |#1| |#2|) (-1052 |#1| |#2|)) NIL (-12 (|has| (-1052 |#1| |#2|) (-259 (-1052 |#1| |#2|))) (|has| (-1052 |#1| |#2|) (-1012))) ELT) (($ $ (-583 (-1052 |#1| |#2|)) (-583 (-1052 |#1| |#2|))) NIL (-12 (|has| (-1052 |#1| |#2|) (-259 (-1052 |#1| |#2|))) (|has| (-1052 |#1| |#2|) (-1012))) ELT)) (-1219 (((-85) $ $) 53 T ELT)) (-3397 (((-85) $) 24 T ELT)) (-3559 (($) 26 T ELT)) (-3794 (((-1052 |#1| |#2|) $ #1#) NIL T ELT)) (-3025 (((-483) $ $) NIL T ELT)) (-3627 (((-85) $) 47 T ELT)) (-1943 (((-694) (-1 (-85) (-1052 |#1| |#2|)) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) (-1052 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-1052 |#1| |#2|) (-1012))) ELT)) (-3394 (($ $) 52 T ELT)) (-3524 (($ (-1052 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-583 $)) 13 T ELT) (($ |#1| |#2| (-583 (-1052 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-583 |#2|)) 18 T ELT)) (-3404 (((-583 |#2|) $) 96 T ELT)) (-3940 (((-772) $) 87 (|has| (-1052 |#1| |#2|) (-552 (-772))) ELT)) (-3516 (((-583 $) $) 31 T ELT)) (-3024 (((-85) $ $) NIL (|has| (-1052 |#1| |#2|) (-1012)) ELT)) (-1262 (((-85) $ $) NIL (|has| (-1052 |#1| |#2|) (-72)) ELT)) (-1945 (((-85) (-1 (-85) (-1052 |#1| |#2|)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 70 (|has| (-1052 |#1| |#2|) (-72)) ELT)) (-3951 (((-694) $) 64 (|has| $ (-6 -3989)) ELT)))
-(((-1053 |#1| |#2|) (-13 (-923 (-1052 |#1| |#2|)) (-10 -8 (-6 -3990) (-6 -3989) (-15 -3406 ((-3 $ "failed") $)) (-15 -3405 ($ $)) (-15 -3524 ($ (-1052 |#1| |#2|))) (-15 -3524 ($ |#1| |#2| (-583 $))) (-15 -3524 ($ |#1| |#2| (-583 (-1052 |#1| |#2|)))) (-15 -3524 ($ |#1| |#2| |#1| (-583 |#2|))) (-15 -3404 ((-583 |#2|) $)) (-15 -3403 ((-583 (-2 (|:| |val| |#1|) (|:| -1597 |#2|))) $)) (-15 -3402 ((-85) (-1052 |#1| |#2|) $)) (-15 -3401 ((-85) (-1052 |#1| |#2|) $ (-1 (-85) |#2| |#2|))) (-15 -3400 ($ (-1052 |#1| |#2|) $)) (-15 -3399 ($ (-1052 |#1| |#2|) $)) (-15 -3398 ($ $ $ (-583 (-1052 |#1| |#2|)))) (-15 -3398 ($ $ $ (-583 (-1052 |#1| |#2|)) (-1 (-85) |#2| |#2|))))) (-13 (-1012) (-34)) (-13 (-1012) (-34))) (T -1053))
-((-3406 (*1 *1 *1) (|partial| -12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1012) (-34))) (-4 *3 (-13 (-1012) (-34))))) (-3405 (*1 *1 *1) (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1012) (-34))) (-4 *3 (-13 (-1012) (-34))))) (-3524 (*1 *1 *2) (-12 (-5 *2 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34))) (-4 *4 (-13 (-1012) (-34))) (-5 *1 (-1053 *3 *4)))) (-3524 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1053 *2 *3))) (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1012) (-34))) (-4 *3 (-13 (-1012) (-34))))) (-3524 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1052 *2 *3))) (-4 *2 (-13 (-1012) (-34))) (-4 *3 (-13 (-1012) (-34))) (-5 *1 (-1053 *2 *3)))) (-3524 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-13 (-1012) (-34))) (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1012) (-34))))) (-3404 (*1 *2 *1) (-12 (-5 *2 (-583 *4)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1012) (-34))) (-4 *4 (-13 (-1012) (-34))))) (-3403 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4)))) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1012) (-34))) (-4 *4 (-13 (-1012) (-34))))) (-3402 (*1 *2 *3 *1) (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-1012) (-34))) (-4 *5 (-13 (-1012) (-34))) (-5 *2 (-85)) (-5 *1 (-1053 *4 *5)))) (-3401 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1052 *5 *6)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1012) (-34))) (-4 *6 (-13 (-1012) (-34))) (-5 *2 (-85)) (-5 *1 (-1053 *5 *6)))) (-3400 (*1 *1 *2 *1) (-12 (-5 *2 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34))) (-4 *4 (-13 (-1012) (-34))) (-5 *1 (-1053 *3 *4)))) (-3399 (*1 *1 *2 *1) (-12 (-5 *2 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34))) (-4 *4 (-13 (-1012) (-34))) (-5 *1 (-1053 *3 *4)))) (-3398 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-583 (-1052 *3 *4))) (-4 *3 (-13 (-1012) (-34))) (-4 *4 (-13 (-1012) (-34))) (-5 *1 (-1053 *3 *4)))) (-3398 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1052 *4 *5))) (-5 *3 (-1 (-85) *5 *5)) (-4 *4 (-13 (-1012) (-34))) (-4 *5 (-13 (-1012) (-34))) (-5 *1 (-1053 *4 *5)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3408 (($ $) NIL T ELT)) (-3324 ((|#2| $) NIL T ELT)) (-3116 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3407 (($ (-630 |#2|)) 55 T ELT)) (-3118 (((-85) $) NIL T ELT)) (-3327 (($ |#2|) 14 T ELT)) (-3718 (($) NIL T CONST)) (-3105 (($ $) 68 (|has| |#2| (-257)) ELT)) (-3107 (((-197 |#1| |#2|) $ (-483)) 42 T ELT)) (-3152 (((-3 (-483) #1#) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3151 (((-483) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) ((|#2| $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) 82 T ELT)) (-3104 (((-694) $) 70 (|has| |#2| (-494)) ELT)) (-3108 ((|#2| $ (-483) (-483)) NIL T ELT)) (-2885 (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2406 (((-85) $) NIL T ELT)) (-3103 (((-694) $) 72 (|has| |#2| (-494)) ELT)) (-3102 (((-583 (-197 |#1| |#2|)) $) 76 (|has| |#2| (-494)) ELT)) (-3110 (((-694) $) NIL T ELT)) (-3608 (($ |#2|) 25 T ELT)) (-3109 (((-694) $) NIL T ELT)) (-3321 ((|#2| $) 66 (|has| |#2| (-6 (-3991 #2="*"))) ELT)) (-3114 (((-483) $) NIL T ELT)) (-3112 (((-483) $) NIL T ELT)) (-2604 (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-3113 (((-483) $) NIL T ELT)) (-3111 (((-483) $) NIL T ELT)) (-3119 (($ (-583 (-583 |#2|))) 37 T ELT)) (-1946 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3588 (((-583 (-583 |#2|)) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL T ELT) (((-630 |#2|) (-1177 $)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3584 (((-3 $ #1#) $) 79 (|has| |#2| (-311)) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3460 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-494)) ELT)) (-1944 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#2| $ (-483) (-483) |#2|) NIL T ELT) ((|#2| $ (-483) (-483)) NIL T ELT)) (-3752 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1088)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#2| (-811 (-1088))) ELT)) (-3323 ((|#2| $) NIL T ELT)) (-3326 (($ (-583 |#2|)) 50 T ELT)) (-3117 (((-85) $) NIL T ELT)) (-3325 (((-197 |#1| |#2|) $) NIL T ELT)) (-3322 ((|#2| $) 64 (|has| |#2| (-6 (-3991 #2#))) ELT)) (-1943 (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) 89 (|has| |#2| (-553 (-472))) ELT)) (-3106 (((-197 |#1| |#2|) $ (-483)) 44 T ELT)) (-3940 (((-772) $) 47 T ELT) (($ (-483)) NIL T ELT) (($ (-347 (-483))) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) (($ |#2|) NIL T ELT) (((-630 |#2|) $) 52 T ELT)) (-3121 (((-694)) 23 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3115 (((-85) $) NIL T ELT)) (-2656 (($) 16 T CONST)) (-2662 (($) 21 T CONST)) (-2665 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1088)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#2| (-811 (-1088))) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 62 T ELT) (($ $ (-483)) 81 (|has| |#2| (-311)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-197 |#1| |#2|) $ (-197 |#1| |#2|)) 58 T ELT) (((-197 |#1| |#2|) (-197 |#1| |#2|) $) 60 T ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-1054 |#1| |#2|) (-13 (-1035 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-552 (-630 |#2|)) (-10 -8 (-15 -3608 ($ |#2|)) (-15 -3408 ($ $)) (-15 -3407 ($ (-630 |#2|))) (IF (|has| |#2| (-6 (-3991 #1="*"))) (-6 -3978) |%noBranch|) (IF (|has| |#2| (-6 (-3991 #1#))) (IF (|has| |#2| (-6 -3986)) (-6 -3986) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-553 (-472))) (-6 (-553 (-472))) |%noBranch|))) (-694) (-961)) (T -1054))
-((-3608 (*1 *1 *2) (-12 (-5 *1 (-1054 *3 *2)) (-14 *3 (-694)) (-4 *2 (-961)))) (-3408 (*1 *1 *1) (-12 (-5 *1 (-1054 *2 *3)) (-14 *2 (-694)) (-4 *3 (-961)))) (-3407 (*1 *1 *2) (-12 (-5 *2 (-630 *4)) (-4 *4 (-961)) (-5 *1 (-1054 *3 *4)) (-14 *3 (-694)))))
-((-3421 (($ $) 19 T ELT)) (-3411 (($ $ (-117)) 10 T ELT) (($ $ (-114)) 14 T ELT)) (-3419 (((-85) $ $) 24 T ELT)) (-3423 (($ $) 17 T ELT)) (-3794 (((-117) $ (-483) (-117)) NIL T ELT) (((-117) $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT) (($ $ $) 31 T ELT)) (-3940 (($ (-117)) 29 T ELT) (((-772) $) NIL T ELT)))
-(((-1055 |#1|) (-10 -7 (-15 -3940 ((-772) |#1|)) (-15 -3794 (|#1| |#1| |#1|)) (-15 -3411 (|#1| |#1| (-114))) (-15 -3411 (|#1| |#1| (-117))) (-15 -3940 (|#1| (-117))) (-15 -3419 ((-85) |#1| |#1|)) (-15 -3421 (|#1| |#1|)) (-15 -3423 (|#1| |#1|)) (-15 -3794 (|#1| |#1| (-1144 (-483)))) (-15 -3794 ((-117) |#1| (-483))) (-15 -3794 ((-117) |#1| (-483) (-117)))) (-1056)) (T -1055))
-NIL
-((-2564 (((-85) $ $) 19 (|has| (-117) (-72)) ELT)) (-3420 (($ $) 129 T ELT)) (-3421 (($ $) 130 T ELT)) (-3411 (($ $ (-117)) 117 T ELT) (($ $ (-114)) 116 T ELT)) (-2194 (((-1183) $ (-483) (-483)) 44 (|has| $ (-6 -3990)) ELT)) (-3418 (((-85) $ $) 127 T ELT)) (-3417 (((-85) $ $ (-483)) 126 T ELT)) (-3412 (((-583 $) $ (-117)) 119 T ELT) (((-583 $) $ (-114)) 118 T ELT)) (-1729 (((-85) (-1 (-85) (-117) (-117)) $) 107 T ELT) (((-85) $) 101 (|has| (-117) (-756)) ELT)) (-1727 (($ (-1 (-85) (-117) (-117)) $) 98 (|has| $ (-6 -3990)) ELT) (($ $) 97 (-12 (|has| (-117) (-756)) (|has| $ (-6 -3990))) ELT)) (-2905 (($ (-1 (-85) (-117) (-117)) $) 108 T ELT) (($ $) 102 (|has| (-117) (-756)) ELT)) (-3782 (((-117) $ (-483) (-117)) 56 (|has| $ (-6 -3990)) ELT) (((-117) $ (-1144 (-483)) (-117)) 64 (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) (-117)) $) 81 (|has| $ (-6 -3989)) ELT)) (-3718 (($) 7 T CONST)) (-3409 (($ $ (-117)) 113 T ELT) (($ $ (-114)) 112 T ELT)) (-2293 (($ $) 99 (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) 109 T ELT)) (-3414 (($ $ (-1144 (-483)) $) 123 T ELT)) (-1350 (($ $) 84 (-12 (|has| (-117) (-1012)) (|has| $ (-6 -3989))) ELT)) (-3400 (($ (-117) $) 83 (-12 (|has| (-117) (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) (-117)) $) 80 (|has| $ (-6 -3989)) ELT)) (-3836 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) 82 (-12 (|has| (-117) (-1012)) (|has| $ (-6 -3989))) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) 79 (|has| $ (-6 -3989)) ELT) (((-117) (-1 (-117) (-117) (-117)) $) 78 (|has| $ (-6 -3989)) ELT)) (-1573 (((-117) $ (-483) (-117)) 57 (|has| $ (-6 -3990)) ELT)) (-3108 (((-117) $ (-483)) 55 T ELT)) (-3419 (((-85) $ $) 128 T ELT)) (-3413 (((-483) (-1 (-85) (-117)) $) 106 T ELT) (((-483) (-117) $) 105 (|has| (-117) (-1012)) ELT) (((-483) (-117) $ (-483)) 104 (|has| (-117) (-1012)) ELT) (((-483) $ $ (-483)) 122 T ELT) (((-483) (-114) $ (-483)) 121 T ELT)) (-2885 (((-583 (-117)) $) 30 (|has| $ (-6 -3989)) ELT)) (-3608 (($ (-694) (-117)) 74 T ELT)) (-2196 (((-483) $) 47 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) 91 (|has| (-117) (-756)) ELT)) (-3512 (($ (-1 (-85) (-117) (-117)) $ $) 110 T ELT) (($ $ $) 103 (|has| (-117) (-756)) ELT)) (-2604 (((-583 (-117)) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-117) $) 27 (-12 (|has| (-117) (-1012)) (|has| $ (-6 -3989))) ELT)) (-2197 (((-483) $) 48 (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) 92 (|has| (-117) (-756)) ELT)) (-3415 (((-85) $ $ (-117)) 124 T ELT)) (-3416 (((-694) $ $ (-117)) 125 T ELT)) (-1946 (($ (-1 (-117) (-117)) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-117) (-117)) $) 35 T ELT) (($ (-1 (-117) (-117) (-117)) $ $) 69 T ELT)) (-3422 (($ $) 131 T ELT)) (-3423 (($ $) 132 T ELT)) (-3410 (($ $ (-117)) 115 T ELT) (($ $ (-114)) 114 T ELT)) (-3237 (((-1071) $) 22 (|has| (-117) (-1012)) ELT)) (-2300 (($ (-117) $ (-483)) 66 T ELT) (($ $ $ (-483)) 65 T ELT)) (-2199 (((-583 (-483)) $) 50 T ELT)) (-2200 (((-85) (-483) $) 51 T ELT)) (-3238 (((-1032) $) 21 (|has| (-117) (-1012)) ELT)) (-3795 (((-117) $) 46 (|has| (-483) (-756)) ELT)) (-1351 (((-3 (-117) "failed") (-1 (-85) (-117)) $) 77 T ELT)) (-2195 (($ $ (-117)) 45 (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) (-117)) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 (-117)))) 26 (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1012))) ELT) (($ $ (-248 (-117))) 25 (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1012))) ELT) (($ $ (-117) (-117)) 24 (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1012))) ELT) (($ $ (-583 (-117)) (-583 (-117))) 23 (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-2198 (((-85) (-117) $) 49 (-12 (|has| $ (-6 -3989)) (|has| (-117) (-1012))) ELT)) (-2201 (((-583 (-117)) $) 52 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 (((-117) $ (-483) (-117)) 54 T ELT) (((-117) $ (-483)) 53 T ELT) (($ $ (-1144 (-483))) 75 T ELT) (($ $ $) 111 T ELT)) (-2301 (($ $ (-483)) 68 T ELT) (($ $ (-1144 (-483))) 67 T ELT)) (-1943 (((-694) (-1 (-85) (-117)) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) (-117) $) 28 (-12 (|has| (-117) (-1012)) (|has| $ (-6 -3989))) ELT)) (-1728 (($ $ $ (-483)) 100 (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 85 (|has| (-117) (-553 (-472))) ELT)) (-3524 (($ (-583 (-117))) 76 T ELT)) (-3796 (($ $ (-117)) 73 T ELT) (($ (-117) $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3940 (($ (-117)) 120 T ELT) (((-772) $) 17 (|has| (-117) (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| (-117) (-72)) ELT)) (-1945 (((-85) (-1 (-85) (-117)) $) 33 (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) 93 (|has| (-117) (-756)) ELT)) (-2563 (((-85) $ $) 95 (|has| (-117) (-756)) ELT)) (-3052 (((-85) $ $) 18 (|has| (-117) (-72)) ELT)) (-2680 (((-85) $ $) 94 (|has| (-117) (-756)) ELT)) (-2681 (((-85) $ $) 96 (|has| (-117) (-756)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-1056) (-113)) (T -1056))
-((-3423 (*1 *1 *1) (-4 *1 (-1056))) (-3422 (*1 *1 *1) (-4 *1 (-1056))) (-3421 (*1 *1 *1) (-4 *1 (-1056))) (-3420 (*1 *1 *1) (-4 *1 (-1056))) (-3419 (*1 *2 *1 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-85)))) (-3418 (*1 *2 *1 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-85)))) (-3417 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-483)) (-5 *2 (-85)))) (-3416 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-117)) (-5 *2 (-694)))) (-3415 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-117)) (-5 *2 (-85)))) (-3414 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-1144 (-483))))) (-3413 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-483)))) (-3413 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-483)) (-5 *3 (-114)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1056)))) (-3412 (*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-583 *1)) (-4 *1 (-1056)))) (-3412 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-583 *1)) (-4 *1 (-1056)))) (-3411 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-117)))) (-3411 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-114)))) (-3410 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-117)))) (-3410 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-114)))) (-3409 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-117)))) (-3409 (*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-114)))) (-3794 (*1 *1 *1 *1) (-4 *1 (-1056))))
-(-13 (-19 (-117)) (-10 -8 (-15 -3423 ($ $)) (-15 -3422 ($ $)) (-15 -3421 ($ $)) (-15 -3420 ($ $)) (-15 -3419 ((-85) $ $)) (-15 -3418 ((-85) $ $)) (-15 -3417 ((-85) $ $ (-483))) (-15 -3416 ((-694) $ $ (-117))) (-15 -3415 ((-85) $ $ (-117))) (-15 -3414 ($ $ (-1144 (-483)) $)) (-15 -3413 ((-483) $ $ (-483))) (-15 -3413 ((-483) (-114) $ (-483))) (-15 -3940 ($ (-117))) (-15 -3412 ((-583 $) $ (-117))) (-15 -3412 ((-583 $) $ (-114))) (-15 -3411 ($ $ (-117))) (-15 -3411 ($ $ (-114))) (-15 -3410 ($ $ (-117))) (-15 -3410 ($ $ (-114))) (-15 -3409 ($ $ (-117))) (-15 -3409 ($ $ (-114))) (-15 -3794 ($ $ $))))
-(((-34) . T) ((-72) OR (|has| (-117) (-1012)) (|has| (-117) (-756)) (|has| (-117) (-72))) ((-552 (-772)) OR (|has| (-117) (-1012)) (|has| (-117) (-756)) (|has| (-117) (-552 (-772)))) ((-124 (-117)) . T) ((-553 (-472)) |has| (-117) (-553 (-472))) ((-241 (-483) (-117)) . T) ((-241 (-1144 (-483)) $) . T) ((-243 (-483) (-117)) . T) ((-259 (-117)) -12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1012))) ((-321 (-117)) . T) ((-426 (-117)) . T) ((-538 (-483) (-117)) . T) ((-452 (-117) (-117)) -12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1012))) ((-13) . T) ((-593 (-117)) . T) ((-19 (-117)) . T) ((-756) |has| (-117) (-756)) ((-759) |has| (-117) (-756)) ((-1012) OR (|has| (-117) (-1012)) (|has| (-117) (-756))) ((-1127) . T))
-((-3430 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) (-694)) 112 T ELT)) (-3427 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5| (-694)) 61 T ELT)) (-3431 (((-1183) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) (-694)) 97 T ELT)) (-3425 (((-694) (-583 |#4|) (-583 |#5|)) 30 T ELT)) (-3428 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5| (-694)) 63 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5| (-694) (-85)) 65 T ELT)) (-3429 (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85) (-85) (-85) (-85)) 84 T ELT) (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85)) 85 T ELT)) (-3966 (((-1071) (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) 90 T ELT)) (-3426 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5|) 60 T ELT)) (-3424 (((-694) (-583 |#4|) (-583 |#5|)) 21 T ELT)))
-(((-1057 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3424 ((-694) (-583 |#4|) (-583 |#5|))) (-15 -3425 ((-694) (-583 |#4|) (-583 |#5|))) (-15 -3426 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5|)) (-15 -3427 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5| (-694))) (-15 -3427 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5|)) (-15 -3428 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5| (-694) (-85))) (-15 -3428 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5| (-694))) (-15 -3428 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) |#4| |#5|)) (-15 -3429 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85))) (-15 -3429 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3430 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))))) (-694))) (-15 -3966 ((-1071) (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|)))) (-15 -3431 ((-1183) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1597 |#5|))) (-694)))) (-389) (-717) (-756) (-976 |#1| |#2| |#3|) (-1019 |#1| |#2| |#3| |#4|)) (T -1057))
-((-3431 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1597 *9)))) (-5 *4 (-694)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-1019 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-1183)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1597 *8))) (-4 *7 (-976 *4 *5 *6)) (-4 *8 (-1019 *4 *5 *6 *7)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1071)) (-5 *1 (-1057 *4 *5 *6 *7 *8)))) (-3430 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -1597 *11)))))) (-5 *6 (-694)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -1597 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-976 *7 *8 *9)) (-4 *11 (-1019 *7 *8 *9 *10)) (-4 *7 (-389)) (-4 *8 (-717)) (-4 *9 (-756)) (-5 *1 (-1057 *7 *8 *9 *10 *11)))) (-3429 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-1019 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) (-3429 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-1019 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) (-3428 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1019 *5 *6 *7 *3)))) (-3428 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-694)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-976 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1019 *6 *7 *8 *3)))) (-3428 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-694)) (-5 *6 (-85)) (-4 *7 (-389)) (-4 *8 (-717)) (-4 *9 (-756)) (-4 *3 (-976 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) (-5 *1 (-1057 *7 *8 *9 *3 *4)) (-4 *4 (-1019 *7 *8 *9 *3)))) (-3427 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1019 *5 *6 *7 *3)))) (-3427 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-694)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-976 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1019 *6 *7 *8 *3)))) (-3426 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4)))))) (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1019 *5 *6 *7 *3)))) (-3425 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-1019 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-694)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))) (-3424 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-1019 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-694)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3675 (((-583 (-2 (|:| -3855 $) (|:| -1699 (-583 |#4|)))) (-583 |#4|)) NIL T ELT)) (-3676 (((-583 $) (-583 |#4|)) 118 T ELT) (((-583 $) (-583 |#4|) (-85)) 119 T ELT) (((-583 $) (-583 |#4|) (-85) (-85)) 117 T ELT) (((-583 $) (-583 |#4|) (-85) (-85) (-85) (-85)) 120 T ELT)) (-3077 (((-583 |#3|) $) NIL T ELT)) (-2904 (((-85) $) NIL T ELT)) (-2895 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3687 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3682 ((|#4| |#4| $) NIL T ELT)) (-3769 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 $))) |#4| $) 91 T ELT)) (-2905 (((-2 (|:| |under| $) (|:| -3125 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3704 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT) (((-3 |#4| #1="failed") $ |#3|) 70 T ELT)) (-3718 (($) NIL T CONST)) (-2900 (((-85) $) 29 (|has| |#1| (-494)) ELT)) (-2902 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2901 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2903 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3683 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2896 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-494)) ELT)) (-2897 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-494)) ELT)) (-3152 (((-3 $ #1#) (-583 |#4|)) NIL T ELT)) (-3151 (($ (-583 |#4|)) NIL T ELT)) (-3793 (((-3 $ #1#) $) 45 T ELT)) (-3679 ((|#4| |#4| $) 73 T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT)) (-3400 (($ |#4| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2898 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-494)) ELT)) (-3688 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3677 ((|#4| |#4| $) NIL T ELT)) (-3836 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3989)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3989)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3690 (((-2 (|:| -3855 (-583 |#4|)) (|:| -1699 (-583 |#4|))) $) NIL T ELT)) (-3192 (((-85) |#4| $) NIL T ELT)) (-3190 (((-85) |#4| $) NIL T ELT)) (-3193 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3432 (((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-85) (-85)) 133 T ELT)) (-2885 (((-583 |#4|) $) 18 (|has| $ (-6 -3989)) ELT)) (-3689 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3175 ((|#3| $) 38 T ELT)) (-2604 (((-583 |#4|) $) 19 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#4| $) 27 (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT)) (-1946 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2910 (((-583 |#3|) $) NIL T ELT)) (-2909 (((-85) |#3| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3186 (((-3 |#4| (-583 $)) |#4| |#4| $) NIL T ELT)) (-3185 (((-583 (-2 (|:| |val| |#4|) (|:| -1597 $))) |#4| |#4| $) 111 T ELT)) (-3792 (((-3 |#4| #1#) $) 42 T ELT)) (-3187 (((-583 $) |#4| $) 96 T ELT)) (-3189 (((-3 (-85) (-583 $)) |#4| $) NIL T ELT)) (-3188 (((-583 (-2 (|:| |val| (-85)) (|:| -1597 $))) |#4| $) 106 T ELT) (((-85) |#4| $) 62 T ELT)) (-3233 (((-583 $) |#4| $) 115 T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) 116 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT)) (-3433 (((-583 $) (-583 |#4|) (-85) (-85) (-85)) 128 T ELT)) (-3434 (($ |#4| $) 82 T ELT) (($ (-583 |#4|) $) 83 T ELT) (((-583 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 81 T ELT)) (-3691 (((-583 |#4|) $) NIL T ELT)) (-3685 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3680 ((|#4| |#4| $) NIL T ELT)) (-3693 (((-85) $ $) NIL T ELT)) (-2899 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-494)) ELT)) (-3686 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3681 ((|#4| |#4| $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3795 (((-3 |#4| #1#) $) 40 T ELT)) (-1351 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3673 (((-3 $ #1#) $ |#4|) 56 T ELT)) (-3763 (($ $ |#4|) NIL T ELT) (((-583 $) |#4| $) 98 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) 93 T ELT)) (-1944 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-248 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-583 (-248 |#4|))) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) 17 T ELT)) (-3559 (($) 14 T ELT)) (-3942 (((-694) $) NIL T ELT)) (-1943 (((-694) |#4| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT) (((-694) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) 13 T ELT)) (-3966 (((-472) $) NIL (|has| |#4| (-553 (-472))) ELT)) (-3524 (($ (-583 |#4|)) 22 T ELT)) (-2906 (($ $ |#3|) 49 T ELT)) (-2908 (($ $ |#3|) 51 T ELT)) (-3678 (($ $) NIL T ELT)) (-2907 (($ $ |#3|) NIL T ELT)) (-3940 (((-772) $) 35 T ELT) (((-583 |#4|) $) 46 T ELT)) (-3672 (((-694) $) NIL (|has| |#3| (-317)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3692 (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3684 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) NIL T ELT)) (-3184 (((-583 $) |#4| $) 63 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3674 (((-583 |#3|) $) NIL T ELT)) (-3191 (((-85) |#4| $) NIL T ELT)) (-3927 (((-85) |#3| $) 69 T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-1058 |#1| |#2| |#3| |#4|) (-13 (-1019 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3434 ((-583 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3676 ((-583 $) (-583 |#4|) (-85) (-85))) (-15 -3676 ((-583 $) (-583 |#4|) (-85) (-85) (-85) (-85))) (-15 -3433 ((-583 $) (-583 |#4|) (-85) (-85) (-85))) (-15 -3432 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-85) (-85))))) (-389) (-717) (-756) (-976 |#1| |#2| |#3|)) (T -1058))
-((-3434 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1058 *5 *6 *7 *3))) (-5 *1 (-1058 *5 *6 *7 *3)) (-4 *3 (-976 *5 *6 *7)))) (-3676 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) (-3676 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) (-3433 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) (-3432 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-1058 *5 *6 *7 *8))))) (-5 *1 (-1058 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 31 T ELT)) (-2406 (((-85) $) 29 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 28 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-694)) 30 T ELT) (($ $ (-830)) 27 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ $ $) 26 T ELT)))
-(((-1059) (-113)) (T -1059))
-NIL
-(-13 (-23) (-663))
-(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-663) . T) ((-1024) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3318 ((|#1| $) 38 T ELT)) (-3435 (($ (-583 |#1|)) 46 T ELT)) (-3718 (($) NIL T CONST)) (-3320 ((|#1| |#1| $) 41 T ELT)) (-3319 ((|#1| $) 36 T ELT)) (-2885 (((-583 |#1|) $) 19 (|has| $ (-6 -3989)) ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 26 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 23 T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-1271 ((|#1| $) 39 T ELT)) (-3603 (($ |#1| $) 42 T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1272 ((|#1| $) 37 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) 33 T ELT)) (-3559 (($) 44 T ELT)) (-3317 (((-694) $) 31 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) 28 T ELT)) (-3940 (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1273 (($ (-583 |#1|)) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 32 (|has| $ (-6 -3989)) ELT)))
-(((-1060 |#1|) (-13 (-1033 |#1|) (-10 -8 (-15 -3435 ($ (-583 |#1|))))) (-1127)) (T -1060))
-((-3435 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-5 *1 (-1060 *3)))))
-((-3782 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) NIL T ELT) (($ $ #3="rest" $) NIL T ELT) ((|#2| $ #4="last" |#2|) NIL T ELT) ((|#2| $ (-1144 (-483)) |#2|) 53 T ELT) ((|#2| $ (-483) |#2|) 50 T ELT)) (-3437 (((-85) $) 12 T ELT)) (-1946 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-3795 ((|#2| $) NIL T ELT) (($ $ (-694)) 17 T ELT)) (-2195 (($ $ |#2|) 49 T ELT)) (-3438 (((-85) $) 11 T ELT)) (-3794 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#2| $ #4#) NIL T ELT) (($ $ (-1144 (-483))) 36 T ELT) ((|#2| $ (-483)) 25 T ELT) ((|#2| $ (-483) |#2|) NIL T ELT)) (-3785 (($ $ $) 56 T ELT) (($ $ |#2|) NIL T ELT)) (-3796 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-583 $)) 45 T ELT) (($ $ |#2|) NIL T ELT)))
-(((-1061 |#1| |#2|) (-10 -7 (-15 -3437 ((-85) |#1|)) (-15 -3438 ((-85) |#1|)) (-15 -3782 (|#2| |#1| (-483) |#2|)) (-15 -3794 (|#2| |#1| (-483) |#2|)) (-15 -3794 (|#2| |#1| (-483))) (-15 -2195 (|#1| |#1| |#2|)) (-15 -3794 (|#1| |#1| (-1144 (-483)))) (-15 -3796 (|#1| |#1| |#2|)) (-15 -3796 (|#1| (-583 |#1|))) (-15 -3782 (|#2| |#1| (-1144 (-483)) |#2|)) (-15 -3782 (|#2| |#1| #1="last" |#2|)) (-15 -3782 (|#1| |#1| #2="rest" |#1|)) (-15 -3782 (|#2| |#1| #3="first" |#2|)) (-15 -3785 (|#1| |#1| |#2|)) (-15 -3785 (|#1| |#1| |#1|)) (-15 -3794 (|#2| |#1| #1#)) (-15 -3794 (|#1| |#1| #2#)) (-15 -3795 (|#1| |#1| (-694))) (-15 -3794 (|#2| |#1| #3#)) (-15 -3795 (|#2| |#1|)) (-15 -3796 (|#1| |#2| |#1|)) (-15 -3796 (|#1| |#1| |#1|)) (-15 -3782 (|#2| |#1| #4="value" |#2|)) (-15 -3794 (|#2| |#1| #4#)) (-15 -1946 (|#1| (-1 |#2| |#2|) |#1|))) (-1062 |#2|) (-1127)) (T -1061))
-NIL
-((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3396 ((|#1| $) 52 T ELT)) (-3789 ((|#1| $) 71 T ELT)) (-3791 (($ $) 73 T ELT)) (-2194 (((-1183) $ (-483) (-483)) 107 (|has| $ (-6 -3990)) ELT)) (-3779 (($ $ (-483)) 58 (|has| $ (-6 -3990)) ELT)) (-3436 (((-85) $ (-694)) 90 T ELT)) (-3021 ((|#1| $ |#1|) 43 (|has| $ (-6 -3990)) ELT)) (-3781 (($ $ $) 62 (|has| $ (-6 -3990)) ELT)) (-3780 ((|#1| $ |#1|) 60 (|has| $ (-6 -3990)) ELT)) (-3783 ((|#1| $ |#1|) 64 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3990)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3990)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3990)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) 127 (|has| $ (-6 -3990)) ELT) ((|#1| $ (-483) |#1|) 96 (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) 45 (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) 112 (|has| $ (-6 -3989)) ELT)) (-3790 ((|#1| $) 72 T ELT)) (-3718 (($) 7 T CONST)) (-3793 (($ $) 79 T ELT) (($ $ (-694)) 77 T ELT)) (-1350 (($ $) 109 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3400 (($ (-1 (-85) |#1|) $) 113 (|has| $ (-6 -3989)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1573 ((|#1| $ (-483) |#1|) 95 (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) 97 T ELT)) (-3437 (((-85) $) 93 T ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-3027 (((-583 $) $) 54 T ELT)) (-3023 (((-85) $ $) 46 (|has| |#1| (-1012)) ELT)) (-3608 (($ (-694) |#1|) 119 T ELT)) (-3713 (((-85) $ (-694)) 91 T ELT)) (-2196 (((-483) $) 105 (|has| (-483) (-756)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-2197 (((-483) $) 104 (|has| (-483) (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3710 (((-85) $ (-694)) 92 T ELT)) (-3026 (((-583 |#1|) $) 49 T ELT)) (-3521 (((-85) $) 53 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3792 ((|#1| $) 76 T ELT) (($ $ (-694)) 74 T ELT)) (-2300 (($ $ $ (-483)) 126 T ELT) (($ |#1| $ (-483)) 125 T ELT)) (-2199 (((-583 (-483)) $) 102 T ELT)) (-2200 (((-85) (-483) $) 101 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-3795 ((|#1| $) 82 T ELT) (($ $ (-694)) 80 T ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2195 (($ $ |#1|) 106 (|has| $ (-6 -3990)) ELT)) (-3438 (((-85) $) 94 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-2198 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) 100 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1144 (-483))) 118 T ELT) ((|#1| $ (-483)) 99 T ELT) ((|#1| $ (-483) |#1|) 98 T ELT)) (-3025 (((-483) $ $) 48 T ELT)) (-2301 (($ $ (-1144 (-483))) 124 T ELT) (($ $ (-483)) 123 T ELT)) (-3627 (((-85) $) 50 T ELT)) (-3786 (($ $) 68 T ELT)) (-3784 (($ $) 65 (|has| $ (-6 -3990)) ELT)) (-3787 (((-694) $) 69 T ELT)) (-3788 (($ $) 70 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 108 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 117 T ELT)) (-3785 (($ $ $) 67 (|has| $ (-6 -3990)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3990)) ELT)) (-3796 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-583 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3516 (((-583 $) $) 55 T ELT)) (-3024 (((-85) $ $) 47 (|has| |#1| (-1012)) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-1062 |#1|) (-113) (-1127)) (T -1062))
-((-3438 (*1 *2 *1) (-12 (-4 *1 (-1062 *3)) (-4 *3 (-1127)) (-5 *2 (-85)))) (-3437 (*1 *2 *1) (-12 (-4 *1 (-1062 *3)) (-4 *3 (-1127)) (-5 *2 (-85)))) (-3710 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1062 *4)) (-4 *4 (-1127)) (-5 *2 (-85)))) (-3713 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1062 *4)) (-4 *4 (-1127)) (-5 *2 (-85)))) (-3436 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1062 *4)) (-4 *4 (-1127)) (-5 *2 (-85)))))
-(-13 (-1166 |t#1|) (-593 |t#1|) (-10 -8 (-15 -3438 ((-85) $)) (-15 -3437 ((-85) $)) (-15 -3710 ((-85) $ (-694))) (-15 -3713 ((-85) $ (-694))) (-15 -3436 ((-85) $ (-694)))))
-(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-241 (-483) |#1|) . T) ((-241 (-1144 (-483)) $) . T) ((-243 (-483) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-538 (-483) |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-593 |#1|) . T) ((-923 |#1|) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T) ((-1166 |#1|) . T))
-((-2564 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3593 (($) NIL T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2194 (((-1183) $ |#1| |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3782 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1567 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-2227 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-3399 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3400 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#2| $ |#1|) NIL T ELT)) (-2885 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2196 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2604 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2197 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3990)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-2228 (((-583 |#1|) $) NIL T ELT)) (-2229 (((-85) |#1| $) NIL T ELT)) (-1271 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3603 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2199 (((-583 |#1|) $) NIL T ELT)) (-2200 (((-85) |#1| $) NIL T ELT)) (-3238 (((-1032) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-3795 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1351 (((-3 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2195 (($ $ |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-1272 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1944 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2201 (((-583 |#2|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1463 (($) NIL T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1943 (((-694) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-553 (-472))) ELT)) (-3524 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3940 (((-772) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1262 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1273 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-1063 |#1| |#2| |#3|) (-1105 |#1| |#2|) (-1012) (-1012) |#2|) (T -1063))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3439 (((-632 $) $) 17 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3440 (($) 18 T CONST)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3052 (((-85) $ $) 8 T ELT)))
-(((-1064) (-113)) (T -1064))
-((-3440 (*1 *1) (-4 *1 (-1064))) (-3439 (*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-1064)))))
-(-13 (-1012) (-10 -8 (-15 -3440 ($) -3946) (-15 -3439 ((-632 $) $))))
-(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3442 (((-632 (-1047)) $) 28 T ELT)) (-3441 (((-1047) $) 16 T ELT)) (-3443 (((-1047) $) 18 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3444 (((-444) $) 14 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 38 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-1065) (-13 (-994) (-10 -8 (-15 -3444 ((-444) $)) (-15 -3443 ((-1047) $)) (-15 -3442 ((-632 (-1047)) $)) (-15 -3441 ((-1047) $))))) (T -1065))
-((-3444 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-1065)))) (-3443 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1065)))) (-3442 (*1 *2 *1) (-12 (-5 *2 (-632 (-1047))) (-5 *1 (-1065)))) (-3441 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1065)))))
-((-3447 (((-1067 |#1|) (-1067 |#1|)) 17 T ELT)) (-3445 (((-1067 |#1|) (-1067 |#1|)) 13 T ELT)) (-3448 (((-1067 |#1|) (-1067 |#1|) (-483) (-483)) 20 T ELT)) (-3446 (((-1067 |#1|) (-1067 |#1|)) 15 T ELT)))
-(((-1066 |#1|) (-10 -7 (-15 -3445 ((-1067 |#1|) (-1067 |#1|))) (-15 -3446 ((-1067 |#1|) (-1067 |#1|))) (-15 -3447 ((-1067 |#1|) (-1067 |#1|))) (-15 -3448 ((-1067 |#1|) (-1067 |#1|) (-483) (-483)))) (-13 (-494) (-120))) (T -1066))
-((-3448 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1067 *4)) (-5 *3 (-483)) (-4 *4 (-13 (-494) (-120))) (-5 *1 (-1066 *4)))) (-3447 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-13 (-494) (-120))) (-5 *1 (-1066 *3)))) (-3446 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-13 (-494) (-120))) (-5 *1 (-1066 *3)))) (-3445 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-13 (-494) (-120))) (-5 *1 (-1066 *3)))))
-((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3396 ((|#1| $) NIL T ELT)) (-3789 ((|#1| $) NIL T ELT)) (-3791 (($ $) 60 T ELT)) (-2194 (((-1183) $ (-483) (-483)) 93 (|has| $ (-6 -3990)) ELT)) (-3779 (($ $ (-483)) 122 (|has| $ (-6 -3990)) ELT)) (-3436 (((-85) $ (-694)) NIL T ELT)) (-3453 (((-772) $) 46 (|has| |#1| (-1012)) ELT)) (-3452 (((-85)) 49 (|has| |#1| (-1012)) ELT)) (-3021 ((|#1| $ |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3781 (($ $ $) 109 (|has| $ (-6 -3990)) ELT) (($ $ (-483) $) 135 T ELT)) (-3780 ((|#1| $ |#1|) 119 (|has| $ (-6 -3990)) ELT)) (-3783 ((|#1| $ |#1|) 114 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3990)) ELT) ((|#1| $ #2="first" |#1|) 116 (|has| $ (-6 -3990)) ELT) (($ $ #3="rest" $) 118 (|has| $ (-6 -3990)) ELT) ((|#1| $ #4="last" |#1|) 121 (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) 106 (|has| $ (-6 -3990)) ELT) ((|#1| $ (-483) |#1|) 72 (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) NIL (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) 75 T ELT)) (-3790 ((|#1| $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2319 (($ $) 11 T ELT)) (-3793 (($ $) 35 T ELT) (($ $ (-694)) 105 T ELT)) (-3458 (((-85) (-583 |#1|) $) 128 (|has| |#1| (-1012)) ELT)) (-3459 (($ (-583 |#1|)) 124 T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3400 (($ |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) 74 T ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1573 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) NIL T ELT)) (-3437 (((-85) $) NIL T ELT)) (-2885 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3454 (((-1183) (-483) $) 133 (|has| |#1| (-1012)) ELT)) (-2318 (((-694) $) 131 T ELT)) (-3027 (((-583 $) $) NIL T ELT)) (-3023 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-3608 (($ (-694) |#1|) NIL T ELT)) (-3713 (((-85) $ (-694)) NIL T ELT)) (-2196 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2197 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 89 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 80 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 84 T ELT)) (-3710 (((-85) $ (-694)) NIL T ELT)) (-3026 (((-583 |#1|) $) NIL T ELT)) (-3521 (((-85) $) NIL T ELT)) (-2321 (($ $) 107 T ELT)) (-2322 (((-85) $) 10 T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3792 ((|#1| $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2300 (($ $ $ (-483)) NIL T ELT) (($ |#1| $ (-483)) NIL T ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) 90 T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3451 (($ (-1 |#1|)) 137 T ELT) (($ (-1 |#1| |#1|) |#1|) 138 T ELT)) (-2320 ((|#1| $) 7 T ELT)) (-3795 ((|#1| $) 34 T ELT) (($ $ (-694)) 58 T ELT)) (-3457 (((-2 (|:| |cycle?| (-85)) (|:| -2591 (-694)) (|:| |period| (-694))) (-694) $) 29 T ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-3450 (($ (-1 (-85) |#1|) $) 139 T ELT)) (-3449 (($ (-1 (-85) |#1|) $) 140 T ELT)) (-2195 (($ $ |#1|) 85 (|has| $ (-6 -3990)) ELT)) (-3763 (($ $ (-483)) 40 T ELT)) (-3438 (((-85) $) 88 T ELT)) (-2323 (((-85) $) 9 T ELT)) (-2324 (((-85) $) 130 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 25 T ELT)) (-2198 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) NIL T ELT)) (-3397 (((-85) $) 14 T ELT)) (-3559 (($) 53 T ELT)) (-3794 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT) ((|#1| $ (-483)) 70 T ELT) ((|#1| $ (-483) |#1|) NIL T ELT)) (-3025 (((-483) $ $) 57 T ELT)) (-2301 (($ $ (-1144 (-483))) NIL T ELT) (($ $ (-483)) NIL T ELT)) (-3456 (($ (-1 $)) 56 T ELT)) (-3627 (((-85) $) 86 T ELT)) (-3786 (($ $) 87 T ELT)) (-3784 (($ $) 110 (|has| $ (-6 -3990)) ELT)) (-3787 (((-694) $) NIL T ELT)) (-3788 (($ $) NIL T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) 52 T ELT)) (-3966 (((-472) $) NIL (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 68 T ELT)) (-3455 (($ |#1| $) 108 T ELT)) (-3785 (($ $ $) 112 (|has| $ (-6 -3990)) ELT) (($ $ |#1|) 113 (|has| $ (-6 -3990)) ELT)) (-3796 (($ $ $) 95 T ELT) (($ |#1| $) 54 T ELT) (($ (-583 $)) 100 T ELT) (($ $ |#1|) 94 T ELT)) (-2887 (($ $) 59 T ELT)) (-3940 (($ (-583 |#1|)) 123 T ELT) (((-772) $) 50 (|has| |#1| (-552 (-772))) ELT)) (-3516 (((-583 $) $) NIL T ELT)) (-3024 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 126 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-1067 |#1|) (-13 (-616 |#1|) (-555 (-583 |#1|)) (-10 -8 (-6 -3990) (-15 -3459 ($ (-583 |#1|))) (IF (|has| |#1| (-1012)) (-15 -3458 ((-85) (-583 |#1|) $)) |%noBranch|) (-15 -3457 ((-2 (|:| |cycle?| (-85)) (|:| -2591 (-694)) (|:| |period| (-694))) (-694) $)) (-15 -3456 ($ (-1 $))) (-15 -3455 ($ |#1| $)) (IF (|has| |#1| (-1012)) (PROGN (-15 -3454 ((-1183) (-483) $)) (-15 -3453 ((-772) $)) (-15 -3452 ((-85)))) |%noBranch|) (-15 -3781 ($ $ (-483) $)) (-15 -3451 ($ (-1 |#1|))) (-15 -3451 ($ (-1 |#1| |#1|) |#1|)) (-15 -3450 ($ (-1 (-85) |#1|) $)) (-15 -3449 ($ (-1 (-85) |#1|) $)))) (-1127)) (T -1067))
-((-3459 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-5 *1 (-1067 *3)))) (-3458 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1012)) (-4 *4 (-1127)) (-5 *2 (-85)) (-5 *1 (-1067 *4)))) (-3457 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2591 (-694)) (|:| |period| (-694)))) (-5 *1 (-1067 *4)) (-4 *4 (-1127)) (-5 *3 (-694)))) (-3456 (*1 *1 *2) (-12 (-5 *2 (-1 (-1067 *3))) (-5 *1 (-1067 *3)) (-4 *3 (-1127)))) (-3455 (*1 *1 *2 *1) (-12 (-5 *1 (-1067 *2)) (-4 *2 (-1127)))) (-3454 (*1 *2 *3 *1) (-12 (-5 *3 (-483)) (-5 *2 (-1183)) (-5 *1 (-1067 *4)) (-4 *4 (-1012)) (-4 *4 (-1127)))) (-3453 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1067 *3)) (-4 *3 (-1012)) (-4 *3 (-1127)))) (-3452 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1067 *3)) (-4 *3 (-1012)) (-4 *3 (-1127)))) (-3781 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1067 *3)) (-4 *3 (-1127)))) (-3451 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1127)) (-5 *1 (-1067 *3)))) (-3451 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-1067 *3)))) (-3450 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1127)) (-5 *1 (-1067 *3)))) (-3449 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1127)) (-5 *1 (-1067 *3)))))
-((-3796 (((-1067 |#1|) (-1067 (-1067 |#1|))) 15 T ELT)))
-(((-1068 |#1|) (-10 -7 (-15 -3796 ((-1067 |#1|) (-1067 (-1067 |#1|))))) (-1127)) (T -1068))
-((-3796 (*1 *2 *3) (-12 (-5 *3 (-1067 (-1067 *4))) (-5 *2 (-1067 *4)) (-5 *1 (-1068 *4)) (-4 *4 (-1127)))))
-((-3835 (((-1067 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1067 |#1|)) 25 T ELT)) (-3836 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1067 |#1|)) 26 T ELT)) (-3952 (((-1067 |#2|) (-1 |#2| |#1|) (-1067 |#1|)) 16 T ELT)))
-(((-1069 |#1| |#2|) (-10 -7 (-15 -3952 ((-1067 |#2|) (-1 |#2| |#1|) (-1067 |#1|))) (-15 -3835 ((-1067 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1067 |#1|))) (-15 -3836 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1067 |#1|)))) (-1127) (-1127)) (T -1069))
-((-3836 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1067 *5)) (-4 *5 (-1127)) (-4 *2 (-1127)) (-5 *1 (-1069 *5 *2)))) (-3835 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1067 *6)) (-4 *6 (-1127)) (-4 *3 (-1127)) (-5 *2 (-1067 *3)) (-5 *1 (-1069 *6 *3)))) (-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1067 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-1067 *6)) (-5 *1 (-1069 *5 *6)))))
-((-3952 (((-1067 |#3|) (-1 |#3| |#1| |#2|) (-1067 |#1|) (-1067 |#2|)) 21 T ELT)))
-(((-1070 |#1| |#2| |#3|) (-10 -7 (-15 -3952 ((-1067 |#3|) (-1 |#3| |#1| |#2|) (-1067 |#1|) (-1067 |#2|)))) (-1127) (-1127) (-1127)) (T -1070))
-((-3952 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1067 *6)) (-5 *5 (-1067 *7)) (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-1067 *8)) (-5 *1 (-1070 *6 *7 *8)))))
-((-2564 (((-85) $ $) NIL (|has| (-117) (-72)) ELT)) (-3420 (($ $) 42 T ELT)) (-3421 (($ $) NIL T ELT)) (-3411 (($ $ (-117)) NIL T ELT) (($ $ (-114)) NIL T ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-3418 (((-85) $ $) 67 T ELT)) (-3417 (((-85) $ $ (-483)) 62 T ELT)) (-3529 (($ (-483)) 7 T ELT) (($ (-179)) 9 T ELT) (($ (-444)) 11 T ELT)) (-3412 (((-583 $) $ (-117)) 76 T ELT) (((-583 $) $ (-114)) 77 T ELT)) (-1729 (((-85) (-1 (-85) (-117) (-117)) $) NIL T ELT) (((-85) $) NIL (|has| (-117) (-756)) ELT)) (-1727 (($ (-1 (-85) (-117) (-117)) $) NIL (|has| $ (-6 -3990)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3990)) (|has| (-117) (-756))) ELT)) (-2905 (($ (-1 (-85) (-117) (-117)) $) NIL T ELT) (($ $) NIL (|has| (-117) (-756)) ELT)) (-3782 (((-117) $ (-483) (-117)) 59 (|has| $ (-6 -3990)) ELT) (((-117) $ (-1144 (-483)) (-117)) NIL (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3718 (($) NIL T CONST)) (-3409 (($ $ (-117)) 80 T ELT) (($ $ (-114)) 81 T ELT)) (-2293 (($ $) NIL (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) NIL T ELT)) (-3414 (($ $ (-1144 (-483)) $) 57 T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-117) (-1012))) ELT)) (-3400 (($ (-117) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-117) (-1012))) ELT) (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (-12 (|has| $ (-6 -3989)) (|has| (-117) (-1012))) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL (|has| $ (-6 -3989)) ELT) (((-117) (-1 (-117) (-117) (-117)) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 (((-117) $ (-483) (-117)) NIL (|has| $ (-6 -3990)) ELT)) (-3108 (((-117) $ (-483)) NIL T ELT)) (-3419 (((-85) $ $) 91 T ELT)) (-3413 (((-483) (-1 (-85) (-117)) $) NIL T ELT) (((-483) (-117) $) NIL (|has| (-117) (-1012)) ELT) (((-483) (-117) $ (-483)) 64 (|has| (-117) (-1012)) ELT) (((-483) $ $ (-483)) 63 T ELT) (((-483) (-114) $ (-483)) 66 T ELT)) (-2885 (((-583 (-117)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3608 (($ (-694) (-117)) 14 T ELT)) (-2196 (((-483) $) 36 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| (-117) (-756)) ELT)) (-3512 (($ (-1 (-85) (-117) (-117)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-117) (-756)) ELT)) (-2604 (((-583 (-117)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-117) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-117) (-1012))) ELT)) (-2197 (((-483) $) 50 (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| (-117) (-756)) ELT)) (-3415 (((-85) $ $ (-117)) 92 T ELT)) (-3416 (((-694) $ $ (-117)) 88 T ELT)) (-1946 (($ (-1 (-117) (-117)) $) 41 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-117) (-117)) $) NIL T ELT) (($ (-1 (-117) (-117) (-117)) $ $) NIL T ELT)) (-3422 (($ $) 45 T ELT)) (-3423 (($ $) NIL T ELT)) (-3410 (($ $ (-117)) 78 T ELT) (($ $ (-114)) 79 T ELT)) (-3237 (((-1071) $) 46 (|has| (-117) (-1012)) ELT)) (-2300 (($ (-117) $ (-483)) NIL T ELT) (($ $ $ (-483)) 31 T ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-3238 (((-1032) $) 87 (|has| (-117) (-1012)) ELT)) (-3795 (((-117) $) NIL (|has| (-483) (-756)) ELT)) (-1351 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-2195 (($ $ (-117)) NIL (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 (-117)))) NIL (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1012))) ELT) (($ $ (-248 (-117))) NIL (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1012))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1012))) ELT) (($ $ (-583 (-117)) (-583 (-117))) NIL (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) (-117) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-117) (-1012))) ELT)) (-2201 (((-583 (-117)) $) NIL T ELT)) (-3397 (((-85) $) 19 T ELT)) (-3559 (($) 16 T ELT)) (-3794 (((-117) $ (-483) (-117)) NIL T ELT) (((-117) $ (-483)) 69 T ELT) (($ $ (-1144 (-483))) 29 T ELT) (($ $ $) NIL T ELT)) (-2301 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-1943 (((-694) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) (-117) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-117) (-1012))) ELT)) (-1728 (($ $ $ (-483)) 83 (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) 24 T ELT)) (-3966 (((-472) $) NIL (|has| (-117) (-553 (-472))) ELT)) (-3524 (($ (-583 (-117))) NIL T ELT)) (-3796 (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT) (($ $ $) 23 T ELT) (($ (-583 $)) 84 T ELT)) (-3940 (($ (-117)) NIL T ELT) (((-772) $) 35 (|has| (-117) (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| (-117) (-72)) ELT)) (-1945 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) NIL (|has| (-117) (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| (-117) (-756)) ELT)) (-3052 (((-85) $ $) 21 (|has| (-117) (-72)) ELT)) (-2680 (((-85) $ $) NIL (|has| (-117) (-756)) ELT)) (-2681 (((-85) $ $) 22 (|has| (-117) (-756)) ELT)) (-3951 (((-694) $) 20 (|has| $ (-6 -3989)) ELT)))
-(((-1071) (-13 (-1056) (-10 -8 (-15 -3529 ($ (-483))) (-15 -3529 ($ (-179))) (-15 -3529 ($ (-444)))))) (T -1071))
-((-3529 (*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-1071)))) (-3529 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1071)))) (-3529 (*1 *1 *2) (-12 (-5 *2 (-444)) (-5 *1 (-1071)))))
-((-2564 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3593 (($) NIL T ELT) (($ (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) NIL T ELT)) (-2194 (((-1183) $ (-1071) (-1071)) NIL (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ (-1071) |#1|) NIL T ELT)) (-1567 (($ (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-2227 (((-3 |#1| #1="failed") (-1071) $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT)) (-3399 (($ (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-3 |#1| #1#) (-1071) $) NIL T ELT)) (-3400 (($ (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (($ (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $ (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $ (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) NIL (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 ((|#1| $ (-1071) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-1071)) NIL T ELT)) (-2885 (((-583 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2196 (((-1071) $) NIL (|has| (-1071) (-756)) ELT)) (-2604 (((-583 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2197 (((-1071) $) NIL (|has| (-1071) (-756)) ELT)) (-1946 (($ (-1 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3990)) ELT) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL (OR (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012)) (|has| |#1| (-1012))) ELT)) (-2228 (((-583 (-1071)) $) NIL T ELT)) (-2229 (((-85) (-1071) $) NIL T ELT)) (-1271 (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3603 (($ (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2199 (((-583 (-1071)) $) NIL T ELT)) (-2200 (((-85) (-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL (OR (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012)) (|has| |#1| (-1012))) ELT)) (-3795 ((|#1| $) NIL (|has| (-1071) (-756)) ELT)) (-1351 (((-3 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2195 (($ $ |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-1272 (((-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1944 (((-85) (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (($ $ (-248 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (($ $ (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (($ $ (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#1| $ (-1071)) NIL T ELT) ((|#1| $ (-1071) |#1|) NIL T ELT)) (-1463 (($) NIL T ELT) (($ (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) NIL T ELT)) (-1943 (((-694) (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-1012))) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-553 (-472))) ELT)) (-3524 (($ (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) NIL T ELT)) (-3940 (((-772) $) NIL (OR (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-552 (-772))) (|has| |#1| (-552 (-772)))) ELT)) (-1262 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-1273 (($ (-583 (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)))) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 (-1071)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-1072 |#1|) (-13 (-1105 (-1071) |#1|) (-10 -7 (-6 -3989))) (-1012)) (T -1072))
-NIL
-((-3799 (((-1067 |#1|) (-1067 |#1|)) 83 T ELT)) (-3461 (((-3 (-1067 |#1|) #1="failed") (-1067 |#1|)) 39 T ELT)) (-3472 (((-1067 |#1|) (-347 (-483)) (-1067 |#1|)) 131 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3475 (((-1067 |#1|) |#1| (-1067 |#1|)) 135 (|has| |#1| (-311)) ELT)) (-3802 (((-1067 |#1|) (-1067 |#1|)) 97 T ELT)) (-3463 (((-1067 (-483)) (-483)) 63 T ELT)) (-3471 (((-1067 |#1|) (-1067 (-1067 |#1|))) 116 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3798 (((-1067 |#1|) (-483) (-483) (-1067 |#1|)) 103 T ELT)) (-3932 (((-1067 |#1|) |#1| (-483)) 51 T ELT)) (-3465 (((-1067 |#1|) (-1067 |#1|) (-1067 |#1|)) 66 T ELT)) (-3473 (((-1067 |#1|) (-1067 |#1|) (-1067 |#1|)) 133 (|has| |#1| (-311)) ELT)) (-3470 (((-1067 |#1|) |#1| (-1 (-1067 |#1|))) 115 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3474 (((-1067 |#1|) (-1 |#1| (-483)) |#1| (-1 (-1067 |#1|))) 134 (|has| |#1| (-311)) ELT)) (-3803 (((-1067 |#1|) (-1067 |#1|)) 96 T ELT)) (-3804 (((-1067 |#1|) (-1067 |#1|)) 82 T ELT)) (-3797 (((-1067 |#1|) (-483) (-483) (-1067 |#1|)) 104 T ELT)) (-3806 (((-1067 |#1|) |#1| (-1067 |#1|)) 113 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3462 (((-1067 (-483)) (-483)) 62 T ELT)) (-3464 (((-1067 |#1|) |#1|) 65 T ELT)) (-3800 (((-1067 |#1|) (-1067 |#1|) (-483) (-483)) 100 T ELT)) (-3467 (((-1067 |#1|) (-1 |#1| (-483)) (-1067 |#1|)) 72 T ELT)) (-3460 (((-3 (-1067 |#1|) #1#) (-1067 |#1|) (-1067 |#1|)) 37 T ELT)) (-3801 (((-1067 |#1|) (-1067 |#1|)) 98 T ELT)) (-3762 (((-1067 |#1|) (-1067 |#1|) |#1|) 77 T ELT)) (-3466 (((-1067 |#1|) (-1067 |#1|)) 68 T ELT)) (-3468 (((-1067 |#1|) (-1067 |#1|) (-1067 |#1|)) 78 T ELT)) (-3940 (((-1067 |#1|) |#1|) 73 T ELT)) (-3469 (((-1067 |#1|) (-1067 (-1067 |#1|))) 88 T ELT)) (-3943 (((-1067 |#1|) (-1067 |#1|) (-1067 |#1|)) 38 T ELT)) (-3831 (((-1067 |#1|) (-1067 |#1|)) 21 T ELT) (((-1067 |#1|) (-1067 |#1|) (-1067 |#1|)) 23 T ELT)) (-3833 (((-1067 |#1|) (-1067 |#1|) (-1067 |#1|)) 17 T ELT)) (* (((-1067 |#1|) (-1067 |#1|) |#1|) 29 T ELT) (((-1067 |#1|) |#1| (-1067 |#1|)) 26 T ELT) (((-1067 |#1|) (-1067 |#1|) (-1067 |#1|)) 27 T ELT)))
-(((-1073 |#1|) (-10 -7 (-15 -3833 ((-1067 |#1|) (-1067 |#1|) (-1067 |#1|))) (-15 -3831 ((-1067 |#1|) (-1067 |#1|) (-1067 |#1|))) (-15 -3831 ((-1067 |#1|) (-1067 |#1|))) (-15 * ((-1067 |#1|) (-1067 |#1|) (-1067 |#1|))) (-15 * ((-1067 |#1|) |#1| (-1067 |#1|))) (-15 * ((-1067 |#1|) (-1067 |#1|) |#1|)) (-15 -3460 ((-3 (-1067 |#1|) #1="failed") (-1067 |#1|) (-1067 |#1|))) (-15 -3943 ((-1067 |#1|) (-1067 |#1|) (-1067 |#1|))) (-15 -3461 ((-3 (-1067 |#1|) #1#) (-1067 |#1|))) (-15 -3932 ((-1067 |#1|) |#1| (-483))) (-15 -3462 ((-1067 (-483)) (-483))) (-15 -3463 ((-1067 (-483)) (-483))) (-15 -3464 ((-1067 |#1|) |#1|)) (-15 -3465 ((-1067 |#1|) (-1067 |#1|) (-1067 |#1|))) (-15 -3466 ((-1067 |#1|) (-1067 |#1|))) (-15 -3467 ((-1067 |#1|) (-1 |#1| (-483)) (-1067 |#1|))) (-15 -3940 ((-1067 |#1|) |#1|)) (-15 -3762 ((-1067 |#1|) (-1067 |#1|) |#1|)) (-15 -3468 ((-1067 |#1|) (-1067 |#1|) (-1067 |#1|))) (-15 -3804 ((-1067 |#1|) (-1067 |#1|))) (-15 -3799 ((-1067 |#1|) (-1067 |#1|))) (-15 -3469 ((-1067 |#1|) (-1067 (-1067 |#1|)))) (-15 -3803 ((-1067 |#1|) (-1067 |#1|))) (-15 -3802 ((-1067 |#1|) (-1067 |#1|))) (-15 -3801 ((-1067 |#1|) (-1067 |#1|))) (-15 -3800 ((-1067 |#1|) (-1067 |#1|) (-483) (-483))) (-15 -3798 ((-1067 |#1|) (-483) (-483) (-1067 |#1|))) (-15 -3797 ((-1067 |#1|) (-483) (-483) (-1067 |#1|))) (IF (|has| |#1| (-38 (-347 (-483)))) (PROGN (-15 -3806 ((-1067 |#1|) |#1| (-1067 |#1|))) (-15 -3470 ((-1067 |#1|) |#1| (-1 (-1067 |#1|)))) (-15 -3471 ((-1067 |#1|) (-1067 (-1067 |#1|)))) (-15 -3472 ((-1067 |#1|) (-347 (-483)) (-1067 |#1|)))) |%noBranch|) (IF (|has| |#1| (-311)) (PROGN (-15 -3473 ((-1067 |#1|) (-1067 |#1|) (-1067 |#1|))) (-15 -3474 ((-1067 |#1|) (-1 |#1| (-483)) |#1| (-1 (-1067 |#1|)))) (-15 -3475 ((-1067 |#1|) |#1| (-1067 |#1|)))) |%noBranch|)) (-961)) (T -1073))
-((-3475 (*1 *2 *3 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-311)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (-3474 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-483))) (-5 *5 (-1 (-1067 *4))) (-4 *4 (-311)) (-4 *4 (-961)) (-5 *2 (-1067 *4)) (-5 *1 (-1073 *4)))) (-3473 (*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-311)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (-3472 (*1 *2 *3 *2) (-12 (-5 *2 (-1067 *4)) (-4 *4 (-38 *3)) (-4 *4 (-961)) (-5 *3 (-347 (-483))) (-5 *1 (-1073 *4)))) (-3471 (*1 *2 *3) (-12 (-5 *3 (-1067 (-1067 *4))) (-5 *2 (-1067 *4)) (-5 *1 (-1073 *4)) (-4 *4 (-38 (-347 (-483)))) (-4 *4 (-961)))) (-3470 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1067 *3))) (-5 *2 (-1067 *3)) (-5 *1 (-1073 *3)) (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)))) (-3806 (*1 *2 *3 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (-3797 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1067 *4)) (-5 *3 (-483)) (-4 *4 (-961)) (-5 *1 (-1073 *4)))) (-3798 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1067 *4)) (-5 *3 (-483)) (-4 *4 (-961)) (-5 *1 (-1073 *4)))) (-3800 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1067 *4)) (-5 *3 (-483)) (-4 *4 (-961)) (-5 *1 (-1073 *4)))) (-3801 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (-3802 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (-3803 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (-3469 (*1 *2 *3) (-12 (-5 *3 (-1067 (-1067 *4))) (-5 *2 (-1067 *4)) (-5 *1 (-1073 *4)) (-4 *4 (-961)))) (-3799 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (-3804 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (-3468 (*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (-3762 (*1 *2 *2 *3) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (-3940 (*1 *2 *3) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-1073 *3)) (-4 *3 (-961)))) (-3467 (*1 *2 *3 *2) (-12 (-5 *2 (-1067 *4)) (-5 *3 (-1 *4 (-483))) (-4 *4 (-961)) (-5 *1 (-1073 *4)))) (-3466 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (-3465 (*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (-3464 (*1 *2 *3) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-1073 *3)) (-4 *3 (-961)))) (-3463 (*1 *2 *3) (-12 (-5 *2 (-1067 (-483))) (-5 *1 (-1073 *4)) (-4 *4 (-961)) (-5 *3 (-483)))) (-3462 (*1 *2 *3) (-12 (-5 *2 (-1067 (-483))) (-5 *1 (-1073 *4)) (-4 *4 (-961)) (-5 *3 (-483)))) (-3932 (*1 *2 *3 *4) (-12 (-5 *4 (-483)) (-5 *2 (-1067 *3)) (-5 *1 (-1073 *3)) (-4 *3 (-961)))) (-3461 (*1 *2 *2) (|partial| -12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (-3943 (*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (-3460 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (-3831 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (-3831 (*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))) (-3833 (*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))))
-((-3486 (((-1067 |#1|) (-1067 |#1|)) 102 T ELT)) (-3633 (((-1067 |#1|) (-1067 |#1|)) 59 T ELT)) (-3477 (((-2 (|:| -3484 (-1067 |#1|)) (|:| -3485 (-1067 |#1|))) (-1067 |#1|)) 98 T ELT)) (-3484 (((-1067 |#1|) (-1067 |#1|)) 99 T ELT)) (-3476 (((-2 (|:| -3632 (-1067 |#1|)) (|:| -3628 (-1067 |#1|))) (-1067 |#1|)) 54 T ELT)) (-3632 (((-1067 |#1|) (-1067 |#1|)) 55 T ELT)) (-3488 (((-1067 |#1|) (-1067 |#1|)) 104 T ELT)) (-3631 (((-1067 |#1|) (-1067 |#1|)) 66 T ELT)) (-3936 (((-1067 |#1|) (-1067 |#1|)) 40 T ELT)) (-3937 (((-1067 |#1|) (-1067 |#1|)) 37 T ELT)) (-3489 (((-1067 |#1|) (-1067 |#1|)) 105 T ELT)) (-3630 (((-1067 |#1|) (-1067 |#1|)) 67 T ELT)) (-3487 (((-1067 |#1|) (-1067 |#1|)) 103 T ELT)) (-3629 (((-1067 |#1|) (-1067 |#1|)) 62 T ELT)) (-3485 (((-1067 |#1|) (-1067 |#1|)) 100 T ELT)) (-3628 (((-1067 |#1|) (-1067 |#1|)) 56 T ELT)) (-3492 (((-1067 |#1|) (-1067 |#1|)) 113 T ELT)) (-3480 (((-1067 |#1|) (-1067 |#1|)) 88 T ELT)) (-3490 (((-1067 |#1|) (-1067 |#1|)) 107 T ELT)) (-3478 (((-1067 |#1|) (-1067 |#1|)) 84 T ELT)) (-3494 (((-1067 |#1|) (-1067 |#1|)) 117 T ELT)) (-3482 (((-1067 |#1|) (-1067 |#1|)) 92 T ELT)) (-3495 (((-1067 |#1|) (-1067 |#1|)) 119 T ELT)) (-3483 (((-1067 |#1|) (-1067 |#1|)) 94 T ELT)) (-3493 (((-1067 |#1|) (-1067 |#1|)) 115 T ELT)) (-3481 (((-1067 |#1|) (-1067 |#1|)) 90 T ELT)) (-3491 (((-1067 |#1|) (-1067 |#1|)) 109 T ELT)) (-3479 (((-1067 |#1|) (-1067 |#1|)) 86 T ELT)) (** (((-1067 |#1|) (-1067 |#1|) (-1067 |#1|)) 41 T ELT)))
-(((-1074 |#1|) (-10 -7 (-15 -3937 ((-1067 |#1|) (-1067 |#1|))) (-15 -3936 ((-1067 |#1|) (-1067 |#1|))) (-15 ** ((-1067 |#1|) (-1067 |#1|) (-1067 |#1|))) (-15 -3476 ((-2 (|:| -3632 (-1067 |#1|)) (|:| -3628 (-1067 |#1|))) (-1067 |#1|))) (-15 -3632 ((-1067 |#1|) (-1067 |#1|))) (-15 -3628 ((-1067 |#1|) (-1067 |#1|))) (-15 -3633 ((-1067 |#1|) (-1067 |#1|))) (-15 -3629 ((-1067 |#1|) (-1067 |#1|))) (-15 -3631 ((-1067 |#1|) (-1067 |#1|))) (-15 -3630 ((-1067 |#1|) (-1067 |#1|))) (-15 -3478 ((-1067 |#1|) (-1067 |#1|))) (-15 -3479 ((-1067 |#1|) (-1067 |#1|))) (-15 -3480 ((-1067 |#1|) (-1067 |#1|))) (-15 -3481 ((-1067 |#1|) (-1067 |#1|))) (-15 -3482 ((-1067 |#1|) (-1067 |#1|))) (-15 -3483 ((-1067 |#1|) (-1067 |#1|))) (-15 -3477 ((-2 (|:| -3484 (-1067 |#1|)) (|:| -3485 (-1067 |#1|))) (-1067 |#1|))) (-15 -3484 ((-1067 |#1|) (-1067 |#1|))) (-15 -3485 ((-1067 |#1|) (-1067 |#1|))) (-15 -3486 ((-1067 |#1|) (-1067 |#1|))) (-15 -3487 ((-1067 |#1|) (-1067 |#1|))) (-15 -3488 ((-1067 |#1|) (-1067 |#1|))) (-15 -3489 ((-1067 |#1|) (-1067 |#1|))) (-15 -3490 ((-1067 |#1|) (-1067 |#1|))) (-15 -3491 ((-1067 |#1|) (-1067 |#1|))) (-15 -3492 ((-1067 |#1|) (-1067 |#1|))) (-15 -3493 ((-1067 |#1|) (-1067 |#1|))) (-15 -3494 ((-1067 |#1|) (-1067 |#1|))) (-15 -3495 ((-1067 |#1|) (-1067 |#1|)))) (-38 (-347 (-483)))) (T -1074))
-((-3495 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3485 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3484 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3477 (*1 *2 *3) (-12 (-4 *4 (-38 (-347 (-483)))) (-5 *2 (-2 (|:| -3484 (-1067 *4)) (|:| -3485 (-1067 *4)))) (-5 *1 (-1074 *4)) (-5 *3 (-1067 *4)))) (-3483 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3482 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3481 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3480 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3479 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3478 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3630 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3631 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3629 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3633 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3628 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3632 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3476 (*1 *2 *3) (-12 (-4 *4 (-38 (-347 (-483)))) (-5 *2 (-2 (|:| -3632 (-1067 *4)) (|:| -3628 (-1067 *4)))) (-5 *1 (-1074 *4)) (-5 *3 (-1067 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3936 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))) (-3937 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3)))))
-((-3486 (((-1067 |#1|) (-1067 |#1|)) 60 T ELT)) (-3633 (((-1067 |#1|) (-1067 |#1|)) 42 T ELT)) (-3484 (((-1067 |#1|) (-1067 |#1|)) 56 T ELT)) (-3632 (((-1067 |#1|) (-1067 |#1|)) 38 T ELT)) (-3488 (((-1067 |#1|) (-1067 |#1|)) 63 T ELT)) (-3631 (((-1067 |#1|) (-1067 |#1|)) 45 T ELT)) (-3936 (((-1067 |#1|) (-1067 |#1|)) 34 T ELT)) (-3937 (((-1067 |#1|) (-1067 |#1|)) 29 T ELT)) (-3489 (((-1067 |#1|) (-1067 |#1|)) 64 T ELT)) (-3630 (((-1067 |#1|) (-1067 |#1|)) 46 T ELT)) (-3487 (((-1067 |#1|) (-1067 |#1|)) 61 T ELT)) (-3629 (((-1067 |#1|) (-1067 |#1|)) 43 T ELT)) (-3485 (((-1067 |#1|) (-1067 |#1|)) 58 T ELT)) (-3628 (((-1067 |#1|) (-1067 |#1|)) 40 T ELT)) (-3492 (((-1067 |#1|) (-1067 |#1|)) 68 T ELT)) (-3480 (((-1067 |#1|) (-1067 |#1|)) 50 T ELT)) (-3490 (((-1067 |#1|) (-1067 |#1|)) 66 T ELT)) (-3478 (((-1067 |#1|) (-1067 |#1|)) 48 T ELT)) (-3494 (((-1067 |#1|) (-1067 |#1|)) 71 T ELT)) (-3482 (((-1067 |#1|) (-1067 |#1|)) 53 T ELT)) (-3495 (((-1067 |#1|) (-1067 |#1|)) 72 T ELT)) (-3483 (((-1067 |#1|) (-1067 |#1|)) 54 T ELT)) (-3493 (((-1067 |#1|) (-1067 |#1|)) 70 T ELT)) (-3481 (((-1067 |#1|) (-1067 |#1|)) 52 T ELT)) (-3491 (((-1067 |#1|) (-1067 |#1|)) 69 T ELT)) (-3479 (((-1067 |#1|) (-1067 |#1|)) 51 T ELT)) (** (((-1067 |#1|) (-1067 |#1|) (-1067 |#1|)) 36 T ELT)))
-(((-1075 |#1|) (-10 -7 (-15 -3937 ((-1067 |#1|) (-1067 |#1|))) (-15 -3936 ((-1067 |#1|) (-1067 |#1|))) (-15 ** ((-1067 |#1|) (-1067 |#1|) (-1067 |#1|))) (-15 -3632 ((-1067 |#1|) (-1067 |#1|))) (-15 -3628 ((-1067 |#1|) (-1067 |#1|))) (-15 -3633 ((-1067 |#1|) (-1067 |#1|))) (-15 -3629 ((-1067 |#1|) (-1067 |#1|))) (-15 -3631 ((-1067 |#1|) (-1067 |#1|))) (-15 -3630 ((-1067 |#1|) (-1067 |#1|))) (-15 -3478 ((-1067 |#1|) (-1067 |#1|))) (-15 -3479 ((-1067 |#1|) (-1067 |#1|))) (-15 -3480 ((-1067 |#1|) (-1067 |#1|))) (-15 -3481 ((-1067 |#1|) (-1067 |#1|))) (-15 -3482 ((-1067 |#1|) (-1067 |#1|))) (-15 -3483 ((-1067 |#1|) (-1067 |#1|))) (-15 -3484 ((-1067 |#1|) (-1067 |#1|))) (-15 -3485 ((-1067 |#1|) (-1067 |#1|))) (-15 -3486 ((-1067 |#1|) (-1067 |#1|))) (-15 -3487 ((-1067 |#1|) (-1067 |#1|))) (-15 -3488 ((-1067 |#1|) (-1067 |#1|))) (-15 -3489 ((-1067 |#1|) (-1067 |#1|))) (-15 -3490 ((-1067 |#1|) (-1067 |#1|))) (-15 -3491 ((-1067 |#1|) (-1067 |#1|))) (-15 -3492 ((-1067 |#1|) (-1067 |#1|))) (-15 -3493 ((-1067 |#1|) (-1067 |#1|))) (-15 -3494 ((-1067 |#1|) (-1067 |#1|))) (-15 -3495 ((-1067 |#1|) (-1067 |#1|)))) (-38 (-347 (-483)))) (T -1075))
-((-3495 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3485 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3484 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3483 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3482 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3481 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3480 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3479 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3478 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3630 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3631 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3629 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3633 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3628 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3632 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3936 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))) (-3937 (*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))))
-((-3496 (((-869 |#2|) |#2| |#2|) 51 T ELT)) (-3497 ((|#2| |#2| |#1|) 19 (|has| |#1| (-257)) ELT)))
-(((-1076 |#1| |#2|) (-10 -7 (-15 -3496 ((-869 |#2|) |#2| |#2|)) (IF (|has| |#1| (-257)) (-15 -3497 (|#2| |#2| |#1|)) |%noBranch|)) (-494) (-1153 |#1|)) (T -1076))
-((-3497 (*1 *2 *2 *3) (-12 (-4 *3 (-257)) (-4 *3 (-494)) (-5 *1 (-1076 *3 *2)) (-4 *2 (-1153 *3)))) (-3496 (*1 *2 *3 *3) (-12 (-4 *4 (-494)) (-5 *2 (-869 *3)) (-5 *1 (-1076 *4 *3)) (-4 *3 (-1153 *4)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3505 (($ $ (-583 (-694))) 79 T ELT)) (-3882 (($) 33 T ELT)) (-3514 (($ $) 51 T ELT)) (-3745 (((-583 $) $) 60 T ELT)) (-3520 (((-85) $) 19 T ELT)) (-3498 (((-583 (-854 |#2|)) $) 86 T ELT)) (-3499 (($ $) 80 T ELT)) (-3515 (((-694) $) 47 T ELT)) (-3608 (($) 32 T ELT)) (-3508 (($ $ (-583 (-694)) (-854 |#2|)) 72 T ELT) (($ $ (-583 (-694)) (-694)) 73 T ELT) (($ $ (-694) (-854 |#2|)) 75 T ELT)) (-3512 (($ $ $) 57 T ELT) (($ (-583 $)) 59 T ELT)) (-3500 (((-694) $) 87 T ELT)) (-3521 (((-85) $) 15 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3519 (((-85) $) 22 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3501 (((-145) $) 85 T ELT)) (-3504 (((-854 |#2|) $) 81 T ELT)) (-3503 (((-694) $) 82 T ELT)) (-3502 (((-85) $) 84 T ELT)) (-3506 (($ $ (-583 (-694)) (-145)) 78 T ELT)) (-3513 (($ $) 52 T ELT)) (-3940 (((-772) $) 99 T ELT)) (-3507 (($ $ (-583 (-694)) (-85)) 77 T ELT)) (-3516 (((-583 $) $) 11 T ELT)) (-3517 (($ $ (-694)) 46 T ELT)) (-3518 (($ $) 43 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3509 (($ $ $ (-854 |#2|) (-694)) 68 T ELT)) (-3510 (($ $ (-854 |#2|)) 67 T ELT)) (-3511 (($ $ (-583 (-694)) (-854 |#2|)) 66 T ELT) (($ $ (-583 (-694)) (-694)) 70 T ELT) (((-694) $ (-854 |#2|)) 71 T ELT)) (-3052 (((-85) $ $) 92 T ELT)))
-(((-1077 |#1| |#2|) (-13 (-1012) (-10 -8 (-15 -3521 ((-85) $)) (-15 -3520 ((-85) $)) (-15 -3519 ((-85) $)) (-15 -3608 ($)) (-15 -3882 ($)) (-15 -3518 ($ $)) (-15 -3517 ($ $ (-694))) (-15 -3516 ((-583 $) $)) (-15 -3515 ((-694) $)) (-15 -3514 ($ $)) (-15 -3513 ($ $)) (-15 -3512 ($ $ $)) (-15 -3512 ($ (-583 $))) (-15 -3745 ((-583 $) $)) (-15 -3511 ($ $ (-583 (-694)) (-854 |#2|))) (-15 -3510 ($ $ (-854 |#2|))) (-15 -3509 ($ $ $ (-854 |#2|) (-694))) (-15 -3508 ($ $ (-583 (-694)) (-854 |#2|))) (-15 -3511 ($ $ (-583 (-694)) (-694))) (-15 -3508 ($ $ (-583 (-694)) (-694))) (-15 -3511 ((-694) $ (-854 |#2|))) (-15 -3508 ($ $ (-694) (-854 |#2|))) (-15 -3507 ($ $ (-583 (-694)) (-85))) (-15 -3506 ($ $ (-583 (-694)) (-145))) (-15 -3505 ($ $ (-583 (-694)))) (-15 -3504 ((-854 |#2|) $)) (-15 -3503 ((-694) $)) (-15 -3502 ((-85) $)) (-15 -3501 ((-145) $)) (-15 -3500 ((-694) $)) (-15 -3499 ($ $)) (-15 -3498 ((-583 (-854 |#2|)) $)))) (-830) (-961)) (T -1077))
-((-3521 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3520 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3519 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3608 (*1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3882 (*1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3518 (*1 *1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3516 (*1 *2 *1) (-12 (-5 *2 (-583 (-1077 *3 *4))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3515 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3514 (*1 *1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3513 (*1 *1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3512 (*1 *1 *1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3512 (*1 *1 *2) (-12 (-5 *2 (-583 (-1077 *3 *4))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3745 (*1 *2 *1) (-12 (-5 *2 (-583 (-1077 *3 *4))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3511 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *1 (-1077 *4 *5)) (-14 *4 (-830)))) (-3510 (*1 *1 *1 *2) (-12 (-5 *2 (-854 *4)) (-4 *4 (-961)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)))) (-3509 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-854 *5)) (-5 *3 (-694)) (-4 *5 (-961)) (-5 *1 (-1077 *4 *5)) (-14 *4 (-830)))) (-3508 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *1 (-1077 *4 *5)) (-14 *4 (-830)))) (-3511 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-694)) (-5 *1 (-1077 *4 *5)) (-14 *4 (-830)) (-4 *5 (-961)))) (-3508 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-694)) (-5 *1 (-1077 *4 *5)) (-14 *4 (-830)) (-4 *5 (-961)))) (-3511 (*1 *2 *1 *3) (-12 (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *2 (-694)) (-5 *1 (-1077 *4 *5)) (-14 *4 (-830)))) (-3508 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *1 (-1077 *4 *5)) (-14 *4 (-830)))) (-3507 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-85)) (-5 *1 (-1077 *4 *5)) (-14 *4 (-830)) (-4 *5 (-961)))) (-3506 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-145)) (-5 *1 (-1077 *4 *5)) (-14 *4 (-830)) (-4 *5 (-961)))) (-3505 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3504 (*1 *2 *1) (-12 (-5 *2 (-854 *4)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3503 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3502 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-145)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3500 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3499 (*1 *1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3498 (*1 *2 *1) (-12 (-5 *2 (-583 (-854 *4))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3522 ((|#2| $) 11 T ELT)) (-3523 ((|#1| $) 10 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3524 (($ |#1| |#2|) 9 T ELT)) (-3940 (((-772) $) 16 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-1078 |#1| |#2|) (-13 (-1012) (-10 -8 (-15 -3524 ($ |#1| |#2|)) (-15 -3523 (|#1| $)) (-15 -3522 (|#2| $)))) (-1012) (-1012)) (T -1078))
-((-3524 (*1 *1 *2 *3) (-12 (-5 *1 (-1078 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) (-3523 (*1 *2 *1) (-12 (-4 *2 (-1012)) (-5 *1 (-1078 *2 *3)) (-4 *3 (-1012)))) (-3522 (*1 *2 *1) (-12 (-4 *2 (-1012)) (-5 *1 (-1078 *3 *2)) (-4 *3 (-1012)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3525 (((-1047) $) 10 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 16 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-1079) (-13 (-994) (-10 -8 (-15 -3525 ((-1047) $))))) (T -1079))
-((-3525 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1079)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3124 (((-1087 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-257)) (|has| |#1| (-311))) ELT)) (-3077 (((-583 (-993)) $) NIL T ELT)) (-3825 (((-1088) $) 11 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (|has| |#1| (-494))) ELT)) (-2059 (($ $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (|has| |#1| (-494))) ELT)) (-2057 (((-85) $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (|has| |#1| (-494))) ELT)) (-3765 (($ $ (-483)) NIL T ELT) (($ $ (-483) (-483)) 75 T ELT)) (-3768 (((-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))) $) NIL T ELT)) (-3725 (((-1087 |#1| |#2| |#3|) $) 42 T ELT)) (-3722 (((-3 (-1087 |#1| |#2| |#3|) #1="failed") $) 32 T ELT)) (-3723 (((-1087 |#1| |#2| |#3|) $) 33 T ELT)) (-3486 (($ $) 116 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) 92 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ #1#) $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) ELT)) (-3769 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-3033 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) ELT)) (-1605 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3484 (($ $) 112 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) 88 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3617 (((-483) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) ELT)) (-3812 (($ (-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|)))) NIL T ELT)) (-3488 (($ $) 120 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) 96 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-1087 |#1| |#2| |#3|) #1#) $) 34 T ELT) (((-3 (-1088) #1#) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-950 (-1088))) (|has| |#1| (-311))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-950 (-483))) (|has| |#1| (-311))) ELT) (((-3 (-483) #1#) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-950 (-483))) (|has| |#1| (-311))) ELT)) (-3151 (((-1087 |#1| |#2| |#3|) $) 140 T ELT) (((-1088) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-950 (-1088))) (|has| |#1| (-311))) ELT) (((-347 (-483)) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-950 (-483))) (|has| |#1| (-311))) ELT) (((-483) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-950 (-483))) (|has| |#1| (-311))) ELT)) (-3724 (($ $) 37 T ELT) (($ (-483) $) 38 T ELT)) (-2560 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3953 (($ $) NIL T ELT)) (-2275 (((-630 (-1087 |#1| |#2| |#3|)) (-630 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-630 (-1087 |#1| |#2| |#3|))) (|:| |vec| (-1177 (-1087 |#1| |#2| |#3|)))) (-630 $) (-1177 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-580 (-483))) (|has| |#1| (-311))) ELT) (((-630 (-483)) (-630 $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-580 (-483))) (|has| |#1| (-311))) ELT)) (-3461 (((-3 $ #1#) $) 54 T ELT)) (-3721 (((-347 (-857 |#1|)) $ (-483)) 74 (|has| |#1| (-494)) ELT) (((-347 (-857 |#1|)) $ (-483) (-483)) 76 (|has| |#1| (-494)) ELT)) (-2990 (($) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-482)) (|has| |#1| (-311))) ELT)) (-2559 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| |#1| (-311)) ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-3181 (((-85) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) ELT)) (-2888 (((-85) $) 28 T ELT)) (-3621 (($) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-796 (-327))) (|has| |#1| (-311))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-796 (-483))) (|has| |#1| (-311))) ELT)) (-3766 (((-483) $) NIL T ELT) (((-483) $ (-483)) 26 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2992 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2994 (((-1087 |#1| |#2| |#3|) $) 44 (|has| |#1| (-311)) ELT)) (-3007 (($ $ (-483)) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3439 (((-632 $) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-1064)) (|has| |#1| (-311))) ELT)) (-3182 (((-85) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) ELT)) (-3771 (($ $ (-830)) NIL T ELT)) (-3809 (($ (-1 |#1| (-483)) $) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-483)) 19 T ELT) (($ $ (-993) (-483)) NIL T ELT) (($ $ (-583 (-993)) (-583 (-483))) NIL T ELT)) (-2527 (($ $ $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-756)) (|has| |#1| (-311)))) ELT)) (-2853 (($ $ $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-756)) (|has| |#1| (-311)))) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-311)) ELT)) (-3936 (($ $) 81 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2276 (((-630 (-1087 |#1| |#2| |#3|)) (-1177 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-630 (-1087 |#1| |#2| |#3|))) (|:| |vec| (-1177 (-1087 |#1| |#2| |#3|)))) (-1177 $) $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-580 (-483))) (|has| |#1| (-311))) ELT) (((-630 (-483)) (-1177 $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-580 (-483))) (|has| |#1| (-311))) ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3773 (($ (-483) (-1087 |#1| |#2| |#3|)) 36 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3806 (($ $) 79 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-29 (-483))) (|has| |#1| (-871)) (|has| |#1| (-1113))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-15 -3806 (|#1| |#1| (-1088)))) (|has| |#1| (-15 -3077 ((-583 (-1088)) |#1|))))) ELT) (($ $ (-1174 |#2|)) 80 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3440 (($) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-1064)) (|has| |#1| (-311))) CONST)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-311)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3123 (($ $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-257)) (|has| |#1| (-311))) ELT)) (-3125 (((-1087 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-482)) (|has| |#1| (-311))) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3763 (($ $ (-483)) 158 T ELT)) (-3460 (((-3 $ #1#) $ $) 55 (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (|has| |#1| (-494))) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3937 (($ $) 82 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3762 (((-1067 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-483)))) ELT) (($ $ (-1088) (-1087 |#1| |#2| |#3|)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-452 (-1088) (-1087 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-583 (-1088)) (-583 (-1087 |#1| |#2| |#3|))) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-452 (-1088) (-1087 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-583 (-248 (-1087 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-259 (-1087 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-248 (-1087 |#1| |#2| |#3|))) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-259 (-1087 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-259 (-1087 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-583 (-1087 |#1| |#2| |#3|)) (-583 (-1087 |#1| |#2| |#3|))) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-259 (-1087 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT)) (-1604 (((-694) $) NIL (|has| |#1| (-311)) ELT)) (-3794 ((|#1| $ (-483)) NIL T ELT) (($ $ $) 61 (|has| (-483) (-1024)) ELT) (($ $ (-1087 |#1| |#2| |#3|)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-241 (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3752 (($ $ (-1 (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|)) (-694)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|))) NIL (|has| |#1| (-311)) ELT) (($ $ (-1174 |#2|)) 57 T ELT) (($ $) 56 (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-190)) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-190)) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-809 (-1088))) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-583 (-1088))) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-809 (-1088))) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-1088) (-694)) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-809 (-1088))) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-809 (-1088))) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT)) (-2991 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2993 (((-1087 |#1| |#2| |#3|) $) 46 (|has| |#1| (-311)) ELT)) (-3942 (((-483) $) 43 T ELT)) (-3489 (($ $) 122 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) 98 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) 118 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) 94 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) 114 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) 90 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3966 (((-472) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-553 (-472))) (|has| |#1| (-311))) ELT) (((-327) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-933)) (|has| |#1| (-311))) ELT) (((-179) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-933)) (|has| |#1| (-311))) ELT) (((-800 (-327)) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-553 (-800 (-327)))) (|has| |#1| (-311))) ELT) (((-800 (-483)) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-553 (-800 (-483)))) (|has| |#1| (-311))) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-1087 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) ELT)) (-2887 (($ $) NIL T ELT)) (-3940 (((-772) $) 162 T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1087 |#1| |#2| |#3|)) 30 T ELT) (($ (-1174 |#2|)) 25 T ELT) (($ (-1088)) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-950 (-1088))) (|has| |#1| (-311))) ELT) (($ $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (|has| |#1| (-494))) ELT) (($ (-347 (-483))) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-950 (-483))) (|has| |#1| (-311))) (|has| |#1| (-38 (-347 (-483))))) ELT)) (-3671 ((|#1| $ (-483)) 77 T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1087 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-118)) (|has| |#1| (-311))) (|has| |#1| (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-3767 ((|#1| $) 12 T ELT)) (-3126 (((-1087 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-482)) (|has| |#1| (-311))) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3492 (($ $) 128 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) 104 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (|has| |#1| (-494))) ELT)) (-3490 (($ $) 124 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) 100 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) 132 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) 108 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3764 ((|#1| $ (-483)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-483)))) (|has| |#1| (-15 -3940 (|#1| (-1088))))) ELT)) (-3495 (($ $) 134 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) 110 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) 130 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) 106 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) 126 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) 102 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3377 (($ $) NIL (-12 (|has| (-1087 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) ELT)) (-2656 (($) 21 T CONST)) (-2662 (($) 16 T CONST)) (-2665 (($ $ (-1 (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|)) (-694)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|))) NIL (|has| |#1| (-311)) ELT) (($ $ (-1174 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-190)) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-190)) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-809 (-1088))) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-583 (-1088))) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-809 (-1088))) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-1088) (-694)) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-809 (-1088))) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-809 (-1088))) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT)) (-2562 (((-85) $ $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-756)) (|has| |#1| (-311)))) ELT)) (-2563 (((-85) $ $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-756)) (|has| |#1| (-311)))) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-756)) (|has| |#1| (-311)))) ELT)) (-2681 (((-85) $ $) NIL (OR (-12 (|has| (-1087 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1087 |#1| |#2| |#3|) (-756)) (|has| |#1| (-311)))) ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) 49 (|has| |#1| (-311)) ELT) (($ (-1087 |#1| |#2| |#3|) (-1087 |#1| |#2| |#3|)) 50 (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 23 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 60 T ELT) (($ $ (-483)) NIL (|has| |#1| (-311)) ELT) (($ $ $) 83 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 137 (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1087 |#1| |#2| |#3|)) 48 (|has| |#1| (-311)) ELT) (($ (-1087 |#1| |#2| |#3|) $) 47 (|has| |#1| (-311)) ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)))
-(((-1080 |#1| |#2| |#3|) (-13 (-1141 |#1| (-1087 |#1| |#2| |#3|)) (-806 $ (-1174 |#2|)) (-10 -8 (-15 -3940 ($ (-1174 |#2|))) (IF (|has| |#1| (-38 (-347 (-483)))) (-15 -3806 ($ $ (-1174 |#2|))) |%noBranch|))) (-961) (-1088) |#1|) (T -1080))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1080 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3806 (*1 *1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1080 *3 *4 *5)) (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) (-14 *5 *3))))
-((-3526 ((|#2| |#2| (-1003 |#2|)) 26 T ELT) ((|#2| |#2| (-1088)) 28 T ELT)))
-(((-1081 |#1| |#2|) (-10 -7 (-15 -3526 (|#2| |#2| (-1088))) (-15 -3526 (|#2| |#2| (-1003 |#2|)))) (-13 (-494) (-950 (-483)) (-580 (-483))) (-13 (-361 |#1|) (-133) (-27) (-1113))) (T -1081))
-((-3526 (*1 *2 *2 *3) (-12 (-5 *3 (-1003 *2)) (-4 *2 (-13 (-361 *4) (-133) (-27) (-1113))) (-4 *4 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *1 (-1081 *4 *2)))) (-3526 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *1 (-1081 *4 *2)) (-4 *2 (-13 (-361 *4) (-133) (-27) (-1113))))))
-((-3526 (((-3 (-347 (-857 |#1|)) (-264 |#1|)) (-347 (-857 |#1|)) (-1003 (-347 (-857 |#1|)))) 31 T ELT) (((-347 (-857 |#1|)) (-857 |#1|) (-1003 (-857 |#1|))) 44 T ELT) (((-3 (-347 (-857 |#1|)) (-264 |#1|)) (-347 (-857 |#1|)) (-1088)) 33 T ELT) (((-347 (-857 |#1|)) (-857 |#1|) (-1088)) 36 T ELT)))
-(((-1082 |#1|) (-10 -7 (-15 -3526 ((-347 (-857 |#1|)) (-857 |#1|) (-1088))) (-15 -3526 ((-3 (-347 (-857 |#1|)) (-264 |#1|)) (-347 (-857 |#1|)) (-1088))) (-15 -3526 ((-347 (-857 |#1|)) (-857 |#1|) (-1003 (-857 |#1|)))) (-15 -3526 ((-3 (-347 (-857 |#1|)) (-264 |#1|)) (-347 (-857 |#1|)) (-1003 (-347 (-857 |#1|)))))) (-13 (-494) (-950 (-483)))) (T -1082))
-((-3526 (*1 *2 *3 *4) (-12 (-5 *4 (-1003 (-347 (-857 *5)))) (-5 *3 (-347 (-857 *5))) (-4 *5 (-13 (-494) (-950 (-483)))) (-5 *2 (-3 *3 (-264 *5))) (-5 *1 (-1082 *5)))) (-3526 (*1 *2 *3 *4) (-12 (-5 *4 (-1003 (-857 *5))) (-5 *3 (-857 *5)) (-4 *5 (-13 (-494) (-950 (-483)))) (-5 *2 (-347 *3)) (-5 *1 (-1082 *5)))) (-3526 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-494) (-950 (-483)))) (-5 *2 (-3 (-347 (-857 *5)) (-264 *5))) (-5 *1 (-1082 *5)) (-5 *3 (-347 (-857 *5))))) (-3526 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-494) (-950 (-483)))) (-5 *2 (-347 (-857 *5))) (-5 *1 (-1082 *5)) (-5 *3 (-857 *5)))))
-((-2564 (((-85) $ $) 172 T ELT)) (-3183 (((-85) $) 44 T ELT)) (-3761 (((-1177 |#1|) $ (-694)) NIL T ELT)) (-3077 (((-583 (-993)) $) NIL T ELT)) (-3759 (($ (-1083 |#1|)) NIL T ELT)) (-3079 (((-1083 $) $ (-993)) 83 T ELT) (((-1083 |#1|) $) 72 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) 166 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2815 (((-694) $) NIL T ELT) (((-694) $ (-583 (-993))) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3749 (($ $ $) 160 (|has| |#1| (-494)) ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) 97 (|has| |#1| (-821)) ELT)) (-3769 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) 117 (|has| |#1| (-821)) ELT)) (-1605 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3755 (($ $ (-694)) 62 T ELT)) (-3754 (($ $ (-694)) 64 T ELT)) (-3745 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-389)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-993) #1#) $) NIL T ELT)) (-3151 ((|#1| $) NIL T ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-993) $) NIL T ELT)) (-3750 (($ $ $ (-993)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 162 (|has| |#1| (-146)) ELT)) (-2560 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3953 (($ $) 81 T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2559 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3753 (($ $ $) 133 T ELT)) (-3747 (($ $ $) NIL (|has| |#1| (-494)) ELT)) (-3746 (((-2 (|:| -3948 |#1|) (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-494)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| |#1| (-311)) ELT)) (-3497 (($ $) 167 (|has| |#1| (-389)) ELT) (($ $ (-993)) NIL (|has| |#1| (-389)) ELT)) (-2814 (((-583 $) $) NIL T ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1621 (($ $ |#1| (-694) $) 70 T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (-12 (|has| (-993) (-796 (-327))) (|has| |#1| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (-12 (|has| (-993) (-796 (-483))) (|has| |#1| (-796 (-483)))) ELT)) (-3527 (((-772) $ (-772)) 150 T ELT)) (-3766 (((-694) $ $) NIL (|has| |#1| (-494)) ELT)) (-2406 (((-85) $) 49 T ELT)) (-2416 (((-694) $) NIL T ELT)) (-3439 (((-632 $) $) NIL (|has| |#1| (-1064)) ELT)) (-3080 (($ (-1083 |#1|) (-993)) 74 T ELT) (($ (-1083 $) (-993)) 91 T ELT)) (-3771 (($ $ (-694)) 52 T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-694)) 89 T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ (-993)) NIL T ELT) (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 155 T ELT)) (-2816 (((-694) $) NIL T ELT) (((-694) $ (-993)) NIL T ELT) (((-583 (-694)) $ (-583 (-993))) NIL T ELT)) (-1622 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3760 (((-1083 |#1|) $) NIL T ELT)) (-3078 (((-3 (-993) #1#) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) NIL T ELT) (((-630 |#1|) (-1177 $)) NIL T ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) 77 T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3756 (((-2 (|:| -1970 $) (|:| -2898 $)) $ (-694)) 61 T ELT)) (-2819 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2818 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-2 (|:| |var| (-993)) (|:| -2397 (-694))) #1#) $) NIL T ELT)) (-3806 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3440 (($) NIL (|has| |#1| (-1064)) CONST)) (-3238 (((-1032) $) NIL T ELT)) (-1794 (((-85) $) 51 T ELT)) (-1793 ((|#1| $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 105 (|has| |#1| (-389)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) 169 (|has| |#1| (-389)) ELT)) (-3732 (($ $ (-694) |#1| $) 125 T ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) 103 (|has| |#1| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) 102 (|has| |#1| (-821)) ELT)) (-3726 (((-345 $) $) 110 (|has| |#1| (-821)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3460 (((-3 $ #1#) $ |#1|) 165 (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-494)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3762 (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-993) |#1|) NIL T ELT) (($ $ (-583 (-993)) (-583 |#1|)) NIL T ELT) (($ $ (-993) $) NIL T ELT) (($ $ (-583 (-993)) (-583 $)) NIL T ELT)) (-1604 (((-694) $) NIL (|has| |#1| (-311)) ELT)) (-3794 ((|#1| $ |#1|) 152 T ELT) (($ $ $) 153 T ELT) (((-347 $) (-347 $) (-347 $)) NIL (|has| |#1| (-494)) ELT) ((|#1| (-347 $) |#1|) NIL (|has| |#1| (-311)) ELT) (((-347 $) $ (-347 $)) NIL (|has| |#1| (-494)) ELT)) (-3758 (((-3 $ #1#) $ (-694)) 55 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 173 (|has| |#1| (-311)) ELT)) (-3751 (($ $ (-993)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) 158 (|has| |#1| (-146)) ELT)) (-3752 (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993))) NIL T ELT) (($ $ (-993)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT)) (-3942 (((-694) $) 79 T ELT) (((-694) $ (-993)) NIL T ELT) (((-583 (-694)) $ (-583 (-993))) NIL T ELT)) (-3966 (((-800 (-327)) $) NIL (-12 (|has| (-993) (-553 (-800 (-327)))) (|has| |#1| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) NIL (-12 (|has| (-993) (-553 (-800 (-483)))) (|has| |#1| (-553 (-800 (-483))))) ELT) (((-472) $) NIL (-12 (|has| (-993) (-553 (-472))) (|has| |#1| (-553 (-472)))) ELT)) (-2813 ((|#1| $) 164 (|has| |#1| (-389)) ELT) (($ $ (-993)) NIL (|has| |#1| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3748 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT) (((-3 (-347 $) #1#) (-347 $) $) NIL (|has| |#1| (-494)) ELT)) (-3940 (((-772) $) 151 T ELT) (($ (-483)) NIL T ELT) (($ |#1|) 78 T ELT) (($ (-993)) NIL T ELT) (($ (-347 (-483))) NIL (OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3811 (((-583 |#1|) $) NIL T ELT)) (-3671 ((|#1| $ (-694)) NIL T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1620 (($ $ $ (-694)) 42 (|has| |#1| (-146)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2656 (($) 18 T CONST)) (-2662 (($) 20 T CONST)) (-2665 (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993))) NIL T ELT) (($ $ (-993)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#1| (-811 (-1088))) ELT)) (-3052 (((-85) $ $) 122 T ELT)) (-3943 (($ $ |#1|) 174 (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 92 T ELT)) (** (($ $ (-830)) 14 T ELT) (($ $ (-694)) 12 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ |#1| $) 131 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-1083 |#1|) (-13 (-1153 |#1|) (-10 -8 (-15 -3527 ((-772) $ (-772))) (-15 -3732 ($ $ (-694) |#1| $)))) (-961)) (T -1083))
-((-3527 (*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1083 *3)) (-4 *3 (-961)))) (-3732 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1083 *3)) (-4 *3 (-961)))))
-((-3952 (((-1083 |#2|) (-1 |#2| |#1|) (-1083 |#1|)) 13 T ELT)))
-(((-1084 |#1| |#2|) (-10 -7 (-15 -3952 ((-1083 |#2|) (-1 |#2| |#1|) (-1083 |#1|)))) (-961) (-961)) (T -1084))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1083 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-1083 *6)) (-5 *1 (-1084 *5 *6)))))
-((-3965 (((-345 (-1083 (-347 |#4|))) (-1083 (-347 |#4|))) 51 T ELT)) (-3726 (((-345 (-1083 (-347 |#4|))) (-1083 (-347 |#4|))) 52 T ELT)))
-(((-1085 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3726 ((-345 (-1083 (-347 |#4|))) (-1083 (-347 |#4|)))) (-15 -3965 ((-345 (-1083 (-347 |#4|))) (-1083 (-347 |#4|))))) (-717) (-756) (-389) (-861 |#3| |#1| |#2|)) (T -1085))
-((-3965 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-389)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-345 (-1083 (-347 *7)))) (-5 *1 (-1085 *4 *5 *6 *7)) (-5 *3 (-1083 (-347 *7))))) (-3726 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-389)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-345 (-1083 (-347 *7)))) (-5 *1 (-1085 *4 *5 *6 *7)) (-5 *3 (-1083 (-347 *7))))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3077 (((-583 (-993)) $) NIL T ELT)) (-3825 (((-1088) $) 11 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3765 (($ $ (-347 (-483))) NIL T ELT) (($ $ (-347 (-483)) (-347 (-483))) NIL T ELT)) (-3768 (((-1067 (-2 (|:| |k| (-347 (-483))) (|:| |c| |#1|))) $) NIL T ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-3033 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1605 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3812 (($ (-694) (-1067 (-2 (|:| |k| (-347 (-483))) (|:| |c| |#1|)))) NIL T ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-1080 |#1| |#2| |#3|) #1#) $) 33 T ELT) (((-3 (-1087 |#1| |#2| |#3|) #1#) $) 36 T ELT)) (-3151 (((-1080 |#1| |#2| |#3|) $) NIL T ELT) (((-1087 |#1| |#2| |#3|) $) NIL T ELT)) (-2560 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3953 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3775 (((-347 (-483)) $) 59 T ELT)) (-2559 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3776 (($ (-347 (-483)) (-1080 |#1| |#2| |#3|)) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| |#1| (-311)) ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-2888 (((-85) $) NIL T ELT)) (-3621 (($) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3766 (((-347 (-483)) $) NIL T ELT) (((-347 (-483)) $ (-347 (-483))) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3007 (($ $ (-483)) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3771 (($ $ (-830)) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-347 (-483))) 20 T ELT) (($ $ (-993) (-347 (-483))) NIL T ELT) (($ $ (-583 (-993)) (-583 (-347 (-483)))) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3936 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3774 (((-1080 |#1| |#2| |#3|) $) 41 T ELT)) (-3772 (((-3 (-1080 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3773 (((-1080 |#1| |#2| |#3|) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3806 (($ $) 39 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-29 (-483))) (|has| |#1| (-871)) (|has| |#1| (-1113))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-15 -3806 (|#1| |#1| (-1088)))) (|has| |#1| (-15 -3077 ((-583 (-1088)) |#1|))))) ELT) (($ $ (-1174 |#2|)) 40 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-311)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3763 (($ $ (-347 (-483))) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3937 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3762 (((-1067 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-347 (-483))))) ELT)) (-1604 (((-694) $) NIL (|has| |#1| (-311)) ELT)) (-3794 ((|#1| $ (-347 (-483))) NIL T ELT) (($ $ $) NIL (|has| (-347 (-483)) (-1024)) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3752 (($ $ (-1088)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-1174 |#2|)) 38 T ELT)) (-3942 (((-347 (-483)) $) NIL T ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2887 (($ $) NIL T ELT)) (-3940 (((-772) $) 62 T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1080 |#1| |#2| |#3|)) 30 T ELT) (($ (-1087 |#1| |#2| |#3|)) 31 T ELT) (($ (-1174 |#2|)) 26 T ELT) (($ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3671 ((|#1| $ (-347 (-483))) NIL T ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) NIL T CONST)) (-3767 ((|#1| $) 12 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3764 ((|#1| $ (-347 (-483))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-483))))) (|has| |#1| (-15 -3940 (|#1| (-1088))))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2656 (($) 22 T CONST)) (-2662 (($) 16 T CONST)) (-2665 (($ $ (-1088)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-1174 |#2|)) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 24 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)))
-(((-1086 |#1| |#2| |#3|) (-13 (-1162 |#1| (-1080 |#1| |#2| |#3|)) (-806 $ (-1174 |#2|)) (-950 (-1087 |#1| |#2| |#3|)) (-555 (-1174 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-347 (-483)))) (-15 -3806 ($ $ (-1174 |#2|))) |%noBranch|))) (-961) (-1088) |#1|) (T -1086))
-((-3806 (*1 *1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1086 *3 *4 *5)) (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) (-14 *5 *3))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 129 T ELT)) (-3077 (((-583 (-993)) $) NIL T ELT)) (-3825 (((-1088) $) 119 T ELT)) (-3805 (((-1146 |#2| |#1|) $ (-694)) 69 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3765 (($ $ (-694)) 85 T ELT) (($ $ (-694) (-694)) 82 T ELT)) (-3768 (((-1067 (-2 (|:| |k| (-694)) (|:| |c| |#1|))) $) 105 T ELT)) (-3486 (($ $) 173 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) 149 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3033 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3484 (($ $) 169 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) 145 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3812 (($ (-1067 (-2 (|:| |k| (-694)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1067 |#1|)) 113 T ELT)) (-3488 (($ $) 177 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) 153 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) NIL T CONST)) (-3953 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) 25 T ELT)) (-3810 (($ $) 28 T ELT)) (-3808 (((-857 |#1|) $ (-694)) 81 T ELT) (((-857 |#1|) $ (-694) (-694)) 83 T ELT)) (-2888 (((-85) $) 124 T ELT)) (-3621 (($) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3766 (((-694) $) 126 T ELT) (((-694) $ (-694)) 128 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3007 (($ $ (-483)) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3771 (($ $ (-830)) NIL T ELT)) (-3809 (($ (-1 |#1| (-483)) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-694)) 13 T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3936 (($ $) 135 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3806 (($ $) 133 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-29 (-483))) (|has| |#1| (-871)) (|has| |#1| (-1113))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-15 -3806 (|#1| |#1| (-1088)))) (|has| |#1| (-15 -3077 ((-583 (-1088)) |#1|))))) ELT) (($ $ (-1174 |#2|)) 134 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3763 (($ $ (-694)) 15 T ELT)) (-3460 (((-3 $ #1#) $ $) 26 (|has| |#1| (-494)) ELT)) (-3937 (($ $) 137 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3762 (((-1067 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-694)))) ELT)) (-3794 ((|#1| $ (-694)) 122 T ELT) (($ $ $) 132 (|has| (-694) (-1024)) ELT)) (-3752 (($ $ (-1088)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) 29 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-1174 |#2|)) 31 T ELT)) (-3942 (((-694) $) NIL T ELT)) (-3489 (($ $) 179 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) 155 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) 175 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) 151 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) 171 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) 147 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2887 (($ $) NIL T ELT)) (-3940 (((-772) $) 206 T ELT) (($ (-483)) NIL T ELT) (($ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT) (($ |#1|) 130 (|has| |#1| (-146)) ELT) (($ (-1146 |#2| |#1|)) 55 T ELT) (($ (-1174 |#2|)) 36 T ELT)) (-3811 (((-1067 |#1|) $) 101 T ELT)) (-3671 ((|#1| $ (-694)) 121 T ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) NIL T CONST)) (-3767 ((|#1| $) 58 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3492 (($ $) 185 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) 161 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3490 (($ $) 181 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) 157 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) 189 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) 165 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3764 ((|#1| $ (-694)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-694)))) (|has| |#1| (-15 -3940 (|#1| (-1088))))) ELT)) (-3495 (($ $) 191 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) 167 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) 187 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) 163 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) 183 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) 159 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2656 (($) 17 T CONST)) (-2662 (($) 20 T CONST)) (-2665 (($ $ (-1088)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-1174 |#2|)) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-3833 (($ $ $) 35 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-311)) ELT) (($ $ $) 138 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 141 (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)))
-(((-1087 |#1| |#2| |#3|) (-13 (-1170 |#1|) (-806 $ (-1174 |#2|)) (-10 -8 (-15 -3940 ($ (-1146 |#2| |#1|))) (-15 -3805 ((-1146 |#2| |#1|) $ (-694))) (-15 -3940 ($ (-1174 |#2|))) (IF (|has| |#1| (-38 (-347 (-483)))) (-15 -3806 ($ $ (-1174 |#2|))) |%noBranch|))) (-961) (-1088) |#1|) (T -1087))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1146 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1088)) (-14 *5 *3) (-5 *1 (-1087 *3 *4 *5)))) (-3805 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1146 *5 *4)) (-5 *1 (-1087 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-1088)) (-14 *6 *4))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1087 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3806 (*1 *1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1087 *3 *4 *5)) (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) (-14 *5 *3))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3531 (($ $ (-583 (-772))) 48 T ELT)) (-3532 (($ $ (-583 (-772))) 46 T ELT)) (-3529 (((-1071) $) 88 T ELT)) (-3534 (((-2 (|:| -2580 (-583 (-772))) (|:| -2479 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2578 (-583 (-772))) (|:| |args| (-583 (-772)))) $) 95 T ELT)) (-3535 (((-85) $) 86 T ELT)) (-3533 (($ $ (-583 (-583 (-772)))) 45 T ELT) (($ $ (-2 (|:| -2580 (-583 (-772))) (|:| -2479 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2578 (-583 (-772))) (|:| |args| (-583 (-772))))) 85 T ELT)) (-3718 (($) 151 T CONST)) (-3152 (((-3 (-444) "failed") $) 155 T ELT)) (-3151 (((-444) $) NIL T ELT)) (-3537 (((-1183)) 123 T ELT)) (-2792 (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) 55 T ELT) (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 62 T ELT)) (-3608 (($) 109 T ELT) (($ $) 118 T ELT)) (-3536 (($ $) 87 T ELT)) (-2527 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL T ELT)) (-3528 (((-583 $) $) 124 T ELT)) (-3237 (((-1071) $) 101 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3794 (($ $ (-583 (-772))) 47 T ELT)) (-3966 (((-472) $) 33 T ELT) (((-1088) $) 34 T ELT) (((-800 (-483)) $) 66 T ELT) (((-800 (-327)) $) 64 T ELT)) (-3940 (((-772) $) 41 T ELT) (($ (-1071)) 35 T ELT) (($ (-444)) 153 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3530 (($ $ (-583 (-772))) 49 T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 37 T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) 38 T ELT)))
-(((-1088) (-13 (-756) (-553 (-472)) (-553 (-1088)) (-555 (-1071)) (-950 (-444)) (-553 (-800 (-483))) (-553 (-800 (-327))) (-796 (-483)) (-796 (-327)) (-10 -8 (-15 -3608 ($)) (-15 -3608 ($ $)) (-15 -3537 ((-1183))) (-15 -3536 ($ $)) (-15 -3535 ((-85) $)) (-15 -3534 ((-2 (|:| -2580 (-583 (-772))) (|:| -2479 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2578 (-583 (-772))) (|:| |args| (-583 (-772)))) $)) (-15 -3533 ($ $ (-583 (-583 (-772))))) (-15 -3533 ($ $ (-2 (|:| -2580 (-583 (-772))) (|:| -2479 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2578 (-583 (-772))) (|:| |args| (-583 (-772)))))) (-15 -3532 ($ $ (-583 (-772)))) (-15 -3531 ($ $ (-583 (-772)))) (-15 -3530 ($ $ (-583 (-772)))) (-15 -3794 ($ $ (-583 (-772)))) (-15 -3529 ((-1071) $)) (-15 -3528 ((-583 $) $)) (-15 -3718 ($) -3946)))) (T -1088))
-((-3608 (*1 *1) (-5 *1 (-1088))) (-3608 (*1 *1 *1) (-5 *1 (-1088))) (-3537 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1088)))) (-3536 (*1 *1 *1) (-5 *1 (-1088))) (-3535 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1088)))) (-3534 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2580 (-583 (-772))) (|:| -2479 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2578 (-583 (-772))) (|:| |args| (-583 (-772))))) (-5 *1 (-1088)))) (-3533 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 (-772)))) (-5 *1 (-1088)))) (-3533 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2580 (-583 (-772))) (|:| -2479 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2578 (-583 (-772))) (|:| |args| (-583 (-772))))) (-5 *1 (-1088)))) (-3532 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1088)))) (-3531 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1088)))) (-3530 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1088)))) (-3794 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1088)))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-1088)))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-583 (-1088))) (-5 *1 (-1088)))) (-3718 (*1 *1) (-5 *1 (-1088))))
-((-3538 (((-1177 |#1|) |#1| (-830)) 18 T ELT) (((-1177 |#1|) (-583 |#1|)) 25 T ELT)))
-(((-1089 |#1|) (-10 -7 (-15 -3538 ((-1177 |#1|) (-583 |#1|))) (-15 -3538 ((-1177 |#1|) |#1| (-830)))) (-961)) (T -1089))
-((-3538 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-5 *2 (-1177 *3)) (-5 *1 (-1089 *3)) (-4 *3 (-961)))) (-3538 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-961)) (-5 *2 (-1177 *4)) (-5 *1 (-1089 *4)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3151 (((-483) $) NIL (|has| |#1| (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| |#1| (-950 (-347 (-483)))) ELT) ((|#1| $) NIL T ELT)) (-3953 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-389)) ELT)) (-1621 (($ $ |#1| (-884) $) NIL T ELT)) (-2406 (((-85) $) 18 T ELT)) (-2416 (((-694) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-884)) NIL T ELT)) (-2816 (((-884) $) NIL T ELT)) (-1622 (($ (-1 (-884) (-884)) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1794 (((-85) $) NIL T ELT)) (-1793 ((|#1| $) NIL T ELT)) (-3732 (($ $ (-884) |#1| $) NIL (-12 (|has| (-884) (-104)) (|has| |#1| (-494))) ELT)) (-3460 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT) (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-494)) ELT)) (-3942 (((-884) $) NIL T ELT)) (-2813 ((|#1| $) NIL (|has| |#1| (-389)) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ $) NIL (|has| |#1| (-494)) ELT) (($ |#1|) NIL T ELT) (($ (-347 (-483))) NIL (OR (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-950 (-347 (-483))))) ELT)) (-3811 (((-583 |#1|) $) NIL T ELT)) (-3671 ((|#1| $ (-884)) NIL T ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) NIL T CONST)) (-1620 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2656 (($) 13 T CONST)) (-2662 (($) NIL T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 22 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 23 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 17 T ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)))
-(((-1090 |#1|) (-13 (-276 |#1| (-884)) (-10 -8 (IF (|has| |#1| (-494)) (IF (|has| (-884) (-104)) (-15 -3732 ($ $ (-884) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3987)) (-6 -3987) |%noBranch|))) (-961)) (T -1090))
-((-3732 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-884)) (-4 *2 (-104)) (-5 *1 (-1090 *3)) (-4 *3 (-494)) (-4 *3 (-961)))))
-((-3539 (((-1092) (-1088) $) 26 T ELT)) (-3549 (($) 30 T ELT)) (-3541 (((-3 (|:| |fst| (-374)) (|:| -3904 #1="void")) (-1088) $) 23 T ELT)) (-3543 (((-1183) (-1088) (-3 (|:| |fst| (-374)) (|:| -3904 #1#)) $) 42 T ELT) (((-1183) (-1088) (-3 (|:| |fst| (-374)) (|:| -3904 #1#))) 43 T ELT) (((-1183) (-3 (|:| |fst| (-374)) (|:| -3904 #1#))) 44 T ELT)) (-3551 (((-1183) (-1088)) 59 T ELT)) (-3542 (((-1183) (-1088) $) 56 T ELT) (((-1183) (-1088)) 57 T ELT) (((-1183)) 58 T ELT)) (-3547 (((-1183) (-1088)) 38 T ELT)) (-3545 (((-1088)) 37 T ELT)) (-3559 (($) 35 T ELT)) (-3558 (((-376) (-1088) (-376) (-1088) $) 46 T ELT) (((-376) (-583 (-1088)) (-376) (-1088) $) 50 T ELT) (((-376) (-1088) (-376)) 47 T ELT) (((-376) (-1088) (-376) (-1088)) 51 T ELT)) (-3546 (((-1088)) 36 T ELT)) (-3940 (((-772) $) 29 T ELT)) (-3548 (((-1183)) 31 T ELT) (((-1183) (-1088)) 34 T ELT)) (-3540 (((-583 (-1088)) (-1088) $) 25 T ELT)) (-3544 (((-1183) (-1088) (-583 (-1088)) $) 39 T ELT) (((-1183) (-1088) (-583 (-1088))) 40 T ELT) (((-1183) (-583 (-1088))) 41 T ELT)))
-(((-1091) (-13 (-552 (-772)) (-10 -8 (-15 -3549 ($)) (-15 -3548 ((-1183))) (-15 -3548 ((-1183) (-1088))) (-15 -3558 ((-376) (-1088) (-376) (-1088) $)) (-15 -3558 ((-376) (-583 (-1088)) (-376) (-1088) $)) (-15 -3558 ((-376) (-1088) (-376))) (-15 -3558 ((-376) (-1088) (-376) (-1088))) (-15 -3547 ((-1183) (-1088))) (-15 -3546 ((-1088))) (-15 -3545 ((-1088))) (-15 -3544 ((-1183) (-1088) (-583 (-1088)) $)) (-15 -3544 ((-1183) (-1088) (-583 (-1088)))) (-15 -3544 ((-1183) (-583 (-1088)))) (-15 -3543 ((-1183) (-1088) (-3 (|:| |fst| (-374)) (|:| -3904 #1="void")) $)) (-15 -3543 ((-1183) (-1088) (-3 (|:| |fst| (-374)) (|:| -3904 #1#)))) (-15 -3543 ((-1183) (-3 (|:| |fst| (-374)) (|:| -3904 #1#)))) (-15 -3542 ((-1183) (-1088) $)) (-15 -3542 ((-1183) (-1088))) (-15 -3542 ((-1183))) (-15 -3551 ((-1183) (-1088))) (-15 -3559 ($)) (-15 -3541 ((-3 (|:| |fst| (-374)) (|:| -3904 #1#)) (-1088) $)) (-15 -3540 ((-583 (-1088)) (-1088) $)) (-15 -3539 ((-1092) (-1088) $))))) (T -1091))
-((-3549 (*1 *1) (-5 *1 (-1091))) (-3548 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3548 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3558 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-376)) (-5 *3 (-1088)) (-5 *1 (-1091)))) (-3558 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-376)) (-5 *3 (-583 (-1088))) (-5 *4 (-1088)) (-5 *1 (-1091)))) (-3558 (*1 *2 *3 *2) (-12 (-5 *2 (-376)) (-5 *3 (-1088)) (-5 *1 (-1091)))) (-3558 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-376)) (-5 *3 (-1088)) (-5 *1 (-1091)))) (-3547 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3546 (*1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-1091)))) (-3545 (*1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-1091)))) (-3544 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-583 (-1088))) (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3544 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1088))) (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3544 (*1 *2 *3) (-12 (-5 *3 (-583 (-1088))) (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3543 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1088)) (-5 *4 (-3 (|:| |fst| (-374)) (|:| -3904 #1="void"))) (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3543 (*1 *2 *3 *4) (-12 (-5 *3 (-1088)) (-5 *4 (-3 (|:| |fst| (-374)) (|:| -3904 #1#))) (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3543 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-374)) (|:| -3904 #1#))) (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3542 (*1 *2 *3 *1) (-12 (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3542 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3542 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3551 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091)))) (-3559 (*1 *1) (-5 *1 (-1091))) (-3541 (*1 *2 *3 *1) (-12 (-5 *3 (-1088)) (-5 *2 (-3 (|:| |fst| (-374)) (|:| -3904 #1#))) (-5 *1 (-1091)))) (-3540 (*1 *2 *3 *1) (-12 (-5 *2 (-583 (-1088))) (-5 *1 (-1091)) (-5 *3 (-1088)))) (-3539 (*1 *2 *3 *1) (-12 (-5 *3 (-1088)) (-5 *2 (-1092)) (-5 *1 (-1091)))))
-((-3553 (((-583 (-583 (-3 (|:| -3536 (-1088)) (|:| -3220 (-583 (-3 (|:| S (-1088)) (|:| P (-857 (-483))))))))) $) 66 T ELT)) (-3555 (((-583 (-3 (|:| -3536 (-1088)) (|:| -3220 (-583 (-3 (|:| S (-1088)) (|:| P (-857 (-483)))))))) (-374) $) 47 T ELT)) (-3550 (($ (-583 (-2 (|:| -3854 (-1088)) (|:| |entry| (-376))))) 17 T ELT)) (-3551 (((-1183) $) 73 T ELT)) (-3556 (((-583 (-1088)) $) 22 T ELT)) (-3552 (((-1014) $) 60 T ELT)) (-3557 (((-376) (-1088) $) 27 T ELT)) (-3554 (((-583 (-1088)) $) 30 T ELT)) (-3559 (($) 19 T ELT)) (-3558 (((-376) (-583 (-1088)) (-376) $) 25 T ELT) (((-376) (-1088) (-376) $) 24 T ELT)) (-3940 (((-772) $) 12 T ELT) (((-1100 (-1088) (-376)) $) 13 T ELT)))
-(((-1092) (-13 (-552 (-772)) (-10 -8 (-15 -3940 ((-1100 (-1088) (-376)) $)) (-15 -3559 ($)) (-15 -3558 ((-376) (-583 (-1088)) (-376) $)) (-15 -3558 ((-376) (-1088) (-376) $)) (-15 -3557 ((-376) (-1088) $)) (-15 -3556 ((-583 (-1088)) $)) (-15 -3555 ((-583 (-3 (|:| -3536 (-1088)) (|:| -3220 (-583 (-3 (|:| S (-1088)) (|:| P (-857 (-483)))))))) (-374) $)) (-15 -3554 ((-583 (-1088)) $)) (-15 -3553 ((-583 (-583 (-3 (|:| -3536 (-1088)) (|:| -3220 (-583 (-3 (|:| S (-1088)) (|:| P (-857 (-483))))))))) $)) (-15 -3552 ((-1014) $)) (-15 -3551 ((-1183) $)) (-15 -3550 ($ (-583 (-2 (|:| -3854 (-1088)) (|:| |entry| (-376))))))))) (T -1092))
-((-3940 (*1 *2 *1) (-12 (-5 *2 (-1100 (-1088) (-376))) (-5 *1 (-1092)))) (-3559 (*1 *1) (-5 *1 (-1092))) (-3558 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-376)) (-5 *3 (-583 (-1088))) (-5 *1 (-1092)))) (-3558 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-376)) (-5 *3 (-1088)) (-5 *1 (-1092)))) (-3557 (*1 *2 *3 *1) (-12 (-5 *3 (-1088)) (-5 *2 (-376)) (-5 *1 (-1092)))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-583 (-1088))) (-5 *1 (-1092)))) (-3555 (*1 *2 *3 *1) (-12 (-5 *3 (-374)) (-5 *2 (-583 (-3 (|:| -3536 (-1088)) (|:| -3220 (-583 (-3 (|:| S (-1088)) (|:| P (-857 (-483))))))))) (-5 *1 (-1092)))) (-3554 (*1 *2 *1) (-12 (-5 *2 (-583 (-1088))) (-5 *1 (-1092)))) (-3553 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-3 (|:| -3536 (-1088)) (|:| -3220 (-583 (-3 (|:| S (-1088)) (|:| P (-857 (-483)))))))))) (-5 *1 (-1092)))) (-3552 (*1 *2 *1) (-12 (-5 *2 (-1014)) (-5 *1 (-1092)))) (-3551 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1092)))) (-3550 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3854 (-1088)) (|:| |entry| (-376))))) (-5 *1 (-1092)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3152 (((-3 (-483) #1="failed") $) 29 T ELT) (((-3 (-179) #1#) $) 35 T ELT) (((-3 (-444) #1#) $) 43 T ELT) (((-3 (-1071) #1#) $) 47 T ELT)) (-3151 (((-483) $) 30 T ELT) (((-179) $) 36 T ELT) (((-444) $) 40 T ELT) (((-1071) $) 48 T ELT)) (-3564 (((-85) $) 53 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3563 (((-3 (-483) (-179) (-444) (-1071) $) $) 56 T ELT)) (-3562 (((-583 $) $) 58 T ELT)) (-3966 (((-1014) $) 24 T ELT) (($ (-1014)) 25 T ELT)) (-3561 (((-85) $) 57 T ELT)) (-3940 (((-772) $) 23 T ELT) (($ (-483)) 26 T ELT) (($ (-179)) 32 T ELT) (($ (-444)) 38 T ELT) (($ (-1071)) 44 T ELT) (((-472) $) 60 T ELT) (((-483) $) 31 T ELT) (((-179) $) 37 T ELT) (((-444) $) 41 T ELT) (((-1071) $) 49 T ELT)) (-3560 (((-85) $ (|[\|\|]| (-483))) 10 T ELT) (((-85) $ (|[\|\|]| (-179))) 13 T ELT) (((-85) $ (|[\|\|]| (-444))) 19 T ELT) (((-85) $ (|[\|\|]| (-1071))) 16 T ELT)) (-3565 (($ (-444) (-583 $)) 51 T ELT) (($ $ (-583 $)) 52 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3566 (((-483) $) 27 T ELT) (((-179) $) 33 T ELT) (((-444) $) 39 T ELT) (((-1071) $) 45 T ELT)) (-3052 (((-85) $ $) 7 T ELT)))
-(((-1093) (-13 (-1173) (-1012) (-950 (-483)) (-950 (-179)) (-950 (-444)) (-950 (-1071)) (-552 (-472)) (-10 -8 (-15 -3966 ((-1014) $)) (-15 -3966 ($ (-1014))) (-15 -3940 ((-483) $)) (-15 -3566 ((-483) $)) (-15 -3940 ((-179) $)) (-15 -3566 ((-179) $)) (-15 -3940 ((-444) $)) (-15 -3566 ((-444) $)) (-15 -3940 ((-1071) $)) (-15 -3566 ((-1071) $)) (-15 -3565 ($ (-444) (-583 $))) (-15 -3565 ($ $ (-583 $))) (-15 -3564 ((-85) $)) (-15 -3563 ((-3 (-483) (-179) (-444) (-1071) $) $)) (-15 -3562 ((-583 $) $)) (-15 -3561 ((-85) $)) (-15 -3560 ((-85) $ (|[\|\|]| (-483)))) (-15 -3560 ((-85) $ (|[\|\|]| (-179)))) (-15 -3560 ((-85) $ (|[\|\|]| (-444)))) (-15 -3560 ((-85) $ (|[\|\|]| (-1071))))))) (T -1093))
-((-3966 (*1 *2 *1) (-12 (-5 *2 (-1014)) (-5 *1 (-1093)))) (-3966 (*1 *1 *2) (-12 (-5 *2 (-1014)) (-5 *1 (-1093)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1093)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1093)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1093)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1093)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-1093)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-1093)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-1093)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-1093)))) (-3565 (*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-583 (-1093))) (-5 *1 (-1093)))) (-3565 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1093))) (-5 *1 (-1093)))) (-3564 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1093)))) (-3563 (*1 *2 *1) (-12 (-5 *2 (-3 (-483) (-179) (-444) (-1071) (-1093))) (-5 *1 (-1093)))) (-3562 (*1 *2 *1) (-12 (-5 *2 (-583 (-1093))) (-5 *1 (-1093)))) (-3561 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1093)))) (-3560 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-483))) (-5 *2 (-85)) (-5 *1 (-1093)))) (-3560 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1093)))) (-3560 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-444))) (-5 *2 (-85)) (-5 *1 (-1093)))) (-3560 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1071))) (-5 *2 (-85)) (-5 *1 (-1093)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3131 (((-694)) 21 T ELT)) (-3718 (($) 10 T CONST)) (-2990 (($) 25 T ELT)) (-2527 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-2853 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-2006 (((-830) $) 23 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 (($ (-830)) 22 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT)))
-(((-1094 |#1|) (-13 (-752) (-10 -8 (-15 -3718 ($) -3946))) (-830)) (T -1094))
-((-3718 (*1 *1) (-12 (-5 *1 (-1094 *2)) (-14 *2 (-830)))))
-((-483) (|%not| (|%ilt| @1 (|%ilength| |#1|))))
-((-2564 (((-85) $ $) NIL T ELT)) (-2309 (($ $) 24 T ELT)) (-3131 (((-694)) NIL T ELT)) (-3718 (($) 18 T CONST)) (-2990 (($) NIL T ELT)) (-2527 (($ $ $) NIL T ELT) (($) 11 T CONST)) (-2853 (($ $ $) NIL T ELT) (($) 17 T CONST)) (-2006 (((-830) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 (($ (-830)) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-3719 (($ $ $) 20 T ELT)) (-3720 (($ $ $) 19 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2307 (($ $ $) 22 T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT)) (-2308 (($ $ $) 21 T ELT)))
-(((-1095 |#1|) (-13 (-752) (-604) (-10 -8 (-15 -3720 ($ $ $)) (-15 -3719 ($ $ $)) (-15 -3718 ($) -3946))) (-830)) (T -1095))
-((-3720 (*1 *1 *1 *1) (-12 (-5 *1 (-1095 *2)) (-14 *2 (-830)))) (-3719 (*1 *1 *1 *1) (-12 (-5 *1 (-1095 *2)) (-14 *2 (-830)))) (-3718 (*1 *1) (-12 (-5 *1 (-1095 *2)) (-14 *2 (-830)))))
-((-694) (|%not| (|%ilt| @1 (|%ilength| |#1|))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 9 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 7 T ELT)))
-(((-1096) (-1012)) (T -1096))
-NIL
-((-3568 (((-583 (-583 (-857 |#1|))) (-583 (-347 (-857 |#1|))) (-583 (-1088))) 69 T ELT)) (-3567 (((-583 (-248 (-347 (-857 |#1|)))) (-248 (-347 (-857 |#1|)))) 81 T ELT) (((-583 (-248 (-347 (-857 |#1|)))) (-347 (-857 |#1|))) 77 T ELT) (((-583 (-248 (-347 (-857 |#1|)))) (-248 (-347 (-857 |#1|))) (-1088)) 82 T ELT) (((-583 (-248 (-347 (-857 |#1|)))) (-347 (-857 |#1|)) (-1088)) 76 T ELT) (((-583 (-583 (-248 (-347 (-857 |#1|))))) (-583 (-248 (-347 (-857 |#1|))))) 108 T ELT) (((-583 (-583 (-248 (-347 (-857 |#1|))))) (-583 (-347 (-857 |#1|)))) 107 T ELT) (((-583 (-583 (-248 (-347 (-857 |#1|))))) (-583 (-248 (-347 (-857 |#1|)))) (-583 (-1088))) 109 T ELT) (((-583 (-583 (-248 (-347 (-857 |#1|))))) (-583 (-347 (-857 |#1|))) (-583 (-1088))) 106 T ELT)))
-(((-1097 |#1|) (-10 -7 (-15 -3567 ((-583 (-583 (-248 (-347 (-857 |#1|))))) (-583 (-347 (-857 |#1|))) (-583 (-1088)))) (-15 -3567 ((-583 (-583 (-248 (-347 (-857 |#1|))))) (-583 (-248 (-347 (-857 |#1|)))) (-583 (-1088)))) (-15 -3567 ((-583 (-583 (-248 (-347 (-857 |#1|))))) (-583 (-347 (-857 |#1|))))) (-15 -3567 ((-583 (-583 (-248 (-347 (-857 |#1|))))) (-583 (-248 (-347 (-857 |#1|)))))) (-15 -3567 ((-583 (-248 (-347 (-857 |#1|)))) (-347 (-857 |#1|)) (-1088))) (-15 -3567 ((-583 (-248 (-347 (-857 |#1|)))) (-248 (-347 (-857 |#1|))) (-1088))) (-15 -3567 ((-583 (-248 (-347 (-857 |#1|)))) (-347 (-857 |#1|)))) (-15 -3567 ((-583 (-248 (-347 (-857 |#1|)))) (-248 (-347 (-857 |#1|))))) (-15 -3568 ((-583 (-583 (-857 |#1|))) (-583 (-347 (-857 |#1|))) (-583 (-1088))))) (-494)) (T -1097))
-((-3568 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-347 (-857 *5)))) (-5 *4 (-583 (-1088))) (-4 *5 (-494)) (-5 *2 (-583 (-583 (-857 *5)))) (-5 *1 (-1097 *5)))) (-3567 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-583 (-248 (-347 (-857 *4))))) (-5 *1 (-1097 *4)) (-5 *3 (-248 (-347 (-857 *4)))))) (-3567 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-583 (-248 (-347 (-857 *4))))) (-5 *1 (-1097 *4)) (-5 *3 (-347 (-857 *4))))) (-3567 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-494)) (-5 *2 (-583 (-248 (-347 (-857 *5))))) (-5 *1 (-1097 *5)) (-5 *3 (-248 (-347 (-857 *5)))))) (-3567 (*1 *2 *3 *4) (-12 (-5 *4 (-1088)) (-4 *5 (-494)) (-5 *2 (-583 (-248 (-347 (-857 *5))))) (-5 *1 (-1097 *5)) (-5 *3 (-347 (-857 *5))))) (-3567 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-583 (-583 (-248 (-347 (-857 *4)))))) (-5 *1 (-1097 *4)) (-5 *3 (-583 (-248 (-347 (-857 *4))))))) (-3567 (*1 *2 *3) (-12 (-5 *3 (-583 (-347 (-857 *4)))) (-4 *4 (-494)) (-5 *2 (-583 (-583 (-248 (-347 (-857 *4)))))) (-5 *1 (-1097 *4)))) (-3567 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1088))) (-4 *5 (-494)) (-5 *2 (-583 (-583 (-248 (-347 (-857 *5)))))) (-5 *1 (-1097 *5)) (-5 *3 (-583 (-248 (-347 (-857 *5))))))) (-3567 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-347 (-857 *5)))) (-5 *4 (-583 (-1088))) (-4 *5 (-494)) (-5 *2 (-583 (-583 (-248 (-347 (-857 *5)))))) (-5 *1 (-1097 *5)))))
-((-3573 (((-1071)) 7 T ELT)) (-3570 (((-1071)) 11 T CONST)) (-3569 (((-1183) (-1071)) 13 T ELT)) (-3572 (((-1071)) 8 T CONST)) (-3571 (((-103)) 10 T CONST)))
-(((-1098) (-13 (-1127) (-10 -7 (-15 -3573 ((-1071))) (-15 -3572 ((-1071)) -3946) (-15 -3571 ((-103)) -3946) (-15 -3570 ((-1071)) -3946) (-15 -3569 ((-1183) (-1071)))))) (T -1098))
-((-3573 (*1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1098)))) (-3572 (*1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1098)))) (-3571 (*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1098)))) (-3570 (*1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1098)))) (-3569 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1098)))))
-((-3577 (((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|)))) 56 T ELT)) (-3580 (((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|))) 38 T ELT)) (-3581 (((-1101 (-583 |#1|)) (-583 |#1|)) 49 T ELT)) (-3583 (((-583 (-583 |#1|)) (-583 |#1|)) 45 T ELT)) (-3586 (((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|)))) 53 T ELT)) (-3585 (((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|)))) 52 T ELT)) (-3582 (((-583 (-583 |#1|)) (-583 (-583 |#1|))) 43 T ELT)) (-3584 (((-583 |#1|) (-583 |#1|)) 46 T ELT)) (-3576 (((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|)))) 32 T ELT)) (-3575 (((-583 (-583 (-583 |#1|))) (-1 (-85) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|)))) 29 T ELT)) (-3574 (((-2 (|:| |fs| (-85)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-85) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|))) 24 T ELT)) (-3578 (((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|)))) 58 T ELT)) (-3579 (((-583 (-583 |#1|)) (-1101 (-583 |#1|))) 60 T ELT)))
-(((-1099 |#1|) (-10 -7 (-15 -3574 ((-2 (|:| |fs| (-85)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-85) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|)))) (-15 -3575 ((-583 (-583 (-583 |#1|))) (-1 (-85) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -3576 ((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -3577 ((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -3578 ((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -3579 ((-583 (-583 |#1|)) (-1101 (-583 |#1|)))) (-15 -3580 ((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)))) (-15 -3581 ((-1101 (-583 |#1|)) (-583 |#1|))) (-15 -3582 ((-583 (-583 |#1|)) (-583 (-583 |#1|)))) (-15 -3583 ((-583 (-583 |#1|)) (-583 |#1|))) (-15 -3584 ((-583 |#1|) (-583 |#1|))) (-15 -3585 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))))) (-15 -3586 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|)))))) (-756)) (T -1099))
-((-3586 (*1 *2 *3) (-12 (-4 *4 (-756)) (-5 *2 (-2 (|:| |f1| (-583 *4)) (|:| |f2| (-583 (-583 (-583 *4)))) (|:| |f3| (-583 (-583 *4))) (|:| |f4| (-583 (-583 (-583 *4)))))) (-5 *1 (-1099 *4)) (-5 *3 (-583 (-583 (-583 *4)))))) (-3585 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-756)) (-5 *3 (-583 *6)) (-5 *5 (-583 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-583 *5)) (|:| |f3| *5) (|:| |f4| (-583 *5)))) (-5 *1 (-1099 *6)) (-5 *4 (-583 *5)))) (-3584 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-1099 *3)))) (-3583 (*1 *2 *3) (-12 (-4 *4 (-756)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1099 *4)) (-5 *3 (-583 *4)))) (-3582 (*1 *2 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-756)) (-5 *1 (-1099 *3)))) (-3581 (*1 *2 *3) (-12 (-4 *4 (-756)) (-5 *2 (-1101 (-583 *4))) (-5 *1 (-1099 *4)) (-5 *3 (-583 *4)))) (-3580 (*1 *2 *3) (-12 (-4 *4 (-756)) (-5 *2 (-583 (-583 (-583 *4)))) (-5 *1 (-1099 *4)) (-5 *3 (-583 (-583 *4))))) (-3579 (*1 *2 *3) (-12 (-5 *3 (-1101 (-583 *4))) (-4 *4 (-756)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1099 *4)))) (-3578 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1099 *4)) (-4 *4 (-756)))) (-3577 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-4 *4 (-756)) (-5 *1 (-1099 *4)))) (-3576 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-583 *4)) (-4 *4 (-756)) (-5 *1 (-1099 *4)))) (-3575 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-583 *5)) (-4 *5 (-756)) (-5 *1 (-1099 *5)))) (-3574 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-756)) (-5 *4 (-583 *6)) (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-583 *4)))) (-5 *1 (-1099 *6)) (-5 *5 (-583 *4)))))
-((-2564 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3593 (($) NIL T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2194 (((-1183) $ |#1| |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3782 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1567 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-2227 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-3399 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3400 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#2| $ |#1|) NIL T ELT)) (-2885 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2196 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2604 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2197 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3990)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-2228 (((-583 |#1|) $) NIL T ELT)) (-2229 (((-85) |#1| $) NIL T ELT)) (-1271 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3603 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2199 (((-583 |#1|) $) NIL T ELT)) (-2200 (((-85) |#1| $) NIL T ELT)) (-3238 (((-1032) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ELT)) (-3795 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1351 (((-3 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2195 (($ $ |#2|) NIL (|has| $ (-6 -3990)) ELT)) (-1272 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1944 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2201 (((-583 |#2|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1463 (($) NIL T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1943 (((-694) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3989)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (((-694) |#2| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT) (((-694) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-553 (-472))) ELT)) (-3524 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3940 (((-772) $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1262 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1273 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-1100 |#1| |#2|) (-13 (-1105 |#1| |#2|) (-10 -7 (-6 -3989))) (-1012) (-1012)) (T -1100))
-NIL
-((-3587 (($ (-583 (-583 |#1|))) 10 T ELT)) (-3588 (((-583 (-583 |#1|)) $) 11 T ELT)) (-3940 (((-772) $) 33 T ELT)))
-(((-1101 |#1|) (-10 -8 (-15 -3587 ($ (-583 (-583 |#1|)))) (-15 -3588 ((-583 (-583 |#1|)) $)) (-15 -3940 ((-772) $))) (-1012)) (T -1101))
-((-3940 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1101 *3)) (-4 *3 (-1012)))) (-3588 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 *3))) (-5 *1 (-1101 *3)) (-4 *3 (-1012)))) (-3587 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1012)) (-5 *1 (-1101 *3)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3589 (($ |#1| (-55)) 11 T ELT)) (-3536 ((|#1| $) 13 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2629 (((-85) $ |#1|) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2517 (((-55) $) 15 T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-1102 |#1|) (-13 (-747 |#1|) (-10 -8 (-15 -3589 ($ |#1| (-55))))) (-1012)) (T -1102))
-((-3589 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1102 *2)) (-4 *2 (-1012)))))
-((-3590 ((|#1| (-583 |#1|)) 46 T ELT)) (-3592 ((|#1| |#1| (-483)) 24 T ELT)) (-3591 (((-1083 |#1|) |#1| (-830)) 20 T ELT)))
-(((-1103 |#1|) (-10 -7 (-15 -3590 (|#1| (-583 |#1|))) (-15 -3591 ((-1083 |#1|) |#1| (-830))) (-15 -3592 (|#1| |#1| (-483)))) (-311)) (T -1103))
-((-3592 (*1 *2 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-1103 *2)) (-4 *2 (-311)))) (-3591 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-5 *2 (-1083 *3)) (-5 *1 (-1103 *3)) (-4 *3 (-311)))) (-3590 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-1103 *2)) (-4 *2 (-311)))))
-((-3593 (($) 10 T ELT) (($ (-583 (-2 (|:| -3854 |#2|) (|:| |entry| |#3|)))) 14 T ELT)) (-3399 (($ (-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) $) 67 T ELT) (($ (-1 (-85) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-3 |#3| #1="failed") |#2| $) NIL T ELT)) (-2885 (((-583 (-2 (|:| -3854 |#2|) (|:| |entry| |#3|))) $) 39 T ELT) (((-583 |#3|) $) 41 T ELT)) (-1946 (($ (-1 (-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|))) $) 57 T ELT) (($ (-1 |#3| |#3|) $) 33 T ELT)) (-3952 (($ (-1 (-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|))) $) 53 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 38 T ELT)) (-1271 (((-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) $) 60 T ELT)) (-3603 (($ (-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2199 (((-583 |#2|) $) 19 T ELT)) (-2200 (((-85) |#2| $) 65 T ELT)) (-1351 (((-3 (-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|))) $) 64 T ELT)) (-1272 (((-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) $) 69 T ELT)) (-1944 (((-85) (-1 (-85) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-85) (-1 (-85) |#3|) $) 73 T ELT)) (-2201 (((-583 |#3|) $) 43 T ELT)) (-3794 ((|#3| $ |#2|) 30 T ELT) ((|#3| $ |#2| |#3|) 31 T ELT)) (-1943 (((-694) (-1 (-85) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-694) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) $) NIL T ELT) (((-694) |#3| $) NIL T ELT) (((-694) (-1 (-85) |#3|) $) 79 T ELT)) (-3940 (((-772) $) 27 T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-85) (-1 (-85) |#3|) $) 71 T ELT)) (-3052 (((-85) $ $) 51 T ELT)))
-(((-1104 |#1| |#2| |#3|) (-10 -7 (-15 -3052 ((-85) |#1| |#1|)) (-15 -3940 ((-772) |#1|)) (-15 -3952 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3593 (|#1| (-583 (-2 (|:| -3854 |#2|) (|:| |entry| |#3|))))) (-15 -3593 (|#1|)) (-15 -3952 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1946 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1945 ((-85) (-1 (-85) |#3|) |#1|)) (-15 -1944 ((-85) (-1 (-85) |#3|) |#1|)) (-15 -1943 ((-694) (-1 (-85) |#3|) |#1|)) (-15 -2885 ((-583 |#3|) |#1|)) (-15 -1943 ((-694) |#3| |#1|)) (-15 -3794 (|#3| |#1| |#2| |#3|)) (-15 -3794 (|#3| |#1| |#2|)) (-15 -2201 ((-583 |#3|) |#1|)) (-15 -2200 ((-85) |#2| |#1|)) (-15 -2199 ((-583 |#2|) |#1|)) (-15 -3399 ((-3 |#3| #1="failed") |#2| |#1|)) (-15 -3399 (|#1| (-1 (-85) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3399 (|#1| (-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1351 ((-3 (-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1271 ((-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3603 (|#1| (-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1272 ((-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1943 ((-694) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -2885 ((-583 (-2 (|:| -3854 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1943 ((-694) (-1 (-85) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1944 ((-85) (-1 (-85) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1945 ((-85) (-1 (-85) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1946 (|#1| (-1 (-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3952 (|#1| (-1 (-2 (|:| -3854 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3854 |#2|) (|:| |entry| |#3|))) |#1|))) (-1105 |#2| |#3|) (-1012) (-1012)) (T -1104))
-NIL
-((-2564 (((-85) $ $) 19 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3593 (($) 77 T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 76 T ELT)) (-2194 (((-1183) $ |#1| |#1|) 104 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#2| $ |#1| |#2|) 78 T ELT)) (-1567 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3989)) ELT)) (-3704 (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3989)) ELT)) (-2227 (((-3 |#2| #1="failed") |#1| $) 65 T ELT)) (-3718 (($) 7 T CONST)) (-1350 (($ $) 62 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT)) (-3399 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3989)) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3989)) ELT) (((-3 |#2| #1#) |#1| $) 66 T ELT)) (-3400 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3989)) ELT)) (-3836 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3989)) ELT) (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3989)) ELT)) (-1573 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -3990)) ELT)) (-3108 ((|#2| $ |#1|) 93 T ELT)) (-2885 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) 84 (|has| $ (-6 -3989)) ELT)) (-2196 ((|#1| $) 101 (|has| |#1| (-756)) ELT)) (-2604 (((-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3989)) ELT) (((-583 |#2|) $) 85 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT) (((-85) |#2| $) 87 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -3989))) ELT)) (-2197 ((|#1| $) 100 (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3990)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT)) (-3237 (((-1071) $) 22 (OR (|has| |#2| (-1012)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-2228 (((-583 |#1|) $) 67 T ELT)) (-2229 (((-85) |#1| $) 68 T ELT)) (-1271 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3603 (($ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-2199 (((-583 |#1|) $) 98 T ELT)) (-2200 (((-85) |#1| $) 97 T ELT)) (-3238 (((-1032) $) 21 (OR (|has| |#2| (-1012)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT)) (-3795 ((|#2| $) 102 (|has| |#1| (-756)) ELT)) (-1351 (((-3 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 55 T ELT)) (-2195 (($ $ |#2|) 103 (|has| $ (-6 -3990)) ELT)) (-1272 (((-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-1944 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) 82 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-248 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 91 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-248 |#2|)) 89 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT) (($ $ (-583 (-248 |#2|))) 88 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-2198 (((-85) |#2| $) 99 (-12 (|has| $ (-6 -3989)) (|has| |#2| (-1012))) ELT)) (-2201 (((-583 |#2|) $) 96 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT)) (-1463 (($) 53 T ELT) (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1943 (((-694) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| $ (-6 -3989))) ELT) (((-694) |#2| $) 86 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -3989))) ELT) (((-694) (-1 (-85) |#2|) $) 83 (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 63 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-553 (-472))) ELT)) (-3524 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 54 T ELT)) (-3940 (((-772) $) 17 (OR (|has| |#2| (-552 (-772))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-552 (-772)))) ELT)) (-1262 (((-85) $ $) 20 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1273 (($ (-583 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3989)) ELT) (((-85) (-1 (-85) |#2|) $) 81 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-1105 |#1| |#2|) (-113) (-1012) (-1012)) (T -1105))
-((-3782 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1105 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012)))) (-3593 (*1 *1) (-12 (-4 *1 (-1105 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) (-3593 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3854 *3) (|:| |entry| *4)))) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *1 (-1105 *3 *4)))) (-3952 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1105 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))))
-(-13 (-549 |t#1| |t#2|) (-538 |t#1| |t#2|) (-10 -8 (-15 -3782 (|t#2| $ |t#1| |t#2|)) (-15 -3593 ($)) (-15 -3593 ($ (-583 (-2 (|:| -3854 |t#1|) (|:| |entry| |t#2|))))) (-15 -3952 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
-(((-34) . T) ((-76 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1012)) (|has| |#2| (-72))) ((-552 (-772)) OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-1012)) (|has| |#2| (-552 (-772)))) ((-124 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-553 (-472)) |has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-553 (-472))) ((-183 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ((-259 |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ((-426 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) . T) ((-426 |#2|) . T) ((-538 |#1| |#2|) . T) ((-452 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3854 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012))) ((-452 |#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1012))) ((-13) . T) ((-549 |#1| |#2|) . T) ((-1012) OR (|has| (-2 (|:| -3854 |#1|) (|:| |entry| |#2|)) (-1012)) (|has| |#2| (-1012))) ((-1127) . T))
-((-3599 (((-85)) 29 T ELT)) (-3596 (((-1183) (-1071)) 31 T ELT)) (-3600 (((-85)) 41 T ELT)) (-3597 (((-1183)) 39 T ELT)) (-3595 (((-1183) (-1071) (-1071)) 30 T ELT)) (-3601 (((-85)) 42 T ELT)) (-3603 (((-1183) |#1| |#2|) 53 T ELT)) (-3594 (((-1183)) 26 T ELT)) (-3602 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-3598 (((-1183)) 40 T ELT)))
-(((-1106 |#1| |#2|) (-10 -7 (-15 -3594 ((-1183))) (-15 -3595 ((-1183) (-1071) (-1071))) (-15 -3596 ((-1183) (-1071))) (-15 -3597 ((-1183))) (-15 -3598 ((-1183))) (-15 -3599 ((-85))) (-15 -3600 ((-85))) (-15 -3601 ((-85))) (-15 -3602 ((-3 |#2| "failed") |#1|)) (-15 -3603 ((-1183) |#1| |#2|))) (-1012) (-1012)) (T -1106))
-((-3603 (*1 *2 *3 *4) (-12 (-5 *2 (-1183)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-3602 (*1 *2 *3) (|partial| -12 (-4 *2 (-1012)) (-5 *1 (-1106 *3 *2)) (-4 *3 (-1012)))) (-3601 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-3600 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-3599 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-3598 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-3597 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-3596 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1106 *4 *5)) (-4 *4 (-1012)) (-4 *5 (-1012)))) (-3595 (*1 *2 *3 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1106 *4 *5)) (-4 *4 (-1012)) (-4 *5 (-1012)))) (-3594 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3609 (((-583 (-1071)) $) 37 T ELT)) (-3605 (((-583 (-1071)) $ (-583 (-1071))) 40 T ELT)) (-3604 (((-583 (-1071)) $ (-583 (-1071))) 39 T ELT)) (-3606 (((-583 (-1071)) $ (-583 (-1071))) 41 T ELT)) (-3607 (((-583 (-1071)) $) 36 T ELT)) (-3608 (($) 26 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3610 (((-583 (-1071)) $) 38 T ELT)) (-3611 (((-1183) $ (-483)) 33 T ELT) (((-1183) $) 34 T ELT)) (-3966 (($ (-772) (-483)) 31 T ELT) (($ (-772) (-483) (-772)) NIL T ELT)) (-3940 (((-772) $) 47 T ELT) (($ (-772)) 30 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-1107) (-13 (-1012) (-555 (-772)) (-10 -8 (-15 -3966 ($ (-772) (-483))) (-15 -3966 ($ (-772) (-483) (-772))) (-15 -3611 ((-1183) $ (-483))) (-15 -3611 ((-1183) $)) (-15 -3610 ((-583 (-1071)) $)) (-15 -3609 ((-583 (-1071)) $)) (-15 -3608 ($)) (-15 -3607 ((-583 (-1071)) $)) (-15 -3606 ((-583 (-1071)) $ (-583 (-1071)))) (-15 -3605 ((-583 (-1071)) $ (-583 (-1071)))) (-15 -3604 ((-583 (-1071)) $ (-583 (-1071))))))) (T -1107))
-((-3966 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-483)) (-5 *1 (-1107)))) (-3966 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-772)) (-5 *3 (-483)) (-5 *1 (-1107)))) (-3611 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *2 (-1183)) (-5 *1 (-1107)))) (-3611 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1107)))) (-3610 (*1 *2 *1) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1107)))) (-3609 (*1 *2 *1) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1107)))) (-3608 (*1 *1) (-5 *1 (-1107))) (-3607 (*1 *2 *1) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1107)))) (-3606 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1107)))) (-3605 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1107)))) (-3604 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1107)))))
-((-3940 (((-1107) |#1|) 11 T ELT)))
-(((-1108 |#1|) (-10 -7 (-15 -3940 ((-1107) |#1|))) (-1012)) (T -1108))
-((-3940 (*1 *2 *3) (-12 (-5 *2 (-1107)) (-5 *1 (-1108 *3)) (-4 *3 (-1012)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3616 (((-1071) $ (-1071)) 21 T ELT) (((-1071) $) 20 T ELT)) (-1694 (((-1071) $ (-1071)) 19 T ELT)) (-1698 (($ $ (-1071)) NIL T ELT)) (-3614 (((-3 (-1071) #1="failed") $) 11 T ELT)) (-3615 (((-1071) $) 8 T ELT)) (-3613 (((-3 (-1071) #1#) $) 12 T ELT)) (-1695 (((-1071) $) 9 T ELT)) (-1699 (($ (-335)) NIL T ELT) (($ (-335) (-1071)) NIL T ELT)) (-3536 (((-335) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-1696 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3612 (((-85) $) 25 T ELT)) (-3940 (((-772) $) NIL T ELT)) (-1697 (($ $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-1109) (-13 (-313 (-335) (-1071)) (-10 -8 (-15 -3616 ((-1071) $ (-1071))) (-15 -3616 ((-1071) $)) (-15 -3615 ((-1071) $)) (-15 -3614 ((-3 (-1071) #1="failed") $)) (-15 -3613 ((-3 (-1071) #1#) $)) (-15 -3612 ((-85) $))))) (T -1109))
-((-3616 (*1 *2 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1109)))) (-3616 (*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-1109)))) (-3615 (*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-1109)))) (-3614 (*1 *2 *1) (|partial| -12 (-5 *2 (-1071)) (-5 *1 (-1109)))) (-3613 (*1 *2 *1) (|partial| -12 (-5 *2 (-1071)) (-5 *1 (-1109)))) (-3612 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1109)))))
-((-3617 (((-3 (-483) #1="failed") |#1|) 19 T ELT)) (-3618 (((-3 (-483) #1#) |#1|) 14 T ELT)) (-3619 (((-483) (-1071)) 33 T ELT)))
-(((-1110 |#1|) (-10 -7 (-15 -3617 ((-3 (-483) #1="failed") |#1|)) (-15 -3618 ((-3 (-483) #1#) |#1|)) (-15 -3619 ((-483) (-1071)))) (-961)) (T -1110))
-((-3619 (*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-483)) (-5 *1 (-1110 *4)) (-4 *4 (-961)))) (-3618 (*1 *2 *3) (|partial| -12 (-5 *2 (-483)) (-5 *1 (-1110 *3)) (-4 *3 (-961)))) (-3617 (*1 *2 *3) (|partial| -12 (-5 *2 (-483)) (-5 *1 (-1110 *3)) (-4 *3 (-961)))))
-((-3620 (((-1045 (-179))) 9 T ELT)))
-(((-1111) (-10 -7 (-15 -3620 ((-1045 (-179)))))) (T -1111))
-((-3620 (*1 *2) (-12 (-5 *2 (-1045 (-179))) (-5 *1 (-1111)))))
-((-3621 (($) 12 T ELT)) (-3492 (($ $) 36 T ELT)) (-3490 (($ $) 34 T ELT)) (-3478 (($ $) 26 T ELT)) (-3494 (($ $) 18 T ELT)) (-3495 (($ $) 16 T ELT)) (-3493 (($ $) 20 T ELT)) (-3481 (($ $) 31 T ELT)) (-3491 (($ $) 35 T ELT)) (-3479 (($ $) 30 T ELT)))
-(((-1112 |#1|) (-10 -7 (-15 -3621 (|#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3478 (|#1| |#1|)) (-15 -3481 (|#1| |#1|)) (-15 -3479 (|#1| |#1|))) (-1113)) (T -1112))
-NIL
-((-3486 (($ $) 26 T ELT)) (-3633 (($ $) 11 T ELT)) (-3484 (($ $) 27 T ELT)) (-3632 (($ $) 10 T ELT)) (-3488 (($ $) 28 T ELT)) (-3631 (($ $) 9 T ELT)) (-3621 (($) 16 T ELT)) (-3936 (($ $) 19 T ELT)) (-3937 (($ $) 18 T ELT)) (-3489 (($ $) 29 T ELT)) (-3630 (($ $) 8 T ELT)) (-3487 (($ $) 30 T ELT)) (-3629 (($ $) 7 T ELT)) (-3485 (($ $) 31 T ELT)) (-3628 (($ $) 6 T ELT)) (-3492 (($ $) 20 T ELT)) (-3480 (($ $) 32 T ELT)) (-3490 (($ $) 21 T ELT)) (-3478 (($ $) 33 T ELT)) (-3494 (($ $) 22 T ELT)) (-3482 (($ $) 34 T ELT)) (-3495 (($ $) 23 T ELT)) (-3483 (($ $) 35 T ELT)) (-3493 (($ $) 24 T ELT)) (-3481 (($ $) 36 T ELT)) (-3491 (($ $) 25 T ELT)) (-3479 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT)))
-(((-1113) (-113)) (T -1113))
-((-3621 (*1 *1) (-4 *1 (-1113))))
-(-13 (-1116) (-66) (-430) (-35) (-239) (-10 -8 (-15 -3621 ($))))
-(((-35) . T) ((-66) . T) ((-239) . T) ((-430) . T) ((-1116) . T))
-((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3396 ((|#1| $) 19 T ELT)) (-3626 (($ |#1| (-583 $)) 28 T ELT) (($ (-583 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-3021 ((|#1| $ |#1|) 14 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) 13 (|has| $ (-6 -3990)) ELT)) (-3718 (($) NIL T CONST)) (-2885 (((-583 |#1|) $) 70 (|has| $ (-6 -3989)) ELT)) (-3027 (((-583 $) $) 59 T ELT)) (-3023 (((-85) $ $) 50 (|has| |#1| (-1012)) ELT)) (-2604 (((-583 |#1|) $) 71 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 69 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-3026 (((-583 |#1|) $) 55 T ELT)) (-3521 (((-85) $) 53 T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 67 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 102 T ELT)) (-3397 (((-85) $) 9 T ELT)) (-3559 (($) 10 T ELT)) (-3794 ((|#1| $ #1#) NIL T ELT)) (-3025 (((-483) $ $) 48 T ELT)) (-3622 (((-583 $) $) 84 T ELT)) (-3623 (((-85) $ $) 105 T ELT)) (-3624 (((-583 $) $) 100 T ELT)) (-3625 (($ $) 101 T ELT)) (-3627 (((-85) $) 77 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 25 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 17 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3394 (($ $) 83 T ELT)) (-3940 (((-772) $) 86 (|has| |#1| (-552 (-772))) ELT)) (-3516 (((-583 $) $) 12 T ELT)) (-3024 (((-85) $ $) 39 (|has| |#1| (-1012)) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 66 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 81 (|has| $ (-6 -3989)) ELT)))
-(((-1114 |#1|) (-13 (-923 |#1|) (-10 -8 (-6 -3989) (-6 -3990) (-15 -3626 ($ |#1| (-583 $))) (-15 -3626 ($ (-583 |#1|))) (-15 -3626 ($ |#1|)) (-15 -3627 ((-85) $)) (-15 -3625 ($ $)) (-15 -3624 ((-583 $) $)) (-15 -3623 ((-85) $ $)) (-15 -3622 ((-583 $) $)))) (-1012)) (T -1114))
-((-3627 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1114 *3)) (-4 *3 (-1012)))) (-3626 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-1114 *2))) (-5 *1 (-1114 *2)) (-4 *2 (-1012)))) (-3626 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-5 *1 (-1114 *3)))) (-3626 (*1 *1 *2) (-12 (-5 *1 (-1114 *2)) (-4 *2 (-1012)))) (-3625 (*1 *1 *1) (-12 (-5 *1 (-1114 *2)) (-4 *2 (-1012)))) (-3624 (*1 *2 *1) (-12 (-5 *2 (-583 (-1114 *3))) (-5 *1 (-1114 *3)) (-4 *3 (-1012)))) (-3623 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1114 *3)) (-4 *3 (-1012)))) (-3622 (*1 *2 *1) (-12 (-5 *2 (-583 (-1114 *3))) (-5 *1 (-1114 *3)) (-4 *3 (-1012)))))
-((-3633 (($ $) 15 T ELT)) (-3631 (($ $) 12 T ELT)) (-3630 (($ $) 10 T ELT)) (-3629 (($ $) 17 T ELT)))
-(((-1115 |#1|) (-10 -7 (-15 -3629 (|#1| |#1|)) (-15 -3630 (|#1| |#1|)) (-15 -3631 (|#1| |#1|)) (-15 -3633 (|#1| |#1|))) (-1116)) (T -1115))
-NIL
-((-3633 (($ $) 11 T ELT)) (-3632 (($ $) 10 T ELT)) (-3631 (($ $) 9 T ELT)) (-3630 (($ $) 8 T ELT)) (-3629 (($ $) 7 T ELT)) (-3628 (($ $) 6 T ELT)))
-(((-1116) (-113)) (T -1116))
-((-3633 (*1 *1 *1) (-4 *1 (-1116))) (-3632 (*1 *1 *1) (-4 *1 (-1116))) (-3631 (*1 *1 *1) (-4 *1 (-1116))) (-3630 (*1 *1 *1) (-4 *1 (-1116))) (-3629 (*1 *1 *1) (-4 *1 (-1116))) (-3628 (*1 *1 *1) (-4 *1 (-1116))))
-(-13 (-10 -8 (-15 -3628 ($ $)) (-15 -3629 ($ $)) (-15 -3630 ($ $)) (-15 -3631 ($ $)) (-15 -3632 ($ $)) (-15 -3633 ($ $))))
-((-3636 ((|#2| |#2|) 95 T ELT)) (-3639 (((-85) |#2|) 29 T ELT)) (-3637 ((|#2| |#2|) 33 T ELT)) (-3638 ((|#2| |#2|) 35 T ELT)) (-3634 ((|#2| |#2| (-1088)) 89 T ELT) ((|#2| |#2|) 90 T ELT)) (-3640 (((-142 |#2|) |#2|) 31 T ELT)) (-3635 ((|#2| |#2| (-1088)) 91 T ELT) ((|#2| |#2|) 92 T ELT)))
-(((-1117 |#1| |#2|) (-10 -7 (-15 -3634 (|#2| |#2|)) (-15 -3634 (|#2| |#2| (-1088))) (-15 -3635 (|#2| |#2|)) (-15 -3635 (|#2| |#2| (-1088))) (-15 -3636 (|#2| |#2|)) (-15 -3637 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3639 ((-85) |#2|)) (-15 -3640 ((-142 |#2|) |#2|))) (-13 (-389) (-950 (-483)) (-580 (-483))) (-13 (-27) (-1113) (-361 |#1|))) (T -1117))
-((-3640 (*1 *2 *3) (-12 (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-142 *3)) (-5 *1 (-1117 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *4))))) (-3639 (*1 *2 *3) (-12 (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-85)) (-5 *1 (-1117 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *4))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *3))))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *3))))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *3))))) (-3635 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-1117 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *4))))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *3))))) (-3634 (*1 *2 *2 *3) (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-1117 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *4))))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *3))))))
-((-3641 ((|#4| |#4| |#1|) 31 T ELT)) (-3642 ((|#4| |#4| |#1|) 32 T ELT)))
-(((-1118 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3641 (|#4| |#4| |#1|)) (-15 -3642 (|#4| |#4| |#1|))) (-494) (-321 |#1|) (-321 |#1|) (-627 |#1| |#2| |#3|)) (T -1118))
-((-3642 (*1 *2 *2 *3) (-12 (-4 *3 (-494)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-3641 (*1 *2 *2 *3) (-12 (-4 *3 (-494)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))))
-((-3660 ((|#2| |#2|) 148 T ELT)) (-3662 ((|#2| |#2|) 145 T ELT)) (-3659 ((|#2| |#2|) 136 T ELT)) (-3661 ((|#2| |#2|) 133 T ELT)) (-3658 ((|#2| |#2|) 141 T ELT)) (-3657 ((|#2| |#2|) 129 T ELT)) (-3646 ((|#2| |#2|) 44 T ELT)) (-3645 ((|#2| |#2|) 105 T ELT)) (-3643 ((|#2| |#2|) 88 T ELT)) (-3656 ((|#2| |#2|) 143 T ELT)) (-3655 ((|#2| |#2|) 131 T ELT)) (-3668 ((|#2| |#2|) 153 T ELT)) (-3666 ((|#2| |#2|) 151 T ELT)) (-3667 ((|#2| |#2|) 152 T ELT)) (-3665 ((|#2| |#2|) 150 T ELT)) (-3644 ((|#2| |#2|) 163 T ELT)) (-3669 ((|#2| |#2|) 30 (-12 (|has| |#2| (-553 (-800 |#1|))) (|has| |#2| (-796 |#1|)) (|has| |#1| (-553 (-800 |#1|))) (|has| |#1| (-796 |#1|))) ELT)) (-3647 ((|#2| |#2|) 89 T ELT)) (-3648 ((|#2| |#2|) 154 T ELT)) (-3957 ((|#2| |#2|) 155 T ELT)) (-3654 ((|#2| |#2|) 142 T ELT)) (-3653 ((|#2| |#2|) 130 T ELT)) (-3652 ((|#2| |#2|) 149 T ELT)) (-3664 ((|#2| |#2|) 147 T ELT)) (-3651 ((|#2| |#2|) 137 T ELT)) (-3663 ((|#2| |#2|) 135 T ELT)) (-3650 ((|#2| |#2|) 139 T ELT)) (-3649 ((|#2| |#2|) 127 T ELT)))
-(((-1119 |#1| |#2|) (-10 -7 (-15 -3957 (|#2| |#2|)) (-15 -3643 (|#2| |#2|)) (-15 -3644 (|#2| |#2|)) (-15 -3645 (|#2| |#2|)) (-15 -3646 (|#2| |#2|)) (-15 -3647 (|#2| |#2|)) (-15 -3648 (|#2| |#2|)) (-15 -3649 (|#2| |#2|)) (-15 -3650 (|#2| |#2|)) (-15 -3651 (|#2| |#2|)) (-15 -3652 (|#2| |#2|)) (-15 -3653 (|#2| |#2|)) (-15 -3654 (|#2| |#2|)) (-15 -3655 (|#2| |#2|)) (-15 -3656 (|#2| |#2|)) (-15 -3657 (|#2| |#2|)) (-15 -3658 (|#2| |#2|)) (-15 -3659 (|#2| |#2|)) (-15 -3660 (|#2| |#2|)) (-15 -3661 (|#2| |#2|)) (-15 -3662 (|#2| |#2|)) (-15 -3663 (|#2| |#2|)) (-15 -3664 (|#2| |#2|)) (-15 -3665 (|#2| |#2|)) (-15 -3666 (|#2| |#2|)) (-15 -3667 (|#2| |#2|)) (-15 -3668 (|#2| |#2|)) (IF (|has| |#1| (-796 |#1|)) (IF (|has| |#1| (-553 (-800 |#1|))) (IF (|has| |#2| (-553 (-800 |#1|))) (IF (|has| |#2| (-796 |#1|)) (-15 -3669 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-389) (-13 (-361 |#1|) (-1113))) (T -1119))
-((-3669 (*1 *2 *2) (-12 (-4 *3 (-553 (-800 *3))) (-4 *3 (-796 *3)) (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-553 (-800 *3))) (-4 *2 (-796 *3)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3668 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3667 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3666 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3665 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3664 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3663 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3662 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3661 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3660 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3659 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3658 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3657 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3656 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3655 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3654 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3653 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3652 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3651 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3650 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3649 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3648 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3647 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3646 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3645 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3644 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))) (-3957 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3077 (((-583 (-1088)) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3033 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) NIL T CONST)) (-3953 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3808 (((-857 |#1|) $ (-694)) 18 T ELT) (((-857 |#1|) $ (-694) (-694)) NIL T ELT)) (-2888 (((-85) $) NIL T ELT)) (-3621 (($) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3766 (((-694) $ (-1088)) NIL T ELT) (((-694) $ (-1088) (-694)) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3007 (($ $ (-483)) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ $ (-583 (-1088)) (-583 (-468 (-1088)))) NIL T ELT) (($ $ (-1088) (-468 (-1088))) NIL T ELT) (($ |#1| (-468 (-1088))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3936 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3806 (($ $ (-1088)) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-1088) |#1|) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3670 (($ (-1 $) (-1088) |#1|) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3763 (($ $ (-694)) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-3937 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3762 (($ $ (-1088) $) NIL T ELT) (($ $ (-583 (-1088)) (-583 $)) NIL T ELT) (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT)) (-3752 (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088))) NIL T ELT) (($ $ (-1088)) NIL T ELT)) (-3942 (((-468 (-1088)) $) NIL T ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2887 (($ $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-494)) ELT) (($ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ (-1088)) NIL T ELT) (($ (-857 |#1|)) NIL T ELT)) (-3671 ((|#1| $ (-468 (-1088))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT) (((-857 |#1|) $ (-694)) NIL T ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-2665 (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088))) NIL T ELT) (($ $ (-1088)) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-1120 |#1|) (-13 (-679 |#1| (-1088)) (-10 -8 (-15 -3671 ((-857 |#1|) $ (-694))) (-15 -3940 ($ (-1088))) (-15 -3940 ($ (-857 |#1|))) (IF (|has| |#1| (-38 (-347 (-483)))) (PROGN (-15 -3806 ($ $ (-1088) |#1|)) (-15 -3670 ($ (-1 $) (-1088) |#1|))) |%noBranch|))) (-961)) (T -1120))
-((-3671 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-857 *4)) (-5 *1 (-1120 *4)) (-4 *4 (-961)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-1120 *3)) (-4 *3 (-961)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-857 *3)) (-4 *3 (-961)) (-5 *1 (-1120 *3)))) (-3806 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *1 (-1120 *3)) (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)))) (-3670 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1120 *4))) (-5 *3 (-1088)) (-5 *1 (-1120 *4)) (-4 *4 (-38 (-347 (-483)))) (-4 *4 (-961)))))
-((-3687 (((-85) |#5| $) 68 T ELT) (((-85) $) 109 T ELT)) (-3682 ((|#5| |#5| $) 83 T ELT)) (-3704 (($ (-1 (-85) |#5|) $) NIL T ELT) (((-3 |#5| #1="failed") $ |#4|) 126 T ELT)) (-3683 (((-583 |#5|) (-583 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 81 T ELT)) (-3152 (((-3 $ #1#) (-583 |#5|)) 134 T ELT)) (-3793 (((-3 $ #1#) $) 119 T ELT)) (-3679 ((|#5| |#5| $) 101 T ELT)) (-3688 (((-85) |#5| $ (-1 (-85) |#5| |#5|)) 36 T ELT)) (-3677 ((|#5| |#5| $) 105 T ELT)) (-3836 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 77 T ELT)) (-3690 (((-2 (|:| -3855 (-583 |#5|)) (|:| -1699 (-583 |#5|))) $) 63 T ELT)) (-3689 (((-85) |#5| $) 66 T ELT) (((-85) $) 110 T ELT)) (-3175 ((|#4| $) 115 T ELT)) (-3792 (((-3 |#5| #1#) $) 117 T ELT)) (-3691 (((-583 |#5|) $) 55 T ELT)) (-3685 (((-85) |#5| $) 75 T ELT) (((-85) $) 114 T ELT)) (-3680 ((|#5| |#5| $) 89 T ELT)) (-3693 (((-85) $ $) 29 T ELT)) (-3686 (((-85) |#5| $) 71 T ELT) (((-85) $) 112 T ELT)) (-3681 ((|#5| |#5| $) 86 T ELT)) (-3795 (((-3 |#5| #1#) $) 116 T ELT)) (-3763 (($ $ |#5|) 135 T ELT)) (-3942 (((-694) $) 60 T ELT)) (-3524 (($ (-583 |#5|)) 132 T ELT)) (-2906 (($ $ |#4|) 130 T ELT)) (-2908 (($ $ |#4|) 128 T ELT)) (-3678 (($ $) 127 T ELT)) (-3940 (((-772) $) NIL T ELT) (((-583 |#5|) $) 120 T ELT)) (-3672 (((-694) $) 139 T ELT)) (-3692 (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#5|))) #1#) (-583 |#5|) (-1 (-85) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#5|))) #1#) (-583 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|)) 51 T ELT)) (-3684 (((-85) $ (-1 (-85) |#5| (-583 |#5|))) 107 T ELT)) (-3674 (((-583 |#4|) $) 122 T ELT)) (-3927 (((-85) |#4| $) 125 T ELT)) (-3052 (((-85) $ $) 20 T ELT)))
-(((-1121 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3672 ((-694) |#1|)) (-15 -3763 (|#1| |#1| |#5|)) (-15 -3704 ((-3 |#5| #1="failed") |#1| |#4|)) (-15 -3927 ((-85) |#4| |#1|)) (-15 -3674 ((-583 |#4|) |#1|)) (-15 -3793 ((-3 |#1| #1#) |#1|)) (-15 -3792 ((-3 |#5| #1#) |#1|)) (-15 -3795 ((-3 |#5| #1#) |#1|)) (-15 -3677 (|#5| |#5| |#1|)) (-15 -3678 (|#1| |#1|)) (-15 -3679 (|#5| |#5| |#1|)) (-15 -3680 (|#5| |#5| |#1|)) (-15 -3681 (|#5| |#5| |#1|)) (-15 -3682 (|#5| |#5| |#1|)) (-15 -3683 ((-583 |#5|) (-583 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3836 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3685 ((-85) |#1|)) (-15 -3686 ((-85) |#1|)) (-15 -3687 ((-85) |#1|)) (-15 -3684 ((-85) |#1| (-1 (-85) |#5| (-583 |#5|)))) (-15 -3685 ((-85) |#5| |#1|)) (-15 -3686 ((-85) |#5| |#1|)) (-15 -3687 ((-85) |#5| |#1|)) (-15 -3688 ((-85) |#5| |#1| (-1 (-85) |#5| |#5|))) (-15 -3689 ((-85) |#1|)) (-15 -3689 ((-85) |#5| |#1|)) (-15 -3690 ((-2 (|:| -3855 (-583 |#5|)) (|:| -1699 (-583 |#5|))) |#1|)) (-15 -3942 ((-694) |#1|)) (-15 -3691 ((-583 |#5|) |#1|)) (-15 -3692 ((-3 (-2 (|:| |bas| |#1|) (|:| -3318 (-583 |#5|))) #1#) (-583 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|))) (-15 -3692 ((-3 (-2 (|:| |bas| |#1|) (|:| -3318 (-583 |#5|))) #1#) (-583 |#5|) (-1 (-85) |#5| |#5|))) (-15 -3693 ((-85) |#1| |#1|)) (-15 -2906 (|#1| |#1| |#4|)) (-15 -2908 (|#1| |#1| |#4|)) (-15 -3175 (|#4| |#1|)) (-15 -3152 ((-3 |#1| #1#) (-583 |#5|))) (-15 -3940 ((-583 |#5|) |#1|)) (-15 -3524 (|#1| (-583 |#5|))) (-15 -3836 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3836 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3704 (|#1| (-1 (-85) |#5|) |#1|)) (-15 -3836 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3940 ((-772) |#1|)) (-15 -3052 ((-85) |#1| |#1|))) (-1122 |#2| |#3| |#4| |#5|) (-494) (-717) (-756) (-976 |#2| |#3| |#4|)) (T -1121))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3675 (((-583 (-2 (|:| -3855 $) (|:| -1699 (-583 |#4|)))) (-583 |#4|)) 90 T ELT)) (-3676 (((-583 $) (-583 |#4|)) 91 T ELT)) (-3077 (((-583 |#3|) $) 37 T ELT)) (-2904 (((-85) $) 30 T ELT)) (-2895 (((-85) $) 21 (|has| |#1| (-494)) ELT)) (-3687 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3682 ((|#4| |#4| $) 97 T ELT)) (-2905 (((-2 (|:| |under| $) (|:| -3125 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3704 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3989)) ELT) (((-3 |#4| "failed") $ |#3|) 84 T ELT)) (-3718 (($) 46 T CONST)) (-2900 (((-85) $) 26 (|has| |#1| (-494)) ELT)) (-2902 (((-85) $ $) 28 (|has| |#1| (-494)) ELT)) (-2901 (((-85) $ $) 27 (|has| |#1| (-494)) ELT)) (-2903 (((-85) $) 29 (|has| |#1| (-494)) ELT)) (-3683 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2896 (((-583 |#4|) (-583 |#4|) $) 22 (|has| |#1| (-494)) ELT)) (-2897 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-494)) ELT)) (-3152 (((-3 $ "failed") (-583 |#4|)) 40 T ELT)) (-3151 (($ (-583 |#4|)) 39 T ELT)) (-3793 (((-3 $ "failed") $) 87 T ELT)) (-3679 ((|#4| |#4| $) 94 T ELT)) (-1350 (($ $) 69 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3400 (($ |#4| $) 68 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3989)) ELT)) (-2898 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-494)) ELT)) (-3688 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3677 ((|#4| |#4| $) 92 T ELT)) (-3836 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3989)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3989)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3690 (((-2 (|:| -3855 (-583 |#4|)) (|:| -1699 (-583 |#4|))) $) 110 T ELT)) (-2885 (((-583 |#4|) $) 53 (|has| $ (-6 -3989)) ELT)) (-3689 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3175 ((|#3| $) 38 T ELT)) (-2604 (((-583 |#4|) $) 54 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2910 (((-583 |#3|) $) 36 T ELT)) (-2909 (((-85) |#3| $) 35 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3792 (((-3 |#4| "failed") $) 88 T ELT)) (-3691 (((-583 |#4|) $) 112 T ELT)) (-3685 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3680 ((|#4| |#4| $) 95 T ELT)) (-3693 (((-85) $ $) 115 T ELT)) (-2899 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-494)) ELT)) (-3686 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3681 ((|#4| |#4| $) 96 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3795 (((-3 |#4| "failed") $) 89 T ELT)) (-1351 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3673 (((-3 $ "failed") $ |#4|) 83 T ELT)) (-3763 (($ $ |#4|) 82 T ELT)) (-1944 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 |#4|) (-583 |#4|)) 60 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-248 |#4|)) 58 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-583 (-248 |#4|))) 57 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT)) (-1219 (((-85) $ $) 42 T ELT)) (-3397 (((-85) $) 45 T ELT)) (-3559 (($) 44 T ELT)) (-3942 (((-694) $) 111 T ELT)) (-1943 (((-694) |#4| $) 55 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -3989))) ELT) (((-694) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) 43 T ELT)) (-3966 (((-472) $) 70 (|has| |#4| (-553 (-472))) ELT)) (-3524 (($ (-583 |#4|)) 61 T ELT)) (-2906 (($ $ |#3|) 32 T ELT)) (-2908 (($ $ |#3|) 34 T ELT)) (-3678 (($ $) 93 T ELT)) (-2907 (($ $ |#3|) 33 T ELT)) (-3940 (((-772) $) 13 T ELT) (((-583 |#4|) $) 41 T ELT)) (-3672 (((-694) $) 81 (|has| |#3| (-317)) ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3692 (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3684 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) 103 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3989)) ELT)) (-3674 (((-583 |#3|) $) 86 T ELT)) (-3927 (((-85) |#3| $) 85 T ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3951 (((-694) $) 47 (|has| $ (-6 -3989)) ELT)))
-(((-1122 |#1| |#2| |#3| |#4|) (-113) (-494) (-717) (-756) (-976 |t#1| |t#2| |t#3|)) (T -1122))
-((-3693 (*1 *2 *1 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85)))) (-3692 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3318 (-583 *8)))) (-5 *3 (-583 *8)) (-4 *1 (-1122 *5 *6 *7 *8)))) (-3692 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-85) *9)) (-5 *5 (-1 (-85) *9 *9)) (-4 *9 (-976 *6 *7 *8)) (-4 *6 (-494)) (-4 *7 (-717)) (-4 *8 (-756)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3318 (-583 *9)))) (-5 *3 (-583 *9)) (-4 *1 (-1122 *6 *7 *8 *9)))) (-3691 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-583 *6)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-694)))) (-3690 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-2 (|:| -3855 (-583 *6)) (|:| -1699 (-583 *6)))))) (-3689 (*1 *2 *3 *1) (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85)))) (-3688 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1122 *5 *6 *7 *3)) (-4 *5 (-494)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-85)))) (-3687 (*1 *2 *3 *1) (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))) (-3686 (*1 *2 *3 *1) (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))) (-3685 (*1 *2 *3 *1) (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))) (-3684 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-85) *7 (-583 *7))) (-4 *1 (-1122 *4 *5 *6 *7)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)))) (-3687 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85)))) (-3686 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85)))) (-3685 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85)))) (-3836 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-85) *2 *2)) (-4 *1 (-1122 *5 *6 *7 *2)) (-4 *5 (-494)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *2 (-976 *5 *6 *7)))) (-3683 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8)) (-4 *1 (-1122 *5 *6 *7 *8)) (-4 *5 (-494)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-976 *5 *6 *7)))) (-3682 (*1 *2 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-976 *3 *4 *5)))) (-3681 (*1 *2 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-976 *3 *4 *5)))) (-3680 (*1 *2 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-976 *3 *4 *5)))) (-3679 (*1 *2 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-976 *3 *4 *5)))) (-3678 (*1 *1 *1) (-12 (-4 *1 (-1122 *2 *3 *4 *5)) (-4 *2 (-494)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-976 *2 *3 *4)))) (-3677 (*1 *2 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-976 *3 *4 *5)))) (-3676 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-1122 *4 *5 *6 *7)))) (-3675 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| -3855 *1) (|:| -1699 (-583 *7))))) (-5 *3 (-583 *7)) (-4 *1 (-1122 *4 *5 *6 *7)))) (-3795 (*1 *2 *1) (|partial| -12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-976 *3 *4 *5)))) (-3792 (*1 *2 *1) (|partial| -12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-976 *3 *4 *5)))) (-3793 (*1 *1 *1) (|partial| -12 (-4 *1 (-1122 *2 *3 *4 *5)) (-4 *2 (-494)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-976 *2 *3 *4)))) (-3674 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-583 *5)))) (-3927 (*1 *2 *3 *1) (-12 (-4 *1 (-1122 *4 *5 *3 *6)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *3 (-756)) (-4 *6 (-976 *4 *5 *3)) (-5 *2 (-85)))) (-3704 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1122 *4 *5 *3 *2)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *3 (-756)) (-4 *2 (-976 *4 *5 *3)))) (-3673 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-976 *3 *4 *5)))) (-3763 (*1 *1 *1 *2) (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-976 *3 *4 *5)))) (-3672 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-4 *5 (-317)) (-5 *2 (-694)))))
-(-13 (-889 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -3989) (-6 -3990) (-15 -3693 ((-85) $ $)) (-15 -3692 ((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |t#4|))) "failed") (-583 |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3692 ((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |t#4|))) "failed") (-583 |t#4|) (-1 (-85) |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3691 ((-583 |t#4|) $)) (-15 -3942 ((-694) $)) (-15 -3690 ((-2 (|:| -3855 (-583 |t#4|)) (|:| -1699 (-583 |t#4|))) $)) (-15 -3689 ((-85) |t#4| $)) (-15 -3689 ((-85) $)) (-15 -3688 ((-85) |t#4| $ (-1 (-85) |t#4| |t#4|))) (-15 -3687 ((-85) |t#4| $)) (-15 -3686 ((-85) |t#4| $)) (-15 -3685 ((-85) |t#4| $)) (-15 -3684 ((-85) $ (-1 (-85) |t#4| (-583 |t#4|)))) (-15 -3687 ((-85) $)) (-15 -3686 ((-85) $)) (-15 -3685 ((-85) $)) (-15 -3836 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3683 ((-583 |t#4|) (-583 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3682 (|t#4| |t#4| $)) (-15 -3681 (|t#4| |t#4| $)) (-15 -3680 (|t#4| |t#4| $)) (-15 -3679 (|t#4| |t#4| $)) (-15 -3678 ($ $)) (-15 -3677 (|t#4| |t#4| $)) (-15 -3676 ((-583 $) (-583 |t#4|))) (-15 -3675 ((-583 (-2 (|:| -3855 $) (|:| -1699 (-583 |t#4|)))) (-583 |t#4|))) (-15 -3795 ((-3 |t#4| "failed") $)) (-15 -3792 ((-3 |t#4| "failed") $)) (-15 -3793 ((-3 $ "failed") $)) (-15 -3674 ((-583 |t#3|) $)) (-15 -3927 ((-85) |t#3| $)) (-15 -3704 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3673 ((-3 $ "failed") $ |t#4|)) (-15 -3763 ($ $ |t#4|)) (IF (|has| |t#3| (-317)) (-15 -3672 ((-694) $)) |%noBranch|)))
-(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-472)) |has| |#4| (-553 (-472))) ((-259 |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ((-426 |#4|) . T) ((-452 |#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ((-13) . T) ((-889 |#1| |#2| |#3| |#4|) . T) ((-1012) . T) ((-1127) . T))
-((-3699 (($ |#1| (-583 (-583 (-854 (-179)))) (-85)) 19 T ELT)) (-3698 (((-85) $ (-85)) 18 T ELT)) (-3697 (((-85) $) 17 T ELT)) (-3695 (((-583 (-583 (-854 (-179)))) $) 13 T ELT)) (-3694 ((|#1| $) 8 T ELT)) (-3696 (((-85) $) 15 T ELT)))
-(((-1123 |#1|) (-10 -8 (-15 -3694 (|#1| $)) (-15 -3695 ((-583 (-583 (-854 (-179)))) $)) (-15 -3696 ((-85) $)) (-15 -3697 ((-85) $)) (-15 -3698 ((-85) $ (-85))) (-15 -3699 ($ |#1| (-583 (-583 (-854 (-179)))) (-85)))) (-887)) (T -1123))
-((-3699 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-85)) (-5 *1 (-1123 *2)) (-4 *2 (-887)))) (-3698 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1123 *3)) (-4 *3 (-887)))) (-3697 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1123 *3)) (-4 *3 (-887)))) (-3696 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1123 *3)) (-4 *3 (-887)))) (-3695 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-1123 *3)) (-4 *3 (-887)))) (-3694 (*1 *2 *1) (-12 (-5 *1 (-1123 *2)) (-4 *2 (-887)))))
-((-3701 (((-854 (-179)) (-854 (-179))) 31 T ELT)) (-3700 (((-854 (-179)) (-179) (-179) (-179) (-179)) 10 T ELT)) (-3703 (((-583 (-854 (-179))) (-854 (-179)) (-854 (-179)) (-854 (-179)) (-179) (-583 (-583 (-179)))) 57 T ELT)) (-3830 (((-179) (-854 (-179)) (-854 (-179))) 27 T ELT)) (-3828 (((-854 (-179)) (-854 (-179)) (-854 (-179))) 28 T ELT)) (-3702 (((-583 (-583 (-179))) (-483)) 45 T ELT)) (-3831 (((-854 (-179)) (-854 (-179)) (-854 (-179))) 26 T ELT)) (-3833 (((-854 (-179)) (-854 (-179)) (-854 (-179))) 24 T ELT)) (* (((-854 (-179)) (-179) (-854 (-179))) 22 T ELT)))
-(((-1124) (-10 -7 (-15 -3700 ((-854 (-179)) (-179) (-179) (-179) (-179))) (-15 * ((-854 (-179)) (-179) (-854 (-179)))) (-15 -3833 ((-854 (-179)) (-854 (-179)) (-854 (-179)))) (-15 -3831 ((-854 (-179)) (-854 (-179)) (-854 (-179)))) (-15 -3830 ((-179) (-854 (-179)) (-854 (-179)))) (-15 -3828 ((-854 (-179)) (-854 (-179)) (-854 (-179)))) (-15 -3701 ((-854 (-179)) (-854 (-179)))) (-15 -3702 ((-583 (-583 (-179))) (-483))) (-15 -3703 ((-583 (-854 (-179))) (-854 (-179)) (-854 (-179)) (-854 (-179)) (-179) (-583 (-583 (-179))))))) (T -1124))
-((-3703 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-583 (-583 (-179)))) (-5 *4 (-179)) (-5 *2 (-583 (-854 *4))) (-5 *1 (-1124)) (-5 *3 (-854 *4)))) (-3702 (*1 *2 *3) (-12 (-5 *3 (-483)) (-5 *2 (-583 (-583 (-179)))) (-5 *1 (-1124)))) (-3701 (*1 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1124)))) (-3828 (*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1124)))) (-3830 (*1 *2 *3 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-179)) (-5 *1 (-1124)))) (-3831 (*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1124)))) (-3833 (*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1124)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-854 (-179))) (-5 *3 (-179)) (-5 *1 (-1124)))) (-3700 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1124)) (-5 *3 (-179)))))
-((-2564 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-3704 ((|#1| $ (-694)) 18 T ELT)) (-3827 (((-694) $) 13 T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3940 (((-869 |#1|) $) 12 T ELT) (($ (-869 |#1|)) 11 T ELT) (((-772) $) 29 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-3052 (((-85) $ $) 22 (|has| |#1| (-1012)) ELT)))
-(((-1125 |#1|) (-13 (-427 (-869 |#1|)) (-10 -8 (-15 -3704 (|#1| $ (-694))) (-15 -3827 ((-694) $)) (IF (|has| |#1| (-552 (-772))) (-6 (-552 (-772))) |%noBranch|) (IF (|has| |#1| (-1012)) (-6 (-1012)) |%noBranch|))) (-1127)) (T -1125))
-((-3704 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-1125 *2)) (-4 *2 (-1127)))) (-3827 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1125 *3)) (-4 *3 (-1127)))))
-((-3707 (((-345 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|)) (-483)) 92 T ELT)) (-3705 (((-345 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|))) 84 T ELT)) (-3706 (((-345 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|))) 68 T ELT)))
-(((-1126 |#1|) (-10 -7 (-15 -3705 ((-345 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|)))) (-15 -3706 ((-345 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|)))) (-15 -3707 ((-345 (-1083 (-1083 |#1|))) (-1083 (-1083 |#1|)) (-483)))) (-298)) (T -1126))
-((-3707 (*1 *2 *3 *4) (-12 (-5 *4 (-483)) (-4 *5 (-298)) (-5 *2 (-345 (-1083 (-1083 *5)))) (-5 *1 (-1126 *5)) (-5 *3 (-1083 (-1083 *5))))) (-3706 (*1 *2 *3) (-12 (-4 *4 (-298)) (-5 *2 (-345 (-1083 (-1083 *4)))) (-5 *1 (-1126 *4)) (-5 *3 (-1083 (-1083 *4))))) (-3705 (*1 *2 *3) (-12 (-4 *4 (-298)) (-5 *2 (-345 (-1083 (-1083 *4)))) (-5 *1 (-1126 *4)) (-5 *3 (-1083 (-1083 *4))))))
-NIL
-(((-1127) (-113)) (T -1127))
+(((-64) . T) ((-72) . T) ((-556 (-1094)) . T) ((-553 (-773)) . T) ((-553 (-1094)) . T) ((-427 (-1094)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
+((-3214 ((|#1| |#1| (-1 (-484) |#1| |#1|)) 41 T ELT) ((|#1| |#1| (-1 (-85) |#1|)) 33 T ELT)) (-3212 (((-1184)) 21 T ELT)) (-3213 (((-584 |#1|)) 13 T ELT)))
+(((-996 |#1|) (-10 -7 (-15 -3212 ((-1184))) (-15 -3213 ((-584 |#1|))) (-15 -3214 (|#1| |#1| (-1 (-85) |#1|))) (-15 -3214 (|#1| |#1| (-1 (-484) |#1| |#1|)))) (-105)) (T -996))
+((-3214 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-484) *2 *2)) (-4 *2 (-105)) (-5 *1 (-996 *2)))) (-3214 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-996 *2)))) (-3213 (*1 *2) (-12 (-5 *2 (-584 *3)) (-5 *1 (-996 *3)) (-4 *3 (-105)))) (-3212 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-996 *3)) (-4 *3 (-105)))))
+((-3217 (($ (-78) $) 20 T ELT)) (-3218 (((-633 (-78)) (-444) $) 19 T ELT)) (-3561 (($) 7 T ELT)) (-3216 (($) 21 T ELT)) (-3215 (($) 22 T ELT)) (-3219 (((-584 (-149)) $) 10 T ELT)) (-3942 (((-773) $) 25 T ELT)))
+(((-997) (-13 (-553 (-773)) (-10 -8 (-15 -3561 ($)) (-15 -3219 ((-584 (-149)) $)) (-15 -3218 ((-633 (-78)) (-444) $)) (-15 -3217 ($ (-78) $)) (-15 -3216 ($)) (-15 -3215 ($))))) (T -997))
+((-3561 (*1 *1) (-5 *1 (-997))) (-3219 (*1 *2 *1) (-12 (-5 *2 (-584 (-149))) (-5 *1 (-997)))) (-3218 (*1 *2 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-633 (-78))) (-5 *1 (-997)))) (-3217 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-997)))) (-3216 (*1 *1) (-5 *1 (-997))) (-3215 (*1 *1) (-5 *1 (-997))))
+((-3220 (((-1178 (-631 |#1|)) (-584 (-631 |#1|))) 45 T ELT) (((-1178 (-631 (-858 |#1|))) (-584 (-1089)) (-631 (-858 |#1|))) 75 T ELT) (((-1178 (-631 (-347 (-858 |#1|)))) (-584 (-1089)) (-631 (-347 (-858 |#1|)))) 92 T ELT)) (-3221 (((-1178 |#1|) (-631 |#1|) (-584 (-631 |#1|))) 39 T ELT)))
+(((-998 |#1|) (-10 -7 (-15 -3220 ((-1178 (-631 (-347 (-858 |#1|)))) (-584 (-1089)) (-631 (-347 (-858 |#1|))))) (-15 -3220 ((-1178 (-631 (-858 |#1|))) (-584 (-1089)) (-631 (-858 |#1|)))) (-15 -3220 ((-1178 (-631 |#1|)) (-584 (-631 |#1|)))) (-15 -3221 ((-1178 |#1|) (-631 |#1|) (-584 (-631 |#1|))))) (-311)) (T -998))
+((-3221 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-631 *5))) (-5 *3 (-631 *5)) (-4 *5 (-311)) (-5 *2 (-1178 *5)) (-5 *1 (-998 *5)))) (-3220 (*1 *2 *3) (-12 (-5 *3 (-584 (-631 *4))) (-4 *4 (-311)) (-5 *2 (-1178 (-631 *4))) (-5 *1 (-998 *4)))) (-3220 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-1089))) (-4 *5 (-311)) (-5 *2 (-1178 (-631 (-858 *5)))) (-5 *1 (-998 *5)) (-5 *4 (-631 (-858 *5))))) (-3220 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-1089))) (-4 *5 (-311)) (-5 *2 (-1178 (-631 (-347 (-858 *5))))) (-5 *1 (-998 *5)) (-5 *4 (-631 (-347 (-858 *5)))))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1486 (((-584 (-695)) $) NIL T ELT) (((-584 (-695)) $ (-1089)) NIL T ELT)) (-1520 (((-695) $) NIL T ELT) (((-695) $ (-1089)) NIL T ELT)) (-3079 (((-584 (-1000 (-1089))) $) NIL T ELT)) (-3081 (((-1084 $) $ (-1000 (-1089))) NIL T ELT) (((-1084 |#1|) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2061 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2817 (((-695) $) NIL T ELT) (((-695) $ (-584 (-1000 (-1089)))) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3771 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3967 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2702 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-1482 (($ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-1000 (-1089)) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL T ELT) (((-3 (-1038 |#1| (-1089)) #1#) $) NIL T ELT)) (-3153 ((|#1| $) NIL T ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-1000 (-1089)) $) NIL T ELT) (((-1089) $) NIL T ELT) (((-1038 |#1| (-1089)) $) NIL T ELT)) (-3752 (($ $ $ (-1000 (-1089))) NIL (|has| |#1| (-146)) ELT)) (-3955 (($ $) NIL T ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-389)) ELT) (($ $ (-1000 (-1089))) NIL (|has| |#1| (-389)) ELT)) (-2816 (((-584 $) $) NIL T ELT)) (-3719 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1622 (($ $ |#1| (-469 (-1000 (-1089))) $) NIL T ELT)) (-2794 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (-12 (|has| (-1000 (-1089)) (-797 (-327))) (|has| |#1| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (-12 (|has| (-1000 (-1089)) (-797 (-484))) (|has| |#1| (-797 (-484)))) ELT)) (-3768 (((-695) $ (-1089)) NIL T ELT) (((-695) $) NIL T ELT)) (-2408 (((-85) $) NIL T ELT)) (-2418 (((-695) $) NIL T ELT)) (-3082 (($ (-1084 |#1|) (-1000 (-1089))) NIL T ELT) (($ (-1084 $) (-1000 (-1089))) NIL T ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2891 (($ |#1| (-469 (-1000 (-1089)))) NIL T ELT) (($ $ (-1000 (-1089)) (-695)) NIL T ELT) (($ $ (-584 (-1000 (-1089))) (-584 (-695))) NIL T ELT)) (-3759 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $ (-1000 (-1089))) NIL T ELT)) (-2818 (((-469 (-1000 (-1089))) $) NIL T ELT) (((-695) $ (-1000 (-1089))) NIL T ELT) (((-584 (-695)) $ (-584 (-1000 (-1089)))) NIL T ELT)) (-1623 (($ (-1 (-469 (-1000 (-1089))) (-469 (-1000 (-1089)))) $) NIL T ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1521 (((-1 $ (-695)) (-1089)) NIL T ELT) (((-1 $ (-695)) $) NIL (|has| |#1| (-190)) ELT)) (-3080 (((-3 (-1000 (-1089)) #1#) $) NIL T ELT)) (-2278 (((-631 (-484)) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-2892 (($ $) NIL T ELT)) (-3171 ((|#1| $) NIL T ELT)) (-1484 (((-1000 (-1089)) $) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-1485 (((-85) $) NIL T ELT)) (-2821 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-2 (|:| |var| (-1000 (-1089))) (|:| -2399 (-695))) #1#) $) NIL T ELT)) (-1483 (($ $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1795 (((-85) $) NIL T ELT)) (-1794 ((|#1| $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-389)) ELT)) (-3141 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3728 (((-345 $) $) NIL (|has| |#1| (-822)) ELT)) (-3462 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3764 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-1000 (-1089)) |#1|) NIL T ELT) (($ $ (-584 (-1000 (-1089))) (-584 |#1|)) NIL T ELT) (($ $ (-1000 (-1089)) $) NIL T ELT) (($ $ (-584 (-1000 (-1089))) (-584 $)) NIL T ELT) (($ $ (-1089) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 (-1089)) (-584 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1089) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 (-1089)) (-584 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3753 (($ $ (-1000 (-1089))) NIL (|has| |#1| (-146)) ELT)) (-3754 (($ $ (-584 (-1000 (-1089))) (-584 (-695))) NIL T ELT) (($ $ (-1000 (-1089)) (-695)) NIL T ELT) (($ $ (-584 (-1000 (-1089)))) NIL T ELT) (($ $ (-1000 (-1089))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-1487 (((-584 (-1089)) $) NIL T ELT)) (-3944 (((-469 (-1000 (-1089))) $) NIL T ELT) (((-695) $ (-1000 (-1089))) NIL T ELT) (((-584 (-695)) $ (-584 (-1000 (-1089)))) NIL T ELT) (((-695) $ (-1089)) NIL T ELT)) (-3968 (((-801 (-327)) $) NIL (-12 (|has| (-1000 (-1089)) (-554 (-801 (-327)))) (|has| |#1| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) NIL (-12 (|has| (-1000 (-1089)) (-554 (-801 (-484)))) (|has| |#1| (-554 (-801 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-1000 (-1089)) (-554 (-473))) (|has| |#1| (-554 (-473)))) ELT)) (-2815 ((|#1| $) NIL (|has| |#1| (-389)) ELT) (($ $ (-1000 (-1089))) NIL (|has| |#1| (-389)) ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1000 (-1089))) NIL T ELT) (($ (-1089)) NIL T ELT) (($ (-1038 |#1| (-1089))) NIL T ELT) (($ (-347 (-484))) NIL (OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3813 (((-584 |#1|) $) NIL T ELT)) (-3673 ((|#1| $ (-469 (-1000 (-1089)))) NIL T ELT) (($ $ (-1000 (-1089)) (-695)) NIL T ELT) (($ $ (-584 (-1000 (-1089))) (-584 (-695))) NIL T ELT)) (-2700 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3123 (((-695)) NIL T CONST)) (-1621 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-2667 (($ $ (-584 (-1000 (-1089))) (-584 (-695))) NIL T ELT) (($ $ (-1000 (-1089)) (-695)) NIL T ELT) (($ $ (-584 (-1000 (-1089)))) NIL T ELT) (($ $ (-1000 (-1089))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
+(((-999 |#1|) (-13 (-213 |#1| (-1089) (-1000 (-1089)) (-469 (-1000 (-1089)))) (-951 (-1038 |#1| (-1089)))) (-962)) (T -999))
+NIL
+((-2566 (((-85) $ $) NIL T ELT)) (-1520 (((-695) $) NIL T ELT)) (-3827 ((|#1| $) 10 T ELT)) (-3154 (((-3 |#1| "failed") $) NIL T ELT)) (-3153 ((|#1| $) NIL T ELT)) (-3768 (((-695) $) 11 T ELT)) (-2529 (($ $ $) NIL T ELT)) (-2855 (($ $ $) NIL T ELT)) (-1521 (($ |#1| (-695)) 9 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3754 (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2667 (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) 16 T ELT)))
+(((-1000 |#1|) (-228 |#1|) (-757)) (T -1000))
+NIL
+((-2566 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3732 (($ |#1| |#1|) 16 T ELT)) (-3954 (((-584 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-756)) ELT)) (-3226 ((|#1| $) 12 T ELT)) (-3228 ((|#1| $) 11 T ELT)) (-3239 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3224 (((-484) $) 15 T ELT)) (-3225 ((|#1| $) 14 T ELT)) (-3227 ((|#1| $) 13 T ELT)) (-3240 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3959 (((-584 |#1|) $) 42 (|has| |#1| (-756)) ELT) (((-584 |#1|) (-584 $)) 41 (|has| |#1| (-756)) ELT)) (-3968 (($ |#1|) 29 T ELT)) (-3942 (((-773) $) 28 (|has| |#1| (-1013)) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3733 (($ |#1| |#1|) 10 T ELT)) (-3229 (($ $ (-484)) 17 T ELT)) (-3054 (((-85) $ $) 22 (|has| |#1| (-1013)) ELT)))
+(((-1001 |#1|) (-13 (-1006 |#1|) (-10 -7 (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |#1| (-756)) (-6 (-1007 |#1| (-584 |#1|))) |%noBranch|))) (-1128)) (T -1001))
+NIL
+((-3954 (((-584 |#2|) (-1 |#2| |#1|) (-1001 |#1|)) 27 (|has| |#1| (-756)) ELT) (((-1001 |#2|) (-1 |#2| |#1|) (-1001 |#1|)) 14 T ELT)))
+(((-1002 |#1| |#2|) (-10 -7 (-15 -3954 ((-1001 |#2|) (-1 |#2| |#1|) (-1001 |#1|))) (IF (|has| |#1| (-756)) (-15 -3954 ((-584 |#2|) (-1 |#2| |#1|) (-1001 |#1|))) |%noBranch|)) (-1128) (-1128)) (T -1002))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1001 *5)) (-4 *5 (-756)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-584 *6)) (-5 *1 (-1002 *5 *6)))) (-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1001 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1001 *6)) (-5 *1 (-1002 *5 *6)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 16 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3222 (((-584 (-1048)) $) 10 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-1003) (-13 (-995) (-10 -8 (-15 -3222 ((-584 (-1048)) $))))) (T -1003))
+((-3222 (*1 *2 *1) (-12 (-5 *2 (-584 (-1048))) (-5 *1 (-1003)))))
+((-2566 (((-85) $ $) NIL (|has| (-1001 |#1|) (-1013)) ELT)) (-3827 (((-1089) $) NIL T ELT)) (-3732 (((-1001 |#1|) $) NIL T ELT)) (-3239 (((-1072) $) NIL (|has| (-1001 |#1|) (-1013)) ELT)) (-3240 (((-1033) $) NIL (|has| (-1001 |#1|) (-1013)) ELT)) (-3223 (($ (-1089) (-1001 |#1|)) NIL T ELT)) (-3942 (((-773) $) NIL (|has| (-1001 |#1|) (-1013)) ELT)) (-1263 (((-85) $ $) NIL (|has| (-1001 |#1|) (-1013)) ELT)) (-3054 (((-85) $ $) NIL (|has| (-1001 |#1|) (-1013)) ELT)))
+(((-1004 |#1|) (-13 (-1128) (-10 -8 (-15 -3223 ($ (-1089) (-1001 |#1|))) (-15 -3827 ((-1089) $)) (-15 -3732 ((-1001 |#1|) $)) (IF (|has| (-1001 |#1|) (-1013)) (-6 (-1013)) |%noBranch|))) (-1128)) (T -1004))
+((-3223 (*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1001 *4)) (-4 *4 (-1128)) (-5 *1 (-1004 *4)))) (-3827 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-1004 *3)) (-4 *3 (-1128)))) (-3732 (*1 *2 *1) (-12 (-5 *2 (-1001 *3)) (-5 *1 (-1004 *3)) (-4 *3 (-1128)))))
+((-3954 (((-1004 |#2|) (-1 |#2| |#1|) (-1004 |#1|)) 19 T ELT)))
+(((-1005 |#1| |#2|) (-10 -7 (-15 -3954 ((-1004 |#2|) (-1 |#2| |#1|) (-1004 |#1|)))) (-1128) (-1128)) (T -1005))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1004 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1004 *6)) (-5 *1 (-1005 *5 *6)))))
+((-3732 (($ |#1| |#1|) 8 T ELT)) (-3226 ((|#1| $) 11 T ELT)) (-3228 ((|#1| $) 13 T ELT)) (-3224 (((-484) $) 9 T ELT)) (-3225 ((|#1| $) 10 T ELT)) (-3227 ((|#1| $) 12 T ELT)) (-3968 (($ |#1|) 6 T ELT)) (-3733 (($ |#1| |#1|) 15 T ELT)) (-3229 (($ $ (-484)) 14 T ELT)))
+(((-1006 |#1|) (-113) (-1128)) (T -1006))
+((-3733 (*1 *1 *2 *2) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128)))) (-3229 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-1006 *3)) (-4 *3 (-1128)))) (-3228 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128)))) (-3227 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128)))) (-3226 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128)))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128)))) (-3224 (*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1128)) (-5 *2 (-484)))) (-3732 (*1 *1 *2 *2) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128)))))
+(-13 (-558 |t#1|) (-10 -8 (-15 -3733 ($ |t#1| |t#1|)) (-15 -3229 ($ $ (-484))) (-15 -3228 (|t#1| $)) (-15 -3227 (|t#1| $)) (-15 -3226 (|t#1| $)) (-15 -3225 (|t#1| $)) (-15 -3224 ((-484) $)) (-15 -3732 ($ |t#1| |t#1|))))
+(((-558 |#1|) . T))
+((-3732 (($ |#1| |#1|) 8 T ELT)) (-3954 ((|#2| (-1 |#1| |#1|) $) 17 T ELT)) (-3226 ((|#1| $) 11 T ELT)) (-3228 ((|#1| $) 13 T ELT)) (-3224 (((-484) $) 9 T ELT)) (-3225 ((|#1| $) 10 T ELT)) (-3227 ((|#1| $) 12 T ELT)) (-3959 ((|#2| (-584 $)) 19 T ELT) ((|#2| $) 18 T ELT)) (-3968 (($ |#1|) 6 T ELT)) (-3733 (($ |#1| |#1|) 15 T ELT)) (-3229 (($ $ (-484)) 14 T ELT)))
+(((-1007 |#1| |#2|) (-113) (-756) (-1063 |t#1|)) (T -1007))
+((-3959 (*1 *2 *3) (-12 (-5 *3 (-584 *1)) (-4 *1 (-1007 *4 *2)) (-4 *4 (-756)) (-4 *2 (-1063 *4)))) (-3959 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *2)) (-4 *3 (-756)) (-4 *2 (-1063 *3)))) (-3954 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1007 *4 *2)) (-4 *4 (-756)) (-4 *2 (-1063 *4)))))
+(-13 (-1006 |t#1|) (-10 -8 (-15 -3959 (|t#2| (-584 $))) (-15 -3959 (|t#2| $)) (-15 -3954 (|t#2| (-1 |t#1| |t#1|) $))))
+(((-558 |#1|) . T) ((-1006 |#1|) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3794 (((-1048) $) 14 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 20 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-3230 (((-584 (-1048)) $) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-1008) (-13 (-995) (-10 -8 (-15 -3230 ((-584 (-1048)) $)) (-15 -3794 ((-1048) $))))) (T -1008))
+((-3230 (*1 *2 *1) (-12 (-5 *2 (-584 (-1048))) (-5 *1 (-1008)))) (-3794 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1008)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-1800 (($) NIL (|has| |#1| (-317)) ELT)) (-3231 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 84 T ELT)) (-3233 (($ $ $) 81 T ELT)) (-3232 (((-85) $ $) 83 T ELT)) (-3133 (((-695)) NIL (|has| |#1| (-317)) ELT)) (-3236 (($ (-584 |#1|)) NIL T ELT) (($) 14 T ELT)) (-1568 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3706 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3720 (($) NIL T CONST)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3401 (($ |#1| $) 75 (|has| $ (-6 -3991)) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3402 (($ |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 42 (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 40 (|has| $ (-6 -3991)) ELT)) (-2992 (($) NIL (|has| |#1| (-317)) ELT)) (-2887 (((-584 |#1|) $) 20 (|has| $ (-6 -3991)) ELT)) (-3238 (((-85) $ $) NIL T ELT)) (-2529 ((|#1| $) 56 (|has| |#1| (-757)) ELT)) (-2606 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) 74 (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2855 ((|#1| $) 54 (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2008 (((-831) $) NIL (|has| |#1| (-317)) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3235 (($ $ $) 79 T ELT)) (-1272 ((|#1| $) 26 T ELT)) (-3605 (($ |#1| $) 70 T ELT)) (-2398 (($ (-831)) NIL (|has| |#1| (-317)) ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 32 T ELT)) (-1273 ((|#1| $) 28 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3399 (((-85) $) 22 T ELT)) (-3561 (($) 12 T ELT)) (-3234 (($ $ |#1|) NIL T ELT) (($ $ $) 80 T ELT)) (-1464 (($) NIL T ELT) (($ (-584 |#1|)) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3396 (($ $) 17 T ELT)) (-3968 (((-473) $) 51 (|has| |#1| (-554 (-473))) ELT)) (-3526 (($ (-584 |#1|)) 63 T ELT)) (-1801 (($ $) NIL (|has| |#1| (-317)) ELT)) (-3942 (((-773) $) NIL T ELT)) (-1802 (((-695) $) NIL T ELT)) (-3237 (($ (-584 |#1|)) NIL T ELT) (($) 13 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-1274 (($ (-584 |#1|)) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 53 T ELT)) (-3953 (((-695) $) 11 (|has| $ (-6 -3991)) ELT)))
+(((-1009 |#1|) (-366 |#1|) (-1013)) (T -1009))
+NIL
+((-3231 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-3233 (($ $ $) 10 T ELT)) (-3234 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT)))
+(((-1010 |#1| |#2|) (-10 -7 (-15 -3231 (|#1| |#2| |#1|)) (-15 -3231 (|#1| |#1| |#2|)) (-15 -3231 (|#1| |#1| |#1|)) (-15 -3233 (|#1| |#1| |#1|)) (-15 -3234 (|#1| |#1| |#2|)) (-15 -3234 (|#1| |#1| |#1|))) (-1011 |#2|) (-1013)) (T -1010))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3231 (($ $ $) 22 T ELT) (($ $ |#1|) 21 T ELT) (($ |#1| $) 20 T ELT)) (-3233 (($ $ $) 24 T ELT)) (-3232 (((-85) $ $) 23 T ELT)) (-3236 (($) 29 T ELT) (($ (-584 |#1|)) 28 T ELT)) (-3706 (($ (-1 (-85) |#1|) $) 57 (|has| $ (-6 -3991)) ELT)) (-3720 (($) 37 T CONST)) (-1351 (($ $) 60 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3402 (($ |#1| $) 59 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT) (($ (-1 (-85) |#1|) $) 56 (|has| $ (-6 -3991)) ELT)) (-3838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -3991)) ELT)) (-2887 (((-584 |#1|) $) 44 (|has| $ (-6 -3991)) ELT)) (-3238 (((-85) $ $) 32 T ELT)) (-2606 (((-584 |#1|) $) 45 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) 47 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3235 (($ $ $) 27 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 53 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 42 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 |#1|) (-584 |#1|)) 51 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 49 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 (-248 |#1|))) 48 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 33 T ELT)) (-3399 (((-85) $) 36 T ELT)) (-3561 (($) 35 T ELT)) (-3234 (($ $ $) 26 T ELT) (($ $ |#1|) 25 T ELT)) (-1944 (((-695) |#1| $) 46 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT) (((-695) (-1 (-85) |#1|) $) 43 (|has| $ (-6 -3991)) ELT)) (-3396 (($ $) 34 T ELT)) (-3968 (((-473) $) 61 (|has| |#1| (-554 (-473))) ELT)) (-3526 (($ (-584 |#1|)) 52 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-3237 (($) 31 T ELT) (($ (-584 |#1|)) 30 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 41 (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3953 (((-695) $) 38 (|has| $ (-6 -3991)) ELT)))
+(((-1011 |#1|) (-113) (-1013)) (T -1011))
+((-3238 (*1 *2 *1 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))) (-3237 (*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3237 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-4 *1 (-1011 *3)))) (-3236 (*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3236 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-4 *1 (-1011 *3)))) (-3235 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3234 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3234 (*1 *1 *1 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3233 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3232 (*1 *2 *1 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))) (-3231 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3231 (*1 *1 *1 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3231 (*1 *1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
+(-13 (-1013) (-124 |t#1|) (-10 -8 (-6 -3981) (-15 -3238 ((-85) $ $)) (-15 -3237 ($)) (-15 -3237 ($ (-584 |t#1|))) (-15 -3236 ($)) (-15 -3236 ($ (-584 |t#1|))) (-15 -3235 ($ $ $)) (-15 -3234 ($ $ $)) (-15 -3234 ($ $ |t#1|)) (-15 -3233 ($ $ $)) (-15 -3232 ((-85) $ $)) (-15 -3231 ($ $ $)) (-15 -3231 ($ $ |t#1|)) (-15 -3231 ($ |t#1| $))))
+(((-34) . T) ((-72) . T) ((-553 (-773)) . T) ((-124 |#1|) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) . T) ((-1128) . T))
+((-3239 (((-1072) $) 10 T ELT)) (-3240 (((-1033) $) 8 T ELT)))
+(((-1012 |#1|) (-10 -7 (-15 -3239 ((-1072) |#1|)) (-15 -3240 ((-1033) |#1|))) (-1013)) (T -1012))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3054 (((-85) $ $) 8 T ELT)))
+(((-1013) (-113)) (T -1013))
+((-3240 (*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-1033)))) (-3239 (*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-1072)))))
+(-13 (-72) (-553 (-773)) (-10 -8 (-15 -3240 ((-1033) $)) (-15 -3239 ((-1072) $))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3133 (((-695)) 36 T ELT)) (-3244 (($ (-584 (-831))) 70 T ELT)) (-3246 (((-3 $ #1="failed") $ (-831) (-831)) 81 T ELT)) (-2992 (($) 40 T ELT)) (-3242 (((-85) (-831) $) 42 T ELT)) (-2008 (((-831) $) 64 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2398 (($ (-831)) 39 T ELT)) (-3247 (((-3 $ #1#) $ (-831)) 77 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3243 (((-1178 $)) 47 T ELT)) (-3245 (((-584 (-831)) $) 27 T ELT)) (-3241 (((-695) $ (-831) (-831)) 78 T ELT)) (-3942 (((-773) $) 32 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 24 T ELT)))
+(((-1014 |#1| |#2|) (-13 (-317) (-10 -8 (-15 -3247 ((-3 $ #1="failed") $ (-831))) (-15 -3246 ((-3 $ #1#) $ (-831) (-831))) (-15 -3245 ((-584 (-831)) $)) (-15 -3244 ($ (-584 (-831)))) (-15 -3243 ((-1178 $))) (-15 -3242 ((-85) (-831) $)) (-15 -3241 ((-695) $ (-831) (-831))))) (-831) (-831)) (T -1014))
+((-3247 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-831)) (-5 *1 (-1014 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3246 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-831)) (-5 *1 (-1014 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3245 (*1 *2 *1) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) (-3244 (*1 *1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) (-3243 (*1 *2) (-12 (-5 *2 (-1178 (-1014 *3 *4))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) (-3242 (*1 *2 *3 *1) (-12 (-5 *3 (-831)) (-5 *2 (-85)) (-5 *1 (-1014 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3241 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-695)) (-5 *1 (-1014 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3257 (((-85) $) NIL T ELT)) (-3253 (((-1089) $) NIL T ELT)) (-3258 (((-85) $) NIL T ELT)) (-3531 (((-1072) $) NIL T ELT)) (-3260 (((-85) $) NIL T ELT)) (-3262 (((-85) $) NIL T ELT)) (-3259 (((-85) $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3256 (((-85) $) NIL T ELT)) (-3252 (((-484) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3255 (((-85) $) NIL T ELT)) (-3251 (((-179) $) NIL T ELT)) (-3250 (((-773) $) NIL T ELT)) (-3263 (((-85) $ $) NIL T ELT)) (-3796 (($ $ (-484)) NIL T ELT) (($ $ (-584 (-484))) NIL T ELT)) (-3254 (((-584 $) $) NIL T ELT)) (-3968 (($ (-1072)) NIL T ELT) (($ (-1089)) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-179)) NIL T ELT) (($ (-773)) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3942 (((-773) $) NIL T ELT)) (-3248 (($ $) NIL T ELT)) (-3249 (($ $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3261 (((-85) $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3953 (((-484) $) NIL T ELT)))
+(((-1015) (-1016 (-1072) (-1089) (-484) (-179) (-773))) (T -1015))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3257 (((-85) $) 36 T ELT)) (-3253 ((|#2| $) 31 T ELT)) (-3258 (((-85) $) 37 T ELT)) (-3531 ((|#1| $) 32 T ELT)) (-3260 (((-85) $) 39 T ELT)) (-3262 (((-85) $) 41 T ELT)) (-3259 (((-85) $) 38 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3256 (((-85) $) 35 T ELT)) (-3252 ((|#3| $) 30 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3255 (((-85) $) 34 T ELT)) (-3251 ((|#4| $) 29 T ELT)) (-3250 ((|#5| $) 28 T ELT)) (-3263 (((-85) $ $) 42 T ELT)) (-3796 (($ $ (-484)) 44 T ELT) (($ $ (-584 (-484))) 43 T ELT)) (-3254 (((-584 $) $) 33 T ELT)) (-3968 (($ |#1|) 50 T ELT) (($ |#2|) 49 T ELT) (($ |#3|) 48 T ELT) (($ |#4|) 47 T ELT) (($ |#5|) 46 T ELT) (($ (-584 $)) 45 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-3248 (($ $) 26 T ELT)) (-3249 (($ $) 27 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3261 (((-85) $) 40 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3953 (((-484) $) 25 T ELT)))
+(((-1016 |#1| |#2| |#3| |#4| |#5|) (-113) (-1013) (-1013) (-1013) (-1013) (-1013)) (T -1016))
+((-3263 (*1 *2 *1 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3262 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3261 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3260 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3259 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3258 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3257 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3255 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3254 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-584 *1)) (-4 *1 (-1016 *3 *4 *5 *6 *7)))) (-3531 (*1 *2 *1) (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-3253 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *2 *4 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-3252 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *2 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-3251 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *2 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-3250 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *2)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-3249 (*1 *1 *1) (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)))) (-3248 (*1 *1 *1) (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)))) (-3953 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-484)))))
+(-13 (-1013) (-558 |t#1|) (-558 |t#2|) (-558 |t#3|) (-558 |t#4|) (-558 |t#4|) (-558 |t#5|) (-558 (-584 $)) (-241 (-484) $) (-241 (-584 (-484)) $) (-10 -8 (-15 -3263 ((-85) $ $)) (-15 -3262 ((-85) $)) (-15 -3261 ((-85) $)) (-15 -3260 ((-85) $)) (-15 -3259 ((-85) $)) (-15 -3258 ((-85) $)) (-15 -3257 ((-85) $)) (-15 -3256 ((-85) $)) (-15 -3255 ((-85) $)) (-15 -3254 ((-584 $) $)) (-15 -3531 (|t#1| $)) (-15 -3253 (|t#2| $)) (-15 -3252 (|t#3| $)) (-15 -3251 (|t#4| $)) (-15 -3250 (|t#5| $)) (-15 -3249 ($ $)) (-15 -3248 ($ $)) (-15 -3953 ((-484) $))))
+(((-72) . T) ((-553 (-773)) . T) ((-558 (-584 $)) . T) ((-558 |#1|) . T) ((-558 |#2|) . T) ((-558 |#3|) . T) ((-558 |#4|) . T) ((-558 |#5|) . T) ((-241 (-484) $) . T) ((-241 (-584 (-484)) $) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3257 (((-85) $) 45 T ELT)) (-3253 ((|#2| $) 48 T ELT)) (-3258 (((-85) $) 20 T ELT)) (-3531 ((|#1| $) 21 T ELT)) (-3260 (((-85) $) 42 T ELT)) (-3262 (((-85) $) 14 T ELT)) (-3259 (((-85) $) 44 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3256 (((-85) $) 46 T ELT)) (-3252 ((|#3| $) 50 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3255 (((-85) $) 47 T ELT)) (-3251 ((|#4| $) 49 T ELT)) (-3250 ((|#5| $) 51 T ELT)) (-3263 (((-85) $ $) 41 T ELT)) (-3796 (($ $ (-484)) 62 T ELT) (($ $ (-584 (-484))) 64 T ELT)) (-3254 (((-584 $) $) 27 T ELT)) (-3968 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-584 $)) 52 T ELT)) (-3942 (((-773) $) 28 T ELT)) (-3248 (($ $) 26 T ELT)) (-3249 (($ $) 58 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3261 (((-85) $) 23 T ELT)) (-3054 (((-85) $ $) 40 T ELT)) (-3953 (((-484) $) 60 T ELT)))
+(((-1017 |#1| |#2| |#3| |#4| |#5|) (-1016 |#1| |#2| |#3| |#4| |#5|) (-1013) (-1013) (-1013) (-1013) (-1013)) (T -1017))
+NIL
+((-3266 (((-85) |#5| |#5|) 44 T ELT)) (-3269 (((-85) |#5| |#5|) 59 T ELT)) (-3274 (((-85) |#5| (-584 |#5|)) 82 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3270 (((-85) (-584 |#4|) (-584 |#4|)) 65 T ELT)) (-3276 (((-85) (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|)) (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) 70 T ELT)) (-3265 (((-1184)) 32 T ELT)) (-3264 (((-1184) (-1072) (-1072) (-1072)) 28 T ELT)) (-3275 (((-584 |#5|) (-584 |#5|)) 101 T ELT)) (-3277 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|)))) 93 T ELT)) (-3278 (((-584 (-2 (|:| -3263 (-584 |#4|)) (|:| -1598 |#5|) (|:| |ineq| (-584 |#4|)))) (-584 |#4|) (-584 |#5|) (-85) (-85)) 123 T ELT)) (-3268 (((-85) |#5| |#5|) 53 T ELT)) (-3273 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3271 (((-85) (-584 |#4|) (-584 |#4|)) 64 T ELT)) (-3272 (((-85) (-584 |#4|) (-584 |#4|)) 66 T ELT)) (-3695 (((-85) (-584 |#4|) (-584 |#4|)) 67 T ELT)) (-3279 (((-3 (-2 (|:| -3263 (-584 |#4|)) (|:| -1598 |#5|) (|:| |ineq| (-584 |#4|))) #1#) (-584 |#4|) |#5| (-584 |#4|) (-85) (-85) (-85) (-85) (-85)) 118 T ELT)) (-3267 (((-584 |#5|) (-584 |#5|)) 49 T ELT)))
+(((-1018 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3264 ((-1184) (-1072) (-1072) (-1072))) (-15 -3265 ((-1184))) (-15 -3266 ((-85) |#5| |#5|)) (-15 -3267 ((-584 |#5|) (-584 |#5|))) (-15 -3268 ((-85) |#5| |#5|)) (-15 -3269 ((-85) |#5| |#5|)) (-15 -3270 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3271 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3272 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3695 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3273 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3274 ((-85) |#5| |#5|)) (-15 -3274 ((-85) |#5| (-584 |#5|))) (-15 -3275 ((-584 |#5|) (-584 |#5|))) (-15 -3276 ((-85) (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|)) (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|)))) (-15 -3277 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) (-15 -3278 ((-584 (-2 (|:| -3263 (-584 |#4|)) (|:| -1598 |#5|) (|:| |ineq| (-584 |#4|)))) (-584 |#4|) (-584 |#5|) (-85) (-85))) (-15 -3279 ((-3 (-2 (|:| -3263 (-584 |#4|)) (|:| -1598 |#5|) (|:| |ineq| (-584 |#4|))) #1#) (-584 |#4|) |#5| (-584 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-389) (-718) (-757) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -1018))
+((-3279 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| -3263 (-584 *9)) (|:| -1598 *4) (|:| |ineq| (-584 *9)))) (-5 *1 (-1018 *6 *7 *8 *9 *4)) (-5 *3 (-584 *9)) (-4 *4 (-983 *6 *7 *8 *9)))) (-3278 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-584 *10)) (-5 *5 (-85)) (-4 *10 (-983 *6 *7 *8 *9)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-977 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| -3263 (-584 *9)) (|:| -1598 *10) (|:| |ineq| (-584 *9))))) (-5 *1 (-1018 *6 *7 *8 *9 *10)) (-5 *3 (-584 *9)))) (-3277 (*1 *2 *2) (-12 (-5 *2 (-584 (-2 (|:| |val| (-584 *6)) (|:| -1598 *7)))) (-4 *6 (-977 *3 *4 *5)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))) (-3276 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1598 *8))) (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)))) (-3275 (*1 *2 *2) (-12 (-5 *2 (-584 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-983 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1018 *5 *6 *7 *8 *3)))) (-3274 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3273 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3695 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3272 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3271 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3270 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3269 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3268 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3267 (*1 *2 *2) (-12 (-5 *2 (-584 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))) (-3266 (*1 *2 *3 *3) (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3265 (*1 *2) (-12 (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1184)) (-5 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3264 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))))
+((-3294 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#5|) 106 T ELT)) (-3284 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) |#4| |#4| |#5|) 79 T ELT)) (-3287 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5|) 100 T ELT)) (-3289 (((-584 |#5|) |#4| |#5|) 122 T ELT)) (-3291 (((-584 |#5|) |#4| |#5|) 129 T ELT)) (-3293 (((-584 |#5|) |#4| |#5|) 130 T ELT)) (-3288 (((-584 (-2 (|:| |val| (-85)) (|:| -1598 |#5|))) |#4| |#5|) 107 T ELT)) (-3290 (((-584 (-2 (|:| |val| (-85)) (|:| -1598 |#5|))) |#4| |#5|) 128 T ELT)) (-3292 (((-584 (-2 (|:| |val| (-85)) (|:| -1598 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3285 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) |#3| (-85)) 91 T ELT) (((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3286 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5|) 86 T ELT)) (-3283 (((-1184)) 36 T ELT)) (-3281 (((-1184)) 25 T ELT)) (-3282 (((-1184) (-1072) (-1072) (-1072)) 32 T ELT)) (-3280 (((-1184) (-1072) (-1072) (-1072)) 21 T ELT)))
+(((-1019 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3280 ((-1184) (-1072) (-1072) (-1072))) (-15 -3281 ((-1184))) (-15 -3282 ((-1184) (-1072) (-1072) (-1072))) (-15 -3283 ((-1184))) (-15 -3284 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) |#4| |#4| |#5|)) (-15 -3285 ((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3285 ((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) |#3| (-85))) (-15 -3286 ((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5|)) (-15 -3287 ((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#4| |#5|)) (-15 -3292 ((-85) |#4| |#5|)) (-15 -3288 ((-584 (-2 (|:| |val| (-85)) (|:| -1598 |#5|))) |#4| |#5|)) (-15 -3289 ((-584 |#5|) |#4| |#5|)) (-15 -3290 ((-584 (-2 (|:| |val| (-85)) (|:| -1598 |#5|))) |#4| |#5|)) (-15 -3291 ((-584 |#5|) |#4| |#5|)) (-15 -3292 ((-584 (-2 (|:| |val| (-85)) (|:| -1598 |#5|))) |#4| |#5|)) (-15 -3293 ((-584 |#5|) |#4| |#5|)) (-15 -3294 ((-584 (-2 (|:| |val| |#4|) (|:| -1598 |#5|))) |#4| |#5|))) (-389) (-718) (-757) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -1019))
+((-3294 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3293 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3292 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1598 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3291 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3290 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1598 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3289 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3288 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1598 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3292 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3287 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3286 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3285 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1598 *9)))) (-5 *5 (-85)) (-4 *8 (-977 *6 *7 *4)) (-4 *9 (-983 *6 *7 *4 *8)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *4 (-757)) (-5 *2 (-584 (-2 (|:| |val| *8) (|:| -1598 *9)))) (-5 *1 (-1019 *6 *7 *4 *8 *9)))) (-3285 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4)))) (-5 *1 (-1019 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-3284 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3283 (*1 *2) (-12 (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1184)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3282 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3281 (*1 *2) (-12 (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1184)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3280 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1072)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3677 (((-584 (-2 (|:| -3857 $) (|:| -1700 (-584 |#4|)))) (-584 |#4|)) 90 T ELT)) (-3678 (((-584 $) (-584 |#4|)) 91 T ELT) (((-584 $) (-584 |#4|) (-85)) 118 T ELT)) (-3079 (((-584 |#3|) $) 37 T ELT)) (-2906 (((-85) $) 30 T ELT)) (-2897 (((-85) $) 21 (|has| |#1| (-495)) ELT)) (-3689 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3684 ((|#4| |#4| $) 97 T ELT)) (-3771 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| $) 133 T ELT)) (-2907 (((-2 (|:| |under| $) (|:| -3127 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3706 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3991)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3720 (($) 46 T CONST)) (-2902 (((-85) $) 26 (|has| |#1| (-495)) ELT)) (-2904 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2903 (((-85) $ $) 27 (|has| |#1| (-495)) ELT)) (-2905 (((-85) $) 29 (|has| |#1| (-495)) ELT)) (-3685 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2898 (((-584 |#4|) (-584 |#4|) $) 22 (|has| |#1| (-495)) ELT)) (-2899 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-3154 (((-3 $ "failed") (-584 |#4|)) 40 T ELT)) (-3153 (($ (-584 |#4|)) 39 T ELT)) (-3795 (((-3 $ #1#) $) 87 T ELT)) (-3681 ((|#4| |#4| $) 94 T ELT)) (-1351 (($ $) 69 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3402 (($ |#4| $) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3991))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3991)) ELT)) (-2900 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-495)) ELT)) (-3690 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3679 ((|#4| |#4| $) 92 T ELT)) (-3838 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3991))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3991)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3991)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3692 (((-2 (|:| -3857 (-584 |#4|)) (|:| -1700 (-584 |#4|))) $) 110 T ELT)) (-3194 (((-85) |#4| $) 143 T ELT)) (-3192 (((-85) |#4| $) 140 T ELT)) (-3195 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-2887 (((-584 |#4|) $) 53 (|has| $ (-6 -3991)) ELT)) (-3691 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3177 ((|#3| $) 38 T ELT)) (-2606 (((-584 |#4|) $) 54 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3991))) ELT)) (-1947 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2912 (((-584 |#3|) $) 36 T ELT)) (-2911 (((-85) |#3| $) 35 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3188 (((-3 |#4| (-584 $)) |#4| |#4| $) 135 T ELT)) (-3187 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| |#4| $) 134 T ELT)) (-3794 (((-3 |#4| #1#) $) 88 T ELT)) (-3189 (((-584 $) |#4| $) 136 T ELT)) (-3191 (((-3 (-85) (-584 $)) |#4| $) 139 T ELT)) (-3190 (((-584 (-2 (|:| |val| (-85)) (|:| -1598 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3235 (((-584 $) |#4| $) 132 T ELT) (((-584 $) (-584 |#4|) $) 131 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 130 T ELT) (((-584 $) |#4| (-584 $)) 129 T ELT)) (-3436 (($ |#4| $) 124 T ELT) (($ (-584 |#4|) $) 123 T ELT)) (-3693 (((-584 |#4|) $) 112 T ELT)) (-3687 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3682 ((|#4| |#4| $) 95 T ELT)) (-3695 (((-85) $ $) 115 T ELT)) (-2901 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3688 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3683 ((|#4| |#4| $) 96 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3797 (((-3 |#4| #1#) $) 89 T ELT)) (-1352 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3675 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3765 (($ $ |#4|) 82 T ELT) (((-584 $) |#4| $) 122 T ELT) (((-584 $) |#4| (-584 $)) 121 T ELT) (((-584 $) (-584 |#4|) $) 120 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 119 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 |#4|) (-584 |#4|)) 60 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-248 |#4|)) 58 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-584 (-248 |#4|))) 57 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT)) (-1220 (((-85) $ $) 42 T ELT)) (-3399 (((-85) $) 45 T ELT)) (-3561 (($) 44 T ELT)) (-3944 (((-695) $) 111 T ELT)) (-1944 (((-695) |#4| $) 55 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3991))) ELT) (((-695) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3991)) ELT)) (-3396 (($ $) 43 T ELT)) (-3968 (((-473) $) 70 (|has| |#4| (-554 (-473))) ELT)) (-3526 (($ (-584 |#4|)) 61 T ELT)) (-2908 (($ $ |#3|) 32 T ELT)) (-2910 (($ $ |#3|) 34 T ELT)) (-3680 (($ $) 93 T ELT)) (-2909 (($ $ |#3|) 33 T ELT)) (-3942 (((-773) $) 13 T ELT) (((-584 |#4|) $) 41 T ELT)) (-3674 (((-695) $) 81 (|has| |#3| (-317)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3694 (((-3 (-2 (|:| |bas| $) (|:| -3320 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3320 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3686 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) 103 T ELT)) (-3186 (((-584 $) |#4| $) 128 T ELT) (((-584 $) |#4| (-584 $)) 127 T ELT) (((-584 $) (-584 |#4|) $) 126 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 125 T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3991)) ELT)) (-3676 (((-584 |#3|) $) 86 T ELT)) (-3193 (((-85) |#4| $) 142 T ELT)) (-3929 (((-85) |#3| $) 85 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3953 (((-695) $) 47 (|has| $ (-6 -3991)) ELT)))
+(((-1020 |#1| |#2| |#3| |#4|) (-113) (-389) (-718) (-757) (-977 |t#1| |t#2| |t#3|)) (T -1020))
+NIL
+(-13 (-983 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-473)) |has| |#4| (-554 (-473))) ((-259 |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ((-426 |#4|) . T) ((-453 |#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-983 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1123 |#1| |#2| |#3| |#4|) . T) ((-1128) . T))
+((-3305 (((-584 (-484)) (-484) (-484) (-484)) 40 T ELT)) (-3304 (((-584 (-484)) (-484) (-484) (-484)) 30 T ELT)) (-3303 (((-584 (-484)) (-484) (-484) (-484)) 35 T ELT)) (-3302 (((-484) (-484) (-484)) 22 T ELT)) (-3301 (((-1178 (-484)) (-584 (-484)) (-1178 (-484)) (-484)) 78 T ELT) (((-1178 (-484)) (-1178 (-484)) (-1178 (-484)) (-484)) 73 T ELT)) (-3300 (((-584 (-484)) (-584 (-831)) (-584 (-484)) (-85)) 56 T ELT)) (-3299 (((-631 (-484)) (-584 (-484)) (-584 (-484)) (-631 (-484))) 77 T ELT)) (-3298 (((-631 (-484)) (-584 (-831)) (-584 (-484))) 61 T ELT)) (-3297 (((-584 (-631 (-484))) (-584 (-831))) 66 T ELT)) (-3296 (((-584 (-484)) (-584 (-484)) (-584 (-484)) (-631 (-484))) 81 T ELT)) (-3295 (((-631 (-484)) (-584 (-484)) (-584 (-484)) (-584 (-484))) 91 T ELT)))
+(((-1021) (-10 -7 (-15 -3295 ((-631 (-484)) (-584 (-484)) (-584 (-484)) (-584 (-484)))) (-15 -3296 ((-584 (-484)) (-584 (-484)) (-584 (-484)) (-631 (-484)))) (-15 -3297 ((-584 (-631 (-484))) (-584 (-831)))) (-15 -3298 ((-631 (-484)) (-584 (-831)) (-584 (-484)))) (-15 -3299 ((-631 (-484)) (-584 (-484)) (-584 (-484)) (-631 (-484)))) (-15 -3300 ((-584 (-484)) (-584 (-831)) (-584 (-484)) (-85))) (-15 -3301 ((-1178 (-484)) (-1178 (-484)) (-1178 (-484)) (-484))) (-15 -3301 ((-1178 (-484)) (-584 (-484)) (-1178 (-484)) (-484))) (-15 -3302 ((-484) (-484) (-484))) (-15 -3303 ((-584 (-484)) (-484) (-484) (-484))) (-15 -3304 ((-584 (-484)) (-484) (-484) (-484))) (-15 -3305 ((-584 (-484)) (-484) (-484) (-484))))) (T -1021))
+((-3305 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-1021)) (-5 *3 (-484)))) (-3304 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-1021)) (-5 *3 (-484)))) (-3303 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-1021)) (-5 *3 (-484)))) (-3302 (*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-1021)))) (-3301 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1178 (-484))) (-5 *3 (-584 (-484))) (-5 *4 (-484)) (-5 *1 (-1021)))) (-3301 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1178 (-484))) (-5 *3 (-484)) (-5 *1 (-1021)))) (-3300 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-584 (-484))) (-5 *3 (-584 (-831))) (-5 *4 (-85)) (-5 *1 (-1021)))) (-3299 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-631 (-484))) (-5 *3 (-584 (-484))) (-5 *1 (-1021)))) (-3298 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-831))) (-5 *4 (-584 (-484))) (-5 *2 (-631 (-484))) (-5 *1 (-1021)))) (-3297 (*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-584 (-631 (-484)))) (-5 *1 (-1021)))) (-3296 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-584 (-484))) (-5 *3 (-631 (-484))) (-5 *1 (-1021)))) (-3295 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-631 (-484))) (-5 *1 (-1021)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3306 (($ (-1 |#1| |#1| |#1|)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3796 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3942 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-1022 |#1|) (-13 (-1023 |#1|) (-1013) (-10 -8 (-15 -3306 ($ (-1 |#1| |#1| |#1|))))) (-72)) (T -1022))
+((-3306 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-1022 *3)))))
+((-3796 ((|#1| $ |#1| |#1|) 6 T ELT)))
+(((-1023 |#1|) (-113) (-72)) (T -1023))
+NIL
+(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|) (|:| |y| |t#1|) (|:| |z| |t#1|)) (-3054 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))))))
+(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1128) . T))
+((** (($ $ (-831)) 10 T ELT)))
+(((-1024 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-831)))) (-1025)) (T -1024))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (** (($ $ (-831)) 17 T ELT)) (* (($ $ $) 18 T ELT)))
+(((-1025) (-113)) (T -1025))
+((* (*1 *1 *1 *1) (-4 *1 (-1025))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-831)))))
+(-13 (-1013) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-831)))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-3185 (((-85) $) NIL (|has| |#3| (-23)) ELT)) (-3703 (($ (-831)) NIL (|has| |#3| (-962)) ELT)) (-2196 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-2481 (($ $ $) NIL (|has| |#3| (-718)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL (|has| |#3| (-104)) ELT)) (-3133 (((-695)) NIL (|has| |#3| (-317)) ELT)) (-3784 ((|#3| $ (-484) |#3|) NIL (|has| $ (-6 -3992)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 (-484) #1#) $) NIL (-12 (|has| |#3| (-951 (-484))) (|has| |#3| (-1013))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (-12 (|has| |#3| (-951 (-347 (-484)))) (|has| |#3| (-1013))) ELT) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1013)) ELT)) (-3153 (((-484) $) NIL (-12 (|has| |#3| (-951 (-484))) (|has| |#3| (-1013))) ELT) (((-347 (-484)) $) NIL (-12 (|has| |#3| (-951 (-347 (-484)))) (|has| |#3| (-1013))) ELT) ((|#3| $) NIL (|has| |#3| (-1013)) ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL (-12 (|has| |#3| (-581 (-484))) (|has| |#3| (-962))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (-12 (|has| |#3| (-581 (-484))) (|has| |#3| (-962))) ELT) (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1178 |#3|))) (-631 $) (-1178 $)) NIL (|has| |#3| (-962)) ELT) (((-631 |#3|) (-631 $)) NIL (|has| |#3| (-962)) ELT)) (-3463 (((-3 $ #1#) $) NIL (|has| |#3| (-962)) ELT)) (-2992 (($) NIL (|has| |#3| (-317)) ELT)) (-1574 ((|#3| $ (-484) |#3|) NIL (|has| $ (-6 -3992)) ELT)) (-3110 ((|#3| $ (-484)) 12 T ELT)) (-3183 (((-85) $) NIL (|has| |#3| (-718)) ELT)) (-2887 (((-584 |#3|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2408 (((-85) $) NIL (|has| |#3| (-962)) ELT)) (-2198 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2529 (($ $ $) NIL (|has| |#3| (-757)) ELT)) (-2606 (((-584 |#3|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#3| (-1013))) ELT)) (-2199 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2855 (($ $ $) NIL (|has| |#3| (-757)) ELT)) (-1947 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2008 (((-831) $) NIL (|has| |#3| (-317)) ELT)) (-2278 (((-631 (-484)) (-1178 $)) NIL (-12 (|has| |#3| (-581 (-484))) (|has| |#3| (-962))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| |#3| (-581 (-484))) (|has| |#3| (-962))) ELT) (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1178 |#3|))) (-1178 $) $) NIL (|has| |#3| (-962)) ELT) (((-631 |#3|) (-1178 $)) NIL (|has| |#3| (-962)) ELT)) (-3239 (((-1072) $) NIL (|has| |#3| (-1013)) ELT)) (-2201 (((-584 (-484)) $) NIL T ELT)) (-2202 (((-85) (-484) $) NIL T ELT)) (-2398 (($ (-831)) NIL (|has| |#3| (-317)) ELT)) (-3240 (((-1033) $) NIL (|has| |#3| (-1013)) ELT)) (-3797 ((|#3| $) NIL (|has| (-484) (-757)) ELT)) (-2197 (($ $ |#3|) NIL (|has| $ (-6 -3992)) ELT)) (-1945 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#3|))) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-248 |#3|)) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-584 |#3|) (-584 |#3|)) NIL (-12 (|has| |#3| (-259 |#3|)) (|has| |#3| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2200 (((-85) |#3| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#3| (-1013))) ELT)) (-2203 (((-584 |#3|) $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) NIL T ELT)) (-3796 ((|#3| $ (-484) |#3|) NIL T ELT) ((|#3| $ (-484)) NIL T ELT)) (-3832 ((|#3| $ $) NIL (|has| |#3| (-962)) ELT)) (-1466 (($ (-1178 |#3|)) NIL T ELT)) (-3907 (((-107)) NIL (|has| |#3| (-311)) ELT)) (-3754 (($ $ (-695)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-962))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-962))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-962)) ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL (|has| |#3| (-962)) ELT)) (-1944 (((-695) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#3| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#3| (-1013))) ELT)) (-3396 (($ $) NIL T ELT)) (-3942 (((-1178 |#3|) $) NIL T ELT) (($ (-484)) NIL (OR (-12 (|has| |#3| (-951 (-484))) (|has| |#3| (-1013))) (|has| |#3| (-962))) ELT) (($ (-347 (-484))) NIL (-12 (|has| |#3| (-951 (-347 (-484)))) (|has| |#3| (-1013))) ELT) (($ |#3|) NIL (|has| |#3| (-1013)) ELT) (((-773) $) NIL (|has| |#3| (-553 (-773))) ELT)) (-3123 (((-695)) NIL (|has| |#3| (-962)) CONST)) (-1263 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#3|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2658 (($) NIL (|has| |#3| (-23)) CONST)) (-2664 (($) NIL (|has| |#3| (-962)) CONST)) (-2667 (($ $ (-695)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-962))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-962))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962))) ELT) (($ $ (-1089)) NIL (-12 (|has| |#3| (-812 (-1089))) (|has| |#3| (-962))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-962)) ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL (|has| |#3| (-962)) ELT)) (-2564 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-3054 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-2682 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-2683 (((-85) $ $) 24 (|has| |#3| (-757)) ELT)) (-3945 (($ $ |#3|) NIL (|has| |#3| (-311)) ELT)) (-3833 (($ $ $) NIL (|has| |#3| (-21)) ELT) (($ $) NIL (|has| |#3| (-21)) ELT)) (-3835 (($ $ $) NIL (|has| |#3| (-25)) ELT)) (** (($ $ (-695)) NIL (|has| |#3| (-962)) ELT) (($ $ (-831)) NIL (|has| |#3| (-962)) ELT)) (* (($ $ $) NIL (|has| |#3| (-962)) ELT) (($ $ |#3|) NIL (|has| |#3| (-664)) ELT) (($ |#3| $) NIL (|has| |#3| (-664)) ELT) (($ (-484) $) NIL (|has| |#3| (-21)) ELT) (($ (-695) $) NIL (|has| |#3| (-23)) ELT) (($ (-831) $) NIL (|has| |#3| (-25)) ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-1026 |#1| |#2| |#3|) (-196 |#1| |#3|) (-695) (-695) (-718)) (T -1026))
+NIL
+((-3307 (((-584 (-1147 |#2| |#1|)) (-1147 |#2| |#1|) (-1147 |#2| |#1|)) 50 T ELT)) (-3313 (((-484) (-1147 |#2| |#1|)) 95 (|has| |#1| (-389)) ELT)) (-3311 (((-484) (-1147 |#2| |#1|)) 79 T ELT)) (-3308 (((-584 (-1147 |#2| |#1|)) (-1147 |#2| |#1|) (-1147 |#2| |#1|)) 58 T ELT)) (-3312 (((-484) (-1147 |#2| |#1|) (-1147 |#2| |#1|)) 81 (|has| |#1| (-389)) ELT)) (-3309 (((-584 |#1|) (-1147 |#2| |#1|) (-1147 |#2| |#1|)) 61 T ELT)) (-3310 (((-484) (-1147 |#2| |#1|) (-1147 |#2| |#1|)) 78 T ELT)))
+(((-1027 |#1| |#2|) (-10 -7 (-15 -3307 ((-584 (-1147 |#2| |#1|)) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -3308 ((-584 (-1147 |#2| |#1|)) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -3309 ((-584 |#1|) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -3310 ((-484) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -3311 ((-484) (-1147 |#2| |#1|))) (IF (|has| |#1| (-389)) (PROGN (-15 -3312 ((-484) (-1147 |#2| |#1|) (-1147 |#2| |#1|))) (-15 -3313 ((-484) (-1147 |#2| |#1|)))) |%noBranch|)) (-741) (-1089)) (T -1027))
+((-3313 (*1 *2 *3) (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-389)) (-4 *4 (-741)) (-14 *5 (-1089)) (-5 *2 (-484)) (-5 *1 (-1027 *4 *5)))) (-3312 (*1 *2 *3 *3) (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-389)) (-4 *4 (-741)) (-14 *5 (-1089)) (-5 *2 (-484)) (-5 *1 (-1027 *4 *5)))) (-3311 (*1 *2 *3) (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1089)) (-5 *2 (-484)) (-5 *1 (-1027 *4 *5)))) (-3310 (*1 *2 *3 *3) (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1089)) (-5 *2 (-484)) (-5 *1 (-1027 *4 *5)))) (-3309 (*1 *2 *3 *3) (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1089)) (-5 *2 (-584 *4)) (-5 *1 (-1027 *4 *5)))) (-3308 (*1 *2 *3 *3) (-12 (-4 *4 (-741)) (-14 *5 (-1089)) (-5 *2 (-584 (-1147 *5 *4))) (-5 *1 (-1027 *4 *5)) (-5 *3 (-1147 *5 *4)))) (-3307 (*1 *2 *3 *3) (-12 (-4 *4 (-741)) (-14 *5 (-1089)) (-5 *2 (-584 (-1147 *5 *4))) (-5 *1 (-1027 *4 *5)) (-5 *3 (-1147 *5 *4)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3315 (((-1094) $) 12 T ELT)) (-3314 (((-584 (-1094)) $) 14 T ELT)) (-3316 (($ (-584 (-1094)) (-1094)) 10 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 29 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 17 T ELT)))
+(((-1028) (-13 (-1013) (-10 -8 (-15 -3316 ($ (-584 (-1094)) (-1094))) (-15 -3315 ((-1094) $)) (-15 -3314 ((-584 (-1094)) $))))) (T -1028))
+((-3316 (*1 *1 *2 *3) (-12 (-5 *2 (-584 (-1094))) (-5 *3 (-1094)) (-5 *1 (-1028)))) (-3315 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-1028)))) (-3314 (*1 *2 *1) (-12 (-5 *2 (-584 (-1094))) (-5 *1 (-1028)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3317 (($ (-444) (-1028)) 14 T ELT)) (-3316 (((-1028) $) 20 T ELT)) (-3538 (((-444) $) 17 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 27 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-1029) (-13 (-995) (-10 -8 (-15 -3317 ($ (-444) (-1028))) (-15 -3538 ((-444) $)) (-15 -3316 ((-1028) $))))) (T -1029))
+((-3317 (*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-1028)) (-5 *1 (-1029)))) (-3538 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-1029)))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-1029)))))
+((-3619 (((-3 (-484) #1="failed") |#2| (-1089) |#2| (-1072)) 19 T ELT) (((-3 (-484) #1#) |#2| (-1089) (-751 |#2|)) 17 T ELT) (((-3 (-484) #1#) |#2|) 60 T ELT)))
+(((-1030 |#1| |#2|) (-10 -7 (-15 -3619 ((-3 (-484) #1="failed") |#2|)) (-15 -3619 ((-3 (-484) #1#) |#2| (-1089) (-751 |#2|))) (-15 -3619 ((-3 (-484) #1#) |#2| (-1089) |#2| (-1072)))) (-13 (-495) (-951 (-484)) (-581 (-484)) (-389)) (-13 (-27) (-1114) (-361 |#1|))) (T -1030))
+((-3619 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-1072)) (-4 *6 (-13 (-495) (-951 *2) (-581 *2) (-389))) (-5 *2 (-484)) (-5 *1 (-1030 *6 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *6))))) (-3619 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-751 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *6))) (-4 *6 (-13 (-495) (-951 *2) (-581 *2) (-389))) (-5 *2 (-484)) (-5 *1 (-1030 *6 *3)))) (-3619 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-495) (-951 *2) (-581 *2) (-389))) (-5 *2 (-484)) (-5 *1 (-1030 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *4))))))
+((-3619 (((-3 (-484) #1="failed") (-347 (-858 |#1|)) (-1089) (-347 (-858 |#1|)) (-1072)) 38 T ELT) (((-3 (-484) #1#) (-347 (-858 |#1|)) (-1089) (-751 (-347 (-858 |#1|)))) 33 T ELT) (((-3 (-484) #1#) (-347 (-858 |#1|))) 14 T ELT)))
+(((-1031 |#1|) (-10 -7 (-15 -3619 ((-3 (-484) #1="failed") (-347 (-858 |#1|)))) (-15 -3619 ((-3 (-484) #1#) (-347 (-858 |#1|)) (-1089) (-751 (-347 (-858 |#1|))))) (-15 -3619 ((-3 (-484) #1#) (-347 (-858 |#1|)) (-1089) (-347 (-858 |#1|)) (-1072)))) (-389)) (T -1031))
+((-3619 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-347 (-858 *6))) (-5 *4 (-1089)) (-5 *5 (-1072)) (-4 *6 (-389)) (-5 *2 (-484)) (-5 *1 (-1031 *6)))) (-3619 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-751 (-347 (-858 *6)))) (-5 *3 (-347 (-858 *6))) (-4 *6 (-389)) (-5 *2 (-484)) (-5 *1 (-1031 *6)))) (-3619 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-389)) (-5 *2 (-484)) (-5 *1 (-1031 *4)))))
+((-3645 (((-264 (-484)) (-48)) 12 T ELT)))
+(((-1032) (-10 -7 (-15 -3645 ((-264 (-484)) (-48))))) (T -1032))
+((-3645 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-264 (-484))) (-5 *1 (-1032)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-2311 (($ $) 22 T ELT)) (-3185 (((-85) $) 49 T ELT)) (-3318 (($ $ $) 28 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 75 T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-2045 (($ $ $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2040 (($ $ $ $) 59 T ELT)) (-3771 (($ $) NIL T ELT)) (-3967 (((-345 $) $) NIL T ELT)) (-1606 (((-85) $ $) NIL T ELT)) (-3133 (((-695)) 61 T ELT)) (-3619 (((-484) $) NIL T ELT)) (-2439 (($ $ $) 56 T ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 (-484) #1#) $) NIL T ELT)) (-3153 (((-484) $) NIL T ELT)) (-2562 (($ $ $) 42 T ELT)) (-2277 (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 70 T ELT) (((-631 (-484)) (-631 $)) 8 T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-3022 (((-3 (-347 (-484)) #1#) $) NIL T ELT)) (-3021 (((-85) $) NIL T ELT)) (-3020 (((-347 (-484)) $) NIL T ELT)) (-2992 (($) 73 T ELT) (($ $) 72 T ELT)) (-2561 (($ $ $) 41 T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL T ELT)) (-3719 (((-85) $) NIL T ELT)) (-2038 (($ $ $ $) NIL T ELT)) (-2046 (($ $ $) 71 T ELT)) (-3183 (((-85) $) 76 T ELT)) (-1367 (($ $ $) NIL T ELT)) (-2794 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL T ELT)) (-2559 (($ $ $) 27 T ELT)) (-2408 (((-85) $) 50 T ELT)) (-2671 (((-85) $) 47 T ELT)) (-2558 (($ $) 23 T ELT)) (-3441 (((-633 $) $) NIL T ELT)) (-3184 (((-85) $) 60 T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2039 (($ $ $ $) 57 T ELT)) (-2529 (($ $ $) 52 T ELT) (($) 19 T CONST)) (-2855 (($ $ $) 51 T ELT) (($) 18 T CONST)) (-2042 (($ $) NIL T ELT)) (-2008 (((-831) $) 66 T ELT)) (-3829 (($ $) 55 T ELT)) (-2278 (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL T ELT) (((-631 (-484)) (-1178 $)) NIL T ELT)) (-1889 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2037 (($ $ $) NIL T ELT)) (-3442 (($) NIL T CONST)) (-2398 (($ (-831)) 65 T ELT)) (-2044 (($ $) 33 T ELT)) (-3240 (((-1033) $) 54 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL T ELT)) (-3141 (($ $ $) 45 T ELT) (($ (-584 $)) NIL T ELT)) (-1365 (($ $) NIL T ELT)) (-3728 (((-345 $) $) NIL T ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2672 (((-85) $) 48 T ELT)) (-1605 (((-695) $) NIL T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 44 T ELT)) (-3754 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2043 (($ $) 34 T ELT)) (-3396 (($ $) NIL T ELT)) (-3968 (((-484) $) 12 T ELT) (((-473) $) NIL T ELT) (((-801 (-484)) $) NIL T ELT) (((-327) $) NIL T ELT) (((-179) $) NIL T ELT)) (-3942 (((-773) $) 11 T ELT) (($ (-484)) 13 T ELT) (($ $) NIL T ELT) (($ (-484)) 13 T ELT)) (-3123 (((-695)) NIL T CONST)) (-2047 (((-85) $ $) NIL T ELT)) (-3099 (($ $ $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2692 (($) 17 T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-2560 (($ $ $) 26 T ELT)) (-2041 (($ $ $ $) 58 T ELT)) (-3379 (($ $) 46 T ELT)) (-2309 (($ $ $) 25 T ELT)) (-2658 (($) 15 T CONST)) (-2664 (($) 16 T CONST)) (-2667 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2564 (((-85) $ $) 32 T ELT)) (-2565 (((-85) $ $) 30 T ELT)) (-3054 (((-85) $ $) 21 T ELT)) (-2682 (((-85) $ $) 31 T ELT)) (-2683 (((-85) $ $) 29 T ELT)) (-2310 (($ $ $) 24 T ELT)) (-3833 (($ $) 35 T ELT) (($ $ $) 37 T ELT)) (-3835 (($ $ $) 36 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 40 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 14 T ELT) (($ $ $) 38 T ELT) (($ (-484) $) 14 T ELT)))
+(((-1033) (-13 (-483) (-753) (-84) (-10 -8 (-6 -3978) (-6 -3983) (-6 -3979) (-15 -3318 ($ $ $))))) (T -1033))
+((-3318 (*1 *1 *1 *1) (-5 *1 (-1033))))
+((-484) (|%ismall?| |#1|))
+((-2566 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3320 ((|#1| $) 48 T ELT)) (-3720 (($) 7 T CONST)) (-3322 ((|#1| |#1| $) 50 T ELT)) (-3321 ((|#1| $) 49 T ELT)) (-2887 (((-584 |#1|) $) 30 (|has| $ (-6 -3991)) ELT)) (-2606 (((-584 |#1|) $) 29 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3239 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-1272 ((|#1| $) 43 T ELT)) (-3605 (($ |#1| $) 44 T ELT)) (-3240 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 45 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-3319 (((-695) $) 47 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3396 (($ $) 10 T ELT)) (-3942 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1274 (($ (-584 |#1|)) 46 T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-1034 |#1|) (-113) (-1128)) (T -1034))
+((-3322 (*1 *2 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1128)))) (-3321 (*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1128)))) (-3320 (*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1128)))) (-3319 (*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-1128)) (-5 *2 (-695)))))
+(-13 (-76 |t#1|) (-10 -8 (-6 -3991) (-15 -3322 (|t#1| |t#1| $)) (-15 -3321 (|t#1| $)) (-15 -3320 (|t#1| $)) (-15 -3319 ((-695) $))))
+(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
+((-3326 ((|#3| $) 87 T ELT)) (-3154 (((-3 (-484) #1="failed") $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 50 T ELT)) (-3153 (((-484) $) NIL T ELT) (((-347 (-484)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1178 |#3|))) (-631 $) (-1178 $)) 84 T ELT) (((-631 |#3|) (-631 $)) 76 T ELT)) (-3754 (($ $ (-1 |#3| |#3|) (-695)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-584 (-1089))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT)) (-3325 ((|#3| $) 89 T ELT)) (-3327 ((|#4| $) 43 T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 24 T ELT) (($ $ (-484)) 95 T ELT)))
+(((-1035 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3754 (|#1| |#1| (-584 (-1089)) (-584 (-695)))) (-15 -3754 (|#1| |#1| (-1089) (-695))) (-15 -3754 (|#1| |#1| (-584 (-1089)))) (-15 -3754 (|#1| |#1| (-1089))) (-15 -3754 (|#1| |#1| (-695))) (-15 -3754 (|#1| |#1|)) (-15 ** (|#1| |#1| (-484))) (-15 -3325 (|#3| |#1|)) (-15 -3326 (|#3| |#1|)) (-15 -3327 (|#4| |#1|)) (-15 -2277 ((-631 |#3|) (-631 |#1|))) (-15 -2277 ((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1178 |#3|))) (-631 |#1|) (-1178 |#1|))) (-15 -2277 ((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 |#1|) (-1178 |#1|))) (-15 -2277 ((-631 (-484)) (-631 |#1|))) (-15 -3942 (|#1| |#3|)) (-15 -3154 ((-3 |#3| #1="failed") |#1|)) (-15 -3153 (|#3| |#1|)) (-15 -3153 ((-347 (-484)) |#1|)) (-15 -3154 ((-3 (-347 (-484)) #1#) |#1|)) (-15 -3942 (|#1| (-347 (-484)))) (-15 -3153 ((-484) |#1|)) (-15 -3154 ((-3 (-484) #1#) |#1|)) (-15 -3754 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3754 (|#1| |#1| (-1 |#3| |#3|) (-695))) (-15 -3942 (|#1| (-484))) (-15 ** (|#1| |#1| (-695))) (-15 ** (|#1| |#1| (-831))) (-15 -3942 ((-773) |#1|))) (-1036 |#2| |#3| |#4| |#5|) (-695) (-962) (-196 |#2| |#3|) (-196 |#2| |#3|)) (T -1035))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-3326 ((|#2| $) 88 T ELT)) (-3118 (((-85) $) 129 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3120 (((-85) $) 127 T ELT)) (-3329 (($ |#2|) 91 T ELT)) (-3720 (($) 22 T CONST)) (-3107 (($ $) 146 (|has| |#2| (-257)) ELT)) (-3109 ((|#3| $ (-484)) 141 T ELT)) (-3154 (((-3 (-484) #1="failed") $) 107 (|has| |#2| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) 104 (|has| |#2| (-951 (-347 (-484)))) ELT) (((-3 |#2| #1#) $) 101 T ELT)) (-3153 (((-484) $) 106 (|has| |#2| (-951 (-484))) ELT) (((-347 (-484)) $) 103 (|has| |#2| (-951 (-347 (-484)))) ELT) ((|#2| $) 102 T ELT)) (-2277 (((-631 (-484)) (-631 $)) 97 (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 96 (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) 95 T ELT) (((-631 |#2|) (-631 $)) 94 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-3106 (((-695) $) 147 (|has| |#2| (-495)) ELT)) (-3110 ((|#2| $ (-484) (-484)) 139 T ELT)) (-2887 (((-584 |#2|) $) 115 (|has| $ (-6 -3991)) ELT)) (-2408 (((-85) $) 42 T ELT)) (-3105 (((-695) $) 148 (|has| |#2| (-495)) ELT)) (-3104 (((-584 |#4|) $) 149 (|has| |#2| (-495)) ELT)) (-3112 (((-695) $) 135 T ELT)) (-3111 (((-695) $) 136 T ELT)) (-3323 ((|#2| $) 83 (|has| |#2| (-6 (-3993 #2="*"))) ELT)) (-3116 (((-484) $) 131 T ELT)) (-3114 (((-484) $) 133 T ELT)) (-2606 (((-584 |#2|) $) 114 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#2| $) 112 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3115 (((-484) $) 132 T ELT)) (-3113 (((-484) $) 134 T ELT)) (-3121 (($ (-584 (-584 |#2|))) 126 T ELT)) (-1947 (($ (-1 |#2| |#2|) $) 119 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#2| |#2| |#2|) $ $) 143 T ELT) (($ (-1 |#2| |#2|) $) 120 T ELT)) (-3590 (((-584 (-584 |#2|)) $) 137 T ELT)) (-2278 (((-631 (-484)) (-1178 $)) 99 (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 98 (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) 93 T ELT) (((-631 |#2|) (-1178 $)) 92 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3586 (((-3 $ "failed") $) 82 (|has| |#2| (-311)) ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3462 (((-3 $ "failed") $ |#2|) 144 (|has| |#2| (-495)) ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) 117 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#2|))) 111 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-248 |#2|)) 110 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) 109 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 108 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT)) (-1220 (((-85) $ $) 125 T ELT)) (-3399 (((-85) $) 122 T ELT)) (-3561 (($) 123 T ELT)) (-3796 ((|#2| $ (-484) (-484) |#2|) 140 T ELT) ((|#2| $ (-484) (-484)) 138 T ELT)) (-3754 (($ $ (-1 |#2| |#2|) (-695)) 63 T ELT) (($ $ (-1 |#2| |#2|)) 62 T ELT) (($ $) 53 (|has| |#2| (-189)) ELT) (($ $ (-695)) 51 (|has| |#2| (-189)) ELT) (($ $ (-1089)) 61 (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) 59 (|has| |#2| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) 58 (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 57 (|has| |#2| (-812 (-1089))) ELT)) (-3325 ((|#2| $) 87 T ELT)) (-3328 (($ (-584 |#2|)) 90 T ELT)) (-3119 (((-85) $) 128 T ELT)) (-3327 ((|#3| $) 89 T ELT)) (-3324 ((|#2| $) 84 (|has| |#2| (-6 (-3993 #2#))) ELT)) (-1944 (((-695) (-1 (-85) |#2|) $) 116 (|has| $ (-6 -3991)) ELT) (((-695) |#2| $) 113 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3396 (($ $) 124 T ELT)) (-3108 ((|#4| $ (-484)) 142 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ (-347 (-484))) 105 (|has| |#2| (-951 (-347 (-484)))) ELT) (($ |#2|) 100 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) 118 (|has| $ (-6 -3991)) ELT)) (-3117 (((-85) $) 130 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-2667 (($ $ (-1 |#2| |#2|) (-695)) 65 T ELT) (($ $ (-1 |#2| |#2|)) 64 T ELT) (($ $) 52 (|has| |#2| (-189)) ELT) (($ $ (-695)) 50 (|has| |#2| (-189)) ELT) (($ $ (-1089)) 60 (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) 56 (|has| |#2| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) 55 (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 54 (|has| |#2| (-812 (-1089))) ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3945 (($ $ |#2|) 145 (|has| |#2| (-311)) ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 81 (|has| |#2| (-311)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#2|) 151 T ELT) (($ |#2| $) 150 T ELT) ((|#4| $ |#4|) 86 T ELT) ((|#3| |#3| $) 85 T ELT)) (-3953 (((-695) $) 121 (|has| $ (-6 -3991)) ELT)))
+(((-1036 |#1| |#2| |#3| |#4|) (-113) (-695) (-962) (-196 |t#1| |t#2|) (-196 |t#1| |t#2|)) (T -1036))
+((-3329 (*1 *1 *2) (-12 (-4 *2 (-962)) (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)))) (-3328 (*1 *1 *2) (-12 (-5 *2 (-584 *4)) (-4 *4 (-962)) (-4 *1 (-1036 *3 *4 *5 *6)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)))) (-3327 (*1 *2 *1) (-12 (-4 *1 (-1036 *3 *4 *2 *5)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) (-3326 (*1 *2 *1) (-12 (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (-4 *2 (-962)))) (-3325 (*1 *2 *1) (-12 (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (-4 *2 (-962)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1036 *3 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1036 *3 *4 *2 *5)) (-4 *4 (-962)) (-4 *2 (-196 *3 *4)) (-4 *5 (-196 *3 *4)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (|has| *2 (-6 (-3993 #1="*"))) (-4 *2 (-962)))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (|has| *2 (-6 (-3993 #1#))) (-4 *2 (-962)))) (-3586 (*1 *1 *1) (|partial| -12 (-4 *1 (-1036 *2 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-196 *2 *3)) (-4 *5 (-196 *2 *3)) (-4 *3 (-311)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-1036 *3 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)) (-4 *4 (-311)))))
+(-13 (-184 |t#2|) (-82 |t#2| |t#2|) (-966 |t#1| |t#1| |t#2| |t#3| |t#4|) (-352 |t#2|) (-326 |t#2|) (-10 -8 (IF (|has| |t#2| (-146)) (-6 (-655 |t#2|)) |%noBranch|) (-15 -3329 ($ |t#2|)) (-15 -3328 ($ (-584 |t#2|))) (-15 -3327 (|t#3| $)) (-15 -3326 (|t#2| $)) (-15 -3325 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-3993 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3324 (|t#2| $)) (-15 -3323 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-311)) (PROGN (-15 -3586 ((-3 $ "failed") $)) (-15 ** ($ $ (-484)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-3993 #1="*"))) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-556 (-347 (-484))) |has| |#2| (-951 (-347 (-484)))) ((-556 (-484)) . T) ((-556 |#2|) . T) ((-553 (-773)) . T) ((-186 $) OR (|has| |#2| (-189)) (|has| |#2| (-190))) ((-184 |#2|) . T) ((-190) |has| |#2| (-190)) ((-189) OR (|has| |#2| (-189)) (|has| |#2| (-190))) ((-225 |#2|) . T) ((-259 |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ((-326 |#2|) . T) ((-352 |#2|) . T) ((-426 |#2|) . T) ((-453 |#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ((-13) . T) ((-589 (-484)) . T) ((-589 |#2|) . T) ((-589 $) . T) ((-591 (-484)) |has| |#2| (-581 (-484))) ((-591 |#2|) . T) ((-591 $) . T) ((-583 |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-6 (-3993 #1#)))) ((-581 (-484)) |has| |#2| (-581 (-484))) ((-581 |#2|) . T) ((-655 |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-6 (-3993 #1#)))) ((-664) . T) ((-807 $ (-1089)) OR (|has| |#2| (-812 (-1089))) (|has| |#2| (-810 (-1089)))) ((-810 (-1089)) |has| |#2| (-810 (-1089))) ((-812 (-1089)) OR (|has| |#2| (-812 (-1089))) (|has| |#2| (-810 (-1089)))) ((-966 |#1| |#1| |#2| |#3| |#4|) . T) ((-951 (-347 (-484))) |has| |#2| (-951 (-347 (-484)))) ((-951 (-484)) |has| |#2| (-951 (-484))) ((-951 |#2|) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
+((-3332 ((|#4| |#4|) 81 T ELT)) (-3330 ((|#4| |#4|) 76 T ELT)) (-3334 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2010 (-584 |#3|))) |#4| |#3|) 91 T ELT)) (-3333 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-3331 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT)))
+(((-1037 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3330 (|#4| |#4|)) (-15 -3331 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3332 (|#4| |#4|)) (-15 -3333 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3334 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2010 (-584 |#3|))) |#4| |#3|))) (-257) (-321 |#1|) (-321 |#1|) (-628 |#1| |#2| |#3|)) (T -1037))
+((-3334 (*1 *2 *3 *4) (-12 (-4 *5 (-257)) (-4 *6 (-321 *5)) (-4 *4 (-321 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2010 (-584 *4)))) (-5 *1 (-1037 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))) (-3333 (*1 *2 *3) (-12 (-4 *4 (-257)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1037 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3332 (*1 *2 *2) (-12 (-4 *3 (-257)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-1037 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-3331 (*1 *2 *3) (-12 (-4 *4 (-257)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1037 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3330 (*1 *2 *2) (-12 (-4 *3 (-257)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-1037 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 18 T ELT)) (-3079 (((-584 |#2|) $) 174 T ELT)) (-3081 (((-1084 $) $ |#2|) 60 T ELT) (((-1084 |#1|) $) 49 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 116 (|has| |#1| (-495)) ELT)) (-2061 (($ $) 118 (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) 120 (|has| |#1| (-495)) ELT)) (-2817 (((-695) $) NIL T ELT) (((-695) $ (-584 |#2|)) 214 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3771 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3967 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2702 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#1| #1#) $) 167 T ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3153 ((|#1| $) 165 T ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) ((|#2| $) NIL T ELT)) (-3752 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3955 (($ $) 218 T ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3463 (((-3 $ #1#) $) 90 T ELT)) (-3499 (($ $) NIL (|has| |#1| (-389)) ELT) (($ $ |#2|) NIL (|has| |#1| (-389)) ELT)) (-2816 (((-584 $) $) NIL T ELT)) (-3719 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1622 (($ $ |#1| (-469 |#2|) $) NIL T ELT)) (-2794 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (-12 (|has| |#1| (-797 (-327))) (|has| |#2| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (-12 (|has| |#1| (-797 (-484))) (|has| |#2| (-797 (-484)))) ELT)) (-2408 (((-85) $) 20 T ELT)) (-2418 (((-695) $) 30 T ELT)) (-3082 (($ (-1084 |#1|) |#2|) 54 T ELT) (($ (-1084 $) |#2|) 71 T ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3933 (((-85) $) 38 T ELT)) (-2891 (($ |#1| (-469 |#2|)) 78 T ELT) (($ $ |#2| (-695)) 58 T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-3759 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $ |#2|) NIL T ELT)) (-2818 (((-469 |#2|) $) 205 T ELT) (((-695) $ |#2|) 206 T ELT) (((-584 (-695)) $ (-584 |#2|)) 207 T ELT)) (-1623 (($ (-1 (-469 |#2|) (-469 |#2|)) $) NIL T ELT)) (-3954 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-3080 (((-3 |#2| #1#) $) 177 T ELT)) (-2278 (((-631 (-484)) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-2892 (($ $) 217 T ELT)) (-3171 ((|#1| $) 43 T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2821 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-2 (|:| |var| |#2|) (|:| -2399 (-695))) #1#) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1795 (((-85) $) 39 T ELT)) (-1794 ((|#1| $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 148 (|has| |#1| (-389)) ELT)) (-3141 (($ (-584 $)) 153 (|has| |#1| (-389)) ELT) (($ $ $) 138 (|has| |#1| (-389)) ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#1| (-822)) ELT)) (-3728 (((-345 $) $) NIL (|has| |#1| (-822)) ELT)) (-3462 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-495)) ELT)) (-3764 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-584 |#2|) (-584 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-584 |#2|) (-584 $)) 194 T ELT)) (-3753 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3754 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) 216 T ELT)) (-3944 (((-469 |#2|) $) 201 T ELT) (((-695) $ |#2|) 196 T ELT) (((-584 (-695)) $ (-584 |#2|)) 199 T ELT)) (-3968 (((-801 (-327)) $) NIL (-12 (|has| |#1| (-554 (-801 (-327)))) (|has| |#2| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) NIL (-12 (|has| |#1| (-554 (-801 (-484)))) (|has| |#2| (-554 (-801 (-484))))) ELT) (((-473) $) NIL (-12 (|has| |#1| (-554 (-473))) (|has| |#2| (-554 (-473)))) ELT)) (-2815 ((|#1| $) 134 (|has| |#1| (-389)) ELT) (($ $ |#2|) 137 (|has| |#1| (-389)) ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3942 (((-773) $) 159 T ELT) (($ (-484)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-347 (-484))) NIL (OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ELT)) (-3813 (((-584 |#1|) $) 162 T ELT)) (-3673 ((|#1| $ (-469 |#2|)) 80 T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-2700 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3123 (((-695)) 87 T CONST)) (-1621 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) 123 (|has| |#1| (-495)) ELT)) (-2658 (($) 12 T CONST)) (-2664 (($) 14 T CONST)) (-2667 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3054 (((-85) $ $) 106 T ELT)) (-3945 (($ $ |#1|) 132 (|has| |#1| (-311)) ELT)) (-3833 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-3835 (($ $ $) 55 T ELT)) (** (($ $ (-831)) 110 T ELT) (($ $ (-695)) 109 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT)))
+(((-1038 |#1| |#2|) (-862 |#1| (-469 |#2|) |#2|) (-962) (-757)) (T -1038))
+NIL
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3079 (((-584 |#2|) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2061 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3488 (($ $) 149 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) 125 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3035 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3486 (($ $) 145 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) 121 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3490 (($ $) 153 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) 129 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3720 (($) NIL T CONST)) (-3955 (($ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-3810 (((-858 |#1|) $ (-695)) NIL T ELT) (((-858 |#1|) $ (-695) (-695)) NIL T ELT)) (-2890 (((-85) $) NIL T ELT)) (-3623 (($) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3768 (((-695) $ |#2|) NIL T ELT) (((-695) $ |#2| (-695)) NIL T ELT)) (-2408 (((-85) $) NIL T ELT)) (-3009 (($ $ (-484)) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3933 (((-85) $) NIL T ELT)) (-2891 (($ $ (-584 |#2|) (-584 (-469 |#2|))) NIL T ELT) (($ $ |#2| (-469 |#2|)) NIL T ELT) (($ |#1| (-469 |#2|)) NIL T ELT) (($ $ |#2| (-695)) 63 T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3938 (($ $) 119 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2892 (($ $) NIL T ELT)) (-3171 ((|#1| $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3808 (($ $ |#2|) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ |#2| |#1|) 171 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3672 (($ (-1 $) |#2| |#1|) 170 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3765 (($ $ (-695)) 17 T ELT)) (-3462 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3939 (($ $) 117 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3764 (($ $ |#2| $) 104 T ELT) (($ $ (-584 |#2|) (-584 $)) 99 T ELT) (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT)) (-3754 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) 106 T ELT)) (-3944 (((-469 |#2|) $) NIL T ELT)) (-3335 (((-1 (-1068 |#3|) |#3|) (-584 |#2|) (-584 (-1068 |#3|))) 87 T ELT)) (-3491 (($ $) 155 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) 131 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3489 (($ $) 151 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) 127 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3487 (($ $) 147 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3630 (($ $) 123 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2889 (($ $) 19 T ELT)) (-3942 (((-773) $) 194 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-3673 ((|#1| $ (-469 |#2|)) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) ((|#3| $ (-695)) 43 T ELT)) (-2700 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3123 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3494 (($ $) 161 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) 137 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2060 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3492 (($ $) 157 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3480 (($ $) 133 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) 165 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) 141 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3497 (($ $) 167 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) 143 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3495 (($ $) 163 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) 139 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3493 (($ $) 159 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) 135 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2658 (($) 52 T CONST)) (-2664 (($) 62 T CONST)) (-2667 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ |#1|) 196 (|has| |#1| (-311)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) 66 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 109 (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-347 (-484))) 114 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) 112 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT)))
+(((-1039 |#1| |#2| |#3|) (-13 (-680 |#1| |#2|) (-10 -8 (-15 -3673 (|#3| $ (-695))) (-15 -3942 ($ |#2|)) (-15 -3942 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3335 ((-1 (-1068 |#3|) |#3|) (-584 |#2|) (-584 (-1068 |#3|)))) (IF (|has| |#1| (-38 (-347 (-484)))) (PROGN (-15 -3808 ($ $ |#2| |#1|)) (-15 -3672 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-962) (-757) (-862 |#1| (-469 |#2|) |#2|)) (T -1039))
+((-3673 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *2 (-862 *4 (-469 *5) *5)) (-5 *1 (-1039 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-757)))) (-3942 (*1 *1 *2) (-12 (-4 *3 (-962)) (-4 *2 (-757)) (-5 *1 (-1039 *3 *2 *4)) (-4 *4 (-862 *3 (-469 *2) *2)))) (-3942 (*1 *1 *2) (-12 (-4 *3 (-962)) (-4 *4 (-757)) (-5 *1 (-1039 *3 *4 *2)) (-4 *2 (-862 *3 (-469 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-757)) (-5 *1 (-1039 *3 *4 *2)) (-4 *2 (-862 *3 (-469 *4) *4)))) (-3335 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-1068 *7))) (-4 *6 (-757)) (-4 *7 (-862 *5 (-469 *6) *6)) (-4 *5 (-962)) (-5 *2 (-1 (-1068 *7) *7)) (-5 *1 (-1039 *5 *6 *7)))) (-3808 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) (-4 *2 (-757)) (-5 *1 (-1039 *3 *2 *4)) (-4 *4 (-862 *3 (-469 *2) *2)))) (-3672 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1039 *4 *3 *5))) (-4 *4 (-38 (-347 (-484)))) (-4 *4 (-962)) (-4 *3 (-757)) (-5 *1 (-1039 *4 *3 *5)) (-4 *5 (-862 *4 (-469 *3) *3)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3677 (((-584 (-2 (|:| -3857 $) (|:| -1700 (-584 |#4|)))) (-584 |#4|)) 90 T ELT)) (-3678 (((-584 $) (-584 |#4|)) 91 T ELT) (((-584 $) (-584 |#4|) (-85)) 118 T ELT)) (-3079 (((-584 |#3|) $) 37 T ELT)) (-2906 (((-85) $) 30 T ELT)) (-2897 (((-85) $) 21 (|has| |#1| (-495)) ELT)) (-3689 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3684 ((|#4| |#4| $) 97 T ELT)) (-3771 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| $) 133 T ELT)) (-2907 (((-2 (|:| |under| $) (|:| -3127 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3706 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3991)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3720 (($) 46 T CONST)) (-2902 (((-85) $) 26 (|has| |#1| (-495)) ELT)) (-2904 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2903 (((-85) $ $) 27 (|has| |#1| (-495)) ELT)) (-2905 (((-85) $) 29 (|has| |#1| (-495)) ELT)) (-3685 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2898 (((-584 |#4|) (-584 |#4|) $) 22 (|has| |#1| (-495)) ELT)) (-2899 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-3154 (((-3 $ "failed") (-584 |#4|)) 40 T ELT)) (-3153 (($ (-584 |#4|)) 39 T ELT)) (-3795 (((-3 $ #1#) $) 87 T ELT)) (-3681 ((|#4| |#4| $) 94 T ELT)) (-1351 (($ $) 69 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3402 (($ |#4| $) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3991))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3991)) ELT)) (-2900 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-495)) ELT)) (-3690 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3679 ((|#4| |#4| $) 92 T ELT)) (-3838 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3991))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3991)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3991)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3692 (((-2 (|:| -3857 (-584 |#4|)) (|:| -1700 (-584 |#4|))) $) 110 T ELT)) (-3194 (((-85) |#4| $) 143 T ELT)) (-3192 (((-85) |#4| $) 140 T ELT)) (-3195 (((-85) |#4| $) 144 T ELT) (((-85) $) 141 T ELT)) (-2887 (((-584 |#4|) $) 53 (|has| $ (-6 -3991)) ELT)) (-3691 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3177 ((|#3| $) 38 T ELT)) (-2606 (((-584 |#4|) $) 54 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3991))) ELT)) (-1947 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2912 (((-584 |#3|) $) 36 T ELT)) (-2911 (((-85) |#3| $) 35 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3188 (((-3 |#4| (-584 $)) |#4| |#4| $) 135 T ELT)) (-3187 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| |#4| $) 134 T ELT)) (-3794 (((-3 |#4| #1#) $) 88 T ELT)) (-3189 (((-584 $) |#4| $) 136 T ELT)) (-3191 (((-3 (-85) (-584 $)) |#4| $) 139 T ELT)) (-3190 (((-584 (-2 (|:| |val| (-85)) (|:| -1598 $))) |#4| $) 138 T ELT) (((-85) |#4| $) 137 T ELT)) (-3235 (((-584 $) |#4| $) 132 T ELT) (((-584 $) (-584 |#4|) $) 131 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 130 T ELT) (((-584 $) |#4| (-584 $)) 129 T ELT)) (-3436 (($ |#4| $) 124 T ELT) (($ (-584 |#4|) $) 123 T ELT)) (-3693 (((-584 |#4|) $) 112 T ELT)) (-3687 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3682 ((|#4| |#4| $) 95 T ELT)) (-3695 (((-85) $ $) 115 T ELT)) (-2901 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3688 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3683 ((|#4| |#4| $) 96 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3797 (((-3 |#4| #1#) $) 89 T ELT)) (-1352 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3675 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3765 (($ $ |#4|) 82 T ELT) (((-584 $) |#4| $) 122 T ELT) (((-584 $) |#4| (-584 $)) 121 T ELT) (((-584 $) (-584 |#4|) $) 120 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 119 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 |#4|) (-584 |#4|)) 60 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-248 |#4|)) 58 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-584 (-248 |#4|))) 57 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT)) (-1220 (((-85) $ $) 42 T ELT)) (-3399 (((-85) $) 45 T ELT)) (-3561 (($) 44 T ELT)) (-3944 (((-695) $) 111 T ELT)) (-1944 (((-695) |#4| $) 55 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3991))) ELT) (((-695) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3991)) ELT)) (-3396 (($ $) 43 T ELT)) (-3968 (((-473) $) 70 (|has| |#4| (-554 (-473))) ELT)) (-3526 (($ (-584 |#4|)) 61 T ELT)) (-2908 (($ $ |#3|) 32 T ELT)) (-2910 (($ $ |#3|) 34 T ELT)) (-3680 (($ $) 93 T ELT)) (-2909 (($ $ |#3|) 33 T ELT)) (-3942 (((-773) $) 13 T ELT) (((-584 |#4|) $) 41 T ELT)) (-3674 (((-695) $) 81 (|has| |#3| (-317)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3694 (((-3 (-2 (|:| |bas| $) (|:| -3320 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3320 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3686 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) 103 T ELT)) (-3186 (((-584 $) |#4| $) 128 T ELT) (((-584 $) |#4| (-584 $)) 127 T ELT) (((-584 $) (-584 |#4|) $) 126 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 125 T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3991)) ELT)) (-3676 (((-584 |#3|) $) 86 T ELT)) (-3193 (((-85) |#4| $) 142 T ELT)) (-3929 (((-85) |#3| $) 85 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3953 (((-695) $) 47 (|has| $ (-6 -3991)) ELT)))
+(((-1040 |#1| |#2| |#3| |#4|) (-113) (-389) (-718) (-757) (-977 |t#1| |t#2| |t#3|)) (T -1040))
+NIL
+(-13 (-1020 |t#1| |t#2| |t#3| |t#4|) (-708 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-473)) |has| |#4| (-554 (-473))) ((-259 |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ((-426 |#4|) . T) ((-453 |#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-708 |#1| |#2| |#3| |#4|) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-983 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1020 |#1| |#2| |#3| |#4|) . T) ((-1123 |#1| |#2| |#3| |#4|) . T) ((-1128) . T))
+((-3569 (((-584 |#2|) |#1|) 15 T ELT)) (-3341 (((-584 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-584 |#2|) |#1|) 61 T ELT)) (-3339 (((-584 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-584 |#2|) |#1|) 59 T ELT)) (-3336 ((|#2| |#1|) 54 T ELT)) (-3337 (((-2 (|:| |solns| (-584 |#2|)) (|:| |maps| (-584 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-3338 (((-584 |#2|) |#2| |#2|) 42 T ELT) (((-584 |#2|) |#1|) 58 T ELT)) (-3340 (((-584 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-584 |#2|) |#1|) 60 T ELT)) (-3345 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-3343 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-3342 ((|#2| |#2| |#2|) 50 T ELT)) (-3344 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT)))
+(((-1041 |#1| |#2|) (-10 -7 (-15 -3569 ((-584 |#2|) |#1|)) (-15 -3336 (|#2| |#1|)) (-15 -3337 ((-2 (|:| |solns| (-584 |#2|)) (|:| |maps| (-584 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3338 ((-584 |#2|) |#1|)) (-15 -3339 ((-584 |#2|) |#1|)) (-15 -3340 ((-584 |#2|) |#1|)) (-15 -3341 ((-584 |#2|) |#1|)) (-15 -3338 ((-584 |#2|) |#2| |#2|)) (-15 -3339 ((-584 |#2|) |#2| |#2| |#2|)) (-15 -3340 ((-584 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3341 ((-584 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3342 (|#2| |#2| |#2|)) (-15 -3343 (|#2| |#2| |#2| |#2|)) (-15 -3344 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3345 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1154 |#2|) (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) (T -1041))
+((-3345 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2)))) (-3344 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2)))) (-3343 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2)))) (-3342 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2)))) (-3341 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) (-5 *2 (-584 *3)) (-5 *1 (-1041 *4 *3)) (-4 *4 (-1154 *3)))) (-3340 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) (-5 *2 (-584 *3)) (-5 *1 (-1041 *4 *3)) (-4 *4 (-1154 *3)))) (-3339 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) (-5 *2 (-584 *3)) (-5 *1 (-1041 *4 *3)) (-4 *4 (-1154 *3)))) (-3338 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) (-5 *2 (-584 *3)) (-5 *1 (-1041 *4 *3)) (-4 *4 (-1154 *3)))) (-3341 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) (-5 *2 (-584 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4)))) (-3340 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) (-5 *2 (-584 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4)))) (-3339 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) (-5 *2 (-584 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4)))) (-3338 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) (-5 *2 (-584 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4)))) (-3337 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) (-5 *2 (-2 (|:| |solns| (-584 *5)) (|:| |maps| (-584 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1041 *3 *5)) (-4 *3 (-1154 *5)))) (-3336 (*1 *2 *3) (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2)))) (-3569 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484))))))) (-5 *2 (-584 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4)))))
+((-3346 (((-584 (-584 (-248 (-264 |#1|)))) (-584 (-248 (-347 (-858 |#1|))))) 119 T ELT) (((-584 (-584 (-248 (-264 |#1|)))) (-584 (-248 (-347 (-858 |#1|)))) (-584 (-1089))) 118 T ELT) (((-584 (-584 (-248 (-264 |#1|)))) (-584 (-347 (-858 |#1|)))) 116 T ELT) (((-584 (-584 (-248 (-264 |#1|)))) (-584 (-347 (-858 |#1|))) (-584 (-1089))) 113 T ELT) (((-584 (-248 (-264 |#1|))) (-248 (-347 (-858 |#1|)))) 97 T ELT) (((-584 (-248 (-264 |#1|))) (-248 (-347 (-858 |#1|))) (-1089)) 98 T ELT) (((-584 (-248 (-264 |#1|))) (-347 (-858 |#1|))) 92 T ELT) (((-584 (-248 (-264 |#1|))) (-347 (-858 |#1|)) (-1089)) 82 T ELT)) (-3347 (((-584 (-584 (-264 |#1|))) (-584 (-347 (-858 |#1|))) (-584 (-1089))) 111 T ELT) (((-584 (-264 |#1|)) (-347 (-858 |#1|)) (-1089)) 54 T ELT)) (-3348 (((-1079 (-584 (-264 |#1|)) (-584 (-248 (-264 |#1|)))) (-347 (-858 |#1|)) (-1089)) 123 T ELT) (((-1079 (-584 (-264 |#1|)) (-584 (-248 (-264 |#1|)))) (-248 (-347 (-858 |#1|))) (-1089)) 122 T ELT)))
+(((-1042 |#1|) (-10 -7 (-15 -3346 ((-584 (-248 (-264 |#1|))) (-347 (-858 |#1|)) (-1089))) (-15 -3346 ((-584 (-248 (-264 |#1|))) (-347 (-858 |#1|)))) (-15 -3346 ((-584 (-248 (-264 |#1|))) (-248 (-347 (-858 |#1|))) (-1089))) (-15 -3346 ((-584 (-248 (-264 |#1|))) (-248 (-347 (-858 |#1|))))) (-15 -3346 ((-584 (-584 (-248 (-264 |#1|)))) (-584 (-347 (-858 |#1|))) (-584 (-1089)))) (-15 -3346 ((-584 (-584 (-248 (-264 |#1|)))) (-584 (-347 (-858 |#1|))))) (-15 -3346 ((-584 (-584 (-248 (-264 |#1|)))) (-584 (-248 (-347 (-858 |#1|)))) (-584 (-1089)))) (-15 -3346 ((-584 (-584 (-248 (-264 |#1|)))) (-584 (-248 (-347 (-858 |#1|)))))) (-15 -3347 ((-584 (-264 |#1|)) (-347 (-858 |#1|)) (-1089))) (-15 -3347 ((-584 (-584 (-264 |#1|))) (-584 (-347 (-858 |#1|))) (-584 (-1089)))) (-15 -3348 ((-1079 (-584 (-264 |#1|)) (-584 (-248 (-264 |#1|)))) (-248 (-347 (-858 |#1|))) (-1089))) (-15 -3348 ((-1079 (-584 (-264 |#1|)) (-584 (-248 (-264 |#1|)))) (-347 (-858 |#1|)) (-1089)))) (-13 (-257) (-120))) (T -1042))
+((-3348 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-1079 (-584 (-264 *5)) (-584 (-248 (-264 *5))))) (-5 *1 (-1042 *5)))) (-3348 (*1 *2 *3 *4) (-12 (-5 *3 (-248 (-347 (-858 *5)))) (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-1079 (-584 (-264 *5)) (-584 (-248 (-264 *5))))) (-5 *1 (-1042 *5)))) (-3347 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-347 (-858 *5)))) (-5 *4 (-584 (-1089))) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-584 (-584 (-264 *5)))) (-5 *1 (-1042 *5)))) (-3347 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-584 (-264 *5))) (-5 *1 (-1042 *5)))) (-3346 (*1 *2 *3) (-12 (-5 *3 (-584 (-248 (-347 (-858 *4))))) (-4 *4 (-13 (-257) (-120))) (-5 *2 (-584 (-584 (-248 (-264 *4))))) (-5 *1 (-1042 *4)))) (-3346 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-248 (-347 (-858 *5))))) (-5 *4 (-584 (-1089))) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-584 (-584 (-248 (-264 *5))))) (-5 *1 (-1042 *5)))) (-3346 (*1 *2 *3) (-12 (-5 *3 (-584 (-347 (-858 *4)))) (-4 *4 (-13 (-257) (-120))) (-5 *2 (-584 (-584 (-248 (-264 *4))))) (-5 *1 (-1042 *4)))) (-3346 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-347 (-858 *5)))) (-5 *4 (-584 (-1089))) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-584 (-584 (-248 (-264 *5))))) (-5 *1 (-1042 *5)))) (-3346 (*1 *2 *3) (-12 (-5 *3 (-248 (-347 (-858 *4)))) (-4 *4 (-13 (-257) (-120))) (-5 *2 (-584 (-248 (-264 *4)))) (-5 *1 (-1042 *4)))) (-3346 (*1 *2 *3 *4) (-12 (-5 *3 (-248 (-347 (-858 *5)))) (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-584 (-248 (-264 *5)))) (-5 *1 (-1042 *5)))) (-3346 (*1 *2 *3) (-12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-13 (-257) (-120))) (-5 *2 (-584 (-248 (-264 *4)))) (-5 *1 (-1042 *4)))) (-3346 (*1 *2 *3 *4) (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-120))) (-5 *2 (-584 (-248 (-264 *5)))) (-5 *1 (-1042 *5)))))
+((-3350 (((-347 (-1084 (-264 |#1|))) (-1178 (-264 |#1|)) (-347 (-1084 (-264 |#1|))) (-484)) 36 T ELT)) (-3349 (((-347 (-1084 (-264 |#1|))) (-347 (-1084 (-264 |#1|))) (-347 (-1084 (-264 |#1|))) (-347 (-1084 (-264 |#1|)))) 48 T ELT)))
+(((-1043 |#1|) (-10 -7 (-15 -3349 ((-347 (-1084 (-264 |#1|))) (-347 (-1084 (-264 |#1|))) (-347 (-1084 (-264 |#1|))) (-347 (-1084 (-264 |#1|))))) (-15 -3350 ((-347 (-1084 (-264 |#1|))) (-1178 (-264 |#1|)) (-347 (-1084 (-264 |#1|))) (-484)))) (-495)) (T -1043))
+((-3350 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-347 (-1084 (-264 *5)))) (-5 *3 (-1178 (-264 *5))) (-5 *4 (-484)) (-4 *5 (-495)) (-5 *1 (-1043 *5)))) (-3349 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-347 (-1084 (-264 *3)))) (-4 *3 (-495)) (-5 *1 (-1043 *3)))))
+((-3569 (((-584 (-584 (-248 (-264 |#1|)))) (-584 (-248 (-264 |#1|))) (-584 (-1089))) 244 T ELT) (((-584 (-248 (-264 |#1|))) (-264 |#1|) (-1089)) 23 T ELT) (((-584 (-248 (-264 |#1|))) (-248 (-264 |#1|)) (-1089)) 29 T ELT) (((-584 (-248 (-264 |#1|))) (-248 (-264 |#1|))) 28 T ELT) (((-584 (-248 (-264 |#1|))) (-264 |#1|)) 24 T ELT)))
+(((-1044 |#1|) (-10 -7 (-15 -3569 ((-584 (-248 (-264 |#1|))) (-264 |#1|))) (-15 -3569 ((-584 (-248 (-264 |#1|))) (-248 (-264 |#1|)))) (-15 -3569 ((-584 (-248 (-264 |#1|))) (-248 (-264 |#1|)) (-1089))) (-15 -3569 ((-584 (-248 (-264 |#1|))) (-264 |#1|) (-1089))) (-15 -3569 ((-584 (-584 (-248 (-264 |#1|)))) (-584 (-248 (-264 |#1|))) (-584 (-1089))))) (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (T -1044))
+((-3569 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-1089))) (-4 *5 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *2 (-584 (-584 (-248 (-264 *5))))) (-5 *1 (-1044 *5)) (-5 *3 (-584 (-248 (-264 *5)))))) (-3569 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *2 (-584 (-248 (-264 *5)))) (-5 *1 (-1044 *5)) (-5 *3 (-264 *5)))) (-3569 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *2 (-584 (-248 (-264 *5)))) (-5 *1 (-1044 *5)) (-5 *3 (-248 (-264 *5))))) (-3569 (*1 *2 *3) (-12 (-4 *4 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *2 (-584 (-248 (-264 *4)))) (-5 *1 (-1044 *4)) (-5 *3 (-248 (-264 *4))))) (-3569 (*1 *2 *3) (-12 (-4 *4 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *2 (-584 (-248 (-264 *4)))) (-5 *1 (-1044 *4)) (-5 *3 (-264 *4)))))
+((-3352 ((|#2| |#2|) 28 (|has| |#1| (-757)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 25 T ELT)) (-3351 ((|#2| |#2|) 27 (|has| |#1| (-757)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 22 T ELT)))
+(((-1045 |#1| |#2|) (-10 -7 (-15 -3351 (|#2| |#2| (-1 (-85) |#1| |#1|))) (-15 -3352 (|#2| |#2| (-1 (-85) |#1| |#1|))) (IF (|has| |#1| (-757)) (PROGN (-15 -3351 (|#2| |#2|)) (-15 -3352 (|#2| |#2|))) |%noBranch|)) (-1128) (-13 (-539 (-484) |#1|) (-10 -7 (-6 -3991) (-6 -3992)))) (T -1045))
+((-3352 (*1 *2 *2) (-12 (-4 *3 (-757)) (-4 *3 (-1128)) (-5 *1 (-1045 *3 *2)) (-4 *2 (-13 (-539 (-484) *3) (-10 -7 (-6 -3991) (-6 -3992)))))) (-3351 (*1 *2 *2) (-12 (-4 *3 (-757)) (-4 *3 (-1128)) (-5 *1 (-1045 *3 *2)) (-4 *2 (-13 (-539 (-484) *3) (-10 -7 (-6 -3991) (-6 -3992)))))) (-3352 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-1045 *4 *2)) (-4 *2 (-13 (-539 (-484) *4) (-10 -7 (-6 -3991) (-6 -3992)))))) (-3351 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-1045 *4 *2)) (-4 *2 (-13 (-539 (-484) *4) (-10 -7 (-6 -3991) (-6 -3992)))))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3884 (((-1078 3 |#1|) $) 141 T ELT)) (-3362 (((-85) $) 101 T ELT)) (-3363 (($ $ (-584 (-855 |#1|))) 44 T ELT) (($ $ (-584 (-584 |#1|))) 104 T ELT) (($ (-584 (-855 |#1|))) 103 T ELT) (((-584 (-855 |#1|)) $) 102 T ELT)) (-3368 (((-85) $) 72 T ELT)) (-3702 (($ $ (-855 |#1|)) 76 T ELT) (($ $ (-584 |#1|)) 81 T ELT) (($ $ (-695)) 83 T ELT) (($ (-855 |#1|)) 77 T ELT) (((-855 |#1|) $) 75 T ELT)) (-3354 (((-2 (|:| -3846 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695)) (|:| |constructs| (-695))) $) 139 T ELT)) (-3372 (((-695) $) 53 T ELT)) (-3373 (((-695) $) 52 T ELT)) (-3883 (($ $ (-695) (-855 |#1|)) 67 T ELT)) (-3360 (((-85) $) 111 T ELT)) (-3361 (($ $ (-584 (-584 (-855 |#1|))) (-584 (-145)) (-145)) 118 T ELT) (($ $ (-584 (-584 (-584 |#1|))) (-584 (-145)) (-145)) 120 T ELT) (($ $ (-584 (-584 (-855 |#1|))) (-85) (-85)) 115 T ELT) (($ $ (-584 (-584 (-584 |#1|))) (-85) (-85)) 127 T ELT) (($ (-584 (-584 (-855 |#1|)))) 116 T ELT) (($ (-584 (-584 (-855 |#1|))) (-85) (-85)) 117 T ELT) (((-584 (-584 (-855 |#1|))) $) 114 T ELT)) (-3514 (($ (-584 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-3355 (((-584 (-145)) $) 133 T ELT)) (-3359 (((-584 (-855 |#1|)) $) 130 T ELT)) (-3356 (((-584 (-584 (-145))) $) 132 T ELT)) (-3357 (((-584 (-584 (-584 (-855 |#1|)))) $) NIL T ELT)) (-3358 (((-584 (-584 (-584 (-695)))) $) 131 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3369 (((-695) $ (-584 (-855 |#1|))) 65 T ELT)) (-3366 (((-85) $) 84 T ELT)) (-3367 (($ $ (-584 (-855 |#1|))) 86 T ELT) (($ $ (-584 (-584 |#1|))) 92 T ELT) (($ (-584 (-855 |#1|))) 87 T ELT) (((-584 (-855 |#1|)) $) 85 T ELT)) (-3374 (($) 48 T ELT) (($ (-1078 3 |#1|)) 49 T ELT)) (-3396 (($ $) 63 T ELT)) (-3370 (((-584 $) $) 62 T ELT)) (-3750 (($ (-584 $)) 59 T ELT)) (-3371 (((-584 $) $) 61 T ELT)) (-3942 (((-773) $) 146 T ELT)) (-3364 (((-85) $) 94 T ELT)) (-3365 (($ $ (-584 (-855 |#1|))) 96 T ELT) (($ $ (-584 (-584 |#1|))) 99 T ELT) (($ (-584 (-855 |#1|))) 97 T ELT) (((-584 (-855 |#1|)) $) 95 T ELT)) (-3353 (($ $) 140 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-1046 |#1|) (-1047 |#1|) (-962)) (T -1046))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3884 (((-1078 3 |#1|) $) 17 T ELT)) (-3362 (((-85) $) 33 T ELT)) (-3363 (($ $ (-584 (-855 |#1|))) 37 T ELT) (($ $ (-584 (-584 |#1|))) 36 T ELT) (($ (-584 (-855 |#1|))) 35 T ELT) (((-584 (-855 |#1|)) $) 34 T ELT)) (-3368 (((-85) $) 48 T ELT)) (-3702 (($ $ (-855 |#1|)) 53 T ELT) (($ $ (-584 |#1|)) 52 T ELT) (($ $ (-695)) 51 T ELT) (($ (-855 |#1|)) 50 T ELT) (((-855 |#1|) $) 49 T ELT)) (-3354 (((-2 (|:| -3846 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695)) (|:| |constructs| (-695))) $) 19 T ELT)) (-3372 (((-695) $) 62 T ELT)) (-3373 (((-695) $) 63 T ELT)) (-3883 (($ $ (-695) (-855 |#1|)) 54 T ELT)) (-3360 (((-85) $) 25 T ELT)) (-3361 (($ $ (-584 (-584 (-855 |#1|))) (-584 (-145)) (-145)) 32 T ELT) (($ $ (-584 (-584 (-584 |#1|))) (-584 (-145)) (-145)) 31 T ELT) (($ $ (-584 (-584 (-855 |#1|))) (-85) (-85)) 30 T ELT) (($ $ (-584 (-584 (-584 |#1|))) (-85) (-85)) 29 T ELT) (($ (-584 (-584 (-855 |#1|)))) 28 T ELT) (($ (-584 (-584 (-855 |#1|))) (-85) (-85)) 27 T ELT) (((-584 (-584 (-855 |#1|))) $) 26 T ELT)) (-3514 (($ (-584 $)) 61 T ELT) (($ $ $) 60 T ELT)) (-3355 (((-584 (-145)) $) 20 T ELT)) (-3359 (((-584 (-855 |#1|)) $) 24 T ELT)) (-3356 (((-584 (-584 (-145))) $) 21 T ELT)) (-3357 (((-584 (-584 (-584 (-855 |#1|)))) $) 22 T ELT)) (-3358 (((-584 (-584 (-584 (-695)))) $) 23 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3369 (((-695) $ (-584 (-855 |#1|))) 55 T ELT)) (-3366 (((-85) $) 43 T ELT)) (-3367 (($ $ (-584 (-855 |#1|))) 47 T ELT) (($ $ (-584 (-584 |#1|))) 46 T ELT) (($ (-584 (-855 |#1|))) 45 T ELT) (((-584 (-855 |#1|)) $) 44 T ELT)) (-3374 (($) 65 T ELT) (($ (-1078 3 |#1|)) 64 T ELT)) (-3396 (($ $) 56 T ELT)) (-3370 (((-584 $) $) 57 T ELT)) (-3750 (($ (-584 $)) 59 T ELT)) (-3371 (((-584 $) $) 58 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-3364 (((-85) $) 38 T ELT)) (-3365 (($ $ (-584 (-855 |#1|))) 42 T ELT) (($ $ (-584 (-584 |#1|))) 41 T ELT) (($ (-584 (-855 |#1|))) 40 T ELT) (((-584 (-855 |#1|)) $) 39 T ELT)) (-3353 (($ $) 18 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3054 (((-85) $ $) 8 T ELT)))
+(((-1047 |#1|) (-113) (-962)) (T -1047))
+((-3942 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-773)))) (-3374 (*1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-962)))) (-3374 (*1 *1 *2) (-12 (-5 *2 (-1078 3 *3)) (-4 *3 (-962)) (-4 *1 (-1047 *3)))) (-3373 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-3372 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-1047 *3)) (-4 *3 (-962)))) (-3514 (*1 *1 *1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-962)))) (-3750 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-1047 *3)) (-4 *3 (-962)))) (-3371 (*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-584 *1)) (-4 *1 (-1047 *3)))) (-3370 (*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-584 *1)) (-4 *1 (-1047 *3)))) (-3396 (*1 *1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-962)))) (-3369 (*1 *2 *1 *3) (-12 (-5 *3 (-584 (-855 *4))) (-4 *1 (-1047 *4)) (-4 *4 (-962)) (-5 *2 (-695)))) (-3883 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-855 *4)) (-4 *1 (-1047 *4)) (-4 *4 (-962)))) (-3702 (*1 *1 *1 *2) (-12 (-5 *2 (-855 *3)) (-4 *1 (-1047 *3)) (-4 *3 (-962)))) (-3702 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-1047 *3)) (-4 *3 (-962)))) (-3702 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1047 *3)) (-4 *3 (-962)))) (-3702 (*1 *1 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-962)) (-4 *1 (-1047 *3)))) (-3702 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-855 *3)))) (-3368 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-85)))) (-3367 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-962)))) (-3367 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-962)))) (-3367 (*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1047 *3)))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) (-3366 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-85)))) (-3365 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-962)))) (-3365 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-962)))) (-3365 (*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1047 *3)))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-85)))) (-3363 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-962)))) (-3363 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-962)))) (-3363 (*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1047 *3)))) (-3363 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) (-3362 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-85)))) (-3361 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-584 (-584 (-855 *5)))) (-5 *3 (-584 (-145))) (-5 *4 (-145)) (-4 *1 (-1047 *5)) (-4 *5 (-962)))) (-3361 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-584 (-584 (-584 *5)))) (-5 *3 (-584 (-145))) (-5 *4 (-145)) (-4 *1 (-1047 *5)) (-4 *5 (-962)))) (-3361 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-584 (-584 (-855 *4)))) (-5 *3 (-85)) (-4 *1 (-1047 *4)) (-4 *4 (-962)))) (-3361 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-584 (-584 (-584 *4)))) (-5 *3 (-85)) (-4 *1 (-1047 *4)) (-4 *4 (-962)))) (-3361 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-855 *3)))) (-4 *3 (-962)) (-4 *1 (-1047 *3)))) (-3361 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-584 (-584 (-855 *4)))) (-5 *3 (-85)) (-4 *4 (-962)) (-4 *1 (-1047 *4)))) (-3361 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-855 *3)))))) (-3360 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-85)))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) (-3358 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-584 (-695))))))) (-3357 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-584 (-855 *3))))))) (-3356 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-145)))))) (-3355 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-145))))) (-3354 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -3846 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695)) (|:| |constructs| (-695)))))) (-3353 (*1 *1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-962)))) (-3884 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-1078 3 *3)))))
+(-13 (-1013) (-10 -8 (-15 -3374 ($)) (-15 -3374 ($ (-1078 3 |t#1|))) (-15 -3373 ((-695) $)) (-15 -3372 ((-695) $)) (-15 -3514 ($ (-584 $))) (-15 -3514 ($ $ $)) (-15 -3750 ($ (-584 $))) (-15 -3371 ((-584 $) $)) (-15 -3370 ((-584 $) $)) (-15 -3396 ($ $)) (-15 -3369 ((-695) $ (-584 (-855 |t#1|)))) (-15 -3883 ($ $ (-695) (-855 |t#1|))) (-15 -3702 ($ $ (-855 |t#1|))) (-15 -3702 ($ $ (-584 |t#1|))) (-15 -3702 ($ $ (-695))) (-15 -3702 ($ (-855 |t#1|))) (-15 -3702 ((-855 |t#1|) $)) (-15 -3368 ((-85) $)) (-15 -3367 ($ $ (-584 (-855 |t#1|)))) (-15 -3367 ($ $ (-584 (-584 |t#1|)))) (-15 -3367 ($ (-584 (-855 |t#1|)))) (-15 -3367 ((-584 (-855 |t#1|)) $)) (-15 -3366 ((-85) $)) (-15 -3365 ($ $ (-584 (-855 |t#1|)))) (-15 -3365 ($ $ (-584 (-584 |t#1|)))) (-15 -3365 ($ (-584 (-855 |t#1|)))) (-15 -3365 ((-584 (-855 |t#1|)) $)) (-15 -3364 ((-85) $)) (-15 -3363 ($ $ (-584 (-855 |t#1|)))) (-15 -3363 ($ $ (-584 (-584 |t#1|)))) (-15 -3363 ($ (-584 (-855 |t#1|)))) (-15 -3363 ((-584 (-855 |t#1|)) $)) (-15 -3362 ((-85) $)) (-15 -3361 ($ $ (-584 (-584 (-855 |t#1|))) (-584 (-145)) (-145))) (-15 -3361 ($ $ (-584 (-584 (-584 |t#1|))) (-584 (-145)) (-145))) (-15 -3361 ($ $ (-584 (-584 (-855 |t#1|))) (-85) (-85))) (-15 -3361 ($ $ (-584 (-584 (-584 |t#1|))) (-85) (-85))) (-15 -3361 ($ (-584 (-584 (-855 |t#1|))))) (-15 -3361 ($ (-584 (-584 (-855 |t#1|))) (-85) (-85))) (-15 -3361 ((-584 (-584 (-855 |t#1|))) $)) (-15 -3360 ((-85) $)) (-15 -3359 ((-584 (-855 |t#1|)) $)) (-15 -3358 ((-584 (-584 (-584 (-695)))) $)) (-15 -3357 ((-584 (-584 (-584 (-855 |t#1|)))) $)) (-15 -3356 ((-584 (-584 (-145))) $)) (-15 -3355 ((-584 (-145)) $)) (-15 -3354 ((-2 (|:| -3846 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695)) (|:| |constructs| (-695))) $)) (-15 -3353 ($ $)) (-15 -3884 ((-1078 3 |t#1|) $)) (-15 -3942 ((-773) $))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 185 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) 7 T ELT)) (-3562 (((-85) $ (|[\|\|]| (-462))) 19 T ELT) (((-85) $ (|[\|\|]| (-172))) 23 T ELT) (((-85) $ (|[\|\|]| (-618))) 27 T ELT) (((-85) $ (|[\|\|]| (-1189))) 31 T ELT) (((-85) $ (|[\|\|]| (-111))) 35 T ELT) (((-85) $ (|[\|\|]| (-540))) 39 T ELT) (((-85) $ (|[\|\|]| (-106))) 43 T ELT) (((-85) $ (|[\|\|]| (-1029))) 47 T ELT) (((-85) $ (|[\|\|]| (-67))) 51 T ELT) (((-85) $ (|[\|\|]| (-623))) 55 T ELT) (((-85) $ (|[\|\|]| (-456))) 59 T ELT) (((-85) $ (|[\|\|]| (-978))) 63 T ELT) (((-85) $ (|[\|\|]| (-1190))) 67 T ELT) (((-85) $ (|[\|\|]| (-463))) 71 T ELT) (((-85) $ (|[\|\|]| (-1066))) 75 T ELT) (((-85) $ (|[\|\|]| (-127))) 79 T ELT) (((-85) $ (|[\|\|]| (-614))) 83 T ELT) (((-85) $ (|[\|\|]| (-262))) 87 T ELT) (((-85) $ (|[\|\|]| (-949))) 91 T ELT) (((-85) $ (|[\|\|]| (-154))) 95 T ELT) (((-85) $ (|[\|\|]| (-884))) 99 T ELT) (((-85) $ (|[\|\|]| (-985))) 103 T ELT) (((-85) $ (|[\|\|]| (-1003))) 107 T ELT) (((-85) $ (|[\|\|]| (-1008))) 111 T ELT) (((-85) $ (|[\|\|]| (-566))) 116 T ELT) (((-85) $ (|[\|\|]| (-1080))) 120 T ELT) (((-85) $ (|[\|\|]| (-129))) 124 T ELT) (((-85) $ (|[\|\|]| (-110))) 128 T ELT) (((-85) $ (|[\|\|]| (-415))) 132 T ELT) (((-85) $ (|[\|\|]| (-528))) 136 T ELT) (((-85) $ (|[\|\|]| (-444))) 140 T ELT) (((-85) $ (|[\|\|]| (-1072))) 144 T ELT) (((-85) $ (|[\|\|]| (-484))) 148 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3568 (((-462) $) 20 T ELT) (((-172) $) 24 T ELT) (((-618) $) 28 T ELT) (((-1189) $) 32 T ELT) (((-111) $) 36 T ELT) (((-540) $) 40 T ELT) (((-106) $) 44 T ELT) (((-1029) $) 48 T ELT) (((-67) $) 52 T ELT) (((-623) $) 56 T ELT) (((-456) $) 60 T ELT) (((-978) $) 64 T ELT) (((-1190) $) 68 T ELT) (((-463) $) 72 T ELT) (((-1066) $) 76 T ELT) (((-127) $) 80 T ELT) (((-614) $) 84 T ELT) (((-262) $) 88 T ELT) (((-949) $) 92 T ELT) (((-154) $) 96 T ELT) (((-884) $) 100 T ELT) (((-985) $) 104 T ELT) (((-1003) $) 108 T ELT) (((-1008) $) 112 T ELT) (((-566) $) 117 T ELT) (((-1080) $) 121 T ELT) (((-129) $) 125 T ELT) (((-110) $) 129 T ELT) (((-415) $) 133 T ELT) (((-528) $) 137 T ELT) (((-444) $) 141 T ELT) (((-1072) $) 145 T ELT) (((-484) $) 149 T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-1048) (-1050)) (T -1048))
+NIL
+((-3375 (((-584 (-1094)) (-1072)) 9 T ELT)))
+(((-1049) (-10 -7 (-15 -3375 ((-584 (-1094)) (-1072))))) (T -1049))
+((-3375 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-584 (-1094))) (-5 *1 (-1049)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-1094)) 20 T ELT) (((-1094) $) 19 T ELT)) (-3562 (((-85) $ (|[\|\|]| (-462))) 88 T ELT) (((-85) $ (|[\|\|]| (-172))) 86 T ELT) (((-85) $ (|[\|\|]| (-618))) 84 T ELT) (((-85) $ (|[\|\|]| (-1189))) 82 T ELT) (((-85) $ (|[\|\|]| (-111))) 80 T ELT) (((-85) $ (|[\|\|]| (-540))) 78 T ELT) (((-85) $ (|[\|\|]| (-106))) 76 T ELT) (((-85) $ (|[\|\|]| (-1029))) 74 T ELT) (((-85) $ (|[\|\|]| (-67))) 72 T ELT) (((-85) $ (|[\|\|]| (-623))) 70 T ELT) (((-85) $ (|[\|\|]| (-456))) 68 T ELT) (((-85) $ (|[\|\|]| (-978))) 66 T ELT) (((-85) $ (|[\|\|]| (-1190))) 64 T ELT) (((-85) $ (|[\|\|]| (-463))) 62 T ELT) (((-85) $ (|[\|\|]| (-1066))) 60 T ELT) (((-85) $ (|[\|\|]| (-127))) 58 T ELT) (((-85) $ (|[\|\|]| (-614))) 56 T ELT) (((-85) $ (|[\|\|]| (-262))) 54 T ELT) (((-85) $ (|[\|\|]| (-949))) 52 T ELT) (((-85) $ (|[\|\|]| (-154))) 50 T ELT) (((-85) $ (|[\|\|]| (-884))) 48 T ELT) (((-85) $ (|[\|\|]| (-985))) 46 T ELT) (((-85) $ (|[\|\|]| (-1003))) 44 T ELT) (((-85) $ (|[\|\|]| (-1008))) 42 T ELT) (((-85) $ (|[\|\|]| (-566))) 40 T ELT) (((-85) $ (|[\|\|]| (-1080))) 38 T ELT) (((-85) $ (|[\|\|]| (-129))) 36 T ELT) (((-85) $ (|[\|\|]| (-110))) 34 T ELT) (((-85) $ (|[\|\|]| (-415))) 32 T ELT) (((-85) $ (|[\|\|]| (-528))) 30 T ELT) (((-85) $ (|[\|\|]| (-444))) 28 T ELT) (((-85) $ (|[\|\|]| (-1072))) 26 T ELT) (((-85) $ (|[\|\|]| (-484))) 24 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3568 (((-462) $) 87 T ELT) (((-172) $) 85 T ELT) (((-618) $) 83 T ELT) (((-1189) $) 81 T ELT) (((-111) $) 79 T ELT) (((-540) $) 77 T ELT) (((-106) $) 75 T ELT) (((-1029) $) 73 T ELT) (((-67) $) 71 T ELT) (((-623) $) 69 T ELT) (((-456) $) 67 T ELT) (((-978) $) 65 T ELT) (((-1190) $) 63 T ELT) (((-463) $) 61 T ELT) (((-1066) $) 59 T ELT) (((-127) $) 57 T ELT) (((-614) $) 55 T ELT) (((-262) $) 53 T ELT) (((-949) $) 51 T ELT) (((-154) $) 49 T ELT) (((-884) $) 47 T ELT) (((-985) $) 45 T ELT) (((-1003) $) 43 T ELT) (((-1008) $) 41 T ELT) (((-566) $) 39 T ELT) (((-1080) $) 37 T ELT) (((-129) $) 35 T ELT) (((-110) $) 33 T ELT) (((-415) $) 31 T ELT) (((-528) $) 29 T ELT) (((-444) $) 27 T ELT) (((-1072) $) 25 T ELT) (((-484) $) 23 T ELT)) (-3054 (((-85) $ $) 8 T ELT)))
+(((-1050) (-113)) (T -1050))
+((-3562 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-462))) (-5 *2 (-85)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-462)))) (-3562 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-172)))) (-3562 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-85)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-618)))) (-3562 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-85)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1189)))) (-3562 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-111)))) (-3562 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-540))) (-5 *2 (-85)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-540)))) (-3562 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-106)))) (-3562 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1029))) (-5 *2 (-85)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1029)))) (-3562 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-67)))) (-3562 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-623))) (-5 *2 (-85)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-623)))) (-3562 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-456))) (-5 *2 (-85)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-456)))) (-3562 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-978))) (-5 *2 (-85)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-978)))) (-3562 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1190))) (-5 *2 (-85)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1190)))) (-3562 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-463))) (-5 *2 (-85)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-463)))) (-3562 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1066))) (-5 *2 (-85)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1066)))) (-3562 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-127)))) (-3562 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-614))) (-5 *2 (-85)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-614)))) (-3562 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-262))) (-5 *2 (-85)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-262)))) (-3562 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-949))) (-5 *2 (-85)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-949)))) (-3562 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-154)))) (-3562 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-884))) (-5 *2 (-85)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-884)))) (-3562 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-985))) (-5 *2 (-85)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-985)))) (-3562 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1003))) (-5 *2 (-85)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1003)))) (-3562 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1008))) (-5 *2 (-85)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1008)))) (-3562 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-566))) (-5 *2 (-85)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-566)))) (-3562 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1080))) (-5 *2 (-85)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1080)))) (-3562 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-129)))) (-3562 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-110)))) (-3562 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-415))) (-5 *2 (-85)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-415)))) (-3562 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-85)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-528)))) (-3562 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-444))) (-5 *2 (-85)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-444)))) (-3562 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-85)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1072)))) (-3562 (*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-484))) (-5 *2 (-85)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-484)))))
+(-13 (-995) (-1174) (-10 -8 (-15 -3562 ((-85) $ (|[\|\|]| (-462)))) (-15 -3568 ((-462) $)) (-15 -3562 ((-85) $ (|[\|\|]| (-172)))) (-15 -3568 ((-172) $)) (-15 -3562 ((-85) $ (|[\|\|]| (-618)))) (-15 -3568 ((-618) $)) (-15 -3562 ((-85) $ (|[\|\|]| (-1189)))) (-15 -3568 ((-1189) $)) (-15 -3562 ((-85) $ (|[\|\|]| (-111)))) (-15 -3568 ((-111) $)) (-15 -3562 ((-85) $ (|[\|\|]| (-540)))) (-15 -3568 ((-540) $)) (-15 -3562 ((-85) $ (|[\|\|]| (-106)))) (-15 -3568 ((-106) $)) (-15 -3562 ((-85) $ (|[\|\|]| (-1029)))) (-15 -3568 ((-1029) $)) (-15 -3562 ((-85) $ (|[\|\|]| (-67)))) (-15 -3568 ((-67) $)) (-15 -3562 ((-85) $ (|[\|\|]| (-623)))) (-15 -3568 ((-623) $)) (-15 -3562 ((-85) $ (|[\|\|]| (-456)))) (-15 -3568 ((-456) $)) (-15 -3562 ((-85) $ (|[\|\|]| (-978)))) (-15 -3568 ((-978) $)) (-15 -3562 ((-85) $ (|[\|\|]| (-1190)))) (-15 -3568 ((-1190) $)) (-15 -3562 ((-85) $ (|[\|\|]| (-463)))) (-15 -3568 ((-463) $)) (-15 -3562 ((-85) $ (|[\|\|]| (-1066)))) (-15 -3568 ((-1066) $)) (-15 -3562 ((-85) $ (|[\|\|]| (-127)))) (-15 -3568 ((-127) $)) (-15 -3562 ((-85) $ (|[\|\|]| (-614)))) (-15 -3568 ((-614) $)) (-15 -3562 ((-85) $ (|[\|\|]| (-262)))) (-15 -3568 ((-262) $)) (-15 -3562 ((-85) $ (|[\|\|]| (-949)))) (-15 -3568 ((-949) $)) (-15 -3562 ((-85) $ (|[\|\|]| (-154)))) (-15 -3568 ((-154) $)) (-15 -3562 ((-85) $ (|[\|\|]| (-884)))) (-15 -3568 ((-884) $)) (-15 -3562 ((-85) $ (|[\|\|]| (-985)))) (-15 -3568 ((-985) $)) (-15 -3562 ((-85) $ (|[\|\|]| (-1003)))) (-15 -3568 ((-1003) $)) (-15 -3562 ((-85) $ (|[\|\|]| (-1008)))) (-15 -3568 ((-1008) $)) (-15 -3562 ((-85) $ (|[\|\|]| (-566)))) (-15 -3568 ((-566) $)) (-15 -3562 ((-85) $ (|[\|\|]| (-1080)))) (-15 -3568 ((-1080) $)) (-15 -3562 ((-85) $ (|[\|\|]| (-129)))) (-15 -3568 ((-129) $)) (-15 -3562 ((-85) $ (|[\|\|]| (-110)))) (-15 -3568 ((-110) $)) (-15 -3562 ((-85) $ (|[\|\|]| (-415)))) (-15 -3568 ((-415) $)) (-15 -3562 ((-85) $ (|[\|\|]| (-528)))) (-15 -3568 ((-528) $)) (-15 -3562 ((-85) $ (|[\|\|]| (-444)))) (-15 -3568 ((-444) $)) (-15 -3562 ((-85) $ (|[\|\|]| (-1072)))) (-15 -3568 ((-1072) $)) (-15 -3562 ((-85) $ (|[\|\|]| (-484)))) (-15 -3568 ((-484) $))))
+(((-64) . T) ((-72) . T) ((-556 (-1094)) . T) ((-553 (-773)) . T) ((-553 (-1094)) . T) ((-427 (-1094)) . T) ((-13) . T) ((-1013) . T) ((-995) . T) ((-1128) . T) ((-1174) . T))
+((-3378 (((-1184) (-584 (-773))) 22 T ELT) (((-1184) (-773)) 21 T ELT)) (-3377 (((-1184) (-584 (-773))) 20 T ELT) (((-1184) (-773)) 19 T ELT)) (-3376 (((-1184) (-584 (-773))) 18 T ELT) (((-1184) (-773)) 10 T ELT) (((-1184) (-1072) (-773)) 16 T ELT)))
+(((-1051) (-10 -7 (-15 -3376 ((-1184) (-1072) (-773))) (-15 -3376 ((-1184) (-773))) (-15 -3377 ((-1184) (-773))) (-15 -3378 ((-1184) (-773))) (-15 -3376 ((-1184) (-584 (-773)))) (-15 -3377 ((-1184) (-584 (-773)))) (-15 -3378 ((-1184) (-584 (-773)))))) (T -1051))
+((-3378 (*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1184)) (-5 *1 (-1051)))) (-3377 (*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1184)) (-5 *1 (-1051)))) (-3376 (*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1184)) (-5 *1 (-1051)))) (-3378 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1184)) (-5 *1 (-1051)))) (-3377 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1184)) (-5 *1 (-1051)))) (-3376 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1184)) (-5 *1 (-1051)))) (-3376 (*1 *2 *3 *4) (-12 (-5 *3 (-1072)) (-5 *4 (-773)) (-5 *2 (-1184)) (-5 *1 (-1051)))))
+((-3382 (($ $ $) 10 T ELT)) (-3381 (($ $) 9 T ELT)) (-3385 (($ $ $) 13 T ELT)) (-3387 (($ $ $) 15 T ELT)) (-3384 (($ $ $) 12 T ELT)) (-3386 (($ $ $) 14 T ELT)) (-3389 (($ $) 17 T ELT)) (-3388 (($ $) 16 T ELT)) (-3379 (($ $) 6 T ELT)) (-3383 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-3380 (($ $ $) 8 T ELT)))
+(((-1052) (-113)) (T -1052))
+((-3389 (*1 *1 *1) (-4 *1 (-1052))) (-3388 (*1 *1 *1) (-4 *1 (-1052))) (-3387 (*1 *1 *1 *1) (-4 *1 (-1052))) (-3386 (*1 *1 *1 *1) (-4 *1 (-1052))) (-3385 (*1 *1 *1 *1) (-4 *1 (-1052))) (-3384 (*1 *1 *1 *1) (-4 *1 (-1052))) (-3383 (*1 *1 *1 *1) (-4 *1 (-1052))) (-3382 (*1 *1 *1 *1) (-4 *1 (-1052))) (-3381 (*1 *1 *1) (-4 *1 (-1052))) (-3380 (*1 *1 *1 *1) (-4 *1 (-1052))) (-3383 (*1 *1 *1) (-4 *1 (-1052))) (-3379 (*1 *1 *1) (-4 *1 (-1052))))
+(-13 (-10 -8 (-15 -3379 ($ $)) (-15 -3383 ($ $)) (-15 -3380 ($ $ $)) (-15 -3381 ($ $)) (-15 -3382 ($ $ $)) (-15 -3383 ($ $ $)) (-15 -3384 ($ $ $)) (-15 -3385 ($ $ $)) (-15 -3386 ($ $ $)) (-15 -3387 ($ $ $)) (-15 -3388 ($ $)) (-15 -3389 ($ $))))
+((-2566 (((-85) $ $) 44 T ELT)) (-3398 ((|#1| $) 17 T ELT)) (-3390 (((-85) $ $ (-1 (-85) |#2| |#2|)) 39 T ELT)) (-3397 (((-85) $) 19 T ELT)) (-3395 (($ $ |#1|) 30 T ELT)) (-3393 (($ $ (-85)) 32 T ELT)) (-3392 (($ $) 33 T ELT)) (-3394 (($ $ |#2|) 31 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3391 (((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|)) 38 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3399 (((-85) $) 16 T ELT)) (-3561 (($) 13 T ELT)) (-3396 (($ $) 29 T ELT)) (-3526 (($ |#1| |#2| (-85)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -1598 |#2|))) 23 T ELT) (((-584 $) (-584 (-2 (|:| |val| |#1|) (|:| -1598 |#2|)))) 26 T ELT) (((-584 $) |#1| (-584 |#2|)) 28 T ELT)) (-3918 ((|#2| $) 18 T ELT)) (-3942 (((-773) $) 53 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 42 T ELT)))
+(((-1053 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -3561 ($)) (-15 -3399 ((-85) $)) (-15 -3398 (|#1| $)) (-15 -3918 (|#2| $)) (-15 -3397 ((-85) $)) (-15 -3526 ($ |#1| |#2| (-85))) (-15 -3526 ($ |#1| |#2|)) (-15 -3526 ($ (-2 (|:| |val| |#1|) (|:| -1598 |#2|)))) (-15 -3526 ((-584 $) (-584 (-2 (|:| |val| |#1|) (|:| -1598 |#2|))))) (-15 -3526 ((-584 $) |#1| (-584 |#2|))) (-15 -3396 ($ $)) (-15 -3395 ($ $ |#1|)) (-15 -3394 ($ $ |#2|)) (-15 -3393 ($ $ (-85))) (-15 -3392 ($ $)) (-15 -3391 ((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|))) (-15 -3390 ((-85) $ $ (-1 (-85) |#2| |#2|))))) (-13 (-1013) (-34)) (-13 (-1013) (-34))) (T -1053))
+((-3561 (*1 *1) (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3399 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))))) (-3398 (*1 *2 *1) (-12 (-4 *2 (-13 (-1013) (-34))) (-5 *1 (-1053 *2 *3)) (-4 *3 (-13 (-1013) (-34))))) (-3918 (*1 *2 *1) (-12 (-4 *2 (-13 (-1013) (-34))) (-5 *1 (-1053 *3 *2)) (-4 *3 (-13 (-1013) (-34))))) (-3397 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))))) (-3526 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3526 (*1 *1 *2 *3) (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3526 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1598 *4))) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1053 *3 *4)))) (-3526 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| |val| *4) (|:| -1598 *5)))) (-4 *4 (-13 (-1013) (-34))) (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-584 (-1053 *4 *5))) (-5 *1 (-1053 *4 *5)))) (-3526 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *5)) (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-584 (-1053 *3 *5))) (-5 *1 (-1053 *3 *5)) (-4 *3 (-13 (-1013) (-34))))) (-3396 (*1 *1 *1) (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3395 (*1 *1 *1 *2) (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3394 (*1 *1 *1 *2) (-12 (-5 *1 (-1053 *3 *2)) (-4 *3 (-13 (-1013) (-34))) (-4 *2 (-13 (-1013) (-34))))) (-3393 (*1 *1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))))) (-3392 (*1 *1 *1) (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3391 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1013) (-34))) (-4 *6 (-13 (-1013) (-34))) (-5 *2 (-85)) (-5 *1 (-1053 *5 *6)))) (-3390 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-85)) (-5 *1 (-1053 *4 *5)) (-4 *4 (-13 (-1013) (-34))))))
+((-2566 (((-85) $ $) NIL (|has| (-1053 |#1| |#2|) (-72)) ELT)) (-3398 (((-1053 |#1| |#2|) $) 27 T ELT)) (-3407 (($ $) 91 T ELT)) (-3403 (((-85) (-1053 |#1| |#2|) $ (-1 (-85) |#2| |#2|)) 100 T ELT)) (-3400 (($ $ $ (-584 (-1053 |#1| |#2|))) 108 T ELT) (($ $ $ (-584 (-1053 |#1| |#2|)) (-1 (-85) |#2| |#2|)) 109 T ELT)) (-3023 (((-1053 |#1| |#2|) $ (-1053 |#1| |#2|)) 46 (|has| $ (-6 -3992)) ELT)) (-3784 (((-1053 |#1| |#2|) $ #1="value" (-1053 |#1| |#2|)) NIL (|has| $ (-6 -3992)) ELT)) (-3024 (($ $ (-584 $)) 44 (|has| $ (-6 -3992)) ELT)) (-3720 (($) NIL T CONST)) (-3405 (((-584 (-2 (|:| |val| |#1|) (|:| -1598 |#2|))) $) 95 T ELT)) (-3401 (($ (-1053 |#1| |#2|) $) 42 T ELT)) (-3402 (($ (-1053 |#1| |#2|) $) 34 T ELT)) (-2887 (((-584 (-1053 |#1| |#2|)) $) NIL (|has| $ (-6 -3991)) ELT)) (-3029 (((-584 $) $) 54 T ELT)) (-3404 (((-85) (-1053 |#1| |#2|) $) 97 T ELT)) (-3025 (((-85) $ $) NIL (|has| (-1053 |#1| |#2|) (-1013)) ELT)) (-2606 (((-584 (-1053 |#1| |#2|)) $) 58 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) (-1053 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-1053 |#1| |#2|) (-1013))) ELT)) (-1947 (($ (-1 (-1053 |#1| |#2|) (-1053 |#1| |#2|)) $) 50 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 (-1053 |#1| |#2|) (-1053 |#1| |#2|)) $) 49 T ELT)) (-3028 (((-584 (-1053 |#1| |#2|)) $) 56 T ELT)) (-3523 (((-85) $) 45 T ELT)) (-3239 (((-1072) $) NIL (|has| (-1053 |#1| |#2|) (-1013)) ELT)) (-3240 (((-1033) $) NIL (|has| (-1053 |#1| |#2|) (-1013)) ELT)) (-3408 (((-3 $ "failed") $) 89 T ELT)) (-1945 (((-85) (-1 (-85) (-1053 |#1| |#2|)) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 (-1053 |#1| |#2|)))) NIL (-12 (|has| (-1053 |#1| |#2|) (-259 (-1053 |#1| |#2|))) (|has| (-1053 |#1| |#2|) (-1013))) ELT) (($ $ (-248 (-1053 |#1| |#2|))) NIL (-12 (|has| (-1053 |#1| |#2|) (-259 (-1053 |#1| |#2|))) (|has| (-1053 |#1| |#2|) (-1013))) ELT) (($ $ (-1053 |#1| |#2|) (-1053 |#1| |#2|)) NIL (-12 (|has| (-1053 |#1| |#2|) (-259 (-1053 |#1| |#2|))) (|has| (-1053 |#1| |#2|) (-1013))) ELT) (($ $ (-584 (-1053 |#1| |#2|)) (-584 (-1053 |#1| |#2|))) NIL (-12 (|has| (-1053 |#1| |#2|) (-259 (-1053 |#1| |#2|))) (|has| (-1053 |#1| |#2|) (-1013))) ELT)) (-1220 (((-85) $ $) 53 T ELT)) (-3399 (((-85) $) 24 T ELT)) (-3561 (($) 26 T ELT)) (-3796 (((-1053 |#1| |#2|) $ #1#) NIL T ELT)) (-3027 (((-484) $ $) NIL T ELT)) (-3629 (((-85) $) 47 T ELT)) (-1944 (((-695) (-1 (-85) (-1053 |#1| |#2|)) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) (-1053 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-1053 |#1| |#2|) (-1013))) ELT)) (-3396 (($ $) 52 T ELT)) (-3526 (($ (-1053 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-584 $)) 13 T ELT) (($ |#1| |#2| (-584 (-1053 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-584 |#2|)) 18 T ELT)) (-3406 (((-584 |#2|) $) 96 T ELT)) (-3942 (((-773) $) 87 (|has| (-1053 |#1| |#2|) (-553 (-773))) ELT)) (-3518 (((-584 $) $) 31 T ELT)) (-3026 (((-85) $ $) NIL (|has| (-1053 |#1| |#2|) (-1013)) ELT)) (-1263 (((-85) $ $) NIL (|has| (-1053 |#1| |#2|) (-72)) ELT)) (-1946 (((-85) (-1 (-85) (-1053 |#1| |#2|)) $) NIL (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 70 (|has| (-1053 |#1| |#2|) (-72)) ELT)) (-3953 (((-695) $) 64 (|has| $ (-6 -3991)) ELT)))
+(((-1054 |#1| |#2|) (-13 (-924 (-1053 |#1| |#2|)) (-10 -8 (-6 -3992) (-6 -3991) (-15 -3408 ((-3 $ "failed") $)) (-15 -3407 ($ $)) (-15 -3526 ($ (-1053 |#1| |#2|))) (-15 -3526 ($ |#1| |#2| (-584 $))) (-15 -3526 ($ |#1| |#2| (-584 (-1053 |#1| |#2|)))) (-15 -3526 ($ |#1| |#2| |#1| (-584 |#2|))) (-15 -3406 ((-584 |#2|) $)) (-15 -3405 ((-584 (-2 (|:| |val| |#1|) (|:| -1598 |#2|))) $)) (-15 -3404 ((-85) (-1053 |#1| |#2|) $)) (-15 -3403 ((-85) (-1053 |#1| |#2|) $ (-1 (-85) |#2| |#2|))) (-15 -3402 ($ (-1053 |#1| |#2|) $)) (-15 -3401 ($ (-1053 |#1| |#2|) $)) (-15 -3400 ($ $ $ (-584 (-1053 |#1| |#2|)))) (-15 -3400 ($ $ $ (-584 (-1053 |#1| |#2|)) (-1 (-85) |#2| |#2|))))) (-13 (-1013) (-34)) (-13 (-1013) (-34))) (T -1054))
+((-3408 (*1 *1 *1) (|partial| -12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3407 (*1 *1 *1) (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3526 (*1 *1 *2) (-12 (-5 *2 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4)))) (-3526 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-584 (-1054 *2 *3))) (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3526 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-584 (-1053 *2 *3))) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))) (-5 *1 (-1054 *2 *3)))) (-3526 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-13 (-1013) (-34))) (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))))) (-3406 (*1 *2 *1) (-12 (-5 *2 (-584 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))))) (-3405 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4)))) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))))) (-3404 (*1 *2 *3 *1) (-12 (-5 *3 (-1053 *4 *5)) (-4 *4 (-13 (-1013) (-34))) (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-85)) (-5 *1 (-1054 *4 *5)))) (-3403 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1053 *5 *6)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1013) (-34))) (-4 *6 (-13 (-1013) (-34))) (-5 *2 (-85)) (-5 *1 (-1054 *5 *6)))) (-3402 (*1 *1 *2 *1) (-12 (-5 *2 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4)))) (-3401 (*1 *1 *2 *1) (-12 (-5 *2 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4)))) (-3400 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-584 (-1053 *3 *4))) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4)))) (-3400 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1053 *4 *5))) (-5 *3 (-1 (-85) *5 *5)) (-4 *4 (-13 (-1013) (-34))) (-4 *5 (-13 (-1013) (-34))) (-5 *1 (-1054 *4 *5)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3410 (($ $) NIL T ELT)) (-3326 ((|#2| $) NIL T ELT)) (-3118 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3409 (($ (-631 |#2|)) 55 T ELT)) (-3120 (((-85) $) NIL T ELT)) (-3329 (($ |#2|) 14 T ELT)) (-3720 (($) NIL T CONST)) (-3107 (($ $) 68 (|has| |#2| (-257)) ELT)) (-3109 (((-197 |#1| |#2|) $ (-484)) 42 T ELT)) (-3154 (((-3 (-484) #1#) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3153 (((-484) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) ((|#2| $) NIL T ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3463 (((-3 $ #1#) $) 82 T ELT)) (-3106 (((-695) $) 70 (|has| |#2| (-495)) ELT)) (-3110 ((|#2| $ (-484) (-484)) NIL T ELT)) (-2887 (((-584 |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2408 (((-85) $) NIL T ELT)) (-3105 (((-695) $) 72 (|has| |#2| (-495)) ELT)) (-3104 (((-584 (-197 |#1| |#2|)) $) 76 (|has| |#2| (-495)) ELT)) (-3112 (((-695) $) NIL T ELT)) (-3610 (($ |#2|) 25 T ELT)) (-3111 (((-695) $) NIL T ELT)) (-3323 ((|#2| $) 66 (|has| |#2| (-6 (-3993 #2="*"))) ELT)) (-3116 (((-484) $) NIL T ELT)) (-3114 (((-484) $) NIL T ELT)) (-2606 (((-584 |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT)) (-3115 (((-484) $) NIL T ELT)) (-3113 (((-484) $) NIL T ELT)) (-3121 (($ (-584 (-584 |#2|))) 37 T ELT)) (-1947 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3590 (((-584 (-584 |#2|)) $) NIL T ELT)) (-2278 (((-631 (-484)) (-1178 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL T ELT) (((-631 |#2|) (-1178 $)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3586 (((-3 $ #1#) $) 79 (|has| |#2| (-311)) ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3462 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT)) (-1945 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) NIL T ELT)) (-3796 ((|#2| $ (-484) (-484) |#2|) NIL T ELT) ((|#2| $ (-484) (-484)) NIL T ELT)) (-3754 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#2| (-812 (-1089))) ELT)) (-3325 ((|#2| $) NIL T ELT)) (-3328 (($ (-584 |#2|)) 50 T ELT)) (-3119 (((-85) $) NIL T ELT)) (-3327 (((-197 |#1| |#2|) $) NIL T ELT)) (-3324 ((|#2| $) 64 (|has| |#2| (-6 (-3993 #2#))) ELT)) (-1944 (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT)) (-3396 (($ $) NIL T ELT)) (-3968 (((-473) $) 89 (|has| |#2| (-554 (-473))) ELT)) (-3108 (((-197 |#1| |#2|) $ (-484)) 44 T ELT)) (-3942 (((-773) $) 47 T ELT) (($ (-484)) NIL T ELT) (($ (-347 (-484))) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) (($ |#2|) NIL T ELT) (((-631 |#2|) $) 52 T ELT)) (-3123 (((-695)) 23 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3117 (((-85) $) NIL T ELT)) (-2658 (($) 16 T CONST)) (-2664 (($) 21 T CONST)) (-2667 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1089)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#2| (-812 (-1089))) ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 62 T ELT) (($ $ (-484)) 81 (|has| |#2| (-311)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-197 |#1| |#2|) $ (-197 |#1| |#2|)) 58 T ELT) (((-197 |#1| |#2|) (-197 |#1| |#2|) $) 60 T ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-1055 |#1| |#2|) (-13 (-1036 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-553 (-631 |#2|)) (-10 -8 (-15 -3610 ($ |#2|)) (-15 -3410 ($ $)) (-15 -3409 ($ (-631 |#2|))) (IF (|has| |#2| (-6 (-3993 #1="*"))) (-6 -3980) |%noBranch|) (IF (|has| |#2| (-6 (-3993 #1#))) (IF (|has| |#2| (-6 -3988)) (-6 -3988) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-554 (-473))) (-6 (-554 (-473))) |%noBranch|))) (-695) (-962)) (T -1055))
+((-3610 (*1 *1 *2) (-12 (-5 *1 (-1055 *3 *2)) (-14 *3 (-695)) (-4 *2 (-962)))) (-3410 (*1 *1 *1) (-12 (-5 *1 (-1055 *2 *3)) (-14 *2 (-695)) (-4 *3 (-962)))) (-3409 (*1 *1 *2) (-12 (-5 *2 (-631 *4)) (-4 *4 (-962)) (-5 *1 (-1055 *3 *4)) (-14 *3 (-695)))))
+((-3423 (($ $) 19 T ELT)) (-3413 (($ $ (-117)) 10 T ELT) (($ $ (-114)) 14 T ELT)) (-3421 (((-85) $ $) 24 T ELT)) (-3425 (($ $) 17 T ELT)) (-3796 (((-117) $ (-484) (-117)) NIL T ELT) (((-117) $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT) (($ $ $) 31 T ELT)) (-3942 (($ (-117)) 29 T ELT) (((-773) $) NIL T ELT)))
+(((-1056 |#1|) (-10 -7 (-15 -3942 ((-773) |#1|)) (-15 -3796 (|#1| |#1| |#1|)) (-15 -3413 (|#1| |#1| (-114))) (-15 -3413 (|#1| |#1| (-117))) (-15 -3942 (|#1| (-117))) (-15 -3421 ((-85) |#1| |#1|)) (-15 -3423 (|#1| |#1|)) (-15 -3425 (|#1| |#1|)) (-15 -3796 (|#1| |#1| (-1145 (-484)))) (-15 -3796 ((-117) |#1| (-484))) (-15 -3796 ((-117) |#1| (-484) (-117)))) (-1057)) (T -1056))
+NIL
+((-2566 (((-85) $ $) 19 (|has| (-117) (-72)) ELT)) (-3422 (($ $) 129 T ELT)) (-3423 (($ $) 130 T ELT)) (-3413 (($ $ (-117)) 117 T ELT) (($ $ (-114)) 116 T ELT)) (-2196 (((-1184) $ (-484) (-484)) 44 (|has| $ (-6 -3992)) ELT)) (-3420 (((-85) $ $) 127 T ELT)) (-3419 (((-85) $ $ (-484)) 126 T ELT)) (-3414 (((-584 $) $ (-117)) 119 T ELT) (((-584 $) $ (-114)) 118 T ELT)) (-1730 (((-85) (-1 (-85) (-117) (-117)) $) 107 T ELT) (((-85) $) 101 (|has| (-117) (-757)) ELT)) (-1728 (($ (-1 (-85) (-117) (-117)) $) 98 (|has| $ (-6 -3992)) ELT) (($ $) 97 (-12 (|has| (-117) (-757)) (|has| $ (-6 -3992))) ELT)) (-2907 (($ (-1 (-85) (-117) (-117)) $) 108 T ELT) (($ $) 102 (|has| (-117) (-757)) ELT)) (-3784 (((-117) $ (-484) (-117)) 56 (|has| $ (-6 -3992)) ELT) (((-117) $ (-1145 (-484)) (-117)) 64 (|has| $ (-6 -3992)) ELT)) (-3706 (($ (-1 (-85) (-117)) $) 81 (|has| $ (-6 -3991)) ELT)) (-3720 (($) 7 T CONST)) (-3411 (($ $ (-117)) 113 T ELT) (($ $ (-114)) 112 T ELT)) (-2295 (($ $) 99 (|has| $ (-6 -3992)) ELT)) (-2296 (($ $) 109 T ELT)) (-3416 (($ $ (-1145 (-484)) $) 123 T ELT)) (-1351 (($ $) 84 (-12 (|has| (-117) (-1013)) (|has| $ (-6 -3991))) ELT)) (-3402 (($ (-117) $) 83 (-12 (|has| (-117) (-1013)) (|has| $ (-6 -3991))) ELT) (($ (-1 (-85) (-117)) $) 80 (|has| $ (-6 -3991)) ELT)) (-3838 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) 82 (-12 (|has| (-117) (-1013)) (|has| $ (-6 -3991))) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) 79 (|has| $ (-6 -3991)) ELT) (((-117) (-1 (-117) (-117) (-117)) $) 78 (|has| $ (-6 -3991)) ELT)) (-1574 (((-117) $ (-484) (-117)) 57 (|has| $ (-6 -3992)) ELT)) (-3110 (((-117) $ (-484)) 55 T ELT)) (-3421 (((-85) $ $) 128 T ELT)) (-3415 (((-484) (-1 (-85) (-117)) $) 106 T ELT) (((-484) (-117) $) 105 (|has| (-117) (-1013)) ELT) (((-484) (-117) $ (-484)) 104 (|has| (-117) (-1013)) ELT) (((-484) $ $ (-484)) 122 T ELT) (((-484) (-114) $ (-484)) 121 T ELT)) (-2887 (((-584 (-117)) $) 30 (|has| $ (-6 -3991)) ELT)) (-3610 (($ (-695) (-117)) 74 T ELT)) (-2198 (((-484) $) 47 (|has| (-484) (-757)) ELT)) (-2529 (($ $ $) 91 (|has| (-117) (-757)) ELT)) (-3514 (($ (-1 (-85) (-117) (-117)) $ $) 110 T ELT) (($ $ $) 103 (|has| (-117) (-757)) ELT)) (-2606 (((-584 (-117)) $) 29 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) (-117) $) 27 (-12 (|has| (-117) (-1013)) (|has| $ (-6 -3991))) ELT)) (-2199 (((-484) $) 48 (|has| (-484) (-757)) ELT)) (-2855 (($ $ $) 92 (|has| (-117) (-757)) ELT)) (-3417 (((-85) $ $ (-117)) 124 T ELT)) (-3418 (((-695) $ $ (-117)) 125 T ELT)) (-1947 (($ (-1 (-117) (-117)) $) 34 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 (-117) (-117)) $) 35 T ELT) (($ (-1 (-117) (-117) (-117)) $ $) 69 T ELT)) (-3424 (($ $) 131 T ELT)) (-3425 (($ $) 132 T ELT)) (-3412 (($ $ (-117)) 115 T ELT) (($ $ (-114)) 114 T ELT)) (-3239 (((-1072) $) 22 (|has| (-117) (-1013)) ELT)) (-2302 (($ (-117) $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2201 (((-584 (-484)) $) 50 T ELT)) (-2202 (((-85) (-484) $) 51 T ELT)) (-3240 (((-1033) $) 21 (|has| (-117) (-1013)) ELT)) (-3797 (((-117) $) 46 (|has| (-484) (-757)) ELT)) (-1352 (((-3 (-117) "failed") (-1 (-85) (-117)) $) 77 T ELT)) (-2197 (($ $ (-117)) 45 (|has| $ (-6 -3992)) ELT)) (-1945 (((-85) (-1 (-85) (-117)) $) 32 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 (-117)))) 26 (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-248 (-117))) 25 (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-117) (-117)) 24 (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-584 (-117)) (-584 (-117))) 23 (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2200 (((-85) (-117) $) 49 (-12 (|has| $ (-6 -3991)) (|has| (-117) (-1013))) ELT)) (-2203 (((-584 (-117)) $) 52 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-3796 (((-117) $ (-484) (-117)) 54 T ELT) (((-117) $ (-484)) 53 T ELT) (($ $ (-1145 (-484))) 75 T ELT) (($ $ $) 111 T ELT)) (-2303 (($ $ (-484)) 68 T ELT) (($ $ (-1145 (-484))) 67 T ELT)) (-1944 (((-695) (-1 (-85) (-117)) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) (-117) $) 28 (-12 (|has| (-117) (-1013)) (|has| $ (-6 -3991))) ELT)) (-1729 (($ $ $ (-484)) 100 (|has| $ (-6 -3992)) ELT)) (-3396 (($ $) 10 T ELT)) (-3968 (((-473) $) 85 (|has| (-117) (-554 (-473))) ELT)) (-3526 (($ (-584 (-117))) 76 T ELT)) (-3798 (($ $ (-117)) 73 T ELT) (($ (-117) $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-584 $)) 70 T ELT)) (-3942 (($ (-117)) 120 T ELT) (((-773) $) 17 (|has| (-117) (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| (-117) (-72)) ELT)) (-1946 (((-85) (-1 (-85) (-117)) $) 33 (|has| $ (-6 -3991)) ELT)) (-2564 (((-85) $ $) 93 (|has| (-117) (-757)) ELT)) (-2565 (((-85) $ $) 95 (|has| (-117) (-757)) ELT)) (-3054 (((-85) $ $) 18 (|has| (-117) (-72)) ELT)) (-2682 (((-85) $ $) 94 (|has| (-117) (-757)) ELT)) (-2683 (((-85) $ $) 96 (|has| (-117) (-757)) ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-1057) (-113)) (T -1057))
+((-3425 (*1 *1 *1) (-4 *1 (-1057))) (-3424 (*1 *1 *1) (-4 *1 (-1057))) (-3423 (*1 *1 *1) (-4 *1 (-1057))) (-3422 (*1 *1 *1) (-4 *1 (-1057))) (-3421 (*1 *2 *1 *1) (-12 (-4 *1 (-1057)) (-5 *2 (-85)))) (-3420 (*1 *2 *1 *1) (-12 (-4 *1 (-1057)) (-5 *2 (-85)))) (-3419 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1057)) (-5 *3 (-484)) (-5 *2 (-85)))) (-3418 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1057)) (-5 *3 (-117)) (-5 *2 (-695)))) (-3417 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1057)) (-5 *3 (-117)) (-5 *2 (-85)))) (-3416 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1057)) (-5 *2 (-1145 (-484))))) (-3415 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-484)))) (-3415 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-484)) (-5 *3 (-114)))) (-3942 (*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1057)))) (-3414 (*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-584 *1)) (-4 *1 (-1057)))) (-3414 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-584 *1)) (-4 *1 (-1057)))) (-3413 (*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-117)))) (-3413 (*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-114)))) (-3412 (*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-117)))) (-3412 (*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-114)))) (-3411 (*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-117)))) (-3411 (*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-114)))) (-3796 (*1 *1 *1 *1) (-4 *1 (-1057))))
+(-13 (-19 (-117)) (-10 -8 (-15 -3425 ($ $)) (-15 -3424 ($ $)) (-15 -3423 ($ $)) (-15 -3422 ($ $)) (-15 -3421 ((-85) $ $)) (-15 -3420 ((-85) $ $)) (-15 -3419 ((-85) $ $ (-484))) (-15 -3418 ((-695) $ $ (-117))) (-15 -3417 ((-85) $ $ (-117))) (-15 -3416 ($ $ (-1145 (-484)) $)) (-15 -3415 ((-484) $ $ (-484))) (-15 -3415 ((-484) (-114) $ (-484))) (-15 -3942 ($ (-117))) (-15 -3414 ((-584 $) $ (-117))) (-15 -3414 ((-584 $) $ (-114))) (-15 -3413 ($ $ (-117))) (-15 -3413 ($ $ (-114))) (-15 -3412 ($ $ (-117))) (-15 -3412 ($ $ (-114))) (-15 -3411 ($ $ (-117))) (-15 -3411 ($ $ (-114))) (-15 -3796 ($ $ $))))
+(((-34) . T) ((-72) OR (|has| (-117) (-1013)) (|has| (-117) (-757)) (|has| (-117) (-72))) ((-553 (-773)) OR (|has| (-117) (-1013)) (|has| (-117) (-757)) (|has| (-117) (-553 (-773)))) ((-124 (-117)) . T) ((-554 (-473)) |has| (-117) (-554 (-473))) ((-241 (-484) (-117)) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) (-117)) . T) ((-259 (-117)) -12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1013))) ((-321 (-117)) . T) ((-426 (-117)) . T) ((-539 (-484) (-117)) . T) ((-453 (-117) (-117)) -12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1013))) ((-13) . T) ((-594 (-117)) . T) ((-19 (-117)) . T) ((-757) |has| (-117) (-757)) ((-760) |has| (-117) (-757)) ((-1013) OR (|has| (-117) (-1013)) (|has| (-117) (-757))) ((-1128) . T))
+((-3432 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) (-584 |#4|) (-584 |#5|) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) (-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) (-695)) 112 T ELT)) (-3429 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-695)) 61 T ELT)) (-3433 (((-1184) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) (-695)) 97 T ELT)) (-3427 (((-695) (-584 |#4|) (-584 |#5|)) 30 T ELT)) (-3430 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-695)) 63 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-695) (-85)) 65 T ELT)) (-3431 (((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85) (-85) (-85) (-85)) 84 T ELT) (((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85)) 85 T ELT)) (-3968 (((-1072) (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) 90 T ELT)) (-3428 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5|) 60 T ELT)) (-3426 (((-695) (-584 |#4|) (-584 |#5|)) 21 T ELT)))
+(((-1058 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3426 ((-695) (-584 |#4|) (-584 |#5|))) (-15 -3427 ((-695) (-584 |#4|) (-584 |#5|))) (-15 -3428 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5|)) (-15 -3429 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-695))) (-15 -3429 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5|)) (-15 -3430 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-695) (-85))) (-15 -3430 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5| (-695))) (-15 -3430 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) |#4| |#5|)) (-15 -3431 ((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85))) (-15 -3431 ((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3432 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) (-584 |#4|) (-584 |#5|) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) (-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))))) (-695))) (-15 -3968 ((-1072) (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|)))) (-15 -3433 ((-1184) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1598 |#5|))) (-695)))) (-389) (-718) (-757) (-977 |#1| |#2| |#3|) (-1020 |#1| |#2| |#3| |#4|)) (T -1058))
+((-3433 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1598 *9)))) (-5 *4 (-695)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-1184)) (-5 *1 (-1058 *5 *6 *7 *8 *9)))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1598 *8))) (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-1020 *4 *5 *6 *7)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1072)) (-5 *1 (-1058 *4 *5 *6 *7 *8)))) (-3432 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-584 *11)) (|:| |todo| (-584 (-2 (|:| |val| *3) (|:| -1598 *11)))))) (-5 *6 (-695)) (-5 *2 (-584 (-2 (|:| |val| (-584 *10)) (|:| -1598 *11)))) (-5 *3 (-584 *10)) (-5 *4 (-584 *11)) (-4 *10 (-977 *7 *8 *9)) (-4 *11 (-1020 *7 *8 *9 *10)) (-4 *7 (-389)) (-4 *8 (-718)) (-4 *9 (-757)) (-5 *1 (-1058 *7 *8 *9 *10 *11)))) (-3431 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1058 *5 *6 *7 *8 *9)))) (-3431 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1058 *5 *6 *7 *8 *9)))) (-3430 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) (-5 *1 (-1058 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3)))) (-3430 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-695)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) (-5 *1 (-1058 *6 *7 *8 *3 *4)) (-4 *4 (-1020 *6 *7 *8 *3)))) (-3430 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-695)) (-5 *6 (-85)) (-4 *7 (-389)) (-4 *8 (-718)) (-4 *9 (-757)) (-4 *3 (-977 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) (-5 *1 (-1058 *7 *8 *9 *3 *4)) (-4 *4 (-1020 *7 *8 *9 *3)))) (-3429 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) (-5 *1 (-1058 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3)))) (-3429 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-695)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) (-5 *1 (-1058 *6 *7 *8 *3 *4)) (-4 *4 (-1020 *6 *7 *8 *3)))) (-3428 (*1 *2 *3 *4) (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4)))))) (-5 *1 (-1058 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3)))) (-3427 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-695)) (-5 *1 (-1058 *5 *6 *7 *8 *9)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-695)) (-5 *1 (-1058 *5 *6 *7 *8 *9)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3677 (((-584 (-2 (|:| -3857 $) (|:| -1700 (-584 |#4|)))) (-584 |#4|)) NIL T ELT)) (-3678 (((-584 $) (-584 |#4|)) 118 T ELT) (((-584 $) (-584 |#4|) (-85)) 119 T ELT) (((-584 $) (-584 |#4|) (-85) (-85)) 117 T ELT) (((-584 $) (-584 |#4|) (-85) (-85) (-85) (-85)) 120 T ELT)) (-3079 (((-584 |#3|) $) NIL T ELT)) (-2906 (((-85) $) NIL T ELT)) (-2897 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3689 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3684 ((|#4| |#4| $) NIL T ELT)) (-3771 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| $) 91 T ELT)) (-2907 (((-2 (|:| |under| $) (|:| -3127 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3706 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3991)) ELT) (((-3 |#4| #1="failed") $ |#3|) 70 T ELT)) (-3720 (($) NIL T CONST)) (-2902 (((-85) $) 29 (|has| |#1| (-495)) ELT)) (-2904 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2903 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2905 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3685 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2898 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-2899 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-3154 (((-3 $ #1#) (-584 |#4|)) NIL T ELT)) (-3153 (($ (-584 |#4|)) NIL T ELT)) (-3795 (((-3 $ #1#) $) 45 T ELT)) (-3681 ((|#4| |#4| $) 73 T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#4| (-1013))) ELT)) (-3402 (($ |#4| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#4| (-1013))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2900 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-495)) ELT)) (-3690 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3679 ((|#4| |#4| $) NIL T ELT)) (-3838 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3991)) (|has| |#4| (-1013))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3991)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3991)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3692 (((-2 (|:| -3857 (-584 |#4|)) (|:| -1700 (-584 |#4|))) $) NIL T ELT)) (-3194 (((-85) |#4| $) NIL T ELT)) (-3192 (((-85) |#4| $) NIL T ELT)) (-3195 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3434 (((-2 (|:| |val| (-584 |#4|)) (|:| |towers| (-584 $))) (-584 |#4|) (-85) (-85)) 133 T ELT)) (-2887 (((-584 |#4|) $) 18 (|has| $ (-6 -3991)) ELT)) (-3691 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3177 ((|#3| $) 38 T ELT)) (-2606 (((-584 |#4|) $) 19 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#4| $) 27 (-12 (|has| $ (-6 -3991)) (|has| |#4| (-1013))) ELT)) (-1947 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2912 (((-584 |#3|) $) NIL T ELT)) (-2911 (((-85) |#3| $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3188 (((-3 |#4| (-584 $)) |#4| |#4| $) NIL T ELT)) (-3187 (((-584 (-2 (|:| |val| |#4|) (|:| -1598 $))) |#4| |#4| $) 111 T ELT)) (-3794 (((-3 |#4| #1#) $) 42 T ELT)) (-3189 (((-584 $) |#4| $) 96 T ELT)) (-3191 (((-3 (-85) (-584 $)) |#4| $) NIL T ELT)) (-3190 (((-584 (-2 (|:| |val| (-85)) (|:| -1598 $))) |#4| $) 106 T ELT) (((-85) |#4| $) 62 T ELT)) (-3235 (((-584 $) |#4| $) 115 T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) 116 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT)) (-3435 (((-584 $) (-584 |#4|) (-85) (-85) (-85)) 128 T ELT)) (-3436 (($ |#4| $) 82 T ELT) (($ (-584 |#4|) $) 83 T ELT) (((-584 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 81 T ELT)) (-3693 (((-584 |#4|) $) NIL T ELT)) (-3687 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3682 ((|#4| |#4| $) NIL T ELT)) (-3695 (((-85) $ $) NIL T ELT)) (-2901 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3688 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3683 ((|#4| |#4| $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3797 (((-3 |#4| #1#) $) 40 T ELT)) (-1352 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3675 (((-3 $ #1#) $ |#4|) 56 T ELT)) (-3765 (($ $ |#4|) NIL T ELT) (((-584 $) |#4| $) 98 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) 93 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-248 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-584 (-248 |#4|))) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3399 (((-85) $) 17 T ELT)) (-3561 (($) 14 T ELT)) (-3944 (((-695) $) NIL T ELT)) (-1944 (((-695) |#4| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#4| (-1013))) ELT) (((-695) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3396 (($ $) 13 T ELT)) (-3968 (((-473) $) NIL (|has| |#4| (-554 (-473))) ELT)) (-3526 (($ (-584 |#4|)) 22 T ELT)) (-2908 (($ $ |#3|) 49 T ELT)) (-2910 (($ $ |#3|) 51 T ELT)) (-3680 (($ $) NIL T ELT)) (-2909 (($ $ |#3|) NIL T ELT)) (-3942 (((-773) $) 35 T ELT) (((-584 |#4|) $) 46 T ELT)) (-3674 (((-695) $) NIL (|has| |#3| (-317)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3694 (((-3 (-2 (|:| |bas| $) (|:| -3320 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3320 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3686 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) NIL T ELT)) (-3186 (((-584 $) |#4| $) 63 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3676 (((-584 |#3|) $) NIL T ELT)) (-3193 (((-85) |#4| $) NIL T ELT)) (-3929 (((-85) |#3| $) 69 T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-1059 |#1| |#2| |#3| |#4|) (-13 (-1020 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3436 ((-584 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3678 ((-584 $) (-584 |#4|) (-85) (-85))) (-15 -3678 ((-584 $) (-584 |#4|) (-85) (-85) (-85) (-85))) (-15 -3435 ((-584 $) (-584 |#4|) (-85) (-85) (-85))) (-15 -3434 ((-2 (|:| |val| (-584 |#4|)) (|:| |towers| (-584 $))) (-584 |#4|) (-85) (-85))))) (-389) (-718) (-757) (-977 |#1| |#2| |#3|)) (T -1059))
+((-3436 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1059 *5 *6 *7 *3))) (-5 *1 (-1059 *5 *6 *7 *3)) (-4 *3 (-977 *5 *6 *7)))) (-3678 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1059 *5 *6 *7 *8))) (-5 *1 (-1059 *5 *6 *7 *8)))) (-3678 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1059 *5 *6 *7 *8))) (-5 *1 (-1059 *5 *6 *7 *8)))) (-3435 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1059 *5 *6 *7 *8))) (-5 *1 (-1059 *5 *6 *7 *8)))) (-3434 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-584 *8)) (|:| |towers| (-584 (-1059 *5 *6 *7 *8))))) (-5 *1 (-1059 *5 *6 *7 *8)) (-5 *3 (-584 *8)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-3720 (($) 22 T CONST)) (-3463 (((-3 $ "failed") $) 31 T ELT)) (-2408 (((-85) $) 29 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 28 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-695)) 30 T ELT) (($ $ (-831)) 27 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ $ $) 26 T ELT)))
+(((-1060) (-113)) (T -1060))
+NIL
+(-13 (-23) (-664))
+(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-664) . T) ((-1025) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3320 ((|#1| $) 38 T ELT)) (-3437 (($ (-584 |#1|)) 46 T ELT)) (-3720 (($) NIL T CONST)) (-3322 ((|#1| |#1| $) 41 T ELT)) (-3321 ((|#1| $) 36 T ELT)) (-2887 (((-584 |#1|) $) 19 (|has| $ (-6 -3991)) ELT)) (-2606 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 26 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 23 T ELT)) (-3239 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-1272 ((|#1| $) 39 T ELT)) (-3605 (($ |#1| $) 42 T ELT)) (-3240 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1273 ((|#1| $) 37 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3399 (((-85) $) 33 T ELT)) (-3561 (($) 44 T ELT)) (-3319 (((-695) $) 31 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3396 (($ $) 28 T ELT)) (-3942 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1274 (($ (-584 |#1|)) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) 32 (|has| $ (-6 -3991)) ELT)))
+(((-1061 |#1|) (-13 (-1034 |#1|) (-10 -8 (-15 -3437 ($ (-584 |#1|))))) (-1128)) (T -1061))
+((-3437 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-5 *1 (-1061 *3)))))
+((-3784 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) NIL T ELT) (($ $ #3="rest" $) NIL T ELT) ((|#2| $ #4="last" |#2|) NIL T ELT) ((|#2| $ (-1145 (-484)) |#2|) 53 T ELT) ((|#2| $ (-484) |#2|) 50 T ELT)) (-3439 (((-85) $) 12 T ELT)) (-1947 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-3797 ((|#2| $) NIL T ELT) (($ $ (-695)) 17 T ELT)) (-2197 (($ $ |#2|) 49 T ELT)) (-3440 (((-85) $) 11 T ELT)) (-3796 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#2| $ #4#) NIL T ELT) (($ $ (-1145 (-484))) 36 T ELT) ((|#2| $ (-484)) 25 T ELT) ((|#2| $ (-484) |#2|) NIL T ELT)) (-3787 (($ $ $) 56 T ELT) (($ $ |#2|) NIL T ELT)) (-3798 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-584 $)) 45 T ELT) (($ $ |#2|) NIL T ELT)))
+(((-1062 |#1| |#2|) (-10 -7 (-15 -3439 ((-85) |#1|)) (-15 -3440 ((-85) |#1|)) (-15 -3784 (|#2| |#1| (-484) |#2|)) (-15 -3796 (|#2| |#1| (-484) |#2|)) (-15 -3796 (|#2| |#1| (-484))) (-15 -2197 (|#1| |#1| |#2|)) (-15 -3796 (|#1| |#1| (-1145 (-484)))) (-15 -3798 (|#1| |#1| |#2|)) (-15 -3798 (|#1| (-584 |#1|))) (-15 -3784 (|#2| |#1| (-1145 (-484)) |#2|)) (-15 -3784 (|#2| |#1| #1="last" |#2|)) (-15 -3784 (|#1| |#1| #2="rest" |#1|)) (-15 -3784 (|#2| |#1| #3="first" |#2|)) (-15 -3787 (|#1| |#1| |#2|)) (-15 -3787 (|#1| |#1| |#1|)) (-15 -3796 (|#2| |#1| #1#)) (-15 -3796 (|#1| |#1| #2#)) (-15 -3797 (|#1| |#1| (-695))) (-15 -3796 (|#2| |#1| #3#)) (-15 -3797 (|#2| |#1|)) (-15 -3798 (|#1| |#2| |#1|)) (-15 -3798 (|#1| |#1| |#1|)) (-15 -3784 (|#2| |#1| #4="value" |#2|)) (-15 -3796 (|#2| |#1| #4#)) (-15 -1947 (|#1| (-1 |#2| |#2|) |#1|))) (-1063 |#2|) (-1128)) (T -1062))
+NIL
+((-2566 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3398 ((|#1| $) 52 T ELT)) (-3791 ((|#1| $) 71 T ELT)) (-3793 (($ $) 73 T ELT)) (-2196 (((-1184) $ (-484) (-484)) 107 (|has| $ (-6 -3992)) ELT)) (-3781 (($ $ (-484)) 58 (|has| $ (-6 -3992)) ELT)) (-3438 (((-85) $ (-695)) 90 T ELT)) (-3023 ((|#1| $ |#1|) 43 (|has| $ (-6 -3992)) ELT)) (-3783 (($ $ $) 62 (|has| $ (-6 -3992)) ELT)) (-3782 ((|#1| $ |#1|) 60 (|has| $ (-6 -3992)) ELT)) (-3785 ((|#1| $ |#1|) 64 (|has| $ (-6 -3992)) ELT)) (-3784 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3992)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3992)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3992)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3992)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 127 (|has| $ (-6 -3992)) ELT) ((|#1| $ (-484) |#1|) 96 (|has| $ (-6 -3992)) ELT)) (-3024 (($ $ (-584 $)) 45 (|has| $ (-6 -3992)) ELT)) (-3706 (($ (-1 (-85) |#1|) $) 112 (|has| $ (-6 -3991)) ELT)) (-3792 ((|#1| $) 72 T ELT)) (-3720 (($) 7 T CONST)) (-3795 (($ $) 79 T ELT) (($ $ (-695)) 77 T ELT)) (-1351 (($ $) 109 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3402 (($ (-1 (-85) |#1|) $) 113 (|has| $ (-6 -3991)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3838 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-1574 ((|#1| $ (-484) |#1|) 95 (|has| $ (-6 -3992)) ELT)) (-3110 ((|#1| $ (-484)) 97 T ELT)) (-3439 (((-85) $) 93 T ELT)) (-2887 (((-584 |#1|) $) 30 (|has| $ (-6 -3991)) ELT)) (-3029 (((-584 $) $) 54 T ELT)) (-3025 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-3610 (($ (-695) |#1|) 119 T ELT)) (-3715 (((-85) $ (-695)) 91 T ELT)) (-2198 (((-484) $) 105 (|has| (-484) (-757)) ELT)) (-2606 (((-584 |#1|) $) 29 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-2199 (((-484) $) 104 (|has| (-484) (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3712 (((-85) $ (-695)) 92 T ELT)) (-3028 (((-584 |#1|) $) 49 T ELT)) (-3523 (((-85) $) 53 T ELT)) (-3239 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3794 ((|#1| $) 76 T ELT) (($ $ (-695)) 74 T ELT)) (-2302 (($ $ $ (-484)) 126 T ELT) (($ |#1| $ (-484)) 125 T ELT)) (-2201 (((-584 (-484)) $) 102 T ELT)) (-2202 (((-85) (-484) $) 101 T ELT)) (-3240 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3797 ((|#1| $) 82 T ELT) (($ $ (-695)) 80 T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 116 T ELT)) (-2197 (($ $ |#1|) 106 (|has| $ (-6 -3992)) ELT)) (-3440 (((-85) $) 94 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2200 (((-85) |#1| $) 103 (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2203 (((-584 |#1|) $) 100 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-3796 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1145 (-484))) 118 T ELT) ((|#1| $ (-484)) 99 T ELT) ((|#1| $ (-484) |#1|) 98 T ELT)) (-3027 (((-484) $ $) 48 T ELT)) (-2303 (($ $ (-1145 (-484))) 124 T ELT) (($ $ (-484)) 123 T ELT)) (-3629 (((-85) $) 50 T ELT)) (-3788 (($ $) 68 T ELT)) (-3786 (($ $) 65 (|has| $ (-6 -3992)) ELT)) (-3789 (((-695) $) 69 T ELT)) (-3790 (($ $) 70 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3396 (($ $) 10 T ELT)) (-3968 (((-473) $) 108 (|has| |#1| (-554 (-473))) ELT)) (-3526 (($ (-584 |#1|)) 117 T ELT)) (-3787 (($ $ $) 67 (|has| $ (-6 -3992)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3992)) ELT)) (-3798 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-584 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3942 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-3518 (((-584 $) $) 55 T ELT)) (-3026 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-1063 |#1|) (-113) (-1128)) (T -1063))
+((-3440 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))) (-3439 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))) (-3712 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1063 *4)) (-4 *4 (-1128)) (-5 *2 (-85)))) (-3715 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1063 *4)) (-4 *4 (-1128)) (-5 *2 (-85)))) (-3438 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1063 *4)) (-4 *4 (-1128)) (-5 *2 (-85)))))
+(-13 (-1167 |t#1|) (-594 |t#1|) (-10 -8 (-15 -3440 ((-85) $)) (-15 -3439 ((-85) $)) (-15 -3712 ((-85) $ (-695))) (-15 -3715 ((-85) $ (-695))) (-15 -3438 ((-85) $ (-695)))))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-539 (-484) |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-594 |#1|) . T) ((-924 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T) ((-1167 |#1|) . T))
+((-2566 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3595 (($) NIL T ELT) (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2196 (((-1184) $ |#1| |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3784 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-3706 (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-2229 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3401 (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3991)) ELT) (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3402 (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-3838 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3991)) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-1574 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3992)) ELT)) (-3110 ((|#2| $ |#1|) NIL T ELT)) (-2887 (((-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2198 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2606 (((-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT)) (-2199 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2230 (((-584 |#1|) $) NIL T ELT)) (-2231 (((-85) |#1| $) NIL T ELT)) (-1272 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3605 (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2201 (((-584 |#1|) $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL T ELT)) (-3240 (((-1033) $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3797 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1352 (((-3 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2197 (($ $ |#2|) NIL (|has| $ (-6 -3992)) ELT)) (-1273 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-248 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2200 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT)) (-2203 (((-584 |#2|) $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) NIL T ELT)) (-3796 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1464 (($) NIL T ELT) (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1944 (((-695) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT) (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3396 (($ $) NIL T ELT)) (-3968 (((-473) $) NIL (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-554 (-473))) ELT)) (-3526 (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3942 (((-773) $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1263 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1274 (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-1064 |#1| |#2| |#3|) (-1106 |#1| |#2|) (-1013) (-1013) |#2|) (T -1064))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3441 (((-633 $) $) 17 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3442 (($) 18 T CONST)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3054 (((-85) $ $) 8 T ELT)))
+(((-1065) (-113)) (T -1065))
+((-3442 (*1 *1) (-4 *1 (-1065))) (-3441 (*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-1065)))))
+(-13 (-1013) (-10 -8 (-15 -3442 ($) -3948) (-15 -3441 ((-633 $) $))))
+(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3444 (((-633 (-1048)) $) 28 T ELT)) (-3443 (((-1048) $) 16 T ELT)) (-3445 (((-1048) $) 18 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3446 (((-444) $) 14 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 38 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-1066) (-13 (-995) (-10 -8 (-15 -3446 ((-444) $)) (-15 -3445 ((-1048) $)) (-15 -3444 ((-633 (-1048)) $)) (-15 -3443 ((-1048) $))))) (T -1066))
+((-3446 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-1066)))) (-3445 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1066)))) (-3444 (*1 *2 *1) (-12 (-5 *2 (-633 (-1048))) (-5 *1 (-1066)))) (-3443 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1066)))))
+((-3449 (((-1068 |#1|) (-1068 |#1|)) 17 T ELT)) (-3447 (((-1068 |#1|) (-1068 |#1|)) 13 T ELT)) (-3450 (((-1068 |#1|) (-1068 |#1|) (-484) (-484)) 20 T ELT)) (-3448 (((-1068 |#1|) (-1068 |#1|)) 15 T ELT)))
+(((-1067 |#1|) (-10 -7 (-15 -3447 ((-1068 |#1|) (-1068 |#1|))) (-15 -3448 ((-1068 |#1|) (-1068 |#1|))) (-15 -3449 ((-1068 |#1|) (-1068 |#1|))) (-15 -3450 ((-1068 |#1|) (-1068 |#1|) (-484) (-484)))) (-13 (-495) (-120))) (T -1067))
+((-3450 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-484)) (-4 *4 (-13 (-495) (-120))) (-5 *1 (-1067 *4)))) (-3449 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1067 *3)))) (-3448 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1067 *3)))) (-3447 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1067 *3)))))
+((-2566 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3398 ((|#1| $) NIL T ELT)) (-3791 ((|#1| $) NIL T ELT)) (-3793 (($ $) 60 T ELT)) (-2196 (((-1184) $ (-484) (-484)) 93 (|has| $ (-6 -3992)) ELT)) (-3781 (($ $ (-484)) 122 (|has| $ (-6 -3992)) ELT)) (-3438 (((-85) $ (-695)) NIL T ELT)) (-3455 (((-773) $) 46 (|has| |#1| (-1013)) ELT)) (-3454 (((-85)) 49 (|has| |#1| (-1013)) ELT)) (-3023 ((|#1| $ |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3783 (($ $ $) 109 (|has| $ (-6 -3992)) ELT) (($ $ (-484) $) 135 T ELT)) (-3782 ((|#1| $ |#1|) 119 (|has| $ (-6 -3992)) ELT)) (-3785 ((|#1| $ |#1|) 114 (|has| $ (-6 -3992)) ELT)) (-3784 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3992)) ELT) ((|#1| $ #2="first" |#1|) 116 (|has| $ (-6 -3992)) ELT) (($ $ #3="rest" $) 118 (|has| $ (-6 -3992)) ELT) ((|#1| $ #4="last" |#1|) 121 (|has| $ (-6 -3992)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 106 (|has| $ (-6 -3992)) ELT) ((|#1| $ (-484) |#1|) 72 (|has| $ (-6 -3992)) ELT)) (-3024 (($ $ (-584 $)) NIL (|has| $ (-6 -3992)) ELT)) (-3706 (($ (-1 (-85) |#1|) $) 75 T ELT)) (-3792 ((|#1| $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-2321 (($ $) 11 T ELT)) (-3795 (($ $) 35 T ELT) (($ $ (-695)) 105 T ELT)) (-3460 (((-85) (-584 |#1|) $) 128 (|has| |#1| (-1013)) ELT)) (-3461 (($ (-584 |#1|)) 124 T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3402 (($ |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) 74 T ELT)) (-3838 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-1574 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3110 ((|#1| $ (-484)) NIL T ELT)) (-3439 (((-85) $) NIL T ELT)) (-2887 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3456 (((-1184) (-484) $) 133 (|has| |#1| (-1013)) ELT)) (-2320 (((-695) $) 131 T ELT)) (-3029 (((-584 $) $) NIL T ELT)) (-3025 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3610 (($ (-695) |#1|) NIL T ELT)) (-3715 (((-85) $ (-695)) NIL T ELT)) (-2198 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2606 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2199 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 89 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 80 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 84 T ELT)) (-3712 (((-85) $ (-695)) NIL T ELT)) (-3028 (((-584 |#1|) $) NIL T ELT)) (-3523 (((-85) $) NIL T ELT)) (-2323 (($ $) 107 T ELT)) (-2324 (((-85) $) 10 T ELT)) (-3239 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3794 ((|#1| $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2302 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2201 (((-584 (-484)) $) NIL T ELT)) (-2202 (((-85) (-484) $) 90 T ELT)) (-3240 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3453 (($ (-1 |#1|)) 137 T ELT) (($ (-1 |#1| |#1|) |#1|) 138 T ELT)) (-2322 ((|#1| $) 7 T ELT)) (-3797 ((|#1| $) 34 T ELT) (($ $ (-695)) 58 T ELT)) (-3459 (((-2 (|:| |cycle?| (-85)) (|:| -2593 (-695)) (|:| |period| (-695))) (-695) $) 29 T ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-3452 (($ (-1 (-85) |#1|) $) 139 T ELT)) (-3451 (($ (-1 (-85) |#1|) $) 140 T ELT)) (-2197 (($ $ |#1|) 85 (|has| $ (-6 -3992)) ELT)) (-3765 (($ $ (-484)) 40 T ELT)) (-3440 (((-85) $) 88 T ELT)) (-2325 (((-85) $) 9 T ELT)) (-2326 (((-85) $) 130 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 25 T ELT)) (-2200 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2203 (((-584 |#1|) $) NIL T ELT)) (-3399 (((-85) $) 14 T ELT)) (-3561 (($) 53 T ELT)) (-3796 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT) ((|#1| $ (-484)) 70 T ELT) ((|#1| $ (-484) |#1|) NIL T ELT)) (-3027 (((-484) $ $) 57 T ELT)) (-2303 (($ $ (-1145 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-3458 (($ (-1 $)) 56 T ELT)) (-3629 (((-85) $) 86 T ELT)) (-3788 (($ $) 87 T ELT)) (-3786 (($ $) 110 (|has| $ (-6 -3992)) ELT)) (-3789 (((-695) $) NIL T ELT)) (-3790 (($ $) NIL T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3396 (($ $) 52 T ELT)) (-3968 (((-473) $) NIL (|has| |#1| (-554 (-473))) ELT)) (-3526 (($ (-584 |#1|)) 68 T ELT)) (-3457 (($ |#1| $) 108 T ELT)) (-3787 (($ $ $) 112 (|has| $ (-6 -3992)) ELT) (($ $ |#1|) 113 (|has| $ (-6 -3992)) ELT)) (-3798 (($ $ $) 95 T ELT) (($ |#1| $) 54 T ELT) (($ (-584 $)) 100 T ELT) (($ $ |#1|) 94 T ELT)) (-2889 (($ $) 59 T ELT)) (-3942 (($ (-584 |#1|)) 123 T ELT) (((-773) $) 50 (|has| |#1| (-553 (-773))) ELT)) (-3518 (((-584 $) $) NIL T ELT)) (-3026 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 126 (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-1068 |#1|) (-13 (-617 |#1|) (-556 (-584 |#1|)) (-10 -8 (-6 -3992) (-15 -3461 ($ (-584 |#1|))) (IF (|has| |#1| (-1013)) (-15 -3460 ((-85) (-584 |#1|) $)) |%noBranch|) (-15 -3459 ((-2 (|:| |cycle?| (-85)) (|:| -2593 (-695)) (|:| |period| (-695))) (-695) $)) (-15 -3458 ($ (-1 $))) (-15 -3457 ($ |#1| $)) (IF (|has| |#1| (-1013)) (PROGN (-15 -3456 ((-1184) (-484) $)) (-15 -3455 ((-773) $)) (-15 -3454 ((-85)))) |%noBranch|) (-15 -3783 ($ $ (-484) $)) (-15 -3453 ($ (-1 |#1|))) (-15 -3453 ($ (-1 |#1| |#1|) |#1|)) (-15 -3452 ($ (-1 (-85) |#1|) $)) (-15 -3451 ($ (-1 (-85) |#1|) $)))) (-1128)) (T -1068))
+((-3461 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3)))) (-3460 (*1 *2 *3 *1) (-12 (-5 *3 (-584 *4)) (-4 *4 (-1013)) (-4 *4 (-1128)) (-5 *2 (-85)) (-5 *1 (-1068 *4)))) (-3459 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2593 (-695)) (|:| |period| (-695)))) (-5 *1 (-1068 *4)) (-4 *4 (-1128)) (-5 *3 (-695)))) (-3458 (*1 *1 *2) (-12 (-5 *2 (-1 (-1068 *3))) (-5 *1 (-1068 *3)) (-4 *3 (-1128)))) (-3457 (*1 *1 *2 *1) (-12 (-5 *1 (-1068 *2)) (-4 *2 (-1128)))) (-3456 (*1 *2 *3 *1) (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-1068 *4)) (-4 *4 (-1013)) (-4 *4 (-1128)))) (-3455 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1068 *3)) (-4 *3 (-1013)) (-4 *3 (-1128)))) (-3454 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1068 *3)) (-4 *3 (-1013)) (-4 *3 (-1128)))) (-3783 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1068 *3)) (-4 *3 (-1128)))) (-3453 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3)))) (-3453 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3)))) (-3452 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3)))) (-3451 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3)))))
+((-3798 (((-1068 |#1|) (-1068 (-1068 |#1|))) 15 T ELT)))
+(((-1069 |#1|) (-10 -7 (-15 -3798 ((-1068 |#1|) (-1068 (-1068 |#1|))))) (-1128)) (T -1069))
+((-3798 (*1 *2 *3) (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1069 *4)) (-4 *4 (-1128)))))
+((-3837 (((-1068 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1068 |#1|)) 25 T ELT)) (-3838 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1068 |#1|)) 26 T ELT)) (-3954 (((-1068 |#2|) (-1 |#2| |#1|) (-1068 |#1|)) 16 T ELT)))
+(((-1070 |#1| |#2|) (-10 -7 (-15 -3954 ((-1068 |#2|) (-1 |#2| |#1|) (-1068 |#1|))) (-15 -3837 ((-1068 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1068 |#1|))) (-15 -3838 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1068 |#1|)))) (-1128) (-1128)) (T -1070))
+((-3838 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1068 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-1070 *5 *2)))) (-3837 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1068 *6)) (-4 *6 (-1128)) (-4 *3 (-1128)) (-5 *2 (-1068 *3)) (-5 *1 (-1070 *6 *3)))) (-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1068 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1068 *6)) (-5 *1 (-1070 *5 *6)))))
+((-3954 (((-1068 |#3|) (-1 |#3| |#1| |#2|) (-1068 |#1|) (-1068 |#2|)) 21 T ELT)))
+(((-1071 |#1| |#2| |#3|) (-10 -7 (-15 -3954 ((-1068 |#3|) (-1 |#3| |#1| |#2|) (-1068 |#1|) (-1068 |#2|)))) (-1128) (-1128) (-1128)) (T -1071))
+((-3954 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1068 *6)) (-5 *5 (-1068 *7)) (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-1068 *8)) (-5 *1 (-1071 *6 *7 *8)))))
+((-2566 (((-85) $ $) NIL (|has| (-117) (-72)) ELT)) (-3422 (($ $) 42 T ELT)) (-3423 (($ $) NIL T ELT)) (-3413 (($ $ (-117)) NIL T ELT) (($ $ (-114)) NIL T ELT)) (-2196 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-3420 (((-85) $ $) 67 T ELT)) (-3419 (((-85) $ $ (-484)) 62 T ELT)) (-3531 (($ (-484)) 7 T ELT) (($ (-179)) 9 T ELT) (($ (-444)) 11 T ELT)) (-3414 (((-584 $) $ (-117)) 76 T ELT) (((-584 $) $ (-114)) 77 T ELT)) (-1730 (((-85) (-1 (-85) (-117) (-117)) $) NIL T ELT) (((-85) $) NIL (|has| (-117) (-757)) ELT)) (-1728 (($ (-1 (-85) (-117) (-117)) $) NIL (|has| $ (-6 -3992)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| (-117) (-757))) ELT)) (-2907 (($ (-1 (-85) (-117) (-117)) $) NIL T ELT) (($ $) NIL (|has| (-117) (-757)) ELT)) (-3784 (((-117) $ (-484) (-117)) 59 (|has| $ (-6 -3992)) ELT) (((-117) $ (-1145 (-484)) (-117)) NIL (|has| $ (-6 -3992)) ELT)) (-3706 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3991)) ELT)) (-3720 (($) NIL T CONST)) (-3411 (($ $ (-117)) 80 T ELT) (($ $ (-114)) 81 T ELT)) (-2295 (($ $) NIL (|has| $ (-6 -3992)) ELT)) (-2296 (($ $) NIL T ELT)) (-3416 (($ $ (-1145 (-484)) $) 57 T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-117) (-1013))) ELT)) (-3402 (($ (-117) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-117) (-1013))) ELT) (($ (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3991)) ELT)) (-3838 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (-12 (|has| $ (-6 -3991)) (|has| (-117) (-1013))) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL (|has| $ (-6 -3991)) ELT) (((-117) (-1 (-117) (-117) (-117)) $) NIL (|has| $ (-6 -3991)) ELT)) (-1574 (((-117) $ (-484) (-117)) NIL (|has| $ (-6 -3992)) ELT)) (-3110 (((-117) $ (-484)) NIL T ELT)) (-3421 (((-85) $ $) 91 T ELT)) (-3415 (((-484) (-1 (-85) (-117)) $) NIL T ELT) (((-484) (-117) $) NIL (|has| (-117) (-1013)) ELT) (((-484) (-117) $ (-484)) 64 (|has| (-117) (-1013)) ELT) (((-484) $ $ (-484)) 63 T ELT) (((-484) (-114) $ (-484)) 66 T ELT)) (-2887 (((-584 (-117)) $) NIL (|has| $ (-6 -3991)) ELT)) (-3610 (($ (-695) (-117)) 14 T ELT)) (-2198 (((-484) $) 36 (|has| (-484) (-757)) ELT)) (-2529 (($ $ $) NIL (|has| (-117) (-757)) ELT)) (-3514 (($ (-1 (-85) (-117) (-117)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-117) (-757)) ELT)) (-2606 (((-584 (-117)) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) (-117) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-117) (-1013))) ELT)) (-2199 (((-484) $) 50 (|has| (-484) (-757)) ELT)) (-2855 (($ $ $) NIL (|has| (-117) (-757)) ELT)) (-3417 (((-85) $ $ (-117)) 92 T ELT)) (-3418 (((-695) $ $ (-117)) 88 T ELT)) (-1947 (($ (-1 (-117) (-117)) $) 41 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 (-117) (-117)) $) NIL T ELT) (($ (-1 (-117) (-117) (-117)) $ $) NIL T ELT)) (-3424 (($ $) 45 T ELT)) (-3425 (($ $) NIL T ELT)) (-3412 (($ $ (-117)) 78 T ELT) (($ $ (-114)) 79 T ELT)) (-3239 (((-1072) $) 46 (|has| (-117) (-1013)) ELT)) (-2302 (($ (-117) $ (-484)) NIL T ELT) (($ $ $ (-484)) 31 T ELT)) (-2201 (((-584 (-484)) $) NIL T ELT)) (-2202 (((-85) (-484) $) NIL T ELT)) (-3240 (((-1033) $) 87 (|has| (-117) (-1013)) ELT)) (-3797 (((-117) $) NIL (|has| (-484) (-757)) ELT)) (-1352 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-2197 (($ $ (-117)) NIL (|has| $ (-6 -3992)) ELT)) (-1945 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 (-117)))) NIL (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-248 (-117))) NIL (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-584 (-117)) (-584 (-117))) NIL (-12 (|has| (-117) (-259 (-117))) (|has| (-117) (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2200 (((-85) (-117) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-117) (-1013))) ELT)) (-2203 (((-584 (-117)) $) NIL T ELT)) (-3399 (((-85) $) 19 T ELT)) (-3561 (($) 16 T ELT)) (-3796 (((-117) $ (-484) (-117)) NIL T ELT) (((-117) $ (-484)) 69 T ELT) (($ $ (-1145 (-484))) 29 T ELT) (($ $ $) NIL T ELT)) (-2303 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-1944 (((-695) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) (-117) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-117) (-1013))) ELT)) (-1729 (($ $ $ (-484)) 83 (|has| $ (-6 -3992)) ELT)) (-3396 (($ $) 24 T ELT)) (-3968 (((-473) $) NIL (|has| (-117) (-554 (-473))) ELT)) (-3526 (($ (-584 (-117))) NIL T ELT)) (-3798 (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT) (($ $ $) 23 T ELT) (($ (-584 $)) 84 T ELT)) (-3942 (($ (-117)) NIL T ELT) (((-773) $) 35 (|has| (-117) (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| (-117) (-72)) ELT)) (-1946 (((-85) (-1 (-85) (-117)) $) NIL (|has| $ (-6 -3991)) ELT)) (-2564 (((-85) $ $) NIL (|has| (-117) (-757)) ELT)) (-2565 (((-85) $ $) NIL (|has| (-117) (-757)) ELT)) (-3054 (((-85) $ $) 21 (|has| (-117) (-72)) ELT)) (-2682 (((-85) $ $) NIL (|has| (-117) (-757)) ELT)) (-2683 (((-85) $ $) 22 (|has| (-117) (-757)) ELT)) (-3953 (((-695) $) 20 (|has| $ (-6 -3991)) ELT)))
+(((-1072) (-13 (-1057) (-10 -8 (-15 -3531 ($ (-484))) (-15 -3531 ($ (-179))) (-15 -3531 ($ (-444)))))) (T -1072))
+((-3531 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-1072)))) (-3531 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1072)))) (-3531 (*1 *1 *2) (-12 (-5 *2 (-444)) (-5 *1 (-1072)))))
+((-2566 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3595 (($) NIL T ELT) (($ (-584 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)))) NIL T ELT)) (-2196 (((-1184) $ (-1072) (-1072)) NIL (|has| $ (-6 -3992)) ELT)) (-3784 ((|#1| $ (-1072) |#1|) NIL T ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-3706 (($ (-1 (-85) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-2229 (((-3 |#1| #1="failed") (-1072) $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT)) (-3401 (($ (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) $) NIL (|has| $ (-6 -3991)) ELT) (($ (-1 (-85) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-3 |#1| #1#) (-1072) $) NIL T ELT)) (-3402 (($ (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-3838 (((-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) $ (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (((-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) $ (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) NIL (|has| $ (-6 -3991)) ELT) (((-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-1574 ((|#1| $ (-1072) |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3110 ((|#1| $ (-1072)) NIL T ELT)) (-2887 (((-584 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2198 (((-1072) $) NIL (|has| (-1072) (-757)) ELT)) (-2606 (((-584 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2199 (((-1072) $) NIL (|has| (-1072) (-757)) ELT)) (-1947 (($ (-1 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3992)) ELT) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL (OR (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-1013)) (|has| |#1| (-1013))) ELT)) (-2230 (((-584 (-1072)) $) NIL T ELT)) (-2231 (((-85) (-1072) $) NIL T ELT)) (-1272 (((-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3605 (($ (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2201 (((-584 (-1072)) $) NIL T ELT)) (-2202 (((-85) (-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL (OR (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-1013)) (|has| |#1| (-1013))) ELT)) (-3797 ((|#1| $) NIL (|has| (-1072) (-757)) ELT)) (-1352 (((-3 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2197 (($ $ |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-1273 (((-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-248 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-584 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) (-584 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-259 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2200 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2203 (((-584 |#1|) $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) NIL T ELT)) (-3796 ((|#1| $ (-1072)) NIL T ELT) ((|#1| $ (-1072) |#1|) NIL T ELT)) (-1464 (($) NIL T ELT) (($ (-584 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)))) NIL T ELT)) (-1944 (((-695) (-1 (-85) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-1013))) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT) (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3396 (($ $) NIL T ELT)) (-3968 (((-473) $) NIL (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-554 (-473))) ELT)) (-3526 (($ (-584 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)))) NIL T ELT)) (-3942 (((-773) $) NIL (OR (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-553 (-773))) (|has| |#1| (-553 (-773)))) ELT)) (-1263 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-1274 (($ (-584 (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)))) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3856 (-1072)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-1073 |#1|) (-13 (-1106 (-1072) |#1|) (-10 -7 (-6 -3991))) (-1013)) (T -1073))
+NIL
+((-3801 (((-1068 |#1|) (-1068 |#1|)) 83 T ELT)) (-3463 (((-3 (-1068 |#1|) #1="failed") (-1068 |#1|)) 39 T ELT)) (-3474 (((-1068 |#1|) (-347 (-484)) (-1068 |#1|)) 131 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3477 (((-1068 |#1|) |#1| (-1068 |#1|)) 135 (|has| |#1| (-311)) ELT)) (-3804 (((-1068 |#1|) (-1068 |#1|)) 97 T ELT)) (-3465 (((-1068 (-484)) (-484)) 63 T ELT)) (-3473 (((-1068 |#1|) (-1068 (-1068 |#1|))) 116 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3800 (((-1068 |#1|) (-484) (-484) (-1068 |#1|)) 103 T ELT)) (-3934 (((-1068 |#1|) |#1| (-484)) 51 T ELT)) (-3467 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 66 T ELT)) (-3475 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 133 (|has| |#1| (-311)) ELT)) (-3472 (((-1068 |#1|) |#1| (-1 (-1068 |#1|))) 115 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3476 (((-1068 |#1|) (-1 |#1| (-484)) |#1| (-1 (-1068 |#1|))) 134 (|has| |#1| (-311)) ELT)) (-3805 (((-1068 |#1|) (-1068 |#1|)) 96 T ELT)) (-3806 (((-1068 |#1|) (-1068 |#1|)) 82 T ELT)) (-3799 (((-1068 |#1|) (-484) (-484) (-1068 |#1|)) 104 T ELT)) (-3808 (((-1068 |#1|) |#1| (-1068 |#1|)) 113 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3464 (((-1068 (-484)) (-484)) 62 T ELT)) (-3466 (((-1068 |#1|) |#1|) 65 T ELT)) (-3802 (((-1068 |#1|) (-1068 |#1|) (-484) (-484)) 100 T ELT)) (-3469 (((-1068 |#1|) (-1 |#1| (-484)) (-1068 |#1|)) 72 T ELT)) (-3462 (((-3 (-1068 |#1|) #1#) (-1068 |#1|) (-1068 |#1|)) 37 T ELT)) (-3803 (((-1068 |#1|) (-1068 |#1|)) 98 T ELT)) (-3764 (((-1068 |#1|) (-1068 |#1|) |#1|) 77 T ELT)) (-3468 (((-1068 |#1|) (-1068 |#1|)) 68 T ELT)) (-3470 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 78 T ELT)) (-3942 (((-1068 |#1|) |#1|) 73 T ELT)) (-3471 (((-1068 |#1|) (-1068 (-1068 |#1|))) 88 T ELT)) (-3945 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 38 T ELT)) (-3833 (((-1068 |#1|) (-1068 |#1|)) 21 T ELT) (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 23 T ELT)) (-3835 (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 17 T ELT)) (* (((-1068 |#1|) (-1068 |#1|) |#1|) 29 T ELT) (((-1068 |#1|) |#1| (-1068 |#1|)) 26 T ELT) (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 27 T ELT)))
+(((-1074 |#1|) (-10 -7 (-15 -3835 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3833 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3833 ((-1068 |#1|) (-1068 |#1|))) (-15 * ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 * ((-1068 |#1|) |#1| (-1068 |#1|))) (-15 * ((-1068 |#1|) (-1068 |#1|) |#1|)) (-15 -3462 ((-3 (-1068 |#1|) #1="failed") (-1068 |#1|) (-1068 |#1|))) (-15 -3945 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3463 ((-3 (-1068 |#1|) #1#) (-1068 |#1|))) (-15 -3934 ((-1068 |#1|) |#1| (-484))) (-15 -3464 ((-1068 (-484)) (-484))) (-15 -3465 ((-1068 (-484)) (-484))) (-15 -3466 ((-1068 |#1|) |#1|)) (-15 -3467 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3468 ((-1068 |#1|) (-1068 |#1|))) (-15 -3469 ((-1068 |#1|) (-1 |#1| (-484)) (-1068 |#1|))) (-15 -3942 ((-1068 |#1|) |#1|)) (-15 -3764 ((-1068 |#1|) (-1068 |#1|) |#1|)) (-15 -3470 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3806 ((-1068 |#1|) (-1068 |#1|))) (-15 -3801 ((-1068 |#1|) (-1068 |#1|))) (-15 -3471 ((-1068 |#1|) (-1068 (-1068 |#1|)))) (-15 -3805 ((-1068 |#1|) (-1068 |#1|))) (-15 -3804 ((-1068 |#1|) (-1068 |#1|))) (-15 -3803 ((-1068 |#1|) (-1068 |#1|))) (-15 -3802 ((-1068 |#1|) (-1068 |#1|) (-484) (-484))) (-15 -3800 ((-1068 |#1|) (-484) (-484) (-1068 |#1|))) (-15 -3799 ((-1068 |#1|) (-484) (-484) (-1068 |#1|))) (IF (|has| |#1| (-38 (-347 (-484)))) (PROGN (-15 -3808 ((-1068 |#1|) |#1| (-1068 |#1|))) (-15 -3472 ((-1068 |#1|) |#1| (-1 (-1068 |#1|)))) (-15 -3473 ((-1068 |#1|) (-1068 (-1068 |#1|)))) (-15 -3474 ((-1068 |#1|) (-347 (-484)) (-1068 |#1|)))) |%noBranch|) (IF (|has| |#1| (-311)) (PROGN (-15 -3475 ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3476 ((-1068 |#1|) (-1 |#1| (-484)) |#1| (-1 (-1068 |#1|)))) (-15 -3477 ((-1068 |#1|) |#1| (-1068 |#1|)))) |%noBranch|)) (-962)) (T -1074))
+((-3477 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-311)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (-3476 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-484))) (-5 *5 (-1 (-1068 *4))) (-4 *4 (-311)) (-4 *4 (-962)) (-5 *2 (-1068 *4)) (-5 *1 (-1074 *4)))) (-3475 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-311)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (-3474 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *4)) (-4 *4 (-38 *3)) (-4 *4 (-962)) (-5 *3 (-347 (-484))) (-5 *1 (-1074 *4)))) (-3473 (*1 *2 *3) (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1074 *4)) (-4 *4 (-38 (-347 (-484)))) (-4 *4 (-962)))) (-3472 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1068 *3))) (-5 *2 (-1068 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)))) (-3808 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (-3799 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-484)) (-4 *4 (-962)) (-5 *1 (-1074 *4)))) (-3800 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-484)) (-4 *4 (-962)) (-5 *1 (-1074 *4)))) (-3802 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-484)) (-4 *4 (-962)) (-5 *1 (-1074 *4)))) (-3803 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (-3804 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (-3805 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (-3471 (*1 *2 *3) (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1074 *4)) (-4 *4 (-962)))) (-3801 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (-3806 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (-3470 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (-3764 (*1 *2 *2 *3) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (-3942 (*1 *2 *3) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-962)))) (-3469 (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *4)) (-5 *3 (-1 *4 (-484))) (-4 *4 (-962)) (-5 *1 (-1074 *4)))) (-3468 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (-3467 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (-3466 (*1 *2 *3) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-962)))) (-3465 (*1 *2 *3) (-12 (-5 *2 (-1068 (-484))) (-5 *1 (-1074 *4)) (-4 *4 (-962)) (-5 *3 (-484)))) (-3464 (*1 *2 *3) (-12 (-5 *2 (-1068 (-484))) (-5 *1 (-1074 *4)) (-4 *4 (-962)) (-5 *3 (-484)))) (-3934 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-5 *2 (-1068 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-962)))) (-3463 (*1 *2 *2) (|partial| -12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (-3945 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (-3462 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (-3833 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (-3833 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))) (-3835 (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))))
+((-3488 (((-1068 |#1|) (-1068 |#1|)) 102 T ELT)) (-3635 (((-1068 |#1|) (-1068 |#1|)) 59 T ELT)) (-3479 (((-2 (|:| -3486 (-1068 |#1|)) (|:| -3487 (-1068 |#1|))) (-1068 |#1|)) 98 T ELT)) (-3486 (((-1068 |#1|) (-1068 |#1|)) 99 T ELT)) (-3478 (((-2 (|:| -3634 (-1068 |#1|)) (|:| -3630 (-1068 |#1|))) (-1068 |#1|)) 54 T ELT)) (-3634 (((-1068 |#1|) (-1068 |#1|)) 55 T ELT)) (-3490 (((-1068 |#1|) (-1068 |#1|)) 104 T ELT)) (-3633 (((-1068 |#1|) (-1068 |#1|)) 66 T ELT)) (-3938 (((-1068 |#1|) (-1068 |#1|)) 40 T ELT)) (-3939 (((-1068 |#1|) (-1068 |#1|)) 37 T ELT)) (-3491 (((-1068 |#1|) (-1068 |#1|)) 105 T ELT)) (-3632 (((-1068 |#1|) (-1068 |#1|)) 67 T ELT)) (-3489 (((-1068 |#1|) (-1068 |#1|)) 103 T ELT)) (-3631 (((-1068 |#1|) (-1068 |#1|)) 62 T ELT)) (-3487 (((-1068 |#1|) (-1068 |#1|)) 100 T ELT)) (-3630 (((-1068 |#1|) (-1068 |#1|)) 56 T ELT)) (-3494 (((-1068 |#1|) (-1068 |#1|)) 113 T ELT)) (-3482 (((-1068 |#1|) (-1068 |#1|)) 88 T ELT)) (-3492 (((-1068 |#1|) (-1068 |#1|)) 107 T ELT)) (-3480 (((-1068 |#1|) (-1068 |#1|)) 84 T ELT)) (-3496 (((-1068 |#1|) (-1068 |#1|)) 117 T ELT)) (-3484 (((-1068 |#1|) (-1068 |#1|)) 92 T ELT)) (-3497 (((-1068 |#1|) (-1068 |#1|)) 119 T ELT)) (-3485 (((-1068 |#1|) (-1068 |#1|)) 94 T ELT)) (-3495 (((-1068 |#1|) (-1068 |#1|)) 115 T ELT)) (-3483 (((-1068 |#1|) (-1068 |#1|)) 90 T ELT)) (-3493 (((-1068 |#1|) (-1068 |#1|)) 109 T ELT)) (-3481 (((-1068 |#1|) (-1068 |#1|)) 86 T ELT)) (** (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 41 T ELT)))
+(((-1075 |#1|) (-10 -7 (-15 -3939 ((-1068 |#1|) (-1068 |#1|))) (-15 -3938 ((-1068 |#1|) (-1068 |#1|))) (-15 ** ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3478 ((-2 (|:| -3634 (-1068 |#1|)) (|:| -3630 (-1068 |#1|))) (-1068 |#1|))) (-15 -3634 ((-1068 |#1|) (-1068 |#1|))) (-15 -3630 ((-1068 |#1|) (-1068 |#1|))) (-15 -3635 ((-1068 |#1|) (-1068 |#1|))) (-15 -3631 ((-1068 |#1|) (-1068 |#1|))) (-15 -3633 ((-1068 |#1|) (-1068 |#1|))) (-15 -3632 ((-1068 |#1|) (-1068 |#1|))) (-15 -3480 ((-1068 |#1|) (-1068 |#1|))) (-15 -3481 ((-1068 |#1|) (-1068 |#1|))) (-15 -3482 ((-1068 |#1|) (-1068 |#1|))) (-15 -3483 ((-1068 |#1|) (-1068 |#1|))) (-15 -3484 ((-1068 |#1|) (-1068 |#1|))) (-15 -3485 ((-1068 |#1|) (-1068 |#1|))) (-15 -3479 ((-2 (|:| -3486 (-1068 |#1|)) (|:| -3487 (-1068 |#1|))) (-1068 |#1|))) (-15 -3486 ((-1068 |#1|) (-1068 |#1|))) (-15 -3487 ((-1068 |#1|) (-1068 |#1|))) (-15 -3488 ((-1068 |#1|) (-1068 |#1|))) (-15 -3489 ((-1068 |#1|) (-1068 |#1|))) (-15 -3490 ((-1068 |#1|) (-1068 |#1|))) (-15 -3491 ((-1068 |#1|) (-1068 |#1|))) (-15 -3492 ((-1068 |#1|) (-1068 |#1|))) (-15 -3493 ((-1068 |#1|) (-1068 |#1|))) (-15 -3494 ((-1068 |#1|) (-1068 |#1|))) (-15 -3495 ((-1068 |#1|) (-1068 |#1|))) (-15 -3496 ((-1068 |#1|) (-1068 |#1|))) (-15 -3497 ((-1068 |#1|) (-1068 |#1|)))) (-38 (-347 (-484)))) (T -1075))
+((-3497 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3479 (*1 *2 *3) (-12 (-4 *4 (-38 (-347 (-484)))) (-5 *2 (-2 (|:| -3486 (-1068 *4)) (|:| -3487 (-1068 *4)))) (-5 *1 (-1075 *4)) (-5 *3 (-1068 *4)))) (-3485 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3484 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3483 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3482 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3481 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3480 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3632 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3633 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3631 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3635 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3630 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3634 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3478 (*1 *2 *3) (-12 (-4 *4 (-38 (-347 (-484)))) (-5 *2 (-2 (|:| -3634 (-1068 *4)) (|:| -3630 (-1068 *4)))) (-5 *1 (-1075 *4)) (-5 *3 (-1068 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3938 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))) (-3939 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3)))))
+((-3488 (((-1068 |#1|) (-1068 |#1|)) 60 T ELT)) (-3635 (((-1068 |#1|) (-1068 |#1|)) 42 T ELT)) (-3486 (((-1068 |#1|) (-1068 |#1|)) 56 T ELT)) (-3634 (((-1068 |#1|) (-1068 |#1|)) 38 T ELT)) (-3490 (((-1068 |#1|) (-1068 |#1|)) 63 T ELT)) (-3633 (((-1068 |#1|) (-1068 |#1|)) 45 T ELT)) (-3938 (((-1068 |#1|) (-1068 |#1|)) 34 T ELT)) (-3939 (((-1068 |#1|) (-1068 |#1|)) 29 T ELT)) (-3491 (((-1068 |#1|) (-1068 |#1|)) 64 T ELT)) (-3632 (((-1068 |#1|) (-1068 |#1|)) 46 T ELT)) (-3489 (((-1068 |#1|) (-1068 |#1|)) 61 T ELT)) (-3631 (((-1068 |#1|) (-1068 |#1|)) 43 T ELT)) (-3487 (((-1068 |#1|) (-1068 |#1|)) 58 T ELT)) (-3630 (((-1068 |#1|) (-1068 |#1|)) 40 T ELT)) (-3494 (((-1068 |#1|) (-1068 |#1|)) 68 T ELT)) (-3482 (((-1068 |#1|) (-1068 |#1|)) 50 T ELT)) (-3492 (((-1068 |#1|) (-1068 |#1|)) 66 T ELT)) (-3480 (((-1068 |#1|) (-1068 |#1|)) 48 T ELT)) (-3496 (((-1068 |#1|) (-1068 |#1|)) 71 T ELT)) (-3484 (((-1068 |#1|) (-1068 |#1|)) 53 T ELT)) (-3497 (((-1068 |#1|) (-1068 |#1|)) 72 T ELT)) (-3485 (((-1068 |#1|) (-1068 |#1|)) 54 T ELT)) (-3495 (((-1068 |#1|) (-1068 |#1|)) 70 T ELT)) (-3483 (((-1068 |#1|) (-1068 |#1|)) 52 T ELT)) (-3493 (((-1068 |#1|) (-1068 |#1|)) 69 T ELT)) (-3481 (((-1068 |#1|) (-1068 |#1|)) 51 T ELT)) (** (((-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) 36 T ELT)))
+(((-1076 |#1|) (-10 -7 (-15 -3939 ((-1068 |#1|) (-1068 |#1|))) (-15 -3938 ((-1068 |#1|) (-1068 |#1|))) (-15 ** ((-1068 |#1|) (-1068 |#1|) (-1068 |#1|))) (-15 -3634 ((-1068 |#1|) (-1068 |#1|))) (-15 -3630 ((-1068 |#1|) (-1068 |#1|))) (-15 -3635 ((-1068 |#1|) (-1068 |#1|))) (-15 -3631 ((-1068 |#1|) (-1068 |#1|))) (-15 -3633 ((-1068 |#1|) (-1068 |#1|))) (-15 -3632 ((-1068 |#1|) (-1068 |#1|))) (-15 -3480 ((-1068 |#1|) (-1068 |#1|))) (-15 -3481 ((-1068 |#1|) (-1068 |#1|))) (-15 -3482 ((-1068 |#1|) (-1068 |#1|))) (-15 -3483 ((-1068 |#1|) (-1068 |#1|))) (-15 -3484 ((-1068 |#1|) (-1068 |#1|))) (-15 -3485 ((-1068 |#1|) (-1068 |#1|))) (-15 -3486 ((-1068 |#1|) (-1068 |#1|))) (-15 -3487 ((-1068 |#1|) (-1068 |#1|))) (-15 -3488 ((-1068 |#1|) (-1068 |#1|))) (-15 -3489 ((-1068 |#1|) (-1068 |#1|))) (-15 -3490 ((-1068 |#1|) (-1068 |#1|))) (-15 -3491 ((-1068 |#1|) (-1068 |#1|))) (-15 -3492 ((-1068 |#1|) (-1068 |#1|))) (-15 -3493 ((-1068 |#1|) (-1068 |#1|))) (-15 -3494 ((-1068 |#1|) (-1068 |#1|))) (-15 -3495 ((-1068 |#1|) (-1068 |#1|))) (-15 -3496 ((-1068 |#1|) (-1068 |#1|))) (-15 -3497 ((-1068 |#1|) (-1068 |#1|)))) (-38 (-347 (-484)))) (T -1076))
+((-3497 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3485 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3484 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3483 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3482 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3481 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3480 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3632 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3633 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3631 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3635 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3630 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3634 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3938 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))) (-3939 (*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))))
+((-3498 (((-870 |#2|) |#2| |#2|) 51 T ELT)) (-3499 ((|#2| |#2| |#1|) 19 (|has| |#1| (-257)) ELT)))
+(((-1077 |#1| |#2|) (-10 -7 (-15 -3498 ((-870 |#2|) |#2| |#2|)) (IF (|has| |#1| (-257)) (-15 -3499 (|#2| |#2| |#1|)) |%noBranch|)) (-495) (-1154 |#1|)) (T -1077))
+((-3499 (*1 *2 *2 *3) (-12 (-4 *3 (-257)) (-4 *3 (-495)) (-5 *1 (-1077 *3 *2)) (-4 *2 (-1154 *3)))) (-3498 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-870 *3)) (-5 *1 (-1077 *4 *3)) (-4 *3 (-1154 *4)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3507 (($ $ (-584 (-695))) 79 T ELT)) (-3884 (($) 33 T ELT)) (-3516 (($ $) 51 T ELT)) (-3747 (((-584 $) $) 60 T ELT)) (-3522 (((-85) $) 19 T ELT)) (-3500 (((-584 (-855 |#2|)) $) 86 T ELT)) (-3501 (($ $) 80 T ELT)) (-3517 (((-695) $) 47 T ELT)) (-3610 (($) 32 T ELT)) (-3510 (($ $ (-584 (-695)) (-855 |#2|)) 72 T ELT) (($ $ (-584 (-695)) (-695)) 73 T ELT) (($ $ (-695) (-855 |#2|)) 75 T ELT)) (-3514 (($ $ $) 57 T ELT) (($ (-584 $)) 59 T ELT)) (-3502 (((-695) $) 87 T ELT)) (-3523 (((-85) $) 15 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3521 (((-85) $) 22 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3503 (((-145) $) 85 T ELT)) (-3506 (((-855 |#2|) $) 81 T ELT)) (-3505 (((-695) $) 82 T ELT)) (-3504 (((-85) $) 84 T ELT)) (-3508 (($ $ (-584 (-695)) (-145)) 78 T ELT)) (-3515 (($ $) 52 T ELT)) (-3942 (((-773) $) 99 T ELT)) (-3509 (($ $ (-584 (-695)) (-85)) 77 T ELT)) (-3518 (((-584 $) $) 11 T ELT)) (-3519 (($ $ (-695)) 46 T ELT)) (-3520 (($ $) 43 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3511 (($ $ $ (-855 |#2|) (-695)) 68 T ELT)) (-3512 (($ $ (-855 |#2|)) 67 T ELT)) (-3513 (($ $ (-584 (-695)) (-855 |#2|)) 66 T ELT) (($ $ (-584 (-695)) (-695)) 70 T ELT) (((-695) $ (-855 |#2|)) 71 T ELT)) (-3054 (((-85) $ $) 92 T ELT)))
+(((-1078 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -3523 ((-85) $)) (-15 -3522 ((-85) $)) (-15 -3521 ((-85) $)) (-15 -3610 ($)) (-15 -3884 ($)) (-15 -3520 ($ $)) (-15 -3519 ($ $ (-695))) (-15 -3518 ((-584 $) $)) (-15 -3517 ((-695) $)) (-15 -3516 ($ $)) (-15 -3515 ($ $)) (-15 -3514 ($ $ $)) (-15 -3514 ($ (-584 $))) (-15 -3747 ((-584 $) $)) (-15 -3513 ($ $ (-584 (-695)) (-855 |#2|))) (-15 -3512 ($ $ (-855 |#2|))) (-15 -3511 ($ $ $ (-855 |#2|) (-695))) (-15 -3510 ($ $ (-584 (-695)) (-855 |#2|))) (-15 -3513 ($ $ (-584 (-695)) (-695))) (-15 -3510 ($ $ (-584 (-695)) (-695))) (-15 -3513 ((-695) $ (-855 |#2|))) (-15 -3510 ($ $ (-695) (-855 |#2|))) (-15 -3509 ($ $ (-584 (-695)) (-85))) (-15 -3508 ($ $ (-584 (-695)) (-145))) (-15 -3507 ($ $ (-584 (-695)))) (-15 -3506 ((-855 |#2|) $)) (-15 -3505 ((-695) $)) (-15 -3504 ((-85) $)) (-15 -3503 ((-145) $)) (-15 -3502 ((-695) $)) (-15 -3501 ($ $)) (-15 -3500 ((-584 (-855 |#2|)) $)))) (-831) (-962)) (T -1078))
+((-3523 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3522 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3521 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3610 (*1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3884 (*1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3520 (*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3519 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3518 (*1 *2 *1) (-12 (-5 *2 (-584 (-1078 *3 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3517 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3516 (*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3515 (*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3514 (*1 *1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-584 (-1078 *3 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3747 (*1 *2 *1) (-12 (-5 *2 (-584 (-1078 *3 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3513 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-831)))) (-3512 (*1 *1 *1 *2) (-12 (-5 *2 (-855 *4)) (-4 *4 (-962)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)))) (-3511 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-855 *5)) (-5 *3 (-695)) (-4 *5 (-962)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-831)))) (-3510 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-831)))) (-3513 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-695)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-831)) (-4 *5 (-962)))) (-3510 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-695)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-831)) (-4 *5 (-962)))) (-3513 (*1 *2 *1 *3) (-12 (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *2 (-695)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-831)))) (-3510 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-831)))) (-3509 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-85)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-831)) (-4 *5 (-962)))) (-3508 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-145)) (-5 *1 (-1078 *4 *5)) (-14 *4 (-831)) (-4 *5 (-962)))) (-3507 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3506 (*1 *2 *1) (-12 (-5 *2 (-855 *4)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3505 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3504 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3503 (*1 *2 *1) (-12 (-5 *2 (-145)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3502 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3501 (*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3500 (*1 *2 *1) (-12 (-5 *2 (-584 (-855 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3524 ((|#2| $) 11 T ELT)) (-3525 ((|#1| $) 10 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3526 (($ |#1| |#2|) 9 T ELT)) (-3942 (((-773) $) 16 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-1079 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -3526 ($ |#1| |#2|)) (-15 -3525 (|#1| $)) (-15 -3524 (|#2| $)))) (-1013) (-1013)) (T -1079))
+((-3526 (*1 *1 *2 *3) (-12 (-5 *1 (-1079 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-3525 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-1079 *2 *3)) (-4 *3 (-1013)))) (-3524 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-1079 *3 *2)) (-4 *3 (-1013)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3527 (((-1048) $) 10 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 16 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-1080) (-13 (-995) (-10 -8 (-15 -3527 ((-1048) $))))) (T -1080))
+((-3527 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1080)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3126 (((-1088 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-257)) (|has| |#1| (-311))) ELT)) (-3079 (((-584 (-994)) $) NIL T ELT)) (-3827 (((-1089) $) 11 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (|has| |#1| (-495))) ELT)) (-2061 (($ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (|has| |#1| (-495))) ELT)) (-2059 (((-85) $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (|has| |#1| (-495))) ELT)) (-3767 (($ $ (-484)) NIL T ELT) (($ $ (-484) (-484)) 75 T ELT)) (-3770 (((-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) NIL T ELT)) (-3727 (((-1088 |#1| |#2| |#3|) $) 42 T ELT)) (-3724 (((-3 (-1088 |#1| |#2| |#3|) #1="failed") $) 32 T ELT)) (-3725 (((-1088 |#1| |#2| |#3|) $) 33 T ELT)) (-3488 (($ $) 116 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) 92 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ #1#) $ $) NIL T ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) ELT)) (-3771 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3967 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-3035 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2702 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3486 (($ $) 112 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) 88 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3619 (((-484) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) ELT)) (-3814 (($ (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) NIL T ELT)) (-3490 (($ $) 120 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) 96 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 (-1088 |#1| |#2| |#3|) #1#) $) 34 T ELT) (((-3 (-1089) #1#) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-951 (-1089))) (|has| |#1| (-311))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-951 (-484))) (|has| |#1| (-311))) ELT) (((-3 (-484) #1#) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-951 (-484))) (|has| |#1| (-311))) ELT)) (-3153 (((-1088 |#1| |#2| |#3|) $) 140 T ELT) (((-1089) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-951 (-1089))) (|has| |#1| (-311))) ELT) (((-347 (-484)) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-951 (-484))) (|has| |#1| (-311))) ELT) (((-484) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-951 (-484))) (|has| |#1| (-311))) ELT)) (-3726 (($ $) 37 T ELT) (($ (-484) $) 38 T ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3955 (($ $) NIL T ELT)) (-2277 (((-631 (-1088 |#1| |#2| |#3|)) (-631 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-1088 |#1| |#2| |#3|))) (|:| |vec| (-1178 (-1088 |#1| |#2| |#3|)))) (-631 $) (-1178 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-581 (-484))) (|has| |#1| (-311))) ELT) (((-631 (-484)) (-631 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-581 (-484))) (|has| |#1| (-311))) ELT)) (-3463 (((-3 $ #1#) $) 54 T ELT)) (-3723 (((-347 (-858 |#1|)) $ (-484)) 74 (|has| |#1| (-495)) ELT) (((-347 (-858 |#1|)) $ (-484) (-484)) 76 (|has| |#1| (-495)) ELT)) (-2992 (($) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-483)) (|has| |#1| (-311))) ELT)) (-2561 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3719 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-3183 (((-85) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) ELT)) (-2890 (((-85) $) 28 T ELT)) (-3623 (($) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2794 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-797 (-327))) (|has| |#1| (-311))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-797 (-484))) (|has| |#1| (-311))) ELT)) (-3768 (((-484) $) NIL T ELT) (((-484) $ (-484)) 26 T ELT)) (-2408 (((-85) $) NIL T ELT)) (-2994 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2996 (((-1088 |#1| |#2| |#3|) $) 44 (|has| |#1| (-311)) ELT)) (-3009 (($ $ (-484)) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3441 (((-633 $) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-1065)) (|has| |#1| (-311))) ELT)) (-3184 (((-85) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) ELT)) (-3773 (($ $ (-831)) NIL T ELT)) (-3811 (($ (-1 |#1| (-484)) $) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3933 (((-85) $) NIL T ELT)) (-2891 (($ |#1| (-484)) 19 T ELT) (($ $ (-994) (-484)) NIL T ELT) (($ $ (-584 (-994)) (-584 (-484))) NIL T ELT)) (-2529 (($ $ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-2855 (($ $ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-311)) ELT)) (-3938 (($ $) 81 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2278 (((-631 (-1088 |#1| |#2| |#3|)) (-1178 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-1088 |#1| |#2| |#3|))) (|:| |vec| (-1178 (-1088 |#1| |#2| |#3|)))) (-1178 $) $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-581 (-484))) (|has| |#1| (-311))) ELT) (((-631 (-484)) (-1178 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-581 (-484))) (|has| |#1| (-311))) ELT)) (-2892 (($ $) NIL T ELT)) (-3171 ((|#1| $) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3775 (($ (-484) (-1088 |#1| |#2| |#3|)) 36 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3808 (($ $) 79 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-872)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-15 -3808 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3079 ((-584 (-1089)) |#1|))))) ELT) (($ $ (-1175 |#2|)) 80 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3442 (($) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-1065)) (|has| |#1| (-311))) CONST)) (-3240 (((-1033) $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-311)) ELT)) (-3141 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3125 (($ $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-257)) (|has| |#1| (-311))) ELT)) (-3127 (((-1088 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-483)) (|has| |#1| (-311))) ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) ELT)) (-3728 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3765 (($ $ (-484)) 158 T ELT)) (-3462 (((-3 $ #1#) $ $) 55 (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (|has| |#1| (-495))) ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3939 (($ $) 82 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3764 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT) (($ $ (-1089) (-1088 |#1| |#2| |#3|)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-453 (-1089) (-1088 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-584 (-1089)) (-584 (-1088 |#1| |#2| |#3|))) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-453 (-1089) (-1088 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-584 (-248 (-1088 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-259 (-1088 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-248 (-1088 |#1| |#2| |#3|))) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-259 (-1088 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-259 (-1088 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-584 (-1088 |#1| |#2| |#3|)) (-584 (-1088 |#1| |#2| |#3|))) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-259 (-1088 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT)) (-1605 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-3796 ((|#1| $ (-484)) NIL T ELT) (($ $ $) 61 (|has| (-484) (-1025)) ELT) (($ $ (-1088 |#1| |#2| |#3|)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-241 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3754 (($ $ (-1 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) (-695)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|))) NIL (|has| |#1| (-311)) ELT) (($ $ (-1175 |#2|)) 57 T ELT) (($ $) 56 (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-190)) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-190)) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-810 (-1089))) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-584 (-1089))) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-810 (-1089))) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1089) (-695)) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-810 (-1089))) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-810 (-1089))) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2993 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2995 (((-1088 |#1| |#2| |#3|) $) 46 (|has| |#1| (-311)) ELT)) (-3944 (((-484) $) 43 T ELT)) (-3491 (($ $) 122 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) 98 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3489 (($ $) 118 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) 94 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3487 (($ $) 114 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3630 (($ $) 90 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3968 (((-473) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-554 (-473))) (|has| |#1| (-311))) ELT) (((-327) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-934)) (|has| |#1| (-311))) ELT) (((-179) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-934)) (|has| |#1| (-311))) ELT) (((-801 (-327)) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-554 (-801 (-327)))) (|has| |#1| (-311))) ELT) (((-801 (-484)) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-554 (-801 (-484)))) (|has| |#1| (-311))) ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-1088 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) ELT)) (-2889 (($ $) NIL T ELT)) (-3942 (((-773) $) 162 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1088 |#1| |#2| |#3|)) 30 T ELT) (($ (-1175 |#2|)) 25 T ELT) (($ (-1089)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-951 (-1089))) (|has| |#1| (-311))) ELT) (($ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (|has| |#1| (-495))) ELT) (($ (-347 (-484))) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-951 (-484))) (|has| |#1| (-311))) (|has| |#1| (-38 (-347 (-484))))) ELT)) (-3673 ((|#1| $ (-484)) 77 T ELT)) (-2700 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1088 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-118)) (|has| |#1| (-311))) (|has| |#1| (-118))) ELT)) (-3123 (((-695)) NIL T CONST)) (-3769 ((|#1| $) 12 T ELT)) (-3128 (((-1088 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-483)) (|has| |#1| (-311))) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3494 (($ $) 128 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) 104 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2060 (((-85) $ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (|has| |#1| (-495))) ELT)) (-3492 (($ $) 124 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3480 (($ $) 100 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) 132 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) 108 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3766 ((|#1| $ (-484)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3942 (|#1| (-1089))))) ELT)) (-3497 (($ $) 134 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) 110 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3495 (($ $) 130 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) 106 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3493 (($ $) 126 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) 102 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3379 (($ $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) ELT)) (-2658 (($) 21 T CONST)) (-2664 (($) 16 T CONST)) (-2667 (($ $ (-1 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) (-695)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|))) NIL (|has| |#1| (-311)) ELT) (($ $ (-1175 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-190)) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-190)) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-810 (-1089))) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-584 (-1089))) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-810 (-1089))) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1089) (-695)) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-810 (-1089))) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-810 (-1089))) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2564 (((-85) $ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-2565 (((-85) $ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-2683 (((-85) $ $) NIL (OR (-12 (|has| (-1088 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-3945 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) 49 (|has| |#1| (-311)) ELT) (($ (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) 50 (|has| |#1| (-311)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) 23 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 60 T ELT) (($ $ (-484)) NIL (|has| |#1| (-311)) ELT) (($ $ $) 83 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 137 (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1088 |#1| |#2| |#3|)) 48 (|has| |#1| (-311)) ELT) (($ (-1088 |#1| |#2| |#3|) $) 47 (|has| |#1| (-311)) ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)))
+(((-1081 |#1| |#2| |#3|) (-13 (-1142 |#1| (-1088 |#1| |#2| |#3|)) (-807 $ (-1175 |#2|)) (-10 -8 (-15 -3942 ($ (-1175 |#2|))) (IF (|has| |#1| (-38 (-347 (-484)))) (-15 -3808 ($ $ (-1175 |#2|))) |%noBranch|))) (-962) (-1089) |#1|) (T -1081))
+((-3942 (*1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1081 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-3808 (*1 *1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1081 *3 *4 *5)) (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) (-14 *5 *3))))
+((-3528 ((|#2| |#2| (-1004 |#2|)) 26 T ELT) ((|#2| |#2| (-1089)) 28 T ELT)))
+(((-1082 |#1| |#2|) (-10 -7 (-15 -3528 (|#2| |#2| (-1089))) (-15 -3528 (|#2| |#2| (-1004 |#2|)))) (-13 (-495) (-951 (-484)) (-581 (-484))) (-13 (-361 |#1|) (-133) (-27) (-1114))) (T -1082))
+((-3528 (*1 *2 *2 *3) (-12 (-5 *3 (-1004 *2)) (-4 *2 (-13 (-361 *4) (-133) (-27) (-1114))) (-4 *4 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *1 (-1082 *4 *2)))) (-3528 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *1 (-1082 *4 *2)) (-4 *2 (-13 (-361 *4) (-133) (-27) (-1114))))))
+((-3528 (((-3 (-347 (-858 |#1|)) (-264 |#1|)) (-347 (-858 |#1|)) (-1004 (-347 (-858 |#1|)))) 31 T ELT) (((-347 (-858 |#1|)) (-858 |#1|) (-1004 (-858 |#1|))) 44 T ELT) (((-3 (-347 (-858 |#1|)) (-264 |#1|)) (-347 (-858 |#1|)) (-1089)) 33 T ELT) (((-347 (-858 |#1|)) (-858 |#1|) (-1089)) 36 T ELT)))
+(((-1083 |#1|) (-10 -7 (-15 -3528 ((-347 (-858 |#1|)) (-858 |#1|) (-1089))) (-15 -3528 ((-3 (-347 (-858 |#1|)) (-264 |#1|)) (-347 (-858 |#1|)) (-1089))) (-15 -3528 ((-347 (-858 |#1|)) (-858 |#1|) (-1004 (-858 |#1|)))) (-15 -3528 ((-3 (-347 (-858 |#1|)) (-264 |#1|)) (-347 (-858 |#1|)) (-1004 (-347 (-858 |#1|)))))) (-13 (-495) (-951 (-484)))) (T -1083))
+((-3528 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-347 (-858 *5)))) (-5 *3 (-347 (-858 *5))) (-4 *5 (-13 (-495) (-951 (-484)))) (-5 *2 (-3 *3 (-264 *5))) (-5 *1 (-1083 *5)))) (-3528 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-858 *5))) (-5 *3 (-858 *5)) (-4 *5 (-13 (-495) (-951 (-484)))) (-5 *2 (-347 *3)) (-5 *1 (-1083 *5)))) (-3528 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-951 (-484)))) (-5 *2 (-3 (-347 (-858 *5)) (-264 *5))) (-5 *1 (-1083 *5)) (-5 *3 (-347 (-858 *5))))) (-3528 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-951 (-484)))) (-5 *2 (-347 (-858 *5))) (-5 *1 (-1083 *5)) (-5 *3 (-858 *5)))))
+((-2566 (((-85) $ $) 172 T ELT)) (-3185 (((-85) $) 44 T ELT)) (-3763 (((-1178 |#1|) $ (-695)) NIL T ELT)) (-3079 (((-584 (-994)) $) NIL T ELT)) (-3761 (($ (-1084 |#1|)) NIL T ELT)) (-3081 (((-1084 $) $ (-994)) 83 T ELT) (((-1084 |#1|) $) 72 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2061 (($ $) 166 (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2817 (((-695) $) NIL T ELT) (((-695) $ (-584 (-994))) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3751 (($ $ $) 160 (|has| |#1| (-495)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) 97 (|has| |#1| (-822)) ELT)) (-3771 (($ $) NIL (|has| |#1| (-389)) ELT)) (-3967 (((-345 $) $) NIL (|has| |#1| (-389)) ELT)) (-2702 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) 117 (|has| |#1| (-822)) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3757 (($ $ (-695)) 62 T ELT)) (-3756 (($ $ (-695)) 64 T ELT)) (-3747 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-389)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-994) #1#) $) NIL T ELT)) (-3153 ((|#1| $) NIL T ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-994) $) NIL T ELT)) (-3752 (($ $ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 162 (|has| |#1| (-146)) ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3955 (($ $) 81 T ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2561 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3755 (($ $ $) 133 T ELT)) (-3749 (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3748 (((-2 (|:| -3950 |#1|) (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3499 (($ $) 167 (|has| |#1| (-389)) ELT) (($ $ (-994)) NIL (|has| |#1| (-389)) ELT)) (-2816 (((-584 $) $) NIL T ELT)) (-3719 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1622 (($ $ |#1| (-695) $) 70 T ELT)) (-2794 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (-12 (|has| (-994) (-797 (-327))) (|has| |#1| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (-12 (|has| (-994) (-797 (-484))) (|has| |#1| (-797 (-484)))) ELT)) (-3529 (((-773) $ (-773)) 150 T ELT)) (-3768 (((-695) $ $) NIL (|has| |#1| (-495)) ELT)) (-2408 (((-85) $) 49 T ELT)) (-2418 (((-695) $) NIL T ELT)) (-3441 (((-633 $) $) NIL (|has| |#1| (-1065)) ELT)) (-3082 (($ (-1084 |#1|) (-994)) 74 T ELT) (($ (-1084 $) (-994)) 91 T ELT)) (-3773 (($ $ (-695)) 52 T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2891 (($ |#1| (-695)) 89 T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT)) (-3759 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $ (-994)) NIL T ELT) (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 155 T ELT)) (-2818 (((-695) $) NIL T ELT) (((-695) $ (-994)) NIL T ELT) (((-584 (-695)) $ (-584 (-994))) NIL T ELT)) (-1623 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3762 (((-1084 |#1|) $) NIL T ELT)) (-3080 (((-3 (-994) #1#) $) NIL T ELT)) (-2278 (((-631 (-484)) (-1178 $)) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) NIL T ELT) (((-631 |#1|) (-1178 $)) NIL T ELT)) (-2892 (($ $) NIL T ELT)) (-3171 ((|#1| $) 77 T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) NIL (|has| |#1| (-389)) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3758 (((-2 (|:| -1971 $) (|:| -2900 $)) $ (-695)) 61 T ELT)) (-2821 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-2 (|:| |var| (-994)) (|:| -2399 (-695))) #1#) $) NIL T ELT)) (-3808 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3442 (($) NIL (|has| |#1| (-1065)) CONST)) (-3240 (((-1033) $) NIL T ELT)) (-1795 (((-85) $) 51 T ELT)) (-1794 ((|#1| $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 105 (|has| |#1| (-389)) ELT)) (-3141 (($ (-584 $)) NIL (|has| |#1| (-389)) ELT) (($ $ $) 169 (|has| |#1| (-389)) ELT)) (-3734 (($ $ (-695) |#1| $) 125 T ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) 103 (|has| |#1| (-822)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) 102 (|has| |#1| (-822)) ELT)) (-3728 (((-345 $) $) 110 (|has| |#1| (-822)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3462 (((-3 $ #1#) $ |#1|) 165 (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-495)) ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3764 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-994) |#1|) NIL T ELT) (($ $ (-584 (-994)) (-584 |#1|)) NIL T ELT) (($ $ (-994) $) NIL T ELT) (($ $ (-584 (-994)) (-584 $)) NIL T ELT)) (-1605 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-3796 ((|#1| $ |#1|) 152 T ELT) (($ $ $) 153 T ELT) (((-347 $) (-347 $) (-347 $)) NIL (|has| |#1| (-495)) ELT) ((|#1| (-347 $) |#1|) NIL (|has| |#1| (-311)) ELT) (((-347 $) $ (-347 $)) NIL (|has| |#1| (-495)) ELT)) (-3760 (((-3 $ #1#) $ (-695)) 55 T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 173 (|has| |#1| (-311)) ELT)) (-3753 (($ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) 158 (|has| |#1| (-146)) ELT)) (-3754 (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT)) (-3944 (((-695) $) 79 T ELT) (((-695) $ (-994)) NIL T ELT) (((-584 (-695)) $ (-584 (-994))) NIL T ELT)) (-3968 (((-801 (-327)) $) NIL (-12 (|has| (-994) (-554 (-801 (-327)))) (|has| |#1| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) NIL (-12 (|has| (-994) (-554 (-801 (-484)))) (|has| |#1| (-554 (-801 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-994) (-554 (-473))) (|has| |#1| (-554 (-473)))) ELT)) (-2815 ((|#1| $) 164 (|has| |#1| (-389)) ELT) (($ $ (-994)) NIL (|has| |#1| (-389)) ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3750 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT) (((-3 (-347 $) #1#) (-347 $) $) NIL (|has| |#1| (-495)) ELT)) (-3942 (((-773) $) 151 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) 78 T ELT) (($ (-994)) NIL T ELT) (($ (-347 (-484))) NIL (OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3813 (((-584 |#1|) $) NIL T ELT)) (-3673 ((|#1| $ (-695)) NIL T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT)) (-2700 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3123 (((-695)) NIL T CONST)) (-1621 (($ $ $ (-695)) 42 (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2658 (($) 18 T CONST)) (-2664 (($) 20 T CONST)) (-2667 (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#1| (-812 (-1089))) ELT)) (-3054 (((-85) $ $) 122 T ELT)) (-3945 (($ $ |#1|) 174 (|has| |#1| (-311)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) 92 T ELT)) (** (($ $ (-831)) 14 T ELT) (($ $ (-695)) 12 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ |#1| $) 131 T ELT) (($ $ |#1|) NIL T ELT)))
+(((-1084 |#1|) (-13 (-1154 |#1|) (-10 -8 (-15 -3529 ((-773) $ (-773))) (-15 -3734 ($ $ (-695) |#1| $)))) (-962)) (T -1084))
+((-3529 (*1 *2 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-1084 *3)) (-4 *3 (-962)))) (-3734 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1084 *3)) (-4 *3 (-962)))))
+((-3954 (((-1084 |#2|) (-1 |#2| |#1|) (-1084 |#1|)) 13 T ELT)))
+(((-1085 |#1| |#2|) (-10 -7 (-15 -3954 ((-1084 |#2|) (-1 |#2| |#1|) (-1084 |#1|)))) (-962) (-962)) (T -1085))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1084 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-5 *2 (-1084 *6)) (-5 *1 (-1085 *5 *6)))))
+((-3967 (((-345 (-1084 (-347 |#4|))) (-1084 (-347 |#4|))) 51 T ELT)) (-3728 (((-345 (-1084 (-347 |#4|))) (-1084 (-347 |#4|))) 52 T ELT)))
+(((-1086 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3728 ((-345 (-1084 (-347 |#4|))) (-1084 (-347 |#4|)))) (-15 -3967 ((-345 (-1084 (-347 |#4|))) (-1084 (-347 |#4|))))) (-718) (-757) (-389) (-862 |#3| |#1| |#2|)) (T -1086))
+((-3967 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-389)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-345 (-1084 (-347 *7)))) (-5 *1 (-1086 *4 *5 *6 *7)) (-5 *3 (-1084 (-347 *7))))) (-3728 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-389)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-345 (-1084 (-347 *7)))) (-5 *1 (-1086 *4 *5 *6 *7)) (-5 *3 (-1084 (-347 *7))))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3079 (((-584 (-994)) $) NIL T ELT)) (-3827 (((-1089) $) 11 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2061 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3767 (($ $ (-347 (-484))) NIL T ELT) (($ $ (-347 (-484)) (-347 (-484))) NIL T ELT)) (-3770 (((-1068 (-2 (|:| |k| (-347 (-484))) (|:| |c| |#1|))) $) NIL T ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3771 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3967 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-3035 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3814 (($ (-695) (-1068 (-2 (|:| |k| (-347 (-484))) (|:| |c| |#1|)))) NIL T ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 (-1081 |#1| |#2| |#3|) #1#) $) 33 T ELT) (((-3 (-1088 |#1| |#2| |#3|) #1#) $) 36 T ELT)) (-3153 (((-1081 |#1| |#2| |#3|) $) NIL T ELT) (((-1088 |#1| |#2| |#3|) $) NIL T ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3955 (($ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-3777 (((-347 (-484)) $) 59 T ELT)) (-2561 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3778 (($ (-347 (-484)) (-1081 |#1| |#2| |#3|)) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3719 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-2890 (((-85) $) NIL T ELT)) (-3623 (($) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3768 (((-347 (-484)) $) NIL T ELT) (((-347 (-484)) $ (-347 (-484))) NIL T ELT)) (-2408 (((-85) $) NIL T ELT)) (-3009 (($ $ (-484)) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3773 (($ $ (-831)) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3933 (((-85) $) NIL T ELT)) (-2891 (($ |#1| (-347 (-484))) 20 T ELT) (($ $ (-994) (-347 (-484))) NIL T ELT) (($ $ (-584 (-994)) (-584 (-347 (-484)))) NIL T ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3938 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2892 (($ $) NIL T ELT)) (-3171 ((|#1| $) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3776 (((-1081 |#1| |#2| |#3|) $) 41 T ELT)) (-3774 (((-3 (-1081 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3775 (((-1081 |#1| |#2| |#3|) $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3808 (($ $) 39 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-872)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-15 -3808 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3079 ((-584 (-1089)) |#1|))))) ELT) (($ $ (-1175 |#2|)) 40 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-311)) ELT)) (-3141 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3728 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3765 (($ $ (-347 (-484))) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3939 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3764 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-347 (-484))))) ELT)) (-1605 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-3796 ((|#1| $ (-347 (-484))) NIL T ELT) (($ $ $) NIL (|has| (-347 (-484)) (-1025)) ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3754 (($ $ (-1089)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-1175 |#2|)) 38 T ELT)) (-3944 (((-347 (-484)) $) NIL T ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2889 (($ $) NIL T ELT)) (-3942 (((-773) $) 62 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1081 |#1| |#2| |#3|)) 30 T ELT) (($ (-1088 |#1| |#2| |#3|)) 31 T ELT) (($ (-1175 |#2|)) 26 T ELT) (($ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3673 ((|#1| $ (-347 (-484))) NIL T ELT)) (-2700 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3123 (((-695)) NIL T CONST)) (-3769 ((|#1| $) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2060 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3766 ((|#1| $ (-347 (-484))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-484))))) (|has| |#1| (-15 -3942 (|#1| (-1089))))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2658 (($) 22 T CONST)) (-2664 (($) 16 T CONST)) (-2667 (($ $ (-1089)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-1175 |#2|)) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) 24 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)))
+(((-1087 |#1| |#2| |#3|) (-13 (-1163 |#1| (-1081 |#1| |#2| |#3|)) (-807 $ (-1175 |#2|)) (-951 (-1088 |#1| |#2| |#3|)) (-556 (-1175 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-347 (-484)))) (-15 -3808 ($ $ (-1175 |#2|))) |%noBranch|))) (-962) (-1089) |#1|) (T -1087))
+((-3808 (*1 *1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1087 *3 *4 *5)) (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) (-14 *5 *3))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 129 T ELT)) (-3079 (((-584 (-994)) $) NIL T ELT)) (-3827 (((-1089) $) 119 T ELT)) (-3807 (((-1147 |#2| |#1|) $ (-695)) 69 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2061 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3767 (($ $ (-695)) 85 T ELT) (($ $ (-695) (-695)) 82 T ELT)) (-3770 (((-1068 (-2 (|:| |k| (-695)) (|:| |c| |#1|))) $) 105 T ELT)) (-3488 (($ $) 173 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) 149 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3035 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3486 (($ $) 169 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) 145 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3814 (($ (-1068 (-2 (|:| |k| (-695)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1068 |#1|)) 113 T ELT)) (-3490 (($ $) 177 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) 153 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3720 (($) NIL T CONST)) (-3955 (($ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) 25 T ELT)) (-3812 (($ $) 28 T ELT)) (-3810 (((-858 |#1|) $ (-695)) 81 T ELT) (((-858 |#1|) $ (-695) (-695)) 83 T ELT)) (-2890 (((-85) $) 124 T ELT)) (-3623 (($) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3768 (((-695) $) 126 T ELT) (((-695) $ (-695)) 128 T ELT)) (-2408 (((-85) $) NIL T ELT)) (-3009 (($ $ (-484)) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3773 (($ $ (-831)) NIL T ELT)) (-3811 (($ (-1 |#1| (-484)) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2891 (($ |#1| (-695)) 13 T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3938 (($ $) 135 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2892 (($ $) NIL T ELT)) (-3171 ((|#1| $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3808 (($ $) 133 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-872)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-15 -3808 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3079 ((-584 (-1089)) |#1|))))) ELT) (($ $ (-1175 |#2|)) 134 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3765 (($ $ (-695)) 15 T ELT)) (-3462 (((-3 $ #1#) $ $) 26 (|has| |#1| (-495)) ELT)) (-3939 (($ $) 137 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3764 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-695)))) ELT)) (-3796 ((|#1| $ (-695)) 122 T ELT) (($ $ $) 132 (|has| (-695) (-1025)) ELT)) (-3754 (($ $ (-1089)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) 29 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-1175 |#2|)) 31 T ELT)) (-3944 (((-695) $) NIL T ELT)) (-3491 (($ $) 179 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) 155 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3489 (($ $) 175 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) 151 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3487 (($ $) 171 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3630 (($ $) 147 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2889 (($ $) NIL T ELT)) (-3942 (((-773) $) 206 T ELT) (($ (-484)) NIL T ELT) (($ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ |#1|) 130 (|has| |#1| (-146)) ELT) (($ (-1147 |#2| |#1|)) 55 T ELT) (($ (-1175 |#2|)) 36 T ELT)) (-3813 (((-1068 |#1|) $) 101 T ELT)) (-3673 ((|#1| $ (-695)) 121 T ELT)) (-2700 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3123 (((-695)) NIL T CONST)) (-3769 ((|#1| $) 58 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3494 (($ $) 185 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) 161 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2060 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3492 (($ $) 181 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3480 (($ $) 157 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) 189 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) 165 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3766 ((|#1| $ (-695)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-695)))) (|has| |#1| (-15 -3942 (|#1| (-1089))))) ELT)) (-3497 (($ $) 191 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) 167 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3495 (($ $) 187 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) 163 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3493 (($ $) 183 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) 159 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2658 (($) 17 T CONST)) (-2664 (($) 20 T CONST)) (-2667 (($ $ (-1089)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-1175 |#2|)) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-3835 (($ $ $) 35 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-311)) ELT) (($ $ $) 138 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 141 (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)))
+(((-1088 |#1| |#2| |#3|) (-13 (-1171 |#1|) (-807 $ (-1175 |#2|)) (-10 -8 (-15 -3942 ($ (-1147 |#2| |#1|))) (-15 -3807 ((-1147 |#2| |#1|) $ (-695))) (-15 -3942 ($ (-1175 |#2|))) (IF (|has| |#1| (-38 (-347 (-484)))) (-15 -3808 ($ $ (-1175 |#2|))) |%noBranch|))) (-962) (-1089) |#1|) (T -1088))
+((-3942 (*1 *1 *2) (-12 (-5 *2 (-1147 *4 *3)) (-4 *3 (-962)) (-14 *4 (-1089)) (-14 *5 *3) (-5 *1 (-1088 *3 *4 *5)))) (-3807 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1147 *5 *4)) (-5 *1 (-1088 *4 *5 *6)) (-4 *4 (-962)) (-14 *5 (-1089)) (-14 *6 *4))) (-3942 (*1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1088 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-3808 (*1 *1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1088 *3 *4 *5)) (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) (-14 *5 *3))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3533 (($ $ (-584 (-773))) 48 T ELT)) (-3534 (($ $ (-584 (-773))) 46 T ELT)) (-3531 (((-1072) $) 88 T ELT)) (-3536 (((-2 (|:| -2582 (-584 (-773))) (|:| -2481 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2580 (-584 (-773))) (|:| |args| (-584 (-773)))) $) 95 T ELT)) (-3537 (((-85) $) 86 T ELT)) (-3535 (($ $ (-584 (-584 (-773)))) 45 T ELT) (($ $ (-2 (|:| -2582 (-584 (-773))) (|:| -2481 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2580 (-584 (-773))) (|:| |args| (-584 (-773))))) 85 T ELT)) (-3720 (($) 151 T CONST)) (-3154 (((-3 (-444) "failed") $) 155 T ELT)) (-3153 (((-444) $) NIL T ELT)) (-3539 (((-1184)) 123 T ELT)) (-2794 (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) 55 T ELT) (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 62 T ELT)) (-3610 (($) 109 T ELT) (($ $) 118 T ELT)) (-3538 (($ $) 87 T ELT)) (-2529 (($ $ $) NIL T ELT)) (-2855 (($ $ $) NIL T ELT)) (-3530 (((-584 $) $) 124 T ELT)) (-3239 (((-1072) $) 101 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3796 (($ $ (-584 (-773))) 47 T ELT)) (-3968 (((-473) $) 33 T ELT) (((-1089) $) 34 T ELT) (((-801 (-484)) $) 66 T ELT) (((-801 (-327)) $) 64 T ELT)) (-3942 (((-773) $) 41 T ELT) (($ (-1072)) 35 T ELT) (($ (-444)) 153 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3532 (($ $ (-584 (-773))) 49 T ELT)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 37 T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) 38 T ELT)))
+(((-1089) (-13 (-757) (-554 (-473)) (-554 (-1089)) (-556 (-1072)) (-951 (-444)) (-554 (-801 (-484))) (-554 (-801 (-327))) (-797 (-484)) (-797 (-327)) (-10 -8 (-15 -3610 ($)) (-15 -3610 ($ $)) (-15 -3539 ((-1184))) (-15 -3538 ($ $)) (-15 -3537 ((-85) $)) (-15 -3536 ((-2 (|:| -2582 (-584 (-773))) (|:| -2481 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2580 (-584 (-773))) (|:| |args| (-584 (-773)))) $)) (-15 -3535 ($ $ (-584 (-584 (-773))))) (-15 -3535 ($ $ (-2 (|:| -2582 (-584 (-773))) (|:| -2481 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2580 (-584 (-773))) (|:| |args| (-584 (-773)))))) (-15 -3534 ($ $ (-584 (-773)))) (-15 -3533 ($ $ (-584 (-773)))) (-15 -3532 ($ $ (-584 (-773)))) (-15 -3796 ($ $ (-584 (-773)))) (-15 -3531 ((-1072) $)) (-15 -3530 ((-584 $) $)) (-15 -3720 ($) -3948)))) (T -1089))
+((-3610 (*1 *1) (-5 *1 (-1089))) (-3610 (*1 *1 *1) (-5 *1 (-1089))) (-3539 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1089)))) (-3538 (*1 *1 *1) (-5 *1 (-1089))) (-3537 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1089)))) (-3536 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2582 (-584 (-773))) (|:| -2481 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2580 (-584 (-773))) (|:| |args| (-584 (-773))))) (-5 *1 (-1089)))) (-3535 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-584 (-773)))) (-5 *1 (-1089)))) (-3535 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2582 (-584 (-773))) (|:| -2481 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2580 (-584 (-773))) (|:| |args| (-584 (-773))))) (-5 *1 (-1089)))) (-3534 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1089)))) (-3533 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1089)))) (-3532 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1089)))) (-3796 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1089)))) (-3531 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1089)))) (-3530 (*1 *2 *1) (-12 (-5 *2 (-584 (-1089))) (-5 *1 (-1089)))) (-3720 (*1 *1) (-5 *1 (-1089))))
+((-3540 (((-1178 |#1|) |#1| (-831)) 18 T ELT) (((-1178 |#1|) (-584 |#1|)) 25 T ELT)))
+(((-1090 |#1|) (-10 -7 (-15 -3540 ((-1178 |#1|) (-584 |#1|))) (-15 -3540 ((-1178 |#1|) |#1| (-831)))) (-962)) (T -1090))
+((-3540 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-5 *2 (-1178 *3)) (-5 *1 (-1090 *3)) (-4 *3 (-962)))) (-3540 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-962)) (-5 *2 (-1178 *4)) (-5 *1 (-1090 *4)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2061 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 (-484) #1#) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3153 (((-484) $) NIL (|has| |#1| (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| |#1| (-951 (-347 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3955 (($ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-389)) ELT)) (-1622 (($ $ |#1| (-885) $) NIL T ELT)) (-2408 (((-85) $) 18 T ELT)) (-2418 (((-695) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2891 (($ |#1| (-885)) NIL T ELT)) (-2818 (((-885) $) NIL T ELT)) (-1623 (($ (-1 (-885) (-885)) $) NIL T ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2892 (($ $) NIL T ELT)) (-3171 ((|#1| $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1795 (((-85) $) NIL T ELT)) (-1794 ((|#1| $) NIL T ELT)) (-3734 (($ $ (-885) |#1| $) NIL (-12 (|has| (-885) (-104)) (|has| |#1| (-495))) ELT)) (-3462 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-3944 (((-885) $) NIL T ELT)) (-2815 ((|#1| $) NIL (|has| |#1| (-389)) ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ |#1|) NIL T ELT) (($ (-347 (-484))) NIL (OR (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-951 (-347 (-484))))) ELT)) (-3813 (((-584 |#1|) $) NIL T ELT)) (-3673 ((|#1| $ (-885)) NIL T ELT)) (-2700 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3123 (((-695)) NIL T CONST)) (-1621 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2658 (($) 13 T CONST)) (-2664 (($) NIL T CONST)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) 22 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 23 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 17 T ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)))
+(((-1091 |#1|) (-13 (-276 |#1| (-885)) (-10 -8 (IF (|has| |#1| (-495)) (IF (|has| (-885) (-104)) (-15 -3734 ($ $ (-885) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3989)) (-6 -3989) |%noBranch|))) (-962)) (T -1091))
+((-3734 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-885)) (-4 *2 (-104)) (-5 *1 (-1091 *3)) (-4 *3 (-495)) (-4 *3 (-962)))))
+((-3541 (((-1093) (-1089) $) 26 T ELT)) (-3551 (($) 30 T ELT)) (-3543 (((-3 (|:| |fst| (-374)) (|:| -3906 #1="void")) (-1089) $) 23 T ELT)) (-3545 (((-1184) (-1089) (-3 (|:| |fst| (-374)) (|:| -3906 #1#)) $) 42 T ELT) (((-1184) (-1089) (-3 (|:| |fst| (-374)) (|:| -3906 #1#))) 43 T ELT) (((-1184) (-3 (|:| |fst| (-374)) (|:| -3906 #1#))) 44 T ELT)) (-3553 (((-1184) (-1089)) 59 T ELT)) (-3544 (((-1184) (-1089) $) 56 T ELT) (((-1184) (-1089)) 57 T ELT) (((-1184)) 58 T ELT)) (-3549 (((-1184) (-1089)) 38 T ELT)) (-3547 (((-1089)) 37 T ELT)) (-3561 (($) 35 T ELT)) (-3560 (((-376) (-1089) (-376) (-1089) $) 46 T ELT) (((-376) (-584 (-1089)) (-376) (-1089) $) 50 T ELT) (((-376) (-1089) (-376)) 47 T ELT) (((-376) (-1089) (-376) (-1089)) 51 T ELT)) (-3548 (((-1089)) 36 T ELT)) (-3942 (((-773) $) 29 T ELT)) (-3550 (((-1184)) 31 T ELT) (((-1184) (-1089)) 34 T ELT)) (-3542 (((-584 (-1089)) (-1089) $) 25 T ELT)) (-3546 (((-1184) (-1089) (-584 (-1089)) $) 39 T ELT) (((-1184) (-1089) (-584 (-1089))) 40 T ELT) (((-1184) (-584 (-1089))) 41 T ELT)))
+(((-1092) (-13 (-553 (-773)) (-10 -8 (-15 -3551 ($)) (-15 -3550 ((-1184))) (-15 -3550 ((-1184) (-1089))) (-15 -3560 ((-376) (-1089) (-376) (-1089) $)) (-15 -3560 ((-376) (-584 (-1089)) (-376) (-1089) $)) (-15 -3560 ((-376) (-1089) (-376))) (-15 -3560 ((-376) (-1089) (-376) (-1089))) (-15 -3549 ((-1184) (-1089))) (-15 -3548 ((-1089))) (-15 -3547 ((-1089))) (-15 -3546 ((-1184) (-1089) (-584 (-1089)) $)) (-15 -3546 ((-1184) (-1089) (-584 (-1089)))) (-15 -3546 ((-1184) (-584 (-1089)))) (-15 -3545 ((-1184) (-1089) (-3 (|:| |fst| (-374)) (|:| -3906 #1="void")) $)) (-15 -3545 ((-1184) (-1089) (-3 (|:| |fst| (-374)) (|:| -3906 #1#)))) (-15 -3545 ((-1184) (-3 (|:| |fst| (-374)) (|:| -3906 #1#)))) (-15 -3544 ((-1184) (-1089) $)) (-15 -3544 ((-1184) (-1089))) (-15 -3544 ((-1184))) (-15 -3553 ((-1184) (-1089))) (-15 -3561 ($)) (-15 -3543 ((-3 (|:| |fst| (-374)) (|:| -3906 #1#)) (-1089) $)) (-15 -3542 ((-584 (-1089)) (-1089) $)) (-15 -3541 ((-1093) (-1089) $))))) (T -1092))
+((-3551 (*1 *1) (-5 *1 (-1092))) (-3550 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3550 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3560 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-376)) (-5 *3 (-1089)) (-5 *1 (-1092)))) (-3560 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-376)) (-5 *3 (-584 (-1089))) (-5 *4 (-1089)) (-5 *1 (-1092)))) (-3560 (*1 *2 *3 *2) (-12 (-5 *2 (-376)) (-5 *3 (-1089)) (-5 *1 (-1092)))) (-3560 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-376)) (-5 *3 (-1089)) (-5 *1 (-1092)))) (-3549 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3548 (*1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1092)))) (-3547 (*1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1092)))) (-3546 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-584 (-1089))) (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3546 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-1089))) (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3546 (*1 *2 *3) (-12 (-5 *3 (-584 (-1089))) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3545 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1089)) (-5 *4 (-3 (|:| |fst| (-374)) (|:| -3906 #1="void"))) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3545 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-5 *4 (-3 (|:| |fst| (-374)) (|:| -3906 #1#))) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3545 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-374)) (|:| -3906 #1#))) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3544 (*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3544 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3544 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3553 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))) (-3561 (*1 *1) (-5 *1 (-1092))) (-3543 (*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-3 (|:| |fst| (-374)) (|:| -3906 #1#))) (-5 *1 (-1092)))) (-3542 (*1 *2 *3 *1) (-12 (-5 *2 (-584 (-1089))) (-5 *1 (-1092)) (-5 *3 (-1089)))) (-3541 (*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-1093)) (-5 *1 (-1092)))))
+((-3555 (((-584 (-584 (-3 (|:| -3538 (-1089)) (|:| -3222 (-584 (-3 (|:| S (-1089)) (|:| P (-858 (-484))))))))) $) 66 T ELT)) (-3557 (((-584 (-3 (|:| -3538 (-1089)) (|:| -3222 (-584 (-3 (|:| S (-1089)) (|:| P (-858 (-484)))))))) (-374) $) 47 T ELT)) (-3552 (($ (-584 (-2 (|:| -3856 (-1089)) (|:| |entry| (-376))))) 17 T ELT)) (-3553 (((-1184) $) 73 T ELT)) (-3558 (((-584 (-1089)) $) 22 T ELT)) (-3554 (((-1015) $) 60 T ELT)) (-3559 (((-376) (-1089) $) 27 T ELT)) (-3556 (((-584 (-1089)) $) 30 T ELT)) (-3561 (($) 19 T ELT)) (-3560 (((-376) (-584 (-1089)) (-376) $) 25 T ELT) (((-376) (-1089) (-376) $) 24 T ELT)) (-3942 (((-773) $) 12 T ELT) (((-1101 (-1089) (-376)) $) 13 T ELT)))
+(((-1093) (-13 (-553 (-773)) (-10 -8 (-15 -3942 ((-1101 (-1089) (-376)) $)) (-15 -3561 ($)) (-15 -3560 ((-376) (-584 (-1089)) (-376) $)) (-15 -3560 ((-376) (-1089) (-376) $)) (-15 -3559 ((-376) (-1089) $)) (-15 -3558 ((-584 (-1089)) $)) (-15 -3557 ((-584 (-3 (|:| -3538 (-1089)) (|:| -3222 (-584 (-3 (|:| S (-1089)) (|:| P (-858 (-484)))))))) (-374) $)) (-15 -3556 ((-584 (-1089)) $)) (-15 -3555 ((-584 (-584 (-3 (|:| -3538 (-1089)) (|:| -3222 (-584 (-3 (|:| S (-1089)) (|:| P (-858 (-484))))))))) $)) (-15 -3554 ((-1015) $)) (-15 -3553 ((-1184) $)) (-15 -3552 ($ (-584 (-2 (|:| -3856 (-1089)) (|:| |entry| (-376))))))))) (T -1093))
+((-3942 (*1 *2 *1) (-12 (-5 *2 (-1101 (-1089) (-376))) (-5 *1 (-1093)))) (-3561 (*1 *1) (-5 *1 (-1093))) (-3560 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-376)) (-5 *3 (-584 (-1089))) (-5 *1 (-1093)))) (-3560 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-376)) (-5 *3 (-1089)) (-5 *1 (-1093)))) (-3559 (*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-376)) (-5 *1 (-1093)))) (-3558 (*1 *2 *1) (-12 (-5 *2 (-584 (-1089))) (-5 *1 (-1093)))) (-3557 (*1 *2 *3 *1) (-12 (-5 *3 (-374)) (-5 *2 (-584 (-3 (|:| -3538 (-1089)) (|:| -3222 (-584 (-3 (|:| S (-1089)) (|:| P (-858 (-484))))))))) (-5 *1 (-1093)))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-584 (-1089))) (-5 *1 (-1093)))) (-3555 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-3 (|:| -3538 (-1089)) (|:| -3222 (-584 (-3 (|:| S (-1089)) (|:| P (-858 (-484)))))))))) (-5 *1 (-1093)))) (-3554 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-1093)))) (-3553 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1093)))) (-3552 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| -3856 (-1089)) (|:| |entry| (-376))))) (-5 *1 (-1093)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3154 (((-3 (-484) #1="failed") $) 29 T ELT) (((-3 (-179) #1#) $) 35 T ELT) (((-3 (-444) #1#) $) 43 T ELT) (((-3 (-1072) #1#) $) 47 T ELT)) (-3153 (((-484) $) 30 T ELT) (((-179) $) 36 T ELT) (((-444) $) 40 T ELT) (((-1072) $) 48 T ELT)) (-3566 (((-85) $) 53 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3565 (((-3 (-484) (-179) (-444) (-1072) $) $) 56 T ELT)) (-3564 (((-584 $) $) 58 T ELT)) (-3968 (((-1015) $) 24 T ELT) (($ (-1015)) 25 T ELT)) (-3563 (((-85) $) 57 T ELT)) (-3942 (((-773) $) 23 T ELT) (($ (-484)) 26 T ELT) (($ (-179)) 32 T ELT) (($ (-444)) 38 T ELT) (($ (-1072)) 44 T ELT) (((-473) $) 60 T ELT) (((-484) $) 31 T ELT) (((-179) $) 37 T ELT) (((-444) $) 41 T ELT) (((-1072) $) 49 T ELT)) (-3562 (((-85) $ (|[\|\|]| (-484))) 10 T ELT) (((-85) $ (|[\|\|]| (-179))) 13 T ELT) (((-85) $ (|[\|\|]| (-444))) 19 T ELT) (((-85) $ (|[\|\|]| (-1072))) 16 T ELT)) (-3567 (($ (-444) (-584 $)) 51 T ELT) (($ $ (-584 $)) 52 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3568 (((-484) $) 27 T ELT) (((-179) $) 33 T ELT) (((-444) $) 39 T ELT) (((-1072) $) 45 T ELT)) (-3054 (((-85) $ $) 7 T ELT)))
+(((-1094) (-13 (-1174) (-1013) (-951 (-484)) (-951 (-179)) (-951 (-444)) (-951 (-1072)) (-553 (-473)) (-10 -8 (-15 -3968 ((-1015) $)) (-15 -3968 ($ (-1015))) (-15 -3942 ((-484) $)) (-15 -3568 ((-484) $)) (-15 -3942 ((-179) $)) (-15 -3568 ((-179) $)) (-15 -3942 ((-444) $)) (-15 -3568 ((-444) $)) (-15 -3942 ((-1072) $)) (-15 -3568 ((-1072) $)) (-15 -3567 ($ (-444) (-584 $))) (-15 -3567 ($ $ (-584 $))) (-15 -3566 ((-85) $)) (-15 -3565 ((-3 (-484) (-179) (-444) (-1072) $) $)) (-15 -3564 ((-584 $) $)) (-15 -3563 ((-85) $)) (-15 -3562 ((-85) $ (|[\|\|]| (-484)))) (-15 -3562 ((-85) $ (|[\|\|]| (-179)))) (-15 -3562 ((-85) $ (|[\|\|]| (-444)))) (-15 -3562 ((-85) $ (|[\|\|]| (-1072))))))) (T -1094))
+((-3968 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-1094)))) (-3968 (*1 *1 *2) (-12 (-5 *2 (-1015)) (-5 *1 (-1094)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1094)))) (-3568 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1094)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1094)))) (-3568 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1094)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-1094)))) (-3568 (*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-1094)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1094)))) (-3568 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1094)))) (-3567 (*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-584 (-1094))) (-5 *1 (-1094)))) (-3567 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-1094))) (-5 *1 (-1094)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1094)))) (-3565 (*1 *2 *1) (-12 (-5 *2 (-3 (-484) (-179) (-444) (-1072) (-1094))) (-5 *1 (-1094)))) (-3564 (*1 *2 *1) (-12 (-5 *2 (-584 (-1094))) (-5 *1 (-1094)))) (-3563 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1094)))) (-3562 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-484))) (-5 *2 (-85)) (-5 *1 (-1094)))) (-3562 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1094)))) (-3562 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-444))) (-5 *2 (-85)) (-5 *1 (-1094)))) (-3562 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-85)) (-5 *1 (-1094)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3133 (((-695)) 21 T ELT)) (-3720 (($) 10 T CONST)) (-2992 (($) 25 T ELT)) (-2529 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-2855 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-2008 (((-831) $) 23 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2398 (($ (-831)) 22 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)))
+(((-1095 |#1|) (-13 (-753) (-10 -8 (-15 -3720 ($) -3948))) (-831)) (T -1095))
+((-3720 (*1 *1) (-12 (-5 *1 (-1095 *2)) (-14 *2 (-831)))))
+((-484) (|%not| (|%ilt| @1 (|%ilength| |#1|))))
+((-2566 (((-85) $ $) NIL T ELT)) (-2311 (($ $) 24 T ELT)) (-3133 (((-695)) NIL T ELT)) (-3720 (($) 18 T CONST)) (-2992 (($) NIL T ELT)) (-2529 (($ $ $) NIL T ELT) (($) 11 T CONST)) (-2855 (($ $ $) NIL T ELT) (($) 17 T CONST)) (-2008 (((-831) $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2398 (($ (-831)) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT)) (-3721 (($ $ $) 20 T ELT)) (-3722 (($ $ $) 19 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2309 (($ $ $) 22 T ELT)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2310 (($ $ $) 21 T ELT)))
+(((-1096 |#1|) (-13 (-753) (-605) (-10 -8 (-15 -3722 ($ $ $)) (-15 -3721 ($ $ $)) (-15 -3720 ($) -3948))) (-831)) (T -1096))
+((-3722 (*1 *1 *1 *1) (-12 (-5 *1 (-1096 *2)) (-14 *2 (-831)))) (-3721 (*1 *1 *1 *1) (-12 (-5 *1 (-1096 *2)) (-14 *2 (-831)))) (-3720 (*1 *1) (-12 (-5 *1 (-1096 *2)) (-14 *2 (-831)))))
+((-695) (|%not| (|%ilt| @1 (|%ilength| |#1|))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 9 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 7 T ELT)))
+(((-1097) (-1013)) (T -1097))
+NIL
+((-3570 (((-584 (-584 (-858 |#1|))) (-584 (-347 (-858 |#1|))) (-584 (-1089))) 69 T ELT)) (-3569 (((-584 (-248 (-347 (-858 |#1|)))) (-248 (-347 (-858 |#1|)))) 81 T ELT) (((-584 (-248 (-347 (-858 |#1|)))) (-347 (-858 |#1|))) 77 T ELT) (((-584 (-248 (-347 (-858 |#1|)))) (-248 (-347 (-858 |#1|))) (-1089)) 82 T ELT) (((-584 (-248 (-347 (-858 |#1|)))) (-347 (-858 |#1|)) (-1089)) 76 T ELT) (((-584 (-584 (-248 (-347 (-858 |#1|))))) (-584 (-248 (-347 (-858 |#1|))))) 108 T ELT) (((-584 (-584 (-248 (-347 (-858 |#1|))))) (-584 (-347 (-858 |#1|)))) 107 T ELT) (((-584 (-584 (-248 (-347 (-858 |#1|))))) (-584 (-248 (-347 (-858 |#1|)))) (-584 (-1089))) 109 T ELT) (((-584 (-584 (-248 (-347 (-858 |#1|))))) (-584 (-347 (-858 |#1|))) (-584 (-1089))) 106 T ELT)))
+(((-1098 |#1|) (-10 -7 (-15 -3569 ((-584 (-584 (-248 (-347 (-858 |#1|))))) (-584 (-347 (-858 |#1|))) (-584 (-1089)))) (-15 -3569 ((-584 (-584 (-248 (-347 (-858 |#1|))))) (-584 (-248 (-347 (-858 |#1|)))) (-584 (-1089)))) (-15 -3569 ((-584 (-584 (-248 (-347 (-858 |#1|))))) (-584 (-347 (-858 |#1|))))) (-15 -3569 ((-584 (-584 (-248 (-347 (-858 |#1|))))) (-584 (-248 (-347 (-858 |#1|)))))) (-15 -3569 ((-584 (-248 (-347 (-858 |#1|)))) (-347 (-858 |#1|)) (-1089))) (-15 -3569 ((-584 (-248 (-347 (-858 |#1|)))) (-248 (-347 (-858 |#1|))) (-1089))) (-15 -3569 ((-584 (-248 (-347 (-858 |#1|)))) (-347 (-858 |#1|)))) (-15 -3569 ((-584 (-248 (-347 (-858 |#1|)))) (-248 (-347 (-858 |#1|))))) (-15 -3570 ((-584 (-584 (-858 |#1|))) (-584 (-347 (-858 |#1|))) (-584 (-1089))))) (-495)) (T -1098))
+((-3570 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-347 (-858 *5)))) (-5 *4 (-584 (-1089))) (-4 *5 (-495)) (-5 *2 (-584 (-584 (-858 *5)))) (-5 *1 (-1098 *5)))) (-3569 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-584 (-248 (-347 (-858 *4))))) (-5 *1 (-1098 *4)) (-5 *3 (-248 (-347 (-858 *4)))))) (-3569 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-584 (-248 (-347 (-858 *4))))) (-5 *1 (-1098 *4)) (-5 *3 (-347 (-858 *4))))) (-3569 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-495)) (-5 *2 (-584 (-248 (-347 (-858 *5))))) (-5 *1 (-1098 *5)) (-5 *3 (-248 (-347 (-858 *5)))))) (-3569 (*1 *2 *3 *4) (-12 (-5 *4 (-1089)) (-4 *5 (-495)) (-5 *2 (-584 (-248 (-347 (-858 *5))))) (-5 *1 (-1098 *5)) (-5 *3 (-347 (-858 *5))))) (-3569 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-584 (-584 (-248 (-347 (-858 *4)))))) (-5 *1 (-1098 *4)) (-5 *3 (-584 (-248 (-347 (-858 *4))))))) (-3569 (*1 *2 *3) (-12 (-5 *3 (-584 (-347 (-858 *4)))) (-4 *4 (-495)) (-5 *2 (-584 (-584 (-248 (-347 (-858 *4)))))) (-5 *1 (-1098 *4)))) (-3569 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-1089))) (-4 *5 (-495)) (-5 *2 (-584 (-584 (-248 (-347 (-858 *5)))))) (-5 *1 (-1098 *5)) (-5 *3 (-584 (-248 (-347 (-858 *5))))))) (-3569 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-347 (-858 *5)))) (-5 *4 (-584 (-1089))) (-4 *5 (-495)) (-5 *2 (-584 (-584 (-248 (-347 (-858 *5)))))) (-5 *1 (-1098 *5)))))
+((-3575 (((-1072)) 7 T ELT)) (-3572 (((-1072)) 11 T CONST)) (-3571 (((-1184) (-1072)) 13 T ELT)) (-3574 (((-1072)) 8 T CONST)) (-3573 (((-103)) 10 T CONST)))
+(((-1099) (-13 (-1128) (-10 -7 (-15 -3575 ((-1072))) (-15 -3574 ((-1072)) -3948) (-15 -3573 ((-103)) -3948) (-15 -3572 ((-1072)) -3948) (-15 -3571 ((-1184) (-1072)))))) (T -1099))
+((-3575 (*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1099)))) (-3574 (*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1099)))) (-3573 (*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1099)))) (-3572 (*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1099)))) (-3571 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1099)))))
+((-3579 (((-584 (-584 |#1|)) (-584 (-584 |#1|)) (-584 (-584 (-584 |#1|)))) 56 T ELT)) (-3582 (((-584 (-584 (-584 |#1|))) (-584 (-584 |#1|))) 38 T ELT)) (-3583 (((-1102 (-584 |#1|)) (-584 |#1|)) 49 T ELT)) (-3585 (((-584 (-584 |#1|)) (-584 |#1|)) 45 T ELT)) (-3588 (((-2 (|:| |f1| (-584 |#1|)) (|:| |f2| (-584 (-584 (-584 |#1|)))) (|:| |f3| (-584 (-584 |#1|))) (|:| |f4| (-584 (-584 (-584 |#1|))))) (-584 (-584 (-584 |#1|)))) 53 T ELT)) (-3587 (((-2 (|:| |f1| (-584 |#1|)) (|:| |f2| (-584 (-584 (-584 |#1|)))) (|:| |f3| (-584 (-584 |#1|))) (|:| |f4| (-584 (-584 (-584 |#1|))))) (-584 |#1|) (-584 (-584 (-584 |#1|))) (-584 (-584 |#1|)) (-584 (-584 (-584 |#1|))) (-584 (-584 (-584 |#1|))) (-584 (-584 (-584 |#1|)))) 52 T ELT)) (-3584 (((-584 (-584 |#1|)) (-584 (-584 |#1|))) 43 T ELT)) (-3586 (((-584 |#1|) (-584 |#1|)) 46 T ELT)) (-3578 (((-584 (-584 (-584 |#1|))) (-584 |#1|) (-584 (-584 (-584 |#1|)))) 32 T ELT)) (-3577 (((-584 (-584 (-584 |#1|))) (-1 (-85) |#1| |#1|) (-584 |#1|) (-584 (-584 (-584 |#1|)))) 29 T ELT)) (-3576 (((-2 (|:| |fs| (-85)) (|:| |sd| (-584 |#1|)) (|:| |td| (-584 (-584 |#1|)))) (-1 (-85) |#1| |#1|) (-584 |#1|) (-584 (-584 |#1|))) 24 T ELT)) (-3580 (((-584 (-584 |#1|)) (-584 (-584 (-584 |#1|)))) 58 T ELT)) (-3581 (((-584 (-584 |#1|)) (-1102 (-584 |#1|))) 60 T ELT)))
+(((-1100 |#1|) (-10 -7 (-15 -3576 ((-2 (|:| |fs| (-85)) (|:| |sd| (-584 |#1|)) (|:| |td| (-584 (-584 |#1|)))) (-1 (-85) |#1| |#1|) (-584 |#1|) (-584 (-584 |#1|)))) (-15 -3577 ((-584 (-584 (-584 |#1|))) (-1 (-85) |#1| |#1|) (-584 |#1|) (-584 (-584 (-584 |#1|))))) (-15 -3578 ((-584 (-584 (-584 |#1|))) (-584 |#1|) (-584 (-584 (-584 |#1|))))) (-15 -3579 ((-584 (-584 |#1|)) (-584 (-584 |#1|)) (-584 (-584 (-584 |#1|))))) (-15 -3580 ((-584 (-584 |#1|)) (-584 (-584 (-584 |#1|))))) (-15 -3581 ((-584 (-584 |#1|)) (-1102 (-584 |#1|)))) (-15 -3582 ((-584 (-584 (-584 |#1|))) (-584 (-584 |#1|)))) (-15 -3583 ((-1102 (-584 |#1|)) (-584 |#1|))) (-15 -3584 ((-584 (-584 |#1|)) (-584 (-584 |#1|)))) (-15 -3585 ((-584 (-584 |#1|)) (-584 |#1|))) (-15 -3586 ((-584 |#1|) (-584 |#1|))) (-15 -3587 ((-2 (|:| |f1| (-584 |#1|)) (|:| |f2| (-584 (-584 (-584 |#1|)))) (|:| |f3| (-584 (-584 |#1|))) (|:| |f4| (-584 (-584 (-584 |#1|))))) (-584 |#1|) (-584 (-584 (-584 |#1|))) (-584 (-584 |#1|)) (-584 (-584 (-584 |#1|))) (-584 (-584 (-584 |#1|))) (-584 (-584 (-584 |#1|))))) (-15 -3588 ((-2 (|:| |f1| (-584 |#1|)) (|:| |f2| (-584 (-584 (-584 |#1|)))) (|:| |f3| (-584 (-584 |#1|))) (|:| |f4| (-584 (-584 (-584 |#1|))))) (-584 (-584 (-584 |#1|)))))) (-757)) (T -1100))
+((-3588 (*1 *2 *3) (-12 (-4 *4 (-757)) (-5 *2 (-2 (|:| |f1| (-584 *4)) (|:| |f2| (-584 (-584 (-584 *4)))) (|:| |f3| (-584 (-584 *4))) (|:| |f4| (-584 (-584 (-584 *4)))))) (-5 *1 (-1100 *4)) (-5 *3 (-584 (-584 (-584 *4)))))) (-3587 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-757)) (-5 *3 (-584 *6)) (-5 *5 (-584 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-584 *5)) (|:| |f3| *5) (|:| |f4| (-584 *5)))) (-5 *1 (-1100 *6)) (-5 *4 (-584 *5)))) (-3586 (*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-1100 *3)))) (-3585 (*1 *2 *3) (-12 (-4 *4 (-757)) (-5 *2 (-584 (-584 *4))) (-5 *1 (-1100 *4)) (-5 *3 (-584 *4)))) (-3584 (*1 *2 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-757)) (-5 *1 (-1100 *3)))) (-3583 (*1 *2 *3) (-12 (-4 *4 (-757)) (-5 *2 (-1102 (-584 *4))) (-5 *1 (-1100 *4)) (-5 *3 (-584 *4)))) (-3582 (*1 *2 *3) (-12 (-4 *4 (-757)) (-5 *2 (-584 (-584 (-584 *4)))) (-5 *1 (-1100 *4)) (-5 *3 (-584 (-584 *4))))) (-3581 (*1 *2 *3) (-12 (-5 *3 (-1102 (-584 *4))) (-4 *4 (-757)) (-5 *2 (-584 (-584 *4))) (-5 *1 (-1100 *4)))) (-3580 (*1 *2 *3) (-12 (-5 *3 (-584 (-584 (-584 *4)))) (-5 *2 (-584 (-584 *4))) (-5 *1 (-1100 *4)) (-4 *4 (-757)))) (-3579 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-584 (-584 *4)))) (-5 *2 (-584 (-584 *4))) (-4 *4 (-757)) (-5 *1 (-1100 *4)))) (-3578 (*1 *2 *3 *2) (-12 (-5 *2 (-584 (-584 (-584 *4)))) (-5 *3 (-584 *4)) (-4 *4 (-757)) (-5 *1 (-1100 *4)))) (-3577 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-584 (-584 (-584 *5)))) (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-584 *5)) (-4 *5 (-757)) (-5 *1 (-1100 *5)))) (-3576 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-757)) (-5 *4 (-584 *6)) (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-584 *4)))) (-5 *1 (-1100 *6)) (-5 *5 (-584 *4)))))
+((-2566 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3595 (($) NIL T ELT) (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2196 (((-1184) $ |#1| |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3784 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-3706 (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-2229 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3401 (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3991)) ELT) (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3402 (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-3838 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3991)) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT)) (-1574 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3992)) ELT)) (-3110 ((|#2| $ |#1|) NIL T ELT)) (-2887 (((-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2198 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2606 (((-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-584 |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT)) (-2199 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3992)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2230 (((-584 |#1|) $) NIL T ELT)) (-2231 (((-85) |#1| $) NIL T ELT)) (-1272 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3605 (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2201 (((-584 |#1|) $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL T ELT)) (-3240 (((-1033) $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3797 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1352 (((-3 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2197 (($ $ |#2|) NIL (|has| $ (-6 -3992)) ELT)) (-1273 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-248 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 (-248 |#2|))) NIL (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2200 (((-85) |#2| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT)) (-2203 (((-584 |#2|) $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) NIL T ELT)) (-3796 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1464 (($) NIL T ELT) (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1944 (((-695) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3991)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (((-695) |#2| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT) (((-695) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3396 (($ $) NIL T ELT)) (-3968 (((-473) $) NIL (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-554 (-473))) ELT)) (-3526 (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3942 (((-773) $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1263 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1274 (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3991)) ELT) (((-85) (-1 (-85) |#2|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-1101 |#1| |#2|) (-13 (-1106 |#1| |#2|) (-10 -7 (-6 -3991))) (-1013) (-1013)) (T -1101))
+NIL
+((-3589 (($ (-584 (-584 |#1|))) 10 T ELT)) (-3590 (((-584 (-584 |#1|)) $) 11 T ELT)) (-3942 (((-773) $) 33 T ELT)))
+(((-1102 |#1|) (-10 -8 (-15 -3589 ($ (-584 (-584 |#1|)))) (-15 -3590 ((-584 (-584 |#1|)) $)) (-15 -3942 ((-773) $))) (-1013)) (T -1102))
+((-3942 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1102 *3)) (-4 *3 (-1013)))) (-3590 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 *3))) (-5 *1 (-1102 *3)) (-4 *3 (-1013)))) (-3589 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1013)) (-5 *1 (-1102 *3)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3591 (($ |#1| (-55)) 11 T ELT)) (-3538 ((|#1| $) 13 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2631 (((-85) $ |#1|) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2519 (((-55) $) 15 T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-1103 |#1|) (-13 (-748 |#1|) (-10 -8 (-15 -3591 ($ |#1| (-55))))) (-1013)) (T -1103))
+((-3591 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1103 *2)) (-4 *2 (-1013)))))
+((-3592 ((|#1| (-584 |#1|)) 46 T ELT)) (-3594 ((|#1| |#1| (-484)) 24 T ELT)) (-3593 (((-1084 |#1|) |#1| (-831)) 20 T ELT)))
+(((-1104 |#1|) (-10 -7 (-15 -3592 (|#1| (-584 |#1|))) (-15 -3593 ((-1084 |#1|) |#1| (-831))) (-15 -3594 (|#1| |#1| (-484)))) (-311)) (T -1104))
+((-3594 (*1 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-1104 *2)) (-4 *2 (-311)))) (-3593 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-5 *2 (-1084 *3)) (-5 *1 (-1104 *3)) (-4 *3 (-311)))) (-3592 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-1104 *2)) (-4 *2 (-311)))))
+((-3595 (($) 10 T ELT) (($ (-584 (-2 (|:| -3856 |#2|) (|:| |entry| |#3|)))) 14 T ELT)) (-3401 (($ (-2 (|:| -3856 |#2|) (|:| |entry| |#3|)) $) 67 T ELT) (($ (-1 (-85) (-2 (|:| -3856 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-3 |#3| #1="failed") |#2| $) NIL T ELT)) (-2887 (((-584 (-2 (|:| -3856 |#2|) (|:| |entry| |#3|))) $) 39 T ELT) (((-584 |#3|) $) 41 T ELT)) (-1947 (($ (-1 (-2 (|:| -3856 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3856 |#2|) (|:| |entry| |#3|))) $) 57 T ELT) (($ (-1 |#3| |#3|) $) 33 T ELT)) (-3954 (($ (-1 (-2 (|:| -3856 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3856 |#2|) (|:| |entry| |#3|))) $) 53 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 38 T ELT)) (-1272 (((-2 (|:| -3856 |#2|) (|:| |entry| |#3|)) $) 60 T ELT)) (-3605 (($ (-2 (|:| -3856 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2201 (((-584 |#2|) $) 19 T ELT)) (-2202 (((-85) |#2| $) 65 T ELT)) (-1352 (((-3 (-2 (|:| -3856 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3856 |#2|) (|:| |entry| |#3|))) $) 64 T ELT)) (-1273 (((-2 (|:| -3856 |#2|) (|:| |entry| |#3|)) $) 69 T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3856 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-85) (-1 (-85) |#3|) $) 73 T ELT)) (-2203 (((-584 |#3|) $) 43 T ELT)) (-3796 ((|#3| $ |#2|) 30 T ELT) ((|#3| $ |#2| |#3|) 31 T ELT)) (-1944 (((-695) (-1 (-85) (-2 (|:| -3856 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-695) (-2 (|:| -3856 |#2|) (|:| |entry| |#3|)) $) NIL T ELT) (((-695) |#3| $) NIL T ELT) (((-695) (-1 (-85) |#3|) $) 79 T ELT)) (-3942 (((-773) $) 27 T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3856 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-85) (-1 (-85) |#3|) $) 71 T ELT)) (-3054 (((-85) $ $) 51 T ELT)))
+(((-1105 |#1| |#2| |#3|) (-10 -7 (-15 -3054 ((-85) |#1| |#1|)) (-15 -3942 ((-773) |#1|)) (-15 -3954 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3595 (|#1| (-584 (-2 (|:| -3856 |#2|) (|:| |entry| |#3|))))) (-15 -3595 (|#1|)) (-15 -3954 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1947 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1946 ((-85) (-1 (-85) |#3|) |#1|)) (-15 -1945 ((-85) (-1 (-85) |#3|) |#1|)) (-15 -1944 ((-695) (-1 (-85) |#3|) |#1|)) (-15 -2887 ((-584 |#3|) |#1|)) (-15 -1944 ((-695) |#3| |#1|)) (-15 -3796 (|#3| |#1| |#2| |#3|)) (-15 -3796 (|#3| |#1| |#2|)) (-15 -2203 ((-584 |#3|) |#1|)) (-15 -2202 ((-85) |#2| |#1|)) (-15 -2201 ((-584 |#2|) |#1|)) (-15 -3401 ((-3 |#3| #1="failed") |#2| |#1|)) (-15 -3401 (|#1| (-1 (-85) (-2 (|:| -3856 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3401 (|#1| (-2 (|:| -3856 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1352 ((-3 (-2 (|:| -3856 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3856 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1272 ((-2 (|:| -3856 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3605 (|#1| (-2 (|:| -3856 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1273 ((-2 (|:| -3856 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1944 ((-695) (-2 (|:| -3856 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -2887 ((-584 (-2 (|:| -3856 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1944 ((-695) (-1 (-85) (-2 (|:| -3856 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1945 ((-85) (-1 (-85) (-2 (|:| -3856 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1946 ((-85) (-1 (-85) (-2 (|:| -3856 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1947 (|#1| (-1 (-2 (|:| -3856 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3856 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3954 (|#1| (-1 (-2 (|:| -3856 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3856 |#2|) (|:| |entry| |#3|))) |#1|))) (-1106 |#2| |#3|) (-1013) (-1013)) (T -1105))
+NIL
+((-2566 (((-85) $ $) 19 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3595 (($) 77 T ELT) (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) 76 T ELT)) (-2196 (((-1184) $ |#1| |#1|) 104 (|has| $ (-6 -3992)) ELT)) (-3784 ((|#2| $ |#1| |#2|) 78 T ELT)) (-1568 (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3991)) ELT)) (-3706 (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3991)) ELT)) (-2229 (((-3 |#2| #1="failed") |#1| $) 65 T ELT)) (-3720 (($) 7 T CONST)) (-1351 (($ $) 62 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3991))) ELT)) (-3401 (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3991)) ELT) (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3991)) ELT) (((-3 |#2| #1#) |#1| $) 66 T ELT)) (-3402 (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3991))) ELT) (($ (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3991)) ELT)) (-3838 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3991))) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3991)) ELT) (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3991)) ELT)) (-1574 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -3992)) ELT)) (-3110 ((|#2| $ |#1|) 93 T ELT)) (-2887 (((-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3991)) ELT) (((-584 |#2|) $) 84 (|has| $ (-6 -3991)) ELT)) (-2198 ((|#1| $) 101 (|has| |#1| (-757)) ELT)) (-2606 (((-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3991)) ELT) (((-584 |#2|) $) 85 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3991))) ELT) (((-85) |#2| $) 87 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3991))) ELT)) (-2199 ((|#1| $) 100 (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3992)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT)) (-3239 (((-1072) $) 22 (OR (|has| |#2| (-1013)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-2230 (((-584 |#1|) $) 67 T ELT)) (-2231 (((-85) |#1| $) 68 T ELT)) (-1272 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3605 (($ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-2201 (((-584 |#1|) $) 98 T ELT)) (-2202 (((-85) |#1| $) 97 T ELT)) (-3240 (((-1033) $) 21 (OR (|has| |#2| (-1013)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3797 ((|#2| $) 102 (|has| |#1| (-757)) ELT)) (-1352 (((-3 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 55 T ELT)) (-2197 (($ $ |#2|) 103 (|has| $ (-6 -3992)) ELT)) (-1273 (((-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-1945 (((-85) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3991)) ELT) (((-85) (-1 (-85) |#2|) $) 82 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-248 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 91 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-248 |#2|)) 89 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-584 (-248 |#2|))) 88 (-12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2200 (((-85) |#2| $) 99 (-12 (|has| $ (-6 -3991)) (|has| |#2| (-1013))) ELT)) (-2203 (((-584 |#2|) $) 96 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-3796 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT)) (-1464 (($) 53 T ELT) (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1944 (((-695) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| $ (-6 -3991))) ELT) (((-695) |#2| $) 86 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -3991))) ELT) (((-695) (-1 (-85) |#2|) $) 83 (|has| $ (-6 -3991)) ELT)) (-3396 (($ $) 10 T ELT)) (-3968 (((-473) $) 63 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-554 (-473))) ELT)) (-3526 (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) 54 T ELT)) (-3942 (((-773) $) 17 (OR (|has| |#2| (-553 (-773))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-553 (-773)))) ELT)) (-1263 (((-85) $ $) 20 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1274 (($ (-584 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1946 (((-85) (-1 (-85) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3991)) ELT) (((-85) (-1 (-85) |#2|) $) 81 (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 18 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-1106 |#1| |#2|) (-113) (-1013) (-1013)) (T -1106))
+((-3784 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1106 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-3595 (*1 *1) (-12 (-4 *1 (-1106 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-3595 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| -3856 *3) (|:| |entry| *4)))) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *1 (-1106 *3 *4)))) (-3954 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1106 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
+(-13 (-550 |t#1| |t#2|) (-539 |t#1| |t#2|) (-10 -8 (-15 -3784 (|t#2| $ |t#1| |t#2|)) (-15 -3595 ($)) (-15 -3595 ($ (-584 (-2 (|:| -3856 |t#1|) (|:| |entry| |t#2|))))) (-15 -3954 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
+(((-34) . T) ((-76 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1013)) (|has| |#2| (-72))) ((-553 (-773)) OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-1013)) (|has| |#2| (-553 (-773)))) ((-124 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T) ((-554 (-473)) |has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-554 (-473))) ((-183 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ((-259 |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ((-426 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) . T) ((-426 |#2|) . T) ((-539 |#1| |#2|) . T) ((-453 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3856 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-259 (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013))) ((-453 |#2| |#2|) -12 (|has| |#2| (-259 |#2|)) (|has| |#2| (-1013))) ((-13) . T) ((-550 |#1| |#2|) . T) ((-1013) OR (|has| (-2 (|:| -3856 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ((-1128) . T))
+((-3601 (((-85)) 29 T ELT)) (-3598 (((-1184) (-1072)) 31 T ELT)) (-3602 (((-85)) 41 T ELT)) (-3599 (((-1184)) 39 T ELT)) (-3597 (((-1184) (-1072) (-1072)) 30 T ELT)) (-3603 (((-85)) 42 T ELT)) (-3605 (((-1184) |#1| |#2|) 53 T ELT)) (-3596 (((-1184)) 26 T ELT)) (-3604 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-3600 (((-1184)) 40 T ELT)))
+(((-1107 |#1| |#2|) (-10 -7 (-15 -3596 ((-1184))) (-15 -3597 ((-1184) (-1072) (-1072))) (-15 -3598 ((-1184) (-1072))) (-15 -3599 ((-1184))) (-15 -3600 ((-1184))) (-15 -3601 ((-85))) (-15 -3602 ((-85))) (-15 -3603 ((-85))) (-15 -3604 ((-3 |#2| "failed") |#1|)) (-15 -3605 ((-1184) |#1| |#2|))) (-1013) (-1013)) (T -1107))
+((-3605 (*1 *2 *3 *4) (-12 (-5 *2 (-1184)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3604 (*1 *2 *3) (|partial| -12 (-4 *2 (-1013)) (-5 *1 (-1107 *3 *2)) (-4 *3 (-1013)))) (-3603 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3602 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3601 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3600 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3599 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3598 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1107 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)))) (-3597 (*1 *2 *3 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1107 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)))) (-3596 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3611 (((-584 (-1072)) $) 37 T ELT)) (-3607 (((-584 (-1072)) $ (-584 (-1072))) 40 T ELT)) (-3606 (((-584 (-1072)) $ (-584 (-1072))) 39 T ELT)) (-3608 (((-584 (-1072)) $ (-584 (-1072))) 41 T ELT)) (-3609 (((-584 (-1072)) $) 36 T ELT)) (-3610 (($) 26 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3612 (((-584 (-1072)) $) 38 T ELT)) (-3613 (((-1184) $ (-484)) 33 T ELT) (((-1184) $) 34 T ELT)) (-3968 (($ (-773) (-484)) 31 T ELT) (($ (-773) (-484) (-773)) NIL T ELT)) (-3942 (((-773) $) 47 T ELT) (($ (-773)) 30 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-1108) (-13 (-1013) (-556 (-773)) (-10 -8 (-15 -3968 ($ (-773) (-484))) (-15 -3968 ($ (-773) (-484) (-773))) (-15 -3613 ((-1184) $ (-484))) (-15 -3613 ((-1184) $)) (-15 -3612 ((-584 (-1072)) $)) (-15 -3611 ((-584 (-1072)) $)) (-15 -3610 ($)) (-15 -3609 ((-584 (-1072)) $)) (-15 -3608 ((-584 (-1072)) $ (-584 (-1072)))) (-15 -3607 ((-584 (-1072)) $ (-584 (-1072)))) (-15 -3606 ((-584 (-1072)) $ (-584 (-1072))))))) (T -1108))
+((-3968 (*1 *1 *2 *3) (-12 (-5 *2 (-773)) (-5 *3 (-484)) (-5 *1 (-1108)))) (-3968 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-773)) (-5 *3 (-484)) (-5 *1 (-1108)))) (-3613 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-1108)))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1108)))) (-3612 (*1 *2 *1) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1108)))) (-3611 (*1 *2 *1) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1108)))) (-3610 (*1 *1) (-5 *1 (-1108))) (-3609 (*1 *2 *1) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1108)))) (-3608 (*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1108)))) (-3607 (*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1108)))) (-3606 (*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1108)))))
+((-3942 (((-1108) |#1|) 11 T ELT)))
+(((-1109 |#1|) (-10 -7 (-15 -3942 ((-1108) |#1|))) (-1013)) (T -1109))
+((-3942 (*1 *2 *3) (-12 (-5 *2 (-1108)) (-5 *1 (-1109 *3)) (-4 *3 (-1013)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3618 (((-1072) $ (-1072)) 21 T ELT) (((-1072) $) 20 T ELT)) (-1695 (((-1072) $ (-1072)) 19 T ELT)) (-1699 (($ $ (-1072)) NIL T ELT)) (-3616 (((-3 (-1072) #1="failed") $) 11 T ELT)) (-3617 (((-1072) $) 8 T ELT)) (-3615 (((-3 (-1072) #1#) $) 12 T ELT)) (-1696 (((-1072) $) 9 T ELT)) (-1700 (($ (-335)) NIL T ELT) (($ (-335) (-1072)) NIL T ELT)) (-3538 (((-335) $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-1697 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3614 (((-85) $) 25 T ELT)) (-3942 (((-773) $) NIL T ELT)) (-1698 (($ $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-1110) (-13 (-313 (-335) (-1072)) (-10 -8 (-15 -3618 ((-1072) $ (-1072))) (-15 -3618 ((-1072) $)) (-15 -3617 ((-1072) $)) (-15 -3616 ((-3 (-1072) #1="failed") $)) (-15 -3615 ((-3 (-1072) #1#) $)) (-15 -3614 ((-85) $))))) (T -1110))
+((-3618 (*1 *2 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1110)))) (-3618 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1110)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1110)))) (-3616 (*1 *2 *1) (|partial| -12 (-5 *2 (-1072)) (-5 *1 (-1110)))) (-3615 (*1 *2 *1) (|partial| -12 (-5 *2 (-1072)) (-5 *1 (-1110)))) (-3614 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1110)))))
+((-3619 (((-3 (-484) #1="failed") |#1|) 19 T ELT)) (-3620 (((-3 (-484) #1#) |#1|) 14 T ELT)) (-3621 (((-484) (-1072)) 33 T ELT)))
+(((-1111 |#1|) (-10 -7 (-15 -3619 ((-3 (-484) #1="failed") |#1|)) (-15 -3620 ((-3 (-484) #1#) |#1|)) (-15 -3621 ((-484) (-1072)))) (-962)) (T -1111))
+((-3621 (*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-484)) (-5 *1 (-1111 *4)) (-4 *4 (-962)))) (-3620 (*1 *2 *3) (|partial| -12 (-5 *2 (-484)) (-5 *1 (-1111 *3)) (-4 *3 (-962)))) (-3619 (*1 *2 *3) (|partial| -12 (-5 *2 (-484)) (-5 *1 (-1111 *3)) (-4 *3 (-962)))))
+((-3622 (((-1046 (-179))) 9 T ELT)))
+(((-1112) (-10 -7 (-15 -3622 ((-1046 (-179)))))) (T -1112))
+((-3622 (*1 *2) (-12 (-5 *2 (-1046 (-179))) (-5 *1 (-1112)))))
+((-3623 (($) 12 T ELT)) (-3494 (($ $) 36 T ELT)) (-3492 (($ $) 34 T ELT)) (-3480 (($ $) 26 T ELT)) (-3496 (($ $) 18 T ELT)) (-3497 (($ $) 16 T ELT)) (-3495 (($ $) 20 T ELT)) (-3483 (($ $) 31 T ELT)) (-3493 (($ $) 35 T ELT)) (-3481 (($ $) 30 T ELT)))
+(((-1113 |#1|) (-10 -7 (-15 -3623 (|#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3480 (|#1| |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -3481 (|#1| |#1|))) (-1114)) (T -1113))
+NIL
+((-3488 (($ $) 26 T ELT)) (-3635 (($ $) 11 T ELT)) (-3486 (($ $) 27 T ELT)) (-3634 (($ $) 10 T ELT)) (-3490 (($ $) 28 T ELT)) (-3633 (($ $) 9 T ELT)) (-3623 (($) 16 T ELT)) (-3938 (($ $) 19 T ELT)) (-3939 (($ $) 18 T ELT)) (-3491 (($ $) 29 T ELT)) (-3632 (($ $) 8 T ELT)) (-3489 (($ $) 30 T ELT)) (-3631 (($ $) 7 T ELT)) (-3487 (($ $) 31 T ELT)) (-3630 (($ $) 6 T ELT)) (-3494 (($ $) 20 T ELT)) (-3482 (($ $) 32 T ELT)) (-3492 (($ $) 21 T ELT)) (-3480 (($ $) 33 T ELT)) (-3496 (($ $) 22 T ELT)) (-3484 (($ $) 34 T ELT)) (-3497 (($ $) 23 T ELT)) (-3485 (($ $) 35 T ELT)) (-3495 (($ $) 24 T ELT)) (-3483 (($ $) 36 T ELT)) (-3493 (($ $) 25 T ELT)) (-3481 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT)))
+(((-1114) (-113)) (T -1114))
+((-3623 (*1 *1) (-4 *1 (-1114))))
+(-13 (-1117) (-66) (-430) (-35) (-239) (-10 -8 (-15 -3623 ($))))
+(((-35) . T) ((-66) . T) ((-239) . T) ((-430) . T) ((-1117) . T))
+((-2566 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3398 ((|#1| $) 19 T ELT)) (-3628 (($ |#1| (-584 $)) 28 T ELT) (($ (-584 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-3023 ((|#1| $ |#1|) 14 (|has| $ (-6 -3992)) ELT)) (-3784 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3024 (($ $ (-584 $)) 13 (|has| $ (-6 -3992)) ELT)) (-3720 (($) NIL T CONST)) (-2887 (((-584 |#1|) $) 70 (|has| $ (-6 -3991)) ELT)) (-3029 (((-584 $) $) 59 T ELT)) (-3025 (((-85) $ $) 50 (|has| |#1| (-1013)) ELT)) (-2606 (((-584 |#1|) $) 71 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) 69 (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-3028 (((-584 |#1|) $) 55 T ELT)) (-3523 (((-85) $) 53 T ELT)) (-3239 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3240 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 67 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 102 T ELT)) (-3399 (((-85) $) 9 T ELT)) (-3561 (($) 10 T ELT)) (-3796 ((|#1| $ #1#) NIL T ELT)) (-3027 (((-484) $ $) 48 T ELT)) (-3624 (((-584 $) $) 84 T ELT)) (-3625 (((-85) $ $) 105 T ELT)) (-3626 (((-584 $) $) 100 T ELT)) (-3627 (($ $) 101 T ELT)) (-3629 (((-85) $) 77 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 25 (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) 17 (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3396 (($ $) 83 T ELT)) (-3942 (((-773) $) 86 (|has| |#1| (-553 (-773))) ELT)) (-3518 (((-584 $) $) 12 T ELT)) (-3026 (((-85) $ $) 39 (|has| |#1| (-1013)) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 66 (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) 81 (|has| $ (-6 -3991)) ELT)))
+(((-1115 |#1|) (-13 (-924 |#1|) (-10 -8 (-6 -3991) (-6 -3992) (-15 -3628 ($ |#1| (-584 $))) (-15 -3628 ($ (-584 |#1|))) (-15 -3628 ($ |#1|)) (-15 -3629 ((-85) $)) (-15 -3627 ($ $)) (-15 -3626 ((-584 $) $)) (-15 -3625 ((-85) $ $)) (-15 -3624 ((-584 $) $)))) (-1013)) (T -1115))
+((-3629 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1115 *3)) (-4 *3 (-1013)))) (-3628 (*1 *1 *2 *3) (-12 (-5 *3 (-584 (-1115 *2))) (-5 *1 (-1115 *2)) (-4 *2 (-1013)))) (-3628 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-5 *1 (-1115 *3)))) (-3628 (*1 *1 *2) (-12 (-5 *1 (-1115 *2)) (-4 *2 (-1013)))) (-3627 (*1 *1 *1) (-12 (-5 *1 (-1115 *2)) (-4 *2 (-1013)))) (-3626 (*1 *2 *1) (-12 (-5 *2 (-584 (-1115 *3))) (-5 *1 (-1115 *3)) (-4 *3 (-1013)))) (-3625 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1115 *3)) (-4 *3 (-1013)))) (-3624 (*1 *2 *1) (-12 (-5 *2 (-584 (-1115 *3))) (-5 *1 (-1115 *3)) (-4 *3 (-1013)))))
+((-3635 (($ $) 15 T ELT)) (-3633 (($ $) 12 T ELT)) (-3632 (($ $) 10 T ELT)) (-3631 (($ $) 17 T ELT)))
+(((-1116 |#1|) (-10 -7 (-15 -3631 (|#1| |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -3633 (|#1| |#1|)) (-15 -3635 (|#1| |#1|))) (-1117)) (T -1116))
+NIL
+((-3635 (($ $) 11 T ELT)) (-3634 (($ $) 10 T ELT)) (-3633 (($ $) 9 T ELT)) (-3632 (($ $) 8 T ELT)) (-3631 (($ $) 7 T ELT)) (-3630 (($ $) 6 T ELT)))
+(((-1117) (-113)) (T -1117))
+((-3635 (*1 *1 *1) (-4 *1 (-1117))) (-3634 (*1 *1 *1) (-4 *1 (-1117))) (-3633 (*1 *1 *1) (-4 *1 (-1117))) (-3632 (*1 *1 *1) (-4 *1 (-1117))) (-3631 (*1 *1 *1) (-4 *1 (-1117))) (-3630 (*1 *1 *1) (-4 *1 (-1117))))
+(-13 (-10 -8 (-15 -3630 ($ $)) (-15 -3631 ($ $)) (-15 -3632 ($ $)) (-15 -3633 ($ $)) (-15 -3634 ($ $)) (-15 -3635 ($ $))))
+((-3638 ((|#2| |#2|) 95 T ELT)) (-3641 (((-85) |#2|) 29 T ELT)) (-3639 ((|#2| |#2|) 33 T ELT)) (-3640 ((|#2| |#2|) 35 T ELT)) (-3636 ((|#2| |#2| (-1089)) 89 T ELT) ((|#2| |#2|) 90 T ELT)) (-3642 (((-142 |#2|) |#2|) 31 T ELT)) (-3637 ((|#2| |#2| (-1089)) 91 T ELT) ((|#2| |#2|) 92 T ELT)))
+(((-1118 |#1| |#2|) (-10 -7 (-15 -3636 (|#2| |#2|)) (-15 -3636 (|#2| |#2| (-1089))) (-15 -3637 (|#2| |#2|)) (-15 -3637 (|#2| |#2| (-1089))) (-15 -3638 (|#2| |#2|)) (-15 -3639 (|#2| |#2|)) (-15 -3640 (|#2| |#2|)) (-15 -3641 ((-85) |#2|)) (-15 -3642 ((-142 |#2|) |#2|))) (-13 (-389) (-951 (-484)) (-581 (-484))) (-13 (-27) (-1114) (-361 |#1|))) (T -1118))
+((-3642 (*1 *2 *3) (-12 (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-142 *3)) (-5 *1 (-1118 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *4))))) (-3641 (*1 *2 *3) (-12 (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-85)) (-5 *1 (-1118 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *4))))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *3))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *3))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *3))))) (-3637 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-1118 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *4))))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *3))))) (-3636 (*1 *2 *2 *3) (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-1118 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *4))))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *3))))))
+((-3643 ((|#4| |#4| |#1|) 31 T ELT)) (-3644 ((|#4| |#4| |#1|) 32 T ELT)))
+(((-1119 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3643 (|#4| |#4| |#1|)) (-15 -3644 (|#4| |#4| |#1|))) (-495) (-321 |#1|) (-321 |#1|) (-628 |#1| |#2| |#3|)) (T -1119))
+((-3644 (*1 *2 *2 *3) (-12 (-4 *3 (-495)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-1119 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-3643 (*1 *2 *2 *3) (-12 (-4 *3 (-495)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3)) (-5 *1 (-1119 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
+((-3662 ((|#2| |#2|) 148 T ELT)) (-3664 ((|#2| |#2|) 145 T ELT)) (-3661 ((|#2| |#2|) 136 T ELT)) (-3663 ((|#2| |#2|) 133 T ELT)) (-3660 ((|#2| |#2|) 141 T ELT)) (-3659 ((|#2| |#2|) 129 T ELT)) (-3648 ((|#2| |#2|) 44 T ELT)) (-3647 ((|#2| |#2|) 105 T ELT)) (-3645 ((|#2| |#2|) 88 T ELT)) (-3658 ((|#2| |#2|) 143 T ELT)) (-3657 ((|#2| |#2|) 131 T ELT)) (-3670 ((|#2| |#2|) 153 T ELT)) (-3668 ((|#2| |#2|) 151 T ELT)) (-3669 ((|#2| |#2|) 152 T ELT)) (-3667 ((|#2| |#2|) 150 T ELT)) (-3646 ((|#2| |#2|) 163 T ELT)) (-3671 ((|#2| |#2|) 30 (-12 (|has| |#2| (-554 (-801 |#1|))) (|has| |#2| (-797 |#1|)) (|has| |#1| (-554 (-801 |#1|))) (|has| |#1| (-797 |#1|))) ELT)) (-3649 ((|#2| |#2|) 89 T ELT)) (-3650 ((|#2| |#2|) 154 T ELT)) (-3959 ((|#2| |#2|) 155 T ELT)) (-3656 ((|#2| |#2|) 142 T ELT)) (-3655 ((|#2| |#2|) 130 T ELT)) (-3654 ((|#2| |#2|) 149 T ELT)) (-3666 ((|#2| |#2|) 147 T ELT)) (-3653 ((|#2| |#2|) 137 T ELT)) (-3665 ((|#2| |#2|) 135 T ELT)) (-3652 ((|#2| |#2|) 139 T ELT)) (-3651 ((|#2| |#2|) 127 T ELT)))
+(((-1120 |#1| |#2|) (-10 -7 (-15 -3959 (|#2| |#2|)) (-15 -3645 (|#2| |#2|)) (-15 -3646 (|#2| |#2|)) (-15 -3647 (|#2| |#2|)) (-15 -3648 (|#2| |#2|)) (-15 -3649 (|#2| |#2|)) (-15 -3650 (|#2| |#2|)) (-15 -3651 (|#2| |#2|)) (-15 -3652 (|#2| |#2|)) (-15 -3653 (|#2| |#2|)) (-15 -3654 (|#2| |#2|)) (-15 -3655 (|#2| |#2|)) (-15 -3656 (|#2| |#2|)) (-15 -3657 (|#2| |#2|)) (-15 -3658 (|#2| |#2|)) (-15 -3659 (|#2| |#2|)) (-15 -3660 (|#2| |#2|)) (-15 -3661 (|#2| |#2|)) (-15 -3662 (|#2| |#2|)) (-15 -3663 (|#2| |#2|)) (-15 -3664 (|#2| |#2|)) (-15 -3665 (|#2| |#2|)) (-15 -3666 (|#2| |#2|)) (-15 -3667 (|#2| |#2|)) (-15 -3668 (|#2| |#2|)) (-15 -3669 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (IF (|has| |#1| (-797 |#1|)) (IF (|has| |#1| (-554 (-801 |#1|))) (IF (|has| |#2| (-554 (-801 |#1|))) (IF (|has| |#2| (-797 |#1|)) (-15 -3671 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-389) (-13 (-361 |#1|) (-1114))) (T -1120))
+((-3671 (*1 *2 *2) (-12 (-4 *3 (-554 (-801 *3))) (-4 *3 (-797 *3)) (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-554 (-801 *3))) (-4 *2 (-797 *3)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3669 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3668 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3667 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3666 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3665 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3664 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3663 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3662 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3661 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3660 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3659 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3658 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3657 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3656 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3655 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3654 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3653 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3652 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3651 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3650 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3649 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3648 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3647 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3646 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3645 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))) (-3959 (*1 *2 *2) (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3079 (((-584 (-1089)) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2061 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3035 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3720 (($) NIL T CONST)) (-3955 (($ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-3810 (((-858 |#1|) $ (-695)) 18 T ELT) (((-858 |#1|) $ (-695) (-695)) NIL T ELT)) (-2890 (((-85) $) NIL T ELT)) (-3623 (($) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3768 (((-695) $ (-1089)) NIL T ELT) (((-695) $ (-1089) (-695)) NIL T ELT)) (-2408 (((-85) $) NIL T ELT)) (-3009 (($ $ (-484)) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3933 (((-85) $) NIL T ELT)) (-2891 (($ $ (-584 (-1089)) (-584 (-469 (-1089)))) NIL T ELT) (($ $ (-1089) (-469 (-1089))) NIL T ELT) (($ |#1| (-469 (-1089))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3938 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2892 (($ $) NIL T ELT)) (-3171 ((|#1| $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3808 (($ $ (-1089)) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-1089) |#1|) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3672 (($ (-1 $) (-1089) |#1|) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3765 (($ $ (-695)) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3939 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3764 (($ $ (-1089) $) NIL T ELT) (($ $ (-584 (-1089)) (-584 $)) NIL T ELT) (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT)) (-3754 (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT)) (-3944 (((-469 (-1089)) $) NIL T ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2889 (($ $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ (-1089)) NIL T ELT) (($ (-858 |#1|)) NIL T ELT)) (-3673 ((|#1| $ (-469 (-1089))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT) (((-858 |#1|) $ (-695)) NIL T ELT)) (-2700 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3123 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2060 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-2667 (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089))) NIL T ELT) (($ $ (-1089)) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
+(((-1121 |#1|) (-13 (-680 |#1| (-1089)) (-10 -8 (-15 -3673 ((-858 |#1|) $ (-695))) (-15 -3942 ($ (-1089))) (-15 -3942 ($ (-858 |#1|))) (IF (|has| |#1| (-38 (-347 (-484)))) (PROGN (-15 -3808 ($ $ (-1089) |#1|)) (-15 -3672 ($ (-1 $) (-1089) |#1|))) |%noBranch|))) (-962)) (T -1121))
+((-3673 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-858 *4)) (-5 *1 (-1121 *4)) (-4 *4 (-962)))) (-3942 (*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1121 *3)) (-4 *3 (-962)))) (-3942 (*1 *1 *2) (-12 (-5 *2 (-858 *3)) (-4 *3 (-962)) (-5 *1 (-1121 *3)))) (-3808 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *1 (-1121 *3)) (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)))) (-3672 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1121 *4))) (-5 *3 (-1089)) (-5 *1 (-1121 *4)) (-4 *4 (-38 (-347 (-484)))) (-4 *4 (-962)))))
+((-3689 (((-85) |#5| $) 68 T ELT) (((-85) $) 109 T ELT)) (-3684 ((|#5| |#5| $) 83 T ELT)) (-3706 (($ (-1 (-85) |#5|) $) NIL T ELT) (((-3 |#5| #1="failed") $ |#4|) 126 T ELT)) (-3685 (((-584 |#5|) (-584 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 81 T ELT)) (-3154 (((-3 $ #1#) (-584 |#5|)) 134 T ELT)) (-3795 (((-3 $ #1#) $) 119 T ELT)) (-3681 ((|#5| |#5| $) 101 T ELT)) (-3690 (((-85) |#5| $ (-1 (-85) |#5| |#5|)) 36 T ELT)) (-3679 ((|#5| |#5| $) 105 T ELT)) (-3838 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 77 T ELT)) (-3692 (((-2 (|:| -3857 (-584 |#5|)) (|:| -1700 (-584 |#5|))) $) 63 T ELT)) (-3691 (((-85) |#5| $) 66 T ELT) (((-85) $) 110 T ELT)) (-3177 ((|#4| $) 115 T ELT)) (-3794 (((-3 |#5| #1#) $) 117 T ELT)) (-3693 (((-584 |#5|) $) 55 T ELT)) (-3687 (((-85) |#5| $) 75 T ELT) (((-85) $) 114 T ELT)) (-3682 ((|#5| |#5| $) 89 T ELT)) (-3695 (((-85) $ $) 29 T ELT)) (-3688 (((-85) |#5| $) 71 T ELT) (((-85) $) 112 T ELT)) (-3683 ((|#5| |#5| $) 86 T ELT)) (-3797 (((-3 |#5| #1#) $) 116 T ELT)) (-3765 (($ $ |#5|) 135 T ELT)) (-3944 (((-695) $) 60 T ELT)) (-3526 (($ (-584 |#5|)) 132 T ELT)) (-2908 (($ $ |#4|) 130 T ELT)) (-2910 (($ $ |#4|) 128 T ELT)) (-3680 (($ $) 127 T ELT)) (-3942 (((-773) $) NIL T ELT) (((-584 |#5|) $) 120 T ELT)) (-3674 (((-695) $) 139 T ELT)) (-3694 (((-3 (-2 (|:| |bas| $) (|:| -3320 (-584 |#5|))) #1#) (-584 |#5|) (-1 (-85) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3320 (-584 |#5|))) #1#) (-584 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|)) 51 T ELT)) (-3686 (((-85) $ (-1 (-85) |#5| (-584 |#5|))) 107 T ELT)) (-3676 (((-584 |#4|) $) 122 T ELT)) (-3929 (((-85) |#4| $) 125 T ELT)) (-3054 (((-85) $ $) 20 T ELT)))
+(((-1122 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3674 ((-695) |#1|)) (-15 -3765 (|#1| |#1| |#5|)) (-15 -3706 ((-3 |#5| #1="failed") |#1| |#4|)) (-15 -3929 ((-85) |#4| |#1|)) (-15 -3676 ((-584 |#4|) |#1|)) (-15 -3795 ((-3 |#1| #1#) |#1|)) (-15 -3794 ((-3 |#5| #1#) |#1|)) (-15 -3797 ((-3 |#5| #1#) |#1|)) (-15 -3679 (|#5| |#5| |#1|)) (-15 -3680 (|#1| |#1|)) (-15 -3681 (|#5| |#5| |#1|)) (-15 -3682 (|#5| |#5| |#1|)) (-15 -3683 (|#5| |#5| |#1|)) (-15 -3684 (|#5| |#5| |#1|)) (-15 -3685 ((-584 |#5|) (-584 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3838 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3687 ((-85) |#1|)) (-15 -3688 ((-85) |#1|)) (-15 -3689 ((-85) |#1|)) (-15 -3686 ((-85) |#1| (-1 (-85) |#5| (-584 |#5|)))) (-15 -3687 ((-85) |#5| |#1|)) (-15 -3688 ((-85) |#5| |#1|)) (-15 -3689 ((-85) |#5| |#1|)) (-15 -3690 ((-85) |#5| |#1| (-1 (-85) |#5| |#5|))) (-15 -3691 ((-85) |#1|)) (-15 -3691 ((-85) |#5| |#1|)) (-15 -3692 ((-2 (|:| -3857 (-584 |#5|)) (|:| -1700 (-584 |#5|))) |#1|)) (-15 -3944 ((-695) |#1|)) (-15 -3693 ((-584 |#5|) |#1|)) (-15 -3694 ((-3 (-2 (|:| |bas| |#1|) (|:| -3320 (-584 |#5|))) #1#) (-584 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|))) (-15 -3694 ((-3 (-2 (|:| |bas| |#1|) (|:| -3320 (-584 |#5|))) #1#) (-584 |#5|) (-1 (-85) |#5| |#5|))) (-15 -3695 ((-85) |#1| |#1|)) (-15 -2908 (|#1| |#1| |#4|)) (-15 -2910 (|#1| |#1| |#4|)) (-15 -3177 (|#4| |#1|)) (-15 -3154 ((-3 |#1| #1#) (-584 |#5|))) (-15 -3942 ((-584 |#5|) |#1|)) (-15 -3526 (|#1| (-584 |#5|))) (-15 -3838 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3838 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3706 (|#1| (-1 (-85) |#5|) |#1|)) (-15 -3838 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3942 ((-773) |#1|)) (-15 -3054 ((-85) |#1| |#1|))) (-1123 |#2| |#3| |#4| |#5|) (-495) (-718) (-757) (-977 |#2| |#3| |#4|)) (T -1122))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3677 (((-584 (-2 (|:| -3857 $) (|:| -1700 (-584 |#4|)))) (-584 |#4|)) 90 T ELT)) (-3678 (((-584 $) (-584 |#4|)) 91 T ELT)) (-3079 (((-584 |#3|) $) 37 T ELT)) (-2906 (((-85) $) 30 T ELT)) (-2897 (((-85) $) 21 (|has| |#1| (-495)) ELT)) (-3689 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3684 ((|#4| |#4| $) 97 T ELT)) (-2907 (((-2 (|:| |under| $) (|:| -3127 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3706 (($ (-1 (-85) |#4|) $) 66 (|has| $ (-6 -3991)) ELT) (((-3 |#4| "failed") $ |#3|) 84 T ELT)) (-3720 (($) 46 T CONST)) (-2902 (((-85) $) 26 (|has| |#1| (-495)) ELT)) (-2904 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2903 (((-85) $ $) 27 (|has| |#1| (-495)) ELT)) (-2905 (((-85) $) 29 (|has| |#1| (-495)) ELT)) (-3685 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 98 T ELT)) (-2898 (((-584 |#4|) (-584 |#4|) $) 22 (|has| |#1| (-495)) ELT)) (-2899 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-3154 (((-3 $ "failed") (-584 |#4|)) 40 T ELT)) (-3153 (($ (-584 |#4|)) 39 T ELT)) (-3795 (((-3 $ "failed") $) 87 T ELT)) (-3681 ((|#4| |#4| $) 94 T ELT)) (-1351 (($ $) 69 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3402 (($ |#4| $) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3991))) ELT) (($ (-1 (-85) |#4|) $) 65 (|has| $ (-6 -3991)) ELT)) (-2900 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-495)) ELT)) (-3690 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 107 T ELT)) (-3679 ((|#4| |#4| $) 92 T ELT)) (-3838 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3991))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3991)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3991)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-3692 (((-2 (|:| -3857 (-584 |#4|)) (|:| -1700 (-584 |#4|))) $) 110 T ELT)) (-2887 (((-584 |#4|) $) 53 (|has| $ (-6 -3991)) ELT)) (-3691 (((-85) |#4| $) 109 T ELT) (((-85) $) 108 T ELT)) (-3177 ((|#3| $) 38 T ELT)) (-2606 (((-584 |#4|) $) 54 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#4| $) 56 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3991))) ELT)) (-1947 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2912 (((-584 |#3|) $) 36 T ELT)) (-2911 (((-85) |#3| $) 35 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3794 (((-3 |#4| "failed") $) 88 T ELT)) (-3693 (((-584 |#4|) $) 112 T ELT)) (-3687 (((-85) |#4| $) 104 T ELT) (((-85) $) 100 T ELT)) (-3682 ((|#4| |#4| $) 95 T ELT)) (-3695 (((-85) $ $) 115 T ELT)) (-2901 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3688 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3683 ((|#4| |#4| $) 96 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3797 (((-3 |#4| "failed") $) 89 T ELT)) (-1352 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 62 T ELT)) (-3675 (((-3 $ "failed") $ |#4|) 83 T ELT)) (-3765 (($ $ |#4|) 82 T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) 51 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 |#4|) (-584 |#4|)) 60 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-248 |#4|)) 58 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-584 (-248 |#4|))) 57 (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT)) (-1220 (((-85) $ $) 42 T ELT)) (-3399 (((-85) $) 45 T ELT)) (-3561 (($) 44 T ELT)) (-3944 (((-695) $) 111 T ELT)) (-1944 (((-695) |#4| $) 55 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -3991))) ELT) (((-695) (-1 (-85) |#4|) $) 52 (|has| $ (-6 -3991)) ELT)) (-3396 (($ $) 43 T ELT)) (-3968 (((-473) $) 70 (|has| |#4| (-554 (-473))) ELT)) (-3526 (($ (-584 |#4|)) 61 T ELT)) (-2908 (($ $ |#3|) 32 T ELT)) (-2910 (($ $ |#3|) 34 T ELT)) (-3680 (($ $) 93 T ELT)) (-2909 (($ $ |#3|) 33 T ELT)) (-3942 (((-773) $) 13 T ELT) (((-584 |#4|) $) 41 T ELT)) (-3674 (((-695) $) 81 (|has| |#3| (-317)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3694 (((-3 (-2 (|:| |bas| $) (|:| -3320 (-584 |#4|))) "failed") (-584 |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3320 (-584 |#4|))) "failed") (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 113 T ELT)) (-3686 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) 103 T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) 50 (|has| $ (-6 -3991)) ELT)) (-3676 (((-584 |#3|) $) 86 T ELT)) (-3929 (((-85) |#3| $) 85 T ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3953 (((-695) $) 47 (|has| $ (-6 -3991)) ELT)))
+(((-1123 |#1| |#2| |#3| |#4|) (-113) (-495) (-718) (-757) (-977 |t#1| |t#2| |t#3|)) (T -1123))
+((-3695 (*1 *2 *1 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3694 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3320 (-584 *8)))) (-5 *3 (-584 *8)) (-4 *1 (-1123 *5 *6 *7 *8)))) (-3694 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-85) *9)) (-5 *5 (-1 (-85) *9 *9)) (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-718)) (-4 *8 (-757)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3320 (-584 *9)))) (-5 *3 (-584 *9)) (-4 *1 (-1123 *6 *7 *8 *9)))) (-3693 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-584 *6)))) (-3944 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-695)))) (-3692 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-2 (|:| -3857 (-584 *6)) (|:| -1700 (-584 *6)))))) (-3691 (*1 *2 *3 *1) (-12 (-4 *1 (-1123 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3691 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3690 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1123 *5 *6 *7 *3)) (-4 *5 (-495)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-85)))) (-3689 (*1 *2 *3 *1) (-12 (-4 *1 (-1123 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3688 (*1 *2 *3 *1) (-12 (-4 *1 (-1123 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3687 (*1 *2 *3 *1) (-12 (-4 *1 (-1123 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3686 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-85) *7 (-584 *7))) (-4 *1 (-1123 *4 *5 *6 *7)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3687 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3838 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-85) *2 *2)) (-4 *1 (-1123 *5 *6 *7 *2)) (-4 *5 (-495)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *2 (-977 *5 *6 *7)))) (-3685 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-584 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8)) (-4 *1 (-1123 *5 *6 *7 *8)) (-4 *5 (-495)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-977 *5 *6 *7)))) (-3684 (*1 *2 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-977 *3 *4 *5)))) (-3683 (*1 *2 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-977 *3 *4 *5)))) (-3682 (*1 *2 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-977 *3 *4 *5)))) (-3681 (*1 *2 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-977 *3 *4 *5)))) (-3680 (*1 *1 *1) (-12 (-4 *1 (-1123 *2 *3 *4 *5)) (-4 *2 (-495)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-977 *2 *3 *4)))) (-3679 (*1 *2 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-977 *3 *4 *5)))) (-3678 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-1123 *4 *5 *6 *7)))) (-3677 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-584 (-2 (|:| -3857 *1) (|:| -1700 (-584 *7))))) (-5 *3 (-584 *7)) (-4 *1 (-1123 *4 *5 *6 *7)))) (-3797 (*1 *2 *1) (|partial| -12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-977 *3 *4 *5)))) (-3794 (*1 *2 *1) (|partial| -12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-977 *3 *4 *5)))) (-3795 (*1 *1 *1) (|partial| -12 (-4 *1 (-1123 *2 *3 *4 *5)) (-4 *2 (-495)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-977 *2 *3 *4)))) (-3676 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-584 *5)))) (-3929 (*1 *2 *3 *1) (-12 (-4 *1 (-1123 *4 *5 *3 *6)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-85)))) (-3706 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1123 *4 *5 *3 *2)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *2 (-977 *4 *5 *3)))) (-3675 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-977 *3 *4 *5)))) (-3765 (*1 *1 *1 *2) (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-977 *3 *4 *5)))) (-3674 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-4 *5 (-317)) (-5 *2 (-695)))))
+(-13 (-890 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -3991) (-6 -3992) (-15 -3695 ((-85) $ $)) (-15 -3694 ((-3 (-2 (|:| |bas| $) (|:| -3320 (-584 |t#4|))) "failed") (-584 |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3694 ((-3 (-2 (|:| |bas| $) (|:| -3320 (-584 |t#4|))) "failed") (-584 |t#4|) (-1 (-85) |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3693 ((-584 |t#4|) $)) (-15 -3944 ((-695) $)) (-15 -3692 ((-2 (|:| -3857 (-584 |t#4|)) (|:| -1700 (-584 |t#4|))) $)) (-15 -3691 ((-85) |t#4| $)) (-15 -3691 ((-85) $)) (-15 -3690 ((-85) |t#4| $ (-1 (-85) |t#4| |t#4|))) (-15 -3689 ((-85) |t#4| $)) (-15 -3688 ((-85) |t#4| $)) (-15 -3687 ((-85) |t#4| $)) (-15 -3686 ((-85) $ (-1 (-85) |t#4| (-584 |t#4|)))) (-15 -3689 ((-85) $)) (-15 -3688 ((-85) $)) (-15 -3687 ((-85) $)) (-15 -3838 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3685 ((-584 |t#4|) (-584 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3684 (|t#4| |t#4| $)) (-15 -3683 (|t#4| |t#4| $)) (-15 -3682 (|t#4| |t#4| $)) (-15 -3681 (|t#4| |t#4| $)) (-15 -3680 ($ $)) (-15 -3679 (|t#4| |t#4| $)) (-15 -3678 ((-584 $) (-584 |t#4|))) (-15 -3677 ((-584 (-2 (|:| -3857 $) (|:| -1700 (-584 |t#4|)))) (-584 |t#4|))) (-15 -3797 ((-3 |t#4| "failed") $)) (-15 -3794 ((-3 |t#4| "failed") $)) (-15 -3795 ((-3 $ "failed") $)) (-15 -3676 ((-584 |t#3|) $)) (-15 -3929 ((-85) |t#3| $)) (-15 -3706 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3675 ((-3 $ "failed") $ |t#4|)) (-15 -3765 ($ $ |t#4|)) (IF (|has| |t#3| (-317)) (-15 -3674 ((-695) $)) |%noBranch|)))
+(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-473)) |has| |#4| (-554 (-473))) ((-259 |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ((-426 |#4|) . T) ((-453 |#4| |#4|) -12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1128) . T))
+((-3701 (($ |#1| (-584 (-584 (-855 (-179)))) (-85)) 19 T ELT)) (-3700 (((-85) $ (-85)) 18 T ELT)) (-3699 (((-85) $) 17 T ELT)) (-3697 (((-584 (-584 (-855 (-179)))) $) 13 T ELT)) (-3696 ((|#1| $) 8 T ELT)) (-3698 (((-85) $) 15 T ELT)))
+(((-1124 |#1|) (-10 -8 (-15 -3696 (|#1| $)) (-15 -3697 ((-584 (-584 (-855 (-179)))) $)) (-15 -3698 ((-85) $)) (-15 -3699 ((-85) $)) (-15 -3700 ((-85) $ (-85))) (-15 -3701 ($ |#1| (-584 (-584 (-855 (-179)))) (-85)))) (-888)) (T -1124))
+((-3701 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-85)) (-5 *1 (-1124 *2)) (-4 *2 (-888)))) (-3700 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1124 *3)) (-4 *3 (-888)))) (-3699 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1124 *3)) (-4 *3 (-888)))) (-3698 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1124 *3)) (-4 *3 (-888)))) (-3697 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-1124 *3)) (-4 *3 (-888)))) (-3696 (*1 *2 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-888)))))
+((-3703 (((-855 (-179)) (-855 (-179))) 31 T ELT)) (-3702 (((-855 (-179)) (-179) (-179) (-179) (-179)) 10 T ELT)) (-3705 (((-584 (-855 (-179))) (-855 (-179)) (-855 (-179)) (-855 (-179)) (-179) (-584 (-584 (-179)))) 57 T ELT)) (-3832 (((-179) (-855 (-179)) (-855 (-179))) 27 T ELT)) (-3830 (((-855 (-179)) (-855 (-179)) (-855 (-179))) 28 T ELT)) (-3704 (((-584 (-584 (-179))) (-484)) 45 T ELT)) (-3833 (((-855 (-179)) (-855 (-179)) (-855 (-179))) 26 T ELT)) (-3835 (((-855 (-179)) (-855 (-179)) (-855 (-179))) 24 T ELT)) (* (((-855 (-179)) (-179) (-855 (-179))) 22 T ELT)))
+(((-1125) (-10 -7 (-15 -3702 ((-855 (-179)) (-179) (-179) (-179) (-179))) (-15 * ((-855 (-179)) (-179) (-855 (-179)))) (-15 -3835 ((-855 (-179)) (-855 (-179)) (-855 (-179)))) (-15 -3833 ((-855 (-179)) (-855 (-179)) (-855 (-179)))) (-15 -3832 ((-179) (-855 (-179)) (-855 (-179)))) (-15 -3830 ((-855 (-179)) (-855 (-179)) (-855 (-179)))) (-15 -3703 ((-855 (-179)) (-855 (-179)))) (-15 -3704 ((-584 (-584 (-179))) (-484))) (-15 -3705 ((-584 (-855 (-179))) (-855 (-179)) (-855 (-179)) (-855 (-179)) (-179) (-584 (-584 (-179))))))) (T -1125))
+((-3705 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-584 (-584 (-179)))) (-5 *4 (-179)) (-5 *2 (-584 (-855 *4))) (-5 *1 (-1125)) (-5 *3 (-855 *4)))) (-3704 (*1 *2 *3) (-12 (-5 *3 (-484)) (-5 *2 (-584 (-584 (-179)))) (-5 *1 (-1125)))) (-3703 (*1 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1125)))) (-3830 (*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1125)))) (-3832 (*1 *2 *3 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-179)) (-5 *1 (-1125)))) (-3833 (*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1125)))) (-3835 (*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1125)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-855 (-179))) (-5 *3 (-179)) (-5 *1 (-1125)))) (-3702 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1125)) (-5 *3 (-179)))))
+((-2566 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3706 ((|#1| $ (-695)) 18 T ELT)) (-3829 (((-695) $) 13 T ELT)) (-3239 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3240 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3942 (((-870 |#1|) $) 12 T ELT) (($ (-870 |#1|)) 11 T ELT) (((-773) $) 29 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3054 (((-85) $ $) 22 (|has| |#1| (-1013)) ELT)))
+(((-1126 |#1|) (-13 (-427 (-870 |#1|)) (-10 -8 (-15 -3706 (|#1| $ (-695))) (-15 -3829 ((-695) $)) (IF (|has| |#1| (-553 (-773))) (-6 (-553 (-773))) |%noBranch|) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|))) (-1128)) (T -1126))
+((-3706 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-1126 *2)) (-4 *2 (-1128)))) (-3829 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1126 *3)) (-4 *3 (-1128)))))
+((-3709 (((-345 (-1084 (-1084 |#1|))) (-1084 (-1084 |#1|)) (-484)) 92 T ELT)) (-3707 (((-345 (-1084 (-1084 |#1|))) (-1084 (-1084 |#1|))) 84 T ELT)) (-3708 (((-345 (-1084 (-1084 |#1|))) (-1084 (-1084 |#1|))) 68 T ELT)))
+(((-1127 |#1|) (-10 -7 (-15 -3707 ((-345 (-1084 (-1084 |#1|))) (-1084 (-1084 |#1|)))) (-15 -3708 ((-345 (-1084 (-1084 |#1|))) (-1084 (-1084 |#1|)))) (-15 -3709 ((-345 (-1084 (-1084 |#1|))) (-1084 (-1084 |#1|)) (-484)))) (-298)) (T -1127))
+((-3709 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-4 *5 (-298)) (-5 *2 (-345 (-1084 (-1084 *5)))) (-5 *1 (-1127 *5)) (-5 *3 (-1084 (-1084 *5))))) (-3708 (*1 *2 *3) (-12 (-4 *4 (-298)) (-5 *2 (-345 (-1084 (-1084 *4)))) (-5 *1 (-1127 *4)) (-5 *3 (-1084 (-1084 *4))))) (-3707 (*1 *2 *3) (-12 (-4 *4 (-298)) (-5 *2 (-345 (-1084 (-1084 *4)))) (-5 *1 (-1127 *4)) (-5 *3 (-1084 (-1084 *4))))))
+NIL
+(((-1128) (-113)) (T -1128))
NIL
(-13)
(((-13) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 9 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-1128) (-994)) (T -1128))
-NIL
-((-3711 (((-85)) 18 T ELT)) (-3708 (((-1183) (-583 |#1|) (-583 |#1|)) 22 T ELT) (((-1183) (-583 |#1|)) 23 T ELT)) (-3713 (((-85) |#1| |#1|) 37 (|has| |#1| (-756)) ELT)) (-3710 (((-85) |#1| |#1| (-1 (-85) |#1| |#1|)) 29 T ELT) (((-3 (-85) "failed") |#1| |#1|) 27 T ELT)) (-3712 ((|#1| (-583 |#1|)) 38 (|has| |#1| (-756)) ELT) ((|#1| (-583 |#1|) (-1 (-85) |#1| |#1|)) 32 T ELT)) (-3709 (((-2 (|:| -3224 (-583 |#1|)) (|:| -3223 (-583 |#1|)))) 20 T ELT)))
-(((-1129 |#1|) (-10 -7 (-15 -3708 ((-1183) (-583 |#1|))) (-15 -3708 ((-1183) (-583 |#1|) (-583 |#1|))) (-15 -3709 ((-2 (|:| -3224 (-583 |#1|)) (|:| -3223 (-583 |#1|))))) (-15 -3710 ((-3 (-85) "failed") |#1| |#1|)) (-15 -3710 ((-85) |#1| |#1| (-1 (-85) |#1| |#1|))) (-15 -3712 (|#1| (-583 |#1|) (-1 (-85) |#1| |#1|))) (-15 -3711 ((-85))) (IF (|has| |#1| (-756)) (PROGN (-15 -3712 (|#1| (-583 |#1|))) (-15 -3713 ((-85) |#1| |#1|))) |%noBranch|)) (-1012)) (T -1129))
-((-3713 (*1 *2 *3 *3) (-12 (-5 *2 (-85)) (-5 *1 (-1129 *3)) (-4 *3 (-756)) (-4 *3 (-1012)))) (-3712 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1012)) (-4 *2 (-756)) (-5 *1 (-1129 *2)))) (-3711 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1129 *3)) (-4 *3 (-1012)))) (-3712 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1129 *2)) (-4 *2 (-1012)))) (-3710 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1012)) (-5 *2 (-85)) (-5 *1 (-1129 *3)))) (-3710 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1129 *3)) (-4 *3 (-1012)))) (-3709 (*1 *2) (-12 (-5 *2 (-2 (|:| -3224 (-583 *3)) (|:| -3223 (-583 *3)))) (-5 *1 (-1129 *3)) (-4 *3 (-1012)))) (-3708 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1012)) (-5 *2 (-1183)) (-5 *1 (-1129 *4)))) (-3708 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1012)) (-5 *2 (-1183)) (-5 *1 (-1129 *4)))))
-((-3714 (((-1183) (-583 (-1088)) (-583 (-1088))) 14 T ELT) (((-1183) (-583 (-1088))) 12 T ELT)) (-3716 (((-1183)) 16 T ELT)) (-3715 (((-2 (|:| -3223 (-583 (-1088))) (|:| -3224 (-583 (-1088))))) 20 T ELT)))
-(((-1130) (-10 -7 (-15 -3714 ((-1183) (-583 (-1088)))) (-15 -3714 ((-1183) (-583 (-1088)) (-583 (-1088)))) (-15 -3715 ((-2 (|:| -3223 (-583 (-1088))) (|:| -3224 (-583 (-1088)))))) (-15 -3716 ((-1183))))) (T -1130))
-((-3716 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1130)))) (-3715 (*1 *2) (-12 (-5 *2 (-2 (|:| -3223 (-583 (-1088))) (|:| -3224 (-583 (-1088))))) (-5 *1 (-1130)))) (-3714 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-1088))) (-5 *2 (-1183)) (-5 *1 (-1130)))) (-3714 (*1 *2 *3) (-12 (-5 *3 (-583 (-1088))) (-5 *2 (-1183)) (-5 *1 (-1130)))))
-((-3769 (($ $) 17 T ELT)) (-3717 (((-85) $) 27 T ELT)))
-(((-1131 |#1|) (-10 -7 (-15 -3769 (|#1| |#1|)) (-15 -3717 ((-85) |#1|))) (-1132)) (T -1131))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3769 (($ $) 64 T ELT)) (-3965 (((-345 $) $) 65 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3717 (((-85) $) 66 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3726 (((-345 $) $) 63 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT)))
-(((-1132) (-113)) (T -1132))
-((-3717 (*1 *2 *1) (-12 (-4 *1 (-1132)) (-5 *2 (-85)))) (-3965 (*1 *2 *1) (-12 (-5 *2 (-345 *1)) (-4 *1 (-1132)))) (-3769 (*1 *1 *1) (-4 *1 (-1132))) (-3726 (*1 *2 *1) (-12 (-5 *2 (-345 *1)) (-4 *1 (-1132)))))
-(-13 (-389) (-10 -8 (-15 -3717 ((-85) $)) (-15 -3965 ((-345 $) $)) (-15 -3769 ($ $)) (-15 -3726 ((-345 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-483)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-245) . T) ((-389) . T) ((-494) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-2309 (($ $) NIL T ELT)) (-3131 (((-694)) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2990 (($) NIL T ELT)) (-2527 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2853 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2006 (((-830) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 (($ (-830)) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-3719 (($ $ $) NIL T ELT)) (-3720 (($ $ $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2307 (($ $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT)) (-2308 (($ $ $) NIL T ELT)))
-(((-1133) (-13 (-752) (-604) (-10 -8 (-15 -3720 ($ $ $)) (-15 -3719 ($ $ $)) (-15 -3718 ($) -3946)))) (T -1133))
-((-3720 (*1 *1 *1 *1) (-5 *1 (-1133))) (-3719 (*1 *1 *1 *1) (-5 *1 (-1133))) (-3718 (*1 *1) (-5 *1 (-1133))))
-((-694) (|%not| (|%ilt| 16 (|%ilength| |#1|))))
-((-2564 (((-85) $ $) NIL T ELT)) (-2309 (($ $) NIL T ELT)) (-3131 (((-694)) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2990 (($) NIL T ELT)) (-2527 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2853 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2006 (((-830) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 (($ (-830)) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-3719 (($ $ $) NIL T ELT)) (-3720 (($ $ $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2307 (($ $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT)) (-2308 (($ $ $) NIL T ELT)))
-(((-1134) (-13 (-752) (-604) (-10 -8 (-15 -3720 ($ $ $)) (-15 -3719 ($ $ $)) (-15 -3718 ($) -3946)))) (T -1134))
-((-3720 (*1 *1 *1 *1) (-5 *1 (-1134))) (-3719 (*1 *1 *1 *1) (-5 *1 (-1134))) (-3718 (*1 *1) (-5 *1 (-1134))))
-((-694) (|%not| (|%ilt| 32 (|%ilength| |#1|))))
-((-2564 (((-85) $ $) NIL T ELT)) (-2309 (($ $) NIL T ELT)) (-3131 (((-694)) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2990 (($) NIL T ELT)) (-2527 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2853 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2006 (((-830) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 (($ (-830)) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-3719 (($ $ $) NIL T ELT)) (-3720 (($ $ $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2307 (($ $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT)) (-2308 (($ $ $) NIL T ELT)))
-(((-1135) (-13 (-752) (-604) (-10 -8 (-15 -3720 ($ $ $)) (-15 -3719 ($ $ $)) (-15 -3718 ($) -3946)))) (T -1135))
-((-3720 (*1 *1 *1 *1) (-5 *1 (-1135))) (-3719 (*1 *1 *1 *1) (-5 *1 (-1135))) (-3718 (*1 *1) (-5 *1 (-1135))))
-((-694) (|%not| (|%ilt| 64 (|%ilength| |#1|))))
-((-2564 (((-85) $ $) NIL T ELT)) (-2309 (($ $) NIL T ELT)) (-3131 (((-694)) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2990 (($) NIL T ELT)) (-2527 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2853 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2006 (((-830) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2396 (($ (-830)) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT)) (-3719 (($ $ $) NIL T ELT)) (-3720 (($ $ $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2307 (($ $ $) NIL T ELT)) (-2562 (((-85) $ $) NIL T ELT)) (-2563 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL T ELT)) (-2681 (((-85) $ $) NIL T ELT)) (-2308 (($ $ $) NIL T ELT)))
-(((-1136) (-13 (-752) (-604) (-10 -8 (-15 -3720 ($ $ $)) (-15 -3719 ($ $ $)) (-15 -3718 ($) -3946)))) (T -1136))
-((-3720 (*1 *1 *1 *1) (-5 *1 (-1136))) (-3719 (*1 *1 *1 *1) (-5 *1 (-1136))) (-3718 (*1 *1) (-5 *1 (-1136))))
-((-694) (|%not| (|%ilt| 8 (|%ilength| |#1|))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3124 (((-1167 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-257)) (|has| |#1| (-311))) ELT)) (-3077 (((-583 (-993)) $) NIL T ELT)) (-3825 (((-1088) $) 10 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) (|has| |#1| (-494))) ELT)) (-2059 (($ $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) (|has| |#1| (-494))) ELT)) (-2057 (((-85) $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) (|has| |#1| (-494))) ELT)) (-3765 (($ $ (-483)) NIL T ELT) (($ $ (-483) (-483)) NIL T ELT)) (-3768 (((-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))) $) NIL T ELT)) (-3725 (((-1167 |#1| |#2| |#3|) $) NIL T ELT)) (-3722 (((-3 (-1167 |#1| |#2| |#3|) #1="failed") $) NIL T ELT)) (-3723 (((-1167 |#1| |#2| |#3|) $) NIL T ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ #1#) $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) ELT)) (-3769 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-3033 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) ELT)) (-1605 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3617 (((-483) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) ELT)) (-3812 (($ (-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|)))) NIL T ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-1167 |#1| |#2| |#3|) #1#) $) NIL T ELT) (((-3 (-1088) #1#) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-950 (-1088))) (|has| |#1| (-311))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-950 (-483))) (|has| |#1| (-311))) ELT) (((-3 (-483) #1#) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-950 (-483))) (|has| |#1| (-311))) ELT)) (-3151 (((-1167 |#1| |#2| |#3|) $) NIL T ELT) (((-1088) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-950 (-1088))) (|has| |#1| (-311))) ELT) (((-347 (-483)) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-950 (-483))) (|has| |#1| (-311))) ELT) (((-483) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-950 (-483))) (|has| |#1| (-311))) ELT)) (-3724 (($ $) NIL T ELT) (($ (-483) $) NIL T ELT)) (-2560 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3953 (($ $) NIL T ELT)) (-2275 (((-630 (-1167 |#1| |#2| |#3|)) (-630 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-630 (-1167 |#1| |#2| |#3|))) (|:| |vec| (-1177 (-1167 |#1| |#2| |#3|)))) (-630 $) (-1177 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-580 (-483))) (|has| |#1| (-311))) ELT) (((-630 (-483)) (-630 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-580 (-483))) (|has| |#1| (-311))) ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3721 (((-347 (-857 |#1|)) $ (-483)) NIL (|has| |#1| (-494)) ELT) (((-347 (-857 |#1|)) $ (-483) (-483)) NIL (|has| |#1| (-494)) ELT)) (-2990 (($) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-482)) (|has| |#1| (-311))) ELT)) (-2559 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| |#1| (-311)) ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-3181 (((-85) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) ELT)) (-2888 (((-85) $) NIL T ELT)) (-3621 (($) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-796 (-327))) (|has| |#1| (-311))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-796 (-483))) (|has| |#1| (-311))) ELT)) (-3766 (((-483) $) NIL T ELT) (((-483) $ (-483)) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2992 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2994 (((-1167 |#1| |#2| |#3|) $) NIL (|has| |#1| (-311)) ELT)) (-3007 (($ $ (-483)) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3439 (((-632 $) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1064)) (|has| |#1| (-311))) ELT)) (-3182 (((-85) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) ELT)) (-3771 (($ $ (-830)) NIL T ELT)) (-3809 (($ (-1 |#1| (-483)) $) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-483)) 18 T ELT) (($ $ (-993) (-483)) NIL T ELT) (($ $ (-583 (-993)) (-583 (-483))) NIL T ELT)) (-2527 (($ $ $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-756)) (|has| |#1| (-311)))) ELT)) (-2853 (($ $ $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-756)) (|has| |#1| (-311)))) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-311)) ELT)) (-3936 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2276 (((-630 (-1167 |#1| |#2| |#3|)) (-1177 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-630 (-1167 |#1| |#2| |#3|))) (|:| |vec| (-1177 (-1167 |#1| |#2| |#3|)))) (-1177 $) $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-580 (-483))) (|has| |#1| (-311))) ELT) (((-630 (-483)) (-1177 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-580 (-483))) (|has| |#1| (-311))) ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3773 (($ (-483) (-1167 |#1| |#2| |#3|)) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3806 (($ $) 27 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-29 (-483))) (|has| |#1| (-871)) (|has| |#1| (-1113))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-15 -3806 (|#1| |#1| (-1088)))) (|has| |#1| (-15 -3077 ((-583 (-1088)) |#1|))))) ELT) (($ $ (-1174 |#2|)) 28 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3440 (($) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1064)) (|has| |#1| (-311))) CONST)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-311)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3123 (($ $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-257)) (|has| |#1| (-311))) ELT)) (-3125 (((-1167 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-482)) (|has| |#1| (-311))) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3763 (($ $ (-483)) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) (|has| |#1| (-494))) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3937 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3762 (((-1067 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-483)))) ELT) (($ $ (-1088) (-1167 |#1| |#2| |#3|)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-452 (-1088) (-1167 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-583 (-1088)) (-583 (-1167 |#1| |#2| |#3|))) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-452 (-1088) (-1167 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-583 (-248 (-1167 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-259 (-1167 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-248 (-1167 |#1| |#2| |#3|))) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-259 (-1167 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-259 (-1167 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-583 (-1167 |#1| |#2| |#3|)) (-583 (-1167 |#1| |#2| |#3|))) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-259 (-1167 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT)) (-1604 (((-694) $) NIL (|has| |#1| (-311)) ELT)) (-3794 ((|#1| $ (-483)) NIL T ELT) (($ $ $) NIL (|has| (-483) (-1024)) ELT) (($ $ (-1167 |#1| |#2| |#3|)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-241 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3752 (($ $ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) (-694)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|))) NIL (|has| |#1| (-311)) ELT) (($ $ (-1174 |#2|)) 26 T ELT) (($ $) 25 (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-190)) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-190)) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-809 (-1088))) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-583 (-1088))) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-809 (-1088))) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-1088) (-694)) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-809 (-1088))) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-809 (-1088))) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT)) (-2991 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2993 (((-1167 |#1| |#2| |#3|) $) NIL (|has| |#1| (-311)) ELT)) (-3942 (((-483) $) NIL T ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3966 (((-472) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-553 (-472))) (|has| |#1| (-311))) ELT) (((-327) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-933)) (|has| |#1| (-311))) ELT) (((-179) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-933)) (|has| |#1| (-311))) ELT) (((-800 (-327)) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-553 (-800 (-327)))) (|has| |#1| (-311))) ELT) (((-800 (-483)) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-553 (-800 (-483)))) (|has| |#1| (-311))) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-1167 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) ELT)) (-2887 (($ $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1167 |#1| |#2| |#3|)) NIL T ELT) (($ (-1174 |#2|)) 24 T ELT) (($ (-1088)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-950 (-1088))) (|has| |#1| (-311))) ELT) (($ $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) (|has| |#1| (-494))) ELT) (($ (-347 (-483))) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-950 (-483))) (|has| |#1| (-311))) (|has| |#1| (-38 (-347 (-483))))) ELT)) (-3671 ((|#1| $ (-483)) NIL T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1167 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-118)) (|has| |#1| (-311))) (|has| |#1| (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-3767 ((|#1| $) 11 T ELT)) (-3126 (((-1167 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-482)) (|has| |#1| (-311))) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-821)) (|has| |#1| (-311))) (|has| |#1| (-494))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3764 ((|#1| $ (-483)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-483)))) (|has| |#1| (-15 -3940 (|#1| (-1088))))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3377 (($ $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) ELT)) (-2656 (($) 20 T CONST)) (-2662 (($) 15 T CONST)) (-2665 (($ $ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) (-694)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|))) NIL (|has| |#1| (-311)) ELT) (($ $ (-1174 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-190)) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-190)) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-809 (-1088))) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-583 (-1088))) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-809 (-1088))) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-1088) (-694)) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-809 (-1088))) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-809 (-1088))) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT)) (-2562 (((-85) $ $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-756)) (|has| |#1| (-311)))) ELT)) (-2563 (((-85) $ $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-756)) (|has| |#1| (-311)))) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-2680 (((-85) $ $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-756)) (|has| |#1| (-311)))) ELT)) (-2681 (((-85) $ $) NIL (OR (-12 (|has| (-1167 |#1| |#2| |#3|) (-740)) (|has| |#1| (-311))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-756)) (|has| |#1| (-311)))) ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT) (($ (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 22 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1167 |#1| |#2| |#3|)) NIL (|has| |#1| (-311)) ELT) (($ (-1167 |#1| |#2| |#3|) $) NIL (|has| |#1| (-311)) ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)))
-(((-1137 |#1| |#2| |#3|) (-13 (-1141 |#1| (-1167 |#1| |#2| |#3|)) (-806 $ (-1174 |#2|)) (-10 -8 (-15 -3940 ($ (-1174 |#2|))) (IF (|has| |#1| (-38 (-347 (-483)))) (-15 -3806 ($ $ (-1174 |#2|))) |%noBranch|))) (-961) (-1088) |#1|) (T -1137))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1137 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3806 (*1 *1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1137 *3 *4 *5)) (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) (-14 *5 *3))))
-((-3952 (((-1137 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1137 |#1| |#3| |#5|)) 23 T ELT)))
-(((-1138 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3952 ((-1137 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1137 |#1| |#3| |#5|)))) (-961) (-961) (-1088) (-1088) |#1| |#2|) (T -1138))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1137 *5 *7 *9)) (-4 *5 (-961)) (-4 *6 (-961)) (-14 *7 (-1088)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1137 *6 *8 *10)) (-5 *1 (-1138 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1088)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3077 (((-583 (-993)) $) 93 T ELT)) (-3825 (((-1088) $) 127 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 69 (|has| |#1| (-494)) ELT)) (-2059 (($ $) 70 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) 72 (|has| |#1| (-494)) ELT)) (-3765 (($ $ (-483)) 122 T ELT) (($ $ (-483) (-483)) 121 T ELT)) (-3768 (((-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))) $) 128 T ELT)) (-3486 (($ $) 161 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) 144 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3769 (($ $) 188 (|has| |#1| (-311)) ELT)) (-3965 (((-345 $) $) 189 (|has| |#1| (-311)) ELT)) (-3033 (($ $) 143 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1605 (((-85) $ $) 179 (|has| |#1| (-311)) ELT)) (-3484 (($ $) 160 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) 145 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3812 (($ (-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|)))) 199 T ELT)) (-3488 (($ $) 159 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) 146 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) 22 T CONST)) (-2560 (($ $ $) 183 (|has| |#1| (-311)) ELT)) (-3953 (($ $) 78 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3721 (((-347 (-857 |#1|)) $ (-483)) 197 (|has| |#1| (-494)) ELT) (((-347 (-857 |#1|)) $ (-483) (-483)) 196 (|has| |#1| (-494)) ELT)) (-2559 (($ $ $) 182 (|has| |#1| (-311)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 177 (|has| |#1| (-311)) ELT)) (-3717 (((-85) $) 190 (|has| |#1| (-311)) ELT)) (-2888 (((-85) $) 92 T ELT)) (-3621 (($) 171 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3766 (((-483) $) 124 T ELT) (((-483) $ (-483)) 123 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3007 (($ $ (-483)) 142 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3771 (($ $ (-830)) 125 T ELT)) (-3809 (($ (-1 |#1| (-483)) $) 198 T ELT)) (-1602 (((-3 (-583 $) #1="failed") (-583 $) $) 186 (|has| |#1| (-311)) ELT)) (-3931 (((-85) $) 80 T ELT)) (-2889 (($ |#1| (-483)) 79 T ELT) (($ $ (-993) (-483)) 95 T ELT) (($ $ (-583 (-993)) (-583 (-483))) 94 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-3936 (($ $) 168 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2890 (($ $) 83 T ELT)) (-3169 ((|#1| $) 84 T ELT)) (-1888 (($ (-583 $)) 175 (|has| |#1| (-311)) ELT) (($ $ $) 174 (|has| |#1| (-311)) ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 191 (|has| |#1| (-311)) ELT)) (-3806 (($ $) 195 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-1088)) 194 (OR (-12 (|has| |#1| (-29 (-483))) (|has| |#1| (-871)) (|has| |#1| (-1113)) (|has| |#1| (-38 (-347 (-483))))) (-12 (|has| |#1| (-15 -3077 ((-583 (-1088)) |#1|))) (|has| |#1| (-15 -3806 (|#1| |#1| (-1088)))) (|has| |#1| (-38 (-347 (-483)))))) ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 176 (|has| |#1| (-311)) ELT)) (-3139 (($ (-583 $)) 173 (|has| |#1| (-311)) ELT) (($ $ $) 172 (|has| |#1| (-311)) ELT)) (-3726 (((-345 $) $) 187 (|has| |#1| (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 185 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 184 (|has| |#1| (-311)) ELT)) (-3763 (($ $ (-483)) 119 T ELT)) (-3460 (((-3 $ "failed") $ $) 68 (|has| |#1| (-494)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 178 (|has| |#1| (-311)) ELT)) (-3937 (($ $) 169 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3762 (((-1067 |#1|) $ |#1|) 118 (|has| |#1| (-15 ** (|#1| |#1| (-483)))) ELT)) (-1604 (((-694) $) 180 (|has| |#1| (-311)) ELT)) (-3794 ((|#1| $ (-483)) 129 T ELT) (($ $ $) 105 (|has| (-483) (-1024)) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 181 (|has| |#1| (-311)) ELT)) (-3752 (($ $ (-1088)) 117 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-583 (-1088))) 115 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088) (-694)) 114 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 113 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $) 109 (|has| |#1| (-15 * (|#1| (-483) |#1|))) ELT) (($ $ (-694)) 107 (|has| |#1| (-15 * (|#1| (-483) |#1|))) ELT)) (-3942 (((-483) $) 82 T ELT)) (-3489 (($ $) 158 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) 147 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) 148 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) 156 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) 149 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2887 (($ $) 91 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 65 (|has| |#1| (-146)) ELT) (($ (-347 (-483))) 75 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $) 67 (|has| |#1| (-494)) ELT)) (-3671 ((|#1| $ (-483)) 77 T ELT)) (-2698 (((-632 $) $) 66 (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 38 T CONST)) (-3767 ((|#1| $) 126 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3492 (($ $) 167 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) 155 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) 71 (|has| |#1| (-494)) ELT)) (-3490 (($ $) 166 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) 154 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) 165 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) 153 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3764 ((|#1| $ (-483)) 120 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-483)))) (|has| |#1| (-15 -3940 (|#1| (-1088))))) ELT)) (-3495 (($ $) 164 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) 152 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) 163 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) 151 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) 162 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) 150 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-1088)) 116 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-583 (-1088))) 112 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088) (-694)) 111 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 110 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-483) |#1|))) ELT) (($ $ (-694)) 106 (|has| |#1| (-15 * (|#1| (-483) |#1|))) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT) (($ $ $) 193 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 192 (|has| |#1| (-311)) ELT) (($ $ $) 170 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 141 (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-347 (-483)) $) 74 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 73 (|has| |#1| (-38 (-347 (-483)))) ELT)))
-(((-1139 |#1|) (-113) (-961)) (T -1139))
-((-3812 (*1 *1 *2) (-12 (-5 *2 (-1067 (-2 (|:| |k| (-483)) (|:| |c| *3)))) (-4 *3 (-961)) (-4 *1 (-1139 *3)))) (-3809 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-483))) (-4 *1 (-1139 *3)) (-4 *3 (-961)))) (-3721 (*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-1139 *4)) (-4 *4 (-961)) (-4 *4 (-494)) (-5 *2 (-347 (-857 *4))))) (-3721 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-483)) (-4 *1 (-1139 *4)) (-4 *4 (-961)) (-4 *4 (-494)) (-5 *2 (-347 (-857 *4))))) (-3806 (*1 *1 *1) (-12 (-4 *1 (-1139 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-347 (-483)))))) (-3806 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1088)) (-4 *1 (-1139 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-483))) (-4 *3 (-871)) (-4 *3 (-1113)) (-4 *3 (-38 (-347 (-483)))))) (-12 (-5 *2 (-1088)) (-4 *1 (-1139 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -3077 ((-583 *2) *3))) (|has| *3 (-15 -3806 (*3 *3 *2))) (-4 *3 (-38 (-347 (-483)))))))))
-(-13 (-1156 |t#1| (-483)) (-10 -8 (-15 -3812 ($ (-1067 (-2 (|:| |k| (-483)) (|:| |c| |t#1|))))) (-15 -3809 ($ (-1 |t#1| (-483)) $)) (IF (|has| |t#1| (-494)) (PROGN (-15 -3721 ((-347 (-857 |t#1|)) $ (-483))) (-15 -3721 ((-347 (-857 |t#1|)) $ (-483) (-483)))) |%noBranch|) (IF (|has| |t#1| (-38 (-347 (-483)))) (PROGN (-15 -3806 ($ $)) (IF (|has| |t#1| (-15 -3806 (|t#1| |t#1| (-1088)))) (IF (|has| |t#1| (-15 -3077 ((-583 (-1088)) |t#1|))) (-15 -3806 ($ $ (-1088))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1113)) (IF (|has| |t#1| (-871)) (IF (|has| |t#1| (-29 (-483))) (-15 -3806 ($ $ (-1088))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-915)) (-6 (-1113))) |%noBranch|) (IF (|has| |t#1| (-311)) (-6 (-311)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| (-483)) . T) ((-25) . T) ((-38 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-35) |has| |#1| (-38 (-347 (-483)))) ((-66) |has| |#1| (-38 (-347 (-483)))) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-494)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-555 (-483)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-494)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-483) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-483) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-483) |#1|))) ((-201) |has| |#1| (-311)) ((-239) |has| |#1| (-38 (-347 (-483)))) ((-241 (-483) |#1|) . T) ((-241 $ $) |has| (-483) (-1024)) ((-245) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-257) |has| |#1| (-311)) ((-311) |has| |#1| (-311)) ((-389) |has| |#1| (-311)) ((-430) |has| |#1| (-38 (-347 (-483)))) ((-494) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-13) . T) ((-588 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-654 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-663) . T) ((-806 $ (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ((-809 (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ((-811 (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ((-886 |#1| (-483) (-993)) . T) ((-832) |has| |#1| (-311)) ((-915) |has| |#1| (-38 (-347 (-483)))) ((-963 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-494)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-968 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-494)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1113) |has| |#1| (-38 (-347 (-483)))) ((-1116) |has| |#1| (-38 (-347 (-483)))) ((-1127) . T) ((-1132) |has| |#1| (-311)) ((-1156 |#1| (-483)) . T))
-((-3183 (((-85) $) 12 T ELT)) (-3152 (((-3 |#3| #1="failed") $) 17 T ELT) (((-3 (-1088) #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL T ELT) (((-3 (-483) #1#) $) NIL T ELT)) (-3151 ((|#3| $) 14 T ELT) (((-1088) $) NIL T ELT) (((-347 (-483)) $) NIL T ELT) (((-483) $) NIL T ELT)))
-(((-1140 |#1| |#2| |#3|) (-10 -7 (-15 -3152 ((-3 (-483) #1="failed") |#1|)) (-15 -3151 ((-483) |#1|)) (-15 -3152 ((-3 (-347 (-483)) #1#) |#1|)) (-15 -3151 ((-347 (-483)) |#1|)) (-15 -3152 ((-3 (-1088) #1#) |#1|)) (-15 -3151 ((-1088) |#1|)) (-15 -3152 ((-3 |#3| #1#) |#1|)) (-15 -3151 (|#3| |#1|)) (-15 -3183 ((-85) |#1|))) (-1141 |#2| |#3|) (-961) (-1170 |#2|)) (T -1140))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3124 ((|#2| $) 264 (-2558 (|has| |#2| (-257)) (|has| |#1| (-311))) ELT)) (-3077 (((-583 (-993)) $) 93 T ELT)) (-3825 (((-1088) $) 127 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 69 (|has| |#1| (-494)) ELT)) (-2059 (($ $) 70 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) 72 (|has| |#1| (-494)) ELT)) (-3765 (($ $ (-483)) 122 T ELT) (($ $ (-483) (-483)) 121 T ELT)) (-3768 (((-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))) $) 128 T ELT)) (-3725 ((|#2| $) 300 T ELT)) (-3722 (((-3 |#2| "failed") $) 296 T ELT)) (-3723 ((|#2| $) 297 T ELT)) (-3486 (($ $) 161 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) 144 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) 273 (-2558 (|has| |#2| (-821)) (|has| |#1| (-311))) ELT)) (-3769 (($ $) 188 (|has| |#1| (-311)) ELT)) (-3965 (((-345 $) $) 189 (|has| |#1| (-311)) ELT)) (-3033 (($ $) 143 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1="failed") (-583 (-1083 $)) (-1083 $)) 270 (-2558 (|has| |#2| (-821)) (|has| |#1| (-311))) ELT)) (-1605 (((-85) $ $) 179 (|has| |#1| (-311)) ELT)) (-3484 (($ $) 160 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) 145 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3617 (((-483) $) 282 (-2558 (|has| |#2| (-740)) (|has| |#1| (-311))) ELT)) (-3812 (($ (-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|)))) 199 T ELT)) (-3488 (($ $) 159 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) 146 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 |#2| #2="failed") $) 303 T ELT) (((-3 (-483) #2#) $) 293 (-2558 (|has| |#2| (-950 (-483))) (|has| |#1| (-311))) ELT) (((-3 (-347 (-483)) #2#) $) 291 (-2558 (|has| |#2| (-950 (-483))) (|has| |#1| (-311))) ELT) (((-3 (-1088) #2#) $) 275 (-2558 (|has| |#2| (-950 (-1088))) (|has| |#1| (-311))) ELT)) (-3151 ((|#2| $) 304 T ELT) (((-483) $) 292 (-2558 (|has| |#2| (-950 (-483))) (|has| |#1| (-311))) ELT) (((-347 (-483)) $) 290 (-2558 (|has| |#2| (-950 (-483))) (|has| |#1| (-311))) ELT) (((-1088) $) 274 (-2558 (|has| |#2| (-950 (-1088))) (|has| |#1| (-311))) ELT)) (-3724 (($ $) 299 T ELT) (($ (-483) $) 298 T ELT)) (-2560 (($ $ $) 183 (|has| |#1| (-311)) ELT)) (-3953 (($ $) 78 T ELT)) (-2275 (((-630 |#2|) (-630 $)) 252 (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) 251 (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 250 (-2558 (|has| |#2| (-580 (-483))) (|has| |#1| (-311))) ELT) (((-630 (-483)) (-630 $)) 249 (-2558 (|has| |#2| (-580 (-483))) (|has| |#1| (-311))) ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3721 (((-347 (-857 |#1|)) $ (-483)) 197 (|has| |#1| (-494)) ELT) (((-347 (-857 |#1|)) $ (-483) (-483)) 196 (|has| |#1| (-494)) ELT)) (-2990 (($) 266 (-2558 (|has| |#2| (-482)) (|has| |#1| (-311))) ELT)) (-2559 (($ $ $) 182 (|has| |#1| (-311)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 177 (|has| |#1| (-311)) ELT)) (-3717 (((-85) $) 190 (|has| |#1| (-311)) ELT)) (-3181 (((-85) $) 280 (-2558 (|has| |#2| (-740)) (|has| |#1| (-311))) ELT)) (-2888 (((-85) $) 92 T ELT)) (-3621 (($) 171 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 258 (-2558 (|has| |#2| (-796 (-327))) (|has| |#1| (-311))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) 257 (-2558 (|has| |#2| (-796 (-483))) (|has| |#1| (-311))) ELT)) (-3766 (((-483) $) 124 T ELT) (((-483) $ (-483)) 123 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-2992 (($ $) 262 (|has| |#1| (-311)) ELT)) (-2994 ((|#2| $) 260 (|has| |#1| (-311)) ELT)) (-3007 (($ $ (-483)) 142 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3439 (((-632 $) $) 294 (-2558 (|has| |#2| (-1064)) (|has| |#1| (-311))) ELT)) (-3182 (((-85) $) 281 (-2558 (|has| |#2| (-740)) (|has| |#1| (-311))) ELT)) (-3771 (($ $ (-830)) 125 T ELT)) (-3809 (($ (-1 |#1| (-483)) $) 198 T ELT)) (-1602 (((-3 (-583 $) #3="failed") (-583 $) $) 186 (|has| |#1| (-311)) ELT)) (-3931 (((-85) $) 80 T ELT)) (-2889 (($ |#1| (-483)) 79 T ELT) (($ $ (-993) (-483)) 95 T ELT) (($ $ (-583 (-993)) (-583 (-483))) 94 T ELT)) (-2527 (($ $ $) 289 (-2558 (|has| |#2| (-756)) (|has| |#1| (-311))) ELT)) (-2853 (($ $ $) 288 (-2558 (|has| |#2| (-756)) (|has| |#1| (-311))) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 81 T ELT) (($ (-1 |#2| |#2|) $) 242 (|has| |#1| (-311)) ELT)) (-3936 (($ $) 168 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2276 (((-630 |#2|) (-1177 $)) 254 (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) 253 (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 248 (-2558 (|has| |#2| (-580 (-483))) (|has| |#1| (-311))) ELT) (((-630 (-483)) (-1177 $)) 247 (-2558 (|has| |#2| (-580 (-483))) (|has| |#1| (-311))) ELT)) (-2890 (($ $) 83 T ELT)) (-3169 ((|#1| $) 84 T ELT)) (-1888 (($ (-583 $)) 175 (|has| |#1| (-311)) ELT) (($ $ $) 174 (|has| |#1| (-311)) ELT)) (-3773 (($ (-483) |#2|) 301 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 191 (|has| |#1| (-311)) ELT)) (-3806 (($ $) 195 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-1088)) 194 (OR (-12 (|has| |#1| (-29 (-483))) (|has| |#1| (-871)) (|has| |#1| (-1113)) (|has| |#1| (-38 (-347 (-483))))) (-12 (|has| |#1| (-15 -3077 ((-583 (-1088)) |#1|))) (|has| |#1| (-15 -3806 (|#1| |#1| (-1088)))) (|has| |#1| (-38 (-347 (-483)))))) ELT)) (-3440 (($) 295 (-2558 (|has| |#2| (-1064)) (|has| |#1| (-311))) CONST)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 176 (|has| |#1| (-311)) ELT)) (-3139 (($ (-583 $)) 173 (|has| |#1| (-311)) ELT) (($ $ $) 172 (|has| |#1| (-311)) ELT)) (-3123 (($ $) 265 (-2558 (|has| |#2| (-257)) (|has| |#1| (-311))) ELT)) (-3125 ((|#2| $) 268 (-2558 (|has| |#2| (-482)) (|has| |#1| (-311))) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) 271 (-2558 (|has| |#2| (-821)) (|has| |#1| (-311))) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) 272 (-2558 (|has| |#2| (-821)) (|has| |#1| (-311))) ELT)) (-3726 (((-345 $) $) 187 (|has| |#1| (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 185 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 184 (|has| |#1| (-311)) ELT)) (-3763 (($ $ (-483)) 119 T ELT)) (-3460 (((-3 $ "failed") $ $) 68 (|has| |#1| (-494)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 178 (|has| |#1| (-311)) ELT)) (-3937 (($ $) 169 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3762 (((-1067 |#1|) $ |#1|) 118 (|has| |#1| (-15 ** (|#1| |#1| (-483)))) ELT) (($ $ (-1088) |#2|) 241 (-2558 (|has| |#2| (-452 (-1088) |#2|)) (|has| |#1| (-311))) ELT) (($ $ (-583 (-1088)) (-583 |#2|)) 240 (-2558 (|has| |#2| (-452 (-1088) |#2|)) (|has| |#1| (-311))) ELT) (($ $ (-583 (-248 |#2|))) 239 (-2558 (|has| |#2| (-259 |#2|)) (|has| |#1| (-311))) ELT) (($ $ (-248 |#2|)) 238 (-2558 (|has| |#2| (-259 |#2|)) (|has| |#1| (-311))) ELT) (($ $ |#2| |#2|) 237 (-2558 (|has| |#2| (-259 |#2|)) (|has| |#1| (-311))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 236 (-2558 (|has| |#2| (-259 |#2|)) (|has| |#1| (-311))) ELT)) (-1604 (((-694) $) 180 (|has| |#1| (-311)) ELT)) (-3794 ((|#1| $ (-483)) 129 T ELT) (($ $ $) 105 (|has| (-483) (-1024)) ELT) (($ $ |#2|) 235 (-2558 (|has| |#2| (-241 |#2| |#2|)) (|has| |#1| (-311))) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 181 (|has| |#1| (-311)) ELT)) (-3752 (($ $ (-1 |#2| |#2|) (-694)) 244 (|has| |#1| (-311)) ELT) (($ $ (-1 |#2| |#2|)) 243 (|has| |#1| (-311)) ELT) (($ $) 109 (OR (-2558 (|has| |#2| (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-694)) 107 (OR (-2558 (|has| |#2| (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088)) 117 (OR (-2558 (|has| |#2| (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-583 (-1088))) 115 (OR (-2558 (|has| |#2| (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-1088) (-694)) 114 (OR (-2558 (|has| |#2| (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 113 (OR (-2558 (|has| |#2| (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT)) (-2991 (($ $) 263 (|has| |#1| (-311)) ELT)) (-2993 ((|#2| $) 261 (|has| |#1| (-311)) ELT)) (-3942 (((-483) $) 82 T ELT)) (-3489 (($ $) 158 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) 147 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) 148 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) 156 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) 149 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3966 (((-179) $) 279 (-2558 (|has| |#2| (-933)) (|has| |#1| (-311))) ELT) (((-327) $) 278 (-2558 (|has| |#2| (-933)) (|has| |#1| (-311))) ELT) (((-472) $) 277 (-2558 (|has| |#2| (-553 (-472))) (|has| |#1| (-311))) ELT) (((-800 (-327)) $) 256 (-2558 (|has| |#2| (-553 (-800 (-327)))) (|has| |#1| (-311))) ELT) (((-800 (-483)) $) 255 (-2558 (|has| |#2| (-553 (-800 (-483)))) (|has| |#1| (-311))) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) 269 (-2558 (-2558 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#1| (-311))) ELT)) (-2887 (($ $) 91 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 65 (|has| |#1| (-146)) ELT) (($ |#2|) 302 T ELT) (($ (-1088)) 276 (-2558 (|has| |#2| (-950 (-1088))) (|has| |#1| (-311))) ELT) (($ (-347 (-483))) 75 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $) 67 (|has| |#1| (-494)) ELT)) (-3671 ((|#1| $ (-483)) 77 T ELT)) (-2698 (((-632 $) $) 66 (OR (-2558 (OR (|has| |#2| (-118)) (-2558 (|has| $ (-118)) (|has| |#2| (-821)))) (|has| |#1| (-311))) (|has| |#1| (-118))) ELT)) (-3121 (((-694)) 38 T CONST)) (-3767 ((|#1| $) 126 T ELT)) (-3126 ((|#2| $) 267 (-2558 (|has| |#2| (-482)) (|has| |#1| (-311))) ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3492 (($ $) 167 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) 155 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) 71 (|has| |#1| (-494)) ELT)) (-3490 (($ $) 166 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) 154 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) 165 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) 153 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3764 ((|#1| $ (-483)) 120 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-483)))) (|has| |#1| (-15 -3940 (|#1| (-1088))))) ELT)) (-3495 (($ $) 164 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) 152 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) 163 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) 151 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) 162 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) 150 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3377 (($ $) 283 (-2558 (|has| |#2| (-740)) (|has| |#1| (-311))) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-1 |#2| |#2|) (-694)) 246 (|has| |#1| (-311)) ELT) (($ $ (-1 |#2| |#2|)) 245 (|has| |#1| (-311)) ELT) (($ $) 108 (OR (-2558 (|has| |#2| (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-694)) 106 (OR (-2558 (|has| |#2| (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088)) 116 (OR (-2558 (|has| |#2| (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-583 (-1088))) 112 (OR (-2558 (|has| |#2| (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-1088) (-694)) 111 (OR (-2558 (|has| |#2| (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 110 (OR (-2558 (|has| |#2| (-811 (-1088))) (|has| |#1| (-311))) (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|))))) ELT)) (-2562 (((-85) $ $) 287 (-2558 (|has| |#2| (-756)) (|has| |#1| (-311))) ELT)) (-2563 (((-85) $ $) 285 (-2558 (|has| |#2| (-756)) (|has| |#1| (-311))) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-2680 (((-85) $ $) 286 (-2558 (|has| |#2| (-756)) (|has| |#1| (-311))) ELT)) (-2681 (((-85) $ $) 284 (-2558 (|has| |#2| (-756)) (|has| |#1| (-311))) ELT)) (-3943 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT) (($ $ $) 193 (|has| |#1| (-311)) ELT) (($ |#2| |#2|) 259 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 192 (|has| |#1| (-311)) ELT) (($ $ $) 170 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 141 (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ $ |#2|) 234 (|has| |#1| (-311)) ELT) (($ |#2| $) 233 (|has| |#1| (-311)) ELT) (($ (-347 (-483)) $) 74 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 73 (|has| |#1| (-38 (-347 (-483)))) ELT)))
-(((-1141 |#1| |#2|) (-113) (-961) (-1170 |t#1|)) (T -1141))
-((-3942 (*1 *2 *1) (-12 (-4 *1 (-1141 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1170 *3)) (-5 *2 (-483)))) (-3773 (*1 *1 *2 *3) (-12 (-5 *2 (-483)) (-4 *4 (-961)) (-4 *1 (-1141 *4 *3)) (-4 *3 (-1170 *4)))) (-3725 (*1 *2 *1) (-12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1170 *3)))) (-3724 (*1 *1 *1) (-12 (-4 *1 (-1141 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1170 *2)))) (-3724 (*1 *1 *2 *1) (-12 (-5 *2 (-483)) (-4 *1 (-1141 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1170 *3)))) (-3723 (*1 *2 *1) (-12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1170 *3)))) (-3722 (*1 *2 *1) (|partial| -12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1170 *3)))))
-(-13 (-1139 |t#1|) (-950 |t#2|) (-555 |t#2|) (-10 -8 (-15 -3773 ($ (-483) |t#2|)) (-15 -3942 ((-483) $)) (-15 -3725 (|t#2| $)) (-15 -3724 ($ $)) (-15 -3724 ($ (-483) $)) (-15 -3723 (|t#2| $)) (-15 -3722 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-311)) (-6 (-904 |t#2|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| (-483)) . T) ((-25) . T) ((-38 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 |#2|) |has| |#1| (-311)) ((-38 $) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-35) |has| |#1| (-38 (-347 (-483)))) ((-66) |has| |#1| (-38 (-347 (-483)))) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-82 |#1| |#1|) . T) ((-82 |#2| |#2|) |has| |#1| (-311)) ((-82 $ $) OR (|has| |#1| (-494)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-104) . T) ((-118) OR (-12 (|has| |#1| (-311)) (|has| |#2| (-118))) (|has| |#1| (-118))) ((-120) OR (-12 (|has| |#1| (-311)) (|has| |#2| (-120))) (|has| |#1| (-120))) ((-555 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-555 (-483)) . T) ((-555 (-1088)) -12 (|has| |#1| (-311)) (|has| |#2| (-950 (-1088)))) ((-555 |#1|) |has| |#1| (-146)) ((-555 |#2|) . T) ((-555 $) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-494)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-553 (-179)) -12 (|has| |#1| (-311)) (|has| |#2| (-933))) ((-553 (-327)) -12 (|has| |#1| (-311)) (|has| |#2| (-933))) ((-553 (-472)) -12 (|has| |#1| (-311)) (|has| |#2| (-553 (-472)))) ((-553 (-800 (-327))) -12 (|has| |#1| (-311)) (|has| |#2| (-553 (-800 (-327))))) ((-553 (-800 (-483))) -12 (|has| |#1| (-311)) (|has| |#2| (-553 (-800 (-483))))) ((-186 $) OR (|has| |#1| (-15 * (|#1| (-483) |#1|))) (-12 (|has| |#1| (-311)) (|has| |#2| (-189))) (-12 (|has| |#1| (-311)) (|has| |#2| (-190)))) ((-184 |#2|) |has| |#1| (-311)) ((-190) OR (|has| |#1| (-15 * (|#1| (-483) |#1|))) (-12 (|has| |#1| (-311)) (|has| |#2| (-190)))) ((-189) OR (|has| |#1| (-15 * (|#1| (-483) |#1|))) (-12 (|has| |#1| (-311)) (|has| |#2| (-189))) (-12 (|has| |#1| (-311)) (|has| |#2| (-190)))) ((-225 |#2|) |has| |#1| (-311)) ((-201) |has| |#1| (-311)) ((-239) |has| |#1| (-38 (-347 (-483)))) ((-241 (-483) |#1|) . T) ((-241 |#2| $) -12 (|has| |#1| (-311)) (|has| |#2| (-241 |#2| |#2|))) ((-241 $ $) |has| (-483) (-1024)) ((-245) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-257) |has| |#1| (-311)) ((-259 |#2|) -12 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) ((-311) |has| |#1| (-311)) ((-287 |#2|) |has| |#1| (-311)) ((-326 |#2|) |has| |#1| (-311)) ((-340 |#2|) |has| |#1| (-311)) ((-389) |has| |#1| (-311)) ((-430) |has| |#1| (-38 (-347 (-483)))) ((-452 (-1088) |#2|) -12 (|has| |#1| (-311)) (|has| |#2| (-452 (-1088) |#2|))) ((-452 |#2| |#2|) -12 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) ((-494) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-13) . T) ((-588 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 |#2|) |has| |#1| (-311)) ((-588 $) . T) ((-590 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-590 (-483)) -12 (|has| |#1| (-311)) (|has| |#2| (-580 (-483)))) ((-590 |#1|) . T) ((-590 |#2|) |has| |#1| (-311)) ((-590 $) . T) ((-582 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-582 |#1|) |has| |#1| (-146)) ((-582 |#2|) |has| |#1| (-311)) ((-582 $) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-580 (-483)) -12 (|has| |#1| (-311)) (|has| |#2| (-580 (-483)))) ((-580 |#2|) |has| |#1| (-311)) ((-654 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-654 |#1|) |has| |#1| (-146)) ((-654 |#2|) |has| |#1| (-311)) ((-654 $) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-663) . T) ((-714) -12 (|has| |#1| (-311)) (|has| |#2| (-740))) ((-716) -12 (|has| |#1| (-311)) (|has| |#2| (-740))) ((-718) -12 (|has| |#1| (-311)) (|has| |#2| (-740))) ((-721) -12 (|has| |#1| (-311)) (|has| |#2| (-740))) ((-740) -12 (|has| |#1| (-311)) (|has| |#2| (-740))) ((-755) -12 (|has| |#1| (-311)) (|has| |#2| (-740))) ((-756) OR (-12 (|has| |#1| (-311)) (|has| |#2| (-756))) (-12 (|has| |#1| (-311)) (|has| |#2| (-740)))) ((-759) OR (-12 (|has| |#1| (-311)) (|has| |#2| (-756))) (-12 (|has| |#1| (-311)) (|has| |#2| (-740)))) ((-806 $ (-1088)) OR (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-811 (-1088)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-809 (-1088))))) ((-809 (-1088)) OR (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-809 (-1088))))) ((-811 (-1088)) OR (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-811 (-1088)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-809 (-1088))))) ((-796 (-327)) -12 (|has| |#1| (-311)) (|has| |#2| (-796 (-327)))) ((-796 (-483)) -12 (|has| |#1| (-311)) (|has| |#2| (-796 (-483)))) ((-794 |#2|) |has| |#1| (-311)) ((-821) -12 (|has| |#1| (-311)) (|has| |#2| (-821))) ((-886 |#1| (-483) (-993)) . T) ((-832) |has| |#1| (-311)) ((-904 |#2|) |has| |#1| (-311)) ((-915) |has| |#1| (-38 (-347 (-483)))) ((-933) -12 (|has| |#1| (-311)) (|has| |#2| (-933))) ((-950 (-347 (-483))) -12 (|has| |#1| (-311)) (|has| |#2| (-950 (-483)))) ((-950 (-483)) -12 (|has| |#1| (-311)) (|has| |#2| (-950 (-483)))) ((-950 (-1088)) -12 (|has| |#1| (-311)) (|has| |#2| (-950 (-1088)))) ((-950 |#2|) . T) ((-963 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-963 |#1|) . T) ((-963 |#2|) |has| |#1| (-311)) ((-963 $) OR (|has| |#1| (-494)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-968 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-968 |#1|) . T) ((-968 |#2|) |has| |#1| (-311)) ((-968 $) OR (|has| |#1| (-494)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1064) -12 (|has| |#1| (-311)) (|has| |#2| (-1064))) ((-1113) |has| |#1| (-38 (-347 (-483)))) ((-1116) |has| |#1| (-38 (-347 (-483)))) ((-1127) . T) ((-1132) |has| |#1| (-311)) ((-1139 |#1|) . T) ((-1156 |#1| (-483)) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 83 T ELT)) (-3124 ((|#2| $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-257))) ELT)) (-3077 (((-583 (-993)) $) NIL T ELT)) (-3825 (((-1088) $) 102 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3765 (($ $ (-483)) 111 T ELT) (($ $ (-483) (-483)) 114 T ELT)) (-3768 (((-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|))) $) 51 T ELT)) (-3725 ((|#2| $) 11 T ELT)) (-3722 (((-3 |#2| #1="failed") $) 35 T ELT)) (-3723 ((|#2| $) 36 T ELT)) (-3486 (($ $) 208 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) 184 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ #1#) $ $) NIL T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-821))) ELT)) (-3769 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-3033 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-821))) ELT)) (-1605 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3484 (($ $) 204 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) 180 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3617 (((-483) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-740))) ELT)) (-3812 (($ (-1067 (-2 (|:| |k| (-483)) (|:| |c| |#1|)))) 59 T ELT)) (-3488 (($ $) 212 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) 188 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#2| #1#) $) 159 T ELT) (((-3 (-483) #1#) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-950 (-483)))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-950 (-483)))) ELT) (((-3 (-1088) #1#) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-950 (-1088)))) ELT)) (-3151 ((|#2| $) 158 T ELT) (((-483) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-950 (-483)))) ELT) (((-347 (-483)) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-950 (-483)))) ELT) (((-1088) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-950 (-1088)))) ELT)) (-3724 (($ $) 65 T ELT) (($ (-483) $) 28 T ELT)) (-2560 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3953 (($ $) NIL T ELT)) (-2275 (((-630 |#2|) (-630 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-580 (-483)))) ELT) (((-630 (-483)) (-630 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-580 (-483)))) ELT)) (-3461 (((-3 $ #1#) $) 90 T ELT)) (-3721 (((-347 (-857 |#1|)) $ (-483)) 126 (|has| |#1| (-494)) ELT) (((-347 (-857 |#1|)) $ (-483) (-483)) 128 (|has| |#1| (-494)) ELT)) (-2990 (($) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-482))) ELT)) (-2559 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| |#1| (-311)) ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-3181 (((-85) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-740))) ELT)) (-2888 (((-85) $) 76 T ELT)) (-3621 (($) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-796 (-483)))) ELT)) (-3766 (((-483) $) 107 T ELT) (((-483) $ (-483)) 109 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2992 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2994 ((|#2| $) 167 (|has| |#1| (-311)) ELT)) (-3007 (($ $ (-483)) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3439 (((-632 $) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-1064))) ELT)) (-3182 (((-85) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-740))) ELT)) (-3771 (($ $ (-830)) 150 T ELT)) (-3809 (($ (-1 |#1| (-483)) $) 146 T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-483)) 20 T ELT) (($ $ (-993) (-483)) NIL T ELT) (($ $ (-583 (-993)) (-583 (-483))) NIL T ELT)) (-2527 (($ $ $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-756))) ELT)) (-2853 (($ $ $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-756))) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 143 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-311)) ELT)) (-3936 (($ $) 178 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2276 (((-630 |#2|) (-1177 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-580 (-483)))) ELT) (((-630 (-483)) (-1177 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-580 (-483)))) ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3773 (($ (-483) |#2|) 10 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) 161 (|has| |#1| (-311)) ELT)) (-3806 (($ $) 230 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-1088)) 235 (OR (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-29 (-483))) (|has| |#1| (-871)) (|has| |#1| (-1113))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-15 -3806 (|#1| |#1| (-1088)))) (|has| |#1| (-15 -3077 ((-583 (-1088)) |#1|))))) ELT)) (-3440 (($) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-1064))) CONST)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-311)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3123 (($ $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-257))) ELT)) (-3125 ((|#2| $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-482))) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-821))) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-821))) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3763 (($ $ (-483)) 140 T ELT)) (-3460 (((-3 $ #1#) $ $) 130 (|has| |#1| (-494)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3937 (($ $) 176 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3762 (((-1067 |#1|) $ |#1|) 99 (|has| |#1| (-15 ** (|#1| |#1| (-483)))) ELT) (($ $ (-1088) |#2|) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-452 (-1088) |#2|))) ELT) (($ $ (-583 (-1088)) (-583 |#2|)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-452 (-1088) |#2|))) ELT) (($ $ (-583 (-248 |#2|))) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) ELT)) (-1604 (((-694) $) NIL (|has| |#1| (-311)) ELT)) (-3794 ((|#1| $ (-483)) 105 T ELT) (($ $ $) 92 (|has| (-483) (-1024)) ELT) (($ $ |#2|) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-241 |#2| |#2|))) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3752 (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-311)) ELT) (($ $) 151 (OR (-12 (|has| |#1| (-311)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088)) 155 (OR (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-811 (-1088))))) ELT) (($ $ (-583 (-1088))) NIL (OR (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-811 (-1088))))) ELT) (($ $ (-1088) (-694)) NIL (OR (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-811 (-1088))))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (OR (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-811 (-1088))))) ELT)) (-2991 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2993 ((|#2| $) 168 (|has| |#1| (-311)) ELT)) (-3942 (((-483) $) 12 T ELT)) (-3489 (($ $) 214 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) 190 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) 210 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) 186 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) 206 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) 182 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3966 (((-179) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-933))) ELT) (((-327) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-933))) ELT) (((-472) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-553 (-472)))) ELT) (((-800 (-327)) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-553 (-800 (-483))))) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-311)) (|has| |#2| (-821))) ELT)) (-2887 (($ $) 138 T ELT)) (-3940 (((-772) $) 268 T ELT) (($ (-483)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-146)) ELT) (($ |#2|) 21 T ELT) (($ (-1088)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-950 (-1088)))) ELT) (($ (-347 (-483))) 171 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3671 ((|#1| $ (-483)) 87 T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-311)) (|has| |#2| (-821))) (|has| |#1| (-118)) (-12 (|has| |#1| (-311)) (|has| |#2| (-118)))) ELT)) (-3121 (((-694)) 157 T CONST)) (-3767 ((|#1| $) 104 T ELT)) (-3126 ((|#2| $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-482))) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3492 (($ $) 220 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) 196 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3490 (($ $) 216 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) 192 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) 224 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) 200 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3764 ((|#1| $ (-483)) 136 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-483)))) (|has| |#1| (-15 -3940 (|#1| (-1088))))) ELT)) (-3495 (($ $) 226 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) 202 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) 222 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) 198 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) 218 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) 194 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3377 (($ $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-740))) ELT)) (-2656 (($) 13 T CONST)) (-2662 (($) 18 T CONST)) (-2665 (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-311)) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-811 (-1088))))) ELT) (($ $ (-583 (-1088))) NIL (OR (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-811 (-1088))))) ELT) (($ $ (-1088) (-694)) NIL (OR (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-811 (-1088))))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (OR (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-483) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-811 (-1088))))) ELT)) (-2562 (((-85) $ $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-756))) ELT)) (-2563 (((-85) $ $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-756))) ELT)) (-3052 (((-85) $ $) 74 T ELT)) (-2680 (((-85) $ $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-756))) ELT)) (-2681 (((-85) $ $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-756))) ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) 165 (|has| |#1| (-311)) ELT) (($ |#2| |#2|) 166 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 229 T ELT) (($ $ $) 80 T ELT)) (-3833 (($ $ $) 78 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 86 T ELT) (($ $ (-483)) 162 (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 174 (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 154 T ELT) (($ $ |#2|) 164 (|has| |#1| (-311)) ELT) (($ |#2| $) 163 (|has| |#1| (-311)) ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)))
-(((-1142 |#1| |#2|) (-1141 |#1| |#2|) (-961) (-1170 |#1|)) (T -1142))
-NIL
-((-3728 (((-2 (|:| |contp| (-483)) (|:| -1776 (-583 (-2 (|:| |irr| |#1|) (|:| -2391 (-483)))))) |#1| (-85)) 13 T ELT)) (-3727 (((-345 |#1|) |#1|) 26 T ELT)) (-3726 (((-345 |#1|) |#1|) 24 T ELT)))
-(((-1143 |#1|) (-10 -7 (-15 -3726 ((-345 |#1|) |#1|)) (-15 -3727 ((-345 |#1|) |#1|)) (-15 -3728 ((-2 (|:| |contp| (-483)) (|:| -1776 (-583 (-2 (|:| |irr| |#1|) (|:| -2391 (-483)))))) |#1| (-85)))) (-1153 (-483))) (T -1143))
-((-3728 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-483)) (|:| -1776 (-583 (-2 (|:| |irr| *3) (|:| -2391 (-483))))))) (-5 *1 (-1143 *3)) (-4 *3 (-1153 (-483))))) (-3727 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-1143 *3)) (-4 *3 (-1153 (-483))))) (-3726 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-1143 *3)) (-4 *3 (-1153 (-483))))))
-((-2564 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-3730 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-3952 (((-1067 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-755)) ELT)) (-3224 ((|#1| $) 15 T ELT)) (-3226 ((|#1| $) 12 T ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-3222 (((-483) $) 19 T ELT)) (-3223 ((|#1| $) 18 T ELT)) (-3225 ((|#1| $) 13 T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3729 (((-85) $) 17 T ELT)) (-3957 (((-1067 |#1|) $) 41 (|has| |#1| (-755)) ELT) (((-1067 |#1|) (-583 $)) 40 (|has| |#1| (-755)) ELT)) (-3966 (($ |#1|) 26 T ELT)) (-3940 (($ (-1000 |#1|)) 25 T ELT) (((-772) $) 37 (|has| |#1| (-1012)) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-1012)) ELT)) (-3731 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-3227 (($ $ (-483)) 14 T ELT)) (-3052 (((-85) $ $) 30 (|has| |#1| (-1012)) ELT)))
-(((-1144 |#1|) (-13 (-1005 |#1|) (-10 -8 (-15 -3731 ($ |#1|)) (-15 -3730 ($ |#1|)) (-15 -3940 ($ (-1000 |#1|))) (-15 -3729 ((-85) $)) (IF (|has| |#1| (-1012)) (-6 (-1012)) |%noBranch|) (IF (|has| |#1| (-755)) (-6 (-1006 |#1| (-1067 |#1|))) |%noBranch|))) (-1127)) (T -1144))
-((-3731 (*1 *1 *2) (-12 (-5 *1 (-1144 *2)) (-4 *2 (-1127)))) (-3730 (*1 *1 *2) (-12 (-5 *1 (-1144 *2)) (-4 *2 (-1127)))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-1000 *3)) (-4 *3 (-1127)) (-5 *1 (-1144 *3)))) (-3729 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1144 *3)) (-4 *3 (-1127)))))
-((-3952 (((-1067 |#2|) (-1 |#2| |#1|) (-1144 |#1|)) 23 (|has| |#1| (-755)) ELT) (((-1144 |#2|) (-1 |#2| |#1|) (-1144 |#1|)) 17 T ELT)))
-(((-1145 |#1| |#2|) (-10 -7 (-15 -3952 ((-1144 |#2|) (-1 |#2| |#1|) (-1144 |#1|))) (IF (|has| |#1| (-755)) (-15 -3952 ((-1067 |#2|) (-1 |#2| |#1|) (-1144 |#1|))) |%noBranch|)) (-1127) (-1127)) (T -1145))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1144 *5)) (-4 *5 (-755)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-1067 *6)) (-5 *1 (-1145 *5 *6)))) (-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1144 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-1144 *6)) (-5 *1 (-1145 *5 *6)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3761 (((-1177 |#2|) $ (-694)) NIL T ELT)) (-3077 (((-583 (-993)) $) NIL T ELT)) (-3759 (($ (-1083 |#2|)) NIL T ELT)) (-3079 (((-1083 $) $ (-993)) NIL T ELT) (((-1083 |#2|) $) NIL T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#2| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#2| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#2| (-494)) ELT)) (-2815 (((-694) $) NIL T ELT) (((-694) $ (-583 (-993))) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3749 (($ $ $) NIL (|has| |#2| (-494)) ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-3769 (($ $) NIL (|has| |#2| (-389)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#2| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1#) (-583 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-1605 (((-85) $ $) NIL (|has| |#2| (-311)) ELT)) (-3755 (($ $ (-694)) NIL T ELT)) (-3754 (($ $ (-694)) NIL T ELT)) (-3745 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-389)) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) (((-3 (-483) #1#) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-3 (-993) #1#) $) NIL T ELT)) (-3151 ((|#2| $) NIL T ELT) (((-347 (-483)) $) NIL (|has| |#2| (-950 (-347 (-483)))) ELT) (((-483) $) NIL (|has| |#2| (-950 (-483))) ELT) (((-993) $) NIL T ELT)) (-3750 (($ $ $ (-993)) NIL (|has| |#2| (-146)) ELT) ((|#2| $ $) NIL (|has| |#2| (-146)) ELT)) (-2560 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-3953 (($ $) NIL T ELT)) (-2275 (((-630 (-483)) (-630 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-630 $) (-1177 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2559 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-3753 (($ $ $) NIL T ELT)) (-3747 (($ $ $) NIL (|has| |#2| (-494)) ELT)) (-3746 (((-2 (|:| -3948 |#2|) (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#2| (-494)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| |#2| (-311)) ELT)) (-3497 (($ $) NIL (|has| |#2| (-389)) ELT) (($ $ (-993)) NIL (|has| |#2| (-389)) ELT)) (-2814 (((-583 $) $) NIL T ELT)) (-3717 (((-85) $) NIL (|has| |#2| (-821)) ELT)) (-1621 (($ $ |#2| (-694) $) NIL T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) NIL (-12 (|has| (-993) (-796 (-327))) (|has| |#2| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) NIL (-12 (|has| (-993) (-796 (-483))) (|has| |#2| (-796 (-483)))) ELT)) (-3766 (((-694) $ $) NIL (|has| |#2| (-494)) ELT)) (-2406 (((-85) $) NIL T ELT)) (-2416 (((-694) $) NIL T ELT)) (-3439 (((-632 $) $) NIL (|has| |#2| (-1064)) ELT)) (-3080 (($ (-1083 |#2|) (-993)) NIL T ELT) (($ (-1083 $) (-993)) NIL T ELT)) (-3771 (($ $ (-694)) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#2| (-311)) ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#2| (-694)) 18 T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ (-993)) NIL T ELT) (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL T ELT)) (-2816 (((-694) $) NIL T ELT) (((-694) $ (-993)) NIL T ELT) (((-583 (-694)) $ (-583 (-993))) NIL T ELT)) (-1622 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3952 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3760 (((-1083 |#2|) $) NIL T ELT)) (-3078 (((-3 (-993) #1#) $) NIL T ELT)) (-2276 (((-630 (-483)) (-1177 $)) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) NIL (|has| |#2| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1177 |#2|))) (-1177 $) $) NIL T ELT) (((-630 |#2|) (-1177 $)) NIL T ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#2| $) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3756 (((-2 (|:| -1970 $) (|:| -2898 $)) $ (-694)) NIL T ELT)) (-2819 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2818 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-2 (|:| |var| (-993)) (|:| -2397 (-694))) #1#) $) NIL T ELT)) (-3806 (($ $) NIL (|has| |#2| (-38 (-347 (-483)))) ELT)) (-3440 (($) NIL (|has| |#2| (-1064)) CONST)) (-3238 (((-1032) $) NIL T ELT)) (-1794 (((-85) $) NIL T ELT)) (-1793 ((|#2| $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#2| (-389)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-3732 (($ $ (-694) |#2| $) NIL T ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) NIL (|has| |#2| (-821)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#2| (-821)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-3460 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-494)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-494)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#2| (-311)) ELT)) (-3762 (($ $ (-583 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-993) |#2|) NIL T ELT) (($ $ (-583 (-993)) (-583 |#2|)) NIL T ELT) (($ $ (-993) $) NIL T ELT) (($ $ (-583 (-993)) (-583 $)) NIL T ELT)) (-1604 (((-694) $) NIL (|has| |#2| (-311)) ELT)) (-3794 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-347 $) (-347 $) (-347 $)) NIL (|has| |#2| (-494)) ELT) ((|#2| (-347 $) |#2|) NIL (|has| |#2| (-311)) ELT) (((-347 $) $ (-347 $)) NIL (|has| |#2| (-494)) ELT)) (-3758 (((-3 $ #1#) $ (-694)) NIL T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-3751 (($ $ (-993)) NIL (|has| |#2| (-146)) ELT) ((|#2| $) NIL (|has| |#2| (-146)) ELT)) (-3752 (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993))) NIL T ELT) (($ $ (-993)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1088)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#2| (-811 (-1088))) ELT)) (-3942 (((-694) $) NIL T ELT) (((-694) $ (-993)) NIL T ELT) (((-583 (-694)) $ (-583 (-993))) NIL T ELT)) (-3966 (((-800 (-327)) $) NIL (-12 (|has| (-993) (-553 (-800 (-327)))) (|has| |#2| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) NIL (-12 (|has| (-993) (-553 (-800 (-483)))) (|has| |#2| (-553 (-800 (-483))))) ELT) (((-472) $) NIL (-12 (|has| (-993) (-553 (-472))) (|has| |#2| (-553 (-472)))) ELT)) (-2813 ((|#2| $) NIL (|has| |#2| (-389)) ELT) (($ $ (-993)) NIL (|has| |#2| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3748 (((-3 $ #1#) $ $) NIL (|has| |#2| (-494)) ELT) (((-3 (-347 $) #1#) (-347 $) $) NIL (|has| |#2| (-494)) ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-993)) NIL T ELT) (($ (-1174 |#1|)) 20 T ELT) (($ (-347 (-483))) NIL (OR (|has| |#2| (-38 (-347 (-483)))) (|has| |#2| (-950 (-347 (-483))))) ELT) (($ $) NIL (|has| |#2| (-494)) ELT)) (-3811 (((-583 |#2|) $) NIL T ELT)) (-3671 ((|#2| $ (-694)) NIL T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT)) (-2698 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3121 (((-694)) NIL T CONST)) (-1620 (($ $ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL (|has| |#2| (-494)) ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) 14 T CONST)) (-2665 (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993))) NIL T ELT) (($ $ (-993)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1088)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) NIL (|has| |#2| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (|has| |#2| (-811 (-1088))) ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-483))) NIL (|has| |#2| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) NIL (|has| |#2| (-38 (-347 (-483)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
-(((-1146 |#1| |#2|) (-13 (-1153 |#2|) (-555 (-1174 |#1|)) (-10 -8 (-15 -3732 ($ $ (-694) |#2| $)))) (-1088) (-961)) (T -1146))
-((-3732 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1146 *4 *3)) (-14 *4 (-1088)) (-4 *3 (-961)))))
-((-3952 (((-1146 |#3| |#4|) (-1 |#4| |#2|) (-1146 |#1| |#2|)) 15 T ELT)))
-(((-1147 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3952 ((-1146 |#3| |#4|) (-1 |#4| |#2|) (-1146 |#1| |#2|)))) (-1088) (-961) (-1088) (-961)) (T -1147))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1146 *5 *6)) (-14 *5 (-1088)) (-4 *6 (-961)) (-4 *8 (-961)) (-5 *2 (-1146 *7 *8)) (-5 *1 (-1147 *5 *6 *7 *8)) (-14 *7 (-1088)))))
-((-3735 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-3733 ((|#1| |#3|) 13 T ELT)) (-3734 ((|#3| |#3|) 19 T ELT)))
-(((-1148 |#1| |#2| |#3|) (-10 -7 (-15 -3733 (|#1| |#3|)) (-15 -3734 (|#3| |#3|)) (-15 -3735 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-494) (-904 |#1|) (-1153 |#2|)) (T -1148))
-((-3735 (*1 *2 *3) (-12 (-4 *4 (-494)) (-4 *5 (-904 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1148 *4 *5 *3)) (-4 *3 (-1153 *5)))) (-3734 (*1 *2 *2) (-12 (-4 *3 (-494)) (-4 *4 (-904 *3)) (-5 *1 (-1148 *3 *4 *2)) (-4 *2 (-1153 *4)))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-904 *2)) (-4 *2 (-494)) (-5 *1 (-1148 *2 *4 *3)) (-4 *3 (-1153 *4)))))
-((-3737 (((-3 |#2| #1="failed") |#2| (-694) |#1|) 35 T ELT)) (-3736 (((-3 |#2| #1#) |#2| (-694)) 36 T ELT)) (-3739 (((-3 (-2 (|:| -3133 |#2|) (|:| -3132 |#2|)) #1#) |#2|) 50 T ELT)) (-3740 (((-583 |#2|) |#2|) 52 T ELT)) (-3738 (((-3 |#2| #1#) |#2| |#2|) 46 T ELT)))
-(((-1149 |#1| |#2|) (-10 -7 (-15 -3736 ((-3 |#2| #1="failed") |#2| (-694))) (-15 -3737 ((-3 |#2| #1#) |#2| (-694) |#1|)) (-15 -3738 ((-3 |#2| #1#) |#2| |#2|)) (-15 -3739 ((-3 (-2 (|:| -3133 |#2|) (|:| -3132 |#2|)) #1#) |#2|)) (-15 -3740 ((-583 |#2|) |#2|))) (-13 (-494) (-120)) (-1153 |#1|)) (T -1149))
-((-3740 (*1 *2 *3) (-12 (-4 *4 (-13 (-494) (-120))) (-5 *2 (-583 *3)) (-5 *1 (-1149 *4 *3)) (-4 *3 (-1153 *4)))) (-3739 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-494) (-120))) (-5 *2 (-2 (|:| -3133 *3) (|:| -3132 *3))) (-5 *1 (-1149 *4 *3)) (-4 *3 (-1153 *4)))) (-3738 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-494) (-120))) (-5 *1 (-1149 *3 *2)) (-4 *2 (-1153 *3)))) (-3737 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-694)) (-4 *4 (-13 (-494) (-120))) (-5 *1 (-1149 *4 *2)) (-4 *2 (-1153 *4)))) (-3736 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-694)) (-4 *4 (-13 (-494) (-120))) (-5 *1 (-1149 *4 *2)) (-4 *2 (-1153 *4)))))
-((-3741 (((-3 (-2 (|:| -1970 |#2|) (|:| -2898 |#2|)) "failed") |#2| |#2|) 30 T ELT)))
-(((-1150 |#1| |#2|) (-10 -7 (-15 -3741 ((-3 (-2 (|:| -1970 |#2|) (|:| -2898 |#2|)) "failed") |#2| |#2|))) (-494) (-1153 |#1|)) (T -1150))
-((-3741 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-494)) (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3))) (-5 *1 (-1150 *4 *3)) (-4 *3 (-1153 *4)))))
-((-3742 ((|#2| |#2| |#2|) 22 T ELT)) (-3743 ((|#2| |#2| |#2|) 36 T ELT)) (-3744 ((|#2| |#2| |#2| (-694) (-694)) 44 T ELT)))
-(((-1151 |#1| |#2|) (-10 -7 (-15 -3742 (|#2| |#2| |#2|)) (-15 -3743 (|#2| |#2| |#2|)) (-15 -3744 (|#2| |#2| |#2| (-694) (-694)))) (-961) (-1153 |#1|)) (T -1151))
-((-3744 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-1151 *4 *2)) (-4 *2 (-1153 *4)))) (-3743 (*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1151 *3 *2)) (-4 *2 (-1153 *3)))) (-3742 (*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1151 *3 *2)) (-4 *2 (-1153 *3)))))
-((-3761 (((-1177 |#2|) $ (-694)) 129 T ELT)) (-3077 (((-583 (-993)) $) 16 T ELT)) (-3759 (($ (-1083 |#2|)) 80 T ELT)) (-2815 (((-694) $) NIL T ELT) (((-694) $ (-583 (-993))) 21 T ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) 217 T ELT)) (-3769 (($ $) 207 T ELT)) (-3965 (((-345 $) $) 205 T ELT)) (-2700 (((-3 (-583 (-1083 $)) #1="failed") (-583 (-1083 $)) (-1083 $)) 95 T ELT)) (-3755 (($ $ (-694)) 84 T ELT)) (-3754 (($ $ (-694)) 86 T ELT)) (-3745 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 157 T ELT)) (-3152 (((-3 |#2| #1#) $) 132 T ELT) (((-3 (-347 (-483)) #1#) $) NIL T ELT) (((-3 (-483) #1#) $) NIL T ELT) (((-3 (-993) #1#) $) NIL T ELT)) (-3151 ((|#2| $) 130 T ELT) (((-347 (-483)) $) NIL T ELT) (((-483) $) NIL T ELT) (((-993) $) NIL T ELT)) (-3747 (($ $ $) 182 T ELT)) (-3746 (((-2 (|:| -3948 |#2|) (|:| -1970 $) (|:| -2898 $)) $ $) 185 T ELT)) (-3766 (((-694) $ $) 202 T ELT)) (-3439 (((-632 $) $) 149 T ELT)) (-2889 (($ |#2| (-694)) NIL T ELT) (($ $ (-993) (-694)) 59 T ELT) (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT)) (-2816 (((-694) $) NIL T ELT) (((-694) $ (-993)) 54 T ELT) (((-583 (-694)) $ (-583 (-993))) 55 T ELT)) (-3760 (((-1083 |#2|) $) 72 T ELT)) (-3078 (((-3 (-993) #1#) $) 52 T ELT)) (-3756 (((-2 (|:| -1970 $) (|:| -2898 $)) $ (-694)) 83 T ELT)) (-3806 (($ $) 232 T ELT)) (-3440 (($) 134 T CONST)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 214 T ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) 101 T ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) 99 T ELT)) (-3726 (((-345 $) $) 120 T ELT)) (-3762 (($ $ (-583 (-248 $))) 51 T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-993) |#2|) 39 T ELT) (($ $ (-583 (-993)) (-583 |#2|)) 36 T ELT) (($ $ (-993) $) 32 T ELT) (($ $ (-583 (-993)) (-583 $)) 30 T ELT)) (-1604 (((-694) $) 220 T ELT)) (-3794 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-347 $) (-347 $) (-347 $)) 176 T ELT) ((|#2| (-347 $) |#2|) 219 T ELT) (((-347 $) $ (-347 $)) 201 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 225 T ELT)) (-3752 (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993))) NIL T ELT) (($ $ (-993)) 169 T ELT) (($ $) 167 T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 166 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 161 T ELT) (($ $ (-1088)) NIL T ELT) (($ $ (-583 (-1088))) NIL T ELT) (($ $ (-1088) (-694)) NIL T ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL T ELT)) (-3942 (((-694) $) NIL T ELT) (((-694) $ (-993)) 17 T ELT) (((-583 (-694)) $ (-583 (-993))) 23 T ELT)) (-2813 ((|#2| $) NIL T ELT) (($ $ (-993)) 151 T ELT)) (-3748 (((-3 $ #1#) $ $) 193 T ELT) (((-3 (-347 $) #1#) (-347 $) $) 189 T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-993)) 64 T ELT) (($ (-347 (-483))) NIL T ELT) (($ $) NIL T ELT)))
-(((-1152 |#1| |#2|) (-10 -7 (-15 -3940 (|#1| |#1|)) (-15 -2704 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -3752 (|#1| |#1| (-583 (-1088)) (-583 (-694)))) (-15 -3752 (|#1| |#1| (-1088) (-694))) (-15 -3752 (|#1| |#1| (-583 (-1088)))) (-15 -3752 (|#1| |#1| (-1088))) (-15 -3965 ((-345 |#1|) |#1|)) (-15 -3769 (|#1| |#1|)) (-15 -3940 (|#1| (-347 (-483)))) (-15 -3440 (|#1|) -3946) (-15 -3439 ((-632 |#1|) |#1|)) (-15 -3794 ((-347 |#1|) |#1| (-347 |#1|))) (-15 -1604 ((-694) |#1|)) (-15 -2875 ((-2 (|:| -1970 |#1|) (|:| -2898 |#1|)) |#1| |#1|)) (-15 -3806 (|#1| |#1|)) (-15 -3794 (|#2| (-347 |#1|) |#2|)) (-15 -3745 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3746 ((-2 (|:| -3948 |#2|) (|:| -1970 |#1|) (|:| -2898 |#1|)) |#1| |#1|)) (-15 -3747 (|#1| |#1| |#1|)) (-15 -3748 ((-3 (-347 |#1|) #1="failed") (-347 |#1|) |#1|)) (-15 -3748 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3766 ((-694) |#1| |#1|)) (-15 -3794 ((-347 |#1|) (-347 |#1|) (-347 |#1|))) (-15 -3752 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3754 (|#1| |#1| (-694))) (-15 -3755 (|#1| |#1| (-694))) (-15 -3756 ((-2 (|:| -1970 |#1|) (|:| -2898 |#1|)) |#1| (-694))) (-15 -3759 (|#1| (-1083 |#2|))) (-15 -3760 ((-1083 |#2|) |#1|)) (-15 -3761 ((-1177 |#2|) |#1| (-694))) (-15 -3752 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3752 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3752 (|#1| |#1| (-694))) (-15 -3752 (|#1| |#1|)) (-15 -3794 (|#1| |#1| |#1|)) (-15 -3794 (|#2| |#1| |#2|)) (-15 -3726 ((-345 |#1|) |#1|)) (-15 -2703 ((-345 (-1083 |#1|)) (-1083 |#1|))) (-15 -2702 ((-345 (-1083 |#1|)) (-1083 |#1|))) (-15 -2701 ((-345 (-1083 |#1|)) (-1083 |#1|))) (-15 -2700 ((-3 (-583 (-1083 |#1|)) #1#) (-583 (-1083 |#1|)) (-1083 |#1|))) (-15 -2813 (|#1| |#1| (-993))) (-15 -3077 ((-583 (-993)) |#1|)) (-15 -2815 ((-694) |#1| (-583 (-993)))) (-15 -2815 ((-694) |#1|)) (-15 -2889 (|#1| |#1| (-583 (-993)) (-583 (-694)))) (-15 -2889 (|#1| |#1| (-993) (-694))) (-15 -2816 ((-583 (-694)) |#1| (-583 (-993)))) (-15 -2816 ((-694) |#1| (-993))) (-15 -3078 ((-3 (-993) #1#) |#1|)) (-15 -3942 ((-583 (-694)) |#1| (-583 (-993)))) (-15 -3942 ((-694) |#1| (-993))) (-15 -3940 (|#1| (-993))) (-15 -3152 ((-3 (-993) #1#) |#1|)) (-15 -3151 ((-993) |#1|)) (-15 -3762 (|#1| |#1| (-583 (-993)) (-583 |#1|))) (-15 -3762 (|#1| |#1| (-993) |#1|)) (-15 -3762 (|#1| |#1| (-583 (-993)) (-583 |#2|))) (-15 -3762 (|#1| |#1| (-993) |#2|)) (-15 -3762 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3762 (|#1| |#1| |#1| |#1|)) (-15 -3762 (|#1| |#1| (-248 |#1|))) (-15 -3762 (|#1| |#1| (-583 (-248 |#1|)))) (-15 -3942 ((-694) |#1|)) (-15 -2889 (|#1| |#2| (-694))) (-15 -3152 ((-3 (-483) #1#) |#1|)) (-15 -3151 ((-483) |#1|)) (-15 -3152 ((-3 (-347 (-483)) #1#) |#1|)) (-15 -3151 ((-347 (-483)) |#1|)) (-15 -3151 (|#2| |#1|)) (-15 -3152 ((-3 |#2| #1#) |#1|)) (-15 -3940 (|#1| |#2|)) (-15 -2816 ((-694) |#1|)) (-15 -2813 (|#2| |#1|)) (-15 -3752 (|#1| |#1| (-993))) (-15 -3752 (|#1| |#1| (-583 (-993)))) (-15 -3752 (|#1| |#1| (-993) (-694))) (-15 -3752 (|#1| |#1| (-583 (-993)) (-583 (-694)))) (-15 -3940 (|#1| (-483))) (-15 -3940 ((-772) |#1|))) (-1153 |#2|) (-961)) (T -1152))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3761 (((-1177 |#1|) $ (-694)) 269 T ELT)) (-3077 (((-583 (-993)) $) 121 T ELT)) (-3759 (($ (-1083 |#1|)) 267 T ELT)) (-3079 (((-1083 $) $ (-993)) 136 T ELT) (((-1083 |#1|) $) 135 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 98 (|has| |#1| (-494)) ELT)) (-2059 (($ $) 99 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) 101 (|has| |#1| (-494)) ELT)) (-2815 (((-694) $) 123 T ELT) (((-694) $ (-583 (-993))) 122 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3749 (($ $ $) 254 (|has| |#1| (-494)) ELT)) (-2703 (((-345 (-1083 $)) (-1083 $)) 111 (|has| |#1| (-821)) ELT)) (-3769 (($ $) 109 (|has| |#1| (-389)) ELT)) (-3965 (((-345 $) $) 108 (|has| |#1| (-389)) ELT)) (-2700 (((-3 (-583 (-1083 $)) #1="failed") (-583 (-1083 $)) (-1083 $)) 114 (|has| |#1| (-821)) ELT)) (-1605 (((-85) $ $) 239 (|has| |#1| (-311)) ELT)) (-3755 (($ $ (-694)) 262 T ELT)) (-3754 (($ $ (-694)) 261 T ELT)) (-3745 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 249 (|has| |#1| (-389)) ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 |#1| #2="failed") $) 179 T ELT) (((-3 (-347 (-483)) #2#) $) 176 (|has| |#1| (-950 (-347 (-483)))) ELT) (((-3 (-483) #2#) $) 174 (|has| |#1| (-950 (-483))) ELT) (((-3 (-993) #2#) $) 151 T ELT)) (-3151 ((|#1| $) 178 T ELT) (((-347 (-483)) $) 177 (|has| |#1| (-950 (-347 (-483)))) ELT) (((-483) $) 175 (|has| |#1| (-950 (-483))) ELT) (((-993) $) 152 T ELT)) (-3750 (($ $ $ (-993)) 119 (|has| |#1| (-146)) ELT) ((|#1| $ $) 257 (|has| |#1| (-146)) ELT)) (-2560 (($ $ $) 243 (|has| |#1| (-311)) ELT)) (-3953 (($ $) 169 T ELT)) (-2275 (((-630 (-483)) (-630 $)) 147 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-630 $) (-1177 $)) 146 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-630 $) (-1177 $)) 145 T ELT) (((-630 |#1|) (-630 $)) 144 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2559 (($ $ $) 242 (|has| |#1| (-311)) ELT)) (-3753 (($ $ $) 260 T ELT)) (-3747 (($ $ $) 251 (|has| |#1| (-494)) ELT)) (-3746 (((-2 (|:| -3948 |#1|) (|:| -1970 $) (|:| -2898 $)) $ $) 250 (|has| |#1| (-494)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 237 (|has| |#1| (-311)) ELT)) (-3497 (($ $) 191 (|has| |#1| (-389)) ELT) (($ $ (-993)) 116 (|has| |#1| (-389)) ELT)) (-2814 (((-583 $) $) 120 T ELT)) (-3717 (((-85) $) 107 (|has| |#1| (-821)) ELT)) (-1621 (($ $ |#1| (-694) $) 187 T ELT)) (-2792 (((-798 (-327) $) $ (-800 (-327)) (-798 (-327) $)) 95 (-12 (|has| (-993) (-796 (-327))) (|has| |#1| (-796 (-327)))) ELT) (((-798 (-483) $) $ (-800 (-483)) (-798 (-483) $)) 94 (-12 (|has| (-993) (-796 (-483))) (|has| |#1| (-796 (-483)))) ELT)) (-3766 (((-694) $ $) 255 (|has| |#1| (-494)) ELT)) (-2406 (((-85) $) 42 T ELT)) (-2416 (((-694) $) 184 T ELT)) (-3439 (((-632 $) $) 235 (|has| |#1| (-1064)) ELT)) (-3080 (($ (-1083 |#1|) (-993)) 128 T ELT) (($ (-1083 $) (-993)) 127 T ELT)) (-3771 (($ $ (-694)) 266 T ELT)) (-1602 (((-3 (-583 $) #3="failed") (-583 $) $) 246 (|has| |#1| (-311)) ELT)) (-2817 (((-583 $) $) 137 T ELT)) (-3931 (((-85) $) 167 T ELT)) (-2889 (($ |#1| (-694)) 168 T ELT) (($ $ (-993) (-694)) 130 T ELT) (($ $ (-583 (-993)) (-583 (-694))) 129 T ELT)) (-3757 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $ (-993)) 131 T ELT) (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 264 T ELT)) (-2816 (((-694) $) 185 T ELT) (((-694) $ (-993)) 133 T ELT) (((-583 (-694)) $ (-583 (-993))) 132 T ELT)) (-1622 (($ (-1 (-694) (-694)) $) 186 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 166 T ELT)) (-3760 (((-1083 |#1|) $) 268 T ELT)) (-3078 (((-3 (-993) #4="failed") $) 134 T ELT)) (-2276 (((-630 (-483)) (-1177 $)) 149 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 (-483))) (|:| |vec| (-1177 (-483)))) (-1177 $) $) 148 (|has| |#1| (-580 (-483))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1177 |#1|))) (-1177 $) $) 143 T ELT) (((-630 |#1|) (-1177 $)) 142 T ELT)) (-2890 (($ $) 164 T ELT)) (-3169 ((|#1| $) 163 T ELT)) (-1888 (($ (-583 $)) 105 (|has| |#1| (-389)) ELT) (($ $ $) 104 (|has| |#1| (-389)) ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3756 (((-2 (|:| -1970 $) (|:| -2898 $)) $ (-694)) 263 T ELT)) (-2819 (((-3 (-583 $) #4#) $) 125 T ELT)) (-2818 (((-3 (-583 $) #4#) $) 126 T ELT)) (-2820 (((-3 (-2 (|:| |var| (-993)) (|:| -2397 (-694))) #4#) $) 124 T ELT)) (-3806 (($ $) 247 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3440 (($) 234 (|has| |#1| (-1064)) CONST)) (-3238 (((-1032) $) 12 T ELT)) (-1794 (((-85) $) 181 T ELT)) (-1793 ((|#1| $) 182 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 106 (|has| |#1| (-389)) ELT)) (-3139 (($ (-583 $)) 103 (|has| |#1| (-389)) ELT) (($ $ $) 102 (|has| |#1| (-389)) ELT)) (-2701 (((-345 (-1083 $)) (-1083 $)) 113 (|has| |#1| (-821)) ELT)) (-2702 (((-345 (-1083 $)) (-1083 $)) 112 (|has| |#1| (-821)) ELT)) (-3726 (((-345 $) $) 110 (|has| |#1| (-821)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 245 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 244 (|has| |#1| (-311)) ELT)) (-3460 (((-3 $ "failed") $ |#1|) 189 (|has| |#1| (-494)) ELT) (((-3 $ "failed") $ $) 97 (|has| |#1| (-494)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 238 (|has| |#1| (-311)) ELT)) (-3762 (($ $ (-583 (-248 $))) 160 T ELT) (($ $ (-248 $)) 159 T ELT) (($ $ $ $) 158 T ELT) (($ $ (-583 $) (-583 $)) 157 T ELT) (($ $ (-993) |#1|) 156 T ELT) (($ $ (-583 (-993)) (-583 |#1|)) 155 T ELT) (($ $ (-993) $) 154 T ELT) (($ $ (-583 (-993)) (-583 $)) 153 T ELT)) (-1604 (((-694) $) 240 (|has| |#1| (-311)) ELT)) (-3794 ((|#1| $ |#1|) 279 T ELT) (($ $ $) 278 T ELT) (((-347 $) (-347 $) (-347 $)) 256 (|has| |#1| (-494)) ELT) ((|#1| (-347 $) |#1|) 248 (|has| |#1| (-311)) ELT) (((-347 $) $ (-347 $)) 236 (|has| |#1| (-494)) ELT)) (-3758 (((-3 $ "failed") $ (-694)) 265 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 241 (|has| |#1| (-311)) ELT)) (-3751 (($ $ (-993)) 118 (|has| |#1| (-146)) ELT) ((|#1| $) 258 (|has| |#1| (-146)) ELT)) (-3752 (($ $ (-583 (-993)) (-583 (-694))) 50 T ELT) (($ $ (-993) (-694)) 49 T ELT) (($ $ (-583 (-993))) 48 T ELT) (($ $ (-993)) 46 T ELT) (($ $) 277 T ELT) (($ $ (-694)) 275 T ELT) (($ $ (-1 |#1| |#1|)) 273 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 272 T ELT) (($ $ (-1 |#1| |#1|) $) 259 T ELT) (($ $ (-1088)) 233 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) 231 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) 230 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 229 (|has| |#1| (-811 (-1088))) ELT)) (-3942 (((-694) $) 165 T ELT) (((-694) $ (-993)) 141 T ELT) (((-583 (-694)) $ (-583 (-993))) 140 T ELT)) (-3966 (((-800 (-327)) $) 93 (-12 (|has| (-993) (-553 (-800 (-327)))) (|has| |#1| (-553 (-800 (-327))))) ELT) (((-800 (-483)) $) 92 (-12 (|has| (-993) (-553 (-800 (-483)))) (|has| |#1| (-553 (-800 (-483))))) ELT) (((-472) $) 91 (-12 (|has| (-993) (-553 (-472))) (|has| |#1| (-553 (-472)))) ELT)) (-2813 ((|#1| $) 190 (|has| |#1| (-389)) ELT) (($ $ (-993)) 117 (|has| |#1| (-389)) ELT)) (-2699 (((-3 (-1177 $) #1#) (-630 $)) 115 (-2558 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3748 (((-3 $ "failed") $ $) 253 (|has| |#1| (-494)) ELT) (((-3 (-347 $) "failed") (-347 $) $) 252 (|has| |#1| (-494)) ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 180 T ELT) (($ (-993)) 150 T ELT) (($ (-347 (-483))) 89 (OR (|has| |#1| (-950 (-347 (-483)))) (|has| |#1| (-38 (-347 (-483))))) ELT) (($ $) 96 (|has| |#1| (-494)) ELT)) (-3811 (((-583 |#1|) $) 183 T ELT)) (-3671 ((|#1| $ (-694)) 170 T ELT) (($ $ (-993) (-694)) 139 T ELT) (($ $ (-583 (-993)) (-583 (-694))) 138 T ELT)) (-2698 (((-632 $) $) 90 (OR (-2558 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3121 (((-694)) 38 T CONST)) (-1620 (($ $ $ (-694)) 188 (|has| |#1| (-146)) ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 100 (|has| |#1| (-494)) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-583 (-993)) (-583 (-694))) 53 T ELT) (($ $ (-993) (-694)) 52 T ELT) (($ $ (-583 (-993))) 51 T ELT) (($ $ (-993)) 47 T ELT) (($ $) 276 T ELT) (($ $ (-694)) 274 T ELT) (($ $ (-1 |#1| |#1|)) 271 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 270 T ELT) (($ $ (-1088)) 232 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088))) 228 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-1088) (-694)) 227 (|has| |#1| (-811 (-1088))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 226 (|has| |#1| (-811 (-1088))) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#1|) 171 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-483))) 173 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ (-347 (-483)) $) 172 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ |#1| $) 162 T ELT) (($ $ |#1|) 161 T ELT)))
-(((-1153 |#1|) (-113) (-961)) (T -1153))
-((-3761 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1153 *4)) (-4 *4 (-961)) (-5 *2 (-1177 *4)))) (-3760 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-961)) (-5 *2 (-1083 *3)))) (-3759 (*1 *1 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-961)) (-4 *1 (-1153 *3)))) (-3771 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1153 *3)) (-4 *3 (-961)))) (-3758 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-694)) (-4 *1 (-1153 *3)) (-4 *3 (-961)))) (-3757 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1))) (-4 *1 (-1153 *3)))) (-3756 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1))) (-4 *1 (-1153 *4)))) (-3755 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1153 *3)) (-4 *3 (-961)))) (-3754 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1153 *3)) (-4 *3 (-961)))) (-3753 (*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-961)))) (-3752 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1153 *3)) (-4 *3 (-961)))) (-3751 (*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-961)) (-4 *2 (-146)))) (-3750 (*1 *2 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-961)) (-4 *2 (-146)))) (-3794 (*1 *2 *2 *2) (-12 (-5 *2 (-347 *1)) (-4 *1 (-1153 *3)) (-4 *3 (-961)) (-4 *3 (-494)))) (-3766 (*1 *2 *1 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-961)) (-4 *3 (-494)) (-5 *2 (-694)))) (-3749 (*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-961)) (-4 *2 (-494)))) (-3748 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1153 *2)) (-4 *2 (-961)) (-4 *2 (-494)))) (-3748 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-347 *1)) (-4 *1 (-1153 *3)) (-4 *3 (-961)) (-4 *3 (-494)))) (-3747 (*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-961)) (-4 *2 (-494)))) (-3746 (*1 *2 *1 *1) (-12 (-4 *3 (-494)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3948 *3) (|:| -1970 *1) (|:| -2898 *1))) (-4 *1 (-1153 *3)))) (-3745 (*1 *2 *1 *1) (-12 (-4 *3 (-389)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1153 *3)))) (-3794 (*1 *2 *3 *2) (-12 (-5 *3 (-347 *1)) (-4 *1 (-1153 *2)) (-4 *2 (-961)) (-4 *2 (-311)))) (-3806 (*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-347 (-483)))))))
-(-13 (-861 |t#1| (-694) (-993)) (-241 |t#1| |t#1|) (-241 $ $) (-190) (-184 |t#1|) (-10 -8 (-15 -3761 ((-1177 |t#1|) $ (-694))) (-15 -3760 ((-1083 |t#1|) $)) (-15 -3759 ($ (-1083 |t#1|))) (-15 -3771 ($ $ (-694))) (-15 -3758 ((-3 $ "failed") $ (-694))) (-15 -3757 ((-2 (|:| -1970 $) (|:| -2898 $)) $ $)) (-15 -3756 ((-2 (|:| -1970 $) (|:| -2898 $)) $ (-694))) (-15 -3755 ($ $ (-694))) (-15 -3754 ($ $ (-694))) (-15 -3753 ($ $ $)) (-15 -3752 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1064)) (-6 (-1064)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3751 (|t#1| $)) (-15 -3750 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-494)) (PROGN (-6 (-241 (-347 $) (-347 $))) (-15 -3794 ((-347 $) (-347 $) (-347 $))) (-15 -3766 ((-694) $ $)) (-15 -3749 ($ $ $)) (-15 -3748 ((-3 $ "failed") $ $)) (-15 -3748 ((-3 (-347 $) "failed") (-347 $) $)) (-15 -3747 ($ $ $)) (-15 -3746 ((-2 (|:| -3948 |t#1|) (|:| -1970 $) (|:| -2898 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-389)) (-15 -3745 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-311)) (PROGN (-6 (-257)) (-6 -3985) (-15 -3794 (|t#1| (-347 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-347 (-483)))) (-15 -3806 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| (-694)) . T) ((-25) . T) ((-38 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-311))) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) OR (|has| |#1| (-950 (-347 (-483)))) (|has| |#1| (-38 (-347 (-483))))) ((-555 (-483)) . T) ((-555 (-993)) . T) ((-555 |#1|) . T) ((-555 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-311))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-553 (-472)) -12 (|has| |#1| (-553 (-472))) (|has| (-993) (-553 (-472)))) ((-553 (-800 (-327))) -12 (|has| |#1| (-553 (-800 (-327)))) (|has| (-993) (-553 (-800 (-327))))) ((-553 (-800 (-483))) -12 (|has| |#1| (-553 (-800 (-483)))) (|has| (-993) (-553 (-800 (-483))))) ((-186 $) . T) ((-184 |#1|) . T) ((-190) . T) ((-189) . T) ((-225 |#1|) . T) ((-241 (-347 $) (-347 $)) |has| |#1| (-494)) ((-241 |#1| |#1|) . T) ((-241 $ $) . T) ((-245) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-311))) ((-257) |has| |#1| (-311)) ((-259 $) . T) ((-276 |#1| (-694)) . T) ((-326 |#1|) . T) ((-352 |#1|) . T) ((-389) OR (|has| |#1| (-821)) (|has| |#1| (-389)) (|has| |#1| (-311))) ((-452 (-993) |#1|) . T) ((-452 (-993) $) . T) ((-452 $ $) . T) ((-494) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-311))) ((-13) . T) ((-588 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-590 (-483)) |has| |#1| (-580 (-483))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-311))) ((-580 (-483)) |has| |#1| (-580 (-483))) ((-580 |#1|) . T) ((-654 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-311))) ((-663) . T) ((-806 $ (-993)) . T) ((-806 $ (-1088)) OR (|has| |#1| (-811 (-1088))) (|has| |#1| (-809 (-1088)))) ((-809 (-993)) . T) ((-809 (-1088)) |has| |#1| (-809 (-1088))) ((-811 (-993)) . T) ((-811 (-1088)) OR (|has| |#1| (-811 (-1088))) (|has| |#1| (-809 (-1088)))) ((-796 (-327)) -12 (|has| |#1| (-796 (-327))) (|has| (-993) (-796 (-327)))) ((-796 (-483)) -12 (|has| |#1| (-796 (-483))) (|has| (-993) (-796 (-483)))) ((-861 |#1| (-694) (-993)) . T) ((-821) |has| |#1| (-821)) ((-832) |has| |#1| (-311)) ((-950 (-347 (-483))) |has| |#1| (-950 (-347 (-483)))) ((-950 (-483)) |has| |#1| (-950 (-483))) ((-950 (-993)) . T) ((-950 |#1|) . T) ((-963 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-968 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-821)) (|has| |#1| (-494)) (|has| |#1| (-389)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1064) |has| |#1| (-1064)) ((-1127) . T) ((-1132) |has| |#1| (-821)))
-((-3952 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT)))
-(((-1154 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3952 (|#4| (-1 |#3| |#1|) |#2|))) (-961) (-1153 |#1|) (-961) (-1153 |#3|)) (T -1154))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1153 *6)) (-5 *1 (-1154 *5 *4 *6 *2)) (-4 *4 (-1153 *5)))))
-((-3077 (((-583 (-993)) $) 34 T ELT)) (-3953 (($ $) 31 T ELT)) (-2889 (($ |#2| |#3|) NIL T ELT) (($ $ (-993) |#3|) 28 T ELT) (($ $ (-583 (-993)) (-583 |#3|)) 27 T ELT)) (-2890 (($ $) 14 T ELT)) (-3169 ((|#2| $) 12 T ELT)) (-3942 ((|#3| $) 10 T ELT)))
-(((-1155 |#1| |#2| |#3|) (-10 -7 (-15 -3077 ((-583 (-993)) |#1|)) (-15 -2889 (|#1| |#1| (-583 (-993)) (-583 |#3|))) (-15 -2889 (|#1| |#1| (-993) |#3|)) (-15 -3953 (|#1| |#1|)) (-15 -2889 (|#1| |#2| |#3|)) (-15 -3942 (|#3| |#1|)) (-15 -2890 (|#1| |#1|)) (-15 -3169 (|#2| |#1|))) (-1156 |#2| |#3|) (-961) (-716)) (T -1155))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3077 (((-583 (-993)) $) 93 T ELT)) (-3825 (((-1088) $) 127 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 69 (|has| |#1| (-494)) ELT)) (-2059 (($ $) 70 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) 72 (|has| |#1| (-494)) ELT)) (-3765 (($ $ |#2|) 122 T ELT) (($ $ |#2| |#2|) 121 T ELT)) (-3768 (((-1067 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 128 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3953 (($ $) 78 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2888 (((-85) $) 92 T ELT)) (-3766 ((|#2| $) 124 T ELT) ((|#2| $ |#2|) 123 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3771 (($ $ (-830)) 125 T ELT)) (-3931 (((-85) $) 80 T ELT)) (-2889 (($ |#1| |#2|) 79 T ELT) (($ $ (-993) |#2|) 95 T ELT) (($ $ (-583 (-993)) (-583 |#2|)) 94 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-2890 (($ $) 83 T ELT)) (-3169 ((|#1| $) 84 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3763 (($ $ |#2|) 119 T ELT)) (-3460 (((-3 $ "failed") $ $) 68 (|has| |#1| (-494)) ELT)) (-3762 (((-1067 |#1|) $ |#1|) 118 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) ELT)) (-3794 ((|#1| $ |#2|) 129 T ELT) (($ $ $) 105 (|has| |#2| (-1024)) ELT)) (-3752 (($ $ (-1088)) 117 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-583 (-1088))) 115 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1088) (-694)) 114 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 113 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 109 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-694)) 107 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3942 ((|#2| $) 82 T ELT)) (-2887 (($ $) 91 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ (-347 (-483))) 75 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $) 67 (|has| |#1| (-494)) ELT) (($ |#1|) 65 (|has| |#1| (-146)) ELT)) (-3671 ((|#1| $ |#2|) 77 T ELT)) (-2698 (((-632 $) $) 66 (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 38 T CONST)) (-3767 ((|#1| $) 126 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 71 (|has| |#1| (-494)) ELT)) (-3764 ((|#1| $ |#2|) 120 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3940 (|#1| (-1088))))) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-1088)) 116 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-583 (-1088))) 112 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1088) (-694)) 111 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 110 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-694)) 106 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-347 (-483)) $) 74 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 73 (|has| |#1| (-38 (-347 (-483)))) ELT)))
-(((-1156 |#1| |#2|) (-113) (-961) (-716)) (T -1156))
-((-3768 (*1 *2 *1) (-12 (-4 *1 (-1156 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-1067 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3825 (*1 *2 *1) (-12 (-4 *1 (-1156 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-1088)))) (-3767 (*1 *2 *1) (-12 (-4 *1 (-1156 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))) (-3771 (*1 *1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-1156 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)))) (-3766 (*1 *2 *1) (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3766 (*1 *2 *1 *2) (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3765 (*1 *1 *1 *2) (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3765 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3764 (*1 *2 *1 *3) (-12 (-4 *1 (-1156 *2 *3)) (-4 *3 (-716)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3940 (*2 (-1088)))) (-4 *2 (-961)))) (-3763 (*1 *1 *1 *2) (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3762 (*1 *2 *1 *3) (-12 (-4 *1 (-1156 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1067 *3)))))
-(-13 (-886 |t#1| |t#2| (-993)) (-241 |t#2| |t#1|) (-10 -8 (-15 -3768 ((-1067 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3825 ((-1088) $)) (-15 -3767 (|t#1| $)) (-15 -3771 ($ $ (-830))) (-15 -3766 (|t#2| $)) (-15 -3766 (|t#2| $ |t#2|)) (-15 -3765 ($ $ |t#2|)) (-15 -3765 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3940 (|t#1| (-1088)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3764 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3763 ($ $ |t#2|)) (IF (|has| |t#2| (-1024)) (-6 (-241 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-190)) (IF (|has| |t#1| (-809 (-1088))) (-6 (-809 (-1088))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3762 ((-1067 |t#1|) $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-494)) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-555 (-483)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) |has| |#1| (-494)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-190) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-189) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-241 |#2| |#1|) . T) ((-241 $ $) |has| |#2| (-1024)) ((-245) |has| |#1| (-494)) ((-494) |has| |#1| (-494)) ((-13) . T) ((-588 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-494)) ((-654 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-494)) ((-663) . T) ((-806 $ (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-809 (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-811 (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-886 |#1| |#2| (-993)) . T) ((-963 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-968 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T))
-((-3769 ((|#2| |#2|) 12 T ELT)) (-3965 (((-345 |#2|) |#2|) 14 T ELT)) (-3770 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-483))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-483)))) 30 T ELT)))
-(((-1157 |#1| |#2|) (-10 -7 (-15 -3965 ((-345 |#2|) |#2|)) (-15 -3769 (|#2| |#2|)) (-15 -3770 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-483))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-483)))))) (-494) (-13 (-1153 |#1|) (-494) (-10 -8 (-15 -3139 ($ $ $))))) (T -1157))
-((-3770 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-483)))) (-4 *4 (-13 (-1153 *3) (-494) (-10 -8 (-15 -3139 ($ $ $))))) (-4 *3 (-494)) (-5 *1 (-1157 *3 *4)))) (-3769 (*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-1157 *3 *2)) (-4 *2 (-13 (-1153 *3) (-494) (-10 -8 (-15 -3139 ($ $ $))))))) (-3965 (*1 *2 *3) (-12 (-4 *4 (-494)) (-5 *2 (-345 *3)) (-5 *1 (-1157 *4 *3)) (-4 *3 (-13 (-1153 *4) (-494) (-10 -8 (-15 -3139 ($ $ $))))))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3077 (((-583 (-993)) $) NIL T ELT)) (-3825 (((-1088) $) 11 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3765 (($ $ (-347 (-483))) NIL T ELT) (($ $ (-347 (-483)) (-347 (-483))) NIL T ELT)) (-3768 (((-1067 (-2 (|:| |k| (-347 (-483))) (|:| |c| |#1|))) $) NIL T ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-3033 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1605 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3812 (($ (-694) (-1067 (-2 (|:| |k| (-347 (-483))) (|:| |c| |#1|)))) NIL T ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-1137 |#1| |#2| |#3|) #1#) $) 19 T ELT) (((-3 (-1167 |#1| |#2| |#3|) #1#) $) 22 T ELT)) (-3151 (((-1137 |#1| |#2| |#3|) $) NIL T ELT) (((-1167 |#1| |#2| |#3|) $) NIL T ELT)) (-2560 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3953 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3775 (((-347 (-483)) $) 68 T ELT)) (-2559 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3776 (($ (-347 (-483)) (-1137 |#1| |#2| |#3|)) NIL T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| |#1| (-311)) ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-2888 (((-85) $) NIL T ELT)) (-3621 (($) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3766 (((-347 (-483)) $) NIL T ELT) (((-347 (-483)) $ (-347 (-483))) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3007 (($ $ (-483)) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3771 (($ $ (-830)) NIL T ELT) (($ $ (-347 (-483))) NIL T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-347 (-483))) 30 T ELT) (($ $ (-993) (-347 (-483))) NIL T ELT) (($ $ (-583 (-993)) (-583 (-347 (-483)))) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3936 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3774 (((-1137 |#1| |#2| |#3|) $) 71 T ELT)) (-3772 (((-3 (-1137 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3773 (((-1137 |#1| |#2| |#3|) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3806 (($ $) 39 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-1088)) NIL (OR (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-29 (-483))) (|has| |#1| (-871)) (|has| |#1| (-1113))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-15 -3806 (|#1| |#1| (-1088)))) (|has| |#1| (-15 -3077 ((-583 (-1088)) |#1|))))) ELT) (($ $ (-1174 |#2|)) 40 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-311)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3763 (($ $ (-347 (-483))) NIL T ELT)) (-3460 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3937 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3762 (((-1067 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-347 (-483))))) ELT)) (-1604 (((-694) $) NIL (|has| |#1| (-311)) ELT)) (-3794 ((|#1| $ (-347 (-483))) NIL T ELT) (($ $ $) NIL (|has| (-347 (-483)) (-1024)) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3752 (($ $ (-1088)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-1174 |#2|)) 38 T ELT)) (-3942 (((-347 (-483)) $) NIL T ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2887 (($ $) NIL T ELT)) (-3940 (((-772) $) 107 T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1137 |#1| |#2| |#3|)) 16 T ELT) (($ (-1167 |#1| |#2| |#3|)) 17 T ELT) (($ (-1174 |#2|)) 36 T ELT) (($ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3671 ((|#1| $ (-347 (-483))) NIL T ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) NIL T CONST)) (-3767 ((|#1| $) 12 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3764 ((|#1| $ (-347 (-483))) 73 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-483))))) (|has| |#1| (-15 -3940 (|#1| (-1088))))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2656 (($) 32 T CONST)) (-2662 (($) 26 T CONST)) (-2665 (($ $ (-1088)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-1174 |#2|)) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 34 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-483)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)))
-(((-1158 |#1| |#2| |#3|) (-13 (-1162 |#1| (-1137 |#1| |#2| |#3|)) (-806 $ (-1174 |#2|)) (-950 (-1167 |#1| |#2| |#3|)) (-555 (-1174 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-347 (-483)))) (-15 -3806 ($ $ (-1174 |#2|))) |%noBranch|))) (-961) (-1088) |#1|) (T -1158))
-((-3806 (*1 *1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) (-14 *5 *3))))
-((-3952 (((-1158 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1158 |#1| |#3| |#5|)) 24 T ELT)))
-(((-1159 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3952 ((-1158 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1158 |#1| |#3| |#5|)))) (-961) (-961) (-1088) (-1088) |#1| |#2|) (T -1159))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1158 *5 *7 *9)) (-4 *5 (-961)) (-4 *6 (-961)) (-14 *7 (-1088)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1158 *6 *8 *10)) (-5 *1 (-1159 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1088)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3077 (((-583 (-993)) $) 93 T ELT)) (-3825 (((-1088) $) 127 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 69 (|has| |#1| (-494)) ELT)) (-2059 (($ $) 70 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) 72 (|has| |#1| (-494)) ELT)) (-3765 (($ $ (-347 (-483))) 122 T ELT) (($ $ (-347 (-483)) (-347 (-483))) 121 T ELT)) (-3768 (((-1067 (-2 (|:| |k| (-347 (-483))) (|:| |c| |#1|))) $) 128 T ELT)) (-3486 (($ $) 161 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) 144 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3769 (($ $) 188 (|has| |#1| (-311)) ELT)) (-3965 (((-345 $) $) 189 (|has| |#1| (-311)) ELT)) (-3033 (($ $) 143 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1605 (((-85) $ $) 179 (|has| |#1| (-311)) ELT)) (-3484 (($ $) 160 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) 145 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3812 (($ (-694) (-1067 (-2 (|:| |k| (-347 (-483))) (|:| |c| |#1|)))) 197 T ELT)) (-3488 (($ $) 159 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) 146 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) 22 T CONST)) (-2560 (($ $ $) 183 (|has| |#1| (-311)) ELT)) (-3953 (($ $) 78 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2559 (($ $ $) 182 (|has| |#1| (-311)) ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 177 (|has| |#1| (-311)) ELT)) (-3717 (((-85) $) 190 (|has| |#1| (-311)) ELT)) (-2888 (((-85) $) 92 T ELT)) (-3621 (($) 171 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3766 (((-347 (-483)) $) 124 T ELT) (((-347 (-483)) $ (-347 (-483))) 123 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3007 (($ $ (-483)) 142 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3771 (($ $ (-830)) 125 T ELT) (($ $ (-347 (-483))) 196 T ELT)) (-1602 (((-3 (-583 $) #1="failed") (-583 $) $) 186 (|has| |#1| (-311)) ELT)) (-3931 (((-85) $) 80 T ELT)) (-2889 (($ |#1| (-347 (-483))) 79 T ELT) (($ $ (-993) (-347 (-483))) 95 T ELT) (($ $ (-583 (-993)) (-583 (-347 (-483)))) 94 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-3936 (($ $) 168 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2890 (($ $) 83 T ELT)) (-3169 ((|#1| $) 84 T ELT)) (-1888 (($ (-583 $)) 175 (|has| |#1| (-311)) ELT) (($ $ $) 174 (|has| |#1| (-311)) ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 191 (|has| |#1| (-311)) ELT)) (-3806 (($ $) 195 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-1088)) 194 (OR (-12 (|has| |#1| (-29 (-483))) (|has| |#1| (-871)) (|has| |#1| (-1113)) (|has| |#1| (-38 (-347 (-483))))) (-12 (|has| |#1| (-15 -3077 ((-583 (-1088)) |#1|))) (|has| |#1| (-15 -3806 (|#1| |#1| (-1088)))) (|has| |#1| (-38 (-347 (-483)))))) ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 176 (|has| |#1| (-311)) ELT)) (-3139 (($ (-583 $)) 173 (|has| |#1| (-311)) ELT) (($ $ $) 172 (|has| |#1| (-311)) ELT)) (-3726 (((-345 $) $) 187 (|has| |#1| (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 185 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 184 (|has| |#1| (-311)) ELT)) (-3763 (($ $ (-347 (-483))) 119 T ELT)) (-3460 (((-3 $ "failed") $ $) 68 (|has| |#1| (-494)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 178 (|has| |#1| (-311)) ELT)) (-3937 (($ $) 169 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3762 (((-1067 |#1|) $ |#1|) 118 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-483))))) ELT)) (-1604 (((-694) $) 180 (|has| |#1| (-311)) ELT)) (-3794 ((|#1| $ (-347 (-483))) 129 T ELT) (($ $ $) 105 (|has| (-347 (-483)) (-1024)) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 181 (|has| |#1| (-311)) ELT)) (-3752 (($ $ (-1088)) 117 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088))) 115 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-1088) (-694)) 114 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 113 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $) 109 (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-694)) 107 (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT)) (-3942 (((-347 (-483)) $) 82 T ELT)) (-3489 (($ $) 158 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) 147 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) 148 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) 156 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) 149 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2887 (($ $) 91 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 65 (|has| |#1| (-146)) ELT) (($ (-347 (-483))) 75 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $) 67 (|has| |#1| (-494)) ELT)) (-3671 ((|#1| $ (-347 (-483))) 77 T ELT)) (-2698 (((-632 $) $) 66 (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 38 T CONST)) (-3767 ((|#1| $) 126 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3492 (($ $) 167 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) 155 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) 71 (|has| |#1| (-494)) ELT)) (-3490 (($ $) 166 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) 154 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) 165 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) 153 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3764 ((|#1| $ (-347 (-483))) 120 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-483))))) (|has| |#1| (-15 -3940 (|#1| (-1088))))) ELT)) (-3495 (($ $) 164 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) 152 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) 163 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) 151 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) 162 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) 150 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-1088)) 116 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088))) 112 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-1088) (-694)) 111 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 110 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-694)) 106 (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT) (($ $ $) 193 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 192 (|has| |#1| (-311)) ELT) (($ $ $) 170 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 141 (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-347 (-483)) $) 74 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 73 (|has| |#1| (-38 (-347 (-483)))) ELT)))
-(((-1160 |#1|) (-113) (-961)) (T -1160))
-((-3812 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-1067 (-2 (|:| |k| (-347 (-483))) (|:| |c| *4)))) (-4 *4 (-961)) (-4 *1 (-1160 *4)))) (-3771 (*1 *1 *1 *2) (-12 (-5 *2 (-347 (-483))) (-4 *1 (-1160 *3)) (-4 *3 (-961)))) (-3806 (*1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-347 (-483)))))) (-3806 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1088)) (-4 *1 (-1160 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-483))) (-4 *3 (-871)) (-4 *3 (-1113)) (-4 *3 (-38 (-347 (-483)))))) (-12 (-5 *2 (-1088)) (-4 *1 (-1160 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -3077 ((-583 *2) *3))) (|has| *3 (-15 -3806 (*3 *3 *2))) (-4 *3 (-38 (-347 (-483)))))))))
-(-13 (-1156 |t#1| (-347 (-483))) (-10 -8 (-15 -3812 ($ (-694) (-1067 (-2 (|:| |k| (-347 (-483))) (|:| |c| |t#1|))))) (-15 -3771 ($ $ (-347 (-483)))) (IF (|has| |t#1| (-38 (-347 (-483)))) (PROGN (-15 -3806 ($ $)) (IF (|has| |t#1| (-15 -3806 (|t#1| |t#1| (-1088)))) (IF (|has| |t#1| (-15 -3077 ((-583 (-1088)) |t#1|))) (-15 -3806 ($ $ (-1088))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1113)) (IF (|has| |t#1| (-871)) (IF (|has| |t#1| (-29 (-483))) (-15 -3806 ($ $ (-1088))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-915)) (-6 (-1113))) |%noBranch|) (IF (|has| |t#1| (-311)) (-6 (-311)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| (-347 (-483))) . T) ((-25) . T) ((-38 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-35) |has| |#1| (-38 (-347 (-483)))) ((-66) |has| |#1| (-38 (-347 (-483)))) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-494)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-555 (-483)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-494)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ((-201) |has| |#1| (-311)) ((-239) |has| |#1| (-38 (-347 (-483)))) ((-241 (-347 (-483)) |#1|) . T) ((-241 $ $) |has| (-347 (-483)) (-1024)) ((-245) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-257) |has| |#1| (-311)) ((-311) |has| |#1| (-311)) ((-389) |has| |#1| (-311)) ((-430) |has| |#1| (-38 (-347 (-483)))) ((-494) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-13) . T) ((-588 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-654 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-663) . T) ((-806 $ (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ((-809 (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ((-811 (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ((-886 |#1| (-347 (-483)) (-993)) . T) ((-832) |has| |#1| (-311)) ((-915) |has| |#1| (-38 (-347 (-483)))) ((-963 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-494)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-968 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-494)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1113) |has| |#1| (-38 (-347 (-483)))) ((-1116) |has| |#1| (-38 (-347 (-483)))) ((-1127) . T) ((-1132) |has| |#1| (-311)) ((-1156 |#1| (-347 (-483))) . T))
-((-3183 (((-85) $) 12 T ELT)) (-3152 (((-3 |#3| "failed") $) 17 T ELT)) (-3151 ((|#3| $) 14 T ELT)))
-(((-1161 |#1| |#2| |#3|) (-10 -7 (-15 -3152 ((-3 |#3| "failed") |#1|)) (-15 -3151 (|#3| |#1|)) (-15 -3183 ((-85) |#1|))) (-1162 |#2| |#3|) (-961) (-1139 |#2|)) (T -1161))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3077 (((-583 (-993)) $) 93 T ELT)) (-3825 (((-1088) $) 127 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 69 (|has| |#1| (-494)) ELT)) (-2059 (($ $) 70 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) 72 (|has| |#1| (-494)) ELT)) (-3765 (($ $ (-347 (-483))) 122 T ELT) (($ $ (-347 (-483)) (-347 (-483))) 121 T ELT)) (-3768 (((-1067 (-2 (|:| |k| (-347 (-483))) (|:| |c| |#1|))) $) 128 T ELT)) (-3486 (($ $) 161 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) 144 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3769 (($ $) 188 (|has| |#1| (-311)) ELT)) (-3965 (((-345 $) $) 189 (|has| |#1| (-311)) ELT)) (-3033 (($ $) 143 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1605 (((-85) $ $) 179 (|has| |#1| (-311)) ELT)) (-3484 (($ $) 160 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) 145 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3812 (($ (-694) (-1067 (-2 (|:| |k| (-347 (-483))) (|:| |c| |#1|)))) 197 T ELT)) (-3488 (($ $) 159 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) 146 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 |#2| "failed") $) 210 T ELT)) (-3151 ((|#2| $) 211 T ELT)) (-2560 (($ $ $) 183 (|has| |#1| (-311)) ELT)) (-3953 (($ $) 78 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3775 (((-347 (-483)) $) 207 T ELT)) (-2559 (($ $ $) 182 (|has| |#1| (-311)) ELT)) (-3776 (($ (-347 (-483)) |#2|) 208 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 177 (|has| |#1| (-311)) ELT)) (-3717 (((-85) $) 190 (|has| |#1| (-311)) ELT)) (-2888 (((-85) $) 92 T ELT)) (-3621 (($) 171 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3766 (((-347 (-483)) $) 124 T ELT) (((-347 (-483)) $ (-347 (-483))) 123 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3007 (($ $ (-483)) 142 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3771 (($ $ (-830)) 125 T ELT) (($ $ (-347 (-483))) 196 T ELT)) (-1602 (((-3 (-583 $) #1="failed") (-583 $) $) 186 (|has| |#1| (-311)) ELT)) (-3931 (((-85) $) 80 T ELT)) (-2889 (($ |#1| (-347 (-483))) 79 T ELT) (($ $ (-993) (-347 (-483))) 95 T ELT) (($ $ (-583 (-993)) (-583 (-347 (-483)))) 94 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-3936 (($ $) 168 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2890 (($ $) 83 T ELT)) (-3169 ((|#1| $) 84 T ELT)) (-1888 (($ (-583 $)) 175 (|has| |#1| (-311)) ELT) (($ $ $) 174 (|has| |#1| (-311)) ELT)) (-3774 ((|#2| $) 206 T ELT)) (-3772 (((-3 |#2| "failed") $) 204 T ELT)) (-3773 ((|#2| $) 205 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 191 (|has| |#1| (-311)) ELT)) (-3806 (($ $) 195 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-1088)) 194 (OR (-12 (|has| |#1| (-29 (-483))) (|has| |#1| (-871)) (|has| |#1| (-1113)) (|has| |#1| (-38 (-347 (-483))))) (-12 (|has| |#1| (-15 -3077 ((-583 (-1088)) |#1|))) (|has| |#1| (-15 -3806 (|#1| |#1| (-1088)))) (|has| |#1| (-38 (-347 (-483)))))) ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 176 (|has| |#1| (-311)) ELT)) (-3139 (($ (-583 $)) 173 (|has| |#1| (-311)) ELT) (($ $ $) 172 (|has| |#1| (-311)) ELT)) (-3726 (((-345 $) $) 187 (|has| |#1| (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 185 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 184 (|has| |#1| (-311)) ELT)) (-3763 (($ $ (-347 (-483))) 119 T ELT)) (-3460 (((-3 $ "failed") $ $) 68 (|has| |#1| (-494)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 178 (|has| |#1| (-311)) ELT)) (-3937 (($ $) 169 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3762 (((-1067 |#1|) $ |#1|) 118 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-483))))) ELT)) (-1604 (((-694) $) 180 (|has| |#1| (-311)) ELT)) (-3794 ((|#1| $ (-347 (-483))) 129 T ELT) (($ $ $) 105 (|has| (-347 (-483)) (-1024)) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 181 (|has| |#1| (-311)) ELT)) (-3752 (($ $ (-1088)) 117 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088))) 115 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-1088) (-694)) 114 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 113 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $) 109 (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-694)) 107 (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT)) (-3942 (((-347 (-483)) $) 82 T ELT)) (-3489 (($ $) 158 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) 147 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) 148 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) 156 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) 149 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2887 (($ $) 91 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 65 (|has| |#1| (-146)) ELT) (($ |#2|) 209 T ELT) (($ (-347 (-483))) 75 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $) 67 (|has| |#1| (-494)) ELT)) (-3671 ((|#1| $ (-347 (-483))) 77 T ELT)) (-2698 (((-632 $) $) 66 (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 38 T CONST)) (-3767 ((|#1| $) 126 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3492 (($ $) 167 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) 155 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) 71 (|has| |#1| (-494)) ELT)) (-3490 (($ $) 166 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) 154 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) 165 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) 153 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3764 ((|#1| $ (-347 (-483))) 120 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-483))))) (|has| |#1| (-15 -3940 (|#1| (-1088))))) ELT)) (-3495 (($ $) 164 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) 152 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) 163 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) 151 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) 162 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) 150 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-1088)) 116 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088))) 112 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-1088) (-694)) 111 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 110 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-694)) 106 (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT) (($ $ $) 193 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 192 (|has| |#1| (-311)) ELT) (($ $ $) 170 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 141 (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-347 (-483)) $) 74 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 73 (|has| |#1| (-38 (-347 (-483)))) ELT)))
-(((-1162 |#1| |#2|) (-113) (-961) (-1139 |t#1|)) (T -1162))
-((-3942 (*1 *2 *1) (-12 (-4 *1 (-1162 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1139 *3)) (-5 *2 (-347 (-483))))) (-3776 (*1 *1 *2 *3) (-12 (-5 *2 (-347 (-483))) (-4 *4 (-961)) (-4 *1 (-1162 *4 *3)) (-4 *3 (-1139 *4)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-1162 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1139 *3)) (-5 *2 (-347 (-483))))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1139 *3)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1139 *3)))) (-3772 (*1 *2 *1) (|partial| -12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1139 *3)))))
-(-13 (-1160 |t#1|) (-950 |t#2|) (-555 |t#2|) (-10 -8 (-15 -3776 ($ (-347 (-483)) |t#2|)) (-15 -3775 ((-347 (-483)) $)) (-15 -3774 (|t#2| $)) (-15 -3942 ((-347 (-483)) $)) (-15 -3773 (|t#2| $)) (-15 -3772 ((-3 |t#2| "failed") $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| (-347 (-483))) . T) ((-25) . T) ((-38 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-35) |has| |#1| (-38 (-347 (-483)))) ((-66) |has| |#1| (-38 (-347 (-483)))) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-494)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-555 (-483)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 |#2|) . T) ((-555 $) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-494)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ((-201) |has| |#1| (-311)) ((-239) |has| |#1| (-38 (-347 (-483)))) ((-241 (-347 (-483)) |#1|) . T) ((-241 $ $) |has| (-347 (-483)) (-1024)) ((-245) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-257) |has| |#1| (-311)) ((-311) |has| |#1| (-311)) ((-389) |has| |#1| (-311)) ((-430) |has| |#1| (-38 (-347 (-483)))) ((-494) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-13) . T) ((-588 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-654 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-494)) (|has| |#1| (-311))) ((-663) . T) ((-806 $ (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ((-809 (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ((-811 (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ((-886 |#1| (-347 (-483)) (-993)) . T) ((-832) |has| |#1| (-311)) ((-915) |has| |#1| (-38 (-347 (-483)))) ((-950 |#2|) . T) ((-963 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-494)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-968 (-347 (-483))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-483))))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-494)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1113) |has| |#1| (-38 (-347 (-483)))) ((-1116) |has| |#1| (-38 (-347 (-483)))) ((-1127) . T) ((-1132) |has| |#1| (-311)) ((-1156 |#1| (-347 (-483))) . T) ((-1160 |#1|) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3077 (((-583 (-993)) $) NIL T ELT)) (-3825 (((-1088) $) 104 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3765 (($ $ (-347 (-483))) 116 T ELT) (($ $ (-347 (-483)) (-347 (-483))) 118 T ELT)) (-3768 (((-1067 (-2 (|:| |k| (-347 (-483))) (|:| |c| |#1|))) $) 54 T ELT)) (-3486 (($ $) 192 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) 168 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3769 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3965 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-3033 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1605 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3484 (($ $) 188 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) 164 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3812 (($ (-694) (-1067 (-2 (|:| |k| (-347 (-483))) (|:| |c| |#1|)))) 65 T ELT)) (-3488 (($ $) 196 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) 172 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#2| #1#) $) NIL T ELT)) (-3151 ((|#2| $) NIL T ELT)) (-2560 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3953 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) 85 T ELT)) (-3775 (((-347 (-483)) $) 13 T ELT)) (-2559 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3776 (($ (-347 (-483)) |#2|) 11 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) NIL (|has| |#1| (-311)) ELT)) (-3717 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-2888 (((-85) $) 74 T ELT)) (-3621 (($) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3766 (((-347 (-483)) $) 113 T ELT) (((-347 (-483)) $ (-347 (-483))) 114 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3007 (($ $ (-483)) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3771 (($ $ (-830)) 130 T ELT) (($ $ (-347 (-483))) 128 T ELT)) (-1602 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-347 (-483))) 33 T ELT) (($ $ (-993) (-347 (-483))) NIL T ELT) (($ $ (-583 (-993)) (-583 (-347 (-483)))) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-3936 (($ $) 162 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-1888 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3774 ((|#2| $) 12 T ELT)) (-3772 (((-3 |#2| #1#) $) 44 T ELT)) (-3773 ((|#2| $) 45 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-2480 (($ $) 101 (|has| |#1| (-311)) ELT)) (-3806 (($ $) 146 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-1088)) 151 (OR (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-29 (-483))) (|has| |#1| (-871)) (|has| |#1| (-1113))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-15 -3806 (|#1| |#1| (-1088)))) (|has| |#1| (-15 -3077 ((-583 (-1088)) |#1|))))) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) NIL (|has| |#1| (-311)) ELT)) (-3139 (($ (-583 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3726 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1603 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3763 (($ $ (-347 (-483))) 122 T ELT)) (-3460 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-311)) ELT)) (-3937 (($ $) 160 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3762 (((-1067 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-483))))) ELT)) (-1604 (((-694) $) NIL (|has| |#1| (-311)) ELT)) (-3794 ((|#1| $ (-347 (-483))) 108 T ELT) (($ $ $) 94 (|has| (-347 (-483)) (-1024)) ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3752 (($ $ (-1088)) 138 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $) 134 (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT)) (-3942 (((-347 (-483)) $) 16 T ELT)) (-3489 (($ $) 198 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) 174 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) 194 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) 170 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) 190 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) 166 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2887 (($ $) 120 T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-146)) ELT) (($ |#2|) 34 T ELT) (($ (-347 (-483))) 139 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT)) (-3671 ((|#1| $ (-347 (-483))) 107 T ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 127 T CONST)) (-3767 ((|#1| $) 106 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3492 (($ $) 204 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) 180 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3490 (($ $) 200 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) 176 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) 208 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) 184 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3764 ((|#1| $ (-347 (-483))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-483))))) (|has| |#1| (-15 -3940 (|#1| (-1088))))) ELT)) (-3495 (($ $) 210 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) 186 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) 206 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) 182 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) 202 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) 178 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2656 (($) 21 T CONST)) (-2662 (($) 17 T CONST)) (-2665 (($ $ (-1088)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-347 (-483)) |#1|))) ELT)) (-3052 (((-85) $ $) 72 T ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) 100 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-3833 (($ $ $) 76 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 82 T ELT) (($ $ (-483)) 157 (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 158 (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)))
-(((-1163 |#1| |#2|) (-1162 |#1| |#2|) (-961) (-1139 |#1|)) (T -1163))
-NIL
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 37 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL T ELT)) (-2059 (($ $) NIL T ELT)) (-2057 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 (-483) #1#) $) NIL (|has| (-1158 |#2| |#3| |#4|) (-950 (-483))) ELT) (((-3 (-347 (-483)) #1#) $) NIL (|has| (-1158 |#2| |#3| |#4|) (-950 (-347 (-483)))) ELT) (((-3 (-1158 |#2| |#3| |#4|) #1#) $) 22 T ELT)) (-3151 (((-483) $) NIL (|has| (-1158 |#2| |#3| |#4|) (-950 (-483))) ELT) (((-347 (-483)) $) NIL (|has| (-1158 |#2| |#3| |#4|) (-950 (-347 (-483)))) ELT) (((-1158 |#2| |#3| |#4|) $) NIL T ELT)) (-3953 (($ $) 41 T ELT)) (-3461 (((-3 $ #1#) $) 27 T ELT)) (-3497 (($ $) NIL (|has| (-1158 |#2| |#3| |#4|) (-389)) ELT)) (-1621 (($ $ (-1158 |#2| |#3| |#4|) (-269 |#2| |#3| |#4|) $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2416 (((-694) $) 11 T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ (-1158 |#2| |#3| |#4|) (-269 |#2| |#3| |#4|)) 25 T ELT)) (-2816 (((-269 |#2| |#3| |#4|) $) NIL T ELT)) (-1622 (($ (-1 (-269 |#2| |#3| |#4|) (-269 |#2| |#3| |#4|)) $) NIL T ELT)) (-3952 (($ (-1 (-1158 |#2| |#3| |#4|) (-1158 |#2| |#3| |#4|)) $) NIL T ELT)) (-3778 (((-3 (-750 |#2|) #1#) $) 91 T ELT)) (-2890 (($ $) NIL T ELT)) (-3169 (((-1158 |#2| |#3| |#4|) $) 20 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-1794 (((-85) $) NIL T ELT)) (-1793 (((-1158 |#2| |#3| |#4|) $) NIL T ELT)) (-3460 (((-3 $ #1#) $ (-1158 |#2| |#3| |#4|)) NIL (|has| (-1158 |#2| |#3| |#4|) (-494)) ELT) (((-3 $ #1#) $ $) NIL T ELT)) (-3777 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1158 |#2| |#3| |#4|)) (|:| |%expon| (-269 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-347 (-483))) (|:| |c| |#2|)))))) (|:| |%type| (-1071))) #1#) $) 74 T ELT)) (-3942 (((-269 |#2| |#3| |#4|) $) 17 T ELT)) (-2813 (((-1158 |#2| |#3| |#4|) $) NIL (|has| (-1158 |#2| |#3| |#4|) (-389)) ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ (-1158 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-483))) NIL (OR (|has| (-1158 |#2| |#3| |#4|) (-950 (-347 (-483)))) (|has| (-1158 |#2| |#3| |#4|) (-38 (-347 (-483))))) ELT)) (-3811 (((-583 (-1158 |#2| |#3| |#4|)) $) NIL T ELT)) (-3671 (((-1158 |#2| |#3| |#4|) $ (-269 |#2| |#3| |#4|)) NIL T ELT)) (-2698 (((-632 $) $) NIL (|has| (-1158 |#2| |#3| |#4|) (-118)) ELT)) (-3121 (((-694)) NIL T CONST)) (-1620 (($ $ $ (-694)) NIL (|has| (-1158 |#2| |#3| |#4|) (-146)) ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2058 (((-85) $ $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-2662 (($) NIL T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ (-1158 |#2| |#3| |#4|)) NIL (|has| (-1158 |#2| |#3| |#4|) (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1158 |#2| |#3| |#4|)) NIL T ELT) (($ (-1158 |#2| |#3| |#4|) $) NIL T ELT) (($ (-347 (-483)) $) NIL (|has| (-1158 |#2| |#3| |#4|) (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| (-1158 |#2| |#3| |#4|) (-38 (-347 (-483)))) ELT)))
-(((-1164 |#1| |#2| |#3| |#4|) (-13 (-276 (-1158 |#2| |#3| |#4|) (-269 |#2| |#3| |#4|)) (-494) (-10 -8 (-15 -3778 ((-3 (-750 |#2|) #1="failed") $)) (-15 -3777 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1158 |#2| |#3| |#4|)) (|:| |%expon| (-269 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-347 (-483))) (|:| |c| |#2|)))))) (|:| |%type| (-1071))) #1#) $)))) (-13 (-950 (-483)) (-580 (-483)) (-389)) (-13 (-27) (-1113) (-361 |#1|)) (-1088) |#2|) (T -1164))
-((-3778 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-950 (-483)) (-580 (-483)) (-389))) (-5 *2 (-750 *4)) (-5 *1 (-1164 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1113) (-361 *3))) (-14 *5 (-1088)) (-14 *6 *4))) (-3777 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-950 (-483)) (-580 (-483)) (-389))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1158 *4 *5 *6)) (|:| |%expon| (-269 *4 *5 *6)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-347 (-483))) (|:| |c| *4)))))) (|:| |%type| (-1071)))) (-5 *1 (-1164 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1113) (-361 *3))) (-14 *5 (-1088)) (-14 *6 *4))))
-((-3396 ((|#2| $) 34 T ELT)) (-3789 ((|#2| $) 18 T ELT)) (-3791 (($ $) 44 T ELT)) (-3779 (($ $ (-483)) 79 T ELT)) (-3021 ((|#2| $ |#2|) 76 T ELT)) (-3780 ((|#2| $ |#2|) 72 T ELT)) (-3782 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) 65 T ELT) (($ $ #3="rest" $) 69 T ELT) ((|#2| $ #4="last" |#2|) 67 T ELT)) (-3022 (($ $ (-583 $)) 75 T ELT)) (-3790 ((|#2| $) 17 T ELT)) (-3793 (($ $) NIL T ELT) (($ $ (-694)) 52 T ELT)) (-3027 (((-583 $) $) 31 T ELT)) (-3023 (((-85) $ $) 63 T ELT)) (-3521 (((-85) $) 33 T ELT)) (-3792 ((|#2| $) 25 T ELT) (($ $ (-694)) 58 T ELT)) (-3794 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) 10 T ELT) (($ $ #3#) 16 T ELT) ((|#2| $ #4#) 13 T ELT)) (-3627 (((-85) $) 23 T ELT)) (-3786 (($ $) 47 T ELT)) (-3784 (($ $) 80 T ELT)) (-3787 (((-694) $) 51 T ELT)) (-3788 (($ $) 50 T ELT)) (-3796 (($ $ $) 71 T ELT) (($ |#2| $) NIL T ELT)) (-3516 (((-583 $) $) 32 T ELT)) (-3052 (((-85) $ $) 61 T ELT)) (-3951 (((-694) $) 43 T ELT)))
-(((-1165 |#1| |#2|) (-10 -7 (-15 -3052 ((-85) |#1| |#1|)) (-15 -3779 (|#1| |#1| (-483))) (-15 -3782 (|#2| |#1| #1="last" |#2|)) (-15 -3780 (|#2| |#1| |#2|)) (-15 -3782 (|#1| |#1| #2="rest" |#1|)) (-15 -3782 (|#2| |#1| #3="first" |#2|)) (-15 -3784 (|#1| |#1|)) (-15 -3786 (|#1| |#1|)) (-15 -3787 ((-694) |#1|)) (-15 -3788 (|#1| |#1|)) (-15 -3789 (|#2| |#1|)) (-15 -3790 (|#2| |#1|)) (-15 -3791 (|#1| |#1|)) (-15 -3792 (|#1| |#1| (-694))) (-15 -3794 (|#2| |#1| #1#)) (-15 -3792 (|#2| |#1|)) (-15 -3793 (|#1| |#1| (-694))) (-15 -3794 (|#1| |#1| #2#)) (-15 -3793 (|#1| |#1|)) (-15 -3794 (|#2| |#1| #3#)) (-15 -3796 (|#1| |#2| |#1|)) (-15 -3796 (|#1| |#1| |#1|)) (-15 -3021 (|#2| |#1| |#2|)) (-15 -3782 (|#2| |#1| #4="value" |#2|)) (-15 -3022 (|#1| |#1| (-583 |#1|))) (-15 -3023 ((-85) |#1| |#1|)) (-15 -3627 ((-85) |#1|)) (-15 -3794 (|#2| |#1| #4#)) (-15 -3396 (|#2| |#1|)) (-15 -3521 ((-85) |#1|)) (-15 -3027 ((-583 |#1|) |#1|)) (-15 -3516 ((-583 |#1|) |#1|)) (-15 -3951 ((-694) |#1|))) (-1166 |#2|) (-1127)) (T -1165))
-NIL
-((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3396 ((|#1| $) 52 T ELT)) (-3789 ((|#1| $) 71 T ELT)) (-3791 (($ $) 73 T ELT)) (-3779 (($ $ (-483)) 58 (|has| $ (-6 -3990)) ELT)) (-3021 ((|#1| $ |#1|) 43 (|has| $ (-6 -3990)) ELT)) (-3781 (($ $ $) 62 (|has| $ (-6 -3990)) ELT)) (-3780 ((|#1| $ |#1|) 60 (|has| $ (-6 -3990)) ELT)) (-3783 ((|#1| $ |#1|) 64 (|has| $ (-6 -3990)) ELT)) (-3782 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3990)) ELT) ((|#1| $ "first" |#1|) 63 (|has| $ (-6 -3990)) ELT) (($ $ "rest" $) 61 (|has| $ (-6 -3990)) ELT) ((|#1| $ "last" |#1|) 59 (|has| $ (-6 -3990)) ELT)) (-3022 (($ $ (-583 $)) 45 (|has| $ (-6 -3990)) ELT)) (-3790 ((|#1| $) 72 T ELT)) (-3718 (($) 7 T CONST)) (-3793 (($ $) 79 T ELT) (($ $ (-694)) 77 T ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-3027 (((-583 $) $) 54 T ELT)) (-3023 (((-85) $ $) 46 (|has| |#1| (-1012)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3026 (((-583 |#1|) $) 49 T ELT)) (-3521 (((-85) $) 53 T ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-3792 ((|#1| $) 76 T ELT) (($ $ (-694)) 74 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-3795 ((|#1| $) 82 T ELT) (($ $ (-694)) 80 T ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#1| $ #1#) 51 T ELT) ((|#1| $ "first") 81 T ELT) (($ $ "rest") 78 T ELT) ((|#1| $ "last") 75 T ELT)) (-3025 (((-483) $ $) 48 T ELT)) (-3627 (((-85) $) 50 T ELT)) (-3786 (($ $) 68 T ELT)) (-3784 (($ $) 65 (|has| $ (-6 -3990)) ELT)) (-3787 (((-694) $) 69 T ELT)) (-3788 (($ $) 70 T ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3394 (($ $) 10 T ELT)) (-3785 (($ $ $) 67 (|has| $ (-6 -3990)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3990)) ELT)) (-3796 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-3516 (((-583 $) $) 55 T ELT)) (-3024 (((-85) $ $) 47 (|has| |#1| (-1012)) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-1166 |#1|) (-113) (-1127)) (T -1166))
-((-3796 (*1 *1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3796 (*1 *1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3795 (*1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3794 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3795 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1166 *3)) (-4 *3 (-1127)))) (-3793 (*1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3794 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1166 *3)) (-4 *3 (-1127)))) (-3793 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1166 *3)) (-4 *3 (-1127)))) (-3792 (*1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3794 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3792 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1166 *3)) (-4 *3 (-1127)))) (-3791 (*1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3790 (*1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3789 (*1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3788 (*1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3787 (*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1127)) (-5 *2 (-694)))) (-3786 (*1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3785 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3785 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3784 (*1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3783 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3782 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -3990)) (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3781 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3782 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -3990)) (-4 *1 (-1166 *3)) (-4 *3 (-1127)))) (-3780 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3782 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -3990)) (-4 *1 (-1166 *2)) (-4 *2 (-1127)))) (-3779 (*1 *1 *1 *2) (-12 (-5 *2 (-483)) (|has| *1 (-6 -3990)) (-4 *1 (-1166 *3)) (-4 *3 (-1127)))))
-(-13 (-923 |t#1|) (-10 -8 (-15 -3796 ($ $ $)) (-15 -3796 ($ |t#1| $)) (-15 -3795 (|t#1| $)) (-15 -3794 (|t#1| $ "first")) (-15 -3795 ($ $ (-694))) (-15 -3793 ($ $)) (-15 -3794 ($ $ "rest")) (-15 -3793 ($ $ (-694))) (-15 -3792 (|t#1| $)) (-15 -3794 (|t#1| $ "last")) (-15 -3792 ($ $ (-694))) (-15 -3791 ($ $)) (-15 -3790 (|t#1| $)) (-15 -3789 (|t#1| $)) (-15 -3788 ($ $)) (-15 -3787 ((-694) $)) (-15 -3786 ($ $)) (IF (|has| $ (-6 -3990)) (PROGN (-15 -3785 ($ $ $)) (-15 -3785 ($ $ |t#1|)) (-15 -3784 ($ $)) (-15 -3783 (|t#1| $ |t#1|)) (-15 -3782 (|t#1| $ "first" |t#1|)) (-15 -3781 ($ $ $)) (-15 -3782 ($ $ "rest" $)) (-15 -3780 (|t#1| $ |t#1|)) (-15 -3782 (|t#1| $ "last" |t#1|)) (-15 -3779 ($ $ (-483)))) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-552 (-772)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-426 |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-923 |#1|) . T) ((-1012) |has| |#1| (-1012)) ((-1127) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3077 (((-583 (-993)) $) NIL T ELT)) (-3825 (((-1088) $) 87 T ELT)) (-3805 (((-1146 |#2| |#1|) $ (-694)) 70 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) NIL (|has| |#1| (-494)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) 139 (|has| |#1| (-494)) ELT)) (-3765 (($ $ (-694)) 125 T ELT) (($ $ (-694) (-694)) 127 T ELT)) (-3768 (((-1067 (-2 (|:| |k| (-694)) (|:| |c| |#1|))) $) 42 T ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3033 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3812 (($ (-1067 (-2 (|:| |k| (-694)) (|:| |c| |#1|)))) 49 T ELT) (($ (-1067 |#1|)) NIL T ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) NIL T CONST)) (-3799 (($ $) 131 T ELT)) (-3953 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3810 (($ $) 137 T ELT)) (-3808 (((-857 |#1|) $ (-694)) 60 T ELT) (((-857 |#1|) $ (-694) (-694)) 62 T ELT)) (-2888 (((-85) $) NIL T ELT)) (-3621 (($) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3766 (((-694) $) NIL T ELT) (((-694) $ (-694)) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3802 (($ $) 115 T ELT)) (-3007 (($ $ (-483)) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3798 (($ (-483) (-483) $) 133 T ELT)) (-3771 (($ $ (-830)) 136 T ELT)) (-3809 (($ (-1 |#1| (-483)) $) 109 T ELT)) (-3931 (((-85) $) NIL T ELT)) (-2889 (($ |#1| (-694)) 16 T ELT) (($ $ (-993) (-694)) NIL T ELT) (($ $ (-583 (-993)) (-583 (-694))) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 96 T ELT)) (-3936 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2890 (($ $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3803 (($ $) 113 T ELT)) (-3804 (($ $) 111 T ELT)) (-3797 (($ (-483) (-483) $) 135 T ELT)) (-3806 (($ $) 147 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-1088)) 153 (OR (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-29 (-483))) (|has| |#1| (-871)) (|has| |#1| (-1113))) (-12 (|has| |#1| (-38 (-347 (-483)))) (|has| |#1| (-15 -3806 (|#1| |#1| (-1088)))) (|has| |#1| (-15 -3077 ((-583 (-1088)) |#1|))))) ELT) (($ $ (-1174 |#2|)) 148 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3800 (($ $ (-483) (-483)) 119 T ELT)) (-3763 (($ $ (-694)) 121 T ELT)) (-3460 (((-3 $ #1#) $ $) NIL (|has| |#1| (-494)) ELT)) (-3937 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3801 (($ $) 117 T ELT)) (-3762 (((-1067 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-694)))) ELT)) (-3794 ((|#1| $ (-694)) 93 T ELT) (($ $ $) 129 (|has| (-694) (-1024)) ELT)) (-3752 (($ $ (-1088)) 106 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-1174 |#2|)) 101 T ELT)) (-3942 (((-694) $) NIL T ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2887 (($ $) 123 T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) 26 T ELT) (($ (-347 (-483))) 145 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $) NIL (|has| |#1| (-494)) ELT) (($ |#1|) 25 (|has| |#1| (-146)) ELT) (($ (-1146 |#2| |#1|)) 78 T ELT) (($ (-1174 |#2|)) 22 T ELT)) (-3811 (((-1067 |#1|) $) NIL T ELT)) (-3671 ((|#1| $ (-694)) 92 T ELT)) (-2698 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3121 (((-694)) NIL T CONST)) (-3767 ((|#1| $) 88 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3764 ((|#1| $ (-694)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-694)))) (|has| |#1| (-15 -3940 (|#1| (-1088))))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2656 (($) 18 T CONST)) (-2662 (($) 13 T CONST)) (-2665 (($ $ (-1088)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1088))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1088) (-694)) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-1174 |#2|)) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3943 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) 105 T ELT)) (-3833 (($ $ $) 20 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ |#1|) 142 (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 104 T ELT) (($ (-347 (-483)) $) NIL (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) NIL (|has| |#1| (-38 (-347 (-483)))) ELT)))
-(((-1167 |#1| |#2| |#3|) (-13 (-1170 |#1|) (-806 $ (-1174 |#2|)) (-10 -8 (-15 -3940 ($ (-1146 |#2| |#1|))) (-15 -3805 ((-1146 |#2| |#1|) $ (-694))) (-15 -3940 ($ (-1174 |#2|))) (-15 -3804 ($ $)) (-15 -3803 ($ $)) (-15 -3802 ($ $)) (-15 -3801 ($ $)) (-15 -3800 ($ $ (-483) (-483))) (-15 -3799 ($ $)) (-15 -3798 ($ (-483) (-483) $)) (-15 -3797 ($ (-483) (-483) $)) (IF (|has| |#1| (-38 (-347 (-483)))) (-15 -3806 ($ $ (-1174 |#2|))) |%noBranch|))) (-961) (-1088) |#1|) (T -1167))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-1146 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1088)) (-14 *5 *3) (-5 *1 (-1167 *3 *4 *5)))) (-3805 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1146 *5 *4)) (-5 *1 (-1167 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-1088)) (-14 *6 *4))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3804 (*1 *1 *1) (-12 (-5 *1 (-1167 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1088)) (-14 *4 *2))) (-3803 (*1 *1 *1) (-12 (-5 *1 (-1167 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1088)) (-14 *4 *2))) (-3802 (*1 *1 *1) (-12 (-5 *1 (-1167 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1088)) (-14 *4 *2))) (-3801 (*1 *1 *1) (-12 (-5 *1 (-1167 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1088)) (-14 *4 *2))) (-3800 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1088)) (-14 *5 *3))) (-3799 (*1 *1 *1) (-12 (-5 *1 (-1167 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1088)) (-14 *4 *2))) (-3798 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1088)) (-14 *5 *3))) (-3797 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1088)) (-14 *5 *3))) (-3806 (*1 *1 *1 *2) (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) (-14 *5 *3))))
-((-3952 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT)))
-(((-1168 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3952 (|#4| (-1 |#2| |#1|) |#3|))) (-961) (-961) (-1170 |#1|) (-1170 |#2|)) (T -1168))
-((-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1170 *6)) (-5 *1 (-1168 *5 *6 *4 *2)) (-4 *4 (-1170 *5)))))
-((-3183 (((-85) $) 17 T ELT)) (-3486 (($ $) 105 T ELT)) (-3633 (($ $) 81 T ELT)) (-3484 (($ $) 101 T ELT)) (-3632 (($ $) 77 T ELT)) (-3488 (($ $) 109 T ELT)) (-3631 (($ $) 85 T ELT)) (-3936 (($ $) 75 T ELT)) (-3937 (($ $) 73 T ELT)) (-3489 (($ $) 111 T ELT)) (-3630 (($ $) 87 T ELT)) (-3487 (($ $) 107 T ELT)) (-3629 (($ $) 83 T ELT)) (-3485 (($ $) 103 T ELT)) (-3628 (($ $) 79 T ELT)) (-3940 (((-772) $) 61 T ELT) (($ (-483)) NIL T ELT) (($ (-347 (-483))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-3492 (($ $) 117 T ELT)) (-3480 (($ $) 93 T ELT)) (-3490 (($ $) 113 T ELT)) (-3478 (($ $) 89 T ELT)) (-3494 (($ $) 121 T ELT)) (-3482 (($ $) 97 T ELT)) (-3495 (($ $) 123 T ELT)) (-3483 (($ $) 99 T ELT)) (-3493 (($ $) 119 T ELT)) (-3481 (($ $) 95 T ELT)) (-3491 (($ $) 115 T ELT)) (-3479 (($ $) 91 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-347 (-483))) 71 T ELT)))
-(((-1169 |#1| |#2|) (-10 -7 (-15 ** (|#1| |#1| (-347 (-483)))) (-15 -3633 (|#1| |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -3631 (|#1| |#1|)) (-15 -3630 (|#1| |#1|)) (-15 -3629 (|#1| |#1|)) (-15 -3628 (|#1| |#1|)) (-15 -3479 (|#1| |#1|)) (-15 -3481 (|#1| |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -3482 (|#1| |#1|)) (-15 -3478 (|#1| |#1|)) (-15 -3480 (|#1| |#1|)) (-15 -3485 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3484 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3936 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3940 (|#1| |#2|)) (-15 -3940 (|#1| |#1|)) (-15 -3940 (|#1| (-347 (-483)))) (-15 -3940 (|#1| (-483))) (-15 ** (|#1| |#1| (-694))) (-15 ** (|#1| |#1| (-830))) (-15 -3183 ((-85) |#1|)) (-15 -3940 ((-772) |#1|))) (-1170 |#2|) (-961)) (T -1169))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3077 (((-583 (-993)) $) 93 T ELT)) (-3825 (((-1088) $) 127 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 69 (|has| |#1| (-494)) ELT)) (-2059 (($ $) 70 (|has| |#1| (-494)) ELT)) (-2057 (((-85) $) 72 (|has| |#1| (-494)) ELT)) (-3765 (($ $ (-694)) 122 T ELT) (($ $ (-694) (-694)) 121 T ELT)) (-3768 (((-1067 (-2 (|:| |k| (-694)) (|:| |c| |#1|))) $) 128 T ELT)) (-3486 (($ $) 161 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3633 (($ $) 144 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3033 (($ $) 143 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3484 (($ $) 160 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3632 (($ $) 145 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3812 (($ (-1067 (-2 (|:| |k| (-694)) (|:| |c| |#1|)))) 181 T ELT) (($ (-1067 |#1|)) 179 T ELT)) (-3488 (($ $) 159 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3631 (($ $) 146 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3718 (($) 22 T CONST)) (-3953 (($ $) 78 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3810 (($ $) 178 T ELT)) (-3808 (((-857 |#1|) $ (-694)) 176 T ELT) (((-857 |#1|) $ (-694) (-694)) 175 T ELT)) (-2888 (((-85) $) 92 T ELT)) (-3621 (($) 171 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3766 (((-694) $) 124 T ELT) (((-694) $ (-694)) 123 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3007 (($ $ (-483)) 142 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3771 (($ $ (-830)) 125 T ELT)) (-3809 (($ (-1 |#1| (-483)) $) 177 T ELT)) (-3931 (((-85) $) 80 T ELT)) (-2889 (($ |#1| (-694)) 79 T ELT) (($ $ (-993) (-694)) 95 T ELT) (($ $ (-583 (-993)) (-583 (-694))) 94 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-3936 (($ $) 168 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2890 (($ $) 83 T ELT)) (-3169 ((|#1| $) 84 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3806 (($ $) 173 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-1088)) 172 (OR (-12 (|has| |#1| (-29 (-483))) (|has| |#1| (-871)) (|has| |#1| (-1113)) (|has| |#1| (-38 (-347 (-483))))) (-12 (|has| |#1| (-15 -3077 ((-583 (-1088)) |#1|))) (|has| |#1| (-15 -3806 (|#1| |#1| (-1088)))) (|has| |#1| (-38 (-347 (-483)))))) ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3763 (($ $ (-694)) 119 T ELT)) (-3460 (((-3 $ "failed") $ $) 68 (|has| |#1| (-494)) ELT)) (-3937 (($ $) 169 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3762 (((-1067 |#1|) $ |#1|) 118 (|has| |#1| (-15 ** (|#1| |#1| (-694)))) ELT)) (-3794 ((|#1| $ (-694)) 129 T ELT) (($ $ $) 105 (|has| (-694) (-1024)) ELT)) (-3752 (($ $ (-1088)) 117 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1088))) 115 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1088) (-694)) 114 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 113 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) 109 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) 107 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT)) (-3942 (((-694) $) 82 T ELT)) (-3489 (($ $) 158 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3630 (($ $) 147 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3629 (($ $) 148 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3485 (($ $) 156 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3628 (($ $) 149 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2887 (($ $) 91 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ (-347 (-483))) 75 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $) 67 (|has| |#1| (-494)) ELT) (($ |#1|) 65 (|has| |#1| (-146)) ELT)) (-3811 (((-1067 |#1|) $) 180 T ELT)) (-3671 ((|#1| $ (-694)) 77 T ELT)) (-2698 (((-632 $) $) 66 (|has| |#1| (-118)) ELT)) (-3121 (((-694)) 38 T CONST)) (-3767 ((|#1| $) 126 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-3492 (($ $) 167 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3480 (($ $) 155 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2058 (((-85) $ $) 71 (|has| |#1| (-494)) ELT)) (-3490 (($ $) 166 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3478 (($ $) 154 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3494 (($ $) 165 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3482 (($ $) 153 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3764 ((|#1| $ (-694)) 120 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-694)))) (|has| |#1| (-15 -3940 (|#1| (-1088))))) ELT)) (-3495 (($ $) 164 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3483 (($ $) 152 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3493 (($ $) 163 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3481 (($ $) 151 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3491 (($ $) 162 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-3479 (($ $) 150 (|has| |#1| (-38 (-347 (-483)))) ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-2665 (($ $ (-1088)) 116 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1088))) 112 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1088) (-694)) 111 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1088)) (-583 (-694))) 110 (-12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) 106 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ |#1|) 174 (|has| |#1| (-311)) ELT) (($ $ $) 170 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 141 (|has| |#1| (-38 (-347 (-483)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-347 (-483)) $) 74 (|has| |#1| (-38 (-347 (-483)))) ELT) (($ $ (-347 (-483))) 73 (|has| |#1| (-38 (-347 (-483)))) ELT)))
-(((-1170 |#1|) (-113) (-961)) (T -1170))
-((-3812 (*1 *1 *2) (-12 (-5 *2 (-1067 (-2 (|:| |k| (-694)) (|:| |c| *3)))) (-4 *3 (-961)) (-4 *1 (-1170 *3)))) (-3811 (*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-961)) (-5 *2 (-1067 *3)))) (-3812 (*1 *1 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-4 *1 (-1170 *3)))) (-3810 (*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-961)))) (-3809 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-483))) (-4 *1 (-1170 *3)) (-4 *3 (-961)))) (-3808 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1170 *4)) (-4 *4 (-961)) (-5 *2 (-857 *4)))) (-3808 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1170 *4)) (-4 *4 (-961)) (-5 *2 (-857 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-961)) (-4 *2 (-311)))) (-3806 (*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-347 (-483)))))) (-3806 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1088)) (-4 *1 (-1170 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-483))) (-4 *3 (-871)) (-4 *3 (-1113)) (-4 *3 (-38 (-347 (-483)))))) (-12 (-5 *2 (-1088)) (-4 *1 (-1170 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -3077 ((-583 *2) *3))) (|has| *3 (-15 -3806 (*3 *3 *2))) (-4 *3 (-38 (-347 (-483)))))))))
-(-13 (-1156 |t#1| (-694)) (-10 -8 (-15 -3812 ($ (-1067 (-2 (|:| |k| (-694)) (|:| |c| |t#1|))))) (-15 -3811 ((-1067 |t#1|) $)) (-15 -3812 ($ (-1067 |t#1|))) (-15 -3810 ($ $)) (-15 -3809 ($ (-1 |t#1| (-483)) $)) (-15 -3808 ((-857 |t#1|) $ (-694))) (-15 -3808 ((-857 |t#1|) $ (-694) (-694))) (IF (|has| |t#1| (-311)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-347 (-483)))) (PROGN (-15 -3806 ($ $)) (IF (|has| |t#1| (-15 -3806 (|t#1| |t#1| (-1088)))) (IF (|has| |t#1| (-15 -3077 ((-583 (-1088)) |t#1|))) (-15 -3806 ($ $ (-1088))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1113)) (IF (|has| |t#1| (-871)) (IF (|has| |t#1| (-29 (-483))) (-15 -3806 ($ $ (-1088))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-915)) (-6 (-1113))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| (-694)) . T) ((-25) . T) ((-38 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-494)) ((-35) |has| |#1| (-38 (-347 (-483)))) ((-66) |has| |#1| (-38 (-347 (-483)))) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-555 (-483)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) |has| |#1| (-494)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-694) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-694) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-694) |#1|))) ((-239) |has| |#1| (-38 (-347 (-483)))) ((-241 (-694) |#1|) . T) ((-241 $ $) |has| (-694) (-1024)) ((-245) |has| |#1| (-494)) ((-430) |has| |#1| (-38 (-347 (-483)))) ((-494) |has| |#1| (-494)) ((-13) . T) ((-588 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-494)) ((-654 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-494)) ((-663) . T) ((-806 $ (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ((-809 (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ((-811 (-1088)) -12 (|has| |#1| (-809 (-1088))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ((-886 |#1| (-694) (-993)) . T) ((-915) |has| |#1| (-38 (-347 (-483)))) ((-963 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-968 (-347 (-483))) |has| |#1| (-38 (-347 (-483)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-494)) (|has| |#1| (-146))) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1113) |has| |#1| (-38 (-347 (-483)))) ((-1116) |has| |#1| (-38 (-347 (-483)))) ((-1127) . T) ((-1156 |#1| (-694)) . T))
-((-3815 (((-1 (-1067 |#1|) (-583 (-1067 |#1|))) (-1 |#2| (-583 |#2|))) 24 T ELT)) (-3814 (((-1 (-1067 |#1|) (-1067 |#1|) (-1067 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-3813 (((-1 (-1067 |#1|) (-1067 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-3818 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-3817 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-3819 ((|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|)) 60 T ELT)) (-3820 (((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|)))) 66 T ELT)) (-3816 ((|#2| |#2| |#2|) 43 T ELT)))
-(((-1171 |#1| |#2|) (-10 -7 (-15 -3813 ((-1 (-1067 |#1|) (-1067 |#1|)) (-1 |#2| |#2|))) (-15 -3814 ((-1 (-1067 |#1|) (-1067 |#1|) (-1067 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3815 ((-1 (-1067 |#1|) (-583 (-1067 |#1|))) (-1 |#2| (-583 |#2|)))) (-15 -3816 (|#2| |#2| |#2|)) (-15 -3817 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3818 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3819 (|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|))) (-15 -3820 ((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|)))))) (-38 (-347 (-483))) (-1170 |#1|)) (T -1171))
-((-3820 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 (-1 *6 (-583 *6)))) (-4 *5 (-38 (-347 (-483)))) (-4 *6 (-1170 *5)) (-5 *2 (-583 *6)) (-5 *1 (-1171 *5 *6)))) (-3819 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-583 *2))) (-5 *4 (-583 *5)) (-4 *5 (-38 (-347 (-483)))) (-4 *2 (-1170 *5)) (-5 *1 (-1171 *5 *2)))) (-3818 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1170 *4)) (-5 *1 (-1171 *4 *2)) (-4 *4 (-38 (-347 (-483)))))) (-3817 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1170 *4)) (-5 *1 (-1171 *4 *2)) (-4 *4 (-38 (-347 (-483)))))) (-3816 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-1170 *3)))) (-3815 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-583 *5))) (-4 *5 (-1170 *4)) (-4 *4 (-38 (-347 (-483)))) (-5 *2 (-1 (-1067 *4) (-583 (-1067 *4)))) (-5 *1 (-1171 *4 *5)))) (-3814 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1170 *4)) (-4 *4 (-38 (-347 (-483)))) (-5 *2 (-1 (-1067 *4) (-1067 *4) (-1067 *4))) (-5 *1 (-1171 *4 *5)))) (-3813 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1170 *4)) (-4 *4 (-38 (-347 (-483)))) (-5 *2 (-1 (-1067 *4) (-1067 *4))) (-5 *1 (-1171 *4 *5)))))
-((-3822 ((|#2| |#4| (-694)) 31 T ELT)) (-3821 ((|#4| |#2|) 26 T ELT)) (-3824 ((|#4| (-347 |#2|)) 49 (|has| |#1| (-494)) ELT)) (-3823 (((-1 |#4| (-583 |#4|)) |#3|) 43 T ELT)))
-(((-1172 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3821 (|#4| |#2|)) (-15 -3822 (|#2| |#4| (-694))) (-15 -3823 ((-1 |#4| (-583 |#4|)) |#3|)) (IF (|has| |#1| (-494)) (-15 -3824 (|#4| (-347 |#2|))) |%noBranch|)) (-961) (-1153 |#1|) (-600 |#2|) (-1170 |#1|)) (T -1172))
-((-3824 (*1 *2 *3) (-12 (-5 *3 (-347 *5)) (-4 *5 (-1153 *4)) (-4 *4 (-494)) (-4 *4 (-961)) (-4 *2 (-1170 *4)) (-5 *1 (-1172 *4 *5 *6 *2)) (-4 *6 (-600 *5)))) (-3823 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-1153 *4)) (-5 *2 (-1 *6 (-583 *6))) (-5 *1 (-1172 *4 *5 *3 *6)) (-4 *3 (-600 *5)) (-4 *6 (-1170 *4)))) (-3822 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-961)) (-4 *2 (-1153 *5)) (-5 *1 (-1172 *5 *2 *6 *3)) (-4 *6 (-600 *2)) (-4 *3 (-1170 *5)))) (-3821 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *3 (-1153 *4)) (-4 *2 (-1170 *4)) (-5 *1 (-1172 *4 *3 *5 *2)) (-4 *5 (-600 *3)))))
-NIL
-(((-1173) (-113)) (T -1173))
-NIL
-(-13 (-10 -7 (-6 -2283)))
-((-2564 (((-85) $ $) NIL T ELT)) (-3825 (((-1088)) 12 T ELT)) (-3237 (((-1071) $) 18 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 11 T ELT) (((-1088) $) 8 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 15 T ELT)))
-(((-1174 |#1|) (-13 (-1012) (-552 (-1088)) (-10 -8 (-15 -3940 ((-1088) $)) (-15 -3825 ((-1088))))) (-1088)) (T -1174))
-((-3940 (*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-1174 *3)) (-14 *3 *2))) (-3825 (*1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-1174 *3)) (-14 *3 *2))))
-((-3832 (($ (-694)) 19 T ELT)) (-3829 (((-630 |#2|) $ $) 41 T ELT)) (-3826 ((|#2| $) 51 T ELT)) (-3827 ((|#2| $) 50 T ELT)) (-3830 ((|#2| $ $) 36 T ELT)) (-3828 (($ $ $) 47 T ELT)) (-3831 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-3833 (($ $ $) 15 T ELT)) (* (($ (-483) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT)))
-(((-1175 |#1| |#2|) (-10 -7 (-15 -3826 (|#2| |#1|)) (-15 -3827 (|#2| |#1|)) (-15 -3828 (|#1| |#1| |#1|)) (-15 -3829 ((-630 |#2|) |#1| |#1|)) (-15 -3830 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-483) |#1|)) (-15 -3831 (|#1| |#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 -3832 (|#1| (-694))) (-15 -3833 (|#1| |#1| |#1|))) (-1176 |#2|) (-1127)) (T -1175))
-NIL
-((-2564 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3832 (($ (-694)) 121 (|has| |#1| (-23)) ELT)) (-2194 (((-1183) $ (-483) (-483)) 44 (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-756)) ELT)) (-1727 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -3990)) ELT) (($ $) 97 (-12 (|has| |#1| (-756)) (|has| $ (-6 -3990))) ELT)) (-2905 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-756)) ELT)) (-3782 ((|#1| $ (-483) |#1|) 56 (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) 64 (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3989)) ELT)) (-3718 (($) 7 T CONST)) (-2293 (($ $) 99 (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) 109 T ELT)) (-1350 (($ $) 84 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-3400 (($ |#1| $) 83 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3989)) ELT)) (-1573 ((|#1| $ (-483) |#1|) 57 (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) 55 T ELT)) (-3413 (((-483) (-1 (-85) |#1|) $) 106 T ELT) (((-483) |#1| $) 105 (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) 104 (|has| |#1| (-1012)) ELT)) (-2885 (((-583 |#1|) $) 30 (|has| $ (-6 -3989)) ELT)) (-3829 (((-630 |#1|) $ $) 114 (|has| |#1| (-961)) ELT)) (-3608 (($ (-694) |#1|) 74 T ELT)) (-2196 (((-483) $) 47 (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) 91 (|has| |#1| (-756)) ELT)) (-3512 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-756)) ELT)) (-2604 (((-583 |#1|) $) 29 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-2197 (((-483) $) 48 (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) 92 (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3826 ((|#1| $) 111 (-12 (|has| |#1| (-961)) (|has| |#1| (-915))) ELT)) (-3827 ((|#1| $) 112 (-12 (|has| |#1| (-961)) (|has| |#1| (-915))) ELT)) (-3237 (((-1071) $) 22 (|has| |#1| (-1012)) ELT)) (-2300 (($ |#1| $ (-483)) 66 T ELT) (($ $ $ (-483)) 65 T ELT)) (-2199 (((-583 (-483)) $) 50 T ELT)) (-2200 (((-85) (-483) $) 51 T ELT)) (-3238 (((-1032) $) 21 (|has| |#1| (-1012)) ELT)) (-3795 ((|#1| $) 46 (|has| (-483) (-756)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2195 (($ $ |#1|) 45 (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) 11 T ELT)) (-2198 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) 52 T ELT)) (-3397 (((-85) $) 8 T ELT)) (-3559 (($) 9 T ELT)) (-3794 ((|#1| $ (-483) |#1|) 54 T ELT) ((|#1| $ (-483)) 53 T ELT) (($ $ (-1144 (-483))) 75 T ELT)) (-3830 ((|#1| $ $) 115 (|has| |#1| (-961)) ELT)) (-2301 (($ $ (-483)) 68 T ELT) (($ $ (-1144 (-483))) 67 T ELT)) (-3828 (($ $ $) 113 (|has| |#1| (-961)) ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -3989))) ELT)) (-1728 (($ $ $ (-483)) 100 (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) 10 T ELT)) (-3966 (((-472) $) 85 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 76 T ELT)) (-3796 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-583 $)) 70 T ELT)) (-3940 (((-772) $) 17 (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) 93 (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) 95 (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2680 (((-85) $ $) 94 (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) 96 (|has| |#1| (-756)) ELT)) (-3831 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-3833 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-483) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-663)) ELT) (($ $ |#1|) 116 (|has| |#1| (-663)) ELT)) (-3951 (((-694) $) 6 (|has| $ (-6 -3989)) ELT)))
-(((-1176 |#1|) (-113) (-1127)) (T -1176))
-((-3833 (*1 *1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-25)))) (-3832 (*1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1176 *3)) (-4 *3 (-23)) (-4 *3 (-1127)))) (-3831 (*1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-21)))) (-3831 (*1 *1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-483)) (-4 *1 (-1176 *3)) (-4 *3 (-1127)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-663)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-663)))) (-3830 (*1 *2 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-961)))) (-3829 (*1 *2 *1 *1) (-12 (-4 *1 (-1176 *3)) (-4 *3 (-1127)) (-4 *3 (-961)) (-5 *2 (-630 *3)))) (-3828 (*1 *1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-961)))) (-3827 (*1 *2 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-915)) (-4 *2 (-961)))) (-3826 (*1 *2 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-915)) (-4 *2 (-961)))))
-(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3833 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3832 ($ (-694))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3831 ($ $)) (-15 -3831 ($ $ $)) (-15 * ($ (-483) $))) |%noBranch|) (IF (|has| |t#1| (-663)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-961)) (PROGN (-15 -3830 (|t#1| $ $)) (-15 -3829 ((-630 |t#1|) $ $)) (-15 -3828 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-915)) (IF (|has| |t#1| (-961)) (PROGN (-15 -3827 (|t#1| $)) (-15 -3826 (|t#1| $))) |%noBranch|) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1012)) (|has| |#1| (-756)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1012)) (|has| |#1| (-756)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-472)) |has| |#1| (-553 (-472))) ((-241 (-483) |#1|) . T) ((-241 (-1144 (-483)) $) . T) ((-243 (-483) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-321 |#1|) . T) ((-426 |#1|) . T) ((-538 (-483) |#1|) . T) ((-452 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ((-13) . T) ((-593 |#1|) . T) ((-19 |#1|) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-1012) OR (|has| |#1| (-1012)) (|has| |#1| (-756))) ((-1127) . T))
-((-2564 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3832 (($ (-694)) NIL (|has| |#1| (-23)) ELT)) (-3834 (($ (-583 |#1|)) 11 T ELT)) (-2194 (((-1183) $ (-483) (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-1729 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1727 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3990)) (|has| |#1| (-756))) ELT)) (-2905 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-3782 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3990)) ELT) ((|#1| $ (-1144 (-483)) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3704 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3718 (($) NIL T CONST)) (-2293 (($ $) NIL (|has| $ (-6 -3990)) ELT)) (-2294 (($ $) NIL T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-3400 (($ |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3836 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3989)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-1573 ((|#1| $ (-483) |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-3108 ((|#1| $ (-483)) NIL T ELT)) (-3413 (((-483) (-1 (-85) |#1|) $) NIL T ELT) (((-483) |#1| $) NIL (|has| |#1| (-1012)) ELT) (((-483) |#1| $ (-483)) NIL (|has| |#1| (-1012)) ELT)) (-2885 (((-583 |#1|) $) 16 (|has| $ (-6 -3989)) ELT)) (-3829 (((-630 |#1|) $ $) NIL (|has| |#1| (-961)) ELT)) (-3608 (($ (-694) |#1|) NIL T ELT)) (-2196 (((-483) $) NIL (|has| (-483) (-756)) ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3512 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2604 (((-583 |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2197 (((-483) $) 12 (|has| (-483) (-756)) ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-1946 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3826 ((|#1| $) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-961))) ELT)) (-3827 ((|#1| $) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-961))) ELT)) (-3237 (((-1071) $) NIL (|has| |#1| (-1012)) ELT)) (-2300 (($ |#1| $ (-483)) NIL T ELT) (($ $ $ (-483)) NIL T ELT)) (-2199 (((-583 (-483)) $) NIL T ELT)) (-2200 (((-85) (-483) $) NIL T ELT)) (-3238 (((-1032) $) NIL (|has| |#1| (-1012)) ELT)) (-3795 ((|#1| $) NIL (|has| (-483) (-756)) ELT)) (-1351 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2195 (($ $ |#1|) NIL (|has| $ (-6 -3990)) ELT)) (-1944 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-2198 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-2201 (((-583 |#1|) $) NIL T ELT)) (-3397 (((-85) $) NIL T ELT)) (-3559 (($) NIL T ELT)) (-3794 ((|#1| $ (-483) |#1|) NIL T ELT) ((|#1| $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-3830 ((|#1| $ $) NIL (|has| |#1| (-961)) ELT)) (-2301 (($ $ (-483)) NIL T ELT) (($ $ (-1144 (-483))) NIL T ELT)) (-3828 (($ $ $) NIL (|has| |#1| (-961)) ELT)) (-1943 (((-694) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT) (((-694) |#1| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#1| (-1012))) ELT)) (-1728 (($ $ $ (-483)) NIL (|has| $ (-6 -3990)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) 20 (|has| |#1| (-553 (-472))) ELT)) (-3524 (($ (-583 |#1|)) 10 T ELT)) (-3796 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3940 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1262 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2562 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2563 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3052 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2680 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2681 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3831 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3833 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-483) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-663)) ELT) (($ $ |#1|) NIL (|has| |#1| (-663)) ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-1177 |#1|) (-13 (-1176 |#1|) (-10 -8 (-15 -3834 ($ (-583 |#1|))))) (-1127)) (T -1177))
-((-3834 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-5 *1 (-1177 *3)))))
-((-3835 (((-1177 |#2|) (-1 |#2| |#1| |#2|) (-1177 |#1|) |#2|) 13 T ELT)) (-3836 ((|#2| (-1 |#2| |#1| |#2|) (-1177 |#1|) |#2|) 15 T ELT)) (-3952 (((-3 (-1177 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1177 |#1|)) 30 T ELT) (((-1177 |#2|) (-1 |#2| |#1|) (-1177 |#1|)) 18 T ELT)))
-(((-1178 |#1| |#2|) (-10 -7 (-15 -3835 ((-1177 |#2|) (-1 |#2| |#1| |#2|) (-1177 |#1|) |#2|)) (-15 -3836 (|#2| (-1 |#2| |#1| |#2|) (-1177 |#1|) |#2|)) (-15 -3952 ((-1177 |#2|) (-1 |#2| |#1|) (-1177 |#1|))) (-15 -3952 ((-3 (-1177 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1177 |#1|)))) (-1127) (-1127)) (T -1178))
-((-3952 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1177 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-1177 *6)) (-5 *1 (-1178 *5 *6)))) (-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1177 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-1177 *6)) (-5 *1 (-1178 *5 *6)))) (-3836 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1177 *5)) (-4 *5 (-1127)) (-4 *2 (-1127)) (-5 *1 (-1178 *5 *2)))) (-3835 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1177 *6)) (-4 *6 (-1127)) (-4 *5 (-1127)) (-5 *2 (-1177 *5)) (-5 *1 (-1178 *6 *5)))))
-((-3837 (((-405) (-583 (-583 (-854 (-179)))) (-583 (-221))) 22 T ELT) (((-405) (-583 (-583 (-854 (-179))))) 21 T ELT) (((-405) (-583 (-583 (-854 (-179)))) (-783) (-783) (-830) (-583 (-221))) 20 T ELT)) (-3838 (((-1180) (-583 (-583 (-854 (-179)))) (-583 (-221))) 30 T ELT) (((-1180) (-583 (-583 (-854 (-179)))) (-783) (-783) (-830) (-583 (-221))) 29 T ELT)) (-3940 (((-1180) (-405)) 46 T ELT)))
-(((-1179) (-10 -7 (-15 -3837 ((-405) (-583 (-583 (-854 (-179)))) (-783) (-783) (-830) (-583 (-221)))) (-15 -3837 ((-405) (-583 (-583 (-854 (-179)))))) (-15 -3837 ((-405) (-583 (-583 (-854 (-179)))) (-583 (-221)))) (-15 -3838 ((-1180) (-583 (-583 (-854 (-179)))) (-783) (-783) (-830) (-583 (-221)))) (-15 -3838 ((-1180) (-583 (-583 (-854 (-179)))) (-583 (-221)))) (-15 -3940 ((-1180) (-405))))) (T -1179))
-((-3940 (*1 *2 *3) (-12 (-5 *3 (-405)) (-5 *2 (-1180)) (-5 *1 (-1179)))) (-3838 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-583 (-221))) (-5 *2 (-1180)) (-5 *1 (-1179)))) (-3838 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-783)) (-5 *5 (-830)) (-5 *6 (-583 (-221))) (-5 *2 (-1180)) (-5 *1 (-1179)))) (-3837 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-583 (-221))) (-5 *2 (-405)) (-5 *1 (-1179)))) (-3837 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-405)) (-5 *1 (-1179)))) (-3837 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-783)) (-5 *5 (-830)) (-5 *6 (-583 (-221))) (-5 *2 (-405)) (-5 *1 (-1179)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3856 (((-1071) $ (-1071)) 107 T ELT) (((-1071) $ (-1071) (-1071)) 105 T ELT) (((-1071) $ (-1071) (-583 (-1071))) 104 T ELT)) (-3852 (($) 69 T ELT)) (-3839 (((-1183) $ (-405) (-830)) 54 T ELT)) (-3845 (((-1183) $ (-830) (-1071)) 89 T ELT) (((-1183) $ (-830) (-783)) 90 T ELT)) (-3867 (((-1183) $ (-830) (-327) (-327)) 57 T ELT)) (-3877 (((-1183) $ (-1071)) 84 T ELT)) (-3840 (((-1183) $ (-830) (-1071)) 94 T ELT)) (-3841 (((-1183) $ (-830) (-327) (-327)) 58 T ELT)) (-3878 (((-1183) $ (-830) (-830)) 55 T ELT)) (-3858 (((-1183) $) 85 T ELT)) (-3843 (((-1183) $ (-830) (-1071)) 93 T ELT)) (-3847 (((-1183) $ (-405) (-830)) 41 T ELT)) (-3844 (((-1183) $ (-830) (-1071)) 92 T ELT)) (-3880 (((-583 (-221)) $) 29 T ELT) (($ $ (-583 (-221))) 30 T ELT)) (-3879 (((-1183) $ (-694) (-694)) 52 T ELT)) (-3851 (($ $) 70 T ELT) (($ (-405) (-583 (-221))) 71 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3854 (((-483) $) 48 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3848 (((-1177 (-3 (-405) "undefined")) $) 47 T ELT)) (-3849 (((-1177 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3844 (-483)) (|:| -3842 (-483)) (|:| |spline| (-483)) (|:| -3873 (-483)) (|:| |axesColor| (-783)) (|:| -3845 (-483)) (|:| |unitsColor| (-783)) (|:| |showing| (-483)))) $) 46 T ELT)) (-3850 (((-1183) $ (-830) (-179) (-179) (-179) (-179) (-483) (-483) (-483) (-483) (-783) (-483) (-783) (-483)) 83 T ELT)) (-3853 (((-583 (-854 (-179))) $) NIL T ELT)) (-3846 (((-405) $ (-830)) 43 T ELT)) (-3876 (((-1183) $ (-694) (-694) (-830) (-830)) 50 T ELT)) (-3874 (((-1183) $ (-1071)) 95 T ELT)) (-3842 (((-1183) $ (-830) (-1071)) 91 T ELT)) (-3940 (((-772) $) 102 T ELT)) (-3855 (((-1183) $) 96 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3873 (((-1183) $ (-830) (-1071)) 87 T ELT) (((-1183) $ (-830) (-783)) 88 T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-1180) (-13 (-1012) (-10 -8 (-15 -3853 ((-583 (-854 (-179))) $)) (-15 -3852 ($)) (-15 -3851 ($ $)) (-15 -3880 ((-583 (-221)) $)) (-15 -3880 ($ $ (-583 (-221)))) (-15 -3851 ($ (-405) (-583 (-221)))) (-15 -3850 ((-1183) $ (-830) (-179) (-179) (-179) (-179) (-483) (-483) (-483) (-483) (-783) (-483) (-783) (-483))) (-15 -3849 ((-1177 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3844 (-483)) (|:| -3842 (-483)) (|:| |spline| (-483)) (|:| -3873 (-483)) (|:| |axesColor| (-783)) (|:| -3845 (-483)) (|:| |unitsColor| (-783)) (|:| |showing| (-483)))) $)) (-15 -3848 ((-1177 (-3 (-405) "undefined")) $)) (-15 -3877 ((-1183) $ (-1071))) (-15 -3847 ((-1183) $ (-405) (-830))) (-15 -3846 ((-405) $ (-830))) (-15 -3873 ((-1183) $ (-830) (-1071))) (-15 -3873 ((-1183) $ (-830) (-783))) (-15 -3845 ((-1183) $ (-830) (-1071))) (-15 -3845 ((-1183) $ (-830) (-783))) (-15 -3844 ((-1183) $ (-830) (-1071))) (-15 -3843 ((-1183) $ (-830) (-1071))) (-15 -3842 ((-1183) $ (-830) (-1071))) (-15 -3874 ((-1183) $ (-1071))) (-15 -3855 ((-1183) $)) (-15 -3876 ((-1183) $ (-694) (-694) (-830) (-830))) (-15 -3841 ((-1183) $ (-830) (-327) (-327))) (-15 -3867 ((-1183) $ (-830) (-327) (-327))) (-15 -3840 ((-1183) $ (-830) (-1071))) (-15 -3879 ((-1183) $ (-694) (-694))) (-15 -3839 ((-1183) $ (-405) (-830))) (-15 -3878 ((-1183) $ (-830) (-830))) (-15 -3856 ((-1071) $ (-1071))) (-15 -3856 ((-1071) $ (-1071) (-1071))) (-15 -3856 ((-1071) $ (-1071) (-583 (-1071)))) (-15 -3858 ((-1183) $)) (-15 -3854 ((-483) $)) (-15 -3940 ((-772) $))))) (T -1180))
-((-3940 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1180)))) (-3853 (*1 *2 *1) (-12 (-5 *2 (-583 (-854 (-179)))) (-5 *1 (-1180)))) (-3852 (*1 *1) (-5 *1 (-1180))) (-3851 (*1 *1 *1) (-5 *1 (-1180))) (-3880 (*1 *2 *1) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1180)))) (-3880 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1180)))) (-3851 (*1 *1 *2 *3) (-12 (-5 *2 (-405)) (-5 *3 (-583 (-221))) (-5 *1 (-1180)))) (-3850 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-830)) (-5 *4 (-179)) (-5 *5 (-483)) (-5 *6 (-783)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3849 (*1 *2 *1) (-12 (-5 *2 (-1177 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3844 (-483)) (|:| -3842 (-483)) (|:| |spline| (-483)) (|:| -3873 (-483)) (|:| |axesColor| (-783)) (|:| -3845 (-483)) (|:| |unitsColor| (-783)) (|:| |showing| (-483))))) (-5 *1 (-1180)))) (-3848 (*1 *2 *1) (-12 (-5 *2 (-1177 (-3 (-405) "undefined"))) (-5 *1 (-1180)))) (-3877 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3847 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-405)) (-5 *4 (-830)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3846 (*1 *2 *1 *3) (-12 (-5 *3 (-830)) (-5 *2 (-405)) (-5 *1 (-1180)))) (-3873 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3873 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-783)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3845 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3845 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-783)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3844 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3843 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3842 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3874 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3876 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-694)) (-5 *4 (-830)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3841 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-830)) (-5 *4 (-327)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3867 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-830)) (-5 *4 (-327)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3840 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3879 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3839 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-405)) (-5 *4 (-830)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3878 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3856 (*1 *2 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1180)))) (-3856 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1180)))) (-3856 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1071))) (-5 *2 (-1071)) (-5 *1 (-1180)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1180)))) (-3854 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1180)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3868 (((-1183) $ (-327)) 168 T ELT) (((-1183) $ (-327) (-327) (-327)) 169 T ELT)) (-3856 (((-1071) $ (-1071)) 177 T ELT) (((-1071) $ (-1071) (-1071)) 175 T ELT) (((-1071) $ (-1071) (-583 (-1071))) 174 T ELT)) (-3884 (($) 67 T ELT)) (-3875 (((-1183) $ (-327) (-327) (-327) (-327) (-327)) 140 T ELT) (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $) 138 T ELT) (((-1183) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 139 T ELT) (((-1183) $ (-483) (-483) (-327) (-327) (-327)) 143 T ELT) (((-1183) $ (-327) (-327)) 144 T ELT) (((-1183) $ (-327) (-327) (-327)) 151 T ELT)) (-3887 (((-327)) 121 T ELT) (((-327) (-327)) 122 T ELT)) (-3889 (((-327)) 116 T ELT) (((-327) (-327)) 118 T ELT)) (-3888 (((-327)) 119 T ELT) (((-327) (-327)) 120 T ELT)) (-3885 (((-327)) 125 T ELT) (((-327) (-327)) 126 T ELT)) (-3886 (((-327)) 123 T ELT) (((-327) (-327)) 124 T ELT)) (-3867 (((-1183) $ (-327) (-327)) 170 T ELT)) (-3877 (((-1183) $ (-1071)) 152 T ELT)) (-3882 (((-1045 (-179)) $) 68 T ELT) (($ $ (-1045 (-179))) 69 T ELT)) (-3863 (((-1183) $ (-1071)) 186 T ELT)) (-3862 (((-1183) $ (-1071)) 187 T ELT)) (-3869 (((-1183) $ (-327) (-327)) 150 T ELT) (((-1183) $ (-483) (-483)) 167 T ELT)) (-3878 (((-1183) $ (-830) (-830)) 159 T ELT)) (-3858 (((-1183) $) 136 T ELT)) (-3866 (((-1183) $ (-1071)) 185 T ELT)) (-3871 (((-1183) $ (-1071)) 133 T ELT)) (-3880 (((-583 (-221)) $) 70 T ELT) (($ $ (-583 (-221))) 71 T ELT)) (-3879 (((-1183) $ (-694) (-694)) 158 T ELT)) (-3881 (((-1183) $ (-694) (-854 (-179))) 192 T ELT)) (-3883 (($ $) 73 T ELT) (($ (-1045 (-179)) (-1071)) 74 T ELT) (($ (-1045 (-179)) (-583 (-221))) 75 T ELT)) (-3860 (((-1183) $ (-327) (-327) (-327)) 130 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3854 (((-483) $) 127 T ELT)) (-3859 (((-1183) $ (-327)) 172 T ELT)) (-3864 (((-1183) $ (-327)) 190 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3865 (((-1183) $ (-327)) 189 T ELT)) (-3870 (((-1183) $ (-1071)) 135 T ELT)) (-3876 (((-1183) $ (-694) (-694) (-830) (-830)) 157 T ELT)) (-3872 (((-1183) $ (-1071)) 132 T ELT)) (-3874 (((-1183) $ (-1071)) 134 T ELT)) (-3857 (((-1183) $ (-130) (-130)) 156 T ELT)) (-3940 (((-772) $) 165 T ELT)) (-3855 (((-1183) $) 137 T ELT)) (-3861 (((-1183) $ (-1071)) 188 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3873 (((-1183) $ (-1071)) 131 T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-1181) (-13 (-1012) (-10 -8 (-15 -3889 ((-327))) (-15 -3889 ((-327) (-327))) (-15 -3888 ((-327))) (-15 -3888 ((-327) (-327))) (-15 -3887 ((-327))) (-15 -3887 ((-327) (-327))) (-15 -3886 ((-327))) (-15 -3886 ((-327) (-327))) (-15 -3885 ((-327))) (-15 -3885 ((-327) (-327))) (-15 -3884 ($)) (-15 -3883 ($ $)) (-15 -3883 ($ (-1045 (-179)) (-1071))) (-15 -3883 ($ (-1045 (-179)) (-583 (-221)))) (-15 -3882 ((-1045 (-179)) $)) (-15 -3882 ($ $ (-1045 (-179)))) (-15 -3881 ((-1183) $ (-694) (-854 (-179)))) (-15 -3880 ((-583 (-221)) $)) (-15 -3880 ($ $ (-583 (-221)))) (-15 -3879 ((-1183) $ (-694) (-694))) (-15 -3878 ((-1183) $ (-830) (-830))) (-15 -3877 ((-1183) $ (-1071))) (-15 -3876 ((-1183) $ (-694) (-694) (-830) (-830))) (-15 -3875 ((-1183) $ (-327) (-327) (-327) (-327) (-327))) (-15 -3875 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $)) (-15 -3875 ((-1183) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3875 ((-1183) $ (-483) (-483) (-327) (-327) (-327))) (-15 -3875 ((-1183) $ (-327) (-327))) (-15 -3875 ((-1183) $ (-327) (-327) (-327))) (-15 -3874 ((-1183) $ (-1071))) (-15 -3873 ((-1183) $ (-1071))) (-15 -3872 ((-1183) $ (-1071))) (-15 -3871 ((-1183) $ (-1071))) (-15 -3870 ((-1183) $ (-1071))) (-15 -3869 ((-1183) $ (-327) (-327))) (-15 -3869 ((-1183) $ (-483) (-483))) (-15 -3868 ((-1183) $ (-327))) (-15 -3868 ((-1183) $ (-327) (-327) (-327))) (-15 -3867 ((-1183) $ (-327) (-327))) (-15 -3866 ((-1183) $ (-1071))) (-15 -3865 ((-1183) $ (-327))) (-15 -3864 ((-1183) $ (-327))) (-15 -3863 ((-1183) $ (-1071))) (-15 -3862 ((-1183) $ (-1071))) (-15 -3861 ((-1183) $ (-1071))) (-15 -3860 ((-1183) $ (-327) (-327) (-327))) (-15 -3859 ((-1183) $ (-327))) (-15 -3858 ((-1183) $)) (-15 -3857 ((-1183) $ (-130) (-130))) (-15 -3856 ((-1071) $ (-1071))) (-15 -3856 ((-1071) $ (-1071) (-1071))) (-15 -3856 ((-1071) $ (-1071) (-583 (-1071)))) (-15 -3855 ((-1183) $)) (-15 -3854 ((-483) $))))) (T -1181))
-((-3889 (*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181)))) (-3889 (*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181)))) (-3888 (*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181)))) (-3888 (*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181)))) (-3887 (*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181)))) (-3887 (*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181)))) (-3886 (*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181)))) (-3886 (*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181)))) (-3885 (*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181)))) (-3885 (*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181)))) (-3884 (*1 *1) (-5 *1 (-1181))) (-3883 (*1 *1 *1) (-5 *1 (-1181))) (-3883 (*1 *1 *2 *3) (-12 (-5 *2 (-1045 (-179))) (-5 *3 (-1071)) (-5 *1 (-1181)))) (-3883 (*1 *1 *2 *3) (-12 (-5 *2 (-1045 (-179))) (-5 *3 (-583 (-221))) (-5 *1 (-1181)))) (-3882 (*1 *2 *1) (-12 (-5 *2 (-1045 (-179))) (-5 *1 (-1181)))) (-3882 (*1 *1 *1 *2) (-12 (-5 *2 (-1045 (-179))) (-5 *1 (-1181)))) (-3881 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-694)) (-5 *4 (-854 (-179))) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3880 (*1 *2 *1) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1181)))) (-3880 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1181)))) (-3879 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3878 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3877 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3876 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-694)) (-5 *4 (-830)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3875 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3875 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-1181)))) (-3875 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3875 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-483)) (-5 *4 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3875 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3875 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3874 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3873 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3872 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3871 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3870 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3869 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3869 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-483)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3868 (*1 *2 *1 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3868 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3867 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3866 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3865 (*1 *2 *1 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3864 (*1 *2 *1 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3863 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3862 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3861 (*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3860 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3859 (*1 *2 *1 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3857 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3856 (*1 *2 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1181)))) (-3856 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1181)))) (-3856 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1071))) (-5 *2 (-1071)) (-5 *1 (-1181)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1181)))) (-3854 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1181)))))
-((-3898 (((-583 (-1071)) (-583 (-1071))) 103 T ELT) (((-583 (-1071))) 96 T ELT)) (-3899 (((-583 (-1071))) 94 T ELT)) (-3896 (((-583 (-830)) (-583 (-830))) 69 T ELT) (((-583 (-830))) 64 T ELT)) (-3895 (((-583 (-694)) (-583 (-694))) 61 T ELT) (((-583 (-694))) 55 T ELT)) (-3897 (((-1183)) 71 T ELT)) (-3901 (((-830) (-830)) 87 T ELT) (((-830)) 86 T ELT)) (-3900 (((-830) (-830)) 85 T ELT) (((-830)) 84 T ELT)) (-3893 (((-783) (-783)) 81 T ELT) (((-783)) 80 T ELT)) (-3903 (((-179)) 91 T ELT) (((-179) (-327)) 93 T ELT)) (-3902 (((-830)) 88 T ELT) (((-830) (-830)) 89 T ELT)) (-3894 (((-830) (-830)) 83 T ELT) (((-830)) 82 T ELT)) (-3890 (((-783) (-783)) 75 T ELT) (((-783)) 73 T ELT)) (-3891 (((-783) (-783)) 77 T ELT) (((-783)) 76 T ELT)) (-3892 (((-783) (-783)) 79 T ELT) (((-783)) 78 T ELT)))
-(((-1182) (-10 -7 (-15 -3890 ((-783))) (-15 -3890 ((-783) (-783))) (-15 -3891 ((-783))) (-15 -3891 ((-783) (-783))) (-15 -3892 ((-783))) (-15 -3892 ((-783) (-783))) (-15 -3893 ((-783))) (-15 -3893 ((-783) (-783))) (-15 -3894 ((-830))) (-15 -3894 ((-830) (-830))) (-15 -3895 ((-583 (-694)))) (-15 -3895 ((-583 (-694)) (-583 (-694)))) (-15 -3896 ((-583 (-830)))) (-15 -3896 ((-583 (-830)) (-583 (-830)))) (-15 -3897 ((-1183))) (-15 -3898 ((-583 (-1071)))) (-15 -3898 ((-583 (-1071)) (-583 (-1071)))) (-15 -3899 ((-583 (-1071)))) (-15 -3900 ((-830))) (-15 -3901 ((-830))) (-15 -3900 ((-830) (-830))) (-15 -3901 ((-830) (-830))) (-15 -3902 ((-830) (-830))) (-15 -3902 ((-830))) (-15 -3903 ((-179) (-327))) (-15 -3903 ((-179))))) (T -1182))
-((-3903 (*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1182)))) (-3903 (*1 *2 *3) (-12 (-5 *3 (-327)) (-5 *2 (-179)) (-5 *1 (-1182)))) (-3902 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1182)))) (-3902 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1182)))) (-3901 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1182)))) (-3900 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1182)))) (-3901 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1182)))) (-3900 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1182)))) (-3899 (*1 *2) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1182)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1182)))) (-3898 (*1 *2) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1182)))) (-3897 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1182)))) (-3896 (*1 *2 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1182)))) (-3896 (*1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1182)))) (-3895 (*1 *2 *2) (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1182)))) (-3895 (*1 *2) (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1182)))) (-3894 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1182)))) (-3894 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1182)))) (-3893 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1182)))) (-3893 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1182)))) (-3892 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1182)))) (-3892 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1182)))) (-3891 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1182)))) (-3891 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1182)))) (-3890 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1182)))) (-3890 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1182)))))
-((-3904 (($) 6 T ELT)) (-3940 (((-772) $) 9 T ELT)))
-(((-1183) (-13 (-552 (-772)) (-10 -8 (-15 -3904 ($))))) (T -1183))
-((-3904 (*1 *1) (-5 *1 (-1183))))
-((-3943 (($ $ |#2|) 10 T ELT)))
-(((-1184 |#1| |#2|) (-10 -7 (-15 -3943 (|#1| |#1| |#2|))) (-1185 |#2|) (-311)) (T -1184))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3905 (((-107)) 38 T ELT)) (-3940 (((-772) $) 13 T ELT)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ |#1|) 39 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT)))
-(((-1185 |#1|) (-113) (-311)) (T -1185))
-((-3943 (*1 *1 *1 *2) (-12 (-4 *1 (-1185 *2)) (-4 *2 (-311)))) (-3905 (*1 *2) (-12 (-4 *1 (-1185 *3)) (-4 *3 (-311)) (-5 *2 (-107)))))
-(-13 (-654 |t#1|) (-10 -8 (-15 -3943 ($ $ |t#1|)) (-15 -3905 ((-107)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1012) . T) ((-1127) . T))
-((-3910 (((-583 (-1120 |#1|)) (-1088) (-1120 |#1|)) 83 T ELT)) (-3908 (((-1067 (-1067 (-857 |#1|))) (-1088) (-1067 (-857 |#1|))) 63 T ELT)) (-3911 (((-1 (-1067 (-1120 |#1|)) (-1067 (-1120 |#1|))) (-694) (-1120 |#1|) (-1067 (-1120 |#1|))) 74 T ELT)) (-3906 (((-1 (-1067 (-857 |#1|)) (-1067 (-857 |#1|))) (-694)) 65 T ELT)) (-3909 (((-1 (-1083 (-857 |#1|)) (-857 |#1|)) (-1088)) 32 T ELT)) (-3907 (((-1 (-1067 (-857 |#1|)) (-1067 (-857 |#1|))) (-694)) 64 T ELT)))
-(((-1186 |#1|) (-10 -7 (-15 -3906 ((-1 (-1067 (-857 |#1|)) (-1067 (-857 |#1|))) (-694))) (-15 -3907 ((-1 (-1067 (-857 |#1|)) (-1067 (-857 |#1|))) (-694))) (-15 -3908 ((-1067 (-1067 (-857 |#1|))) (-1088) (-1067 (-857 |#1|)))) (-15 -3909 ((-1 (-1083 (-857 |#1|)) (-857 |#1|)) (-1088))) (-15 -3910 ((-583 (-1120 |#1|)) (-1088) (-1120 |#1|))) (-15 -3911 ((-1 (-1067 (-1120 |#1|)) (-1067 (-1120 |#1|))) (-694) (-1120 |#1|) (-1067 (-1120 |#1|))))) (-311)) (T -1186))
-((-3911 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694)) (-4 *6 (-311)) (-5 *4 (-1120 *6)) (-5 *2 (-1 (-1067 *4) (-1067 *4))) (-5 *1 (-1186 *6)) (-5 *5 (-1067 *4)))) (-3910 (*1 *2 *3 *4) (-12 (-5 *3 (-1088)) (-4 *5 (-311)) (-5 *2 (-583 (-1120 *5))) (-5 *1 (-1186 *5)) (-5 *4 (-1120 *5)))) (-3909 (*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1 (-1083 (-857 *4)) (-857 *4))) (-5 *1 (-1186 *4)) (-4 *4 (-311)))) (-3908 (*1 *2 *3 *4) (-12 (-5 *3 (-1088)) (-4 *5 (-311)) (-5 *2 (-1067 (-1067 (-857 *5)))) (-5 *1 (-1186 *5)) (-5 *4 (-1067 (-857 *5))))) (-3907 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-1067 (-857 *4)) (-1067 (-857 *4)))) (-5 *1 (-1186 *4)) (-4 *4 (-311)))) (-3906 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-1067 (-857 *4)) (-1067 (-857 *4)))) (-5 *1 (-1186 *4)) (-4 *4 (-311)))))
-((-3913 (((-2 (|:| -2008 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) |#2|) 80 T ELT)) (-3912 (((-2 (|:| -2008 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) 79 T ELT)))
-(((-1187 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3912 ((-2 (|:| -2008 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))))) (-15 -3913 ((-2 (|:| -2008 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) |#2|))) (-298) (-1153 |#1|) (-1153 |#2|) (-350 |#2| |#3|)) (T -1187))
-((-3913 (*1 *2 *3) (-12 (-4 *4 (-298)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 *3)) (-5 *2 (-2 (|:| -2008 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-5 *1 (-1187 *4 *3 *5 *6)) (-4 *6 (-350 *3 *5)))) (-3912 (*1 *2) (-12 (-4 *3 (-298)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 *4)) (-5 *2 (-2 (|:| -2008 (-630 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-630 *4)))) (-5 *1 (-1187 *3 *4 *5 *6)) (-4 *6 (-350 *4 *5)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3914 (((-1047) $) 12 T ELT)) (-3915 (((-1047) $) 10 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 18 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-1188) (-13 (-994) (-10 -8 (-15 -3915 ((-1047) $)) (-15 -3914 ((-1047) $))))) (T -1188))
-((-3915 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1188)))) (-3914 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1188)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3916 (((-1047) $) 11 T ELT)) (-3940 (((-772) $) 17 T ELT) (($ (-1093)) NIL T ELT) (((-1093) $) NIL T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)))
-(((-1189) (-13 (-994) (-10 -8 (-15 -3916 ((-1047) $))))) (T -1189))
-((-3916 (*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1189)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 59 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 82 T ELT) (($ (-483)) NIL T ELT) (($ |#4|) 66 T ELT) ((|#4| $) 71 T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3121 (((-694)) NIL T CONST)) (-3917 (((-1183) (-694)) 16 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 36 T CONST)) (-2662 (($) 85 T CONST)) (-3052 (((-85) $ $) 88 T ELT)) (-3943 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-3831 (($ $) 90 T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 64 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 92 T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT)))
-(((-1190 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-961) (-427 |#4|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-311)) (-15 -3943 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3917 ((-1183) (-694))))) (-961) (-756) (-717) (-861 |#1| |#3| |#2|) (-583 |#2|) (-583 (-694)) (-694)) (T -1190))
-((-3943 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-311)) (-4 *2 (-961)) (-4 *3 (-756)) (-4 *4 (-717)) (-14 *6 (-583 *3)) (-5 *1 (-1190 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-861 *2 *4 *3)) (-14 *7 (-583 (-694))) (-14 *8 (-694)))) (-3917 (*1 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-4 *5 (-756)) (-4 *6 (-717)) (-14 *8 (-583 *5)) (-5 *2 (-1183)) (-5 *1 (-1190 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-861 *4 *6 *5)) (-14 *9 (-583 *3)) (-14 *10 *3))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3675 (((-583 (-2 (|:| -3855 $) (|:| -1699 (-583 |#4|)))) (-583 |#4|)) NIL T ELT)) (-3676 (((-583 $) (-583 |#4|)) 95 T ELT)) (-3077 (((-583 |#3|) $) NIL T ELT)) (-2904 (((-85) $) NIL T ELT)) (-2895 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3687 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3682 ((|#4| |#4| $) NIL T ELT)) (-2905 (((-2 (|:| |under| $) (|:| -3125 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3704 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3718 (($) NIL T CONST)) (-2900 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-2902 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2901 (((-85) $ $) NIL (|has| |#1| (-494)) ELT)) (-2903 (((-85) $) NIL (|has| |#1| (-494)) ELT)) (-3683 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 31 T ELT)) (-2896 (((-583 |#4|) (-583 |#4|) $) 28 (|has| |#1| (-494)) ELT)) (-2897 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-494)) ELT)) (-3152 (((-3 $ #1#) (-583 |#4|)) NIL T ELT)) (-3151 (($ (-583 |#4|)) NIL T ELT)) (-3793 (((-3 $ #1#) $) 77 T ELT)) (-3679 ((|#4| |#4| $) 82 T ELT)) (-1350 (($ $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT)) (-3400 (($ |#4| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-2898 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-494)) ELT)) (-3688 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3677 ((|#4| |#4| $) NIL T ELT)) (-3836 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3989)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3989)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3690 (((-2 (|:| -3855 (-583 |#4|)) (|:| -1699 (-583 |#4|))) $) NIL T ELT)) (-2885 (((-583 |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3689 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3175 ((|#3| $) 83 T ELT)) (-2604 (((-583 |#4|) $) 32 (|has| $ (-6 -3989)) ELT)) (-3240 (((-85) |#4| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT)) (-3920 (((-3 $ #1#) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ #1#) (-583 |#4|)) 38 T ELT)) (-1946 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -3990)) ELT)) (-3952 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2910 (((-583 |#3|) $) NIL T ELT)) (-2909 (((-85) |#3| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3792 (((-3 |#4| #1#) $) NIL T ELT)) (-3691 (((-583 |#4|) $) 53 T ELT)) (-3685 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3680 ((|#4| |#4| $) 81 T ELT)) (-3693 (((-85) $ $) 92 T ELT)) (-2899 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-494)) ELT)) (-3686 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3681 ((|#4| |#4| $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3795 (((-3 |#4| #1#) $) 76 T ELT)) (-1351 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3673 (((-3 $ #1#) $ |#4|) NIL T ELT)) (-3763 (($ $ |#4|) NIL T ELT)) (-1944 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3762 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-248 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT) (($ $ (-583 (-248 |#4|))) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1012))) ELT)) (-1219 (((-85) $ $) NIL T ELT)) (-3397 (((-85) $) 74 T ELT)) (-3559 (($) 45 T ELT)) (-3942 (((-694) $) NIL T ELT)) (-1943 (((-694) |#4| $) NIL (-12 (|has| $ (-6 -3989)) (|has| |#4| (-1012))) ELT) (((-694) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3394 (($ $) NIL T ELT)) (-3966 (((-472) $) NIL (|has| |#4| (-553 (-472))) ELT)) (-3524 (($ (-583 |#4|)) NIL T ELT)) (-2906 (($ $ |#3|) NIL T ELT)) (-2908 (($ $ |#3|) NIL T ELT)) (-3678 (($ $) NIL T ELT)) (-2907 (($ $ |#3|) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (((-583 |#4|) $) 62 T ELT)) (-3672 (((-694) $) NIL (|has| |#3| (-317)) ELT)) (-3919 (((-3 $ #1#) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 43 T ELT) (((-3 $ #1#) (-583 |#4|)) 44 T ELT)) (-3918 (((-583 $) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 72 T ELT) (((-583 $) (-583 |#4|)) 73 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3692 (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3318 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3684 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3989)) ELT)) (-3674 (((-583 |#3|) $) NIL T ELT)) (-3927 (((-85) |#3| $) NIL T ELT)) (-3052 (((-85) $ $) NIL T ELT)) (-3951 (((-694) $) NIL (|has| $ (-6 -3989)) ELT)))
-(((-1191 |#1| |#2| |#3| |#4|) (-13 (-1122 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3920 ((-3 $ #1="failed") (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3920 ((-3 $ #1#) (-583 |#4|))) (-15 -3919 ((-3 $ #1#) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3919 ((-3 $ #1#) (-583 |#4|))) (-15 -3918 ((-583 $) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3918 ((-583 $) (-583 |#4|))))) (-494) (-717) (-756) (-976 |#1| |#2| |#3|)) (T -1191))
-((-3920 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1191 *5 *6 *7 *8)))) (-3920 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1191 *3 *4 *5 *6)))) (-3919 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1191 *5 *6 *7 *8)))) (-3919 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1191 *3 *4 *5 *6)))) (-3918 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-976 *6 *7 *8)) (-4 *6 (-494)) (-4 *7 (-717)) (-4 *8 (-756)) (-5 *2 (-583 (-1191 *6 *7 *8 *9))) (-5 *1 (-1191 *6 *7 *8 *9)))) (-3918 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 (-1191 *4 *5 *6 *7))) (-5 *1 (-1191 *4 *5 *6 *7)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3718 (($) 22 T CONST)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#1|) 51 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 53 T ELT) (($ |#1| $) 52 T ELT)))
-(((-1192 |#1|) (-113) (-961)) (T -1192))
-NIL
-(-13 (-961) (-82 |t#1| |t#1|) (-555 |t#1|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 (-483)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-663) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T))
-((-2564 (((-85) $ $) 69 T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3928 (((-583 |#1|) $) 54 T ELT)) (-3941 (($ $ (-694)) 47 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3929 (($ $ (-694)) 25 (|has| |#2| (-146)) ELT) (($ $ $) 26 (|has| |#2| (-146)) ELT)) (-3718 (($) NIL T CONST)) (-3933 (($ $ $) 72 T ELT) (($ $ (-739 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-3152 (((-3 (-739 |#1|) #1#) $) NIL T ELT)) (-3151 (((-739 |#1|) $) NIL T ELT)) (-3953 (($ $) 40 T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3945 (((-85) $) NIL T ELT)) (-3944 (($ $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2416 (((-694) $) NIL T ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3932 (($ (-739 |#1|) |#2|) 39 T ELT)) (-3930 (($ $) 41 T ELT)) (-3935 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) 13 T ELT)) (-3949 (((-739 |#1|) $) NIL T ELT)) (-3950 (((-739 |#1|) $) 42 T ELT)) (-3952 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3934 (($ $ $) 71 T ELT) (($ $ (-739 |#1|)) 60 T ELT) (($ $ |#1|) 64 T ELT)) (-1746 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2890 (((-739 |#1|) $) 36 T ELT)) (-3169 ((|#2| $) 38 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3942 (((-694) $) 44 T ELT)) (-3947 (((-85) $) 48 T ELT)) (-3946 ((|#2| $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-739 |#1|)) 31 T ELT) (($ |#1|) 32 T ELT) (($ |#2|) NIL T ELT) (($ (-483)) NIL T ELT)) (-3811 (((-583 |#2|) $) NIL T ELT)) (-3671 ((|#2| $ (-739 |#1|)) NIL T ELT)) (-3948 ((|#2| $ $) 78 T ELT) ((|#2| $ (-739 |#1|)) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 14 T CONST)) (-2662 (($) 20 T CONST)) (-2661 (((-583 (-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3052 (((-85) $ $) 45 T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 29 T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ |#2| $) 28 T ELT) (($ $ |#2|) 70 T ELT) (($ |#2| (-739 |#1|)) NIL T ELT) (($ |#1| $) 34 T ELT) (($ $ $) NIL T ELT)))
-(((-1193 |#1| |#2|) (-13 (-332 |#2| (-739 |#1|)) (-1200 |#1| |#2|)) (-756) (-961)) (T -1193))
-NIL
-((-3936 ((|#3| |#3| (-694)) 28 T ELT)) (-3937 ((|#3| |#3| (-694)) 34 T ELT)) (-3921 ((|#3| |#3| |#3| (-694)) 35 T ELT)))
-(((-1194 |#1| |#2| |#3|) (-10 -7 (-15 -3937 (|#3| |#3| (-694))) (-15 -3936 (|#3| |#3| (-694))) (-15 -3921 (|#3| |#3| |#3| (-694)))) (-13 (-961) (-654 (-347 (-483)))) (-756) (-1200 |#2| |#1|)) (T -1194))
-((-3921 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-347 (-483))))) (-4 *5 (-756)) (-5 *1 (-1194 *4 *5 *2)) (-4 *2 (-1200 *5 *4)))) (-3936 (*1 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-347 (-483))))) (-4 *5 (-756)) (-5 *1 (-1194 *4 *5 *2)) (-4 *2 (-1200 *5 *4)))) (-3937 (*1 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-347 (-483))))) (-4 *5 (-756)) (-5 *1 (-1194 *4 *5 *2)) (-4 *2 (-1200 *5 *4)))))
-((-3926 (((-85) $) 15 T ELT)) (-3927 (((-85) $) 14 T ELT)) (-3922 (($ $) 19 T ELT) (($ $ (-694)) 21 T ELT)))
-(((-1195 |#1| |#2|) (-10 -7 (-15 -3922 (|#1| |#1| (-694))) (-15 -3922 (|#1| |#1|)) (-15 -3926 ((-85) |#1|)) (-15 -3927 ((-85) |#1|))) (-1196 |#2|) (-311)) (T -1195))
-NIL
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-2060 (((-2 (|:| -1769 $) (|:| -3976 $) (|:| |associate| $)) $) 53 T ELT)) (-2059 (($ $) 52 T ELT)) (-2057 (((-85) $) 50 T ELT)) (-3926 (((-85) $) 112 T ELT)) (-3923 (((-694)) 108 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3769 (($ $) 89 T ELT)) (-3965 (((-345 $) $) 88 T ELT)) (-1605 (((-85) $ $) 73 T ELT)) (-3718 (($) 22 T CONST)) (-3152 (((-3 |#1| "failed") $) 119 T ELT)) (-3151 ((|#1| $) 120 T ELT)) (-2560 (($ $ $) 69 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-2559 (($ $ $) 70 T ELT)) (-2737 (((-2 (|:| -3948 (-583 $)) (|:| -2405 $)) (-583 $)) 64 T ELT)) (-1761 (($ $ (-694)) 105 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT) (($ $) 104 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3717 (((-85) $) 87 T ELT)) (-3766 (((-743 (-830)) $) 102 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-2406 (((-85) $) 42 T ELT)) (-1602 (((-3 (-583 $) #1="failed") (-583 $) $) 66 T ELT)) (-1888 (($ $ $) 58 T ELT) (($ (-583 $)) 57 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-2480 (($ $) 86 T ELT)) (-3925 (((-85) $) 111 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-2704 (((-1083 $) (-1083 $) (-1083 $)) 56 T ELT)) (-3139 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3726 (((-345 $) $) 90 T ELT)) (-3924 (((-743 (-830))) 109 T ELT)) (-1603 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2405 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3460 (((-3 $ "failed") $ $) 54 T ELT)) (-2736 (((-632 (-583 $)) (-583 $) $) 63 T ELT)) (-1604 (((-694) $) 72 T ELT)) (-2875 (((-2 (|:| -1970 $) (|:| -2898 $)) $ $) 71 T ELT)) (-1762 (((-3 (-694) "failed") $ $) 103 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3905 (((-107)) 117 T ELT)) (-3942 (((-743 (-830)) $) 110 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-483))) 82 T ELT) (($ |#1|) 118 T ELT)) (-2698 (((-632 $) $) 101 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2058 (((-85) $ $) 51 T ELT)) (-3927 (((-85) $) 113 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3922 (($ $) 107 (|has| |#1| (-317)) ELT) (($ $ (-694)) 106 (|has| |#1| (-317)) ELT)) (-3052 (((-85) $ $) 8 T ELT)) (-3943 (($ $ $) 81 T ELT) (($ $ |#1|) 116 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT) (($ $ (-483)) 85 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-483))) 84 T ELT) (($ (-347 (-483)) $) 83 T ELT) (($ $ |#1|) 115 T ELT) (($ |#1| $) 114 T ELT)))
-(((-1196 |#1|) (-113) (-311)) (T -1196))
-((-3927 (*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-311)) (-5 *2 (-85)))) (-3926 (*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-311)) (-5 *2 (-85)))) (-3925 (*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-311)) (-5 *2 (-85)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-311)) (-5 *2 (-743 (-830))))) (-3924 (*1 *2) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-311)) (-5 *2 (-743 (-830))))) (-3923 (*1 *2) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-311)) (-5 *2 (-694)))) (-3922 (*1 *1 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-311)) (-4 *2 (-317)))) (-3922 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1196 *3)) (-4 *3 (-311)) (-4 *3 (-317)))))
-(-13 (-311) (-950 |t#1|) (-1185 |t#1|) (-10 -8 (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-342)) |%noBranch|) (-15 -3927 ((-85) $)) (-15 -3926 ((-85) $)) (-15 -3925 ((-85) $)) (-15 -3942 ((-743 (-830)) $)) (-15 -3924 ((-743 (-830)))) (-15 -3923 ((-694))) (IF (|has| |t#1| (-317)) (PROGN (-6 (-342)) (-15 -3922 ($ $)) (-15 -3922 ($ $ (-694)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-483))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-483)) (-347 (-483))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-317)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-555 (-347 (-483))) . T) ((-555 (-483)) . T) ((-555 |#1|) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-201) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-342) OR (|has| |#1| (-317)) (|has| |#1| (-118))) ((-389) . T) ((-494) . T) ((-13) . T) ((-588 (-347 (-483))) . T) ((-588 (-483)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-347 (-483))) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-347 (-483))) . T) ((-582 |#1|) . T) ((-582 $) . T) ((-654 (-347 (-483))) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-950 |#1|) . T) ((-963 (-347 (-483))) . T) ((-963 |#1|) . T) ((-963 $) . T) ((-968 (-347 (-483))) . T) ((-968 |#1|) . T) ((-968 $) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1132) . T) ((-1185 |#1|) . T))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3928 (((-583 |#1|) $) 53 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3929 (($ $ $) 56 (|has| |#2| (-146)) ELT) (($ $ (-694)) 55 (|has| |#2| (-146)) ELT)) (-3718 (($) 22 T CONST)) (-3933 (($ $ |#1|) 67 T ELT) (($ $ (-739 |#1|)) 66 T ELT) (($ $ $) 65 T ELT)) (-3152 (((-3 (-739 |#1|) "failed") $) 77 T ELT)) (-3151 (((-739 |#1|) $) 78 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3945 (((-85) $) 58 T ELT)) (-3944 (($ $) 57 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3931 (((-85) $) 63 T ELT)) (-3932 (($ (-739 |#1|) |#2|) 64 T ELT)) (-3930 (($ $) 62 T ELT)) (-3935 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) 73 T ELT)) (-3949 (((-739 |#1|) $) 74 T ELT)) (-3952 (($ (-1 |#2| |#2|) $) 54 T ELT)) (-3934 (($ $ |#1|) 70 T ELT) (($ $ (-739 |#1|)) 69 T ELT) (($ $ $) 68 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3947 (((-85) $) 60 T ELT)) (-3946 ((|#2| $) 59 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#2|) 81 T ELT) (($ (-739 |#1|)) 76 T ELT) (($ |#1|) 61 T ELT)) (-3948 ((|#2| $ (-739 |#1|)) 72 T ELT) ((|#2| $ $) 71 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#2| $) 80 T ELT) (($ $ |#2|) 79 T ELT) (($ |#1| $) 75 T ELT)))
-(((-1197 |#1| |#2|) (-113) (-756) (-961)) (T -1197))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-739 *3)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-2 (|:| |k| (-739 *3)) (|:| |c| *4))))) (-3948 (*1 *2 *1 *3) (-12 (-5 *3 (-739 *4)) (-4 *1 (-1197 *4 *2)) (-4 *4 (-756)) (-4 *2 (-961)))) (-3948 (*1 *2 *1 *1) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961)))) (-3934 (*1 *1 *1 *2) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3934 (*1 *1 *1 *2) (-12 (-5 *2 (-739 *3)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))) (-3934 (*1 *1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3933 (*1 *1 *1 *2) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3933 (*1 *1 *1 *2) (-12 (-5 *2 (-739 *3)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))) (-3933 (*1 *1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3932 (*1 *1 *2 *3) (-12 (-5 *2 (-739 *4)) (-4 *4 (-756)) (-4 *1 (-1197 *4 *3)) (-4 *3 (-961)))) (-3931 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85)))) (-3930 (*1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3940 (*1 *1 *2) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3947 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85)))) (-3946 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961)))) (-3945 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85)))) (-3944 (*1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3929 (*1 *1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)) (-4 *3 (-146)))) (-3929 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-4 *4 (-146)))) (-3952 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))) (-3928 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-583 *3)))))
-(-13 (-961) (-1192 |t#2|) (-950 (-739 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3949 ((-739 |t#1|) $)) (-15 -3935 ((-2 (|:| |k| (-739 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3948 (|t#2| $ (-739 |t#1|))) (-15 -3948 (|t#2| $ $)) (-15 -3934 ($ $ |t#1|)) (-15 -3934 ($ $ (-739 |t#1|))) (-15 -3934 ($ $ $)) (-15 -3933 ($ $ |t#1|)) (-15 -3933 ($ $ (-739 |t#1|))) (-15 -3933 ($ $ $)) (-15 -3932 ($ (-739 |t#1|) |t#2|)) (-15 -3931 ((-85) $)) (-15 -3930 ($ $)) (-15 -3940 ($ |t#1|)) (-15 -3947 ((-85) $)) (-15 -3946 (|t#2| $)) (-15 -3945 ((-85) $)) (-15 -3944 ($ $)) (IF (|has| |t#2| (-146)) (PROGN (-15 -3929 ($ $ $)) (-15 -3929 ($ $ (-694)))) |%noBranch|) (-15 -3952 ($ (-1 |t#2| |t#2|) $)) (-15 -3928 ((-583 |t#1|) $)) (IF (|has| |t#2| (-6 -3982)) (-6 -3982) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-555 (-483)) . T) ((-555 (-739 |#1|)) . T) ((-555 |#2|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#2|) . T) ((-588 $) . T) ((-590 |#2|) . T) ((-590 $) . T) ((-582 |#2|) |has| |#2| (-146)) ((-654 |#2|) |has| |#2| (-146)) ((-663) . T) ((-950 (-739 |#1|)) . T) ((-963 |#2|) . T) ((-968 |#2|) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1192 |#2|) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3928 (((-583 |#1|) $) 99 T ELT)) (-3941 (($ $ (-694)) 103 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3929 (($ $ $) NIL (|has| |#2| (-146)) ELT) (($ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-3718 (($) NIL T CONST)) (-3933 (($ $ |#1|) NIL T ELT) (($ $ (-739 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3152 (((-3 (-739 |#1|) #1#) $) NIL T ELT) (((-3 (-803 |#1|) #1#) $) NIL T ELT)) (-3151 (((-739 |#1|) $) NIL T ELT) (((-803 |#1|) $) NIL T ELT)) (-3953 (($ $) 102 T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3945 (((-85) $) 90 T ELT)) (-3944 (($ $) 93 T ELT)) (-3938 (($ $ $ (-694)) 104 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2416 (((-694) $) NIL T ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3932 (($ (-739 |#1|) |#2|) NIL T ELT) (($ (-803 |#1|) |#2|) 28 T ELT)) (-3930 (($ $) 120 T ELT)) (-3935 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3949 (((-739 |#1|) $) NIL T ELT)) (-3950 (((-739 |#1|) $) NIL T ELT)) (-3952 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3934 (($ $ |#1|) NIL T ELT) (($ $ (-739 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3936 (($ $ (-694)) 113 (|has| |#2| (-654 (-347 (-483)))) ELT)) (-1746 (((-2 (|:| |k| (-803 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2890 (((-803 |#1|) $) 84 T ELT)) (-3169 ((|#2| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3937 (($ $ (-694)) 110 (|has| |#2| (-654 (-347 (-483)))) ELT)) (-3942 (((-694) $) 100 T ELT)) (-3947 (((-85) $) 85 T ELT)) (-3946 ((|#2| $) 88 T ELT)) (-3940 (((-772) $) 70 T ELT) (($ (-483)) NIL T ELT) (($ |#2|) 59 T ELT) (($ (-739 |#1|)) NIL T ELT) (($ |#1|) 72 T ELT) (($ (-803 |#1|)) NIL T ELT) (($ (-606 |#1| |#2|)) 47 T ELT) (((-1193 |#1| |#2|) $) 77 T ELT) (((-1202 |#1| |#2|) $) 82 T ELT)) (-3811 (((-583 |#2|) $) NIL T ELT)) (-3671 ((|#2| $ (-803 |#1|)) NIL T ELT)) (-3948 ((|#2| $ (-739 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 21 T CONST)) (-2662 (($) 27 T CONST)) (-2661 (((-583 (-2 (|:| |k| (-803 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3939 (((-3 (-606 |#1| |#2|) #1#) $) 119 T ELT)) (-3052 (((-85) $ $) 78 T ELT)) (-3831 (($ $) 112 T ELT) (($ $ $) 111 T ELT)) (-3833 (($ $ $) 20 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 48 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-803 |#1|)) NIL T ELT)))
-(((-1198 |#1| |#2|) (-13 (-1200 |#1| |#2|) (-332 |#2| (-803 |#1|)) (-10 -8 (-15 -3940 ($ (-606 |#1| |#2|))) (-15 -3940 ((-1193 |#1| |#2|) $)) (-15 -3940 ((-1202 |#1| |#2|) $)) (-15 -3939 ((-3 (-606 |#1| |#2|) "failed") $)) (-15 -3938 ($ $ $ (-694))) (IF (|has| |#2| (-654 (-347 (-483)))) (PROGN (-15 -3937 ($ $ (-694))) (-15 -3936 ($ $ (-694)))) |%noBranch|))) (-756) (-146)) (T -1198))
-((-3940 (*1 *1 *2) (-12 (-5 *2 (-606 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *1 (-1198 *3 *4)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-1193 *3 *4)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-1202 *3 *4)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3939 (*1 *2 *1) (|partial| -12 (-5 *2 (-606 *3 *4)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3938 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3937 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-1198 *3 *4)) (-4 *4 (-654 (-347 (-483)))) (-4 *3 (-756)) (-4 *4 (-146)))) (-3936 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-1198 *3 *4)) (-4 *4 (-654 (-347 (-483)))) (-4 *3 (-756)) (-4 *4 (-146)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3928 (((-583 (-1088)) $) NIL T ELT)) (-3956 (($ (-1193 (-1088) |#1|)) NIL T ELT)) (-3941 (($ $ (-694)) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3929 (($ $ $) NIL (|has| |#1| (-146)) ELT) (($ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-3718 (($) NIL T CONST)) (-3933 (($ $ (-1088)) NIL T ELT) (($ $ (-739 (-1088))) NIL T ELT) (($ $ $) NIL T ELT)) (-3152 (((-3 (-739 (-1088)) #1#) $) NIL T ELT)) (-3151 (((-739 (-1088)) $) NIL T ELT)) (-3461 (((-3 $ #1#) $) NIL T ELT)) (-3945 (((-85) $) NIL T ELT)) (-3944 (($ $) NIL T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3932 (($ (-739 (-1088)) |#1|) NIL T ELT)) (-3930 (($ $) NIL T ELT)) (-3935 (((-2 (|:| |k| (-739 (-1088))) (|:| |c| |#1|)) $) NIL T ELT)) (-3949 (((-739 (-1088)) $) NIL T ELT)) (-3950 (((-739 (-1088)) $) NIL T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3934 (($ $ (-1088)) NIL T ELT) (($ $ (-739 (-1088))) NIL T ELT) (($ $ $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3957 (((-1193 (-1088) |#1|) $) NIL T ELT)) (-3942 (((-694) $) NIL T ELT)) (-3947 (((-85) $) NIL T ELT)) (-3946 ((|#1| $) NIL T ELT)) (-3940 (((-772) $) NIL T ELT) (($ (-483)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-739 (-1088))) NIL T ELT) (($ (-1088)) NIL T ELT)) (-3948 ((|#1| $ (-739 (-1088))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-3121 (((-694)) NIL T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) NIL T CONST)) (-3955 (((-583 (-2 (|:| |k| (-1088)) (|:| |c| $))) $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-3052 (((-85) $ $) NIL T ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1088) $) NIL T ELT)))
-(((-1199 |#1|) (-13 (-1200 (-1088) |#1|) (-10 -8 (-15 -3957 ((-1193 (-1088) |#1|) $)) (-15 -3956 ($ (-1193 (-1088) |#1|))) (-15 -3955 ((-583 (-2 (|:| |k| (-1088)) (|:| |c| $))) $)))) (-961)) (T -1199))
-((-3957 (*1 *2 *1) (-12 (-5 *2 (-1193 (-1088) *3)) (-5 *1 (-1199 *3)) (-4 *3 (-961)))) (-3956 (*1 *1 *2) (-12 (-5 *2 (-1193 (-1088) *3)) (-4 *3 (-961)) (-5 *1 (-1199 *3)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-1088)) (|:| |c| (-1199 *3))))) (-5 *1 (-1199 *3)) (-4 *3 (-961)))))
-((-2564 (((-85) $ $) 7 T ELT)) (-3183 (((-85) $) 21 T ELT)) (-3928 (((-583 |#1|) $) 53 T ELT)) (-3941 (($ $ (-694)) 87 T ELT)) (-1309 (((-3 $ "failed") $ $) 25 T ELT)) (-3929 (($ $ $) 56 (|has| |#2| (-146)) ELT) (($ $ (-694)) 55 (|has| |#2| (-146)) ELT)) (-3718 (($) 22 T CONST)) (-3933 (($ $ |#1|) 67 T ELT) (($ $ (-739 |#1|)) 66 T ELT) (($ $ $) 65 T ELT)) (-3152 (((-3 (-739 |#1|) "failed") $) 77 T ELT)) (-3151 (((-739 |#1|) $) 78 T ELT)) (-3461 (((-3 $ "failed") $) 40 T ELT)) (-3945 (((-85) $) 58 T ELT)) (-3944 (($ $) 57 T ELT)) (-2406 (((-85) $) 42 T ELT)) (-3931 (((-85) $) 63 T ELT)) (-3932 (($ (-739 |#1|) |#2|) 64 T ELT)) (-3930 (($ $) 62 T ELT)) (-3935 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) 73 T ELT)) (-3949 (((-739 |#1|) $) 74 T ELT)) (-3950 (((-739 |#1|) $) 89 T ELT)) (-3952 (($ (-1 |#2| |#2|) $) 54 T ELT)) (-3934 (($ $ |#1|) 70 T ELT) (($ $ (-739 |#1|)) 69 T ELT) (($ $ $) 68 T ELT)) (-3237 (((-1071) $) 11 T ELT)) (-3238 (((-1032) $) 12 T ELT)) (-3942 (((-694) $) 88 T ELT)) (-3947 (((-85) $) 60 T ELT)) (-3946 ((|#2| $) 59 T ELT)) (-3940 (((-772) $) 13 T ELT) (($ (-483)) 39 T ELT) (($ |#2|) 81 T ELT) (($ (-739 |#1|)) 76 T ELT) (($ |#1|) 61 T ELT)) (-3948 ((|#2| $ (-739 |#1|)) 72 T ELT) ((|#2| $ $) 71 T ELT)) (-3121 (((-694)) 38 T CONST)) (-1262 (((-85) $ $) 6 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 43 T CONST)) (-3052 (((-85) $ $) 8 T ELT)) (-3831 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3833 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 33 T ELT) (($ $ (-694)) 41 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 20 T ELT) (($ (-483) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#2| $) 80 T ELT) (($ $ |#2|) 79 T ELT) (($ |#1| $) 75 T ELT)))
-(((-1200 |#1| |#2|) (-113) (-756) (-961)) (T -1200))
-((-3950 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-739 *3)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-694)))) (-3941 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))))
-(-13 (-1197 |t#1| |t#2|) (-10 -8 (-15 -3950 ((-739 |t#1|) $)) (-15 -3942 ((-694) $)) (-15 -3941 ($ $ (-694)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-555 (-483)) . T) ((-555 (-739 |#1|)) . T) ((-555 |#2|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-483)) . T) ((-588 |#2|) . T) ((-588 $) . T) ((-590 |#2|) . T) ((-590 $) . T) ((-582 |#2|) |has| |#2| (-146)) ((-654 |#2|) |has| |#2| (-146)) ((-663) . T) ((-950 (-739 |#1|)) . T) ((-963 |#2|) . T) ((-968 |#2|) . T) ((-961) . T) ((-969) . T) ((-1024) . T) ((-1059) . T) ((-1012) . T) ((-1127) . T) ((-1192 |#2|) . T) ((-1197 |#1| |#2|) . T))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) NIL T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3718 (($) NIL T CONST)) (-3152 (((-3 |#2| #1#) $) NIL T ELT)) (-3151 ((|#2| $) NIL T ELT)) (-3953 (($ $) NIL T ELT)) (-3461 (((-3 $ #1#) $) 43 T ELT)) (-3945 (((-85) $) 37 T ELT)) (-3944 (($ $) 38 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-2416 (((-694) $) NIL T ELT)) (-2817 (((-583 $) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3932 (($ |#2| |#1|) NIL T ELT)) (-3949 ((|#2| $) 25 T ELT)) (-3950 ((|#2| $) 23 T ELT)) (-3952 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1746 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-2890 ((|#2| $) NIL T ELT)) (-3169 ((|#1| $) NIL T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3947 (((-85) $) 33 T ELT)) (-3946 ((|#1| $) 34 T ELT)) (-3940 (((-772) $) 66 T ELT) (($ (-483)) 47 T ELT) (($ |#1|) 42 T ELT) (($ |#2|) NIL T ELT)) (-3811 (((-583 |#1|) $) NIL T ELT)) (-3671 ((|#1| $ |#2|) NIL T ELT)) (-3948 ((|#1| $ |#2|) 29 T ELT)) (-3121 (((-694)) 14 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 30 T CONST)) (-2662 (($) 11 T CONST)) (-2661 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-3052 (((-85) $ $) 31 T ELT)) (-3943 (($ $ |#1|) 68 (|has| |#1| (-311)) ELT)) (-3831 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3833 (($ $ $) 51 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 53 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) NIL T ELT) (($ $ $) 52 T ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-3951 (((-694) $) 18 T ELT)))
-(((-1201 |#1| |#2|) (-13 (-961) (-1192 |#1|) (-332 |#1| |#2|) (-555 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3951 ((-694) $)) (-15 -3950 (|#2| $)) (-15 -3949 (|#2| $)) (-15 -3953 ($ $)) (-15 -3948 (|#1| $ |#2|)) (-15 -3947 ((-85) $)) (-15 -3946 (|#1| $)) (-15 -3945 ((-85) $)) (-15 -3944 ($ $)) (-15 -3952 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-311)) (-15 -3943 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -3982)) (-6 -3982) |%noBranch|) (IF (|has| |#1| (-6 -3986)) (-6 -3986) |%noBranch|) (IF (|has| |#1| (-6 -3987)) (-6 -3987) |%noBranch|))) (-961) (-754)) (T -1201))
-((* (*1 *1 *1 *2) (-12 (-5 *1 (-1201 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754)))) (-3953 (*1 *1 *1) (-12 (-5 *1 (-1201 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754)))) (-3952 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-1201 *3 *4)) (-4 *4 (-754)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754)))) (-3950 (*1 *2 *1) (-12 (-4 *2 (-754)) (-5 *1 (-1201 *3 *2)) (-4 *3 (-961)))) (-3949 (*1 *2 *1) (-12 (-4 *2 (-754)) (-5 *1 (-1201 *3 *2)) (-4 *3 (-961)))) (-3948 (*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-1201 *2 *3)) (-4 *3 (-754)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754)))) (-3946 (*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-1201 *2 *3)) (-4 *3 (-754)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754)))) (-3944 (*1 *1 *1) (-12 (-5 *1 (-1201 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754)))) (-3943 (*1 *1 *1 *2) (-12 (-5 *1 (-1201 *2 *3)) (-4 *2 (-311)) (-4 *2 (-961)) (-4 *3 (-754)))))
-((-2564 (((-85) $ $) 27 T ELT)) (-3183 (((-85) $) NIL T ELT)) (-3928 (((-583 |#1|) $) 132 T ELT)) (-3956 (($ (-1193 |#1| |#2|)) 50 T ELT)) (-3941 (($ $ (-694)) 38 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3929 (($ $ $) 54 (|has| |#2| (-146)) ELT) (($ $ (-694)) 52 (|has| |#2| (-146)) ELT)) (-3718 (($) NIL T CONST)) (-3933 (($ $ |#1|) 114 T ELT) (($ $ (-739 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-3152 (((-3 (-739 |#1|) #1#) $) NIL T ELT)) (-3151 (((-739 |#1|) $) NIL T ELT)) (-3461 (((-3 $ #1#) $) 122 T ELT)) (-3945 (((-85) $) 117 T ELT)) (-3944 (($ $) 118 T ELT)) (-2406 (((-85) $) NIL T ELT)) (-3931 (((-85) $) NIL T ELT)) (-3932 (($ (-739 |#1|) |#2|) 20 T ELT)) (-3930 (($ $) NIL T ELT)) (-3935 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3949 (((-739 |#1|) $) 123 T ELT)) (-3950 (((-739 |#1|) $) 126 T ELT)) (-3952 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-3934 (($ $ |#1|) 112 T ELT) (($ $ (-739 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3957 (((-1193 |#1| |#2|) $) 94 T ELT)) (-3942 (((-694) $) 129 T ELT)) (-3947 (((-85) $) 81 T ELT)) (-3946 ((|#2| $) 32 T ELT)) (-3940 (((-772) $) 73 T ELT) (($ (-483)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-739 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-3948 ((|#2| $ (-739 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-3121 (((-694)) 120 T CONST)) (-1262 (((-85) $ $) NIL T ELT)) (-2656 (($) 15 T CONST)) (-3955 (((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-2662 (($) 33 T CONST)) (-3052 (((-85) $ $) 14 T ELT)) (-3831 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-3833 (($ $ $) 61 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 55 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) 53 T ELT) (($ (-483) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT)))
-(((-1202 |#1| |#2|) (-13 (-1200 |#1| |#2|) (-10 -8 (-15 -3957 ((-1193 |#1| |#2|) $)) (-15 -3956 ($ (-1193 |#1| |#2|))) (-15 -3955 ((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-756) (-961)) (T -1202))
-((-3957 (*1 *2 *1) (-12 (-5 *2 (-1193 *3 *4)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))) (-3956 (*1 *1 *2) (-12 (-5 *2 (-1193 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *1 (-1202 *3 *4)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| *3) (|:| |c| (-1202 *3 *4))))) (-5 *1 (-1202 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3959 (($ (-583 (-830))) 11 T ELT)) (-3958 (((-884) $) 12 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3940 (((-772) $) 25 T ELT) (($ (-884)) 14 T ELT) (((-884) $) 13 T ELT)) (-1262 (((-85) $ $) NIL T ELT)) (-3052 (((-85) $ $) 17 T ELT)))
-(((-1203) (-13 (-1012) (-427 (-884)) (-10 -8 (-15 -3959 ($ (-583 (-830)))) (-15 -3958 ((-884) $))))) (T -1203))
-((-3959 (*1 *1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1203)))) (-3958 (*1 *2 *1) (-12 (-5 *2 (-884)) (-5 *1 (-1203)))))
-((-3960 (((-583 (-1067 |#1|)) (-1 (-583 (-1067 |#1|)) (-583 (-1067 |#1|))) (-483)) 16 T ELT) (((-1067 |#1|) (-1 (-1067 |#1|) (-1067 |#1|))) 13 T ELT)))
-(((-1204 |#1|) (-10 -7 (-15 -3960 ((-1067 |#1|) (-1 (-1067 |#1|) (-1067 |#1|)))) (-15 -3960 ((-583 (-1067 |#1|)) (-1 (-583 (-1067 |#1|)) (-583 (-1067 |#1|))) (-483)))) (-1127)) (T -1204))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 (-1067 *5)) (-583 (-1067 *5)))) (-5 *4 (-483)) (-5 *2 (-583 (-1067 *5))) (-5 *1 (-1204 *5)) (-4 *5 (-1127)))) (-3960 (*1 *2 *3) (-12 (-5 *3 (-1 (-1067 *4) (-1067 *4))) (-5 *2 (-1067 *4)) (-5 *1 (-1204 *4)) (-4 *4 (-1127)))))
-((-3962 (((-583 (-2 (|:| -1744 (-1083 |#1|)) (|:| -3219 (-583 (-857 |#1|))))) (-583 (-857 |#1|))) 174 T ELT) (((-583 (-2 (|:| -1744 (-1083 |#1|)) (|:| -3219 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85)) 173 T ELT) (((-583 (-2 (|:| -1744 (-1083 |#1|)) (|:| -3219 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85)) 172 T ELT) (((-583 (-2 (|:| -1744 (-1083 |#1|)) (|:| -3219 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85) (-85)) 171 T ELT) (((-583 (-2 (|:| -1744 (-1083 |#1|)) (|:| -3219 (-583 (-857 |#1|))))) (-958 |#1| |#2|)) 156 T ELT)) (-3961 (((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|))) 85 T ELT) (((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|)) (-85)) 84 T ELT) (((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|)) (-85) (-85)) 83 T ELT)) (-3965 (((-583 (-1058 |#1| (-468 (-773 |#3|)) (-773 |#3|) (-703 |#1| (-773 |#3|)))) (-958 |#1| |#2|)) 73 T ELT)) (-3963 (((-583 (-583 (-937 (-347 |#1|)))) (-583 (-857 |#1|))) 140 T ELT) (((-583 (-583 (-937 (-347 |#1|)))) (-583 (-857 |#1|)) (-85)) 139 T ELT) (((-583 (-583 (-937 (-347 |#1|)))) (-583 (-857 |#1|)) (-85) (-85)) 138 T ELT) (((-583 (-583 (-937 (-347 |#1|)))) (-583 (-857 |#1|)) (-85) (-85) (-85)) 137 T ELT) (((-583 (-583 (-937 (-347 |#1|)))) (-958 |#1| |#2|)) 132 T ELT)) (-3964 (((-583 (-583 (-937 (-347 |#1|)))) (-583 (-857 |#1|))) 145 T ELT) (((-583 (-583 (-937 (-347 |#1|)))) (-583 (-857 |#1|)) (-85)) 144 T ELT) (((-583 (-583 (-937 (-347 |#1|)))) (-583 (-857 |#1|)) (-85) (-85)) 143 T ELT) (((-583 (-583 (-937 (-347 |#1|)))) (-958 |#1| |#2|)) 142 T ELT)) (-3966 (((-583 (-703 |#1| (-773 |#3|))) (-1058 |#1| (-468 (-773 |#3|)) (-773 |#3|) (-703 |#1| (-773 |#3|)))) 111 T ELT) (((-1083 (-937 (-347 |#1|))) (-1083 |#1|)) 102 T ELT) (((-857 (-937 (-347 |#1|))) (-703 |#1| (-773 |#3|))) 109 T ELT) (((-857 (-937 (-347 |#1|))) (-857 |#1|)) 107 T ELT) (((-703 |#1| (-773 |#3|)) (-703 |#1| (-773 |#2|))) 33 T ELT)))
-(((-1205 |#1| |#2| |#3|) (-10 -7 (-15 -3961 ((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|)) (-85) (-85))) (-15 -3961 ((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|)) (-85))) (-15 -3961 ((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|)))) (-15 -3962 ((-583 (-2 (|:| -1744 (-1083 |#1|)) (|:| -3219 (-583 (-857 |#1|))))) (-958 |#1| |#2|))) (-15 -3962 ((-583 (-2 (|:| -1744 (-1083 |#1|)) (|:| -3219 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85) (-85))) (-15 -3962 ((-583 (-2 (|:| -1744 (-1083 |#1|)) (|:| -3219 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85))) (-15 -3962 ((-583 (-2 (|:| -1744 (-1083 |#1|)) (|:| -3219 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85))) (-15 -3962 ((-583 (-2 (|:| -1744 (-1083 |#1|)) (|:| -3219 (-583 (-857 |#1|))))) (-583 (-857 |#1|)))) (-15 -3963 ((-583 (-583 (-937 (-347 |#1|)))) (-958 |#1| |#2|))) (-15 -3963 ((-583 (-583 (-937 (-347 |#1|)))) (-583 (-857 |#1|)) (-85) (-85) (-85))) (-15 -3963 ((-583 (-583 (-937 (-347 |#1|)))) (-583 (-857 |#1|)) (-85) (-85))) (-15 -3963 ((-583 (-583 (-937 (-347 |#1|)))) (-583 (-857 |#1|)) (-85))) (-15 -3963 ((-583 (-583 (-937 (-347 |#1|)))) (-583 (-857 |#1|)))) (-15 -3964 ((-583 (-583 (-937 (-347 |#1|)))) (-958 |#1| |#2|))) (-15 -3964 ((-583 (-583 (-937 (-347 |#1|)))) (-583 (-857 |#1|)) (-85) (-85))) (-15 -3964 ((-583 (-583 (-937 (-347 |#1|)))) (-583 (-857 |#1|)) (-85))) (-15 -3964 ((-583 (-583 (-937 (-347 |#1|)))) (-583 (-857 |#1|)))) (-15 -3965 ((-583 (-1058 |#1| (-468 (-773 |#3|)) (-773 |#3|) (-703 |#1| (-773 |#3|)))) (-958 |#1| |#2|))) (-15 -3966 ((-703 |#1| (-773 |#3|)) (-703 |#1| (-773 |#2|)))) (-15 -3966 ((-857 (-937 (-347 |#1|))) (-857 |#1|))) (-15 -3966 ((-857 (-937 (-347 |#1|))) (-703 |#1| (-773 |#3|)))) (-15 -3966 ((-1083 (-937 (-347 |#1|))) (-1083 |#1|))) (-15 -3966 ((-583 (-703 |#1| (-773 |#3|))) (-1058 |#1| (-468 (-773 |#3|)) (-773 |#3|) (-703 |#1| (-773 |#3|)))))) (-13 (-755) (-257) (-120) (-933)) (-583 (-1088)) (-583 (-1088))) (T -1205))
-((-3966 (*1 *2 *3) (-12 (-5 *3 (-1058 *4 (-468 (-773 *6)) (-773 *6) (-703 *4 (-773 *6)))) (-4 *4 (-13 (-755) (-257) (-120) (-933))) (-14 *6 (-583 (-1088))) (-5 *2 (-583 (-703 *4 (-773 *6)))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-583 (-1088))))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-1083 *4)) (-4 *4 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-1083 (-937 (-347 *4)))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-583 (-1088))) (-14 *6 (-583 (-1088))))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-703 *4 (-773 *6))) (-4 *4 (-13 (-755) (-257) (-120) (-933))) (-14 *6 (-583 (-1088))) (-5 *2 (-857 (-937 (-347 *4)))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-583 (-1088))))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-857 *4)) (-4 *4 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-857 (-937 (-347 *4)))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-583 (-1088))) (-14 *6 (-583 (-1088))))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-703 *4 (-773 *5))) (-4 *4 (-13 (-755) (-257) (-120) (-933))) (-14 *5 (-583 (-1088))) (-5 *2 (-703 *4 (-773 *6))) (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-583 (-1088))))) (-3965 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-257) (-120) (-933))) (-14 *5 (-583 (-1088))) (-5 *2 (-583 (-1058 *4 (-468 (-773 *6)) (-773 *6) (-703 *4 (-773 *6))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-583 (-1088))))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-347 *4))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-583 (-1088))) (-14 *6 (-583 (-1088))))) (-3964 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-347 *5))))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-583 (-1088))) (-14 *7 (-583 (-1088))))) (-3964 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-347 *5))))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-583 (-1088))) (-14 *7 (-583 (-1088))))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-257) (-120) (-933))) (-14 *5 (-583 (-1088))) (-5 *2 (-583 (-583 (-937 (-347 *4))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-583 (-1088))))) (-3963 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-347 *4))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-583 (-1088))) (-14 *6 (-583 (-1088))))) (-3963 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-347 *5))))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-583 (-1088))) (-14 *7 (-583 (-1088))))) (-3963 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-347 *5))))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-583 (-1088))) (-14 *7 (-583 (-1088))))) (-3963 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-347 *5))))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-583 (-1088))) (-14 *7 (-583 (-1088))))) (-3963 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-257) (-120) (-933))) (-14 *5 (-583 (-1088))) (-5 *2 (-583 (-583 (-937 (-347 *4))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-583 (-1088))))) (-3962 (*1 *2 *3) (-12 (-4 *4 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-583 (-2 (|:| -1744 (-1083 *4)) (|:| -3219 (-583 (-857 *4)))))) (-5 *1 (-1205 *4 *5 *6)) (-5 *3 (-583 (-857 *4))) (-14 *5 (-583 (-1088))) (-14 *6 (-583 (-1088))))) (-3962 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-583 (-2 (|:| -1744 (-1083 *5)) (|:| -3219 (-583 (-857 *5)))))) (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1088))) (-14 *7 (-583 (-1088))))) (-3962 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-583 (-2 (|:| -1744 (-1083 *5)) (|:| -3219 (-583 (-857 *5)))))) (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1088))) (-14 *7 (-583 (-1088))))) (-3962 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-583 (-2 (|:| -1744 (-1083 *5)) (|:| -3219 (-583 (-857 *5)))))) (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1088))) (-14 *7 (-583 (-1088))))) (-3962 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-257) (-120) (-933))) (-14 *5 (-583 (-1088))) (-5 *2 (-583 (-2 (|:| -1744 (-1083 *4)) (|:| -3219 (-583 (-857 *4)))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-583 (-1088))))) (-3961 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-583 (-958 *4 *5))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-583 (-1088))) (-14 *6 (-583 (-1088))))) (-3961 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-583 (-1088))) (-14 *7 (-583 (-1088))))) (-3961 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-583 (-1088))) (-14 *7 (-583 (-1088))))))
-((-3969 (((-3 (-1177 (-347 (-483))) #1="failed") (-1177 |#1|) |#1|) 21 T ELT)) (-3967 (((-85) (-1177 |#1|)) 12 T ELT)) (-3968 (((-3 (-1177 (-483)) #1#) (-1177 |#1|)) 16 T ELT)))
-(((-1206 |#1|) (-10 -7 (-15 -3967 ((-85) (-1177 |#1|))) (-15 -3968 ((-3 (-1177 (-483)) #1="failed") (-1177 |#1|))) (-15 -3969 ((-3 (-1177 (-347 (-483))) #1#) (-1177 |#1|) |#1|))) (-13 (-961) (-580 (-483)))) (T -1206))
-((-3969 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1177 *4)) (-4 *4 (-13 (-961) (-580 (-483)))) (-5 *2 (-1177 (-347 (-483)))) (-5 *1 (-1206 *4)))) (-3968 (*1 *2 *3) (|partial| -12 (-5 *3 (-1177 *4)) (-4 *4 (-13 (-961) (-580 (-483)))) (-5 *2 (-1177 (-483))) (-5 *1 (-1206 *4)))) (-3967 (*1 *2 *3) (-12 (-5 *3 (-1177 *4)) (-4 *4 (-13 (-961) (-580 (-483)))) (-5 *2 (-85)) (-5 *1 (-1206 *4)))))
-((-2564 (((-85) $ $) NIL T ELT)) (-3183 (((-85) $) 12 T ELT)) (-1309 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3131 (((-694)) 9 T ELT)) (-3718 (($) NIL T CONST)) (-3461 (((-3 $ #1#) $) 57 T ELT)) (-2990 (($) 46 T ELT)) (-2406 (((-85) $) 38 T ELT)) (-3439 (((-632 $) $) 36 T ELT)) (-2006 (((-830) $) 14 T ELT)) (-3237 (((-1071) $) NIL T ELT)) (-3440 (($) 26 T CONST)) (-2396 (($ (-830)) 47 T ELT)) (-3238 (((-1032) $) NIL T ELT)) (-3966 (((-483) $) 16 T ELT)) (-3940 (((-772) $) 21 T ELT) (($ (-483)) 18 T ELT)) (-3121 (((-694)) 10 T CONST)) (-1262 (((-85) $ $) 59 T ELT)) (-2656 (($) 23 T CONST)) (-2662 (($) 25 T CONST)) (-3052 (((-85) $ $) 31 T ELT)) (-3831 (($ $) 50 T ELT) (($ $ $) 44 T ELT)) (-3833 (($ $ $) 29 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 52 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-483) $) 41 T ELT) (($ $ $) 40 T ELT)))
-(((-1207 |#1|) (-13 (-146) (-317) (-553 (-483)) (-1064)) (-830)) (T -1207))
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-((-3 2804797 2804802 2804807 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 2804782 2804787 2804792 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 2804767 2804772 2804777 NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 2804752 2804757 2804762 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1207 2803795 2804670 2804747 "ZMOD" NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1206 2803010 2803189 2803408 "ZLINDEP" NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1205 2794169 2796038 2797972 "ZDSOLVE" NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1204 2793557 2793710 2793899 "YSTREAM" NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1203 2793019 2793322 2793435 "YDIAGRAM" NIL YDIAGRAM (NIL) -8 NIL NIL NIL) (-1202 2790643 2792481 2792684 "XRPOLY" NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1201 2787471 2789060 2789631 "XPR" NIL XPR (NIL T T) -8 NIL NIL NIL) (-1200 2784790 2786458 2786512 "XPOLYC" 2786797 XPOLYC (NIL T T) -9 NIL 2786910 NIL) (-1199 2782373 2784294 2784497 "XPOLY" NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1198 2778685 2781232 2781620 "XPBWPOLY" NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1197 2773594 2775165 2775219 "XFALG" 2777364 XFALG (NIL T T) -9 NIL 2778148 NIL) (-1196 2768812 2771483 2771525 "XF" 2772143 XF (NIL T) -9 NIL 2772539 NIL) (-1195 2768530 2768640 2768807 "XF-" NIL XF- (NIL T T) -7 NIL NIL NIL) (-1194 2767757 2767879 2768083 "XEXPPKG" NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1193 2765563 2767657 2767752 "XDPOLY" NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1192 2764206 2764939 2764981 "XALG" 2764986 XALG (NIL T) -9 NIL 2765095 NIL) (-1191 2757763 2762616 2763094 "WUTSET" NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1190 2756070 2757008 2757329 "WP" NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1189 2755669 2755941 2756010 "WHILEAST" NIL WHILEAST (NIL) -8 NIL NIL NIL) (-1188 2755156 2755459 2755552 "WHEREAST" NIL WHEREAST (NIL) -8 NIL NIL NIL) (-1187 2754233 2754443 2754738 "WFFINTBS" NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1186 2752529 2752992 2753454 "WEIER" NIL WEIER (NIL T) -7 NIL NIL NIL) (-1185 2751449 2752003 2752045 "VSPACE" 2752181 VSPACE (NIL T) -9 NIL 2752255 NIL) (-1184 2751320 2751353 2751444 "VSPACE-" NIL VSPACE- (NIL T T) -7 NIL NIL NIL) (-1183 2751163 2751217 2751285 "VOID" NIL VOID (NIL) -8 NIL NIL NIL) (-1182 2748146 2748941 2749678 "VIEWDEF" NIL VIEWDEF (NIL) -7 NIL NIL NIL) (-1181 2739244 2741845 2744018 "VIEW3D" NIL VIEW3D (NIL) -8 NIL NIL NIL) (-1180 2732821 2734712 2736291 "VIEW2D" NIL VIEW2D (NIL) -8 NIL NIL NIL) (-1179 2731305 2731700 2732106 "VIEW" NIL VIEW (NIL) -7 NIL NIL NIL) (-1178 2730132 2730413 2730729 "VECTOR2" NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1177 2725246 2729959 2730051 "VECTOR" NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1176 2718348 2722956 2722999 "VECTCAT" 2723987 VECTCAT (NIL T) -9 NIL 2724571 NIL) (-1175 2717627 2717953 2718343 "VECTCAT-" NIL VECTCAT- (NIL T T) -7 NIL NIL NIL) (-1174 2717121 2717363 2717483 "VARIABLE" NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1173 2717054 2717059 2717089 "UTYPE" 2717094 UTYPE (NIL) -9 NIL NIL NIL) (-1172 2716041 2716217 2716478 "UTSODETL" NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1171 2713892 2714400 2714924 "UTSODE" NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1170 2703836 2709744 2709786 "UTSCAT" 2710884 UTSCAT (NIL T) -9 NIL 2711641 NIL) (-1169 2701901 2702844 2703831 "UTSCAT-" NIL UTSCAT- (NIL T T) -7 NIL NIL NIL) (-1168 2701575 2701624 2701755 "UTS2" NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1167 2693350 2699771 2700250 "UTS" NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1166 2687345 2690158 2690201 "URAGG" 2692271 URAGG (NIL T) -9 NIL 2692993 NIL) (-1165 2685360 2686322 2687340 "URAGG-" NIL URAGG- (NIL T T) -7 NIL NIL NIL) (-1164 2681131 2684336 2684798 "UPXSSING" NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1163 2673624 2681055 2681126 "UPXSCONS" NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1162 2662337 2669762 2669823 "UPXSCCA" 2670391 UPXSCCA (NIL T T) -9 NIL 2670623 NIL) (-1161 2662058 2662160 2662332 "UPXSCCA-" NIL UPXSCCA- (NIL T T T) -7 NIL NIL NIL) (-1160 2650672 2657822 2657864 "UPXSCAT" 2658504 UPXSCAT (NIL T) -9 NIL 2659112 NIL) (-1159 2650185 2650270 2650447 "UPXS2" NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1158 2641935 2649776 2650038 "UPXS" NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1157 2640830 2641100 2641450 "UPSQFREE" NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1156 2633595 2637018 2637072 "UPSCAT" 2638141 UPSCAT (NIL T T) -9 NIL 2638905 NIL) (-1155 2633015 2633267 2633590 "UPSCAT-" NIL UPSCAT- (NIL T T T) -7 NIL NIL NIL) (-1154 2632689 2632738 2632869 "UPOLYC2" NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1153 2616883 2625773 2625815 "UPOLYC" 2627893 UPOLYC (NIL T) -9 NIL 2629113 NIL) (-1152 2610938 2613786 2616878 "UPOLYC-" NIL UPOLYC- (NIL T T) -7 NIL NIL NIL) (-1151 2610374 2610499 2610662 "UPMP" NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1150 2610008 2610095 2610234 "UPDIVP" NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1149 2608821 2609088 2609392 "UPDECOMP" NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1148 2608154 2608284 2608469 "UPCDEN" NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1147 2607746 2607821 2607968 "UP2" NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1146 2598574 2607512 2607640 "UP" NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1145 2597936 2598073 2598278 "UNISEG2" NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1144 2596537 2597384 2597660 "UNISEG" NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1143 2595766 2595963 2596188 "UNIFACT" NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1142 2582640 2595690 2595761 "ULSCONS" NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1141 2562554 2575727 2575788 "ULSCCAT" 2576419 ULSCCAT (NIL T T) -9 NIL 2576706 NIL) (-1140 2561889 2562175 2562549 "ULSCCAT-" NIL ULSCCAT- (NIL T T T) -7 NIL NIL NIL) (-1139 2550323 2557395 2557437 "ULSCAT" 2558290 ULSCAT (NIL T) -9 NIL 2559020 NIL) (-1138 2549836 2549921 2550098 "ULS2" NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1137 2532017 2549335 2549576 "ULS" NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1136 2531051 2531744 2531858 "UINT8" NIL UINT8 (NIL) -8 NIL NIL 2531969) (-1135 2530084 2530777 2530891 "UINT64" NIL UINT64 (NIL) -8 NIL NIL 2531002) (-1134 2529117 2529810 2529924 "UINT32" NIL UINT32 (NIL) -8 NIL NIL 2530035) (-1133 2528150 2528843 2528957 "UINT16" NIL UINT16 (NIL) -8 NIL NIL 2529068) (-1132 2526219 2527378 2527408 "UFD" 2527619 UFD (NIL) -9 NIL 2527732 NIL) (-1131 2526063 2526120 2526214 "UFD-" NIL UFD- (NIL T) -7 NIL NIL NIL) (-1130 2525315 2525522 2525738 "UDVO" NIL UDVO (NIL) -7 NIL NIL NIL) (-1129 2523535 2523988 2524453 "UDPO" NIL UDPO (NIL T) -7 NIL NIL NIL) (-1128 2523260 2523500 2523530 "TYPEAST" NIL TYPEAST (NIL) -8 NIL NIL NIL) (-1127 2523198 2523203 2523233 "TYPE" 2523238 TYPE (NIL) -9 NIL 2523245 NIL) (-1126 2522357 2522577 2522817 "TWOFACT" NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1125 2521535 2521966 2522201 "TUPLE" NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1124 2519689 2520262 2520801 "TUBETOOL" NIL TUBETOOL (NIL) -7 NIL NIL NIL) (-1123 2518723 2518959 2519195 "TUBE" NIL TUBE (NIL T) -8 NIL NIL NIL) (-1122 2507077 2511545 2511641 "TSETCAT" 2516856 TSETCAT (NIL T T T T) -9 NIL 2518368 NIL) (-1121 2503414 2505230 2507072 "TSETCAT-" NIL TSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-1120 2497870 2502640 2502922 "TS" NIL TS (NIL T) -8 NIL NIL NIL) (-1119 2493207 2494220 2495149 "TRMANIP" NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1118 2492704 2492779 2492942 "TRIMAT" NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1117 2490780 2491070 2491425 "TRIGMNIP" NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1116 2490264 2490413 2490443 "TRIGCAT" 2490656 TRIGCAT (NIL) -9 NIL NIL NIL) (-1115 2490015 2490118 2490259 "TRIGCAT-" NIL TRIGCAT- (NIL T) -7 NIL NIL NIL) (-1114 2487011 2489124 2489402 "TREE" NIL TREE (NIL T) -8 NIL NIL NIL) (-1113 2486117 2486813 2486843 "TRANFUN" 2486878 TRANFUN (NIL) -9 NIL 2486944 NIL) (-1112 2485581 2485832 2486112 "TRANFUN-" NIL TRANFUN- (NIL T) -7 NIL NIL NIL) (-1111 2485418 2485456 2485517 "TOPSP" NIL TOPSP (NIL) -7 NIL NIL NIL) (-1110 2484875 2485006 2485157 "TOOLSIGN" NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1109 2483616 2484273 2484509 "TEXTFILE" NIL TEXTFILE (NIL) -8 NIL NIL NIL) (-1108 2483428 2483465 2483537 "TEX1" NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1107 2481642 2482288 2482717 "TEX" NIL TEX (NIL) -8 NIL NIL NIL) (-1106 2480022 2480359 2480681 "TBCMPPK" NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1105 2471080 2477823 2477879 "TBAGG" 2478281 TBAGG (NIL T T) -9 NIL 2478494 NIL) (-1104 2467611 2469303 2471075 "TBAGG-" NIL TBAGG- (NIL T T T) -7 NIL NIL NIL) (-1103 2467088 2467213 2467358 "TANEXP" NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1102 2466598 2466918 2467008 "TALGOP" NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1101 2466095 2466212 2466350 "TABLEAU" NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1100 2459182 2465997 2466090 "TABLE" NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1099 2454935 2456230 2457475 "TABLBUMP" NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1098 2454304 2454463 2454644 "SYSTEM" NIL SYSTEM (NIL) -7 NIL NIL NIL) (-1097 2451458 2452211 2452994 "SYSSOLP" NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1096 2451232 2451422 2451453 "SYSPTR" NIL SYSPTR (NIL) -8 NIL NIL NIL) (-1095 2450186 2450871 2450997 "SYSNNI" NIL SYSNNI (NIL NIL) -8 NIL NIL 2451183) (-1094 2449450 2449998 2450077 "SYSINT" NIL SYSINT (NIL NIL) -8 NIL NIL 2450137) (-1093 2446273 2447432 2448132 "SYNTAX" NIL SYNTAX (NIL) -8 NIL NIL NIL) (-1092 2443956 2444639 2445273 "SYMTAB" NIL SYMTAB (NIL) -8 NIL NIL NIL) (-1091 2440034 2441080 2442057 "SYMS" NIL SYMS (NIL) -8 NIL NIL NIL) (-1090 2437197 2439689 2439918 "SYMPOLY" NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1089 2436793 2436880 2437002 "SYMFUNC" NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1088 2433417 2434891 2435710 "SYMBOL" NIL SYMBOL (NIL) -8 NIL NIL NIL) (-1087 2426441 2432614 2432907 "SUTS" NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1086 2418191 2426032 2426294 "SUPXS" NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1085 2417470 2417609 2417826 "SUPFRACF" NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1084 2417154 2417219 2417330 "SUP2" NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1083 2407941 2416866 2416991 "SUP" NIL SUP (NIL T) -8 NIL NIL NIL) (-1082 2406671 2406969 2407324 "SUMRF" NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1081 2406076 2406154 2406345 "SUMFS" NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1080 2388292 2405575 2405816 "SULS" NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1079 2387891 2388163 2388232 "SUCHTAST" NIL SUCHTAST (NIL) -8 NIL NIL NIL) (-1078 2387227 2387508 2387648 "SUCH" NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1077 2381829 2383088 2384041 "SUBSPACE" NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1076 2381361 2381461 2381625 "SUBRESP" NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1075 2376472 2377754 2378901 "STTFNC" NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1074 2370930 2372401 2373712 "STTF" NIL STTF (NIL T) -7 NIL NIL NIL) (-1073 2363845 2365909 2367700 "STTAYLOR" NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1072 2356675 2363757 2363840 "STRTBL" NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1071 2351369 2356389 2356504 "STRING" NIL STRING (NIL) -8 NIL NIL NIL) (-1070 2350956 2351039 2351183 "STREAM3" NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1069 2350107 2350308 2350543 "STREAM2" NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1068 2349847 2349905 2349998 "STREAM1" NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1067 2342585 2348052 2348658 "STREAM" NIL STREAM (NIL T) -8 NIL NIL NIL) (-1066 2341761 2341966 2342197 "STINPROD" NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1065 2341006 2341377 2341524 "STEPAST" NIL STEPAST (NIL) -8 NIL NIL NIL) (-1064 2340494 2340736 2340766 "STEP" 2340860 STEP (NIL) -9 NIL 2340931 NIL) (-1063 2333597 2340412 2340489 "STBL" NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1062 2327812 2332395 2332438 "STAGG" 2332865 STAGG (NIL T) -9 NIL 2333039 NIL) (-1061 2326191 2326939 2327807 "STAGG-" NIL STAGG- (NIL T T) -7 NIL NIL NIL) (-1060 2324348 2326018 2326110 "STACK" NIL STACK (NIL T) -8 NIL NIL NIL) (-1059 2323659 2324167 2324197 "SRING" 2324202 SRING (NIL) -9 NIL 2324222 NIL) (-1058 2316281 2322197 2322636 "SREGSET" NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1057 2310055 2311494 2312998 "SRDCMPK" NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1056 2302480 2307391 2307421 "SRAGG" 2308720 SRAGG (NIL) -9 NIL 2309324 NIL) (-1055 2301777 2302097 2302475 "SRAGG-" NIL SRAGG- (NIL T) -7 NIL NIL NIL) (-1054 2295896 2301099 2301522 "SQMATRIX" NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1053 2290109 2293278 2294000 "SPLTREE" NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1052 2286538 2287357 2287994 "SPLNODE" NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1051 2285513 2285818 2285848 "SPFCAT" 2286292 SPFCAT (NIL) -9 NIL NIL NIL) (-1050 2284450 2284702 2284966 "SPECOUT" NIL SPECOUT (NIL) -7 NIL NIL NIL) (-1049 2275208 2277482 2277512 "SPADXPT" 2282149 SPADXPT (NIL) -9 NIL 2284273 NIL) (-1048 2275010 2275056 2275125 "SPADPRSR" NIL SPADPRSR (NIL) -7 NIL NIL NIL) (-1047 2272666 2274974 2275005 "SPADAST" NIL SPADAST (NIL) -8 NIL NIL NIL) (-1046 2264340 2266429 2266471 "SPACEC" 2270786 SPACEC (NIL T) -9 NIL 2272591 NIL) (-1045 2262169 2264287 2264335 "SPACE3" NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1044 2261102 2261291 2261580 "SORTPAK" NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1043 2259506 2259839 2260250 "SOLVETRA" NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1042 2258771 2259005 2259266 "SOLVESER" NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1041 2254951 2255911 2256906 "SOLVERAD" NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1040 2251309 2252008 2252737 "SOLVEFOR" NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1039 2245095 2250649 2250745 "SNTSCAT" 2250750 SNTSCAT (NIL T T T T) -9 NIL 2250820 NIL) (-1038 2238980 2243736 2244126 "SMTS" NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1037 2232816 2238899 2238975 "SMP" NIL SMP (NIL T T) -8 NIL NIL NIL) (-1036 2231248 2231579 2231977 "SMITH" NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1035 2222917 2227832 2227934 "SMATCAT" 2229277 SMATCAT (NIL NIL T T T) -9 NIL 2229825 NIL) (-1034 2220758 2221742 2222912 "SMATCAT-" NIL SMATCAT- (NIL T NIL T T T) -7 NIL NIL NIL) (-1033 2218350 2219964 2220007 "SKAGG" 2220268 SKAGG (NIL T) -9 NIL 2220402 NIL) (-1032 2214460 2218170 2218281 "SINT" NIL SINT (NIL) -8 NIL NIL 2218322) (-1031 2214270 2214314 2214380 "SIMPAN" NIL SIMPAN (NIL) -7 NIL NIL NIL) (-1030 2213345 2213577 2213845 "SIGNRF" NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1029 2212349 2212511 2212787 "SIGNEF" NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1028 2211695 2212035 2212158 "SIGAST" NIL SIGAST (NIL) -8 NIL NIL NIL) (-1027 2211041 2211348 2211488 "SIG" NIL SIG (NIL) -8 NIL NIL NIL) (-1026 2209152 2209644 2210150 "SHP" NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1025 2202691 2209071 2209147 "SHDP" NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1024 2202194 2202431 2202461 "SGROUP" 2202554 SGROUP (NIL) -9 NIL 2202616 NIL) (-1023 2202084 2202116 2202189 "SGROUP-" NIL SGROUP- (NIL T) -7 NIL NIL NIL) (-1022 2201722 2201762 2201803 "SGPOPC" 2201808 SGPOPC (NIL T) -9 NIL 2202009 NIL) (-1021 2201256 2201533 2201639 "SGPOP" NIL SGPOP (NIL T) -8 NIL NIL NIL) (-1020 2198679 2199448 2200170 "SGCF" NIL SGCF (NIL) -7 NIL NIL NIL) (-1019 2192564 2198118 2198214 "SFRTCAT" 2198219 SFRTCAT (NIL T T T T) -9 NIL 2198257 NIL) (-1018 2186956 2188069 2189196 "SFRGCD" NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1017 2181132 2182293 2183457 "SFQCMPK" NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1016 2180104 2181006 2181127 "SEXOF" NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1015 2175712 2176607 2176702 "SEXCAT" 2179315 SEXCAT (NIL T T T T T) -9 NIL 2179866 NIL) (-1014 2174685 2175639 2175707 "SEX" NIL SEX (NIL) -8 NIL NIL NIL) (-1013 2173076 2173661 2173963 "SETMN" NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1012 2172599 2172784 2172814 "SETCAT" 2172931 SETCAT (NIL) -9 NIL 2173015 NIL) (-1011 2172431 2172495 2172594 "SETCAT-" NIL SETCAT- (NIL T) -7 NIL NIL NIL) (-1010 2168654 2170885 2170928 "SETAGG" 2171796 SETAGG (NIL T) -9 NIL 2172134 NIL) (-1009 2168260 2168412 2168649 "SETAGG-" NIL SETAGG- (NIL T T) -7 NIL NIL NIL) (-1008 2165214 2168207 2168255 "SET" NIL SET (NIL T) -8 NIL NIL NIL) (-1007 2164680 2164990 2165090 "SEQAST" NIL SEQAST (NIL) -8 NIL NIL NIL) (-1006 2163807 2164173 2164234 "SEGXCAT" 2164520 SEGXCAT (NIL T T) -9 NIL 2164640 NIL) (-1005 2162732 2163000 2163043 "SEGCAT" 2163565 SEGCAT (NIL T) -9 NIL 2163786 NIL) (-1004 2162412 2162477 2162590 "SEGBIND2" NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1003 2161478 2161948 2162156 "SEGBIND" NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1002 2161056 2161335 2161411 "SEGAST" NIL SEGAST (NIL) -8 NIL NIL NIL) (-1001 2160421 2160557 2160761 "SEG2" NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1000 2159487 2160234 2160416 "SEG" NIL SEG (NIL T) -8 NIL NIL NIL) (-999 2158742 2159437 2159482 "SDVAR" NIL SDVAR (NIL T) -8 NIL NIL NIL) (-998 2150343 2158613 2158737 "SDPOL" NIL SDPOL (NIL T) -8 NIL NIL NIL) (-997 2149203 2149493 2149810 "SCPKG" NIL SCPKG (NIL T) -7 NIL NIL NIL) (-996 2148509 2148721 2148909 "SCOPE" NIL SCOPE (NIL) -8 NIL NIL NIL) (-995 2147859 2148016 2148192 "SCACHE" NIL SCACHE (NIL T) -7 NIL NIL NIL) (-994 2147432 2147663 2147691 "SASTCAT" 2147696 SASTCAT (NIL) -9 NIL 2147709 NIL) (-993 2146899 2147324 2147398 "SAOS" NIL SAOS (NIL) -8 NIL NIL NIL) (-992 2146502 2146543 2146714 "SAERFFC" NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-991 2146133 2146174 2146331 "SAEFACT" NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-990 2139278 2146050 2146128 "SAE" NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-989 2137928 2138257 2138653 "RURPK" NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-988 2136689 2137050 2137350 "RULESET" NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-987 2136313 2136534 2136615 "RULECOLD" NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-986 2133773 2134407 2134860 "RULE" NIL RULE (NIL T T T) -8 NIL NIL NIL) (-985 2133612 2133645 2133713 "RTVALUE" NIL RTVALUE (NIL) -8 NIL NIL NIL) (-984 2133103 2133406 2133497 "RSTRCAST" NIL RSTRCAST (NIL) -8 NIL NIL NIL) (-983 2128731 2129599 2130510 "RSETGCD" NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-982 2117550 2123104 2123198 "RSETCAT" 2127254 RSETCAT (NIL T T T T) -9 NIL 2128342 NIL) (-981 2116088 2116730 2117545 "RSETCAT-" NIL RSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-980 2109862 2111307 2112814 "RSDCMPK" NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-979 2107744 2108301 2108373 "RRCC" 2109446 RRCC (NIL T T) -9 NIL 2109787 NIL) (-978 2107269 2107468 2107739 "RRCC-" NIL RRCC- (NIL T T T) -7 NIL NIL NIL) (-977 2106739 2107049 2107147 "RPTAST" NIL RPTAST (NIL) -8 NIL NIL NIL) (-976 2079355 2090004 2090068 "RPOLCAT" 2100542 RPOLCAT (NIL T T T) -9 NIL 2103687 NIL) (-975 2073454 2076277 2079350 "RPOLCAT-" NIL RPOLCAT- (NIL T T T T) -7 NIL NIL NIL) (-974 2069685 2073202 2073340 "ROMAN" NIL ROMAN (NIL) -8 NIL NIL NIL) (-973 2068013 2068752 2069008 "ROIRC" NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-972 2063718 2066468 2066496 "RNS" 2066758 RNS (NIL) -9 NIL 2067010 NIL) (-971 2062621 2063108 2063645 "RNS-" NIL RNS- (NIL T) -7 NIL NIL NIL) (-970 2061739 2062140 2062340 "RNGBIND" NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-969 2061027 2061527 2061555 "RNG" 2061560 RNG (NIL) -9 NIL 2061581 NIL) (-968 2060320 2060794 2060834 "RMODULE" 2060839 RMODULE (NIL T) -9 NIL 2060865 NIL) (-967 2059259 2059365 2059695 "RMCAT2" NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-966 2056137 2058849 2059142 "RMATRIX" NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-965 2048817 2051278 2051390 "RMATCAT" 2054695 RMATCAT (NIL NIL NIL T T T) -9 NIL 2055672 NIL) (-964 2048334 2048513 2048812 "RMATCAT-" NIL RMATCAT- (NIL T NIL NIL T T T) -7 NIL NIL NIL) (-963 2047902 2048113 2048154 "RLINSET" 2048215 RLINSET (NIL T) -9 NIL 2048259 NIL) (-962 2047547 2047628 2047754 "RINTERP" NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-961 2046455 2047124 2047152 "RING" 2047207 RING (NIL) -9 NIL 2047299 NIL) (-960 2046300 2046356 2046450 "RING-" NIL RING- (NIL T) -7 NIL NIL NIL) (-959 2045354 2045621 2045877 "RIDIST" NIL RIDIST (NIL) -7 NIL NIL NIL) (-958 2036341 2044982 2045183 "RGCHAIN" NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-957 2035597 2036077 2036116 "RGBCSPC" 2036173 RGBCSPC (NIL T) -9 NIL 2036224 NIL) (-956 2034662 2035117 2035156 "RGBCMDL" 2035384 RGBCMDL (NIL T) -9 NIL 2035498 NIL) (-955 2034374 2034443 2034544 "RFFACTOR" NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-954 2034137 2034178 2034273 "RFFACT" NIL RFFACT (NIL T) -7 NIL NIL NIL) (-953 2032561 2032991 2033371 "RFDIST" NIL RFDIST (NIL) -7 NIL NIL NIL) (-952 2030148 2030816 2031484 "RF" NIL RF (NIL T) -7 NIL NIL NIL) (-951 2029698 2029796 2029956 "RETSOL" NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-950 2029320 2029418 2029459 "RETRACT" 2029590 RETRACT (NIL T) -9 NIL 2029677 NIL) (-949 2029200 2029231 2029315 "RETRACT-" NIL RETRACT- (NIL T T) -7 NIL NIL NIL) (-948 2028802 2029074 2029141 "RETAST" NIL RETAST (NIL) -8 NIL NIL NIL) (-947 2027346 2028173 2028370 "RESRING" NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-946 2027037 2027098 2027194 "RESLATC" NIL RESLATC (NIL T) -7 NIL NIL NIL) (-945 2026780 2026821 2026926 "REPSQ" NIL REPSQ (NIL T) -7 NIL NIL NIL) (-944 2026515 2026556 2026665 "REPDB" NIL REPDB (NIL T) -7 NIL NIL NIL) (-943 2021586 2023037 2024252 "REP2" NIL REP2 (NIL T) -7 NIL NIL NIL) (-942 2018685 2019443 2020251 "REP1" NIL REP1 (NIL T) -7 NIL NIL NIL) (-941 2016654 2017276 2017876 "REP" NIL REP (NIL) -7 NIL NIL NIL) (-940 2009289 2015205 2015641 "REGSET" NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-939 2008601 2008881 2009030 "REF" NIL REF (NIL T) -8 NIL NIL NIL) (-938 2008086 2008201 2008366 "REDORDER" NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-937 2003743 2007489 2007710 "RECLOS" NIL RECLOS (NIL T) -8 NIL NIL NIL) (-936 2002975 2003174 2003387 "REALSOLV" NIL REALSOLV (NIL) -7 NIL NIL NIL) (-935 2000265 2001103 2001985 "REAL0Q" NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-934 1996847 1997883 1998942 "REAL0" NIL REAL0 (NIL T) -7 NIL NIL NIL) (-933 1996683 1996736 1996764 "REAL" 1996769 REAL (NIL) -9 NIL 1996804 NIL) (-932 1996173 1996477 1996568 "RDUCEAST" NIL RDUCEAST (NIL) -8 NIL NIL NIL) (-931 1995653 1995731 1995936 "RDIV" NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-930 1994886 1995078 1995289 "RDIST" NIL RDIST (NIL T) -7 NIL NIL NIL) (-929 1993774 1994071 1994438 "RDETRS" NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-928 1992041 1992511 1993044 "RDETR" NIL RDETR (NIL T T) -7 NIL NIL NIL) (-927 1990963 1991240 1991627 "RDEEFS" NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-926 1989790 1990099 1990518 "RDEEF" NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-925 1983202 1986650 1986678 "RCFIELD" 1987955 RCFIELD (NIL) -9 NIL 1988685 NIL) (-924 1981820 1982432 1983129 "RCFIELD-" NIL RCFIELD- (NIL T) -7 NIL NIL NIL) (-923 1978020 1979912 1979953 "RCAGG" 1981020 RCAGG (NIL T) -9 NIL 1981481 NIL) (-922 1977747 1977857 1978015 "RCAGG-" NIL RCAGG- (NIL T T) -7 NIL NIL NIL) (-921 1977192 1977321 1977482 "RATRET" NIL RATRET (NIL T) -7 NIL NIL NIL) (-920 1976809 1976888 1977007 "RATFACT" NIL RATFACT (NIL T) -7 NIL NIL NIL) (-919 1976224 1976374 1976524 "RANDSRC" NIL RANDSRC (NIL) -7 NIL NIL NIL) (-918 1976006 1976056 1976127 "RADUTIL" NIL RADUTIL (NIL) -7 NIL NIL NIL) (-917 1968512 1975124 1975432 "RADIX" NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-916 1958278 1968379 1968507 "RADFF" NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-915 1957912 1958005 1958033 "RADCAT" 1958190 RADCAT (NIL) -9 NIL NIL NIL) (-914 1957750 1957810 1957907 "RADCAT-" NIL RADCAT- (NIL T) -7 NIL NIL NIL) (-913 1955850 1957581 1957670 "QUEUE" NIL QUEUE (NIL T) -8 NIL NIL NIL) (-912 1955531 1955580 1955707 "QUATCT2" NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-911 1947882 1951902 1951942 "QUATCAT" 1952720 QUATCAT (NIL T) -9 NIL 1953484 NIL) (-910 1945132 1946412 1947788 "QUATCAT-" NIL QUATCAT- (NIL T T) -7 NIL NIL NIL) (-909 1941036 1945082 1945127 "QUAT" NIL QUAT (NIL T) -8 NIL NIL NIL) (-908 1938423 1940090 1940131 "QUAGG" 1940506 QUAGG (NIL T) -9 NIL 1940680 NIL) (-907 1938025 1938297 1938364 "QQUTAST" NIL QQUTAST (NIL) -8 NIL NIL NIL) (-906 1937063 1937661 1937824 "QFORM" NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-905 1936744 1936793 1936920 "QFCAT2" NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-904 1926431 1932538 1932578 "QFCAT" 1933236 QFCAT (NIL T) -9 NIL 1934229 NIL) (-903 1923315 1924754 1926337 "QFCAT-" NIL QFCAT- (NIL T T) -7 NIL NIL NIL) (-902 1922861 1922995 1923125 "QEQUAT" NIL QEQUAT (NIL) -8 NIL NIL NIL) (-901 1917057 1918218 1919380 "QCMPACK" NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-900 1916476 1916656 1916888 "QALGSET2" NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-899 1914298 1914826 1915249 "QALGSET" NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-898 1913197 1913439 1913756 "PWFFINTB" NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-897 1911558 1911756 1912109 "PUSHVAR" NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-896 1907314 1908530 1908571 "PTRANFN" 1910455 PTRANFN (NIL T) -9 NIL NIL NIL) (-895 1905961 1906306 1906627 "PTPACK" NIL PTPACK (NIL T) -7 NIL NIL NIL) (-894 1905654 1905717 1905824 "PTFUNC2" NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-893 1899727 1904450 1904490 "PTCAT" 1904782 PTCAT (NIL T) -9 NIL 1904935 NIL) (-892 1899420 1899461 1899585 "PSQFR" NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-891 1898299 1898615 1898949 "PSEUDLIN" NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-890 1887178 1889739 1892048 "PSETPK" NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-889 1880085 1882981 1883075 "PSETCAT" 1886049 PSETCAT (NIL T T T T) -9 NIL 1886856 NIL) (-888 1878535 1879269 1880080 "PSETCAT-" NIL PSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-887 1877854 1878049 1878077 "PSCURVE" 1878345 PSCURVE (NIL) -9 NIL 1878512 NIL) (-886 1873518 1875276 1875340 "PSCAT" 1876175 PSCAT (NIL T T T) -9 NIL 1876414 NIL) (-885 1872832 1873114 1873513 "PSCAT-" NIL PSCAT- (NIL T T T T) -7 NIL NIL NIL) (-884 1871261 1872144 1872407 "PRTITION" NIL PRTITION (NIL) -8 NIL NIL NIL) (-883 1870752 1871055 1871146 "PRTDAST" NIL PRTDAST (NIL) -8 NIL NIL NIL) (-882 1861772 1864194 1866382 "PRS" NIL PRS (NIL T T) -7 NIL NIL NIL) (-881 1859515 1861092 1861132 "PRQAGG" 1861315 PRQAGG (NIL T) -9 NIL 1861416 NIL) (-880 1858688 1859134 1859162 "PROPLOG" 1859301 PROPLOG (NIL) -9 NIL 1859415 NIL) (-879 1858363 1858426 1858549 "PROPFUN2" NIL PROPFUN2 (NIL T T) -7 NIL NIL NIL) (-878 1857799 1857938 1858110 "PROPFUN1" NIL PROPFUN1 (NIL T) -7 NIL NIL NIL) (-877 1856047 1856810 1857107 "PROPFRML" NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-876 1855599 1855731 1855859 "PROPERTY" NIL PROPERTY (NIL) -8 NIL NIL NIL) (-875 1850255 1854539 1855359 "PRODUCT" NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-874 1850084 1850122 1850181 "PRINT" NIL PRINT (NIL) -7 NIL NIL NIL) (-873 1849523 1849663 1849814 "PRIMES" NIL PRIMES (NIL T) -7 NIL NIL NIL) (-872 1847991 1848410 1848876 "PRIMELT" NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-871 1847708 1847769 1847797 "PRIMCAT" 1847921 PRIMCAT (NIL) -9 NIL NIL NIL) (-870 1846879 1847075 1847303 "PRIMARR2" NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-869 1842757 1846829 1846874 "PRIMARR" NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-868 1842456 1842518 1842629 "PREASSOC" NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-867 1839656 1842105 1842338 "PR" NIL PR (NIL T T) -8 NIL NIL NIL) (-866 1839107 1839264 1839292 "PPCURVE" 1839497 PPCURVE (NIL) -9 NIL 1839633 NIL) (-865 1838720 1838965 1839048 "PORTNUM" NIL PORTNUM (NIL) -8 NIL NIL NIL) (-864 1836476 1836897 1837489 "POLYROOT" NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-863 1835919 1835983 1836216 "POLYLIFT" NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-862 1832639 1833125 1833736 "POLYCATQ" NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-861 1818294 1824359 1824423 "POLYCAT" 1827908 POLYCAT (NIL T T T) -9 NIL 1829785 NIL) (-860 1813804 1815951 1818289 "POLYCAT-" NIL POLYCAT- (NIL T T T T) -7 NIL NIL NIL) (-859 1813461 1813535 1813654 "POLY2UP" NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-858 1813154 1813217 1813324 "POLY2" NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-857 1806581 1812887 1813046 "POLY" NIL POLY (NIL T) -8 NIL NIL NIL) (-856 1805468 1805731 1806007 "POLUTIL" NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-855 1804072 1804385 1804715 "POLTOPOL" NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-854 1799234 1804022 1804067 "POINT" NIL POINT (NIL T) -8 NIL NIL NIL) (-853 1797722 1798133 1798508 "PNTHEORY" NIL PNTHEORY (NIL) -7 NIL NIL NIL) (-852 1796479 1796788 1797184 "PMTOOLS" NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-851 1796150 1796234 1796351 "PMSYM" NIL PMSYM (NIL T) -7 NIL NIL NIL) (-850 1795729 1795804 1795978 "PMQFCAT" NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-849 1795215 1795311 1795471 "PMPREDFS" NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-848 1794687 1794807 1794961 "PMPRED" NIL PMPRED (NIL T) -7 NIL NIL NIL) (-847 1793582 1793800 1794177 "PMPLCAT" NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-846 1793193 1793278 1793430 "PMLSAGG" NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-845 1792744 1792826 1793007 "PMKERNEL" NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-844 1792436 1792517 1792630 "PMINS" NIL PMINS (NIL T) -7 NIL NIL NIL) (-843 1791949 1792024 1792232 "PMFS" NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-842 1791297 1791425 1791627 "PMDOWN" NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-841 1790659 1790793 1790956 "PMASSFS" NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-840 1789963 1790145 1790326 "PMASS" NIL PMASS (NIL) -7 NIL NIL NIL) (-839 1789686 1789760 1789854 "PLOTTOOL" NIL PLOTTOOL (NIL) -7 NIL NIL NIL) (-838 1786254 1787443 1788359 "PLOT3D" NIL PLOT3D (NIL) -8 NIL NIL NIL) (-837 1785338 1785539 1785774 "PLOT1" NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-836 1780903 1782287 1783429 "PLOT" NIL PLOT (NIL) -8 NIL NIL NIL) (-835 1760824 1765711 1770558 "PLEQN" NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-834 1760564 1760617 1760720 "PINTERPA" NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-833 1760005 1760139 1760319 "PINTERP" NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-832 1758076 1759235 1759263 "PID" 1759460 PID (NIL) -9 NIL 1759587 NIL) (-831 1757864 1757907 1757982 "PICOERCE" NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-830 1757051 1757711 1757798 "PI" NIL PI (NIL) -8 NIL NIL 1757838) (-829 1756503 1756654 1756830 "PGROEB" NIL PGROEB (NIL T) -7 NIL NIL NIL) (-828 1752831 1753789 1754694 "PGE" NIL PGE (NIL) -7 NIL NIL NIL) (-827 1751195 1751484 1751850 "PGCD" NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-826 1750637 1750752 1750913 "PFRPAC" NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-825 1747242 1749506 1749859 "PFR" NIL PFR (NIL T) -8 NIL NIL NIL) (-824 1745848 1746128 1746453 "PFOTOOLS" NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-823 1744613 1744867 1745215 "PFOQ" NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-822 1743323 1743550 1743902 "PFO" NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-821 1740395 1741893 1741921 "PFECAT" 1742514 PFECAT (NIL) -9 NIL 1742891 NIL) (-820 1740018 1740183 1740390 "PFECAT-" NIL PFECAT- (NIL T) -7 NIL NIL NIL) (-819 1738842 1739124 1739425 "PFBRU" NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-818 1737024 1737411 1737841 "PFBR" NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-817 1733058 1736950 1737019 "PF" NIL PF (NIL NIL) -8 NIL NIL NIL) (-816 1728961 1730108 1730975 "PERMGRP" NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-815 1726893 1727982 1728023 "PERMCAT" 1728422 PERMCAT (NIL T) -9 NIL 1728719 NIL) (-814 1726589 1726636 1726759 "PERMAN" NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-813 1723038 1724719 1725364 "PERM" NIL PERM (NIL T) -8 NIL NIL NIL) (-812 1720503 1722793 1722914 "PENDTREE" NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-811 1719372 1719635 1719676 "PDSPC" 1720209 PDSPC (NIL T) -9 NIL 1720454 NIL) (-810 1718739 1719005 1719367 "PDSPC-" NIL PDSPC- (NIL T T) -7 NIL NIL NIL) (-809 1717436 1718367 1718408 "PDRING" 1718413 PDRING (NIL T) -9 NIL 1718440 NIL) (-808 1716177 1716935 1716988 "PDMOD" 1716993 PDMOD (NIL T T) -9 NIL 1717096 NIL) (-807 1715270 1715482 1715731 "PDECOMP" NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-806 1714875 1714942 1714996 "PDDOM" 1715161 PDDOM (NIL T T) -9 NIL 1715241 NIL) (-805 1714727 1714763 1714870 "PDDOM-" NIL PDDOM- (NIL T T T) -7 NIL NIL NIL) (-804 1714513 1714552 1714641 "PCOMP" NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-803 1712830 1713584 1713883 "PBWLB" NIL PBWLB (NIL T) -8 NIL NIL NIL) (-802 1712519 1712582 1712691 "PATTERN2" NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-801 1710657 1711087 1711538 "PATTERN1" NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-800 1704277 1706106 1707398 "PATTERN" NIL PATTERN (NIL T) -8 NIL NIL NIL) (-799 1703908 1703981 1704113 "PATRES2" NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-798 1701610 1702290 1702771 "PATRES" NIL PATRES (NIL T T) -8 NIL NIL NIL) (-797 1699814 1700242 1700645 "PATMATCH" NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-796 1699260 1699508 1699549 "PATMAB" 1699656 PATMAB (NIL T) -9 NIL 1699739 NIL) (-795 1697907 1698311 1698568 "PATLRES" NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-794 1697445 1697576 1697617 "PATAB" 1697622 PATAB (NIL T) -9 NIL 1697794 NIL) (-793 1695988 1696425 1696848 "PARTPERM" NIL PARTPERM (NIL) -7 NIL NIL NIL) (-792 1695666 1695741 1695843 "PARSURF" NIL PARSURF (NIL T) -8 NIL NIL NIL) (-791 1695355 1695418 1695527 "PARSU2" NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-790 1695160 1695206 1695273 "PARSER" NIL PARSER (NIL) -7 NIL NIL NIL) (-789 1694838 1694913 1695015 "PARSCURV" NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-788 1694527 1694590 1694699 "PARSC2" NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-787 1694218 1694288 1694385 "PARPCURV" NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-786 1693907 1693970 1694079 "PARPC2" NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-785 1693068 1693447 1693626 "PARAMAST" NIL PARAMAST (NIL) -8 NIL NIL NIL) (-784 1692675 1692773 1692892 "PAN2EXPR" NIL PAN2EXPR (NIL) -7 NIL NIL NIL) (-783 1691643 1692068 1692287 "PALETTE" NIL PALETTE (NIL) -8 NIL NIL NIL) (-782 1690308 1690962 1691322 "PAIR" NIL PAIR (NIL T T) -8 NIL NIL NIL) (-781 1683462 1689712 1689906 "PADICRC" NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-780 1675947 1682960 1683144 "PADICRAT" NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-779 1672734 1674587 1674627 "PADICCT" 1675208 PADICCT (NIL NIL) -9 NIL 1675490 NIL) (-778 1670788 1672684 1672729 "PADIC" NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-777 1669950 1670160 1670426 "PADEPAC" NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-776 1669292 1669435 1669639 "PADE" NIL PADE (NIL T T T) -7 NIL NIL NIL) (-775 1667737 1668700 1668978 "OWP" NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-774 1667261 1667520 1667617 "OVERSET" NIL OVERSET (NIL) -8 NIL NIL NIL) (-773 1666320 1666998 1667170 "OVAR" NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-772 1656742 1659611 1661810 "OUTFORM" NIL OUTFORM (NIL) -8 NIL NIL NIL) (-771 1656134 1656448 1656574 "OUTBFILE" NIL OUTBFILE (NIL) -8 NIL NIL NIL) (-770 1655411 1655606 1655634 "OUTBCON" 1655952 OUTBCON (NIL) -9 NIL 1656118 NIL) (-769 1655119 1655249 1655406 "OUTBCON-" NIL OUTBCON- (NIL T) -7 NIL NIL NIL) (-768 1654500 1654645 1654806 "OUT" NIL OUT (NIL) -7 NIL NIL NIL) (-767 1653871 1654298 1654387 "OSI" NIL OSI (NIL) -8 NIL NIL NIL) (-766 1653286 1653701 1653729 "OSGROUP" 1653734 OSGROUP (NIL) -9 NIL 1653756 NIL) (-765 1652250 1652511 1652796 "ORTHPOL" NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-764 1649583 1652125 1652245 "OREUP" NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-763 1646788 1649334 1649460 "ORESUP" NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-762 1644806 1645334 1645894 "OREPCTO" NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-761 1638210 1640688 1640728 "OREPCAT" 1643049 OREPCAT (NIL T) -9 NIL 1644151 NIL) (-760 1636236 1637170 1638205 "OREPCAT-" NIL OREPCAT- (NIL T T) -7 NIL NIL NIL) (-759 1635433 1635704 1635732 "ORDTYPE" 1636037 ORDTYPE (NIL) -9 NIL 1636195 NIL) (-758 1634967 1635178 1635428 "ORDTYPE-" NIL ORDTYPE- (NIL T) -7 NIL NIL NIL) (-757 1634429 1634805 1634962 "ORDSTRCT" NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-756 1633923 1634286 1634314 "ORDSET" 1634319 ORDSET (NIL) -9 NIL 1634341 NIL) (-755 1632563 1633523 1633551 "ORDRING" 1633556 ORDRING (NIL) -9 NIL 1633584 NIL) (-754 1631811 1632368 1632396 "ORDMON" 1632401 ORDMON (NIL) -9 NIL 1632422 NIL) (-753 1631115 1631277 1631469 "ORDFUNS" NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-752 1630326 1630834 1630862 "ORDFIN" 1630927 ORDFIN (NIL) -9 NIL 1631001 NIL) (-751 1629720 1629859 1630045 "ORDCOMP2" NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-750 1626494 1628688 1629094 "ORDCOMP" NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-749 1625901 1626256 1626361 "OPSIG" NIL OPSIG (NIL) -8 NIL NIL NIL) (-748 1625709 1625754 1625820 "OPQUERY" NIL OPQUERY (NIL) -7 NIL NIL NIL) (-747 1625010 1625286 1625327 "OPERCAT" 1625538 OPERCAT (NIL T) -9 NIL 1625634 NIL) (-746 1624822 1624889 1625005 "OPERCAT-" NIL OPERCAT- (NIL T T) -7 NIL NIL NIL) (-745 1622252 1623624 1624120 "OP" NIL OP (NIL T) -8 NIL NIL NIL) (-744 1621673 1621800 1621974 "ONECOMP2" NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-743 1618673 1620812 1621178 "ONECOMP" NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-742 1615304 1618103 1618143 "OMSAGG" 1618204 OMSAGG (NIL T) -9 NIL 1618268 NIL) (-741 1613780 1614975 1615143 "OMLO" NIL OMLO (NIL T T) -8 NIL NIL NIL) (-740 1612051 1613230 1613258 "OINTDOM" 1613263 OINTDOM (NIL) -9 NIL 1613284 NIL) (-739 1609481 1611053 1611382 "OFMONOID" NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-738 1608735 1609431 1609476 "ODVAR" NIL ODVAR (NIL T) -8 NIL NIL NIL) (-737 1606001 1608576 1608730 "ODR" NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-736 1597602 1605872 1605996 "ODPOL" NIL ODPOL (NIL T) -8 NIL NIL NIL) (-735 1591112 1597493 1597597 "ODP" NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-734 1590084 1590321 1590594 "ODETOOLS" NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-733 1587718 1588388 1589092 "ODESYS" NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-732 1583495 1584455 1585478 "ODERTRIC" NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-731 1583003 1583091 1583285 "ODERED" NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-730 1580452 1581034 1581707 "ODERAT" NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-729 1577847 1578355 1578951 "ODEPRRIC" NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-728 1574844 1575383 1576029 "ODEPRIM" NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-727 1574199 1574307 1574565 "ODEPAL" NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-726 1573357 1573482 1573703 "ODEINT" NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-725 1569641 1570437 1571350 "ODEEF" NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-724 1569081 1569176 1569398 "ODECONST" NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-723 1568762 1568811 1568938 "OCTCT2" NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-722 1565429 1568561 1568680 "OCT" NIL OCT (NIL T) -8 NIL NIL NIL) (-721 1564620 1565211 1565239 "OCAMON" 1565244 OCAMON (NIL) -9 NIL 1565265 NIL) (-720 1558896 1561646 1561686 "OC" 1562781 OC (NIL T) -9 NIL 1563637 NIL) (-719 1556896 1557822 1558802 "OC-" NIL OC- (NIL T T) -7 NIL NIL NIL) (-718 1556312 1556730 1556758 "OASGP" 1556763 OASGP (NIL) -9 NIL 1556783 NIL) (-717 1555406 1556024 1556052 "OAMONS" 1556092 OAMONS (NIL) -9 NIL 1556135 NIL) (-716 1554582 1555132 1555160 "OAMON" 1555217 OAMON (NIL) -9 NIL 1555268 NIL) (-715 1554478 1554510 1554577 "OAMON-" NIL OAMON- (NIL T) -7 NIL NIL NIL) (-714 1553260 1554003 1554031 "OAGROUP" 1554177 OAGROUP (NIL) -9 NIL 1554269 NIL) (-713 1553051 1553138 1553255 "OAGROUP-" NIL OAGROUP- (NIL T) -7 NIL NIL NIL) (-712 1552791 1552847 1552935 "NUMTUBE" NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-711 1547853 1549416 1550943 "NUMQUAD" NIL NUMQUAD (NIL) -7 NIL NIL NIL) (-710 1544548 1545582 1546617 "NUMODE" NIL NUMODE (NIL) -7 NIL NIL NIL) (-709 1543658 1543891 1544109 "NUMFMT" NIL NUMFMT (NIL) -7 NIL NIL NIL) (-708 1532519 1535547 1537995 "NUMERIC" NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-707 1526406 1531960 1532054 "NTSCAT" 1532059 NTSCAT (NIL T T T T) -9 NIL 1532097 NIL) (-706 1525747 1525926 1526119 "NTPOLFN" NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-705 1525440 1525503 1525610 "NSUP2" NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-704 1513171 1523060 1523870 "NSUP" NIL NSUP (NIL T) -8 NIL NIL NIL) (-703 1502244 1513036 1513166 "NSMP" NIL NSMP (NIL T T) -8 NIL NIL NIL) (-702 1500964 1501289 1501646 "NREP" NIL NREP (NIL T) -7 NIL NIL NIL) (-701 1499800 1500064 1500422 "NPCOEF" NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-700 1498967 1499100 1499316 "NORMRETR" NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-699 1497285 1497604 1498010 "NORMPK" NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-698 1496998 1497032 1497156 "NORMMA" NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-697 1496817 1496852 1496921 "NONE1" NIL NONE1 (NIL T) -7 NIL NIL NIL) (-696 1496593 1496783 1496812 "NONE" NIL NONE (NIL) -8 NIL NIL NIL) (-695 1496157 1496224 1496401 "NODE1" NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-694 1494475 1495520 1495775 "NNI" NIL NNI (NIL) -8 NIL NIL 1496122) (-693 1493203 1493540 1493904 "NLINSOL" NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-692 1492180 1492432 1492734 "NFINTBAS" NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-691 1491267 1491832 1491873 "NETCLT" 1492044 NETCLT (NIL T) -9 NIL 1492125 NIL) (-690 1490171 1490438 1490719 "NCODIV" NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-689 1489970 1490013 1490088 "NCNTFRAC" NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-688 1488501 1488889 1489309 "NCEP" NIL NCEP (NIL T) -7 NIL NIL NIL) (-687 1487165 1488100 1488128 "NASRING" 1488238 NASRING (NIL) -9 NIL 1488318 NIL) (-686 1487010 1487066 1487160 "NASRING-" NIL NASRING- (NIL T) -7 NIL NIL NIL) (-685 1485970 1486617 1486645 "NARNG" 1486762 NARNG (NIL) -9 NIL 1486853 NIL) (-684 1485746 1485831 1485965 "NARNG-" NIL NARNG- (NIL T) -7 NIL NIL NIL) (-683 1484543 1485266 1485306 "NAALG" 1485385 NAALG (NIL T) -9 NIL 1485446 NIL) (-682 1484413 1484448 1484538 "NAALG-" NIL NAALG- (NIL T T) -7 NIL NIL NIL) (-681 1479392 1480577 1481763 "MULTSQFR" NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-680 1478787 1478874 1479058 "MULTFACT" NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-679 1470861 1475291 1475343 "MTSCAT" 1476403 MTSCAT (NIL T T) -9 NIL 1476917 NIL) (-678 1470627 1470687 1470779 "MTHING" NIL MTHING (NIL T) -7 NIL NIL NIL) (-677 1470453 1470492 1470552 "MSYSCMD" NIL MSYSCMD (NIL) -7 NIL NIL NIL) (-676 1467315 1470004 1470045 "MSETAGG" 1470050 MSETAGG (NIL T) -9 NIL 1470084 NIL) (-675 1463452 1466361 1466679 "MSET" NIL MSET (NIL T) -8 NIL NIL NIL) (-674 1459790 1461549 1462289 "MRING" NIL MRING (NIL T T) -8 NIL NIL NIL) (-673 1459427 1459500 1459629 "MRF2" NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-672 1459080 1459121 1459265 "MRATFAC" NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-671 1456945 1457282 1457713 "MPRFF" NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-670 1450407 1456844 1456940 "MPOLY" NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-669 1449932 1449973 1450181 "MPCPF" NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-668 1449491 1449540 1449723 "MPC3" NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-667 1448765 1448858 1449077 "MPC2" NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-666 1447382 1447743 1448133 "MONOTOOL" NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-665 1446903 1446970 1447009 "MONOPC" 1447069 MONOPC (NIL T) -9 NIL 1447288 NIL) (-664 1446403 1446710 1446818 "MONOP" NIL MONOP (NIL T) -8 NIL NIL NIL) (-663 1445545 1445924 1445952 "MONOID" 1446170 MONOID (NIL) -9 NIL 1446314 NIL) (-662 1445204 1445354 1445540 "MONOID-" NIL MONOID- (NIL T) -7 NIL NIL NIL) (-661 1434204 1441012 1441071 "MONOGEN" 1441745 MONOGEN (NIL T T) -9 NIL 1442201 NIL) (-660 1432216 1433102 1434085 "MONOGEN-" NIL MONOGEN- (NIL T T T) -7 NIL NIL NIL) (-659 1430930 1431474 1431502 "MONADWU" 1431893 MONADWU (NIL) -9 NIL 1432128 NIL) (-658 1430478 1430678 1430925 "MONADWU-" NIL MONADWU- (NIL T) -7 NIL NIL NIL) (-657 1429755 1430056 1430084 "MONAD" 1430291 MONAD (NIL) -9 NIL 1430403 NIL) (-656 1429522 1429618 1429750 "MONAD-" NIL MONAD- (NIL T) -7 NIL NIL NIL) (-655 1427912 1428682 1428961 "MOEBIUS" NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-654 1427077 1427573 1427613 "MODULE" 1427618 MODULE (NIL T) -9 NIL 1427656 NIL) (-653 1426756 1426882 1427072 "MODULE-" NIL MODULE- (NIL T T) -7 NIL NIL NIL) (-652 1424531 1425353 1425667 "MODRING" NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-651 1421774 1423127 1423640 "MODOP" NIL MODOP (NIL T T) -8 NIL NIL NIL) (-650 1420408 1420982 1421258 "MODMONOM" NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-649 1409691 1419073 1419486 "MODMON" NIL MODMON (NIL T T) -8 NIL NIL NIL) (-648 1406711 1408691 1408960 "MODFIELD" NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-647 1405795 1406162 1406352 "MMLFORM" NIL MMLFORM (NIL) -8 NIL NIL NIL) (-646 1405364 1405413 1405592 "MMAP" NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-645 1403251 1404185 1404225 "MLO" 1404642 MLO (NIL T) -9 NIL 1404882 NIL) (-644 1401132 1401659 1402254 "MLIFT" NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-643 1400600 1400696 1400850 "MKUCFUNC" NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-642 1400270 1400346 1400469 "MKRECORD" NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-641 1399482 1399668 1399896 "MKFUNC" NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-640 1398975 1399091 1399247 "MKFLCFN" NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-639 1398347 1398461 1398646 "MKBCFUNC" NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-638 1397374 1397647 1397924 "MHROWRED" NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-637 1396807 1396895 1397066 "MFINFACT" NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-636 1393965 1394844 1395723 "MESH" NIL MESH (NIL) -7 NIL NIL NIL) (-635 1392632 1392980 1393333 "MDDFACT" NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-634 1389289 1391756 1391797 "MDAGG" 1392054 MDAGG (NIL T) -9 NIL 1392199 NIL) (-633 1388563 1388727 1388927 "MCDEN" NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-632 1387641 1387927 1388157 "MAYBE" NIL MAYBE (NIL T) -8 NIL NIL NIL) (-631 1385738 1386315 1386876 "MATSTOR" NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-630 1381509 1385328 1385575 "MATRIX" NIL MATRIX (NIL T) -8 NIL NIL NIL) (-629 1377858 1378627 1379361 "MATLIN" NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-628 1376611 1376780 1377109 "MATCAT2" NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-627 1366124 1369713 1369789 "MATCAT" 1374777 MATCAT (NIL T T T) -9 NIL 1376245 NIL) (-626 1363405 1364711 1366119 "MATCAT-" NIL MATCAT- (NIL T T T T) -7 NIL NIL NIL) (-625 1361806 1362166 1362550 "MAPPKG3" NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-624 1360939 1361136 1361358 "MAPPKG2" NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-623 1359690 1360016 1360343 "MAPPKG1" NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-622 1358852 1359254 1359430 "MAPPAST" NIL MAPPAST (NIL) -8 NIL NIL NIL) (-621 1358521 1358585 1358708 "MAPHACK3" NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-620 1358169 1358242 1358356 "MAPHACK2" NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-619 1357704 1357819 1357961 "MAPHACK1" NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-618 1355913 1356681 1356982 "MAGMA" NIL MAGMA (NIL T) -8 NIL NIL NIL) (-617 1355407 1355709 1355799 "MACROAST" NIL MACROAST (NIL) -8 NIL NIL NIL) (-616 1348916 1353722 1353763 "LZSTAGG" 1354540 LZSTAGG (NIL T) -9 NIL 1354830 NIL) (-615 1346035 1347469 1348911 "LZSTAGG-" NIL LZSTAGG- (NIL T T) -7 NIL NIL NIL) (-614 1343422 1344388 1344871 "LWORD" NIL LWORD (NIL T) -8 NIL NIL NIL) (-613 1343003 1343282 1343356 "LSTAST" NIL LSTAST (NIL) -8 NIL NIL NIL) (-612 1335231 1342864 1342998 "LSQM" NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-611 1334594 1334739 1334967 "LSPP" NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-610 1332078 1332776 1333488 "LSMP1" NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-609 1330190 1330513 1330961 "LSMP" NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-608 1323359 1329277 1329318 "LSAGG" 1329380 LSAGG (NIL T) -9 NIL 1329458 NIL) (-607 1321053 1322152 1323354 "LSAGG-" NIL LSAGG- (NIL T T) -7 NIL NIL NIL) (-606 1318565 1320402 1320651 "LPOLY" NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-605 1318232 1318323 1318446 "LPEFRAC" NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-604 1317903 1317982 1318010 "LOGIC" 1318121 LOGIC (NIL) -9 NIL 1318203 NIL) (-603 1317798 1317827 1317898 "LOGIC-" NIL LOGIC- (NIL T) -7 NIL NIL NIL) (-602 1317117 1317275 1317468 "LODOOPS" NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-601 1315902 1316151 1316502 "LODOF" NIL LODOF (NIL T T) -7 NIL NIL NIL) (-600 1311788 1314523 1314563 "LODOCAT" 1314995 LODOCAT (NIL T) -9 NIL 1315206 NIL) (-599 1311581 1311657 1311783 "LODOCAT-" NIL LODOCAT- (NIL T T) -7 NIL NIL NIL) (-598 1308645 1311458 1311576 "LODO2" NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-597 1305807 1308595 1308640 "LODO1" NIL LODO1 (NIL T) -8 NIL NIL NIL) (-596 1302958 1305737 1305802 "LODO" NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-595 1302011 1302186 1302488 "LODEEF" NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-594 1300175 1301273 1301526 "LO" NIL LO (NIL T T T) -8 NIL NIL NIL) (-593 1295270 1298334 1298375 "LNAGG" 1299237 LNAGG (NIL T) -9 NIL 1299672 NIL) (-592 1294657 1294924 1295265 "LNAGG-" NIL LNAGG- (NIL T T) -7 NIL NIL NIL) (-591 1291229 1292170 1292807 "LMOPS" NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-590 1290522 1290996 1291036 "LMODULE" 1291041 LMODULE (NIL T) -9 NIL 1291067 NIL) (-589 1287701 1290259 1290381 "LMDICT" NIL LMDICT (NIL T) -8 NIL NIL NIL) (-588 1287269 1287480 1287521 "LLINSET" 1287582 LLINSET (NIL T) -9 NIL 1287626 NIL) (-587 1286945 1287205 1287264 "LITERAL" NIL LITERAL (NIL T) -8 NIL NIL NIL) (-586 1286544 1286624 1286763 "LIST3" NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-585 1284995 1285343 1285742 "LIST2MAP" NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-584 1284166 1284362 1284590 "LIST2" NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-583 1277213 1283422 1283676 "LIST" NIL LIST (NIL T) -8 NIL NIL NIL) (-582 1276790 1277023 1277064 "LINSET" 1277069 LINSET (NIL T) -9 NIL 1277102 NIL) (-581 1275723 1276413 1276580 "LINFORM" NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-580 1274020 1274744 1274784 "LINEXP" 1275270 LINEXP (NIL T) -9 NIL 1275543 NIL) (-579 1272729 1273629 1273810 "LINELT" NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-578 1271556 1271828 1272130 "LINDEP" NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-577 1270769 1271358 1271468 "LINBASIS" NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-576 1268319 1269041 1269791 "LIMITRF" NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-575 1266949 1267246 1267637 "LIMITPS" NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-574 1265773 1266344 1266384 "LIECAT" 1266524 LIECAT (NIL T) -9 NIL 1266675 NIL) (-573 1265647 1265680 1265768 "LIECAT-" NIL LIECAT- (NIL T T) -7 NIL NIL NIL) (-572 1259935 1265337 1265565 "LIE" NIL LIE (NIL T T) -8 NIL NIL NIL) (-571 1252284 1259611 1259767 "LIB" NIL LIB (NIL) -8 NIL NIL NIL) (-570 1248736 1249685 1250620 "LGROBP" NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-569 1247360 1248268 1248296 "LFCAT" 1248503 LFCAT (NIL) -9 NIL 1248642 NIL) (-568 1245599 1245929 1246274 "LF" NIL LF (NIL T T) -7 NIL NIL NIL) (-567 1243116 1243781 1244462 "LEXTRIPK" NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-566 1240128 1241106 1241609 "LEXP" NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-565 1239619 1239922 1240013 "LETAST" NIL LETAST (NIL) -8 NIL NIL NIL) (-564 1238326 1238650 1239050 "LEADCDET" NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-563 1237592 1237677 1237903 "LAZM3PK" NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-562 1232659 1236160 1236696 "LAUPOL" NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-561 1232284 1232334 1232494 "LAPLACE" NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-560 1231117 1231828 1231868 "LALG" 1231929 LALG (NIL T) -9 NIL 1231987 NIL) (-559 1230900 1230977 1231112 "LALG-" NIL LALG- (NIL T T) -7 NIL NIL NIL) (-558 1228817 1230168 1230419 "LA" NIL LA (NIL T T T) -8 NIL NIL NIL) (-557 1228646 1228676 1228717 "KVTFROM" 1228779 KVTFROM (NIL T) -9 NIL NIL NIL) (-556 1227462 1228177 1228366 "KTVLOGIC" NIL KTVLOGIC (NIL) -8 NIL NIL NIL) (-555 1227291 1227321 1227362 "KRCFROM" 1227424 KRCFROM (NIL T) -9 NIL NIL NIL) (-554 1226393 1226590 1226885 "KOVACIC" NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-553 1226222 1226252 1226293 "KONVERT" 1226355 KONVERT (NIL T) -9 NIL NIL NIL) (-552 1226051 1226081 1226122 "KOERCE" 1226184 KOERCE (NIL T) -9 NIL NIL NIL) (-551 1225621 1225714 1225846 "KERNEL2" NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-550 1223674 1224568 1224940 "KERNEL" NIL KERNEL (NIL T) -8 NIL NIL NIL) (-549 1216851 1221866 1221920 "KDAGG" 1222296 KDAGG (NIL T T) -9 NIL 1222503 NIL) (-548 1216499 1216641 1216846 "KDAGG-" NIL KDAGG- (NIL T T T) -7 NIL NIL NIL) (-547 1209329 1216280 1216437 "KAFILE" NIL KAFILE (NIL T) -8 NIL NIL NIL) (-546 1208979 1209261 1209324 "JVMOP" NIL JVMOP (NIL) -8 NIL NIL NIL) (-545 1207949 1208448 1208697 "JVMMDACC" NIL JVMMDACC (NIL) -8 NIL NIL NIL) (-544 1207075 1207524 1207729 "JVMFDACC" NIL JVMFDACC (NIL) -8 NIL NIL NIL) (-543 1205939 1206431 1206731 "JVMCSTTG" NIL JVMCSTTG (NIL) -8 NIL NIL NIL) (-542 1205221 1205620 1205781 "JVMCFACC" NIL JVMCFACC (NIL) -8 NIL NIL NIL) (-541 1204931 1205167 1205216 "JVMBCODE" NIL JVMBCODE (NIL) -8 NIL NIL NIL) (-540 1199218 1204621 1204849 "JORDAN" NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-539 1198636 1198969 1199089 "JOINAST" NIL JOINAST (NIL) -8 NIL NIL NIL) (-538 1194798 1196813 1196867 "IXAGG" 1197794 IXAGG (NIL T T) -9 NIL 1198251 NIL) (-537 1194004 1194375 1194793 "IXAGG-" NIL IXAGG- (NIL T T T) -7 NIL NIL NIL) (-536 1189258 1193940 1193999 "IVECTOR" NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-535 1188225 1188500 1188763 "ITUPLE" NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-534 1186887 1187094 1187387 "ITRIGMNP" NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-533 1185838 1186060 1186343 "ITFUN3" NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-532 1185513 1185576 1185699 "ITFUN2" NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-531 1184775 1185147 1185321 "ITFORM" NIL ITFORM (NIL) -8 NIL NIL NIL) (-530 1182815 1184051 1184325 "ITAYLOR" NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-529 1172427 1178132 1179289 "ISUPS" NIL ISUPS (NIL T) -8 NIL NIL NIL) (-528 1171672 1171824 1172060 "ISUMP" NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-527 1171163 1171466 1171557 "ISAST" NIL ISAST (NIL) -8 NIL NIL NIL) (-526 1170456 1170547 1170760 "IRURPK" NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-525 1169588 1169813 1170053 "IRSN" NIL IRSN (NIL) -7 NIL NIL NIL) (-524 1168001 1168382 1168810 "IRRF2F" NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-523 1167786 1167830 1167906 "IRREDFFX" NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-522 1166636 1166933 1167228 "IROOT" NIL IROOT (NIL T) -7 NIL NIL NIL) (-521 1165909 1166260 1166411 "IRFORM" NIL IRFORM (NIL) -8 NIL NIL NIL) (-520 1165112 1165243 1165456 "IR2F" NIL IR2F (NIL T T) -7 NIL NIL NIL) (-519 1163267 1163764 1164308 "IR2" NIL IR2 (NIL T T) -7 NIL NIL NIL) (-518 1160380 1161616 1162305 "IR" NIL IR (NIL T) -8 NIL NIL NIL) (-517 1160205 1160245 1160305 "IPRNTPK" NIL IPRNTPK (NIL) -7 NIL NIL NIL) (-516 1156267 1160131 1160200 "IPF" NIL IPF (NIL NIL) -8 NIL NIL NIL) (-515 1154334 1156206 1156262 "IPADIC" NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-514 1153705 1154004 1154134 "IP4ADDR" NIL IP4ADDR (NIL) -8 NIL NIL NIL) (-513 1153158 1153446 1153578 "IOMODE" NIL IOMODE (NIL) -8 NIL NIL NIL) (-512 1152239 1152864 1152990 "IOBFILE" NIL IOBFILE (NIL) -8 NIL NIL NIL) (-511 1151649 1152143 1152171 "IOBCON" 1152176 IOBCON (NIL) -9 NIL 1152197 NIL) (-510 1151220 1151284 1151466 "INVLAPLA" NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-509 1143264 1145635 1147960 "INTTR" NIL INTTR (NIL T T) -7 NIL NIL NIL) (-508 1140375 1141158 1142022 "INTTOOLS" NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-507 1140052 1140149 1140266 "INTSLPE" NIL INTSLPE (NIL) -7 NIL NIL NIL) (-506 1137558 1139988 1140047 "INTRVL" NIL INTRVL (NIL T) -8 NIL NIL NIL) (-505 1135670 1136199 1136766 "INTRF" NIL INTRF (NIL T) -7 NIL NIL NIL) (-504 1135172 1135286 1135426 "INTRET" NIL INTRET (NIL T) -7 NIL NIL NIL) (-503 1133556 1133962 1134424 "INTRAT" NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-502 1131335 1131929 1132540 "INTPM" NIL INTPM (NIL T T) -7 NIL NIL NIL) (-501 1128708 1129318 1130038 "INTPAF" NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-500 1128112 1128270 1128478 "INTHERTR" NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-499 1127631 1127717 1127905 "INTHERAL" NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-498 1125836 1126357 1126814 "INTHEORY" NIL INTHEORY (NIL) -7 NIL NIL NIL) (-497 1118918 1120571 1122300 "INTG0" NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-496 1118284 1118446 1118619 "INTFACT" NIL INTFACT (NIL T) -7 NIL NIL NIL) (-495 1116157 1116621 1117165 "INTEF" NIL INTEF (NIL T T) -7 NIL NIL NIL) (-494 1114345 1115233 1115261 "INTDOM" 1115560 INTDOM (NIL) -9 NIL 1115765 NIL) (-493 1113898 1114100 1114340 "INTDOM-" NIL INTDOM- (NIL T) -7 NIL NIL NIL) (-492 1109769 1112177 1112231 "INTCAT" 1113027 INTCAT (NIL T) -9 NIL 1113343 NIL) (-491 1109334 1109454 1109581 "INTBIT" NIL INTBIT (NIL) -7 NIL NIL NIL) (-490 1108174 1108346 1108652 "INTALG" NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-489 1107747 1107843 1108000 "INTAF" NIL INTAF (NIL T T) -7 NIL NIL NIL) (-488 1100787 1107602 1107742 "INTABL" NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-487 1100085 1100640 1100705 "INT8" NIL INT8 (NIL) -8 NIL NIL 1100739) (-486 1099382 1099937 1100002 "INT64" NIL INT64 (NIL) -8 NIL NIL 1100036) (-485 1098679 1099234 1099299 "INT32" NIL INT32 (NIL) -8 NIL NIL 1099333) (-484 1097976 1098531 1098596 "INT16" NIL INT16 (NIL) -8 NIL NIL 1098630) (-483 1094503 1097895 1097971 "INT" NIL INT (NIL) -8 NIL NIL NIL) (-482 1088624 1092043 1092071 "INS" 1093001 INS (NIL) -9 NIL 1093660 NIL) (-481 1086686 1087604 1088551 "INS-" NIL INS- (NIL T) -7 NIL NIL NIL) (-480 1085745 1085968 1086243 "INPSIGN" NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-479 1084959 1085100 1085297 "INPRODPF" NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-478 1083949 1084090 1084327 "INPRODFF" NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-477 1083101 1083265 1083525 "INNMFACT" NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-476 1082381 1082496 1082684 "INMODGCD" NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-475 1081120 1081389 1081713 "INFSP" NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-474 1080400 1080541 1080724 "INFPROD0" NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-473 1080063 1080135 1080233 "INFORM1" NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-472 1077141 1078627 1079150 "INFORM" NIL INFORM (NIL) -8 NIL NIL NIL) (-471 1076740 1076847 1076961 "INFINITY" NIL INFINITY (NIL) -7 NIL NIL NIL) (-470 1075896 1076541 1076642 "INETCLTS" NIL INETCLTS (NIL) -8 NIL NIL NIL) (-469 1074746 1075014 1075335 "INEP" NIL INEP (NIL T T T) -7 NIL NIL NIL) (-468 1073818 1074676 1074741 "INDE" NIL INDE (NIL T) -8 NIL NIL NIL) (-467 1073443 1073523 1073640 "INCRMAPS" NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-466 1072357 1072902 1073106 "INBFILE" NIL INBFILE (NIL) -8 NIL NIL NIL) (-465 1068452 1069507 1070450 "INBFF" NIL INBFF (NIL T) -7 NIL NIL NIL) (-464 1067306 1067629 1067657 "INBCON" 1068170 INBCON (NIL) -9 NIL 1068436 NIL) (-463 1066760 1067025 1067301 "INBCON-" NIL INBCON- (NIL T) -7 NIL NIL NIL) (-462 1066254 1066556 1066646 "INAST" NIL INAST (NIL) -8 NIL NIL NIL) (-461 1065711 1066020 1066125 "IMPTAST" NIL IMPTAST (NIL) -8 NIL NIL NIL) (-460 1061811 1065603 1065706 "IMATRIX" NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-459 1060651 1060790 1061105 "IMATQF" NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-458 1059075 1059342 1059679 "IMATLIN" NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-457 1056891 1058957 1059070 "IIARRAY2" NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-456 1051798 1056822 1056886 "IFF" NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-455 1051178 1051512 1051627 "IFAST" NIL IFAST (NIL) -8 NIL NIL NIL) (-454 1045985 1050616 1050802 "IFARRAY" NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-453 1045047 1045907 1045980 "IFAMON" NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-452 1044619 1044696 1044750 "IEVALAB" 1044957 IEVALAB (NIL T T) -9 NIL NIL NIL) (-451 1044374 1044454 1044614 "IEVALAB-" NIL IEVALAB- (NIL T T T) -7 NIL NIL NIL) (-450 1043447 1044294 1044369 "IDPOAMS" NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-449 1042589 1043367 1043442 "IDPOAM" NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-448 1041992 1042523 1042584 "IDPO" NIL IDPO (NIL T T) -8 NIL NIL NIL) (-447 1040472 1040996 1041047 "IDPC" 1041553 IDPC (NIL T T) -9 NIL 1041833 NIL) (-446 1039838 1040394 1040467 "IDPAM" NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-445 1039087 1039760 1039833 "IDPAG" NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-444 1038780 1038993 1039053 "IDENT" NIL IDENT (NIL) -8 NIL NIL NIL) (-443 1038484 1038524 1038563 "IDEMOPC" 1038568 IDEMOPC (NIL T) -9 NIL 1038705 NIL) (-442 1035555 1036436 1037328 "IDECOMP" NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-441 1029181 1030458 1031497 "IDEAL" NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-440 1028443 1028573 1028772 "ICDEN" NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-439 1027616 1028115 1028253 "ICARD" NIL ICARD (NIL) -8 NIL NIL NIL) (-438 1026005 1026336 1026727 "IBPTOOLS" NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-437 1021774 1025961 1026000 "IBITS" NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-436 1019032 1019656 1020351 "IBATOOL" NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-435 1017258 1017738 1018271 "IBACHIN" NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-434 1015022 1017150 1017253 "IARRAY2" NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-433 1010891 1014960 1015017 "IARRAY1" NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-432 1004534 1009855 1010323 "IAN" NIL IAN (NIL) -8 NIL NIL NIL) (-431 1004102 1004165 1004338 "IALGFACT" NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-430 1003594 1003743 1003771 "HYPCAT" 1003978 HYPCAT (NIL) -9 NIL NIL NIL) (-429 1003250 1003403 1003589 "HYPCAT-" NIL HYPCAT- (NIL T) -7 NIL NIL NIL) (-428 1002863 1003108 1003191 "HOSTNAME" NIL HOSTNAME (NIL) -8 NIL NIL NIL) (-427 1002696 1002745 1002786 "HOMOTOP" 1002791 HOMOTOP (NIL T) -9 NIL 1002824 NIL) (-426 999264 1000638 1000679 "HOAGG" 1001654 HOAGG (NIL T) -9 NIL 1002375 NIL) (-425 998270 998740 999259 "HOAGG-" NIL HOAGG- (NIL T T) -7 NIL NIL NIL) (-424 991534 997995 998143 "HEXADEC" NIL HEXADEC (NIL) -8 NIL NIL NIL) (-423 990469 990727 990990 "HEUGCD" NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-422 989436 990334 990464 "HELLFDIV" NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-421 987630 989269 989357 "HEAP" NIL HEAP (NIL T) -8 NIL NIL NIL) (-420 986945 987297 987430 "HEADAST" NIL HEADAST (NIL) -8 NIL NIL NIL) (-419 980498 986878 986940 "HDP" NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-418 973701 980234 980385 "HDMP" NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-417 973154 973311 973474 "HB" NIL HB (NIL) -7 NIL NIL NIL) (-416 966237 973045 973149 "HASHTBL" NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-415 965728 966031 966122 "HASAST" NIL HASAST (NIL) -8 NIL NIL NIL) (-414 963342 965515 965694 "HACKPI" NIL HACKPI (NIL) -8 NIL NIL NIL) (-413 958735 963225 963337 "GTSET" NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-412 951821 958632 958730 "GSTBL" NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-411 943822 951190 951445 "GSERIES" NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-410 942846 943355 943383 "GROUP" 943586 GROUP (NIL) -9 NIL 943720 NIL) (-409 942389 942590 942841 "GROUP-" NIL GROUP- (NIL T) -7 NIL NIL NIL) (-408 941061 941400 941787 "GROEBSOL" NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-407 939883 940240 940291 "GRMOD" 940820 GRMOD (NIL T T) -9 NIL 940986 NIL) (-406 939702 939750 939878 "GRMOD-" NIL GRMOD- (NIL T T T) -7 NIL NIL NIL) (-405 935825 937036 938036 "GRIMAGE" NIL GRIMAGE (NIL) -8 NIL NIL NIL) (-404 934547 934871 935186 "GRDEF" NIL GRDEF (NIL) -7 NIL NIL NIL) (-403 934100 934228 934369 "GRAY" NIL GRAY (NIL) -7 NIL NIL NIL) (-402 933173 933672 933723 "GRALG" 933876 GRALG (NIL T T) -9 NIL 933966 NIL) (-401 932892 932993 933168 "GRALG-" NIL GRALG- (NIL T T T) -7 NIL NIL NIL) (-400 929609 932574 932750 "GPOLSET" NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-399 929022 929085 929342 "GOSPER" NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-398 924908 925772 926297 "GMODPOL" NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-397 924083 924285 924523 "GHENSEL" NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-396 919086 920013 921032 "GENUPS" NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-395 918834 918891 918980 "GENUFACT" NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-394 918316 918405 918570 "GENPGCD" NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-393 917825 917866 918079 "GENMFACT" NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-392 916626 916909 917213 "GENEEZ" NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-391 909965 916316 916477 "GDMP" NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-390 899780 904755 905859 "GCNAALG" NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-389 897894 898935 898963 "GCDDOM" 899218 GCDDOM (NIL) -9 NIL 899375 NIL) (-388 897517 897674 897889 "GCDDOM-" NIL GCDDOM- (NIL T) -7 NIL NIL NIL) (-387 888310 890780 893168 "GBINTERN" NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-386 886445 886770 887188 "GBF" NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-385 885386 885575 885842 "GBEUCLID" NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-384 884257 884464 884768 "GB" NIL GB (NIL T T T T) -7 NIL NIL NIL) (-383 883720 883862 884010 "GAUSSFAC" NIL GAUSSFAC (NIL) -7 NIL NIL NIL) (-382 882332 882680 882993 "GALUTIL" NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-381 880877 881198 881520 "GALPOLYU" NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-380 878503 878859 879264 "GALFACTU" NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-379 871755 873416 874994 "GALFACT" NIL GALFACT (NIL T) -7 NIL NIL NIL) (-378 871407 871628 871696 "FUNDESC" NIL FUNDESC (NIL) -8 NIL NIL NIL) (-377 871031 871252 871333 "FUNCTION" NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-376 869128 869811 870271 "FT" NIL FT (NIL) -8 NIL NIL NIL) (-375 867721 868028 868420 "FSUPFACT" NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-374 866376 866735 867059 "FST" NIL FST (NIL) -8 NIL NIL NIL) (-373 865679 865803 865990 "FSRED" NIL FSRED (NIL T T) -7 NIL NIL NIL) (-372 864653 864919 865266 "FSPRMELT" NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-371 862311 862841 863323 "FSPECF" NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-370 861894 861954 862123 "FSINT" NIL FSINT (NIL T T) -7 NIL NIL NIL) (-369 860258 861108 861411 "FSERIES" NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-368 859406 859540 859763 "FSCINT" NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-367 858577 858738 858965 "FSAGG2" NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-366 854560 857511 857552 "FSAGG" 857922 FSAGG (NIL T) -9 NIL 858181 NIL) (-365 852914 853673 854465 "FSAGG-" NIL FSAGG- (NIL T T) -7 NIL NIL NIL) (-364 850870 851166 851710 "FS2UPS" NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-363 849917 850099 850399 "FS2EXPXP" NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-362 849598 849647 849774 "FS2" NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-361 829853 839255 839296 "FS" 843166 FS (NIL T) -9 NIL 845444 NIL) (-360 822084 825577 829556 "FS-" NIL FS- (NIL T T) -7 NIL NIL NIL) (-359 821618 821745 821897 "FRUTIL" NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-358 816172 819299 819339 "FRNAALG" 820659 FRNAALG (NIL T) -9 NIL 821257 NIL) (-357 812913 814164 815422 "FRNAALG-" NIL FRNAALG- (NIL T T) -7 NIL NIL NIL) (-356 812594 812643 812770 "FRNAAF2" NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-355 811081 811638 811932 "FRMOD" NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-354 810367 810460 810747 "FRIDEAL2" NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-353 808201 808967 809283 "FRIDEAL" NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-352 807310 807753 807794 "FRETRCT" 807799 FRETRCT (NIL T) -9 NIL 807970 NIL) (-351 806683 806961 807305 "FRETRCT-" NIL FRETRCT- (NIL T T) -7 NIL NIL NIL) (-350 803489 804947 805006 "FRAMALG" 805888 FRAMALG (NIL T T) -9 NIL 806180 NIL) (-349 802085 802636 803266 "FRAMALG-" NIL FRAMALG- (NIL T T T) -7 NIL NIL NIL) (-348 801778 801841 801948 "FRAC2" NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-347 795483 801583 801773 "FRAC" NIL FRAC (NIL T) -8 NIL NIL NIL) (-346 795176 795239 795346 "FR2" NIL FR2 (NIL T T) -7 NIL NIL NIL) (-345 787548 792055 793383 "FR" NIL FR (NIL T) -8 NIL NIL NIL) (-344 781388 784829 784857 "FPS" 785976 FPS (NIL) -9 NIL 786532 NIL) (-343 780945 781078 781242 "FPS-" NIL FPS- (NIL T) -7 NIL NIL NIL) (-342 777818 779798 779826 "FPC" 780051 FPC (NIL) -9 NIL 780193 NIL) (-341 777664 777716 777813 "FPC-" NIL FPC- (NIL T) -7 NIL NIL NIL) (-340 776441 777150 777191 "FPATMAB" 777196 FPATMAB (NIL T) -9 NIL 777348 NIL) (-339 774871 775467 775814 "FPARFRAC" NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-338 774446 774504 774677 "FORDER" NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-337 772981 773844 774018 "FNLA" NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-336 771596 772101 772129 "FNCAT" 772586 FNCAT (NIL) -9 NIL 772843 NIL) (-335 771053 771563 771591 "FNAME" NIL FNAME (NIL) -8 NIL NIL NIL) (-334 769640 771002 771048 "FMONOID" NIL FMONOID (NIL T) -8 NIL NIL NIL) (-333 766228 767586 767627 "FMONCAT" 768844 FMONCAT (NIL T) -9 NIL 769448 NIL) (-332 763117 764164 764217 "FMCAT" 765398 FMCAT (NIL T T) -9 NIL 765890 NIL) (-331 761849 762940 763039 "FM1" NIL FM1 (NIL T T) -8 NIL NIL NIL) (-330 760977 761697 761844 "FM" NIL FM (NIL T T) -8 NIL NIL NIL) (-329 759164 759616 760110 "FLOATRP" NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-328 757099 757635 758213 "FLOATCP" NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-327 750549 755436 756050 "FLOAT" NIL FLOAT (NIL) -8 NIL NIL NIL) (-326 749061 750131 750171 "FLINEXP" 750176 FLINEXP (NIL T) -9 NIL 750269 NIL) (-325 748470 748729 749056 "FLINEXP-" NIL FLINEXP- (NIL T T) -7 NIL NIL NIL) (-324 747685 747844 748065 "FLASORT" NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-323 744599 745647 745699 "FLALG" 746926 FLALG (NIL T T) -9 NIL 747393 NIL) (-322 743770 743931 744158 "FLAGG2" NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-321 737179 741189 741230 "FLAGG" 742485 FLAGG (NIL T) -9 NIL 743130 NIL) (-320 736287 736691 737174 "FLAGG-" NIL FLAGG- (NIL T T) -7 NIL NIL NIL) (-319 732910 734112 734171 "FINRALG" 735299 FINRALG (NIL T T) -9 NIL 735807 NIL) (-318 732301 732566 732905 "FINRALG-" NIL FINRALG- (NIL T T T) -7 NIL NIL NIL) (-317 731599 731895 731923 "FINITE" 732119 FINITE (NIL) -9 NIL 732226 NIL) (-316 731507 731533 731594 "FINITE-" NIL FINITE- (NIL T) -7 NIL NIL NIL) (-315 723499 726059 726099 "FINAALG" 729751 FINAALG (NIL T) -9 NIL 731189 NIL) (-314 719766 721011 722134 "FINAALG-" NIL FINAALG- (NIL T T) -7 NIL NIL NIL) (-313 718318 718737 718791 "FILECAT" 719475 FILECAT (NIL T T) -9 NIL 719691 NIL) (-312 717669 718143 718246 "FILE" NIL FILE (NIL T) -8 NIL NIL NIL) (-311 714979 716795 716823 "FIELD" 716863 FIELD (NIL) -9 NIL 716943 NIL) (-310 714004 714465 714974 "FIELD-" NIL FIELD- (NIL T) -7 NIL NIL NIL) (-309 712008 712954 713300 "FGROUP" NIL FGROUP (NIL T) -8 NIL NIL NIL) (-308 711251 711432 711651 "FGLMICPK" NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-307 706585 711189 711246 "FFX" NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-306 706247 706314 706449 "FFSLPE" NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-305 705787 705829 706038 "FFPOLY2" NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-304 702467 703344 704121 "FFPOLY" NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-303 697815 702399 702462 "FFP" NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-302 692558 697304 697494 "FFNBX" NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-301 687103 691839 692097 "FFNBP" NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-300 681374 686554 686765 "FFNB" NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-299 680397 680607 680922 "FFINTBAS" NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-298 675900 678542 678570 "FFIELDC" 679189 FFIELDC (NIL) -9 NIL 679564 NIL) (-297 674969 675409 675895 "FFIELDC-" NIL FFIELDC- (NIL T) -7 NIL NIL NIL) (-296 674584 674642 674766 "FFHOM" NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-295 672728 673251 673768 "FFF" NIL FFF (NIL T) -7 NIL NIL NIL) (-294 667886 672527 672628 "FFCGX" NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-293 663050 667675 667782 "FFCGP" NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-292 657780 662841 662949 "FFCG" NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-291 657234 657283 657518 "FFCAT2" NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-290 635871 646843 646929 "FFCAT" 652079 FFCAT (NIL T T T) -9 NIL 653515 NIL) (-289 632111 633337 634643 "FFCAT-" NIL FFCAT- (NIL T T T T) -7 NIL NIL NIL) (-288 627018 632042 632106 "FF" NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-287 625910 626379 626420 "FEVALAB" 626504 FEVALAB (NIL T) -9 NIL 626765 NIL) (-286 625315 625567 625905 "FEVALAB-" NIL FEVALAB- (NIL T T) -7 NIL NIL NIL) (-285 622173 623053 623168 "FDIVCAT" 624735 FDIVCAT (NIL T T T T) -9 NIL 625171 NIL) (-284 621967 621999 622168 "FDIVCAT-" NIL FDIVCAT- (NIL T T T T T) -7 NIL NIL NIL) (-283 621274 621367 621644 "FDIV2" NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-282 619792 620758 620961 "FDIV" NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-281 618885 619269 619471 "FCTRDATA" NIL FCTRDATA (NIL) -8 NIL NIL NIL) (-280 618007 618496 618636 "FCOMP" NIL FCOMP (NIL T) -8 NIL NIL NIL) (-279 609656 614237 614277 "FAXF" 616078 FAXF (NIL T) -9 NIL 616768 NIL) (-278 607572 608376 609191 "FAXF-" NIL FAXF- (NIL T T) -7 NIL NIL NIL) (-277 602436 607094 607268 "FARRAY" NIL FARRAY (NIL T) -8 NIL NIL NIL) (-276 596958 599317 599369 "FAMR" 600380 FAMR (NIL T T) -9 NIL 600839 NIL) (-275 596157 596522 596953 "FAMR-" NIL FAMR- (NIL T T T) -7 NIL NIL NIL) (-274 595210 596099 596152 "FAMONOID" NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-273 592835 593683 593736 "FAMONC" 594677 FAMONC (NIL T T) -9 NIL 595062 NIL) (-272 591423 592693 592830 "FAGROUP" NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-271 589503 589864 590266 "FACUTIL" NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-270 588780 588977 589199 "FACTFUNC" NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-269 580704 588227 588426 "EXPUPXS" NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-268 578723 579293 579879 "EXPRTUBE" NIL EXPRTUBE (NIL) -7 NIL NIL NIL) (-267 575625 576267 576987 "EXPRODE" NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-266 570782 571489 572294 "EXPR2UPS" NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-265 570471 570534 570643 "EXPR2" NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-264 555421 569520 569946 "EXPR" NIL EXPR (NIL T) -8 NIL NIL NIL) (-263 546012 554741 555029 "EXPEXPAN" NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-262 545506 545808 545898 "EXITAST" NIL EXITAST (NIL) -8 NIL NIL NIL) (-261 545282 545472 545501 "EXIT" NIL EXIT (NIL) -8 NIL NIL NIL) (-260 544971 545039 545152 "EVALCYC" NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-259 544488 544630 544671 "EVALAB" 544841 EVALAB (NIL T) -9 NIL 544945 NIL) (-258 544116 544262 544483 "EVALAB-" NIL EVALAB- (NIL T T) -7 NIL NIL NIL) (-257 541221 542754 542782 "EUCDOM" 543336 EUCDOM (NIL) -9 NIL 543685 NIL) (-256 540148 540641 541216 "EUCDOM-" NIL EUCDOM- (NIL T) -7 NIL NIL NIL) (-255 539873 539929 540029 "ES2" NIL ES2 (NIL T T) -7 NIL NIL NIL) (-254 539561 539625 539734 "ES1" NIL ES1 (NIL T T) -7 NIL NIL NIL) (-253 533332 535232 535260 "ES" 538002 ES (NIL) -9 NIL 539386 NIL) (-252 529847 531379 533171 "ES-" NIL ES- (NIL T) -7 NIL NIL NIL) (-251 529195 529348 529524 "ERROR" NIL ERROR (NIL) -7 NIL NIL NIL) (-250 522284 529099 529190 "EQTBL" NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-249 521973 522036 522145 "EQ2" NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-248 515699 518725 520158 "EQ" NIL EQ (NIL T) -8 NIL NIL NIL) (-247 512002 513098 514191 "EP" NIL EP (NIL T) -7 NIL NIL NIL) (-246 510831 511181 511486 "ENV" NIL ENV (NIL) -8 NIL NIL NIL) (-245 509778 510447 510475 "ENTIRER" 510480 ENTIRER (NIL) -9 NIL 510524 NIL) (-244 506475 508208 508557 "EMR" NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-243 505567 505778 505832 "ELTAGG" 506212 ELTAGG (NIL T T) -9 NIL 506423 NIL) (-242 505347 505421 505562 "ELTAGG-" NIL ELTAGG- (NIL T T T) -7 NIL NIL NIL) (-241 505093 505128 505182 "ELTAB" 505266 ELTAB (NIL T T) -9 NIL 505318 NIL) (-240 504344 504514 504713 "ELFUTS" NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-239 504068 504142 504170 "ELEMFUN" 504275 ELEMFUN (NIL) -9 NIL NIL NIL) (-238 503968 503995 504063 "ELEMFUN-" NIL ELEMFUN- (NIL T) -7 NIL NIL NIL) (-237 498514 502009 502050 "ELAGG" 502987 ELAGG (NIL T) -9 NIL 503447 NIL) (-236 497312 497850 498509 "ELAGG-" NIL ELAGG- (NIL T T) -7 NIL NIL NIL) (-235 496730 496897 497053 "ELABOR" NIL ELABOR (NIL) -8 NIL NIL NIL) (-234 495643 495962 496241 "ELABEXPR" NIL ELABEXPR (NIL) -8 NIL NIL NIL) (-233 489036 491034 491861 "EFUPXS" NIL EFUPXS (NIL T T T T) -7 NIL NIL NIL) (-232 483015 485011 485821 "EFULS" NIL EFULS (NIL T T T) -7 NIL NIL NIL) (-231 480829 481235 481706 "EFSTRUC" NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-230 471829 473742 475283 "EF" NIL EF (NIL T T) -7 NIL NIL NIL) (-229 470942 471443 471592 "EAB" NIL EAB (NIL) -8 NIL NIL NIL) (-228 469640 470314 470354 "DVARCAT" 470637 DVARCAT (NIL T) -9 NIL 470777 NIL) (-227 469059 469323 469635 "DVARCAT-" NIL DVARCAT- (NIL T T) -7 NIL NIL NIL) (-226 461190 468927 469054 "DSMP" NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-225 459528 460319 460360 "DSEXT" 460723 DSEXT (NIL T) -9 NIL 461017 NIL) (-224 458333 458857 459523 "DSEXT-" NIL DSEXT- (NIL T T) -7 NIL NIL NIL) (-223 458057 458122 458220 "DROPT1" NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-222 454208 455424 456555 "DROPT0" NIL DROPT0 (NIL) -7 NIL NIL NIL) (-221 449854 451209 452273 "DROPT" NIL DROPT (NIL) -8 NIL NIL NIL) (-220 448529 448890 449276 "DRAWPT" NIL DRAWPT (NIL) -7 NIL NIL NIL) (-219 448215 448274 448392 "DRAWHACK" NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-218 447190 447488 447778 "DRAWCX" NIL DRAWCX (NIL) -7 NIL NIL NIL) (-217 446775 446850 447000 "DRAWCURV" NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-216 439188 441300 443415 "DRAWCFUN" NIL DRAWCFUN (NIL) -7 NIL NIL NIL) (-215 434705 435724 436803 "DRAW" NIL DRAW (NIL T) -7 NIL NIL NIL) (-214 431300 433369 433410 "DQAGG" 434039 DQAGG (NIL T) -9 NIL 434312 NIL) (-213 417907 425483 425565 "DPOLCAT" 427402 DPOLCAT (NIL T T T T) -9 NIL 427945 NIL) (-212 414315 415963 417902 "DPOLCAT-" NIL DPOLCAT- (NIL T T T T T) -7 NIL NIL NIL) (-211 407402 414213 414310 "DPMO" NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-210 400398 407231 407397 "DPMM" NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-209 399991 400251 400340 "DOMTMPLT" NIL DOMTMPLT (NIL) -8 NIL NIL NIL) (-208 399405 399853 399933 "DOMCTOR" NIL DOMCTOR (NIL) -8 NIL NIL NIL) (-207 398691 399016 399167 "DOMAIN" NIL DOMAIN (NIL) -8 NIL NIL NIL) (-206 391894 398427 398578 "DMP" NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-205 389674 390960 391000 "DMEXT" 391005 DMEXT (NIL T) -9 NIL 391180 NIL) (-204 389330 389392 389536 "DLP" NIL DLP (NIL T) -7 NIL NIL NIL) (-203 382655 388815 389005 "DLIST" NIL DLIST (NIL T) -8 NIL NIL NIL) (-202 379321 381478 381519 "DLAGG" 382069 DLAGG (NIL T) -9 NIL 382298 NIL) (-201 377734 378543 378571 "DIVRING" 378663 DIVRING (NIL) -9 NIL 378746 NIL) (-200 377185 377429 377729 "DIVRING-" NIL DIVRING- (NIL T) -7 NIL NIL NIL) (-199 375613 376030 376436 "DISPLAY" NIL DISPLAY (NIL) -7 NIL NIL NIL) (-198 374650 374871 375136 "DIRPROD2" NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-197 368223 374582 374645 "DIRPROD" NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-196 356642 363003 363056 "DIRPCAT" 363312 DIRPCAT (NIL NIL T) -9 NIL 364185 NIL) (-195 354648 355418 356305 "DIRPCAT-" NIL DIRPCAT- (NIL T NIL T) -7 NIL NIL NIL) (-194 354095 354261 354447 "DIOSP" NIL DIOSP (NIL) -7 NIL NIL NIL) (-193 350641 352981 353022 "DIOPS" 353454 DIOPS (NIL T) -9 NIL 353680 NIL) (-192 350301 350445 350636 "DIOPS-" NIL DIOPS- (NIL T T) -7 NIL NIL NIL) (-191 349339 350054 350082 "DIOID" 350087 DIOID (NIL) -9 NIL 350109 NIL) (-190 348229 348996 349024 "DIFRING" 349029 DIFRING (NIL) -9 NIL 349050 NIL) (-189 347865 347963 347991 "DIFFSPC" 348110 DIFFSPC (NIL) -9 NIL 348185 NIL) (-188 347606 347708 347860 "DIFFSPC-" NIL DIFFSPC- (NIL T) -7 NIL NIL NIL) (-187 346540 347134 347174 "DIFFMOD" 347179 DIFFMOD (NIL T) -9 NIL 347276 NIL) (-186 346224 346281 346322 "DIFFDOM" 346443 DIFFDOM (NIL T) -9 NIL 346511 NIL) (-185 346105 346135 346219 "DIFFDOM-" NIL DIFFDOM- (NIL T T) -7 NIL NIL NIL) (-184 343840 345299 345339 "DIFEXT" 345344 DIFEXT (NIL T) -9 NIL 345496 NIL) (-183 341001 343341 343382 "DIAGG" 343387 DIAGG (NIL T) -9 NIL 343407 NIL) (-182 340557 340747 340996 "DIAGG-" NIL DIAGG- (NIL T T) -7 NIL NIL NIL) (-181 335769 339747 340024 "DHMATRIX" NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-180 332227 333280 334290 "DFSFUN" NIL DFSFUN (NIL) -7 NIL NIL NIL) (-179 326841 331381 331708 "DFLOAT" NIL DFLOAT (NIL) -8 NIL NIL NIL) (-178 325407 325699 326074 "DFINTTLS" NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-177 322591 323779 324175 "DERHAM" NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-176 320311 322422 322511 "DEQUEUE" NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-175 319694 319839 320021 "DEGRED" NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-174 317012 317736 318536 "DEFINTRF" NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-173 315121 315579 316141 "DEFINTEF" NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-172 314504 314837 314951 "DEFAST" NIL DEFAST (NIL) -8 NIL NIL NIL) (-171 307768 314229 314377 "DECIMAL" NIL DECIMAL (NIL) -8 NIL NIL NIL) (-170 305688 306198 306702 "DDFACT" NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-169 305327 305376 305527 "DBLRESP" NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-168 304586 305148 305239 "DBASIS" NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-167 302610 303052 303412 "DBASE" NIL DBASE (NIL T) -8 NIL NIL NIL) (-166 301902 302191 302337 "DATAARY" NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-165 301353 301499 301651 "CYCLOTOM" NIL CYCLOTOM (NIL) -7 NIL NIL NIL) (-164 298715 299508 300235 "CYCLES" NIL CYCLES (NIL) -7 NIL NIL NIL) (-163 298154 298300 298471 "CVMP" NIL CVMP (NIL T) -7 NIL NIL NIL) (-162 296226 296537 296904 "CTRIGMNP" NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-161 295783 296038 296139 "CTORKIND" NIL CTORKIND (NIL) -8 NIL NIL NIL) (-160 294984 295367 295395 "CTORCAT" 295576 CTORCAT (NIL) -9 NIL 295688 NIL) (-159 294687 294821 294979 "CTORCAT-" NIL CTORCAT- (NIL T) -7 NIL NIL NIL) (-158 294180 294437 294545 "CTORCALL" NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-157 293596 294027 294100 "CTOR" NIL CTOR (NIL) -8 NIL NIL NIL) (-156 293055 293172 293325 "CSTTOOLS" NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-155 289449 290205 290960 "CRFP" NIL CRFP (NIL T T) -7 NIL NIL NIL) (-154 288940 289243 289334 "CRCEAST" NIL CRCEAST (NIL) -8 NIL NIL NIL) (-153 288159 288368 288596 "CRAPACK" NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-152 287663 287768 287972 "CPMATCH" NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-151 287416 287450 287556 "CPIMA" NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-150 284355 285117 285835 "COORDSYS" NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-149 283874 284016 284155 "CONTOUR" NIL CONTOUR (NIL) -8 NIL NIL NIL) (-148 279831 282337 282829 "CONTFRAC" NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-147 279705 279732 279760 "CONDUIT" 279797 CONDUIT (NIL) -9 NIL NIL NIL) (-146 278646 279315 279343 "COMRING" 279348 COMRING (NIL) -9 NIL 279398 NIL) (-145 277811 278178 278356 "COMPPROP" NIL COMPPROP (NIL) -8 NIL NIL NIL) (-144 277507 277548 277676 "COMPLPAT" NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-143 277200 277263 277370 "COMPLEX2" NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-142 266106 277150 277195 "COMPLEX" NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-141 265567 265706 265866 "COMPILER" NIL COMPILER (NIL) -7 NIL NIL NIL) (-140 265320 265361 265459 "COMPFACT" NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-139 246813 259001 259041 "COMPCAT" 260042 COMPCAT (NIL T) -9 NIL 261384 NIL) (-138 239351 242864 246457 "COMPCAT-" NIL COMPCAT- (NIL T T) -7 NIL NIL NIL) (-137 239110 239144 239246 "COMMUPC" NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-136 238940 238979 239037 "COMMONOP" NIL COMMONOP (NIL) -7 NIL NIL NIL) (-135 238521 238800 238874 "COMMAAST" NIL COMMAAST (NIL) -8 NIL NIL NIL) (-134 238098 238339 238426 "COMM" NIL COMM (NIL) -8 NIL NIL NIL) (-133 237293 237541 237569 "COMBOPC" 237907 COMBOPC (NIL) -9 NIL 238082 NIL) (-132 236357 236609 236851 "COMBINAT" NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-131 233289 233973 234596 "COMBF" NIL COMBF (NIL T T) -7 NIL NIL NIL) (-130 232169 232620 232855 "COLOR" NIL COLOR (NIL) -8 NIL NIL NIL) (-129 231660 231963 232054 "COLONAST" NIL COLONAST (NIL) -8 NIL NIL NIL) (-128 231347 231400 231525 "CMPLXRT" NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-127 230817 231127 231225 "CLLCTAST" NIL CLLCTAST (NIL) -8 NIL NIL NIL) (-126 227337 228407 229487 "CLIP" NIL CLIP (NIL) -7 NIL NIL NIL) (-125 225696 226617 226855 "CLIF" NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-124 221808 223816 223857 "CLAGG" 224783 CLAGG (NIL T) -9 NIL 225316 NIL) (-123 220701 221228 221803 "CLAGG-" NIL CLAGG- (NIL T T) -7 NIL NIL NIL) (-122 220330 220421 220561 "CINTSLPE" NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-121 218267 218774 219322 "CHVAR" NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-120 217290 217959 217987 "CHARZ" 217992 CHARZ (NIL) -9 NIL 218006 NIL) (-119 217084 217130 217208 "CHARPOL" NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-118 215985 216686 216714 "CHARNZ" 216775 CHARNZ (NIL) -9 NIL 216823 NIL) (-117 213463 214560 215083 "CHAR" NIL CHAR (NIL) -8 NIL NIL NIL) (-116 213171 213250 213278 "CFCAT" 213389 CFCAT (NIL) -9 NIL NIL NIL) (-115 212514 212643 212825 "CDEN" NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-114 208503 211927 212207 "CCLASS" NIL CCLASS (NIL) -8 NIL NIL NIL) (-113 207881 208068 208245 "CATEGORY" NIL -10 (NIL) -8 NIL NIL NIL) (-112 207409 207828 207876 "CATCTOR" NIL CATCTOR (NIL) -8 NIL NIL NIL) (-111 206882 207191 207288 "CATAST" NIL CATAST (NIL) -8 NIL NIL NIL) (-110 206373 206676 206767 "CASEAST" NIL CASEAST (NIL) -8 NIL NIL NIL) (-109 205622 205782 206003 "CARTEN2" NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-108 201722 202979 203687 "CARTEN" NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-107 200120 201119 201370 "CARD" NIL CARD (NIL) -8 NIL NIL NIL) (-106 199701 199980 200054 "CAPSLAST" NIL CAPSLAST (NIL) -8 NIL NIL NIL) (-105 199135 199388 199416 "CACHSET" 199548 CACHSET (NIL) -9 NIL 199626 NIL) (-104 198518 198902 198930 "CABMON" 198980 CABMON (NIL) -9 NIL 199036 NIL) (-103 198048 198312 198422 "BYTEORD" NIL BYTEORD (NIL) -8 NIL NIL NIL) (-102 193271 197705 197877 "BYTEBUF" NIL BYTEBUF (NIL) -8 NIL NIL NIL) (-101 192241 192945 193080 "BYTE" NIL BYTE (NIL) -8 NIL NIL 193243) (-100 189712 192008 192114 "BTREE" NIL BTREE (NIL T) -8 NIL NIL NIL) (-99 187143 189455 189574 "BTOURN" NIL BTOURN (NIL T) -8 NIL NIL NIL) (-98 184383 186587 186626 "BTCAT" 186693 BTCAT (NIL T) -9 NIL 186769 NIL) (-97 184134 184232 184378 "BTCAT-" NIL BTCAT- (NIL T T) -7 NIL NIL NIL) (-96 179244 183365 183391 "BTAGG" 183502 BTAGG (NIL) -9 NIL 183610 NIL) (-95 178875 179036 179239 "BTAGG-" NIL BTAGG- (NIL T) -7 NIL NIL NIL) (-94 175937 178345 178557 "BSTREE" NIL BSTREE (NIL T) -8 NIL NIL NIL) (-93 175207 175359 175537 "BRILL" NIL BRILL (NIL T) -7 NIL NIL NIL) (-92 171740 173913 173952 "BRAGG" 174593 BRAGG (NIL T) -9 NIL 174850 NIL) (-91 170695 171190 171735 "BRAGG-" NIL BRAGG- (NIL T T) -7 NIL NIL NIL) (-90 163293 170200 170381 "BPADICRT" NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-89 161349 163245 163288 "BPADIC" NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-88 161082 161118 161229 "BOUNDZRO" NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-87 159321 159754 160202 "BOP1" NIL BOP1 (NIL T) -7 NIL NIL NIL) (-86 155287 156703 157593 "BOP" NIL BOP (NIL) -8 NIL NIL NIL) (-85 154163 155054 155176 "BOOLEAN" NIL BOOLEAN (NIL) -8 NIL NIL NIL) (-84 153749 153906 153932 "BOOLE" 154040 BOOLE (NIL) -9 NIL 154121 NIL) (-83 153542 153623 153744 "BOOLE-" NIL BOOLE- (NIL T) -7 NIL NIL NIL) (-82 152711 153207 153257 "BMODULE" 153262 BMODULE (NIL T T) -9 NIL 153326 NIL) (-81 148328 152568 152637 "BITS" NIL BITS (NIL) -8 NIL NIL NIL) (-80 148141 148181 148220 "BINOPC" 148225 BINOPC (NIL T) -9 NIL 148270 NIL) (-79 147683 147956 148058 "BINOP" NIL BINOP (NIL T) -8 NIL NIL NIL) (-78 147204 147348 147486 "BINDING" NIL BINDING (NIL) -8 NIL NIL NIL) (-77 140474 146934 147079 "BINARY" NIL BINARY (NIL) -8 NIL NIL NIL) (-76 138208 139703 139742 "BGAGG" 139998 BGAGG (NIL T) -9 NIL 140135 NIL) (-75 138077 138115 138203 "BGAGG-" NIL BGAGG- (NIL T T) -7 NIL NIL NIL) (-74 136928 137129 137414 "BEZOUT" NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-73 133566 136086 136413 "BBTREE" NIL BBTREE (NIL T) -8 NIL NIL NIL) (-72 133151 133244 133270 "BASTYPE" 133441 BASTYPE (NIL) -9 NIL 133537 NIL) (-71 132921 133017 133146 "BASTYPE-" NIL BASTYPE- (NIL T) -7 NIL NIL NIL) (-70 132436 132524 132674 "BALFACT" NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-69 131335 132010 132195 "AUTOMOR" NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-68 131061 131066 131092 "ATTREG" 131097 ATTREG (NIL) -9 NIL NIL NIL) (-67 130666 130938 131003 "ATTRAST" NIL ATTRAST (NIL) -8 NIL NIL NIL) (-66 130166 130315 130341 "ATRIG" 130542 ATRIG (NIL) -9 NIL NIL NIL) (-65 130021 130074 130161 "ATRIG-" NIL ATRIG- (NIL T) -7 NIL NIL NIL) (-64 129591 129822 129848 "ASTCAT" 129853 ASTCAT (NIL) -9 NIL 129883 NIL) (-63 129390 129467 129586 "ASTCAT-" NIL ASTCAT- (NIL T) -7 NIL NIL NIL) (-62 127549 129223 129311 "ASTACK" NIL ASTACK (NIL T) -8 NIL NIL NIL) (-61 126356 126669 127034 "ASSOCEQ" NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-60 124156 126260 126351 "ARRAY2" NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 123347 123538 123759 "ARRAY12" NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 118934 123078 123192 "ARRAY1" NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 113100 115132 115207 "ARR2CAT" 117837 ARR2CAT (NIL T T T) -9 NIL 118595 NIL) (-56 111477 112247 113095 "ARR2CAT-" NIL ARR2CAT- (NIL T T T T) -7 NIL NIL NIL) (-55 110845 111216 111338 "ARITY" NIL ARITY (NIL) -8 NIL NIL NIL) (-54 109777 109945 110241 "APPRULE" NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 109478 109532 109650 "APPLYORE" NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 108861 109007 109163 "ANY1" NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 108266 108556 108676 "ANY" NIL ANY (NIL) -8 NIL NIL NIL) (-50 105898 106995 107318 "ANTISYM" NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 105423 105683 105779 "ANON" NIL ANON (NIL) -8 NIL NIL NIL) (-48 99182 104485 104927 "AN" NIL AN (NIL) -8 NIL NIL NIL) (-47 94778 96379 96429 "AMR" 97167 AMR (NIL T T) -9 NIL 97764 NIL) (-46 94132 94412 94773 "AMR-" NIL AMR- (NIL T T T) -7 NIL NIL NIL) (-45 77312 94066 94127 "ALIST" NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 73747 76988 77157 "ALGSC" NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 70757 71417 72024 "ALGPKG" NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 70136 70249 70433 "ALGMFACT" NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 66548 67173 67765 "ALGMANIP" NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 56101 66241 66391 "ALGFF" NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 55418 55572 55750 "ALGFACT" NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 54193 54926 54964 "ALGEBRA" 54969 ALGEBRA (NIL T) -9 NIL 55009 NIL) (-37 53979 54056 54188 "ALGEBRA-" NIL ALGEBRA- (NIL T T) -7 NIL NIL NIL) (-36 33976 51185 51237 "ALAGG" 51375 ALAGG (NIL T T) -9 NIL 51540 NIL) (-35 33476 33625 33651 "AHYP" 33852 AHYP (NIL) -9 NIL NIL NIL) (-34 32772 32953 32979 "AGG" 33260 AGG (NIL) -9 NIL 33447 NIL) (-33 32561 32648 32767 "AGG-" NIL AGG- (NIL T) -7 NIL NIL NIL) (-32 30700 31160 31560 "AF" NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30195 30498 30587 "ADDAST" NIL ADDAST (NIL) -8 NIL NIL NIL) (-30 29565 29860 30016 "ACPLOT" NIL ACPLOT (NIL) -8 NIL NIL NIL) (-29 17187 26402 26440 "ACFS" 27047 ACFS (NIL T) -9 NIL 27286 NIL) (-28 15810 16420 17182 "ACFS-" NIL ACFS- (NIL T T) -7 NIL NIL NIL) (-27 11426 13741 13767 "ACF" 14646 ACF (NIL) -9 NIL 15058 NIL) (-26 10522 10928 11421 "ACF-" NIL ACF- (NIL T) -7 NIL NIL NIL) (-25 10024 10264 10290 "ABELSG" 10382 ABELSG (NIL) -9 NIL 10447 NIL) (-24 9922 9953 10019 "ABELSG-" NIL ABELSG- (NIL T) -7 NIL NIL NIL) (-23 9188 9531 9557 "ABELMON" 9726 ABELMON (NIL) -9 NIL 9835 NIL) (-22 8931 9040 9183 "ABELMON-" NIL ABELMON- (NIL T) -7 NIL NIL NIL) (-21 8174 8626 8652 "ABELGRP" 8724 ABELGRP (NIL) -9 NIL 8799 NIL) (-20 7788 7953 8169 "ABELGRP-" NIL ABELGRP- (NIL T) -7 NIL NIL NIL) (-19 3036 7046 7085 "A1AGG" 7090 A1AGG (NIL T) -9 NIL 7130 NIL) (-18 30 1483 3031 "A1AGG-" NIL A1AGG- (NIL T T) -7 NIL NIL NIL)) \ No newline at end of file
+((-2566 (((-85) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 9 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-1129) (-995)) (T -1129))
+NIL
+((-3713 (((-85)) 18 T ELT)) (-3710 (((-1184) (-584 |#1|) (-584 |#1|)) 22 T ELT) (((-1184) (-584 |#1|)) 23 T ELT)) (-3715 (((-85) |#1| |#1|) 37 (|has| |#1| (-757)) ELT)) (-3712 (((-85) |#1| |#1| (-1 (-85) |#1| |#1|)) 29 T ELT) (((-3 (-85) "failed") |#1| |#1|) 27 T ELT)) (-3714 ((|#1| (-584 |#1|)) 38 (|has| |#1| (-757)) ELT) ((|#1| (-584 |#1|) (-1 (-85) |#1| |#1|)) 32 T ELT)) (-3711 (((-2 (|:| -3226 (-584 |#1|)) (|:| -3225 (-584 |#1|)))) 20 T ELT)))
+(((-1130 |#1|) (-10 -7 (-15 -3710 ((-1184) (-584 |#1|))) (-15 -3710 ((-1184) (-584 |#1|) (-584 |#1|))) (-15 -3711 ((-2 (|:| -3226 (-584 |#1|)) (|:| -3225 (-584 |#1|))))) (-15 -3712 ((-3 (-85) "failed") |#1| |#1|)) (-15 -3712 ((-85) |#1| |#1| (-1 (-85) |#1| |#1|))) (-15 -3714 (|#1| (-584 |#1|) (-1 (-85) |#1| |#1|))) (-15 -3713 ((-85))) (IF (|has| |#1| (-757)) (PROGN (-15 -3714 (|#1| (-584 |#1|))) (-15 -3715 ((-85) |#1| |#1|))) |%noBranch|)) (-1013)) (T -1130))
+((-3715 (*1 *2 *3 *3) (-12 (-5 *2 (-85)) (-5 *1 (-1130 *3)) (-4 *3 (-757)) (-4 *3 (-1013)))) (-3714 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-1013)) (-4 *2 (-757)) (-5 *1 (-1130 *2)))) (-3713 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1130 *3)) (-4 *3 (-1013)))) (-3714 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1130 *2)) (-4 *2 (-1013)))) (-3712 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1013)) (-5 *2 (-85)) (-5 *1 (-1130 *3)))) (-3712 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1130 *3)) (-4 *3 (-1013)))) (-3711 (*1 *2) (-12 (-5 *2 (-2 (|:| -3226 (-584 *3)) (|:| -3225 (-584 *3)))) (-5 *1 (-1130 *3)) (-4 *3 (-1013)))) (-3710 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-1013)) (-5 *2 (-1184)) (-5 *1 (-1130 *4)))) (-3710 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-1013)) (-5 *2 (-1184)) (-5 *1 (-1130 *4)))))
+((-3716 (((-1184) (-584 (-1089)) (-584 (-1089))) 14 T ELT) (((-1184) (-584 (-1089))) 12 T ELT)) (-3718 (((-1184)) 16 T ELT)) (-3717 (((-2 (|:| -3225 (-584 (-1089))) (|:| -3226 (-584 (-1089))))) 20 T ELT)))
+(((-1131) (-10 -7 (-15 -3716 ((-1184) (-584 (-1089)))) (-15 -3716 ((-1184) (-584 (-1089)) (-584 (-1089)))) (-15 -3717 ((-2 (|:| -3225 (-584 (-1089))) (|:| -3226 (-584 (-1089)))))) (-15 -3718 ((-1184))))) (T -1131))
+((-3718 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1131)))) (-3717 (*1 *2) (-12 (-5 *2 (-2 (|:| -3225 (-584 (-1089))) (|:| -3226 (-584 (-1089))))) (-5 *1 (-1131)))) (-3716 (*1 *2 *3 *3) (-12 (-5 *3 (-584 (-1089))) (-5 *2 (-1184)) (-5 *1 (-1131)))) (-3716 (*1 *2 *3) (-12 (-5 *3 (-584 (-1089))) (-5 *2 (-1184)) (-5 *1 (-1131)))))
+((-3771 (($ $) 17 T ELT)) (-3719 (((-85) $) 27 T ELT)))
+(((-1132 |#1|) (-10 -7 (-15 -3771 (|#1| |#1|)) (-15 -3719 ((-85) |#1|))) (-1133)) (T -1132))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 53 T ELT)) (-2061 (($ $) 52 T ELT)) (-2059 (((-85) $) 50 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3771 (($ $) 64 T ELT)) (-3967 (((-345 $) $) 65 T ELT)) (-3720 (($) 22 T CONST)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-3719 (((-85) $) 66 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3141 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3728 (((-345 $) $) 63 T ELT)) (-3462 (((-3 $ "failed") $ $) 54 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2060 (((-85) $ $) 51 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT)))
+(((-1133) (-113)) (T -1133))
+((-3719 (*1 *2 *1) (-12 (-4 *1 (-1133)) (-5 *2 (-85)))) (-3967 (*1 *2 *1) (-12 (-5 *2 (-345 *1)) (-4 *1 (-1133)))) (-3771 (*1 *1 *1) (-4 *1 (-1133))) (-3728 (*1 *2 *1) (-12 (-5 *2 (-345 *1)) (-4 *1 (-1133)))))
+(-13 (-389) (-10 -8 (-15 -3719 ((-85) $)) (-15 -3967 ((-345 $) $)) (-15 -3771 ($ $)) (-15 -3728 ((-345 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-484)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-245) . T) ((-389) . T) ((-495) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-2311 (($ $) NIL T ELT)) (-3133 (((-695)) NIL T ELT)) (-3720 (($) NIL T CONST)) (-2992 (($) NIL T ELT)) (-2529 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2855 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2008 (((-831) $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2398 (($ (-831)) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT)) (-3721 (($ $ $) NIL T ELT)) (-3722 (($ $ $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2309 (($ $ $) NIL T ELT)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2310 (($ $ $) NIL T ELT)))
+(((-1134) (-13 (-753) (-605) (-10 -8 (-15 -3722 ($ $ $)) (-15 -3721 ($ $ $)) (-15 -3720 ($) -3948)))) (T -1134))
+((-3722 (*1 *1 *1 *1) (-5 *1 (-1134))) (-3721 (*1 *1 *1 *1) (-5 *1 (-1134))) (-3720 (*1 *1) (-5 *1 (-1134))))
+((-695) (|%not| (|%ilt| 16 (|%ilength| |#1|))))
+((-2566 (((-85) $ $) NIL T ELT)) (-2311 (($ $) NIL T ELT)) (-3133 (((-695)) NIL T ELT)) (-3720 (($) NIL T CONST)) (-2992 (($) NIL T ELT)) (-2529 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2855 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2008 (((-831) $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2398 (($ (-831)) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT)) (-3721 (($ $ $) NIL T ELT)) (-3722 (($ $ $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2309 (($ $ $) NIL T ELT)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2310 (($ $ $) NIL T ELT)))
+(((-1135) (-13 (-753) (-605) (-10 -8 (-15 -3722 ($ $ $)) (-15 -3721 ($ $ $)) (-15 -3720 ($) -3948)))) (T -1135))
+((-3722 (*1 *1 *1 *1) (-5 *1 (-1135))) (-3721 (*1 *1 *1 *1) (-5 *1 (-1135))) (-3720 (*1 *1) (-5 *1 (-1135))))
+((-695) (|%not| (|%ilt| 32 (|%ilength| |#1|))))
+((-2566 (((-85) $ $) NIL T ELT)) (-2311 (($ $) NIL T ELT)) (-3133 (((-695)) NIL T ELT)) (-3720 (($) NIL T CONST)) (-2992 (($) NIL T ELT)) (-2529 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2855 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2008 (((-831) $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2398 (($ (-831)) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT)) (-3721 (($ $ $) NIL T ELT)) (-3722 (($ $ $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2309 (($ $ $) NIL T ELT)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2310 (($ $ $) NIL T ELT)))
+(((-1136) (-13 (-753) (-605) (-10 -8 (-15 -3722 ($ $ $)) (-15 -3721 ($ $ $)) (-15 -3720 ($) -3948)))) (T -1136))
+((-3722 (*1 *1 *1 *1) (-5 *1 (-1136))) (-3721 (*1 *1 *1 *1) (-5 *1 (-1136))) (-3720 (*1 *1) (-5 *1 (-1136))))
+((-695) (|%not| (|%ilt| 64 (|%ilength| |#1|))))
+((-2566 (((-85) $ $) NIL T ELT)) (-2311 (($ $) NIL T ELT)) (-3133 (((-695)) NIL T ELT)) (-3720 (($) NIL T CONST)) (-2992 (($) NIL T ELT)) (-2529 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2855 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2008 (((-831) $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2398 (($ (-831)) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT)) (-3721 (($ $ $) NIL T ELT)) (-3722 (($ $ $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2309 (($ $ $) NIL T ELT)) (-2564 (((-85) $ $) NIL T ELT)) (-2565 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL T ELT)) (-2683 (((-85) $ $) NIL T ELT)) (-2310 (($ $ $) NIL T ELT)))
+(((-1137) (-13 (-753) (-605) (-10 -8 (-15 -3722 ($ $ $)) (-15 -3721 ($ $ $)) (-15 -3720 ($) -3948)))) (T -1137))
+((-3722 (*1 *1 *1 *1) (-5 *1 (-1137))) (-3721 (*1 *1 *1 *1) (-5 *1 (-1137))) (-3720 (*1 *1) (-5 *1 (-1137))))
+((-695) (|%not| (|%ilt| 8 (|%ilength| |#1|))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3126 (((-1168 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-257)) (|has| |#1| (-311))) ELT)) (-3079 (((-584 (-994)) $) NIL T ELT)) (-3827 (((-1089) $) 10 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (|has| |#1| (-495))) ELT)) (-2061 (($ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (|has| |#1| (-495))) ELT)) (-2059 (((-85) $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (|has| |#1| (-495))) ELT)) (-3767 (($ $ (-484)) NIL T ELT) (($ $ (-484) (-484)) NIL T ELT)) (-3770 (((-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) NIL T ELT)) (-3727 (((-1168 |#1| |#2| |#3|) $) NIL T ELT)) (-3724 (((-3 (-1168 |#1| |#2| |#3|) #1="failed") $) NIL T ELT)) (-3725 (((-1168 |#1| |#2| |#3|) $) NIL T ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ #1#) $ $) NIL T ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) ELT)) (-3771 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3967 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-3035 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2702 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3619 (((-484) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) ELT)) (-3814 (($ (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) NIL T ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 (-1168 |#1| |#2| |#3|) #1#) $) NIL T ELT) (((-3 (-1089) #1#) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-951 (-1089))) (|has| |#1| (-311))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-951 (-484))) (|has| |#1| (-311))) ELT) (((-3 (-484) #1#) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-951 (-484))) (|has| |#1| (-311))) ELT)) (-3153 (((-1168 |#1| |#2| |#3|) $) NIL T ELT) (((-1089) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-951 (-1089))) (|has| |#1| (-311))) ELT) (((-347 (-484)) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-951 (-484))) (|has| |#1| (-311))) ELT) (((-484) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-951 (-484))) (|has| |#1| (-311))) ELT)) (-3726 (($ $) NIL T ELT) (($ (-484) $) NIL T ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3955 (($ $) NIL T ELT)) (-2277 (((-631 (-1168 |#1| |#2| |#3|)) (-631 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-1168 |#1| |#2| |#3|))) (|:| |vec| (-1178 (-1168 |#1| |#2| |#3|)))) (-631 $) (-1178 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-581 (-484))) (|has| |#1| (-311))) ELT) (((-631 (-484)) (-631 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-581 (-484))) (|has| |#1| (-311))) ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-3723 (((-347 (-858 |#1|)) $ (-484)) NIL (|has| |#1| (-495)) ELT) (((-347 (-858 |#1|)) $ (-484) (-484)) NIL (|has| |#1| (-495)) ELT)) (-2992 (($) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-483)) (|has| |#1| (-311))) ELT)) (-2561 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3719 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-3183 (((-85) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) ELT)) (-2890 (((-85) $) NIL T ELT)) (-3623 (($) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2794 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-797 (-327))) (|has| |#1| (-311))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-797 (-484))) (|has| |#1| (-311))) ELT)) (-3768 (((-484) $) NIL T ELT) (((-484) $ (-484)) NIL T ELT)) (-2408 (((-85) $) NIL T ELT)) (-2994 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2996 (((-1168 |#1| |#2| |#3|) $) NIL (|has| |#1| (-311)) ELT)) (-3009 (($ $ (-484)) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3441 (((-633 $) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1065)) (|has| |#1| (-311))) ELT)) (-3184 (((-85) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) ELT)) (-3773 (($ $ (-831)) NIL T ELT)) (-3811 (($ (-1 |#1| (-484)) $) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3933 (((-85) $) NIL T ELT)) (-2891 (($ |#1| (-484)) 18 T ELT) (($ $ (-994) (-484)) NIL T ELT) (($ $ (-584 (-994)) (-584 (-484))) NIL T ELT)) (-2529 (($ $ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-2855 (($ $ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-311)) ELT)) (-3938 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2278 (((-631 (-1168 |#1| |#2| |#3|)) (-1178 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-1168 |#1| |#2| |#3|))) (|:| |vec| (-1178 (-1168 |#1| |#2| |#3|)))) (-1178 $) $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-581 (-484))) (|has| |#1| (-311))) ELT) (((-631 (-484)) (-1178 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-581 (-484))) (|has| |#1| (-311))) ELT)) (-2892 (($ $) NIL T ELT)) (-3171 ((|#1| $) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3775 (($ (-484) (-1168 |#1| |#2| |#3|)) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3808 (($ $) 27 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-872)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-15 -3808 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3079 ((-584 (-1089)) |#1|))))) ELT) (($ $ (-1175 |#2|)) 28 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3442 (($) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1065)) (|has| |#1| (-311))) CONST)) (-3240 (((-1033) $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-311)) ELT)) (-3141 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3125 (($ $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-257)) (|has| |#1| (-311))) ELT)) (-3127 (((-1168 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-483)) (|has| |#1| (-311))) ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) ELT)) (-3728 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3765 (($ $ (-484)) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (|has| |#1| (-495))) ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3939 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3764 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT) (($ $ (-1089) (-1168 |#1| |#2| |#3|)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-453 (-1089) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-584 (-1089)) (-584 (-1168 |#1| |#2| |#3|))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-453 (-1089) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-584 (-248 (-1168 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-259 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-248 (-1168 |#1| |#2| |#3|))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-259 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-259 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT) (($ $ (-584 (-1168 |#1| |#2| |#3|)) (-584 (-1168 |#1| |#2| |#3|))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-259 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT)) (-1605 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-3796 ((|#1| $ (-484)) NIL T ELT) (($ $ $) NIL (|has| (-484) (-1025)) ELT) (($ $ (-1168 |#1| |#2| |#3|)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-241 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-311))) ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3754 (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) (-695)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) NIL (|has| |#1| (-311)) ELT) (($ $ (-1175 |#2|)) 26 T ELT) (($ $) 25 (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-190)) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-190)) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-810 (-1089))) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-584 (-1089))) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-810 (-1089))) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1089) (-695)) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-810 (-1089))) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-810 (-1089))) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2993 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2995 (((-1168 |#1| |#2| |#3|) $) NIL (|has| |#1| (-311)) ELT)) (-3944 (((-484) $) NIL T ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3968 (((-473) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-554 (-473))) (|has| |#1| (-311))) ELT) (((-327) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-934)) (|has| |#1| (-311))) ELT) (((-179) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-934)) (|has| |#1| (-311))) ELT) (((-801 (-327)) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-554 (-801 (-327)))) (|has| |#1| (-311))) ELT) (((-801 (-484)) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-554 (-801 (-484)))) (|has| |#1| (-311))) ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-1168 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) ELT)) (-2889 (($ $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1168 |#1| |#2| |#3|)) NIL T ELT) (($ (-1175 |#2|)) 24 T ELT) (($ (-1089)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-951 (-1089))) (|has| |#1| (-311))) ELT) (($ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (|has| |#1| (-495))) ELT) (($ (-347 (-484))) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-951 (-484))) (|has| |#1| (-311))) (|has| |#1| (-38 (-347 (-484))))) ELT)) (-3673 ((|#1| $ (-484)) NIL T ELT)) (-2700 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1168 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-118)) (|has| |#1| (-311))) (|has| |#1| (-118))) ELT)) (-3123 (((-695)) NIL T CONST)) (-3769 ((|#1| $) 11 T ELT)) (-3128 (((-1168 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-483)) (|has| |#1| (-311))) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2060 (((-85) $ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-822)) (|has| |#1| (-311))) (|has| |#1| (-495))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3766 ((|#1| $ (-484)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3942 (|#1| (-1089))))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3379 (($ $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) ELT)) (-2658 (($) 20 T CONST)) (-2664 (($) 15 T CONST)) (-2667 (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) (-695)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) NIL (|has| |#1| (-311)) ELT) (($ $ (-1175 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-190)) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-190)) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-810 (-1089))) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-584 (-1089))) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-810 (-1089))) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1089) (-695)) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-810 (-1089))) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-810 (-1089))) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2564 (((-85) $ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-2565 (((-85) $ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-2682 (((-85) $ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-2683 (((-85) $ $) NIL (OR (-12 (|has| (-1168 |#1| |#2| |#3|) (-741)) (|has| |#1| (-311))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-757)) (|has| |#1| (-311)))) ELT)) (-3945 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT) (($ (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) NIL (|has| |#1| (-311)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) 22 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1168 |#1| |#2| |#3|)) NIL (|has| |#1| (-311)) ELT) (($ (-1168 |#1| |#2| |#3|) $) NIL (|has| |#1| (-311)) ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)))
+(((-1138 |#1| |#2| |#3|) (-13 (-1142 |#1| (-1168 |#1| |#2| |#3|)) (-807 $ (-1175 |#2|)) (-10 -8 (-15 -3942 ($ (-1175 |#2|))) (IF (|has| |#1| (-38 (-347 (-484)))) (-15 -3808 ($ $ (-1175 |#2|))) |%noBranch|))) (-962) (-1089) |#1|) (T -1138))
+((-3942 (*1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1138 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-3808 (*1 *1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1138 *3 *4 *5)) (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) (-14 *5 *3))))
+((-3954 (((-1138 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1138 |#1| |#3| |#5|)) 23 T ELT)))
+(((-1139 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3954 ((-1138 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1138 |#1| |#3| |#5|)))) (-962) (-962) (-1089) (-1089) |#1| |#2|) (T -1139))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1138 *5 *7 *9)) (-4 *5 (-962)) (-4 *6 (-962)) (-14 *7 (-1089)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1138 *6 *8 *10)) (-5 *1 (-1139 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1089)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-3079 (((-584 (-994)) $) 93 T ELT)) (-3827 (((-1089) $) 127 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 69 (|has| |#1| (-495)) ELT)) (-2061 (($ $) 70 (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) 72 (|has| |#1| (-495)) ELT)) (-3767 (($ $ (-484)) 122 T ELT) (($ $ (-484) (-484)) 121 T ELT)) (-3770 (((-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) 128 T ELT)) (-3488 (($ $) 161 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) 144 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3771 (($ $) 188 (|has| |#1| (-311)) ELT)) (-3967 (((-345 $) $) 189 (|has| |#1| (-311)) ELT)) (-3035 (($ $) 143 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1606 (((-85) $ $) 179 (|has| |#1| (-311)) ELT)) (-3486 (($ $) 160 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) 145 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3814 (($ (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) 199 T ELT)) (-3490 (($ $) 159 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) 146 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3720 (($) 22 T CONST)) (-2562 (($ $ $) 183 (|has| |#1| (-311)) ELT)) (-3955 (($ $) 78 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-3723 (((-347 (-858 |#1|)) $ (-484)) 197 (|has| |#1| (-495)) ELT) (((-347 (-858 |#1|)) $ (-484) (-484)) 196 (|has| |#1| (-495)) ELT)) (-2561 (($ $ $) 182 (|has| |#1| (-311)) ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) 177 (|has| |#1| (-311)) ELT)) (-3719 (((-85) $) 190 (|has| |#1| (-311)) ELT)) (-2890 (((-85) $) 92 T ELT)) (-3623 (($) 171 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3768 (((-484) $) 124 T ELT) (((-484) $ (-484)) 123 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-3009 (($ $ (-484)) 142 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3773 (($ $ (-831)) 125 T ELT)) (-3811 (($ (-1 |#1| (-484)) $) 198 T ELT)) (-1603 (((-3 (-584 $) #1="failed") (-584 $) $) 186 (|has| |#1| (-311)) ELT)) (-3933 (((-85) $) 80 T ELT)) (-2891 (($ |#1| (-484)) 79 T ELT) (($ $ (-994) (-484)) 95 T ELT) (($ $ (-584 (-994)) (-584 (-484))) 94 T ELT)) (-3954 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-3938 (($ $) 168 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2892 (($ $) 83 T ELT)) (-3171 ((|#1| $) 84 T ELT)) (-1889 (($ (-584 $)) 175 (|has| |#1| (-311)) ELT) (($ $ $) 174 (|has| |#1| (-311)) ELT)) (-3239 (((-1072) $) 11 T ELT)) (-2482 (($ $) 191 (|has| |#1| (-311)) ELT)) (-3808 (($ $) 195 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-1089)) 194 (OR (-12 (|has| |#1| (-29 (-484))) (|has| |#1| (-872)) (|has| |#1| (-1114)) (|has| |#1| (-38 (-347 (-484))))) (-12 (|has| |#1| (-15 -3079 ((-584 (-1089)) |#1|))) (|has| |#1| (-15 -3808 (|#1| |#1| (-1089)))) (|has| |#1| (-38 (-347 (-484)))))) ELT)) (-3240 (((-1033) $) 12 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 176 (|has| |#1| (-311)) ELT)) (-3141 (($ (-584 $)) 173 (|has| |#1| (-311)) ELT) (($ $ $) 172 (|has| |#1| (-311)) ELT)) (-3728 (((-345 $) $) 187 (|has| |#1| (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 185 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) 184 (|has| |#1| (-311)) ELT)) (-3765 (($ $ (-484)) 119 T ELT)) (-3462 (((-3 $ "failed") $ $) 68 (|has| |#1| (-495)) ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) 178 (|has| |#1| (-311)) ELT)) (-3939 (($ $) 169 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3764 (((-1068 |#1|) $ |#1|) 118 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT)) (-1605 (((-695) $) 180 (|has| |#1| (-311)) ELT)) (-3796 ((|#1| $ (-484)) 129 T ELT) (($ $ $) 105 (|has| (-484) (-1025)) ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 181 (|has| |#1| (-311)) ELT)) (-3754 (($ $ (-1089)) 117 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-584 (-1089))) 115 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089) (-695)) 114 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 113 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $) 109 (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT) (($ $ (-695)) 107 (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT)) (-3944 (((-484) $) 82 T ELT)) (-3491 (($ $) 158 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) 147 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3489 (($ $) 157 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) 148 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3487 (($ $) 156 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3630 (($ $) 149 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2889 (($ $) 91 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 65 (|has| |#1| (-146)) ELT) (($ (-347 (-484))) 75 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $) 67 (|has| |#1| (-495)) ELT)) (-3673 ((|#1| $ (-484)) 77 T ELT)) (-2700 (((-633 $) $) 66 (|has| |#1| (-118)) ELT)) (-3123 (((-695)) 38 T CONST)) (-3769 ((|#1| $) 126 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3494 (($ $) 167 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) 155 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2060 (((-85) $ $) 71 (|has| |#1| (-495)) ELT)) (-3492 (($ $) 166 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3480 (($ $) 154 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) 165 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) 153 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3766 ((|#1| $ (-484)) 120 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3942 (|#1| (-1089))))) ELT)) (-3497 (($ $) 164 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) 152 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3495 (($ $) 163 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) 151 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3493 (($ $) 162 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) 150 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-2667 (($ $ (-1089)) 116 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-584 (-1089))) 112 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089) (-695)) 111 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 110 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT) (($ $ (-695)) 106 (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3945 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT) (($ $ $) 193 (|has| |#1| (-311)) ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 192 (|has| |#1| (-311)) ELT) (($ $ $) 170 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 141 (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-347 (-484)) $) 74 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 73 (|has| |#1| (-38 (-347 (-484)))) ELT)))
+(((-1140 |#1|) (-113) (-962)) (T -1140))
+((-3814 (*1 *1 *2) (-12 (-5 *2 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-4 *3 (-962)) (-4 *1 (-1140 *3)))) (-3811 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *1 (-1140 *3)) (-4 *3 (-962)))) (-3723 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-1140 *4)) (-4 *4 (-962)) (-4 *4 (-495)) (-5 *2 (-347 (-858 *4))))) (-3723 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *1 (-1140 *4)) (-4 *4 (-962)) (-4 *4 (-495)) (-5 *2 (-347 (-858 *4))))) (-3808 (*1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-347 (-484)))))) (-3808 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1089)) (-4 *1 (-1140 *3)) (-4 *3 (-962)) (-12 (-4 *3 (-29 (-484))) (-4 *3 (-872)) (-4 *3 (-1114)) (-4 *3 (-38 (-347 (-484)))))) (-12 (-5 *2 (-1089)) (-4 *1 (-1140 *3)) (-4 *3 (-962)) (-12 (|has| *3 (-15 -3079 ((-584 *2) *3))) (|has| *3 (-15 -3808 (*3 *3 *2))) (-4 *3 (-38 (-347 (-484)))))))))
+(-13 (-1157 |t#1| (-484)) (-10 -8 (-15 -3814 ($ (-1068 (-2 (|:| |k| (-484)) (|:| |c| |t#1|))))) (-15 -3811 ($ (-1 |t#1| (-484)) $)) (IF (|has| |t#1| (-495)) (PROGN (-15 -3723 ((-347 (-858 |t#1|)) $ (-484))) (-15 -3723 ((-347 (-858 |t#1|)) $ (-484) (-484)))) |%noBranch|) (IF (|has| |t#1| (-38 (-347 (-484)))) (PROGN (-15 -3808 ($ $)) (IF (|has| |t#1| (-15 -3808 (|t#1| |t#1| (-1089)))) (IF (|has| |t#1| (-15 -3079 ((-584 (-1089)) |t#1|))) (-15 -3808 ($ $ (-1089))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1114)) (IF (|has| |t#1| (-872)) (IF (|has| |t#1| (-29 (-484))) (-15 -3808 ($ $ (-1089))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-916)) (-6 (-1114))) |%noBranch|) (IF (|has| |t#1| (-311)) (-6 (-311)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| (-484)) . T) ((-25) . T) ((-38 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-35) |has| |#1| (-38 (-347 (-484)))) ((-66) |has| |#1| (-38 (-347 (-484)))) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-556 (-484)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-484) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-484) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-484) |#1|))) ((-201) |has| |#1| (-311)) ((-239) |has| |#1| (-38 (-347 (-484)))) ((-241 (-484) |#1|) . T) ((-241 $ $) |has| (-484) (-1025)) ((-245) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-257) |has| |#1| (-311)) ((-311) |has| |#1| (-311)) ((-389) |has| |#1| (-311)) ((-430) |has| |#1| (-38 (-347 (-484)))) ((-495) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-13) . T) ((-589 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-655 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-664) . T) ((-807 $ (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ((-810 (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ((-812 (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ((-887 |#1| (-484) (-994)) . T) ((-833) |has| |#1| (-311)) ((-916) |has| |#1| (-38 (-347 (-484)))) ((-964 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-495)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-969 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-495)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1114) |has| |#1| (-38 (-347 (-484)))) ((-1117) |has| |#1| (-38 (-347 (-484)))) ((-1128) . T) ((-1133) |has| |#1| (-311)) ((-1157 |#1| (-484)) . T))
+((-3185 (((-85) $) 12 T ELT)) (-3154 (((-3 |#3| #1="failed") $) 17 T ELT) (((-3 (-1089) #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT)) (-3153 ((|#3| $) 14 T ELT) (((-1089) $) NIL T ELT) (((-347 (-484)) $) NIL T ELT) (((-484) $) NIL T ELT)))
+(((-1141 |#1| |#2| |#3|) (-10 -7 (-15 -3154 ((-3 (-484) #1="failed") |#1|)) (-15 -3153 ((-484) |#1|)) (-15 -3154 ((-3 (-347 (-484)) #1#) |#1|)) (-15 -3153 ((-347 (-484)) |#1|)) (-15 -3154 ((-3 (-1089) #1#) |#1|)) (-15 -3153 ((-1089) |#1|)) (-15 -3154 ((-3 |#3| #1#) |#1|)) (-15 -3153 (|#3| |#1|)) (-15 -3185 ((-85) |#1|))) (-1142 |#2| |#3|) (-962) (-1171 |#2|)) (T -1141))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-3126 ((|#2| $) 264 (-2560 (|has| |#2| (-257)) (|has| |#1| (-311))) ELT)) (-3079 (((-584 (-994)) $) 93 T ELT)) (-3827 (((-1089) $) 127 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 69 (|has| |#1| (-495)) ELT)) (-2061 (($ $) 70 (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) 72 (|has| |#1| (-495)) ELT)) (-3767 (($ $ (-484)) 122 T ELT) (($ $ (-484) (-484)) 121 T ELT)) (-3770 (((-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) 128 T ELT)) (-3727 ((|#2| $) 300 T ELT)) (-3724 (((-3 |#2| "failed") $) 296 T ELT)) (-3725 ((|#2| $) 297 T ELT)) (-3488 (($ $) 161 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) 144 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) 273 (-2560 (|has| |#2| (-822)) (|has| |#1| (-311))) ELT)) (-3771 (($ $) 188 (|has| |#1| (-311)) ELT)) (-3967 (((-345 $) $) 189 (|has| |#1| (-311)) ELT)) (-3035 (($ $) 143 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2702 (((-3 (-584 (-1084 $)) #1="failed") (-584 (-1084 $)) (-1084 $)) 270 (-2560 (|has| |#2| (-822)) (|has| |#1| (-311))) ELT)) (-1606 (((-85) $ $) 179 (|has| |#1| (-311)) ELT)) (-3486 (($ $) 160 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) 145 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3619 (((-484) $) 282 (-2560 (|has| |#2| (-741)) (|has| |#1| (-311))) ELT)) (-3814 (($ (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) 199 T ELT)) (-3490 (($ $) 159 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) 146 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3720 (($) 22 T CONST)) (-3154 (((-3 |#2| #2="failed") $) 303 T ELT) (((-3 (-484) #2#) $) 293 (-2560 (|has| |#2| (-951 (-484))) (|has| |#1| (-311))) ELT) (((-3 (-347 (-484)) #2#) $) 291 (-2560 (|has| |#2| (-951 (-484))) (|has| |#1| (-311))) ELT) (((-3 (-1089) #2#) $) 275 (-2560 (|has| |#2| (-951 (-1089))) (|has| |#1| (-311))) ELT)) (-3153 ((|#2| $) 304 T ELT) (((-484) $) 292 (-2560 (|has| |#2| (-951 (-484))) (|has| |#1| (-311))) ELT) (((-347 (-484)) $) 290 (-2560 (|has| |#2| (-951 (-484))) (|has| |#1| (-311))) ELT) (((-1089) $) 274 (-2560 (|has| |#2| (-951 (-1089))) (|has| |#1| (-311))) ELT)) (-3726 (($ $) 299 T ELT) (($ (-484) $) 298 T ELT)) (-2562 (($ $ $) 183 (|has| |#1| (-311)) ELT)) (-3955 (($ $) 78 T ELT)) (-2277 (((-631 |#2|) (-631 $)) 252 (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) 251 (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 250 (-2560 (|has| |#2| (-581 (-484))) (|has| |#1| (-311))) ELT) (((-631 (-484)) (-631 $)) 249 (-2560 (|has| |#2| (-581 (-484))) (|has| |#1| (-311))) ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-3723 (((-347 (-858 |#1|)) $ (-484)) 197 (|has| |#1| (-495)) ELT) (((-347 (-858 |#1|)) $ (-484) (-484)) 196 (|has| |#1| (-495)) ELT)) (-2992 (($) 266 (-2560 (|has| |#2| (-483)) (|has| |#1| (-311))) ELT)) (-2561 (($ $ $) 182 (|has| |#1| (-311)) ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) 177 (|has| |#1| (-311)) ELT)) (-3719 (((-85) $) 190 (|has| |#1| (-311)) ELT)) (-3183 (((-85) $) 280 (-2560 (|has| |#2| (-741)) (|has| |#1| (-311))) ELT)) (-2890 (((-85) $) 92 T ELT)) (-3623 (($) 171 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2794 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 258 (-2560 (|has| |#2| (-797 (-327))) (|has| |#1| (-311))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) 257 (-2560 (|has| |#2| (-797 (-484))) (|has| |#1| (-311))) ELT)) (-3768 (((-484) $) 124 T ELT) (((-484) $ (-484)) 123 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-2994 (($ $) 262 (|has| |#1| (-311)) ELT)) (-2996 ((|#2| $) 260 (|has| |#1| (-311)) ELT)) (-3009 (($ $ (-484)) 142 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3441 (((-633 $) $) 294 (-2560 (|has| |#2| (-1065)) (|has| |#1| (-311))) ELT)) (-3184 (((-85) $) 281 (-2560 (|has| |#2| (-741)) (|has| |#1| (-311))) ELT)) (-3773 (($ $ (-831)) 125 T ELT)) (-3811 (($ (-1 |#1| (-484)) $) 198 T ELT)) (-1603 (((-3 (-584 $) #3="failed") (-584 $) $) 186 (|has| |#1| (-311)) ELT)) (-3933 (((-85) $) 80 T ELT)) (-2891 (($ |#1| (-484)) 79 T ELT) (($ $ (-994) (-484)) 95 T ELT) (($ $ (-584 (-994)) (-584 (-484))) 94 T ELT)) (-2529 (($ $ $) 289 (-2560 (|has| |#2| (-757)) (|has| |#1| (-311))) ELT)) (-2855 (($ $ $) 288 (-2560 (|has| |#2| (-757)) (|has| |#1| (-311))) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 81 T ELT) (($ (-1 |#2| |#2|) $) 242 (|has| |#1| (-311)) ELT)) (-3938 (($ $) 168 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2278 (((-631 |#2|) (-1178 $)) 254 (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) 253 (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 248 (-2560 (|has| |#2| (-581 (-484))) (|has| |#1| (-311))) ELT) (((-631 (-484)) (-1178 $)) 247 (-2560 (|has| |#2| (-581 (-484))) (|has| |#1| (-311))) ELT)) (-2892 (($ $) 83 T ELT)) (-3171 ((|#1| $) 84 T ELT)) (-1889 (($ (-584 $)) 175 (|has| |#1| (-311)) ELT) (($ $ $) 174 (|has| |#1| (-311)) ELT)) (-3775 (($ (-484) |#2|) 301 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-2482 (($ $) 191 (|has| |#1| (-311)) ELT)) (-3808 (($ $) 195 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-1089)) 194 (OR (-12 (|has| |#1| (-29 (-484))) (|has| |#1| (-872)) (|has| |#1| (-1114)) (|has| |#1| (-38 (-347 (-484))))) (-12 (|has| |#1| (-15 -3079 ((-584 (-1089)) |#1|))) (|has| |#1| (-15 -3808 (|#1| |#1| (-1089)))) (|has| |#1| (-38 (-347 (-484)))))) ELT)) (-3442 (($) 295 (-2560 (|has| |#2| (-1065)) (|has| |#1| (-311))) CONST)) (-3240 (((-1033) $) 12 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 176 (|has| |#1| (-311)) ELT)) (-3141 (($ (-584 $)) 173 (|has| |#1| (-311)) ELT) (($ $ $) 172 (|has| |#1| (-311)) ELT)) (-3125 (($ $) 265 (-2560 (|has| |#2| (-257)) (|has| |#1| (-311))) ELT)) (-3127 ((|#2| $) 268 (-2560 (|has| |#2| (-483)) (|has| |#1| (-311))) ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) 271 (-2560 (|has| |#2| (-822)) (|has| |#1| (-311))) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) 272 (-2560 (|has| |#2| (-822)) (|has| |#1| (-311))) ELT)) (-3728 (((-345 $) $) 187 (|has| |#1| (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 185 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) 184 (|has| |#1| (-311)) ELT)) (-3765 (($ $ (-484)) 119 T ELT)) (-3462 (((-3 $ "failed") $ $) 68 (|has| |#1| (-495)) ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) 178 (|has| |#1| (-311)) ELT)) (-3939 (($ $) 169 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3764 (((-1068 |#1|) $ |#1|) 118 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT) (($ $ (-1089) |#2|) 241 (-2560 (|has| |#2| (-453 (-1089) |#2|)) (|has| |#1| (-311))) ELT) (($ $ (-584 (-1089)) (-584 |#2|)) 240 (-2560 (|has| |#2| (-453 (-1089) |#2|)) (|has| |#1| (-311))) ELT) (($ $ (-584 (-248 |#2|))) 239 (-2560 (|has| |#2| (-259 |#2|)) (|has| |#1| (-311))) ELT) (($ $ (-248 |#2|)) 238 (-2560 (|has| |#2| (-259 |#2|)) (|has| |#1| (-311))) ELT) (($ $ |#2| |#2|) 237 (-2560 (|has| |#2| (-259 |#2|)) (|has| |#1| (-311))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 236 (-2560 (|has| |#2| (-259 |#2|)) (|has| |#1| (-311))) ELT)) (-1605 (((-695) $) 180 (|has| |#1| (-311)) ELT)) (-3796 ((|#1| $ (-484)) 129 T ELT) (($ $ $) 105 (|has| (-484) (-1025)) ELT) (($ $ |#2|) 235 (-2560 (|has| |#2| (-241 |#2| |#2|)) (|has| |#1| (-311))) ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 181 (|has| |#1| (-311)) ELT)) (-3754 (($ $ (-1 |#2| |#2|) (-695)) 244 (|has| |#1| (-311)) ELT) (($ $ (-1 |#2| |#2|)) 243 (|has| |#1| (-311)) ELT) (($ $) 109 (OR (-2560 (|has| |#2| (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-695)) 107 (OR (-2560 (|has| |#2| (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089)) 117 (OR (-2560 (|has| |#2| (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-584 (-1089))) 115 (OR (-2560 (|has| |#2| (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1089) (-695)) 114 (OR (-2560 (|has| |#2| (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 113 (OR (-2560 (|has| |#2| (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2993 (($ $) 263 (|has| |#1| (-311)) ELT)) (-2995 ((|#2| $) 261 (|has| |#1| (-311)) ELT)) (-3944 (((-484) $) 82 T ELT)) (-3491 (($ $) 158 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) 147 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3489 (($ $) 157 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) 148 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3487 (($ $) 156 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3630 (($ $) 149 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3968 (((-179) $) 279 (-2560 (|has| |#2| (-934)) (|has| |#1| (-311))) ELT) (((-327) $) 278 (-2560 (|has| |#2| (-934)) (|has| |#1| (-311))) ELT) (((-473) $) 277 (-2560 (|has| |#2| (-554 (-473))) (|has| |#1| (-311))) ELT) (((-801 (-327)) $) 256 (-2560 (|has| |#2| (-554 (-801 (-327)))) (|has| |#1| (-311))) ELT) (((-801 (-484)) $) 255 (-2560 (|has| |#2| (-554 (-801 (-484)))) (|has| |#1| (-311))) ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) 269 (-2560 (-2560 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#1| (-311))) ELT)) (-2889 (($ $) 91 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 65 (|has| |#1| (-146)) ELT) (($ |#2|) 302 T ELT) (($ (-1089)) 276 (-2560 (|has| |#2| (-951 (-1089))) (|has| |#1| (-311))) ELT) (($ (-347 (-484))) 75 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $) 67 (|has| |#1| (-495)) ELT)) (-3673 ((|#1| $ (-484)) 77 T ELT)) (-2700 (((-633 $) $) 66 (OR (-2560 (OR (|has| |#2| (-118)) (-2560 (|has| $ (-118)) (|has| |#2| (-822)))) (|has| |#1| (-311))) (|has| |#1| (-118))) ELT)) (-3123 (((-695)) 38 T CONST)) (-3769 ((|#1| $) 126 T ELT)) (-3128 ((|#2| $) 267 (-2560 (|has| |#2| (-483)) (|has| |#1| (-311))) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3494 (($ $) 167 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) 155 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2060 (((-85) $ $) 71 (|has| |#1| (-495)) ELT)) (-3492 (($ $) 166 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3480 (($ $) 154 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) 165 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) 153 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3766 ((|#1| $ (-484)) 120 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3942 (|#1| (-1089))))) ELT)) (-3497 (($ $) 164 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) 152 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3495 (($ $) 163 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) 151 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3493 (($ $) 162 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) 150 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3379 (($ $) 283 (-2560 (|has| |#2| (-741)) (|has| |#1| (-311))) ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-2667 (($ $ (-1 |#2| |#2|) (-695)) 246 (|has| |#1| (-311)) ELT) (($ $ (-1 |#2| |#2|)) 245 (|has| |#1| (-311)) ELT) (($ $) 108 (OR (-2560 (|has| |#2| (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-695)) 106 (OR (-2560 (|has| |#2| (-189)) (|has| |#1| (-311))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089)) 116 (OR (-2560 (|has| |#2| (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-584 (-1089))) 112 (OR (-2560 (|has| |#2| (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1089) (-695)) 111 (OR (-2560 (|has| |#2| (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 110 (OR (-2560 (|has| |#2| (-812 (-1089))) (|has| |#1| (-311))) (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2564 (((-85) $ $) 287 (-2560 (|has| |#2| (-757)) (|has| |#1| (-311))) ELT)) (-2565 (((-85) $ $) 285 (-2560 (|has| |#2| (-757)) (|has| |#1| (-311))) ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-2682 (((-85) $ $) 286 (-2560 (|has| |#2| (-757)) (|has| |#1| (-311))) ELT)) (-2683 (((-85) $ $) 284 (-2560 (|has| |#2| (-757)) (|has| |#1| (-311))) ELT)) (-3945 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT) (($ $ $) 193 (|has| |#1| (-311)) ELT) (($ |#2| |#2|) 259 (|has| |#1| (-311)) ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 192 (|has| |#1| (-311)) ELT) (($ $ $) 170 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 141 (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ $ |#2|) 234 (|has| |#1| (-311)) ELT) (($ |#2| $) 233 (|has| |#1| (-311)) ELT) (($ (-347 (-484)) $) 74 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 73 (|has| |#1| (-38 (-347 (-484)))) ELT)))
+(((-1142 |#1| |#2|) (-113) (-962) (-1171 |t#1|)) (T -1142))
+((-3944 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1171 *3)) (-5 *2 (-484)))) (-3775 (*1 *1 *2 *3) (-12 (-5 *2 (-484)) (-4 *4 (-962)) (-4 *1 (-1142 *4 *3)) (-4 *3 (-1171 *4)))) (-3727 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1171 *3)))) (-3726 (*1 *1 *1) (-12 (-4 *1 (-1142 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1171 *2)))) (-3726 (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-4 *1 (-1142 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1171 *3)))) (-3725 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1171 *3)))) (-3724 (*1 *2 *1) (|partial| -12 (-4 *1 (-1142 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1171 *3)))))
+(-13 (-1140 |t#1|) (-951 |t#2|) (-556 |t#2|) (-10 -8 (-15 -3775 ($ (-484) |t#2|)) (-15 -3944 ((-484) $)) (-15 -3727 (|t#2| $)) (-15 -3726 ($ $)) (-15 -3726 ($ (-484) $)) (-15 -3725 (|t#2| $)) (-15 -3724 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-311)) (-6 (-905 |t#2|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| (-484)) . T) ((-25) . T) ((-38 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 |#2|) |has| |#1| (-311)) ((-38 $) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-35) |has| |#1| (-38 (-347 (-484)))) ((-66) |has| |#1| (-38 (-347 (-484)))) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-82 |#1| |#1|) . T) ((-82 |#2| |#2|) |has| |#1| (-311)) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-104) . T) ((-118) OR (-12 (|has| |#1| (-311)) (|has| |#2| (-118))) (|has| |#1| (-118))) ((-120) OR (-12 (|has| |#1| (-311)) (|has| |#2| (-120))) (|has| |#1| (-120))) ((-556 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-556 (-484)) . T) ((-556 (-1089)) -12 (|has| |#1| (-311)) (|has| |#2| (-951 (-1089)))) ((-556 |#1|) |has| |#1| (-146)) ((-556 |#2|) . T) ((-556 $) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-554 (-179)) -12 (|has| |#1| (-311)) (|has| |#2| (-934))) ((-554 (-327)) -12 (|has| |#1| (-311)) (|has| |#2| (-934))) ((-554 (-473)) -12 (|has| |#1| (-311)) (|has| |#2| (-554 (-473)))) ((-554 (-801 (-327))) -12 (|has| |#1| (-311)) (|has| |#2| (-554 (-801 (-327))))) ((-554 (-801 (-484))) -12 (|has| |#1| (-311)) (|has| |#2| (-554 (-801 (-484))))) ((-186 $) OR (|has| |#1| (-15 * (|#1| (-484) |#1|))) (-12 (|has| |#1| (-311)) (|has| |#2| (-189))) (-12 (|has| |#1| (-311)) (|has| |#2| (-190)))) ((-184 |#2|) |has| |#1| (-311)) ((-190) OR (|has| |#1| (-15 * (|#1| (-484) |#1|))) (-12 (|has| |#1| (-311)) (|has| |#2| (-190)))) ((-189) OR (|has| |#1| (-15 * (|#1| (-484) |#1|))) (-12 (|has| |#1| (-311)) (|has| |#2| (-189))) (-12 (|has| |#1| (-311)) (|has| |#2| (-190)))) ((-225 |#2|) |has| |#1| (-311)) ((-201) |has| |#1| (-311)) ((-239) |has| |#1| (-38 (-347 (-484)))) ((-241 (-484) |#1|) . T) ((-241 |#2| $) -12 (|has| |#1| (-311)) (|has| |#2| (-241 |#2| |#2|))) ((-241 $ $) |has| (-484) (-1025)) ((-245) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-257) |has| |#1| (-311)) ((-259 |#2|) -12 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) ((-311) |has| |#1| (-311)) ((-287 |#2|) |has| |#1| (-311)) ((-326 |#2|) |has| |#1| (-311)) ((-340 |#2|) |has| |#1| (-311)) ((-389) |has| |#1| (-311)) ((-430) |has| |#1| (-38 (-347 (-484)))) ((-453 (-1089) |#2|) -12 (|has| |#1| (-311)) (|has| |#2| (-453 (-1089) |#2|))) ((-453 |#2| |#2|) -12 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) ((-495) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-13) . T) ((-589 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 |#2|) |has| |#1| (-311)) ((-589 $) . T) ((-591 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-591 (-484)) -12 (|has| |#1| (-311)) (|has| |#2| (-581 (-484)))) ((-591 |#1|) . T) ((-591 |#2|) |has| |#1| (-311)) ((-591 $) . T) ((-583 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-583 |#1|) |has| |#1| (-146)) ((-583 |#2|) |has| |#1| (-311)) ((-583 $) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-581 (-484)) -12 (|has| |#1| (-311)) (|has| |#2| (-581 (-484)))) ((-581 |#2|) |has| |#1| (-311)) ((-655 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-655 |#1|) |has| |#1| (-146)) ((-655 |#2|) |has| |#1| (-311)) ((-655 $) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-664) . T) ((-715) -12 (|has| |#1| (-311)) (|has| |#2| (-741))) ((-717) -12 (|has| |#1| (-311)) (|has| |#2| (-741))) ((-719) -12 (|has| |#1| (-311)) (|has| |#2| (-741))) ((-722) -12 (|has| |#1| (-311)) (|has| |#2| (-741))) ((-741) -12 (|has| |#1| (-311)) (|has| |#2| (-741))) ((-756) -12 (|has| |#1| (-311)) (|has| |#2| (-741))) ((-757) OR (-12 (|has| |#1| (-311)) (|has| |#2| (-757))) (-12 (|has| |#1| (-311)) (|has| |#2| (-741)))) ((-760) OR (-12 (|has| |#1| (-311)) (|has| |#2| (-757))) (-12 (|has| |#1| (-311)) (|has| |#2| (-741)))) ((-807 $ (-1089)) OR (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-812 (-1089)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-810 (-1089))))) ((-810 (-1089)) OR (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-810 (-1089))))) ((-812 (-1089)) OR (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-812 (-1089)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-810 (-1089))))) ((-797 (-327)) -12 (|has| |#1| (-311)) (|has| |#2| (-797 (-327)))) ((-797 (-484)) -12 (|has| |#1| (-311)) (|has| |#2| (-797 (-484)))) ((-795 |#2|) |has| |#1| (-311)) ((-822) -12 (|has| |#1| (-311)) (|has| |#2| (-822))) ((-887 |#1| (-484) (-994)) . T) ((-833) |has| |#1| (-311)) ((-905 |#2|) |has| |#1| (-311)) ((-916) |has| |#1| (-38 (-347 (-484)))) ((-934) -12 (|has| |#1| (-311)) (|has| |#2| (-934))) ((-951 (-347 (-484))) -12 (|has| |#1| (-311)) (|has| |#2| (-951 (-484)))) ((-951 (-484)) -12 (|has| |#1| (-311)) (|has| |#2| (-951 (-484)))) ((-951 (-1089)) -12 (|has| |#1| (-311)) (|has| |#2| (-951 (-1089)))) ((-951 |#2|) . T) ((-964 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-964 |#1|) . T) ((-964 |#2|) |has| |#1| (-311)) ((-964 $) OR (|has| |#1| (-495)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-969 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-969 |#1|) . T) ((-969 |#2|) |has| |#1| (-311)) ((-969 $) OR (|has| |#1| (-495)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) -12 (|has| |#1| (-311)) (|has| |#2| (-1065))) ((-1114) |has| |#1| (-38 (-347 (-484)))) ((-1117) |has| |#1| (-38 (-347 (-484)))) ((-1128) . T) ((-1133) |has| |#1| (-311)) ((-1140 |#1|) . T) ((-1157 |#1| (-484)) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 83 T ELT)) (-3126 ((|#2| $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-257))) ELT)) (-3079 (((-584 (-994)) $) NIL T ELT)) (-3827 (((-1089) $) 102 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2061 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3767 (($ $ (-484)) 111 T ELT) (($ $ (-484) (-484)) 114 T ELT)) (-3770 (((-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) 51 T ELT)) (-3727 ((|#2| $) 11 T ELT)) (-3724 (((-3 |#2| #1="failed") $) 35 T ELT)) (-3725 ((|#2| $) 36 T ELT)) (-3488 (($ $) 208 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) 184 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ #1#) $ $) NIL T ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-822))) ELT)) (-3771 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3967 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-3035 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2702 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-822))) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3486 (($ $) 204 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) 180 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3619 (((-484) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-741))) ELT)) (-3814 (($ (-1068 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) 59 T ELT)) (-3490 (($ $) 212 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) 188 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#2| #1#) $) 159 T ELT) (((-3 (-484) #1#) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-951 (-484)))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-951 (-484)))) ELT) (((-3 (-1089) #1#) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-951 (-1089)))) ELT)) (-3153 ((|#2| $) 158 T ELT) (((-484) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-951 (-484)))) ELT) (((-347 (-484)) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-951 (-484)))) ELT) (((-1089) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-951 (-1089)))) ELT)) (-3726 (($ $) 65 T ELT) (($ (-484) $) 28 T ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3955 (($ $) NIL T ELT)) (-2277 (((-631 |#2|) (-631 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-581 (-484)))) ELT) (((-631 (-484)) (-631 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-581 (-484)))) ELT)) (-3463 (((-3 $ #1#) $) 90 T ELT)) (-3723 (((-347 (-858 |#1|)) $ (-484)) 126 (|has| |#1| (-495)) ELT) (((-347 (-858 |#1|)) $ (-484) (-484)) 128 (|has| |#1| (-495)) ELT)) (-2992 (($) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-483))) ELT)) (-2561 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3719 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-3183 (((-85) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-741))) ELT)) (-2890 (((-85) $) 76 T ELT)) (-3623 (($) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2794 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-797 (-484)))) ELT)) (-3768 (((-484) $) 107 T ELT) (((-484) $ (-484)) 109 T ELT)) (-2408 (((-85) $) NIL T ELT)) (-2994 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2996 ((|#2| $) 167 (|has| |#1| (-311)) ELT)) (-3009 (($ $ (-484)) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3441 (((-633 $) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-1065))) ELT)) (-3184 (((-85) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-741))) ELT)) (-3773 (($ $ (-831)) 150 T ELT)) (-3811 (($ (-1 |#1| (-484)) $) 146 T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3933 (((-85) $) NIL T ELT)) (-2891 (($ |#1| (-484)) 20 T ELT) (($ $ (-994) (-484)) NIL T ELT) (($ $ (-584 (-994)) (-584 (-484))) NIL T ELT)) (-2529 (($ $ $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-757))) ELT)) (-2855 (($ $ $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-757))) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 143 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-311)) ELT)) (-3938 (($ $) 178 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2278 (((-631 |#2|) (-1178 $)) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-581 (-484)))) ELT) (((-631 (-484)) (-1178 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-581 (-484)))) ELT)) (-2892 (($ $) NIL T ELT)) (-3171 ((|#1| $) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3775 (($ (-484) |#2|) 10 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) 161 (|has| |#1| (-311)) ELT)) (-3808 (($ $) 230 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-1089)) 235 (OR (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-872)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-15 -3808 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3079 ((-584 (-1089)) |#1|))))) ELT)) (-3442 (($) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-1065))) CONST)) (-3240 (((-1033) $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-311)) ELT)) (-3141 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3125 (($ $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-257))) ELT)) (-3127 ((|#2| $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-483))) ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-822))) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-822))) ELT)) (-3728 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3765 (($ $ (-484)) 140 T ELT)) (-3462 (((-3 $ #1#) $ $) 130 (|has| |#1| (-495)) ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3939 (($ $) 176 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3764 (((-1068 |#1|) $ |#1|) 99 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT) (($ $ (-1089) |#2|) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-453 (-1089) |#2|))) ELT) (($ $ (-584 (-1089)) (-584 |#2|)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-453 (-1089) |#2|))) ELT) (($ $ (-584 (-248 |#2|))) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) ELT) (($ $ (-248 |#2|)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-259 |#2|))) ELT)) (-1605 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-3796 ((|#1| $ (-484)) 105 T ELT) (($ $ $) 92 (|has| (-484) (-1025)) ELT) (($ $ |#2|) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-241 |#2| |#2|))) ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3754 (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-311)) ELT) (($ $) 151 (OR (-12 (|has| |#1| (-311)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089)) 155 (OR (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-812 (-1089))))) ELT) (($ $ (-584 (-1089))) NIL (OR (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-812 (-1089))))) ELT) (($ $ (-1089) (-695)) NIL (OR (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-812 (-1089))))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (OR (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-812 (-1089))))) ELT)) (-2993 (($ $) NIL (|has| |#1| (-311)) ELT)) (-2995 ((|#2| $) 168 (|has| |#1| (-311)) ELT)) (-3944 (((-484) $) 12 T ELT)) (-3491 (($ $) 214 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) 190 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3489 (($ $) 210 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) 186 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3487 (($ $) 206 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3630 (($ $) 182 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3968 (((-179) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-934))) ELT) (((-327) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-934))) ELT) (((-473) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-554 (-473)))) ELT) (((-801 (-327)) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-554 (-801 (-484))))) ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-311)) (|has| |#2| (-822))) ELT)) (-2889 (($ $) 138 T ELT)) (-3942 (((-773) $) 268 T ELT) (($ (-484)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-146)) ELT) (($ |#2|) 21 T ELT) (($ (-1089)) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-951 (-1089)))) ELT) (($ (-347 (-484))) 171 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3673 ((|#1| $ (-484)) 87 T ELT)) (-2700 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-311)) (|has| |#2| (-822))) (|has| |#1| (-118)) (-12 (|has| |#1| (-311)) (|has| |#2| (-118)))) ELT)) (-3123 (((-695)) 157 T CONST)) (-3769 ((|#1| $) 104 T ELT)) (-3128 ((|#2| $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-483))) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3494 (($ $) 220 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) 196 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2060 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3492 (($ $) 216 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3480 (($ $) 192 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) 224 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) 200 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3766 ((|#1| $ (-484)) 136 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3942 (|#1| (-1089))))) ELT)) (-3497 (($ $) 226 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) 202 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3495 (($ $) 222 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) 198 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3493 (($ $) 218 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) 194 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3379 (($ $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-741))) ELT)) (-2658 (($) 13 T CONST)) (-2664 (($) 18 T CONST)) (-2667 (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#1| (-311)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-311)) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-311)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-812 (-1089))))) ELT) (($ $ (-584 (-1089))) NIL (OR (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-812 (-1089))))) ELT) (($ $ (-1089) (-695)) NIL (OR (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-812 (-1089))))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (OR (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-311)) (|has| |#2| (-812 (-1089))))) ELT)) (-2564 (((-85) $ $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-757))) ELT)) (-2565 (((-85) $ $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-757))) ELT)) (-3054 (((-85) $ $) 74 T ELT)) (-2682 (((-85) $ $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-757))) ELT)) (-2683 (((-85) $ $) NIL (-12 (|has| |#1| (-311)) (|has| |#2| (-757))) ELT)) (-3945 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) 165 (|has| |#1| (-311)) ELT) (($ |#2| |#2|) 166 (|has| |#1| (-311)) ELT)) (-3833 (($ $) 229 T ELT) (($ $ $) 80 T ELT)) (-3835 (($ $ $) 78 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 86 T ELT) (($ $ (-484)) 162 (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 174 (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 154 T ELT) (($ $ |#2|) 164 (|has| |#1| (-311)) ELT) (($ |#2| $) 163 (|has| |#1| (-311)) ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)))
+(((-1143 |#1| |#2|) (-1142 |#1| |#2|) (-962) (-1171 |#1|)) (T -1143))
+NIL
+((-3730 (((-2 (|:| |contp| (-484)) (|:| -1777 (-584 (-2 (|:| |irr| |#1|) (|:| -2393 (-484)))))) |#1| (-85)) 13 T ELT)) (-3729 (((-345 |#1|) |#1|) 26 T ELT)) (-3728 (((-345 |#1|) |#1|) 24 T ELT)))
+(((-1144 |#1|) (-10 -7 (-15 -3728 ((-345 |#1|) |#1|)) (-15 -3729 ((-345 |#1|) |#1|)) (-15 -3730 ((-2 (|:| |contp| (-484)) (|:| -1777 (-584 (-2 (|:| |irr| |#1|) (|:| -2393 (-484)))))) |#1| (-85)))) (-1154 (-484))) (T -1144))
+((-3730 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-484)) (|:| -1777 (-584 (-2 (|:| |irr| *3) (|:| -2393 (-484))))))) (-5 *1 (-1144 *3)) (-4 *3 (-1154 (-484))))) (-3729 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-1144 *3)) (-4 *3 (-1154 (-484))))) (-3728 (*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-1144 *3)) (-4 *3 (-1154 (-484))))))
+((-2566 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3732 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-3954 (((-1068 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-756)) ELT)) (-3226 ((|#1| $) 15 T ELT)) (-3228 ((|#1| $) 12 T ELT)) (-3239 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-3224 (((-484) $) 19 T ELT)) (-3225 ((|#1| $) 18 T ELT)) (-3227 ((|#1| $) 13 T ELT)) (-3240 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3731 (((-85) $) 17 T ELT)) (-3959 (((-1068 |#1|) $) 41 (|has| |#1| (-756)) ELT) (((-1068 |#1|) (-584 $)) 40 (|has| |#1| (-756)) ELT)) (-3968 (($ |#1|) 26 T ELT)) (-3942 (($ (-1001 |#1|)) 25 T ELT) (((-773) $) 37 (|has| |#1| (-1013)) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3733 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-3229 (($ $ (-484)) 14 T ELT)) (-3054 (((-85) $ $) 30 (|has| |#1| (-1013)) ELT)))
+(((-1145 |#1|) (-13 (-1006 |#1|) (-10 -8 (-15 -3733 ($ |#1|)) (-15 -3732 ($ |#1|)) (-15 -3942 ($ (-1001 |#1|))) (-15 -3731 ((-85) $)) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |#1| (-756)) (-6 (-1007 |#1| (-1068 |#1|))) |%noBranch|))) (-1128)) (T -1145))
+((-3733 (*1 *1 *2) (-12 (-5 *1 (-1145 *2)) (-4 *2 (-1128)))) (-3732 (*1 *1 *2) (-12 (-5 *1 (-1145 *2)) (-4 *2 (-1128)))) (-3942 (*1 *1 *2) (-12 (-5 *2 (-1001 *3)) (-4 *3 (-1128)) (-5 *1 (-1145 *3)))) (-3731 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1145 *3)) (-4 *3 (-1128)))))
+((-3954 (((-1068 |#2|) (-1 |#2| |#1|) (-1145 |#1|)) 23 (|has| |#1| (-756)) ELT) (((-1145 |#2|) (-1 |#2| |#1|) (-1145 |#1|)) 17 T ELT)))
+(((-1146 |#1| |#2|) (-10 -7 (-15 -3954 ((-1145 |#2|) (-1 |#2| |#1|) (-1145 |#1|))) (IF (|has| |#1| (-756)) (-15 -3954 ((-1068 |#2|) (-1 |#2| |#1|) (-1145 |#1|))) |%noBranch|)) (-1128) (-1128)) (T -1146))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1145 *5)) (-4 *5 (-756)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1068 *6)) (-5 *1 (-1146 *5 *6)))) (-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1145 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1145 *6)) (-5 *1 (-1146 *5 *6)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3763 (((-1178 |#2|) $ (-695)) NIL T ELT)) (-3079 (((-584 (-994)) $) NIL T ELT)) (-3761 (($ (-1084 |#2|)) NIL T ELT)) (-3081 (((-1084 $) $ (-994)) NIL T ELT) (((-1084 |#2|) $) NIL T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL (|has| |#2| (-495)) ELT)) (-2061 (($ $) NIL (|has| |#2| (-495)) ELT)) (-2059 (((-85) $) NIL (|has| |#2| (-495)) ELT)) (-2817 (((-695) $) NIL T ELT) (((-695) $ (-584 (-994))) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3751 (($ $ $) NIL (|has| |#2| (-495)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-3771 (($ $) NIL (|has| |#2| (-389)) ELT)) (-3967 (((-345 $) $) NIL (|has| |#2| (-389)) ELT)) (-2702 (((-3 (-584 (-1084 $)) #1#) (-584 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-1606 (((-85) $ $) NIL (|has| |#2| (-311)) ELT)) (-3757 (($ $ (-695)) NIL T ELT)) (-3756 (($ $ (-695)) NIL T ELT)) (-3747 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-389)) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-3 (-994) #1#) $) NIL T ELT)) (-3153 ((|#2| $) NIL T ELT) (((-347 (-484)) $) NIL (|has| |#2| (-951 (-347 (-484)))) ELT) (((-484) $) NIL (|has| |#2| (-951 (-484))) ELT) (((-994) $) NIL T ELT)) (-3752 (($ $ $ (-994)) NIL (|has| |#2| (-146)) ELT) ((|#2| $ $) NIL (|has| |#2| (-146)) ELT)) (-2562 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-3955 (($ $) NIL T ELT)) (-2277 (((-631 (-484)) (-631 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-631 $) (-1178 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2561 (($ $ $) NIL (|has| |#2| (-311)) ELT)) (-3755 (($ $ $) NIL T ELT)) (-3749 (($ $ $) NIL (|has| |#2| (-495)) ELT)) (-3748 (((-2 (|:| -3950 |#2|) (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| |#2| (-495)) ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL (|has| |#2| (-311)) ELT)) (-3499 (($ $) NIL (|has| |#2| (-389)) ELT) (($ $ (-994)) NIL (|has| |#2| (-389)) ELT)) (-2816 (((-584 $) $) NIL T ELT)) (-3719 (((-85) $) NIL (|has| |#2| (-822)) ELT)) (-1622 (($ $ |#2| (-695) $) NIL T ELT)) (-2794 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) NIL (-12 (|has| (-994) (-797 (-327))) (|has| |#2| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) NIL (-12 (|has| (-994) (-797 (-484))) (|has| |#2| (-797 (-484)))) ELT)) (-3768 (((-695) $ $) NIL (|has| |#2| (-495)) ELT)) (-2408 (((-85) $) NIL T ELT)) (-2418 (((-695) $) NIL T ELT)) (-3441 (((-633 $) $) NIL (|has| |#2| (-1065)) ELT)) (-3082 (($ (-1084 |#2|) (-994)) NIL T ELT) (($ (-1084 $) (-994)) NIL T ELT)) (-3773 (($ $ (-695)) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#2| (-311)) ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2891 (($ |#2| (-695)) 18 T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT)) (-3759 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $ (-994)) NIL T ELT) (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL T ELT)) (-2818 (((-695) $) NIL T ELT) (((-695) $ (-994)) NIL T ELT) (((-584 (-695)) $ (-584 (-994))) NIL T ELT)) (-1623 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3954 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3762 (((-1084 |#2|) $) NIL T ELT)) (-3080 (((-3 (-994) #1#) $) NIL T ELT)) (-2278 (((-631 (-484)) (-1178 $)) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) NIL (|has| |#2| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1178 |#2|))) (-1178 $) $) NIL T ELT) (((-631 |#2|) (-1178 $)) NIL T ELT)) (-2892 (($ $) NIL T ELT)) (-3171 ((|#2| $) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3758 (((-2 (|:| -1971 $) (|:| -2900 $)) $ (-695)) NIL T ELT)) (-2821 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2820 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2822 (((-3 (-2 (|:| |var| (-994)) (|:| -2399 (-695))) #1#) $) NIL T ELT)) (-3808 (($ $) NIL (|has| |#2| (-38 (-347 (-484)))) ELT)) (-3442 (($) NIL (|has| |#2| (-1065)) CONST)) (-3240 (((-1033) $) NIL T ELT)) (-1795 (((-85) $) NIL T ELT)) (-1794 ((|#2| $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#2| (-389)) ELT)) (-3141 (($ (-584 $)) NIL (|has| |#2| (-389)) ELT) (($ $ $) NIL (|has| |#2| (-389)) ELT)) (-3734 (($ $ (-695) |#2| $) NIL T ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) NIL (|has| |#2| (-822)) ELT)) (-3728 (((-345 $) $) NIL (|has| |#2| (-822)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-3462 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#2| (-311)) ELT)) (-3764 (($ $ (-584 (-248 $))) NIL T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-994) |#2|) NIL T ELT) (($ $ (-584 (-994)) (-584 |#2|)) NIL T ELT) (($ $ (-994) $) NIL T ELT) (($ $ (-584 (-994)) (-584 $)) NIL T ELT)) (-1605 (((-695) $) NIL (|has| |#2| (-311)) ELT)) (-3796 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-347 $) (-347 $) (-347 $)) NIL (|has| |#2| (-495)) ELT) ((|#2| (-347 $) |#2|) NIL (|has| |#2| (-311)) ELT) (((-347 $) $ (-347 $)) NIL (|has| |#2| (-495)) ELT)) (-3760 (((-3 $ #1#) $ (-695)) NIL T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| |#2| (-311)) ELT)) (-3753 (($ $ (-994)) NIL (|has| |#2| (-146)) ELT) ((|#2| $) NIL (|has| |#2| (-146)) ELT)) (-3754 (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1089)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#2| (-812 (-1089))) ELT)) (-3944 (((-695) $) NIL T ELT) (((-695) $ (-994)) NIL T ELT) (((-584 (-695)) $ (-584 (-994))) NIL T ELT)) (-3968 (((-801 (-327)) $) NIL (-12 (|has| (-994) (-554 (-801 (-327)))) (|has| |#2| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) NIL (-12 (|has| (-994) (-554 (-801 (-484)))) (|has| |#2| (-554 (-801 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-994) (-554 (-473))) (|has| |#2| (-554 (-473)))) ELT)) (-2815 ((|#2| $) NIL (|has| |#2| (-389)) ELT) (($ $ (-994)) NIL (|has| |#2| (-389)) ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3750 (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT) (((-3 (-347 $) #1#) (-347 $) $) NIL (|has| |#2| (-495)) ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-994)) NIL T ELT) (($ (-1175 |#1|)) 20 T ELT) (($ (-347 (-484))) NIL (OR (|has| |#2| (-38 (-347 (-484)))) (|has| |#2| (-951 (-347 (-484))))) ELT) (($ $) NIL (|has| |#2| (-495)) ELT)) (-3813 (((-584 |#2|) $) NIL T ELT)) (-3673 ((|#2| $ (-695)) NIL T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT)) (-2700 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3123 (((-695)) NIL T CONST)) (-1621 (($ $ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL (|has| |#2| (-495)) ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) 14 T CONST)) (-2667 (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1089)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) NIL (|has| |#2| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (|has| |#2| (-812 (-1089))) ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ |#2|) NIL (|has| |#2| (-311)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-347 (-484))) NIL (|has| |#2| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) NIL (|has| |#2| (-38 (-347 (-484)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
+(((-1147 |#1| |#2|) (-13 (-1154 |#2|) (-556 (-1175 |#1|)) (-10 -8 (-15 -3734 ($ $ (-695) |#2| $)))) (-1089) (-962)) (T -1147))
+((-3734 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1147 *4 *3)) (-14 *4 (-1089)) (-4 *3 (-962)))))
+((-3954 (((-1147 |#3| |#4|) (-1 |#4| |#2|) (-1147 |#1| |#2|)) 15 T ELT)))
+(((-1148 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3954 ((-1147 |#3| |#4|) (-1 |#4| |#2|) (-1147 |#1| |#2|)))) (-1089) (-962) (-1089) (-962)) (T -1148))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1147 *5 *6)) (-14 *5 (-1089)) (-4 *6 (-962)) (-4 *8 (-962)) (-5 *2 (-1147 *7 *8)) (-5 *1 (-1148 *5 *6 *7 *8)) (-14 *7 (-1089)))))
+((-3737 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-3735 ((|#1| |#3|) 13 T ELT)) (-3736 ((|#3| |#3|) 19 T ELT)))
+(((-1149 |#1| |#2| |#3|) (-10 -7 (-15 -3735 (|#1| |#3|)) (-15 -3736 (|#3| |#3|)) (-15 -3737 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-495) (-905 |#1|) (-1154 |#2|)) (T -1149))
+((-3737 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-905 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1149 *4 *5 *3)) (-4 *3 (-1154 *5)))) (-3736 (*1 *2 *2) (-12 (-4 *3 (-495)) (-4 *4 (-905 *3)) (-5 *1 (-1149 *3 *4 *2)) (-4 *2 (-1154 *4)))) (-3735 (*1 *2 *3) (-12 (-4 *4 (-905 *2)) (-4 *2 (-495)) (-5 *1 (-1149 *2 *4 *3)) (-4 *3 (-1154 *4)))))
+((-3739 (((-3 |#2| #1="failed") |#2| (-695) |#1|) 35 T ELT)) (-3738 (((-3 |#2| #1#) |#2| (-695)) 36 T ELT)) (-3741 (((-3 (-2 (|:| -3135 |#2|) (|:| -3134 |#2|)) #1#) |#2|) 50 T ELT)) (-3742 (((-584 |#2|) |#2|) 52 T ELT)) (-3740 (((-3 |#2| #1#) |#2| |#2|) 46 T ELT)))
+(((-1150 |#1| |#2|) (-10 -7 (-15 -3738 ((-3 |#2| #1="failed") |#2| (-695))) (-15 -3739 ((-3 |#2| #1#) |#2| (-695) |#1|)) (-15 -3740 ((-3 |#2| #1#) |#2| |#2|)) (-15 -3741 ((-3 (-2 (|:| -3135 |#2|) (|:| -3134 |#2|)) #1#) |#2|)) (-15 -3742 ((-584 |#2|) |#2|))) (-13 (-495) (-120)) (-1154 |#1|)) (T -1150))
+((-3742 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-120))) (-5 *2 (-584 *3)) (-5 *1 (-1150 *4 *3)) (-4 *3 (-1154 *4)))) (-3741 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-495) (-120))) (-5 *2 (-2 (|:| -3135 *3) (|:| -3134 *3))) (-5 *1 (-1150 *4 *3)) (-4 *3 (-1154 *4)))) (-3740 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1150 *3 *2)) (-4 *2 (-1154 *3)))) (-3739 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-695)) (-4 *4 (-13 (-495) (-120))) (-5 *1 (-1150 *4 *2)) (-4 *2 (-1154 *4)))) (-3738 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-695)) (-4 *4 (-13 (-495) (-120))) (-5 *1 (-1150 *4 *2)) (-4 *2 (-1154 *4)))))
+((-3743 (((-3 (-2 (|:| -1971 |#2|) (|:| -2900 |#2|)) "failed") |#2| |#2|) 30 T ELT)))
+(((-1151 |#1| |#2|) (-10 -7 (-15 -3743 ((-3 (-2 (|:| -1971 |#2|) (|:| -2900 |#2|)) "failed") |#2| |#2|))) (-495) (-1154 |#1|)) (T -1151))
+((-3743 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -1971 *3) (|:| -2900 *3))) (-5 *1 (-1151 *4 *3)) (-4 *3 (-1154 *4)))))
+((-3744 ((|#2| |#2| |#2|) 22 T ELT)) (-3745 ((|#2| |#2| |#2|) 36 T ELT)) (-3746 ((|#2| |#2| |#2| (-695) (-695)) 44 T ELT)))
+(((-1152 |#1| |#2|) (-10 -7 (-15 -3744 (|#2| |#2| |#2|)) (-15 -3745 (|#2| |#2| |#2|)) (-15 -3746 (|#2| |#2| |#2| (-695) (-695)))) (-962) (-1154 |#1|)) (T -1152))
+((-3746 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-1152 *4 *2)) (-4 *2 (-1154 *4)))) (-3745 (*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-1152 *3 *2)) (-4 *2 (-1154 *3)))) (-3744 (*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-1152 *3 *2)) (-4 *2 (-1154 *3)))))
+((-3763 (((-1178 |#2|) $ (-695)) 129 T ELT)) (-3079 (((-584 (-994)) $) 16 T ELT)) (-3761 (($ (-1084 |#2|)) 80 T ELT)) (-2817 (((-695) $) NIL T ELT) (((-695) $ (-584 (-994))) 21 T ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) 217 T ELT)) (-3771 (($ $) 207 T ELT)) (-3967 (((-345 $) $) 205 T ELT)) (-2702 (((-3 (-584 (-1084 $)) #1="failed") (-584 (-1084 $)) (-1084 $)) 95 T ELT)) (-3757 (($ $ (-695)) 84 T ELT)) (-3756 (($ $ (-695)) 86 T ELT)) (-3747 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 157 T ELT)) (-3154 (((-3 |#2| #1#) $) 132 T ELT) (((-3 (-347 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-994) #1#) $) NIL T ELT)) (-3153 ((|#2| $) 130 T ELT) (((-347 (-484)) $) NIL T ELT) (((-484) $) NIL T ELT) (((-994) $) NIL T ELT)) (-3749 (($ $ $) 182 T ELT)) (-3748 (((-2 (|:| -3950 |#2|) (|:| -1971 $) (|:| -2900 $)) $ $) 185 T ELT)) (-3768 (((-695) $ $) 202 T ELT)) (-3441 (((-633 $) $) 149 T ELT)) (-2891 (($ |#2| (-695)) NIL T ELT) (($ $ (-994) (-695)) 59 T ELT) (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT)) (-2818 (((-695) $) NIL T ELT) (((-695) $ (-994)) 54 T ELT) (((-584 (-695)) $ (-584 (-994))) 55 T ELT)) (-3762 (((-1084 |#2|) $) 72 T ELT)) (-3080 (((-3 (-994) #1#) $) 52 T ELT)) (-3758 (((-2 (|:| -1971 $) (|:| -2900 $)) $ (-695)) 83 T ELT)) (-3808 (($ $) 232 T ELT)) (-3442 (($) 134 T CONST)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 214 T ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) 101 T ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) 99 T ELT)) (-3728 (((-345 $) $) 120 T ELT)) (-3764 (($ $ (-584 (-248 $))) 51 T ELT) (($ $ (-248 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-994) |#2|) 39 T ELT) (($ $ (-584 (-994)) (-584 |#2|)) 36 T ELT) (($ $ (-994) $) 32 T ELT) (($ $ (-584 (-994)) (-584 $)) 30 T ELT)) (-1605 (((-695) $) 220 T ELT)) (-3796 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-347 $) (-347 $) (-347 $)) 176 T ELT) ((|#2| (-347 $) |#2|) 219 T ELT) (((-347 $) $ (-347 $)) 201 T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 225 T ELT)) (-3754 (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994))) NIL T ELT) (($ $ (-994)) 169 T ELT) (($ $) 167 T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 166 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 161 T ELT) (($ $ (-1089)) NIL T ELT) (($ $ (-584 (-1089))) NIL T ELT) (($ $ (-1089) (-695)) NIL T ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL T ELT)) (-3944 (((-695) $) NIL T ELT) (((-695) $ (-994)) 17 T ELT) (((-584 (-695)) $ (-584 (-994))) 23 T ELT)) (-2815 ((|#2| $) NIL T ELT) (($ $ (-994)) 151 T ELT)) (-3750 (((-3 $ #1#) $ $) 193 T ELT) (((-3 (-347 $) #1#) (-347 $) $) 189 T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-994)) 64 T ELT) (($ (-347 (-484))) NIL T ELT) (($ $) NIL T ELT)))
+(((-1153 |#1| |#2|) (-10 -7 (-15 -3942 (|#1| |#1|)) (-15 -2706 ((-1084 |#1|) (-1084 |#1|) (-1084 |#1|))) (-15 -3754 (|#1| |#1| (-584 (-1089)) (-584 (-695)))) (-15 -3754 (|#1| |#1| (-1089) (-695))) (-15 -3754 (|#1| |#1| (-584 (-1089)))) (-15 -3754 (|#1| |#1| (-1089))) (-15 -3967 ((-345 |#1|) |#1|)) (-15 -3771 (|#1| |#1|)) (-15 -3942 (|#1| (-347 (-484)))) (-15 -3442 (|#1|) -3948) (-15 -3441 ((-633 |#1|) |#1|)) (-15 -3796 ((-347 |#1|) |#1| (-347 |#1|))) (-15 -1605 ((-695) |#1|)) (-15 -2877 ((-2 (|:| -1971 |#1|) (|:| -2900 |#1|)) |#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3796 (|#2| (-347 |#1|) |#2|)) (-15 -3747 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3748 ((-2 (|:| -3950 |#2|) (|:| -1971 |#1|) (|:| -2900 |#1|)) |#1| |#1|)) (-15 -3749 (|#1| |#1| |#1|)) (-15 -3750 ((-3 (-347 |#1|) #1="failed") (-347 |#1|) |#1|)) (-15 -3750 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3768 ((-695) |#1| |#1|)) (-15 -3796 ((-347 |#1|) (-347 |#1|) (-347 |#1|))) (-15 -3754 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3756 (|#1| |#1| (-695))) (-15 -3757 (|#1| |#1| (-695))) (-15 -3758 ((-2 (|:| -1971 |#1|) (|:| -2900 |#1|)) |#1| (-695))) (-15 -3761 (|#1| (-1084 |#2|))) (-15 -3762 ((-1084 |#2|) |#1|)) (-15 -3763 ((-1178 |#2|) |#1| (-695))) (-15 -3754 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3754 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3754 (|#1| |#1| (-695))) (-15 -3754 (|#1| |#1|)) (-15 -3796 (|#1| |#1| |#1|)) (-15 -3796 (|#2| |#1| |#2|)) (-15 -3728 ((-345 |#1|) |#1|)) (-15 -2705 ((-345 (-1084 |#1|)) (-1084 |#1|))) (-15 -2704 ((-345 (-1084 |#1|)) (-1084 |#1|))) (-15 -2703 ((-345 (-1084 |#1|)) (-1084 |#1|))) (-15 -2702 ((-3 (-584 (-1084 |#1|)) #1#) (-584 (-1084 |#1|)) (-1084 |#1|))) (-15 -2815 (|#1| |#1| (-994))) (-15 -3079 ((-584 (-994)) |#1|)) (-15 -2817 ((-695) |#1| (-584 (-994)))) (-15 -2817 ((-695) |#1|)) (-15 -2891 (|#1| |#1| (-584 (-994)) (-584 (-695)))) (-15 -2891 (|#1| |#1| (-994) (-695))) (-15 -2818 ((-584 (-695)) |#1| (-584 (-994)))) (-15 -2818 ((-695) |#1| (-994))) (-15 -3080 ((-3 (-994) #1#) |#1|)) (-15 -3944 ((-584 (-695)) |#1| (-584 (-994)))) (-15 -3944 ((-695) |#1| (-994))) (-15 -3942 (|#1| (-994))) (-15 -3154 ((-3 (-994) #1#) |#1|)) (-15 -3153 ((-994) |#1|)) (-15 -3764 (|#1| |#1| (-584 (-994)) (-584 |#1|))) (-15 -3764 (|#1| |#1| (-994) |#1|)) (-15 -3764 (|#1| |#1| (-584 (-994)) (-584 |#2|))) (-15 -3764 (|#1| |#1| (-994) |#2|)) (-15 -3764 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-15 -3764 (|#1| |#1| |#1| |#1|)) (-15 -3764 (|#1| |#1| (-248 |#1|))) (-15 -3764 (|#1| |#1| (-584 (-248 |#1|)))) (-15 -3944 ((-695) |#1|)) (-15 -2891 (|#1| |#2| (-695))) (-15 -3154 ((-3 (-484) #1#) |#1|)) (-15 -3153 ((-484) |#1|)) (-15 -3154 ((-3 (-347 (-484)) #1#) |#1|)) (-15 -3153 ((-347 (-484)) |#1|)) (-15 -3153 (|#2| |#1|)) (-15 -3154 ((-3 |#2| #1#) |#1|)) (-15 -3942 (|#1| |#2|)) (-15 -2818 ((-695) |#1|)) (-15 -2815 (|#2| |#1|)) (-15 -3754 (|#1| |#1| (-994))) (-15 -3754 (|#1| |#1| (-584 (-994)))) (-15 -3754 (|#1| |#1| (-994) (-695))) (-15 -3754 (|#1| |#1| (-584 (-994)) (-584 (-695)))) (-15 -3942 (|#1| (-484))) (-15 -3942 ((-773) |#1|))) (-1154 |#2|) (-962)) (T -1153))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-3763 (((-1178 |#1|) $ (-695)) 269 T ELT)) (-3079 (((-584 (-994)) $) 121 T ELT)) (-3761 (($ (-1084 |#1|)) 267 T ELT)) (-3081 (((-1084 $) $ (-994)) 136 T ELT) (((-1084 |#1|) $) 135 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 98 (|has| |#1| (-495)) ELT)) (-2061 (($ $) 99 (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) 101 (|has| |#1| (-495)) ELT)) (-2817 (((-695) $) 123 T ELT) (((-695) $ (-584 (-994))) 122 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3751 (($ $ $) 254 (|has| |#1| (-495)) ELT)) (-2705 (((-345 (-1084 $)) (-1084 $)) 111 (|has| |#1| (-822)) ELT)) (-3771 (($ $) 109 (|has| |#1| (-389)) ELT)) (-3967 (((-345 $) $) 108 (|has| |#1| (-389)) ELT)) (-2702 (((-3 (-584 (-1084 $)) #1="failed") (-584 (-1084 $)) (-1084 $)) 114 (|has| |#1| (-822)) ELT)) (-1606 (((-85) $ $) 239 (|has| |#1| (-311)) ELT)) (-3757 (($ $ (-695)) 262 T ELT)) (-3756 (($ $ (-695)) 261 T ELT)) (-3747 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 249 (|has| |#1| (-389)) ELT)) (-3720 (($) 22 T CONST)) (-3154 (((-3 |#1| #2="failed") $) 179 T ELT) (((-3 (-347 (-484)) #2#) $) 176 (|has| |#1| (-951 (-347 (-484)))) ELT) (((-3 (-484) #2#) $) 174 (|has| |#1| (-951 (-484))) ELT) (((-3 (-994) #2#) $) 151 T ELT)) (-3153 ((|#1| $) 178 T ELT) (((-347 (-484)) $) 177 (|has| |#1| (-951 (-347 (-484)))) ELT) (((-484) $) 175 (|has| |#1| (-951 (-484))) ELT) (((-994) $) 152 T ELT)) (-3752 (($ $ $ (-994)) 119 (|has| |#1| (-146)) ELT) ((|#1| $ $) 257 (|has| |#1| (-146)) ELT)) (-2562 (($ $ $) 243 (|has| |#1| (-311)) ELT)) (-3955 (($ $) 169 T ELT)) (-2277 (((-631 (-484)) (-631 $)) 147 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-631 $) (-1178 $)) 146 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-631 $) (-1178 $)) 145 T ELT) (((-631 |#1|) (-631 $)) 144 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2561 (($ $ $) 242 (|has| |#1| (-311)) ELT)) (-3755 (($ $ $) 260 T ELT)) (-3749 (($ $ $) 251 (|has| |#1| (-495)) ELT)) (-3748 (((-2 (|:| -3950 |#1|) (|:| -1971 $) (|:| -2900 $)) $ $) 250 (|has| |#1| (-495)) ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) 237 (|has| |#1| (-311)) ELT)) (-3499 (($ $) 191 (|has| |#1| (-389)) ELT) (($ $ (-994)) 116 (|has| |#1| (-389)) ELT)) (-2816 (((-584 $) $) 120 T ELT)) (-3719 (((-85) $) 107 (|has| |#1| (-822)) ELT)) (-1622 (($ $ |#1| (-695) $) 187 T ELT)) (-2794 (((-799 (-327) $) $ (-801 (-327)) (-799 (-327) $)) 95 (-12 (|has| (-994) (-797 (-327))) (|has| |#1| (-797 (-327)))) ELT) (((-799 (-484) $) $ (-801 (-484)) (-799 (-484) $)) 94 (-12 (|has| (-994) (-797 (-484))) (|has| |#1| (-797 (-484)))) ELT)) (-3768 (((-695) $ $) 255 (|has| |#1| (-495)) ELT)) (-2408 (((-85) $) 42 T ELT)) (-2418 (((-695) $) 184 T ELT)) (-3441 (((-633 $) $) 235 (|has| |#1| (-1065)) ELT)) (-3082 (($ (-1084 |#1|) (-994)) 128 T ELT) (($ (-1084 $) (-994)) 127 T ELT)) (-3773 (($ $ (-695)) 266 T ELT)) (-1603 (((-3 (-584 $) #3="failed") (-584 $) $) 246 (|has| |#1| (-311)) ELT)) (-2819 (((-584 $) $) 137 T ELT)) (-3933 (((-85) $) 167 T ELT)) (-2891 (($ |#1| (-695)) 168 T ELT) (($ $ (-994) (-695)) 130 T ELT) (($ $ (-584 (-994)) (-584 (-695))) 129 T ELT)) (-3759 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $ (-994)) 131 T ELT) (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 264 T ELT)) (-2818 (((-695) $) 185 T ELT) (((-695) $ (-994)) 133 T ELT) (((-584 (-695)) $ (-584 (-994))) 132 T ELT)) (-1623 (($ (-1 (-695) (-695)) $) 186 T ELT)) (-3954 (($ (-1 |#1| |#1|) $) 166 T ELT)) (-3762 (((-1084 |#1|) $) 268 T ELT)) (-3080 (((-3 (-994) #4="failed") $) 134 T ELT)) (-2278 (((-631 (-484)) (-1178 $)) 149 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 (-484))) (|:| |vec| (-1178 (-484)))) (-1178 $) $) 148 (|has| |#1| (-581 (-484))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1178 |#1|))) (-1178 $) $) 143 T ELT) (((-631 |#1|) (-1178 $)) 142 T ELT)) (-2892 (($ $) 164 T ELT)) (-3171 ((|#1| $) 163 T ELT)) (-1889 (($ (-584 $)) 105 (|has| |#1| (-389)) ELT) (($ $ $) 104 (|has| |#1| (-389)) ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3758 (((-2 (|:| -1971 $) (|:| -2900 $)) $ (-695)) 263 T ELT)) (-2821 (((-3 (-584 $) #4#) $) 125 T ELT)) (-2820 (((-3 (-584 $) #4#) $) 126 T ELT)) (-2822 (((-3 (-2 (|:| |var| (-994)) (|:| -2399 (-695))) #4#) $) 124 T ELT)) (-3808 (($ $) 247 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3442 (($) 234 (|has| |#1| (-1065)) CONST)) (-3240 (((-1033) $) 12 T ELT)) (-1795 (((-85) $) 181 T ELT)) (-1794 ((|#1| $) 182 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 106 (|has| |#1| (-389)) ELT)) (-3141 (($ (-584 $)) 103 (|has| |#1| (-389)) ELT) (($ $ $) 102 (|has| |#1| (-389)) ELT)) (-2703 (((-345 (-1084 $)) (-1084 $)) 113 (|has| |#1| (-822)) ELT)) (-2704 (((-345 (-1084 $)) (-1084 $)) 112 (|has| |#1| (-822)) ELT)) (-3728 (((-345 $) $) 110 (|has| |#1| (-822)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 245 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) 244 (|has| |#1| (-311)) ELT)) (-3462 (((-3 $ "failed") $ |#1|) 189 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ $) 97 (|has| |#1| (-495)) ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) 238 (|has| |#1| (-311)) ELT)) (-3764 (($ $ (-584 (-248 $))) 160 T ELT) (($ $ (-248 $)) 159 T ELT) (($ $ $ $) 158 T ELT) (($ $ (-584 $) (-584 $)) 157 T ELT) (($ $ (-994) |#1|) 156 T ELT) (($ $ (-584 (-994)) (-584 |#1|)) 155 T ELT) (($ $ (-994) $) 154 T ELT) (($ $ (-584 (-994)) (-584 $)) 153 T ELT)) (-1605 (((-695) $) 240 (|has| |#1| (-311)) ELT)) (-3796 ((|#1| $ |#1|) 279 T ELT) (($ $ $) 278 T ELT) (((-347 $) (-347 $) (-347 $)) 256 (|has| |#1| (-495)) ELT) ((|#1| (-347 $) |#1|) 248 (|has| |#1| (-311)) ELT) (((-347 $) $ (-347 $)) 236 (|has| |#1| (-495)) ELT)) (-3760 (((-3 $ "failed") $ (-695)) 265 T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 241 (|has| |#1| (-311)) ELT)) (-3753 (($ $ (-994)) 118 (|has| |#1| (-146)) ELT) ((|#1| $) 258 (|has| |#1| (-146)) ELT)) (-3754 (($ $ (-584 (-994)) (-584 (-695))) 50 T ELT) (($ $ (-994) (-695)) 49 T ELT) (($ $ (-584 (-994))) 48 T ELT) (($ $ (-994)) 46 T ELT) (($ $) 277 T ELT) (($ $ (-695)) 275 T ELT) (($ $ (-1 |#1| |#1|)) 273 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 272 T ELT) (($ $ (-1 |#1| |#1|) $) 259 T ELT) (($ $ (-1089)) 233 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) 231 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) 230 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 229 (|has| |#1| (-812 (-1089))) ELT)) (-3944 (((-695) $) 165 T ELT) (((-695) $ (-994)) 141 T ELT) (((-584 (-695)) $ (-584 (-994))) 140 T ELT)) (-3968 (((-801 (-327)) $) 93 (-12 (|has| (-994) (-554 (-801 (-327)))) (|has| |#1| (-554 (-801 (-327))))) ELT) (((-801 (-484)) $) 92 (-12 (|has| (-994) (-554 (-801 (-484)))) (|has| |#1| (-554 (-801 (-484))))) ELT) (((-473) $) 91 (-12 (|has| (-994) (-554 (-473))) (|has| |#1| (-554 (-473)))) ELT)) (-2815 ((|#1| $) 190 (|has| |#1| (-389)) ELT) (($ $ (-994)) 117 (|has| |#1| (-389)) ELT)) (-2701 (((-3 (-1178 $) #1#) (-631 $)) 115 (-2560 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3750 (((-3 $ "failed") $ $) 253 (|has| |#1| (-495)) ELT) (((-3 (-347 $) "failed") (-347 $) $) 252 (|has| |#1| (-495)) ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 180 T ELT) (($ (-994)) 150 T ELT) (($ (-347 (-484))) 89 (OR (|has| |#1| (-951 (-347 (-484)))) (|has| |#1| (-38 (-347 (-484))))) ELT) (($ $) 96 (|has| |#1| (-495)) ELT)) (-3813 (((-584 |#1|) $) 183 T ELT)) (-3673 ((|#1| $ (-695)) 170 T ELT) (($ $ (-994) (-695)) 139 T ELT) (($ $ (-584 (-994)) (-584 (-695))) 138 T ELT)) (-2700 (((-633 $) $) 90 (OR (-2560 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3123 (((-695)) 38 T CONST)) (-1621 (($ $ $ (-695)) 188 (|has| |#1| (-146)) ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2060 (((-85) $ $) 100 (|has| |#1| (-495)) ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-2667 (($ $ (-584 (-994)) (-584 (-695))) 53 T ELT) (($ $ (-994) (-695)) 52 T ELT) (($ $ (-584 (-994))) 51 T ELT) (($ $ (-994)) 47 T ELT) (($ $) 276 T ELT) (($ $ (-695)) 274 T ELT) (($ $ (-1 |#1| |#1|)) 271 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 270 T ELT) (($ $ (-1089)) 232 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089))) 228 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-1089) (-695)) 227 (|has| |#1| (-812 (-1089))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 226 (|has| |#1| (-812 (-1089))) ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3945 (($ $ |#1|) 171 (|has| |#1| (-311)) ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-484))) 173 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ (-347 (-484)) $) 172 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ |#1| $) 162 T ELT) (($ $ |#1|) 161 T ELT)))
+(((-1154 |#1|) (-113) (-962)) (T -1154))
+((-3763 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1154 *4)) (-4 *4 (-962)) (-5 *2 (-1178 *4)))) (-3762 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-962)) (-5 *2 (-1084 *3)))) (-3761 (*1 *1 *2) (-12 (-5 *2 (-1084 *3)) (-4 *3 (-962)) (-4 *1 (-1154 *3)))) (-3773 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1154 *3)) (-4 *3 (-962)))) (-3760 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-695)) (-4 *1 (-1154 *3)) (-4 *3 (-962)))) (-3759 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2900 *1))) (-4 *1 (-1154 *3)))) (-3758 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2900 *1))) (-4 *1 (-1154 *4)))) (-3757 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1154 *3)) (-4 *3 (-962)))) (-3756 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1154 *3)) (-4 *3 (-962)))) (-3755 (*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-962)))) (-3754 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1154 *3)) (-4 *3 (-962)))) (-3753 (*1 *2 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-962)) (-4 *2 (-146)))) (-3752 (*1 *2 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-962)) (-4 *2 (-146)))) (-3796 (*1 *2 *2 *2) (-12 (-5 *2 (-347 *1)) (-4 *1 (-1154 *3)) (-4 *3 (-962)) (-4 *3 (-495)))) (-3768 (*1 *2 *1 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-962)) (-4 *3 (-495)) (-5 *2 (-695)))) (-3751 (*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-962)) (-4 *2 (-495)))) (-3750 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1154 *2)) (-4 *2 (-962)) (-4 *2 (-495)))) (-3750 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-347 *1)) (-4 *1 (-1154 *3)) (-4 *3 (-962)) (-4 *3 (-495)))) (-3749 (*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-962)) (-4 *2 (-495)))) (-3748 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -3950 *3) (|:| -1971 *1) (|:| -2900 *1))) (-4 *1 (-1154 *3)))) (-3747 (*1 *2 *1 *1) (-12 (-4 *3 (-389)) (-4 *3 (-962)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1154 *3)))) (-3796 (*1 *2 *3 *2) (-12 (-5 *3 (-347 *1)) (-4 *1 (-1154 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-3808 (*1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-347 (-484)))))))
+(-13 (-862 |t#1| (-695) (-994)) (-241 |t#1| |t#1|) (-241 $ $) (-190) (-184 |t#1|) (-10 -8 (-15 -3763 ((-1178 |t#1|) $ (-695))) (-15 -3762 ((-1084 |t#1|) $)) (-15 -3761 ($ (-1084 |t#1|))) (-15 -3773 ($ $ (-695))) (-15 -3760 ((-3 $ "failed") $ (-695))) (-15 -3759 ((-2 (|:| -1971 $) (|:| -2900 $)) $ $)) (-15 -3758 ((-2 (|:| -1971 $) (|:| -2900 $)) $ (-695))) (-15 -3757 ($ $ (-695))) (-15 -3756 ($ $ (-695))) (-15 -3755 ($ $ $)) (-15 -3754 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1065)) (-6 (-1065)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3753 (|t#1| $)) (-15 -3752 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-495)) (PROGN (-6 (-241 (-347 $) (-347 $))) (-15 -3796 ((-347 $) (-347 $) (-347 $))) (-15 -3768 ((-695) $ $)) (-15 -3751 ($ $ $)) (-15 -3750 ((-3 $ "failed") $ $)) (-15 -3750 ((-3 (-347 $) "failed") (-347 $) $)) (-15 -3749 ($ $ $)) (-15 -3748 ((-2 (|:| -3950 |t#1|) (|:| -1971 $) (|:| -2900 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-389)) (-15 -3747 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-311)) (PROGN (-6 (-257)) (-6 -3987) (-15 -3796 (|t#1| (-347 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-347 (-484)))) (-15 -3808 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| (-695)) . T) ((-25) . T) ((-38 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-311))) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) OR (|has| |#1| (-951 (-347 (-484)))) (|has| |#1| (-38 (-347 (-484))))) ((-556 (-484)) . T) ((-556 (-994)) . T) ((-556 |#1|) . T) ((-556 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-311))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-554 (-473)) -12 (|has| |#1| (-554 (-473))) (|has| (-994) (-554 (-473)))) ((-554 (-801 (-327))) -12 (|has| |#1| (-554 (-801 (-327)))) (|has| (-994) (-554 (-801 (-327))))) ((-554 (-801 (-484))) -12 (|has| |#1| (-554 (-801 (-484)))) (|has| (-994) (-554 (-801 (-484))))) ((-186 $) . T) ((-184 |#1|) . T) ((-190) . T) ((-189) . T) ((-225 |#1|) . T) ((-241 (-347 $) (-347 $)) |has| |#1| (-495)) ((-241 |#1| |#1|) . T) ((-241 $ $) . T) ((-245) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-311))) ((-257) |has| |#1| (-311)) ((-259 $) . T) ((-276 |#1| (-695)) . T) ((-326 |#1|) . T) ((-352 |#1|) . T) ((-389) OR (|has| |#1| (-822)) (|has| |#1| (-389)) (|has| |#1| (-311))) ((-453 (-994) |#1|) . T) ((-453 (-994) $) . T) ((-453 $ $) . T) ((-495) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-311))) ((-13) . T) ((-589 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-591 (-484)) |has| |#1| (-581 (-484))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-311))) ((-581 (-484)) |has| |#1| (-581 (-484))) ((-581 |#1|) . T) ((-655 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-311))) ((-664) . T) ((-807 $ (-994)) . T) ((-807 $ (-1089)) OR (|has| |#1| (-812 (-1089))) (|has| |#1| (-810 (-1089)))) ((-810 (-994)) . T) ((-810 (-1089)) |has| |#1| (-810 (-1089))) ((-812 (-994)) . T) ((-812 (-1089)) OR (|has| |#1| (-812 (-1089))) (|has| |#1| (-810 (-1089)))) ((-797 (-327)) -12 (|has| |#1| (-797 (-327))) (|has| (-994) (-797 (-327)))) ((-797 (-484)) -12 (|has| |#1| (-797 (-484))) (|has| (-994) (-797 (-484)))) ((-862 |#1| (-695) (-994)) . T) ((-822) |has| |#1| (-822)) ((-833) |has| |#1| (-311)) ((-951 (-347 (-484))) |has| |#1| (-951 (-347 (-484)))) ((-951 (-484)) |has| |#1| (-951 (-484))) ((-951 (-994)) . T) ((-951 |#1|) . T) ((-964 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-969 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-822)) (|has| |#1| (-495)) (|has| |#1| (-389)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1065) |has| |#1| (-1065)) ((-1128) . T) ((-1133) |has| |#1| (-822)))
+((-3954 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT)))
+(((-1155 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3954 (|#4| (-1 |#3| |#1|) |#2|))) (-962) (-1154 |#1|) (-962) (-1154 |#3|)) (T -1155))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-1154 *6)) (-5 *1 (-1155 *5 *4 *6 *2)) (-4 *4 (-1154 *5)))))
+((-3079 (((-584 (-994)) $) 34 T ELT)) (-3955 (($ $) 31 T ELT)) (-2891 (($ |#2| |#3|) NIL T ELT) (($ $ (-994) |#3|) 28 T ELT) (($ $ (-584 (-994)) (-584 |#3|)) 27 T ELT)) (-2892 (($ $) 14 T ELT)) (-3171 ((|#2| $) 12 T ELT)) (-3944 ((|#3| $) 10 T ELT)))
+(((-1156 |#1| |#2| |#3|) (-10 -7 (-15 -3079 ((-584 (-994)) |#1|)) (-15 -2891 (|#1| |#1| (-584 (-994)) (-584 |#3|))) (-15 -2891 (|#1| |#1| (-994) |#3|)) (-15 -3955 (|#1| |#1|)) (-15 -2891 (|#1| |#2| |#3|)) (-15 -3944 (|#3| |#1|)) (-15 -2892 (|#1| |#1|)) (-15 -3171 (|#2| |#1|))) (-1157 |#2| |#3|) (-962) (-717)) (T -1156))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-3079 (((-584 (-994)) $) 93 T ELT)) (-3827 (((-1089) $) 127 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 69 (|has| |#1| (-495)) ELT)) (-2061 (($ $) 70 (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) 72 (|has| |#1| (-495)) ELT)) (-3767 (($ $ |#2|) 122 T ELT) (($ $ |#2| |#2|) 121 T ELT)) (-3770 (((-1068 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 128 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3955 (($ $) 78 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2890 (((-85) $) 92 T ELT)) (-3768 ((|#2| $) 124 T ELT) ((|#2| $ |#2|) 123 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-3773 (($ $ (-831)) 125 T ELT)) (-3933 (((-85) $) 80 T ELT)) (-2891 (($ |#1| |#2|) 79 T ELT) (($ $ (-994) |#2|) 95 T ELT) (($ $ (-584 (-994)) (-584 |#2|)) 94 T ELT)) (-3954 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-2892 (($ $) 83 T ELT)) (-3171 ((|#1| $) 84 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3765 (($ $ |#2|) 119 T ELT)) (-3462 (((-3 $ "failed") $ $) 68 (|has| |#1| (-495)) ELT)) (-3764 (((-1068 |#1|) $ |#1|) 118 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) ELT)) (-3796 ((|#1| $ |#2|) 129 T ELT) (($ $ $) 105 (|has| |#2| (-1025)) ELT)) (-3754 (($ $ (-1089)) 117 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-584 (-1089))) 115 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1089) (-695)) 114 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 113 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 109 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-695)) 107 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3944 ((|#2| $) 82 T ELT)) (-2889 (($ $) 91 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ (-347 (-484))) 75 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $) 67 (|has| |#1| (-495)) ELT) (($ |#1|) 65 (|has| |#1| (-146)) ELT)) (-3673 ((|#1| $ |#2|) 77 T ELT)) (-2700 (((-633 $) $) 66 (|has| |#1| (-118)) ELT)) (-3123 (((-695)) 38 T CONST)) (-3769 ((|#1| $) 126 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2060 (((-85) $ $) 71 (|has| |#1| (-495)) ELT)) (-3766 ((|#1| $ |#2|) 120 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3942 (|#1| (-1089))))) ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-2667 (($ $ (-1089)) 116 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-584 (-1089))) 112 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1089) (-695)) 111 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 110 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-695)) 106 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3945 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-347 (-484)) $) 74 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 73 (|has| |#1| (-38 (-347 (-484)))) ELT)))
+(((-1157 |#1| |#2|) (-113) (-962) (-717)) (T -1157))
+((-3770 (*1 *2 *1) (-12 (-4 *1 (-1157 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-1068 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3827 (*1 *2 *1) (-12 (-4 *1 (-1157 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-1089)))) (-3769 (*1 *2 *1) (-12 (-4 *1 (-1157 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) (-3773 (*1 *1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-1157 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)))) (-3768 (*1 *2 *1) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3768 (*1 *2 *1 *2) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3767 (*1 *1 *1 *2) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3767 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3766 (*1 *2 *1 *3) (-12 (-4 *1 (-1157 *2 *3)) (-4 *3 (-717)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3942 (*2 (-1089)))) (-4 *2 (-962)))) (-3765 (*1 *1 *1 *2) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3764 (*1 *2 *1 *3) (-12 (-4 *1 (-1157 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1068 *3)))))
+(-13 (-887 |t#1| |t#2| (-994)) (-241 |t#2| |t#1|) (-10 -8 (-15 -3770 ((-1068 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3827 ((-1089) $)) (-15 -3769 (|t#1| $)) (-15 -3773 ($ $ (-831))) (-15 -3768 (|t#2| $)) (-15 -3768 (|t#2| $ |t#2|)) (-15 -3767 ($ $ |t#2|)) (-15 -3767 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3942 (|t#1| (-1089)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3766 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3765 ($ $ |t#2|)) (IF (|has| |t#2| (-1025)) (-6 (-241 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-190)) (IF (|has| |t#1| (-810 (-1089))) (-6 (-810 (-1089))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3764 ((-1068 |t#1|) $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-556 (-484)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) |has| |#1| (-495)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-190) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-189) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-241 |#2| |#1|) . T) ((-241 $ $) |has| |#2| (-1025)) ((-245) |has| |#1| (-495)) ((-495) |has| |#1| (-495)) ((-13) . T) ((-589 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-495)) ((-655 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-495)) ((-664) . T) ((-807 $ (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-810 (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-812 (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-887 |#1| |#2| (-994)) . T) ((-964 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-969 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
+((-3771 ((|#2| |#2|) 12 T ELT)) (-3967 (((-345 |#2|) |#2|) 14 T ELT)) (-3772 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-484))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-484)))) 30 T ELT)))
+(((-1158 |#1| |#2|) (-10 -7 (-15 -3967 ((-345 |#2|) |#2|)) (-15 -3771 (|#2| |#2|)) (-15 -3772 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-484))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-484)))))) (-495) (-13 (-1154 |#1|) (-495) (-10 -8 (-15 -3141 ($ $ $))))) (T -1158))
+((-3772 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-484)))) (-4 *4 (-13 (-1154 *3) (-495) (-10 -8 (-15 -3141 ($ $ $))))) (-4 *3 (-495)) (-5 *1 (-1158 *3 *4)))) (-3771 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-1158 *3 *2)) (-4 *2 (-13 (-1154 *3) (-495) (-10 -8 (-15 -3141 ($ $ $))))))) (-3967 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-345 *3)) (-5 *1 (-1158 *4 *3)) (-4 *3 (-13 (-1154 *4) (-495) (-10 -8 (-15 -3141 ($ $ $))))))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3079 (((-584 (-994)) $) NIL T ELT)) (-3827 (((-1089) $) 11 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2061 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3767 (($ $ (-347 (-484))) NIL T ELT) (($ $ (-347 (-484)) (-347 (-484))) NIL T ELT)) (-3770 (((-1068 (-2 (|:| |k| (-347 (-484))) (|:| |c| |#1|))) $) NIL T ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3771 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3967 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-3035 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3814 (($ (-695) (-1068 (-2 (|:| |k| (-347 (-484))) (|:| |c| |#1|)))) NIL T ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 (-1138 |#1| |#2| |#3|) #1#) $) 19 T ELT) (((-3 (-1168 |#1| |#2| |#3|) #1#) $) 22 T ELT)) (-3153 (((-1138 |#1| |#2| |#3|) $) NIL T ELT) (((-1168 |#1| |#2| |#3|) $) NIL T ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3955 (($ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-3777 (((-347 (-484)) $) 68 T ELT)) (-2561 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3778 (($ (-347 (-484)) (-1138 |#1| |#2| |#3|)) NIL T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3719 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-2890 (((-85) $) NIL T ELT)) (-3623 (($) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3768 (((-347 (-484)) $) NIL T ELT) (((-347 (-484)) $ (-347 (-484))) NIL T ELT)) (-2408 (((-85) $) NIL T ELT)) (-3009 (($ $ (-484)) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3773 (($ $ (-831)) NIL T ELT) (($ $ (-347 (-484))) NIL T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3933 (((-85) $) NIL T ELT)) (-2891 (($ |#1| (-347 (-484))) 30 T ELT) (($ $ (-994) (-347 (-484))) NIL T ELT) (($ $ (-584 (-994)) (-584 (-347 (-484)))) NIL T ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3938 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2892 (($ $) NIL T ELT)) (-3171 ((|#1| $) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3776 (((-1138 |#1| |#2| |#3|) $) 71 T ELT)) (-3774 (((-3 (-1138 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3775 (((-1138 |#1| |#2| |#3|) $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3808 (($ $) 39 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-1089)) NIL (OR (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-872)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-15 -3808 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3079 ((-584 (-1089)) |#1|))))) ELT) (($ $ (-1175 |#2|)) 40 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-311)) ELT)) (-3141 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3728 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3765 (($ $ (-347 (-484))) NIL T ELT)) (-3462 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3939 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3764 (((-1068 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-347 (-484))))) ELT)) (-1605 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-3796 ((|#1| $ (-347 (-484))) NIL T ELT) (($ $ $) NIL (|has| (-347 (-484)) (-1025)) ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3754 (($ $ (-1089)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-1175 |#2|)) 38 T ELT)) (-3944 (((-347 (-484)) $) NIL T ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2889 (($ $) NIL T ELT)) (-3942 (((-773) $) 107 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1138 |#1| |#2| |#3|)) 16 T ELT) (($ (-1168 |#1| |#2| |#3|)) 17 T ELT) (($ (-1175 |#2|)) 36 T ELT) (($ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3673 ((|#1| $ (-347 (-484))) NIL T ELT)) (-2700 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3123 (((-695)) NIL T CONST)) (-3769 ((|#1| $) 12 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2060 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3766 ((|#1| $ (-347 (-484))) 73 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-484))))) (|has| |#1| (-15 -3942 (|#1| (-1089))))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2658 (($) 32 T CONST)) (-2664 (($) 26 T CONST)) (-2667 (($ $ (-1089)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-1175 |#2|)) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) 34 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)))
+(((-1159 |#1| |#2| |#3|) (-13 (-1163 |#1| (-1138 |#1| |#2| |#3|)) (-807 $ (-1175 |#2|)) (-951 (-1168 |#1| |#2| |#3|)) (-556 (-1175 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-347 (-484)))) (-15 -3808 ($ $ (-1175 |#2|))) |%noBranch|))) (-962) (-1089) |#1|) (T -1159))
+((-3808 (*1 *1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1159 *3 *4 *5)) (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) (-14 *5 *3))))
+((-3954 (((-1159 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1159 |#1| |#3| |#5|)) 24 T ELT)))
+(((-1160 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3954 ((-1159 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1159 |#1| |#3| |#5|)))) (-962) (-962) (-1089) (-1089) |#1| |#2|) (T -1160))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1159 *5 *7 *9)) (-4 *5 (-962)) (-4 *6 (-962)) (-14 *7 (-1089)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1159 *6 *8 *10)) (-5 *1 (-1160 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1089)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-3079 (((-584 (-994)) $) 93 T ELT)) (-3827 (((-1089) $) 127 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 69 (|has| |#1| (-495)) ELT)) (-2061 (($ $) 70 (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) 72 (|has| |#1| (-495)) ELT)) (-3767 (($ $ (-347 (-484))) 122 T ELT) (($ $ (-347 (-484)) (-347 (-484))) 121 T ELT)) (-3770 (((-1068 (-2 (|:| |k| (-347 (-484))) (|:| |c| |#1|))) $) 128 T ELT)) (-3488 (($ $) 161 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) 144 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3771 (($ $) 188 (|has| |#1| (-311)) ELT)) (-3967 (((-345 $) $) 189 (|has| |#1| (-311)) ELT)) (-3035 (($ $) 143 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1606 (((-85) $ $) 179 (|has| |#1| (-311)) ELT)) (-3486 (($ $) 160 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) 145 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3814 (($ (-695) (-1068 (-2 (|:| |k| (-347 (-484))) (|:| |c| |#1|)))) 197 T ELT)) (-3490 (($ $) 159 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) 146 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3720 (($) 22 T CONST)) (-2562 (($ $ $) 183 (|has| |#1| (-311)) ELT)) (-3955 (($ $) 78 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2561 (($ $ $) 182 (|has| |#1| (-311)) ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) 177 (|has| |#1| (-311)) ELT)) (-3719 (((-85) $) 190 (|has| |#1| (-311)) ELT)) (-2890 (((-85) $) 92 T ELT)) (-3623 (($) 171 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3768 (((-347 (-484)) $) 124 T ELT) (((-347 (-484)) $ (-347 (-484))) 123 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-3009 (($ $ (-484)) 142 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3773 (($ $ (-831)) 125 T ELT) (($ $ (-347 (-484))) 196 T ELT)) (-1603 (((-3 (-584 $) #1="failed") (-584 $) $) 186 (|has| |#1| (-311)) ELT)) (-3933 (((-85) $) 80 T ELT)) (-2891 (($ |#1| (-347 (-484))) 79 T ELT) (($ $ (-994) (-347 (-484))) 95 T ELT) (($ $ (-584 (-994)) (-584 (-347 (-484)))) 94 T ELT)) (-3954 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-3938 (($ $) 168 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2892 (($ $) 83 T ELT)) (-3171 ((|#1| $) 84 T ELT)) (-1889 (($ (-584 $)) 175 (|has| |#1| (-311)) ELT) (($ $ $) 174 (|has| |#1| (-311)) ELT)) (-3239 (((-1072) $) 11 T ELT)) (-2482 (($ $) 191 (|has| |#1| (-311)) ELT)) (-3808 (($ $) 195 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-1089)) 194 (OR (-12 (|has| |#1| (-29 (-484))) (|has| |#1| (-872)) (|has| |#1| (-1114)) (|has| |#1| (-38 (-347 (-484))))) (-12 (|has| |#1| (-15 -3079 ((-584 (-1089)) |#1|))) (|has| |#1| (-15 -3808 (|#1| |#1| (-1089)))) (|has| |#1| (-38 (-347 (-484)))))) ELT)) (-3240 (((-1033) $) 12 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 176 (|has| |#1| (-311)) ELT)) (-3141 (($ (-584 $)) 173 (|has| |#1| (-311)) ELT) (($ $ $) 172 (|has| |#1| (-311)) ELT)) (-3728 (((-345 $) $) 187 (|has| |#1| (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 185 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) 184 (|has| |#1| (-311)) ELT)) (-3765 (($ $ (-347 (-484))) 119 T ELT)) (-3462 (((-3 $ "failed") $ $) 68 (|has| |#1| (-495)) ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) 178 (|has| |#1| (-311)) ELT)) (-3939 (($ $) 169 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3764 (((-1068 |#1|) $ |#1|) 118 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-484))))) ELT)) (-1605 (((-695) $) 180 (|has| |#1| (-311)) ELT)) (-3796 ((|#1| $ (-347 (-484))) 129 T ELT) (($ $ $) 105 (|has| (-347 (-484)) (-1025)) ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 181 (|has| |#1| (-311)) ELT)) (-3754 (($ $ (-1089)) 117 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089))) 115 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-1089) (-695)) 114 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 113 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $) 109 (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-695)) 107 (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT)) (-3944 (((-347 (-484)) $) 82 T ELT)) (-3491 (($ $) 158 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) 147 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3489 (($ $) 157 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) 148 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3487 (($ $) 156 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3630 (($ $) 149 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2889 (($ $) 91 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 65 (|has| |#1| (-146)) ELT) (($ (-347 (-484))) 75 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $) 67 (|has| |#1| (-495)) ELT)) (-3673 ((|#1| $ (-347 (-484))) 77 T ELT)) (-2700 (((-633 $) $) 66 (|has| |#1| (-118)) ELT)) (-3123 (((-695)) 38 T CONST)) (-3769 ((|#1| $) 126 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3494 (($ $) 167 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) 155 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2060 (((-85) $ $) 71 (|has| |#1| (-495)) ELT)) (-3492 (($ $) 166 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3480 (($ $) 154 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) 165 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) 153 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3766 ((|#1| $ (-347 (-484))) 120 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-484))))) (|has| |#1| (-15 -3942 (|#1| (-1089))))) ELT)) (-3497 (($ $) 164 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) 152 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3495 (($ $) 163 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) 151 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3493 (($ $) 162 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) 150 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-2667 (($ $ (-1089)) 116 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089))) 112 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-1089) (-695)) 111 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 110 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-695)) 106 (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3945 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT) (($ $ $) 193 (|has| |#1| (-311)) ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 192 (|has| |#1| (-311)) ELT) (($ $ $) 170 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 141 (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-347 (-484)) $) 74 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 73 (|has| |#1| (-38 (-347 (-484)))) ELT)))
+(((-1161 |#1|) (-113) (-962)) (T -1161))
+((-3814 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-1068 (-2 (|:| |k| (-347 (-484))) (|:| |c| *4)))) (-4 *4 (-962)) (-4 *1 (-1161 *4)))) (-3773 (*1 *1 *1 *2) (-12 (-5 *2 (-347 (-484))) (-4 *1 (-1161 *3)) (-4 *3 (-962)))) (-3808 (*1 *1 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-347 (-484)))))) (-3808 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1089)) (-4 *1 (-1161 *3)) (-4 *3 (-962)) (-12 (-4 *3 (-29 (-484))) (-4 *3 (-872)) (-4 *3 (-1114)) (-4 *3 (-38 (-347 (-484)))))) (-12 (-5 *2 (-1089)) (-4 *1 (-1161 *3)) (-4 *3 (-962)) (-12 (|has| *3 (-15 -3079 ((-584 *2) *3))) (|has| *3 (-15 -3808 (*3 *3 *2))) (-4 *3 (-38 (-347 (-484)))))))))
+(-13 (-1157 |t#1| (-347 (-484))) (-10 -8 (-15 -3814 ($ (-695) (-1068 (-2 (|:| |k| (-347 (-484))) (|:| |c| |t#1|))))) (-15 -3773 ($ $ (-347 (-484)))) (IF (|has| |t#1| (-38 (-347 (-484)))) (PROGN (-15 -3808 ($ $)) (IF (|has| |t#1| (-15 -3808 (|t#1| |t#1| (-1089)))) (IF (|has| |t#1| (-15 -3079 ((-584 (-1089)) |t#1|))) (-15 -3808 ($ $ (-1089))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1114)) (IF (|has| |t#1| (-872)) (IF (|has| |t#1| (-29 (-484))) (-15 -3808 ($ $ (-1089))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-916)) (-6 (-1114))) |%noBranch|) (IF (|has| |t#1| (-311)) (-6 (-311)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| (-347 (-484))) . T) ((-25) . T) ((-38 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-35) |has| |#1| (-38 (-347 (-484)))) ((-66) |has| |#1| (-38 (-347 (-484)))) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-556 (-484)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ((-201) |has| |#1| (-311)) ((-239) |has| |#1| (-38 (-347 (-484)))) ((-241 (-347 (-484)) |#1|) . T) ((-241 $ $) |has| (-347 (-484)) (-1025)) ((-245) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-257) |has| |#1| (-311)) ((-311) |has| |#1| (-311)) ((-389) |has| |#1| (-311)) ((-430) |has| |#1| (-38 (-347 (-484)))) ((-495) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-13) . T) ((-589 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-655 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-664) . T) ((-807 $ (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ((-810 (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ((-812 (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ((-887 |#1| (-347 (-484)) (-994)) . T) ((-833) |has| |#1| (-311)) ((-916) |has| |#1| (-38 (-347 (-484)))) ((-964 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-495)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-969 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-495)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1114) |has| |#1| (-38 (-347 (-484)))) ((-1117) |has| |#1| (-38 (-347 (-484)))) ((-1128) . T) ((-1133) |has| |#1| (-311)) ((-1157 |#1| (-347 (-484))) . T))
+((-3185 (((-85) $) 12 T ELT)) (-3154 (((-3 |#3| "failed") $) 17 T ELT)) (-3153 ((|#3| $) 14 T ELT)))
+(((-1162 |#1| |#2| |#3|) (-10 -7 (-15 -3154 ((-3 |#3| "failed") |#1|)) (-15 -3153 (|#3| |#1|)) (-15 -3185 ((-85) |#1|))) (-1163 |#2| |#3|) (-962) (-1140 |#2|)) (T -1162))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-3079 (((-584 (-994)) $) 93 T ELT)) (-3827 (((-1089) $) 127 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 69 (|has| |#1| (-495)) ELT)) (-2061 (($ $) 70 (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) 72 (|has| |#1| (-495)) ELT)) (-3767 (($ $ (-347 (-484))) 122 T ELT) (($ $ (-347 (-484)) (-347 (-484))) 121 T ELT)) (-3770 (((-1068 (-2 (|:| |k| (-347 (-484))) (|:| |c| |#1|))) $) 128 T ELT)) (-3488 (($ $) 161 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) 144 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3771 (($ $) 188 (|has| |#1| (-311)) ELT)) (-3967 (((-345 $) $) 189 (|has| |#1| (-311)) ELT)) (-3035 (($ $) 143 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1606 (((-85) $ $) 179 (|has| |#1| (-311)) ELT)) (-3486 (($ $) 160 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) 145 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3814 (($ (-695) (-1068 (-2 (|:| |k| (-347 (-484))) (|:| |c| |#1|)))) 197 T ELT)) (-3490 (($ $) 159 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) 146 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3720 (($) 22 T CONST)) (-3154 (((-3 |#2| "failed") $) 210 T ELT)) (-3153 ((|#2| $) 211 T ELT)) (-2562 (($ $ $) 183 (|has| |#1| (-311)) ELT)) (-3955 (($ $) 78 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-3777 (((-347 (-484)) $) 207 T ELT)) (-2561 (($ $ $) 182 (|has| |#1| (-311)) ELT)) (-3778 (($ (-347 (-484)) |#2|) 208 T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) 177 (|has| |#1| (-311)) ELT)) (-3719 (((-85) $) 190 (|has| |#1| (-311)) ELT)) (-2890 (((-85) $) 92 T ELT)) (-3623 (($) 171 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3768 (((-347 (-484)) $) 124 T ELT) (((-347 (-484)) $ (-347 (-484))) 123 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-3009 (($ $ (-484)) 142 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3773 (($ $ (-831)) 125 T ELT) (($ $ (-347 (-484))) 196 T ELT)) (-1603 (((-3 (-584 $) #1="failed") (-584 $) $) 186 (|has| |#1| (-311)) ELT)) (-3933 (((-85) $) 80 T ELT)) (-2891 (($ |#1| (-347 (-484))) 79 T ELT) (($ $ (-994) (-347 (-484))) 95 T ELT) (($ $ (-584 (-994)) (-584 (-347 (-484)))) 94 T ELT)) (-3954 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-3938 (($ $) 168 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2892 (($ $) 83 T ELT)) (-3171 ((|#1| $) 84 T ELT)) (-1889 (($ (-584 $)) 175 (|has| |#1| (-311)) ELT) (($ $ $) 174 (|has| |#1| (-311)) ELT)) (-3776 ((|#2| $) 206 T ELT)) (-3774 (((-3 |#2| "failed") $) 204 T ELT)) (-3775 ((|#2| $) 205 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-2482 (($ $) 191 (|has| |#1| (-311)) ELT)) (-3808 (($ $) 195 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-1089)) 194 (OR (-12 (|has| |#1| (-29 (-484))) (|has| |#1| (-872)) (|has| |#1| (-1114)) (|has| |#1| (-38 (-347 (-484))))) (-12 (|has| |#1| (-15 -3079 ((-584 (-1089)) |#1|))) (|has| |#1| (-15 -3808 (|#1| |#1| (-1089)))) (|has| |#1| (-38 (-347 (-484)))))) ELT)) (-3240 (((-1033) $) 12 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 176 (|has| |#1| (-311)) ELT)) (-3141 (($ (-584 $)) 173 (|has| |#1| (-311)) ELT) (($ $ $) 172 (|has| |#1| (-311)) ELT)) (-3728 (((-345 $) $) 187 (|has| |#1| (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 185 (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) 184 (|has| |#1| (-311)) ELT)) (-3765 (($ $ (-347 (-484))) 119 T ELT)) (-3462 (((-3 $ "failed") $ $) 68 (|has| |#1| (-495)) ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) 178 (|has| |#1| (-311)) ELT)) (-3939 (($ $) 169 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3764 (((-1068 |#1|) $ |#1|) 118 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-484))))) ELT)) (-1605 (((-695) $) 180 (|has| |#1| (-311)) ELT)) (-3796 ((|#1| $ (-347 (-484))) 129 T ELT) (($ $ $) 105 (|has| (-347 (-484)) (-1025)) ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 181 (|has| |#1| (-311)) ELT)) (-3754 (($ $ (-1089)) 117 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089))) 115 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-1089) (-695)) 114 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 113 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $) 109 (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-695)) 107 (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT)) (-3944 (((-347 (-484)) $) 82 T ELT)) (-3491 (($ $) 158 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) 147 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3489 (($ $) 157 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) 148 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3487 (($ $) 156 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3630 (($ $) 149 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2889 (($ $) 91 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 65 (|has| |#1| (-146)) ELT) (($ |#2|) 209 T ELT) (($ (-347 (-484))) 75 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $) 67 (|has| |#1| (-495)) ELT)) (-3673 ((|#1| $ (-347 (-484))) 77 T ELT)) (-2700 (((-633 $) $) 66 (|has| |#1| (-118)) ELT)) (-3123 (((-695)) 38 T CONST)) (-3769 ((|#1| $) 126 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3494 (($ $) 167 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) 155 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2060 (((-85) $ $) 71 (|has| |#1| (-495)) ELT)) (-3492 (($ $) 166 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3480 (($ $) 154 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) 165 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) 153 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3766 ((|#1| $ (-347 (-484))) 120 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-484))))) (|has| |#1| (-15 -3942 (|#1| (-1089))))) ELT)) (-3497 (($ $) 164 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) 152 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3495 (($ $) 163 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) 151 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3493 (($ $) 162 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) 150 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-2667 (($ $ (-1089)) 116 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089))) 112 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-1089) (-695)) 111 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 110 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-695)) 106 (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3945 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT) (($ $ $) 193 (|has| |#1| (-311)) ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 192 (|has| |#1| (-311)) ELT) (($ $ $) 170 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 141 (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-347 (-484)) $) 74 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 73 (|has| |#1| (-38 (-347 (-484)))) ELT)))
+(((-1163 |#1| |#2|) (-113) (-962) (-1140 |t#1|)) (T -1163))
+((-3944 (*1 *2 *1) (-12 (-4 *1 (-1163 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1140 *3)) (-5 *2 (-347 (-484))))) (-3778 (*1 *1 *2 *3) (-12 (-5 *2 (-347 (-484))) (-4 *4 (-962)) (-4 *1 (-1163 *4 *3)) (-4 *3 (-1140 *4)))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-1163 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1140 *3)) (-5 *2 (-347 (-484))))) (-3776 (*1 *2 *1) (-12 (-4 *1 (-1163 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1140 *3)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-1163 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1140 *3)))) (-3774 (*1 *2 *1) (|partial| -12 (-4 *1 (-1163 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1140 *3)))))
+(-13 (-1161 |t#1|) (-951 |t#2|) (-556 |t#2|) (-10 -8 (-15 -3778 ($ (-347 (-484)) |t#2|)) (-15 -3777 ((-347 (-484)) $)) (-15 -3776 (|t#2| $)) (-15 -3944 ((-347 (-484)) $)) (-15 -3775 (|t#2| $)) (-15 -3774 ((-3 |t#2| "failed") $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| (-347 (-484))) . T) ((-25) . T) ((-38 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-35) |has| |#1| (-38 (-347 (-484)))) ((-66) |has| |#1| (-38 (-347 (-484)))) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-556 (-484)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 |#2|) . T) ((-556 $) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ((-201) |has| |#1| (-311)) ((-239) |has| |#1| (-38 (-347 (-484)))) ((-241 (-347 (-484)) |#1|) . T) ((-241 $ $) |has| (-347 (-484)) (-1025)) ((-245) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-257) |has| |#1| (-311)) ((-311) |has| |#1| (-311)) ((-389) |has| |#1| (-311)) ((-430) |has| |#1| (-38 (-347 (-484)))) ((-495) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-13) . T) ((-589 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-655 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-495)) (|has| |#1| (-311))) ((-664) . T) ((-807 $ (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ((-810 (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ((-812 (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ((-887 |#1| (-347 (-484)) (-994)) . T) ((-833) |has| |#1| (-311)) ((-916) |has| |#1| (-38 (-347 (-484)))) ((-951 |#2|) . T) ((-964 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-495)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-969 (-347 (-484))) OR (|has| |#1| (-311)) (|has| |#1| (-38 (-347 (-484))))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-495)) (|has| |#1| (-311)) (|has| |#1| (-146))) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1114) |has| |#1| (-38 (-347 (-484)))) ((-1117) |has| |#1| (-38 (-347 (-484)))) ((-1128) . T) ((-1133) |has| |#1| (-311)) ((-1157 |#1| (-347 (-484))) . T) ((-1161 |#1|) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3079 (((-584 (-994)) $) NIL T ELT)) (-3827 (((-1089) $) 104 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2061 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3767 (($ $ (-347 (-484))) 116 T ELT) (($ $ (-347 (-484)) (-347 (-484))) 118 T ELT)) (-3770 (((-1068 (-2 (|:| |k| (-347 (-484))) (|:| |c| |#1|))) $) 54 T ELT)) (-3488 (($ $) 192 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) 168 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3771 (($ $) NIL (|has| |#1| (-311)) ELT)) (-3967 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-3035 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1606 (((-85) $ $) NIL (|has| |#1| (-311)) ELT)) (-3486 (($ $) 188 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) 164 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3814 (($ (-695) (-1068 (-2 (|:| |k| (-347 (-484))) (|:| |c| |#1|)))) 65 T ELT)) (-3490 (($ $) 196 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) 172 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#2| #1#) $) NIL T ELT)) (-3153 ((|#2| $) NIL T ELT)) (-2562 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3955 (($ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) 85 T ELT)) (-3777 (((-347 (-484)) $) 13 T ELT)) (-2561 (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3778 (($ (-347 (-484)) |#2|) 11 T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) NIL (|has| |#1| (-311)) ELT)) (-3719 (((-85) $) NIL (|has| |#1| (-311)) ELT)) (-2890 (((-85) $) 74 T ELT)) (-3623 (($) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3768 (((-347 (-484)) $) 113 T ELT) (((-347 (-484)) $ (-347 (-484))) 114 T ELT)) (-2408 (((-85) $) NIL T ELT)) (-3009 (($ $ (-484)) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3773 (($ $ (-831)) 130 T ELT) (($ $ (-347 (-484))) 128 T ELT)) (-1603 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3933 (((-85) $) NIL T ELT)) (-2891 (($ |#1| (-347 (-484))) 33 T ELT) (($ $ (-994) (-347 (-484))) NIL T ELT) (($ $ (-584 (-994)) (-584 (-347 (-484)))) NIL T ELT)) (-3954 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-3938 (($ $) 162 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2892 (($ $) NIL T ELT)) (-3171 ((|#1| $) NIL T ELT)) (-1889 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3776 ((|#2| $) 12 T ELT)) (-3774 (((-3 |#2| #1#) $) 44 T ELT)) (-3775 ((|#2| $) 45 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-2482 (($ $) 101 (|has| |#1| (-311)) ELT)) (-3808 (($ $) 146 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-1089)) 151 (OR (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-872)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-15 -3808 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3079 ((-584 (-1089)) |#1|))))) ELT)) (-3240 (((-1033) $) NIL T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) NIL (|has| |#1| (-311)) ELT)) (-3141 (($ (-584 $)) NIL (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-311)) ELT)) (-3728 (((-345 $) $) NIL (|has| |#1| (-311)) ELT)) (-1604 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-311)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3765 (($ $ (-347 (-484))) 122 T ELT)) (-3462 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-311)) ELT)) (-3939 (($ $) 160 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3764 (((-1068 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-484))))) ELT)) (-1605 (((-695) $) NIL (|has| |#1| (-311)) ELT)) (-3796 ((|#1| $ (-347 (-484))) 108 T ELT) (($ $ $) 94 (|has| (-347 (-484)) (-1025)) ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) NIL (|has| |#1| (-311)) ELT)) (-3754 (($ $ (-1089)) 138 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $) 134 (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT)) (-3944 (((-347 (-484)) $) 16 T ELT)) (-3491 (($ $) 198 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) 174 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3489 (($ $) 194 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) 170 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3487 (($ $) 190 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3630 (($ $) 166 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2889 (($ $) 120 T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-146)) ELT) (($ |#2|) 34 T ELT) (($ (-347 (-484))) 139 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3673 ((|#1| $ (-347 (-484))) 107 T ELT)) (-2700 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3123 (((-695)) 127 T CONST)) (-3769 ((|#1| $) 106 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3494 (($ $) 204 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) 180 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2060 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3492 (($ $) 200 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3480 (($ $) 176 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) 208 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) 184 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3766 ((|#1| $ (-347 (-484))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-347 (-484))))) (|has| |#1| (-15 -3942 (|#1| (-1089))))) ELT)) (-3497 (($ $) 210 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) 186 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3495 (($ $) 206 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) 182 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3493 (($ $) 202 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) 178 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2658 (($) 21 T CONST)) (-2664 (($) 17 T CONST)) (-2667 (($ $ (-1089)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-347 (-484)) |#1|))) ELT)) (-3054 (((-85) $ $) 72 T ELT)) (-3945 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT) (($ $ $) 100 (|has| |#1| (-311)) ELT)) (-3833 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-3835 (($ $ $) 76 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 82 T ELT) (($ $ (-484)) 157 (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 158 (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)))
+(((-1164 |#1| |#2|) (-1163 |#1| |#2|) (-962) (-1140 |#1|)) (T -1164))
+NIL
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 37 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL T ELT)) (-2061 (($ $) NIL T ELT)) (-2059 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 (-484) #1#) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-951 (-484))) ELT) (((-3 (-347 (-484)) #1#) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-951 (-347 (-484)))) ELT) (((-3 (-1159 |#2| |#3| |#4|) #1#) $) 22 T ELT)) (-3153 (((-484) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-951 (-484))) ELT) (((-347 (-484)) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-951 (-347 (-484)))) ELT) (((-1159 |#2| |#3| |#4|) $) NIL T ELT)) (-3955 (($ $) 41 T ELT)) (-3463 (((-3 $ #1#) $) 27 T ELT)) (-3499 (($ $) NIL (|has| (-1159 |#2| |#3| |#4|) (-389)) ELT)) (-1622 (($ $ (-1159 |#2| |#3| |#4|) (-269 |#2| |#3| |#4|) $) NIL T ELT)) (-2408 (((-85) $) NIL T ELT)) (-2418 (((-695) $) 11 T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2891 (($ (-1159 |#2| |#3| |#4|) (-269 |#2| |#3| |#4|)) 25 T ELT)) (-2818 (((-269 |#2| |#3| |#4|) $) NIL T ELT)) (-1623 (($ (-1 (-269 |#2| |#3| |#4|) (-269 |#2| |#3| |#4|)) $) NIL T ELT)) (-3954 (($ (-1 (-1159 |#2| |#3| |#4|) (-1159 |#2| |#3| |#4|)) $) NIL T ELT)) (-3780 (((-3 (-751 |#2|) #1#) $) 91 T ELT)) (-2892 (($ $) NIL T ELT)) (-3171 (((-1159 |#2| |#3| |#4|) $) 20 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-1795 (((-85) $) NIL T ELT)) (-1794 (((-1159 |#2| |#3| |#4|) $) NIL T ELT)) (-3462 (((-3 $ #1#) $ (-1159 |#2| |#3| |#4|)) NIL (|has| (-1159 |#2| |#3| |#4|) (-495)) ELT) (((-3 $ #1#) $ $) NIL T ELT)) (-3779 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1159 |#2| |#3| |#4|)) (|:| |%expon| (-269 |#2| |#3| |#4|)) (|:| |%expTerms| (-584 (-2 (|:| |k| (-347 (-484))) (|:| |c| |#2|)))))) (|:| |%type| (-1072))) #1#) $) 74 T ELT)) (-3944 (((-269 |#2| |#3| |#4|) $) 17 T ELT)) (-2815 (((-1159 |#2| |#3| |#4|) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-389)) ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-1159 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-347 (-484))) NIL (OR (|has| (-1159 |#2| |#3| |#4|) (-951 (-347 (-484)))) (|has| (-1159 |#2| |#3| |#4|) (-38 (-347 (-484))))) ELT)) (-3813 (((-584 (-1159 |#2| |#3| |#4|)) $) NIL T ELT)) (-3673 (((-1159 |#2| |#3| |#4|) $ (-269 |#2| |#3| |#4|)) NIL T ELT)) (-2700 (((-633 $) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-118)) ELT)) (-3123 (((-695)) NIL T CONST)) (-1621 (($ $ $ (-695)) NIL (|has| (-1159 |#2| |#3| |#4|) (-146)) ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2060 (((-85) $ $) NIL T ELT)) (-2658 (($) NIL T CONST)) (-2664 (($) NIL T CONST)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ (-1159 |#2| |#3| |#4|)) NIL (|has| (-1159 |#2| |#3| |#4|) (-311)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1159 |#2| |#3| |#4|)) NIL T ELT) (($ (-1159 |#2| |#3| |#4|) $) NIL T ELT) (($ (-347 (-484)) $) NIL (|has| (-1159 |#2| |#3| |#4|) (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| (-1159 |#2| |#3| |#4|) (-38 (-347 (-484)))) ELT)))
+(((-1165 |#1| |#2| |#3| |#4|) (-13 (-276 (-1159 |#2| |#3| |#4|) (-269 |#2| |#3| |#4|)) (-495) (-10 -8 (-15 -3780 ((-3 (-751 |#2|) #1="failed") $)) (-15 -3779 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1159 |#2| |#3| |#4|)) (|:| |%expon| (-269 |#2| |#3| |#4|)) (|:| |%expTerms| (-584 (-2 (|:| |k| (-347 (-484))) (|:| |c| |#2|)))))) (|:| |%type| (-1072))) #1#) $)))) (-13 (-951 (-484)) (-581 (-484)) (-389)) (-13 (-27) (-1114) (-361 |#1|)) (-1089) |#2|) (T -1165))
+((-3780 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-951 (-484)) (-581 (-484)) (-389))) (-5 *2 (-751 *4)) (-5 *1 (-1165 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-361 *3))) (-14 *5 (-1089)) (-14 *6 *4))) (-3779 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-951 (-484)) (-581 (-484)) (-389))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1159 *4 *5 *6)) (|:| |%expon| (-269 *4 *5 *6)) (|:| |%expTerms| (-584 (-2 (|:| |k| (-347 (-484))) (|:| |c| *4)))))) (|:| |%type| (-1072)))) (-5 *1 (-1165 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-361 *3))) (-14 *5 (-1089)) (-14 *6 *4))))
+((-3398 ((|#2| $) 34 T ELT)) (-3791 ((|#2| $) 18 T ELT)) (-3793 (($ $) 44 T ELT)) (-3781 (($ $ (-484)) 79 T ELT)) (-3023 ((|#2| $ |#2|) 76 T ELT)) (-3782 ((|#2| $ |#2|) 72 T ELT)) (-3784 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) 65 T ELT) (($ $ #3="rest" $) 69 T ELT) ((|#2| $ #4="last" |#2|) 67 T ELT)) (-3024 (($ $ (-584 $)) 75 T ELT)) (-3792 ((|#2| $) 17 T ELT)) (-3795 (($ $) NIL T ELT) (($ $ (-695)) 52 T ELT)) (-3029 (((-584 $) $) 31 T ELT)) (-3025 (((-85) $ $) 63 T ELT)) (-3523 (((-85) $) 33 T ELT)) (-3794 ((|#2| $) 25 T ELT) (($ $ (-695)) 58 T ELT)) (-3796 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) 10 T ELT) (($ $ #3#) 16 T ELT) ((|#2| $ #4#) 13 T ELT)) (-3629 (((-85) $) 23 T ELT)) (-3788 (($ $) 47 T ELT)) (-3786 (($ $) 80 T ELT)) (-3789 (((-695) $) 51 T ELT)) (-3790 (($ $) 50 T ELT)) (-3798 (($ $ $) 71 T ELT) (($ |#2| $) NIL T ELT)) (-3518 (((-584 $) $) 32 T ELT)) (-3054 (((-85) $ $) 61 T ELT)) (-3953 (((-695) $) 43 T ELT)))
+(((-1166 |#1| |#2|) (-10 -7 (-15 -3054 ((-85) |#1| |#1|)) (-15 -3781 (|#1| |#1| (-484))) (-15 -3784 (|#2| |#1| #1="last" |#2|)) (-15 -3782 (|#2| |#1| |#2|)) (-15 -3784 (|#1| |#1| #2="rest" |#1|)) (-15 -3784 (|#2| |#1| #3="first" |#2|)) (-15 -3786 (|#1| |#1|)) (-15 -3788 (|#1| |#1|)) (-15 -3789 ((-695) |#1|)) (-15 -3790 (|#1| |#1|)) (-15 -3791 (|#2| |#1|)) (-15 -3792 (|#2| |#1|)) (-15 -3793 (|#1| |#1|)) (-15 -3794 (|#1| |#1| (-695))) (-15 -3796 (|#2| |#1| #1#)) (-15 -3794 (|#2| |#1|)) (-15 -3795 (|#1| |#1| (-695))) (-15 -3796 (|#1| |#1| #2#)) (-15 -3795 (|#1| |#1|)) (-15 -3796 (|#2| |#1| #3#)) (-15 -3798 (|#1| |#2| |#1|)) (-15 -3798 (|#1| |#1| |#1|)) (-15 -3023 (|#2| |#1| |#2|)) (-15 -3784 (|#2| |#1| #4="value" |#2|)) (-15 -3024 (|#1| |#1| (-584 |#1|))) (-15 -3025 ((-85) |#1| |#1|)) (-15 -3629 ((-85) |#1|)) (-15 -3796 (|#2| |#1| #4#)) (-15 -3398 (|#2| |#1|)) (-15 -3523 ((-85) |#1|)) (-15 -3029 ((-584 |#1|) |#1|)) (-15 -3518 ((-584 |#1|) |#1|)) (-15 -3953 ((-695) |#1|))) (-1167 |#2|) (-1128)) (T -1166))
+NIL
+((-2566 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3398 ((|#1| $) 52 T ELT)) (-3791 ((|#1| $) 71 T ELT)) (-3793 (($ $) 73 T ELT)) (-3781 (($ $ (-484)) 58 (|has| $ (-6 -3992)) ELT)) (-3023 ((|#1| $ |#1|) 43 (|has| $ (-6 -3992)) ELT)) (-3783 (($ $ $) 62 (|has| $ (-6 -3992)) ELT)) (-3782 ((|#1| $ |#1|) 60 (|has| $ (-6 -3992)) ELT)) (-3785 ((|#1| $ |#1|) 64 (|has| $ (-6 -3992)) ELT)) (-3784 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3992)) ELT) ((|#1| $ "first" |#1|) 63 (|has| $ (-6 -3992)) ELT) (($ $ "rest" $) 61 (|has| $ (-6 -3992)) ELT) ((|#1| $ "last" |#1|) 59 (|has| $ (-6 -3992)) ELT)) (-3024 (($ $ (-584 $)) 45 (|has| $ (-6 -3992)) ELT)) (-3792 ((|#1| $) 72 T ELT)) (-3720 (($) 7 T CONST)) (-3795 (($ $) 79 T ELT) (($ $ (-695)) 77 T ELT)) (-2887 (((-584 |#1|) $) 30 (|has| $ (-6 -3991)) ELT)) (-3029 (((-584 $) $) 54 T ELT)) (-3025 (((-85) $ $) 46 (|has| |#1| (-1013)) ELT)) (-2606 (((-584 |#1|) $) 29 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3028 (((-584 |#1|) $) 49 T ELT)) (-3523 (((-85) $) 53 T ELT)) (-3239 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-3794 ((|#1| $) 76 T ELT) (($ $ (-695)) 74 T ELT)) (-3240 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3797 ((|#1| $) 82 T ELT) (($ $ (-695)) 80 T ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-3796 ((|#1| $ #1#) 51 T ELT) ((|#1| $ "first") 81 T ELT) (($ $ "rest") 78 T ELT) ((|#1| $ "last") 75 T ELT)) (-3027 (((-484) $ $) 48 T ELT)) (-3629 (((-85) $) 50 T ELT)) (-3788 (($ $) 68 T ELT)) (-3786 (($ $) 65 (|has| $ (-6 -3992)) ELT)) (-3789 (((-695) $) 69 T ELT)) (-3790 (($ $) 70 T ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3396 (($ $) 10 T ELT)) (-3787 (($ $ $) 67 (|has| $ (-6 -3992)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3992)) ELT)) (-3798 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT)) (-3942 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-3518 (((-584 $) $) 55 T ELT)) (-3026 (((-85) $ $) 47 (|has| |#1| (-1013)) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3991)) ELT)) (-3054 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-1167 |#1|) (-113) (-1128)) (T -1167))
+((-3798 (*1 *1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3798 (*1 *1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3797 (*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3796 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3797 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1167 *3)) (-4 *3 (-1128)))) (-3795 (*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3796 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1167 *3)) (-4 *3 (-1128)))) (-3795 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1167 *3)) (-4 *3 (-1128)))) (-3794 (*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3796 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3794 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1167 *3)) (-4 *3 (-1128)))) (-3793 (*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3792 (*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3791 (*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3790 (*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3789 (*1 *2 *1) (-12 (-4 *1 (-1167 *3)) (-4 *3 (-1128)) (-5 *2 (-695)))) (-3788 (*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3787 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3787 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3786 (*1 *1 *1) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3785 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3784 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -3992)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3783 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3784 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -3992)) (-4 *1 (-1167 *3)) (-4 *3 (-1128)))) (-3782 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3784 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -3992)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))) (-3781 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (|has| *1 (-6 -3992)) (-4 *1 (-1167 *3)) (-4 *3 (-1128)))))
+(-13 (-924 |t#1|) (-10 -8 (-15 -3798 ($ $ $)) (-15 -3798 ($ |t#1| $)) (-15 -3797 (|t#1| $)) (-15 -3796 (|t#1| $ "first")) (-15 -3797 ($ $ (-695))) (-15 -3795 ($ $)) (-15 -3796 ($ $ "rest")) (-15 -3795 ($ $ (-695))) (-15 -3794 (|t#1| $)) (-15 -3796 (|t#1| $ "last")) (-15 -3794 ($ $ (-695))) (-15 -3793 ($ $)) (-15 -3792 (|t#1| $)) (-15 -3791 (|t#1| $)) (-15 -3790 ($ $)) (-15 -3789 ((-695) $)) (-15 -3788 ($ $)) (IF (|has| $ (-6 -3992)) (PROGN (-15 -3787 ($ $ $)) (-15 -3787 ($ $ |t#1|)) (-15 -3786 ($ $)) (-15 -3785 (|t#1| $ |t#1|)) (-15 -3784 (|t#1| $ "first" |t#1|)) (-15 -3783 ($ $ $)) (-15 -3784 ($ $ "rest" $)) (-15 -3782 (|t#1| $ |t#1|)) (-15 -3784 (|t#1| $ "last" |t#1|)) (-15 -3781 ($ $ (-484)))) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-553 (-773)))) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-426 |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-924 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1128) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3079 (((-584 (-994)) $) NIL T ELT)) (-3827 (((-1089) $) 87 T ELT)) (-3807 (((-1147 |#2| |#1|) $ (-695)) 70 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2061 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) 139 (|has| |#1| (-495)) ELT)) (-3767 (($ $ (-695)) 125 T ELT) (($ $ (-695) (-695)) 127 T ELT)) (-3770 (((-1068 (-2 (|:| |k| (-695)) (|:| |c| |#1|))) $) 42 T ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3035 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3814 (($ (-1068 (-2 (|:| |k| (-695)) (|:| |c| |#1|)))) 49 T ELT) (($ (-1068 |#1|)) NIL T ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3720 (($) NIL T CONST)) (-3801 (($ $) 131 T ELT)) (-3955 (($ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-3812 (($ $) 137 T ELT)) (-3810 (((-858 |#1|) $ (-695)) 60 T ELT) (((-858 |#1|) $ (-695) (-695)) 62 T ELT)) (-2890 (((-85) $) NIL T ELT)) (-3623 (($) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3768 (((-695) $) NIL T ELT) (((-695) $ (-695)) NIL T ELT)) (-2408 (((-85) $) NIL T ELT)) (-3804 (($ $) 115 T ELT)) (-3009 (($ $ (-484)) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3800 (($ (-484) (-484) $) 133 T ELT)) (-3773 (($ $ (-831)) 136 T ELT)) (-3811 (($ (-1 |#1| (-484)) $) 109 T ELT)) (-3933 (((-85) $) NIL T ELT)) (-2891 (($ |#1| (-695)) 16 T ELT) (($ $ (-994) (-695)) NIL T ELT) (($ $ (-584 (-994)) (-584 (-695))) NIL T ELT)) (-3954 (($ (-1 |#1| |#1|) $) 96 T ELT)) (-3938 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2892 (($ $) NIL T ELT)) (-3171 ((|#1| $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3805 (($ $) 113 T ELT)) (-3806 (($ $) 111 T ELT)) (-3799 (($ (-484) (-484) $) 135 T ELT)) (-3808 (($ $) 147 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-1089)) 153 (OR (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-872)) (|has| |#1| (-1114))) (-12 (|has| |#1| (-38 (-347 (-484)))) (|has| |#1| (-15 -3808 (|#1| |#1| (-1089)))) (|has| |#1| (-15 -3079 ((-584 (-1089)) |#1|))))) ELT) (($ $ (-1175 |#2|)) 148 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3802 (($ $ (-484) (-484)) 119 T ELT)) (-3765 (($ $ (-695)) 121 T ELT)) (-3462 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3939 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3803 (($ $) 117 T ELT)) (-3764 (((-1068 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-695)))) ELT)) (-3796 ((|#1| $ (-695)) 93 T ELT) (($ $ $) 129 (|has| (-695) (-1025)) ELT)) (-3754 (($ $ (-1089)) 106 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-1175 |#2|)) 101 T ELT)) (-3944 (((-695) $) NIL T ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3630 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2889 (($ $) 123 T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) 26 T ELT) (($ (-347 (-484))) 145 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ |#1|) 25 (|has| |#1| (-146)) ELT) (($ (-1147 |#2| |#1|)) 78 T ELT) (($ (-1175 |#2|)) 22 T ELT)) (-3813 (((-1068 |#1|) $) NIL T ELT)) (-3673 ((|#1| $ (-695)) 92 T ELT)) (-2700 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3123 (((-695)) NIL T CONST)) (-3769 ((|#1| $) 88 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2060 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3766 ((|#1| $ (-695)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-695)))) (|has| |#1| (-15 -3942 (|#1| (-1089))))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2658 (($) 18 T CONST)) (-2664 (($) 13 T CONST)) (-2667 (($ $ (-1089)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1089))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1089) (-695)) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-1175 |#2|)) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3945 (($ $ |#1|) NIL (|has| |#1| (-311)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) 105 T ELT)) (-3835 (($ $ $) 20 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ |#1|) 142 (|has| |#1| (-311)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 104 T ELT) (($ (-347 (-484)) $) NIL (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) NIL (|has| |#1| (-38 (-347 (-484)))) ELT)))
+(((-1168 |#1| |#2| |#3|) (-13 (-1171 |#1|) (-807 $ (-1175 |#2|)) (-10 -8 (-15 -3942 ($ (-1147 |#2| |#1|))) (-15 -3807 ((-1147 |#2| |#1|) $ (-695))) (-15 -3942 ($ (-1175 |#2|))) (-15 -3806 ($ $)) (-15 -3805 ($ $)) (-15 -3804 ($ $)) (-15 -3803 ($ $)) (-15 -3802 ($ $ (-484) (-484))) (-15 -3801 ($ $)) (-15 -3800 ($ (-484) (-484) $)) (-15 -3799 ($ (-484) (-484) $)) (IF (|has| |#1| (-38 (-347 (-484)))) (-15 -3808 ($ $ (-1175 |#2|))) |%noBranch|))) (-962) (-1089) |#1|) (T -1168))
+((-3942 (*1 *1 *2) (-12 (-5 *2 (-1147 *4 *3)) (-4 *3 (-962)) (-14 *4 (-1089)) (-14 *5 *3) (-5 *1 (-1168 *3 *4 *5)))) (-3807 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1147 *5 *4)) (-5 *1 (-1168 *4 *5 *6)) (-4 *4 (-962)) (-14 *5 (-1089)) (-14 *6 *4))) (-3942 (*1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-3806 (*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1089)) (-14 *4 *2))) (-3805 (*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1089)) (-14 *4 *2))) (-3804 (*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1089)) (-14 *4 *2))) (-3803 (*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1089)) (-14 *4 *2))) (-3802 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1089)) (-14 *5 *3))) (-3801 (*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1089)) (-14 *4 *2))) (-3800 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1089)) (-14 *5 *3))) (-3799 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1089)) (-14 *5 *3))) (-3808 (*1 *1 *1 *2) (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) (-14 *5 *3))))
+((-3954 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT)))
+(((-1169 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3954 (|#4| (-1 |#2| |#1|) |#3|))) (-962) (-962) (-1171 |#1|) (-1171 |#2|)) (T -1169))
+((-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-1171 *6)) (-5 *1 (-1169 *5 *6 *4 *2)) (-4 *4 (-1171 *5)))))
+((-3185 (((-85) $) 17 T ELT)) (-3488 (($ $) 105 T ELT)) (-3635 (($ $) 81 T ELT)) (-3486 (($ $) 101 T ELT)) (-3634 (($ $) 77 T ELT)) (-3490 (($ $) 109 T ELT)) (-3633 (($ $) 85 T ELT)) (-3938 (($ $) 75 T ELT)) (-3939 (($ $) 73 T ELT)) (-3491 (($ $) 111 T ELT)) (-3632 (($ $) 87 T ELT)) (-3489 (($ $) 107 T ELT)) (-3631 (($ $) 83 T ELT)) (-3487 (($ $) 103 T ELT)) (-3630 (($ $) 79 T ELT)) (-3942 (((-773) $) 61 T ELT) (($ (-484)) NIL T ELT) (($ (-347 (-484))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-3494 (($ $) 117 T ELT)) (-3482 (($ $) 93 T ELT)) (-3492 (($ $) 113 T ELT)) (-3480 (($ $) 89 T ELT)) (-3496 (($ $) 121 T ELT)) (-3484 (($ $) 97 T ELT)) (-3497 (($ $) 123 T ELT)) (-3485 (($ $) 99 T ELT)) (-3495 (($ $) 119 T ELT)) (-3483 (($ $) 95 T ELT)) (-3493 (($ $) 115 T ELT)) (-3481 (($ $) 91 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-347 (-484))) 71 T ELT)))
+(((-1170 |#1| |#2|) (-10 -7 (-15 ** (|#1| |#1| (-347 (-484)))) (-15 -3635 (|#1| |#1|)) (-15 -3634 (|#1| |#1|)) (-15 -3633 (|#1| |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -3631 (|#1| |#1|)) (-15 -3630 (|#1| |#1|)) (-15 -3481 (|#1| |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -3485 (|#1| |#1|)) (-15 -3484 (|#1| |#1|)) (-15 -3480 (|#1| |#1|)) (-15 -3482 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3938 (|#1| |#1|)) (-15 -3939 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3942 (|#1| |#2|)) (-15 -3942 (|#1| |#1|)) (-15 -3942 (|#1| (-347 (-484)))) (-15 -3942 (|#1| (-484))) (-15 ** (|#1| |#1| (-695))) (-15 ** (|#1| |#1| (-831))) (-15 -3185 ((-85) |#1|)) (-15 -3942 ((-773) |#1|))) (-1171 |#2|) (-962)) (T -1170))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-3079 (((-584 (-994)) $) 93 T ELT)) (-3827 (((-1089) $) 127 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 69 (|has| |#1| (-495)) ELT)) (-2061 (($ $) 70 (|has| |#1| (-495)) ELT)) (-2059 (((-85) $) 72 (|has| |#1| (-495)) ELT)) (-3767 (($ $ (-695)) 122 T ELT) (($ $ (-695) (-695)) 121 T ELT)) (-3770 (((-1068 (-2 (|:| |k| (-695)) (|:| |c| |#1|))) $) 128 T ELT)) (-3488 (($ $) 161 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3635 (($ $) 144 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3035 (($ $) 143 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3486 (($ $) 160 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3634 (($ $) 145 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3814 (($ (-1068 (-2 (|:| |k| (-695)) (|:| |c| |#1|)))) 181 T ELT) (($ (-1068 |#1|)) 179 T ELT)) (-3490 (($ $) 159 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3633 (($ $) 146 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3720 (($) 22 T CONST)) (-3955 (($ $) 78 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-3812 (($ $) 178 T ELT)) (-3810 (((-858 |#1|) $ (-695)) 176 T ELT) (((-858 |#1|) $ (-695) (-695)) 175 T ELT)) (-2890 (((-85) $) 92 T ELT)) (-3623 (($) 171 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3768 (((-695) $) 124 T ELT) (((-695) $ (-695)) 123 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-3009 (($ $ (-484)) 142 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3773 (($ $ (-831)) 125 T ELT)) (-3811 (($ (-1 |#1| (-484)) $) 177 T ELT)) (-3933 (((-85) $) 80 T ELT)) (-2891 (($ |#1| (-695)) 79 T ELT) (($ $ (-994) (-695)) 95 T ELT) (($ $ (-584 (-994)) (-584 (-695))) 94 T ELT)) (-3954 (($ (-1 |#1| |#1|) $) 81 T ELT)) (-3938 (($ $) 168 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2892 (($ $) 83 T ELT)) (-3171 ((|#1| $) 84 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3808 (($ $) 173 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-1089)) 172 (OR (-12 (|has| |#1| (-29 (-484))) (|has| |#1| (-872)) (|has| |#1| (-1114)) (|has| |#1| (-38 (-347 (-484))))) (-12 (|has| |#1| (-15 -3079 ((-584 (-1089)) |#1|))) (|has| |#1| (-15 -3808 (|#1| |#1| (-1089)))) (|has| |#1| (-38 (-347 (-484)))))) ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3765 (($ $ (-695)) 119 T ELT)) (-3462 (((-3 $ "failed") $ $) 68 (|has| |#1| (-495)) ELT)) (-3939 (($ $) 169 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3764 (((-1068 |#1|) $ |#1|) 118 (|has| |#1| (-15 ** (|#1| |#1| (-695)))) ELT)) (-3796 ((|#1| $ (-695)) 129 T ELT) (($ $ $) 105 (|has| (-695) (-1025)) ELT)) (-3754 (($ $ (-1089)) 117 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1089))) 115 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1089) (-695)) 114 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 113 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) 109 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) 107 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT)) (-3944 (((-695) $) 82 T ELT)) (-3491 (($ $) 158 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3632 (($ $) 147 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3489 (($ $) 157 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3631 (($ $) 148 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3487 (($ $) 156 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3630 (($ $) 149 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2889 (($ $) 91 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ (-347 (-484))) 75 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $) 67 (|has| |#1| (-495)) ELT) (($ |#1|) 65 (|has| |#1| (-146)) ELT)) (-3813 (((-1068 |#1|) $) 180 T ELT)) (-3673 ((|#1| $ (-695)) 77 T ELT)) (-2700 (((-633 $) $) 66 (|has| |#1| (-118)) ELT)) (-3123 (((-695)) 38 T CONST)) (-3769 ((|#1| $) 126 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-3494 (($ $) 167 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3482 (($ $) 155 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2060 (((-85) $ $) 71 (|has| |#1| (-495)) ELT)) (-3492 (($ $) 166 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3480 (($ $) 154 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3496 (($ $) 165 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3484 (($ $) 153 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3766 ((|#1| $ (-695)) 120 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-695)))) (|has| |#1| (-15 -3942 (|#1| (-1089))))) ELT)) (-3497 (($ $) 164 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3485 (($ $) 152 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3495 (($ $) 163 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3483 (($ $) 151 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3493 (($ $) 162 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-3481 (($ $) 150 (|has| |#1| (-38 (-347 (-484)))) ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-2667 (($ $ (-1089)) 116 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1089))) 112 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1089) (-695)) 111 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1089)) (-584 (-695))) 110 (-12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) 106 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3945 (($ $ |#1|) 76 (|has| |#1| (-311)) ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ |#1|) 174 (|has| |#1| (-311)) ELT) (($ $ $) 170 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 141 (|has| |#1| (-38 (-347 (-484)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 86 T ELT) (($ |#1| $) 85 T ELT) (($ (-347 (-484)) $) 74 (|has| |#1| (-38 (-347 (-484)))) ELT) (($ $ (-347 (-484))) 73 (|has| |#1| (-38 (-347 (-484)))) ELT)))
+(((-1171 |#1|) (-113) (-962)) (T -1171))
+((-3814 (*1 *1 *2) (-12 (-5 *2 (-1068 (-2 (|:| |k| (-695)) (|:| |c| *3)))) (-4 *3 (-962)) (-4 *1 (-1171 *3)))) (-3813 (*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-962)) (-5 *2 (-1068 *3)))) (-3814 (*1 *1 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-4 *1 (-1171 *3)))) (-3812 (*1 *1 *1) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-962)))) (-3811 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *1 (-1171 *3)) (-4 *3 (-962)))) (-3810 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1171 *4)) (-4 *4 (-962)) (-5 *2 (-858 *4)))) (-3810 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1171 *4)) (-4 *4 (-962)) (-5 *2 (-858 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-962)) (-4 *2 (-311)))) (-3808 (*1 *1 *1) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-347 (-484)))))) (-3808 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1089)) (-4 *1 (-1171 *3)) (-4 *3 (-962)) (-12 (-4 *3 (-29 (-484))) (-4 *3 (-872)) (-4 *3 (-1114)) (-4 *3 (-38 (-347 (-484)))))) (-12 (-5 *2 (-1089)) (-4 *1 (-1171 *3)) (-4 *3 (-962)) (-12 (|has| *3 (-15 -3079 ((-584 *2) *3))) (|has| *3 (-15 -3808 (*3 *3 *2))) (-4 *3 (-38 (-347 (-484)))))))))
+(-13 (-1157 |t#1| (-695)) (-10 -8 (-15 -3814 ($ (-1068 (-2 (|:| |k| (-695)) (|:| |c| |t#1|))))) (-15 -3813 ((-1068 |t#1|) $)) (-15 -3814 ($ (-1068 |t#1|))) (-15 -3812 ($ $)) (-15 -3811 ($ (-1 |t#1| (-484)) $)) (-15 -3810 ((-858 |t#1|) $ (-695))) (-15 -3810 ((-858 |t#1|) $ (-695) (-695))) (IF (|has| |t#1| (-311)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-347 (-484)))) (PROGN (-15 -3808 ($ $)) (IF (|has| |t#1| (-15 -3808 (|t#1| |t#1| (-1089)))) (IF (|has| |t#1| (-15 -3079 ((-584 (-1089)) |t#1|))) (-15 -3808 ($ $ (-1089))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1114)) (IF (|has| |t#1| (-872)) (IF (|has| |t#1| (-29 (-484))) (-15 -3808 ($ $ (-1089))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-916)) (-6 (-1114))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| (-695)) . T) ((-25) . T) ((-38 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-35) |has| |#1| (-38 (-347 (-484)))) ((-66) |has| |#1| (-38 (-347 (-484)))) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-556 (-484)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) |has| |#1| (-495)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-695) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-695) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-695) |#1|))) ((-239) |has| |#1| (-38 (-347 (-484)))) ((-241 (-695) |#1|) . T) ((-241 $ $) |has| (-695) (-1025)) ((-245) |has| |#1| (-495)) ((-430) |has| |#1| (-38 (-347 (-484)))) ((-495) |has| |#1| (-495)) ((-13) . T) ((-589 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-495)) ((-655 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-495)) ((-664) . T) ((-807 $ (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ((-810 (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ((-812 (-1089)) -12 (|has| |#1| (-810 (-1089))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ((-887 |#1| (-695) (-994)) . T) ((-916) |has| |#1| (-38 (-347 (-484)))) ((-964 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-969 (-347 (-484))) |has| |#1| (-38 (-347 (-484)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1114) |has| |#1| (-38 (-347 (-484)))) ((-1117) |has| |#1| (-38 (-347 (-484)))) ((-1128) . T) ((-1157 |#1| (-695)) . T))
+((-3817 (((-1 (-1068 |#1|) (-584 (-1068 |#1|))) (-1 |#2| (-584 |#2|))) 24 T ELT)) (-3816 (((-1 (-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-3815 (((-1 (-1068 |#1|) (-1068 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-3820 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-3819 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-3821 ((|#2| (-1 |#2| (-584 |#2|)) (-584 |#1|)) 60 T ELT)) (-3822 (((-584 |#2|) (-584 |#1|) (-584 (-1 |#2| (-584 |#2|)))) 66 T ELT)) (-3818 ((|#2| |#2| |#2|) 43 T ELT)))
+(((-1172 |#1| |#2|) (-10 -7 (-15 -3815 ((-1 (-1068 |#1|) (-1068 |#1|)) (-1 |#2| |#2|))) (-15 -3816 ((-1 (-1068 |#1|) (-1068 |#1|) (-1068 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3817 ((-1 (-1068 |#1|) (-584 (-1068 |#1|))) (-1 |#2| (-584 |#2|)))) (-15 -3818 (|#2| |#2| |#2|)) (-15 -3819 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3820 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3821 (|#2| (-1 |#2| (-584 |#2|)) (-584 |#1|))) (-15 -3822 ((-584 |#2|) (-584 |#1|) (-584 (-1 |#2| (-584 |#2|)))))) (-38 (-347 (-484))) (-1171 |#1|)) (T -1172))
+((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 (-1 *6 (-584 *6)))) (-4 *5 (-38 (-347 (-484)))) (-4 *6 (-1171 *5)) (-5 *2 (-584 *6)) (-5 *1 (-1172 *5 *6)))) (-3821 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-584 *2))) (-5 *4 (-584 *5)) (-4 *5 (-38 (-347 (-484)))) (-4 *2 (-1171 *5)) (-5 *1 (-1172 *5 *2)))) (-3820 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1171 *4)) (-5 *1 (-1172 *4 *2)) (-4 *4 (-38 (-347 (-484)))))) (-3819 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1171 *4)) (-5 *1 (-1172 *4 *2)) (-4 *4 (-38 (-347 (-484)))))) (-3818 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-1171 *3)))) (-3817 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-584 *5))) (-4 *5 (-1171 *4)) (-4 *4 (-38 (-347 (-484)))) (-5 *2 (-1 (-1068 *4) (-584 (-1068 *4)))) (-5 *1 (-1172 *4 *5)))) (-3816 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1171 *4)) (-4 *4 (-38 (-347 (-484)))) (-5 *2 (-1 (-1068 *4) (-1068 *4) (-1068 *4))) (-5 *1 (-1172 *4 *5)))) (-3815 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1171 *4)) (-4 *4 (-38 (-347 (-484)))) (-5 *2 (-1 (-1068 *4) (-1068 *4))) (-5 *1 (-1172 *4 *5)))))
+((-3824 ((|#2| |#4| (-695)) 31 T ELT)) (-3823 ((|#4| |#2|) 26 T ELT)) (-3826 ((|#4| (-347 |#2|)) 49 (|has| |#1| (-495)) ELT)) (-3825 (((-1 |#4| (-584 |#4|)) |#3|) 43 T ELT)))
+(((-1173 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3823 (|#4| |#2|)) (-15 -3824 (|#2| |#4| (-695))) (-15 -3825 ((-1 |#4| (-584 |#4|)) |#3|)) (IF (|has| |#1| (-495)) (-15 -3826 (|#4| (-347 |#2|))) |%noBranch|)) (-962) (-1154 |#1|) (-601 |#2|) (-1171 |#1|)) (T -1173))
+((-3826 (*1 *2 *3) (-12 (-5 *3 (-347 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-495)) (-4 *4 (-962)) (-4 *2 (-1171 *4)) (-5 *1 (-1173 *4 *5 *6 *2)) (-4 *6 (-601 *5)))) (-3825 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *5 (-1154 *4)) (-5 *2 (-1 *6 (-584 *6))) (-5 *1 (-1173 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-1171 *4)))) (-3824 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-962)) (-4 *2 (-1154 *5)) (-5 *1 (-1173 *5 *2 *6 *3)) (-4 *6 (-601 *2)) (-4 *3 (-1171 *5)))) (-3823 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *3 (-1154 *4)) (-4 *2 (-1171 *4)) (-5 *1 (-1173 *4 *3 *5 *2)) (-4 *5 (-601 *3)))))
+NIL
+(((-1174) (-113)) (T -1174))
+NIL
+(-13 (-10 -7 (-6 -2285)))
+((-2566 (((-85) $ $) NIL T ELT)) (-3827 (((-1089)) 12 T ELT)) (-3239 (((-1072) $) 18 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 11 T ELT) (((-1089) $) 8 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 15 T ELT)))
+(((-1175 |#1|) (-13 (-1013) (-553 (-1089)) (-10 -8 (-15 -3942 ((-1089) $)) (-15 -3827 ((-1089))))) (-1089)) (T -1175))
+((-3942 (*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-1175 *3)) (-14 *3 *2))) (-3827 (*1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1175 *3)) (-14 *3 *2))))
+((-3834 (($ (-695)) 19 T ELT)) (-3831 (((-631 |#2|) $ $) 41 T ELT)) (-3828 ((|#2| $) 51 T ELT)) (-3829 ((|#2| $) 50 T ELT)) (-3832 ((|#2| $ $) 36 T ELT)) (-3830 (($ $ $) 47 T ELT)) (-3833 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-3835 (($ $ $) 15 T ELT)) (* (($ (-484) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT)))
+(((-1176 |#1| |#2|) (-10 -7 (-15 -3828 (|#2| |#1|)) (-15 -3829 (|#2| |#1|)) (-15 -3830 (|#1| |#1| |#1|)) (-15 -3831 ((-631 |#2|) |#1| |#1|)) (-15 -3832 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 -3833 (|#1| |#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3834 (|#1| (-695))) (-15 -3835 (|#1| |#1| |#1|))) (-1177 |#2|) (-1128)) (T -1176))
+NIL
+((-2566 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3834 (($ (-695)) 121 (|has| |#1| (-23)) ELT)) (-2196 (((-1184) $ (-484) (-484)) 44 (|has| $ (-6 -3992)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) 107 T ELT) (((-85) $) 101 (|has| |#1| (-757)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) 98 (|has| $ (-6 -3992)) ELT) (($ $) 97 (-12 (|has| |#1| (-757)) (|has| $ (-6 -3992))) ELT)) (-2907 (($ (-1 (-85) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-757)) ELT)) (-3784 ((|#1| $ (-484) |#1|) 56 (|has| $ (-6 -3992)) ELT) ((|#1| $ (-1145 (-484)) |#1|) 64 (|has| $ (-6 -3992)) ELT)) (-3706 (($ (-1 (-85) |#1|) $) 81 (|has| $ (-6 -3991)) ELT)) (-3720 (($) 7 T CONST)) (-2295 (($ $) 99 (|has| $ (-6 -3992)) ELT)) (-2296 (($ $) 109 T ELT)) (-1351 (($ $) 84 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-3402 (($ |#1| $) 83 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-6 -3991)) ELT)) (-3838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3991)) ELT)) (-1574 ((|#1| $ (-484) |#1|) 57 (|has| $ (-6 -3992)) ELT)) (-3110 ((|#1| $ (-484)) 55 T ELT)) (-3415 (((-484) (-1 (-85) |#1|) $) 106 T ELT) (((-484) |#1| $) 105 (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) 104 (|has| |#1| (-1013)) ELT)) (-2887 (((-584 |#1|) $) 30 (|has| $ (-6 -3991)) ELT)) (-3831 (((-631 |#1|) $ $) 114 (|has| |#1| (-962)) ELT)) (-3610 (($ (-695) |#1|) 74 T ELT)) (-2198 (((-484) $) 47 (|has| (-484) (-757)) ELT)) (-2529 (($ $ $) 91 (|has| |#1| (-757)) ELT)) (-3514 (($ (-1 (-85) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-757)) ELT)) (-2606 (((-584 |#1|) $) 29 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-2199 (((-484) $) 48 (|has| (-484) (-757)) ELT)) (-2855 (($ $ $) 92 (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3828 ((|#1| $) 111 (-12 (|has| |#1| (-962)) (|has| |#1| (-916))) ELT)) (-3829 ((|#1| $) 112 (-12 (|has| |#1| (-962)) (|has| |#1| (-916))) ELT)) (-3239 (((-1072) $) 22 (|has| |#1| (-1013)) ELT)) (-2302 (($ |#1| $ (-484)) 66 T ELT) (($ $ $ (-484)) 65 T ELT)) (-2201 (((-584 (-484)) $) 50 T ELT)) (-2202 (((-85) (-484) $) 51 T ELT)) (-3240 (((-1033) $) 21 (|has| |#1| (-1013)) ELT)) (-3797 ((|#1| $) 46 (|has| (-484) (-757)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 77 T ELT)) (-2197 (($ $ |#1|) 45 (|has| $ (-6 -3992)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) 32 (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) 26 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) 25 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) 11 T ELT)) (-2200 (((-85) |#1| $) 49 (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2203 (((-584 |#1|) $) 52 T ELT)) (-3399 (((-85) $) 8 T ELT)) (-3561 (($) 9 T ELT)) (-3796 ((|#1| $ (-484) |#1|) 54 T ELT) ((|#1| $ (-484)) 53 T ELT) (($ $ (-1145 (-484))) 75 T ELT)) (-3832 ((|#1| $ $) 115 (|has| |#1| (-962)) ELT)) (-2303 (($ $ (-484)) 68 T ELT) (($ $ (-1145 (-484))) 67 T ELT)) (-3830 (($ $ $) 113 (|has| |#1| (-962)) ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) 31 (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -3991))) ELT)) (-1729 (($ $ $ (-484)) 100 (|has| $ (-6 -3992)) ELT)) (-3396 (($ $) 10 T ELT)) (-3968 (((-473) $) 85 (|has| |#1| (-554 (-473))) ELT)) (-3526 (($ (-584 |#1|)) 76 T ELT)) (-3798 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-584 $)) 70 T ELT)) (-3942 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) 33 (|has| $ (-6 -3991)) ELT)) (-2564 (((-85) $ $) 93 (|has| |#1| (-757)) ELT)) (-2565 (((-85) $ $) 95 (|has| |#1| (-757)) ELT)) (-3054 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-2682 (((-85) $ $) 94 (|has| |#1| (-757)) ELT)) (-2683 (((-85) $ $) 96 (|has| |#1| (-757)) ELT)) (-3833 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-3835 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-484) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-664)) ELT) (($ $ |#1|) 116 (|has| |#1| (-664)) ELT)) (-3953 (((-695) $) 6 (|has| $ (-6 -3991)) ELT)))
+(((-1177 |#1|) (-113) (-1128)) (T -1177))
+((-3835 (*1 *1 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-25)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1177 *3)) (-4 *3 (-23)) (-4 *3 (-1128)))) (-3833 (*1 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-21)))) (-3833 (*1 *1 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-4 *1 (-1177 *3)) (-4 *3 (-1128)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-664)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-664)))) (-3832 (*1 *2 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-962)))) (-3831 (*1 *2 *1 *1) (-12 (-4 *1 (-1177 *3)) (-4 *3 (-1128)) (-4 *3 (-962)) (-5 *2 (-631 *3)))) (-3830 (*1 *1 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-962)))) (-3829 (*1 *2 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-916)) (-4 *2 (-962)))) (-3828 (*1 *2 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-916)) (-4 *2 (-962)))))
+(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3835 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3834 ($ (-695))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3833 ($ $)) (-15 -3833 ($ $ $)) (-15 * ($ (-484) $))) |%noBranch|) (IF (|has| |t#1| (-664)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-962)) (PROGN (-15 -3832 (|t#1| $ $)) (-15 -3831 ((-631 |t#1|) $ $)) (-15 -3830 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-916)) (IF (|has| |t#1| (-962)) (PROGN (-15 -3829 (|t#1| $)) (-15 -3828 (|t#1| $))) |%noBranch|) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-757)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1013)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-473)) |has| |#1| (-554 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1145 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-259 |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-321 |#1|) . T) ((-426 |#1|) . T) ((-539 (-484) |#1|) . T) ((-453 |#1| |#1|) -12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-594 |#1|) . T) ((-19 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-1013) OR (|has| |#1| (-1013)) (|has| |#1| (-757))) ((-1128) . T))
+((-2566 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3834 (($ (-695)) NIL (|has| |#1| (-23)) ELT)) (-3836 (($ (-584 |#1|)) 11 T ELT)) (-2196 (((-1184) $ (-484) (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-1730 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1728 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3992)) (|has| |#1| (-757))) ELT)) (-2907 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3784 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3992)) ELT) ((|#1| $ (-1145 (-484)) |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3706 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3720 (($) NIL T CONST)) (-2295 (($ $) NIL (|has| $ (-6 -3992)) ELT)) (-2296 (($ $) NIL T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-3402 (($ |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3838 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3991)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-1574 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-3110 ((|#1| $ (-484)) NIL T ELT)) (-3415 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-1013)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-1013)) ELT)) (-2887 (((-584 |#1|) $) 16 (|has| $ (-6 -3991)) ELT)) (-3831 (((-631 |#1|) $ $) NIL (|has| |#1| (-962)) ELT)) (-3610 (($ (-695) |#1|) NIL T ELT)) (-2198 (((-484) $) NIL (|has| (-484) (-757)) ELT)) (-2529 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3514 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2606 (((-584 |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2199 (((-484) $) 12 (|has| (-484) (-757)) ELT)) (-2855 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-1947 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3828 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-962))) ELT)) (-3829 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-962))) ELT)) (-3239 (((-1072) $) NIL (|has| |#1| (-1013)) ELT)) (-2302 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2201 (((-584 (-484)) $) NIL T ELT)) (-2202 (((-85) (-484) $) NIL T ELT)) (-3240 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3797 ((|#1| $) NIL (|has| (-484) (-757)) ELT)) (-1352 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2197 (($ $ |#1|) NIL (|has| $ (-6 -3992)) ELT)) (-1945 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 (-248 |#1|))) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-248 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-259 |#1|)) (|has| |#1| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-2200 (((-85) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-2203 (((-584 |#1|) $) NIL T ELT)) (-3399 (((-85) $) NIL T ELT)) (-3561 (($) NIL T ELT)) (-3796 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-3832 ((|#1| $ $) NIL (|has| |#1| (-962)) ELT)) (-2303 (($ $ (-484)) NIL T ELT) (($ $ (-1145 (-484))) NIL T ELT)) (-3830 (($ $ $) NIL (|has| |#1| (-962)) ELT)) (-1944 (((-695) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT) (((-695) |#1| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#1| (-1013))) ELT)) (-1729 (($ $ $ (-484)) NIL (|has| $ (-6 -3992)) ELT)) (-3396 (($ $) NIL T ELT)) (-3968 (((-473) $) 20 (|has| |#1| (-554 (-473))) ELT)) (-3526 (($ (-584 |#1|)) 10 T ELT)) (-3798 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3942 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1263 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1946 (((-85) (-1 (-85) |#1|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2564 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2565 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3054 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2682 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2683 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3833 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3835 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-484) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-664)) ELT) (($ $ |#1|) NIL (|has| |#1| (-664)) ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-1178 |#1|) (-13 (-1177 |#1|) (-10 -8 (-15 -3836 ($ (-584 |#1|))))) (-1128)) (T -1178))
+((-3836 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-5 *1 (-1178 *3)))))
+((-3837 (((-1178 |#2|) (-1 |#2| |#1| |#2|) (-1178 |#1|) |#2|) 13 T ELT)) (-3838 ((|#2| (-1 |#2| |#1| |#2|) (-1178 |#1|) |#2|) 15 T ELT)) (-3954 (((-3 (-1178 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1178 |#1|)) 30 T ELT) (((-1178 |#2|) (-1 |#2| |#1|) (-1178 |#1|)) 18 T ELT)))
+(((-1179 |#1| |#2|) (-10 -7 (-15 -3837 ((-1178 |#2|) (-1 |#2| |#1| |#2|) (-1178 |#1|) |#2|)) (-15 -3838 (|#2| (-1 |#2| |#1| |#2|) (-1178 |#1|) |#2|)) (-15 -3954 ((-1178 |#2|) (-1 |#2| |#1|) (-1178 |#1|))) (-15 -3954 ((-3 (-1178 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1178 |#1|)))) (-1128) (-1128)) (T -1179))
+((-3954 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1178 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1178 *6)) (-5 *1 (-1179 *5 *6)))) (-3954 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1178 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1178 *6)) (-5 *1 (-1179 *5 *6)))) (-3838 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1178 *5)) (-4 *5 (-1128)) (-4 *2 (-1128)) (-5 *1 (-1179 *5 *2)))) (-3837 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1178 *6)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-5 *2 (-1178 *5)) (-5 *1 (-1179 *6 *5)))))
+((-3839 (((-405) (-584 (-584 (-855 (-179)))) (-584 (-221))) 22 T ELT) (((-405) (-584 (-584 (-855 (-179))))) 21 T ELT) (((-405) (-584 (-584 (-855 (-179)))) (-784) (-784) (-831) (-584 (-221))) 20 T ELT)) (-3840 (((-1181) (-584 (-584 (-855 (-179)))) (-584 (-221))) 30 T ELT) (((-1181) (-584 (-584 (-855 (-179)))) (-784) (-784) (-831) (-584 (-221))) 29 T ELT)) (-3942 (((-1181) (-405)) 46 T ELT)))
+(((-1180) (-10 -7 (-15 -3839 ((-405) (-584 (-584 (-855 (-179)))) (-784) (-784) (-831) (-584 (-221)))) (-15 -3839 ((-405) (-584 (-584 (-855 (-179)))))) (-15 -3839 ((-405) (-584 (-584 (-855 (-179)))) (-584 (-221)))) (-15 -3840 ((-1181) (-584 (-584 (-855 (-179)))) (-784) (-784) (-831) (-584 (-221)))) (-15 -3840 ((-1181) (-584 (-584 (-855 (-179)))) (-584 (-221)))) (-15 -3942 ((-1181) (-405))))) (T -1180))
+((-3942 (*1 *2 *3) (-12 (-5 *3 (-405)) (-5 *2 (-1181)) (-5 *1 (-1180)))) (-3840 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-584 (-221))) (-5 *2 (-1181)) (-5 *1 (-1180)))) (-3840 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *6 (-584 (-221))) (-5 *2 (-1181)) (-5 *1 (-1180)))) (-3839 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-584 (-221))) (-5 *2 (-405)) (-5 *1 (-1180)))) (-3839 (*1 *2 *3) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-405)) (-5 *1 (-1180)))) (-3839 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *6 (-584 (-221))) (-5 *2 (-405)) (-5 *1 (-1180)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3858 (((-1072) $ (-1072)) 107 T ELT) (((-1072) $ (-1072) (-1072)) 105 T ELT) (((-1072) $ (-1072) (-584 (-1072))) 104 T ELT)) (-3854 (($) 69 T ELT)) (-3841 (((-1184) $ (-405) (-831)) 54 T ELT)) (-3847 (((-1184) $ (-831) (-1072)) 89 T ELT) (((-1184) $ (-831) (-784)) 90 T ELT)) (-3869 (((-1184) $ (-831) (-327) (-327)) 57 T ELT)) (-3879 (((-1184) $ (-1072)) 84 T ELT)) (-3842 (((-1184) $ (-831) (-1072)) 94 T ELT)) (-3843 (((-1184) $ (-831) (-327) (-327)) 58 T ELT)) (-3880 (((-1184) $ (-831) (-831)) 55 T ELT)) (-3860 (((-1184) $) 85 T ELT)) (-3845 (((-1184) $ (-831) (-1072)) 93 T ELT)) (-3849 (((-1184) $ (-405) (-831)) 41 T ELT)) (-3846 (((-1184) $ (-831) (-1072)) 92 T ELT)) (-3882 (((-584 (-221)) $) 29 T ELT) (($ $ (-584 (-221))) 30 T ELT)) (-3881 (((-1184) $ (-695) (-695)) 52 T ELT)) (-3853 (($ $) 70 T ELT) (($ (-405) (-584 (-221))) 71 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3856 (((-484) $) 48 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3850 (((-1178 (-3 (-405) "undefined")) $) 47 T ELT)) (-3851 (((-1178 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3846 (-484)) (|:| -3844 (-484)) (|:| |spline| (-484)) (|:| -3875 (-484)) (|:| |axesColor| (-784)) (|:| -3847 (-484)) (|:| |unitsColor| (-784)) (|:| |showing| (-484)))) $) 46 T ELT)) (-3852 (((-1184) $ (-831) (-179) (-179) (-179) (-179) (-484) (-484) (-484) (-484) (-784) (-484) (-784) (-484)) 83 T ELT)) (-3855 (((-584 (-855 (-179))) $) NIL T ELT)) (-3848 (((-405) $ (-831)) 43 T ELT)) (-3878 (((-1184) $ (-695) (-695) (-831) (-831)) 50 T ELT)) (-3876 (((-1184) $ (-1072)) 95 T ELT)) (-3844 (((-1184) $ (-831) (-1072)) 91 T ELT)) (-3942 (((-773) $) 102 T ELT)) (-3857 (((-1184) $) 96 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3875 (((-1184) $ (-831) (-1072)) 87 T ELT) (((-1184) $ (-831) (-784)) 88 T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-1181) (-13 (-1013) (-10 -8 (-15 -3855 ((-584 (-855 (-179))) $)) (-15 -3854 ($)) (-15 -3853 ($ $)) (-15 -3882 ((-584 (-221)) $)) (-15 -3882 ($ $ (-584 (-221)))) (-15 -3853 ($ (-405) (-584 (-221)))) (-15 -3852 ((-1184) $ (-831) (-179) (-179) (-179) (-179) (-484) (-484) (-484) (-484) (-784) (-484) (-784) (-484))) (-15 -3851 ((-1178 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3846 (-484)) (|:| -3844 (-484)) (|:| |spline| (-484)) (|:| -3875 (-484)) (|:| |axesColor| (-784)) (|:| -3847 (-484)) (|:| |unitsColor| (-784)) (|:| |showing| (-484)))) $)) (-15 -3850 ((-1178 (-3 (-405) "undefined")) $)) (-15 -3879 ((-1184) $ (-1072))) (-15 -3849 ((-1184) $ (-405) (-831))) (-15 -3848 ((-405) $ (-831))) (-15 -3875 ((-1184) $ (-831) (-1072))) (-15 -3875 ((-1184) $ (-831) (-784))) (-15 -3847 ((-1184) $ (-831) (-1072))) (-15 -3847 ((-1184) $ (-831) (-784))) (-15 -3846 ((-1184) $ (-831) (-1072))) (-15 -3845 ((-1184) $ (-831) (-1072))) (-15 -3844 ((-1184) $ (-831) (-1072))) (-15 -3876 ((-1184) $ (-1072))) (-15 -3857 ((-1184) $)) (-15 -3878 ((-1184) $ (-695) (-695) (-831) (-831))) (-15 -3843 ((-1184) $ (-831) (-327) (-327))) (-15 -3869 ((-1184) $ (-831) (-327) (-327))) (-15 -3842 ((-1184) $ (-831) (-1072))) (-15 -3881 ((-1184) $ (-695) (-695))) (-15 -3841 ((-1184) $ (-405) (-831))) (-15 -3880 ((-1184) $ (-831) (-831))) (-15 -3858 ((-1072) $ (-1072))) (-15 -3858 ((-1072) $ (-1072) (-1072))) (-15 -3858 ((-1072) $ (-1072) (-584 (-1072)))) (-15 -3860 ((-1184) $)) (-15 -3856 ((-484) $)) (-15 -3942 ((-773) $))))) (T -1181))
+((-3942 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1181)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-584 (-855 (-179)))) (-5 *1 (-1181)))) (-3854 (*1 *1) (-5 *1 (-1181))) (-3853 (*1 *1 *1) (-5 *1 (-1181))) (-3882 (*1 *2 *1) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1181)))) (-3882 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1181)))) (-3853 (*1 *1 *2 *3) (-12 (-5 *2 (-405)) (-5 *3 (-584 (-221))) (-5 *1 (-1181)))) (-3852 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-831)) (-5 *4 (-179)) (-5 *5 (-484)) (-5 *6 (-784)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3851 (*1 *2 *1) (-12 (-5 *2 (-1178 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3846 (-484)) (|:| -3844 (-484)) (|:| |spline| (-484)) (|:| -3875 (-484)) (|:| |axesColor| (-784)) (|:| -3847 (-484)) (|:| |unitsColor| (-784)) (|:| |showing| (-484))))) (-5 *1 (-1181)))) (-3850 (*1 *2 *1) (-12 (-5 *2 (-1178 (-3 (-405) "undefined"))) (-5 *1 (-1181)))) (-3879 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3849 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-405)) (-5 *4 (-831)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3848 (*1 *2 *1 *3) (-12 (-5 *3 (-831)) (-5 *2 (-405)) (-5 *1 (-1181)))) (-3875 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3875 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-784)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3847 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3847 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-784)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3846 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3845 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3844 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3876 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3857 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3878 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-695)) (-5 *4 (-831)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3843 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-831)) (-5 *4 (-327)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3869 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-831)) (-5 *4 (-327)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3842 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3881 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3841 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-405)) (-5 *4 (-831)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3880 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3858 (*1 *2 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1181)))) (-3858 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1181)))) (-3858 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-584 (-1072))) (-5 *2 (-1072)) (-5 *1 (-1181)))) (-3860 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1181)))) (-3856 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1181)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3870 (((-1184) $ (-327)) 168 T ELT) (((-1184) $ (-327) (-327) (-327)) 169 T ELT)) (-3858 (((-1072) $ (-1072)) 177 T ELT) (((-1072) $ (-1072) (-1072)) 175 T ELT) (((-1072) $ (-1072) (-584 (-1072))) 174 T ELT)) (-3886 (($) 67 T ELT)) (-3877 (((-1184) $ (-327) (-327) (-327) (-327) (-327)) 140 T ELT) (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3843 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $) 138 T ELT) (((-1184) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3843 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 139 T ELT) (((-1184) $ (-484) (-484) (-327) (-327) (-327)) 143 T ELT) (((-1184) $ (-327) (-327)) 144 T ELT) (((-1184) $ (-327) (-327) (-327)) 151 T ELT)) (-3889 (((-327)) 121 T ELT) (((-327) (-327)) 122 T ELT)) (-3891 (((-327)) 116 T ELT) (((-327) (-327)) 118 T ELT)) (-3890 (((-327)) 119 T ELT) (((-327) (-327)) 120 T ELT)) (-3887 (((-327)) 125 T ELT) (((-327) (-327)) 126 T ELT)) (-3888 (((-327)) 123 T ELT) (((-327) (-327)) 124 T ELT)) (-3869 (((-1184) $ (-327) (-327)) 170 T ELT)) (-3879 (((-1184) $ (-1072)) 152 T ELT)) (-3884 (((-1046 (-179)) $) 68 T ELT) (($ $ (-1046 (-179))) 69 T ELT)) (-3865 (((-1184) $ (-1072)) 186 T ELT)) (-3864 (((-1184) $ (-1072)) 187 T ELT)) (-3871 (((-1184) $ (-327) (-327)) 150 T ELT) (((-1184) $ (-484) (-484)) 167 T ELT)) (-3880 (((-1184) $ (-831) (-831)) 159 T ELT)) (-3860 (((-1184) $) 136 T ELT)) (-3868 (((-1184) $ (-1072)) 185 T ELT)) (-3873 (((-1184) $ (-1072)) 133 T ELT)) (-3882 (((-584 (-221)) $) 70 T ELT) (($ $ (-584 (-221))) 71 T ELT)) (-3881 (((-1184) $ (-695) (-695)) 158 T ELT)) (-3883 (((-1184) $ (-695) (-855 (-179))) 192 T ELT)) (-3885 (($ $) 73 T ELT) (($ (-1046 (-179)) (-1072)) 74 T ELT) (($ (-1046 (-179)) (-584 (-221))) 75 T ELT)) (-3862 (((-1184) $ (-327) (-327) (-327)) 130 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3856 (((-484) $) 127 T ELT)) (-3861 (((-1184) $ (-327)) 172 T ELT)) (-3866 (((-1184) $ (-327)) 190 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3867 (((-1184) $ (-327)) 189 T ELT)) (-3872 (((-1184) $ (-1072)) 135 T ELT)) (-3878 (((-1184) $ (-695) (-695) (-831) (-831)) 157 T ELT)) (-3874 (((-1184) $ (-1072)) 132 T ELT)) (-3876 (((-1184) $ (-1072)) 134 T ELT)) (-3859 (((-1184) $ (-130) (-130)) 156 T ELT)) (-3942 (((-773) $) 165 T ELT)) (-3857 (((-1184) $) 137 T ELT)) (-3863 (((-1184) $ (-1072)) 188 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3875 (((-1184) $ (-1072)) 131 T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-1182) (-13 (-1013) (-10 -8 (-15 -3891 ((-327))) (-15 -3891 ((-327) (-327))) (-15 -3890 ((-327))) (-15 -3890 ((-327) (-327))) (-15 -3889 ((-327))) (-15 -3889 ((-327) (-327))) (-15 -3888 ((-327))) (-15 -3888 ((-327) (-327))) (-15 -3887 ((-327))) (-15 -3887 ((-327) (-327))) (-15 -3886 ($)) (-15 -3885 ($ $)) (-15 -3885 ($ (-1046 (-179)) (-1072))) (-15 -3885 ($ (-1046 (-179)) (-584 (-221)))) (-15 -3884 ((-1046 (-179)) $)) (-15 -3884 ($ $ (-1046 (-179)))) (-15 -3883 ((-1184) $ (-695) (-855 (-179)))) (-15 -3882 ((-584 (-221)) $)) (-15 -3882 ($ $ (-584 (-221)))) (-15 -3881 ((-1184) $ (-695) (-695))) (-15 -3880 ((-1184) $ (-831) (-831))) (-15 -3879 ((-1184) $ (-1072))) (-15 -3878 ((-1184) $ (-695) (-695) (-831) (-831))) (-15 -3877 ((-1184) $ (-327) (-327) (-327) (-327) (-327))) (-15 -3877 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3843 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $)) (-15 -3877 ((-1184) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3843 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3877 ((-1184) $ (-484) (-484) (-327) (-327) (-327))) (-15 -3877 ((-1184) $ (-327) (-327))) (-15 -3877 ((-1184) $ (-327) (-327) (-327))) (-15 -3876 ((-1184) $ (-1072))) (-15 -3875 ((-1184) $ (-1072))) (-15 -3874 ((-1184) $ (-1072))) (-15 -3873 ((-1184) $ (-1072))) (-15 -3872 ((-1184) $ (-1072))) (-15 -3871 ((-1184) $ (-327) (-327))) (-15 -3871 ((-1184) $ (-484) (-484))) (-15 -3870 ((-1184) $ (-327))) (-15 -3870 ((-1184) $ (-327) (-327) (-327))) (-15 -3869 ((-1184) $ (-327) (-327))) (-15 -3868 ((-1184) $ (-1072))) (-15 -3867 ((-1184) $ (-327))) (-15 -3866 ((-1184) $ (-327))) (-15 -3865 ((-1184) $ (-1072))) (-15 -3864 ((-1184) $ (-1072))) (-15 -3863 ((-1184) $ (-1072))) (-15 -3862 ((-1184) $ (-327) (-327) (-327))) (-15 -3861 ((-1184) $ (-327))) (-15 -3860 ((-1184) $)) (-15 -3859 ((-1184) $ (-130) (-130))) (-15 -3858 ((-1072) $ (-1072))) (-15 -3858 ((-1072) $ (-1072) (-1072))) (-15 -3858 ((-1072) $ (-1072) (-584 (-1072)))) (-15 -3857 ((-1184) $)) (-15 -3856 ((-484) $))))) (T -1182))
+((-3891 (*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182)))) (-3891 (*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182)))) (-3890 (*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182)))) (-3890 (*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182)))) (-3889 (*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182)))) (-3889 (*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182)))) (-3888 (*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182)))) (-3888 (*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182)))) (-3887 (*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182)))) (-3887 (*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182)))) (-3886 (*1 *1) (-5 *1 (-1182))) (-3885 (*1 *1 *1) (-5 *1 (-1182))) (-3885 (*1 *1 *2 *3) (-12 (-5 *2 (-1046 (-179))) (-5 *3 (-1072)) (-5 *1 (-1182)))) (-3885 (*1 *1 *2 *3) (-12 (-5 *2 (-1046 (-179))) (-5 *3 (-584 (-221))) (-5 *1 (-1182)))) (-3884 (*1 *2 *1) (-12 (-5 *2 (-1046 (-179))) (-5 *1 (-1182)))) (-3884 (*1 *1 *1 *2) (-12 (-5 *2 (-1046 (-179))) (-5 *1 (-1182)))) (-3883 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-695)) (-5 *4 (-855 (-179))) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3882 (*1 *2 *1) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1182)))) (-3882 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1182)))) (-3881 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3880 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3879 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3878 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-695)) (-5 *4 (-831)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3877 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3877 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3843 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-1182)))) (-3877 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3843 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3877 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-484)) (-5 *4 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3877 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3877 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3876 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3875 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3874 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3873 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3872 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3871 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3871 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3870 (*1 *2 *1 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3870 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3869 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3868 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3867 (*1 *2 *1 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3866 (*1 *2 *1 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3865 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3864 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3863 (*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3862 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3861 (*1 *2 *1 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3860 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3859 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3858 (*1 *2 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1182)))) (-3858 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1182)))) (-3858 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-584 (-1072))) (-5 *2 (-1072)) (-5 *1 (-1182)))) (-3857 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1182)))) (-3856 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1182)))))
+((-3900 (((-584 (-1072)) (-584 (-1072))) 103 T ELT) (((-584 (-1072))) 96 T ELT)) (-3901 (((-584 (-1072))) 94 T ELT)) (-3898 (((-584 (-831)) (-584 (-831))) 69 T ELT) (((-584 (-831))) 64 T ELT)) (-3897 (((-584 (-695)) (-584 (-695))) 61 T ELT) (((-584 (-695))) 55 T ELT)) (-3899 (((-1184)) 71 T ELT)) (-3903 (((-831) (-831)) 87 T ELT) (((-831)) 86 T ELT)) (-3902 (((-831) (-831)) 85 T ELT) (((-831)) 84 T ELT)) (-3895 (((-784) (-784)) 81 T ELT) (((-784)) 80 T ELT)) (-3905 (((-179)) 91 T ELT) (((-179) (-327)) 93 T ELT)) (-3904 (((-831)) 88 T ELT) (((-831) (-831)) 89 T ELT)) (-3896 (((-831) (-831)) 83 T ELT) (((-831)) 82 T ELT)) (-3892 (((-784) (-784)) 75 T ELT) (((-784)) 73 T ELT)) (-3893 (((-784) (-784)) 77 T ELT) (((-784)) 76 T ELT)) (-3894 (((-784) (-784)) 79 T ELT) (((-784)) 78 T ELT)))
+(((-1183) (-10 -7 (-15 -3892 ((-784))) (-15 -3892 ((-784) (-784))) (-15 -3893 ((-784))) (-15 -3893 ((-784) (-784))) (-15 -3894 ((-784))) (-15 -3894 ((-784) (-784))) (-15 -3895 ((-784))) (-15 -3895 ((-784) (-784))) (-15 -3896 ((-831))) (-15 -3896 ((-831) (-831))) (-15 -3897 ((-584 (-695)))) (-15 -3897 ((-584 (-695)) (-584 (-695)))) (-15 -3898 ((-584 (-831)))) (-15 -3898 ((-584 (-831)) (-584 (-831)))) (-15 -3899 ((-1184))) (-15 -3900 ((-584 (-1072)))) (-15 -3900 ((-584 (-1072)) (-584 (-1072)))) (-15 -3901 ((-584 (-1072)))) (-15 -3902 ((-831))) (-15 -3903 ((-831))) (-15 -3902 ((-831) (-831))) (-15 -3903 ((-831) (-831))) (-15 -3904 ((-831) (-831))) (-15 -3904 ((-831))) (-15 -3905 ((-179) (-327))) (-15 -3905 ((-179))))) (T -1183))
+((-3905 (*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1183)))) (-3905 (*1 *2 *3) (-12 (-5 *3 (-327)) (-5 *2 (-179)) (-5 *1 (-1183)))) (-3904 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1183)))) (-3904 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1183)))) (-3903 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1183)))) (-3902 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1183)))) (-3903 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1183)))) (-3902 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1183)))) (-3901 (*1 *2) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1183)))) (-3900 (*1 *2 *2) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1183)))) (-3900 (*1 *2) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1183)))) (-3899 (*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1183)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1183)))) (-3898 (*1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1183)))) (-3897 (*1 *2 *2) (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1183)))) (-3897 (*1 *2) (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1183)))) (-3896 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1183)))) (-3896 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1183)))) (-3895 (*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1183)))) (-3895 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1183)))) (-3894 (*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1183)))) (-3894 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1183)))) (-3893 (*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1183)))) (-3893 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1183)))) (-3892 (*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1183)))) (-3892 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1183)))))
+((-3906 (($) 6 T ELT)) (-3942 (((-773) $) 9 T ELT)))
+(((-1184) (-13 (-553 (-773)) (-10 -8 (-15 -3906 ($))))) (T -1184))
+((-3906 (*1 *1) (-5 *1 (-1184))))
+((-3945 (($ $ |#2|) 10 T ELT)))
+(((-1185 |#1| |#2|) (-10 -7 (-15 -3945 (|#1| |#1| |#2|))) (-1186 |#2|) (-311)) (T -1185))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3907 (((-107)) 38 T ELT)) (-3942 (((-773) $) 13 T ELT)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3945 (($ $ |#1|) 39 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT)))
+(((-1186 |#1|) (-113) (-311)) (T -1186))
+((-3945 (*1 *1 *1 *2) (-12 (-4 *1 (-1186 *2)) (-4 *2 (-311)))) (-3907 (*1 *2) (-12 (-4 *1 (-1186 *3)) (-4 *3 (-311)) (-5 *2 (-107)))))
+(-13 (-655 |t#1|) (-10 -8 (-15 -3945 ($ $ |t#1|)) (-15 -3907 ((-107)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1013) . T) ((-1128) . T))
+((-3912 (((-584 (-1121 |#1|)) (-1089) (-1121 |#1|)) 83 T ELT)) (-3910 (((-1068 (-1068 (-858 |#1|))) (-1089) (-1068 (-858 |#1|))) 63 T ELT)) (-3913 (((-1 (-1068 (-1121 |#1|)) (-1068 (-1121 |#1|))) (-695) (-1121 |#1|) (-1068 (-1121 |#1|))) 74 T ELT)) (-3908 (((-1 (-1068 (-858 |#1|)) (-1068 (-858 |#1|))) (-695)) 65 T ELT)) (-3911 (((-1 (-1084 (-858 |#1|)) (-858 |#1|)) (-1089)) 32 T ELT)) (-3909 (((-1 (-1068 (-858 |#1|)) (-1068 (-858 |#1|))) (-695)) 64 T ELT)))
+(((-1187 |#1|) (-10 -7 (-15 -3908 ((-1 (-1068 (-858 |#1|)) (-1068 (-858 |#1|))) (-695))) (-15 -3909 ((-1 (-1068 (-858 |#1|)) (-1068 (-858 |#1|))) (-695))) (-15 -3910 ((-1068 (-1068 (-858 |#1|))) (-1089) (-1068 (-858 |#1|)))) (-15 -3911 ((-1 (-1084 (-858 |#1|)) (-858 |#1|)) (-1089))) (-15 -3912 ((-584 (-1121 |#1|)) (-1089) (-1121 |#1|))) (-15 -3913 ((-1 (-1068 (-1121 |#1|)) (-1068 (-1121 |#1|))) (-695) (-1121 |#1|) (-1068 (-1121 |#1|))))) (-311)) (T -1187))
+((-3913 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-695)) (-4 *6 (-311)) (-5 *4 (-1121 *6)) (-5 *2 (-1 (-1068 *4) (-1068 *4))) (-5 *1 (-1187 *6)) (-5 *5 (-1068 *4)))) (-3912 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-4 *5 (-311)) (-5 *2 (-584 (-1121 *5))) (-5 *1 (-1187 *5)) (-5 *4 (-1121 *5)))) (-3911 (*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1 (-1084 (-858 *4)) (-858 *4))) (-5 *1 (-1187 *4)) (-4 *4 (-311)))) (-3910 (*1 *2 *3 *4) (-12 (-5 *3 (-1089)) (-4 *5 (-311)) (-5 *2 (-1068 (-1068 (-858 *5)))) (-5 *1 (-1187 *5)) (-5 *4 (-1068 (-858 *5))))) (-3909 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-1068 (-858 *4)) (-1068 (-858 *4)))) (-5 *1 (-1187 *4)) (-4 *4 (-311)))) (-3908 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-1068 (-858 *4)) (-1068 (-858 *4)))) (-5 *1 (-1187 *4)) (-4 *4 (-311)))))
+((-3915 (((-2 (|:| -2010 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) |#2|) 80 T ELT)) (-3914 (((-2 (|:| -2010 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) 79 T ELT)))
+(((-1188 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3914 ((-2 (|:| -2010 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))))) (-15 -3915 ((-2 (|:| -2010 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) |#2|))) (-298) (-1154 |#1|) (-1154 |#2|) (-350 |#2| |#3|)) (T -1188))
+((-3915 (*1 *2 *3) (-12 (-4 *4 (-298)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 *3)) (-5 *2 (-2 (|:| -2010 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-1188 *4 *3 *5 *6)) (-4 *6 (-350 *3 *5)))) (-3914 (*1 *2) (-12 (-4 *3 (-298)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 *4)) (-5 *2 (-2 (|:| -2010 (-631 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-631 *4)))) (-5 *1 (-1188 *3 *4 *5 *6)) (-4 *6 (-350 *4 *5)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3916 (((-1048) $) 12 T ELT)) (-3917 (((-1048) $) 10 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 18 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-1189) (-13 (-995) (-10 -8 (-15 -3917 ((-1048) $)) (-15 -3916 ((-1048) $))))) (T -1189))
+((-3917 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1189)))) (-3916 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1189)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3918 (((-1048) $) 11 T ELT)) (-3942 (((-773) $) 17 T ELT) (($ (-1094)) NIL T ELT) (((-1094) $) NIL T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)))
+(((-1190) (-13 (-995) (-10 -8 (-15 -3918 ((-1048) $))))) (T -1190))
+((-3918 (*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1190)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 59 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-2408 (((-85) $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 82 T ELT) (($ (-484)) NIL T ELT) (($ |#4|) 66 T ELT) ((|#4| $) 71 T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3123 (((-695)) NIL T CONST)) (-3919 (((-1184) (-695)) 16 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) 36 T CONST)) (-2664 (($) 85 T CONST)) (-3054 (((-85) $ $) 88 T ELT)) (-3945 (((-3 $ #1#) $ $) NIL (|has| |#1| (-311)) ELT)) (-3833 (($ $) 90 T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) 64 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 92 T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT)))
+(((-1191 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-962) (-427 |#4|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-311)) (-15 -3945 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3919 ((-1184) (-695))))) (-962) (-757) (-718) (-862 |#1| |#3| |#2|) (-584 |#2|) (-584 (-695)) (-695)) (T -1191))
+((-3945 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-311)) (-4 *2 (-962)) (-4 *3 (-757)) (-4 *4 (-718)) (-14 *6 (-584 *3)) (-5 *1 (-1191 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-862 *2 *4 *3)) (-14 *7 (-584 (-695))) (-14 *8 (-695)))) (-3919 (*1 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-4 *5 (-757)) (-4 *6 (-718)) (-14 *8 (-584 *5)) (-5 *2 (-1184)) (-5 *1 (-1191 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-862 *4 *6 *5)) (-14 *9 (-584 *3)) (-14 *10 *3))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3677 (((-584 (-2 (|:| -3857 $) (|:| -1700 (-584 |#4|)))) (-584 |#4|)) NIL T ELT)) (-3678 (((-584 $) (-584 |#4|)) 95 T ELT)) (-3079 (((-584 |#3|) $) NIL T ELT)) (-2906 (((-85) $) NIL T ELT)) (-2897 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3689 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3684 ((|#4| |#4| $) NIL T ELT)) (-2907 (((-2 (|:| |under| $) (|:| -3127 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3706 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3991)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3720 (($) NIL T CONST)) (-2902 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2904 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2903 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2905 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3685 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 31 T ELT)) (-2898 (((-584 |#4|) (-584 |#4|) $) 28 (|has| |#1| (-495)) ELT)) (-2899 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-3154 (((-3 $ #1#) (-584 |#4|)) NIL T ELT)) (-3153 (($ (-584 |#4|)) NIL T ELT)) (-3795 (((-3 $ #1#) $) 77 T ELT)) (-3681 ((|#4| |#4| $) 82 T ELT)) (-1351 (($ $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#4| (-1013))) ELT)) (-3402 (($ |#4| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#4| (-1013))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3991)) ELT)) (-2900 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3690 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3679 ((|#4| |#4| $) NIL T ELT)) (-3838 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3991)) (|has| |#4| (-1013))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3991)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3991)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3692 (((-2 (|:| -3857 (-584 |#4|)) (|:| -1700 (-584 |#4|))) $) NIL T ELT)) (-2887 (((-584 |#4|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3691 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3177 ((|#3| $) 83 T ELT)) (-2606 (((-584 |#4|) $) 32 (|has| $ (-6 -3991)) ELT)) (-3242 (((-85) |#4| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#4| (-1013))) ELT)) (-3922 (((-3 $ #1#) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ #1#) (-584 |#4|)) 38 T ELT)) (-1947 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -3992)) ELT)) (-3954 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2912 (((-584 |#3|) $) NIL T ELT)) (-2911 (((-85) |#3| $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3794 (((-3 |#4| #1#) $) NIL T ELT)) (-3693 (((-584 |#4|) $) 53 T ELT)) (-3687 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3682 ((|#4| |#4| $) 81 T ELT)) (-3695 (((-85) $ $) 92 T ELT)) (-2901 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3688 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3683 ((|#4| |#4| $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3797 (((-3 |#4| #1#) $) 76 T ELT)) (-1352 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3675 (((-3 $ #1#) $ |#4|) NIL T ELT)) (-3765 (($ $ |#4|) NIL T ELT)) (-1945 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3764 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-248 |#4|)) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-584 (-248 |#4|))) NIL (-12 (|has| |#4| (-259 |#4|)) (|has| |#4| (-1013))) ELT)) (-1220 (((-85) $ $) NIL T ELT)) (-3399 (((-85) $) 74 T ELT)) (-3561 (($) 45 T ELT)) (-3944 (((-695) $) NIL T ELT)) (-1944 (((-695) |#4| $) NIL (-12 (|has| $ (-6 -3991)) (|has| |#4| (-1013))) ELT) (((-695) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3396 (($ $) NIL T ELT)) (-3968 (((-473) $) NIL (|has| |#4| (-554 (-473))) ELT)) (-3526 (($ (-584 |#4|)) NIL T ELT)) (-2908 (($ $ |#3|) NIL T ELT)) (-2910 (($ $ |#3|) NIL T ELT)) (-3680 (($ $) NIL T ELT)) (-2909 (($ $ |#3|) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (((-584 |#4|) $) 62 T ELT)) (-3674 (((-695) $) NIL (|has| |#3| (-317)) ELT)) (-3921 (((-3 $ #1#) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 43 T ELT) (((-3 $ #1#) (-584 |#4|)) 44 T ELT)) (-3920 (((-584 $) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 72 T ELT) (((-584 $) (-584 |#4|)) 73 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3694 (((-3 (-2 (|:| |bas| $) (|:| -3320 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3320 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3686 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) NIL T ELT)) (-1946 (((-85) (-1 (-85) |#4|) $) NIL (|has| $ (-6 -3991)) ELT)) (-3676 (((-584 |#3|) $) NIL T ELT)) (-3929 (((-85) |#3| $) NIL T ELT)) (-3054 (((-85) $ $) NIL T ELT)) (-3953 (((-695) $) NIL (|has| $ (-6 -3991)) ELT)))
+(((-1192 |#1| |#2| |#3| |#4|) (-13 (-1123 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3922 ((-3 $ #1="failed") (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3922 ((-3 $ #1#) (-584 |#4|))) (-15 -3921 ((-3 $ #1#) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3921 ((-3 $ #1#) (-584 |#4|))) (-15 -3920 ((-584 $) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3920 ((-584 $) (-584 |#4|))))) (-495) (-718) (-757) (-977 |#1| |#2| |#3|)) (T -1192))
+((-3922 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1192 *5 *6 *7 *8)))) (-3922 (*1 *1 *2) (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1192 *3 *4 *5 *6)))) (-3921 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1192 *5 *6 *7 *8)))) (-3921 (*1 *1 *2) (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1192 *3 *4 *5 *6)))) (-3920 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-718)) (-4 *8 (-757)) (-5 *2 (-584 (-1192 *6 *7 *8 *9))) (-5 *1 (-1192 *6 *7 *8 *9)))) (-3920 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 (-1192 *4 *5 *6 *7))) (-5 *1 (-1192 *4 *5 *6 *7)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3720 (($) 22 T CONST)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#1|) 51 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 53 T ELT) (($ |#1| $) 52 T ELT)))
+(((-1193 |#1|) (-113) (-962)) (T -1193))
+NIL
+(-13 (-962) (-82 |t#1| |t#1|) (-556 |t#1|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-484)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T))
+((-2566 (((-85) $ $) 69 T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3930 (((-584 |#1|) $) 54 T ELT)) (-3943 (($ $ (-695)) 47 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3931 (($ $ (-695)) 25 (|has| |#2| (-146)) ELT) (($ $ $) 26 (|has| |#2| (-146)) ELT)) (-3720 (($) NIL T CONST)) (-3935 (($ $ $) 72 T ELT) (($ $ (-740 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-3154 (((-3 (-740 |#1|) #1#) $) NIL T ELT)) (-3153 (((-740 |#1|) $) NIL T ELT)) (-3955 (($ $) 40 T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-3947 (((-85) $) NIL T ELT)) (-3946 (($ $) NIL T ELT)) (-2408 (((-85) $) NIL T ELT)) (-2418 (((-695) $) NIL T ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3934 (($ (-740 |#1|) |#2|) 39 T ELT)) (-3932 (($ $) 41 T ELT)) (-3937 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) 13 T ELT)) (-3951 (((-740 |#1|) $) NIL T ELT)) (-3952 (((-740 |#1|) $) 42 T ELT)) (-3954 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3936 (($ $ $) 71 T ELT) (($ $ (-740 |#1|)) 60 T ELT) (($ $ |#1|) 64 T ELT)) (-1747 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2892 (((-740 |#1|) $) 36 T ELT)) (-3171 ((|#2| $) 38 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3944 (((-695) $) 44 T ELT)) (-3949 (((-85) $) 48 T ELT)) (-3948 ((|#2| $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-740 |#1|)) 31 T ELT) (($ |#1|) 32 T ELT) (($ |#2|) NIL T ELT) (($ (-484)) NIL T ELT)) (-3813 (((-584 |#2|) $) NIL T ELT)) (-3673 ((|#2| $ (-740 |#1|)) NIL T ELT)) (-3950 ((|#2| $ $) 78 T ELT) ((|#2| $ (-740 |#1|)) NIL T ELT)) (-3123 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) 14 T CONST)) (-2664 (($) 20 T CONST)) (-2663 (((-584 (-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3054 (((-85) $ $) 45 T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) 29 T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#2| $) 28 T ELT) (($ $ |#2|) 70 T ELT) (($ |#2| (-740 |#1|)) NIL T ELT) (($ |#1| $) 34 T ELT) (($ $ $) NIL T ELT)))
+(((-1194 |#1| |#2|) (-13 (-332 |#2| (-740 |#1|)) (-1201 |#1| |#2|)) (-757) (-962)) (T -1194))
+NIL
+((-3938 ((|#3| |#3| (-695)) 28 T ELT)) (-3939 ((|#3| |#3| (-695)) 34 T ELT)) (-3923 ((|#3| |#3| |#3| (-695)) 35 T ELT)))
+(((-1195 |#1| |#2| |#3|) (-10 -7 (-15 -3939 (|#3| |#3| (-695))) (-15 -3938 (|#3| |#3| (-695))) (-15 -3923 (|#3| |#3| |#3| (-695)))) (-13 (-962) (-655 (-347 (-484)))) (-757) (-1201 |#2| |#1|)) (T -1195))
+((-3923 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-347 (-484))))) (-4 *5 (-757)) (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1201 *5 *4)))) (-3938 (*1 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-347 (-484))))) (-4 *5 (-757)) (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1201 *5 *4)))) (-3939 (*1 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-347 (-484))))) (-4 *5 (-757)) (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1201 *5 *4)))))
+((-3928 (((-85) $) 15 T ELT)) (-3929 (((-85) $) 14 T ELT)) (-3924 (($ $) 19 T ELT) (($ $ (-695)) 21 T ELT)))
+(((-1196 |#1| |#2|) (-10 -7 (-15 -3924 (|#1| |#1| (-695))) (-15 -3924 (|#1| |#1|)) (-15 -3928 ((-85) |#1|)) (-15 -3929 ((-85) |#1|))) (-1197 |#2|) (-311)) (T -1196))
+NIL
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-2062 (((-2 (|:| -1770 $) (|:| -3978 $) (|:| |associate| $)) $) 53 T ELT)) (-2061 (($ $) 52 T ELT)) (-2059 (((-85) $) 50 T ELT)) (-3928 (((-85) $) 112 T ELT)) (-3925 (((-695)) 108 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3771 (($ $) 89 T ELT)) (-3967 (((-345 $) $) 88 T ELT)) (-1606 (((-85) $ $) 73 T ELT)) (-3720 (($) 22 T CONST)) (-3154 (((-3 |#1| "failed") $) 119 T ELT)) (-3153 ((|#1| $) 120 T ELT)) (-2562 (($ $ $) 69 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-2561 (($ $ $) 70 T ELT)) (-2739 (((-2 (|:| -3950 (-584 $)) (|:| -2407 $)) (-584 $)) 64 T ELT)) (-1762 (($ $ (-695)) 105 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT) (($ $) 104 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3719 (((-85) $) 87 T ELT)) (-3768 (((-744 (-831)) $) 102 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-2408 (((-85) $) 42 T ELT)) (-1603 (((-3 (-584 $) #1="failed") (-584 $) $) 66 T ELT)) (-1889 (($ $ $) 58 T ELT) (($ (-584 $)) 57 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-2482 (($ $) 86 T ELT)) (-3927 (((-85) $) 111 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-2706 (((-1084 $) (-1084 $) (-1084 $)) 56 T ELT)) (-3141 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3728 (((-345 $) $) 90 T ELT)) (-3926 (((-744 (-831))) 109 T ELT)) (-1604 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2407 $)) $ $) 68 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 67 T ELT)) (-3462 (((-3 $ "failed") $ $) 54 T ELT)) (-2738 (((-633 (-584 $)) (-584 $) $) 63 T ELT)) (-1605 (((-695) $) 72 T ELT)) (-2877 (((-2 (|:| -1971 $) (|:| -2900 $)) $ $) 71 T ELT)) (-1763 (((-3 (-695) "failed") $ $) 103 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3907 (((-107)) 117 T ELT)) (-3944 (((-744 (-831)) $) 110 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ $) 55 T ELT) (($ (-347 (-484))) 82 T ELT) (($ |#1|) 118 T ELT)) (-2700 (((-633 $) $) 101 (OR (|has| |#1| (-118)) (|has| |#1| (-317))) ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2060 (((-85) $ $) 51 T ELT)) (-3929 (((-85) $) 113 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-3924 (($ $) 107 (|has| |#1| (-317)) ELT) (($ $ (-695)) 106 (|has| |#1| (-317)) ELT)) (-3054 (((-85) $ $) 8 T ELT)) (-3945 (($ $ $) 81 T ELT) (($ $ |#1|) 116 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT) (($ $ (-484)) 85 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-347 (-484))) 84 T ELT) (($ (-347 (-484)) $) 83 T ELT) (($ $ |#1|) 115 T ELT) (($ |#1| $) 114 T ELT)))
+(((-1197 |#1|) (-113) (-311)) (T -1197))
+((-3929 (*1 *2 *1) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-311)) (-5 *2 (-85)))) (-3928 (*1 *2 *1) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-311)) (-5 *2 (-85)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-311)) (-5 *2 (-85)))) (-3944 (*1 *2 *1) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-311)) (-5 *2 (-744 (-831))))) (-3926 (*1 *2) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-311)) (-5 *2 (-744 (-831))))) (-3925 (*1 *2) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-311)) (-5 *2 (-695)))) (-3924 (*1 *1 *1) (-12 (-4 *1 (-1197 *2)) (-4 *2 (-311)) (-4 *2 (-317)))) (-3924 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1197 *3)) (-4 *3 (-311)) (-4 *3 (-317)))))
+(-13 (-311) (-951 |t#1|) (-1186 |t#1|) (-10 -8 (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-342)) |%noBranch|) (-15 -3929 ((-85) $)) (-15 -3928 ((-85) $)) (-15 -3927 ((-85) $)) (-15 -3944 ((-744 (-831)) $)) (-15 -3926 ((-744 (-831)))) (-15 -3925 ((-695))) (IF (|has| |t#1| (-317)) (PROGN (-6 (-342)) (-15 -3924 ($ $)) (-15 -3924 ($ $ (-695)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-347 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-347 (-484)) (-347 (-484))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-317)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-556 (-347 (-484))) . T) ((-556 (-484)) . T) ((-556 |#1|) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-201) . T) ((-245) . T) ((-257) . T) ((-311) . T) ((-342) OR (|has| |#1| (-317)) (|has| |#1| (-118))) ((-389) . T) ((-495) . T) ((-13) . T) ((-589 (-347 (-484))) . T) ((-589 (-484)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-347 (-484))) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-347 (-484))) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-655 (-347 (-484))) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-951 |#1|) . T) ((-964 (-347 (-484))) . T) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-347 (-484))) . T) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1133) . T) ((-1186 |#1|) . T))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-3930 (((-584 |#1|) $) 53 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3931 (($ $ $) 56 (|has| |#2| (-146)) ELT) (($ $ (-695)) 55 (|has| |#2| (-146)) ELT)) (-3720 (($) 22 T CONST)) (-3935 (($ $ |#1|) 67 T ELT) (($ $ (-740 |#1|)) 66 T ELT) (($ $ $) 65 T ELT)) (-3154 (((-3 (-740 |#1|) "failed") $) 77 T ELT)) (-3153 (((-740 |#1|) $) 78 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-3947 (((-85) $) 58 T ELT)) (-3946 (($ $) 57 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-3933 (((-85) $) 63 T ELT)) (-3934 (($ (-740 |#1|) |#2|) 64 T ELT)) (-3932 (($ $) 62 T ELT)) (-3937 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) 73 T ELT)) (-3951 (((-740 |#1|) $) 74 T ELT)) (-3954 (($ (-1 |#2| |#2|) $) 54 T ELT)) (-3936 (($ $ |#1|) 70 T ELT) (($ $ (-740 |#1|)) 69 T ELT) (($ $ $) 68 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3949 (((-85) $) 60 T ELT)) (-3948 ((|#2| $) 59 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#2|) 81 T ELT) (($ (-740 |#1|)) 76 T ELT) (($ |#1|) 61 T ELT)) (-3950 ((|#2| $ (-740 |#1|)) 72 T ELT) ((|#2| $ $) 71 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#2| $) 80 T ELT) (($ $ |#2|) 79 T ELT) (($ |#1| $) 75 T ELT)))
+(((-1198 |#1| |#2|) (-113) (-757) (-962)) (T -1198))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1198 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-740 *3)))) (-3937 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-2 (|:| |k| (-740 *3)) (|:| |c| *4))))) (-3950 (*1 *2 *1 *3) (-12 (-5 *3 (-740 *4)) (-4 *1 (-1198 *4 *2)) (-4 *4 (-757)) (-4 *2 (-962)))) (-3950 (*1 *2 *1 *1) (-12 (-4 *1 (-1198 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962)))) (-3936 (*1 *1 *1 *2) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3936 (*1 *1 *1 *2) (-12 (-5 *2 (-740 *3)) (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) (-3936 (*1 *1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3935 (*1 *1 *1 *2) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3935 (*1 *1 *1 *2) (-12 (-5 *2 (-740 *3)) (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) (-3935 (*1 *1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3934 (*1 *1 *2 *3) (-12 (-5 *2 (-740 *4)) (-4 *4 (-757)) (-4 *1 (-1198 *4 *3)) (-4 *3 (-962)))) (-3933 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85)))) (-3932 (*1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3942 (*1 *1 *2) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85)))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962)))) (-3947 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85)))) (-3946 (*1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3931 (*1 *1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)) (-4 *3 (-146)))) (-3931 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-4 *4 (-146)))) (-3954 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-584 *3)))))
+(-13 (-962) (-1193 |t#2|) (-951 (-740 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3951 ((-740 |t#1|) $)) (-15 -3937 ((-2 (|:| |k| (-740 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3950 (|t#2| $ (-740 |t#1|))) (-15 -3950 (|t#2| $ $)) (-15 -3936 ($ $ |t#1|)) (-15 -3936 ($ $ (-740 |t#1|))) (-15 -3936 ($ $ $)) (-15 -3935 ($ $ |t#1|)) (-15 -3935 ($ $ (-740 |t#1|))) (-15 -3935 ($ $ $)) (-15 -3934 ($ (-740 |t#1|) |t#2|)) (-15 -3933 ((-85) $)) (-15 -3932 ($ $)) (-15 -3942 ($ |t#1|)) (-15 -3949 ((-85) $)) (-15 -3948 (|t#2| $)) (-15 -3947 ((-85) $)) (-15 -3946 ($ $)) (IF (|has| |t#2| (-146)) (PROGN (-15 -3931 ($ $ $)) (-15 -3931 ($ $ (-695)))) |%noBranch|) (-15 -3954 ($ (-1 |t#2| |t#2|) $)) (-15 -3930 ((-584 |t#1|) $)) (IF (|has| |t#2| (-6 -3984)) (-6 -3984) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-556 (-484)) . T) ((-556 (-740 |#1|)) . T) ((-556 |#2|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#2|) . T) ((-589 $) . T) ((-591 |#2|) . T) ((-591 $) . T) ((-583 |#2|) |has| |#2| (-146)) ((-655 |#2|) |has| |#2| (-146)) ((-664) . T) ((-951 (-740 |#1|)) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1193 |#2|) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3930 (((-584 |#1|) $) 99 T ELT)) (-3943 (($ $ (-695)) 103 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3931 (($ $ $) NIL (|has| |#2| (-146)) ELT) (($ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-3720 (($) NIL T CONST)) (-3935 (($ $ |#1|) NIL T ELT) (($ $ (-740 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3154 (((-3 (-740 |#1|) #1#) $) NIL T ELT) (((-3 (-804 |#1|) #1#) $) NIL T ELT)) (-3153 (((-740 |#1|) $) NIL T ELT) (((-804 |#1|) $) NIL T ELT)) (-3955 (($ $) 102 T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-3947 (((-85) $) 90 T ELT)) (-3946 (($ $) 93 T ELT)) (-3940 (($ $ $ (-695)) 104 T ELT)) (-2408 (((-85) $) NIL T ELT)) (-2418 (((-695) $) NIL T ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3934 (($ (-740 |#1|) |#2|) NIL T ELT) (($ (-804 |#1|) |#2|) 28 T ELT)) (-3932 (($ $) 120 T ELT)) (-3937 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3951 (((-740 |#1|) $) NIL T ELT)) (-3952 (((-740 |#1|) $) NIL T ELT)) (-3954 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3936 (($ $ |#1|) NIL T ELT) (($ $ (-740 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3938 (($ $ (-695)) 113 (|has| |#2| (-655 (-347 (-484)))) ELT)) (-1747 (((-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2892 (((-804 |#1|) $) 84 T ELT)) (-3171 ((|#2| $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3939 (($ $ (-695)) 110 (|has| |#2| (-655 (-347 (-484)))) ELT)) (-3944 (((-695) $) 100 T ELT)) (-3949 (((-85) $) 85 T ELT)) (-3948 ((|#2| $) 88 T ELT)) (-3942 (((-773) $) 70 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) 59 T ELT) (($ (-740 |#1|)) NIL T ELT) (($ |#1|) 72 T ELT) (($ (-804 |#1|)) NIL T ELT) (($ (-607 |#1| |#2|)) 47 T ELT) (((-1194 |#1| |#2|) $) 77 T ELT) (((-1203 |#1| |#2|) $) 82 T ELT)) (-3813 (((-584 |#2|) $) NIL T ELT)) (-3673 ((|#2| $ (-804 |#1|)) NIL T ELT)) (-3950 ((|#2| $ (-740 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-3123 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) 21 T CONST)) (-2664 (($) 27 T CONST)) (-2663 (((-584 (-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3941 (((-3 (-607 |#1| |#2|) #1#) $) 119 T ELT)) (-3054 (((-85) $ $) 78 T ELT)) (-3833 (($ $) 112 T ELT) (($ $ $) 111 T ELT)) (-3835 (($ $ $) 20 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 48 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-804 |#1|)) NIL T ELT)))
+(((-1199 |#1| |#2|) (-13 (-1201 |#1| |#2|) (-332 |#2| (-804 |#1|)) (-10 -8 (-15 -3942 ($ (-607 |#1| |#2|))) (-15 -3942 ((-1194 |#1| |#2|) $)) (-15 -3942 ((-1203 |#1| |#2|) $)) (-15 -3941 ((-3 (-607 |#1| |#2|) "failed") $)) (-15 -3940 ($ $ $ (-695))) (IF (|has| |#2| (-655 (-347 (-484)))) (PROGN (-15 -3939 ($ $ (-695))) (-15 -3938 ($ $ (-695)))) |%noBranch|))) (-757) (-146)) (T -1199))
+((-3942 (*1 *1 *2) (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *1 (-1199 *3 *4)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-1203 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3941 (*1 *2 *1) (|partial| -12 (-5 *2 (-607 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3940 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3939 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-1199 *3 *4)) (-4 *4 (-655 (-347 (-484)))) (-4 *3 (-757)) (-4 *4 (-146)))) (-3938 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-1199 *3 *4)) (-4 *4 (-655 (-347 (-484)))) (-4 *3 (-757)) (-4 *4 (-146)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3930 (((-584 (-1089)) $) NIL T ELT)) (-3958 (($ (-1194 (-1089) |#1|)) NIL T ELT)) (-3943 (($ $ (-695)) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3931 (($ $ $) NIL (|has| |#1| (-146)) ELT) (($ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-3720 (($) NIL T CONST)) (-3935 (($ $ (-1089)) NIL T ELT) (($ $ (-740 (-1089))) NIL T ELT) (($ $ $) NIL T ELT)) (-3154 (((-3 (-740 (-1089)) #1#) $) NIL T ELT)) (-3153 (((-740 (-1089)) $) NIL T ELT)) (-3463 (((-3 $ #1#) $) NIL T ELT)) (-3947 (((-85) $) NIL T ELT)) (-3946 (($ $) NIL T ELT)) (-2408 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3934 (($ (-740 (-1089)) |#1|) NIL T ELT)) (-3932 (($ $) NIL T ELT)) (-3937 (((-2 (|:| |k| (-740 (-1089))) (|:| |c| |#1|)) $) NIL T ELT)) (-3951 (((-740 (-1089)) $) NIL T ELT)) (-3952 (((-740 (-1089)) $) NIL T ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3936 (($ $ (-1089)) NIL T ELT) (($ $ (-740 (-1089))) NIL T ELT) (($ $ $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3959 (((-1194 (-1089) |#1|) $) NIL T ELT)) (-3944 (((-695) $) NIL T ELT)) (-3949 (((-85) $) NIL T ELT)) (-3948 ((|#1| $) NIL T ELT)) (-3942 (((-773) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-740 (-1089))) NIL T ELT) (($ (-1089)) NIL T ELT)) (-3950 ((|#1| $ (-740 (-1089))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-3123 (((-695)) NIL T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) NIL T CONST)) (-3957 (((-584 (-2 (|:| |k| (-1089)) (|:| |c| $))) $) NIL T ELT)) (-2664 (($) NIL T CONST)) (-3054 (((-85) $ $) NIL T ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1089) $) NIL T ELT)))
+(((-1200 |#1|) (-13 (-1201 (-1089) |#1|) (-10 -8 (-15 -3959 ((-1194 (-1089) |#1|) $)) (-15 -3958 ($ (-1194 (-1089) |#1|))) (-15 -3957 ((-584 (-2 (|:| |k| (-1089)) (|:| |c| $))) $)))) (-962)) (T -1200))
+((-3959 (*1 *2 *1) (-12 (-5 *2 (-1194 (-1089) *3)) (-5 *1 (-1200 *3)) (-4 *3 (-962)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-1194 (-1089) *3)) (-4 *3 (-962)) (-5 *1 (-1200 *3)))) (-3957 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |k| (-1089)) (|:| |c| (-1200 *3))))) (-5 *1 (-1200 *3)) (-4 *3 (-962)))))
+((-2566 (((-85) $ $) 7 T ELT)) (-3185 (((-85) $) 21 T ELT)) (-3930 (((-584 |#1|) $) 53 T ELT)) (-3943 (($ $ (-695)) 87 T ELT)) (-1310 (((-3 $ "failed") $ $) 25 T ELT)) (-3931 (($ $ $) 56 (|has| |#2| (-146)) ELT) (($ $ (-695)) 55 (|has| |#2| (-146)) ELT)) (-3720 (($) 22 T CONST)) (-3935 (($ $ |#1|) 67 T ELT) (($ $ (-740 |#1|)) 66 T ELT) (($ $ $) 65 T ELT)) (-3154 (((-3 (-740 |#1|) "failed") $) 77 T ELT)) (-3153 (((-740 |#1|) $) 78 T ELT)) (-3463 (((-3 $ "failed") $) 40 T ELT)) (-3947 (((-85) $) 58 T ELT)) (-3946 (($ $) 57 T ELT)) (-2408 (((-85) $) 42 T ELT)) (-3933 (((-85) $) 63 T ELT)) (-3934 (($ (-740 |#1|) |#2|) 64 T ELT)) (-3932 (($ $) 62 T ELT)) (-3937 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) 73 T ELT)) (-3951 (((-740 |#1|) $) 74 T ELT)) (-3952 (((-740 |#1|) $) 89 T ELT)) (-3954 (($ (-1 |#2| |#2|) $) 54 T ELT)) (-3936 (($ $ |#1|) 70 T ELT) (($ $ (-740 |#1|)) 69 T ELT) (($ $ $) 68 T ELT)) (-3239 (((-1072) $) 11 T ELT)) (-3240 (((-1033) $) 12 T ELT)) (-3944 (((-695) $) 88 T ELT)) (-3949 (((-85) $) 60 T ELT)) (-3948 ((|#2| $) 59 T ELT)) (-3942 (((-773) $) 13 T ELT) (($ (-484)) 39 T ELT) (($ |#2|) 81 T ELT) (($ (-740 |#1|)) 76 T ELT) (($ |#1|) 61 T ELT)) (-3950 ((|#2| $ (-740 |#1|)) 72 T ELT) ((|#2| $ $) 71 T ELT)) (-3123 (((-695)) 38 T CONST)) (-1263 (((-85) $ $) 6 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 43 T CONST)) (-3054 (((-85) $ $) 8 T ELT)) (-3833 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3835 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 33 T ELT) (($ $ (-695)) 41 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 20 T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#2| $) 80 T ELT) (($ $ |#2|) 79 T ELT) (($ |#1| $) 75 T ELT)))
+(((-1201 |#1| |#2|) (-113) (-757) (-962)) (T -1201))
+((-3952 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-740 *3)))) (-3944 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-695)))) (-3943 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))))
+(-13 (-1198 |t#1| |t#2|) (-10 -8 (-15 -3952 ((-740 |t#1|) $)) (-15 -3944 ((-695) $)) (-15 -3943 ($ $ (-695)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-556 (-484)) . T) ((-556 (-740 |#1|)) . T) ((-556 |#2|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-484)) . T) ((-589 |#2|) . T) ((-589 $) . T) ((-591 |#2|) . T) ((-591 $) . T) ((-583 |#2|) |has| |#2| (-146)) ((-655 |#2|) |has| |#2| (-146)) ((-664) . T) ((-951 (-740 |#1|)) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-962) . T) ((-970) . T) ((-1025) . T) ((-1060) . T) ((-1013) . T) ((-1128) . T) ((-1193 |#2|) . T) ((-1198 |#1| |#2|) . T))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) NIL T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3720 (($) NIL T CONST)) (-3154 (((-3 |#2| #1#) $) NIL T ELT)) (-3153 ((|#2| $) NIL T ELT)) (-3955 (($ $) NIL T ELT)) (-3463 (((-3 $ #1#) $) 43 T ELT)) (-3947 (((-85) $) 37 T ELT)) (-3946 (($ $) 38 T ELT)) (-2408 (((-85) $) NIL T ELT)) (-2418 (((-695) $) NIL T ELT)) (-2819 (((-584 $) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3934 (($ |#2| |#1|) NIL T ELT)) (-3951 ((|#2| $) 25 T ELT)) (-3952 ((|#2| $) 23 T ELT)) (-3954 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1747 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-2892 ((|#2| $) NIL T ELT)) (-3171 ((|#1| $) NIL T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3949 (((-85) $) 33 T ELT)) (-3948 ((|#1| $) 34 T ELT)) (-3942 (((-773) $) 66 T ELT) (($ (-484)) 47 T ELT) (($ |#1|) 42 T ELT) (($ |#2|) NIL T ELT)) (-3813 (((-584 |#1|) $) NIL T ELT)) (-3673 ((|#1| $ |#2|) NIL T ELT)) (-3950 ((|#1| $ |#2|) 29 T ELT)) (-3123 (((-695)) 14 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) 30 T CONST)) (-2664 (($) 11 T CONST)) (-2663 (((-584 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-3054 (((-85) $ $) 31 T ELT)) (-3945 (($ $ |#1|) 68 (|has| |#1| (-311)) ELT)) (-3833 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3835 (($ $ $) 51 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 53 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 52 T ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-3953 (((-695) $) 18 T ELT)))
+(((-1202 |#1| |#2|) (-13 (-962) (-1193 |#1|) (-332 |#1| |#2|) (-556 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3953 ((-695) $)) (-15 -3952 (|#2| $)) (-15 -3951 (|#2| $)) (-15 -3955 ($ $)) (-15 -3950 (|#1| $ |#2|)) (-15 -3949 ((-85) $)) (-15 -3948 (|#1| $)) (-15 -3947 ((-85) $)) (-15 -3946 ($ $)) (-15 -3954 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-311)) (-15 -3945 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -3984)) (-6 -3984) |%noBranch|) (IF (|has| |#1| (-6 -3988)) (-6 -3988) |%noBranch|) (IF (|has| |#1| (-6 -3989)) (-6 -3989) |%noBranch|))) (-962) (-755)) (T -1202))
+((* (*1 *1 *1 *2) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755)))) (-3955 (*1 *1 *1) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755)))) (-3954 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-1202 *3 *4)) (-4 *4 (-755)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755)))) (-3952 (*1 *2 *1) (-12 (-4 *2 (-755)) (-5 *1 (-1202 *3 *2)) (-4 *3 (-962)))) (-3951 (*1 *2 *1) (-12 (-4 *2 (-755)) (-5 *1 (-1202 *3 *2)) (-4 *3 (-962)))) (-3950 (*1 *2 *1 *3) (-12 (-4 *2 (-962)) (-5 *1 (-1202 *2 *3)) (-4 *3 (-755)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755)))) (-3948 (*1 *2 *1) (-12 (-4 *2 (-962)) (-5 *1 (-1202 *2 *3)) (-4 *3 (-755)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755)))) (-3946 (*1 *1 *1) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755)))) (-3945 (*1 *1 *1 *2) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-311)) (-4 *2 (-962)) (-4 *3 (-755)))))
+((-2566 (((-85) $ $) 27 T ELT)) (-3185 (((-85) $) NIL T ELT)) (-3930 (((-584 |#1|) $) 132 T ELT)) (-3958 (($ (-1194 |#1| |#2|)) 50 T ELT)) (-3943 (($ $ (-695)) 38 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3931 (($ $ $) 54 (|has| |#2| (-146)) ELT) (($ $ (-695)) 52 (|has| |#2| (-146)) ELT)) (-3720 (($) NIL T CONST)) (-3935 (($ $ |#1|) 114 T ELT) (($ $ (-740 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-3154 (((-3 (-740 |#1|) #1#) $) NIL T ELT)) (-3153 (((-740 |#1|) $) NIL T ELT)) (-3463 (((-3 $ #1#) $) 122 T ELT)) (-3947 (((-85) $) 117 T ELT)) (-3946 (($ $) 118 T ELT)) (-2408 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3934 (($ (-740 |#1|) |#2|) 20 T ELT)) (-3932 (($ $) NIL T ELT)) (-3937 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3951 (((-740 |#1|) $) 123 T ELT)) (-3952 (((-740 |#1|) $) 126 T ELT)) (-3954 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-3936 (($ $ |#1|) 112 T ELT) (($ $ (-740 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3959 (((-1194 |#1| |#2|) $) 94 T ELT)) (-3944 (((-695) $) 129 T ELT)) (-3949 (((-85) $) 81 T ELT)) (-3948 ((|#2| $) 32 T ELT)) (-3942 (((-773) $) 73 T ELT) (($ (-484)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-740 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-3950 ((|#2| $ (-740 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-3123 (((-695)) 120 T CONST)) (-1263 (((-85) $ $) NIL T ELT)) (-2658 (($) 15 T CONST)) (-3957 (((-584 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-2664 (($) 33 T CONST)) (-3054 (((-85) $ $) 14 T ELT)) (-3833 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-3835 (($ $ $) 61 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 55 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 53 T ELT) (($ (-484) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT)))
+(((-1203 |#1| |#2|) (-13 (-1201 |#1| |#2|) (-10 -8 (-15 -3959 ((-1194 |#1| |#2|) $)) (-15 -3958 ($ (-1194 |#1| |#2|))) (-15 -3957 ((-584 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-757) (-962)) (T -1203))
+((-3959 (*1 *2 *1) (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) (-3958 (*1 *1 *2) (-12 (-5 *2 (-1194 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *1 (-1203 *3 *4)))) (-3957 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |k| *3) (|:| |c| (-1203 *3 *4))))) (-5 *1 (-1203 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3961 (($ (-584 (-831))) 11 T ELT)) (-3960 (((-885) $) 12 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3942 (((-773) $) 25 T ELT) (($ (-885)) 14 T ELT) (((-885) $) 13 T ELT)) (-1263 (((-85) $ $) NIL T ELT)) (-3054 (((-85) $ $) 17 T ELT)))
+(((-1204) (-13 (-1013) (-427 (-885)) (-10 -8 (-15 -3961 ($ (-584 (-831)))) (-15 -3960 ((-885) $))))) (T -1204))
+((-3961 (*1 *1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1204)))) (-3960 (*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-1204)))))
+((-3962 (((-584 (-1068 |#1|)) (-1 (-584 (-1068 |#1|)) (-584 (-1068 |#1|))) (-484)) 16 T ELT) (((-1068 |#1|) (-1 (-1068 |#1|) (-1068 |#1|))) 13 T ELT)))
+(((-1205 |#1|) (-10 -7 (-15 -3962 ((-1068 |#1|) (-1 (-1068 |#1|) (-1068 |#1|)))) (-15 -3962 ((-584 (-1068 |#1|)) (-1 (-584 (-1068 |#1|)) (-584 (-1068 |#1|))) (-484)))) (-1128)) (T -1205))
+((-3962 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-584 (-1068 *5)) (-584 (-1068 *5)))) (-5 *4 (-484)) (-5 *2 (-584 (-1068 *5))) (-5 *1 (-1205 *5)) (-4 *5 (-1128)))) (-3962 (*1 *2 *3) (-12 (-5 *3 (-1 (-1068 *4) (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1205 *4)) (-4 *4 (-1128)))))
+((-3964 (((-584 (-2 (|:| -1745 (-1084 |#1|)) (|:| -3221 (-584 (-858 |#1|))))) (-584 (-858 |#1|))) 174 T ELT) (((-584 (-2 (|:| -1745 (-1084 |#1|)) (|:| -3221 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85)) 173 T ELT) (((-584 (-2 (|:| -1745 (-1084 |#1|)) (|:| -3221 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85)) 172 T ELT) (((-584 (-2 (|:| -1745 (-1084 |#1|)) (|:| -3221 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85) (-85)) 171 T ELT) (((-584 (-2 (|:| -1745 (-1084 |#1|)) (|:| -3221 (-584 (-858 |#1|))))) (-959 |#1| |#2|)) 156 T ELT)) (-3963 (((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|))) 85 T ELT) (((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)) (-85)) 84 T ELT) (((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)) (-85) (-85)) 83 T ELT)) (-3967 (((-584 (-1059 |#1| (-469 (-774 |#3|)) (-774 |#3|) (-704 |#1| (-774 |#3|)))) (-959 |#1| |#2|)) 73 T ELT)) (-3965 (((-584 (-584 (-938 (-347 |#1|)))) (-584 (-858 |#1|))) 140 T ELT) (((-584 (-584 (-938 (-347 |#1|)))) (-584 (-858 |#1|)) (-85)) 139 T ELT) (((-584 (-584 (-938 (-347 |#1|)))) (-584 (-858 |#1|)) (-85) (-85)) 138 T ELT) (((-584 (-584 (-938 (-347 |#1|)))) (-584 (-858 |#1|)) (-85) (-85) (-85)) 137 T ELT) (((-584 (-584 (-938 (-347 |#1|)))) (-959 |#1| |#2|)) 132 T ELT)) (-3966 (((-584 (-584 (-938 (-347 |#1|)))) (-584 (-858 |#1|))) 145 T ELT) (((-584 (-584 (-938 (-347 |#1|)))) (-584 (-858 |#1|)) (-85)) 144 T ELT) (((-584 (-584 (-938 (-347 |#1|)))) (-584 (-858 |#1|)) (-85) (-85)) 143 T ELT) (((-584 (-584 (-938 (-347 |#1|)))) (-959 |#1| |#2|)) 142 T ELT)) (-3968 (((-584 (-704 |#1| (-774 |#3|))) (-1059 |#1| (-469 (-774 |#3|)) (-774 |#3|) (-704 |#1| (-774 |#3|)))) 111 T ELT) (((-1084 (-938 (-347 |#1|))) (-1084 |#1|)) 102 T ELT) (((-858 (-938 (-347 |#1|))) (-704 |#1| (-774 |#3|))) 109 T ELT) (((-858 (-938 (-347 |#1|))) (-858 |#1|)) 107 T ELT) (((-704 |#1| (-774 |#3|)) (-704 |#1| (-774 |#2|))) 33 T ELT)))
+(((-1206 |#1| |#2| |#3|) (-10 -7 (-15 -3963 ((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)) (-85) (-85))) (-15 -3963 ((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)) (-85))) (-15 -3963 ((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)))) (-15 -3964 ((-584 (-2 (|:| -1745 (-1084 |#1|)) (|:| -3221 (-584 (-858 |#1|))))) (-959 |#1| |#2|))) (-15 -3964 ((-584 (-2 (|:| -1745 (-1084 |#1|)) (|:| -3221 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85) (-85))) (-15 -3964 ((-584 (-2 (|:| -1745 (-1084 |#1|)) (|:| -3221 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85))) (-15 -3964 ((-584 (-2 (|:| -1745 (-1084 |#1|)) (|:| -3221 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85))) (-15 -3964 ((-584 (-2 (|:| -1745 (-1084 |#1|)) (|:| -3221 (-584 (-858 |#1|))))) (-584 (-858 |#1|)))) (-15 -3965 ((-584 (-584 (-938 (-347 |#1|)))) (-959 |#1| |#2|))) (-15 -3965 ((-584 (-584 (-938 (-347 |#1|)))) (-584 (-858 |#1|)) (-85) (-85) (-85))) (-15 -3965 ((-584 (-584 (-938 (-347 |#1|)))) (-584 (-858 |#1|)) (-85) (-85))) (-15 -3965 ((-584 (-584 (-938 (-347 |#1|)))) (-584 (-858 |#1|)) (-85))) (-15 -3965 ((-584 (-584 (-938 (-347 |#1|)))) (-584 (-858 |#1|)))) (-15 -3966 ((-584 (-584 (-938 (-347 |#1|)))) (-959 |#1| |#2|))) (-15 -3966 ((-584 (-584 (-938 (-347 |#1|)))) (-584 (-858 |#1|)) (-85) (-85))) (-15 -3966 ((-584 (-584 (-938 (-347 |#1|)))) (-584 (-858 |#1|)) (-85))) (-15 -3966 ((-584 (-584 (-938 (-347 |#1|)))) (-584 (-858 |#1|)))) (-15 -3967 ((-584 (-1059 |#1| (-469 (-774 |#3|)) (-774 |#3|) (-704 |#1| (-774 |#3|)))) (-959 |#1| |#2|))) (-15 -3968 ((-704 |#1| (-774 |#3|)) (-704 |#1| (-774 |#2|)))) (-15 -3968 ((-858 (-938 (-347 |#1|))) (-858 |#1|))) (-15 -3968 ((-858 (-938 (-347 |#1|))) (-704 |#1| (-774 |#3|)))) (-15 -3968 ((-1084 (-938 (-347 |#1|))) (-1084 |#1|))) (-15 -3968 ((-584 (-704 |#1| (-774 |#3|))) (-1059 |#1| (-469 (-774 |#3|)) (-774 |#3|) (-704 |#1| (-774 |#3|)))))) (-13 (-756) (-257) (-120) (-934)) (-584 (-1089)) (-584 (-1089))) (T -1206))
+((-3968 (*1 *2 *3) (-12 (-5 *3 (-1059 *4 (-469 (-774 *6)) (-774 *6) (-704 *4 (-774 *6)))) (-4 *4 (-13 (-756) (-257) (-120) (-934))) (-14 *6 (-584 (-1089))) (-5 *2 (-584 (-704 *4 (-774 *6)))) (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-584 (-1089))))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-1084 *4)) (-4 *4 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-1084 (-938 (-347 *4)))) (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-584 (-1089))) (-14 *6 (-584 (-1089))))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-704 *4 (-774 *6))) (-4 *4 (-13 (-756) (-257) (-120) (-934))) (-14 *6 (-584 (-1089))) (-5 *2 (-858 (-938 (-347 *4)))) (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-584 (-1089))))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-858 *4)) (-4 *4 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-858 (-938 (-347 *4)))) (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-584 (-1089))) (-14 *6 (-584 (-1089))))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-704 *4 (-774 *5))) (-4 *4 (-13 (-756) (-257) (-120) (-934))) (-14 *5 (-584 (-1089))) (-5 *2 (-704 *4 (-774 *6))) (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-584 (-1089))))) (-3967 (*1 *2 *3) (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-257) (-120) (-934))) (-14 *5 (-584 (-1089))) (-5 *2 (-584 (-1059 *4 (-469 (-774 *6)) (-774 *6) (-704 *4 (-774 *6))))) (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-584 (-1089))))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-347 *4))))) (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-584 (-1089))) (-14 *6 (-584 (-1089))))) (-3966 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-347 *5))))) (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-584 (-1089))) (-14 *7 (-584 (-1089))))) (-3966 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-347 *5))))) (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-584 (-1089))) (-14 *7 (-584 (-1089))))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-257) (-120) (-934))) (-14 *5 (-584 (-1089))) (-5 *2 (-584 (-584 (-938 (-347 *4))))) (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-584 (-1089))))) (-3965 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-347 *4))))) (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-584 (-1089))) (-14 *6 (-584 (-1089))))) (-3965 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-347 *5))))) (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-584 (-1089))) (-14 *7 (-584 (-1089))))) (-3965 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-347 *5))))) (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-584 (-1089))) (-14 *7 (-584 (-1089))))) (-3965 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-347 *5))))) (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-584 (-1089))) (-14 *7 (-584 (-1089))))) (-3965 (*1 *2 *3) (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-257) (-120) (-934))) (-14 *5 (-584 (-1089))) (-5 *2 (-584 (-584 (-938 (-347 *4))))) (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-584 (-1089))))) (-3964 (*1 *2 *3) (-12 (-4 *4 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-584 (-2 (|:| -1745 (-1084 *4)) (|:| -3221 (-584 (-858 *4)))))) (-5 *1 (-1206 *4 *5 *6)) (-5 *3 (-584 (-858 *4))) (-14 *5 (-584 (-1089))) (-14 *6 (-584 (-1089))))) (-3964 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-584 (-2 (|:| -1745 (-1084 *5)) (|:| -3221 (-584 (-858 *5)))))) (-5 *1 (-1206 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1089))) (-14 *7 (-584 (-1089))))) (-3964 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-584 (-2 (|:| -1745 (-1084 *5)) (|:| -3221 (-584 (-858 *5)))))) (-5 *1 (-1206 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1089))) (-14 *7 (-584 (-1089))))) (-3964 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-584 (-2 (|:| -1745 (-1084 *5)) (|:| -3221 (-584 (-858 *5)))))) (-5 *1 (-1206 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1089))) (-14 *7 (-584 (-1089))))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-257) (-120) (-934))) (-14 *5 (-584 (-1089))) (-5 *2 (-584 (-2 (|:| -1745 (-1084 *4)) (|:| -3221 (-584 (-858 *4)))))) (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-584 (-1089))))) (-3963 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-584 (-959 *4 *5))) (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-584 (-1089))) (-14 *6 (-584 (-1089))))) (-3963 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-584 (-1089))) (-14 *7 (-584 (-1089))))) (-3963 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-584 (-1089))) (-14 *7 (-584 (-1089))))))
+((-3971 (((-3 (-1178 (-347 (-484))) #1="failed") (-1178 |#1|) |#1|) 21 T ELT)) (-3969 (((-85) (-1178 |#1|)) 12 T ELT)) (-3970 (((-3 (-1178 (-484)) #1#) (-1178 |#1|)) 16 T ELT)))
+(((-1207 |#1|) (-10 -7 (-15 -3969 ((-85) (-1178 |#1|))) (-15 -3970 ((-3 (-1178 (-484)) #1="failed") (-1178 |#1|))) (-15 -3971 ((-3 (-1178 (-347 (-484))) #1#) (-1178 |#1|) |#1|))) (-13 (-962) (-581 (-484)))) (T -1207))
+((-3971 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-962) (-581 (-484)))) (-5 *2 (-1178 (-347 (-484)))) (-5 *1 (-1207 *4)))) (-3970 (*1 *2 *3) (|partial| -12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-962) (-581 (-484)))) (-5 *2 (-1178 (-484))) (-5 *1 (-1207 *4)))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-962) (-581 (-484)))) (-5 *2 (-85)) (-5 *1 (-1207 *4)))))
+((-2566 (((-85) $ $) NIL T ELT)) (-3185 (((-85) $) 12 T ELT)) (-1310 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3133 (((-695)) 9 T ELT)) (-3720 (($) NIL T CONST)) (-3463 (((-3 $ #1#) $) 57 T ELT)) (-2992 (($) 46 T ELT)) (-2408 (((-85) $) 38 T ELT)) (-3441 (((-633 $) $) 36 T ELT)) (-2008 (((-831) $) 14 T ELT)) (-3239 (((-1072) $) NIL T ELT)) (-3442 (($) 26 T CONST)) (-2398 (($ (-831)) 47 T ELT)) (-3240 (((-1033) $) NIL T ELT)) (-3968 (((-484) $) 16 T ELT)) (-3942 (((-773) $) 21 T ELT) (($ (-484)) 18 T ELT)) (-3123 (((-695)) 10 T CONST)) (-1263 (((-85) $ $) 59 T ELT)) (-2658 (($) 23 T CONST)) (-2664 (($) 25 T CONST)) (-3054 (((-85) $ $) 31 T ELT)) (-3833 (($ $) 50 T ELT) (($ $ $) 44 T ELT)) (-3835 (($ $ $) 29 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 52 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-484) $) 41 T ELT) (($ $ $) 40 T ELT)))
+(((-1208 |#1|) (-13 (-146) (-317) (-554 (-484)) (-1065)) (-831)) (T -1208))
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+((-3 2805513 2805518 2805523 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 2805498 2805503 2805508 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 2805483 2805488 2805493 NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 2805468 2805473 2805478 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1208 2804511 2805386 2805463 "ZMOD" NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1207 2803726 2803905 2804124 "ZLINDEP" NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1206 2794885 2796754 2798688 "ZDSOLVE" NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1205 2794273 2794426 2794615 "YSTREAM" NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1204 2793735 2794038 2794151 "YDIAGRAM" NIL YDIAGRAM (NIL) -8 NIL NIL NIL) (-1203 2791359 2793197 2793400 "XRPOLY" NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1202 2788187 2789776 2790347 "XPR" NIL XPR (NIL T T) -8 NIL NIL NIL) (-1201 2785506 2787174 2787228 "XPOLYC" 2787513 XPOLYC (NIL T T) -9 NIL 2787626 NIL) (-1200 2783089 2785010 2785213 "XPOLY" NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1199 2779401 2781948 2782336 "XPBWPOLY" NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1198 2774310 2775881 2775935 "XFALG" 2778080 XFALG (NIL T T) -9 NIL 2778864 NIL) (-1197 2769528 2772199 2772241 "XF" 2772859 XF (NIL T) -9 NIL 2773255 NIL) (-1196 2769246 2769356 2769523 "XF-" NIL XF- (NIL T T) -7 NIL NIL NIL) (-1195 2768473 2768595 2768799 "XEXPPKG" NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1194 2766279 2768373 2768468 "XDPOLY" NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1193 2764922 2765655 2765697 "XALG" 2765702 XALG (NIL T) -9 NIL 2765811 NIL) (-1192 2758479 2763332 2763810 "WUTSET" NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1191 2756786 2757724 2758045 "WP" NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1190 2756385 2756657 2756726 "WHILEAST" NIL WHILEAST (NIL) -8 NIL NIL NIL) (-1189 2755872 2756175 2756268 "WHEREAST" NIL WHEREAST (NIL) -8 NIL NIL NIL) (-1188 2754949 2755159 2755454 "WFFINTBS" NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1187 2753245 2753708 2754170 "WEIER" NIL WEIER (NIL T) -7 NIL NIL NIL) (-1186 2752165 2752719 2752761 "VSPACE" 2752897 VSPACE (NIL T) -9 NIL 2752971 NIL) (-1185 2752036 2752069 2752160 "VSPACE-" NIL VSPACE- (NIL T T) -7 NIL NIL NIL) (-1184 2751879 2751933 2752001 "VOID" NIL VOID (NIL) -8 NIL NIL NIL) (-1183 2748862 2749657 2750394 "VIEWDEF" NIL VIEWDEF (NIL) -7 NIL NIL NIL) (-1182 2739960 2742561 2744734 "VIEW3D" NIL VIEW3D (NIL) -8 NIL NIL NIL) (-1181 2733537 2735428 2737007 "VIEW2D" NIL VIEW2D (NIL) -8 NIL NIL NIL) (-1180 2732021 2732416 2732822 "VIEW" NIL VIEW (NIL) -7 NIL NIL NIL) (-1179 2730848 2731129 2731445 "VECTOR2" NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1178 2725962 2730675 2730767 "VECTOR" NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1177 2719064 2723672 2723715 "VECTCAT" 2724703 VECTCAT (NIL T) -9 NIL 2725287 NIL) (-1176 2718343 2718669 2719059 "VECTCAT-" NIL VECTCAT- (NIL T T) -7 NIL NIL NIL) (-1175 2717837 2718079 2718199 "VARIABLE" NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1174 2717770 2717775 2717805 "UTYPE" 2717810 UTYPE (NIL) -9 NIL NIL NIL) (-1173 2716757 2716933 2717194 "UTSODETL" NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1172 2714608 2715116 2715640 "UTSODE" NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1171 2704552 2710460 2710502 "UTSCAT" 2711600 UTSCAT (NIL T) -9 NIL 2712357 NIL) (-1170 2702617 2703560 2704547 "UTSCAT-" NIL UTSCAT- (NIL T T) -7 NIL NIL NIL) (-1169 2702291 2702340 2702471 "UTS2" NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1168 2694066 2700487 2700966 "UTS" NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1167 2688061 2690874 2690917 "URAGG" 2692987 URAGG (NIL T) -9 NIL 2693709 NIL) (-1166 2686076 2687038 2688056 "URAGG-" NIL URAGG- (NIL T T) -7 NIL NIL NIL) (-1165 2681847 2685052 2685514 "UPXSSING" NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1164 2674340 2681771 2681842 "UPXSCONS" NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1163 2663053 2670478 2670539 "UPXSCCA" 2671107 UPXSCCA (NIL T T) -9 NIL 2671339 NIL) (-1162 2662774 2662876 2663048 "UPXSCCA-" NIL UPXSCCA- (NIL T T T) -7 NIL NIL NIL) (-1161 2651388 2658538 2658580 "UPXSCAT" 2659220 UPXSCAT (NIL T) -9 NIL 2659828 NIL) (-1160 2650901 2650986 2651163 "UPXS2" NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1159 2642651 2650492 2650754 "UPXS" NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1158 2641546 2641816 2642166 "UPSQFREE" NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1157 2634311 2637734 2637788 "UPSCAT" 2638857 UPSCAT (NIL T T) -9 NIL 2639621 NIL) (-1156 2633731 2633983 2634306 "UPSCAT-" NIL UPSCAT- (NIL T T T) -7 NIL NIL NIL) (-1155 2633405 2633454 2633585 "UPOLYC2" NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1154 2617599 2626489 2626531 "UPOLYC" 2628609 UPOLYC (NIL T) -9 NIL 2629829 NIL) (-1153 2611654 2614502 2617594 "UPOLYC-" NIL UPOLYC- (NIL T T) -7 NIL NIL NIL) (-1152 2611090 2611215 2611378 "UPMP" NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1151 2610724 2610811 2610950 "UPDIVP" NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1150 2609537 2609804 2610108 "UPDECOMP" NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1149 2608870 2609000 2609185 "UPCDEN" NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1148 2608462 2608537 2608684 "UP2" NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1147 2599290 2608228 2608356 "UP" NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1146 2598652 2598789 2598994 "UNISEG2" NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1145 2597253 2598100 2598376 "UNISEG" NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1144 2596482 2596679 2596904 "UNIFACT" NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1143 2583356 2596406 2596477 "ULSCONS" NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1142 2563270 2576443 2576504 "ULSCCAT" 2577135 ULSCCAT (NIL T T) -9 NIL 2577422 NIL) (-1141 2562605 2562891 2563265 "ULSCCAT-" NIL ULSCCAT- (NIL T T T) -7 NIL NIL NIL) (-1140 2551039 2558111 2558153 "ULSCAT" 2559006 ULSCAT (NIL T) -9 NIL 2559736 NIL) (-1139 2550552 2550637 2550814 "ULS2" NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1138 2532733 2550051 2550292 "ULS" NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1137 2531767 2532460 2532574 "UINT8" NIL UINT8 (NIL) -8 NIL NIL 2532685) (-1136 2530800 2531493 2531607 "UINT64" NIL UINT64 (NIL) -8 NIL NIL 2531718) (-1135 2529833 2530526 2530640 "UINT32" NIL UINT32 (NIL) -8 NIL NIL 2530751) (-1134 2528866 2529559 2529673 "UINT16" NIL UINT16 (NIL) -8 NIL NIL 2529784) (-1133 2526935 2528094 2528124 "UFD" 2528335 UFD (NIL) -9 NIL 2528448 NIL) (-1132 2526779 2526836 2526930 "UFD-" NIL UFD- (NIL T) -7 NIL NIL NIL) (-1131 2526031 2526238 2526454 "UDVO" NIL UDVO (NIL) -7 NIL NIL NIL) (-1130 2524251 2524704 2525169 "UDPO" NIL UDPO (NIL T) -7 NIL NIL NIL) (-1129 2523976 2524216 2524246 "TYPEAST" NIL TYPEAST (NIL) -8 NIL NIL NIL) (-1128 2523914 2523919 2523949 "TYPE" 2523954 TYPE (NIL) -9 NIL 2523961 NIL) (-1127 2523073 2523293 2523533 "TWOFACT" NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1126 2522251 2522682 2522917 "TUPLE" NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1125 2520405 2520978 2521517 "TUBETOOL" NIL TUBETOOL (NIL) -7 NIL NIL NIL) (-1124 2519439 2519675 2519911 "TUBE" NIL TUBE (NIL T) -8 NIL NIL NIL) (-1123 2507793 2512261 2512357 "TSETCAT" 2517572 TSETCAT (NIL T T T T) -9 NIL 2519084 NIL) (-1122 2504130 2505946 2507788 "TSETCAT-" NIL TSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-1121 2498586 2503356 2503638 "TS" NIL TS (NIL T) -8 NIL NIL NIL) (-1120 2493923 2494936 2495865 "TRMANIP" NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1119 2493420 2493495 2493658 "TRIMAT" NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1118 2491496 2491786 2492141 "TRIGMNIP" NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1117 2490980 2491129 2491159 "TRIGCAT" 2491372 TRIGCAT (NIL) -9 NIL NIL NIL) (-1116 2490731 2490834 2490975 "TRIGCAT-" NIL TRIGCAT- (NIL T) -7 NIL NIL NIL) (-1115 2487727 2489840 2490118 "TREE" NIL TREE (NIL T) -8 NIL NIL NIL) (-1114 2486833 2487529 2487559 "TRANFUN" 2487594 TRANFUN (NIL) -9 NIL 2487660 NIL) (-1113 2486297 2486548 2486828 "TRANFUN-" NIL TRANFUN- (NIL T) -7 NIL NIL NIL) (-1112 2486134 2486172 2486233 "TOPSP" NIL TOPSP (NIL) -7 NIL NIL NIL) (-1111 2485591 2485722 2485873 "TOOLSIGN" NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1110 2484332 2484989 2485225 "TEXTFILE" NIL TEXTFILE (NIL) -8 NIL NIL NIL) (-1109 2484144 2484181 2484253 "TEX1" NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1108 2482358 2483004 2483433 "TEX" NIL TEX (NIL) -8 NIL NIL NIL) (-1107 2480738 2481075 2481397 "TBCMPPK" NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1106 2471796 2478539 2478595 "TBAGG" 2478997 TBAGG (NIL T T) -9 NIL 2479210 NIL) (-1105 2468327 2470019 2471791 "TBAGG-" NIL TBAGG- (NIL T T T) -7 NIL NIL NIL) (-1104 2467804 2467929 2468074 "TANEXP" NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1103 2467314 2467634 2467724 "TALGOP" NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1102 2466811 2466928 2467066 "TABLEAU" NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1101 2459898 2466713 2466806 "TABLE" NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1100 2455651 2456946 2458191 "TABLBUMP" NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1099 2455020 2455179 2455360 "SYSTEM" NIL SYSTEM (NIL) -7 NIL NIL NIL) (-1098 2452174 2452927 2453710 "SYSSOLP" NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1097 2451948 2452138 2452169 "SYSPTR" NIL SYSPTR (NIL) -8 NIL NIL NIL) (-1096 2450902 2451587 2451713 "SYSNNI" NIL SYSNNI (NIL NIL) -8 NIL NIL 2451899) (-1095 2450166 2450714 2450793 "SYSINT" NIL SYSINT (NIL NIL) -8 NIL NIL 2450853) (-1094 2446989 2448148 2448848 "SYNTAX" NIL SYNTAX (NIL) -8 NIL NIL NIL) (-1093 2444672 2445355 2445989 "SYMTAB" NIL SYMTAB (NIL) -8 NIL NIL NIL) (-1092 2440750 2441796 2442773 "SYMS" NIL SYMS (NIL) -8 NIL NIL NIL) (-1091 2437913 2440405 2440634 "SYMPOLY" NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1090 2437509 2437596 2437718 "SYMFUNC" NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1089 2434133 2435607 2436426 "SYMBOL" NIL SYMBOL (NIL) -8 NIL NIL NIL) (-1088 2427157 2433330 2433623 "SUTS" NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1087 2418907 2426748 2427010 "SUPXS" NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1086 2418186 2418325 2418542 "SUPFRACF" NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1085 2417870 2417935 2418046 "SUP2" NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1084 2408657 2417582 2417707 "SUP" NIL SUP (NIL T) -8 NIL NIL NIL) (-1083 2407387 2407685 2408040 "SUMRF" NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1082 2406792 2406870 2407061 "SUMFS" NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1081 2389008 2406291 2406532 "SULS" NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1080 2388607 2388879 2388948 "SUCHTAST" NIL SUCHTAST (NIL) -8 NIL NIL NIL) (-1079 2387943 2388224 2388364 "SUCH" NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1078 2382545 2383804 2384757 "SUBSPACE" NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1077 2382077 2382177 2382341 "SUBRESP" NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1076 2377188 2378470 2379617 "STTFNC" NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1075 2371646 2373117 2374428 "STTF" NIL STTF (NIL T) -7 NIL NIL NIL) (-1074 2364561 2366625 2368416 "STTAYLOR" NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1073 2357391 2364473 2364556 "STRTBL" NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1072 2352085 2357105 2357220 "STRING" NIL STRING (NIL) -8 NIL NIL NIL) (-1071 2351672 2351755 2351899 "STREAM3" NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1070 2350823 2351024 2351259 "STREAM2" NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1069 2350563 2350621 2350714 "STREAM1" NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1068 2343301 2348768 2349374 "STREAM" NIL STREAM (NIL T) -8 NIL NIL NIL) (-1067 2342477 2342682 2342913 "STINPROD" NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1066 2341722 2342093 2342240 "STEPAST" NIL STEPAST (NIL) -8 NIL NIL NIL) (-1065 2341210 2341452 2341482 "STEP" 2341576 STEP (NIL) -9 NIL 2341647 NIL) (-1064 2334313 2341128 2341205 "STBL" NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1063 2328528 2333111 2333154 "STAGG" 2333581 STAGG (NIL T) -9 NIL 2333755 NIL) (-1062 2326907 2327655 2328523 "STAGG-" NIL STAGG- (NIL T T) -7 NIL NIL NIL) (-1061 2325064 2326734 2326826 "STACK" NIL STACK (NIL T) -8 NIL NIL NIL) (-1060 2324375 2324883 2324913 "SRING" 2324918 SRING (NIL) -9 NIL 2324938 NIL) (-1059 2316997 2322913 2323352 "SREGSET" NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1058 2310771 2312210 2313714 "SRDCMPK" NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1057 2303196 2308107 2308137 "SRAGG" 2309436 SRAGG (NIL) -9 NIL 2310040 NIL) (-1056 2302493 2302813 2303191 "SRAGG-" NIL SRAGG- (NIL T) -7 NIL NIL NIL) (-1055 2296612 2301815 2302238 "SQMATRIX" NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1054 2290825 2293994 2294716 "SPLTREE" NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1053 2287254 2288073 2288710 "SPLNODE" NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1052 2286229 2286534 2286564 "SPFCAT" 2287008 SPFCAT (NIL) -9 NIL NIL NIL) (-1051 2285166 2285418 2285682 "SPECOUT" NIL SPECOUT (NIL) -7 NIL NIL NIL) (-1050 2275924 2278198 2278228 "SPADXPT" 2282865 SPADXPT (NIL) -9 NIL 2284989 NIL) (-1049 2275726 2275772 2275841 "SPADPRSR" NIL SPADPRSR (NIL) -7 NIL NIL NIL) (-1048 2273382 2275690 2275721 "SPADAST" NIL SPADAST (NIL) -8 NIL NIL NIL) (-1047 2265056 2267145 2267187 "SPACEC" 2271502 SPACEC (NIL T) -9 NIL 2273307 NIL) (-1046 2262885 2265003 2265051 "SPACE3" NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1045 2261818 2262007 2262296 "SORTPAK" NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1044 2260222 2260555 2260966 "SOLVETRA" NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1043 2259487 2259721 2259982 "SOLVESER" NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1042 2255667 2256627 2257622 "SOLVERAD" NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1041 2252025 2252724 2253453 "SOLVEFOR" NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1040 2245811 2251365 2251461 "SNTSCAT" 2251466 SNTSCAT (NIL T T T T) -9 NIL 2251536 NIL) (-1039 2239696 2244452 2244842 "SMTS" NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1038 2233532 2239615 2239691 "SMP" NIL SMP (NIL T T) -8 NIL NIL NIL) (-1037 2231964 2232295 2232693 "SMITH" NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1036 2223633 2228548 2228650 "SMATCAT" 2229993 SMATCAT (NIL NIL T T T) -9 NIL 2230541 NIL) (-1035 2221474 2222458 2223628 "SMATCAT-" NIL SMATCAT- (NIL T NIL T T T) -7 NIL NIL NIL) (-1034 2219066 2220680 2220723 "SKAGG" 2220984 SKAGG (NIL T) -9 NIL 2221118 NIL) (-1033 2215176 2218886 2218997 "SINT" NIL SINT (NIL) -8 NIL NIL 2219038) (-1032 2214986 2215030 2215096 "SIMPAN" NIL SIMPAN (NIL) -7 NIL NIL NIL) (-1031 2214061 2214293 2214561 "SIGNRF" NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1030 2213065 2213227 2213503 "SIGNEF" NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1029 2212411 2212751 2212874 "SIGAST" NIL SIGAST (NIL) -8 NIL NIL NIL) (-1028 2211757 2212064 2212204 "SIG" NIL SIG (NIL) -8 NIL NIL NIL) (-1027 2209868 2210360 2210866 "SHP" NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1026 2203407 2209787 2209863 "SHDP" NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1025 2202910 2203147 2203177 "SGROUP" 2203270 SGROUP (NIL) -9 NIL 2203332 NIL) (-1024 2202800 2202832 2202905 "SGROUP-" NIL SGROUP- (NIL T) -7 NIL NIL NIL) (-1023 2202438 2202478 2202519 "SGPOPC" 2202524 SGPOPC (NIL T) -9 NIL 2202725 NIL) (-1022 2201972 2202249 2202355 "SGPOP" NIL SGPOP (NIL T) -8 NIL NIL NIL) (-1021 2199395 2200164 2200886 "SGCF" NIL SGCF (NIL) -7 NIL NIL NIL) (-1020 2193280 2198834 2198930 "SFRTCAT" 2198935 SFRTCAT (NIL T T T T) -9 NIL 2198973 NIL) (-1019 2187672 2188785 2189912 "SFRGCD" NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1018 2181848 2183009 2184173 "SFQCMPK" NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1017 2180820 2181722 2181843 "SEXOF" NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1016 2176428 2177323 2177418 "SEXCAT" 2180031 SEXCAT (NIL T T T T T) -9 NIL 2180582 NIL) (-1015 2175401 2176355 2176423 "SEX" NIL SEX (NIL) -8 NIL NIL NIL) (-1014 2173792 2174377 2174679 "SETMN" NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1013 2173315 2173500 2173530 "SETCAT" 2173647 SETCAT (NIL) -9 NIL 2173731 NIL) (-1012 2173147 2173211 2173310 "SETCAT-" NIL SETCAT- (NIL T) -7 NIL NIL NIL) (-1011 2169370 2171601 2171644 "SETAGG" 2172512 SETAGG (NIL T) -9 NIL 2172850 NIL) (-1010 2168976 2169128 2169365 "SETAGG-" NIL SETAGG- (NIL T T) -7 NIL NIL NIL) (-1009 2165930 2168923 2168971 "SET" NIL SET (NIL T) -8 NIL NIL NIL) (-1008 2165396 2165706 2165806 "SEQAST" NIL SEQAST (NIL) -8 NIL NIL NIL) (-1007 2164523 2164889 2164950 "SEGXCAT" 2165236 SEGXCAT (NIL T T) -9 NIL 2165356 NIL) (-1006 2163448 2163716 2163759 "SEGCAT" 2164281 SEGCAT (NIL T) -9 NIL 2164502 NIL) (-1005 2163128 2163193 2163306 "SEGBIND2" NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1004 2162194 2162664 2162872 "SEGBIND" NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1003 2161772 2162051 2162127 "SEGAST" NIL SEGAST (NIL) -8 NIL NIL NIL) (-1002 2161137 2161273 2161477 "SEG2" NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1001 2160203 2160950 2161132 "SEG" NIL SEG (NIL T) -8 NIL NIL NIL) (-1000 2159456 2160151 2160198 "SDVAR" NIL SDVAR (NIL T) -8 NIL NIL NIL) (-999 2151007 2159325 2159451 "SDPOL" NIL SDPOL (NIL T) -8 NIL NIL NIL) (-998 2149867 2150157 2150474 "SCPKG" NIL SCPKG (NIL T) -7 NIL NIL NIL) (-997 2149173 2149385 2149573 "SCOPE" NIL SCOPE (NIL) -8 NIL NIL NIL) (-996 2148523 2148680 2148856 "SCACHE" NIL SCACHE (NIL T) -7 NIL NIL NIL) (-995 2148096 2148327 2148355 "SASTCAT" 2148360 SASTCAT (NIL) -9 NIL 2148373 NIL) (-994 2147563 2147988 2148062 "SAOS" NIL SAOS (NIL) -8 NIL NIL NIL) (-993 2147166 2147207 2147378 "SAERFFC" NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-992 2146797 2146838 2146995 "SAEFACT" NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-991 2139942 2146714 2146792 "SAE" NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-990 2138592 2138921 2139317 "RURPK" NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-989 2137353 2137714 2138014 "RULESET" NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-988 2136977 2137198 2137279 "RULECOLD" NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-987 2134437 2135071 2135524 "RULE" NIL RULE (NIL T T T) -8 NIL NIL NIL) (-986 2134276 2134309 2134377 "RTVALUE" NIL RTVALUE (NIL) -8 NIL NIL NIL) (-985 2133767 2134070 2134161 "RSTRCAST" NIL RSTRCAST (NIL) -8 NIL NIL NIL) (-984 2129395 2130263 2131174 "RSETGCD" NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-983 2118214 2123768 2123862 "RSETCAT" 2127918 RSETCAT (NIL T T T T) -9 NIL 2129006 NIL) (-982 2116752 2117394 2118209 "RSETCAT-" NIL RSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-981 2110526 2111971 2113478 "RSDCMPK" NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-980 2108408 2108965 2109037 "RRCC" 2110110 RRCC (NIL T T) -9 NIL 2110451 NIL) (-979 2107933 2108132 2108403 "RRCC-" NIL RRCC- (NIL T T T) -7 NIL NIL NIL) (-978 2107403 2107713 2107811 "RPTAST" NIL RPTAST (NIL) -8 NIL NIL NIL) (-977 2080019 2090668 2090732 "RPOLCAT" 2101206 RPOLCAT (NIL T T T) -9 NIL 2104351 NIL) (-976 2074118 2076941 2080014 "RPOLCAT-" NIL RPOLCAT- (NIL T T T T) -7 NIL NIL NIL) (-975 2070349 2073866 2074004 "ROMAN" NIL ROMAN (NIL) -8 NIL NIL NIL) (-974 2068677 2069416 2069672 "ROIRC" NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-973 2064382 2067132 2067160 "RNS" 2067422 RNS (NIL) -9 NIL 2067674 NIL) (-972 2063285 2063772 2064309 "RNS-" NIL RNS- (NIL T) -7 NIL NIL NIL) (-971 2062403 2062804 2063004 "RNGBIND" NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-970 2061691 2062191 2062219 "RNG" 2062224 RNG (NIL) -9 NIL 2062245 NIL) (-969 2060984 2061458 2061498 "RMODULE" 2061503 RMODULE (NIL T) -9 NIL 2061529 NIL) (-968 2059923 2060029 2060359 "RMCAT2" NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-967 2056801 2059513 2059806 "RMATRIX" NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-966 2049481 2051942 2052054 "RMATCAT" 2055359 RMATCAT (NIL NIL NIL T T T) -9 NIL 2056336 NIL) (-965 2048998 2049177 2049476 "RMATCAT-" NIL RMATCAT- (NIL T NIL NIL T T T) -7 NIL NIL NIL) (-964 2048566 2048777 2048818 "RLINSET" 2048879 RLINSET (NIL T) -9 NIL 2048923 NIL) (-963 2048211 2048292 2048418 "RINTERP" NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-962 2047119 2047788 2047816 "RING" 2047871 RING (NIL) -9 NIL 2047963 NIL) (-961 2046964 2047020 2047114 "RING-" NIL RING- (NIL T) -7 NIL NIL NIL) (-960 2046018 2046285 2046541 "RIDIST" NIL RIDIST (NIL) -7 NIL NIL NIL) (-959 2037005 2045646 2045847 "RGCHAIN" NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-958 2036261 2036741 2036780 "RGBCSPC" 2036837 RGBCSPC (NIL T) -9 NIL 2036888 NIL) (-957 2035326 2035781 2035820 "RGBCMDL" 2036048 RGBCMDL (NIL T) -9 NIL 2036162 NIL) (-956 2035038 2035107 2035208 "RFFACTOR" NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-955 2034801 2034842 2034937 "RFFACT" NIL RFFACT (NIL T) -7 NIL NIL NIL) (-954 2033225 2033655 2034035 "RFDIST" NIL RFDIST (NIL) -7 NIL NIL NIL) (-953 2030812 2031480 2032148 "RF" NIL RF (NIL T) -7 NIL NIL NIL) (-952 2030362 2030460 2030620 "RETSOL" NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-951 2029984 2030082 2030123 "RETRACT" 2030254 RETRACT (NIL T) -9 NIL 2030341 NIL) (-950 2029864 2029895 2029979 "RETRACT-" NIL RETRACT- (NIL T T) -7 NIL NIL NIL) (-949 2029466 2029738 2029805 "RETAST" NIL RETAST (NIL) -8 NIL NIL NIL) (-948 2028010 2028837 2029034 "RESRING" NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-947 2027701 2027762 2027858 "RESLATC" NIL RESLATC (NIL T) -7 NIL NIL NIL) (-946 2027444 2027485 2027590 "REPSQ" NIL REPSQ (NIL T) -7 NIL NIL NIL) (-945 2027179 2027220 2027329 "REPDB" NIL REPDB (NIL T) -7 NIL NIL NIL) (-944 2022250 2023701 2024916 "REP2" NIL REP2 (NIL T) -7 NIL NIL NIL) (-943 2019349 2020107 2020915 "REP1" NIL REP1 (NIL T) -7 NIL NIL NIL) (-942 2017318 2017940 2018540 "REP" NIL REP (NIL) -7 NIL NIL NIL) (-941 2009953 2015869 2016305 "REGSET" NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-940 2009265 2009545 2009694 "REF" NIL REF (NIL T) -8 NIL NIL NIL) (-939 2008750 2008865 2009030 "REDORDER" NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-938 2004407 2008153 2008374 "RECLOS" NIL RECLOS (NIL T) -8 NIL NIL NIL) (-937 2003639 2003838 2004051 "REALSOLV" NIL REALSOLV (NIL) -7 NIL NIL NIL) (-936 2000929 2001767 2002649 "REAL0Q" NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-935 1997511 1998547 1999606 "REAL0" NIL REAL0 (NIL T) -7 NIL NIL NIL) (-934 1997347 1997400 1997428 "REAL" 1997433 REAL (NIL) -9 NIL 1997468 NIL) (-933 1996837 1997141 1997232 "RDUCEAST" NIL RDUCEAST (NIL) -8 NIL NIL NIL) (-932 1996317 1996395 1996600 "RDIV" NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-931 1995550 1995742 1995953 "RDIST" NIL RDIST (NIL T) -7 NIL NIL NIL) (-930 1994438 1994735 1995102 "RDETRS" NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-929 1992705 1993175 1993708 "RDETR" NIL RDETR (NIL T T) -7 NIL NIL NIL) (-928 1991627 1991904 1992291 "RDEEFS" NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-927 1990454 1990763 1991182 "RDEEF" NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-926 1983866 1987314 1987342 "RCFIELD" 1988619 RCFIELD (NIL) -9 NIL 1989349 NIL) (-925 1982484 1983096 1983793 "RCFIELD-" NIL RCFIELD- (NIL T) -7 NIL NIL NIL) (-924 1978684 1980576 1980617 "RCAGG" 1981684 RCAGG (NIL T) -9 NIL 1982145 NIL) (-923 1978411 1978521 1978679 "RCAGG-" NIL RCAGG- (NIL T T) -7 NIL NIL NIL) (-922 1977856 1977985 1978146 "RATRET" NIL RATRET (NIL T) -7 NIL NIL NIL) (-921 1977473 1977552 1977671 "RATFACT" NIL RATFACT (NIL T) -7 NIL NIL NIL) (-920 1976888 1977038 1977188 "RANDSRC" NIL RANDSRC (NIL) -7 NIL NIL NIL) (-919 1976670 1976720 1976791 "RADUTIL" NIL RADUTIL (NIL) -7 NIL NIL NIL) (-918 1969176 1975788 1976096 "RADIX" NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-917 1958942 1969043 1969171 "RADFF" NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-916 1958576 1958669 1958697 "RADCAT" 1958854 RADCAT (NIL) -9 NIL NIL NIL) (-915 1958414 1958474 1958571 "RADCAT-" NIL RADCAT- (NIL T) -7 NIL NIL NIL) (-914 1956514 1958245 1958334 "QUEUE" NIL QUEUE (NIL T) -8 NIL NIL NIL) (-913 1956195 1956244 1956371 "QUATCT2" NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-912 1948546 1952566 1952606 "QUATCAT" 1953384 QUATCAT (NIL T) -9 NIL 1954148 NIL) (-911 1945796 1947076 1948452 "QUATCAT-" NIL QUATCAT- (NIL T T) -7 NIL NIL NIL) (-910 1941700 1945746 1945791 "QUAT" NIL QUAT (NIL T) -8 NIL NIL NIL) (-909 1939087 1940754 1940795 "QUAGG" 1941170 QUAGG (NIL T) -9 NIL 1941344 NIL) (-908 1938689 1938961 1939028 "QQUTAST" NIL QQUTAST (NIL) -8 NIL NIL NIL) (-907 1937727 1938325 1938488 "QFORM" NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-906 1937408 1937457 1937584 "QFCAT2" NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-905 1927095 1933202 1933242 "QFCAT" 1933900 QFCAT (NIL T) -9 NIL 1934893 NIL) (-904 1923979 1925418 1927001 "QFCAT-" NIL QFCAT- (NIL T T) -7 NIL NIL NIL) (-903 1923525 1923659 1923789 "QEQUAT" NIL QEQUAT (NIL) -8 NIL NIL NIL) (-902 1917721 1918882 1920044 "QCMPACK" NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-901 1917140 1917320 1917552 "QALGSET2" NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-900 1914962 1915490 1915913 "QALGSET" NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-899 1913861 1914103 1914420 "PWFFINTB" NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-898 1912222 1912420 1912773 "PUSHVAR" NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-897 1907978 1909194 1909235 "PTRANFN" 1911119 PTRANFN (NIL T) -9 NIL NIL NIL) (-896 1906625 1906970 1907291 "PTPACK" NIL PTPACK (NIL T) -7 NIL NIL NIL) (-895 1906318 1906381 1906488 "PTFUNC2" NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-894 1900391 1905114 1905154 "PTCAT" 1905446 PTCAT (NIL T) -9 NIL 1905599 NIL) (-893 1900084 1900125 1900249 "PSQFR" NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-892 1898963 1899279 1899613 "PSEUDLIN" NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-891 1887842 1890403 1892712 "PSETPK" NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-890 1880749 1883645 1883739 "PSETCAT" 1886713 PSETCAT (NIL T T T T) -9 NIL 1887520 NIL) (-889 1879199 1879933 1880744 "PSETCAT-" NIL PSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-888 1878518 1878713 1878741 "PSCURVE" 1879009 PSCURVE (NIL) -9 NIL 1879176 NIL) (-887 1874182 1875940 1876004 "PSCAT" 1876839 PSCAT (NIL T T T) -9 NIL 1877078 NIL) (-886 1873496 1873778 1874177 "PSCAT-" NIL PSCAT- (NIL T T T T) -7 NIL NIL NIL) (-885 1871925 1872808 1873071 "PRTITION" NIL PRTITION (NIL) -8 NIL NIL NIL) (-884 1871416 1871719 1871810 "PRTDAST" NIL PRTDAST (NIL) -8 NIL NIL NIL) (-883 1862436 1864858 1867046 "PRS" NIL PRS (NIL T T) -7 NIL NIL NIL) (-882 1860179 1861756 1861796 "PRQAGG" 1861979 PRQAGG (NIL T) -9 NIL 1862080 NIL) (-881 1859352 1859798 1859826 "PROPLOG" 1859965 PROPLOG (NIL) -9 NIL 1860079 NIL) (-880 1859027 1859090 1859213 "PROPFUN2" NIL PROPFUN2 (NIL T T) -7 NIL NIL NIL) (-879 1858463 1858602 1858774 "PROPFUN1" NIL PROPFUN1 (NIL T) -7 NIL NIL NIL) (-878 1856711 1857474 1857771 "PROPFRML" NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-877 1856263 1856395 1856523 "PROPERTY" NIL PROPERTY (NIL) -8 NIL NIL NIL) (-876 1850919 1855203 1856023 "PRODUCT" NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-875 1850748 1850786 1850845 "PRINT" NIL PRINT (NIL) -7 NIL NIL NIL) (-874 1850187 1850327 1850478 "PRIMES" NIL PRIMES (NIL T) -7 NIL NIL NIL) (-873 1848655 1849074 1849540 "PRIMELT" NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-872 1848372 1848433 1848461 "PRIMCAT" 1848585 PRIMCAT (NIL) -9 NIL NIL NIL) (-871 1847543 1847739 1847967 "PRIMARR2" NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-870 1843421 1847493 1847538 "PRIMARR" NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-869 1843120 1843182 1843293 "PREASSOC" NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-868 1840320 1842769 1843002 "PR" NIL PR (NIL T T) -8 NIL NIL NIL) (-867 1839771 1839928 1839956 "PPCURVE" 1840161 PPCURVE (NIL) -9 NIL 1840297 NIL) (-866 1839384 1839629 1839712 "PORTNUM" NIL PORTNUM (NIL) -8 NIL NIL NIL) (-865 1837140 1837561 1838153 "POLYROOT" NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-864 1836583 1836647 1836880 "POLYLIFT" NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-863 1833303 1833789 1834400 "POLYCATQ" NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-862 1818958 1825023 1825087 "POLYCAT" 1828572 POLYCAT (NIL T T T) -9 NIL 1830449 NIL) (-861 1814468 1816615 1818953 "POLYCAT-" NIL POLYCAT- (NIL T T T T) -7 NIL NIL NIL) (-860 1814125 1814199 1814318 "POLY2UP" NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-859 1813818 1813881 1813988 "POLY2" NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-858 1807245 1813551 1813710 "POLY" NIL POLY (NIL T) -8 NIL NIL NIL) (-857 1806132 1806395 1806671 "POLUTIL" NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-856 1804736 1805049 1805379 "POLTOPOL" NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-855 1799898 1804686 1804731 "POINT" NIL POINT (NIL T) -8 NIL NIL NIL) (-854 1798386 1798797 1799172 "PNTHEORY" NIL PNTHEORY (NIL) -7 NIL NIL NIL) (-853 1797143 1797452 1797848 "PMTOOLS" NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-852 1796814 1796898 1797015 "PMSYM" NIL PMSYM (NIL T) -7 NIL NIL NIL) (-851 1796393 1796468 1796642 "PMQFCAT" NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-850 1795879 1795975 1796135 "PMPREDFS" NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-849 1795351 1795471 1795625 "PMPRED" NIL PMPRED (NIL T) -7 NIL NIL NIL) (-848 1794246 1794464 1794841 "PMPLCAT" NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-847 1793857 1793942 1794094 "PMLSAGG" NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-846 1793408 1793490 1793671 "PMKERNEL" NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-845 1793100 1793181 1793294 "PMINS" NIL PMINS (NIL T) -7 NIL NIL NIL) (-844 1792613 1792688 1792896 "PMFS" NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-843 1791961 1792089 1792291 "PMDOWN" NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-842 1791323 1791457 1791620 "PMASSFS" NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-841 1790627 1790809 1790990 "PMASS" NIL PMASS (NIL) -7 NIL NIL NIL) (-840 1790350 1790424 1790518 "PLOTTOOL" NIL PLOTTOOL (NIL) -7 NIL NIL NIL) (-839 1786918 1788107 1789023 "PLOT3D" NIL PLOT3D (NIL) -8 NIL NIL NIL) (-838 1786002 1786203 1786438 "PLOT1" NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-837 1781567 1782951 1784093 "PLOT" NIL PLOT (NIL) -8 NIL NIL NIL) (-836 1761488 1766375 1771222 "PLEQN" NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-835 1761228 1761281 1761384 "PINTERPA" NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-834 1760669 1760803 1760983 "PINTERP" NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-833 1758740 1759899 1759927 "PID" 1760124 PID (NIL) -9 NIL 1760251 NIL) (-832 1758528 1758571 1758646 "PICOERCE" NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-831 1757715 1758375 1758462 "PI" NIL PI (NIL) -8 NIL NIL 1758502) (-830 1757167 1757318 1757494 "PGROEB" NIL PGROEB (NIL T) -7 NIL NIL NIL) (-829 1753495 1754453 1755358 "PGE" NIL PGE (NIL) -7 NIL NIL NIL) (-828 1751859 1752148 1752514 "PGCD" NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-827 1751301 1751416 1751577 "PFRPAC" NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-826 1747906 1750170 1750523 "PFR" NIL PFR (NIL T) -8 NIL NIL NIL) (-825 1746512 1746792 1747117 "PFOTOOLS" NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-824 1745277 1745531 1745879 "PFOQ" NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-823 1743987 1744214 1744566 "PFO" NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-822 1741059 1742557 1742585 "PFECAT" 1743178 PFECAT (NIL) -9 NIL 1743555 NIL) (-821 1740682 1740847 1741054 "PFECAT-" NIL PFECAT- (NIL T) -7 NIL NIL NIL) (-820 1739506 1739788 1740089 "PFBRU" NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-819 1737688 1738075 1738505 "PFBR" NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-818 1733722 1737614 1737683 "PF" NIL PF (NIL NIL) -8 NIL NIL NIL) (-817 1729625 1730772 1731639 "PERMGRP" NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-816 1727557 1728646 1728687 "PERMCAT" 1729086 PERMCAT (NIL T) -9 NIL 1729383 NIL) (-815 1727253 1727300 1727423 "PERMAN" NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-814 1723702 1725383 1726028 "PERM" NIL PERM (NIL T) -8 NIL NIL NIL) (-813 1721167 1723457 1723578 "PENDTREE" NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-812 1720036 1720299 1720340 "PDSPC" 1720873 PDSPC (NIL T) -9 NIL 1721118 NIL) (-811 1719403 1719669 1720031 "PDSPC-" NIL PDSPC- (NIL T T) -7 NIL NIL NIL) (-810 1718100 1719031 1719072 "PDRING" 1719077 PDRING (NIL T) -9 NIL 1719104 NIL) (-809 1716841 1717599 1717652 "PDMOD" 1717657 PDMOD (NIL T T) -9 NIL 1717760 NIL) (-808 1715934 1716146 1716395 "PDECOMP" NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-807 1715539 1715606 1715660 "PDDOM" 1715825 PDDOM (NIL T T) -9 NIL 1715905 NIL) (-806 1715391 1715427 1715534 "PDDOM-" NIL PDDOM- (NIL T T T) -7 NIL NIL NIL) (-805 1715177 1715216 1715305 "PCOMP" NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-804 1713494 1714248 1714547 "PBWLB" NIL PBWLB (NIL T) -8 NIL NIL NIL) (-803 1713183 1713246 1713355 "PATTERN2" NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-802 1711321 1711751 1712202 "PATTERN1" NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-801 1704941 1706770 1708062 "PATTERN" NIL PATTERN (NIL T) -8 NIL NIL NIL) (-800 1704572 1704645 1704777 "PATRES2" NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-799 1702274 1702954 1703435 "PATRES" NIL PATRES (NIL T T) -8 NIL NIL NIL) (-798 1700478 1700906 1701309 "PATMATCH" NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-797 1699924 1700172 1700213 "PATMAB" 1700320 PATMAB (NIL T) -9 NIL 1700403 NIL) (-796 1698571 1698975 1699232 "PATLRES" NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-795 1698109 1698240 1698281 "PATAB" 1698286 PATAB (NIL T) -9 NIL 1698458 NIL) (-794 1696652 1697089 1697512 "PARTPERM" NIL PARTPERM (NIL) -7 NIL NIL NIL) (-793 1696330 1696405 1696507 "PARSURF" NIL PARSURF (NIL T) -8 NIL NIL NIL) (-792 1696019 1696082 1696191 "PARSU2" NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-791 1695824 1695870 1695937 "PARSER" NIL PARSER (NIL) -7 NIL NIL NIL) (-790 1695502 1695577 1695679 "PARSCURV" NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-789 1695191 1695254 1695363 "PARSC2" NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-788 1694882 1694952 1695049 "PARPCURV" NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-787 1694571 1694634 1694743 "PARPC2" NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-786 1693732 1694111 1694290 "PARAMAST" NIL PARAMAST (NIL) -8 NIL NIL NIL) (-785 1693339 1693437 1693556 "PAN2EXPR" NIL PAN2EXPR (NIL) -7 NIL NIL NIL) (-784 1692307 1692732 1692951 "PALETTE" NIL PALETTE (NIL) -8 NIL NIL NIL) (-783 1690972 1691626 1691986 "PAIR" NIL PAIR (NIL T T) -8 NIL NIL NIL) (-782 1684126 1690376 1690570 "PADICRC" NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-781 1676611 1683624 1683808 "PADICRAT" NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-780 1673398 1675251 1675291 "PADICCT" 1675872 PADICCT (NIL NIL) -9 NIL 1676154 NIL) (-779 1671452 1673348 1673393 "PADIC" NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-778 1670614 1670824 1671090 "PADEPAC" NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-777 1669956 1670099 1670303 "PADE" NIL PADE (NIL T T T) -7 NIL NIL NIL) (-776 1668401 1669364 1669642 "OWP" NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-775 1667925 1668184 1668281 "OVERSET" NIL OVERSET (NIL) -8 NIL NIL NIL) (-774 1666984 1667662 1667834 "OVAR" NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-773 1657406 1660275 1662474 "OUTFORM" NIL OUTFORM (NIL) -8 NIL NIL NIL) (-772 1656798 1657112 1657238 "OUTBFILE" NIL OUTBFILE (NIL) -8 NIL NIL NIL) (-771 1656075 1656270 1656298 "OUTBCON" 1656616 OUTBCON (NIL) -9 NIL 1656782 NIL) (-770 1655783 1655913 1656070 "OUTBCON-" NIL OUTBCON- (NIL T) -7 NIL NIL NIL) (-769 1655164 1655309 1655470 "OUT" NIL OUT (NIL) -7 NIL NIL NIL) (-768 1654535 1654962 1655051 "OSI" NIL OSI (NIL) -8 NIL NIL NIL) (-767 1653950 1654365 1654393 "OSGROUP" 1654398 OSGROUP (NIL) -9 NIL 1654420 NIL) (-766 1652914 1653175 1653460 "ORTHPOL" NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-765 1650247 1652789 1652909 "OREUP" NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-764 1647452 1649998 1650124 "ORESUP" NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-763 1645470 1645998 1646558 "OREPCTO" NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-762 1638874 1641352 1641392 "OREPCAT" 1643713 OREPCAT (NIL T) -9 NIL 1644815 NIL) (-761 1636900 1637834 1638869 "OREPCAT-" NIL OREPCAT- (NIL T T) -7 NIL NIL NIL) (-760 1636097 1636368 1636396 "ORDTYPE" 1636701 ORDTYPE (NIL) -9 NIL 1636859 NIL) (-759 1635631 1635842 1636092 "ORDTYPE-" NIL ORDTYPE- (NIL T) -7 NIL NIL NIL) (-758 1635093 1635469 1635626 "ORDSTRCT" NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-757 1634587 1634950 1634978 "ORDSET" 1634983 ORDSET (NIL) -9 NIL 1635005 NIL) (-756 1633227 1634187 1634215 "ORDRING" 1634220 ORDRING (NIL) -9 NIL 1634248 NIL) (-755 1632475 1633032 1633060 "ORDMON" 1633065 ORDMON (NIL) -9 NIL 1633086 NIL) (-754 1631779 1631941 1632133 "ORDFUNS" NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-753 1630990 1631498 1631526 "ORDFIN" 1631591 ORDFIN (NIL) -9 NIL 1631665 NIL) (-752 1630384 1630523 1630709 "ORDCOMP2" NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-751 1627158 1629352 1629758 "ORDCOMP" NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-750 1626565 1626920 1627025 "OPSIG" NIL OPSIG (NIL) -8 NIL NIL NIL) (-749 1626373 1626418 1626484 "OPQUERY" NIL OPQUERY (NIL) -7 NIL NIL NIL) (-748 1625674 1625950 1625991 "OPERCAT" 1626202 OPERCAT (NIL T) -9 NIL 1626298 NIL) (-747 1625486 1625553 1625669 "OPERCAT-" NIL OPERCAT- (NIL T T) -7 NIL NIL NIL) (-746 1622916 1624288 1624784 "OP" NIL OP (NIL T) -8 NIL NIL NIL) (-745 1622337 1622464 1622638 "ONECOMP2" NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-744 1619337 1621476 1621842 "ONECOMP" NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-743 1615968 1618767 1618807 "OMSAGG" 1618868 OMSAGG (NIL T) -9 NIL 1618932 NIL) (-742 1614444 1615639 1615807 "OMLO" NIL OMLO (NIL T T) -8 NIL NIL NIL) (-741 1612715 1613894 1613922 "OINTDOM" 1613927 OINTDOM (NIL) -9 NIL 1613948 NIL) (-740 1610145 1611717 1612046 "OFMONOID" NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-739 1609399 1610095 1610140 "ODVAR" NIL ODVAR (NIL T) -8 NIL NIL NIL) (-738 1606665 1609240 1609394 "ODR" NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-737 1598266 1606536 1606660 "ODPOL" NIL ODPOL (NIL T) -8 NIL NIL NIL) (-736 1591776 1598157 1598261 "ODP" NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-735 1590748 1590985 1591258 "ODETOOLS" NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-734 1588382 1589052 1589756 "ODESYS" NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-733 1584159 1585119 1586142 "ODERTRIC" NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-732 1583667 1583755 1583949 "ODERED" NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-731 1581116 1581698 1582371 "ODERAT" NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-730 1578511 1579019 1579615 "ODEPRRIC" NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-729 1575508 1576047 1576693 "ODEPRIM" NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-728 1574863 1574971 1575229 "ODEPAL" NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-727 1574021 1574146 1574367 "ODEINT" NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-726 1570305 1571101 1572014 "ODEEF" NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-725 1569745 1569840 1570062 "ODECONST" NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-724 1569426 1569475 1569602 "OCTCT2" NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-723 1566093 1569225 1569344 "OCT" NIL OCT (NIL T) -8 NIL NIL NIL) (-722 1565284 1565875 1565903 "OCAMON" 1565908 OCAMON (NIL) -9 NIL 1565929 NIL) (-721 1559560 1562310 1562350 "OC" 1563445 OC (NIL T) -9 NIL 1564301 NIL) (-720 1557560 1558486 1559466 "OC-" NIL OC- (NIL T T) -7 NIL NIL NIL) (-719 1556976 1557394 1557422 "OASGP" 1557427 OASGP (NIL) -9 NIL 1557447 NIL) (-718 1556070 1556688 1556716 "OAMONS" 1556756 OAMONS (NIL) -9 NIL 1556799 NIL) (-717 1555246 1555796 1555824 "OAMON" 1555881 OAMON (NIL) -9 NIL 1555932 NIL) (-716 1555142 1555174 1555241 "OAMON-" NIL OAMON- (NIL T) -7 NIL NIL NIL) (-715 1553924 1554667 1554695 "OAGROUP" 1554841 OAGROUP (NIL) -9 NIL 1554933 NIL) (-714 1553715 1553802 1553919 "OAGROUP-" NIL OAGROUP- (NIL T) -7 NIL NIL NIL) (-713 1553455 1553511 1553599 "NUMTUBE" NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-712 1548517 1550080 1551607 "NUMQUAD" NIL NUMQUAD (NIL) -7 NIL NIL NIL) (-711 1545212 1546246 1547281 "NUMODE" NIL NUMODE (NIL) -7 NIL NIL NIL) (-710 1544322 1544555 1544773 "NUMFMT" NIL NUMFMT (NIL) -7 NIL NIL NIL) (-709 1533183 1536211 1538659 "NUMERIC" NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-708 1527070 1532624 1532718 "NTSCAT" 1532723 NTSCAT (NIL T T T T) -9 NIL 1532761 NIL) (-707 1526411 1526590 1526783 "NTPOLFN" NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-706 1526104 1526167 1526274 "NSUP2" NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-705 1513835 1523724 1524534 "NSUP" NIL NSUP (NIL T) -8 NIL NIL NIL) (-704 1502908 1513700 1513830 "NSMP" NIL NSMP (NIL T T) -8 NIL NIL NIL) (-703 1501628 1501953 1502310 "NREP" NIL NREP (NIL T) -7 NIL NIL NIL) (-702 1500464 1500728 1501086 "NPCOEF" NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-701 1499631 1499764 1499980 "NORMRETR" NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-700 1497949 1498268 1498674 "NORMPK" NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-699 1497662 1497696 1497820 "NORMMA" NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-698 1497481 1497516 1497585 "NONE1" NIL NONE1 (NIL T) -7 NIL NIL NIL) (-697 1497257 1497447 1497476 "NONE" NIL NONE (NIL) -8 NIL NIL NIL) (-696 1496821 1496888 1497065 "NODE1" NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-695 1495139 1496184 1496439 "NNI" NIL NNI (NIL) -8 NIL NIL 1496786) (-694 1493867 1494204 1494568 "NLINSOL" NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-693 1492844 1493096 1493398 "NFINTBAS" NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-692 1491931 1492496 1492537 "NETCLT" 1492708 NETCLT (NIL T) -9 NIL 1492789 NIL) (-691 1490835 1491102 1491383 "NCODIV" NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-690 1490634 1490677 1490752 "NCNTFRAC" NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-689 1489165 1489553 1489973 "NCEP" NIL NCEP (NIL T) -7 NIL NIL NIL) (-688 1487829 1488764 1488792 "NASRING" 1488902 NASRING (NIL) -9 NIL 1488982 NIL) (-687 1487674 1487730 1487824 "NASRING-" NIL NASRING- (NIL T) -7 NIL NIL NIL) (-686 1486634 1487281 1487309 "NARNG" 1487426 NARNG (NIL) -9 NIL 1487517 NIL) (-685 1486410 1486495 1486629 "NARNG-" NIL NARNG- (NIL T) -7 NIL NIL NIL) (-684 1485207 1485930 1485970 "NAALG" 1486049 NAALG (NIL T) -9 NIL 1486110 NIL) (-683 1485077 1485112 1485202 "NAALG-" NIL NAALG- (NIL T T) -7 NIL NIL NIL) (-682 1480056 1481241 1482427 "MULTSQFR" NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-681 1479451 1479538 1479722 "MULTFACT" NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-680 1471525 1475955 1476007 "MTSCAT" 1477067 MTSCAT (NIL T T) -9 NIL 1477581 NIL) (-679 1471291 1471351 1471443 "MTHING" NIL MTHING (NIL T) -7 NIL NIL NIL) (-678 1471117 1471156 1471216 "MSYSCMD" NIL MSYSCMD (NIL) -7 NIL NIL NIL) (-677 1467979 1470668 1470709 "MSETAGG" 1470714 MSETAGG (NIL T) -9 NIL 1470748 NIL) (-676 1464116 1467025 1467343 "MSET" NIL MSET (NIL T) -8 NIL NIL NIL) (-675 1460454 1462213 1462953 "MRING" NIL MRING (NIL T T) -8 NIL NIL NIL) (-674 1460091 1460164 1460293 "MRF2" NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-673 1459744 1459785 1459929 "MRATFAC" NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-672 1457609 1457946 1458377 "MPRFF" NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-671 1451071 1457508 1457604 "MPOLY" NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-670 1450596 1450637 1450845 "MPCPF" NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-669 1450155 1450204 1450387 "MPC3" NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-668 1449429 1449522 1449741 "MPC2" NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-667 1448046 1448407 1448797 "MONOTOOL" NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-666 1447567 1447634 1447673 "MONOPC" 1447733 MONOPC (NIL T) -9 NIL 1447952 NIL) (-665 1447018 1447354 1447482 "MONOP" NIL MONOP (NIL T) -8 NIL NIL NIL) (-664 1446160 1446539 1446567 "MONOID" 1446785 MONOID (NIL) -9 NIL 1446929 NIL) (-663 1445819 1445969 1446155 "MONOID-" NIL MONOID- (NIL T) -7 NIL NIL NIL) (-662 1434819 1441627 1441686 "MONOGEN" 1442360 MONOGEN (NIL T T) -9 NIL 1442816 NIL) (-661 1432831 1433717 1434700 "MONOGEN-" NIL MONOGEN- (NIL T T T) -7 NIL NIL NIL) (-660 1431545 1432089 1432117 "MONADWU" 1432508 MONADWU (NIL) -9 NIL 1432743 NIL) (-659 1431093 1431293 1431540 "MONADWU-" NIL MONADWU- (NIL T) -7 NIL NIL NIL) (-658 1430370 1430671 1430699 "MONAD" 1430906 MONAD (NIL) -9 NIL 1431018 NIL) (-657 1430137 1430233 1430365 "MONAD-" NIL MONAD- (NIL T) -7 NIL NIL NIL) (-656 1428527 1429297 1429576 "MOEBIUS" NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-655 1427692 1428188 1428228 "MODULE" 1428233 MODULE (NIL T) -9 NIL 1428271 NIL) (-654 1427371 1427497 1427687 "MODULE-" NIL MODULE- (NIL T T) -7 NIL NIL NIL) (-653 1425146 1425968 1426282 "MODRING" NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-652 1422389 1423742 1424255 "MODOP" NIL MODOP (NIL T T) -8 NIL NIL NIL) (-651 1421023 1421597 1421873 "MODMONOM" NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-650 1410306 1419688 1420101 "MODMON" NIL MODMON (NIL T T) -8 NIL NIL NIL) (-649 1407326 1409306 1409575 "MODFIELD" NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-648 1406410 1406777 1406967 "MMLFORM" NIL MMLFORM (NIL) -8 NIL NIL NIL) (-647 1405979 1406028 1406207 "MMAP" NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-646 1403866 1404800 1404840 "MLO" 1405257 MLO (NIL T) -9 NIL 1405497 NIL) (-645 1401747 1402274 1402869 "MLIFT" NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-644 1401215 1401311 1401465 "MKUCFUNC" NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-643 1400885 1400961 1401084 "MKRECORD" NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-642 1400097 1400283 1400511 "MKFUNC" NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-641 1399590 1399706 1399862 "MKFLCFN" NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-640 1398962 1399076 1399261 "MKBCFUNC" NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-639 1397989 1398262 1398539 "MHROWRED" NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-638 1397422 1397510 1397681 "MFINFACT" NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-637 1394580 1395459 1396338 "MESH" NIL MESH (NIL) -7 NIL NIL NIL) (-636 1393247 1393595 1393948 "MDDFACT" NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-635 1389904 1392371 1392412 "MDAGG" 1392669 MDAGG (NIL T) -9 NIL 1392814 NIL) (-634 1389178 1389342 1389542 "MCDEN" NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-633 1388256 1388542 1388772 "MAYBE" NIL MAYBE (NIL T) -8 NIL NIL NIL) (-632 1386353 1386930 1387491 "MATSTOR" NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-631 1382124 1385943 1386190 "MATRIX" NIL MATRIX (NIL T) -8 NIL NIL NIL) (-630 1378473 1379242 1379976 "MATLIN" NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-629 1377226 1377395 1377724 "MATCAT2" NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-628 1366739 1370328 1370404 "MATCAT" 1375392 MATCAT (NIL T T T) -9 NIL 1376860 NIL) (-627 1364020 1365326 1366734 "MATCAT-" NIL MATCAT- (NIL T T T T) -7 NIL NIL NIL) (-626 1362421 1362781 1363165 "MAPPKG3" NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-625 1361554 1361751 1361973 "MAPPKG2" NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-624 1360305 1360631 1360958 "MAPPKG1" NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-623 1359467 1359869 1360045 "MAPPAST" NIL MAPPAST (NIL) -8 NIL NIL NIL) (-622 1359136 1359200 1359323 "MAPHACK3" NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-621 1358784 1358857 1358971 "MAPHACK2" NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-620 1358319 1358434 1358576 "MAPHACK1" NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-619 1356528 1357296 1357597 "MAGMA" NIL MAGMA (NIL T) -8 NIL NIL NIL) (-618 1356022 1356324 1356414 "MACROAST" NIL MACROAST (NIL) -8 NIL NIL NIL) (-617 1349531 1354337 1354378 "LZSTAGG" 1355155 LZSTAGG (NIL T) -9 NIL 1355445 NIL) (-616 1346650 1348084 1349526 "LZSTAGG-" NIL LZSTAGG- (NIL T T) -7 NIL NIL NIL) (-615 1344037 1345003 1345486 "LWORD" NIL LWORD (NIL T) -8 NIL NIL NIL) (-614 1343618 1343897 1343971 "LSTAST" NIL LSTAST (NIL) -8 NIL NIL NIL) (-613 1335846 1343479 1343613 "LSQM" NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-612 1335209 1335354 1335582 "LSPP" NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-611 1332693 1333391 1334103 "LSMP1" NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-610 1330805 1331128 1331576 "LSMP" NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-609 1323974 1329892 1329933 "LSAGG" 1329995 LSAGG (NIL T) -9 NIL 1330073 NIL) (-608 1321668 1322767 1323969 "LSAGG-" NIL LSAGG- (NIL T T) -7 NIL NIL NIL) (-607 1319180 1321017 1321266 "LPOLY" NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-606 1318847 1318938 1319061 "LPEFRAC" NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-605 1318518 1318597 1318625 "LOGIC" 1318736 LOGIC (NIL) -9 NIL 1318818 NIL) (-604 1318413 1318442 1318513 "LOGIC-" NIL LOGIC- (NIL T) -7 NIL NIL NIL) (-603 1317732 1317890 1318083 "LODOOPS" NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-602 1316517 1316766 1317117 "LODOF" NIL LODOF (NIL T T) -7 NIL NIL NIL) (-601 1312403 1315138 1315178 "LODOCAT" 1315610 LODOCAT (NIL T) -9 NIL 1315821 NIL) (-600 1312196 1312272 1312398 "LODOCAT-" NIL LODOCAT- (NIL T T) -7 NIL NIL NIL) (-599 1309260 1312073 1312191 "LODO2" NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-598 1306422 1309210 1309255 "LODO1" NIL LODO1 (NIL T) -8 NIL NIL NIL) (-597 1303573 1306352 1306417 "LODO" NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-596 1302626 1302801 1303103 "LODEEF" NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-595 1300790 1301888 1302141 "LO" NIL LO (NIL T T T) -8 NIL NIL NIL) (-594 1295885 1298949 1298990 "LNAGG" 1299852 LNAGG (NIL T) -9 NIL 1300287 NIL) (-593 1295272 1295539 1295880 "LNAGG-" NIL LNAGG- (NIL T T) -7 NIL NIL NIL) (-592 1291844 1292785 1293422 "LMOPS" NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-591 1291137 1291611 1291651 "LMODULE" 1291656 LMODULE (NIL T) -9 NIL 1291682 NIL) (-590 1288316 1290874 1290996 "LMDICT" NIL LMDICT (NIL T) -8 NIL NIL NIL) (-589 1287884 1288095 1288136 "LLINSET" 1288197 LLINSET (NIL T) -9 NIL 1288241 NIL) (-588 1287560 1287820 1287879 "LITERAL" NIL LITERAL (NIL T) -8 NIL NIL NIL) (-587 1287159 1287239 1287378 "LIST3" NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-586 1285610 1285958 1286357 "LIST2MAP" NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-585 1284781 1284977 1285205 "LIST2" NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-584 1277828 1284037 1284291 "LIST" NIL LIST (NIL T) -8 NIL NIL NIL) (-583 1277405 1277638 1277679 "LINSET" 1277684 LINSET (NIL T) -9 NIL 1277717 NIL) (-582 1276338 1277028 1277195 "LINFORM" NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-581 1274635 1275359 1275399 "LINEXP" 1275885 LINEXP (NIL T) -9 NIL 1276158 NIL) (-580 1273344 1274244 1274425 "LINELT" NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-579 1272171 1272443 1272745 "LINDEP" NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-578 1271384 1271973 1272083 "LINBASIS" NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-577 1268934 1269656 1270406 "LIMITRF" NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-576 1267564 1267861 1268252 "LIMITPS" NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-575 1266388 1266959 1266999 "LIECAT" 1267139 LIECAT (NIL T) -9 NIL 1267290 NIL) (-574 1266262 1266295 1266383 "LIECAT-" NIL LIECAT- (NIL T T) -7 NIL NIL NIL) (-573 1260550 1265952 1266180 "LIE" NIL LIE (NIL T T) -8 NIL NIL NIL) (-572 1252899 1260226 1260382 "LIB" NIL LIB (NIL) -8 NIL NIL NIL) (-571 1249351 1250300 1251235 "LGROBP" NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-570 1247975 1248883 1248911 "LFCAT" 1249118 LFCAT (NIL) -9 NIL 1249257 NIL) (-569 1246214 1246544 1246889 "LF" NIL LF (NIL T T) -7 NIL NIL NIL) (-568 1243731 1244396 1245077 "LEXTRIPK" NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-567 1240743 1241721 1242224 "LEXP" NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-566 1240234 1240537 1240628 "LETAST" NIL LETAST (NIL) -8 NIL NIL NIL) (-565 1238941 1239265 1239665 "LEADCDET" NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-564 1238207 1238292 1238518 "LAZM3PK" NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-563 1233274 1236775 1237311 "LAUPOL" NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-562 1232899 1232949 1233109 "LAPLACE" NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-561 1231732 1232443 1232483 "LALG" 1232544 LALG (NIL T) -9 NIL 1232602 NIL) (-560 1231515 1231592 1231727 "LALG-" NIL LALG- (NIL T T) -7 NIL NIL NIL) (-559 1229432 1230783 1231034 "LA" NIL LA (NIL T T T) -8 NIL NIL NIL) (-558 1229261 1229291 1229332 "KVTFROM" 1229394 KVTFROM (NIL T) -9 NIL NIL NIL) (-557 1228077 1228792 1228981 "KTVLOGIC" NIL KTVLOGIC (NIL) -8 NIL NIL NIL) (-556 1227906 1227936 1227977 "KRCFROM" 1228039 KRCFROM (NIL T) -9 NIL NIL NIL) (-555 1227008 1227205 1227500 "KOVACIC" NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-554 1226837 1226867 1226908 "KONVERT" 1226970 KONVERT (NIL T) -9 NIL NIL NIL) (-553 1226666 1226696 1226737 "KOERCE" 1226799 KOERCE (NIL T) -9 NIL NIL NIL) (-552 1226236 1226329 1226461 "KERNEL2" NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-551 1224289 1225183 1225555 "KERNEL" NIL KERNEL (NIL T) -8 NIL NIL NIL) (-550 1217466 1222481 1222535 "KDAGG" 1222911 KDAGG (NIL T T) -9 NIL 1223118 NIL) (-549 1217114 1217256 1217461 "KDAGG-" NIL KDAGG- (NIL T T T) -7 NIL NIL NIL) (-548 1209944 1216895 1217052 "KAFILE" NIL KAFILE (NIL T) -8 NIL NIL NIL) (-547 1209594 1209876 1209939 "JVMOP" NIL JVMOP (NIL) -8 NIL NIL NIL) (-546 1208564 1209063 1209312 "JVMMDACC" NIL JVMMDACC (NIL) -8 NIL NIL NIL) (-545 1207690 1208139 1208344 "JVMFDACC" NIL JVMFDACC (NIL) -8 NIL NIL NIL) (-544 1206554 1207046 1207346 "JVMCSTTG" NIL JVMCSTTG (NIL) -8 NIL NIL NIL) (-543 1205836 1206235 1206396 "JVMCFACC" NIL JVMCFACC (NIL) -8 NIL NIL NIL) (-542 1205546 1205782 1205831 "JVMBCODE" NIL JVMBCODE (NIL) -8 NIL NIL NIL) (-541 1199833 1205236 1205464 "JORDAN" NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-540 1199251 1199584 1199704 "JOINAST" NIL JOINAST (NIL) -8 NIL NIL NIL) (-539 1195413 1197428 1197482 "IXAGG" 1198409 IXAGG (NIL T T) -9 NIL 1198866 NIL) (-538 1194619 1194990 1195408 "IXAGG-" NIL IXAGG- (NIL T T T) -7 NIL NIL NIL) (-537 1189873 1194555 1194614 "IVECTOR" NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-536 1188840 1189115 1189378 "ITUPLE" NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-535 1187502 1187709 1188002 "ITRIGMNP" NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-534 1186453 1186675 1186958 "ITFUN3" NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-533 1186128 1186191 1186314 "ITFUN2" NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-532 1185390 1185762 1185936 "ITFORM" NIL ITFORM (NIL) -8 NIL NIL NIL) (-531 1183430 1184666 1184940 "ITAYLOR" NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-530 1173042 1178747 1179904 "ISUPS" NIL ISUPS (NIL T) -8 NIL NIL NIL) (-529 1172287 1172439 1172675 "ISUMP" NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-528 1171778 1172081 1172172 "ISAST" NIL ISAST (NIL) -8 NIL NIL NIL) (-527 1171071 1171162 1171375 "IRURPK" NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-526 1170203 1170428 1170668 "IRSN" NIL IRSN (NIL) -7 NIL NIL NIL) (-525 1168616 1168997 1169425 "IRRF2F" NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-524 1168401 1168445 1168521 "IRREDFFX" NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-523 1167251 1167548 1167843 "IROOT" NIL IROOT (NIL T) -7 NIL NIL NIL) (-522 1166524 1166875 1167026 "IRFORM" NIL IRFORM (NIL) -8 NIL NIL NIL) (-521 1165727 1165858 1166071 "IR2F" NIL IR2F (NIL T T) -7 NIL NIL NIL) (-520 1163882 1164379 1164923 "IR2" NIL IR2 (NIL T T) -7 NIL NIL NIL) (-519 1160995 1162231 1162920 "IR" NIL IR (NIL T) -8 NIL NIL NIL) (-518 1160820 1160860 1160920 "IPRNTPK" NIL IPRNTPK (NIL) -7 NIL NIL NIL) (-517 1156882 1160746 1160815 "IPF" NIL IPF (NIL NIL) -8 NIL NIL NIL) (-516 1154949 1156821 1156877 "IPADIC" NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-515 1154320 1154619 1154749 "IP4ADDR" NIL IP4ADDR (NIL) -8 NIL NIL NIL) (-514 1153773 1154061 1154193 "IOMODE" NIL IOMODE (NIL) -8 NIL NIL NIL) (-513 1152854 1153479 1153605 "IOBFILE" NIL IOBFILE (NIL) -8 NIL NIL NIL) (-512 1152264 1152758 1152786 "IOBCON" 1152791 IOBCON (NIL) -9 NIL 1152812 NIL) (-511 1151835 1151899 1152081 "INVLAPLA" NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-510 1143879 1146250 1148575 "INTTR" NIL INTTR (NIL T T) -7 NIL NIL NIL) (-509 1140990 1141773 1142637 "INTTOOLS" NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-508 1140667 1140764 1140881 "INTSLPE" NIL INTSLPE (NIL) -7 NIL NIL NIL) (-507 1138173 1140603 1140662 "INTRVL" NIL INTRVL (NIL T) -8 NIL NIL NIL) (-506 1136285 1136814 1137381 "INTRF" NIL INTRF (NIL T) -7 NIL NIL NIL) (-505 1135787 1135901 1136041 "INTRET" NIL INTRET (NIL T) -7 NIL NIL NIL) (-504 1134171 1134577 1135039 "INTRAT" NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-503 1131950 1132544 1133155 "INTPM" NIL INTPM (NIL T T) -7 NIL NIL NIL) (-502 1129323 1129933 1130653 "INTPAF" NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-501 1128727 1128885 1129093 "INTHERTR" NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-500 1128246 1128332 1128520 "INTHERAL" NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-499 1126451 1126972 1127429 "INTHEORY" NIL INTHEORY (NIL) -7 NIL NIL NIL) (-498 1119533 1121186 1122915 "INTG0" NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-497 1118899 1119061 1119234 "INTFACT" NIL INTFACT (NIL T) -7 NIL NIL NIL) (-496 1116772 1117236 1117780 "INTEF" NIL INTEF (NIL T T) -7 NIL NIL NIL) (-495 1114960 1115848 1115876 "INTDOM" 1116175 INTDOM (NIL) -9 NIL 1116380 NIL) (-494 1114513 1114715 1114955 "INTDOM-" NIL INTDOM- (NIL T) -7 NIL NIL NIL) (-493 1110384 1112792 1112846 "INTCAT" 1113642 INTCAT (NIL T) -9 NIL 1113958 NIL) (-492 1109949 1110069 1110196 "INTBIT" NIL INTBIT (NIL) -7 NIL NIL NIL) (-491 1108789 1108961 1109267 "INTALG" NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-490 1108362 1108458 1108615 "INTAF" NIL INTAF (NIL T T) -7 NIL NIL NIL) (-489 1101402 1108217 1108357 "INTABL" NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-488 1100700 1101255 1101320 "INT8" NIL INT8 (NIL) -8 NIL NIL 1101354) (-487 1099997 1100552 1100617 "INT64" NIL INT64 (NIL) -8 NIL NIL 1100651) (-486 1099294 1099849 1099914 "INT32" NIL INT32 (NIL) -8 NIL NIL 1099948) (-485 1098591 1099146 1099211 "INT16" NIL INT16 (NIL) -8 NIL NIL 1099245) (-484 1095118 1098510 1098586 "INT" NIL INT (NIL) -8 NIL NIL NIL) (-483 1089239 1092658 1092686 "INS" 1093616 INS (NIL) -9 NIL 1094275 NIL) (-482 1087301 1088219 1089166 "INS-" NIL INS- (NIL T) -7 NIL NIL NIL) (-481 1086360 1086583 1086858 "INPSIGN" NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-480 1085574 1085715 1085912 "INPRODPF" NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-479 1084564 1084705 1084942 "INPRODFF" NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-478 1083716 1083880 1084140 "INNMFACT" NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-477 1082996 1083111 1083299 "INMODGCD" NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-476 1081735 1082004 1082328 "INFSP" NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-475 1081015 1081156 1081339 "INFPROD0" NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-474 1080678 1080750 1080848 "INFORM1" NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-473 1077756 1079242 1079765 "INFORM" NIL INFORM (NIL) -8 NIL NIL NIL) (-472 1077355 1077462 1077576 "INFINITY" NIL INFINITY (NIL) -7 NIL NIL NIL) (-471 1076511 1077156 1077257 "INETCLTS" NIL INETCLTS (NIL) -8 NIL NIL NIL) (-470 1075361 1075629 1075950 "INEP" NIL INEP (NIL T T T) -7 NIL NIL NIL) (-469 1074433 1075291 1075356 "INDE" NIL INDE (NIL T) -8 NIL NIL NIL) (-468 1074058 1074138 1074255 "INCRMAPS" NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-467 1072972 1073517 1073721 "INBFILE" NIL INBFILE (NIL) -8 NIL NIL NIL) (-466 1069067 1070122 1071065 "INBFF" NIL INBFF (NIL T) -7 NIL NIL NIL) (-465 1067921 1068244 1068272 "INBCON" 1068785 INBCON (NIL) -9 NIL 1069051 NIL) (-464 1067375 1067640 1067916 "INBCON-" NIL INBCON- (NIL T) -7 NIL NIL NIL) (-463 1066869 1067171 1067261 "INAST" NIL INAST (NIL) -8 NIL NIL NIL) (-462 1066326 1066635 1066740 "IMPTAST" NIL IMPTAST (NIL) -8 NIL NIL NIL) (-461 1062426 1066218 1066321 "IMATRIX" NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-460 1061266 1061405 1061720 "IMATQF" NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-459 1059690 1059957 1060294 "IMATLIN" NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-458 1057506 1059572 1059685 "IIARRAY2" NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-457 1052413 1057437 1057501 "IFF" NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-456 1051793 1052127 1052242 "IFAST" NIL IFAST (NIL) -8 NIL NIL NIL) (-455 1046600 1051231 1051417 "IFARRAY" NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-454 1045662 1046522 1046595 "IFAMON" NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-453 1045234 1045311 1045365 "IEVALAB" 1045572 IEVALAB (NIL T T) -9 NIL NIL NIL) (-452 1044989 1045069 1045229 "IEVALAB-" NIL IEVALAB- (NIL T T T) -7 NIL NIL NIL) (-451 1044374 1044601 1044758 "IDPT" NIL IDPT (NIL T T) -8 NIL NIL NIL) (-450 1043447 1044294 1044369 "IDPOAMS" NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-449 1042589 1043367 1043442 "IDPOAM" NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-448 1041992 1042523 1042584 "IDPO" NIL IDPO (NIL T T) -8 NIL NIL NIL) (-447 1040472 1040996 1041047 "IDPC" 1041553 IDPC (NIL T T) -9 NIL 1041833 NIL) (-446 1039838 1040394 1040467 "IDPAM" NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-445 1039087 1039760 1039833 "IDPAG" NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-444 1038780 1038993 1039053 "IDENT" NIL IDENT (NIL) -8 NIL NIL NIL) (-443 1038484 1038524 1038563 "IDEMOPC" 1038568 IDEMOPC (NIL T) -9 NIL 1038705 NIL) (-442 1035555 1036436 1037328 "IDECOMP" NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-441 1029181 1030458 1031497 "IDEAL" NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-440 1028443 1028573 1028772 "ICDEN" NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-439 1027616 1028115 1028253 "ICARD" NIL ICARD (NIL) -8 NIL NIL NIL) (-438 1026005 1026336 1026727 "IBPTOOLS" NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-437 1021774 1025961 1026000 "IBITS" NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-436 1019032 1019656 1020351 "IBATOOL" NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-435 1017258 1017738 1018271 "IBACHIN" NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-434 1015022 1017150 1017253 "IARRAY2" NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-433 1010891 1014960 1015017 "IARRAY1" NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-432 1004534 1009855 1010323 "IAN" NIL IAN (NIL) -8 NIL NIL NIL) (-431 1004102 1004165 1004338 "IALGFACT" NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-430 1003594 1003743 1003771 "HYPCAT" 1003978 HYPCAT (NIL) -9 NIL NIL NIL) (-429 1003250 1003403 1003589 "HYPCAT-" NIL HYPCAT- (NIL T) -7 NIL NIL NIL) (-428 1002863 1003108 1003191 "HOSTNAME" NIL HOSTNAME (NIL) -8 NIL NIL NIL) (-427 1002696 1002745 1002786 "HOMOTOP" 1002791 HOMOTOP (NIL T) -9 NIL 1002824 NIL) (-426 999264 1000638 1000679 "HOAGG" 1001654 HOAGG (NIL T) -9 NIL 1002375 NIL) (-425 998270 998740 999259 "HOAGG-" NIL HOAGG- (NIL T T) -7 NIL NIL NIL) (-424 991534 997995 998143 "HEXADEC" NIL HEXADEC (NIL) -8 NIL NIL NIL) (-423 990469 990727 990990 "HEUGCD" NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-422 989436 990334 990464 "HELLFDIV" NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-421 987630 989269 989357 "HEAP" NIL HEAP (NIL T) -8 NIL NIL NIL) (-420 986945 987297 987430 "HEADAST" NIL HEADAST (NIL) -8 NIL NIL NIL) (-419 980498 986878 986940 "HDP" NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-418 973701 980234 980385 "HDMP" NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-417 973154 973311 973474 "HB" NIL HB (NIL) -7 NIL NIL NIL) (-416 966237 973045 973149 "HASHTBL" NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-415 965728 966031 966122 "HASAST" NIL HASAST (NIL) -8 NIL NIL NIL) (-414 963342 965515 965694 "HACKPI" NIL HACKPI (NIL) -8 NIL NIL NIL) (-413 958735 963225 963337 "GTSET" NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-412 951821 958632 958730 "GSTBL" NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-411 943822 951190 951445 "GSERIES" NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-410 942846 943355 943383 "GROUP" 943586 GROUP (NIL) -9 NIL 943720 NIL) (-409 942389 942590 942841 "GROUP-" NIL GROUP- (NIL T) -7 NIL NIL NIL) (-408 941061 941400 941787 "GROEBSOL" NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-407 939883 940240 940291 "GRMOD" 940820 GRMOD (NIL T T) -9 NIL 940986 NIL) (-406 939702 939750 939878 "GRMOD-" NIL GRMOD- (NIL T T T) -7 NIL NIL NIL) (-405 935825 937036 938036 "GRIMAGE" NIL GRIMAGE (NIL) -8 NIL NIL NIL) (-404 934547 934871 935186 "GRDEF" NIL GRDEF (NIL) -7 NIL NIL NIL) (-403 934100 934228 934369 "GRAY" NIL GRAY (NIL) -7 NIL NIL NIL) (-402 933173 933672 933723 "GRALG" 933876 GRALG (NIL T T) -9 NIL 933966 NIL) (-401 932892 932993 933168 "GRALG-" NIL GRALG- (NIL T T T) -7 NIL NIL NIL) (-400 929609 932574 932750 "GPOLSET" NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-399 929022 929085 929342 "GOSPER" NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-398 924908 925772 926297 "GMODPOL" NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-397 924083 924285 924523 "GHENSEL" NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-396 919086 920013 921032 "GENUPS" NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-395 918834 918891 918980 "GENUFACT" NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-394 918316 918405 918570 "GENPGCD" NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-393 917825 917866 918079 "GENMFACT" NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-392 916626 916909 917213 "GENEEZ" NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-391 909965 916316 916477 "GDMP" NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-390 899780 904755 905859 "GCNAALG" NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-389 897894 898935 898963 "GCDDOM" 899218 GCDDOM (NIL) -9 NIL 899375 NIL) (-388 897517 897674 897889 "GCDDOM-" NIL GCDDOM- (NIL T) -7 NIL NIL NIL) (-387 888310 890780 893168 "GBINTERN" NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-386 886445 886770 887188 "GBF" NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-385 885386 885575 885842 "GBEUCLID" NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-384 884257 884464 884768 "GB" NIL GB (NIL T T T T) -7 NIL NIL NIL) (-383 883720 883862 884010 "GAUSSFAC" NIL GAUSSFAC (NIL) -7 NIL NIL NIL) (-382 882332 882680 882993 "GALUTIL" NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-381 880877 881198 881520 "GALPOLYU" NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-380 878503 878859 879264 "GALFACTU" NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-379 871755 873416 874994 "GALFACT" NIL GALFACT (NIL T) -7 NIL NIL NIL) (-378 871407 871628 871696 "FUNDESC" NIL FUNDESC (NIL) -8 NIL NIL NIL) (-377 871031 871252 871333 "FUNCTION" NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-376 869128 869811 870271 "FT" NIL FT (NIL) -8 NIL NIL NIL) (-375 867721 868028 868420 "FSUPFACT" NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-374 866376 866735 867059 "FST" NIL FST (NIL) -8 NIL NIL NIL) (-373 865679 865803 865990 "FSRED" NIL FSRED (NIL T T) -7 NIL NIL NIL) (-372 864653 864919 865266 "FSPRMELT" NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-371 862311 862841 863323 "FSPECF" NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-370 861894 861954 862123 "FSINT" NIL FSINT (NIL T T) -7 NIL NIL NIL) (-369 860258 861108 861411 "FSERIES" NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-368 859406 859540 859763 "FSCINT" NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-367 858577 858738 858965 "FSAGG2" NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-366 854560 857511 857552 "FSAGG" 857922 FSAGG (NIL T) -9 NIL 858181 NIL) (-365 852914 853673 854465 "FSAGG-" NIL FSAGG- (NIL T T) -7 NIL NIL NIL) (-364 850870 851166 851710 "FS2UPS" NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-363 849917 850099 850399 "FS2EXPXP" NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-362 849598 849647 849774 "FS2" NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-361 829853 839255 839296 "FS" 843166 FS (NIL T) -9 NIL 845444 NIL) (-360 822084 825577 829556 "FS-" NIL FS- (NIL T T) -7 NIL NIL NIL) (-359 821618 821745 821897 "FRUTIL" NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-358 816172 819299 819339 "FRNAALG" 820659 FRNAALG (NIL T) -9 NIL 821257 NIL) (-357 812913 814164 815422 "FRNAALG-" NIL FRNAALG- (NIL T T) -7 NIL NIL NIL) (-356 812594 812643 812770 "FRNAAF2" NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-355 811081 811638 811932 "FRMOD" NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-354 810367 810460 810747 "FRIDEAL2" NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-353 808201 808967 809283 "FRIDEAL" NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-352 807310 807753 807794 "FRETRCT" 807799 FRETRCT (NIL T) -9 NIL 807970 NIL) (-351 806683 806961 807305 "FRETRCT-" NIL FRETRCT- (NIL T T) -7 NIL NIL NIL) (-350 803489 804947 805006 "FRAMALG" 805888 FRAMALG (NIL T T) -9 NIL 806180 NIL) (-349 802085 802636 803266 "FRAMALG-" NIL FRAMALG- (NIL T T T) -7 NIL NIL NIL) (-348 801778 801841 801948 "FRAC2" NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-347 795483 801583 801773 "FRAC" NIL FRAC (NIL T) -8 NIL NIL NIL) (-346 795176 795239 795346 "FR2" NIL FR2 (NIL T T) -7 NIL NIL NIL) (-345 787548 792055 793383 "FR" NIL FR (NIL T) -8 NIL NIL NIL) (-344 781388 784829 784857 "FPS" 785976 FPS (NIL) -9 NIL 786532 NIL) (-343 780945 781078 781242 "FPS-" NIL FPS- (NIL T) -7 NIL NIL NIL) (-342 777818 779798 779826 "FPC" 780051 FPC (NIL) -9 NIL 780193 NIL) (-341 777664 777716 777813 "FPC-" NIL FPC- (NIL T) -7 NIL NIL NIL) (-340 776441 777150 777191 "FPATMAB" 777196 FPATMAB (NIL T) -9 NIL 777348 NIL) (-339 774871 775467 775814 "FPARFRAC" NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-338 774446 774504 774677 "FORDER" NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-337 772981 773844 774018 "FNLA" NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-336 771596 772101 772129 "FNCAT" 772586 FNCAT (NIL) -9 NIL 772843 NIL) (-335 771053 771563 771591 "FNAME" NIL FNAME (NIL) -8 NIL NIL NIL) (-334 769640 771002 771048 "FMONOID" NIL FMONOID (NIL T) -8 NIL NIL NIL) (-333 766228 767586 767627 "FMONCAT" 768844 FMONCAT (NIL T) -9 NIL 769448 NIL) (-332 763117 764164 764217 "FMCAT" 765398 FMCAT (NIL T T) -9 NIL 765890 NIL) (-331 761849 762940 763039 "FM1" NIL FM1 (NIL T T) -8 NIL NIL NIL) (-330 760977 761697 761844 "FM" NIL FM (NIL T T) -8 NIL NIL NIL) (-329 759164 759616 760110 "FLOATRP" NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-328 757099 757635 758213 "FLOATCP" NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-327 750549 755436 756050 "FLOAT" NIL FLOAT (NIL) -8 NIL NIL NIL) (-326 749061 750131 750171 "FLINEXP" 750176 FLINEXP (NIL T) -9 NIL 750269 NIL) (-325 748470 748729 749056 "FLINEXP-" NIL FLINEXP- (NIL T T) -7 NIL NIL NIL) (-324 747685 747844 748065 "FLASORT" NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-323 744599 745647 745699 "FLALG" 746926 FLALG (NIL T T) -9 NIL 747393 NIL) (-322 743770 743931 744158 "FLAGG2" NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-321 737179 741189 741230 "FLAGG" 742485 FLAGG (NIL T) -9 NIL 743130 NIL) (-320 736287 736691 737174 "FLAGG-" NIL FLAGG- (NIL T T) -7 NIL NIL NIL) (-319 732910 734112 734171 "FINRALG" 735299 FINRALG (NIL T T) -9 NIL 735807 NIL) (-318 732301 732566 732905 "FINRALG-" NIL FINRALG- (NIL T T T) -7 NIL NIL NIL) (-317 731599 731895 731923 "FINITE" 732119 FINITE (NIL) -9 NIL 732226 NIL) (-316 731507 731533 731594 "FINITE-" NIL FINITE- (NIL T) -7 NIL NIL NIL) (-315 723499 726059 726099 "FINAALG" 729751 FINAALG (NIL T) -9 NIL 731189 NIL) (-314 719766 721011 722134 "FINAALG-" NIL FINAALG- (NIL T T) -7 NIL NIL NIL) (-313 718318 718737 718791 "FILECAT" 719475 FILECAT (NIL T T) -9 NIL 719691 NIL) (-312 717669 718143 718246 "FILE" NIL FILE (NIL T) -8 NIL NIL NIL) (-311 714979 716795 716823 "FIELD" 716863 FIELD (NIL) -9 NIL 716943 NIL) (-310 714004 714465 714974 "FIELD-" NIL FIELD- (NIL T) -7 NIL NIL NIL) (-309 712008 712954 713300 "FGROUP" NIL FGROUP (NIL T) -8 NIL NIL NIL) (-308 711251 711432 711651 "FGLMICPK" NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-307 706585 711189 711246 "FFX" NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-306 706247 706314 706449 "FFSLPE" NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-305 705787 705829 706038 "FFPOLY2" NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-304 702467 703344 704121 "FFPOLY" NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-303 697815 702399 702462 "FFP" NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-302 692558 697304 697494 "FFNBX" NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-301 687103 691839 692097 "FFNBP" NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-300 681374 686554 686765 "FFNB" NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-299 680397 680607 680922 "FFINTBAS" NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-298 675900 678542 678570 "FFIELDC" 679189 FFIELDC (NIL) -9 NIL 679564 NIL) (-297 674969 675409 675895 "FFIELDC-" NIL FFIELDC- (NIL T) -7 NIL NIL NIL) (-296 674584 674642 674766 "FFHOM" NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-295 672728 673251 673768 "FFF" NIL FFF (NIL T) -7 NIL NIL NIL) (-294 667886 672527 672628 "FFCGX" NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-293 663050 667675 667782 "FFCGP" NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-292 657780 662841 662949 "FFCG" NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-291 657234 657283 657518 "FFCAT2" NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-290 635871 646843 646929 "FFCAT" 652079 FFCAT (NIL T T T) -9 NIL 653515 NIL) (-289 632111 633337 634643 "FFCAT-" NIL FFCAT- (NIL T T T T) -7 NIL NIL NIL) (-288 627018 632042 632106 "FF" NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-287 625910 626379 626420 "FEVALAB" 626504 FEVALAB (NIL T) -9 NIL 626765 NIL) (-286 625315 625567 625905 "FEVALAB-" NIL FEVALAB- (NIL T T) -7 NIL NIL NIL) (-285 622173 623053 623168 "FDIVCAT" 624735 FDIVCAT (NIL T T T T) -9 NIL 625171 NIL) (-284 621967 621999 622168 "FDIVCAT-" NIL FDIVCAT- (NIL T T T T T) -7 NIL NIL NIL) (-283 621274 621367 621644 "FDIV2" NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-282 619792 620758 620961 "FDIV" NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-281 618885 619269 619471 "FCTRDATA" NIL FCTRDATA (NIL) -8 NIL NIL NIL) (-280 618007 618496 618636 "FCOMP" NIL FCOMP (NIL T) -8 NIL NIL NIL) (-279 609656 614237 614277 "FAXF" 616078 FAXF (NIL T) -9 NIL 616768 NIL) (-278 607572 608376 609191 "FAXF-" NIL FAXF- (NIL T T) -7 NIL NIL NIL) (-277 602436 607094 607268 "FARRAY" NIL FARRAY (NIL T) -8 NIL NIL NIL) (-276 596958 599317 599369 "FAMR" 600380 FAMR (NIL T T) -9 NIL 600839 NIL) (-275 596157 596522 596953 "FAMR-" NIL FAMR- (NIL T T T) -7 NIL NIL NIL) (-274 595210 596099 596152 "FAMONOID" NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-273 592835 593683 593736 "FAMONC" 594677 FAMONC (NIL T T) -9 NIL 595062 NIL) (-272 591423 592693 592830 "FAGROUP" NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-271 589503 589864 590266 "FACUTIL" NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-270 588780 588977 589199 "FACTFUNC" NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-269 580704 588227 588426 "EXPUPXS" NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-268 578723 579293 579879 "EXPRTUBE" NIL EXPRTUBE (NIL) -7 NIL NIL NIL) (-267 575625 576267 576987 "EXPRODE" NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-266 570782 571489 572294 "EXPR2UPS" NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-265 570471 570534 570643 "EXPR2" NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-264 555421 569520 569946 "EXPR" NIL EXPR (NIL T) -8 NIL NIL NIL) (-263 546012 554741 555029 "EXPEXPAN" NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-262 545506 545808 545898 "EXITAST" NIL EXITAST (NIL) -8 NIL NIL NIL) (-261 545282 545472 545501 "EXIT" NIL EXIT (NIL) -8 NIL NIL NIL) (-260 544971 545039 545152 "EVALCYC" NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-259 544488 544630 544671 "EVALAB" 544841 EVALAB (NIL T) -9 NIL 544945 NIL) (-258 544116 544262 544483 "EVALAB-" NIL EVALAB- (NIL T T) -7 NIL NIL NIL) (-257 541221 542754 542782 "EUCDOM" 543336 EUCDOM (NIL) -9 NIL 543685 NIL) (-256 540148 540641 541216 "EUCDOM-" NIL EUCDOM- (NIL T) -7 NIL NIL NIL) (-255 539873 539929 540029 "ES2" NIL ES2 (NIL T T) -7 NIL NIL NIL) (-254 539561 539625 539734 "ES1" NIL ES1 (NIL T T) -7 NIL NIL NIL) (-253 533332 535232 535260 "ES" 538002 ES (NIL) -9 NIL 539386 NIL) (-252 529847 531379 533171 "ES-" NIL ES- (NIL T) -7 NIL NIL NIL) (-251 529195 529348 529524 "ERROR" NIL ERROR (NIL) -7 NIL NIL NIL) (-250 522284 529099 529190 "EQTBL" NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-249 521973 522036 522145 "EQ2" NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-248 515699 518725 520158 "EQ" NIL EQ (NIL T) -8 NIL NIL NIL) (-247 512002 513098 514191 "EP" NIL EP (NIL T) -7 NIL NIL NIL) (-246 510831 511181 511486 "ENV" NIL ENV (NIL) -8 NIL NIL NIL) (-245 509778 510447 510475 "ENTIRER" 510480 ENTIRER (NIL) -9 NIL 510524 NIL) (-244 506475 508208 508557 "EMR" NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-243 505567 505778 505832 "ELTAGG" 506212 ELTAGG (NIL T T) -9 NIL 506423 NIL) (-242 505347 505421 505562 "ELTAGG-" NIL ELTAGG- (NIL T T T) -7 NIL NIL NIL) (-241 505093 505128 505182 "ELTAB" 505266 ELTAB (NIL T T) -9 NIL 505318 NIL) (-240 504344 504514 504713 "ELFUTS" NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-239 504068 504142 504170 "ELEMFUN" 504275 ELEMFUN (NIL) -9 NIL NIL NIL) (-238 503968 503995 504063 "ELEMFUN-" NIL ELEMFUN- (NIL T) -7 NIL NIL NIL) (-237 498514 502009 502050 "ELAGG" 502987 ELAGG (NIL T) -9 NIL 503447 NIL) (-236 497312 497850 498509 "ELAGG-" NIL ELAGG- (NIL T T) -7 NIL NIL NIL) (-235 496730 496897 497053 "ELABOR" NIL ELABOR (NIL) -8 NIL NIL NIL) (-234 495643 495962 496241 "ELABEXPR" NIL ELABEXPR (NIL) -8 NIL NIL NIL) (-233 489036 491034 491861 "EFUPXS" NIL EFUPXS (NIL T T T T) -7 NIL NIL NIL) (-232 483015 485011 485821 "EFULS" NIL EFULS (NIL T T T) -7 NIL NIL NIL) (-231 480829 481235 481706 "EFSTRUC" NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-230 471829 473742 475283 "EF" NIL EF (NIL T T) -7 NIL NIL NIL) (-229 470942 471443 471592 "EAB" NIL EAB (NIL) -8 NIL NIL NIL) (-228 469640 470314 470354 "DVARCAT" 470637 DVARCAT (NIL T) -9 NIL 470777 NIL) (-227 469059 469323 469635 "DVARCAT-" NIL DVARCAT- (NIL T T) -7 NIL NIL NIL) (-226 461190 468927 469054 "DSMP" NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-225 459528 460319 460360 "DSEXT" 460723 DSEXT (NIL T) -9 NIL 461017 NIL) (-224 458333 458857 459523 "DSEXT-" NIL DSEXT- (NIL T T) -7 NIL NIL NIL) (-223 458057 458122 458220 "DROPT1" NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-222 454208 455424 456555 "DROPT0" NIL DROPT0 (NIL) -7 NIL NIL NIL) (-221 449854 451209 452273 "DROPT" NIL DROPT (NIL) -8 NIL NIL NIL) (-220 448529 448890 449276 "DRAWPT" NIL DRAWPT (NIL) -7 NIL NIL NIL) (-219 448215 448274 448392 "DRAWHACK" NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-218 447190 447488 447778 "DRAWCX" NIL DRAWCX (NIL) -7 NIL NIL NIL) (-217 446775 446850 447000 "DRAWCURV" NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-216 439188 441300 443415 "DRAWCFUN" NIL DRAWCFUN (NIL) -7 NIL NIL NIL) (-215 434705 435724 436803 "DRAW" NIL DRAW (NIL T) -7 NIL NIL NIL) (-214 431300 433369 433410 "DQAGG" 434039 DQAGG (NIL T) -9 NIL 434312 NIL) (-213 417907 425483 425565 "DPOLCAT" 427402 DPOLCAT (NIL T T T T) -9 NIL 427945 NIL) (-212 414315 415963 417902 "DPOLCAT-" NIL DPOLCAT- (NIL T T T T T) -7 NIL NIL NIL) (-211 407402 414213 414310 "DPMO" NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-210 400398 407231 407397 "DPMM" NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-209 399991 400251 400340 "DOMTMPLT" NIL DOMTMPLT (NIL) -8 NIL NIL NIL) (-208 399405 399853 399933 "DOMCTOR" NIL DOMCTOR (NIL) -8 NIL NIL NIL) (-207 398691 399016 399167 "DOMAIN" NIL DOMAIN (NIL) -8 NIL NIL NIL) (-206 391894 398427 398578 "DMP" NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-205 389674 390960 391000 "DMEXT" 391005 DMEXT (NIL T) -9 NIL 391180 NIL) (-204 389330 389392 389536 "DLP" NIL DLP (NIL T) -7 NIL NIL NIL) (-203 382655 388815 389005 "DLIST" NIL DLIST (NIL T) -8 NIL NIL NIL) (-202 379321 381478 381519 "DLAGG" 382069 DLAGG (NIL T) -9 NIL 382298 NIL) (-201 377734 378543 378571 "DIVRING" 378663 DIVRING (NIL) -9 NIL 378746 NIL) (-200 377185 377429 377729 "DIVRING-" NIL DIVRING- (NIL T) -7 NIL NIL NIL) (-199 375613 376030 376436 "DISPLAY" NIL DISPLAY (NIL) -7 NIL NIL NIL) (-198 374650 374871 375136 "DIRPROD2" NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-197 368223 374582 374645 "DIRPROD" NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-196 356642 363003 363056 "DIRPCAT" 363312 DIRPCAT (NIL NIL T) -9 NIL 364185 NIL) (-195 354648 355418 356305 "DIRPCAT-" NIL DIRPCAT- (NIL T NIL T) -7 NIL NIL NIL) (-194 354095 354261 354447 "DIOSP" NIL DIOSP (NIL) -7 NIL NIL NIL) (-193 350641 352981 353022 "DIOPS" 353454 DIOPS (NIL T) -9 NIL 353680 NIL) (-192 350301 350445 350636 "DIOPS-" NIL DIOPS- (NIL T T) -7 NIL NIL NIL) (-191 349339 350054 350082 "DIOID" 350087 DIOID (NIL) -9 NIL 350109 NIL) (-190 348229 348996 349024 "DIFRING" 349029 DIFRING (NIL) -9 NIL 349050 NIL) (-189 347865 347963 347991 "DIFFSPC" 348110 DIFFSPC (NIL) -9 NIL 348185 NIL) (-188 347606 347708 347860 "DIFFSPC-" NIL DIFFSPC- (NIL T) -7 NIL NIL NIL) (-187 346540 347134 347174 "DIFFMOD" 347179 DIFFMOD (NIL T) -9 NIL 347276 NIL) (-186 346224 346281 346322 "DIFFDOM" 346443 DIFFDOM (NIL T) -9 NIL 346511 NIL) (-185 346105 346135 346219 "DIFFDOM-" NIL DIFFDOM- (NIL T T) -7 NIL NIL NIL) (-184 343840 345299 345339 "DIFEXT" 345344 DIFEXT (NIL T) -9 NIL 345496 NIL) (-183 341001 343341 343382 "DIAGG" 343387 DIAGG (NIL T) -9 NIL 343407 NIL) (-182 340557 340747 340996 "DIAGG-" NIL DIAGG- (NIL T T) -7 NIL NIL NIL) (-181 335769 339747 340024 "DHMATRIX" NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-180 332227 333280 334290 "DFSFUN" NIL DFSFUN (NIL) -7 NIL NIL NIL) (-179 326841 331381 331708 "DFLOAT" NIL DFLOAT (NIL) -8 NIL NIL NIL) (-178 325407 325699 326074 "DFINTTLS" NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-177 322591 323779 324175 "DERHAM" NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-176 320311 322422 322511 "DEQUEUE" NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-175 319694 319839 320021 "DEGRED" NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-174 317012 317736 318536 "DEFINTRF" NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-173 315121 315579 316141 "DEFINTEF" NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-172 314504 314837 314951 "DEFAST" NIL DEFAST (NIL) -8 NIL NIL NIL) (-171 307768 314229 314377 "DECIMAL" NIL DECIMAL (NIL) -8 NIL NIL NIL) (-170 305688 306198 306702 "DDFACT" NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-169 305327 305376 305527 "DBLRESP" NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-168 304586 305148 305239 "DBASIS" NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-167 302610 303052 303412 "DBASE" NIL DBASE (NIL T) -8 NIL NIL NIL) (-166 301902 302191 302337 "DATAARY" NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-165 301353 301499 301651 "CYCLOTOM" NIL CYCLOTOM (NIL) -7 NIL NIL NIL) (-164 298715 299508 300235 "CYCLES" NIL CYCLES (NIL) -7 NIL NIL NIL) (-163 298154 298300 298471 "CVMP" NIL CVMP (NIL T) -7 NIL NIL NIL) (-162 296226 296537 296904 "CTRIGMNP" NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-161 295783 296038 296139 "CTORKIND" NIL CTORKIND (NIL) -8 NIL NIL NIL) (-160 294984 295367 295395 "CTORCAT" 295576 CTORCAT (NIL) -9 NIL 295688 NIL) (-159 294687 294821 294979 "CTORCAT-" NIL CTORCAT- (NIL T) -7 NIL NIL NIL) (-158 294180 294437 294545 "CTORCALL" NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-157 293596 294027 294100 "CTOR" NIL CTOR (NIL) -8 NIL NIL NIL) (-156 293055 293172 293325 "CSTTOOLS" NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-155 289449 290205 290960 "CRFP" NIL CRFP (NIL T T) -7 NIL NIL NIL) (-154 288940 289243 289334 "CRCEAST" NIL CRCEAST (NIL) -8 NIL NIL NIL) (-153 288159 288368 288596 "CRAPACK" NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-152 287663 287768 287972 "CPMATCH" NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-151 287416 287450 287556 "CPIMA" NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-150 284355 285117 285835 "COORDSYS" NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-149 283874 284016 284155 "CONTOUR" NIL CONTOUR (NIL) -8 NIL NIL NIL) (-148 279831 282337 282829 "CONTFRAC" NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-147 279705 279732 279760 "CONDUIT" 279797 CONDUIT (NIL) -9 NIL NIL NIL) (-146 278646 279315 279343 "COMRING" 279348 COMRING (NIL) -9 NIL 279398 NIL) (-145 277811 278178 278356 "COMPPROP" NIL COMPPROP (NIL) -8 NIL NIL NIL) (-144 277507 277548 277676 "COMPLPAT" NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-143 277200 277263 277370 "COMPLEX2" NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-142 266106 277150 277195 "COMPLEX" NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-141 265567 265706 265866 "COMPILER" NIL COMPILER (NIL) -7 NIL NIL NIL) (-140 265320 265361 265459 "COMPFACT" NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-139 246813 259001 259041 "COMPCAT" 260042 COMPCAT (NIL T) -9 NIL 261384 NIL) (-138 239351 242864 246457 "COMPCAT-" NIL COMPCAT- (NIL T T) -7 NIL NIL NIL) (-137 239110 239144 239246 "COMMUPC" NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-136 238940 238979 239037 "COMMONOP" NIL COMMONOP (NIL) -7 NIL NIL NIL) (-135 238521 238800 238874 "COMMAAST" NIL COMMAAST (NIL) -8 NIL NIL NIL) (-134 238098 238339 238426 "COMM" NIL COMM (NIL) -8 NIL NIL NIL) (-133 237293 237541 237569 "COMBOPC" 237907 COMBOPC (NIL) -9 NIL 238082 NIL) (-132 236357 236609 236851 "COMBINAT" NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-131 233289 233973 234596 "COMBF" NIL COMBF (NIL T T) -7 NIL NIL NIL) (-130 232169 232620 232855 "COLOR" NIL COLOR (NIL) -8 NIL NIL NIL) (-129 231660 231963 232054 "COLONAST" NIL COLONAST (NIL) -8 NIL NIL NIL) (-128 231347 231400 231525 "CMPLXRT" NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-127 230817 231127 231225 "CLLCTAST" NIL CLLCTAST (NIL) -8 NIL NIL NIL) (-126 227337 228407 229487 "CLIP" NIL CLIP (NIL) -7 NIL NIL NIL) (-125 225696 226617 226855 "CLIF" NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-124 221808 223816 223857 "CLAGG" 224783 CLAGG (NIL T) -9 NIL 225316 NIL) (-123 220701 221228 221803 "CLAGG-" NIL CLAGG- (NIL T T) -7 NIL NIL NIL) (-122 220330 220421 220561 "CINTSLPE" NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-121 218267 218774 219322 "CHVAR" NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-120 217290 217959 217987 "CHARZ" 217992 CHARZ (NIL) -9 NIL 218006 NIL) (-119 217084 217130 217208 "CHARPOL" NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-118 215985 216686 216714 "CHARNZ" 216775 CHARNZ (NIL) -9 NIL 216823 NIL) (-117 213463 214560 215083 "CHAR" NIL CHAR (NIL) -8 NIL NIL NIL) (-116 213171 213250 213278 "CFCAT" 213389 CFCAT (NIL) -9 NIL NIL NIL) (-115 212514 212643 212825 "CDEN" NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-114 208503 211927 212207 "CCLASS" NIL CCLASS (NIL) -8 NIL NIL NIL) (-113 207881 208068 208245 "CATEGORY" NIL -10 (NIL) -8 NIL NIL NIL) (-112 207409 207828 207876 "CATCTOR" NIL CATCTOR (NIL) -8 NIL NIL NIL) (-111 206882 207191 207288 "CATAST" NIL CATAST (NIL) -8 NIL NIL NIL) (-110 206373 206676 206767 "CASEAST" NIL CASEAST (NIL) -8 NIL NIL NIL) (-109 205622 205782 206003 "CARTEN2" NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-108 201722 202979 203687 "CARTEN" NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-107 200120 201119 201370 "CARD" NIL CARD (NIL) -8 NIL NIL NIL) (-106 199701 199980 200054 "CAPSLAST" NIL CAPSLAST (NIL) -8 NIL NIL NIL) (-105 199135 199388 199416 "CACHSET" 199548 CACHSET (NIL) -9 NIL 199626 NIL) (-104 198518 198902 198930 "CABMON" 198980 CABMON (NIL) -9 NIL 199036 NIL) (-103 198048 198312 198422 "BYTEORD" NIL BYTEORD (NIL) -8 NIL NIL NIL) (-102 193271 197705 197877 "BYTEBUF" NIL BYTEBUF (NIL) -8 NIL NIL NIL) (-101 192241 192945 193080 "BYTE" NIL BYTE (NIL) -8 NIL NIL 193243) (-100 189712 192008 192114 "BTREE" NIL BTREE (NIL T) -8 NIL NIL NIL) (-99 187143 189455 189574 "BTOURN" NIL BTOURN (NIL T) -8 NIL NIL NIL) (-98 184383 186587 186626 "BTCAT" 186693 BTCAT (NIL T) -9 NIL 186769 NIL) (-97 184134 184232 184378 "BTCAT-" NIL BTCAT- (NIL T T) -7 NIL NIL NIL) (-96 179244 183365 183391 "BTAGG" 183502 BTAGG (NIL) -9 NIL 183610 NIL) (-95 178875 179036 179239 "BTAGG-" NIL BTAGG- (NIL T) -7 NIL NIL NIL) (-94 175937 178345 178557 "BSTREE" NIL BSTREE (NIL T) -8 NIL NIL NIL) (-93 175207 175359 175537 "BRILL" NIL BRILL (NIL T) -7 NIL NIL NIL) (-92 171740 173913 173952 "BRAGG" 174593 BRAGG (NIL T) -9 NIL 174850 NIL) (-91 170695 171190 171735 "BRAGG-" NIL BRAGG- (NIL T T) -7 NIL NIL NIL) (-90 163293 170200 170381 "BPADICRT" NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-89 161349 163245 163288 "BPADIC" NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-88 161082 161118 161229 "BOUNDZRO" NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-87 159321 159754 160202 "BOP1" NIL BOP1 (NIL T) -7 NIL NIL NIL) (-86 155287 156703 157593 "BOP" NIL BOP (NIL) -8 NIL NIL NIL) (-85 154163 155054 155176 "BOOLEAN" NIL BOOLEAN (NIL) -8 NIL NIL NIL) (-84 153749 153906 153932 "BOOLE" 154040 BOOLE (NIL) -9 NIL 154121 NIL) (-83 153542 153623 153744 "BOOLE-" NIL BOOLE- (NIL T) -7 NIL NIL NIL) (-82 152711 153207 153257 "BMODULE" 153262 BMODULE (NIL T T) -9 NIL 153326 NIL) (-81 148328 152568 152637 "BITS" NIL BITS (NIL) -8 NIL NIL NIL) (-80 148141 148181 148220 "BINOPC" 148225 BINOPC (NIL T) -9 NIL 148270 NIL) (-79 147683 147956 148058 "BINOP" NIL BINOP (NIL T) -8 NIL NIL NIL) (-78 147204 147348 147486 "BINDING" NIL BINDING (NIL) -8 NIL NIL NIL) (-77 140474 146934 147079 "BINARY" NIL BINARY (NIL) -8 NIL NIL NIL) (-76 138208 139703 139742 "BGAGG" 139998 BGAGG (NIL T) -9 NIL 140135 NIL) (-75 138077 138115 138203 "BGAGG-" NIL BGAGG- (NIL T T) -7 NIL NIL NIL) (-74 136928 137129 137414 "BEZOUT" NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-73 133566 136086 136413 "BBTREE" NIL BBTREE (NIL T) -8 NIL NIL NIL) (-72 133151 133244 133270 "BASTYPE" 133441 BASTYPE (NIL) -9 NIL 133537 NIL) (-71 132921 133017 133146 "BASTYPE-" NIL BASTYPE- (NIL T) -7 NIL NIL NIL) (-70 132436 132524 132674 "BALFACT" NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-69 131335 132010 132195 "AUTOMOR" NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-68 131061 131066 131092 "ATTREG" 131097 ATTREG (NIL) -9 NIL NIL NIL) (-67 130666 130938 131003 "ATTRAST" NIL ATTRAST (NIL) -8 NIL NIL NIL) (-66 130166 130315 130341 "ATRIG" 130542 ATRIG (NIL) -9 NIL NIL NIL) (-65 130021 130074 130161 "ATRIG-" NIL ATRIG- (NIL T) -7 NIL NIL NIL) (-64 129591 129822 129848 "ASTCAT" 129853 ASTCAT (NIL) -9 NIL 129883 NIL) (-63 129390 129467 129586 "ASTCAT-" NIL ASTCAT- (NIL T) -7 NIL NIL NIL) (-62 127549 129223 129311 "ASTACK" NIL ASTACK (NIL T) -8 NIL NIL NIL) (-61 126356 126669 127034 "ASSOCEQ" NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-60 124156 126260 126351 "ARRAY2" NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 123347 123538 123759 "ARRAY12" NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 118934 123078 123192 "ARRAY1" NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 113100 115132 115207 "ARR2CAT" 117837 ARR2CAT (NIL T T T) -9 NIL 118595 NIL) (-56 111477 112247 113095 "ARR2CAT-" NIL ARR2CAT- (NIL T T T T) -7 NIL NIL NIL) (-55 110845 111216 111338 "ARITY" NIL ARITY (NIL) -8 NIL NIL NIL) (-54 109777 109945 110241 "APPRULE" NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 109478 109532 109650 "APPLYORE" NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 108861 109007 109163 "ANY1" NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 108266 108556 108676 "ANY" NIL ANY (NIL) -8 NIL NIL NIL) (-50 105898 106995 107318 "ANTISYM" NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 105423 105683 105779 "ANON" NIL ANON (NIL) -8 NIL NIL NIL) (-48 99182 104485 104927 "AN" NIL AN (NIL) -8 NIL NIL NIL) (-47 94778 96379 96429 "AMR" 97167 AMR (NIL T T) -9 NIL 97764 NIL) (-46 94132 94412 94773 "AMR-" NIL AMR- (NIL T T T) -7 NIL NIL NIL) (-45 77312 94066 94127 "ALIST" NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 73747 76988 77157 "ALGSC" NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 70757 71417 72024 "ALGPKG" NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 70136 70249 70433 "ALGMFACT" NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 66548 67173 67765 "ALGMANIP" NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 56101 66241 66391 "ALGFF" NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 55418 55572 55750 "ALGFACT" NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 54193 54926 54964 "ALGEBRA" 54969 ALGEBRA (NIL T) -9 NIL 55009 NIL) (-37 53979 54056 54188 "ALGEBRA-" NIL ALGEBRA- (NIL T T) -7 NIL NIL NIL) (-36 33976 51185 51237 "ALAGG" 51375 ALAGG (NIL T T) -9 NIL 51540 NIL) (-35 33476 33625 33651 "AHYP" 33852 AHYP (NIL) -9 NIL NIL NIL) (-34 32772 32953 32979 "AGG" 33260 AGG (NIL) -9 NIL 33447 NIL) (-33 32561 32648 32767 "AGG-" NIL AGG- (NIL T) -7 NIL NIL NIL) (-32 30700 31160 31560 "AF" NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30195 30498 30587 "ADDAST" NIL ADDAST (NIL) -8 NIL NIL NIL) (-30 29565 29860 30016 "ACPLOT" NIL ACPLOT (NIL) -8 NIL NIL NIL) (-29 17187 26402 26440 "ACFS" 27047 ACFS (NIL T) -9 NIL 27286 NIL) (-28 15810 16420 17182 "ACFS-" NIL ACFS- (NIL T T) -7 NIL NIL NIL) (-27 11426 13741 13767 "ACF" 14646 ACF (NIL) -9 NIL 15058 NIL) (-26 10522 10928 11421 "ACF-" NIL ACF- (NIL T) -7 NIL NIL NIL) (-25 10024 10264 10290 "ABELSG" 10382 ABELSG (NIL) -9 NIL 10447 NIL) (-24 9922 9953 10019 "ABELSG-" NIL ABELSG- (NIL T) -7 NIL NIL NIL) (-23 9188 9531 9557 "ABELMON" 9726 ABELMON (NIL) -9 NIL 9835 NIL) (-22 8931 9040 9183 "ABELMON-" NIL ABELMON- (NIL T) -7 NIL NIL NIL) (-21 8174 8626 8652 "ABELGRP" 8724 ABELGRP (NIL) -9 NIL 8799 NIL) (-20 7788 7953 8169 "ABELGRP-" NIL ABELGRP- (NIL T) -7 NIL NIL NIL) (-19 3036 7046 7085 "A1AGG" 7090 A1AGG (NIL T) -9 NIL 7130 NIL) (-18 30 1483 3031 "A1AGG-" NIL A1AGG- (NIL T T) -7 NIL NIL NIL)) \ No newline at end of file
diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase
index e1142baa..8f555e93 100644
--- a/src/share/algebra/operation.daase
+++ b/src/share/algebra/operation.daase
@@ -1,793 +1,793 @@
-(630603 . 3539125284)
+(630818 . 3576902406)
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1177 *4)) (-4 *4 (-13 (-961) (-580 (-483))))
- (-5 *2 (-1177 (-347 (-483)))) (-5 *1 (-1206 *4)))))
+ (|partial| -12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-962) (-581 (-484))))
+ (-5 *2 (-1178 (-347 (-484)))) (-5 *1 (-1207 *4)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1177 *4)) (-4 *4 (-13 (-961) (-580 (-483))))
- (-5 *2 (-1177 (-483))) (-5 *1 (-1206 *4)))))
+ (|partial| -12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-962) (-581 (-484))))
+ (-5 *2 (-1178 (-484))) (-5 *1 (-1207 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1177 *4)) (-4 *4 (-13 (-961) (-580 (-483)))) (-5 *2 (-85))
- (-5 *1 (-1206 *4)))))
+ (-12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-962) (-581 (-484)))) (-5 *2 (-85))
+ (-5 *1 (-1207 *4)))))
(((*1 *2 *3)
- (-12 (-4 *5 (-13 (-553 *2) (-146))) (-5 *2 (-800 *4)) (-5 *1 (-144 *4 *5 *3))
- (-4 *4 (-1012)) (-4 *3 (-139 *5))))
+ (-12 (-4 *5 (-13 (-554 *2) (-146))) (-5 *2 (-801 *4)) (-5 *1 (-144 *4 *5 *3))
+ (-4 *4 (-1013)) (-4 *3 (-139 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-1177 *3)) (-4 *3 (-146)) (-4 *1 (-350 *3 *4))
- (-4 *4 (-1153 *3))))
+ (-12 (-5 *2 (-1178 *3)) (-4 *3 (-146)) (-4 *1 (-350 *3 *4))
+ (-4 *4 (-1154 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1153 *3))
- (-5 *2 (-1177 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-146)) (-4 *1 (-358 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-1177 *3))))
+ (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3))
+ (-5 *2 (-1178 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-146)) (-4 *1 (-358 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-1178 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-345 *1)) (-4 *1 (-361 *3)) (-4 *3 (-494)) (-4 *3 (-1012))))
+ (-12 (-5 *2 (-345 *1)) (-4 *1 (-361 *3)) (-4 *3 (-495)) (-4 *3 (-1013))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717))
- (-4 *5 (-756)) (-5 *1 (-400 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-1014)) (-5 *1 (-472))))
- ((*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-1127))))
- ((*1 *1 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1127))))
- ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-661 *3 *2)) (-4 *2 (-1153 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1012))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-5 *1 (-400 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1015)) (-5 *1 (-473))))
+ ((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *2) (-12 (-4 *1 (-558 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1154 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1013))))
((*1 *1 *2)
- (-12 (-5 *2 (-857 *3)) (-4 *3 (-961)) (-4 *1 (-976 *3 *4 *5))
- (-4 *5 (-553 (-1088))) (-4 *4 (-717)) (-4 *5 (-756))))
+ (-12 (-5 *2 (-858 *3)) (-4 *3 (-962)) (-4 *1 (-977 *3 *4 *5))
+ (-4 *5 (-554 (-1089))) (-4 *4 (-718)) (-4 *5 (-757))))
((*1 *1 *2)
(OR
- (-12 (-5 *2 (-857 (-483))) (-4 *1 (-976 *3 *4 *5))
- (-12 (-2556 (-4 *3 (-38 (-347 (-483))))) (-4 *3 (-38 (-483)))
- (-4 *5 (-553 (-1088))))
- (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)))
- (-12 (-5 *2 (-857 (-483))) (-4 *1 (-976 *3 *4 *5))
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *5 (-553 (-1088)))) (-4 *3 (-961))
- (-4 *4 (-717)) (-4 *5 (-756)))))
+ (-12 (-5 *2 (-858 (-484))) (-4 *1 (-977 *3 *4 *5))
+ (-12 (-2558 (-4 *3 (-38 (-347 (-484))))) (-4 *3 (-38 (-484)))
+ (-4 *5 (-554 (-1089))))
+ (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)))
+ (-12 (-5 *2 (-858 (-484))) (-4 *1 (-977 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *5 (-554 (-1089)))) (-4 *3 (-962))
+ (-4 *4 (-718)) (-4 *5 (-757)))))
((*1 *1 *2)
- (-12 (-5 *2 (-857 (-347 (-483)))) (-4 *1 (-976 *3 *4 *5))
- (-4 *3 (-38 (-347 (-483)))) (-4 *5 (-553 (-1088))) (-4 *3 (-961))
- (-4 *4 (-717)) (-4 *5 (-756))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1597 *8)))
- (-4 *7 (-976 *4 *5 *6)) (-4 *8 (-982 *4 *5 *6 *7)) (-4 *4 (-389))
- (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1071))
- (-5 *1 (-980 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1597 *8)))
- (-4 *7 (-976 *4 *5 *6)) (-4 *8 (-1019 *4 *5 *6 *7)) (-4 *4 (-389))
- (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1071))
- (-5 *1 (-1057 *4 *5 *6 *7 *8))))
- ((*1 *1 *2) (-12 (-5 *2 (-1014)) (-5 *1 (-1093))))
- ((*1 *2 *1) (-12 (-5 *2 (-1014)) (-5 *1 (-1093))))
- ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-772)) (-5 *3 (-483)) (-5 *1 (-1107))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-483)) (-5 *1 (-1107))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-703 *4 (-773 *5))) (-4 *4 (-13 (-755) (-257) (-120) (-933)))
- (-14 *5 (-583 (-1088))) (-5 *2 (-703 *4 (-773 *6))) (-5 *1 (-1205 *4 *5 *6))
- (-14 *6 (-583 (-1088)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-857 *4)) (-4 *4 (-13 (-755) (-257) (-120) (-933)))
- (-5 *2 (-857 (-937 (-347 *4)))) (-5 *1 (-1205 *4 *5 *6))
- (-14 *5 (-583 (-1088))) (-14 *6 (-583 (-1088)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-703 *4 (-773 *6))) (-4 *4 (-13 (-755) (-257) (-120) (-933)))
- (-14 *6 (-583 (-1088))) (-5 *2 (-857 (-937 (-347 *4))))
- (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-583 (-1088)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1083 *4)) (-4 *4 (-13 (-755) (-257) (-120) (-933)))
- (-5 *2 (-1083 (-937 (-347 *4)))) (-5 *1 (-1205 *4 *5 *6))
- (-14 *5 (-583 (-1088))) (-14 *6 (-583 (-1088)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1058 *4 (-468 (-773 *6)) (-773 *6) (-703 *4 (-773 *6))))
- (-4 *4 (-13 (-755) (-257) (-120) (-933))) (-14 *6 (-583 (-1088)))
- (-5 *2 (-583 (-703 *4 (-773 *6)))) (-5 *1 (-1205 *4 *5 *6))
- (-14 *5 (-583 (-1088))))))
-(((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-496 *3)) (-4 *3 (-482))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-257)) (-5 *2 (-345 *3))
- (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-861 *6 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-257)) (-4 *7 (-861 *6 *4 *5))
- (-5 *2 (-345 (-1083 *7))) (-5 *1 (-681 *4 *5 *6 *7)) (-5 *3 (-1083 *7))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-389)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-5 *2 (-345 *1)) (-4 *1 (-861 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-389)) (-5 *2 (-345 *3))
- (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-389)) (-4 *7 (-861 *6 *4 *5))
- (-5 *2 (-345 (-1083 (-347 *7)))) (-5 *1 (-1085 *4 *5 *6 *7))
- (-5 *3 (-1083 (-347 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-345 *1)) (-4 *1 (-1132))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-5 *2 (-345 *3)) (-5 *1 (-1157 *4 *3))
- (-4 *3 (-13 (-1153 *4) (-494) (-10 -8 (-15 -3139 ($ $ $)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-257) (-120) (-933)))
- (-14 *5 (-583 (-1088)))
- (-5 *2 (-583 (-1058 *4 (-468 (-773 *6)) (-773 *6) (-703 *4 (-773 *6)))))
- (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-583 (-1088))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-257) (-120) (-933)))
- (-14 *5 (-583 (-1088))) (-5 *2 (-583 (-583 (-937 (-347 *4)))))
- (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-583 (-1088)))))
+ (-12 (-5 *2 (-858 (-347 (-484)))) (-4 *1 (-977 *3 *4 *5))
+ (-4 *3 (-38 (-347 (-484)))) (-4 *5 (-554 (-1089))) (-4 *3 (-962))
+ (-4 *4 (-718)) (-4 *5 (-757))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1598 *8)))
+ (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-389))
+ (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1072))
+ (-5 *1 (-981 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1598 *8)))
+ (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-1020 *4 *5 *6 *7)) (-4 *4 (-389))
+ (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1072))
+ (-5 *1 (-1058 *4 *5 *6 *7 *8))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1015)) (-5 *1 (-1094))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-1094))))
+ ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-773)) (-5 *3 (-484)) (-5 *1 (-1108))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-773)) (-5 *3 (-484)) (-5 *1 (-1108))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-704 *4 (-774 *5))) (-4 *4 (-13 (-756) (-257) (-120) (-934)))
+ (-14 *5 (-584 (-1089))) (-5 *2 (-704 *4 (-774 *6))) (-5 *1 (-1206 *4 *5 *6))
+ (-14 *6 (-584 (-1089)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-858 *4)) (-4 *4 (-13 (-756) (-257) (-120) (-934)))
+ (-5 *2 (-858 (-938 (-347 *4)))) (-5 *1 (-1206 *4 *5 *6))
+ (-14 *5 (-584 (-1089))) (-14 *6 (-584 (-1089)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-704 *4 (-774 *6))) (-4 *4 (-13 (-756) (-257) (-120) (-934)))
+ (-14 *6 (-584 (-1089))) (-5 *2 (-858 (-938 (-347 *4))))
+ (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-584 (-1089)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1084 *4)) (-4 *4 (-13 (-756) (-257) (-120) (-934)))
+ (-5 *2 (-1084 (-938 (-347 *4)))) (-5 *1 (-1206 *4 *5 *6))
+ (-14 *5 (-584 (-1089))) (-14 *6 (-584 (-1089)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1059 *4 (-469 (-774 *6)) (-774 *6) (-704 *4 (-774 *6))))
+ (-4 *4 (-13 (-756) (-257) (-120) (-934))) (-14 *6 (-584 (-1089)))
+ (-5 *2 (-584 (-704 *4 (-774 *6)))) (-5 *1 (-1206 *4 *5 *6))
+ (-14 *5 (-584 (-1089))))))
+(((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)) (-5 *2 (-345 *3))
+ (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-862 *6 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)) (-4 *7 (-862 *6 *4 *5))
+ (-5 *2 (-345 (-1084 *7))) (-5 *1 (-682 *4 *5 *6 *7)) (-5 *3 (-1084 *7))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-389)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-5 *2 (-345 *1)) (-4 *1 (-862 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-389)) (-5 *2 (-345 *3))
+ (-5 *1 (-893 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-389)) (-4 *7 (-862 *6 *4 *5))
+ (-5 *2 (-345 (-1084 (-347 *7)))) (-5 *1 (-1086 *4 *5 *6 *7))
+ (-5 *3 (-1084 (-347 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-345 *1)) (-4 *1 (-1133))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-495)) (-5 *2 (-345 *3)) (-5 *1 (-1158 *4 *3))
+ (-4 *3 (-13 (-1154 *4) (-495) (-10 -8 (-15 -3141 ($ $ $)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-257) (-120) (-934)))
+ (-14 *5 (-584 (-1089)))
+ (-5 *2 (-584 (-1059 *4 (-469 (-774 *6)) (-774 *6) (-704 *4 (-774 *6)))))
+ (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-584 (-1089))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-257) (-120) (-934)))
+ (-14 *5 (-584 (-1089))) (-5 *2 (-584 (-584 (-938 (-347 *4)))))
+ (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-584 (-1089)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85))
- (-4 *5 (-13 (-755) (-257) (-120) (-933)))
- (-5 *2 (-583 (-583 (-937 (-347 *5))))) (-5 *1 (-1205 *5 *6 *7))
- (-14 *6 (-583 (-1088))) (-14 *7 (-583 (-1088)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85))
- (-4 *5 (-13 (-755) (-257) (-120) (-933)))
- (-5 *2 (-583 (-583 (-937 (-347 *5))))) (-5 *1 (-1205 *5 *6 *7))
- (-14 *6 (-583 (-1088))) (-14 *7 (-583 (-1088)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-257) (-120) (-933)))
- (-5 *2 (-583 (-583 (-937 (-347 *4))))) (-5 *1 (-1205 *4 *5 *6))
- (-14 *5 (-583 (-1088))) (-14 *6 (-583 (-1088))))))
+ (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85))
+ (-4 *5 (-13 (-756) (-257) (-120) (-934)))
+ (-5 *2 (-584 (-584 (-938 (-347 *5))))) (-5 *1 (-1206 *5 *6 *7))
+ (-14 *6 (-584 (-1089))) (-14 *7 (-584 (-1089)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85))
+ (-4 *5 (-13 (-756) (-257) (-120) (-934)))
+ (-5 *2 (-584 (-584 (-938 (-347 *5))))) (-5 *1 (-1206 *5 *6 *7))
+ (-14 *6 (-584 (-1089))) (-14 *7 (-584 (-1089)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-257) (-120) (-934)))
+ (-5 *2 (-584 (-584 (-938 (-347 *4))))) (-5 *1 (-1206 *4 *5 *6))
+ (-14 *5 (-584 (-1089))) (-14 *6 (-584 (-1089))))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-583 (-857 (-483)))) (-5 *4 (-583 (-1088)))
- (-5 *2 (-583 (-583 (-327)))) (-5 *1 (-936)) (-5 *5 (-327))))
+ (-12 (-5 *3 (-584 (-858 (-484)))) (-5 *4 (-584 (-1089)))
+ (-5 *2 (-584 (-584 (-327)))) (-5 *1 (-937)) (-5 *5 (-327))))
((*1 *2 *3)
- (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-257) (-120) (-933)))
- (-14 *5 (-583 (-1088))) (-5 *2 (-583 (-583 (-937 (-347 *4)))))
- (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-583 (-1088)))))
+ (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-257) (-120) (-934)))
+ (-14 *5 (-584 (-1089))) (-5 *2 (-584 (-584 (-938 (-347 *4)))))
+ (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-584 (-1089)))))
((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85))
- (-4 *5 (-13 (-755) (-257) (-120) (-933)))
- (-5 *2 (-583 (-583 (-937 (-347 *5))))) (-5 *1 (-1205 *5 *6 *7))
- (-14 *6 (-583 (-1088))) (-14 *7 (-583 (-1088)))))
+ (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85))
+ (-4 *5 (-13 (-756) (-257) (-120) (-934)))
+ (-5 *2 (-584 (-584 (-938 (-347 *5))))) (-5 *1 (-1206 *5 *6 *7))
+ (-14 *6 (-584 (-1089))) (-14 *7 (-584 (-1089)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85))
- (-4 *5 (-13 (-755) (-257) (-120) (-933)))
- (-5 *2 (-583 (-583 (-937 (-347 *5))))) (-5 *1 (-1205 *5 *6 *7))
- (-14 *6 (-583 (-1088))) (-14 *7 (-583 (-1088)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85))
- (-4 *5 (-13 (-755) (-257) (-120) (-933)))
- (-5 *2 (-583 (-583 (-937 (-347 *5))))) (-5 *1 (-1205 *5 *6 *7))
- (-14 *6 (-583 (-1088))) (-14 *7 (-583 (-1088)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-257) (-120) (-933)))
- (-5 *2 (-583 (-583 (-937 (-347 *4))))) (-5 *1 (-1205 *4 *5 *6))
- (-14 *5 (-583 (-1088))) (-14 *6 (-583 (-1088))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-257) (-120) (-933)))
- (-14 *5 (-583 (-1088)))
- (-5 *2 (-583 (-2 (|:| -1744 (-1083 *4)) (|:| -3219 (-583 (-857 *4))))))
- (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-583 (-1088)))))
+ (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85))
+ (-4 *5 (-13 (-756) (-257) (-120) (-934)))
+ (-5 *2 (-584 (-584 (-938 (-347 *5))))) (-5 *1 (-1206 *5 *6 *7))
+ (-14 *6 (-584 (-1089))) (-14 *7 (-584 (-1089)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85))
+ (-4 *5 (-13 (-756) (-257) (-120) (-934)))
+ (-5 *2 (-584 (-584 (-938 (-347 *5))))) (-5 *1 (-1206 *5 *6 *7))
+ (-14 *6 (-584 (-1089))) (-14 *7 (-584 (-1089)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-257) (-120) (-934)))
+ (-5 *2 (-584 (-584 (-938 (-347 *4))))) (-5 *1 (-1206 *4 *5 *6))
+ (-14 *5 (-584 (-1089))) (-14 *6 (-584 (-1089))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-257) (-120) (-934)))
+ (-14 *5 (-584 (-1089)))
+ (-5 *2 (-584 (-2 (|:| -1745 (-1084 *4)) (|:| -3221 (-584 (-858 *4))))))
+ (-5 *1 (-1206 *4 *5 *6)) (-14 *6 (-584 (-1089)))))
((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-257) (-120) (-933)))
- (-5 *2 (-583 (-2 (|:| -1744 (-1083 *5)) (|:| -3219 (-583 (-857 *5))))))
- (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1088)))
- (-14 *7 (-583 (-1088)))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-257) (-120) (-934)))
+ (-5 *2 (-584 (-2 (|:| -1745 (-1084 *5)) (|:| -3221 (-584 (-858 *5))))))
+ (-5 *1 (-1206 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1089)))
+ (-14 *7 (-584 (-1089)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-257) (-120) (-933)))
- (-5 *2 (-583 (-2 (|:| -1744 (-1083 *5)) (|:| -3219 (-583 (-857 *5))))))
- (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1088)))
- (-14 *7 (-583 (-1088)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-257) (-120) (-933)))
- (-5 *2 (-583 (-2 (|:| -1744 (-1083 *5)) (|:| -3219 (-583 (-857 *5))))))
- (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1088)))
- (-14 *7 (-583 (-1088)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-755) (-257) (-120) (-933)))
- (-5 *2 (-583 (-2 (|:| -1744 (-1083 *4)) (|:| -3219 (-583 (-857 *4))))))
- (-5 *1 (-1205 *4 *5 *6)) (-5 *3 (-583 (-857 *4))) (-14 *5 (-583 (-1088)))
- (-14 *6 (-583 (-1088))))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-257) (-120) (-934)))
+ (-5 *2 (-584 (-2 (|:| -1745 (-1084 *5)) (|:| -3221 (-584 (-858 *5))))))
+ (-5 *1 (-1206 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1089)))
+ (-14 *7 (-584 (-1089)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-257) (-120) (-934)))
+ (-5 *2 (-584 (-2 (|:| -1745 (-1084 *5)) (|:| -3221 (-584 (-858 *5))))))
+ (-5 *1 (-1206 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1089)))
+ (-14 *7 (-584 (-1089)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-756) (-257) (-120) (-934)))
+ (-5 *2 (-584 (-2 (|:| -1745 (-1084 *4)) (|:| -3221 (-584 (-858 *4))))))
+ (-5 *1 (-1206 *4 *5 *6)) (-5 *3 (-584 (-858 *4))) (-14 *5 (-584 (-1089)))
+ (-14 *6 (-584 (-1089))))))
(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85))
- (-4 *5 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-583 (-958 *5 *6)))
- (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-583 (-1088))) (-14 *7 (-583 (-1088)))))
+ (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85))
+ (-4 *5 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-584 (-959 *5 *6)))
+ (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-584 (-1089))) (-14 *7 (-584 (-1089)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85))
- (-4 *5 (-13 (-755) (-257) (-120) (-933))) (-5 *2 (-583 (-958 *5 *6)))
- (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-583 (-1088))) (-14 *7 (-583 (-1088)))))
+ (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85))
+ (-4 *5 (-13 (-756) (-257) (-120) (-934))) (-5 *2 (-584 (-959 *5 *6)))
+ (-5 *1 (-1206 *5 *6 *7)) (-14 *6 (-584 (-1089))) (-14 *7 (-584 (-1089)))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-257) (-120) (-933)))
- (-5 *2 (-583 (-958 *4 *5))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-583 (-1088)))
- (-14 *6 (-583 (-1088))))))
+ (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-257) (-120) (-934)))
+ (-5 *2 (-584 (-959 *4 *5))) (-5 *1 (-1206 *4 *5 *6)) (-14 *5 (-584 (-1089)))
+ (-14 *6 (-584 (-1089))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-1067 *4) (-1067 *4))) (-5 *2 (-1067 *4)) (-5 *1 (-1204 *4))
- (-4 *4 (-1127))))
+ (-12 (-5 *3 (-1 (-1068 *4) (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1205 *4))
+ (-4 *4 (-1128))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-583 (-1067 *5)) (-583 (-1067 *5)))) (-5 *4 (-483))
- (-5 *2 (-583 (-1067 *5))) (-5 *1 (-1204 *5)) (-4 *5 (-1127)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1203)))))
-(((*1 *2 *1) (-12 (-5 *2 (-884)) (-5 *1 (-1203)))))
+ (-12 (-5 *3 (-1 (-584 (-1068 *5)) (-584 (-1068 *5)))) (-5 *4 (-484))
+ (-5 *2 (-584 (-1068 *5))) (-5 *1 (-1205 *5)) (-4 *5 (-1128)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1204)))))
+(((*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-1204)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-830)) (-4 *6 (-494)) (-5 *2 (-583 (-264 *6)))
- (-5 *1 (-175 *5 *6)) (-5 *3 (-264 *6)) (-4 *5 (-961))))
- ((*1 *2 *1) (-12 (-5 *1 (-345 *2)) (-4 *2 (-494))))
+ (-12 (-5 *4 (-831)) (-4 *6 (-495)) (-5 *2 (-584 (-264 *6)))
+ (-5 *1 (-175 *5 *6)) (-5 *3 (-264 *6)) (-4 *5 (-962))))
+ ((*1 *2 *1) (-12 (-5 *1 (-345 *2)) (-4 *2 (-495))))
((*1 *2 *3)
- (-12 (-5 *3 (-518 *5)) (-4 *5 (-13 (-29 *4) (-1113)))
- (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-583 *5))
- (-5 *1 (-520 *4 *5))))
+ (-12 (-5 *3 (-519 *5)) (-4 *5 (-13 (-29 *4) (-1114)))
+ (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-584 *5))
+ (-5 *1 (-521 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-518 (-347 (-857 *4))))
- (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-583 (-264 *4)))
- (-5 *1 (-524 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *2)) (-4 *3 (-755)) (-4 *2 (-1062 *3))))
+ (-12 (-5 *3 (-519 (-347 (-858 *4))))
+ (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-584 (-264 *4)))
+ (-5 *1 (-525 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1007 *3 *2)) (-4 *3 (-756)) (-4 *2 (-1063 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 *1)) (-4 *1 (-1006 *4 *2)) (-4 *4 (-755))
- (-4 *2 (-1062 *4))))
+ (-12 (-5 *3 (-584 *1)) (-4 *1 (-1007 *4 *2)) (-4 *4 (-756))
+ (-4 *2 (-1063 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113)))))
+ (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114)))))
((*1 *2 *1)
- (-12 (-5 *2 (-1193 (-1088) *3)) (-5 *1 (-1199 *3)) (-4 *3 (-961))))
+ (-12 (-5 *2 (-1194 (-1089) *3)) (-5 *1 (-1200 *3)) (-4 *3 (-962))))
((*1 *2 *1)
- (-12 (-5 *2 (-1193 *3 *4)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-756))
- (-4 *4 (-961)))))
+ (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-757))
+ (-4 *4 (-962)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1193 (-1088) *3)) (-4 *3 (-961)) (-5 *1 (-1199 *3))))
+ (-12 (-5 *2 (-1194 (-1089) *3)) (-4 *3 (-962)) (-5 *1 (-1200 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1193 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961))
- (-5 *1 (-1202 *3 *4)))))
+ (-12 (-5 *2 (-1194 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))
+ (-5 *1 (-1203 *3 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| |k| (-1088)) (|:| |c| (-1199 *3)))))
- (-5 *1 (-1199 *3)) (-4 *3 (-961))))
+ (-12 (-5 *2 (-584 (-2 (|:| |k| (-1089)) (|:| |c| (-1200 *3)))))
+ (-5 *1 (-1200 *3)) (-4 *3 (-962))))
((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| |k| *3) (|:| |c| (-1202 *3 *4)))))
- (-5 *1 (-1202 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-694))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-830))))
+ (-12 (-5 *2 (-584 (-2 (|:| |k| *3) (|:| |c| (-1203 *3 *4)))))
+ (-5 *1 (-1203 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-695))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-831))))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-694)) (-4 *4 (-146))))
+ (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-695)) (-4 *4 (-146))))
((*1 *1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-130))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-130))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-130))))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-311) (-1113))) (-5 *1 (-181 *3))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1024)) (-4 *2 (-1127))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1024)) (-4 *2 (-1127))))
- ((*1 *1 *2 *3) (-12 (-4 *1 (-273 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-104))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-309 *2)) (-4 *2 (-1012))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-309 *2)) (-4 *2 (-1012))))
- ((*1 *1 *2 *3) (-12 (-5 *1 (-331 *3 *2)) (-4 *3 (-961)) (-4 *2 (-756))))
- ((*1 *1 *2 *3) (-12 (-4 *1 (-332 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1012))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-333 *2)) (-4 *2 (-1012))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-1012))))
+ (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-311) (-1114))) (-5 *1 (-181 *3))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1025)) (-4 *2 (-1128))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1025)) (-4 *2 (-1128))))
+ ((*1 *1 *2 *3) (-12 (-4 *1 (-273 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-104))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-309 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-309 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *2 *3) (-12 (-5 *1 (-331 *3 *2)) (-4 *3 (-962)) (-4 *2 (-757))))
+ ((*1 *1 *2 *3) (-12 (-4 *1 (-332 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1013))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-333 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-1013))))
((*1 *1 *2 *1)
- (-12 (-14 *3 (-583 (-1088))) (-4 *4 (-146)) (-4 *6 (-196 (-3951 *3) (-694)))
+ (-12 (-14 *3 (-584 (-1089))) (-4 *4 (-146)) (-4 *6 (-196 (-3953 *3) (-695)))
(-14 *7
- (-1 (-85) (-2 (|:| -2396 *5) (|:| -2397 *6))
- (-2 (|:| -2396 *5) (|:| -2397 *6))))
- (-5 *1 (-398 *3 *4 *5 *6 *7 *2)) (-4 *5 (-756))
- (-4 *2 (-861 *4 *6 (-773 *3)))))
+ (-1 (-85) (-2 (|:| -2398 *5) (|:| -2399 *6))
+ (-2 (|:| -2398 *5) (|:| -2399 *6))))
+ (-5 *1 (-398 *3 *4 *5 *6 *7 *2)) (-4 *5 (-757))
+ (-4 *2 (-862 *4 *6 (-774 *3)))))
((*1 *1 *1 *2) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))
((*1 *1 *2 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-311)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-441 *2 *3 *4 *5))
- (-4 *5 (-861 *2 *3 *4))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-298)) (-5 *1 (-465 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-472)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-530 *3)) (-4 *3 (-961))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1024))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1012)) (-4 *6 (-1012))
- (-4 *7 (-1012)) (-5 *2 (-1 *7 *5)) (-5 *1 (-625 *5 *6 *7))))
+ (-12 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-441 *2 *3 *4 *5))
+ (-4 *5 (-862 *2 *3 *4))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-298)) (-5 *1 (-466 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-473)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-531 *3)) (-4 *3 (-962))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-589 *2)) (-4 *2 (-1025))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013))
+ (-4 *7 (-1013)) (-5 *2 (-1 *7 *5)) (-5 *1 (-626 *5 *6 *7))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-627 *3 *2 *4)) (-4 *3 (-961)) (-4 *2 (-321 *3))
+ (-12 (-4 *1 (-628 *3 *2 *4)) (-4 *3 (-962)) (-4 *2 (-321 *3))
(-4 *4 (-321 *3))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-627 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-321 *3))
+ (-12 (-4 *1 (-628 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-321 *3))
(-4 *2 (-321 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-483)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3))
+ (-12 (-5 *2 (-484)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3))
(-4 *5 (-321 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2))
+ (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2))
(-4 *4 (-321 *2))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2))
+ (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2))
(-4 *4 (-321 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2))
+ (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2))
(-4 *4 (-321 *2))))
- ((*1 *1 *1 *1) (-4 *1 (-657))) ((*1 *1 *1 *1) (-5 *1 (-772)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1012))))
+ ((*1 *1 *1 *1) (-4 *1 (-658))) ((*1 *1 *1 *1) (-5 *1 (-773)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1013))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1177 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-494))
- (-5 *1 (-882 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-963 *2)) (-4 *2 (-1024))))
- ((*1 *1 *1 *1) (-4 *1 (-1024)))
+ (-12 (-5 *2 (-1178 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-495))
+ (-5 *1 (-883 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1025))))
+ ((*1 *1 *1 *1) (-4 *1 (-1025)))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-1035 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *2 (-196 *3 *4))
+ (-12 (-4 *1 (-1036 *3 *4 *2 *5)) (-4 *4 (-962)) (-4 *2 (-196 *3 *4))
(-4 *5 (-196 *3 *4))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-1035 *3 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4))
+ (-12 (-4 *1 (-1036 *3 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4))
(-4 *2 (-196 *3 *4))))
((*1 *1 *2 *1)
- (-12 (-4 *3 (-961)) (-4 *4 (-756)) (-5 *1 (-1038 *3 *4 *2))
- (-4 *2 (-861 *3 (-468 *4) *4))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3))))
- ((*1 *2 *2 *3) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-854 (-179))) (-5 *3 (-179)) (-5 *1 (-1124))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-663))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-663))))
+ (-12 (-4 *3 (-962)) (-4 *4 (-757)) (-5 *1 (-1039 *3 *4 *2))
+ (-4 *2 (-862 *3 (-469 *4) *4))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3))))
+ ((*1 *2 *2 *3) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-855 (-179))) (-5 *3 (-179)) (-5 *1 (-1125))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-664))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-664))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-483)) (-4 *1 (-1176 *3)) (-4 *3 (-1127)) (-4 *3 (-21))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-1201 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754)))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716))))
- ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1088)))))
+ (-12 (-5 *2 (-484)) (-4 *1 (-1177 *3)) (-4 *3 (-1128)) (-4 *3 (-21))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1198 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755)))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717))))
+ ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-962)) (-14 *3 (-584 (-1089)))))
((*1 *1 *1)
- (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756)))
- (-14 *3 (-583 (-1088)))))
- ((*1 *1 *1) (-12 (-4 *1 (-332 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1012))))
+ (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757)))
+ (-14 *3 (-584 (-1089)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-332 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1013))))
((*1 *1 *1)
- (-12 (-14 *2 (-583 (-1088))) (-4 *3 (-146)) (-4 *5 (-196 (-3951 *2) (-694)))
+ (-12 (-14 *2 (-584 (-1089))) (-4 *3 (-146)) (-4 *5 (-196 (-3953 *2) (-695)))
(-14 *6
- (-1 (-85) (-2 (|:| -2396 *4) (|:| -2397 *5))
- (-2 (|:| -2396 *4) (|:| -2397 *5))))
- (-5 *1 (-398 *2 *3 *4 *5 *6 *7)) (-4 *4 (-756))
- (-4 *7 (-861 *3 *5 (-773 *2)))))
- ((*1 *1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-72)) (-4 *3 (-759))))
- ((*1 *1 *1) (-12 (-4 *2 (-494)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1153 *2))))
- ((*1 *1 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-961))))
+ (-1 (-85) (-2 (|:| -2398 *4) (|:| -2399 *5))
+ (-2 (|:| -2398 *4) (|:| -2399 *5))))
+ (-5 *1 (-398 *2 *3 *4 *5 *6 *7)) (-4 *4 (-757))
+ (-4 *7 (-862 *3 *5 (-774 *2)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-72)) (-4 *3 (-760))))
+ ((*1 *1 *1) (-12 (-4 *2 (-495)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1154 *2))))
+ ((*1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-962))))
((*1 *1 *1)
- (-12 (-5 *1 (-674 *2 *3)) (-4 *3 (-756)) (-4 *2 (-961)) (-4 *3 (-663))))
- ((*1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961))))
+ (-12 (-5 *1 (-675 *2 *3)) (-4 *3 (-757)) (-4 *2 (-962)) (-4 *3 (-664))))
+ ((*1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))))
- ((*1 *1 *1) (-12 (-5 *1 (-1201 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754)))))
+ (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-50 *3 *4))
- (-14 *4 (-583 (-1088)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-50 *3 *4))
+ (-14 *4 (-584 (-1089)))))
((*1 *1 *2 *1 *1 *3)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128))
(-4 *4 (-321 *3)) (-4 *5 (-321 *3))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128))
(-4 *4 (-321 *3)) (-4 *5 (-321 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128))
(-4 *4 (-321 *3)) (-4 *5 (-321 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1127)) (-4 *6 (-1127))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1128)) (-4 *6 (-1128))
(-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-483))
- (-14 *6 (-694)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8))
+ (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-484))
+ (-14 *6 (-695)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8))
(-5 *1 (-109 *5 *6 *7 *8))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-142 *5)) (-4 *5 (-146)) (-4 *6 (-146))
(-5 *2 (-142 *6)) (-5 *1 (-143 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-264 *3) (-264 *3))) (-4 *3 (-13 (-961) (-756)))
- (-5 *1 (-177 *3 *4)) (-14 *4 (-583 (-1088)))))
+ (-12 (-5 *2 (-1 (-264 *3) (-264 *3))) (-4 *3 (-13 (-962) (-757)))
+ (-5 *1 (-177 *3 *4)) (-14 *4 (-584 (-1089)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-197 *5 *6)) (-14 *5 (-694)) (-4 *6 (-1127))
- (-4 *7 (-1127)) (-5 *2 (-197 *5 *7)) (-5 *1 (-198 *5 *6 *7))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-248 *3))))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-197 *5 *6)) (-14 *5 (-695)) (-4 *6 (-1128))
+ (-4 *7 (-1128)) (-5 *2 (-197 *5 *7)) (-5 *1 (-198 *5 *6 *7))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-248 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-248 *5)) (-4 *5 (-1127)) (-4 *6 (-1127))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-248 *5)) (-4 *5 (-1128)) (-4 *6 (-1128))
(-5 *2 (-248 *6)) (-5 *1 (-249 *5 *6))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-550 *1)) (-4 *1 (-253))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-551 *1)) (-4 *1 (-253))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1071)) (-5 *5 (-550 *6)) (-4 *6 (-253))
- (-4 *2 (-1127)) (-5 *1 (-254 *6 *2))))
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1072)) (-5 *5 (-551 *6)) (-4 *6 (-253))
+ (-4 *2 (-1128)) (-5 *1 (-254 *6 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-550 *5)) (-4 *5 (-253)) (-4 *2 (-253))
+ (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-551 *5)) (-4 *5 (-253)) (-4 *2 (-253))
(-5 *1 (-255 *5 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-264 *5)) (-4 *5 (-1012)) (-4 *6 (-1012))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-264 *5)) (-4 *5 (-1013)) (-4 *6 (-1013))
(-5 *2 (-264 *6)) (-5 *1 (-265 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-282 *5 *6 *7 *8)) (-4 *5 (-311))
- (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-347 *6))) (-4 *8 (-290 *5 *6 *7))
- (-4 *9 (-311)) (-4 *10 (-1153 *9)) (-4 *11 (-1153 (-347 *10)))
+ (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-347 *6))) (-4 *8 (-290 *5 *6 *7))
+ (-4 *9 (-311)) (-4 *10 (-1154 *9)) (-4 *11 (-1154 (-347 *10)))
(-5 *2 (-282 *9 *10 *11 *12)) (-5 *1 (-283 *5 *6 *7 *8 *9 *10 *11 *12))
(-4 *12 (-290 *9 *10 *11))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-287 *3)) (-4 *3 (-1012))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-287 *3)) (-4 *3 (-1013))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1132)) (-4 *8 (-1132)) (-4 *6 (-1153 *5))
- (-4 *7 (-1153 (-347 *6))) (-4 *9 (-1153 *8)) (-4 *2 (-290 *8 *9 *10))
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1133)) (-4 *8 (-1133)) (-4 *6 (-1154 *5))
+ (-4 *7 (-1154 (-347 *6))) (-4 *9 (-1154 *8)) (-4 *2 (-290 *8 *9 *10))
(-5 *1 (-291 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-290 *5 *6 *7))
- (-4 *10 (-1153 (-347 *9)))))
+ (-4 *10 (-1154 (-347 *9)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-4 *2 (-321 *6))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1128)) (-4 *6 (-1128)) (-4 *2 (-321 *6))
(-5 *1 (-322 *5 *4 *6 *2)) (-4 *4 (-321 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-332 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1012))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-494)) (-5 *1 (-345 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-332 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1013))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-495)) (-5 *1 (-345 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-345 *5)) (-4 *5 (-494)) (-4 *6 (-494))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-345 *5)) (-4 *5 (-495)) (-4 *6 (-495))
(-5 *2 (-345 *6)) (-5 *1 (-346 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-347 *5)) (-4 *5 (-494)) (-4 *6 (-494))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-347 *5)) (-4 *5 (-495)) (-4 *6 (-495))
(-5 *2 (-347 *6)) (-5 *1 (-348 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-353 *5 *6 *7 *8)) (-4 *5 (-257))
- (-4 *6 (-904 *5)) (-4 *7 (-1153 *6)) (-4 *8 (-13 (-350 *6 *7) (-950 *6)))
- (-4 *9 (-257)) (-4 *10 (-904 *9)) (-4 *11 (-1153 *10))
+ (-4 *6 (-905 *5)) (-4 *7 (-1154 *6)) (-4 *8 (-13 (-350 *6 *7) (-951 *6)))
+ (-4 *9 (-257)) (-4 *10 (-905 *9)) (-4 *11 (-1154 *10))
(-5 *2 (-353 *9 *10 *11 *12)) (-5 *1 (-354 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-13 (-350 *10 *11) (-950 *10)))))
+ (-4 *12 (-13 (-350 *10 *11) (-951 *10)))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-358 *6))
(-5 *1 (-356 *4 *5 *2 *6)) (-4 *4 (-358 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-361 *6))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-361 *6))
(-5 *1 (-362 *5 *4 *6 *2)) (-4 *4 (-361 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-366 *6))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-366 *6))
(-5 *1 (-367 *5 *4 *6 *2)) (-4 *4 (-366 *5))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-426 *3)) (-4 *3 (-1127))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-426 *3)) (-4 *3 (-1128))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-447 *3 *4)) (-4 *3 (-72)) (-4 *4 (-759))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-447 *3 *4)) (-4 *3 (-72)) (-4 *4 (-760))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-518 *5)) (-4 *5 (-311)) (-4 *6 (-311))
- (-5 *2 (-518 *6)) (-5 *1 (-519 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-519 *5)) (-4 *5 (-311)) (-4 *6 (-311))
+ (-5 *2 (-519 *6)) (-5 *1 (-520 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4 (-3 (-2 (|:| -2132 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-311))
- (-4 *6 (-311)) (-5 *2 (-2 (|:| -2132 *6) (|:| |coeff| *6)))
- (-5 *1 (-519 *5 *6))))
+ (-5 *4 (-3 (-2 (|:| -2134 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-311))
+ (-4 *6 (-311)) (-5 *2 (-2 (|:| -2134 *6) (|:| |coeff| *6)))
+ (-5 *1 (-520 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-311))
- (-4 *2 (-311)) (-5 *1 (-519 *5 *2))))
+ (-4 *2 (-311)) (-5 *1 (-520 *5 *2))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
(-5 *4
(-3
(-2 (|:| |mainpart| *5)
- (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
+ (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
"failed"))
(-4 *5 (-311)) (-4 *6 (-311))
(-5 *2
(-2 (|:| |mainpart| *6)
- (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
- (-5 *1 (-519 *5 *6))))
+ (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
+ (-5 *1 (-520 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-535 *5)) (-4 *5 (-1127)) (-4 *6 (-1127))
- (-5 *2 (-535 *6)) (-5 *1 (-532 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-536 *5)) (-4 *5 (-1128)) (-4 *6 (-1128))
+ (-5 *2 (-536 *6)) (-5 *1 (-533 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-535 *6)) (-5 *5 (-535 *7))
- (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-535 *8))
- (-5 *1 (-533 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-536 *6)) (-5 *5 (-536 *7))
+ (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-536 *8))
+ (-5 *1 (-534 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1067 *6)) (-5 *5 (-535 *7))
- (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-1067 *8))
- (-5 *1 (-533 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1068 *6)) (-5 *5 (-536 *7))
+ (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-1068 *8))
+ (-5 *1 (-534 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-535 *6)) (-5 *5 (-1067 *7))
- (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-1067 *8))
- (-5 *1 (-533 *6 *7 *8))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-535 *3))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-536 *6)) (-5 *5 (-1068 *7))
+ (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-1068 *8))
+ (-5 *1 (-534 *6 *7 *8))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1127)) (-4 *6 (-1127))
- (-5 *2 (-583 *6)) (-5 *1 (-584 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-584 *5)) (-4 *5 (-1128)) (-4 *6 (-1128))
+ (-5 *2 (-584 *6)) (-5 *1 (-585 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7))
- (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-583 *8))
- (-5 *1 (-586 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-584 *6)) (-5 *5 (-584 *7))
+ (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-584 *8))
+ (-5 *1 (-587 *6 *7 *8))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-593 *3)) (-4 *3 (-1127))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-594 *3)) (-4 *3 (-1128))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-321 *5))
- (-4 *7 (-321 *5)) (-4 *2 (-627 *8 *9 *10))
- (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-627 *5 *6 *7))
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-321 *5))
+ (-4 *7 (-321 *5)) (-4 *2 (-628 *8 *9 *10))
+ (-5 *1 (-629 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-628 *5 *6 *7))
(-4 *9 (-321 *8)) (-4 *10 (-321 *8))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-961)) (-4 *8 (-961))
- (-4 *6 (-321 *5)) (-4 *7 (-321 *5)) (-4 *2 (-627 *8 *9 *10))
- (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-627 *5 *6 *7))
+ (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-962)) (-4 *8 (-962))
+ (-4 *6 (-321 *5)) (-4 *7 (-321 *5)) (-4 *2 (-628 *8 *9 *10))
+ (-5 *1 (-629 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-628 *5 *6 *7))
(-4 *9 (-321 *8)) (-4 *10 (-321 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-494)) (-4 *7 (-494)) (-4 *6 (-1153 *5))
- (-4 *2 (-1153 (-347 *8))) (-5 *1 (-646 *5 *6 *4 *7 *8 *2))
- (-4 *4 (-1153 (-347 *6))) (-4 *8 (-1153 *7))))
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-495)) (-4 *7 (-495)) (-4 *6 (-1154 *5))
+ (-4 *2 (-1154 (-347 *8))) (-5 *1 (-647 *5 *6 *4 *7 *8 *2))
+ (-4 *4 (-1154 (-347 *6))) (-4 *8 (-1154 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-961)) (-4 *9 (-961)) (-4 *5 (-756))
- (-4 *6 (-717)) (-4 *2 (-861 *9 *7 *5)) (-5 *1 (-667 *5 *6 *7 *8 *9 *4 *2))
- (-4 *7 (-717)) (-4 *4 (-861 *8 *6 *5))))
+ (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-962)) (-4 *9 (-962)) (-4 *5 (-757))
+ (-4 *6 (-718)) (-4 *2 (-862 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2))
+ (-4 *7 (-718)) (-4 *4 (-862 *8 *6 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-756)) (-4 *6 (-756)) (-4 *7 (-717))
- (-4 *9 (-961)) (-4 *2 (-861 *9 *8 *6)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2))
- (-4 *8 (-717)) (-4 *4 (-861 *9 *7 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-757)) (-4 *6 (-757)) (-4 *7 (-718))
+ (-4 *9 (-962)) (-4 *2 (-862 *9 *8 *6)) (-5 *1 (-669 *5 *6 *7 *8 *9 *4 *2))
+ (-4 *8 (-718)) (-4 *4 (-862 *9 *7 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-674 *5 *7)) (-4 *5 (-961)) (-4 *6 (-961))
- (-4 *7 (-663)) (-5 *2 (-674 *6 *7)) (-5 *1 (-673 *5 *6 *7))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-675 *5 *7)) (-4 *5 (-962)) (-4 *6 (-962))
+ (-4 *7 (-664)) (-5 *2 (-675 *6 *7)) (-5 *1 (-674 *5 *6 *7))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-674 *3 *4)) (-4 *4 (-663))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-675 *3 *4)) (-4 *4 (-664))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-704 *5)) (-4 *5 (-961)) (-4 *6 (-961))
- (-5 *2 (-704 *6)) (-5 *1 (-705 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-705 *5)) (-4 *5 (-962)) (-4 *6 (-962))
+ (-5 *2 (-705 *6)) (-5 *1 (-706 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-720 *6))
- (-5 *1 (-723 *4 *5 *2 *6)) (-4 *4 (-720 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-721 *6))
+ (-5 *1 (-724 *4 *5 *2 *6)) (-4 *4 (-721 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5)) (-4 *5 (-1012)) (-4 *6 (-1012))
- (-5 *2 (-743 *6)) (-5 *1 (-744 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5)) (-4 *5 (-1013)) (-4 *6 (-1013))
+ (-5 *2 (-744 *6)) (-5 *1 (-745 *5 *6))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-743 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5)) (-4 *5 (-1012))
- (-4 *6 (-1012)) (-5 *1 (-744 *5 *6))))
+ (-12 (-5 *2 (-744 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5)) (-4 *5 (-1013))
+ (-4 *6 (-1013)) (-5 *1 (-745 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-750 *5)) (-4 *5 (-1012)) (-4 *6 (-1012))
- (-5 *2 (-750 *6)) (-5 *1 (-751 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-751 *5)) (-4 *5 (-1013)) (-4 *6 (-1013))
+ (-5 *2 (-751 *6)) (-5 *1 (-752 *5 *6))))
((*1 *2 *3 *4 *2 *2)
- (-12 (-5 *2 (-750 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-750 *5)) (-4 *5 (-1012))
- (-4 *6 (-1012)) (-5 *1 (-751 *5 *6))))
+ (-12 (-5 *2 (-751 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-751 *5)) (-4 *5 (-1013))
+ (-4 *6 (-1013)) (-5 *1 (-752 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-787 *5)) (-4 *5 (-1127)) (-4 *6 (-1127))
- (-5 *2 (-787 *6)) (-5 *1 (-786 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-788 *5)) (-4 *5 (-1128)) (-4 *6 (-1128))
+ (-5 *2 (-788 *6)) (-5 *1 (-787 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-789 *5)) (-4 *5 (-1127)) (-4 *6 (-1127))
- (-5 *2 (-789 *6)) (-5 *1 (-788 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-790 *5)) (-4 *5 (-1128)) (-4 *6 (-1128))
+ (-5 *2 (-790 *6)) (-5 *1 (-789 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-792 *5)) (-4 *5 (-1127)) (-4 *6 (-1127))
- (-5 *2 (-792 *6)) (-5 *1 (-791 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-793 *5)) (-4 *5 (-1128)) (-4 *6 (-1128))
+ (-5 *2 (-793 *6)) (-5 *1 (-792 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-798 *5 *6)) (-4 *5 (-1012)) (-4 *6 (-1012))
- (-4 *7 (-1012)) (-5 *2 (-798 *5 *7)) (-5 *1 (-799 *5 *6 *7))))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-799 *5 *6)) (-4 *5 (-1013)) (-4 *6 (-1013))
+ (-4 *7 (-1013)) (-5 *2 (-799 *5 *7)) (-5 *1 (-800 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1012)) (-4 *6 (-1012))
- (-5 *2 (-800 *6)) (-5 *1 (-802 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-801 *5)) (-4 *5 (-1013)) (-4 *6 (-1013))
+ (-5 *2 (-801 *6)) (-5 *1 (-803 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-857 *5)) (-4 *5 (-961)) (-4 *6 (-961))
- (-5 *2 (-857 *6)) (-5 *1 (-858 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-858 *5)) (-4 *5 (-962)) (-4 *6 (-962))
+ (-5 *2 (-858 *6)) (-5 *1 (-859 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-756)) (-4 *8 (-961))
- (-4 *6 (-717))
+ (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-757)) (-4 *8 (-962))
+ (-4 *6 (-718))
(-4 *2
- (-13 (-1012)
- (-10 -8 (-15 -3833 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-694))))))
- (-5 *1 (-863 *6 *7 *8 *5 *2)) (-4 *5 (-861 *8 *6 *7))))
+ (-13 (-1013)
+ (-10 -8 (-15 -3835 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-695))))))
+ (-5 *1 (-864 *6 *7 *8 *5 *2)) (-4 *5 (-862 *8 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-869 *5)) (-4 *5 (-1127)) (-4 *6 (-1127))
- (-5 *2 (-869 *6)) (-5 *1 (-870 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-870 *5)) (-4 *5 (-1128)) (-4 *6 (-1128))
+ (-5 *2 (-870 *6)) (-5 *1 (-871 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1012)) (-4 *6 (-1012))
- (-5 *2 (-877 *6)) (-5 *1 (-879 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-878 *5)) (-4 *5 (-1013)) (-4 *6 (-1013))
+ (-5 *2 (-878 *6)) (-5 *1 (-880 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-961)) (-4 *6 (-961))
- (-5 *2 (-854 *6)) (-5 *1 (-894 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-962)) (-4 *6 (-962))
+ (-5 *2 (-855 *6)) (-5 *1 (-895 *5 *6))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 *2 (-857 *4))) (-4 *4 (-961)) (-4 *2 (-861 (-857 *4) *5 *6))
- (-4 *5 (-717))
+ (-12 (-5 *3 (-1 *2 (-858 *4))) (-4 *4 (-962)) (-4 *2 (-862 (-858 *4) *5 *6))
+ (-4 *5 (-718))
(-4 *6
- (-13 (-756)
- (-10 -8 (-15 -3966 ((-1088) $)) (-15 -3825 ((-3 $ "failed") (-1088))))))
- (-5 *1 (-897 *4 *5 *6 *2))))
+ (-13 (-757)
+ (-10 -8 (-15 -3968 ((-1089) $)) (-15 -3827 ((-3 $ "failed") (-1089))))))
+ (-5 *1 (-898 *4 *5 *6 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-494)) (-4 *6 (-494)) (-4 *2 (-904 *6))
- (-5 *1 (-905 *5 *6 *4 *2)) (-4 *4 (-904 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-495)) (-4 *6 (-495)) (-4 *2 (-905 *6))
+ (-5 *1 (-906 *5 *6 *4 *2)) (-4 *4 (-905 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-911 *6))
- (-5 *1 (-912 *4 *5 *2 *6)) (-4 *4 (-911 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-912 *6))
+ (-5 *1 (-913 *4 *5 *2 *6)) (-4 *4 (-912 *5))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961))
+ (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962))
(-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961))
+ (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962))
(-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-961)) (-4 *10 (-961)) (-14 *5 (-694))
- (-14 *6 (-694)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7))
- (-4 *2 (-965 *5 *6 *10 *11 *12))
- (-5 *1 (-967 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
- (-4 *4 (-965 *5 *6 *7 *8 *9)) (-4 *11 (-196 *6 *10))
+ (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-962)) (-4 *10 (-962)) (-14 *5 (-695))
+ (-14 *6 (-695)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7))
+ (-4 *2 (-966 *5 *6 *10 *11 *12))
+ (-5 *1 (-968 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
+ (-4 *4 (-966 *5 *6 *7 *8 *9)) (-4 *11 (-196 *6 *10))
(-4 *12 (-196 *5 *10))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1000 *5)) (-4 *5 (-1127)) (-4 *6 (-1127))
- (-5 *2 (-1000 *6)) (-5 *1 (-1001 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1001 *5)) (-4 *5 (-1128)) (-4 *6 (-1128))
+ (-5 *2 (-1001 *6)) (-5 *1 (-1002 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1000 *5)) (-4 *5 (-755)) (-4 *5 (-1127))
- (-4 *6 (-1127)) (-5 *2 (-583 *6)) (-5 *1 (-1001 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1001 *5)) (-4 *5 (-756)) (-4 *5 (-1128))
+ (-4 *6 (-1128)) (-5 *2 (-584 *6)) (-5 *1 (-1002 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1003 *5)) (-4 *5 (-1127)) (-4 *6 (-1127))
- (-5 *2 (-1003 *6)) (-5 *1 (-1004 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1004 *5)) (-4 *5 (-1128)) (-4 *6 (-1128))
+ (-5 *2 (-1004 *6)) (-5 *1 (-1005 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1006 *4 *2)) (-4 *4 (-755))
- (-4 *2 (-1062 *4))))
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1007 *4 *2)) (-4 *4 (-756))
+ (-4 *2 (-1063 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1067 *5)) (-4 *5 (-1127)) (-4 *6 (-1127))
- (-5 *2 (-1067 *6)) (-5 *1 (-1069 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1068 *5)) (-4 *5 (-1128)) (-4 *6 (-1128))
+ (-5 *2 (-1068 *6)) (-5 *1 (-1070 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1067 *6)) (-5 *5 (-1067 *7))
- (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-1067 *8))
- (-5 *1 (-1070 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1068 *6)) (-5 *5 (-1068 *7))
+ (-4 *6 (-1128)) (-4 *7 (-1128)) (-4 *8 (-1128)) (-5 *2 (-1068 *8))
+ (-5 *1 (-1071 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1083 *5)) (-4 *5 (-961)) (-4 *6 (-961))
- (-5 *2 (-1083 *6)) (-5 *1 (-1084 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1084 *5)) (-4 *5 (-962)) (-4 *6 (-962))
+ (-5 *2 (-1084 *6)) (-5 *1 (-1085 *5 *6))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1105 *3 *4)) (-4 *3 (-1012))
- (-4 *4 (-1012))))
+ (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1106 *3 *4)) (-4 *3 (-1013))
+ (-4 *4 (-1013))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1137 *5 *7 *9)) (-4 *5 (-961))
- (-4 *6 (-961)) (-14 *7 (-1088)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1137 *6 *8 *10)) (-5 *1 (-1138 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1088))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1138 *5 *7 *9)) (-4 *5 (-962))
+ (-4 *6 (-962)) (-14 *7 (-1089)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1138 *6 *8 *10)) (-5 *1 (-1139 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1089))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1144 *5)) (-4 *5 (-1127)) (-4 *6 (-1127))
- (-5 *2 (-1144 *6)) (-5 *1 (-1145 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1145 *5)) (-4 *5 (-1128)) (-4 *6 (-1128))
+ (-5 *2 (-1145 *6)) (-5 *1 (-1146 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1144 *5)) (-4 *5 (-755)) (-4 *5 (-1127))
- (-4 *6 (-1127)) (-5 *2 (-1067 *6)) (-5 *1 (-1145 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1145 *5)) (-4 *5 (-756)) (-4 *5 (-1128))
+ (-4 *6 (-1128)) (-5 *2 (-1068 *6)) (-5 *1 (-1146 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1146 *5 *6)) (-14 *5 (-1088)) (-4 *6 (-961))
- (-4 *8 (-961)) (-5 *2 (-1146 *7 *8)) (-5 *1 (-1147 *5 *6 *7 *8))
- (-14 *7 (-1088))))
+ (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1147 *5 *6)) (-14 *5 (-1089)) (-4 *6 (-962))
+ (-4 *8 (-962)) (-5 *2 (-1147 *7 *8)) (-5 *1 (-1148 *5 *6 *7 *8))
+ (-14 *7 (-1089))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1153 *6))
- (-5 *1 (-1154 *5 *4 *6 *2)) (-4 *4 (-1153 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-1154 *6))
+ (-5 *1 (-1155 *5 *4 *6 *2)) (-4 *4 (-1154 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1158 *5 *7 *9)) (-4 *5 (-961))
- (-4 *6 (-961)) (-14 *7 (-1088)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1158 *6 *8 *10)) (-5 *1 (-1159 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1088))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1159 *5 *7 *9)) (-4 *5 (-962))
+ (-4 *6 (-962)) (-14 *7 (-1089)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1159 *6 *8 *10)) (-5 *1 (-1160 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1089))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1170 *6))
- (-5 *1 (-1168 *5 *6 *4 *2)) (-4 *4 (-1170 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-1171 *6))
+ (-5 *1 (-1169 *5 *6 *4 *2)) (-4 *4 (-1171 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1177 *5)) (-4 *5 (-1127)) (-4 *6 (-1127))
- (-5 *2 (-1177 *6)) (-5 *1 (-1178 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1178 *5)) (-4 *5 (-1128)) (-4 *6 (-1128))
+ (-5 *2 (-1178 *6)) (-5 *1 (-1179 *5 *6))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1177 *5))
- (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-1177 *6)) (-5 *1 (-1178 *5 *6))))
+ (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1178 *5))
+ (-4 *5 (-1128)) (-4 *6 (-1128)) (-5 *2 (-1178 *6)) (-5 *1 (-1179 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-1201 *3 *4)) (-4 *4 (-754)))))
-(((*1 *2 *1) (-12 (|has| *1 (-6 -3989)) (-4 *1 (-34)) (-5 *2 (-694))))
- ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-209))))
- ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-884))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-1202 *3 *4)) (-4 *4 (-755)))))
+(((*1 *2 *1) (-12 (|has| *1 (-6 -3991)) (-4 *1 (-34)) (-5 *2 (-695))))
+ ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-209))))
+ ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-885))))
((*1 *2 *1)
- (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-483))))
+ (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-484))))
((*1 *2 *1)
- (-12 (-5 *2 (-694)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754)))))
+ (-12 (-5 *2 (-695)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-739 *3))))
- ((*1 *2 *1) (-12 (-4 *2 (-754)) (-5 *1 (-1201 *3 *2)) (-4 *3 (-961)))))
+ (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-740 *3))))
+ ((*1 *2 *1) (-12 (-4 *2 (-755)) (-5 *1 (-1202 *3 *2)) (-4 *3 (-962)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-739 *3))))
- ((*1 *2 *1) (-12 (-4 *2 (-754)) (-5 *1 (-1201 *3 *2)) (-4 *3 (-961)))))
+ (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-740 *3))))
+ ((*1 *2 *1) (-12 (-4 *2 (-755)) (-5 *1 (-1202 *3 *2)) (-4 *3 (-962)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1202 *4 *2)) (-4 *1 (-323 *4 *2)) (-4 *4 (-756))
+ (-12 (-5 *3 (-1203 *4 *2)) (-4 *1 (-323 *4 *2)) (-4 *4 (-757))
(-4 *2 (-146))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1198 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-739 *4)) (-4 *1 (-1197 *4 *2)) (-4 *4 (-756)) (-4 *2 (-961))))
- ((*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-1201 *2 *3)) (-4 *3 (-754)))))
+ (-12 (-5 *3 (-740 *4)) (-4 *1 (-1198 *4 *2)) (-4 *4 (-757)) (-4 *2 (-962))))
+ ((*1 *2 *1 *3) (-12 (-4 *2 (-962)) (-5 *1 (-1202 *2 *3)) (-4 *3 (-755)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013))))
((*1 *2 *1)
- (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5)) (-4 *5 (-1012)) (-5 *2 (-1 *5 *4)) (-5 *1 (-624 *4 *5))
- (-4 *4 (-1012))))
- ((*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-264 (-483))) (-5 *1 (-840))))
- ((*1 *2 *2) (-12 (-4 *3 (-1012)) (-5 *1 (-841 *3 *2)) (-4 *2 (-361 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961))))
- ((*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-1201 *2 *3)) (-4 *3 (-754)))))
+ (-12 (-5 *3 (-1 *5)) (-4 *5 (-1013)) (-5 *2 (-1 *5 *4)) (-5 *1 (-625 *4 *5))
+ (-4 *4 (-1013))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-264 (-484))) (-5 *1 (-841))))
+ ((*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-842 *3 *2)) (-4 *2 (-361 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1198 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962))))
+ ((*1 *2 *1) (-12 (-4 *2 (-962)) (-5 *1 (-1202 *2 *3)) (-4 *3 (-755)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961))))
- ((*1 *1 *1) (-12 (-5 *1 (-1201 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *2 (-311))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-179))))
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-311))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-179))))
((*1 *1 *1 *1)
- (OR (-12 (-5 *1 (-248 *2)) (-4 *2 (-311)) (-4 *2 (-1127)))
- (-12 (-5 *1 (-248 *2)) (-4 *2 (-410)) (-4 *2 (-1127)))))
+ (OR (-12 (-5 *1 (-248 *2)) (-4 *2 (-311)) (-4 *2 (-1128)))
+ (-12 (-5 *1 (-248 *2)) (-4 *2 (-410)) (-4 *2 (-1128)))))
((*1 *1 *1 *1) (-4 *1 (-311)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-327))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-327))))
((*1 *1 *2 *2)
- (-12 (-5 *2 (-1037 *3 (-550 *1))) (-4 *3 (-494)) (-4 *3 (-1012))
+ (-12 (-5 *2 (-1038 *3 (-551 *1))) (-4 *3 (-495)) (-4 *3 (-1013))
(-4 *1 (-361 *3))))
((*1 *1 *1 *1) (-4 *1 (-410)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-298)) (-5 *1 (-465 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-472)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-298)) (-5 *1 (-466 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-473)))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-146)) (-5 *1 (-558 *2 *4 *3)) (-4 *2 (-38 *4))
- (-4 *3 (|SubsetCategory| (-663) *4))))
+ (-12 (-4 *4 (-146)) (-5 *1 (-559 *2 *4 *3)) (-4 *2 (-38 *4))
+ (-4 *3 (|SubsetCategory| (-664) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *4 (-146)) (-5 *1 (-558 *3 *4 *2)) (-4 *3 (-38 *4))
- (-4 *2 (|SubsetCategory| (-663) *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-574 *2)) (-4 *2 (-146)) (-4 *2 (-311))))
+ (-12 (-4 *4 (-146)) (-5 *1 (-559 *3 *4 *2)) (-4 *3 (-38 *4))
+ (-4 *2 (|SubsetCategory| (-664) *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-575 *2)) (-4 *2 (-146)) (-4 *2 (-311))))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-146)) (-5 *1 (-594 *2 *4 *3)) (-4 *2 (-654 *4))
- (-4 *3 (|SubsetCategory| (-663) *4))))
+ (-12 (-4 *4 (-146)) (-5 *1 (-595 *2 *4 *3)) (-4 *2 (-655 *4))
+ (-4 *3 (|SubsetCategory| (-664) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *4 (-146)) (-5 *1 (-594 *3 *4 *2)) (-4 *3 (-654 *4))
- (-4 *2 (|SubsetCategory| (-663) *4))))
+ (-12 (-4 *4 (-146)) (-5 *1 (-595 *3 *4 *2)) (-4 *3 (-655 *4))
+ (-4 *2 (|SubsetCategory| (-664) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2))
+ (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2))
(-4 *4 (-321 *2)) (-4 *2 (-311))))
- ((*1 *1 *1 *1) (-5 *1 (-772)))
+ ((*1 *1 *1 *1) (-5 *1 (-773)))
((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-775 *2 *3 *4 *5)) (-4 *2 (-311)) (-4 *2 (-961))
- (-14 *3 (-583 (-1088))) (-14 *4 (-583 (-694))) (-14 *5 (-694))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1012))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494))))
+ (|partial| -12 (-5 *1 (-776 *2 *3 *4 *5)) (-4 *2 (-311)) (-4 *2 (-962))
+ (-14 *3 (-584 (-1089))) (-14 *4 (-584 (-695))) (-14 *5 (-695))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-965 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-196 *4 *2))
+ (-12 (-4 *1 (-966 *3 *4 *2 *5 *6)) (-4 *2 (-962)) (-4 *5 (-196 *4 *2))
(-4 *6 (-196 *3 *2)) (-4 *2 (-311))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1185 *2)) (-4 *2 (-311))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1186 *2)) (-4 *2 (-311))))
((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-311)) (-4 *2 (-961)) (-4 *3 (-756)) (-4 *4 (-717))
- (-14 *6 (-583 *3)) (-5 *1 (-1190 *2 *3 *4 *5 *6 *7 *8))
- (-4 *5 (-861 *2 *4 *3)) (-14 *7 (-583 (-694))) (-14 *8 (-694))))
+ (|partial| -12 (-4 *2 (-311)) (-4 *2 (-962)) (-4 *3 (-757)) (-4 *4 (-718))
+ (-14 *6 (-584 *3)) (-5 *1 (-1191 *2 *3 *4 *5 *6 *7 *8))
+ (-4 *5 (-862 *2 *4 *3)) (-14 *7 (-584 (-695))) (-14 *8 (-695))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-1201 *2 *3)) (-4 *2 (-311)) (-4 *2 (-961)) (-4 *3 (-754)))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716))))
+ (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-311)) (-4 *2 (-962)) (-4 *3 (-755)))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717))))
((*1 *2 *1)
- (-12 (-5 *2 (-694)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961))
- (-14 *4 (-583 (-1088)))))
+ (-12 (-5 *2 (-695)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962))
+ (-14 *4 (-584 (-1089)))))
((*1 *2 *1)
- (-12 (-5 *2 (-483)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756)))
- (-14 *4 (-583 (-1088)))))
+ (-12 (-5 *2 (-484)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757)))
+ (-14 *4 (-584 (-1089)))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756))
- (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694))))
- ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-229))))
+ (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757))
+ (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695))))
+ ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-229))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1083 *8)) (-5 *4 (-583 *6)) (-4 *6 (-756))
- (-4 *8 (-861 *7 *5 *6)) (-4 *5 (-717)) (-4 *7 (-961)) (-5 *2 (-583 (-694)))
+ (-12 (-5 *3 (-1084 *8)) (-5 *4 (-584 *6)) (-4 *6 (-757))
+ (-4 *8 (-862 *7 *5 *6)) (-4 *5 (-718)) (-4 *7 (-962)) (-5 *2 (-584 (-695)))
(-5 *1 (-271 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-830))))
+ ((*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-831))))
((*1 *2 *1)
- (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-694))))
+ (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-695))))
((*1 *2 *1) (-12 (-4 *1 (-407 *3 *2)) (-4 *3 (-146)) (-4 *2 (-23))))
((*1 *2 *1)
- (-12 (-4 *3 (-494)) (-5 *2 (-483)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1153 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-645 *3)) (-4 *3 (-961)) (-5 *2 (-694))))
- ((*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-694))))
- ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1012))))
- ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-816 *3)) (-4 *3 (-1012))))
+ (-12 (-4 *3 (-495)) (-5 *2 (-484)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1154 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-962)) (-5 *2 (-695))))
+ ((*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-695))))
+ ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1013))))
+ ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-817 *3)) (-4 *3 (-1013))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-583 (-694)))))
+ (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-584 (-695)))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756))
- (-5 *2 (-694))))
+ (-12 (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757))
+ (-5 *2 (-695))))
((*1 *2 *1)
- (-12 (-4 *1 (-886 *3 *2 *4)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *2 (-716))))
+ (-12 (-4 *1 (-887 *3 *2 *4)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *2 (-717))))
((*1 *2 *1)
- (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-694))))
+ (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-695))))
((*1 *2 *1)
- (-12 (-4 *1 (-1141 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1170 *3)) (-5 *2 (-483))))
+ (-12 (-4 *1 (-1142 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1171 *3)) (-5 *2 (-484))))
((*1 *2 *1)
- (-12 (-4 *1 (-1162 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1139 *3))
- (-5 *2 (-347 (-483)))))
- ((*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-311)) (-5 *2 (-743 (-830)))))
+ (-12 (-4 *1 (-1163 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1140 *3))
+ (-5 *2 (-347 (-484)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-311)) (-5 *2 (-744 (-831)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-694)))))
+ (-12 (-4 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-695)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-694)) (-4 *1 (-323 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146))))
+ (-12 (-5 *2 (-695)) (-4 *1 (-323 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-694)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))))
+ (-12 (-5 *2 (-695)) (-4 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1177 *3)) (-4 *3 (-311)) (-14 *6 (-1177 (-630 *3)))
- (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-830)) (-14 *5 (-583 (-1088)))))
- ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1127))))
+ (-12 (-5 *2 (-1178 *3)) (-4 *3 (-311)) (-14 *6 (-1178 (-631 *3)))
+ (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-831)) (-14 *5 (-584 (-1089)))))
+ ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1128))))
((*1 *2 *3)
- (-12 (-5 *3 (-1177 (-630 *4))) (-4 *4 (-146))
- (-5 *2 (-1177 (-630 (-347 (-857 *4))))) (-5 *1 (-163 *4))))
+ (-12 (-5 *3 (-1178 (-631 *4))) (-4 *4 (-146))
+ (-5 *2 (-1178 (-631 (-347 (-858 *4))))) (-5 *1 (-163 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1003 (-264 *4))) (-4 *4 (-13 (-756) (-494) (-553 (-327))))
- (-5 *2 (-1003 (-327))) (-5 *1 (-219 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-229))))
+ (-12 (-5 *3 (-1004 (-264 *4))) (-4 *4 (-13 (-757) (-495) (-554 (-327))))
+ (-5 *2 (-1004 (-327))) (-5 *1 (-219 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-229))))
((*1 *2 *1)
- (-12 (-4 *2 (-1153 *3)) (-5 *1 (-244 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146))
+ (-12 (-4 *2 (-1154 *3)) (-5 *1 (-244 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146))
(-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1158 *4 *5 *6)) (-4 *4 (-13 (-27) (-1113) (-361 *3)))
- (-14 *5 (-1088)) (-14 *6 *4)
- (-4 *3 (-13 (-950 (-483)) (-580 (-483)) (-389)))
+ (-12 (-5 *2 (-1159 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-361 *3)))
+ (-14 *5 (-1089)) (-14 *6 *4)
+ (-4 *3 (-13 (-951 (-484)) (-581 (-484)) (-389)))
(-5 *1 (-263 *3 *4 *5 *6))))
((*1 *2 *3)
(-12 (-4 *4 (-298)) (-4 *2 (-279 *4)) (-5 *1 (-296 *3 *4 *2))
@@ -796,10383 +796,10386 @@
(-12 (-4 *4 (-298)) (-4 *2 (-279 *4)) (-5 *1 (-296 *2 *4 *3))
(-4 *3 (-279 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146))
- (-5 *2 (-1202 *3 *4))))
+ (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146))
+ (-5 *2 (-1203 *3 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146))
- (-5 *2 (-1193 *3 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146))))
+ (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146))
+ (-5 *2 (-1194 *3 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146))))
((*1 *1 *2)
- (-12 (-5 *2 (-347 (-857 (-347 *3)))) (-4 *3 (-494)) (-4 *3 (-1012))
+ (-12 (-5 *2 (-347 (-858 (-347 *3)))) (-4 *3 (-495)) (-4 *3 (-1013))
(-4 *1 (-361 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-857 (-347 *3))) (-4 *3 (-494)) (-4 *3 (-1012))
+ (-12 (-5 *2 (-858 (-347 *3))) (-4 *3 (-495)) (-4 *3 (-1013))
(-4 *1 (-361 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-347 *3)) (-4 *3 (-494)) (-4 *3 (-1012)) (-4 *1 (-361 *3))))
+ (-12 (-5 *2 (-347 *3)) (-4 *3 (-495)) (-4 *3 (-1013)) (-4 *1 (-361 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1037 *3 (-550 *1))) (-4 *3 (-961)) (-4 *3 (-1012))
+ (-12 (-5 *2 (-1038 *3 (-551 *1))) (-4 *3 (-962)) (-4 *3 (-1013))
(-4 *1 (-361 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-280 *4)) (-4 *4 (-13 (-756) (-21))) (-5 *1 (-369 *3 *4))
- (-4 *3 (-13 (-146) (-38 (-347 (-483)))))))
+ (-12 (-5 *2 (-280 *4)) (-4 *4 (-13 (-757) (-21))) (-5 *1 (-369 *3 *4))
+ (-4 *3 (-13 (-146) (-38 (-347 (-484)))))))
((*1 *1 *2)
- (-12 (-5 *1 (-369 *2 *3)) (-4 *2 (-13 (-146) (-38 (-347 (-483)))))
- (-4 *3 (-13 (-756) (-21)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1014)) (-5 *1 (-374))))
- ((*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-374))))
- ((*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-374))))
- ((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-374))))
+ (-12 (-5 *1 (-369 *2 *3)) (-4 *2 (-13 (-146) (-38 (-347 (-484)))))
+ (-4 *3 (-13 (-757) (-21)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-374))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-374))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-374))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-374))))
((*1 *1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-376))))
((*1 *1 *2)
- (-12 (-5 *2 (-1177 (-347 (-857 *3)))) (-4 *3 (-146))
- (-14 *6 (-1177 (-630 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *4 (-830))
- (-14 *5 (-583 (-1088)))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-405))))
- ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-405))))
+ (-12 (-5 *2 (-1178 (-347 (-858 *3)))) (-4 *3 (-146))
+ (-14 *6 (-1178 (-631 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-14 *4 (-831))
+ (-14 *5 (-584 (-1089)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-405))))
+ ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-405))))
((*1 *1 *2)
- (-12 (-5 *2 (-1158 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1088)) (-14 *5 *3)
+ (-12 (-5 *2 (-1159 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1089)) (-14 *5 *3)
(-5 *1 (-411 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-411 *3 *4 *5))
- (-4 *3 (-961)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-411 *3 *4 *5))
+ (-4 *3 (-962)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-311)) (-4 *4 (-717))
- (-4 *5 (-756)) (-5 *1 (-441 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-1128))) (-5 *1 (-461))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-1128))) (-5 *1 (-539))))
- ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-540 *3 *2)) (-4 *2 (-683 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-1127))))
- ((*1 *1 *2) (-12 (-4 *1 (-555 *2)) (-4 *2 (-1127))))
- ((*1 *1 *2) (-12 (-4 *1 (-560 *2)) (-4 *2 (-961))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1198 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756))
- (-4 *4 (-13 (-146) (-654 (-347 (-483))))) (-14 *5 (-830))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1193 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756))
- (-4 *4 (-13 (-146) (-654 (-347 (-483))))) (-14 *5 (-830))))
- ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-572 *3 *2)) (-4 *2 (-683 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756))))
- ((*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756))))
- ((*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-618 *3)) (-4 *3 (-756))))
- ((*1 *1 *2) (-12 (-5 *2 (-1027)) (-5 *1 (-622))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-623 *3)) (-4 *3 (-1012))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-311)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-5 *1 (-441 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 (-1129))) (-5 *1 (-462))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 (-1129))) (-5 *1 (-540))))
+ ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-541 *3 *2)) (-4 *2 (-684 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *2) (-12 (-4 *1 (-561 *2)) (-4 *2 (-962))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1199 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757))
+ (-4 *4 (-13 (-146) (-655 (-347 (-484))))) (-14 *5 (-831))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757))
+ (-4 *4 (-13 (-146) (-655 (-347 (-484))))) (-14 *5 (-831))))
+ ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-573 *3 *2)) (-4 *2 (-684 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757))))
+ ((*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757))))
+ ((*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-619 *3)) (-4 *3 (-757))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1028)) (-5 *1 (-623))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1013))))
((*1 *1 *2)
- (-12 (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *2)) (-4 *4 (-321 *3))
+ (-12 (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *2)) (-4 *4 (-321 *3))
(-4 *2 (-321 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1071)) (-5 *1 (-647))))
+ ((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1072)) (-5 *1 (-648))))
((*1 *2 *1)
- (-12 (-4 *2 (-146)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-12 (-4 *2 (-146)) (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *2 *1)
- (-12 (-4 *2 (-146)) (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-12 (-4 *2 (-146)) (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 (-2 (|:| -3948 *3) (|:| -3932 *4)))) (-4 *3 (-961))
- (-4 *4 (-663)) (-5 *1 (-674 *3 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-687))))
- ((*1 *2 *3) (-12 (-5 *2 (-696)) (-5 *1 (-697 *3)) (-4 *3 (-1127))))
- ((*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-767))))
- ((*1 *2 *3) (-12 (-5 *3 (-857 (-48))) (-5 *2 (-264 (-483))) (-5 *1 (-784))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-347 (-857 (-48)))) (-5 *2 (-264 (-483))) (-5 *1 (-784))))
- ((*1 *1 *2) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756))))
- ((*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-5 *1 (-813 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1012)) (-5 *1 (-813 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-813 *3))) (-4 *3 (-1012)) (-5 *1 (-816 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1012))))
- ((*1 *1 *2) (-12 (-5 *2 (-347 (-345 *3))) (-4 *3 (-257)) (-5 *1 (-825 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-347 *3)) (-5 *1 (-825 *3)) (-4 *3 (-257))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-414)) (-5 *2 (-264 *4)) (-5 *1 (-831 *4)) (-4 *4 (-494))))
- ((*1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *1 (-946 *3)) (-4 *3 (-1127))))
- ((*1 *2 *3) (-12 (-5 *3 (-261)) (-5 *1 (-946 *2)) (-4 *2 (-1127))))
+ (-12 (-5 *2 (-584 (-2 (|:| -3950 *3) (|:| -3934 *4)))) (-4 *3 (-962))
+ (-4 *4 (-664)) (-5 *1 (-675 *3 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-688))))
+ ((*1 *2 *3) (-12 (-5 *2 (-697)) (-5 *1 (-698 *3)) (-4 *3 (-1128))))
+ ((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-768))))
+ ((*1 *2 *3) (-12 (-5 *3 (-858 (-48))) (-5 *2 (-264 (-484))) (-5 *1 (-785))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-347 (-858 (-48)))) (-5 *2 (-264 (-484))) (-5 *1 (-785))))
+ ((*1 *1 *2) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757))))
+ ((*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-5 *1 (-814 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1013)) (-5 *1 (-814 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 (-814 *3))) (-4 *3 (-1013)) (-5 *1 (-817 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1013))))
+ ((*1 *1 *2) (-12 (-5 *2 (-347 (-345 *3))) (-4 *3 (-257)) (-5 *1 (-826 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-347 *3)) (-5 *1 (-826 *3)) (-4 *3 (-257))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-414)) (-5 *2 (-264 *4)) (-5 *1 (-832 *4)) (-4 *4 (-495))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1184)) (-5 *1 (-947 *3)) (-4 *3 (-1128))))
+ ((*1 *2 *3) (-12 (-5 *3 (-261)) (-5 *1 (-947 *2)) (-4 *2 (-1128))))
((*1 *1 *2)
- (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756))
- (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *2 (-861 *3 *4 *5)) (-14 *6 (-583 *2))))
- ((*1 *2 *3) (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-952 *3)) (-4 *3 (-494))))
+ (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *2 (-862 *3 *4 *5)) (-14 *6 (-584 *2))))
+ ((*1 *2 *3) (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-953 *3)) (-4 *3 (-495))))
((*1 *1 *2)
- (-12 (-4 *3 (-961)) (-4 *4 (-756)) (-5 *1 (-1038 *3 *4 *2))
- (-4 *2 (-861 *3 (-468 *4) *4))))
+ (-12 (-4 *3 (-962)) (-4 *4 (-757)) (-5 *1 (-1039 *3 *4 *2))
+ (-4 *2 (-862 *3 (-469 *4) *4))))
((*1 *1 *2)
- (-12 (-4 *3 (-961)) (-4 *2 (-756)) (-5 *1 (-1038 *3 *2 *4))
- (-4 *4 (-861 *3 (-468 *2) *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-772))))
- ((*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1056))))
- ((*1 *2 *3) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-1073 *3)) (-4 *3 (-961))))
+ (-12 (-4 *3 (-962)) (-4 *2 (-757)) (-5 *1 (-1039 *3 *2 *4))
+ (-4 *4 (-862 *3 (-469 *2) *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-773))))
+ ((*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1057))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-962))))
((*1 *1 *2)
- (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1080 *3 *4 *5))
- (-4 *3 (-961)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1081 *3 *4 *5))
+ (-4 *3 (-962)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1087 *3 *4 *5))
- (-4 *3 (-961)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1088 *3 *4 *5))
+ (-4 *3 (-962)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1146 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1088)) (-14 *5 *3)
- (-5 *1 (-1087 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-1100 (-1088) (-376))) (-5 *1 (-1092))))
- ((*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-1093))))
- ((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-1093))))
- ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1093))))
- ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1093))))
- ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1101 *3)) (-4 *3 (-1012))))
- ((*1 *2 *3) (-12 (-5 *2 (-1107)) (-5 *1 (-1108 *3)) (-4 *3 (-1012))))
- ((*1 *1 *2) (-12 (-5 *2 (-857 *3)) (-4 *3 (-961)) (-5 *1 (-1120 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-1120 *3)) (-4 *3 (-961))))
+ (-12 (-5 *2 (-1147 *4 *3)) (-4 *3 (-962)) (-14 *4 (-1089)) (-14 *5 *3)
+ (-5 *1 (-1088 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1101 (-1089) (-376))) (-5 *1 (-1093))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1094))))
+ ((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-1094))))
+ ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1094))))
+ ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1094))))
+ ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1102 *3)) (-4 *3 (-1013))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1108)) (-5 *1 (-1109 *3)) (-4 *3 (-1013))))
+ ((*1 *1 *2) (-12 (-5 *2 (-858 *3)) (-4 *3 (-962)) (-5 *1 (-1121 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1121 *3)) (-4 *3 (-962))))
((*1 *1 *2)
- (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1137 *3 *4 *5))
- (-4 *3 (-961)) (-14 *5 *3)))
- ((*1 *1 *2) (-12 (-5 *2 (-1000 *3)) (-4 *3 (-1127)) (-5 *1 (-1144 *3))))
+ (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1138 *3 *4 *5))
+ (-4 *3 (-962)) (-14 *5 *3)))
+ ((*1 *1 *2) (-12 (-5 *2 (-1001 *3)) (-4 *3 (-1128)) (-5 *1 (-1145 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1167 *3 *4 *5))
- (-4 *3 (-961)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1168 *3 *4 *5))
+ (-4 *3 (-962)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1146 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1088)) (-14 *5 *3)
- (-5 *1 (-1167 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-1174 *3)) (-14 *3 *2)))
- ((*1 *2 *3) (-12 (-5 *3 (-405)) (-5 *2 (-1180)) (-5 *1 (-1179))))
- ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1180))))
- ((*1 *1 *2) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1202 *3 *4)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-756))
+ (-12 (-5 *2 (-1147 *4 *3)) (-4 *3 (-962)) (-14 *4 (-1089)) (-14 *5 *3)
+ (-5 *1 (-1168 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-1175 *3)) (-14 *3 *2)))
+ ((*1 *2 *3) (-12 (-5 *3 (-405)) (-5 *2 (-1181)) (-5 *1 (-1180))))
+ ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1181))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1203 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-757))
(-4 *4 (-146))))
((*1 *2 *1)
- (-12 (-5 *2 (-1193 *3 *4)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-756))
+ (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-757))
(-4 *4 (-146))))
((*1 *1 *2)
- (-12 (-5 *2 (-606 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146))
- (-5 *1 (-1198 *3 *4)))))
+ (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146))
+ (-5 *1 (-1199 *3 *4)))))
(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1193 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146))
- (-5 *1 (-606 *3 *4))))
+ (|partial| -12 (-5 *2 (-1194 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146))
+ (-5 *1 (-607 *3 *4))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-606 *3 *4)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-756))
+ (|partial| -12 (-5 *2 (-607 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-757))
(-4 *4 (-146)))))
(((*1 *1 *1 *1)
- (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-694)) (-4 *4 (-146))))
+ (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-695)) (-4 *4 (-146))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *1 (-131 *4 *2)) (-4 *2 (-361 *4))))
+ (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-361 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1003 *2)) (-4 *2 (-361 *4)) (-4 *4 (-494))
+ (-12 (-5 *3 (-1004 *2)) (-4 *2 (-361 *4)) (-4 *4 (-495))
(-5 *1 (-131 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1003 *1)) (-4 *1 (-133))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1088))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-133))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1089))))
((*1 *1 *1 *1) (-12 (-4 *1 (-402 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))
((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-694)) (-5 *1 (-1198 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))))
+ (-12 (-5 *2 (-695)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-583 (-483))) (-5 *1 (-50 *3 *4)) (-4 *3 (-961))
- (-14 *4 (-583 (-1088)))))
+ (-12 (-5 *2 (-584 (-484))) (-5 *1 (-50 *3 *4)) (-4 *3 (-962))
+ (-14 *4 (-584 (-1089)))))
((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1141 *3 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1142 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4))))
((*1 *1 *1) (-4 *1 (-239)))
((*1 *1 *2)
- (-12 (-5 *2 (-606 *3 *4)) (-4 *3 (-756))
- (-4 *4 (-13 (-146) (-654 (-347 (-483))))) (-5 *1 (-566 *3 *4 *5))
- (-14 *5 (-830))))
+ (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-757))
+ (-4 *4 (-13 (-146) (-655 (-347 (-484))))) (-5 *1 (-567 *3 *4 *5))
+ (-14 *5 (-831))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-347 (-483))))) (-4 *5 (-756))
- (-5 *1 (-1194 *4 *5 *2)) (-4 *2 (-1200 *5 *4))))
+ (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-347 (-484))))) (-4 *5 (-757))
+ (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1201 *5 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-694)) (-5 *1 (-1198 *3 *4)) (-4 *4 (-654 (-347 (-483))))
- (-4 *3 (-756)) (-4 *4 (-146)))))
+ (-12 (-5 *2 (-695)) (-5 *1 (-1199 *3 *4)) (-4 *4 (-655 (-347 (-484))))
+ (-4 *3 (-757)) (-4 *4 (-146)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1141 *3 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1142 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4))))
((*1 *1 *1) (-4 *1 (-239)))
((*1 *2 *3)
- (-12 (-5 *3 (-345 *4)) (-4 *4 (-494))
- (-5 *2 (-583 (-2 (|:| -3948 (-694)) (|:| |logand| *4)))) (-5 *1 (-270 *4))))
+ (-12 (-5 *3 (-345 *4)) (-4 *4 (-495))
+ (-5 *2 (-584 (-2 (|:| -3950 (-695)) (|:| |logand| *4)))) (-5 *1 (-270 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-606 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756))
- (-4 *4 (-13 (-146) (-654 (-347 (-483))))) (-14 *5 (-830))))
+ (-12 (-5 *2 (-607 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757))
+ (-4 *4 (-13 (-146) (-655 (-347 (-484))))) (-14 *5 (-831))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-347 (-483))))) (-4 *5 (-756))
- (-5 *1 (-1194 *4 *5 *2)) (-4 *2 (-1200 *5 *4))))
+ (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-347 (-484))))) (-4 *5 (-757))
+ (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1201 *5 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-694)) (-5 *1 (-1198 *3 *4)) (-4 *4 (-654 (-347 (-483))))
- (-4 *3 (-756)) (-4 *4 (-146)))))
+ (-12 (-5 *2 (-695)) (-5 *1 (-1199 *3 *4)) (-4 *4 (-655 (-347 (-484))))
+ (-4 *3 (-757)) (-4 *4 (-146)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961))
- (-5 *2 (-2 (|:| |k| (-739 *3)) (|:| |c| *4))))))
+ (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))
+ (-5 *2 (-2 (|:| |k| (-740 *3)) (|:| |c| *4))))))
(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1202 *3 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-756))
+ (-12 (-5 *2 (-1203 *3 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-757))
(-4 *4 (-146))))
- ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-333 *2)) (-4 *2 (-1012))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-739 *2)) (-4 *2 (-756))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961))))
+ ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-333 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-740 *2)) (-4 *2 (-757))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-739 *3)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))))
+ (-12 (-5 *2 (-740 *3)) (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))))
(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1202 *3 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-756))
+ (-12 (-5 *2 (-1203 *3 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-757))
(-4 *4 (-146))))
- ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-333 *2)) (-4 *2 (-1012))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-739 *2)) (-4 *2 (-756))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961))))
+ ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-333 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-740 *2)) (-4 *2 (-757))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-739 *3)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))))
-(((*1 *1 *2 *3) (-12 (-4 *1 (-332 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1012))))
+ (-12 (-5 *2 (-740 *3)) (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))))
+(((*1 *1 *2 *3) (-12 (-4 *1 (-332 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1013))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-483)) (-5 *2 (-1067 *3)) (-5 *1 (-1073 *3)) (-4 *3 (-961))))
+ (-12 (-5 *4 (-484)) (-5 *2 (-1068 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-962))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-739 *4)) (-4 *4 (-756)) (-4 *1 (-1197 *4 *3)) (-4 *3 (-961)))))
+ (-12 (-5 *2 (-740 *4)) (-4 *4 (-757)) (-4 *1 (-1198 *4 *3)) (-4 *3 (-962)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1012)) (-5 *2 (-85))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-529 *3)) (-4 *3 (-961))))
+ (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1013)) (-5 *2 (-85))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-530 *3)) (-4 *3 (-962))))
((*1 *2 *1)
- (-12 (-4 *3 (-494)) (-5 *2 (-85)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1153 *3))))
+ (-12 (-4 *3 (-495)) (-5 *2 (-85)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1154 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664))))
((*1 *2 *1)
- (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85)))))
-(((*1 *1 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146))))
+ (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85)))))
+(((*1 *1 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146))))
((*1 *1 *1)
- (-12 (-5 *1 (-566 *2 *3 *4)) (-4 *2 (-756))
- (-4 *3 (-13 (-146) (-654 (-347 (-483))))) (-14 *4 (-830))))
- ((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756))))
- ((*1 *1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756))))
- ((*1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))))
+ (-12 (-5 *1 (-567 *2 *3 *4)) (-4 *2 (-757))
+ (-4 *3 (-13 (-146) (-655 (-347 (-484))))) (-14 *4 (-831))))
+ ((*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757))))
+ ((*1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-694)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961))
+ (-12 (-5 *2 (-695)) (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))
(-4 *4 (-146))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)) (-4 *3 (-146)))))
+ (-12 (-4 *1 (-1198 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)) (-4 *3 (-146)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-583 *3))))
+ (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-584 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-583 *3)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756))
- (-4 *4 (-13 (-146) (-654 (-347 (-483))))) (-14 *5 (-830))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-618 *3)) (-4 *3 (-756))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-739 *3)) (-4 *3 (-756))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756))))
+ (-12 (-5 *2 (-584 *3)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757))
+ (-4 *4 (-13 (-146) (-655 (-347 (-484))))) (-14 *5 (-831))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-619 *3)) (-4 *3 (-757))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-740 *3)) (-4 *3 (-757))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757))))
((*1 *2 *1)
- (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-583 *3)))))
+ (-12 (-4 *1 (-1198 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-584 *3)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1122 *4 *5 *3 *6)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *3 (-756))
- (-4 *6 (-976 *4 *5 *3)) (-5 *2 (-85))))
- ((*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-311)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-311)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-311)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1123 *4 *5 *3 *6)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *3 (-757))
+ (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-85))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-311)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-311)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-311)) (-5 *2 (-85)))))
(((*1 *2)
- (-12 (-4 *4 (-311)) (-5 *2 (-830)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4))))
+ (-12 (-4 *4 (-311)) (-5 *2 (-831)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4))))
((*1 *2)
- (-12 (-4 *4 (-311)) (-5 *2 (-743 (-830))) (-5 *1 (-278 *3 *4))
+ (-12 (-4 *4 (-311)) (-5 *2 (-744 (-831))) (-5 *1 (-278 *3 *4))
(-4 *3 (-279 *4))))
- ((*1 *2) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-830))))
- ((*1 *2) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-311)) (-5 *2 (-743 (-830))))))
+ ((*1 *2) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-831))))
+ ((*1 *2) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-311)) (-5 *2 (-744 (-831))))))
(((*1 *2)
- (-12 (-4 *4 (-311)) (-5 *2 (-694)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4))))
- ((*1 *2) (-12 (-4 *1 (-1196 *3)) (-4 *3 (-311)) (-5 *2 (-694)))))
+ (-12 (-4 *4 (-311)) (-5 *2 (-695)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4))))
+ ((*1 *2) (-12 (-4 *1 (-1197 *3)) (-4 *3 (-311)) (-5 *2 (-695)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-298)) (-4 *4 (-279 *3)) (-4 *5 (-1153 *4))
- (-5 *1 (-700 *3 *4 *5 *2 *6)) (-4 *2 (-1153 *5)) (-14 *6 (-830))))
+ (-12 (-4 *3 (-298)) (-4 *4 (-279 *3)) (-4 *5 (-1154 *4))
+ (-5 *1 (-701 *3 *4 *5 *2 *6)) (-4 *2 (-1154 *5)) (-14 *6 (-831))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-694)) (-4 *1 (-1196 *3)) (-4 *3 (-311)) (-4 *3 (-317))))
- ((*1 *1 *1) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-311)) (-4 *2 (-317)))))
+ (-12 (-5 *2 (-695)) (-4 *1 (-1197 *3)) (-4 *3 (-311)) (-4 *3 (-317))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1197 *2)) (-4 *2 (-311)) (-4 *2 (-317)))))
(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-347 (-483))))) (-4 *5 (-756))
- (-5 *1 (-1194 *4 *5 *2)) (-4 *2 (-1200 *5 *4)))))
+ (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-347 (-484))))) (-4 *5 (-757))
+ (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1201 *5 *4)))))
(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494))
- (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1191 *3 *4 *5 *6))))
+ (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1192 *3 *4 *5 *6))))
((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-717))
- (-4 *7 (-756)) (-5 *1 (-1191 *5 *6 *7 *8)))))
+ (|partial| -12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-718))
+ (-4 *7 (-757)) (-5 *1 (-1192 *5 *6 *7 *8)))))
(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494))
- (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1191 *3 *4 *5 *6))))
+ (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1192 *3 *4 *5 *6))))
((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-717))
- (-4 *7 (-756)) (-5 *1 (-1191 *5 *6 *7 *8)))))
+ (|partial| -12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-718))
+ (-4 *7 (-757)) (-5 *1 (-1192 *5 *6 *7 *8)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-583 (-1191 *4 *5 *6 *7)))
- (-5 *1 (-1191 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-584 (-1192 *4 *5 *6 *7)))
+ (-5 *1 (-1192 *4 *5 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-583 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9))
- (-4 *9 (-976 *6 *7 *8)) (-4 *6 (-494)) (-4 *7 (-717)) (-4 *8 (-756))
- (-5 *2 (-583 (-1191 *6 *7 *8 *9))) (-5 *1 (-1191 *6 *7 *8 *9)))))
+ (-12 (-5 *3 (-584 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9))
+ (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-718)) (-4 *8 (-757))
+ (-5 *2 (-584 (-1192 *6 *7 *8 *9))) (-5 *1 (-1192 *6 *7 *8 *9)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-694)) (-5 *2 (-1183)) (-5 *1 (-775 *4 *5 *6 *7)) (-4 *4 (-961))
- (-14 *5 (-583 (-1088))) (-14 *6 (-583 *3)) (-14 *7 *3)))
+ (-12 (-5 *3 (-695)) (-5 *2 (-1184)) (-5 *1 (-776 *4 *5 *6 *7)) (-4 *4 (-962))
+ (-14 *5 (-584 (-1089))) (-14 *6 (-584 *3)) (-14 *7 *3)))
((*1 *2 *3)
- (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-4 *5 (-756)) (-4 *6 (-717))
- (-14 *8 (-583 *5)) (-5 *2 (-1183)) (-5 *1 (-1190 *4 *5 *6 *7 *8 *9 *10))
- (-4 *7 (-861 *4 *6 *5)) (-14 *9 (-583 *3)) (-14 *10 *3))))
-(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-455))))
+ (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-4 *5 (-757)) (-4 *6 (-718))
+ (-14 *8 (-584 *5)) (-5 *2 (-1184)) (-5 *1 (-1191 *4 *5 *6 *7 *8 *9 *10))
+ (-4 *7 (-862 *4 *6 *5)) (-14 *9 (-584 *3)) (-14 *10 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-456))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1012) (-34))) (-5 *1 (-1052 *3 *2))
- (-4 *3 (-13 (-1012) (-34)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1189)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1188)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1188)))))
+ (-12 (-4 *2 (-13 (-1013) (-34))) (-5 *1 (-1053 *3 *2))
+ (-4 *3 (-13 (-1013) (-34)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1190)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1189)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1189)))))
(((*1 *2 *3)
- (-12 (-4 *3 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $)))))
- (-4 *4 (-1153 *3))
+ (-12 (-4 *3 (-13 (-257) (-10 -8 (-15 -3967 ((-345 $) $)))))
+ (-4 *4 (-1154 *3))
(-5 *2
- (-2 (|:| -2008 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3))))
+ (-2 (|:| -2010 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3))))
(-5 *1 (-299 *3 *4 *5)) (-4 *5 (-350 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-483)) (-4 *4 (-1153 *3))
+ (-12 (-5 *3 (-484)) (-4 *4 (-1154 *3))
(-5 *2
- (-2 (|:| -2008 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3))))
- (-5 *1 (-692 *4 *5)) (-4 *5 (-350 *3 *4))))
+ (-2 (|:| -2010 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3))))
+ (-5 *1 (-693 *4 *5)) (-4 *5 (-350 *3 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-298)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 *3))
+ (-12 (-4 *4 (-298)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 *3))
(-5 *2
- (-2 (|:| -2008 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3))))
- (-5 *1 (-898 *4 *3 *5 *6)) (-4 *6 (-661 *3 *5))))
+ (-2 (|:| -2010 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3))))
+ (-5 *1 (-899 *4 *3 *5 *6)) (-4 *6 (-662 *3 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-298)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 *3))
+ (-12 (-4 *4 (-298)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 *3))
(-5 *2
- (-2 (|:| -2008 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3))))
- (-5 *1 (-1187 *4 *3 *5 *6)) (-4 *6 (-350 *3 *5)))))
+ (-2 (|:| -2010 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3))))
+ (-5 *1 (-1188 *4 *3 *5 *6)) (-4 *6 (-350 *3 *5)))))
(((*1 *2)
- (-12 (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4)))
- (-5 *2 (-1177 *1)) (-4 *1 (-290 *3 *4 *5))))
+ (-12 (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4)))
+ (-5 *2 (-1178 *1)) (-4 *1 (-290 *3 *4 *5))))
((*1 *2)
- (-12 (-4 *3 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $)))))
- (-4 *4 (-1153 *3))
+ (-12 (-4 *3 (-13 (-257) (-10 -8 (-15 -3967 ((-345 $) $)))))
+ (-4 *4 (-1154 *3))
(-5 *2
- (-2 (|:| -2008 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3))))
+ (-2 (|:| -2010 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3))))
(-5 *1 (-299 *3 *4 *5)) (-4 *5 (-350 *3 *4))))
((*1 *2)
- (-12 (-4 *3 (-1153 (-483)))
+ (-12 (-4 *3 (-1154 (-484)))
(-5 *2
- (-2 (|:| -2008 (-630 (-483))) (|:| |basisDen| (-483))
- (|:| |basisInv| (-630 (-483)))))
- (-5 *1 (-692 *3 *4)) (-4 *4 (-350 (-483) *3))))
+ (-2 (|:| -2010 (-631 (-484))) (|:| |basisDen| (-484))
+ (|:| |basisInv| (-631 (-484)))))
+ (-5 *1 (-693 *3 *4)) (-4 *4 (-350 (-484) *3))))
((*1 *2)
- (-12 (-4 *3 (-298)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 *4))
+ (-12 (-4 *3 (-298)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 *4))
(-5 *2
- (-2 (|:| -2008 (-630 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-630 *4))))
- (-5 *1 (-898 *3 *4 *5 *6)) (-4 *6 (-661 *4 *5))))
+ (-2 (|:| -2010 (-631 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-631 *4))))
+ (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-662 *4 *5))))
((*1 *2)
- (-12 (-4 *3 (-298)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 *4))
+ (-12 (-4 *3 (-298)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 *4))
(-5 *2
- (-2 (|:| -2008 (-630 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-630 *4))))
- (-5 *1 (-1187 *3 *4 *5 *6)) (-4 *6 (-350 *4 *5)))))
+ (-2 (|:| -2010 (-631 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-631 *4))))
+ (-5 *1 (-1188 *3 *4 *5 *6)) (-4 *6 (-350 *4 *5)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-694)) (-4 *6 (-311)) (-5 *4 (-1120 *6))
- (-5 *2 (-1 (-1067 *4) (-1067 *4))) (-5 *1 (-1186 *6)) (-5 *5 (-1067 *4)))))
+ (-12 (-5 *3 (-695)) (-4 *6 (-311)) (-5 *4 (-1121 *6))
+ (-5 *2 (-1 (-1068 *4) (-1068 *4))) (-5 *1 (-1187 *6)) (-5 *5 (-1068 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1088)) (-4 *5 (-311)) (-5 *2 (-583 (-1120 *5)))
- (-5 *1 (-1186 *5)) (-5 *4 (-1120 *5)))))
+ (-12 (-5 *3 (-1089)) (-4 *5 (-311)) (-5 *2 (-584 (-1121 *5)))
+ (-5 *1 (-1187 *5)) (-5 *4 (-1121 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1088)) (-5 *2 (-1 (-1083 (-857 *4)) (-857 *4)))
- (-5 *1 (-1186 *4)) (-4 *4 (-311)))))
+ (-12 (-5 *3 (-1089)) (-5 *2 (-1 (-1084 (-858 *4)) (-858 *4)))
+ (-5 *1 (-1187 *4)) (-4 *4 (-311)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1088)) (-4 *5 (-311)) (-5 *2 (-1067 (-1067 (-857 *5))))
- (-5 *1 (-1186 *5)) (-5 *4 (-1067 (-857 *5))))))
+ (-12 (-5 *3 (-1089)) (-4 *5 (-311)) (-5 *2 (-1068 (-1068 (-858 *5))))
+ (-5 *1 (-1187 *5)) (-5 *4 (-1068 (-858 *5))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-694)) (-5 *2 (-1 (-1067 (-857 *4)) (-1067 (-857 *4))))
- (-5 *1 (-1186 *4)) (-4 *4 (-311)))))
+ (-12 (-5 *3 (-695)) (-5 *2 (-1 (-1068 (-858 *4)) (-1068 (-858 *4))))
+ (-5 *1 (-1187 *4)) (-4 *4 (-311)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-694)) (-5 *2 (-1 (-1067 (-857 *4)) (-1067 (-857 *4))))
- (-5 *1 (-1186 *4)) (-4 *4 (-311)))))
+ (-12 (-5 *3 (-695)) (-5 *2 (-1 (-1068 (-858 *4)) (-1068 (-858 *4))))
+ (-5 *1 (-1187 *4)) (-4 *4 (-311)))))
(((*1 *2)
- (-12 (-14 *4 (-694)) (-4 *5 (-1127)) (-5 *2 (-107)) (-5 *1 (-195 *3 *4 *5))
+ (-12 (-14 *4 (-695)) (-4 *5 (-1128)) (-5 *2 (-107)) (-5 *1 (-195 *3 *4 *5))
(-4 *3 (-196 *4 *5))))
((*1 *2)
(-12 (-4 *4 (-311)) (-5 *2 (-107)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4))))
((*1 *2)
- (-12 (-5 *2 (-694)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-12 (-5 *2 (-695)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
(-4 *5 (-146))))
((*1 *2 *1)
- (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-483))
- (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5))))
+ (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-484))
+ (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-311)) (-4 *5 (-717))
- (-5 *2 (-483)) (-5 *1 (-441 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-893 *3)) (-4 *3 (-961)) (-5 *2 (-830))))
- ((*1 *2) (-12 (-4 *1 (-1185 *3)) (-4 *3 (-311)) (-5 *2 (-107)))))
-(((*1 *1) (-5 *1 (-1183))))
-(((*1 *2 *3) (-12 (-5 *3 (-327)) (-5 *2 (-179)) (-5 *1 (-1182))))
- ((*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1182)))))
-(((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1182))))
- ((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1182)))))
-(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1182))))
- ((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1182)))))
-(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1182))))
- ((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1182)))))
-(((*1 *2) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1182)))))
-(((*1 *2) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1182))))
- ((*1 *2 *2) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1182)))))
-(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1182)))))
-(((*1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1182))))
- ((*1 *2 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1182)))))
-(((*1 *2) (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1182))))
- ((*1 *2 *2) (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1182)))))
-(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1182))))
- ((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1182)))))
-(((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1182))))
- ((*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1182)))))
-(((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1182))))
- ((*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1182)))))
-(((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1182))))
- ((*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1182)))))
-(((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1182))))
- ((*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1182)))))
-(((*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181))))
- ((*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181)))))
-(((*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181))))
- ((*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181)))))
-(((*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181))))
- ((*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181)))))
-(((*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181))))
- ((*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181)))))
-(((*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181))))
- ((*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1181)))))
-(((*1 *1) (-5 *1 (-1181))))
+ (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-311)) (-4 *5 (-718))
+ (-5 *2 (-484)) (-5 *1 (-441 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-894 *3)) (-4 *3 (-962)) (-5 *2 (-831))))
+ ((*1 *2) (-12 (-4 *1 (-1186 *3)) (-4 *3 (-311)) (-5 *2 (-107)))))
+(((*1 *1) (-5 *1 (-1184))))
+(((*1 *2 *3) (-12 (-5 *3 (-327)) (-5 *2 (-179)) (-5 *1 (-1183))))
+ ((*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1183)))))
+(((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1183))))
+ ((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1183)))))
+(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1183))))
+ ((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1183)))))
+(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1183))))
+ ((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1183)))))
+(((*1 *2) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1183)))))
+(((*1 *2) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1183))))
+ ((*1 *2 *2) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1183)))))
+(((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1183)))))
+(((*1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1183))))
+ ((*1 *2 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1183)))))
+(((*1 *2) (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1183))))
+ ((*1 *2 *2) (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1183)))))
+(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1183))))
+ ((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1183)))))
+(((*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1183))))
+ ((*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1183)))))
+(((*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1183))))
+ ((*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1183)))))
+(((*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1183))))
+ ((*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1183)))))
+(((*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1183))))
+ ((*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1183)))))
+(((*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182))))
+ ((*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182)))))
+(((*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182))))
+ ((*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182)))))
+(((*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182))))
+ ((*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182)))))
+(((*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182))))
+ ((*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182)))))
+(((*1 *2 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182))))
+ ((*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-1182)))))
+(((*1 *1) (-5 *1 (-1182))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1045 (-179))) (-5 *3 (-583 (-221))) (-5 *1 (-1181))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1045 (-179))) (-5 *3 (-1071)) (-5 *1 (-1181))))
- ((*1 *1 *1) (-5 *1 (-1181))))
-(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-1077 3 *3))))
- ((*1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1045 (-179))) (-5 *1 (-1181))))
- ((*1 *2 *1) (-12 (-5 *2 (-1045 (-179))) (-5 *1 (-1181)))))
+ (-12 (-5 *2 (-1046 (-179))) (-5 *3 (-584 (-221))) (-5 *1 (-1182))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1046 (-179))) (-5 *3 (-1072)) (-5 *1 (-1182))))
+ ((*1 *1 *1) (-5 *1 (-1182))))
+(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-1078 3 *3))))
+ ((*1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1046 (-179))) (-5 *1 (-1182))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1046 (-179))) (-5 *1 (-1182)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-694)) (-5 *3 (-854 *4)) (-4 *1 (-1046 *4)) (-4 *4 (-961))))
+ (-12 (-5 *2 (-695)) (-5 *3 (-855 *4)) (-4 *1 (-1047 *4)) (-4 *4 (-962))))
((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-694)) (-5 *4 (-854 (-179))) (-5 *2 (-1183)) (-5 *1 (-1181)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1180))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1180))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1181))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1181)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1183)) (-5 *1 (-1180))))
- ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1183)) (-5 *1 (-1181)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1183)) (-5 *1 (-1180))))
- ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1183)) (-5 *1 (-1181)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-221))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-1071)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))))
+ (-12 (-5 *3 (-695)) (-5 *4 (-855 (-179))) (-5 *2 (-1184)) (-5 *1 (-1182)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1181))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1181))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1182))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1182)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1184)) (-5 *1 (-1181))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1184)) (-5 *1 (-1181))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-221))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
(((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-694)) (-5 *4 (-830)) (-5 *2 (-1183)) (-5 *1 (-1180))))
+ (-12 (-5 *3 (-695)) (-5 *4 (-831)) (-5 *2 (-1184)) (-5 *1 (-1181))))
((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-694)) (-5 *4 (-830)) (-5 *2 (-1183)) (-5 *1 (-1181)))))
+ (-12 (-5 *3 (-695)) (-5 *4 (-831)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
(((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179))
+ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3843 (-179))
(|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179))
(|:| |deltaX| (-179)) (|:| |deltaY| (-179))))
(-5 *1 (-221))))
((*1 *2 *3 *2)
(-12
(-5 *2
- (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179))
+ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3843 (-179))
(|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179))
(|:| |deltaX| (-179)) (|:| |deltaY| (-179))))
- (-5 *3 (-583 (-221))) (-5 *1 (-222))))
- ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181))))
- ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181))))
+ (-5 *3 (-584 (-221))) (-5 *1 (-222))))
+ ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182))))
((*1 *2 *1 *3 *3 *4 *4 *4)
- (-12 (-5 *3 (-483)) (-5 *4 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181))))
+ (-12 (-5 *3 (-484)) (-5 *4 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182))))
((*1 *2 *1 *3)
(-12
(-5 *3
- (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179))
+ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3843 (-179))
(|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179))
(|:| |deltaX| (-179)) (|:| |deltaY| (-179))))
- (-5 *2 (-1183)) (-5 *1 (-1181))))
+ (-5 *2 (-1184)) (-5 *1 (-1182))))
((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3841 (-179))
+ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3843 (-179))
(|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179))
(|:| |deltaX| (-179)) (|:| |deltaY| (-179))))
- (-5 *1 (-1181))))
+ (-5 *1 (-1182))))
((*1 *2 *1 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))))
+ (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-830)) (-5 *4 (-783)) (-5 *2 (-1183)) (-5 *1 (-1180))))
+ (-12 (-5 *3 (-831)) (-5 *4 (-784)) (-5 *2 (-1184)) (-5 *1 (-1181))))
((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-830)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-483)) (-5 *2 (-1183)) (-5 *1 (-1181))))
- ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))))
-(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-836))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-836))))
- ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-838))))
- ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1113)))))
+ (-12 (-5 *3 (-831)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
+(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-837))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-837))))
+ ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-839))))
+ ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1114)))))
((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-830)) (-5 *4 (-327)) (-5 *2 (-1183)) (-5 *1 (-1180))))
- ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1181)))))
-(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1183)) (-5 *1 (-1181)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1180))))
- ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1181)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1183)) (-5 *1 (-1181)))))
+ (-12 (-5 *3 (-831)) (-5 *4 (-327)) (-5 *2 (-1184)) (-5 *1 (-1181))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
+(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-327)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1181))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1182)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1184)) (-5 *1 (-1182)))))
(((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-583 (-1071))) (-5 *2 (-1071)) (-5 *1 (-1180))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1180))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1180))))
+ (-12 (-5 *3 (-584 (-1072))) (-5 *2 (-1072)) (-5 *1 (-1181))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1181))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1181))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-583 (-1071))) (-5 *2 (-1071)) (-5 *1 (-1181))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1181))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1181)))))
+ (-12 (-5 *3 (-584 (-1072))) (-5 *2 (-1072)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1182)))))
(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145))))
- ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1180))))
- ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1181)))))
-(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-405))))
- ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1180))))
- ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1181)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-854 (-179)))) (-5 *1 (-1180)))))
-(((*1 *1) (-5 *1 (-1180))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-405)) (-5 *3 (-583 (-221))) (-5 *1 (-1180))))
- ((*1 *1 *1) (-5 *1 (-1180))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1181))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1182)))))
+(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-405))))
+ ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1181))))
+ ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1182)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-855 (-179)))) (-5 *1 (-1181)))))
+(((*1 *1) (-5 *1 (-1181))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-405)) (-5 *3 (-584 (-221))) (-5 *1 (-1181))))
+ ((*1 *1 *1) (-5 *1 (-1181))))
(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
- (-12 (-5 *3 (-830)) (-5 *4 (-179)) (-5 *5 (-483)) (-5 *6 (-783))
- (-5 *2 (-1183)) (-5 *1 (-1180)))))
+ (-12 (-5 *3 (-831)) (-5 *4 (-179)) (-5 *5 (-484)) (-5 *6 (-784))
+ (-5 *2 (-1184)) (-5 *1 (-1181)))))
(((*1 *2 *1)
(-12
(-5 *2
- (-1177
+ (-1178
(-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179))
- (|:| |deltaY| (-179)) (|:| -3844 (-483)) (|:| -3842 (-483))
- (|:| |spline| (-483)) (|:| -3873 (-483)) (|:| |axesColor| (-783))
- (|:| -3845 (-483)) (|:| |unitsColor| (-783)) (|:| |showing| (-483)))))
- (-5 *1 (-1180)))))
-(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164))))
- ((*1 *2 *1) (-12 (-5 *2 (-1177 (-3 (-405) "undefined"))) (-5 *1 (-1180)))))
+ (|:| |deltaY| (-179)) (|:| -3846 (-484)) (|:| -3844 (-484))
+ (|:| |spline| (-484)) (|:| -3875 (-484)) (|:| |axesColor| (-784))
+ (|:| -3847 (-484)) (|:| |unitsColor| (-784)) (|:| |showing| (-484)))))
+ (-5 *1 (-1181)))))
+(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1178 (-3 (-405) "undefined"))) (-5 *1 (-1181)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-405)) (-5 *4 (-830)) (-5 *2 (-1183)) (-5 *1 (-1180)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-830)) (-5 *2 (-405)) (-5 *1 (-1180)))))
+ (-12 (-5 *3 (-405)) (-5 *4 (-831)) (-5 *2 (-1184)) (-5 *1 (-1181)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-831)) (-5 *2 (-405)) (-5 *1 (-1181)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-583 (-327))) (-5 *3 (-583 (-221))) (-5 *1 (-222))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-327))) (-5 *1 (-405))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-327))) (-5 *1 (-405))))
+ (-12 (-5 *2 (-584 (-327))) (-5 *3 (-584 (-221))) (-5 *1 (-222))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-584 (-327))) (-5 *1 (-405))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-327))) (-5 *1 (-405))))
((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-830)) (-5 *4 (-783)) (-5 *2 (-1183)) (-5 *1 (-1180))))
+ (-12 (-5 *3 (-831)) (-5 *4 (-784)) (-5 *2 (-1184)) (-5 *1 (-1181))))
((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-830)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))))
+ (-12 (-5 *3 (-831)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-830)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))))
+ (-12 (-5 *3 (-831)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-830)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))))
+ (-12 (-5 *3 (-831)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-830)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1113)))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-311))))
- ((*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-311))))
+ (-12 (-5 *3 (-831)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1114)))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-311))))
+ ((*1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-311))))
((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-830)) (-5 *4 (-327)) (-5 *2 (-1183)) (-5 *1 (-1180)))))
+ (-12 (-5 *3 (-831)) (-5 *4 (-327)) (-5 *2 (-1184)) (-5 *1 (-1181)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-830)) (-5 *4 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1180)))))
+ (-12 (-5 *3 (-831)) (-5 *4 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1181)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-405)) (-5 *4 (-830)) (-5 *2 (-1183)) (-5 *1 (-1180)))))
+ (-12 (-5 *3 (-405)) (-5 *4 (-831)) (-5 *2 (-1184)) (-5 *1 (-1181)))))
(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-783)) (-5 *5 (-830))
- (-5 *6 (-583 (-221))) (-5 *2 (-1180)) (-5 *1 (-1179))))
+ (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-784)) (-5 *5 (-831))
+ (-5 *6 (-584 (-221))) (-5 *2 (-1181)) (-5 *1 (-1180))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-583 (-221)))
- (-5 *2 (-1180)) (-5 *1 (-1179)))))
+ (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-584 (-221)))
+ (-5 *2 (-1181)) (-5 *1 (-1180)))))
(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-783)) (-5 *5 (-830))
- (-5 *6 (-583 (-221))) (-5 *2 (-405)) (-5 *1 (-1179))))
+ (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-784)) (-5 *5 (-831))
+ (-5 *6 (-584 (-221))) (-5 *2 (-405)) (-5 *1 (-1180))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-405)) (-5 *1 (-1179))))
+ (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-405)) (-5 *1 (-1180))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-583 (-221))) (-5 *2 (-405))
- (-5 *1 (-1179)))))
+ (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-584 (-221))) (-5 *2 (-405))
+ (-5 *1 (-1180)))))
(((*1 *1 *1) (-5 *1 (-48)))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1127)) (-4 *2 (-1127))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1128)) (-4 *2 (-1128))
(-5 *1 (-59 *5 *2))))
((*1 *2 *3 *1 *2 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1012)) (|has| *1 (-6 -3989))
- (-4 *1 (-124 *2)) (-4 *2 (-1127))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1013)) (|has| *1 (-6 -3991))
+ (-4 *1 (-124 *2)) (-4 *2 (-1128))))
((*1 *2 *3 *1 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3989)) (-4 *1 (-124 *2))
- (-4 *2 (-1127))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3991)) (-4 *1 (-124 *2))
+ (-4 *2 (-1128))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3989)) (-4 *1 (-124 *2))
- (-4 *2 (-1127))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3991)) (-4 *1 (-124 *2))
+ (-4 *2 (-1128))))
((*1 *2 *3)
- (-12 (-4 *4 (-961)) (-5 *2 (-2 (|:| -2000 (-1083 *4)) (|:| |deg| (-830))))
- (-5 *1 (-175 *4 *5)) (-5 *3 (-1083 *4)) (-4 *5 (-494))))
+ (-12 (-4 *4 (-962)) (-5 *2 (-2 (|:| -2002 (-1084 *4)) (|:| |deg| (-831))))
+ (-5 *1 (-175 *4 *5)) (-5 *3 (-1084 *4)) (-4 *5 (-495))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-197 *5 *6)) (-14 *5 (-694))
- (-4 *6 (-1127)) (-4 *2 (-1127)) (-5 *1 (-198 *5 *6 *2))))
+ (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-197 *5 *6)) (-14 *5 (-695))
+ (-4 *6 (-1128)) (-4 *2 (-1128)) (-5 *1 (-198 *5 *6 *2))))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-146)) (-5 *1 (-244 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1153 *4))
+ (-12 (-4 *4 (-146)) (-5 *1 (-244 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1154 *4))
(-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-264 *2)) (-4 *2 (-494)) (-4 *2 (-1012))))
+ ((*1 *1 *1) (-12 (-5 *1 (-264 *2)) (-4 *2 (-495)) (-4 *2 (-1013))))
((*1 *1 *1)
- (-12 (-4 *1 (-285 *2 *3 *4 *5)) (-4 *2 (-311)) (-4 *3 (-1153 *2))
- (-4 *4 (-1153 (-347 *3))) (-4 *5 (-290 *2 *3 *4))))
+ (-12 (-4 *1 (-285 *2 *3 *4 *5)) (-4 *2 (-311)) (-4 *3 (-1154 *2))
+ (-4 *4 (-1154 (-347 *3))) (-4 *5 (-290 *2 *3 *4))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1127)) (-4 *2 (-1127))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1128)) (-4 *2 (-1128))
(-5 *1 (-322 *5 *4 *2 *6)) (-4 *4 (-321 *5)) (-4 *6 (-321 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1012)) (-4 *2 (-1012))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1013)) (-4 *2 (-1013))
(-5 *1 (-367 *5 *4 *2 *6)) (-4 *4 (-366 *5)) (-4 *6 (-366 *2))))
((*1 *1 *1) (-5 *1 (-432)))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-583 *5)) (-4 *5 (-1127)) (-4 *2 (-1127))
- (-5 *1 (-584 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-584 *5)) (-4 *5 (-1128)) (-4 *2 (-1128))
+ (-5 *1 (-585 *5 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-961)) (-4 *2 (-961)) (-4 *6 (-321 *5))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-962)) (-4 *2 (-962)) (-4 *6 (-321 *5))
(-4 *7 (-321 *5)) (-4 *8 (-321 *2)) (-4 *9 (-321 *2))
- (-5 *1 (-628 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-627 *5 *6 *7))
- (-4 *10 (-627 *2 *8 *9))))
+ (-5 *1 (-629 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-628 *5 *6 *7))
+ (-4 *10 (-628 *2 *8 *9))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
+ (-12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1153 *3))))
+ ((*1 *1 *2) (-12 (-4 *3 (-962)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1154 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
+ (-12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-347 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-311))
- (-4 *3 (-146)) (-4 *1 (-661 *3 *4))))
- ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-661 *3 *2)) (-4 *2 (-1153 *3))))
+ (|partial| -12 (-5 *2 (-347 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-311))
+ (-4 *3 (-146)) (-4 *1 (-662 *3 *4))))
+ ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1154 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-869 *5)) (-4 *5 (-1127)) (-4 *2 (-1127))
- (-5 *1 (-870 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-870 *5)) (-4 *5 (-1128)) (-4 *2 (-1128))
+ (-5 *1 (-871 *5 *2))))
((*1 *1 *2)
- (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756))
- (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *2 (-861 *3 *4 *5)) (-14 *6 (-583 *2))))
+ (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *2 (-862 *3 *4 *5)) (-14 *6 (-584 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-961)) (-4 *2 (-961)) (-14 *5 (-694))
- (-14 *6 (-694)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7))
+ (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-962)) (-4 *2 (-962)) (-14 *5 (-695))
+ (-14 *6 (-695)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7))
(-4 *10 (-196 *6 *2)) (-4 *11 (-196 *5 *2))
- (-5 *1 (-967 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
- (-4 *4 (-965 *5 *6 *7 *8 *9)) (-4 *12 (-965 *5 *6 *2 *10 *11))))
+ (-5 *1 (-968 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
+ (-4 *4 (-966 *5 *6 *7 *8 *9)) (-4 *12 (-966 *5 *6 *2 *10 *11))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1067 *5)) (-4 *5 (-1127)) (-4 *2 (-1127))
- (-5 *1 (-1069 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1068 *5)) (-4 *5 (-1128)) (-4 *2 (-1128))
+ (-5 *1 (-1070 *5 *2))))
((*1 *2 *2 *1 *3 *4)
(-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-85) *2 *2))
- (-4 *1 (-1122 *5 *6 *7 *2)) (-4 *5 (-494)) (-4 *6 (-717)) (-4 *7 (-756))
- (-4 *2 (-976 *5 *6 *7))))
+ (-4 *1 (-1123 *5 *6 *7 *2)) (-4 *5 (-495)) (-4 *6 (-718)) (-4 *7 (-757))
+ (-4 *2 (-977 *5 *6 *7))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1177 *5)) (-4 *5 (-1127)) (-4 *2 (-1127))
- (-5 *1 (-1178 *5 *2)))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1178 *5)) (-4 *5 (-1128)) (-4 *2 (-1128))
+ (-5 *1 (-1179 *5 *2)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1127)) (-4 *5 (-1127))
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1128)) (-4 *5 (-1128))
(-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-197 *6 *7)) (-14 *6 (-694))
- (-4 *7 (-1127)) (-4 *5 (-1127)) (-5 *2 (-197 *6 *5))
+ (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-197 *6 *7)) (-14 *6 (-695))
+ (-4 *7 (-1128)) (-4 *5 (-1128)) (-5 *2 (-197 *6 *5))
(-5 *1 (-198 *6 *7 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1127)) (-4 *5 (-1127)) (-4 *2 (-321 *5))
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1128)) (-4 *5 (-1128)) (-4 *2 (-321 *5))
(-5 *1 (-322 *6 *4 *5 *2)) (-4 *4 (-321 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1012)) (-4 *5 (-1012)) (-4 *2 (-366 *5))
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1013)) (-4 *5 (-1013)) (-4 *2 (-366 *5))
(-5 *1 (-367 *6 *4 *5 *2)) (-4 *4 (-366 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-583 *6)) (-4 *6 (-1127)) (-4 *5 (-1127))
- (-5 *2 (-583 *5)) (-5 *1 (-584 *6 *5))))
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-584 *6)) (-4 *6 (-1128)) (-4 *5 (-1128))
+ (-5 *2 (-584 *5)) (-5 *1 (-585 *6 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-869 *6)) (-4 *6 (-1127)) (-4 *5 (-1127))
- (-5 *2 (-869 *5)) (-5 *1 (-870 *6 *5))))
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-870 *6)) (-4 *6 (-1128)) (-4 *5 (-1128))
+ (-5 *2 (-870 *5)) (-5 *1 (-871 *6 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1067 *6)) (-4 *6 (-1127)) (-4 *3 (-1127))
- (-5 *2 (-1067 *3)) (-5 *1 (-1069 *6 *3))))
+ (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1068 *6)) (-4 *6 (-1128)) (-4 *3 (-1128))
+ (-5 *2 (-1068 *3)) (-5 *1 (-1070 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1177 *6)) (-4 *6 (-1127)) (-4 *5 (-1127))
- (-5 *2 (-1177 *5)) (-5 *1 (-1178 *6 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-5 *1 (-1177 *3)))))
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1178 *6)) (-4 *6 (-1128)) (-4 *5 (-1128))
+ (-5 *2 (-1178 *5)) (-5 *1 (-1179 *6 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-5 *1 (-1178 *3)))))
(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-130)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-167 *2))
(-4 *2
- (-13 (-756)
- (-10 -8 (-15 -3794 ((-1071) $ (-1088))) (-15 -3611 ((-1183) $))
- (-15 -1961 ((-1183) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-25)) (-4 *2 (-1127))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-25)) (-4 *2 (-1127))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-273 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-104))))
+ (-13 (-757)
+ (-10 -8 (-15 -3796 ((-1072) $ (-1089))) (-15 -3613 ((-1184) $))
+ (-15 -1962 ((-1184) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-25)) (-4 *2 (-1128))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-25)) (-4 *2 (-1128))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-273 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-104))))
((*1 *1 *2 *1)
- (-12 (-4 *3 (-13 (-311) (-120))) (-5 *1 (-339 *3 *2)) (-4 *2 (-1153 *3))))
+ (-12 (-4 *3 (-13 (-311) (-120))) (-5 *1 (-339 *3 *2)) (-4 *2 (-1154 *3))))
((*1 *1 *1 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-311)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-441 *2 *3 *4 *5))
- (-4 *5 (-861 *2 *3 *4))))
- ((*1 *1 *1 *1) (-5 *1 (-472)))
+ (-12 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-441 *2 *3 *4 *5))
+ (-4 *5 (-862 *2 *3 *4))))
+ ((*1 *1 *1 *1) (-5 *1 (-473)))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2))
+ (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2))
(-4 *4 (-321 *2))))
- ((*1 *1 *1 *1) (-5 *1 (-772)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1012))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1124))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-25)))))
+ ((*1 *1 *1 *1) (-5 *1 (-773)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1013))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1125))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-25)))))
(((*1 *1 *2 *2)
- (-12 (-5 *2 (-694)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-321 *3))
+ (-12 (-5 *2 (-695)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-321 *3))
(-4 *5 (-321 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-694)) (-4 *1 (-1176 *3)) (-4 *3 (-23)) (-4 *3 (-1127)))))
+ (-12 (-5 *2 (-695)) (-4 *1 (-1177 *3)) (-4 *3 (-23)) (-4 *3 (-1128)))))
(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
((*1 *1 *1 *1) (|partial| -5 *1 (-107)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-167 *2))
(-4 *2
- (-13 (-756)
- (-10 -8 (-15 -3794 ((-1071) $ (-1088))) (-15 -3611 ((-1183) $))
- (-15 -1961 ((-1183) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-21)) (-4 *2 (-1127))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-21)) (-4 *2 (-1127))))
+ (-13 (-757)
+ (-10 -8 (-15 -3796 ((-1072) $ (-1089))) (-15 -3613 ((-1184) $))
+ (-15 -1962 ((-1184) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-21)) (-4 *2 (-1128))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-21)) (-4 *2 (-1128))))
((*1 *1 *1 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))
((*1 *1 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))
((*1 *1 *1)
- (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2))
+ (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2))
(-4 *4 (-321 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2))
+ (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2))
(-4 *4 (-321 *2))))
- ((*1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1 *1) (-5 *1 (-772)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3))))
- ((*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1124))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-21))))
- ((*1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-21)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-196 *3 *2)) (-4 *2 (-1127)) (-4 *2 (-961))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772))))
- ((*1 *1 *1) (-5 *1 (-772)))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-179)) (-5 *1 (-1124))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-961)))))
+ ((*1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1125))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-21))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-21)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-196 *3 *2)) (-4 *2 (-1128)) (-4 *2 (-962))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773))))
+ ((*1 *1 *1) (-5 *1 (-773)))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-179)) (-5 *1 (-1125))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-962)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1176 *3)) (-4 *3 (-1127)) (-4 *3 (-961)) (-5 *2 (-630 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-893 *2)) (-4 *2 (-961))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1124))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-961)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-961)) (-4 *2 (-13 (-344) (-950 *4) (-311) (-1113) (-239)))
- (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1153 *4))))
- ((*1 *1 *1) (-4 *1 (-482)))
- ((*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-614 *3)) (-4 *3 (-756))))
- ((*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-618 *3)) (-4 *3 (-756))))
- ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-739 *3)) (-4 *3 (-756))))
- ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-803 *3)) (-4 *3 (-756))))
- ((*1 *2 *1) (-12 (-4 *1 (-908 *3)) (-4 *3 (-1127)) (-5 *2 (-694))))
- ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1125 *3)) (-4 *3 (-1127))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-915)) (-4 *2 (-961)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1176 *2)) (-4 *2 (-1127)) (-4 *2 (-915)) (-4 *2 (-961)))))
-(((*1 *2 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-756))))
+ (-12 (-4 *1 (-1177 *3)) (-4 *3 (-1128)) (-4 *3 (-962)) (-5 *2 (-631 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-894 *2)) (-4 *2 (-962))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1125))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-962)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-962)) (-4 *2 (-13 (-344) (-951 *4) (-311) (-1114) (-239)))
+ (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1154 *4))))
+ ((*1 *1 *1) (-4 *1 (-483)))
+ ((*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-615 *3)) (-4 *3 (-757))))
+ ((*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-619 *3)) (-4 *3 (-757))))
+ ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-740 *3)) (-4 *3 (-757))))
+ ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-804 *3)) (-4 *3 (-757))))
+ ((*1 *2 *1) (-12 (-4 *1 (-909 *3)) (-4 *3 (-1128)) (-5 *2 (-695))))
+ ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1126 *3)) (-4 *3 (-1128))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-916)) (-4 *2 (-962)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1177 *2)) (-4 *2 (-1128)) (-4 *2 (-916)) (-4 *2 (-962)))))
+(((*1 *2 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-757))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1088)) (-5 *1 (-773 *3)) (-14 *3 (-583 *2))))
- ((*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-902))))
+ (|partial| -12 (-5 *2 (-1089)) (-5 *1 (-774 *3)) (-14 *3 (-584 *2))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-903))))
((*1 *2 *1)
- (-12 (-4 *4 (-1127)) (-5 *2 (-1088)) (-5 *1 (-970 *3 *4))
- (-4 *3 (-1005 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-1003 *3)) (-4 *3 (-1127))))
+ (-12 (-4 *4 (-1128)) (-5 *2 (-1089)) (-5 *1 (-971 *3 *4))
+ (-4 *3 (-1006 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-1004 *3)) (-4 *3 (-1128))))
((*1 *2 *1)
- (-12 (-4 *1 (-1156 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-1088))))
- ((*1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-1174 *3)) (-14 *3 *2))))
+ (-12 (-4 *1 (-1157 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-1089))))
+ ((*1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1175 *3)) (-14 *3 *2))))
(((*1 *2 *3)
- (-12 (-5 *3 (-347 *5)) (-4 *5 (-1153 *4)) (-4 *4 (-494)) (-4 *4 (-961))
- (-4 *2 (-1170 *4)) (-5 *1 (-1172 *4 *5 *6 *2)) (-4 *6 (-600 *5)))))
+ (-12 (-5 *3 (-347 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-495)) (-4 *4 (-962))
+ (-4 *2 (-1171 *4)) (-5 *1 (-1173 *4 *5 *6 *2)) (-4 *6 (-601 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-961)) (-4 *5 (-1153 *4)) (-5 *2 (-1 *6 (-583 *6)))
- (-5 *1 (-1172 *4 *5 *3 *6)) (-4 *3 (-600 *5)) (-4 *6 (-1170 *4)))))
+ (-12 (-4 *4 (-962)) (-4 *5 (-1154 *4)) (-5 *2 (-1 *6 (-584 *6)))
+ (-5 *1 (-1173 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-1171 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-694)) (-4 *5 (-961)) (-4 *2 (-1153 *5))
- (-5 *1 (-1172 *5 *2 *6 *3)) (-4 *6 (-600 *2)) (-4 *3 (-1170 *5)))))
+ (-12 (-5 *4 (-695)) (-4 *5 (-962)) (-4 *2 (-1154 *5))
+ (-5 *1 (-1173 *5 *2 *6 *3)) (-4 *6 (-601 *2)) (-4 *3 (-1171 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-961)) (-4 *3 (-1153 *4)) (-4 *2 (-1170 *4))
- (-5 *1 (-1172 *4 *3 *5 *2)) (-4 *5 (-600 *3)))))
+ (-12 (-4 *4 (-962)) (-4 *3 (-1154 *4)) (-4 *2 (-1171 *4))
+ (-5 *1 (-1173 *4 *3 *5 *2)) (-4 *5 (-601 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 (-1 *6 (-583 *6))))
- (-4 *5 (-38 (-347 (-483)))) (-4 *6 (-1170 *5)) (-5 *2 (-583 *6))
- (-5 *1 (-1171 *5 *6)))))
+ (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 (-1 *6 (-584 *6))))
+ (-4 *5 (-38 (-347 (-484)))) (-4 *6 (-1171 *5)) (-5 *2 (-584 *6))
+ (-5 *1 (-1172 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-583 *2))) (-5 *4 (-583 *5)) (-4 *5 (-38 (-347 (-483))))
- (-4 *2 (-1170 *5)) (-5 *1 (-1171 *5 *2)))))
+ (-12 (-5 *3 (-1 *2 (-584 *2))) (-5 *4 (-584 *5)) (-4 *5 (-38 (-347 (-484))))
+ (-4 *2 (-1171 *5)) (-5 *1 (-1172 *5 *2)))))
(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1170 *4)) (-5 *1 (-1171 *4 *2))
- (-4 *4 (-38 (-347 (-483)))))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1171 *4)) (-5 *1 (-1172 *4 *2))
+ (-4 *4 (-38 (-347 (-484)))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1170 *4)) (-5 *1 (-1171 *4 *2))
- (-4 *4 (-38 (-347 (-483)))))))
+ (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1171 *4)) (-5 *1 (-1172 *4 *2))
+ (-4 *4 (-38 (-347 (-484)))))))
(((*1 *2 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1171 *3 *2)) (-4 *2 (-1170 *3)))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1172 *3 *2)) (-4 *2 (-1171 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 (-583 *5))) (-4 *5 (-1170 *4)) (-4 *4 (-38 (-347 (-483))))
- (-5 *2 (-1 (-1067 *4) (-583 (-1067 *4)))) (-5 *1 (-1171 *4 *5)))))
+ (-12 (-5 *3 (-1 *5 (-584 *5))) (-4 *5 (-1171 *4)) (-4 *4 (-38 (-347 (-484))))
+ (-5 *2 (-1 (-1068 *4) (-584 (-1068 *4)))) (-5 *1 (-1172 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1170 *4)) (-4 *4 (-38 (-347 (-483))))
- (-5 *2 (-1 (-1067 *4) (-1067 *4) (-1067 *4))) (-5 *1 (-1171 *4 *5)))))
+ (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1171 *4)) (-4 *4 (-38 (-347 (-484))))
+ (-5 *2 (-1 (-1068 *4) (-1068 *4) (-1068 *4))) (-5 *1 (-1172 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1170 *4)) (-4 *4 (-38 (-347 (-483))))
- (-5 *2 (-1 (-1067 *4) (-1067 *4))) (-5 *1 (-1171 *4 *5)))))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1171 *4)) (-4 *4 (-38 (-347 (-484))))
+ (-5 *2 (-1 (-1068 *4) (-1068 *4))) (-5 *1 (-1172 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483))))
- (-5 *2 (-51)) (-5 *1 (-266 *4 *5)) (-4 *5 (-13 (-27) (-1113) (-361 *4)))))
+ (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484))))
+ (-5 *2 (-51)) (-5 *1 (-266 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-361 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51))
- (-5 *1 (-266 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *4)))))
+ (-12 (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51))
+ (-5 *1 (-266 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-347 (-483))) (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483))))
- (-5 *2 (-51)) (-5 *1 (-266 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5)))))
+ (-12 (-5 *4 (-347 (-484))) (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484))))
+ (-5 *2 (-51)) (-5 *1 (-266 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5)))
- (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5)))
+ (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51))
(-5 *1 (-266 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-248 *3)) (-5 *5 (-347 (-483)))
- (-4 *3 (-13 (-27) (-1113) (-361 *6)))
- (-4 *6 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-248 *3)) (-5 *5 (-347 (-484)))
+ (-4 *3 (-13 (-27) (-1114) (-361 *6)))
+ (-4 *6 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51))
(-5 *1 (-266 *6 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-483))) (-5 *4 (-248 *6))
- (-4 *6 (-13 (-27) (-1113) (-361 *5)))
- (-4 *5 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51))
+ (-12 (-5 *3 (-1 *6 (-484))) (-5 *4 (-248 *6))
+ (-4 *6 (-13 (-27) (-1114) (-361 *5)))
+ (-4 *5 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51))
(-5 *1 (-396 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1088)) (-5 *5 (-248 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *6)))
- (-4 *6 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-1089)) (-5 *5 (-248 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *6)))
+ (-4 *6 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51))
(-5 *1 (-396 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-483))) (-5 *4 (-248 *7)) (-5 *5 (-1144 (-483)))
- (-4 *7 (-13 (-27) (-1113) (-361 *6)))
- (-4 *6 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51))
+ (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-248 *7)) (-5 *5 (-1145 (-484)))
+ (-4 *7 (-13 (-27) (-1114) (-361 *6)))
+ (-4 *6 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51))
(-5 *1 (-396 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1088)) (-5 *5 (-248 *3)) (-5 *6 (-1144 (-483)))
- (-4 *3 (-13 (-27) (-1113) (-361 *7)))
- (-4 *7 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-1089)) (-5 *5 (-248 *3)) (-5 *6 (-1145 (-484)))
+ (-4 *3 (-13 (-27) (-1114) (-361 *7)))
+ (-4 *7 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51))
(-5 *1 (-396 *7 *3))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-347 (-483)))) (-5 *4 (-248 *8))
- (-5 *5 (-1144 (-347 (-483)))) (-5 *6 (-347 (-483)))
- (-4 *8 (-13 (-27) (-1113) (-361 *7)))
- (-4 *7 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51))
+ (-12 (-5 *3 (-1 *8 (-347 (-484)))) (-5 *4 (-248 *8))
+ (-5 *5 (-1145 (-347 (-484)))) (-5 *6 (-347 (-484)))
+ (-4 *8 (-13 (-27) (-1114) (-361 *7)))
+ (-4 *7 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51))
(-5 *1 (-396 *7 *8))))
((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1088)) (-5 *5 (-248 *3)) (-5 *6 (-1144 (-347 (-483))))
- (-5 *7 (-347 (-483))) (-4 *3 (-13 (-27) (-1113) (-361 *8)))
- (-4 *8 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-1089)) (-5 *5 (-248 *3)) (-5 *6 (-1145 (-347 (-484))))
+ (-5 *7 (-347 (-484))) (-4 *3 (-13 (-27) (-1114) (-361 *8)))
+ (-4 *8 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51))
(-5 *1 (-396 *8 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1067 (-2 (|:| |k| (-483)) (|:| |c| *3)))) (-4 *3 (-961))
- (-5 *1 (-529 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-530 *3))))
+ (-12 (-5 *2 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-4 *3 (-962))
+ (-5 *1 (-530 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-531 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1067 (-2 (|:| |k| (-483)) (|:| |c| *3)))) (-4 *3 (-961))
- (-4 *1 (-1139 *3))))
+ (-12 (-5 *2 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-4 *3 (-962))
+ (-4 *1 (-1140 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-694)) (-5 *3 (-1067 (-2 (|:| |k| (-347 (-483))) (|:| |c| *4))))
- (-4 *4 (-961)) (-4 *1 (-1160 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-4 *1 (-1170 *3))))
+ (-12 (-5 *2 (-695)) (-5 *3 (-1068 (-2 (|:| |k| (-347 (-484))) (|:| |c| *4))))
+ (-4 *4 (-962)) (-4 *1 (-1161 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-4 *1 (-1171 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1067 (-2 (|:| |k| (-694)) (|:| |c| *3)))) (-4 *3 (-961))
- (-4 *1 (-1170 *3)))))
+ (-12 (-5 *2 (-1068 (-2 (|:| |k| (-695)) (|:| |c| *3)))) (-4 *3 (-962))
+ (-4 *1 (-1171 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-276 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-583 *3))))
+ (-12 (-4 *1 (-276 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-584 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1012)) (-5 *2 (-583 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-530 *3)) (-4 *3 (-961))))
+ (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1013)) (-5 *2 (-584 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-531 *3)) (-4 *3 (-962))))
((*1 *2 *1)
- (-12 (-5 *2 (-583 *3)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663))))
- ((*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-583 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-961)) (-5 *2 (-1067 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-961)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-483))) (-4 *3 (-961)) (-5 *1 (-529 *3))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-483))) (-4 *1 (-1139 *3)) (-4 *3 (-961))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-483))) (-4 *1 (-1170 *3)) (-4 *3 (-961)))))
+ (-12 (-5 *2 (-584 *3)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664))))
+ ((*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-584 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-962)) (-5 *2 (-1068 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-962)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *3 (-962)) (-5 *1 (-530 *3))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *1 (-1140 *3)) (-4 *3 (-962))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *1 (-1171 *3)) (-4 *3 (-962)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756))
- (-5 *2 (-857 *4))))
+ (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757))
+ (-5 *2 (-858 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756))
- (-5 *2 (-857 *4))))
+ (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757))
+ (-5 *2 (-858 *4))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-694)) (-4 *1 (-1170 *4)) (-4 *4 (-961)) (-5 *2 (-857 *4))))
+ (-12 (-5 *3 (-695)) (-4 *1 (-1171 *4)) (-4 *4 (-962)) (-5 *2 (-858 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-694)) (-4 *1 (-1170 *4)) (-4 *4 (-961)) (-5 *2 (-857 *4)))))
+ (-12 (-5 *3 (-695)) (-4 *1 (-1171 *4)) (-4 *4 (-962)) (-5 *2 (-858 *4)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-347 (-483))) (-4 *4 (-950 (-483))) (-4 *4 (-494))
+ (-12 (-5 *3 (-347 (-484))) (-4 *4 (-951 (-484))) (-4 *4 (-495))
(-5 *1 (-32 *4 *2)) (-4 *2 (-361 *4))))
((*1 *1 *1 *1) (-5 *1 (-107)))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3))))
((*1 *1 *1 *1) (-5 *1 (-179)))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-201)) (-5 *2 (-483))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-201)) (-5 *2 (-484))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-347 (-483))) (-4 *4 (-311)) (-4 *4 (-38 *3)) (-4 *5 (-1170 *4))
- (-5 *1 (-232 *4 *5 *2)) (-4 *2 (-1141 *4 *5))))
+ (-12 (-5 *3 (-347 (-484))) (-4 *4 (-311)) (-4 *4 (-38 *3)) (-4 *5 (-1171 *4))
+ (-5 *1 (-232 *4 *5 *2)) (-4 *2 (-1142 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-347 (-483))) (-4 *4 (-311)) (-4 *4 (-38 *3)) (-4 *5 (-1139 *4))
- (-5 *1 (-233 *4 *5 *2 *6)) (-4 *2 (-1162 *4 *5)) (-4 *6 (-896 *5))))
+ (-12 (-5 *3 (-347 (-484))) (-4 *4 (-311)) (-4 *4 (-38 *3)) (-4 *5 (-1140 *4))
+ (-5 *1 (-233 *4 *5 *2 *6)) (-4 *2 (-1163 *4 *5)) (-4 *6 (-897 *5))))
((*1 *1 *1 *1) (-4 *1 (-239)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-309 *2)) (-4 *2 (-1012))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-309 *2)) (-4 *2 (-1013))))
((*1 *1 *1 *1) (-5 *1 (-327)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-333 *2)) (-4 *2 (-1012))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-333 *2)) (-4 *2 (-1013))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-694)) (-4 *1 (-361 *3)) (-4 *3 (-1012)) (-4 *3 (-1024))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-410)) (-5 *2 (-483))))
+ (-12 (-5 *2 (-695)) (-4 *1 (-361 *3)) (-4 *3 (-1013)) (-4 *3 (-1025))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-410)) (-5 *2 (-484))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-694)) (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756))
- (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5))))
+ (-12 (-5 *2 (-695)) (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1177 *4)) (-5 *3 (-483)) (-4 *4 (-298)) (-5 *1 (-465 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-472))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-472))))
+ (-12 (-5 *2 (-1178 *4)) (-5 *3 (-484)) (-4 *4 (-298)) (-5 *1 (-466 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-473))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-473))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *4 (-1012)) (-5 *1 (-623 *4))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *4 (-1013)) (-5 *1 (-624 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-483)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3))
+ (-12 (-5 *2 (-484)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3))
(-4 *5 (-321 *3)) (-4 *3 (-311))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-694)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3))
+ (-12 (-5 *2 (-695)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3))
(-4 *5 (-321 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-630 *4)) (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-631 *4))))
+ (-12 (-5 *2 (-631 *4)) (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-632 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-483)) (-4 *3 (-961)) (-5 *1 (-651 *3 *4)) (-4 *4 (-590 *3))))
+ (-12 (-5 *2 (-484)) (-4 *3 (-962)) (-5 *1 (-652 *3 *4)) (-4 *4 (-591 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-86)) (-5 *3 (-483)) (-4 *4 (-961)) (-5 *1 (-651 *4 *5))
- (-4 *5 (-590 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-694))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-745 *3)) (-4 *3 (-961))))
+ (-12 (-5 *2 (-86)) (-5 *3 (-484)) (-4 *4 (-962)) (-5 *1 (-652 *4 *5))
+ (-4 *5 (-591 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-664)) (-5 *2 (-695))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-746 *3)) (-4 *3 (-962))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-86)) (-5 *3 (-483)) (-5 *1 (-745 *4)) (-4 *4 (-961))))
- ((*1 *1 *1 *1) (-5 *1 (-772)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1012))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-800 *3)) (-4 *3 (-1012))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-915)) (-5 *2 (-347 (-483)))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1024)) (-5 *2 (-830))))
+ (-12 (-5 *2 (-86)) (-5 *3 (-484)) (-5 *1 (-746 *4)) (-4 *4 (-962))))
+ ((*1 *1 *1 *1) (-5 *1 (-773)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-801 *3)) (-4 *3 (-1013))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-916)) (-5 *2 (-347 (-484)))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-831))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-483)) (-4 *1 (-1035 *3 *4 *5 *6)) (-4 *4 (-961))
+ (-12 (-5 *2 (-484)) (-4 *1 (-1036 *3 *4 *5 *6)) (-4 *4 (-962))
(-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)) (-4 *4 (-311))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-961)) (-4 *2 (-311)))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-962)) (-4 *2 (-311)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1003 (-750 *3))) (-4 *3 (-13 (-1113) (-871) (-29 *5)))
- (-4 *5 (-13 (-257) (-120) (-950 (-483)) (-580 (-483))))
+ (-12 (-5 *4 (-1004 (-751 *3))) (-4 *3 (-13 (-1114) (-872) (-29 *5)))
+ (-4 *5 (-13 (-257) (-120) (-951 (-484)) (-581 (-484))))
(-5 *2
- (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3)))
+ (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3)))
(|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")))
(-5 *1 (-173 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1003 (-750 *3))) (-5 *5 (-1071))
- (-4 *3 (-13 (-1113) (-871) (-29 *6)))
- (-4 *6 (-13 (-257) (-120) (-950 (-483)) (-580 (-483))))
+ (-12 (-5 *4 (-1004 (-751 *3))) (-5 *5 (-1072))
+ (-4 *3 (-13 (-1114) (-872) (-29 *6)))
+ (-4 *6 (-13 (-257) (-120) (-951 (-484)) (-581 (-484))))
(-5 *2
- (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3))) (|:| |fail| #1#)
+ (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| #1#)
(|:| |pole| #2#)))
(-5 *1 (-173 *6 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-1003 (-750 (-264 *5))))
- (-4 *5 (-13 (-257) (-120) (-950 (-483)) (-580 (-483))))
+ (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-1004 (-751 (-264 *5))))
+ (-4 *5 (-13 (-257) (-120) (-951 (-484)) (-581 (-484))))
(-5 *2
- (-3 (|:| |f1| (-750 (-264 *5))) (|:| |f2| (-583 (-750 (-264 *5))))
+ (-3 (|:| |f1| (-751 (-264 *5))) (|:| |f2| (-584 (-751 (-264 *5))))
(|:| |fail| #3="failed") (|:| |pole| #4="potentialPole")))
(-5 *1 (-174 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-347 (-857 *6))) (-5 *4 (-1003 (-750 (-264 *6))))
- (-5 *5 (-1071)) (-4 *6 (-13 (-257) (-120) (-950 (-483)) (-580 (-483))))
+ (-12 (-5 *3 (-347 (-858 *6))) (-5 *4 (-1004 (-751 (-264 *6))))
+ (-5 *5 (-1072)) (-4 *6 (-13 (-257) (-120) (-951 (-484)) (-581 (-484))))
(-5 *2
- (-3 (|:| |f1| (-750 (-264 *6))) (|:| |f2| (-583 (-750 (-264 *6))))
+ (-3 (|:| |f1| (-751 (-264 *6))) (|:| |f2| (-584 (-751 (-264 *6))))
(|:| |fail| #3#) (|:| |pole| #4#)))
(-5 *1 (-174 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1003 (-750 (-347 (-857 *5))))) (-5 *3 (-347 (-857 *5)))
- (-4 *5 (-13 (-257) (-120) (-950 (-483)) (-580 (-483))))
+ (-12 (-5 *4 (-1004 (-751 (-347 (-858 *5))))) (-5 *3 (-347 (-858 *5)))
+ (-4 *5 (-13 (-257) (-120) (-951 (-484)) (-581 (-484))))
(-5 *2
- (-3 (|:| |f1| (-750 (-264 *5))) (|:| |f2| (-583 (-750 (-264 *5))))
+ (-3 (|:| |f1| (-751 (-264 *5))) (|:| |f2| (-584 (-751 (-264 *5))))
(|:| |fail| #3#) (|:| |pole| #4#)))
(-5 *1 (-174 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1003 (-750 (-347 (-857 *6))))) (-5 *5 (-1071))
- (-5 *3 (-347 (-857 *6)))
- (-4 *6 (-13 (-257) (-120) (-950 (-483)) (-580 (-483))))
+ (-12 (-5 *4 (-1004 (-751 (-347 (-858 *6))))) (-5 *5 (-1072))
+ (-5 *3 (-347 (-858 *6)))
+ (-4 *6 (-13 (-257) (-120) (-951 (-484)) (-581 (-484))))
(-5 *2
- (-3 (|:| |f1| (-750 (-264 *6))) (|:| |f2| (-583 (-750 (-264 *6))))
+ (-3 (|:| |f1| (-751 (-264 *6))) (|:| |f2| (-584 (-751 (-264 *6))))
(|:| |fail| #3#) (|:| |pole| #4#)))
(-5 *1 (-174 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-120) (-950 (-483)) (-580 (-483))))
- (-5 *2 (-3 *3 (-583 *3))) (-5 *1 (-370 *5 *3))
- (-4 *3 (-13 (-1113) (-871) (-29 *5)))))
+ (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-120) (-951 (-484)) (-581 (-484))))
+ (-5 *2 (-3 *3 (-584 *3))) (-5 *1 (-370 *5 *3))
+ (-4 *3 (-13 (-1114) (-872) (-29 *5)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-411 *3 *4 *5))
- (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-411 *3 *4 *5))
+ (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) (-14 *5 *3)))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-311) (-120) (-950 (-483)))) (-4 *5 (-1153 *4))
- (-5 *2 (-518 (-347 *5))) (-5 *1 (-503 *4 *5)) (-5 *3 (-347 *5))))
+ (-12 (-4 *4 (-13 (-311) (-120) (-951 (-484)))) (-4 *5 (-1154 *4))
+ (-5 *2 (-519 (-347 *5))) (-5 *1 (-504 *4 *5)) (-5 *3 (-347 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-1088)) (-4 *5 (-120))
- (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483))))
- (-5 *2 (-3 (-264 *5) (-583 (-264 *5)))) (-5 *1 (-524 *5))))
+ (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-1089)) (-4 *5 (-120))
+ (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484))))
+ (-5 *2 (-3 (-264 *5) (-584 (-264 *5)))) (-5 *1 (-525 *5))))
((*1 *1 *1)
- (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-679 *3 *2)) (-4 *3 (-961)) (-4 *2 (-756))
- (-4 *3 (-38 (-347 (-483))))))
+ (-12 (-4 *1 (-680 *3 *2)) (-4 *3 (-962)) (-4 *2 (-757))
+ (-4 *3 (-38 (-347 (-484))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1088)) (-5 *1 (-857 *3)) (-4 *3 (-38 (-347 (-483))))
- (-4 *3 (-961))))
+ (-12 (-5 *2 (-1089)) (-5 *1 (-858 *3)) (-4 *3 (-38 (-347 (-484))))
+ (-4 *3 (-962))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) (-4 *2 (-756))
- (-5 *1 (-1038 *3 *2 *4)) (-4 *4 (-861 *3 (-468 *2) *2))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) (-4 *2 (-757))
+ (-5 *1 (-1039 *3 *2 *4)) (-4 *4 (-862 *3 (-469 *2) *2))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961))
- (-5 *1 (-1073 *3))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962))
+ (-5 *1 (-1074 *3))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1080 *3 *4 *5))
- (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1081 *3 *4 *5))
+ (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1086 *3 *4 *5))
- (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1087 *3 *4 *5))
+ (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1087 *3 *4 *5))
- (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1088 *3 *4 *5))
+ (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) (-14 *5 *3)))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1088)) (-5 *1 (-1120 *3)) (-4 *3 (-38 (-347 (-483))))
- (-4 *3 (-961))))
+ (-12 (-5 *2 (-1089)) (-5 *1 (-1121 *3)) (-4 *3 (-38 (-347 (-484))))
+ (-4 *3 (-962))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1137 *3 *4 *5))
- (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1138 *3 *4 *5))
+ (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) (-14 *5 *3)))
((*1 *1 *1 *2)
(OR
- (-12 (-5 *2 (-1088)) (-4 *1 (-1139 *3)) (-4 *3 (-961))
- (-12 (-4 *3 (-29 (-483))) (-4 *3 (-871)) (-4 *3 (-1113))
- (-4 *3 (-38 (-347 (-483))))))
- (-12 (-5 *2 (-1088)) (-4 *1 (-1139 *3)) (-4 *3 (-961))
- (-12 (|has| *3 (-15 -3077 ((-583 *2) *3)))
- (|has| *3 (-15 -3806 (*3 *3 *2))) (-4 *3 (-38 (-347 (-483))))))))
+ (-12 (-5 *2 (-1089)) (-4 *1 (-1140 *3)) (-4 *3 (-962))
+ (-12 (-4 *3 (-29 (-484))) (-4 *3 (-872)) (-4 *3 (-1114))
+ (-4 *3 (-38 (-347 (-484))))))
+ (-12 (-5 *2 (-1089)) (-4 *1 (-1140 *3)) (-4 *3 (-962))
+ (-12 (|has| *3 (-15 -3079 ((-584 *2) *3)))
+ (|has| *3 (-15 -3808 (*3 *3 *2))) (-4 *3 (-38 (-347 (-484))))))))
((*1 *1 *1)
- (-12 (-4 *1 (-1139 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-347 (-483))))))
+ (-12 (-4 *1 (-1140 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-347 (-484))))))
((*1 *1 *1)
- (-12 (-4 *1 (-1153 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-347 (-483))))))
+ (-12 (-4 *1 (-1154 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-347 (-484))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1158 *3 *4 *5))
- (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1159 *3 *4 *5))
+ (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) (-14 *5 *3)))
((*1 *1 *1 *2)
(OR
- (-12 (-5 *2 (-1088)) (-4 *1 (-1160 *3)) (-4 *3 (-961))
- (-12 (-4 *3 (-29 (-483))) (-4 *3 (-871)) (-4 *3 (-1113))
- (-4 *3 (-38 (-347 (-483))))))
- (-12 (-5 *2 (-1088)) (-4 *1 (-1160 *3)) (-4 *3 (-961))
- (-12 (|has| *3 (-15 -3077 ((-583 *2) *3)))
- (|has| *3 (-15 -3806 (*3 *3 *2))) (-4 *3 (-38 (-347 (-483))))))))
+ (-12 (-5 *2 (-1089)) (-4 *1 (-1161 *3)) (-4 *3 (-962))
+ (-12 (-4 *3 (-29 (-484))) (-4 *3 (-872)) (-4 *3 (-1114))
+ (-4 *3 (-38 (-347 (-484))))))
+ (-12 (-5 *2 (-1089)) (-4 *1 (-1161 *3)) (-4 *3 (-962))
+ (-12 (|has| *3 (-15 -3079 ((-584 *2) *3)))
+ (|has| *3 (-15 -3808 (*3 *3 *2))) (-4 *3 (-38 (-347 (-484))))))))
((*1 *1 *1)
- (-12 (-4 *1 (-1160 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-347 (-483))))))
+ (-12 (-4 *1 (-1161 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-347 (-484))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1174 *4)) (-14 *4 (-1088)) (-5 *1 (-1167 *3 *4 *5))
- (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1175 *4)) (-14 *4 (-1089)) (-5 *1 (-1168 *3 *4 *5))
+ (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)) (-14 *5 *3)))
((*1 *1 *1 *2)
(OR
- (-12 (-5 *2 (-1088)) (-4 *1 (-1170 *3)) (-4 *3 (-961))
- (-12 (-4 *3 (-29 (-483))) (-4 *3 (-871)) (-4 *3 (-1113))
- (-4 *3 (-38 (-347 (-483))))))
- (-12 (-5 *2 (-1088)) (-4 *1 (-1170 *3)) (-4 *3 (-961))
- (-12 (|has| *3 (-15 -3077 ((-583 *2) *3)))
- (|has| *3 (-15 -3806 (*3 *3 *2))) (-4 *3 (-38 (-347 (-483))))))))
+ (-12 (-5 *2 (-1089)) (-4 *1 (-1171 *3)) (-4 *3 (-962))
+ (-12 (-4 *3 (-29 (-484))) (-4 *3 (-872)) (-4 *3 (-1114))
+ (-4 *3 (-38 (-347 (-484))))))
+ (-12 (-5 *2 (-1089)) (-4 *1 (-1171 *3)) (-4 *3 (-962))
+ (-12 (|has| *3 (-15 -3079 ((-584 *2) *3)))
+ (|has| *3 (-15 -3808 (*3 *3 *2))) (-4 *3 (-38 (-347 (-484))))))))
((*1 *1 *1)
- (-12 (-4 *1 (-1170 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-347 (-483)))))))
+ (-12 (-4 *1 (-1171 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-347 (-484)))))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-694)) (-5 *2 (-1146 *5 *4)) (-5 *1 (-1087 *4 *5 *6))
- (-4 *4 (-961)) (-14 *5 (-1088)) (-14 *6 *4)))
+ (-12 (-5 *3 (-695)) (-5 *2 (-1147 *5 *4)) (-5 *1 (-1088 *4 *5 *6))
+ (-4 *4 (-962)) (-14 *5 (-1089)) (-14 *6 *4)))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-694)) (-5 *2 (-1146 *5 *4)) (-5 *1 (-1167 *4 *5 *6))
- (-4 *4 (-961)) (-14 *5 (-1088)) (-14 *6 *4))))
-(((*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3))))
+ (-12 (-5 *3 (-695)) (-5 *2 (-1147 *5 *4)) (-5 *1 (-1168 *4 *5 *6))
+ (-4 *4 (-962)) (-14 *5 (-1089)) (-14 *6 *4))))
+(((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-1167 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1088)) (-14 *4 *2))))
-(((*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3))))
+ (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1089)) (-14 *4 *2))))
+(((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-1167 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1088)) (-14 *4 *2))))
-(((*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3))))
+ (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1089)) (-14 *4 *2))))
+(((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-1167 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1088)) (-14 *4 *2))))
-(((*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3))))
+ (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1089)) (-14 *4 *2))))
+(((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-1167 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1088)) (-14 *4 *2))))
+ (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1089)) (-14 *4 *2))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1067 *4)) (-5 *3 (-483)) (-4 *4 (-961)) (-5 *1 (-1073 *4))))
+ (-12 (-5 *2 (-1068 *4)) (-5 *3 (-484)) (-4 *4 (-962)) (-5 *1 (-1074 *4))))
((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-483)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1088))
+ (-12 (-5 *2 (-484)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1089))
(-14 *5 *3))))
-(((*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3))))
+(((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-1167 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1088)) (-14 *4 *2))))
+ (-12 (-5 *1 (-1168 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1089)) (-14 *4 *2))))
(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1067 *4)) (-5 *3 (-483)) (-4 *4 (-961)) (-5 *1 (-1073 *4))))
+ (-12 (-5 *2 (-1068 *4)) (-5 *3 (-484)) (-4 *4 (-962)) (-5 *1 (-1074 *4))))
((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-483)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1088))
+ (-12 (-5 *2 (-484)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1089))
(-14 *5 *3))))
(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1067 *4)) (-5 *3 (-483)) (-4 *4 (-961)) (-5 *1 (-1073 *4))))
+ (-12 (-5 *2 (-1068 *4)) (-5 *3 (-484)) (-4 *4 (-962)) (-5 *1 (-1074 *4))))
((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-483)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1088))
+ (-12 (-5 *2 (-484)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1089))
(-14 *5 *3))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-593 *3)) (-4 *3 (-1127))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1127))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1127))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1127))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1067 (-1067 *4))) (-5 *2 (-1067 *4)) (-5 *1 (-1068 *4))
- (-4 *4 (-1127))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-538 *3 *2)) (-4 *3 (-1012)) (-4 *3 (-756)) (-4 *2 (-1127))))
- ((*1 *2 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756))))
- ((*1 *2 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756))))
- ((*1 *2 *1) (-12 (-4 *2 (-1127)) (-5 *1 (-782 *2 *3)) (-4 *3 (-1127))))
- ((*1 *2 *1) (-12 (-5 *2 (-614 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717))
- (-4 *5 (-756)) (-4 *2 (-976 *3 *4 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1166 *3)) (-4 *3 (-1127))))
- ((*1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-594 *3)) (-4 *3 (-1128))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1128))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1069 *4))
+ (-4 *4 (-1128))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-539 *3 *2)) (-4 *3 (-1013)) (-4 *3 (-757)) (-4 *2 (-1128))))
+ ((*1 *2 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757))))
+ ((*1 *2 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757))))
+ ((*1 *2 *1) (-12 (-4 *2 (-1128)) (-5 *1 (-783 *2 *3)) (-4 *3 (-1128))))
+ ((*1 *2 *1) (-12 (-5 *2 (-615 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-4 *2 (-977 *3 *4 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1167 *3)) (-4 *3 (-1128))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-483)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1127)) (-4 *4 (-321 *2))
+ (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1128)) (-4 *4 (-321 *2))
(-4 *5 (-321 *2))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-483)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-321 *2))
- (-4 *5 (-321 *2)) (-4 *2 (-1127))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1127))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1127))))
+ (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-321 *2))
+ (-4 *5 (-321 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1128))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1128))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 (-483))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2))
- (-14 *4 (-483)) (-14 *5 (-694))))
+ (-12 (-5 *3 (-584 (-484))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2))
+ (-14 *4 (-484)) (-14 *5 (-695))))
((*1 *2 *1 *3 *3 *3 *3)
- (-12 (-5 *3 (-483)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3)
- (-14 *5 (-694))))
+ (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3)
+ (-14 *5 (-695))))
((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-483)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3)
- (-14 *5 (-694))))
+ (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3)
+ (-14 *5 (-695))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-483)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3)
- (-14 *5 (-694))))
+ (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3)
+ (-14 *5 (-695))))
((*1 *2 *1)
- (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-483)) (-14 *4 (-694))))
+ (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-484)) (-14 *4 (-695))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1088)) (-5 *2 (-203 (-1071))) (-5 *1 (-167 *4))
+ (-12 (-5 *3 (-1089)) (-5 *2 (-203 (-1072))) (-5 *1 (-167 *4))
(-4 *4
- (-13 (-756)
- (-10 -8 (-15 -3794 ((-1071) $ *3)) (-15 -3611 ((-1183) $))
- (-15 -1961 ((-1183) $)))))))
+ (-13 (-757)
+ (-10 -8 (-15 -3796 ((-1072) $ *3)) (-15 -3613 ((-1184) $))
+ (-15 -1962 ((-1184) $)))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-902)) (-5 *1 (-167 *3))
+ (-12 (-5 *2 (-903)) (-5 *1 (-167 *3))
(-4 *3
- (-13 (-756)
- (-10 -8 (-15 -3794 ((-1071) $ (-1088))) (-15 -3611 ((-1183) $))
- (-15 -1961 ((-1183) $)))))))
+ (-13 (-757)
+ (-10 -8 (-15 -3796 ((-1072) $ (-1089))) (-15 -3613 ((-1184) $))
+ (-15 -1962 ((-1184) $)))))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "count") (-5 *2 (-694)) (-5 *1 (-203 *4)) (-4 *4 (-756))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-203 *3)) (-4 *3 (-756))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-203 *3)) (-4 *3 (-756))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1127)) (-4 *2 (-1127))))
- ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1127))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 *1)) (-4 *1 (-253))))
+ (-12 (-5 *3 "count") (-5 *2 (-695)) (-5 *1 (-203 *4)) (-4 *4 (-757))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-203 *3)) (-4 *3 (-757))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-203 *3)) (-4 *3 (-757))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1128)) (-4 *2 (-1128))))
+ ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1128))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 *1)) (-4 *1 (-253))))
((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86))))
((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86))))
((*1 *1 *2 *1 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86))))
((*1 *1 *2 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86))))
((*1 *2 *1 *2 *2)
- (-12 (-4 *1 (-290 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-1153 *2))
- (-4 *4 (-1153 (-347 *3)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1071)) (-5 *1 (-439))))
+ (-12 (-4 *1 (-290 *2 *3 *4)) (-4 *2 (-1133)) (-4 *3 (-1154 *2))
+ (-4 *4 (-1154 (-347 *3)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1072)) (-5 *1 (-439))))
((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-583 (-483))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961))
+ (-12 (-5 *2 (-584 (-484))) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962))
(-4 *4 (-321 *3)) (-4 *5 (-321 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-86)) (-5 *3 (-583 (-800 *4))) (-5 *1 (-800 *4))
- (-4 *4 (-1012))))
+ (-12 (-5 *2 (-86)) (-5 *3 (-584 (-801 *4))) (-5 *1 (-801 *4))
+ (-4 *4 (-1013))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-694)) (-5 *2 (-813 *4)) (-5 *1 (-816 *4)) (-4 *4 (-1012))))
- ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-923 *2)) (-4 *2 (-1127))))
+ (-12 (-5 *3 (-695)) (-5 *2 (-814 *4)) (-5 *1 (-817 *4)) (-4 *4 (-1013))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-924 *2)) (-4 *2 (-1128))))
((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-483)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *2 (-961))
+ (-12 (-5 *3 (-484)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *2 (-962))
(-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-483)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2))
- (-4 *7 (-196 *4 *2)) (-4 *2 (-961))))
+ (-12 (-5 *3 (-484)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2))
+ (-4 *7 (-196 *4 *2)) (-4 *2 (-962))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-830)) (-4 *4 (-1012))
- (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-986 *4 *5 *2))
- (-4 *2 (-13 (-361 *5) (-796 *4) (-553 (-800 *4))))))
+ (-12 (-5 *3 (-831)) (-4 *4 (-1013))
+ (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-987 *4 *5 *2))
+ (-4 *2 (-13 (-361 *5) (-797 *4) (-554 (-801 *4))))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-830)) (-4 *4 (-1012))
- (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-988 *4 *5 *2))
- (-4 *2 (-13 (-361 *5) (-796 *4) (-553 (-800 *4))))))
- ((*1 *1 *1 *1) (-4 *1 (-1056)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1088))))
+ (-12 (-5 *3 (-831)) (-4 *4 (-1013))
+ (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-989 *4 *5 *2))
+ (-4 *2 (-13 (-361 *5) (-797 *4) (-554 (-801 *4))))))
+ ((*1 *1 *1 *1) (-4 *1 (-1057)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1089))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-347 *1)) (-4 *1 (-1153 *2)) (-4 *2 (-961)) (-4 *2 (-311))))
+ (-12 (-5 *3 (-347 *1)) (-4 *1 (-1154 *2)) (-4 *2 (-962)) (-4 *2 (-311))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-347 *1)) (-4 *1 (-1153 *3)) (-4 *3 (-961)) (-4 *3 (-494))))
- ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1166 *2)) (-4 *2 (-1127))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1166 *3)) (-4 *3 (-1127))))
- ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1166 *2)) (-4 *2 (-1127)))))
-(((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756))))
- ((*1 *1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756))))
- ((*1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756))))
+ (-12 (-5 *2 (-347 *1)) (-4 *1 (-1154 *3)) (-4 *3 (-962)) (-4 *3 (-495))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1167 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1167 *3)) (-4 *3 (-1128))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1167 *2)) (-4 *2 (-1128)))))
+(((*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757))))
+ ((*1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757))))
+ ((*1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757))))
((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1122 *2 *3 *4 *5)) (-4 *2 (-494)) (-4 *3 (-717))
- (-4 *4 (-756)) (-4 *5 (-976 *2 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1166 *3)) (-4 *3 (-1127))))
- ((*1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1127))))
- ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1007))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717))
- (-4 *5 (-756)) (-4 *2 (-976 *3 *4 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1166 *3)) (-4 *3 (-1127))))
- ((*1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))))
-(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1127))))
+ (|partial| -12 (-4 *1 (-1123 *2 *3 *4 *5)) (-4 *2 (-495)) (-4 *3 (-718))
+ (-4 *4 (-757)) (-4 *5 (-977 *2 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1167 *3)) (-4 *3 (-1128))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1008))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-4 *2 (-977 *3 *4 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1167 *3)) (-4 *3 (-1128))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))))
+(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128))))
((*1 *1 *1)
- (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))
- ((*1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *1) (-12 (-4 *2 (-1127)) (-5 *1 (-782 *3 *2)) (-4 *3 (-1127))))
- ((*1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1166 *3)) (-4 *3 (-1127)) (-5 *2 (-694)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1166 *2)) (-4 *2 (-1127)))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-202 *2)) (-4 *2 (-1127))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1127))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1127))))
- ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-1166 *2)) (-4 *2 (-1127))))
- ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-1166 *2)) (-4 *2 (-1127)))))
-(((*1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-1166 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-1166 *2)) (-4 *2 (-1127)))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1) (-12 (-4 *2 (-1128)) (-5 *1 (-783 *3 *2)) (-4 *3 (-1128))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1167 *3)) (-4 *3 (-1128)) (-5 *2 (-695)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1167 *2)) (-4 *2 (-1128)))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-202 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-1167 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))))
+(((*1 *1 *1) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-483)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1127)) (-4 *4 (-321 *2))
+ (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1128)) (-4 *4 (-321 *2))
(-4 *5 (-321 *2))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "right") (|has| *1 (-6 -3990)) (-4 *1 (-92 *3)) (-4 *3 (-1127))))
+ (-12 (-5 *2 "right") (|has| *1 (-6 -3992)) (-4 *1 (-92 *3)) (-4 *3 (-1128))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "left") (|has| *1 (-6 -3990)) (-4 *1 (-92 *3)) (-4 *3 (-1127))))
+ (-12 (-5 *2 "left") (|has| *1 (-6 -3992)) (-4 *1 (-92 *3)) (-4 *3 (-1128))))
((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -3990)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1012))
- (-4 *2 (-1127))))
- ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1088)) (-5 *1 (-571))))
+ (-12 (|has| *1 (-6 -3992)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1013))
+ (-4 *2 (-1128))))
+ ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1089)) (-5 *1 (-572))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-1144 (-483))) (|has| *1 (-6 -3990)) (-4 *1 (-593 *2))
- (-4 *2 (-1127))))
+ (-12 (-5 *3 (-1145 (-484))) (|has| *1 (-6 -3992)) (-4 *1 (-594 *2))
+ (-4 *2 (-1128))))
((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-583 (-483))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961))
+ (-12 (-5 *2 (-584 (-484))) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962))
(-4 *4 (-321 *3)) (-4 *5 (-321 *3))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "value") (|has| *1 (-6 -3990)) (-4 *1 (-923 *2))
- (-4 *2 (-1127))))
- ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1105 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012))))
+ (-12 (-5 *3 "value") (|has| *1 (-6 -3992)) (-4 *1 (-924 *2))
+ (-4 *2 (-1128))))
+ ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1106 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "last") (|has| *1 (-6 -3990)) (-4 *1 (-1166 *2))
- (-4 *2 (-1127))))
+ (-12 (-5 *3 "last") (|has| *1 (-6 -3992)) (-4 *1 (-1167 *2))
+ (-4 *2 (-1128))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "rest") (|has| *1 (-6 -3990)) (-4 *1 (-1166 *3))
- (-4 *3 (-1127))))
+ (-12 (-5 *2 "rest") (|has| *1 (-6 -3992)) (-4 *1 (-1167 *3))
+ (-4 *3 (-1128))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "first") (|has| *1 (-6 -3990)) (-4 *1 (-1166 *2))
- (-4 *2 (-1127)))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1067 *3)) (-4 *3 (-1127))))
- ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-1166 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-1166 *2)) (-4 *2 (-1127)))))
+ (-12 (-5 *3 "first") (|has| *1 (-6 -3992)) (-4 *1 (-1167 *2))
+ (-4 *2 (-1128)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1068 *3)) (-4 *3 (-1128))))
+ ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-1167 *2)) (-4 *2 (-1128)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-483)) (|has| *1 (-6 -3990)) (-4 *1 (-1166 *3))
- (-4 *3 (-1127)))))
+ (-12 (-5 *2 (-484)) (|has| *1 (-6 -3992)) (-4 *1 (-1167 *3))
+ (-4 *3 (-1128)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-950 (-483)) (-580 (-483)) (-389)))
- (-5 *2 (-750 *4)) (-5 *1 (-263 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1113) (-361 *3))) (-14 *5 (-1088)) (-14 *6 *4)))
+ (|partial| -12 (-4 *3 (-13 (-951 (-484)) (-581 (-484)) (-389)))
+ (-5 *2 (-751 *4)) (-5 *1 (-263 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1114) (-361 *3))) (-14 *5 (-1089)) (-14 *6 *4)))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-950 (-483)) (-580 (-483)) (-389)))
- (-5 *2 (-750 *4)) (-5 *1 (-1164 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1113) (-361 *3))) (-14 *5 (-1088)) (-14 *6 *4))))
+ (|partial| -12 (-4 *3 (-13 (-951 (-484)) (-581 (-484)) (-389)))
+ (-5 *2 (-751 *4)) (-5 *1 (-1165 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1114) (-361 *3))) (-14 *5 (-1089)) (-14 *6 *4))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-950 (-483)) (-580 (-483)) (-389)))
+ (|partial| -12 (-4 *3 (-13 (-951 (-484)) (-581 (-484)) (-389)))
(-5 *2
(-2
(|:| |%term|
- (-2 (|:| |%coef| (-1158 *4 *5 *6)) (|:| |%expon| (-269 *4 *5 *6))
- (|:| |%expTerms| (-583 (-2 (|:| |k| (-347 (-483))) (|:| |c| *4))))))
- (|:| |%type| (-1071))))
- (-5 *1 (-1164 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1113) (-361 *3)))
- (-14 *5 (-1088)) (-14 *6 *4))))
+ (-2 (|:| |%coef| (-1159 *4 *5 *6)) (|:| |%expon| (-269 *4 *5 *6))
+ (|:| |%expTerms| (-584 (-2 (|:| |k| (-347 (-484))) (|:| |c| *4))))))
+ (|:| |%type| (-1072))))
+ (-5 *1 (-1165 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1114) (-361 *3)))
+ (-14 *5 (-1089)) (-14 *6 *4))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483))))
- (-5 *2 (-51)) (-5 *1 (-266 *4 *5)) (-4 *5 (-13 (-27) (-1113) (-361 *4)))))
+ (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484))))
+ (-5 *2 (-51)) (-5 *1 (-266 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-361 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51))
- (-5 *1 (-266 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *4)))))
+ (-12 (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51))
+ (-5 *1 (-266 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-347 (-483))) (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483))))
- (-5 *2 (-51)) (-5 *1 (-266 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5)))))
+ (-12 (-5 *4 (-347 (-484))) (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484))))
+ (-5 *2 (-51)) (-5 *1 (-266 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5)))
- (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5)))
+ (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51))
(-5 *1 (-266 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-248 *3)) (-5 *5 (-347 (-483)))
- (-4 *3 (-13 (-27) (-1113) (-361 *6)))
- (-4 *6 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-248 *3)) (-5 *5 (-347 (-484)))
+ (-4 *3 (-13 (-27) (-1114) (-361 *6)))
+ (-4 *6 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51))
(-5 *1 (-266 *6 *3))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-347 (-483)))) (-5 *4 (-248 *8))
- (-5 *5 (-1144 (-347 (-483)))) (-5 *6 (-347 (-483)))
- (-4 *8 (-13 (-27) (-1113) (-361 *7)))
- (-4 *7 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51))
+ (-12 (-5 *3 (-1 *8 (-347 (-484)))) (-5 *4 (-248 *8))
+ (-5 *5 (-1145 (-347 (-484)))) (-5 *6 (-347 (-484)))
+ (-4 *8 (-13 (-27) (-1114) (-361 *7)))
+ (-4 *7 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51))
(-5 *1 (-396 *7 *8))))
((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1088)) (-5 *5 (-248 *3)) (-5 *6 (-1144 (-347 (-483))))
- (-5 *7 (-347 (-483))) (-4 *3 (-13 (-27) (-1113) (-361 *8)))
- (-4 *8 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-1089)) (-5 *5 (-248 *3)) (-5 *6 (-1145 (-347 (-484))))
+ (-5 *7 (-347 (-484))) (-4 *3 (-13 (-27) (-1114) (-361 *8)))
+ (-4 *8 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51))
(-5 *1 (-396 *8 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-347 (-483))) (-4 *4 (-961)) (-4 *1 (-1162 *4 *3))
- (-4 *3 (-1139 *4)))))
+ (-12 (-5 *2 (-347 (-484))) (-4 *4 (-962)) (-4 *1 (-1163 *4 *3))
+ (-4 *3 (-1140 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1162 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1139 *3))
- (-5 *2 (-347 (-483))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1139 *3)))))
+ (-12 (-4 *1 (-1163 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1140 *3))
+ (-5 *2 (-347 (-484))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1163 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1140 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483))))
- (-5 *2 (-51)) (-5 *1 (-266 *4 *5)) (-4 *5 (-13 (-27) (-1113) (-361 *4)))))
+ (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484))))
+ (-5 *2 (-51)) (-5 *1 (-266 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-361 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51))
- (-5 *1 (-266 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *4)))))
+ (-12 (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51))
+ (-5 *1 (-266 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-483)) (-4 *5 (-13 (-389) (-950 *4) (-580 *4))) (-5 *2 (-51))
- (-5 *1 (-266 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5)))))
+ (-12 (-5 *4 (-484)) (-4 *5 (-13 (-389) (-951 *4) (-581 *4))) (-5 *2 (-51))
+ (-5 *1 (-266 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5)))
- (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5)))
+ (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51))
(-5 *1 (-266 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *6)))
- (-4 *6 (-13 (-389) (-950 *5) (-580 *5))) (-5 *5 (-483)) (-5 *2 (-51))
+ (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *6)))
+ (-4 *6 (-13 (-389) (-951 *5) (-581 *5))) (-5 *5 (-484)) (-5 *2 (-51))
(-5 *1 (-266 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-483))) (-5 *4 (-248 *7)) (-5 *5 (-1144 (-483)))
- (-4 *7 (-13 (-27) (-1113) (-361 *6)))
- (-4 *6 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51))
+ (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-248 *7)) (-5 *5 (-1145 (-484)))
+ (-4 *7 (-13 (-27) (-1114) (-361 *6)))
+ (-4 *6 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51))
(-5 *1 (-396 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1088)) (-5 *5 (-248 *3)) (-5 *6 (-1144 (-483)))
- (-4 *3 (-13 (-27) (-1113) (-361 *7)))
- (-4 *7 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-1089)) (-5 *5 (-248 *3)) (-5 *6 (-1145 (-484)))
+ (-4 *3 (-13 (-27) (-1114) (-361 *7)))
+ (-4 *7 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51))
(-5 *1 (-396 *7 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-483)) (-4 *4 (-961)) (-4 *1 (-1141 *4 *3)) (-4 *3 (-1170 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1139 *3)))))
+ (-12 (-5 *2 (-484)) (-4 *4 (-962)) (-4 *1 (-1142 *4 *3)) (-4 *3 (-1171 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1163 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1140 *3)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1139 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1153 *3)) (-4 *3 (-961))))
+ (|partial| -12 (-4 *1 (-1163 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1140 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1154 *3)) (-4 *3 (-962))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-830)) (-4 *1 (-1156 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-347 (-483))) (-4 *1 (-1160 *3)) (-4 *3 (-961)))))
+ (-12 (-5 *2 (-831)) (-4 *1 (-1157 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-347 (-484))) (-4 *1 (-1161 *3)) (-4 *3 (-962)))))
(((*1 *2 *2)
(-12
(-5 *2
(-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
- (|:| |xpnt| (-483))))
- (-4 *4 (-13 (-1153 *3) (-494) (-10 -8 (-15 -3139 ($ $ $))))) (-4 *3 (-494))
- (-5 *1 (-1157 *3 *4)))))
+ (|:| |xpnt| (-484))))
+ (-4 *4 (-13 (-1154 *3) (-495) (-10 -8 (-15 -3141 ($ $ $))))) (-4 *3 (-495))
+ (-5 *1 (-1158 *3 *4)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-861 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
+ (-12 (-4 *1 (-862 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
(-4 *2 (-389))))
((*1 *2 *3 *1)
- (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6))
- (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *1))))
- (-4 *1 (-982 *4 *5 *6 *3))))
- ((*1 *1 *1) (-4 *1 (-1132)))
+ (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6))
+ (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *1))))
+ (-4 *1 (-983 *4 *5 *6 *3))))
+ ((*1 *1 *1) (-4 *1 (-1133)))
((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-1157 *3 *2))
- (-4 *2 (-13 (-1153 *3) (-494) (-10 -8 (-15 -3139 ($ $ $))))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-1158 *3 *2))
+ (-4 *2 (-13 (-1154 *3) (-495) (-10 -8 (-15 -3141 ($ $ $))))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-273 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-104))
- (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3937 *4))))))
+ (-12 (-4 *1 (-273 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104))
+ (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3939 *4))))))
((*1 *2 *1)
- (-12 (-4 *1 (-447 *3 *4)) (-4 *3 (-72)) (-4 *4 (-759))
- (-5 *2 (-583 (-782 *4 *3)))))
+ (-12 (-4 *1 (-447 *3 *4)) (-4 *3 (-72)) (-4 *4 (-760))
+ (-5 *2 (-584 (-783 *4 *3)))))
((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| -3948 *3) (|:| -3932 *4)))) (-5 *1 (-674 *3 *4))
- (-4 *3 (-961)) (-4 *4 (-663))))
+ (-12 (-5 *2 (-584 (-2 (|:| -3950 *3) (|:| -3934 *4)))) (-5 *1 (-675 *3 *4))
+ (-4 *3 (-962)) (-4 *4 (-664))))
((*1 *2 *1)
- (-12 (-4 *1 (-1156 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716))
- (-5 *2 (-1067 (-2 (|:| |k| *4) (|:| |c| *3)))))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1071)) (-5 *3 (-483)) (-5 *1 (-199))))
+ (-12 (-4 *1 (-1157 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717))
+ (-5 *2 (-1068 (-2 (|:| |k| *4) (|:| |c| *3)))))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-484)) (-5 *1 (-199))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-583 (-1071))) (-5 *3 (-483)) (-5 *4 (-1071)) (-5 *1 (-199))))
- ((*1 *1 *1) (-5 *1 (-772)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772))))
- ((*1 *2 *1) (-12 (-4 *1 (-1156 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))))
+ (-12 (-5 *2 (-584 (-1072))) (-5 *3 (-484)) (-5 *4 (-1072)) (-5 *1 (-199))))
+ ((*1 *1 *1) (-5 *1 (-773)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1157 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756))
- (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-694))))
+ (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757))
+ (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-695))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756))
- (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694))))
- ((*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-756)) (-5 *2 (-694))))
- ((*1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-830))))
+ (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757))
+ (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695))))
+ ((*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-757)) (-5 *2 (-695))))
+ ((*1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-831))))
((*1 *2 *3)
(-12 (-5 *3 (-282 *4 *5 *6 *7)) (-4 *4 (-13 (-317) (-311)))
- (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-347 *5))) (-4 *7 (-290 *4 *5 *6))
- (-5 *2 (-694)) (-5 *1 (-338 *4 *5 *6 *7))))
- ((*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-743 (-830)))))
- ((*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-483))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-530 *3)) (-4 *3 (-961))))
- ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-530 *3)) (-4 *3 (-961))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-494)) (-5 *2 (-483)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1153 *3))))
+ (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-347 *5))) (-4 *7 (-290 *4 *5 *6))
+ (-5 *2 (-695)) (-5 *1 (-338 *4 *5 *6 *7))))
+ ((*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-744 (-831)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-484))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-531 *3)) (-4 *3 (-962))))
+ ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-531 *3)) (-4 *3 (-962))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-495)) (-5 *2 (-484)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1154 *3))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-694)) (-4 *1 (-679 *4 *3)) (-4 *4 (-961)) (-4 *3 (-756))))
+ (-12 (-5 *2 (-695)) (-4 *1 (-680 *4 *3)) (-4 *4 (-962)) (-4 *3 (-757))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-679 *4 *3)) (-4 *4 (-961)) (-4 *3 (-756)) (-5 *2 (-694))))
- ((*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-694))))
- ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1012))))
- ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-816 *3)) (-4 *3 (-1012))))
+ (-12 (-4 *1 (-680 *4 *3)) (-4 *4 (-962)) (-4 *3 (-757)) (-5 *2 (-695))))
+ ((*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-695))))
+ ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1013))))
+ ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-817 *3)) (-4 *3 (-1013))))
((*1 *2 *3)
(|partial| -12 (-5 *3 (-282 *5 *6 *7 *8)) (-4 *5 (-361 *4))
- (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-347 *6))) (-4 *8 (-290 *5 *6 *7))
- (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *2 (-694))
- (-5 *1 (-822 *4 *5 *6 *7 *8))))
+ (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-347 *6))) (-4 *8 (-290 *5 *6 *7))
+ (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *2 (-695))
+ (-5 *1 (-823 *4 *5 *6 *7 *8))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-282 (-347 (-483)) *4 *5 *6))
- (-4 *4 (-1153 (-347 (-483)))) (-4 *5 (-1153 (-347 *4)))
- (-4 *6 (-290 (-347 (-483)) *4 *5)) (-5 *2 (-694)) (-5 *1 (-823 *4 *5 *6))))
+ (|partial| -12 (-5 *3 (-282 (-347 (-484)) *4 *5 *6))
+ (-4 *4 (-1154 (-347 (-484)))) (-4 *5 (-1154 (-347 *4)))
+ (-4 *6 (-290 (-347 (-484)) *4 *5)) (-5 *2 (-695)) (-5 *1 (-824 *4 *5 *6))))
((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-282 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-311))
- (-4 *7 (-1153 *6)) (-4 *4 (-1153 (-347 *7))) (-4 *8 (-290 *6 *7 *4))
- (-4 *9 (-13 (-317) (-311))) (-5 *2 (-694)) (-5 *1 (-931 *6 *7 *4 *8 *9))))
+ (-4 *7 (-1154 *6)) (-4 *4 (-1154 (-347 *7))) (-4 *8 (-290 *6 *7 *4))
+ (-4 *9 (-13 (-317) (-311))) (-5 *2 (-695)) (-5 *1 (-932 *6 *7 *4 *8 *9))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1153 *3)) (-4 *3 (-961)) (-4 *3 (-494)) (-5 *2 (-694))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716))))
- ((*1 *2 *1) (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))))
-(((*1 *1 *1) (-4 *1 (-972)))
- ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))))
+ (-12 (-4 *1 (-1154 *3)) (-4 *3 (-962)) (-4 *3 (-495)) (-5 *2 (-695))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))))
+(((*1 *1 *1) (-4 *1 (-973)))
+ ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))))
(((*1 *2 *1 *3)
- (-12 (-5 *2 (-347 (-483))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-483))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-483))))
+ (-12 (-5 *2 (-347 (-484))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-484))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-484))))
((*1 *2 *1 *3)
- (-12 (-5 *2 (-347 (-483))) (-5 *1 (-780 *4)) (-14 *4 *3) (-5 *3 (-483))))
+ (-12 (-5 *2 (-347 (-484))) (-5 *1 (-781 *4)) (-14 *4 *3) (-5 *3 (-484))))
((*1 *2 *1 *3)
- (-12 (-14 *4 *3) (-5 *2 (-347 (-483))) (-5 *1 (-781 *4 *5)) (-5 *3 (-483))
- (-4 *5 (-779 *4))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-925)) (-5 *2 (-347 (-483)))))
+ (-12 (-14 *4 *3) (-5 *2 (-347 (-484))) (-5 *1 (-782 *4 *5)) (-5 *3 (-484))
+ (-4 *5 (-780 *4))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-926)) (-5 *2 (-347 (-484)))))
((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-979 *2 *3)) (-4 *2 (-13 (-755) (-311))) (-4 *3 (-1153 *2))))
+ (-12 (-4 *1 (-980 *2 *3)) (-4 *2 (-13 (-756) (-311))) (-4 *3 (-1154 *2))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1156 *2 *3)) (-4 *3 (-716)) (|has| *2 (-15 ** (*2 *2 *3)))
- (|has| *2 (-15 -3940 (*2 (-1088)))) (-4 *2 (-961)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-148 *3)) (-4 *3 (-257))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-616 *3)) (-4 *3 (-1127))))
+ (-12 (-4 *1 (-1157 *2 *3)) (-4 *3 (-717)) (|has| *2 (-15 ** (*2 *2 *3)))
+ (|has| *2 (-15 -3942 (*2 (-1089)))) (-4 *2 (-962)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-148 *3)) (-4 *3 (-257))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-617 *3)) (-4 *3 (-1128))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-694)) (-4 *1 (-679 *3 *4)) (-4 *3 (-961)) (-4 *4 (-756))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-483))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-893 *3)) (-4 *3 (-961))))
+ (-12 (-5 *2 (-695)) (-4 *1 (-680 *3 *4)) (-4 *3 (-962)) (-4 *4 (-757))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-484))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-894 *3)) (-4 *3 (-962))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-982 *4 *5 *6 *7))
- (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6))))
+ (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-983 *4 *5 *6 *7))
+ (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *7))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-389))
- (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6))))
+ (-12 (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-389))
+ (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6))
- (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3))))
+ (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6))
+ (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *2 (-976 *3 *4 *5))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))))
+ (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *2 (-977 *3 *4 *5))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1157 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-347 *5)) (-4 *4 (-1132)) (-4 *5 (-1153 *4))
- (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1153 *3))))
+ (-12 (-5 *3 (-347 *5)) (-4 *4 (-1133)) (-4 *5 (-1154 *4))
+ (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1154 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1090 (-347 (-483)))) (-5 *2 (-347 (-483))) (-5 *1 (-164))))
+ (-12 (-5 *3 (-1091 (-347 (-484)))) (-5 *2 (-347 (-484))) (-5 *1 (-164))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-248 *3))) (-4 *3 (-259 *3)) (-4 *3 (-1012))
- (-4 *3 (-1127)) (-5 *1 (-248 *3))))
+ (-12 (-5 *2 (-584 (-248 *3))) (-4 *3 (-259 *3)) (-4 *3 (-1013))
+ (-4 *3 (-1128)) (-5 *1 (-248 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-259 *2)) (-4 *2 (-1012)) (-4 *2 (-1127)) (-5 *1 (-248 *2))))
+ (-12 (-4 *2 (-259 *2)) (-4 *2 (-1013)) (-4 *2 (-1128)) (-5 *1 (-248 *2))))
((*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 *1)) (-4 *1 (-253))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-253))))
+ (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-584 *1))) (-4 *1 (-253))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-253))))
+ (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-253))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-253))))
- ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-1 *1 *1)) (-4 *1 (-253))))
+ (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 (-1 *1 *1))) (-4 *1 (-253))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1 *1 *1)) (-4 *1 (-253))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1088)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-253))))
+ (-12 (-5 *2 (-1089)) (-5 *3 (-1 *1 (-584 *1))) (-4 *1 (-253))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-1088))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-253))))
+ (-12 (-5 *2 (-584 (-1089))) (-5 *3 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-253))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-1088))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-253))))
+ (-12 (-5 *2 (-584 (-1089))) (-5 *3 (-584 (-1 *1 *1))) (-4 *1 (-253))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-248 *3))) (-4 *1 (-259 *3)) (-4 *3 (-1012))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-248 *3)) (-4 *1 (-259 *3)) (-4 *3 (-1012))))
+ (-12 (-5 *2 (-584 (-248 *3))) (-4 *1 (-259 *3)) (-4 *3 (-1013))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-248 *3)) (-4 *1 (-259 *3)) (-4 *3 (-1013))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-483))) (-5 *4 (-1090 (-347 (-483)))) (-5 *1 (-260 *2))
- (-4 *2 (-38 (-347 (-483))))))
+ (-12 (-5 *3 (-1 *2 (-484))) (-5 *4 (-1091 (-347 (-484)))) (-5 *1 (-260 *2))
+ (-4 *2 (-38 (-347 (-484))))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *1)) (-4 *1 (-323 *4 *5)) (-4 *4 (-756))
+ (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 *1)) (-4 *1 (-323 *4 *5)) (-4 *4 (-757))
(-4 *5 (-146))))
- ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146))))
+ ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1088)) (-5 *3 (-694)) (-5 *4 (-1 *1 *1)) (-4 *1 (-361 *5))
- (-4 *5 (-1012)) (-4 *5 (-961))))
+ (-12 (-5 *2 (-1089)) (-5 *3 (-695)) (-5 *4 (-1 *1 *1)) (-4 *1 (-361 *5))
+ (-4 *5 (-1013)) (-4 *5 (-962))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1088)) (-5 *3 (-694)) (-5 *4 (-1 *1 (-583 *1)))
- (-4 *1 (-361 *5)) (-4 *5 (-1012)) (-4 *5 (-961))))
+ (-12 (-5 *2 (-1089)) (-5 *3 (-695)) (-5 *4 (-1 *1 (-584 *1)))
+ (-4 *1 (-361 *5)) (-4 *5 (-1013)) (-4 *5 (-962))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-583 (-1088))) (-5 *3 (-583 (-694)))
- (-5 *4 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-361 *5)) (-4 *5 (-1012))
- (-4 *5 (-961))))
+ (-12 (-5 *2 (-584 (-1089))) (-5 *3 (-584 (-695)))
+ (-5 *4 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-361 *5)) (-4 *5 (-1013))
+ (-4 *5 (-962))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-583 (-1088))) (-5 *3 (-583 (-694))) (-5 *4 (-583 (-1 *1 *1)))
- (-4 *1 (-361 *5)) (-4 *5 (-1012)) (-4 *5 (-961))))
+ (-12 (-5 *2 (-584 (-1089))) (-5 *3 (-584 (-695))) (-5 *4 (-584 (-1 *1 *1)))
+ (-4 *1 (-361 *5)) (-4 *5 (-1013)) (-4 *5 (-962))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 *1)) (-5 *4 (-1088)) (-4 *1 (-361 *5))
- (-4 *5 (-1012)) (-4 *5 (-553 (-472)))))
+ (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 *1)) (-5 *4 (-1089)) (-4 *1 (-361 *5))
+ (-4 *5 (-1013)) (-4 *5 (-554 (-473)))))
((*1 *1 *1 *2 *1 *3)
- (-12 (-5 *2 (-86)) (-5 *3 (-1088)) (-4 *1 (-361 *4)) (-4 *4 (-1012))
- (-4 *4 (-553 (-472)))))
- ((*1 *1 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-1012)) (-4 *2 (-553 (-472)))))
+ (-12 (-5 *2 (-86)) (-5 *3 (-1089)) (-4 *1 (-361 *4)) (-4 *4 (-1013))
+ (-4 *4 (-554 (-473)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-1013)) (-4 *2 (-554 (-473)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-1088))) (-4 *1 (-361 *3)) (-4 *3 (-1012))
- (-4 *3 (-553 (-472)))))
+ (-12 (-5 *2 (-584 (-1089))) (-4 *1 (-361 *3)) (-4 *3 (-1013))
+ (-4 *3 (-554 (-473)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1088)) (-4 *1 (-361 *3)) (-4 *3 (-1012))
- (-4 *3 (-553 (-472)))))
- ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-452 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1127))))
+ (-12 (-5 *2 (-1089)) (-4 *1 (-361 *3)) (-4 *3 (-1013))
+ (-4 *3 (-554 (-473)))))
+ ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-453 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1128))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *5)) (-4 *1 (-452 *4 *5)) (-4 *4 (-1012))
- (-4 *5 (-1127))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-743 *3)) (-4 *3 (-311)) (-5 *1 (-655 *3))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-311))))
+ (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 *5)) (-4 *1 (-453 *4 *5)) (-4 *4 (-1013))
+ (-4 *5 (-1128))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-744 *3)) (-4 *3 (-311)) (-5 *1 (-656 *3))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-311))))
((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-347 (-857 *4))) (-5 *3 (-1088)) (-4 *4 (-494))
- (-5 *1 (-952 *4))))
+ (-12 (-5 *2 (-347 (-858 *4))) (-5 *3 (-1089)) (-4 *4 (-495))
+ (-5 *1 (-953 *4))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-583 (-1088))) (-5 *4 (-583 (-347 (-857 *5))))
- (-5 *2 (-347 (-857 *5))) (-4 *5 (-494)) (-5 *1 (-952 *5))))
+ (-12 (-5 *3 (-584 (-1089))) (-5 *4 (-584 (-347 (-858 *5))))
+ (-5 *2 (-347 (-858 *5))) (-4 *5 (-495)) (-5 *1 (-953 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-248 (-347 (-857 *4)))) (-5 *2 (-347 (-857 *4))) (-4 *4 (-494))
- (-5 *1 (-952 *4))))
+ (-12 (-5 *3 (-248 (-347 (-858 *4)))) (-5 *2 (-347 (-858 *4))) (-4 *4 (-495))
+ (-5 *1 (-953 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 (-248 (-347 (-857 *4))))) (-5 *2 (-347 (-857 *4)))
- (-4 *4 (-494)) (-5 *1 (-952 *4))))
- ((*1 *2 *2 *3) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3))))
+ (-12 (-5 *3 (-584 (-248 (-347 (-858 *4))))) (-5 *2 (-347 (-858 *4)))
+ (-4 *4 (-495)) (-5 *1 (-953 *4))))
+ ((*1 *2 *2 *3) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1156 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716))
- (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1067 *3)))))
+ (-12 (-4 *1 (-1157 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717))
+ (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1068 *3)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-694)) (-4 *1 (-1153 *4)) (-4 *4 (-961)) (-5 *2 (-1177 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-961)) (-5 *2 (-1083 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-961)) (-4 *1 (-1153 *3)))))
+ (-12 (-5 *3 (-695)) (-4 *1 (-1154 *4)) (-4 *4 (-962)) (-5 *2 (-1178 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-962)) (-5 *2 (-1084 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1084 *3)) (-4 *3 (-962)) (-4 *1 (-1154 *3)))))
(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-694)) (-4 *1 (-1153 *3)) (-4 *3 (-961)))))
+ (|partial| -12 (-5 *2 (-695)) (-4 *1 (-1154 *3)) (-4 *3 (-962)))))
(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756))
- (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1))) (-4 *1 (-861 *4 *5 *3))))
+ (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757))
+ (-5 *2 (-2 (|:| -1971 *1) (|:| -2900 *1))) (-4 *1 (-862 *4 *5 *3))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-961)) (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1)))
- (-4 *1 (-1153 *3)))))
+ (-12 (-4 *3 (-962)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2900 *1)))
+ (-4 *1 (-1154 *3)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1)))
- (-4 *1 (-1153 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1153 *3)) (-4 *3 (-961)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1153 *3)) (-4 *3 (-961)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-961)))))
-(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1127))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-694))))
+ (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2900 *1)))
+ (-4 *1 (-1154 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1154 *3)) (-4 *3 (-962)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1154 *3)) (-4 *3 (-962)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-962)))))
+(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-695))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *1 (-225 *4)) (-4 *4 (-1127))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1127))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *1 (-225 *4)) (-4 *4 (-1128))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1128))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132))
- (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133))
+ (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4)))))
((*1 *2 *1 *3)
- (-12 (-4 *2 (-311)) (-4 *2 (-809 *3)) (-5 *1 (-518 *2)) (-5 *3 (-1088))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-518 *2)) (-4 *2 (-311))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-806 *2 *3)) (-4 *3 (-1127)) (-4 *2 (-1127))))
+ (-12 (-4 *2 (-311)) (-4 *2 (-810 *3)) (-5 *1 (-519 *2)) (-5 *3 (-1089))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-519 *2)) (-4 *2 (-311))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-807 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1128))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-694))) (-4 *1 (-811 *4))
- (-4 *4 (-1012))))
- ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-811 *2)) (-4 *2 (-1012))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-811 *3)) (-4 *3 (-1012))))
- ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1153 *3)) (-4 *3 (-961)))))
+ (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 (-695))) (-4 *1 (-812 *4))
+ (-4 *4 (-1013))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-812 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-812 *3)) (-4 *3 (-1013))))
+ ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1154 *3)) (-4 *3 (-962)))))
(((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-138 *3 *2)) (-4 *3 (-139 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-1177 *1)) (-4 *1 (-319 *2 *4)) (-4 *4 (-1153 *2))
+ (-12 (-5 *3 (-1178 *1)) (-4 *1 (-319 *2 *4)) (-4 *4 (-1154 *2))
(-4 *2 (-146))))
((*1 *2)
- (-12 (-4 *4 (-1153 *2)) (-4 *2 (-146)) (-5 *1 (-349 *3 *2 *4))
+ (-12 (-4 *4 (-1154 *2)) (-4 *2 (-146)) (-5 *1 (-349 *3 *2 *4))
(-4 *3 (-350 *2 *4))))
- ((*1 *2) (-12 (-4 *1 (-350 *2 *3)) (-4 *3 (-1153 *2)) (-4 *2 (-146))))
+ ((*1 *2) (-12 (-4 *1 (-350 *2 *3)) (-4 *3 (-1154 *2)) (-4 *2 (-146))))
((*1 *2)
- (-12 (-4 *3 (-1153 *2)) (-5 *2 (-483)) (-5 *1 (-692 *3 *4))
+ (-12 (-4 *3 (-1154 *2)) (-5 *2 (-484)) (-5 *1 (-693 *3 *4))
(-4 *4 (-350 *2 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))
+ (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))
(-4 *3 (-146))))
- ((*1 *2 *3) (-12 (-4 *2 (-494)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1153 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-961)) (-4 *2 (-146)))))
+ ((*1 *2 *3) (-12 (-4 *2 (-495)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1154 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-962)) (-4 *2 (-146)))))
(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))
+ (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))
(-4 *3 (-146))))
- ((*1 *2 *3 *3) (-12 (-4 *2 (-494)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1153 *2))))
+ ((*1 *2 *3 *3) (-12 (-4 *2 (-495)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1154 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *2 (-494))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-961)) (-4 *2 (-146)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1153 *3))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *2 (-495))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-962)) (-4 *2 (-146)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1154 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *2 (-494))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-961)) (-4 *2 (-494)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1046 *3)) (-4 *3 (-961))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *2 (-495))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-962)) (-4 *2 (-495)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-1047 *3)) (-4 *3 (-962))))
((*1 *2 *2 *1)
- (|partial| -12 (-5 *2 (-347 *1)) (-4 *1 (-1153 *3)) (-4 *3 (-961))
- (-4 *3 (-494))))
+ (|partial| -12 (-5 *2 (-347 *1)) (-4 *1 (-1154 *3)) (-4 *3 (-962))
+ (-4 *3 (-495))))
((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-1153 *2)) (-4 *2 (-961)) (-4 *2 (-494)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-961)) (-4 *2 (-494)))))
+ (|partial| -12 (-4 *1 (-1154 *2)) (-4 *2 (-962)) (-4 *2 (-495)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-962)) (-4 *2 (-495)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| -3948 *4) (|:| -1970 *3) (|:| -2898 *3)))
- (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -3950 *4) (|:| -1971 *3) (|:| -2900 *3)))
+ (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1))) (-4 *1 (-976 *3 *4 *5))))
+ (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-5 *2 (-2 (|:| -1971 *1) (|:| -2900 *1))) (-4 *1 (-977 *3 *4 *5))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-494)) (-4 *3 (-961))
- (-5 *2 (-2 (|:| -3948 *3) (|:| -1970 *1) (|:| -2898 *1)))
- (-4 *1 (-1153 *3)))))
+ (-12 (-4 *3 (-495)) (-4 *3 (-962))
+ (-5 *2 (-2 (|:| -3950 *3) (|:| -1971 *1) (|:| -2900 *1)))
+ (-4 *1 (-1154 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-311)) (-4 *4 (-494)) (-4 *5 (-1153 *4))
- (-5 *2 (-2 (|:| -1759 (-562 *4 *5)) (|:| -1758 (-347 *5))))
- (-5 *1 (-562 *4 *5)) (-5 *3 (-347 *5))))
+ (-12 (-4 *4 (-311)) (-4 *4 (-495)) (-4 *5 (-1154 *4))
+ (-5 *2 (-2 (|:| -1760 (-563 *4 *5)) (|:| -1759 (-347 *5))))
+ (-5 *1 (-563 *4 *5)) (-5 *3 (-347 *5))))
((*1 *2 *1)
- (-12 (-5 *2 (-583 (-1077 *3 *4))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830))
- (-4 *4 (-961))))
+ (-12 (-5 *2 (-584 (-1078 *3 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831))
+ (-4 *4 (-962))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-389)) (-4 *3 (-961))
- (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1153 *3)))))
+ (-12 (-4 *3 (-389)) (-4 *3 (-962))
+ (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1154 *3)))))
(((*1 *2 *2 *2 *3 *3)
- (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-1151 *4 *2)) (-4 *2 (-1153 *4)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1151 *3 *2)) (-4 *2 (-1153 *3)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1151 *3 *2)) (-4 *2 (-1153 *3)))))
+ (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-1152 *4 *2)) (-4 *2 (-1154 *4)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-1152 *3 *2)) (-4 *2 (-1154 *3)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-1152 *3 *2)) (-4 *2 (-1154 *3)))))
(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-494)) (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3)))
- (-5 *1 (-1150 *4 *3)) (-4 *3 (-1153 *4)))))
+ (|partial| -12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -1971 *3) (|:| -2900 *3)))
+ (-5 *1 (-1151 *4 *3)) (-4 *3 (-1154 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-494) (-120))) (-5 *2 (-583 *3)) (-5 *1 (-1149 *4 *3))
- (-4 *3 (-1153 *4)))))
+ (-12 (-4 *4 (-13 (-495) (-120))) (-5 *2 (-584 *3)) (-5 *1 (-1150 *4 *3))
+ (-4 *3 (-1154 *4)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-494) (-120)))
- (-5 *2 (-2 (|:| -3133 *3) (|:| -3132 *3))) (-5 *1 (-1149 *4 *3))
- (-4 *3 (-1153 *4)))))
+ (|partial| -12 (-4 *4 (-13 (-495) (-120)))
+ (-5 *2 (-2 (|:| -3135 *3) (|:| -3134 *3))) (-5 *1 (-1150 *4 *3))
+ (-4 *3 (-1154 *4)))))
(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-13 (-494) (-120))) (-5 *1 (-1149 *3 *2))
- (-4 *2 (-1153 *3)))))
+ (|partial| -12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1150 *3 *2))
+ (-4 *2 (-1154 *3)))))
(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-694)) (-4 *4 (-13 (-494) (-120)))
- (-5 *1 (-1149 *4 *2)) (-4 *2 (-1153 *4)))))
+ (|partial| -12 (-5 *3 (-695)) (-4 *4 (-13 (-495) (-120)))
+ (-5 *1 (-1150 *4 *2)) (-4 *2 (-1154 *4)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-694)) (-4 *4 (-13 (-494) (-120)))
- (-5 *1 (-1149 *4 *2)) (-4 *2 (-1153 *4)))))
+ (|partial| -12 (-5 *3 (-695)) (-4 *4 (-13 (-495) (-120)))
+ (-5 *1 (-1150 *4 *2)) (-4 *2 (-1154 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-4 *5 (-904 *4))
+ (-12 (-4 *4 (-495)) (-4 *5 (-905 *4))
(-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-115 *4 *5 *3))
(-4 *3 (-321 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-4 *5 (-904 *4))
+ (-12 (-4 *4 (-495)) (-4 *5 (-905 *4))
(-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-440 *4 *5 *6 *3))
(-4 *6 (-321 *4)) (-4 *3 (-321 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-630 *5)) (-4 *5 (-904 *4)) (-4 *4 (-494))
- (-5 *2 (-2 (|:| |num| (-630 *4)) (|:| |den| *4))) (-5 *1 (-633 *4 *5))))
+ (-12 (-5 *3 (-631 *5)) (-4 *5 (-905 *4)) (-4 *4 (-495))
+ (-5 *2 (-2 (|:| |num| (-631 *4)) (|:| |den| *4))) (-5 *1 (-634 *4 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *6 (-1153 *5))
- (-5 *2 (-2 (|:| -3261 *7) (|:| |rh| (-583 (-347 *6)))))
- (-5 *1 (-728 *5 *6 *7 *3)) (-5 *4 (-583 (-347 *6))) (-4 *7 (-600 *6))
- (-4 *3 (-600 (-347 *6)))))
+ (-12 (-4 *5 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *6 (-1154 *5))
+ (-5 *2 (-2 (|:| -3263 *7) (|:| |rh| (-584 (-347 *6)))))
+ (-5 *1 (-729 *5 *6 *7 *3)) (-5 *4 (-584 (-347 *6))) (-4 *7 (-601 *6))
+ (-4 *3 (-601 (-347 *6)))))
((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-4 *5 (-904 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1148 *4 *5 *3))
- (-4 *3 (-1153 *5)))))
+ (-12 (-4 *4 (-495)) (-4 *5 (-905 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1149 *4 *5 *3))
+ (-4 *3 (-1154 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-4 *4 (-904 *3)) (-5 *1 (-115 *3 *4 *2))
+ (-12 (-4 *3 (-495)) (-4 *4 (-905 *3)) (-5 *1 (-115 *3 *4 *2))
(-4 *2 (-321 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-4 *5 (-904 *4)) (-4 *2 (-321 *4))
+ (-12 (-4 *4 (-495)) (-4 *5 (-905 *4)) (-4 *2 (-321 *4))
(-5 *1 (-440 *4 *5 *2 *3)) (-4 *3 (-321 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-630 *5)) (-4 *5 (-904 *4)) (-4 *4 (-494)) (-5 *2 (-630 *4))
- (-5 *1 (-633 *4 *5))))
+ (-12 (-5 *3 (-631 *5)) (-4 *5 (-905 *4)) (-4 *4 (-495)) (-5 *2 (-631 *4))
+ (-5 *1 (-634 *4 *5))))
((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-4 *4 (-904 *3)) (-5 *1 (-1148 *3 *4 *2))
- (-4 *2 (-1153 *4)))))
+ (-12 (-4 *3 (-495)) (-4 *4 (-905 *3)) (-5 *1 (-1149 *3 *4 *2))
+ (-4 *2 (-1154 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-904 *2)) (-4 *2 (-494)) (-5 *1 (-115 *2 *4 *3))
+ (-12 (-4 *4 (-905 *2)) (-4 *2 (-495)) (-5 *1 (-115 *2 *4 *3))
(-4 *3 (-321 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-904 *2)) (-4 *2 (-494)) (-5 *1 (-440 *2 *4 *5 *3))
+ (-12 (-4 *4 (-905 *2)) (-4 *2 (-495)) (-5 *1 (-440 *2 *4 *5 *3))
(-4 *5 (-321 *2)) (-4 *3 (-321 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-630 *4)) (-4 *4 (-904 *2)) (-4 *2 (-494))
- (-5 *1 (-633 *2 *4))))
+ (-12 (-5 *3 (-631 *4)) (-4 *4 (-905 *2)) (-4 *2 (-495))
+ (-5 *1 (-634 *2 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-904 *2)) (-4 *2 (-494)) (-5 *1 (-1148 *2 *4 *3))
- (-4 *3 (-1153 *4)))))
-(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-694)) (-5 *1 (-704 *3)) (-4 *3 (-961))))
+ (-12 (-4 *4 (-905 *2)) (-4 *2 (-495)) (-5 *1 (-1149 *2 *4 *3))
+ (-4 *3 (-1154 *4)))))
+(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-695)) (-5 *1 (-705 *3)) (-4 *3 (-962))))
((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *1 (-867 *3 *2)) (-4 *2 (-104)) (-4 *3 (-494)) (-4 *3 (-961))
- (-4 *2 (-716))))
- ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1083 *3)) (-4 *3 (-961))))
+ (-12 (-5 *1 (-868 *3 *2)) (-4 *2 (-104)) (-4 *3 (-495)) (-4 *3 (-962))
+ (-4 *2 (-717))))
+ ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1084 *3)) (-4 *3 (-962))))
((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-884)) (-4 *2 (-104)) (-5 *1 (-1090 *3)) (-4 *3 (-494))
- (-4 *3 (-961))))
+ (-12 (-5 *2 (-885)) (-4 *2 (-104)) (-5 *1 (-1091 *3)) (-4 *3 (-495))
+ (-4 *3 (-962))))
((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-694)) (-5 *1 (-1146 *4 *3)) (-14 *4 (-1088)) (-4 *3 (-961)))))
-(((*1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1 *1) (-5 *1 (-772)))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127))))
- ((*1 *1 *2) (-12 (-5 *1 (-1144 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *1) (-12 (-4 *2 (-1005 *3)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1127))))
- ((*1 *2 *1) (-12 (-5 *2 (-1000 *3)) (-5 *1 (-1003 *3)) (-4 *3 (-1127))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127))))
- ((*1 *1 *2) (-12 (-5 *1 (-1144 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1144 *3)) (-4 *3 (-1127)))))
+ (-12 (-5 *2 (-695)) (-5 *1 (-1147 *4 *3)) (-14 *4 (-1089)) (-4 *3 (-962)))))
+(((*1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773)))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1145 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1) (-12 (-4 *2 (-1006 *3)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1128))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1001 *3)) (-5 *1 (-1004 *3)) (-4 *3 (-1128))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1145 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1145 *3)) (-4 *3 (-1128)))))
(((*1 *2 *3 *4)
(-12 (-5 *4 (-85))
(-5 *2
- (-2 (|:| |contp| (-483))
- (|:| -1776 (-583 (-2 (|:| |irr| *3) (|:| -2391 (-483)))))))
- (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483)))))
+ (-2 (|:| |contp| (-484))
+ (|:| -1777 (-584 (-2 (|:| |irr| *3) (|:| -2393 (-484)))))))
+ (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484)))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-85))
(-5 *2
- (-2 (|:| |contp| (-483))
- (|:| -1776 (-583 (-2 (|:| |irr| *3) (|:| -2391 (-483)))))))
- (-5 *1 (-1143 *3)) (-4 *3 (-1153 (-483))))))
+ (-2 (|:| |contp| (-484))
+ (|:| -1777 (-584 (-2 (|:| |irr| *3) (|:| -2393 (-484)))))))
+ (-5 *1 (-1144 *3)) (-4 *3 (-1154 (-484))))))
(((*1 *2 *3)
(-12 (-4 *4 (-298)) (-5 *2 (-345 *3)) (-5 *1 (-170 *4 *3))
- (-4 *3 (-1153 *4))))
- ((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483)))))
+ (-4 *3 (-1154 *4))))
+ ((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-694)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3))
- (-4 *3 (-1153 (-483)))))
+ (-12 (-5 *4 (-695)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3))
+ (-4 *3 (-1154 (-484)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-694))) (-5 *2 (-345 *3)) (-5 *1 (-379 *3))
- (-4 *3 (-1153 (-483)))))
+ (-12 (-5 *4 (-584 (-695))) (-5 *2 (-345 *3)) (-5 *1 (-379 *3))
+ (-4 *3 (-1154 (-484)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3))
- (-4 *3 (-1153 (-483)))))
+ (-12 (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3))
+ (-4 *3 (-1154 (-484)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-694)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3))
- (-4 *3 (-1153 (-483)))))
+ (-12 (-5 *4 (-695)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3))
+ (-4 *3 (-1154 (-484)))))
((*1 *2 *3)
- (-12 (-5 *2 (-345 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1153 (-347 (-483))))))
- ((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-1143 *3)) (-4 *3 (-1153 (-483))))))
+ (-12 (-5 *2 (-345 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1154 (-347 (-484))))))
+ ((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-1144 *3)) (-4 *3 (-1154 (-484))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-48))) (-5 *2 (-345 *3)) (-5 *1 (-39 *3))
- (-4 *3 (-1153 (-48)))))
- ((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1153 (-48)))))
+ (-12 (-5 *4 (-584 (-48))) (-5 *2 (-345 *3)) (-5 *1 (-39 *3))
+ (-4 *3 (-1154 (-48)))))
+ ((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1154 (-48)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-48))) (-4 *5 (-756)) (-4 *6 (-717)) (-5 *2 (-345 *3))
- (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-861 (-48) *6 *5))))
+ (-12 (-5 *4 (-584 (-48))) (-4 *5 (-757)) (-4 *6 (-718)) (-5 *2 (-345 *3))
+ (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-862 (-48) *6 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-48))) (-4 *5 (-756)) (-4 *6 (-717))
- (-4 *7 (-861 (-48) *6 *5)) (-5 *2 (-345 (-1083 *7))) (-5 *1 (-42 *5 *6 *7))
- (-5 *3 (-1083 *7))))
+ (-12 (-5 *4 (-584 (-48))) (-4 *5 (-757)) (-4 *6 (-718))
+ (-4 *7 (-862 (-48) *6 *5)) (-5 *2 (-345 (-1084 *7))) (-5 *1 (-42 *5 *6 *7))
+ (-5 *3 (-1084 *7))))
((*1 *2 *3)
(-12 (-4 *4 (-257)) (-5 *2 (-345 *3)) (-5 *1 (-140 *4 *3))
- (-4 *3 (-1153 (-142 *4)))))
+ (-4 *3 (-1154 (-142 *4)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-85)) (-4 *4 (-13 (-311) (-755))) (-5 *2 (-345 *3))
- (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4)))))
+ (-12 (-5 *5 (-85)) (-4 *4 (-13 (-311) (-756))) (-5 *2 (-345 *3))
+ (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4)))))
((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-311) (-755))) (-5 *2 (-345 *3)) (-5 *1 (-155 *4 *3))
- (-4 *3 (-1153 (-142 *4)))))
+ (-12 (-4 *4 (-13 (-311) (-756))) (-5 *2 (-345 *3)) (-5 *1 (-155 *4 *3))
+ (-4 *3 (-1154 (-142 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-311) (-755))) (-5 *2 (-345 *3)) (-5 *1 (-155 *4 *3))
- (-4 *3 (-1153 (-142 *4)))))
+ (-12 (-4 *4 (-13 (-311) (-756))) (-5 *2 (-345 *3)) (-5 *1 (-155 *4 *3))
+ (-4 *3 (-1154 (-142 *4)))))
((*1 *2 *3)
(-12 (-4 *4 (-298)) (-5 *2 (-345 *3)) (-5 *1 (-170 *4 *3))
- (-4 *3 (-1153 *4))))
- ((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483)))))
+ (-4 *3 (-1154 *4))))
+ ((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-694)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3))
- (-4 *3 (-1153 (-483)))))
+ (-12 (-5 *4 (-695)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3))
+ (-4 *3 (-1154 (-484)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-694))) (-5 *2 (-345 *3)) (-5 *1 (-379 *3))
- (-4 *3 (-1153 (-483)))))
+ (-12 (-5 *4 (-584 (-695))) (-5 *2 (-345 *3)) (-5 *1 (-379 *3))
+ (-4 *3 (-1154 (-484)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3))
- (-4 *3 (-1153 (-483)))))
+ (-12 (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3))
+ (-4 *3 (-1154 (-484)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-694)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3))
- (-4 *3 (-1153 (-483)))))
+ (-12 (-5 *4 (-695)) (-5 *2 (-345 *3)) (-5 *1 (-379 *3))
+ (-4 *3 (-1154 (-484)))))
((*1 *2 *3)
- (-12 (-5 *2 (-345 (-142 (-483)))) (-5 *1 (-383)) (-5 *3 (-142 (-483)))))
+ (-12 (-5 *2 (-345 (-142 (-484)))) (-5 *1 (-383)) (-5 *3 (-142 (-484)))))
((*1 *2 *3)
(-12
(-4 *4
- (-13 (-756)
- (-10 -8 (-15 -3966 ((-1088) $)) (-15 -3825 ((-3 $ "failed") (-1088))))))
- (-4 *5 (-717)) (-4 *7 (-494)) (-5 *2 (-345 *3))
- (-5 *1 (-393 *4 *5 *6 *7 *3)) (-4 *6 (-494)) (-4 *3 (-861 *7 *5 *4))))
+ (-13 (-757)
+ (-10 -8 (-15 -3968 ((-1089) $)) (-15 -3827 ((-3 $ "failed") (-1089))))))
+ (-4 *5 (-718)) (-4 *7 (-495)) (-5 *2 (-345 *3))
+ (-5 *1 (-393 *4 *5 *6 *7 *3)) (-4 *6 (-495)) (-4 *3 (-862 *7 *5 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-257)) (-5 *2 (-345 (-1083 *4))) (-5 *1 (-395 *4))
- (-5 *3 (-1083 *4))))
+ (-12 (-4 *4 (-257)) (-5 *2 (-345 (-1084 *4))) (-5 *1 (-395 *4))
+ (-5 *3 (-1084 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1153 *5)) (-4 *5 (-311))
- (-4 *7 (-13 (-311) (-120) (-661 *5 *6))) (-5 *2 (-345 *3))
- (-5 *1 (-431 *5 *6 *7 *3)) (-4 *3 (-1153 *7))))
+ (-12 (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1154 *5)) (-4 *5 (-311))
+ (-4 *7 (-13 (-311) (-120) (-662 *5 *6))) (-5 *2 (-345 *3))
+ (-5 *1 (-431 *5 *6 *7 *3)) (-4 *3 (-1154 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-345 (-1083 *7)) (-1083 *7))) (-4 *7 (-13 (-257) (-120)))
- (-4 *5 (-756)) (-4 *6 (-717)) (-5 *2 (-345 *3)) (-5 *1 (-477 *5 *6 *7 *3))
- (-4 *3 (-861 *7 *6 *5))))
+ (-12 (-5 *4 (-1 (-345 (-1084 *7)) (-1084 *7))) (-4 *7 (-13 (-257) (-120)))
+ (-4 *5 (-757)) (-4 *6 (-718)) (-5 *2 (-345 *3)) (-5 *1 (-478 *5 *6 *7 *3))
+ (-4 *3 (-862 *7 *6 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-345 (-1083 *7)) (-1083 *7))) (-4 *7 (-13 (-257) (-120)))
- (-4 *5 (-756)) (-4 *6 (-717)) (-4 *8 (-861 *7 *6 *5))
- (-5 *2 (-345 (-1083 *8))) (-5 *1 (-477 *5 *6 *7 *8)) (-5 *3 (-1083 *8))))
- ((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-496 *3)) (-4 *3 (-482))))
+ (-12 (-5 *4 (-1 (-345 (-1084 *7)) (-1084 *7))) (-4 *7 (-13 (-257) (-120)))
+ (-4 *5 (-757)) (-4 *6 (-718)) (-4 *8 (-862 *7 *6 *5))
+ (-5 *2 (-345 (-1084 *8))) (-5 *1 (-478 *5 *6 *7 *8)) (-5 *3 (-1084 *8))))
+ ((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-583 *5) *6))
- (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483)))))
- (-4 *6 (-1153 *5)) (-5 *2 (-583 (-597 (-347 *6)))) (-5 *1 (-601 *5 *6))
- (-5 *3 (-597 (-347 *6)))))
+ (-12 (-5 *4 (-1 (-584 *5) *6))
+ (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484)))))
+ (-4 *6 (-1154 *5)) (-5 *2 (-584 (-598 (-347 *6)))) (-5 *1 (-602 *5 *6))
+ (-5 *3 (-598 (-347 *6)))))
((*1 *2 *3)
(-12 (-4 *4 (-27))
- (-4 *4 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483)))))
- (-4 *5 (-1153 *4)) (-5 *2 (-583 (-597 (-347 *5)))) (-5 *1 (-601 *4 *5))
- (-5 *3 (-597 (-347 *5)))))
+ (-4 *4 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484)))))
+ (-4 *5 (-1154 *4)) (-5 *2 (-584 (-598 (-347 *5)))) (-5 *1 (-602 *4 *5))
+ (-5 *3 (-598 (-347 *5)))))
((*1 *2 *3)
- (-12 (-5 *3 (-739 *4)) (-4 *4 (-756)) (-5 *2 (-583 (-614 *4)))
- (-5 *1 (-614 *4))))
+ (-12 (-5 *3 (-740 *4)) (-4 *4 (-757)) (-5 *2 (-584 (-615 *4)))
+ (-5 *1 (-615 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-483)) (-5 *2 (-583 *3)) (-5 *1 (-635 *3)) (-4 *3 (-1153 *4))))
+ (-12 (-5 *4 (-484)) (-5 *2 (-584 *3)) (-5 *1 (-636 *3)) (-4 *3 (-1154 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-298)) (-5 *2 (-345 *3))
- (-5 *1 (-637 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4))))
+ (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-298)) (-5 *2 (-345 *3))
+ (-5 *1 (-638 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-298)) (-4 *7 (-861 *6 *5 *4))
- (-5 *2 (-345 (-1083 *7))) (-5 *1 (-637 *4 *5 *6 *7)) (-5 *3 (-1083 *7))))
+ (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-298)) (-4 *7 (-862 *6 *5 *4))
+ (-5 *2 (-345 (-1084 *7))) (-5 *1 (-638 *4 *5 *6 *7)) (-5 *3 (-1084 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-717))
+ (-12 (-4 *4 (-718))
(-4 *5
- (-13 (-756)
- (-10 -8 (-15 -3966 ((-1088) $)) (-15 -3825 ((-3 $ "failed") (-1088))))))
- (-4 *6 (-257)) (-5 *2 (-345 *3)) (-5 *1 (-669 *4 *5 *6 *3))
- (-4 *3 (-861 (-857 *6) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-717)) (-4 *5 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $)))))
- (-4 *6 (-494)) (-5 *2 (-345 *3)) (-5 *1 (-671 *4 *5 *6 *3))
- (-4 *3 (-861 (-347 (-857 *6)) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-13 (-257) (-120)))
- (-5 *2 (-345 *3)) (-5 *1 (-672 *4 *5 *6 *3))
- (-4 *3 (-861 (-347 *6) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-13 (-257) (-120)))
- (-5 *2 (-345 *3)) (-5 *1 (-680 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-13 (-257) (-120)))
- (-4 *7 (-861 *6 *5 *4)) (-5 *2 (-345 (-1083 *7))) (-5 *1 (-680 *4 *5 *6 *7))
- (-5 *3 (-1083 *7))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-345 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1153 (-347 (-483))))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-345 *3)) (-5 *1 (-954 *3))
- (-4 *3 (-1153 (-347 (-857 (-483)))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1153 (-347 (-483))))
- (-4 *5 (-13 (-311) (-120) (-661 (-347 (-483)) *4))) (-5 *2 (-345 *3))
- (-5 *1 (-991 *4 *5 *3)) (-4 *3 (-1153 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1153 (-347 (-857 (-483)))))
- (-4 *5 (-13 (-311) (-120) (-661 (-347 (-857 (-483))) *4))) (-5 *2 (-345 *3))
- (-5 *1 (-992 *4 *5 *3)) (-4 *3 (-1153 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-389)) (-4 *7 (-861 *6 *4 *5))
- (-5 *2 (-345 (-1083 (-347 *7)))) (-5 *1 (-1085 *4 *5 *6 *7))
- (-5 *3 (-1083 (-347 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-345 *1)) (-4 *1 (-1132))))
- ((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-1143 *3)) (-4 *3 (-1153 (-483))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1170 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-90 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-483))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-780 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-780 *2)) (-14 *2 (-483))))
+ (-13 (-757)
+ (-10 -8 (-15 -3968 ((-1089) $)) (-15 -3827 ((-3 $ "failed") (-1089))))))
+ (-4 *6 (-257)) (-5 *2 (-345 *3)) (-5 *1 (-670 *4 *5 *6 *3))
+ (-4 *3 (-862 (-858 *6) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-718)) (-4 *5 (-13 (-757) (-10 -8 (-15 -3968 ((-1089) $)))))
+ (-4 *6 (-495)) (-5 *2 (-345 *3)) (-5 *1 (-672 *4 *5 *6 *3))
+ (-4 *3 (-862 (-347 (-858 *6)) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-13 (-257) (-120)))
+ (-5 *2 (-345 *3)) (-5 *1 (-673 *4 *5 *6 *3))
+ (-4 *3 (-862 (-347 *6) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-13 (-257) (-120)))
+ (-5 *2 (-345 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-13 (-257) (-120)))
+ (-4 *7 (-862 *6 *5 *4)) (-5 *2 (-345 (-1084 *7))) (-5 *1 (-681 *4 *5 *6 *7))
+ (-5 *3 (-1084 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-345 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1154 (-347 (-484))))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-345 *3)) (-5 *1 (-955 *3))
+ (-4 *3 (-1154 (-347 (-858 (-484)))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1154 (-347 (-484))))
+ (-4 *5 (-13 (-311) (-120) (-662 (-347 (-484)) *4))) (-5 *2 (-345 *3))
+ (-5 *1 (-992 *4 *5 *3)) (-4 *3 (-1154 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1154 (-347 (-858 (-484)))))
+ (-4 *5 (-13 (-311) (-120) (-662 (-347 (-858 (-484))) *4))) (-5 *2 (-345 *3))
+ (-5 *1 (-993 *4 *5 *3)) (-4 *3 (-1154 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-389)) (-4 *7 (-862 *6 *4 *5))
+ (-5 *2 (-345 (-1084 (-347 *7)))) (-5 *1 (-1086 *4 *5 *6 *7))
+ (-5 *3 (-1084 (-347 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-345 *1)) (-4 *1 (-1133))))
+ ((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-1144 *3)) (-4 *3 (-1154 (-484))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1142 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1171 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-90 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-484))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-781 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-781 *2)) (-14 *2 (-484))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-483)) (-14 *3 *2) (-5 *1 (-781 *3 *4)) (-4 *4 (-779 *3))))
- ((*1 *1 *1) (-12 (-14 *2 (-483)) (-5 *1 (-781 *2 *3)) (-4 *3 (-779 *2))))
+ (-12 (-5 *2 (-484)) (-14 *3 *2) (-5 *1 (-782 *3 *4)) (-4 *4 (-780 *3))))
+ ((*1 *1 *1) (-12 (-14 *2 (-484)) (-5 *1 (-782 *2 *3)) (-4 *3 (-780 *2))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-483)) (-4 *1 (-1141 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1170 *3))))
- ((*1 *1 *1) (-12 (-4 *1 (-1141 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1170 *2)))))
+ (-12 (-5 *2 (-484)) (-4 *1 (-1142 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1171 *3))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1142 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1171 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483))))
- (-5 *2 (-51)) (-5 *1 (-266 *4 *5)) (-4 *5 (-13 (-27) (-1113) (-361 *4)))))
+ (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484))))
+ (-5 *2 (-51)) (-5 *1 (-266 *4 *5)) (-4 *5 (-13 (-27) (-1114) (-361 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51))
- (-5 *1 (-266 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *4)))))
+ (-12 (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51))
+ (-5 *1 (-266 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-694)) (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483))))
- (-5 *2 (-51)) (-5 *1 (-266 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5)))))
+ (-12 (-5 *4 (-695)) (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484))))
+ (-5 *2 (-51)) (-5 *1 (-266 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5)))
- (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-248 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5)))
+ (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51))
(-5 *1 (-266 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-248 *3)) (-5 *5 (-694)) (-4 *3 (-13 (-27) (-1113) (-361 *6)))
- (-4 *6 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-248 *3)) (-5 *5 (-695)) (-4 *3 (-13 (-27) (-1114) (-361 *6)))
+ (-4 *6 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51))
(-5 *1 (-266 *6 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-483))) (-5 *4 (-248 *6))
- (-4 *6 (-13 (-27) (-1113) (-361 *5)))
- (-4 *5 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51))
+ (-12 (-5 *3 (-1 *6 (-484))) (-5 *4 (-248 *6))
+ (-4 *6 (-13 (-27) (-1114) (-361 *5)))
+ (-4 *5 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51))
(-5 *1 (-396 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1088)) (-5 *5 (-248 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *6)))
- (-4 *6 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-1089)) (-5 *5 (-248 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *6)))
+ (-4 *6 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51))
(-5 *1 (-396 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-483))) (-5 *4 (-248 *7)) (-5 *5 (-1144 (-694)))
- (-4 *7 (-13 (-27) (-1113) (-361 *6)))
- (-4 *6 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51))
+ (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-248 *7)) (-5 *5 (-1145 (-695)))
+ (-4 *7 (-13 (-27) (-1114) (-361 *6)))
+ (-4 *6 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51))
(-5 *1 (-396 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1088)) (-5 *5 (-248 *3)) (-5 *6 (-1144 (-694)))
- (-4 *3 (-13 (-27) (-1113) (-361 *7)))
- (-4 *7 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-1089)) (-5 *5 (-248 *3)) (-5 *6 (-1145 (-695)))
+ (-4 *3 (-13 (-27) (-1114) (-361 *7)))
+ (-4 *7 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *2 (-51))
(-5 *1 (-396 *7 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1170 *3)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1142 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1171 *3)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1141 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1170 *3)))))
+ (|partial| -12 (-4 *1 (-1142 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1171 *3)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-483)) (-4 *1 (-1139 *4)) (-4 *4 (-961)) (-4 *4 (-494))
- (-5 *2 (-347 (-857 *4)))))
+ (-12 (-5 *3 (-484)) (-4 *1 (-1140 *4)) (-4 *4 (-962)) (-4 *4 (-495))
+ (-5 *2 (-347 (-858 *4)))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-483)) (-4 *1 (-1139 *4)) (-4 *4 (-961)) (-4 *4 (-494))
- (-5 *2 (-347 (-857 *4))))))
+ (-12 (-5 *3 (-484)) (-4 *1 (-1140 *4)) (-4 *4 (-962)) (-4 *4 (-495))
+ (-5 *2 (-347 (-858 *4))))))
(((*1 *1 *1 *1) (-5 *1 (-101)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1095 *2)) (-14 *2 (-830))))
- ((*1 *1 *1 *1) (-5 *1 (-1133))) ((*1 *1 *1 *1) (-5 *1 (-1134)))
- ((*1 *1 *1 *1) (-5 *1 (-1135))) ((*1 *1 *1 *1) (-5 *1 (-1136))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1096 *2)) (-14 *2 (-831))))
+ ((*1 *1 *1 *1) (-5 *1 (-1134))) ((*1 *1 *1 *1) (-5 *1 (-1135)))
+ ((*1 *1 *1 *1) (-5 *1 (-1136))) ((*1 *1 *1 *1) (-5 *1 (-1137))))
(((*1 *1 *1 *1) (-5 *1 (-101)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1095 *2)) (-14 *2 (-830))))
- ((*1 *1 *1 *1) (-5 *1 (-1133))) ((*1 *1 *1 *1) (-5 *1 (-1134)))
- ((*1 *1 *1 *1) (-5 *1 (-1135))) ((*1 *1 *1 *1) (-5 *1 (-1136))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1096 *2)) (-14 *2 (-831))))
+ ((*1 *1 *1 *1) (-5 *1 (-1134))) ((*1 *1 *1 *1) (-5 *1 (-1135)))
+ ((*1 *1 *1 *1) (-5 *1 (-1136))) ((*1 *1 *1 *1) (-5 *1 (-1137))))
(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-101)))
((*1 *1)
- (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-694)) (-4 *4 (-146))))
- ((*1 *1) (-5 *1 (-484))) ((*1 *1) (-5 *1 (-485))) ((*1 *1) (-5 *1 (-486)))
- ((*1 *1) (-5 *1 (-487))) ((*1 *1) (-4 *1 (-663))) ((*1 *1) (-5 *1 (-1088)))
- ((*1 *1) (-12 (-5 *1 (-1094 *2)) (-14 *2 (-830))))
- ((*1 *1) (-12 (-5 *1 (-1095 *2)) (-14 *2 (-830)))) ((*1 *1) (-5 *1 (-1133)))
- ((*1 *1) (-5 *1 (-1134))) ((*1 *1) (-5 *1 (-1135))) ((*1 *1) (-5 *1 (-1136))))
-(((*1 *2 *3) (-12 (-5 *3 (-142 (-483))) (-5 *2 (-85)) (-5 *1 (-383))))
+ (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-695)) (-4 *4 (-146))))
+ ((*1 *1) (-5 *1 (-485))) ((*1 *1) (-5 *1 (-486))) ((*1 *1) (-5 *1 (-487)))
+ ((*1 *1) (-5 *1 (-488))) ((*1 *1) (-4 *1 (-664))) ((*1 *1) (-5 *1 (-1089)))
+ ((*1 *1) (-12 (-5 *1 (-1095 *2)) (-14 *2 (-831))))
+ ((*1 *1) (-12 (-5 *1 (-1096 *2)) (-14 *2 (-831)))) ((*1 *1) (-5 *1 (-1134)))
+ ((*1 *1) (-5 *1 (-1135))) ((*1 *1) (-5 *1 (-1136))) ((*1 *1) (-5 *1 (-1137))))
+(((*1 *2 *3) (-12 (-5 *3 (-142 (-484))) (-5 *2 (-85)) (-5 *1 (-383))))
((*1 *2 *3)
(-12
(-5 *3
- (-441 (-347 (-483)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-347 (-483)))))
- (-14 *4 (-583 (-1088))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-442 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-873 *3)) (-4 *3 (-482))))
- ((*1 *2 *1) (-12 (-4 *1 (-1132)) (-5 *2 (-85)))))
-(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1130)))))
+ (-441 (-347 (-484)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-347 (-484)))))
+ (-14 *4 (-584 (-1089))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-442 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-874 *3)) (-4 *3 (-483))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1133)) (-5 *2 (-85)))))
+(((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1131)))))
(((*1 *2)
- (-12 (-5 *2 (-2 (|:| -3223 (-583 (-1088))) (|:| -3224 (-583 (-1088)))))
- (-5 *1 (-1130)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-1088))) (-5 *2 (-1183)) (-5 *1 (-1130))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-1088))) (-5 *2 (-1183)) (-5 *1 (-1130)))))
+ (-12 (-5 *2 (-2 (|:| -3225 (-584 (-1089))) (|:| -3226 (-584 (-1089)))))
+ (-5 *1 (-1131)))))
+(((*1 *2 *3) (-12 (-5 *3 (-584 (-1089))) (-5 *2 (-1184)) (-5 *1 (-1131))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-584 (-1089))) (-5 *2 (-1184)) (-5 *1 (-1131)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-694)) (-4 *1 (-1062 *4)) (-4 *4 (-1127)) (-5 *2 (-85))))
+ (-12 (-5 *3 (-695)) (-4 *1 (-1063 *4)) (-4 *4 (-1128)) (-5 *2 (-85))))
((*1 *2 *3 *3)
- (-12 (-5 *2 (-85)) (-5 *1 (-1129 *3)) (-4 *3 (-756)) (-4 *3 (-1012)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-1130 *3)) (-4 *3 (-757)) (-4 *3 (-1013)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1129 *2))
- (-4 *2 (-1012))))
+ (-12 (-5 *3 (-584 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1130 *2))
+ (-4 *2 (-1013))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-1012)) (-4 *2 (-756)) (-5 *1 (-1129 *2)))))
-(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1129 *3)) (-4 *3 (-1012)))))
+ (-12 (-5 *3 (-584 *2)) (-4 *2 (-1013)) (-4 *2 (-757)) (-5 *1 (-1130 *2)))))
+(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1130 *3)) (-4 *3 (-1013)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-694)) (-4 *1 (-1062 *4)) (-4 *4 (-1127)) (-5 *2 (-85))))
+ (-12 (-5 *3 (-695)) (-4 *1 (-1063 *4)) (-4 *4 (-1128)) (-5 *2 (-85))))
((*1 *2 *3 *3)
- (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1129 *3)) (-4 *3 (-1012))))
+ (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1130 *3)) (-4 *3 (-1013))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1012)) (-5 *2 (-85))
- (-5 *1 (-1129 *3)))))
+ (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1013)) (-5 *2 (-85))
+ (-5 *1 (-1130 *3)))))
(((*1 *2)
- (-12 (-5 *2 (-2 (|:| -3224 (-583 *3)) (|:| -3223 (-583 *3))))
- (-5 *1 (-1129 *3)) (-4 *3 (-1012)))))
+ (-12 (-5 *2 (-2 (|:| -3226 (-584 *3)) (|:| -3225 (-584 *3))))
+ (-5 *1 (-1130 *3)) (-4 *3 (-1013)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *4)) (-4 *4 (-1012)) (-5 *2 (-1183)) (-5 *1 (-1129 *4))))
+ (-12 (-5 *3 (-584 *4)) (-4 *4 (-1013)) (-5 *2 (-1184)) (-5 *1 (-1130 *4))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *4)) (-4 *4 (-1012)) (-5 *2 (-1183)) (-5 *1 (-1129 *4)))))
+ (-12 (-5 *3 (-584 *4)) (-4 *4 (-1013)) (-5 *2 (-1184)) (-5 *1 (-1130 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-483)) (-4 *5 (-298)) (-5 *2 (-345 (-1083 (-1083 *5))))
- (-5 *1 (-1126 *5)) (-5 *3 (-1083 (-1083 *5))))))
+ (-12 (-5 *4 (-484)) (-4 *5 (-298)) (-5 *2 (-345 (-1084 (-1084 *5))))
+ (-5 *1 (-1127 *5)) (-5 *3 (-1084 (-1084 *5))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-298)) (-5 *2 (-345 (-1083 (-1083 *4)))) (-5 *1 (-1126 *4))
- (-5 *3 (-1083 (-1083 *4))))))
+ (-12 (-4 *4 (-298)) (-5 *2 (-345 (-1084 (-1084 *4)))) (-5 *1 (-1127 *4))
+ (-5 *3 (-1084 (-1084 *4))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-298)) (-5 *2 (-345 (-1083 (-1083 *4)))) (-5 *1 (-1126 *4))
- (-5 *3 (-1083 (-1083 *4))))))
+ (-12 (-4 *4 (-298)) (-5 *2 (-345 (-1084 (-1084 *4)))) (-5 *1 (-1127 *4))
+ (-5 *3 (-1084 (-1084 *4))))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3989)) (-4 *1 (-124 *3))
- (-4 *3 (-1127))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1127)) (-5 *1 (-535 *3))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1127))))
+ (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3991)) (-4 *1 (-124 *3))
+ (-4 *3 (-1128))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-617 *3)) (-4 *3 (-1128))))
((*1 *2 *1 *3)
- (|partial| -12 (-4 *1 (-1122 *4 *5 *3 *2)) (-4 *4 (-494)) (-4 *5 (-717))
- (-4 *3 (-756)) (-4 *2 (-976 *4 *5 *3))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-1125 *2)) (-4 *2 (-1127)))))
+ (|partial| -12 (-4 *1 (-1123 *4 *5 *3 *2)) (-4 *4 (-495)) (-4 *5 (-718))
+ (-4 *3 (-757)) (-4 *2 (-977 *4 *5 *3))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-1126 *2)) (-4 *2 (-1128)))))
(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-583 (-583 (-179)))) (-5 *4 (-179)) (-5 *2 (-583 (-854 *4)))
- (-5 *1 (-1124)) (-5 *3 (-854 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-483)) (-5 *2 (-583 (-583 (-179)))) (-5 *1 (-1124)))))
+ (-12 (-5 *5 (-584 (-584 (-179)))) (-5 *4 (-179)) (-5 *2 (-584 (-855 *4)))
+ (-5 *1 (-1125)) (-5 *3 (-855 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-484)) (-5 *2 (-584 (-584 (-179)))) (-5 *1 (-1125)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-830)) (-4 *1 (-196 *3 *4)) (-4 *4 (-961)) (-4 *4 (-1127))))
+ (-12 (-5 *2 (-831)) (-4 *1 (-196 *3 *4)) (-4 *4 (-962)) (-4 *4 (-1128))))
((*1 *1 *2)
- (-12 (-14 *3 (-583 (-1088))) (-4 *4 (-146)) (-4 *5 (-196 (-3951 *3) (-694)))
+ (-12 (-14 *3 (-584 (-1089))) (-4 *4 (-146)) (-4 *5 (-196 (-3953 *3) (-695)))
(-14 *6
- (-1 (-85) (-2 (|:| -2396 *2) (|:| -2397 *5))
- (-2 (|:| -2396 *2) (|:| -2397 *5))))
- (-5 *1 (-398 *3 *4 *2 *5 *6 *7)) (-4 *2 (-756))
- (-4 *7 (-861 *4 *5 (-773 *3)))))
- ((*1 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1124)))))
+ (-1 (-85) (-2 (|:| -2398 *2) (|:| -2399 *5))
+ (-2 (|:| -2398 *2) (|:| -2399 *5))))
+ (-5 *1 (-398 *3 *4 *2 *5 *6 *7)) (-4 *2 (-757))
+ (-4 *7 (-862 *4 *5 (-774 *3)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1125)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-854 (-179))) (-5 *4 (-783)) (-5 *2 (-1183)) (-5 *1 (-405))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-893 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-854 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-961)) (-4 *1 (-1046 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1046 *3)) (-4 *3 (-961))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-1046 *3)) (-4 *3 (-961))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *1 (-1046 *3)) (-4 *3 (-961))))
+ (-12 (-5 *3 (-855 (-179))) (-5 *4 (-784)) (-5 *2 (-1184)) (-5 *1 (-405))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-962)) (-4 *1 (-894 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-855 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-962)) (-4 *1 (-1047 *3))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1047 *3)) (-4 *3 (-962))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-1047 *3)) (-4 *3 (-962))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-855 *3)) (-4 *1 (-1047 *3)) (-4 *3 (-962))))
((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1124)) (-5 *3 (-179)))))
+ (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1125)) (-5 *3 (-179)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-179)) (-5 *5 (-483)) (-5 *2 (-1123 *3)) (-5 *1 (-712 *3))
- (-4 *3 (-887))))
+ (-12 (-5 *4 (-179)) (-5 *5 (-484)) (-5 *2 (-1124 *3)) (-5 *1 (-713 *3))
+ (-4 *3 (-888))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-85)) (-5 *1 (-1123 *2))
- (-4 *2 (-887)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1123 *3)) (-4 *3 (-887)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1123 *3)) (-4 *3 (-887)))))
+ (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-85)) (-5 *1 (-1124 *2))
+ (-4 *2 (-888)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1124 *3)) (-4 *3 (-888)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1124 *3)) (-4 *3 (-888)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1123 *3)) (-4 *3 (-887)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1124 *3)) (-4 *3 (-888)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-1123 *3)) (-4 *3 (-887)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1123 *2)) (-4 *2 (-887)))))
+ (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-1124 *3)) (-4 *3 (-888)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-888)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8))
- (-4 *8 (-982 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8))
+ (-4 *8 (-983 *4 *5 *6 *7))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
(-5 *2 (-85))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *8))
- (-4 *8 (-982 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8))
+ (-4 *8 (-983 *4 *5 *6 *7))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))))
(((*1 *2 *3 *4 *5)
(|partial| -12 (-5 *4 (-1 (-85) *9)) (-5 *5 (-1 (-85) *9 *9))
- (-4 *9 (-976 *6 *7 *8)) (-4 *6 (-494)) (-4 *7 (-717)) (-4 *8 (-756))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -3318 (-583 *9)))) (-5 *3 (-583 *9))
- (-4 *1 (-1122 *6 *7 *8 *9))))
+ (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-718)) (-4 *8 (-757))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -3320 (-584 *9)))) (-5 *3 (-584 *9))
+ (-4 *1 (-1123 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-976 *5 *6 *7))
- (-4 *5 (-494)) (-4 *6 (-717)) (-4 *7 (-756))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -3318 (-583 *8)))) (-5 *3 (-583 *8))
- (-4 *1 (-1122 *5 *6 *7 *8)))))
+ (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-977 *5 *6 *7))
+ (-4 *5 (-495)) (-4 *6 (-718)) (-4 *7 (-757))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -3320 (-584 *8)))) (-5 *3 (-584 *8))
+ (-4 *1 (-1123 *5 *6 *7 *8)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-583 *6)))))
+ (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-584 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-976 *3 *4 *5))
- (-5 *2 (-2 (|:| -3855 (-583 *6)) (|:| -1699 (-583 *6)))))))
+ (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-977 *3 *4 *5))
+ (-5 *2 (-2 (|:| -3857 (-584 *6)) (|:| -1700 (-584 *6)))))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 *1)) (-4 *1 (-976 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-85))))
+ (-12 (-5 *3 (-584 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-85))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
(-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1123 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 *1)) (-4 *1 (-976 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-85))))
+ (-12 (-5 *3 (-584 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-85))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
(-5 *2 (-85))))
((*1 *2 *3 *1 *4)
- (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1122 *5 *6 *7 *3)) (-4 *5 (-494))
- (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7)) (-5 *2 (-85)))))
+ (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1123 *5 *6 *7 *3)) (-4 *5 (-495))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1123 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 *1)) (-4 *1 (-976 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-85))))
+ (-12 (-5 *3 (-584 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-85))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
(-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1123 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 *1)) (-4 *1 (-976 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-85))))
+ (-12 (-5 *3 (-584 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-85))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
(-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-1122 *4 *5 *6 *3)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1123 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 (-85) *7 (-583 *7))) (-4 *1 (-1122 *4 *5 *6 *7))
- (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6))
+ (-12 (-5 *3 (-1 (-85) *7 (-584 *7))) (-4 *1 (-1123 *4 *5 *6 *7))
+ (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6))
(-5 *2 (-85)))))
(((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8))
- (-4 *1 (-1122 *5 *6 *7 *8)) (-4 *5 (-494)) (-4 *6 (-717)) (-4 *7 (-756))
- (-4 *8 (-976 *5 *6 *7)))))
+ (-12 (-5 *2 (-584 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8))
+ (-4 *1 (-1123 *5 *6 *7 *8)) (-4 *5 (-495)) (-4 *6 (-718)) (-4 *7 (-757))
+ (-4 *8 (-977 *5 *6 *7)))))
(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *2 (-976 *3 *4 *5)))))
+ (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *2 (-977 *3 *4 *5)))))
(((*1 *1 *1 *1)
- (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *2 (-976 *3 *4 *5)))))
+ (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *2 (-977 *3 *4 *5)))))
(((*1 *1 *1 *1)
- (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *2 (-976 *3 *4 *5)))))
+ (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *2 (-977 *3 *4 *5)))))
(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *2 (-976 *3 *4 *5)))))
+ (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *2 (-977 *3 *4 *5)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1122 *2 *3 *4 *5)) (-4 *2 (-494)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *5 (-976 *2 *3 *4)))))
+ (-12 (-4 *1 (-1123 *2 *3 *4 *5)) (-4 *2 (-495)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *5 (-977 *2 *3 *4)))))
(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *2 (-976 *3 *4 *5)))))
+ (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *2 (-977 *3 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-389))
- (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 *10))
- (-5 *1 (-563 *5 *6 *7 *8 *9 *10)) (-4 *9 (-982 *5 *6 *7 *8))
- (-4 *10 (-1019 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-389))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 *10))
+ (-5 *1 (-564 *5 *6 *7 *8 *9 *10)) (-4 *9 (-983 *5 *6 *7 *8))
+ (-4 *10 (-1020 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-389))
- (-14 *6 (-583 (-1088))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-567 *5 *6))))
+ (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-389))
+ (-14 *6 (-584 (-1089))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-568 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-389))
- (-14 *6 (-583 (-1088)))
- (-5 *2 (-583 (-1058 *5 (-468 (-773 *6)) (-773 *6) (-703 *5 (-773 *6)))))
- (-5 *1 (-567 *5 *6))))
+ (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-389))
+ (-14 *6 (-584 (-1089)))
+ (-5 *2 (-584 (-1059 *5 (-469 (-774 *6)) (-774 *6) (-704 *5 (-774 *6)))))
+ (-5 *1 (-568 *5 *6))))
((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-389))
- (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8)))
- (-5 *1 (-940 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-389))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8)))
+ (-5 *1 (-941 *5 *6 *7 *8))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-389))
- (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8)))
- (-5 *1 (-940 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-389))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8)))
+ (-5 *1 (-941 *5 *6 *7 *8))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-389))
- (-14 *6 (-583 (-1088))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-958 *5 *6))))
+ (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-389))
+ (-14 *6 (-584 (-1089))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-959 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-389))
- (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-982 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-389))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-983 *5 *6 *7 *8))))
((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-389))
- (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1058 *5 *6 *7 *8)))
- (-5 *1 (-1058 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-389))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1059 *5 *6 *7 *8)))
+ (-5 *1 (-1059 *5 *6 *7 *8))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-389))
- (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1058 *5 *6 *7 *8)))
- (-5 *1 (-1058 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-389))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1059 *5 *6 *7 *8)))
+ (-5 *1 (-1059 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-1122 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-1123 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6))
- (-5 *2 (-583 (-2 (|:| -3855 *1) (|:| -1699 (-583 *7))))) (-5 *3 (-583 *7))
- (-4 *1 (-1122 *4 *5 *6 *7)))))
+ (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6))
+ (-5 *2 (-584 (-2 (|:| -3857 *1) (|:| -1700 (-584 *7))))) (-5 *3 (-584 *7))
+ (-4 *1 (-1123 *4 *5 *6 *7)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-583 *5)))))
+ (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-584 *5)))))
(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *3 (-494)) (-4 *4 (-717))
- (-4 *5 (-756)) (-4 *2 (-976 *3 *4 *5)))))
+ (|partial| -12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-4 *2 (-977 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-976 *3 *4 *5)) (-4 *5 (-317)) (-5 *2 (-694)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961))))
+ (-12 (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-977 *3 *4 *5)) (-4 *5 (-317)) (-5 *2 (-695)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962))))
((*1 *2 *1 *1)
- (-12 (-4 *2 (-961)) (-5 *1 (-50 *2 *3)) (-14 *3 (-583 (-1088)))))
+ (-12 (-4 *2 (-962)) (-5 *1 (-50 *2 *3)) (-14 *3 (-584 (-1089)))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 (-830))) (-4 *2 (-311)) (-5 *1 (-125 *4 *2 *5))
- (-14 *4 (-830)) (-14 *5 (-906 *4 *2))))
+ (-12 (-5 *3 (-584 (-831))) (-4 *2 (-311)) (-5 *1 (-125 *4 *2 *5))
+ (-14 *4 (-831)) (-14 *5 (-907 *4 *2))))
((*1 *2 *1 *1)
- (-12 (-5 *2 (-264 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756)))
- (-14 *4 (-583 (-1088)))))
- ((*1 *2 *3 *1) (-12 (-4 *1 (-273 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-104))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-332 *2 *3)) (-4 *3 (-1012)) (-4 *2 (-961))))
+ (-12 (-5 *2 (-264 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757)))
+ (-14 *4 (-584 (-1089)))))
+ ((*1 *2 *3 *1) (-12 (-4 *1 (-273 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-104))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-332 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-962))))
+ ((*1 *2 *1) (-12 (-4 *2 (-72)) (-5 *1 (-451 *2 *3)) (-4 *3 (-760))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-483)) (-4 *2 (-494)) (-5 *1 (-562 *2 *4)) (-4 *4 (-1153 *2))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-645 *2)) (-4 *2 (-961))))
- ((*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-674 *2 *3)) (-4 *3 (-663))))
+ (-12 (-5 *3 (-484)) (-4 *2 (-495)) (-5 *1 (-563 *2 *4)) (-4 *4 (-1154 *2))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-646 *2)) (-4 *2 (-962))))
+ ((*1 *2 *1 *3) (-12 (-4 *2 (-962)) (-5 *1 (-675 *2 *3)) (-4 *3 (-664))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-694))) (-4 *1 (-679 *4 *5))
- (-4 *4 (-961)) (-4 *5 (-756))))
+ (-12 (-5 *2 (-584 *5)) (-5 *3 (-584 (-695))) (-4 *1 (-680 *4 *5))
+ (-4 *4 (-962)) (-4 *5 (-757))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *2)) (-4 *4 (-961)) (-4 *2 (-756))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-761 *2)) (-4 *2 (-961))))
+ (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *2)) (-4 *4 (-962)) (-4 *2 (-757))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-762 *2)) (-4 *2 (-962))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-694))) (-4 *1 (-861 *4 *5 *6))
- (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756))))
+ (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 (-695))) (-4 *1 (-862 *4 *5 *6))
+ (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-694)) (-4 *1 (-861 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-717))
- (-4 *2 (-756))))
+ (-12 (-5 *3 (-695)) (-4 *1 (-862 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-718))
+ (-4 *2 (-757))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-694)) (-4 *2 (-861 *4 (-468 *5) *5)) (-5 *1 (-1038 *4 *5 *2))
- (-4 *4 (-961)) (-4 *5 (-756))))
+ (-12 (-5 *3 (-695)) (-4 *2 (-862 *4 (-469 *5) *5)) (-5 *1 (-1039 *4 *5 *2))
+ (-4 *4 (-962)) (-4 *5 (-757))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-694)) (-5 *2 (-857 *4)) (-5 *1 (-1120 *4)) (-4 *4 (-961)))))
+ (-12 (-5 *3 (-695)) (-5 *2 (-858 *4)) (-5 *1 (-1121 *4)) (-4 *4 (-962)))))
(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1038 *4 *3 *5))) (-4 *4 (-38 (-347 (-483)))) (-4 *4 (-961))
- (-4 *3 (-756)) (-5 *1 (-1038 *4 *3 *5)) (-4 *5 (-861 *4 (-468 *3) *3))))
+ (-12 (-5 *2 (-1 (-1039 *4 *3 *5))) (-4 *4 (-38 (-347 (-484)))) (-4 *4 (-962))
+ (-4 *3 (-757)) (-5 *1 (-1039 *4 *3 *5)) (-4 *5 (-862 *4 (-469 *3) *3))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1120 *4))) (-5 *3 (-1088)) (-5 *1 (-1120 *4))
- (-4 *4 (-38 (-347 (-483)))) (-4 *4 (-961)))))
+ (-12 (-5 *2 (-1 (-1121 *4))) (-5 *3 (-1089)) (-5 *1 (-1121 *4))
+ (-4 *4 (-38 (-347 (-484)))) (-4 *4 (-962)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-553 (-800 *3))) (-4 *3 (-796 *3)) (-4 *3 (-389))
- (-5 *1 (-1119 *3 *2)) (-4 *2 (-553 (-800 *3))) (-4 *2 (-796 *3))
- (-4 *2 (-13 (-361 *3) (-1113))))))
+ (-12 (-4 *3 (-554 (-801 *3))) (-4 *3 (-797 *3)) (-4 *3 (-389))
+ (-5 *1 (-1120 *3 *2)) (-4 *2 (-554 (-801 *3))) (-4 *2 (-797 *3))
+ (-4 *2 (-13 (-361 *3) (-1114))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))))
+ (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))))
+ (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))))
+ (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))))
+ (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))))
+ (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))))
+ (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))))
+ (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))))
+ (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))))
+ (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))))
+ (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))))
+ (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))))
+ (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))))
+ (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))))
+ (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))))
+ (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))))
+ (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))))
+ (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))))
+ (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))))
+ (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))))
+ (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))))
+ (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))))
+ (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))))
+ (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))))
+ (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))))
-(((*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-1012)) (-5 *1 (-878 *3))))
+ (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))))
+(((*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-1013)) (-5 *1 (-879 *3))))
((*1 *1 *1)
- (-12 (-4 *2 (-120)) (-4 *2 (-257)) (-4 *2 (-389)) (-4 *3 (-756))
- (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5)) (-4 *5 (-861 *2 *4 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-264 (-483))) (-5 *1 (-1031))))
+ (-12 (-4 *2 (-120)) (-4 *2 (-257)) (-4 *2 (-389)) (-4 *3 (-757))
+ (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5)) (-4 *5 (-862 *2 *4 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-264 (-484))) (-5 *1 (-1032))))
((*1 *2 *2)
- (-12 (-4 *3 (-389)) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-361 *3) (-1113))))))
+ (-12 (-4 *3 (-389)) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-361 *3) (-1114))))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-494)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3))
- (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))))
+ (-12 (-4 *3 (-495)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3))
+ (-5 *1 (-1119 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-494)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3))
- (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))))
+ (-12 (-4 *3 (-495)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3))
+ (-5 *1 (-1119 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *2 (-142 (-264 *4)))
- (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 (-142 *4))))))
+ (-12 (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *2 (-142 (-264 *4)))
+ (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 (-142 *4))))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-142 *3))
- (-5 *1 (-1117 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *4))))))
+ (-12 (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-142 *3))
+ (-5 *1 (-1118 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *4))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3))
- (-4 *3 (-13 (-27) (-1113) (-361 (-142 *4))))))
+ (-12 (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3))
+ (-4 *3 (-13 (-27) (-1114) (-361 (-142 *4))))))
((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-85))
- (-5 *1 (-1117 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *4))))))
+ (-12 (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-85))
+ (-5 *1 (-1118 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *4))))))
(((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *2 (-264 *4))
- (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 (-142 *4))))))
+ (-12 (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *2 (-264 *4))
+ (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 (-142 *4))))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-1117 *3 *2))
- (-4 *2 (-13 (-27) (-1113) (-361 *3))))))
+ (-12 (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-1118 *3 *2))
+ (-4 *2 (-13 (-27) (-1114) (-361 *3))))))
(((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *2 (-264 *4))
- (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 (-142 *4))))))
- ((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146))))
- ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146))))
+ (-12 (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *2 (-264 *4))
+ (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 (-142 *4))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146))))
+ ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-1117 *3 *2))
- (-4 *2 (-13 (-27) (-1113) (-361 *3))))))
+ (-12 (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-1118 *3 *2))
+ (-4 *2 (-13 (-27) (-1114) (-361 *3))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-494) (-950 (-483)))) (-5 *1 (-162 *3 *2))
- (-4 *2 (-13 (-27) (-1113) (-361 (-142 *3))))))
+ (-12 (-4 *3 (-13 (-495) (-951 (-484)))) (-5 *1 (-162 *3 *2))
+ (-4 *2 (-13 (-27) (-1114) (-361 (-142 *3))))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-1117 *3 *2))
- (-4 *2 (-13 (-27) (-1113) (-361 *3))))))
+ (-12 (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-1118 *3 *2))
+ (-4 *2 (-13 (-27) (-1114) (-361 *3))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-494) (-950 (-483)))) (-5 *1 (-162 *3 *2))
- (-4 *2 (-13 (-27) (-1113) (-361 (-142 *3))))))
+ (-12 (-4 *3 (-13 (-495) (-951 (-484)))) (-5 *1 (-162 *3 *2))
+ (-4 *2 (-13 (-27) (-1114) (-361 (-142 *3))))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *1 (-162 *4 *2))
- (-4 *2 (-13 (-27) (-1113) (-361 (-142 *4))))))
+ (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *1 (-162 *4 *2))
+ (-4 *2 (-13 (-27) (-1114) (-361 (-142 *4))))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-1117 *3 *2))
- (-4 *2 (-13 (-27) (-1113) (-361 *3)))))
+ (-12 (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-1118 *3 *2))
+ (-4 *2 (-13 (-27) (-1114) (-361 *3)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483))))
- (-5 *1 (-1117 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *4))))))
+ (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484))))
+ (-5 *1 (-1118 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *4))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-494) (-950 (-483)))) (-5 *1 (-162 *3 *2))
- (-4 *2 (-13 (-27) (-1113) (-361 (-142 *3))))))
+ (-12 (-4 *3 (-13 (-495) (-951 (-484)))) (-5 *1 (-162 *3 *2))
+ (-4 *2 (-13 (-27) (-1114) (-361 (-142 *3))))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *1 (-162 *4 *2))
- (-4 *2 (-13 (-27) (-1113) (-361 (-142 *4))))))
+ (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *1 (-162 *4 *2))
+ (-4 *2 (-13 (-27) (-1114) (-361 (-142 *4))))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-1117 *3 *2))
- (-4 *2 (-13 (-27) (-1113) (-361 *3)))))
+ (-12 (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-1118 *3 *2))
+ (-4 *2 (-13 (-27) (-1114) (-361 *3)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483))))
- (-5 *1 (-1117 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *4))))))
+ (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484))))
+ (-5 *1 (-1118 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *4))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1141 *3 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1142 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3))))
- ((*1 *1 *1) (-4 *1 (-1116))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3))))
+ ((*1 *1 *1) (-4 *1 (-1117))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1141 *3 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1142 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-280 *2)) (-4 *2 (-756))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-280 *2)) (-4 *2 (-757))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3))))
- ((*1 *1 *1) (-4 *1 (-1116))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3))))
+ ((*1 *1 *1) (-4 *1 (-1117))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1141 *3 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1142 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3))))
- ((*1 *1 *1) (-4 *1 (-1116))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3))))
+ ((*1 *1 *1) (-4 *1 (-1117))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1141 *3 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1142 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3))))
- ((*1 *1 *1) (-4 *1 (-1116))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3))))
+ ((*1 *1 *1) (-4 *1 (-1117))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1141 *3 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1142 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3))))
- ((*1 *1 *1) (-4 *1 (-1116))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3))))
+ ((*1 *1 *1) (-4 *1 (-1117))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1141 *3 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1142 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-280 *2)) (-4 *2 (-756))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-280 *2)) (-4 *2 (-757))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3))))
- ((*1 *1 *1) (-4 *1 (-1116))))
-(((*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1127)) (-5 *2 (-85))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1114 *3)) (-4 *3 (-1012)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1114 *2)) (-4 *2 (-1012))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-5 *1 (-1114 *3))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3))))
+ ((*1 *1 *1) (-4 *1 (-1117))))
+(((*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1128)) (-5 *2 (-85))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1115 *3)) (-4 *3 (-1013)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1115 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-5 *1 (-1115 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-583 (-1114 *2))) (-5 *1 (-1114 *2)) (-4 *2 (-1012)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1114 *2)) (-4 *2 (-1012)))))
+ (-12 (-5 *3 (-584 (-1115 *2))) (-5 *1 (-1115 *2)) (-4 *2 (-1013)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1115 *2)) (-4 *2 (-1013)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-1114 *3))) (-5 *1 (-1114 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1114 *3)) (-4 *3 (-1012)))))
+ (-12 (-5 *2 (-584 (-1115 *3))) (-5 *1 (-1115 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1115 *3)) (-4 *3 (-1013)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-1114 *3))) (-5 *1 (-1114 *3)) (-4 *3 (-1012)))))
+ (-12 (-5 *2 (-584 (-1115 *3))) (-5 *1 (-1115 *3)) (-4 *3 (-1013)))))
(((*1 *2)
- (-12 (-4 *2 (-13 (-361 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-494))))
- ((*1 *1) (-5 *1 (-414))) ((*1 *1) (-4 *1 (-1113))))
-(((*1 *2) (-12 (-5 *2 (-1045 (-179))) (-5 *1 (-1111)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1071)) (-5 *2 (-483)) (-5 *1 (-1110 *4)) (-4 *4 (-961)))))
-(((*1 *2 *3) (|partial| -12 (-5 *2 (-483)) (-5 *1 (-1110 *3)) (-4 *3 (-961)))))
-(((*1 *2 *1) (-12 (-4 *1 (-714)) (-5 *2 (-483))))
- ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-813 *3)) (-4 *3 (-1012))))
+ (-12 (-4 *2 (-13 (-361 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495))))
+ ((*1 *1) (-5 *1 (-414))) ((*1 *1) (-4 *1 (-1114))))
+(((*1 *2) (-12 (-5 *2 (-1046 (-179))) (-5 *1 (-1112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1072)) (-5 *2 (-484)) (-5 *1 (-1111 *4)) (-4 *4 (-962)))))
+(((*1 *2 *3) (|partial| -12 (-5 *2 (-484)) (-5 *1 (-1111 *3)) (-4 *3 (-962)))))
+(((*1 *2 *1) (-12 (-4 *1 (-715)) (-5 *2 (-484))))
+ ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-814 *3)) (-4 *3 (-1013))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-979 *4 *3)) (-4 *4 (-13 (-755) (-311))) (-4 *3 (-1153 *4))
- (-5 *2 (-483))))
+ (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-756) (-311))) (-4 *3 (-1154 *4))
+ (-5 *2 (-484))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-494) (-950 *2) (-580 *2) (-389))) (-5 *2 (-483))
- (-5 *1 (-1029 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *4)))))
+ (|partial| -12 (-4 *4 (-13 (-495) (-951 *2) (-581 *2) (-389))) (-5 *2 (-484))
+ (-5 *1 (-1030 *4 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *4)))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-750 *3))
- (-4 *3 (-13 (-27) (-1113) (-361 *6)))
- (-4 *6 (-13 (-494) (-950 *2) (-580 *2) (-389))) (-5 *2 (-483))
- (-5 *1 (-1029 *6 *3))))
+ (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-751 *3))
+ (-4 *3 (-13 (-27) (-1114) (-361 *6)))
+ (-4 *6 (-13 (-495) (-951 *2) (-581 *2) (-389))) (-5 *2 (-484))
+ (-5 *1 (-1030 *6 *3))))
((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-1071))
- (-4 *6 (-13 (-494) (-950 *2) (-580 *2) (-389))) (-5 *2 (-483))
- (-5 *1 (-1029 *6 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *6)))))
+ (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-1072))
+ (-4 *6 (-13 (-495) (-951 *2) (-581 *2) (-389))) (-5 *2 (-484))
+ (-5 *1 (-1030 *6 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *6)))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-389)) (-5 *2 (-483))
- (-5 *1 (-1030 *4))))
+ (|partial| -12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-389)) (-5 *2 (-484))
+ (-5 *1 (-1031 *4))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-750 (-347 (-857 *6))))
- (-5 *3 (-347 (-857 *6))) (-4 *6 (-389)) (-5 *2 (-483)) (-5 *1 (-1030 *6))))
+ (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-751 (-347 (-858 *6))))
+ (-5 *3 (-347 (-858 *6))) (-4 *6 (-389)) (-5 *2 (-484)) (-5 *1 (-1031 *6))))
((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-347 (-857 *6))) (-5 *4 (-1088)) (-5 *5 (-1071))
- (-4 *6 (-389)) (-5 *2 (-483)) (-5 *1 (-1030 *6))))
- ((*1 *2 *3) (|partial| -12 (-5 *2 (-483)) (-5 *1 (-1110 *3)) (-4 *3 (-961)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-1109))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1109)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-1109)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1071)) (-5 *1 (-1109)))))
-(((*1 *2 *1) (|partial| -12 (-5 *1 (-312 *2)) (-4 *2 (-1012))))
- ((*1 *2 *1) (|partial| -12 (-5 *2 (-1071)) (-5 *1 (-1109)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1109)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-772) (-772))) (-5 *1 (-86))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-772) (-583 (-772)))) (-5 *1 (-86))))
- ((*1 *2 *1) (-12 (-5 *2 (-632 (-1 (-772) (-583 (-772))))) (-5 *1 (-86))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1183)) (-5 *1 (-167 *3))
+ (|partial| -12 (-5 *3 (-347 (-858 *6))) (-5 *4 (-1089)) (-5 *5 (-1072))
+ (-4 *6 (-389)) (-5 *2 (-484)) (-5 *1 (-1031 *6))))
+ ((*1 *2 *3) (|partial| -12 (-5 *2 (-484)) (-5 *1 (-1111 *3)) (-4 *3 (-962)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1110))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1110)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1110)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1072)) (-5 *1 (-1110)))))
+(((*1 *2 *1) (|partial| -12 (-5 *1 (-312 *2)) (-4 *2 (-1013))))
+ ((*1 *2 *1) (|partial| -12 (-5 *2 (-1072)) (-5 *1 (-1110)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1110)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-773) (-773))) (-5 *1 (-86))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-773) (-584 (-773)))) (-5 *1 (-86))))
+ ((*1 *2 *1) (-12 (-5 *2 (-633 (-1 (-773) (-584 (-773))))) (-5 *1 (-86))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1184)) (-5 *1 (-167 *3))
(-4 *3
- (-13 (-756)
- (-10 -8 (-15 -3794 ((-1071) $ (-1088))) (-15 -3611 (*2 $))
- (-15 -1961 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-439))))
- ((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-647))))
- ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1107))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *2 (-1183)) (-5 *1 (-1107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1107)))))
+ (-13 (-757)
+ (-10 -8 (-15 -3796 ((-1072) $ (-1089))) (-15 -3613 (*2 $))
+ (-15 -1962 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-439))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-648))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1108))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-1108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1108)))))
(((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-694)) (-4 *3 (-1127)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-321 *3))
+ (-12 (-5 *2 (-695)) (-4 *3 (-1128)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-321 *3))
(-4 *5 (-321 *3))))
((*1 *1) (-5 *1 (-145)))
- ((*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-830)) (-4 *3 (-1012))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1071)) (-4 *1 (-336))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-4 *1 (-593 *3)) (-4 *3 (-1127))))
+ ((*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-831)) (-4 *3 (-1013))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1072)) (-4 *1 (-336))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-4 *1 (-594 *3)) (-4 *3 (-1128))))
((*1 *1)
- (-12 (-4 *3 (-1012)) (-5 *1 (-795 *2 *3 *4)) (-4 *2 (-1012))
- (-4 *4 (-608 *3))))
- ((*1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012))))
- ((*1 *1 *2) (-12 (-5 *1 (-1054 *3 *2)) (-14 *3 (-694)) (-4 *2 (-961))))
- ((*1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961))))
- ((*1 *1 *1) (-5 *1 (-1088))) ((*1 *1) (-5 *1 (-1088)))
- ((*1 *1) (-5 *1 (-1107))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1107)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1107)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1107)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-1107)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1127))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-756))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-756))))
- ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-237 *3)) (-4 *3 (-1127))))
- ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-237 *2)) (-4 *2 (-1127))))
- ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-634 *2)) (-4 *2 (-1012))))
- ((*1 *2 *3 *4)
- (-12 (-5 *2 (-1183)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *2 (-1012)) (-5 *1 (-1106 *3 *2)) (-4 *3 (-1012)))))
+ (-12 (-4 *3 (-1013)) (-5 *1 (-796 *2 *3 *4)) (-4 *2 (-1013))
+ (-4 *4 (-609 *3))))
+ ((*1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1055 *3 *2)) (-14 *3 (-695)) (-4 *2 (-962))))
+ ((*1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962))))
+ ((*1 *1 *1) (-5 *1 (-1089))) ((*1 *1) (-5 *1 (-1089)))
+ ((*1 *1) (-5 *1 (-1108))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1108)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1108)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1108)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-1108)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-757))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-757))))
+ ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-237 *3)) (-4 *3 (-1128))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-237 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-635 *2)) (-4 *2 (-1013))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *2 (-1184)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *2 (-1013)) (-5 *1 (-1107 *3 *2)) (-4 *3 (-1013)))))
(((*1 *2)
- (-12 (-5 *2 (-85)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
(((*1 *2)
- (-12 (-5 *2 (-85)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
(((*1 *2)
- (-12 (-5 *2 (-85)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
(((*1 *2)
- (-12 (-5 *2 (-1183)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))))
+ (-12 (-5 *2 (-1184)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
(((*1 *2)
- (-12 (-5 *2 (-1183)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))))
+ (-12 (-5 *2 (-1184)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1106 *4 *5)) (-4 *4 (-1012))
- (-4 *5 (-1012)))))
+ (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1107 *4 *5)) (-4 *4 (-1013))
+ (-4 *5 (-1013)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1106 *4 *5)) (-4 *4 (-1012))
- (-4 *5 (-1012)))))
+ (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1107 *4 *5)) (-4 *4 (-1013))
+ (-4 *5 (-1013)))))
(((*1 *2)
- (-12 (-5 *2 (-1183)) (-5 *1 (-1106 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))))
+ (-12 (-5 *2 (-1184)) (-5 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-583 (-2 (|:| -3854 *3) (|:| |entry| *4)))) (-4 *3 (-1012))
- (-4 *4 (-1012)) (-4 *1 (-1105 *3 *4))))
- ((*1 *1) (-12 (-4 *1 (-1105 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-1103 *2)) (-4 *2 (-311)))))
+ (-12 (-5 *2 (-584 (-2 (|:| -3856 *3) (|:| |entry| *4)))) (-4 *3 (-1013))
+ (-4 *4 (-1013)) (-4 *1 (-1106 *3 *4))))
+ ((*1 *1) (-12 (-4 *1 (-1106 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-1104 *2)) (-4 *2 (-311)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-830)) (-5 *2 (-1083 *3)) (-5 *1 (-1103 *3)) (-4 *3 (-311)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-1103 *2)) (-4 *2 (-311)))))
+ (-12 (-5 *4 (-831)) (-5 *2 (-1084 *3)) (-5 *1 (-1104 *3)) (-4 *3 (-311)))))
+(((*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-1104 *2)) (-4 *2 (-311)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-86)) (-4 *3 (-494)) (-5 *1 (-32 *3 *4)) (-4 *4 (-361 *3))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-55)) (-5 *1 (-86))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-694)) (-5 *1 (-86))))
- ((*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-86))))
+ (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-32 *3 *4)) (-4 *4 (-361 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-55)) (-5 *1 (-86))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-695)) (-5 *1 (-86))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-86))))
((*1 *2 *2)
- (-12 (-5 *2 (-86)) (-4 *3 (-494)) (-5 *1 (-131 *3 *4)) (-4 *4 (-361 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-86)) (-5 *1 (-136))))
+ (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-131 *3 *4)) (-4 *4 (-361 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-86)) (-5 *1 (-136))))
((*1 *2 *2)
- (-12 (-5 *2 (-86)) (-4 *3 (-494)) (-5 *1 (-230 *3 *4))
- (-4 *4 (-13 (-361 *3) (-915)))))
+ (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-230 *3 *4))
+ (-4 *4 (-13 (-361 *3) (-916)))))
((*1 *2 *2) (-12 (-5 *2 (-86)) (-5 *1 (-252 *3)) (-4 *3 (-253))))
((*1 *2 *2) (-12 (-4 *1 (-253)) (-5 *2 (-86))))
((*1 *2 *2)
- (-12 (-5 *2 (-86)) (-4 *4 (-1012)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4))))
+ (-12 (-5 *2 (-86)) (-4 *4 (-1013)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-86)) (-4 *3 (-494)) (-5 *1 (-371 *3 *4)) (-4 *4 (-361 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-550 *3)) (-4 *3 (-1012))))
+ (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-371 *3 *4)) (-4 *4 (-361 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-551 *3)) (-4 *3 (-1013))))
((*1 *2 *2)
- (-12 (-5 *2 (-86)) (-4 *3 (-494)) (-5 *1 (-568 *3 *4))
- (-4 *4 (-13 (-361 *3) (-915) (-1113)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-932))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1102 *2)) (-4 *2 (-1012)))))
+ (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-569 *3 *4))
+ (-4 *4 (-13 (-361 *3) (-916) (-1114)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-933))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1103 *2)) (-4 *2 (-1013)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3))
- (-4 *5 (-321 *3)) (-5 *2 (-583 (-583 *3)))))
+ (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3))
+ (-4 *5 (-321 *3)) (-5 *2 (-584 (-584 *3)))))
((*1 *2 *1)
- (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
- (-4 *7 (-196 *3 *5)) (-5 *2 (-583 (-583 *5)))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-583 *3))) (-5 *1 (-1101 *3)) (-4 *3 (-1012)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1012)) (-5 *1 (-1101 *3)))))
+ (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
+ (-4 *7 (-196 *3 *5)) (-5 *2 (-584 (-584 *5)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-584 *3))) (-5 *1 (-1102 *3)) (-4 *3 (-1013)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1013)) (-5 *1 (-1102 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-756))
+ (-12 (-4 *4 (-757))
(-5 *2
- (-2 (|:| |f1| (-583 *4)) (|:| |f2| (-583 (-583 (-583 *4))))
- (|:| |f3| (-583 (-583 *4))) (|:| |f4| (-583 (-583 (-583 *4))))))
- (-5 *1 (-1099 *4)) (-5 *3 (-583 (-583 (-583 *4)))))))
+ (-2 (|:| |f1| (-584 *4)) (|:| |f2| (-584 (-584 (-584 *4))))
+ (|:| |f3| (-584 (-584 *4))) (|:| |f4| (-584 (-584 (-584 *4))))))
+ (-5 *1 (-1100 *4)) (-5 *3 (-584 (-584 (-584 *4)))))))
(((*1 *2 *3 *4 *5 *4 *4 *4)
- (-12 (-4 *6 (-756)) (-5 *3 (-583 *6)) (-5 *5 (-583 *3))
+ (-12 (-4 *6 (-757)) (-5 *3 (-584 *6)) (-5 *5 (-584 *3))
(-5 *2
- (-2 (|:| |f1| *3) (|:| |f2| (-583 *5)) (|:| |f3| *5) (|:| |f4| (-583 *5))))
- (-5 *1 (-1099 *6)) (-5 *4 (-583 *5)))))
+ (-2 (|:| |f1| *3) (|:| |f2| (-584 *5)) (|:| |f3| *5) (|:| |f4| (-584 *5))))
+ (-5 *1 (-1100 *6)) (-5 *4 (-584 *5)))))
(((*1 *2 *2)
(|partial| -12 (-4 *3 (-311)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3))
- (-5 *1 (-458 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))
+ (-5 *1 (-459 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-494)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4))
- (-4 *7 (-904 *4)) (-4 *2 (-627 *7 *8 *9))
- (-5 *1 (-459 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-627 *4 *5 *6))
+ (|partial| -12 (-4 *4 (-495)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4))
+ (-4 *7 (-905 *4)) (-4 *2 (-628 *7 *8 *9))
+ (-5 *1 (-460 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-628 *4 *5 *6))
(-4 *8 (-321 *7)) (-4 *9 (-321 *7))))
((*1 *1 *1)
- (|partial| -12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2))
+ (|partial| -12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2))
(-4 *4 (-321 *2)) (-4 *2 (-311))))
((*1 *2 *2)
(|partial| -12 (-4 *3 (-311)) (-4 *3 (-146)) (-4 *4 (-321 *3))
- (-4 *5 (-321 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))
- ((*1 *1 *1) (|partial| -12 (-5 *1 (-630 *2)) (-4 *2 (-311)) (-4 *2 (-961))))
+ (-4 *5 (-321 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))
+ ((*1 *1 *1) (|partial| -12 (-5 *1 (-631 *2)) (-4 *2 (-311)) (-4 *2 (-962))))
((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1035 *2 *3 *4 *5)) (-4 *3 (-961))
+ (|partial| -12 (-4 *1 (-1036 *2 *3 *4 *5)) (-4 *3 (-962))
(-4 *4 (-196 *2 *3)) (-4 *5 (-196 *2 *3)) (-4 *3 (-311))))
- ((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-1099 *3)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-1100 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-756)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1099 *4))
- (-5 *3 (-583 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-756)) (-5 *1 (-1099 *3)))))
+ (-12 (-4 *4 (-757)) (-5 *2 (-584 (-584 *4))) (-5 *1 (-1100 *4))
+ (-5 *3 (-584 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-757)) (-5 *1 (-1100 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-756)) (-5 *2 (-1101 (-583 *4))) (-5 *1 (-1099 *4))
- (-5 *3 (-583 *4)))))
+ (-12 (-4 *4 (-757)) (-5 *2 (-1102 (-584 *4))) (-5 *1 (-1100 *4))
+ (-5 *3 (-584 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-756)) (-5 *2 (-583 (-583 (-583 *4)))) (-5 *1 (-1099 *4))
- (-5 *3 (-583 (-583 *4))))))
+ (-12 (-4 *4 (-757)) (-5 *2 (-584 (-584 (-584 *4)))) (-5 *1 (-1100 *4))
+ (-5 *3 (-584 (-584 *4))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1101 (-583 *4))) (-4 *4 (-756)) (-5 *2 (-583 (-583 *4)))
- (-5 *1 (-1099 *4)))))
+ (-12 (-5 *3 (-1102 (-584 *4))) (-4 *4 (-757)) (-5 *2 (-584 (-584 *4)))
+ (-5 *1 (-1100 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4)))
- (-5 *1 (-1099 *4)) (-4 *4 (-756)))))
+ (-12 (-5 *3 (-584 (-584 (-584 *4)))) (-5 *2 (-584 (-584 *4)))
+ (-5 *1 (-1100 *4)) (-4 *4 (-757)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-4 *4 (-756))
- (-5 *1 (-1099 *4)))))
+ (-12 (-5 *3 (-584 (-584 (-584 *4)))) (-5 *2 (-584 (-584 *4))) (-4 *4 (-757))
+ (-5 *1 (-1100 *4)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-583 *4)) (-4 *4 (-756))
- (-5 *1 (-1099 *4)))))
+ (-12 (-5 *2 (-584 (-584 (-584 *4)))) (-5 *3 (-584 *4)) (-4 *4 (-757))
+ (-5 *1 (-1100 *4)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-1 (-85) *5 *5))
- (-5 *4 (-583 *5)) (-4 *5 (-756)) (-5 *1 (-1099 *5)))))
+ (-12 (-5 *2 (-584 (-584 (-584 *5)))) (-5 *3 (-1 (-85) *5 *5))
+ (-5 *4 (-584 *5)) (-4 *5 (-757)) (-5 *1 (-1100 *5)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-756)) (-5 *4 (-583 *6))
- (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-583 *4))))
- (-5 *1 (-1099 *6)) (-5 *5 (-583 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1098)))))
-(((*1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1098)))))
-(((*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1098)))))
-(((*1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-1098)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-1098)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-347 (-857 *5)))) (-5 *4 (-583 (-1088))) (-4 *5 (-494))
- (-5 *2 (-583 (-583 (-857 *5)))) (-5 *1 (-1097 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-347 (-857 (-483)))))
- (-5 *2 (-583 (-583 (-248 (-857 *4))))) (-5 *1 (-329 *4))
- (-4 *4 (-13 (-755) (-311)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-248 (-347 (-857 (-483))))))
- (-5 *2 (-583 (-583 (-248 (-857 *4))))) (-5 *1 (-329 *4))
- (-4 *4 (-13 (-755) (-311)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-347 (-857 (-483)))) (-5 *2 (-583 (-248 (-857 *4))))
- (-5 *1 (-329 *4)) (-4 *4 (-13 (-755) (-311)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-248 (-347 (-857 (-483))))) (-5 *2 (-583 (-248 (-857 *4))))
- (-5 *1 (-329 *4)) (-4 *4 (-13 (-755) (-311)))))
+ (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-757)) (-5 *4 (-584 *6))
+ (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-584 *4))))
+ (-5 *1 (-1100 *6)) (-5 *5 (-584 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1099)))))
+(((*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1099)))))
+(((*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1099)))))
+(((*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-1099)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-1099)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-584 (-347 (-858 *5)))) (-5 *4 (-584 (-1089))) (-4 *5 (-495))
+ (-5 *2 (-584 (-584 (-858 *5)))) (-5 *1 (-1098 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-584 (-347 (-858 (-484)))))
+ (-5 *2 (-584 (-584 (-248 (-858 *4))))) (-5 *1 (-329 *4))
+ (-4 *4 (-13 (-756) (-311)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-584 (-248 (-347 (-858 (-484))))))
+ (-5 *2 (-584 (-584 (-248 (-858 *4))))) (-5 *1 (-329 *4))
+ (-4 *4 (-13 (-756) (-311)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-347 (-858 (-484)))) (-5 *2 (-584 (-248 (-858 *4))))
+ (-5 *1 (-329 *4)) (-4 *4 (-13 (-756) (-311)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-248 (-347 (-858 (-484))))) (-5 *2 (-584 (-248 (-858 *4))))
+ (-5 *1 (-329 *4)) (-4 *4 (-13 (-756) (-311)))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1088))
- (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120)))
- (-4 *4 (-13 (-29 *6) (-1113) (-871)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -2008 (-583 *4))))
- (-5 *1 (-595 *6 *4 *3)) (-4 *3 (-600 *4))))
+ (|partial| -12 (-5 *5 (-1089))
+ (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120)))
+ (-4 *4 (-13 (-29 *6) (-1114) (-872)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -2010 (-584 *4))))
+ (-5 *1 (-596 *6 *4 *3)) (-4 *3 (-601 *4))))
((*1 *2 *3 *2 *4 *2 *5)
- (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-583 *2))
- (-4 *2 (-13 (-29 *6) (-1113) (-871)))
- (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120)))
- (-5 *1 (-595 *6 *2 *3)) (-4 *3 (-600 *2))))
+ (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-584 *2))
+ (-4 *2 (-13 (-29 *6) (-1114) (-872)))
+ (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120)))
+ (-5 *1 (-596 *6 *2 *3)) (-4 *3 (-601 *2))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-311)) (-4 *6 (-13 (-321 *5) (-10 -7 (-6 -3990))))
- (-4 *4 (-13 (-321 *5) (-10 -7 (-6 -3990))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2008 (-583 *4))))
- (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4))))
+ (-12 (-4 *5 (-311)) (-4 *6 (-13 (-321 *5) (-10 -7 (-6 -3992))))
+ (-4 *4 (-13 (-321 *5) (-10 -7 (-6 -3992))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2010 (-584 *4))))
+ (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-311)) (-4 *6 (-13 (-321 *5) (-10 -7 (-6 -3990))))
- (-4 *7 (-13 (-321 *5) (-10 -7 (-6 -3990))))
- (-5 *2 (-583 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2008 (-583 *7)))))
- (-5 *1 (-609 *5 *6 *7 *3)) (-5 *4 (-583 *7)) (-4 *3 (-627 *5 *6 *7))))
+ (-12 (-4 *5 (-311)) (-4 *6 (-13 (-321 *5) (-10 -7 (-6 -3992))))
+ (-4 *7 (-13 (-321 *5) (-10 -7 (-6 -3992))))
+ (-5 *2 (-584 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2010 (-584 *7)))))
+ (-5 *1 (-610 *5 *6 *7 *3)) (-5 *4 (-584 *7)) (-4 *3 (-628 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 *5)) (-4 *5 (-311))
+ (-12 (-5 *3 (-631 *5)) (-4 *5 (-311))
(-5 *2
- (-2 (|:| |particular| (-3 (-1177 *5) #2="failed"))
- (|:| -2008 (-583 (-1177 *5)))))
- (-5 *1 (-610 *5)) (-5 *4 (-1177 *5))))
+ (-2 (|:| |particular| (-3 (-1178 *5) #2="failed"))
+ (|:| -2010 (-584 (-1178 *5)))))
+ (-5 *1 (-611 *5)) (-5 *4 (-1178 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-311))
+ (-12 (-5 *3 (-584 (-584 *5))) (-4 *5 (-311))
(-5 *2
- (-2 (|:| |particular| (-3 (-1177 *5) #2#)) (|:| -2008 (-583 (-1177 *5)))))
- (-5 *1 (-610 *5)) (-5 *4 (-1177 *5))))
+ (-2 (|:| |particular| (-3 (-1178 *5) #2#)) (|:| -2010 (-584 (-1178 *5)))))
+ (-5 *1 (-611 *5)) (-5 *4 (-1178 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 *5)) (-4 *5 (-311))
+ (-12 (-5 *3 (-631 *5)) (-4 *5 (-311))
(-5 *2
- (-583
- (-2 (|:| |particular| (-3 (-1177 *5) #2#))
- (|:| -2008 (-583 (-1177 *5))))))
- (-5 *1 (-610 *5)) (-5 *4 (-583 (-1177 *5)))))
+ (-584
+ (-2 (|:| |particular| (-3 (-1178 *5) #2#))
+ (|:| -2010 (-584 (-1178 *5))))))
+ (-5 *1 (-611 *5)) (-5 *4 (-584 (-1178 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-311))
+ (-12 (-5 *3 (-584 (-584 *5))) (-4 *5 (-311))
(-5 *2
- (-583
- (-2 (|:| |particular| (-3 (-1177 *5) #2#))
- (|:| -2008 (-583 (-1177 *5))))))
- (-5 *1 (-610 *5)) (-5 *4 (-583 (-1177 *5)))))
+ (-584
+ (-2 (|:| |particular| (-3 (-1178 *5) #2#))
+ (|:| -2010 (-584 (-1178 *5))))))
+ (-5 *1 (-611 *5)) (-5 *4 (-584 (-1178 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1088))) (-4 *5 (-494))
- (-5 *2 (-583 (-583 (-248 (-347 (-857 *5)))))) (-5 *1 (-693 *5))))
+ (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1089))) (-4 *5 (-495))
+ (-5 *2 (-584 (-584 (-248 (-347 (-858 *5)))))) (-5 *1 (-694 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-494))
- (-5 *2 (-583 (-583 (-248 (-347 (-857 *4)))))) (-5 *1 (-693 *4))))
+ (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-495))
+ (-5 *2 (-584 (-584 (-248 (-347 (-858 *4)))))) (-5 *1 (-694 *4))))
((*1 *2 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1088))
- (-4 *5 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120))) (-5 *1 (-695 *5 *2))
- (-4 *2 (-13 (-29 *5) (-1113) (-871)))))
+ (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1089))
+ (-4 *5 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120))) (-5 *1 (-696 *5 *2))
+ (-4 *2 (-13 (-29 *5) (-1114) (-872)))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-630 *7)) (-5 *5 (-1088))
- (-4 *7 (-13 (-29 *6) (-1113) (-871)))
- (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120)))
- (-5 *2 (-2 (|:| |particular| (-1177 *7)) (|:| -2008 (-583 (-1177 *7)))))
- (-5 *1 (-725 *6 *7)) (-5 *4 (-1177 *7))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-630 *6)) (-5 *4 (-1088))
- (-4 *6 (-13 (-29 *5) (-1113) (-871)))
- (-4 *5 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120)))
- (-5 *2 (-583 (-1177 *6))) (-5 *1 (-725 *5 *6))))
+ (|partial| -12 (-5 *3 (-631 *7)) (-5 *5 (-1089))
+ (-4 *7 (-13 (-29 *6) (-1114) (-872)))
+ (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120)))
+ (-5 *2 (-2 (|:| |particular| (-1178 *7)) (|:| -2010 (-584 (-1178 *7)))))
+ (-5 *1 (-726 *6 *7)) (-5 *4 (-1178 *7))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-631 *6)) (-5 *4 (-1089))
+ (-4 *6 (-13 (-29 *5) (-1114) (-872)))
+ (-4 *5 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120)))
+ (-5 *2 (-584 (-1178 *6))) (-5 *1 (-726 *5 *6))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-583 (-248 *7))) (-5 *4 (-583 (-86))) (-5 *5 (-1088))
- (-4 *7 (-13 (-29 *6) (-1113) (-871)))
- (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120)))
- (-5 *2 (-2 (|:| |particular| (-1177 *7)) (|:| -2008 (-583 (-1177 *7)))))
- (-5 *1 (-725 *6 *7))))
+ (|partial| -12 (-5 *3 (-584 (-248 *7))) (-5 *4 (-584 (-86))) (-5 *5 (-1089))
+ (-4 *7 (-13 (-29 *6) (-1114) (-872)))
+ (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120)))
+ (-5 *2 (-2 (|:| |particular| (-1178 *7)) (|:| -2010 (-584 (-1178 *7)))))
+ (-5 *1 (-726 *6 *7))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-86))) (-5 *5 (-1088))
- (-4 *7 (-13 (-29 *6) (-1113) (-871)))
- (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120)))
- (-5 *2 (-2 (|:| |particular| (-1177 *7)) (|:| -2008 (-583 (-1177 *7)))))
- (-5 *1 (-725 *6 *7))))
+ (|partial| -12 (-5 *3 (-584 *7)) (-5 *4 (-584 (-86))) (-5 *5 (-1089))
+ (-4 *7 (-13 (-29 *6) (-1114) (-872)))
+ (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120)))
+ (-5 *2 (-2 (|:| |particular| (-1178 *7)) (|:| -2010 (-584 (-1178 *7)))))
+ (-5 *1 (-726 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-248 *7)) (-5 *4 (-86)) (-5 *5 (-1088))
- (-4 *7 (-13 (-29 *6) (-1113) (-871)))
- (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120)))
- (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2008 (-583 *7))) *7 #3="failed"))
- (-5 *1 (-725 *6 *7))))
+ (-12 (-5 *3 (-248 *7)) (-5 *4 (-86)) (-5 *5 (-1089))
+ (-4 *7 (-13 (-29 *6) (-1114) (-872)))
+ (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120)))
+ (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2010 (-584 *7))) *7 #3="failed"))
+ (-5 *1 (-726 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-86)) (-5 *5 (-1088))
- (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120)))
- (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2008 (-583 *3))) *3 #3#))
- (-5 *1 (-725 *6 *3)) (-4 *3 (-13 (-29 *6) (-1113) (-871)))))
+ (-12 (-5 *4 (-86)) (-5 *5 (-1089))
+ (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120)))
+ (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2010 (-584 *3))) *3 #3#))
+ (-5 *1 (-726 *6 *3)) (-4 *3 (-13 (-29 *6) (-1114) (-872)))))
((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-248 *2)) (-5 *4 (-86)) (-5 *5 (-583 *2))
- (-4 *2 (-13 (-29 *6) (-1113) (-871))) (-5 *1 (-725 *6 *2))
- (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120)))))
+ (|partial| -12 (-5 *3 (-248 *2)) (-5 *4 (-86)) (-5 *5 (-584 *2))
+ (-4 *2 (-13 (-29 *6) (-1114) (-872))) (-5 *1 (-726 *6 *2))
+ (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120)))))
((*1 *2 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-86)) (-5 *4 (-248 *2)) (-5 *5 (-583 *2))
- (-4 *2 (-13 (-29 *6) (-1113) (-871)))
- (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120)))
- (-5 *1 (-725 *6 *2))))
+ (|partial| -12 (-5 *3 (-86)) (-5 *4 (-248 *2)) (-5 *5 (-584 *2))
+ (-4 *2 (-13 (-29 *6) (-1114) (-872)))
+ (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120)))
+ (-5 *1 (-726 *6 *2))))
((*1 *2 *3 *4 *5)
(|partial| -12
(-5 *5
- (-1 (-3 (-2 (|:| |particular| *6) (|:| -2008 (-583 *6))) "failed") *7 *6))
- (-4 *6 (-311)) (-4 *7 (-600 *6))
- (-5 *2 (-2 (|:| |particular| (-1177 *6)) (|:| -2008 (-630 *6))))
- (-5 *1 (-733 *6 *7)) (-5 *3 (-630 *6)) (-5 *4 (-1177 *6))))
+ (-1 (-3 (-2 (|:| |particular| *6) (|:| -2010 (-584 *6))) "failed") *7 *6))
+ (-4 *6 (-311)) (-4 *7 (-601 *6))
+ (-5 *2 (-2 (|:| |particular| (-1178 *6)) (|:| -2010 (-631 *6))))
+ (-5 *1 (-734 *6 *7)) (-5 *3 (-631 *6)) (-5 *4 (-1178 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-857 (-347 (-483)))) (-5 *2 (-583 (-327))) (-5 *1 (-936))
+ (-12 (-5 *3 (-858 (-347 (-484)))) (-5 *2 (-584 (-327))) (-5 *1 (-937))
(-5 *4 (-327))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-857 (-483))) (-5 *2 (-583 (-327))) (-5 *1 (-936))
+ (-12 (-5 *3 (-858 (-484))) (-5 *2 (-584 (-327))) (-5 *1 (-937))
(-5 *4 (-327))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483)))))))
- (-5 *2 (-583 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1153 *4))))
+ (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484)))))))
+ (-5 *2 (-584 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120)))
- (-5 *2 (-583 (-248 (-264 *4)))) (-5 *1 (-1043 *4)) (-5 *3 (-264 *4))))
+ (-12 (-4 *4 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120)))
+ (-5 *2 (-584 (-248 (-264 *4)))) (-5 *1 (-1044 *4)) (-5 *3 (-264 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120)))
- (-5 *2 (-583 (-248 (-264 *4)))) (-5 *1 (-1043 *4))
+ (-12 (-4 *4 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120)))
+ (-5 *2 (-584 (-248 (-264 *4)))) (-5 *1 (-1044 *4))
(-5 *3 (-248 (-264 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120)))
- (-5 *2 (-583 (-248 (-264 *5)))) (-5 *1 (-1043 *5))
+ (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120)))
+ (-5 *2 (-584 (-248 (-264 *5)))) (-5 *1 (-1044 *5))
(-5 *3 (-248 (-264 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120)))
- (-5 *2 (-583 (-248 (-264 *5)))) (-5 *1 (-1043 *5)) (-5 *3 (-264 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-1088)))
- (-4 *5 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120)))
- (-5 *2 (-583 (-583 (-248 (-264 *5))))) (-5 *1 (-1043 *5))
- (-5 *3 (-583 (-248 (-264 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-347 (-857 *5)))) (-5 *4 (-583 (-1088))) (-4 *5 (-494))
- (-5 *2 (-583 (-583 (-248 (-347 (-857 *5)))))) (-5 *1 (-1097 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-1088))) (-4 *5 (-494))
- (-5 *2 (-583 (-583 (-248 (-347 (-857 *5)))))) (-5 *1 (-1097 *5))
- (-5 *3 (-583 (-248 (-347 (-857 *5)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-347 (-857 *4)))) (-4 *4 (-494))
- (-5 *2 (-583 (-583 (-248 (-347 (-857 *4)))))) (-5 *1 (-1097 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-5 *2 (-583 (-583 (-248 (-347 (-857 *4))))))
- (-5 *1 (-1097 *4)) (-5 *3 (-583 (-248 (-347 (-857 *4)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1088)) (-4 *5 (-494)) (-5 *2 (-583 (-248 (-347 (-857 *5)))))
- (-5 *1 (-1097 *5)) (-5 *3 (-347 (-857 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1088)) (-4 *5 (-494)) (-5 *2 (-583 (-248 (-347 (-857 *5)))))
- (-5 *1 (-1097 *5)) (-5 *3 (-248 (-347 (-857 *5))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-5 *2 (-583 (-248 (-347 (-857 *4))))) (-5 *1 (-1097 *4))
- (-5 *3 (-347 (-857 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-5 *2 (-583 (-248 (-347 (-857 *4))))) (-5 *1 (-1097 *4))
- (-5 *3 (-248 (-347 (-857 *4)))))))
-(((*1 *2 *1) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-785))))
- ((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-785))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-483))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1071))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-444))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-527))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-415))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-129))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1079))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-565))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1007))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1002))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-984))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-883))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-154))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-948))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-262))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-613))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-127))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1065))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-462))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1189))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-977))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-455))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-622))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-67))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1028))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-106))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-539))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-111))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-1188))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-617))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-172))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049)) (-5 *2 (-461))))
- ((*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-1093))))
- ((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-1093))))
- ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1093))))
- ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-1093)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1093))) (-5 *1 (-1093))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-583 (-1093))) (-5 *1 (-1093)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1093)))))
+ (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120)))
+ (-5 *2 (-584 (-248 (-264 *5)))) (-5 *1 (-1044 *5)) (-5 *3 (-264 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-584 (-1089)))
+ (-4 *5 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120)))
+ (-5 *2 (-584 (-584 (-248 (-264 *5))))) (-5 *1 (-1044 *5))
+ (-5 *3 (-584 (-248 (-264 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-584 (-347 (-858 *5)))) (-5 *4 (-584 (-1089))) (-4 *5 (-495))
+ (-5 *2 (-584 (-584 (-248 (-347 (-858 *5)))))) (-5 *1 (-1098 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-584 (-1089))) (-4 *5 (-495))
+ (-5 *2 (-584 (-584 (-248 (-347 (-858 *5)))))) (-5 *1 (-1098 *5))
+ (-5 *3 (-584 (-248 (-347 (-858 *5)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-584 (-347 (-858 *4)))) (-4 *4 (-495))
+ (-5 *2 (-584 (-584 (-248 (-347 (-858 *4)))))) (-5 *1 (-1098 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-495)) (-5 *2 (-584 (-584 (-248 (-347 (-858 *4))))))
+ (-5 *1 (-1098 *4)) (-5 *3 (-584 (-248 (-347 (-858 *4)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1089)) (-4 *5 (-495)) (-5 *2 (-584 (-248 (-347 (-858 *5)))))
+ (-5 *1 (-1098 *5)) (-5 *3 (-347 (-858 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1089)) (-4 *5 (-495)) (-5 *2 (-584 (-248 (-347 (-858 *5)))))
+ (-5 *1 (-1098 *5)) (-5 *3 (-248 (-347 (-858 *5))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-495)) (-5 *2 (-584 (-248 (-347 (-858 *4))))) (-5 *1 (-1098 *4))
+ (-5 *3 (-347 (-858 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-495)) (-5 *2 (-584 (-248 (-347 (-858 *4))))) (-5 *1 (-1098 *4))
+ (-5 *3 (-248 (-347 (-858 *4)))))))
+(((*1 *2 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-786))))
+ ((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-786))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-484))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1072))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-444))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-528))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-415))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-110))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-129))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1080))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-566))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1008))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1003))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-985))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-884))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-154))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-949))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-262))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-614))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-127))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1066))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-463))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1190))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-978))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-456))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-623))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-67))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1029))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-106))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-540))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-111))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-1189))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-618))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-172))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050)) (-5 *2 (-462))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1094))))
+ ((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-1094))))
+ ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1094))))
+ ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1094)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-1094))) (-5 *1 (-1094))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-584 (-1094))) (-5 *1 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1094)))))
(((*1 *2 *1) (|partial| -12 (-5 *2 (-444)) (-5 *1 (-234))))
((*1 *2 *1)
- (-12 (-5 *2 (-3 (-483) (-179) (-444) (-1071) (-1093))) (-5 *1 (-1093)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-234))) (-5 *1 (-234))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-1093))) (-5 *1 (-1093)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1093)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2851)) (-5 *2 (-85)) (-5 *1 (-556))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2236)) (-5 *2 (-85)) (-5 *1 (-556))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2850)) (-5 *2 (-85)) (-5 *1 (-556))))
+ (-12 (-5 *2 (-3 (-484) (-179) (-444) (-1072) (-1094))) (-5 *1 (-1094)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-584 (-234))) (-5 *1 (-234))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-1094))) (-5 *1 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1094)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2853)) (-5 *2 (-85)) (-5 *1 (-557))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2238)) (-5 *2 (-85)) (-5 *1 (-557))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2852)) (-5 *2 (-85)) (-5 *1 (-557))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -2361)) (-5 *2 (-85)) (-5 *1 (-632 *4))
- (-4 *4 (-552 (-772)))))
+ (-12 (-5 *3 (|[\|\|]| -2363)) (-5 *2 (-85)) (-5 *1 (-633 *4))
+ (-4 *4 (-553 (-773)))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-552 (-772))) (-5 *2 (-85))
- (-5 *1 (-632 *4))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1071))) (-5 *2 (-85)) (-5 *1 (-785))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-444))) (-5 *2 (-85)) (-5 *1 (-785))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-483))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1071))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-444))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-415))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1079))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-565))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1007))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1002))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-984))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-883))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-948))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-262))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-613))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1065))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-462))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-977))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-455))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-622))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1028))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-539))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-1188))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-617))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1049)) (-5 *3 (|[\|\|]| (-461))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1071))) (-5 *2 (-85)) (-5 *1 (-1093))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-444))) (-5 *2 (-85)) (-5 *1 (-1093))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1093))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-483))) (-5 *2 (-85)) (-5 *1 (-1093)))))
-(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-246))) ((*1 *1) (-5 *1 (-772)))
+ (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-553 (-773))) (-5 *2 (-85))
+ (-5 *1 (-633 *4))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-85)) (-5 *1 (-786))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-444))) (-5 *2 (-85)) (-5 *1 (-786))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-484))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-444))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-415))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1080))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-566))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1008))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1003))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-985))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-884))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-949))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-262))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-614))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1066))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-463))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1190))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-978))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-456))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-623))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1029))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-540))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1050)) (-5 *3 (|[\|\|]| (-462))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-85)) (-5 *1 (-1094))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-444))) (-5 *2 (-85)) (-5 *1 (-1094))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1094))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-484))) (-5 *2 (-85)) (-5 *1 (-1094)))))
+(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-246))) ((*1 *1) (-5 *1 (-773)))
((*1 *1)
- (-12 (-4 *2 (-389)) (-4 *3 (-756)) (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5))
- (-4 *5 (-861 *2 *4 *3))))
- ((*1 *1) (-5 *1 (-996)))
+ (-12 (-4 *2 (-389)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5))
+ (-4 *5 (-862 *2 *4 *3))))
+ ((*1 *1) (-5 *1 (-997)))
((*1 *1)
- (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34)))
- (-4 *3 (-13 (-1012) (-34)))))
- ((*1 *1) (-5 *1 (-1091))) ((*1 *1) (-5 *1 (-1092))))
-(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-376)) (-5 *3 (-1088)) (-5 *1 (-1091))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-376)) (-5 *3 (-1088)) (-5 *1 (-1091))))
+ (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34)))
+ (-4 *3 (-13 (-1013) (-34)))))
+ ((*1 *1) (-5 *1 (-1092))) ((*1 *1) (-5 *1 (-1093))))
+(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-376)) (-5 *3 (-1089)) (-5 *1 (-1092))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-376)) (-5 *3 (-1089)) (-5 *1 (-1092))))
((*1 *2 *3 *2 *4 *1)
- (-12 (-5 *2 (-376)) (-5 *3 (-583 (-1088))) (-5 *4 (-1088)) (-5 *1 (-1091))))
- ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-376)) (-5 *3 (-1088)) (-5 *1 (-1091))))
- ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-376)) (-5 *3 (-1088)) (-5 *1 (-1092))))
- ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-376)) (-5 *3 (-583 (-1088))) (-5 *1 (-1092)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1088)) (-5 *2 (-376)) (-5 *1 (-1092)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1088))) (-5 *1 (-1092)))))
+ (-12 (-5 *2 (-376)) (-5 *3 (-584 (-1089))) (-5 *4 (-1089)) (-5 *1 (-1092))))
+ ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-376)) (-5 *3 (-1089)) (-5 *1 (-1092))))
+ ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-376)) (-5 *3 (-1089)) (-5 *1 (-1093))))
+ ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-376)) (-5 *3 (-584 (-1089))) (-5 *1 (-1093)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-376)) (-5 *1 (-1093)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-1089))) (-5 *1 (-1093)))))
(((*1 *2 *3 *1)
(-12 (-5 *3 (-374))
(-5 *2
- (-583
- (-3 (|:| -3536 (-1088))
- (|:| -3220 (-583 (-3 (|:| S (-1088)) (|:| P (-857 (-483)))))))))
- (-5 *1 (-1092)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1088))) (-5 *1 (-1092)))))
+ (-584
+ (-3 (|:| -3538 (-1089))
+ (|:| -3222 (-584 (-3 (|:| S (-1089)) (|:| P (-858 (-484)))))))))
+ (-5 *1 (-1093)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-1089))) (-5 *1 (-1093)))))
(((*1 *2 *1)
(-12
(-5 *2
- (-583
- (-583
- (-3 (|:| -3536 (-1088))
- (|:| -3220 (-583 (-3 (|:| S (-1088)) (|:| P (-857 (-483))))))))))
- (-5 *1 (-1092)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1014)) (-5 *1 (-1092)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091))))
- ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1092)))))
+ (-584
+ (-584
+ (-3 (|:| -3538 (-1089))
+ (|:| -3222 (-584 (-3 (|:| S (-1089)) (|:| P (-858 (-484))))))))))
+ (-5 *1 (-1093)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-1093)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1093)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-583 (-2 (|:| -3854 (-1088)) (|:| |entry| (-376)))))
- (-5 *1 (-1092)))))
-(((*1 *1) (-5 *1 (-1091))))
-(((*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091))))
- ((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1091)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091)))))
-(((*1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-1091)))))
-(((*1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-1091)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-1088))) (-5 *2 (-1183)) (-5 *1 (-1091))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-1088))) (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091))))
+ (-12 (-5 *2 (-584 (-2 (|:| -3856 (-1089)) (|:| |entry| (-376)))))
+ (-5 *1 (-1093)))))
+(((*1 *1) (-5 *1 (-1092))))
+(((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092))))
+ ((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1092)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))))
+(((*1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1092)))))
+(((*1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-1092)))))
+(((*1 *2 *3) (-12 (-5 *3 (-584 (-1089))) (-5 *2 (-1184)) (-5 *1 (-1092))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-584 (-1089))) (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092))))
((*1 *2 *3 *4 *1)
- (-12 (-5 *4 (-583 (-1088))) (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091)))))
+ (-12 (-5 *4 (-584 (-1089))) (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-3 (|:| |fst| (-374)) (|:| -3904 #1="void"))) (-5 *2 (-1183))
- (-5 *1 (-1091))))
+ (-12 (-5 *3 (-3 (|:| |fst| (-374)) (|:| -3906 #1="void"))) (-5 *2 (-1184))
+ (-5 *1 (-1092))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1088)) (-5 *4 (-3 (|:| |fst| (-374)) (|:| -3904 #1#)))
- (-5 *2 (-1183)) (-5 *1 (-1091))))
+ (-12 (-5 *3 (-1089)) (-5 *4 (-3 (|:| |fst| (-374)) (|:| -3906 #1#)))
+ (-5 *2 (-1184)) (-5 *1 (-1092))))
((*1 *2 *3 *4 *1)
- (-12 (-5 *3 (-1088)) (-5 *4 (-3 (|:| |fst| (-374)) (|:| -3904 #1#)))
- (-5 *2 (-1183)) (-5 *1 (-1091)))))
-(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1091))))
- ((*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091))))
- ((*1 *2 *3 *1) (-12 (-5 *3 (-1088)) (-5 *2 (-1183)) (-5 *1 (-1091)))))
+ (-12 (-5 *3 (-1089)) (-5 *4 (-3 (|:| |fst| (-374)) (|:| -3906 #1#)))
+ (-5 *2 (-1184)) (-5 *1 (-1092)))))
+(((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1092))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092))))
+ ((*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-1184)) (-5 *1 (-1092)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1088)) (-5 *2 (-3 (|:| |fst| (-374)) (|:| -3904 "void")))
- (-5 *1 (-1091)))))
-(((*1 *2 *3 *1) (-12 (-5 *2 (-583 (-1088))) (-5 *1 (-1091)) (-5 *3 (-1088)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1088)) (-5 *2 (-1092)) (-5 *1 (-1091)))))
+ (-12 (-5 *3 (-1089)) (-5 *2 (-3 (|:| |fst| (-374)) (|:| -3906 "void")))
+ (-5 *1 (-1092)))))
+(((*1 *2 *3 *1) (-12 (-5 *2 (-584 (-1089))) (-5 *1 (-1092)) (-5 *3 (-1089)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1089)) (-5 *2 (-1093)) (-5 *1 (-1092)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *4)) (-4 *4 (-961)) (-5 *2 (-1177 *4)) (-5 *1 (-1089 *4))))
+ (-12 (-5 *3 (-584 *4)) (-4 *4 (-962)) (-5 *2 (-1178 *4)) (-5 *1 (-1090 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-830)) (-5 *2 (-1177 *3)) (-5 *1 (-1089 *3)) (-4 *3 (-961)))))
-(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1088)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-67))))
+ (-12 (-5 *4 (-831)) (-5 *2 (-1178 *3)) (-5 *1 (-1090 *3)) (-4 *3 (-962)))))
+(((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-1089)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-67))))
((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-78))))
- ((*1 *2 *1) (-12 (-4 *1 (-313 *2 *3)) (-4 *3 (-1012)) (-4 *2 (-1012))))
- ((*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-1071))))
- ((*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-377 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-4 *1 (-313 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-1013))))
+ ((*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-1072))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-377 *3)) (-14 *3 *2)))
((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-420))))
- ((*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-1012))))
- ((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-774))))
- ((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-876))))
- ((*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-987 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-1028)))) ((*1 *1 *1) (-5 *1 (-1088))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1088)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))
+ ((*1 *2 *1) (-12 (-4 *1 (-748 *2)) (-4 *2 (-1013))))
+ ((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-775))))
+ ((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-877))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-988 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-1029)))) ((*1 *1 *1) (-5 *1 (-1089))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1089)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))
((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| -2580 (-583 (-772))) (|:| -2479 (-583 (-772)))
- (|:| |presup| (-583 (-772))) (|:| -2578 (-583 (-772)))
- (|:| |args| (-583 (-772)))))
- (-5 *1 (-1088)))))
+ (-2 (|:| -2582 (-584 (-773))) (|:| -2481 (-584 (-773)))
+ (|:| |presup| (-584 (-773))) (|:| -2580 (-584 (-773)))
+ (|:| |args| (-584 (-773)))))
+ (-5 *1 (-1089)))))
(((*1 *1 *1 *2)
(-12
(-5 *2
- (-2 (|:| -2580 (-583 (-772))) (|:| -2479 (-583 (-772)))
- (|:| |presup| (-583 (-772))) (|:| -2578 (-583 (-772)))
- (|:| |args| (-583 (-772)))))
- (-5 *1 (-1088))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 (-772)))) (-5 *1 (-1088)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1088)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1088)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1088)))))
-(((*1 *1 *1) (-5 *1 (-772)))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1015 *2 *3 *4 *5 *6)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012))))
- ((*1 *1 *2) (-12 (-5 *2 (-444)) (-5 *1 (-1071))))
- ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1071))))
- ((*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-1071))))
- ((*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-1088)))))
-(((*1 *1 *2) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1127))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-1088))) (-5 *1 (-1088)))))
+ (-2 (|:| -2582 (-584 (-773))) (|:| -2481 (-584 (-773)))
+ (|:| |presup| (-584 (-773))) (|:| -2580 (-584 (-773)))
+ (|:| |args| (-584 (-773)))))
+ (-5 *1 (-1089))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-584 (-773)))) (-5 *1 (-1089)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1089)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1089)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1089)))))
+(((*1 *1 *1) (-5 *1 (-773)))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013))))
+ ((*1 *1 *2) (-12 (-5 *2 (-444)) (-5 *1 (-1072))))
+ ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1072))))
+ ((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-1072))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-1089)))))
+(((*1 *1 *2) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1128))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-1089))) (-5 *1 (-1089)))))
(((*1 *2 *1 *3 *3 *4)
- (-12 (-5 *3 (-1 (-772) (-772) (-772))) (-5 *4 (-483)) (-5 *2 (-772))
- (-5 *1 (-591 *5 *6 *7)) (-4 *5 (-1012)) (-4 *6 (-23)) (-14 *7 *6)))
+ (-12 (-5 *3 (-1 (-773) (-773) (-773))) (-5 *4 (-484)) (-5 *2 (-773))
+ (-5 *1 (-592 *5 *6 *7)) (-4 *5 (-1013)) (-4 *6 (-23)) (-14 *7 *6)))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-772)) (-5 *1 (-763 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-69 *3))
+ (-12 (-5 *2 (-773)) (-5 *1 (-764 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-69 *3))
(-14 *5 (-1 *3 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-772))))
- ((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-772))))
- ((*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-772))))
- ((*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1083 *3)) (-4 *3 (-961)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-773))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-773))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-773))))
+ ((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-1084 *3)) (-4 *3 (-962)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1000 *3)) (-4 *3 (-861 *7 *6 *4)) (-4 *6 (-717)) (-4 *4 (-756))
- (-4 *7 (-494)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-483))))
- (-5 *1 (-528 *6 *4 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-494))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-483)))) (-5 *1 (-528 *5 *4 *6 *3))
- (-4 *3 (-861 *6 *5 *4))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1 *1) (-5 *1 (-772)))
- ((*1 *1 *1) (-5 *1 (-772)))
+ (-12 (-5 *5 (-1001 *3)) (-4 *3 (-862 *7 *6 *4)) (-4 *6 (-718)) (-4 *4 (-757))
+ (-4 *7 (-495)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-484))))
+ (-5 *1 (-529 *6 *4 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-495))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-484)))) (-5 *1 (-529 *5 *4 *6 *3))
+ (-4 *3 (-862 *6 *5 *4))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773)))
+ ((*1 *1 *1) (-5 *1 (-773)))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-494) (-950 (-483)) (-580 (-483))))
- (-5 *1 (-1081 *4 *2)) (-4 *2 (-13 (-361 *4) (-133) (-27) (-1113)))))
+ (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-951 (-484)) (-581 (-484))))
+ (-5 *1 (-1082 *4 *2)) (-4 *2 (-13 (-361 *4) (-133) (-27) (-1114)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1003 *2)) (-4 *2 (-13 (-361 *4) (-133) (-27) (-1113)))
- (-4 *4 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *1 (-1081 *4 *2))))
+ (-12 (-5 *3 (-1004 *2)) (-4 *2 (-13 (-361 *4) (-133) (-27) (-1114)))
+ (-4 *4 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *1 (-1082 *4 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-494) (-950 (-483))))
- (-5 *2 (-347 (-857 *5))) (-5 *1 (-1082 *5)) (-5 *3 (-857 *5))))
+ (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-951 (-484))))
+ (-5 *2 (-347 (-858 *5))) (-5 *1 (-1083 *5)) (-5 *3 (-858 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-494) (-950 (-483))))
- (-5 *2 (-3 (-347 (-857 *5)) (-264 *5))) (-5 *1 (-1082 *5))
- (-5 *3 (-347 (-857 *5)))))
+ (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-951 (-484))))
+ (-5 *2 (-3 (-347 (-858 *5)) (-264 *5))) (-5 *1 (-1083 *5))
+ (-5 *3 (-347 (-858 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1003 (-857 *5))) (-5 *3 (-857 *5))
- (-4 *5 (-13 (-494) (-950 (-483)))) (-5 *2 (-347 *3)) (-5 *1 (-1082 *5))))
+ (-12 (-5 *4 (-1004 (-858 *5))) (-5 *3 (-858 *5))
+ (-4 *5 (-13 (-495) (-951 (-484)))) (-5 *2 (-347 *3)) (-5 *1 (-1083 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1003 (-347 (-857 *5)))) (-5 *3 (-347 (-857 *5)))
- (-4 *5 (-13 (-494) (-950 (-483)))) (-5 *2 (-3 *3 (-264 *5)))
- (-5 *1 (-1082 *5)))))
+ (-12 (-5 *4 (-1004 (-347 (-858 *5)))) (-5 *3 (-347 (-858 *5)))
+ (-4 *5 (-13 (-495) (-951 (-484)))) (-5 *2 (-3 *3 (-264 *5)))
+ (-5 *1 (-1083 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-800 *4)) (-4 *4 (-1012)) (-5 *2 (-1 (-85) *5))
- (-5 *1 (-801 *4 *5)) (-4 *5 (-1127))))
- ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1079)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-4 *1 (-124 *3))))
+ (-12 (-5 *3 (-801 *4)) (-4 *4 (-1013)) (-5 *2 (-1 (-85) *5))
+ (-5 *1 (-802 *4 *5)) (-4 *5 (-1128))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1080)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-4 *1 (-124 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 (-2 (|:| -2397 (-694)) (|:| -3767 *4) (|:| |num| *4))))
- (-4 *4 (-1153 *3)) (-4 *3 (-13 (-311) (-120))) (-5 *1 (-339 *3 *4))))
+ (-12 (-5 *2 (-584 (-2 (|:| -2399 (-695)) (|:| -3769 *4) (|:| |num| *4))))
+ (-4 *4 (-1154 *3)) (-4 *3 (-13 (-311) (-120))) (-5 *1 (-339 *3 *4))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-374)) (|:| -3904 #1="void")))
- (-5 *3 (-583 (-857 (-483)))) (-5 *4 (-85)) (-5 *1 (-376))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-374)) (|:| -3906 #1="void")))
+ (-5 *3 (-584 (-858 (-484)))) (-5 *4 (-85)) (-5 *1 (-376))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-374)) (|:| -3904 #1#))) (-5 *3 (-583 (-1088)))
+ (-12 (-5 *2 (-3 (|:| |fst| (-374)) (|:| -3906 #1#))) (-5 *3 (-584 (-1089)))
(-5 *4 (-85)) (-5 *1 (-376))))
- ((*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-535 *3)) (-4 *3 (-1127))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-574 *2)) (-4 *2 (-146))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-536 *3)) (-4 *3 (-1128))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-575 *2)) (-4 *2 (-146))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146))))
+ (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146))))
+ (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146))))
((*1 *1 *2 *2)
- (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146))))
+ (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-756)) (-4 *3 (-1012))
+ (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-757)) (-4 *3 (-1013))
(-14 *4
- (-1 (-85) (-2 (|:| -2396 *2) (|:| -2397 *3))
- (-2 (|:| -2396 *2) (|:| -2397 *3))))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-1027)) (-5 *1 (-749))))
- ((*1 *1 *2 *3) (-12 (-5 *1 (-782 *2 *3)) (-4 *2 (-1127)) (-4 *3 (-1127))))
+ (-1 (-85) (-2 (|:| -2398 *2) (|:| -2399 *3))
+ (-2 (|:| -2398 *2) (|:| -2399 *3))))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-1028)) (-5 *1 (-750))))
+ ((*1 *1 *2 *3) (-12 (-5 *1 (-783 *2 *3)) (-4 *2 (-1128)) (-4 *3 (-1128))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 (-2 (|:| -3854 (-1088)) (|:| |entry| *4)))) (-4 *4 (-1012))
- (-5 *1 (-798 *3 *4)) (-4 *3 (-1012))))
+ (-12 (-5 *2 (-584 (-2 (|:| -3856 (-1089)) (|:| |entry| *4)))) (-4 *4 (-1013))
+ (-5 *1 (-799 *3 *4)) (-4 *3 (-1013))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 *5)) (-4 *5 (-13 (-1012) (-34)))
- (-5 *2 (-583 (-1052 *3 *5))) (-5 *1 (-1052 *3 *5))
- (-4 *3 (-13 (-1012) (-34)))))
+ (-12 (-5 *4 (-584 *5)) (-4 *5 (-13 (-1013) (-34)))
+ (-5 *2 (-584 (-1053 *3 *5))) (-5 *1 (-1053 *3 *5))
+ (-4 *3 (-13 (-1013) (-34)))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-2 (|:| |val| *4) (|:| -1597 *5))))
- (-4 *4 (-13 (-1012) (-34))) (-4 *5 (-13 (-1012) (-34)))
- (-5 *2 (-583 (-1052 *4 *5))) (-5 *1 (-1052 *4 *5))))
+ (-12 (-5 *3 (-584 (-2 (|:| |val| *4) (|:| -1598 *5))))
+ (-4 *4 (-13 (-1013) (-34))) (-4 *5 (-13 (-1013) (-34)))
+ (-5 *2 (-584 (-1053 *4 *5))) (-5 *1 (-1053 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1597 *4))) (-4 *3 (-13 (-1012) (-34)))
- (-4 *4 (-13 (-1012) (-34))) (-5 *1 (-1052 *3 *4))))
+ (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1598 *4))) (-4 *3 (-13 (-1013) (-34)))
+ (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1053 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34)))
- (-4 *3 (-13 (-1012) (-34)))))
+ (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34)))
+ (-4 *3 (-13 (-1013) (-34)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-85)) (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34)))
- (-4 *3 (-13 (-1012) (-34)))))
+ (-12 (-5 *4 (-85)) (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34)))
+ (-4 *3 (-13 (-1013) (-34)))))
((*1 *1 *2 *3 *2 *4)
- (-12 (-5 *4 (-583 *3)) (-4 *3 (-13 (-1012) (-34))) (-5 *1 (-1053 *2 *3))
- (-4 *2 (-13 (-1012) (-34)))))
+ (-12 (-5 *4 (-584 *3)) (-4 *3 (-13 (-1013) (-34))) (-5 *1 (-1054 *2 *3))
+ (-4 *2 (-13 (-1013) (-34)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-1052 *2 *3))) (-4 *2 (-13 (-1012) (-34)))
- (-4 *3 (-13 (-1012) (-34))) (-5 *1 (-1053 *2 *3))))
+ (-12 (-5 *4 (-584 (-1053 *2 *3))) (-4 *2 (-13 (-1013) (-34)))
+ (-4 *3 (-13 (-1013) (-34))) (-5 *1 (-1054 *2 *3))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-1053 *2 *3))) (-5 *1 (-1053 *2 *3))
- (-4 *2 (-13 (-1012) (-34))) (-4 *3 (-13 (-1012) (-34)))))
+ (-12 (-5 *4 (-584 (-1054 *2 *3))) (-5 *1 (-1054 *2 *3))
+ (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34)))))
((*1 *1 *2)
- (-12 (-5 *2 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34)))
- (-4 *4 (-13 (-1012) (-34))) (-5 *1 (-1053 *3 *4))))
- ((*1 *1 *2 *3) (-12 (-5 *1 (-1078 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-110))))
- ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-129))))
- ((*1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1127))))
- ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-415))))
- ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-527))))
- ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-565))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1012)) (-4 *2 (-13 (-361 *4) (-796 *3) (-553 (-800 *3))))
- (-5 *1 (-986 *3 *4 *2)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3))))))
- ((*1 *2 *1) (-12 (-4 *2 (-1012)) (-5 *1 (-1078 *2 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-110))))
- ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-129))))
- ((*1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1127))))
- ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-415))))
- ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-527))))
- ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-565))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1012)) (-4 *2 (-13 (-361 *4) (-796 *3) (-553 (-800 *3))))
- (-5 *1 (-986 *3 *4 *2)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3))))))
- ((*1 *2 *1) (-12 (-4 *2 (-1012)) (-5 *1 (-1078 *3 *2)) (-4 *3 (-1012)))))
-(((*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1127)) (-5 *2 (-85))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))))
+ (-12 (-5 *2 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34)))
+ (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4))))
+ ((*1 *1 *2 *3) (-12 (-5 *1 (-1079 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-110))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-129))))
+ ((*1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1128))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-415))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-528))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-566))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1013)) (-4 *2 (-13 (-361 *4) (-797 *3) (-554 (-801 *3))))
+ (-5 *1 (-987 *3 *4 *2)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3))))))
+ ((*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-1079 *2 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-110))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-129))))
+ ((*1 *2 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1128))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-415))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-528))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-566))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1013)) (-4 *2 (-13 (-361 *4) (-797 *3) (-554 (-801 *3))))
+ (-5 *1 (-987 *3 *4 *2)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3))))))
+ ((*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-1079 *3 *2)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1128)) (-5 *2 (-85))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-85)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-85)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-85)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-694)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1127)) (-5 *2 (-583 *1)) (-4 *1 (-923 *3))))
+ (-12 (-5 *2 (-695)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1128)) (-5 *2 (-584 *1)) (-4 *1 (-924 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-583 (-1077 *3 *4))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830))
- (-4 *4 (-961)))))
+ (-12 (-5 *2 (-584 (-1078 *3 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831))
+ (-4 *4 (-962)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-694)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-1127)) (-4 *2 (-756))))
+ (-12 (-5 *2 (-695)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-1128)) (-4 *2 (-757))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-321 *3)) (-4 *3 (-1127))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-961))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1046 *3)) (-4 *3 (-961))))
+ (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-321 *3)) (-4 *3 (-1128))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-962))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-1047 *3)) (-4 *3 (-962))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 (-1077 *3 *4))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830))
- (-4 *4 (-961))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))))
+ (-12 (-5 *2 (-584 (-1078 *3 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831))
+ (-4 *4 (-962))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *2 (-694)) (-5 *1 (-1077 *4 *5))
- (-14 *4 (-830))))
+ (-12 (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *2 (-695)) (-5 *1 (-1078 *4 *5))
+ (-14 *4 (-831))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-694))) (-5 *3 (-694)) (-5 *1 (-1077 *4 *5))
- (-14 *4 (-830)) (-4 *5 (-961))))
+ (-12 (-5 *2 (-584 (-695))) (-5 *3 (-695)) (-5 *1 (-1078 *4 *5))
+ (-14 *4 (-831)) (-4 *5 (-962))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-694))) (-5 *3 (-854 *5)) (-4 *5 (-961))
- (-5 *1 (-1077 *4 *5)) (-14 *4 (-830)))))
+ (-12 (-5 *2 (-584 (-695))) (-5 *3 (-855 *5)) (-4 *5 (-962))
+ (-5 *1 (-1078 *4 *5)) (-14 *4 (-831)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-854 *4)) (-4 *4 (-961)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)))))
+ (-12 (-5 *2 (-855 *4)) (-4 *4 (-962)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)))))
(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-854 *5)) (-5 *3 (-694)) (-4 *5 (-961)) (-5 *1 (-1077 *4 *5))
- (-14 *4 (-830)))))
+ (-12 (-5 *2 (-855 *5)) (-5 *3 (-695)) (-4 *5 (-962)) (-5 *1 (-1078 *4 *5))
+ (-14 *4 (-831)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-694)) (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *1 (-1077 *4 *5))
- (-14 *4 (-830))))
+ (-12 (-5 *2 (-695)) (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *1 (-1078 *4 *5))
+ (-14 *4 (-831))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-694))) (-5 *3 (-694)) (-5 *1 (-1077 *4 *5))
- (-14 *4 (-830)) (-4 *5 (-961))))
+ (-12 (-5 *2 (-584 (-695))) (-5 *3 (-695)) (-5 *1 (-1078 *4 *5))
+ (-14 *4 (-831)) (-4 *5 (-962))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-694))) (-5 *3 (-854 *5)) (-4 *5 (-961))
- (-5 *1 (-1077 *4 *5)) (-14 *4 (-830)))))
+ (-12 (-5 *2 (-584 (-695))) (-5 *3 (-855 *5)) (-4 *5 (-962))
+ (-5 *1 (-1078 *4 *5)) (-14 *4 (-831)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-694))) (-5 *3 (-85)) (-5 *1 (-1077 *4 *5))
- (-14 *4 (-830)) (-4 *5 (-961)))))
+ (-12 (-5 *2 (-584 (-695))) (-5 *3 (-85)) (-5 *1 (-1078 *4 *5))
+ (-14 *4 (-831)) (-4 *5 (-962)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-694))) (-5 *3 (-145)) (-5 *1 (-1077 *4 *5))
- (-14 *4 (-830)) (-4 *5 (-961)))))
+ (-12 (-5 *2 (-584 (-695))) (-5 *3 (-145)) (-5 *1 (-1078 *4 *5))
+ (-14 *4 (-831)) (-4 *5 (-962)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830))
- (-4 *4 (-961)))))
+ (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831))
+ (-4 *4 (-962)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-854 *4)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))))
+ (-12 (-5 *2 (-855 *4)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-694)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))))
+ (-12 (-5 *2 (-695)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-145)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))))
-(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-262))))
+ (-12 (-5 *2 (-145)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))))
+(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-262))))
((*1 *2 *1)
- (-12 (-5 *2 (-694)) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1077 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))))
+ (-12 (-5 *2 (-695)) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1078 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-854 *4))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-830))
- (-4 *4 (-961)))))
+ (-12 (-5 *2 (-584 (-855 *4))) (-5 *1 (-1078 *3 *4)) (-14 *3 (-831))
+ (-4 *4 (-962)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-276 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *2 (-389))))
+ (-12 (-4 *1 (-276 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-389))))
((*1 *1 *1)
- (-12 (-4 *1 (-290 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-1153 *2))
- (-4 *4 (-1153 (-347 *3)))))
- ((*1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-389))))
+ (-12 (-4 *1 (-290 *2 *3 *4)) (-4 *2 (-1133)) (-4 *3 (-1154 *2))
+ (-4 *4 (-1154 (-347 *3)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-389))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))
+ (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))
(-4 *3 (-389))))
((*1 *1 *1)
- (-12 (-4 *1 (-861 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
+ (-12 (-4 *1 (-862 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
(-4 *2 (-389))))
((*1 *2 *2 *3)
- (-12 (-4 *3 (-257)) (-4 *3 (-494)) (-5 *1 (-1076 *3 *2)) (-4 *2 (-1153 *3)))))
+ (-12 (-4 *3 (-257)) (-4 *3 (-495)) (-5 *1 (-1077 *3 *2)) (-4 *2 (-1154 *3)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-494)) (-5 *2 (-869 *3)) (-5 *1 (-1076 *4 *3))
- (-4 *3 (-1153 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-870 *3)) (-5 *1 (-1077 *4 *3))
+ (-4 *3 (-1154 *4)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1141 *3 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1142 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1141 *3 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1142 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1141 *3 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1142 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1141 *3 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1142 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1141 *3 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1142 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1141 *3 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1142 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1141 *3 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1142 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4))))
((*1 *1 *1) (-4 *1 (-430)))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1141 *3 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1142 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4))))
((*1 *1 *1) (-4 *1 (-430)))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1141 *3 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1142 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4))))
((*1 *1 *1) (-4 *1 (-430)))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1141 *3 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1142 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4))))
((*1 *1 *1) (-4 *1 (-430)))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1141 *3 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1142 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4))))
((*1 *1 *1) (-4 *1 (-430)))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1141 *3 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1142 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4))))
((*1 *1 *1) (-4 *1 (-430)))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))))
(((*1 *1 *1) (-4 *1 (-66)))
((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1141 *3 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1142 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))))
(((*1 *1 *1) (-4 *1 (-66)))
((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1141 *3 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1142 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))))
(((*1 *1 *1) (-4 *1 (-66)))
((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1141 *3 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1142 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))))
(((*1 *1 *1) (-4 *1 (-66))) ((*1 *1 *1 *1) (-5 *1 (-179)))
((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1141 *3 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1142 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4))))
((*1 *1 *1 *1) (-5 *1 (-327)))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))))
(((*1 *1 *1) (-4 *1 (-66)))
((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1141 *3 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1142 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))))
(((*1 *1 *1) (-4 *1 (-66)))
((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1170 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1141 *3 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1171 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1142 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *4 (-1139 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1162 *3 *4)) (-4 *5 (-896 *4))))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *4 (-1140 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1163 *3 *4)) (-4 *5 (-897 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1074 *3))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1075 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-38 (-347 (-483)))) (-5 *1 (-1075 *3)))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-38 (-347 (-484)))) (-5 *1 (-1076 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-347 (-483))))
- (-5 *2 (-2 (|:| -3484 (-1067 *4)) (|:| -3485 (-1067 *4))))
- (-5 *1 (-1074 *4)) (-5 *3 (-1067 *4)))))
+ (-12 (-4 *4 (-38 (-347 (-484))))
+ (-5 *2 (-2 (|:| -3486 (-1068 *4)) (|:| -3487 (-1068 *4))))
+ (-5 *1 (-1075 *4)) (-5 *3 (-1068 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-347 (-483))))
- (-5 *2 (-2 (|:| -3632 (-1067 *4)) (|:| -3628 (-1067 *4))))
- (-5 *1 (-1074 *4)) (-5 *3 (-1067 *4)))))
+ (-12 (-4 *4 (-38 (-347 (-484))))
+ (-5 *2 (-2 (|:| -3634 (-1068 *4)) (|:| -3630 (-1068 *4))))
+ (-5 *1 (-1075 *4)) (-5 *3 (-1068 *4)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-311)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-311)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *4 (-483))) (-5 *5 (-1 (-1067 *4))) (-4 *4 (-311))
- (-4 *4 (-961)) (-5 *2 (-1067 *4)) (-5 *1 (-1073 *4)))))
+ (-12 (-5 *3 (-1 *4 (-484))) (-5 *5 (-1 (-1068 *4))) (-4 *4 (-311))
+ (-4 *4 (-962)) (-5 *2 (-1068 *4)) (-5 *1 (-1074 *4)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-311)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-311)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1067 *4)) (-4 *4 (-38 *3)) (-4 *4 (-961)) (-5 *3 (-347 (-483)))
- (-5 *1 (-1073 *4)))))
+ (-12 (-5 *2 (-1068 *4)) (-4 *4 (-38 *3)) (-4 *4 (-962)) (-5 *3 (-347 (-484)))
+ (-5 *1 (-1074 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1067 (-1067 *4))) (-5 *2 (-1067 *4)) (-5 *1 (-1073 *4))
- (-4 *4 (-38 (-347 (-483)))) (-4 *4 (-961)))))
+ (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1074 *4))
+ (-4 *4 (-38 (-347 (-484)))) (-4 *4 (-962)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-1067 *3))) (-5 *2 (-1067 *3)) (-5 *1 (-1073 *3))
- (-4 *3 (-38 (-347 (-483)))) (-4 *3 (-961)))))
+ (-12 (-5 *4 (-1 (-1068 *3))) (-5 *2 (-1068 *3)) (-5 *1 (-1074 *3))
+ (-4 *3 (-38 (-347 (-484)))) (-4 *3 (-962)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1067 (-1067 *4))) (-5 *2 (-1067 *4)) (-5 *1 (-1073 *4))
- (-4 *4 (-961)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-804 *2 *3)) (-4 *2 (-1153 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))))
+ (-12 (-5 *3 (-1068 (-1068 *4))) (-5 *2 (-1068 *4)) (-5 *1 (-1074 *4))
+ (-4 *4 (-962)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-805 *2 *3)) (-4 *2 (-1154 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1067 *4)) (-5 *3 (-1 *4 (-483))) (-4 *4 (-961))
- (-5 *1 (-1073 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))))
+ (-12 (-5 *2 (-1068 *4)) (-5 *3 (-1 *4 (-484))) (-4 *4 (-962))
+ (-5 *1 (-1074 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120)))
- (-5 *1 (-726 *4 *2)) (-4 *2 (-13 (-29 *4) (-1113) (-871)))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1 *1) (-5 *1 (-772)))
- ((*1 *1 *1) (-5 *1 (-772)))
- ((*1 *2 *3) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-1073 *3)) (-4 *3 (-961)))))
+ (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120)))
+ (-5 *1 (-727 *4 *2)) (-4 *2 (-13 (-29 *4) (-1114) (-872)))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773)))
+ ((*1 *1 *1) (-5 *1 (-773)))
+ ((*1 *2 *3) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-962)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1067 (-483))) (-5 *1 (-1073 *4)) (-4 *4 (-961))
- (-5 *3 (-483)))))
+ (-12 (-5 *2 (-1068 (-484))) (-5 *1 (-1074 *4)) (-4 *4 (-962))
+ (-5 *3 (-484)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1067 (-483))) (-5 *1 (-1073 *4)) (-4 *4 (-961))
- (-5 *3 (-483)))))
+ (-12 (-5 *2 (-1068 (-484))) (-5 *1 (-1074 *4)) (-4 *4 (-962))
+ (-5 *3 (-484)))))
(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-830)) (-4 *3 (-311))
- (-14 *4 (-906 *2 *3))))
+ (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-831)) (-4 *3 (-311))
+ (-14 *4 (-907 *2 *3))))
((*1 *1 *1)
(|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1153 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-4 *3 (-1154 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-146)) (-4 *2 (-494))))
+ ((*1 *1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-146)) (-4 *2 (-495))))
((*1 *1 *1)
- (|partial| -12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
+ (|partial| -12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-311))))
- ((*1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-311))))
- ((*1 *1 *1) (|partial| -4 *1 (-659))) ((*1 *1 *1) (|partial| -4 *1 (-663)))
+ ((*1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-311))))
+ ((*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-311))))
+ ((*1 *1 *1) (|partial| -4 *1 (-660))) ((*1 *1 *1) (|partial| -4 *1 (-664)))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-699 *5 *6 *7 *3 *4))
- (-4 *4 (-982 *5 *6 *7 *3))))
+ (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-700 *5 *6 *7 *3 *4))
+ (-4 *4 (-983 *5 *6 *7 *3))))
((*1 *2 *2 *1)
- (|partial| -12 (-4 *1 (-979 *3 *2)) (-4 *3 (-13 (-755) (-311)))
- (-4 *2 (-1153 *3))))
+ (|partial| -12 (-4 *1 (-980 *3 *2)) (-4 *3 (-13 (-756) (-311)))
+ (-4 *2 (-1154 *3))))
((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))))
+ (|partial| -12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))))
(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-494))))
+ (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-495))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-276 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716))
- (-4 *2 (-494))))
- ((*1 *1 *1 *1) (|partial| -4 *1 (-494)))
+ (|partial| -12 (-4 *1 (-276 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717))
+ (-4 *2 (-495))))
+ ((*1 *1 *1 *1) (|partial| -4 *1 (-495)))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2))
- (-4 *4 (-321 *2)) (-4 *2 (-494))))
- ((*1 *1 *1 *1) (|partial| -5 *1 (-694)))
+ (|partial| -12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2))
+ (-4 *4 (-321 *2)) (-4 *2 (-495))))
+ ((*1 *1 *1 *1) (|partial| -5 *1 (-695)))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-494))))
- ((*1 *1 *1 *1) (-5 *1 (-772)))
+ (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-495))))
+ ((*1 *1 *1 *1) (-5 *1 (-773)))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1177 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-494))
- (-5 *1 (-882 *3 *4))))
+ (-12 (-5 *2 (-1178 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-495))
+ (-5 *1 (-883 *3 *4))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-965 *3 *4 *2 *5 *6)) (-4 *2 (-961))
- (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-494))))
+ (|partial| -12 (-4 *1 (-966 *3 *4 *2 *5 *6)) (-4 *2 (-962))
+ (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-495))))
((*1 *2 *2 *2)
- (|partial| -12 (-5 *2 (-1067 *3)) (-4 *3 (-961)) (-5 *1 (-1073 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-5 *1 (-1067 *3)))))
+ (|partial| -12 (-5 *2 (-1068 *3)) (-4 *3 (-962)) (-5 *1 (-1074 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-583 *4)) (-4 *4 (-1012)) (-4 *4 (-1127)) (-5 *2 (-85))
- (-5 *1 (-1067 *4)))))
+ (-12 (-5 *3 (-584 *4)) (-4 *4 (-1013)) (-4 *4 (-1128)) (-5 *2 (-85))
+ (-5 *1 (-1068 *4)))))
(((*1 *2 *3 *1)
(-12
- (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2591 (-694)) (|:| |period| (-694))))
- (-5 *1 (-1067 *4)) (-4 *4 (-1127)) (-5 *3 (-694)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 (-1067 *3))) (-5 *1 (-1067 *3)) (-4 *3 (-1127)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1127))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-1067 *2)) (-4 *2 (-1127)))))
-(((*1 *1) (-5 *1 (-513)))
- ((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-768))))
- ((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1183)) (-5 *1 (-768))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1071)) (-5 *4 (-772)) (-5 *2 (-1183)) (-5 *1 (-768))))
+ (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2593 (-695)) (|:| |period| (-695))))
+ (-5 *1 (-1068 *4)) (-4 *4 (-1128)) (-5 *3 (-695)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-1068 *3))) (-5 *1 (-1068 *3)) (-4 *3 (-1128)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-1068 *2)) (-4 *2 (-1128)))))
+(((*1 *1) (-5 *1 (-514)))
+ ((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-769))))
+ ((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1184)) (-5 *1 (-769))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1072)) (-5 *4 (-773)) (-5 *2 (-1184)) (-5 *1 (-769))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-483)) (-5 *2 (-1183)) (-5 *1 (-1067 *4)) (-4 *4 (-1012))
- (-4 *4 (-1127)))))
+ (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-1068 *4)) (-4 *4 (-1013))
+ (-4 *4 (-1128)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-772)) (-5 *1 (-1067 *3)) (-4 *3 (-1012)) (-4 *3 (-1127)))))
+ (-12 (-5 *2 (-773)) (-5 *1 (-1068 *3)) (-4 *3 (-1013)) (-4 *3 (-1128)))))
(((*1 *2)
- (-12 (-5 *2 (-85)) (-5 *1 (-1067 *3)) (-4 *3 (-1012)) (-4 *3 (-1127)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-1068 *3)) (-4 *3 (-1013)) (-4 *3 (-1128)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-694)) (-5 *2 (-1177 (-583 (-483)))) (-5 *1 (-417))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-535 *3))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-1067 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1127)) (-5 *1 (-1067 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1127)) (-5 *1 (-535 *3))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1127)) (-5 *1 (-1067 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1127)) (-5 *1 (-535 *3))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1127)) (-5 *1 (-1067 *3)))))
+ (-12 (-5 *3 (-695)) (-5 *2 (-1178 (-584 (-484)))) (-5 *1 (-417))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-536 *3))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1128)) (-5 *1 (-1068 *3)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-483)) (-4 *4 (-13 (-494) (-120))) (-5 *1 (-474 *4 *2))
- (-4 *2 (-1170 *4))))
+ (-12 (-5 *3 (-484)) (-4 *4 (-13 (-495) (-120))) (-5 *1 (-475 *4 *2))
+ (-4 *2 (-1171 *4))))
((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-483)) (-4 *4 (-13 (-311) (-317) (-553 *3))) (-4 *5 (-1153 *4))
- (-4 *6 (-661 *4 *5)) (-5 *1 (-478 *4 *5 *6 *2)) (-4 *2 (-1170 *6))))
+ (-12 (-5 *3 (-484)) (-4 *4 (-13 (-311) (-317) (-554 *3))) (-4 *5 (-1154 *4))
+ (-4 *6 (-662 *4 *5)) (-5 *1 (-479 *4 *5 *6 *2)) (-4 *2 (-1171 *6))))
((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-483)) (-4 *4 (-13 (-311) (-317) (-553 *3)))
- (-5 *1 (-479 *4 *2)) (-4 *2 (-1170 *4))))
+ (-12 (-5 *3 (-484)) (-4 *4 (-13 (-311) (-317) (-554 *3)))
+ (-5 *1 (-480 *4 *2)) (-4 *2 (-1171 *4))))
((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1067 *4)) (-5 *3 (-483)) (-4 *4 (-13 (-494) (-120)))
- (-5 *1 (-1066 *4)))))
+ (-12 (-5 *2 (-1068 *4)) (-5 *3 (-484)) (-4 *4 (-13 (-495) (-120)))
+ (-5 *1 (-1067 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-494) (-120))) (-5 *1 (-474 *3 *2)) (-4 *2 (-1170 *3))))
+ (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1171 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-311) (-317) (-553 (-483)))) (-4 *4 (-1153 *3))
- (-4 *5 (-661 *3 *4)) (-5 *1 (-478 *3 *4 *5 *2)) (-4 *2 (-1170 *5))))
+ (-12 (-4 *3 (-13 (-311) (-317) (-554 (-484)))) (-4 *4 (-1154 *3))
+ (-4 *5 (-662 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1171 *5))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-311) (-317) (-553 (-483)))) (-5 *1 (-479 *3 *2))
- (-4 *2 (-1170 *3))))
+ (-12 (-4 *3 (-13 (-311) (-317) (-554 (-484)))) (-5 *1 (-480 *3 *2))
+ (-4 *2 (-1171 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-13 (-494) (-120))) (-5 *1 (-1066 *3)))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1067 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-494) (-120))) (-5 *1 (-474 *3 *2)) (-4 *2 (-1170 *3))))
+ (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1171 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-311) (-317) (-553 (-483)))) (-4 *4 (-1153 *3))
- (-4 *5 (-661 *3 *4)) (-5 *1 (-478 *3 *4 *5 *2)) (-4 *2 (-1170 *5))))
+ (-12 (-4 *3 (-13 (-311) (-317) (-554 (-484)))) (-4 *4 (-1154 *3))
+ (-4 *5 (-662 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1171 *5))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-311) (-317) (-553 (-483)))) (-5 *1 (-479 *3 *2))
- (-4 *2 (-1170 *3))))
+ (-12 (-4 *3 (-13 (-311) (-317) (-554 (-484)))) (-5 *1 (-480 *3 *2))
+ (-4 *2 (-1171 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-13 (-494) (-120))) (-5 *1 (-1066 *3)))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1067 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-494) (-120))) (-5 *1 (-474 *3 *2)) (-4 *2 (-1170 *3))))
+ (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1171 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-311) (-317) (-553 (-483)))) (-4 *4 (-1153 *3))
- (-4 *5 (-661 *3 *4)) (-5 *1 (-478 *3 *4 *5 *2)) (-4 *2 (-1170 *5))))
+ (-12 (-4 *3 (-13 (-311) (-317) (-554 (-484)))) (-4 *4 (-1154 *3))
+ (-4 *5 (-662 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1171 *5))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-311) (-317) (-553 (-483)))) (-5 *1 (-479 *3 *2))
- (-4 *2 (-1170 *3))))
+ (-12 (-4 *3 (-13 (-311) (-317) (-554 (-484)))) (-5 *1 (-480 *3 *2))
+ (-4 *2 (-1171 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1067 *3)) (-4 *3 (-13 (-494) (-120))) (-5 *1 (-1066 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-462))))
- ((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-1065)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1065)))))
-(((*1 *2 *1) (-12 (-5 *2 (-632 (-1047))) (-5 *1 (-1065)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-1065)))))
+ (-12 (-5 *2 (-1068 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1067 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-463))))
+ ((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-1066)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1066)))))
+(((*1 *2 *1) (-12 (-5 *2 (-633 (-1048))) (-5 *1 (-1066)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-1066)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))
- ((*1 *1) (-4 *1 (-1064))))
-(((*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-1064)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1062 *3)) (-4 *3 (-1127)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1062 *3)) (-4 *3 (-1127)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))
+ ((*1 *1) (-4 *1 (-1065))))
+(((*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-1065)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-694)) (-4 *1 (-1062 *4)) (-4 *4 (-1127)) (-5 *2 (-85)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-5 *1 (-1060 *3)))))
+ (-12 (-5 *3 (-695)) (-4 *1 (-1063 *4)) (-4 *4 (-1128)) (-5 *2 (-85)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-5 *1 (-1061 *3)))))
(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756))
- (-5 *2 (-583 (-940 *5 *6 *7 *3))) (-5 *1 (-940 *5 *6 *7 *3))
- (-4 *3 (-976 *5 *6 *7))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757))
+ (-5 *2 (-584 (-941 *5 *6 *7 *3))) (-5 *1 (-941 *5 *6 *7 *3))
+ (-4 *3 (-977 *5 *6 *7))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-583 *6)) (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-389))
- (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5))))
+ (-12 (-5 *2 (-584 *6)) (-4 *1 (-983 *3 *4 *5 *6)) (-4 *3 (-389))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-982 *3 *4 *5 *2)) (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *2 (-976 *3 *4 *5))))
+ (-12 (-4 *1 (-983 *3 *4 *5 *2)) (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *2 (-977 *3 *4 *5))))
((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756))
- (-5 *2 (-583 (-1058 *5 *6 *7 *3))) (-5 *1 (-1058 *5 *6 *7 *3))
- (-4 *3 (-976 *5 *6 *7)))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757))
+ (-5 *2 (-584 (-1059 *5 *6 *7 *3))) (-5 *1 (-1059 *5 *6 *7 *3))
+ (-4 *3 (-977 *5 *6 *7)))))
(((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-389))
- (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8)))
- (-5 *1 (-940 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-389))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8)))
+ (-5 *1 (-941 *5 *6 *7 *8))))
((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-389))
- (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1058 *5 *6 *7 *8)))
- (-5 *1 (-1058 *5 *6 *7 *8)))))
+ (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-389))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1059 *5 *6 *7 *8)))
+ (-5 *1 (-1059 *5 *6 *7 *8)))))
(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756))
- (-4 *8 (-976 *5 *6 *7))
- (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-940 *5 *6 *7 *8)))))
- (-5 *1 (-940 *5 *6 *7 *8)) (-5 *3 (-583 *8))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757))
+ (-4 *8 (-977 *5 *6 *7))
+ (-5 *2 (-2 (|:| |val| (-584 *8)) (|:| |towers| (-584 (-941 *5 *6 *7 *8)))))
+ (-5 *1 (-941 *5 *6 *7 *8)) (-5 *3 (-584 *8))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756))
- (-4 *8 (-976 *5 *6 *7))
- (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-1058 *5 *6 *7 *8)))))
- (-5 *1 (-1058 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1597 *9)))) (-5 *4 (-694))
- (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-389))
- (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-1183))
- (-5 *1 (-980 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1597 *9)))) (-5 *4 (-694))
- (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-1019 *5 *6 *7 *8)) (-4 *5 (-389))
- (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-1183))
- (-5 *1 (-1057 *5 *6 *7 *8 *9)))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757))
+ (-4 *8 (-977 *5 *6 *7))
+ (-5 *2 (-2 (|:| |val| (-584 *8)) (|:| |towers| (-584 (-1059 *5 *6 *7 *8)))))
+ (-5 *1 (-1059 *5 *6 *7 *8)) (-5 *3 (-584 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1598 *9)))) (-5 *4 (-695))
+ (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-389))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-1184))
+ (-5 *1 (-981 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1598 *9)))) (-5 *4 (-695))
+ (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-389))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-1184))
+ (-5 *1 (-1058 *5 *6 *7 *8 *9)))))
(((*1 *2 *3 *4 *2 *5 *6)
(-12
(-5 *5
- (-2 (|:| |done| (-583 *11))
- (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -1597 *11))))))
- (-5 *6 (-694)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -1597 *11))))
- (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-976 *7 *8 *9))
- (-4 *11 (-982 *7 *8 *9 *10)) (-4 *7 (-389)) (-4 *8 (-717)) (-4 *9 (-756))
- (-5 *1 (-980 *7 *8 *9 *10 *11))))
+ (-2 (|:| |done| (-584 *11))
+ (|:| |todo| (-584 (-2 (|:| |val| *3) (|:| -1598 *11))))))
+ (-5 *6 (-695)) (-5 *2 (-584 (-2 (|:| |val| (-584 *10)) (|:| -1598 *11))))
+ (-5 *3 (-584 *10)) (-5 *4 (-584 *11)) (-4 *10 (-977 *7 *8 *9))
+ (-4 *11 (-983 *7 *8 *9 *10)) (-4 *7 (-389)) (-4 *8 (-718)) (-4 *9 (-757))
+ (-5 *1 (-981 *7 *8 *9 *10 *11))))
((*1 *2 *3 *4 *2 *5 *6)
(-12
(-5 *5
- (-2 (|:| |done| (-583 *11))
- (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -1597 *11))))))
- (-5 *6 (-694)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -1597 *11))))
- (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-976 *7 *8 *9))
- (-4 *11 (-1019 *7 *8 *9 *10)) (-4 *7 (-389)) (-4 *8 (-717)) (-4 *9 (-756))
- (-5 *1 (-1057 *7 *8 *9 *10 *11)))))
+ (-2 (|:| |done| (-584 *11))
+ (|:| |todo| (-584 (-2 (|:| |val| *3) (|:| -1598 *11))))))
+ (-5 *6 (-695)) (-5 *2 (-584 (-2 (|:| |val| (-584 *10)) (|:| -1598 *11))))
+ (-5 *3 (-584 *10)) (-5 *4 (-584 *11)) (-4 *10 (-977 *7 *8 *9))
+ (-4 *11 (-1020 *7 *8 *9 *10)) (-4 *7 (-389)) (-4 *8 (-718)) (-4 *9 (-757))
+ (-5 *1 (-1058 *7 *8 *9 *10 *11)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-285 *3 *4 *5 *6)) (-4 *3 (-311)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-347 *4))) (-4 *6 (-290 *3 *4 *5))
+ (-12 (-4 *1 (-285 *3 *4 *5 *6)) (-4 *3 (-311)) (-4 *4 (-1154 *3))
+ (-4 *5 (-1154 (-347 *4))) (-4 *6 (-290 *3 *4 *5))
(-5 *2
- (-2 (|:| -2332 (-353 *4 (-347 *4) *5 *6)) (|:| |principalPart| *6)))))
+ (-2 (|:| -2334 (-353 *4 (-347 *4) *5 *6)) (|:| |principalPart| *6)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-311))
- (-5 *2 (-2 (|:| |poly| *6) (|:| -3085 (-347 *6)) (|:| |special| (-347 *6))))
- (-5 *1 (-666 *5 *6)) (-5 *3 (-347 *6))))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-311))
+ (-5 *2 (-2 (|:| |poly| *6) (|:| -3087 (-347 *6)) (|:| |special| (-347 *6))))
+ (-5 *1 (-667 *5 *6)) (-5 *3 (-347 *6))))
((*1 *2 *3)
- (-12 (-4 *4 (-311)) (-5 *2 (-583 *3)) (-5 *1 (-807 *3 *4))
- (-4 *3 (-1153 *4))))
+ (-12 (-4 *4 (-311)) (-5 *2 (-584 *3)) (-5 *1 (-808 *3 *4))
+ (-4 *3 (-1154 *4))))
((*1 *2 *3 *4 *4)
- (|partial| -12 (-5 *4 (-694)) (-4 *5 (-311))
- (-5 *2 (-2 (|:| -3133 *3) (|:| -3132 *3))) (-5 *1 (-807 *3 *5))
- (-4 *3 (-1153 *5))))
+ (|partial| -12 (-5 *4 (-695)) (-4 *5 (-311))
+ (-5 *2 (-2 (|:| -3135 *3) (|:| -3134 *3))) (-5 *1 (-808 *3 *5))
+ (-4 *3 (-1154 *5))))
((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85))
- (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-389))
- (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-980 *5 *6 *7 *8 *9))))
+ (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85))
+ (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-389))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-981 *5 *6 *7 *8 *9))))
((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85))
- (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-389))
- (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-980 *5 *6 *7 *8 *9))))
+ (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85))
+ (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-389))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-981 *5 *6 *7 *8 *9))))
((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85))
- (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-1019 *5 *6 *7 *8)) (-4 *5 (-389))
- (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1057 *5 *6 *7 *8 *9))))
+ (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85))
+ (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-389))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1058 *5 *6 *7 *8 *9))))
((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85))
- (-4 *8 (-976 *5 *6 *7)) (-4 *9 (-1019 *5 *6 *7 *8)) (-4 *5 (-389))
- (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))))
+ (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85))
+ (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-389))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1058 *5 *6 *7 *8 *9)))))
(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-694)) (-5 *6 (-85)) (-4 *7 (-389)) (-4 *8 (-717))
- (-4 *9 (-756)) (-4 *3 (-976 *7 *8 *9))
+ (-12 (-5 *5 (-695)) (-5 *6 (-85)) (-4 *7 (-389)) (-4 *8 (-718))
+ (-4 *9 (-757)) (-4 *3 (-977 *7 *8 *9))
(-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4))))))
- (-5 *1 (-980 *7 *8 *9 *3 *4)) (-4 *4 (-982 *7 *8 *9 *3))))
+ (-2 (|:| |done| (-584 *4))
+ (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4))))))
+ (-5 *1 (-981 *7 *8 *9 *3 *4)) (-4 *4 (-983 *7 *8 *9 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-694)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756))
- (-4 *3 (-976 *6 *7 *8))
+ (-12 (-5 *5 (-695)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757))
+ (-4 *3 (-977 *6 *7 *8))
(-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4))))))
- (-5 *1 (-980 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3))))
+ (-2 (|:| |done| (-584 *4))
+ (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4))))))
+ (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7))
+ (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7))
(-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4))))))
- (-5 *1 (-980 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))
+ (-2 (|:| |done| (-584 *4))
+ (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4))))))
+ (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-694)) (-5 *6 (-85)) (-4 *7 (-389)) (-4 *8 (-717))
- (-4 *9 (-756)) (-4 *3 (-976 *7 *8 *9))
+ (-12 (-5 *5 (-695)) (-5 *6 (-85)) (-4 *7 (-389)) (-4 *8 (-718))
+ (-4 *9 (-757)) (-4 *3 (-977 *7 *8 *9))
(-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4))))))
- (-5 *1 (-1057 *7 *8 *9 *3 *4)) (-4 *4 (-1019 *7 *8 *9 *3))))
+ (-2 (|:| |done| (-584 *4))
+ (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4))))))
+ (-5 *1 (-1058 *7 *8 *9 *3 *4)) (-4 *4 (-1020 *7 *8 *9 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-694)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756))
- (-4 *3 (-976 *6 *7 *8))
+ (-12 (-5 *5 (-695)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757))
+ (-4 *3 (-977 *6 *7 *8))
(-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4))))))
- (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1019 *6 *7 *8 *3))))
+ (-2 (|:| |done| (-584 *4))
+ (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4))))))
+ (-5 *1 (-1058 *6 *7 *8 *3 *4)) (-4 *4 (-1020 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7))
+ (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7))
(-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4))))))
- (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1019 *5 *6 *7 *3)))))
+ (-2 (|:| |done| (-584 *4))
+ (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4))))))
+ (-5 *1 (-1058 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-694)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756))
- (-4 *3 (-976 *6 *7 *8))
+ (-12 (-5 *5 (-695)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757))
+ (-4 *3 (-977 *6 *7 *8))
(-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4))))))
- (-5 *1 (-980 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3))))
+ (-2 (|:| |done| (-584 *4))
+ (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4))))))
+ (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7))
+ (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7))
(-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4))))))
- (-5 *1 (-980 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))
+ (-2 (|:| |done| (-584 *4))
+ (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4))))))
+ (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-694)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756))
- (-4 *3 (-976 *6 *7 *8))
+ (-12 (-5 *5 (-695)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757))
+ (-4 *3 (-977 *6 *7 *8))
(-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4))))))
- (-5 *1 (-1057 *6 *7 *8 *3 *4)) (-4 *4 (-1019 *6 *7 *8 *3))))
+ (-2 (|:| |done| (-584 *4))
+ (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4))))))
+ (-5 *1 (-1058 *6 *7 *8 *3 *4)) (-4 *4 (-1020 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7))
+ (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7))
(-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4))))))
- (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1019 *5 *6 *7 *3)))))
+ (-2 (|:| |done| (-584 *4))
+ (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4))))))
+ (-5 *1 (-1058 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756))
- (-4 *3 (-976 *6 *7 *8))
+ (-12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757))
+ (-4 *3 (-977 *6 *7 *8))
(-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4))))))
- (-5 *1 (-980 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3))))
+ (-2 (|:| |done| (-584 *4))
+ (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4))))))
+ (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7))
+ (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7))
(-5 *2
- (-2 (|:| |done| (-583 *4))
- (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4))))))
- (-5 *1 (-1057 *5 *6 *7 *3 *4)) (-4 *4 (-1019 *5 *6 *7 *3)))))
+ (-2 (|:| |done| (-584 *4))
+ (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4))))))
+ (-5 *1 (-1058 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-976 *5 *6 *7))
- (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756))
- (-5 *2 (-694)) (-5 *1 (-980 *5 *6 *7 *8 *9))))
+ (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-977 *5 *6 *7))
+ (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757))
+ (-5 *2 (-695)) (-5 *1 (-981 *5 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-976 *5 *6 *7))
- (-4 *9 (-1019 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756))
- (-5 *2 (-694)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))))
+ (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-977 *5 *6 *7))
+ (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757))
+ (-5 *2 (-695)) (-5 *1 (-1058 *5 *6 *7 *8 *9)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-976 *5 *6 *7))
- (-4 *9 (-982 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756))
- (-5 *2 (-694)) (-5 *1 (-980 *5 *6 *7 *8 *9))))
+ (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-977 *5 *6 *7))
+ (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757))
+ (-5 *2 (-695)) (-5 *1 (-981 *5 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-976 *5 *6 *7))
- (-4 *9 (-1019 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756))
- (-5 *2 (-694)) (-5 *1 (-1057 *5 *6 *7 *8 *9)))))
+ (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-977 *5 *6 *7))
+ (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757))
+ (-5 *2 (-695)) (-5 *1 (-1058 *5 *6 *7 *8 *9)))))
(((*1 *1) (-5 *1 (-114))) ((*1 *1 *1) (-5 *1 (-117)))
- ((*1 *1 *1) (-4 *1 (-1056))))
-(((*1 *1 *1) (-4 *1 (-1056))))
+ ((*1 *1 *1) (-4 *1 (-1057))))
+(((*1 *1 *1) (-4 *1 (-1057))))
(((*1 *1) (-5 *1 (-114))) ((*1 *1 *1) (-5 *1 (-117)))
- ((*1 *1 *1) (-4 *1 (-1056))))
-(((*1 *1 *1) (-4 *1 (-1056))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-85)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-85)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-483)) (-5 *2 (-85)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1012)) (-4 *6 (-1127))
- (-5 *2 (-1 *6 *5)) (-5 *1 (-585 *5 *6))))
+ ((*1 *1 *1) (-4 *1 (-1057))))
+(((*1 *1 *1) (-4 *1 (-1057))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1057)) (-5 *2 (-85)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1057)) (-5 *2 (-85)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1057)) (-5 *3 (-484)) (-5 *2 (-85)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *6)) (-4 *5 (-1013)) (-4 *6 (-1128))
+ (-5 *2 (-1 *6 *5)) (-5 *1 (-586 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1012)) (-4 *2 (-1127))
- (-5 *1 (-585 *5 *2))))
+ (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-4 *5 (-1013)) (-4 *2 (-1128))
+ (-5 *1 (-586 *5 *2))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 *5)) (-4 *6 (-1012)) (-4 *5 (-1127))
- (-5 *2 (-1 *5 *6)) (-5 *1 (-585 *6 *5))))
+ (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 *5)) (-4 *6 (-1013)) (-4 *5 (-1128))
+ (-5 *2 (-1 *5 *6)) (-5 *1 (-586 *6 *5))))
((*1 *2 *3 *4 *5 *2)
- (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1012)) (-4 *2 (-1127))
- (-5 *1 (-585 *5 *2))))
+ (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-4 *5 (-1013)) (-4 *2 (-1128))
+ (-5 *1 (-586 *5 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1012))
- (-4 *6 (-1127)) (-5 *1 (-585 *5 *6))))
+ (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-584 *5)) (-5 *4 (-584 *6)) (-4 *5 (-1013))
+ (-4 *6 (-1128)) (-5 *1 (-586 *5 *6))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1012))
- (-4 *2 (-1127)) (-5 *1 (-585 *5 *2))))
- ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-117)) (-5 *2 (-694)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1056)) (-5 *3 (-117)) (-5 *2 (-85)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1056)) (-5 *2 (-1144 (-483))))))
-(((*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-694))))
+ (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1013))
+ (-4 *2 (-1128)) (-5 *1 (-586 *5 *2))))
+ ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1057)) (-5 *3 (-117)) (-5 *2 (-695)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1057)) (-5 *3 (-117)) (-5 *2 (-85)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1057)) (-5 *2 (-1145 (-484))))))
+(((*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-695))))
((*1 *2 *3 *1 *2)
- (-12 (-5 *2 (-483)) (-4 *1 (-321 *3)) (-4 *3 (-1127)) (-4 *3 (-1012))))
+ (-12 (-5 *2 (-484)) (-4 *1 (-321 *3)) (-4 *3 (-1128)) (-4 *3 (-1013))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-321 *3)) (-4 *3 (-1127)) (-4 *3 (-1012)) (-5 *2 (-483))))
+ (-12 (-4 *1 (-321 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-484))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-321 *4)) (-4 *4 (-1127)) (-5 *2 (-483))))
- ((*1 *2 *1) (-12 (-5 *2 (-1032)) (-5 *1 (-466))))
- ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-483)) (-5 *3 (-114))))
- ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-483)))))
-(((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1153 (-48)))))
+ (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-321 *4)) (-4 *4 (-1128)) (-5 *2 (-484))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1033)) (-5 *1 (-467))))
+ ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-484)) (-5 *3 (-114))))
+ ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-484)))))
+(((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1154 (-48)))))
((*1 *2 *3 *1)
(-12 (-5 *2 (-2 (|:| |less| (-94 *3)) (|:| |greater| (-94 *3))))
- (-5 *1 (-94 *3)) (-4 *3 (-756))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-518 *4)) (-4 *4 (-13 (-29 *3) (-1113)))
- (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-520 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-518 (-347 (-857 *3))))
- (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-524 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-311))
- (-5 *2 (-2 (|:| -3085 *3) (|:| |special| *3))) (-5 *1 (-666 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1177 *5)) (-4 *5 (-311)) (-4 *5 (-961))
- (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1177 (-1177 *5))) (-4 *5 (-311)) (-4 *5 (-961))
- (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-583 *1)) (-4 *1 (-1056))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-583 *1)) (-4 *1 (-1056)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-114))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-117)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-114))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-117)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-114))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1056)) (-5 *2 (-117)))))
+ (-5 *1 (-94 *3)) (-4 *3 (-757))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-519 *4)) (-4 *4 (-13 (-29 *3) (-1114)))
+ (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-521 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-519 (-347 (-858 *3))))
+ (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-525 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-311))
+ (-5 *2 (-2 (|:| -3087 *3) (|:| |special| *3))) (-5 *1 (-667 *5 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1178 *5)) (-4 *5 (-311)) (-4 *5 (-962))
+ (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1178 (-1178 *5))) (-4 *5 (-311)) (-4 *5 (-962))
+ (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-584 *1)) (-4 *1 (-1057))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-584 *1)) (-4 *1 (-1057)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-114))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-117)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-114))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-117)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-114))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-117)))))
(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-483)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694))
+ (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695))
(-4 *5 (-146))))
((*1 *1 *1)
- (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-694)) (-4 *4 (-146))))
+ (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-695)) (-4 *4 (-146))))
((*1 *1 *1)
- (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2))
+ (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2))
(-4 *4 (-321 *2))))
((*1 *1 *2)
- (-12 (-4 *3 (-961)) (-4 *1 (-627 *3 *2 *4)) (-4 *2 (-321 *3))
+ (-12 (-4 *3 (-962)) (-4 *1 (-628 *3 *2 *4)) (-4 *2 (-321 *3))
(-4 *4 (-321 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-1054 *2 *3)) (-14 *2 (-694)) (-4 *3 (-961)))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1055 *2 *3)) (-14 *2 (-695)) (-4 *3 (-962)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-630 *4)) (-4 *4 (-961)) (-5 *1 (-1054 *3 *4)) (-14 *3 (-694)))))
+ (-12 (-5 *2 (-631 *4)) (-4 *4 (-962)) (-5 *1 (-1055 *3 *4)) (-14 *3 (-695)))))
(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1012) (-34)))
- (-4 *3 (-13 (-1012) (-34))))))
+ (|partial| -12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34)))
+ (-4 *3 (-13 (-1013) (-34))))))
(((*1 *1 *1)
- (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1012) (-34)))
- (-4 *3 (-13 (-1012) (-34))))))
+ (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34)))
+ (-4 *3 (-13 (-1013) (-34))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-583 *4)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1012) (-34)))
- (-4 *4 (-13 (-1012) (-34))))))
+ (-12 (-5 *2 (-584 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34)))
+ (-4 *4 (-13 (-1013) (-34))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4)))) (-5 *1 (-1053 *3 *4))
- (-4 *3 (-13 (-1012) (-34))) (-4 *4 (-13 (-1012) (-34))))))
+ (-12 (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4)))) (-5 *1 (-1054 *3 *4))
+ (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1052 *4 *5)) (-4 *4 (-13 (-1012) (-34)))
- (-4 *5 (-13 (-1012) (-34))) (-5 *2 (-85)) (-5 *1 (-1053 *4 *5)))))
+ (-12 (-5 *3 (-1053 *4 *5)) (-4 *4 (-13 (-1013) (-34)))
+ (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-85)) (-5 *1 (-1054 *4 *5)))))
(((*1 *2 *3 *1 *4)
- (-12 (-5 *3 (-1052 *5 *6)) (-5 *4 (-1 (-85) *6 *6))
- (-4 *5 (-13 (-1012) (-34))) (-4 *6 (-13 (-1012) (-34))) (-5 *2 (-85))
- (-5 *1 (-1053 *5 *6)))))
+ (-12 (-5 *3 (-1053 *5 *6)) (-5 *4 (-1 (-85) *6 *6))
+ (-4 *5 (-13 (-1013) (-34))) (-4 *6 (-13 (-1013) (-34))) (-5 *2 (-85))
+ (-5 *1 (-1054 *5 *6)))))
(((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -3989)) (-4 *1 (-124 *2)) (-4 *2 (-1127))
- (-4 *2 (-1012))))
+ (-12 (|has| *1 (-6 -3991)) (-4 *1 (-124 *2)) (-4 *2 (-1128))
+ (-4 *2 (-1013))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3989)) (-4 *1 (-124 *3))
- (-4 *3 (-1127))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1127))))
+ (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3991)) (-4 *1 (-124 *3))
+ (-4 *3 (-1128))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-617 *3)) (-4 *3 (-1128))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-483)) (-4 *4 (-1012)) (-5 *1 (-675 *4))))
- ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *1 (-675 *2)) (-4 *2 (-1012))))
+ (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-484)) (-4 *4 (-1013)) (-5 *1 (-676 *4))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-676 *2)) (-4 *2 (-1013))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34)))
- (-4 *4 (-13 (-1012) (-34))) (-5 *1 (-1053 *3 *4)))))
+ (-12 (-5 *2 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34)))
+ (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3989)) (-4 *1 (-193 *3))
- (-4 *3 (-1012))))
- ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -3989)) (-4 *1 (-193 *2)) (-4 *2 (-1012))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1127)) (-4 *2 (-1012))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1127))))
+ (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3991)) (-4 *1 (-193 *3))
+ (-4 *3 (-1013))))
+ ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -3991)) (-4 *1 (-193 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)) (-4 *2 (-1013))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1128))))
((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-549 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012))))
+ (|partial| -12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-483)) (-4 *4 (-1012)) (-5 *1 (-675 *4))))
- ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *1 (-675 *2)) (-4 *2 (-1012))))
+ (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-484)) (-4 *4 (-1013)) (-5 *1 (-676 *4))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-676 *2)) (-4 *2 (-1013))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34)))
- (-4 *4 (-13 (-1012) (-34))) (-5 *1 (-1053 *3 *4)))))
+ (-12 (-5 *2 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34)))
+ (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4)))))
(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-1052 *4 *5))) (-5 *3 (-1 (-85) *5 *5))
- (-4 *4 (-13 (-1012) (-34))) (-4 *5 (-13 (-1012) (-34)))
- (-5 *1 (-1053 *4 *5))))
+ (-12 (-5 *2 (-584 (-1053 *4 *5))) (-5 *3 (-1 (-85) *5 *5))
+ (-4 *4 (-13 (-1013) (-34))) (-4 *5 (-13 (-1013) (-34)))
+ (-5 *1 (-1054 *4 *5))))
((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-1052 *3 *4))) (-4 *3 (-13 (-1012) (-34)))
- (-4 *4 (-13 (-1012) (-34))) (-5 *1 (-1053 *3 *4)))))
+ (-12 (-5 *2 (-584 (-1053 *3 *4))) (-4 *3 (-13 (-1013) (-34)))
+ (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4)))))
(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-4 *3 (-389)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-85))
- (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4))))
+ (-12 (-4 *3 (-389)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-85))
+ (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34)))
- (-4 *4 (-13 (-1012) (-34))))))
-(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-767))))
- ((*1 *2 *1) (-12 (-5 *2 (-1014)) (-5 *1 (-876))))
- ((*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-902))))
- ((*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1127))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34)))
+ (-4 *4 (-13 (-1013) (-34))))))
+(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-768))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-877))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-903))))
+ ((*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-1128))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1012) (-34))) (-5 *1 (-1052 *2 *3))
- (-4 *3 (-13 (-1012) (-34))))))
+ (-12 (-4 *2 (-13 (-1013) (-34))) (-5 *1 (-1053 *2 *3))
+ (-4 *3 (-13 (-1013) (-34))))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-389)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-85))
- (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4))))
+ (|partial| -12 (-4 *3 (-389)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-85))
+ (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34)))
- (-4 *4 (-13 (-1012) (-34))))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34)))
+ (-4 *4 (-13 (-1013) (-34))))))
(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-86)))
- ((*1 *1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-4 *1 (-482)))
- ((*1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1012))))
- ((*1 *1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-961))))
+ ((*1 *1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-4 *1 (-483)))
+ ((*1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-962))))
((*1 *1 *1)
- (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34)))
- (-4 *3 (-13 (-1012) (-34))))))
+ (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34)))
+ (-4 *3 (-13 (-1013) (-34))))))
(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34)))
- (-4 *3 (-13 (-1012) (-34))))))
+ (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34)))
+ (-4 *3 (-13 (-1013) (-34))))))
(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1052 *3 *2)) (-4 *3 (-13 (-1012) (-34)))
- (-4 *2 (-13 (-1012) (-34))))))
+ (-12 (-5 *1 (-1053 *3 *2)) (-4 *3 (-13 (-1013) (-34)))
+ (-4 *2 (-13 (-1013) (-34))))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-85)) (-5 *1 (-1052 *3 *4)) (-4 *3 (-13 (-1012) (-34)))
- (-4 *4 (-13 (-1012) (-34))))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-1053 *3 *4)) (-4 *3 (-13 (-1013) (-34)))
+ (-4 *4 (-13 (-1013) (-34))))))
(((*1 *1 *1)
- (-12 (-5 *1 (-1052 *2 *3)) (-4 *2 (-13 (-1012) (-34)))
- (-4 *3 (-13 (-1012) (-34))))))
+ (-12 (-5 *1 (-1053 *2 *3)) (-4 *2 (-13 (-1013) (-34)))
+ (-4 *3 (-13 (-1013) (-34))))))
(((*1 *2 *1 *1 *3 *4)
(-12 (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-1 (-85) *6 *6))
- (-4 *5 (-13 (-1012) (-34))) (-4 *6 (-13 (-1012) (-34))) (-5 *2 (-85))
- (-5 *1 (-1052 *5 *6)))))
+ (-4 *5 (-13 (-1013) (-34))) (-4 *6 (-13 (-1013) (-34))) (-5 *2 (-85))
+ (-5 *1 (-1053 *5 *6)))))
(((*1 *2 *1 *1 *3)
- (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1012) (-34))) (-5 *2 (-85))
- (-5 *1 (-1052 *4 *5)) (-4 *4 (-13 (-1012) (-34))))))
+ (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-85))
+ (-5 *1 (-1053 *4 *5)) (-4 *4 (-13 (-1013) (-34))))))
(((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))
((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))
- ((*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3))))
- ((*1 *1 *1) (-4 *1 (-1051))))
+ ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3))))
+ ((*1 *1 *1) (-4 *1 (-1052))))
(((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))
((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))
- ((*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3))))
- ((*1 *1 *1) (-4 *1 (-1051))))
+ ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3))))
+ ((*1 *1 *1) (-4 *1 (-1052))))
(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))
((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1051))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1052))))
(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))
((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1051))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1052))))
(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))
((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1051))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1052))))
(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))
((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1051))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1052))))
(((*1 *1 *1) (-5 *1 (-179))) ((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))
((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))
- ((*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3))))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3))))
- ((*1 *1 *1) (-4 *1 (-1051))) ((*1 *1 *1 *1) (-4 *1 (-1051))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-694)) (-5 *1 (-180))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-694)) (-5 *1 (-180))))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1051))))
+ ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3))))
+ ((*1 *1 *1) (-4 *1 (-1052))) ((*1 *1 *1 *1) (-4 *1 (-1052))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-695)) (-5 *1 (-180))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-695)) (-5 *1 (-180))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1052))))
(((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))
((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))
- ((*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3))))
- ((*1 *1 *1) (-4 *1 (-1051))))
+ ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3))))
+ ((*1 *1 *1) (-4 *1 (-1052))))
(((*1 *1 *1 *1) (-5 *1 (-179)))
((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))
((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-327))) (-5 *1 (-953))))
- ((*1 *1 *1 *1) (-4 *1 (-1051))))
-(((*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-972))))
- ((*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3))))
- ((*1 *1 *1) (-4 *1 (-714)))
- ((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)) (-4 *2 (-972))))
- ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)) (-4 *2 (-972))))
- ((*1 *1 *1) (-4 *1 (-1051))))
-(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1183)) (-5 *1 (-1050))))
- ((*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1183)) (-5 *1 (-1050)))))
-(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1183)) (-5 *1 (-1050))))
- ((*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1183)) (-5 *1 (-1050)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1071)) (-5 *4 (-772)) (-5 *2 (-1183)) (-5 *1 (-1050))))
- ((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1183)) (-5 *1 (-1050))))
- ((*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1183)) (-5 *1 (-1050)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-583 (-1093))) (-5 *1 (-1048)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1077 3 *3)) (-4 *3 (-961)) (-4 *1 (-1046 *3))))
- ((*1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-961)))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-327))) (-5 *1 (-954))))
+ ((*1 *1 *1 *1) (-4 *1 (-1052))))
+(((*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-973))))
+ ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3))))
+ ((*1 *1 *1) (-4 *1 (-715)))
+ ((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)) (-4 *2 (-973))))
+ ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)) (-4 *2 (-973))))
+ ((*1 *1 *1) (-4 *1 (-1052))))
+(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1184)) (-5 *1 (-1051))))
+ ((*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1184)) (-5 *1 (-1051)))))
+(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1184)) (-5 *1 (-1051))))
+ ((*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1184)) (-5 *1 (-1051)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1072)) (-5 *4 (-773)) (-5 *2 (-1184)) (-5 *1 (-1051))))
+ ((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1184)) (-5 *1 (-1051))))
+ ((*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1184)) (-5 *1 (-1051)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-584 (-1094))) (-5 *1 (-1049)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1078 3 *3)) (-4 *3 (-962)) (-4 *1 (-1047 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-962)))))
(((*1 *2)
- (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-347 *5)))
- (-5 *2 (-694)) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *3 (-290 *4 *5 *6))))
+ (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-347 *5)))
+ (-5 *2 (-695)) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *3 (-290 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-347 *4))) (-5 *2 (-694))))
- ((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-694)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-694)))))
-(((*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1046 *3)))))
-(((*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1046 *3)))))
+ (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
+ (-4 *5 (-1154 (-347 *4))) (-5 *2 (-695))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-695)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-695)))))
+(((*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-584 *1)) (-4 *1 (-1047 *3)))))
+(((*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-584 *1)) (-4 *1 (-1047 *3)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 (-854 *4))) (-4 *1 (-1046 *4)) (-4 *4 (-961))
- (-5 *2 (-694)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-85)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1127))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-789 *2)) (-4 *2 (-1127))))
- ((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3)))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1046 *3))))
+ (-12 (-5 *3 (-584 (-855 *4))) (-4 *1 (-1047 *4)) (-4 *4 (-962))
+ (-5 *2 (-695)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-85)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-790 *2)) (-4 *2 (-1128))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1047 *3))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-961))))
+ (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-962))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-961)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3)))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1046 *3))))
+ (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-962)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1047 *3))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-961))))
+ (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-962))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-961)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3)))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1046 *3))))
+ (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-962)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1047 *3))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-961))))
+ (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-962))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-961)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-85)))))
+ (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1047 *3)) (-4 *3 (-962)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-854 *3))))))
+ (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-855 *3))))))
((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-583 (-583 (-854 *4)))) (-5 *3 (-85)) (-4 *4 (-961))
- (-4 *1 (-1046 *4))))
+ (-12 (-5 *2 (-584 (-584 (-855 *4)))) (-5 *3 (-85)) (-4 *4 (-962))
+ (-4 *1 (-1047 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 (-583 (-854 *3)))) (-4 *3 (-961)) (-4 *1 (-1046 *3))))
+ (-12 (-5 *2 (-584 (-584 (-855 *3)))) (-4 *3 (-962)) (-4 *1 (-1047 *3))))
((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-85)) (-4 *1 (-1046 *4))
- (-4 *4 (-961))))
+ (-12 (-5 *2 (-584 (-584 (-584 *4)))) (-5 *3 (-85)) (-4 *1 (-1047 *4))
+ (-4 *4 (-962))))
((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-583 (-583 (-854 *4)))) (-5 *3 (-85)) (-4 *1 (-1046 *4))
- (-4 *4 (-961))))
+ (-12 (-5 *2 (-584 (-584 (-855 *4)))) (-5 *3 (-85)) (-4 *1 (-1047 *4))
+ (-4 *4 (-962))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-583 (-145))) (-5 *4 (-145))
- (-4 *1 (-1046 *5)) (-4 *5 (-961))))
+ (-12 (-5 *2 (-584 (-584 (-584 *5)))) (-5 *3 (-584 (-145))) (-5 *4 (-145))
+ (-4 *1 (-1047 *5)) (-4 *5 (-962))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-583 (-583 (-854 *5)))) (-5 *3 (-583 (-145))) (-5 *4 (-145))
- (-4 *1 (-1046 *5)) (-4 *5 (-961)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))))
+ (-12 (-5 *2 (-584 (-584 (-855 *5)))) (-5 *3 (-584 (-145))) (-5 *4 (-145))
+ (-4 *1 (-1047 *5)) (-4 *5 (-962)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-694))))))))
+ (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-584 (-695))))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961))
- (-5 *2 (-583 (-583 (-583 (-854 *3))))))))
+ (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962))
+ (-5 *2 (-584 (-584 (-584 (-855 *3))))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-145)))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-145))))))
+ (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-145)))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-145))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1046 *3)) (-4 *3 (-961))
+ (-12 (-4 *1 (-1047 *3)) (-4 *3 (-962))
(-5 *2
- (-2 (|:| -3844 (-694)) (|:| |curves| (-694)) (|:| |polygons| (-694))
- (|:| |constructs| (-694)))))))
+ (-2 (|:| -3846 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695))
+ (|:| |constructs| (-695)))))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 (-2 (|:| -3726 (-1083 *6)) (|:| -2397 (-483)))))
- (-4 *6 (-257)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85))
- (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5))))
- ((*1 *1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-961)))))
+ (-12 (-5 *3 (-584 (-2 (|:| -3728 (-1084 *6)) (|:| -2399 (-484)))))
+ (-4 *6 (-257)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85))
+ (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-962)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-1044 *4 *2))
- (-4 *2 (-13 (-538 (-483) *4) (-10 -7 (-6 -3989) (-6 -3990))))))
+ (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-1045 *4 *2))
+ (-4 *2 (-13 (-539 (-484) *4) (-10 -7 (-6 -3991) (-6 -3992))))))
((*1 *2 *2)
- (-12 (-4 *3 (-756)) (-4 *3 (-1127)) (-5 *1 (-1044 *3 *2))
- (-4 *2 (-13 (-538 (-483) *3) (-10 -7 (-6 -3989) (-6 -3990)))))))
+ (-12 (-4 *3 (-757)) (-4 *3 (-1128)) (-5 *1 (-1045 *3 *2))
+ (-4 *2 (-13 (-539 (-484) *3) (-10 -7 (-6 -3991) (-6 -3992)))))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-1044 *4 *2))
- (-4 *2 (-13 (-538 (-483) *4) (-10 -7 (-6 -3989) (-6 -3990))))))
+ (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-1045 *4 *2))
+ (-4 *2 (-13 (-539 (-484) *4) (-10 -7 (-6 -3991) (-6 -3992))))))
((*1 *2 *2)
- (-12 (-4 *3 (-756)) (-4 *3 (-1127)) (-5 *1 (-1044 *3 *2))
- (-4 *2 (-13 (-538 (-483) *3) (-10 -7 (-6 -3989) (-6 -3990)))))))
+ (-12 (-4 *3 (-757)) (-4 *3 (-1128)) (-5 *1 (-1045 *3 *2))
+ (-4 *2 (-13 (-539 (-484) *3) (-10 -7 (-6 -3991) (-6 -3992)))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1177 *4)) (-4 *4 (-961)) (-4 *2 (-1153 *4))
+ (-12 (-5 *3 (-1178 *4)) (-4 *4 (-962)) (-4 *2 (-1154 *4))
(-5 *1 (-381 *4 *2))))
((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-347 (-1083 (-264 *5)))) (-5 *3 (-1177 (-264 *5)))
- (-5 *4 (-483)) (-4 *5 (-494)) (-5 *1 (-1042 *5)))))
+ (-12 (-5 *2 (-347 (-1084 (-264 *5)))) (-5 *3 (-1178 (-264 *5)))
+ (-5 *4 (-484)) (-4 *5 (-495)) (-5 *1 (-1043 *5)))))
(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-347 (-1083 (-264 *3)))) (-4 *3 (-494)) (-5 *1 (-1042 *3)))))
+ (-12 (-5 *2 (-347 (-1084 (-264 *3)))) (-4 *3 (-495)) (-5 *1 (-1043 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-248 (-347 (-857 *5)))) (-5 *4 (-1088))
+ (-12 (-5 *3 (-248 (-347 (-858 *5)))) (-5 *4 (-1089))
(-4 *5 (-13 (-257) (-120)))
- (-5 *2 (-1078 (-583 (-264 *5)) (-583 (-248 (-264 *5)))))
- (-5 *1 (-1041 *5))))
+ (-5 *2 (-1079 (-584 (-264 *5)) (-584 (-248 (-264 *5)))))
+ (-5 *1 (-1042 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-120)))
- (-5 *2 (-1078 (-583 (-264 *5)) (-583 (-248 (-264 *5)))))
- (-5 *1 (-1041 *5)))))
+ (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-120)))
+ (-5 *2 (-1079 (-584 (-264 *5)) (-584 (-248 (-264 *5)))))
+ (-5 *1 (-1042 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-120)))
- (-5 *2 (-583 (-264 *5))) (-5 *1 (-1041 *5))))
+ (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-120)))
+ (-5 *2 (-584 (-264 *5))) (-5 *1 (-1042 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-347 (-857 *5)))) (-5 *4 (-583 (-1088)))
- (-4 *5 (-13 (-257) (-120))) (-5 *2 (-583 (-583 (-264 *5))))
- (-5 *1 (-1041 *5)))))
+ (-12 (-5 *3 (-584 (-347 (-858 *5)))) (-5 *4 (-584 (-1089)))
+ (-4 *5 (-13 (-257) (-120))) (-5 *2 (-584 (-584 (-264 *5))))
+ (-5 *1 (-1042 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-120)))
- (-5 *2 (-583 (-248 (-264 *5)))) (-5 *1 (-1041 *5))))
+ (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-120)))
+ (-5 *2 (-584 (-248 (-264 *5)))) (-5 *1 (-1042 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-13 (-257) (-120)))
- (-5 *2 (-583 (-248 (-264 *4)))) (-5 *1 (-1041 *4))))
+ (-12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-13 (-257) (-120)))
+ (-5 *2 (-584 (-248 (-264 *4)))) (-5 *1 (-1042 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-248 (-347 (-857 *5)))) (-5 *4 (-1088))
- (-4 *5 (-13 (-257) (-120))) (-5 *2 (-583 (-248 (-264 *5))))
- (-5 *1 (-1041 *5))))
+ (-12 (-5 *3 (-248 (-347 (-858 *5)))) (-5 *4 (-1089))
+ (-4 *5 (-13 (-257) (-120))) (-5 *2 (-584 (-248 (-264 *5))))
+ (-5 *1 (-1042 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-248 (-347 (-857 *4)))) (-4 *4 (-13 (-257) (-120)))
- (-5 *2 (-583 (-248 (-264 *4)))) (-5 *1 (-1041 *4))))
+ (-12 (-5 *3 (-248 (-347 (-858 *4)))) (-4 *4 (-13 (-257) (-120)))
+ (-5 *2 (-584 (-248 (-264 *4)))) (-5 *1 (-1042 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-347 (-857 *5)))) (-5 *4 (-583 (-1088)))
- (-4 *5 (-13 (-257) (-120))) (-5 *2 (-583 (-583 (-248 (-264 *5)))))
- (-5 *1 (-1041 *5))))
+ (-12 (-5 *3 (-584 (-347 (-858 *5)))) (-5 *4 (-584 (-1089)))
+ (-4 *5 (-13 (-257) (-120))) (-5 *2 (-584 (-584 (-248 (-264 *5)))))
+ (-5 *1 (-1042 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-347 (-857 *4)))) (-4 *4 (-13 (-257) (-120)))
- (-5 *2 (-583 (-583 (-248 (-264 *4))))) (-5 *1 (-1041 *4))))
+ (-12 (-5 *3 (-584 (-347 (-858 *4)))) (-4 *4 (-13 (-257) (-120)))
+ (-5 *2 (-584 (-584 (-248 (-264 *4))))) (-5 *1 (-1042 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-248 (-347 (-857 *5))))) (-5 *4 (-583 (-1088)))
- (-4 *5 (-13 (-257) (-120))) (-5 *2 (-583 (-583 (-248 (-264 *5)))))
- (-5 *1 (-1041 *5))))
+ (-12 (-5 *3 (-584 (-248 (-347 (-858 *5))))) (-5 *4 (-584 (-1089)))
+ (-4 *5 (-13 (-257) (-120))) (-5 *2 (-584 (-584 (-248 (-264 *5)))))
+ (-5 *1 (-1042 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-248 (-347 (-857 *4))))) (-4 *4 (-13 (-257) (-120)))
- (-5 *2 (-583 (-583 (-248 (-264 *4))))) (-5 *1 (-1041 *4)))))
+ (-12 (-5 *3 (-584 (-248 (-347 (-858 *4))))) (-4 *4 (-13 (-257) (-120)))
+ (-5 *2 (-584 (-584 (-248 (-264 *4))))) (-5 *1 (-1042 *4)))))
(((*1 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483)))))))
- (-5 *1 (-1040 *3 *2)) (-4 *3 (-1153 *2)))))
+ (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484)))))))
+ (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2)))))
(((*1 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483)))))))
- (-5 *1 (-1040 *3 *2)) (-4 *3 (-1153 *2)))))
+ (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484)))))))
+ (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2)))))
(((*1 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483)))))))
- (-5 *1 (-1040 *3 *2)) (-4 *3 (-1153 *2)))))
+ (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484)))))))
+ (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2)))))
(((*1 *2 *2 *2)
- (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483)))))))
- (-5 *1 (-1040 *3 *2)) (-4 *3 (-1153 *2)))))
+ (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484)))))))
+ (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483)))))))
- (-5 *2 (-583 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1153 *4))))
+ (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484)))))))
+ (-5 *2 (-584 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4))))
((*1 *2 *3 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483)))))))
- (-5 *2 (-583 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1153 *3)))))
+ (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484)))))))
+ (-5 *2 (-584 *3)) (-5 *1 (-1041 *4 *3)) (-4 *4 (-1154 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483)))))))
- (-5 *2 (-583 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1153 *4))))
+ (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484)))))))
+ (-5 *2 (-584 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4))))
((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483)))))))
- (-5 *2 (-583 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1153 *3)))))
+ (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484)))))))
+ (-5 *2 (-584 *3)) (-5 *1 (-1041 *4 *3)) (-4 *4 (-1154 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483)))))))
- (-5 *2 (-583 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1153 *4))))
+ (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484)))))))
+ (-5 *2 (-584 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4))))
((*1 *2 *3 *3 *3)
- (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483)))))))
- (-5 *2 (-583 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1153 *3)))))
+ (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484)))))))
+ (-5 *2 (-584 *3)) (-5 *1 (-1041 *4 *3)) (-4 *4 (-1154 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483)))))))
- (-5 *2 (-583 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1153 *4))))
+ (-12 (-4 *4 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484)))))))
+ (-5 *2 (-584 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-1154 *4))))
((*1 *2 *3 *3)
- (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483)))))))
- (-5 *2 (-583 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1153 *3)))))
+ (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484)))))))
+ (-5 *2 (-584 *3)) (-5 *1 (-1041 *4 *3)) (-4 *4 (-1154 *3)))))
(((*1 *2 *3 *4)
(-12 (-5 *4 (-1 *5 *5))
- (-4 *5 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483)))))))
+ (-4 *5 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484)))))))
(-5 *2
- (-2 (|:| |solns| (-583 *5))
- (|:| |maps| (-583 (-2 (|:| |arg| *5) (|:| |res| *5))))))
- (-5 *1 (-1040 *3 *5)) (-4 *3 (-1153 *5)))))
+ (-2 (|:| |solns| (-584 *5))
+ (|:| |maps| (-584 (-2 (|:| |arg| *5) (|:| |res| *5))))))
+ (-5 *1 (-1041 *3 *5)) (-4 *3 (-1154 *5)))))
(((*1 *2 *3 *2)
- (|partial| -12 (-4 *4 (-311)) (-4 *5 (-13 (-321 *4) (-10 -7 (-6 -3990))))
- (-4 *2 (-13 (-321 *4) (-10 -7 (-6 -3990)))) (-5 *1 (-609 *4 *5 *2 *3))
- (-4 *3 (-627 *4 *5 *2))))
+ (|partial| -12 (-4 *4 (-311)) (-4 *5 (-13 (-321 *4) (-10 -7 (-6 -3992))))
+ (-4 *2 (-13 (-321 *4) (-10 -7 (-6 -3992)))) (-5 *1 (-610 *4 *5 *2 *3))
+ (-4 *3 (-628 *4 *5 *2))))
((*1 *2 *3 *2)
- (|partial| -12 (-5 *2 (-1177 *4)) (-5 *3 (-630 *4)) (-4 *4 (-311))
- (-5 *1 (-610 *4))))
+ (|partial| -12 (-5 *2 (-1178 *4)) (-5 *3 (-631 *4)) (-4 *4 (-311))
+ (-5 *1 (-611 *4))))
((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *4 (-583 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-311))
- (-5 *1 (-734 *2 *3)) (-4 *3 (-600 *2))))
+ (|partial| -12 (-5 *4 (-584 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-311))
+ (-5 *1 (-735 *2 *3)) (-4 *3 (-601 *2))))
((*1 *2 *3)
- (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-483)))))))
- (-5 *1 (-1040 *3 *2)) (-4 *3 (-1153 *2)))))
+ (-12 (-4 *2 (-13 (-311) (-10 -8 (-15 ** ($ $ (-347 (-484)))))))
+ (-5 *1 (-1041 *3 *2)) (-4 *3 (-1154 *2)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1067 *7))) (-4 *6 (-756))
- (-4 *7 (-861 *5 (-468 *6) *6)) (-4 *5 (-961)) (-5 *2 (-1 (-1067 *7) *7))
- (-5 *1 (-1038 *5 *6 *7)))))
+ (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-1068 *7))) (-4 *6 (-757))
+ (-4 *7 (-862 *5 (-469 *6) *6)) (-4 *5 (-962)) (-5 *2 (-1 (-1068 *7) *7))
+ (-5 *1 (-1039 *5 *6 *7)))))
(((*1 *2 *3 *4)
(-12 (-4 *5 (-257)) (-4 *6 (-321 *5)) (-4 *4 (-321 *5))
- (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2008 (-583 *4))))
- (-5 *1 (-1036 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2010 (-584 *4))))
+ (-5 *1 (-1037 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))))
(((*1 *2 *3)
(-12 (-4 *4 (-257)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4))
(-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
- (-5 *1 (-1036 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))))
+ (-5 *1 (-1037 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))))
(((*1 *2 *2)
(-12 (-4 *3 (-257)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3))
- (-5 *1 (-1036 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))))
+ (-5 *1 (-1037 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
(((*1 *2 *3)
(-12 (-4 *4 (-257)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4))
- (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1036 *4 *5 *6 *3))
- (-4 *3 (-627 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-853)) (-5 *3 (-483))))
+ (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1037 *4 *5 *6 *3))
+ (-4 *3 (-628 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-854)) (-5 *3 (-484))))
((*1 *2 *2)
(-12 (-4 *3 (-257)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3))
- (-5 *1 (-1036 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))))
+ (-5 *1 (-1037 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-694)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-321 *3))
+ (-12 (-5 *2 (-695)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-321 *3))
(-4 *5 (-321 *3))))
((*1 *1 *2)
- (-12 (-4 *2 (-961)) (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2))
+ (-12 (-4 *2 (-962)) (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2))
(-4 *5 (-196 *3 *2)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-583 *1)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5))
+ (-12 (-5 *2 (-584 *1)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5))
(-4 *4 (-321 *3)) (-4 *5 (-321 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5))
+ (-12 (-5 *2 (-584 *3)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5))
(-4 *4 (-321 *3)) (-4 *5 (-321 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-961)) (-5 *1 (-630 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-962)) (-5 *1 (-631 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 *4)) (-4 *4 (-961)) (-4 *1 (-1035 *3 *4 *5 *6))
+ (-12 (-5 *2 (-584 *4)) (-4 *4 (-962)) (-4 *1 (-1036 *3 *4 *5 *6))
(-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1035 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4))
+ (-12 (-4 *1 (-1036 *3 *4 *2 *5)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4))
(-4 *2 (-196 *3 *4)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-830)) (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317))))
+ (-12 (-5 *2 (-831)) (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317))))
((*1 *2 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-311))))
- ((*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-1153 *2)) (-4 *2 (-146))))
+ ((*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-1154 *2)) (-4 *2 (-146))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1177 *4)) (-5 *3 (-830)) (-4 *4 (-298)) (-5 *1 (-465 *4))))
+ (-12 (-5 *2 (-1178 *4)) (-5 *3 (-831)) (-4 *4 (-298)) (-5 *1 (-466 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2))
- (-4 *2 (-961)))))
+ (-12 (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2))
+ (-4 *2 (-962)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-630 *2)) (-4 *4 (-1153 *2))
- (-4 *2 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $)))))
+ (-12 (-5 *3 (-631 *2)) (-4 *4 (-1154 *2))
+ (-4 *2 (-13 (-257) (-10 -8 (-15 -3967 ((-345 $) $)))))
(-5 *1 (-436 *2 *4 *5)) (-4 *5 (-350 *2 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2))
- (-4 *2 (-961)))))
+ (-12 (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2))
+ (-4 *2 (-962)))))
(((*1 *2 *3)
(-12 (-4 *4 (-321 *2)) (-4 *5 (-321 *2)) (-4 *2 (-311))
- (-5 *1 (-458 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5))))
+ (-5 *1 (-459 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2))
- (|has| *2 (-6 (-3991 "*"))) (-4 *2 (-961))))
+ (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2))
+ (|has| *2 (-6 (-3993 "*"))) (-4 *2 (-962))))
((*1 *2 *3)
(-12 (-4 *4 (-321 *2)) (-4 *5 (-321 *2)) (-4 *2 (-146))
- (-5 *1 (-629 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5))))
+ (-5 *1 (-630 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2))
- (|has| *2 (-6 (-3991 "*"))) (-4 *2 (-961)))))
+ (-12 (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2))
+ (|has| *2 (-6 (-3993 "*"))) (-4 *2 (-962)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2))
- (|has| *2 (-6 (-3991 "*"))) (-4 *2 (-961))))
+ (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *3 (-321 *2)) (-4 *4 (-321 *2))
+ (|has| *2 (-6 (-3993 "*"))) (-4 *2 (-962))))
((*1 *2 *3)
(-12 (-4 *4 (-321 *2)) (-4 *5 (-321 *2)) (-4 *2 (-146))
- (-5 *1 (-629 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2))
- (|has| *2 (-6 (-3991 "*"))) (-4 *2 (-961)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1033 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1033 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1033 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-800 *3)) (-4 *3 (-1012))))
- ((*1 *2 *1) (-12 (-4 *1 (-1033 *3)) (-4 *3 (-1127)) (-5 *2 (-694)))))
+ (-5 *1 (-630 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1036 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2))
+ (|has| *2 (-6 (-3993 "*"))) (-4 *2 (-962)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-801 *3)) (-4 *3 (-1013))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-1128)) (-5 *2 (-695)))))
(((*1 *1 *1 *1) (-5 *1 (-85))) ((*1 *1 *1 *1) (-4 *1 (-96)))
- ((*1 *1 *1 *1) (-5 *1 (-1032))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-1027)) (-5 *1 (-1028)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-172))))
- ((*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-378))))
- ((*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-749))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1093))) (-5 *3 (-1093)) (-5 *1 (-1027))))
- ((*1 *2 *1) (-12 (-5 *2 (-1027)) (-5 *1 (-1028)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-154))))
- ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-622))))
- ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-883))))
- ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-984))))
- ((*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-1027)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1128))) (-5 *1 (-622))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-1093))) (-5 *1 (-1027)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-389)) (-4 *4 (-740)) (-14 *5 (-1088))
- (-5 *2 (-483)) (-5 *1 (-1026 *4 *5)))))
+ ((*1 *1 *1 *1) (-5 *1 (-1033))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-1028)) (-5 *1 (-1029)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-172))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-378))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-750))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-584 (-1094))) (-5 *3 (-1094)) (-5 *1 (-1028))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-1029)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-154))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-623))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-884))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-985))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-1028)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-1129))) (-5 *1 (-623))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-1094))) (-5 *1 (-1028)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-389)) (-4 *4 (-741)) (-14 *5 (-1089))
+ (-5 *2 (-484)) (-5 *1 (-1027 *4 *5)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-389)) (-4 *4 (-740)) (-14 *5 (-1088))
- (-5 *2 (-483)) (-5 *1 (-1026 *4 *5)))))
+ (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-389)) (-4 *4 (-741)) (-14 *5 (-1089))
+ (-5 *2 (-484)) (-5 *1 (-1027 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1088)) (-5 *2 (-483))
- (-5 *1 (-1026 *4 *5)))))
+ (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1089)) (-5 *2 (-484))
+ (-5 *1 (-1027 *4 *5)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1088)) (-5 *2 (-483))
- (-5 *1 (-1026 *4 *5)))))
+ (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1089)) (-5 *2 (-484))
+ (-5 *1 (-1027 *4 *5)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1088)) (-5 *2 (-583 *4))
- (-5 *1 (-1026 *4 *5)))))
+ (-12 (-5 *3 (-1147 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1089)) (-5 *2 (-584 *4))
+ (-5 *1 (-1027 *4 *5)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-740)) (-14 *5 (-1088)) (-5 *2 (-583 (-1146 *5 *4)))
- (-5 *1 (-1026 *4 *5)) (-5 *3 (-1146 *5 *4)))))
+ (-12 (-4 *4 (-741)) (-14 *5 (-1089)) (-5 *2 (-584 (-1147 *5 *4)))
+ (-5 *1 (-1027 *4 *5)) (-5 *3 (-1147 *5 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-740)) (-14 *5 (-1088)) (-5 *2 (-583 (-1146 *5 *4)))
- (-5 *1 (-1026 *4 *5)) (-5 *3 (-1146 *5 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-1021 *3)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-1020)) (-5 *3 (-483)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-1020)) (-5 *3 (-483)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-1020)) (-5 *3 (-483)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-1020)))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1177 (-483))) (-5 *3 (-483)) (-5 *1 (-1020))))
+ (-12 (-4 *4 (-741)) (-14 *5 (-1089)) (-5 *2 (-584 (-1147 *5 *4)))
+ (-5 *1 (-1027 *4 *5)) (-5 *3 (-1147 *5 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-1022 *3)))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-1021)) (-5 *3 (-484)))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-1021)) (-5 *3 (-484)))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-1021)) (-5 *3 (-484)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-1021)))))
+(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1178 (-484))) (-5 *3 (-484)) (-5 *1 (-1021))))
((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-1177 (-483))) (-5 *3 (-583 (-483))) (-5 *4 (-483))
- (-5 *1 (-1020)))))
+ (-12 (-5 *2 (-1178 (-484))) (-5 *3 (-584 (-484))) (-5 *4 (-484))
+ (-5 *1 (-1021)))))
(((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-583 (-483))) (-5 *3 (-583 (-830))) (-5 *4 (-85))
- (-5 *1 (-1020)))))
+ (-12 (-5 *2 (-584 (-484))) (-5 *3 (-584 (-831))) (-5 *4 (-85))
+ (-5 *1 (-1021)))))
(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-630 (-483))) (-5 *3 (-583 (-483))) (-5 *1 (-1020)))))
+ (-12 (-5 *2 (-631 (-484))) (-5 *3 (-584 (-484))) (-5 *1 (-1021)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-830))) (-5 *4 (-583 (-483))) (-5 *2 (-630 (-483)))
- (-5 *1 (-1020)))))
+ (-12 (-5 *3 (-584 (-831))) (-5 *4 (-584 (-484))) (-5 *2 (-631 (-484)))
+ (-5 *1 (-1021)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-830))) (-5 *2 (-583 (-630 (-483)))) (-5 *1 (-1020)))))
+ (-12 (-5 *3 (-584 (-831))) (-5 *2 (-584 (-631 (-484)))) (-5 *1 (-1021)))))
(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-583 (-483))) (-5 *3 (-630 (-483))) (-5 *1 (-1020)))))
+ (-12 (-5 *2 (-584 (-484))) (-5 *3 (-631 (-484))) (-5 *1 (-1021)))))
(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-583 (-483))) (-5 *2 (-630 (-483))) (-5 *1 (-1020)))))
+ (-12 (-5 *3 (-584 (-484))) (-5 *2 (-631 (-484))) (-5 *1 (-1021)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4))))
- (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4))))
+ (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7))
- (-5 *2 (-583 *4)) (-5 *1 (-1018 *5 *6 *7 *3 *4))
- (-4 *4 (-982 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-584 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4))
+ (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7))
- (-5 *2 (-85)) (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))
+ (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-85)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1597 *4))))
- (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1598 *4))))
+ (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7))
- (-5 *2 (-583 *4)) (-5 *1 (-1018 *5 *6 *7 *3 *4))
- (-4 *4 (-982 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-584 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4))
+ (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1597 *4))))
- (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1598 *4))))
+ (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7))
- (-5 *2 (-583 *4)) (-5 *1 (-1018 *5 *6 *7 *3 *4))
- (-4 *4 (-982 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-584 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4))
+ (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1597 *4))))
- (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1598 *4))))
+ (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4))))
- (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4))))
+ (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4))))
- (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4))))
+ (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756))
- (-4 *3 (-976 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4))))
- (-5 *1 (-1018 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3))))
+ (-12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757))
+ (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4))))
+ (-5 *1 (-1019 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1597 *9)))) (-5 *5 (-85))
- (-4 *8 (-976 *6 *7 *4)) (-4 *9 (-982 *6 *7 *4 *8)) (-4 *6 (-389))
- (-4 *7 (-717)) (-4 *4 (-756))
- (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -1597 *9))))
- (-5 *1 (-1018 *6 *7 *4 *8 *9)))))
+ (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1598 *9)))) (-5 *5 (-85))
+ (-4 *8 (-977 *6 *7 *4)) (-4 *9 (-983 *6 *7 *4 *8)) (-4 *6 (-389))
+ (-4 *7 (-718)) (-4 *4 (-757))
+ (-5 *2 (-584 (-2 (|:| |val| *8) (|:| -1598 *9))))
+ (-5 *1 (-1019 *6 *7 *4 *8 *9)))))
(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4))))
- (-5 *1 (-1018 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4))))
+ (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5))
- (-5 *2 (-1183)) (-5 *1 (-983 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6))))
+ (-12 (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5))
+ (-5 *2 (-1184)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5))
- (-5 *2 (-1183)) (-5 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))))
+ (-12 (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5))
+ (-5 *2 (-1184)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))))
(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1071)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-983 *4 *5 *6 *7 *8))
- (-4 *8 (-982 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-1072)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-984 *4 *5 *6 *7 *8))
+ (-4 *8 (-983 *4 *5 *6 *7))))
((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1071)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-1018 *4 *5 *6 *7 *8))
- (-4 *8 (-982 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-1072)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-1019 *4 *5 *6 *7 *8))
+ (-4 *8 (-983 *4 *5 *6 *7)))))
(((*1 *2)
- (-12 (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5))
- (-5 *2 (-1183)) (-5 *1 (-983 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6))))
+ (-12 (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5))
+ (-5 *2 (-1184)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5))
- (-5 *2 (-1183)) (-5 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))))
+ (-12 (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5))
+ (-5 *2 (-1184)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))))
(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1071)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-983 *4 *5 *6 *7 *8))
- (-4 *8 (-982 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-1072)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-984 *4 *5 *6 *7 *8))
+ (-4 *8 (-983 *4 *5 *6 *7))))
((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1071)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-1018 *4 *5 *6 *7 *8))
- (-4 *8 (-982 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-1072)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-1019 *4 *5 *6 *7 *8))
+ (-4 *8 (-983 *4 *5 *6 *7)))))
(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756))
- (-4 *9 (-976 *6 *7 *8))
- (-5 *2 (-2 (|:| -3261 (-583 *9)) (|:| -1597 *4) (|:| |ineq| (-583 *9))))
- (-5 *1 (-901 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-982 *6 *7 *8 *9))))
+ (|partial| -12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757))
+ (-4 *9 (-977 *6 *7 *8))
+ (-5 *2 (-2 (|:| -3263 (-584 *9)) (|:| -1598 *4) (|:| |ineq| (-584 *9))))
+ (-5 *1 (-902 *6 *7 *8 *9 *4)) (-5 *3 (-584 *9)) (-4 *4 (-983 *6 *7 *8 *9))))
((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756))
- (-4 *9 (-976 *6 *7 *8))
- (-5 *2 (-2 (|:| -3261 (-583 *9)) (|:| -1597 *4) (|:| |ineq| (-583 *9))))
- (-5 *1 (-1017 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9))
- (-4 *4 (-982 *6 *7 *8 *9)))))
+ (|partial| -12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757))
+ (-4 *9 (-977 *6 *7 *8))
+ (-5 *2 (-2 (|:| -3263 (-584 *9)) (|:| -1598 *4) (|:| |ineq| (-584 *9))))
+ (-5 *1 (-1018 *6 *7 *8 *9 *4)) (-5 *3 (-584 *9))
+ (-4 *4 (-983 *6 *7 *8 *9)))))
(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-583 *10)) (-5 *5 (-85)) (-4 *10 (-982 *6 *7 *8 *9))
- (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-976 *6 *7 *8))
+ (-12 (-5 *4 (-584 *10)) (-5 *5 (-85)) (-4 *10 (-983 *6 *7 *8 *9))
+ (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-977 *6 *7 *8))
(-5 *2
- (-583 (-2 (|:| -3261 (-583 *9)) (|:| -1597 *10) (|:| |ineq| (-583 *9)))))
- (-5 *1 (-901 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9))))
+ (-584 (-2 (|:| -3263 (-584 *9)) (|:| -1598 *10) (|:| |ineq| (-584 *9)))))
+ (-5 *1 (-902 *6 *7 *8 *9 *10)) (-5 *3 (-584 *9))))
((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-583 *10)) (-5 *5 (-85)) (-4 *10 (-982 *6 *7 *8 *9))
- (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-976 *6 *7 *8))
+ (-12 (-5 *4 (-584 *10)) (-5 *5 (-85)) (-4 *10 (-983 *6 *7 *8 *9))
+ (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-977 *6 *7 *8))
(-5 *2
- (-583 (-2 (|:| -3261 (-583 *9)) (|:| -1597 *10) (|:| |ineq| (-583 *9)))))
- (-5 *1 (-1017 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))))
+ (-584 (-2 (|:| -3263 (-584 *9)) (|:| -1598 *10) (|:| |ineq| (-584 *9)))))
+ (-5 *1 (-1018 *6 *7 *8 *9 *10)) (-5 *3 (-584 *9)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -1597 *7))))
- (-4 *6 (-976 *3 *4 *5)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-389))
- (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-901 *3 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-584 (-2 (|:| |val| (-584 *6)) (|:| -1598 *7))))
+ (-4 *6 (-977 *3 *4 *5)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-389))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-902 *3 *4 *5 *6 *7))))
((*1 *2 *2)
- (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -1597 *7))))
- (-4 *6 (-976 *3 *4 *5)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-389))
- (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1017 *3 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-584 (-2 (|:| |val| (-584 *6)) (|:| -1598 *7))))
+ (-4 *6 (-977 *3 *4 *5)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-389))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1597 *8)))
- (-4 *7 (-976 *4 *5 *6)) (-4 *8 (-982 *4 *5 *6 *7)) (-4 *4 (-389))
- (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1598 *8)))
+ (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-389))
+ (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1597 *8)))
- (-4 *7 (-976 *4 *5 *6)) (-4 *8 (-982 *4 *5 *6 *7)) (-4 *4 (-389))
- (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *8)))))
+ (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1598 *8)))
+ (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-389))
+ (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 *7)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-389))
- (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5))
- (-5 *1 (-901 *3 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-584 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-389))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5))
+ (-5 *1 (-902 *3 *4 *5 *6 *7))))
((*1 *2 *2)
- (-12 (-5 *2 (-583 *7)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-389))
- (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5))
- (-5 *1 (-1017 *3 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-584 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-389))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5))
+ (-5 *1 (-1018 *3 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6))
- (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7))))
+ (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6))
+ (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 *3)) (-4 *3 (-982 *5 *6 *7 *8)) (-4 *5 (-389))
- (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-85))
- (-5 *1 (-901 *5 *6 *7 *8 *3))))
+ (-12 (-5 *4 (-584 *3)) (-4 *3 (-983 *5 *6 *7 *8)) (-4 *5 (-389))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85))
+ (-5 *1 (-902 *5 *6 *7 *8 *3))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6))
- (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7))))
+ (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6))
+ (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 *3)) (-4 *3 (-982 *5 *6 *7 *8)) (-4 *5 (-389))
- (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-85))
- (-5 *1 (-1017 *5 *6 *7 *8 *3)))))
+ (-12 (-5 *4 (-584 *3)) (-4 *3 (-983 *5 *6 *7 *8)) (-4 *5 (-389))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85))
+ (-5 *1 (-1018 *5 *6 *7 *8 *3)))))
(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3))
- (-4 *3 (-982 *4 *5 *6 *7))))
+ (|partial| -12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3))
+ (-4 *3 (-983 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *3))
- (-4 *3 (-982 *4 *5 *6 *7)))))
+ (|partial| -12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3))
+ (-4 *3 (-983 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8))
- (-4 *8 (-982 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8))
+ (-4 *8 (-983 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *8))
- (-4 *8 (-982 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8))
+ (-4 *8 (-983 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8))
- (-4 *8 (-982 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8))
+ (-4 *8 (-983 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *8))
- (-4 *8 (-982 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8))
+ (-4 *8 (-983 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8))
- (-4 *8 (-982 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8))
+ (-4 *8 (-983 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *8))
- (-4 *8 (-982 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8))
+ (-4 *8 (-983 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6))
- (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7))))
+ (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6))
+ (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6))
- (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))))
+ (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6))
+ (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6))
- (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7))))
+ (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6))
+ (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6))
- (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))))
+ (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6))
+ (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 *7)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-389))
- (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5))
- (-5 *1 (-901 *3 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-584 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-389))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5))
+ (-5 *1 (-902 *3 *4 *5 *6 *7))))
((*1 *2 *2)
- (-12 (-5 *2 (-583 *7)) (-4 *7 (-982 *3 *4 *5 *6)) (-4 *3 (-389))
- (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5))
- (-5 *1 (-1017 *3 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-584 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-389))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5))
+ (-5 *1 (-1018 *3 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6))
- (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7))))
+ (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6))
+ (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6))
- (-5 *2 (-85)) (-5 *1 (-1017 *4 *5 *6 *7 *3)) (-4 *3 (-982 *4 *5 *6 *7)))))
+ (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6))
+ (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))))
(((*1 *2)
- (-12 (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5))
- (-5 *2 (-1183)) (-5 *1 (-901 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6))))
+ (-12 (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5))
+ (-5 *2 (-1184)) (-5 *1 (-902 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5))
- (-5 *2 (-1183)) (-5 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *7 (-982 *3 *4 *5 *6)))))
+ (-12 (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5))
+ (-5 *2 (-1184)) (-5 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))))
(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1071)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-901 *4 *5 *6 *7 *8))
- (-4 *8 (-982 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-1072)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-902 *4 *5 *6 *7 *8))
+ (-4 *8 (-983 *4 *5 *6 *7))))
((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1071)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *7 (-976 *4 *5 *6)) (-5 *2 (-1183)) (-5 *1 (-1017 *4 *5 *6 *7 *8))
- (-4 *8 (-982 *4 *5 *6 *7)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-985))))
+ (-12 (-5 *3 (-1072)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1184)) (-5 *1 (-1018 *4 *5 *6 *7 *8))
+ (-4 *8 (-983 *4 *5 *6 *7)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-986))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012))))
+ (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013))))
((*1 *2 *1)
- (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374))))
- ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-504 *3)) (-4 *3 (-950 (-483)))))
+ ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-505 *3)) (-4 *3 (-951 (-484)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| -3854 (-1088)) (|:| |entry| *4))))
- (-5 *1 (-798 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012))))
+ (-12 (-5 *2 (-584 (-2 (|:| -3856 (-1089)) (|:| |entry| *4))))
+ (-5 *1 (-799 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))
((*1 *2 *1)
- (-12 (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012))
- (-4 *7 (-1012)) (-5 *2 (-583 *1)) (-4 *1 (-1015 *3 *4 *5 *6 *7)))))
+ (-12 (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013))
+ (-4 *7 (-1013)) (-5 *2 (-584 *1)) (-4 *1 (-1016 *3 *4 *5 *6 *7)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1015 *3 *2 *4 *5 *6)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)))))
-(((*1 *2 *3) (-12 (-5 *2 (-483)) (-5 *1 (-504 *3)) (-4 *3 (-950 *2))))
+ (-12 (-4 *1 (-1016 *3 *2 *4 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))))
+(((*1 *2 *3) (-12 (-5 *2 (-484)) (-5 *1 (-505 *3)) (-4 *3 (-951 *2))))
((*1 *2 *1)
- (-12 (-4 *1 (-1015 *3 *4 *2 *5 *6)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-483)) (-5 *3 (-830)) (-4 *1 (-344))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-483)) (-4 *1 (-344))))
+ (-12 (-4 *1 (-1016 *3 *4 *2 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-484)) (-5 *3 (-831)) (-4 *1 (-344))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-484)) (-4 *1 (-344))))
((*1 *2 *1)
- (-12 (-4 *1 (-1015 *3 *4 *5 *2 *6)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)))))
+ (-12 (-4 *1 (-1016 *3 *4 *5 *2 *6)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1015 *3 *4 *5 *6 *2)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)))))
+ (-12 (-4 *1 (-1016 *3 *4 *5 *6 *2)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1015 *2 *3 *4 *5 *6)) (-4 *2 (-1012)) (-4 *3 (-1012))
- (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)))))
+ (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013))
+ (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1015 *2 *3 *4 *5 *6)) (-4 *2 (-1012)) (-4 *3 (-1012))
- (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)))))
+ (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013))
+ (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)))))
(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-830)) (-5 *1 (-1013 *3 *4)) (-14 *3 *2) (-14 *4 *2))))
+ (|partial| -12 (-5 *2 (-831)) (-5 *1 (-1014 *3 *4)) (-14 *3 *2) (-14 *4 *2))))
(((*1 *1 *1 *2 *2)
- (|partial| -12 (-5 *2 (-830)) (-5 *1 (-1013 *3 *4)) (-14 *3 *2) (-14 *4 *2))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1047))) (-5 *1 (-613))))
+ (|partial| -12 (-5 *2 (-831)) (-5 *1 (-1014 *3 *4)) (-14 *3 *2) (-14 *4 *2))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-1048))) (-5 *1 (-614))))
((*1 *2 *1)
- (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1013 *3 *4)) (-14 *3 (-830))
- (-14 *4 (-830)))))
+ (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-831))
+ (-14 *4 (-831)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1013 *3 *4)) (-14 *3 (-830))
- (-14 *4 (-830)))))
+ (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-831))
+ (-14 *4 (-831)))))
(((*1 *2)
- (-12 (-5 *2 (-1177 (-1013 *3 *4))) (-5 *1 (-1013 *3 *4)) (-14 *3 (-830))
- (-14 *4 (-830)))))
+ (-12 (-5 *2 (-1178 (-1014 *3 *4))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-831))
+ (-14 *4 (-831)))))
(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -3989)) (-4 *1 (-426 *3)) (-4 *3 (-1127)) (-4 *3 (-1012))
+ (-12 (|has| *1 (-6 -3991)) (-4 *1 (-426 *3)) (-4 *3 (-1128)) (-4 *3 (-1013))
(-5 *2 (-85))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-813 *4)) (-4 *4 (-1012)) (-5 *2 (-85)) (-5 *1 (-816 *4))))
+ (-12 (-5 *3 (-814 *4)) (-4 *4 (-1013)) (-5 *2 (-85)) (-5 *1 (-817 *4))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-830)) (-5 *2 (-85)) (-5 *1 (-1013 *4 *5)) (-14 *4 *3)
+ (-12 (-5 *3 (-831)) (-5 *2 (-85)) (-5 *1 (-1014 *4 *5)) (-14 *4 *3)
(-14 *5 *3))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-830)) (-5 *2 (-694)) (-5 *1 (-1013 *4 *5)) (-14 *4 *3)
+ (-12 (-5 *3 (-831)) (-5 *2 (-695)) (-5 *1 (-1014 *4 *5)) (-14 *4 *3)
(-14 *5 *3))))
-(((*1 *2 *1) (-12 (-4 *1 (-1012)) (-5 *2 (-1032)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1012)) (-5 *2 (-1071)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1012)) (-5 *2 (-85)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))
- ((*1 *1 *1) (-5 *1 (-772)))
- ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-4 *1 (-1010 *3))))
- ((*1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-4 *1 (-1010 *3))))
- ((*1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-1033)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-1072)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))
+ ((*1 *1 *1) (-5 *1 (-773)))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-4 *1 (-1011 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-4 *1 (-1011 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-583 (-441 *3 *4 *5 *6))) (-4 *3 (-311)) (-4 *4 (-717))
- (-4 *5 (-756)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5))))
+ (-12 (-5 *2 (-584 (-441 *3 *4 *5 *6))) (-4 *3 (-311)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-311)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-441 *2 *3 *4 *5))
- (-4 *5 (-861 *2 *3 *4))))
+ (-12 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-441 *2 *3 *4 *5))
+ (-4 *5 (-862 *2 *3 *4))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-389))
- (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6))))
+ (-12 (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-389))
+ (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-982 *4 *5 *6 *7))
- (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6))))
+ (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-983 *4 *5 *6 *7))
+ (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *7))))
((*1 *2 *3 *1)
- (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6))
- (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1012)) (-5 *2 (-85)))))
+ (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6))
+ (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-583 (-550 *4))) (-4 *4 (-361 *3)) (-4 *3 (-1012))
- (-5 *1 (-508 *3 *4))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-31))))
- ((*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-1047))) (-5 *1 (-106))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-1047))) (-5 *1 (-111))))
- ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-127))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-1047))) (-5 *1 (-135))))
- ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-172))))
- ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-617))))
- ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-932))))
- ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-977))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-1047))) (-5 *1 (-1007)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-1005 *3)) (-4 *3 (-1127)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1127)) (-5 *2 (-483)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1127))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-1071)) (-5 *1 (-902))))
+ (-12 (-5 *2 (-584 (-551 *4))) (-4 *4 (-361 *3)) (-4 *3 (-1013))
+ (-5 *1 (-509 *3 *4))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-31))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-1048))) (-5 *1 (-106))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-1048))) (-5 *1 (-111))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-127))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-1048))) (-5 *1 (-135))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-172))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-618))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-933))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-978))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-1048))) (-5 *1 (-1008)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-1006 *3)) (-4 *3 (-1128)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1128)) (-5 *2 (-484)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-1072)) (-5 *1 (-903))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1088)) (-4 *4 (-1127)) (-5 *1 (-970 *3 *4))
- (-4 *3 (-1005 *4))))
+ (-12 (-5 *2 (-1089)) (-4 *4 (-1128)) (-5 *1 (-971 *3 *4))
+ (-4 *3 (-1006 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1088)) (-5 *3 (-1000 *4)) (-4 *4 (-1127)) (-5 *1 (-1003 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1047))) (-5 *1 (-1002)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *1 (-221))))
+ (-12 (-5 *2 (-1089)) (-5 *3 (-1001 *4)) (-4 *4 (-1128)) (-5 *1 (-1004 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-1048))) (-5 *1 (-1003)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *1 (-221))))
((*1 *2 *3)
- (-12 (-5 *3 (-1177 *1)) (-4 *1 (-279 *4)) (-4 *4 (-311)) (-5 *2 (-630 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-1177 *3))))
+ (-12 (-5 *3 (-1178 *1)) (-4 *1 (-279 *4)) (-4 *4 (-311)) (-5 *2 (-631 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-1178 *3))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4))))
+ (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-1177 *4))))
+ (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-1178 *4))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-1177 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-146))
- (-4 *5 (-1153 *4)) (-5 *2 (-630 *4))))
+ (-12 (-5 *3 (-1178 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-146))
+ (-4 *5 (-1154 *4)) (-5 *2 (-631 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1177 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-146))
- (-4 *5 (-1153 *4)) (-5 *2 (-1177 *4))))
+ (-12 (-5 *3 (-1178 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-146))
+ (-4 *5 (-1154 *4)) (-5 *2 (-1178 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1177 *1)) (-4 *1 (-350 *4 *5)) (-4 *4 (-146))
- (-4 *5 (-1153 *4)) (-5 *2 (-630 *4))))
+ (-12 (-5 *3 (-1178 *1)) (-4 *1 (-350 *4 *5)) (-4 *4 (-146))
+ (-4 *5 (-1154 *4)) (-5 *2 (-631 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1153 *3))
- (-5 *2 (-1177 *3))))
+ (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3))
+ (-5 *2 (-1178 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1177 *1)) (-4 *1 (-358 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-1177 *3))))
+ (-12 (-5 *3 (-1178 *1)) (-4 *1 (-358 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-1178 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-1177 *3)) (-5 *1 (-579 *3 *4)) (-4 *3 (-311))
- (-14 *4 (-583 (-1088)))))
+ (-12 (-5 *2 (-1178 *3)) (-5 *1 (-580 *3 *4)) (-4 *3 (-311))
+ (-14 *4 (-584 (-1089)))))
((*1 *2 *1)
- (-12 (-5 *2 (-1177 *3)) (-5 *1 (-581 *3 *4)) (-4 *3 (-311))
- (-14 *4 (-583 (-1088)))))
+ (-12 (-5 *2 (-1178 *3)) (-5 *1 (-582 *3 *4)) (-4 *3 (-311))
+ (-14 *4 (-584 (-1089)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-630 *5))) (-5 *3 (-630 *5)) (-4 *5 (-311))
- (-5 *2 (-1177 *5)) (-5 *1 (-997 *5)))))
+ (-12 (-5 *4 (-584 (-631 *5))) (-5 *3 (-631 *5)) (-4 *5 (-311))
+ (-5 *2 (-1178 *5)) (-5 *1 (-998 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146))
- (-5 *2 (-1177 (-630 *4)))))
+ (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146))
+ (-5 *2 (-1178 (-631 *4)))))
((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-1177 (-630 *4))) (-5 *1 (-357 *3 *4))
+ (-12 (-4 *4 (-146)) (-5 *2 (-1178 (-631 *4))) (-5 *1 (-357 *3 *4))
(-4 *3 (-358 *4))))
- ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-1177 (-630 *3)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-1088))) (-4 *5 (-311))
- (-5 *2 (-1177 (-630 (-347 (-857 *5))))) (-5 *1 (-997 *5))
- (-5 *4 (-630 (-347 (-857 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-1088))) (-4 *5 (-311)) (-5 *2 (-1177 (-630 (-857 *5))))
- (-5 *1 (-997 *5)) (-5 *4 (-630 (-857 *5)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-630 *4))) (-4 *4 (-311)) (-5 *2 (-1177 (-630 *4)))
- (-5 *1 (-997 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-149))) (-5 *1 (-996)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-632 (-78))) (-5 *1 (-149))))
- ((*1 *2 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-632 (-78))) (-5 *1 (-996)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-996)))))
-(((*1 *1) (-5 *1 (-996))))
-(((*1 *1) (-5 *1 (-996))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-995 *2))))
+ ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-1178 (-631 *3)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-584 (-1089))) (-4 *5 (-311))
+ (-5 *2 (-1178 (-631 (-347 (-858 *5))))) (-5 *1 (-998 *5))
+ (-5 *4 (-631 (-347 (-858 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-584 (-1089))) (-4 *5 (-311)) (-5 *2 (-1178 (-631 (-858 *5))))
+ (-5 *1 (-998 *5)) (-5 *4 (-631 (-858 *5)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-584 (-631 *4))) (-4 *4 (-311)) (-5 *2 (-1178 (-631 *4)))
+ (-5 *1 (-998 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-149))) (-5 *1 (-997)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-633 (-78))) (-5 *1 (-149))))
+ ((*1 *2 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-633 (-78))) (-5 *1 (-997)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-997)))))
+(((*1 *1) (-5 *1 (-997))))
+(((*1 *1) (-5 *1 (-997))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-996 *2))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-483) *2 *2)) (-4 *2 (-105)) (-5 *1 (-995 *2)))))
-(((*1 *2) (-12 (-5 *2 (-583 *3)) (-5 *1 (-995 *3)) (-4 *3 (-105)))))
-(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-995 *3)) (-4 *3 (-105)))))
-(((*1 *1) (-5 *1 (-993))))
+ (-12 (-5 *3 (-1 (-484) *2 *2)) (-4 *2 (-105)) (-5 *1 (-996 *2)))))
+(((*1 *2) (-12 (-5 *2 (-584 *3)) (-5 *1 (-996 *3)) (-4 *3 (-105)))))
+(((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-996 *3)) (-4 *3 (-105)))))
+(((*1 *1) (-5 *1 (-994))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-717)) (-4 *7 (-756))
- (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-583 *3)) (-5 *1 (-526 *5 *6 *7 *8 *3))
- (-4 *3 (-1019 *5 *6 *7 *8))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-718)) (-4 *7 (-757))
+ (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-584 *3)) (-5 *1 (-527 *5 *6 *7 *8 *3))
+ (-4 *3 (-1020 *5 *6 *7 *8))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120)))
- (-5 *2 (-583 (-2 (|:| -1744 (-1083 *5)) (|:| -3219 (-583 (-857 *5))))))
- (-5 *1 (-989 *5 *6)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1088)))))
+ (-5 *2 (-584 (-2 (|:| -1745 (-1084 *5)) (|:| -3221 (-584 (-858 *5))))))
+ (-5 *1 (-990 *5 *6)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1089)))))
((*1 *2 *3)
(-12 (-4 *4 (-13 (-257) (-120)))
- (-5 *2 (-583 (-2 (|:| -1744 (-1083 *4)) (|:| -3219 (-583 (-857 *4))))))
- (-5 *1 (-989 *4 *5)) (-5 *3 (-583 (-857 *4))) (-14 *5 (-583 (-1088)))))
+ (-5 *2 (-584 (-2 (|:| -1745 (-1084 *4)) (|:| -3221 (-584 (-858 *4))))))
+ (-5 *1 (-990 *4 *5)) (-5 *3 (-584 (-858 *4))) (-14 *5 (-584 (-1089)))))
((*1 *2 *3 *4 *4)
(-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120)))
- (-5 *2 (-583 (-2 (|:| -1744 (-1083 *5)) (|:| -3219 (-583 (-857 *5))))))
- (-5 *1 (-989 *5 *6)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1088))))))
+ (-5 *2 (-584 (-2 (|:| -1745 (-1084 *5)) (|:| -3221 (-584 (-858 *5))))))
+ (-5 *1 (-990 *5 *6)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1089))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-583 (-986 *3 *4 *5))) (-4 *3 (-1012))
- (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3))))
- (-4 *5 (-13 (-361 *4) (-796 *3) (-553 (-800 *3)))) (-5 *1 (-988 *3 *4 *5)))))
+ (-12 (-5 *2 (-584 (-987 *3 *4 *5))) (-4 *3 (-1013))
+ (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3))))
+ (-4 *5 (-13 (-361 *4) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-989 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1012)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3))))
- (-5 *2 (-583 (-986 *3 *4 *5))) (-5 *1 (-988 *3 *4 *5))
- (-4 *5 (-13 (-361 *4) (-796 *3) (-553 (-800 *3)))))))
+ (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3))))
+ (-5 *2 (-584 (-987 *3 *4 *5))) (-5 *1 (-989 *3 *4 *5))
+ (-4 *5 (-13 (-361 *4) (-797 *3) (-554 (-801 *3)))))))
(((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-583 (-1088))) (-4 *4 (-1012))
- (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-986 *4 *5 *2))
- (-4 *2 (-13 (-361 *5) (-796 *4) (-553 (-800 *4))))))
+ (-12 (-5 *3 (-584 (-1089))) (-4 *4 (-1013))
+ (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-987 *4 *5 *2))
+ (-4 *2 (-13 (-361 *5) (-797 *4) (-554 (-801 *4))))))
((*1 *1 *2 *2)
- (-12 (-4 *3 (-1012)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3))))
- (-5 *1 (-986 *3 *4 *2)) (-4 *2 (-13 (-361 *4) (-796 *3) (-553 (-800 *3)))))))
+ (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3))))
+ (-5 *1 (-987 *3 *4 *2)) (-4 *2 (-13 (-361 *4) (-797 *3) (-554 (-801 *3)))))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-800 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1012)) (-4 *5 (-1127))
- (-5 *1 (-801 *4 *5))))
+ (-12 (-5 *2 (-801 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1013)) (-4 *5 (-1128))
+ (-5 *1 (-802 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-800 *4)) (-5 *3 (-583 (-1 (-85) *5))) (-4 *4 (-1012))
- (-4 *5 (-1127)) (-5 *1 (-801 *4 *5))))
+ (-12 (-5 *2 (-801 *4)) (-5 *3 (-584 (-1 (-85) *5))) (-4 *4 (-1013))
+ (-4 *5 (-1128)) (-5 *1 (-802 *4 *5))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-800 *5)) (-5 *3 (-583 (-1088))) (-5 *4 (-1 (-85) (-583 *6)))
- (-4 *5 (-1012)) (-4 *6 (-1127)) (-5 *1 (-801 *5 *6))))
+ (-12 (-5 *2 (-801 *5)) (-5 *3 (-584 (-1089))) (-5 *4 (-1 (-85) (-584 *6)))
+ (-4 *5 (-1013)) (-4 *6 (-1128)) (-5 *1 (-802 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1088)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1127))
- (-5 *2 (-264 (-483))) (-5 *1 (-848 *5))))
+ (-12 (-5 *3 (-1089)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1128))
+ (-5 *2 (-264 (-484))) (-5 *1 (-849 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1088)) (-5 *4 (-583 (-1 (-85) *5))) (-4 *5 (-1127))
- (-5 *2 (-264 (-483))) (-5 *1 (-848 *5))))
+ (-12 (-5 *3 (-1089)) (-5 *4 (-584 (-1 (-85) *5))) (-4 *5 (-1128))
+ (-5 *2 (-264 (-484))) (-5 *1 (-849 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1127)) (-4 *4 (-1012))
- (-5 *1 (-849 *4 *2 *5)) (-4 *2 (-361 *4))))
+ (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1128)) (-4 *4 (-1013))
+ (-5 *1 (-850 *4 *2 *5)) (-4 *2 (-361 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 (-1 (-85) *5))) (-4 *5 (-1127)) (-4 *4 (-1012))
- (-5 *1 (-849 *4 *2 *5)) (-4 *2 (-361 *4))))
+ (-12 (-5 *3 (-584 (-1 (-85) *5))) (-4 *5 (-1128)) (-4 *4 (-1013))
+ (-5 *1 (-850 *4 *2 *5)) (-4 *2 (-361 *4))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-1088))) (-5 *3 (-1 (-85) (-583 *6)))
- (-4 *6 (-13 (-361 *5) (-796 *4) (-553 (-800 *4)))) (-4 *4 (-1012))
- (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-986 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1012)) (-4 *4 (-13 (-961) (-796 *3) (-553 *2)))
- (-5 *2 (-800 *3)) (-5 *1 (-986 *3 *4 *5))
- (-4 *5 (-13 (-361 *4) (-796 *3) (-553 *2))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1012)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3))))
- (-5 *2 (-583 (-1088))) (-5 *1 (-986 *3 *4 *5))
- (-4 *5 (-13 (-361 *4) (-796 *3) (-553 (-800 *3)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-154))))
- ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-262))))
- ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-883))))
- ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-907))))
- ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-948))))
- ((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-984)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4))))
- (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7))
- (-5 *2 (-583 *4)) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7))
- (-5 *2 (-85)) (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1597 *4))))
- (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
+ (-12 (-5 *2 (-584 (-1089))) (-5 *3 (-1 (-85) (-584 *6)))
+ (-4 *6 (-13 (-361 *5) (-797 *4) (-554 (-801 *4)))) (-4 *4 (-1013))
+ (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-987 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-962) (-797 *3) (-554 *2)))
+ (-5 *2 (-801 *3)) (-5 *1 (-987 *3 *4 *5))
+ (-4 *5 (-13 (-361 *4) (-797 *3) (-554 *2))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3))))
+ (-5 *2 (-584 (-1089))) (-5 *1 (-987 *3 *4 *5))
+ (-4 *5 (-13 (-361 *4) (-797 *3) (-554 (-801 *3)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-154))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-262))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-884))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-908))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-949))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-985)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4))))
+ (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-584 *4)) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-85)) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1598 *4))))
+ (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4))))
- (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4))))
+ (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4))))
- (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4))))
+ (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756))
- (-4 *3 (-976 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4))))
- (-5 *1 (-983 *6 *7 *8 *3 *4)) (-4 *4 (-982 *6 *7 *8 *3))))
+ (-12 (-5 *5 (-85)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757))
+ (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4))))
+ (-5 *1 (-984 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1597 *9)))) (-5 *5 (-85))
- (-4 *8 (-976 *6 *7 *4)) (-4 *9 (-982 *6 *7 *4 *8)) (-4 *6 (-389))
- (-4 *7 (-717)) (-4 *4 (-756))
- (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -1597 *9))))
- (-5 *1 (-983 *6 *7 *4 *8 *9)))))
+ (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1598 *9)))) (-5 *5 (-85))
+ (-4 *8 (-977 *6 *7 *4)) (-4 *9 (-983 *6 *7 *4 *8)) (-4 *6 (-389))
+ (-4 *7 (-718)) (-4 *4 (-757))
+ (-5 *2 (-584 (-2 (|:| |val| *8) (|:| -1598 *9))))
+ (-5 *1 (-984 *6 *7 *4 *8 *9)))))
(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -1597 *4))))
- (-5 *1 (-983 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-584 (-2 (|:| |val| (-584 *3)) (|:| -1598 *4))))
+ (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-982 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-983 *3 *4 *5 *6)) (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))))
(((*1 *2 *3 *1)
- (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6))
- (-5 *2 (-3 (-85) (-583 *1))) (-4 *1 (-982 *4 *5 *6 *3)))))
+ (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6))
+ (-5 *2 (-3 (-85) (-584 *1))) (-4 *1 (-983 *4 *5 *6 *3)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *3 (-976 *4 *5 *6)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85))))
((*1 *2 *3 *1)
- (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6))
- (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1597 *1))))
- (-4 *1 (-982 *4 *5 *6 *3)))))
+ (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6))
+ (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1598 *1))))
+ (-4 *1 (-983 *4 *5 *6 *3)))))
(((*1 *2 *3 *1)
- (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6))
- (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3)))))
+ (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6))
+ (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *3)))))
(((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6))
- (-5 *2 (-3 *3 (-583 *1))) (-4 *1 (-982 *4 *5 *6 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-494)) (-4 *2 (-961))))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1153 *3))))
+ (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6))
+ (-5 *2 (-3 *3 (-584 *1))) (-4 *1 (-983 *4 *5 *6 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-495)) (-4 *2 (-962))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1154 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *2 (-494))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *2 (-495))))
((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6))
- (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *1))))
- (-4 *1 (-982 *4 *5 *6 *3)))))
+ (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6))
+ (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *1))))
+ (-4 *1 (-983 *4 *5 *6 *3)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-982 *4 *5 *6 *7))
- (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6))))
+ (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-983 *4 *5 *6 *7))
+ (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *7))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3)) (-4 *4 (-389))
- (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6))))
+ (-12 (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-389))
+ (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-976 *4 *5 *6))
- (-5 *2 (-583 *1)) (-4 *1 (-982 *4 *5 *6 *3)))))
+ (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-977 *4 *5 *6))
+ (-5 *2 (-584 *1)) (-4 *1 (-983 *4 *5 *6 *3)))))
(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85))))
((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55))))
((*1 *2 *1)
- (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85))
- (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5))))
+ (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85))
+ (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-979 *4 *3)) (-4 *4 (-13 (-755) (-311))) (-4 *3 (-1153 *4))
+ (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-756) (-311))) (-4 *3 (-1154 *4))
(-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-492 *3)) (-4 *3 (-13 (-344) (-1113))) (-5 *2 (-85))))
- ((*1 *2 *1) (-12 (-4 *1 (-714)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-344) (-1114))) (-5 *2 (-85))))
+ ((*1 *2 *1) (-12 (-4 *1 (-715)) (-5 *2 (-85))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-979 *4 *3)) (-4 *4 (-13 (-755) (-311))) (-4 *3 (-1153 *4))
+ (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-756) (-311))) (-4 *3 (-1154 *4))
(-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-492 *3)) (-4 *3 (-13 (-344) (-1113))) (-5 *2 (-85))))
- ((*1 *2 *1) (-12 (-4 *1 (-716)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-344) (-1114))) (-5 *2 (-85))))
+ ((*1 *2 *1) (-12 (-4 *1 (-717)) (-5 *2 (-85))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-979 *4 *3)) (-4 *4 (-13 (-755) (-311))) (-4 *3 (-1153 *4))
+ (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-756) (-311))) (-4 *3 (-1154 *4))
(-5 *2 (-85)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-950 (-483))) (-4 *3 (-494)) (-5 *1 (-32 *3 *2))
+ (-12 (-4 *3 (-951 (-484))) (-4 *3 (-495)) (-5 *1 (-32 *3 *2))
(-4 *2 (-361 *3))))
((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-1083 *4)) (-5 *1 (-138 *3 *4))
+ (-12 (-4 *4 (-146)) (-5 *2 (-1084 *4)) (-5 *1 (-138 *3 *4))
(-4 *3 (-139 *4))))
- ((*1 *1 *1) (-12 (-4 *1 (-961)) (-4 *1 (-253))))
- ((*1 *2) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-1083 *3))))
- ((*1 *2) (-12 (-4 *1 (-661 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1153 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-979 *3 *2)) (-4 *3 (-13 (-755) (-311))) (-4 *2 (-1153 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-857 (-483))) (-5 *2 (-583 *1)) (-4 *1 (-925))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-857 (-347 (-483)))) (-5 *2 (-583 *1)) (-4 *1 (-925))))
- ((*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-925)) (-5 *2 (-583 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1083 (-483))) (-5 *2 (-583 *1)) (-4 *1 (-925))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1083 (-347 (-483)))) (-5 *2 (-583 *1)) (-4 *1 (-925))))
- ((*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-925)) (-5 *2 (-583 *1))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-755) (-311))) (-4 *3 (-1153 *4)) (-5 *2 (-583 *1))
- (-4 *1 (-979 *4 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1083 *1)) (-5 *3 (-1088)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-857 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1088)) (-4 *1 (-29 *3)) (-4 *3 (-494))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-494))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1083 *2)) (-5 *4 (-1088)) (-4 *2 (-361 *5)) (-5 *1 (-32 *5 *2))
- (-4 *5 (-494))))
+ ((*1 *1 *1) (-12 (-4 *1 (-962)) (-4 *1 (-253))))
+ ((*1 *2) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-1084 *3))))
+ ((*1 *2) (-12 (-4 *1 (-662 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1154 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-980 *3 *2)) (-4 *3 (-13 (-756) (-311))) (-4 *2 (-1154 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-858 (-484))) (-5 *2 (-584 *1)) (-4 *1 (-926))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-858 (-347 (-484)))) (-5 *2 (-584 *1)) (-4 *1 (-926))))
+ ((*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-926)) (-5 *2 (-584 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1084 (-484))) (-5 *2 (-584 *1)) (-4 *1 (-926))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1084 (-347 (-484)))) (-5 *2 (-584 *1)) (-4 *1 (-926))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1084 *1)) (-4 *1 (-926)) (-5 *2 (-584 *1))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-756) (-311))) (-4 *3 (-1154 *4)) (-5 *2 (-584 *1))
+ (-4 *1 (-980 *4 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1084 *1)) (-5 *3 (-1089)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-858 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1089)) (-4 *1 (-29 *3)) (-4 *3 (-495))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-495))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1084 *2)) (-5 *4 (-1089)) (-4 *2 (-361 *5)) (-5 *1 (-32 *5 *2))
+ (-4 *5 (-495))))
((*1 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1083 *1)) (-5 *3 (-830)) (-4 *1 (-925))))
+ (|partial| -12 (-5 *2 (-1084 *1)) (-5 *3 (-831)) (-4 *1 (-926))))
((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-1083 *1)) (-5 *3 (-830)) (-5 *4 (-772))
- (-4 *1 (-925))))
+ (|partial| -12 (-5 *2 (-1084 *1)) (-5 *3 (-831)) (-5 *4 (-773))
+ (-4 *1 (-926))))
((*1 *1 *2 *3)
- (|partial| -12 (-5 *3 (-830)) (-4 *4 (-13 (-755) (-311)))
- (-4 *1 (-979 *4 *2)) (-4 *2 (-1153 *4)))))
+ (|partial| -12 (-5 *3 (-831)) (-4 *4 (-13 (-756) (-311)))
+ (-4 *1 (-980 *4 *2)) (-4 *2 (-1154 *4)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-347 (-483))) (-5 *1 (-937 *3))
- (-4 *3 (-13 (-755) (-311) (-933)))))
+ (-12 (-5 *2 (-347 (-484))) (-5 *1 (-938 *3))
+ (-4 *3 (-13 (-756) (-311) (-934)))))
((*1 *2 *3 *1 *2)
- (-12 (-4 *2 (-13 (-755) (-311))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2))))
+ (-12 (-4 *2 (-13 (-756) (-311))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2))))
((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-979 *2 *3)) (-4 *2 (-13 (-755) (-311))) (-4 *3 (-1153 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1047))) (-5 *1 (-127))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-1047))) (-5 *1 (-977)))))
+ (-12 (-4 *1 (-980 *2 *3)) (-4 *2 (-13 (-756) (-311))) (-4 *3 (-1154 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-1048))) (-5 *1 (-127))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-1048))) (-5 *1 (-978)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717))
- (-4 *5 (-976 *3 *4 *2)) (-4 *2 (-756))))
+ (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718))
+ (-4 *5 (-977 *3 *4 *2)) (-4 *2 (-757))))
((*1 *2 *1)
- (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))))
+ (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-5 *2 (-694)))))
+ (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-5 *2 (-695)))))
(((*1 *2 *1) (-12 (-5 *2 (-420)) (-5 *1 (-172))))
- ((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1127))))
- ((*1 *2 *1) (-12 (-5 *2 (-420)) (-5 *1 (-617))))
+ ((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128))))
+ ((*1 *2 *1) (-12 (-5 *2 (-420)) (-5 *1 (-618))))
((*1 *1 *1)
- (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1))
- (-4 *1 (-976 *3 *4 *5)))))
+ (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1))
+ (-4 *1 (-977 *3 *4 *5)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961))))
- ((*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-50 *2 *3)) (-14 *3 (-583 (-1088)))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962))))
+ ((*1 *2 *1) (-12 (-4 *2 (-962)) (-5 *1 (-50 *2 *3)) (-14 *3 (-584 (-1089)))))
((*1 *2 *1)
- (-12 (-5 *2 (-264 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756)))
- (-14 *4 (-583 (-1088)))))
- ((*1 *2 *1) (-12 (-4 *1 (-332 *2 *3)) (-4 *3 (-1012)) (-4 *2 (-961))))
+ (-12 (-5 *2 (-264 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757)))
+ (-14 *4 (-584 (-1089)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-332 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-962))))
((*1 *2 *1)
- (-12 (-14 *3 (-583 (-1088))) (-4 *5 (-196 (-3951 *3) (-694)))
+ (-12 (-14 *3 (-584 (-1089))) (-4 *5 (-196 (-3953 *3) (-695)))
(-14 *6
- (-1 (-85) (-2 (|:| -2396 *4) (|:| -2397 *5))
- (-2 (|:| -2396 *4) (|:| -2397 *5))))
- (-4 *2 (-146)) (-5 *1 (-398 *3 *2 *4 *5 *6 *7)) (-4 *4 (-756))
- (-4 *7 (-861 *2 *5 (-773 *3)))))
- ((*1 *2 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *3 (-759)) (-4 *2 (-72))))
- ((*1 *2 *1) (-12 (-4 *2 (-494)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1153 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-961))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-961)) (-5 *1 (-674 *2 *3)) (-4 *3 (-756)) (-4 *3 (-663))))
- ((*1 *2 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *3 (-716)) (-4 *4 (-756)) (-4 *2 (-961))))
+ (-1 (-85) (-2 (|:| -2398 *4) (|:| -2399 *5))
+ (-2 (|:| -2398 *4) (|:| -2399 *5))))
+ (-4 *2 (-146)) (-5 *1 (-398 *3 *2 *4 *5 *6 *7)) (-4 *4 (-757))
+ (-4 *7 (-862 *2 *5 (-774 *3)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *3 (-760)) (-4 *2 (-72))))
+ ((*1 *2 *1) (-12 (-4 *2 (-495)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1154 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-962))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-962)) (-5 *1 (-675 *2 *3)) (-4 *3 (-757)) (-4 *3 (-664))))
+ ((*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *3 (-717)) (-4 *4 (-757)) (-4 *2 (-962))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))))
+ (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-961)) (-5 *2 (-85)) (-5 *1 (-381 *4 *3)) (-4 *3 (-1153 *4))))
+ (-12 (-4 *4 (-962)) (-5 *2 (-85)) (-5 *1 (-381 *4 *3)) (-4 *3 (-1154 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
(-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
(-5 *2 (-85)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1))
- (-4 *1 (-976 *3 *4 *5)))))
+ (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1))
+ (-4 *1 (-977 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1))
- (-4 *1 (-976 *3 *4 *5)))))
+ (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1))
+ (-4 *1 (-977 *3 *4 *5)))))
(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717))
- (-4 *5 (-756)) (-5 *2 (-85)))))
+ (|partial| -12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-5 *2 (-85)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
(-5 *2 (-85)))))
(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))))
+ (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))))
+ (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))))
+ (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-976 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))))
+ (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756))
- (-5 *2 (-2 (|:| -3948 *1) (|:| |gap| (-694)) (|:| -2898 *1)))
- (-4 *1 (-976 *4 *5 *3))))
+ (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757))
+ (-5 *2 (-2 (|:| -3950 *1) (|:| |gap| (-695)) (|:| -2900 *1)))
+ (-4 *1 (-977 *4 *5 *3))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-5 *2 (-2 (|:| -3948 *1) (|:| |gap| (-694)) (|:| -2898 *1)))
- (-4 *1 (-976 *3 *4 *5)))))
+ (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-5 *2 (-2 (|:| -3950 *1) (|:| |gap| (-695)) (|:| -2900 *1)))
+ (-4 *1 (-977 *3 *4 *5)))))
(((*1 *2 *1 *1)
(-12
(-5 *2
- (-2 (|:| -3948 *3) (|:| |gap| (-694)) (|:| -1970 (-704 *3))
- (|:| -2898 (-704 *3))))
- (-5 *1 (-704 *3)) (-4 *3 (-961))))
+ (-2 (|:| -3950 *3) (|:| |gap| (-695)) (|:| -1971 (-705 *3))
+ (|:| -2900 (-705 *3))))
+ (-5 *1 (-705 *3)) (-4 *3 (-962))))
((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756))
- (-5 *2 (-2 (|:| -3948 *1) (|:| |gap| (-694)) (|:| -1970 *1) (|:| -2898 *1)))
- (-4 *1 (-976 *4 *5 *3))))
+ (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757))
+ (-5 *2 (-2 (|:| -3950 *1) (|:| |gap| (-695)) (|:| -1971 *1) (|:| -2900 *1)))
+ (-4 *1 (-977 *4 *5 *3))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-5 *2 (-2 (|:| -3948 *1) (|:| |gap| (-694)) (|:| -1970 *1) (|:| -2898 *1)))
- (-4 *1 (-976 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961))))
+ (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-5 *2 (-2 (|:| -3950 *1) (|:| |gap| (-695)) (|:| -1971 *1) (|:| -2900 *1)))
+ (-4 *1 (-977 *3 *4 *5)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
(((*1 *2 *1 *1)
(-12
- (-5 *2 (-2 (|:| |polnum| (-704 *3)) (|:| |polden| *3) (|:| -3475 (-694))))
- (-5 *1 (-704 *3)) (-4 *3 (-961))))
+ (-5 *2 (-2 (|:| |polnum| (-705 *3)) (|:| |polden| *3) (|:| -3477 (-695))))
+ (-5 *1 (-705 *3)) (-4 *3 (-962))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3475 (-694))))
- (-4 *1 (-976 *3 *4 *5)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1127))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-298)) (-4 *5 (-279 *4)) (-4 *6 (-1153 *5))
- (-5 *2 (-1083 (-1083 *4))) (-5 *1 (-700 *4 *5 *6 *3 *7)) (-4 *3 (-1153 *6))
- (-14 *7 (-830))))
+ (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3477 (-695))))
+ (-4 *1 (-977 *3 *4 *5)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1128))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-298)) (-4 *5 (-279 *4)) (-4 *6 (-1154 *5))
+ (-5 *2 (-1084 (-1084 *4))) (-5 *1 (-701 *4 *5 *6 *3 *7)) (-4 *3 (-1154 *6))
+ (-14 *7 (-831))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-961))
- (-4 *4 (-717)) (-4 *5 (-756)) (-4 *1 (-889 *3 *4 *5 *6))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-950 *2)) (-4 *2 (-1127))))
+ (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-962))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-4 *1 (-890 *3 *4 *5 *6))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-951 *2)) (-4 *2 (-1128))))
((*1 *1 *2)
(|partial| OR
- (-12 (-5 *2 (-857 *3))
- (-12 (-2556 (-4 *3 (-38 (-347 (-483))))) (-2556 (-4 *3 (-38 (-483))))
- (-4 *5 (-553 (-1088))))
- (-4 *3 (-961)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)))
- (-12 (-5 *2 (-857 *3))
- (-12 (-2556 (-4 *3 (-482))) (-2556 (-4 *3 (-38 (-347 (-483)))))
- (-4 *3 (-38 (-483))) (-4 *5 (-553 (-1088))))
- (-4 *3 (-961)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)))
- (-12 (-5 *2 (-857 *3))
- (-12 (-2556 (-4 *3 (-904 (-483)))) (-4 *3 (-38 (-347 (-483))))
- (-4 *5 (-553 (-1088))))
- (-4 *3 (-961)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)))))
+ (-12 (-5 *2 (-858 *3))
+ (-12 (-2558 (-4 *3 (-38 (-347 (-484))))) (-2558 (-4 *3 (-38 (-484))))
+ (-4 *5 (-554 (-1089))))
+ (-4 *3 (-962)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)))
+ (-12 (-5 *2 (-858 *3))
+ (-12 (-2558 (-4 *3 (-483))) (-2558 (-4 *3 (-38 (-347 (-484)))))
+ (-4 *3 (-38 (-484))) (-4 *5 (-554 (-1089))))
+ (-4 *3 (-962)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)))
+ (-12 (-5 *2 (-858 *3))
+ (-12 (-2558 (-4 *3 (-905 (-484)))) (-4 *3 (-38 (-347 (-484))))
+ (-4 *5 (-554 (-1089))))
+ (-4 *3 (-962)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)))))
((*1 *1 *2)
(|partial| OR
- (-12 (-5 *2 (-857 (-483))) (-4 *1 (-976 *3 *4 *5))
- (-12 (-2556 (-4 *3 (-38 (-347 (-483))))) (-4 *3 (-38 (-483)))
- (-4 *5 (-553 (-1088))))
- (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)))
- (-12 (-5 *2 (-857 (-483))) (-4 *1 (-976 *3 *4 *5))
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *5 (-553 (-1088)))) (-4 *3 (-961))
- (-4 *4 (-717)) (-4 *5 (-756)))))
+ (-12 (-5 *2 (-858 (-484))) (-4 *1 (-977 *3 *4 *5))
+ (-12 (-2558 (-4 *3 (-38 (-347 (-484))))) (-4 *3 (-38 (-484)))
+ (-4 *5 (-554 (-1089))))
+ (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)))
+ (-12 (-5 *2 (-858 (-484))) (-4 *1 (-977 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *5 (-554 (-1089)))) (-4 *3 (-962))
+ (-4 *4 (-718)) (-4 *5 (-757)))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-857 (-347 (-483)))) (-4 *1 (-976 *3 *4 *5))
- (-4 *3 (-38 (-347 (-483)))) (-4 *5 (-553 (-1088))) (-4 *3 (-961))
- (-4 *4 (-717)) (-4 *5 (-756)))))
-(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1127))))
+ (|partial| -12 (-5 *2 (-858 (-347 (-484)))) (-4 *1 (-977 *3 *4 *5))
+ (-4 *3 (-38 (-347 (-484)))) (-4 *5 (-554 (-1089))) (-4 *3 (-962))
+ (-4 *4 (-718)) (-4 *5 (-757)))))
+(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1128))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717))
- (-4 *5 (-756)) (-4 *1 (-889 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-1127))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-4 *1 (-890 *3 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-951 *2)) (-4 *2 (-1128))))
((*1 *1 *2)
(OR
- (-12 (-5 *2 (-857 *3))
- (-12 (-2556 (-4 *3 (-38 (-347 (-483))))) (-2556 (-4 *3 (-38 (-483))))
- (-4 *5 (-553 (-1088))))
- (-4 *3 (-961)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)))
- (-12 (-5 *2 (-857 *3))
- (-12 (-2556 (-4 *3 (-482))) (-2556 (-4 *3 (-38 (-347 (-483)))))
- (-4 *3 (-38 (-483))) (-4 *5 (-553 (-1088))))
- (-4 *3 (-961)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)))
- (-12 (-5 *2 (-857 *3))
- (-12 (-2556 (-4 *3 (-904 (-483)))) (-4 *3 (-38 (-347 (-483))))
- (-4 *5 (-553 (-1088))))
- (-4 *3 (-961)) (-4 *1 (-976 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)))))
+ (-12 (-5 *2 (-858 *3))
+ (-12 (-2558 (-4 *3 (-38 (-347 (-484))))) (-2558 (-4 *3 (-38 (-484))))
+ (-4 *5 (-554 (-1089))))
+ (-4 *3 (-962)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)))
+ (-12 (-5 *2 (-858 *3))
+ (-12 (-2558 (-4 *3 (-483))) (-2558 (-4 *3 (-38 (-347 (-484)))))
+ (-4 *3 (-38 (-484))) (-4 *5 (-554 (-1089))))
+ (-4 *3 (-962)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)))
+ (-12 (-5 *2 (-858 *3))
+ (-12 (-2558 (-4 *3 (-905 (-484)))) (-4 *3 (-38 (-347 (-484))))
+ (-4 *5 (-554 (-1089))))
+ (-4 *3 (-962)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)))))
((*1 *1 *2)
(OR
- (-12 (-5 *2 (-857 (-483))) (-4 *1 (-976 *3 *4 *5))
- (-12 (-2556 (-4 *3 (-38 (-347 (-483))))) (-4 *3 (-38 (-483)))
- (-4 *5 (-553 (-1088))))
- (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)))
- (-12 (-5 *2 (-857 (-483))) (-4 *1 (-976 *3 *4 *5))
- (-12 (-4 *3 (-38 (-347 (-483)))) (-4 *5 (-553 (-1088)))) (-4 *3 (-961))
- (-4 *4 (-717)) (-4 *5 (-756)))))
+ (-12 (-5 *2 (-858 (-484))) (-4 *1 (-977 *3 *4 *5))
+ (-12 (-2558 (-4 *3 (-38 (-347 (-484))))) (-4 *3 (-38 (-484)))
+ (-4 *5 (-554 (-1089))))
+ (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)))
+ (-12 (-5 *2 (-858 (-484))) (-4 *1 (-977 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-347 (-484)))) (-4 *5 (-554 (-1089)))) (-4 *3 (-962))
+ (-4 *4 (-718)) (-4 *5 (-757)))))
((*1 *1 *2)
- (-12 (-5 *2 (-857 (-347 (-483)))) (-4 *1 (-976 *3 *4 *5))
- (-4 *3 (-38 (-347 (-483)))) (-4 *5 (-553 (-1088))) (-4 *3 (-961))
- (-4 *4 (-717)) (-4 *5 (-756)))))
+ (-12 (-5 *2 (-858 (-347 (-484)))) (-4 *1 (-977 *3 *4 *5))
+ (-4 *3 (-38 (-347 (-484)))) (-4 *5 (-554 (-1089))) (-4 *3 (-962))
+ (-4 *4 (-718)) (-4 *5 (-757)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *2 (-494)))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *2 (-495)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *2 (-494)))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *2 (-495)))))
(((*1 *1 *1 *1)
- (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *2 (-494))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *2 (-495))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *2 (-494)))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *2 (-495)))))
(((*1 *1 *1 *1)
- (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *2 (-494))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *2 (-495))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *2 (-494)))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *2 (-495)))))
(((*1 *2 *1 *1)
(-12
(-5 *2
- (-2 (|:| -3139 (-704 *3)) (|:| |coef1| (-704 *3)) (|:| |coef2| (-704 *3))))
- (-5 *1 (-704 *3)) (-4 *3 (-494)) (-4 *3 (-961))))
+ (-2 (|:| -3141 (-705 *3)) (|:| |coef1| (-705 *3)) (|:| |coef2| (-705 *3))))
+ (-5 *1 (-705 *3)) (-4 *3 (-495)) (-4 *3 (-962))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-494)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-5 *2 (-2 (|:| -3139 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-976 *3 *4 *5)))))
+ (-12 (-4 *3 (-495)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-5 *2 (-2 (|:| -3141 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-977 *3 *4 *5)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3139 (-704 *3)) (|:| |coef1| (-704 *3))))
- (-5 *1 (-704 *3)) (-4 *3 (-494)) (-4 *3 (-961))))
+ (-12 (-5 *2 (-2 (|:| -3141 (-705 *3)) (|:| |coef1| (-705 *3))))
+ (-5 *1 (-705 *3)) (-4 *3 (-495)) (-4 *3 (-962))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-494)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-5 *2 (-2 (|:| -3139 *1) (|:| |coef1| *1))) (-4 *1 (-976 *3 *4 *5)))))
+ (-12 (-4 *3 (-495)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-5 *2 (-2 (|:| -3141 *1) (|:| |coef1| *1))) (-4 *1 (-977 *3 *4 *5)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3139 (-704 *3)) (|:| |coef2| (-704 *3))))
- (-5 *1 (-704 *3)) (-4 *3 (-494)) (-4 *3 (-961))))
+ (-12 (-5 *2 (-2 (|:| -3141 (-705 *3)) (|:| |coef2| (-705 *3))))
+ (-5 *1 (-705 *3)) (-4 *3 (-495)) (-4 *3 (-962))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-494)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-5 *2 (-2 (|:| -3139 *1) (|:| |coef2| *1))) (-4 *1 (-976 *3 *4 *5)))))
+ (-12 (-4 *3 (-495)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-5 *2 (-2 (|:| -3141 *1) (|:| |coef2| *1))) (-4 *1 (-977 *3 *4 *5)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-494)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-5 *2 (-583 *1)) (-4 *1 (-976 *3 *4 *5)))))
+ (-12 (-4 *3 (-495)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-5 *2 (-584 *1)) (-4 *1 (-977 *3 *4 *5)))))
(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-694)) (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717))
- (-4 *5 (-756)) (-4 *3 (-494)))))
+ (-12 (-5 *2 (-695)) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-4 *3 (-495)))))
(((*1 *1 *1 *1 *1 *2)
- (-12 (-5 *2 (-694)) (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717))
- (-4 *5 (-756)) (-4 *3 (-494)))))
+ (-12 (-5 *2 (-695)) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-4 *3 (-495)))))
(((*1 *1 *1 *1 *1 *1)
- (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *2 (-494)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-389))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *2 (-495)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-389))))
((*1 *1 *1 *1) (-4 *1 (-389)))
- ((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-423 *2)) (-4 *2 (-1153 (-483)))))
- ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-635 *2)) (-4 *2 (-1153 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-694)))
+ ((*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-423 *2)) (-4 *2 (-1154 (-484)))))
+ ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-636 *2)) (-4 *2 (-1154 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-695)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-257)) (-5 *1 (-827 *3 *4 *5 *2))
- (-4 *2 (-861 *5 *3 *4))))
+ (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-257)) (-5 *1 (-828 *3 *4 *5 *2))
+ (-4 *2 (-862 *5 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *6 *4 *5)) (-5 *1 (-827 *4 *5 *6 *2))
- (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-257))))
+ (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *6 *4 *5)) (-5 *1 (-828 *4 *5 *6 *2))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1083 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *5 (-257)) (-5 *1 (-827 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-1084 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *5 (-257)) (-5 *1 (-828 *3 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-1083 *7))) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-257))
- (-5 *2 (-1083 *7)) (-5 *1 (-827 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5))))
- ((*1 *1 *1 *1) (-5 *1 (-830)))
+ (-12 (-5 *3 (-584 (-1084 *7))) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257))
+ (-5 *2 (-1084 *7)) (-5 *1 (-828 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5))))
+ ((*1 *1 *1 *1) (-5 *1 (-831)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-389)) (-4 *3 (-494)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1153 *3))))
+ (-12 (-4 *3 (-389)) (-4 *3 (-495)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1154 *3))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
(-4 *2 (-389)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
(-4 *2 (-389)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
(-4 *2 (-389)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
(-4 *2 (-389)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
(-4 *2 (-389)))))
-(((*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-974))))
- ((*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-974)))))
-(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1127))))
- ((*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-756))))
- ((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756))))
- ((*1 *1 *1) (-5 *1 (-772)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-755) (-311))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2)))))
-(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1127))))
- ((*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-756))))
- ((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756))))
- ((*1 *1 *1) (-5 *1 (-772)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-755) (-311))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2)))))
+(((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-975))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-975)))))
+(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-757))))
+ ((*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757))))
+ ((*1 *1 *1) (-5 *1 (-773)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-756) (-311))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))))
+(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-757))))
+ ((*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757))))
+ ((*1 *1 *1) (-5 *1 (-773)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-756) (-311))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))))
(((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1127)) (-5 *2 (-694)) (-5 *1 (-195 *3 *4 *5))
+ (-12 (-14 *4 *2) (-4 *5 (-1128)) (-5 *2 (-695)) (-5 *1 (-195 *3 *4 *5))
(-4 *3 (-196 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-273 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-104)) (-5 *2 (-694))))
+ (-12 (-4 *1 (-273 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)) (-5 *2 (-695))))
((*1 *2)
- (-12 (-4 *4 (-311)) (-5 *2 (-694)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-309 *3)) (-4 *3 (-1012))))
- ((*1 *2) (-12 (-4 *1 (-317)) (-5 *2 (-694))))
- ((*1 *2 *1) (-12 (-4 *1 (-333 *3)) (-4 *3 (-1012)) (-5 *2 (-694))))
+ (-12 (-4 *4 (-311)) (-5 *2 (-695)) (-5 *1 (-278 *3 *4)) (-4 *3 (-279 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-309 *3)) (-4 *3 (-1013))))
+ ((*1 *2) (-12 (-4 *1 (-317)) (-5 *2 (-695))))
+ ((*1 *2 *1) (-12 (-4 *1 (-333 *3)) (-4 *3 (-1013)) (-5 *2 (-695))))
((*1 *2)
- (-12 (-4 *4 (-1012)) (-5 *2 (-694)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4))))
+ (-12 (-4 *4 (-1013)) (-5 *2 (-695)) (-5 *1 (-365 *3 *4)) (-4 *3 (-366 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-694)) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1012)) (-4 *4 (-23))
+ (-12 (-5 *2 (-695)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23))
(-14 *5 *4)))
((*1 *2)
- (-12 (-4 *4 (-146)) (-4 *5 (-1153 *4)) (-5 *2 (-694)) (-5 *1 (-660 *3 *4 *5))
- (-4 *3 (-661 *4 *5))))
- ((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-919))))
+ (-12 (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-695)) (-5 *1 (-661 *3 *4 *5))
+ (-4 *3 (-662 *4 *5))))
+ ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-920))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-755) (-311))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2)))))
+ (-12 (-4 *2 (-13 (-756) (-311))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-755) (-311))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2)))))
+ (-12 (-4 *2 (-13 (-756) (-311))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))))
(((*1 *1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-30))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-345 *4) *4)) (-4 *4 (-494)) (-5 *2 (-345 *4))
+ (-12 (-5 *3 (-1 (-345 *4) *4)) (-4 *4 (-495)) (-5 *2 (-345 *4))
(-5 *1 (-359 *4))))
- ((*1 *1 *1) (-5 *1 (-836)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-836))))
- ((*1 *1 *1) (-5 *1 (-838)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-838))))
+ ((*1 *1 *1) (-5 *1 (-837)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-837))))
+ ((*1 *1 *1) (-5 *1 (-839)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-839))))
((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))
- (-5 *4 (-347 (-483))) (-5 *1 (-934 *3)) (-4 *3 (-1153 (-483)))))
+ (-12 (-5 *2 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))))
+ (-5 *4 (-347 (-484))) (-5 *1 (-935 *3)) (-4 *3 (-1154 (-484)))))
((*1 *2 *3 *2 *2)
(|partial| -12
- (-5 *2 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))
- (-5 *1 (-934 *3)) (-4 *3 (-1153 (-483)))))
+ (-5 *2 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))))
+ (-5 *1 (-935 *3)) (-4 *3 (-1154 (-484)))))
((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))
- (-5 *4 (-347 (-483))) (-5 *1 (-935 *3)) (-4 *3 (-1153 *4))))
+ (-12 (-5 *2 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))))
+ (-5 *4 (-347 (-484))) (-5 *1 (-936 *3)) (-4 *3 (-1154 *4))))
((*1 *2 *3 *2 *2)
(|partial| -12
- (-5 *2 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))
- (-5 *1 (-935 *3)) (-4 *3 (-1153 (-347 (-483))))))
+ (-5 *2 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))))
+ (-5 *1 (-936 *3)) (-4 *3 (-1154 (-347 (-484))))))
((*1 *1 *1)
- (-12 (-4 *2 (-13 (-755) (-311))) (-5 *1 (-973 *2 *3)) (-4 *3 (-1153 *2)))))
+ (-12 (-4 *2 (-13 (-756) (-311))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1154 *2)))))
(((*1 *2 *3 *1)
- (-12 (-4 *4 (-13 (-755) (-311))) (-5 *2 (-85)) (-5 *1 (-973 *4 *3))
- (-4 *3 (-1153 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-550 (-48)))) (-5 *1 (-48))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-550 (-48))) (-5 *1 (-48))))
+ (-12 (-4 *4 (-13 (-756) (-311))) (-5 *2 (-85)) (-5 *1 (-974 *4 *3))
+ (-4 *3 (-1154 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-551 (-48)))) (-5 *1 (-48))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-551 (-48))) (-5 *1 (-48))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1083 (-48))) (-5 *3 (-583 (-550 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *2 *3) (-12 (-5 *2 (-1083 (-48))) (-5 *3 (-550 (-48))) (-5 *1 (-48))))
+ (-12 (-5 *2 (-1084 (-48))) (-5 *3 (-584 (-551 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *2 *3) (-12 (-5 *2 (-1084 (-48))) (-5 *3 (-551 (-48))) (-5 *1 (-48))))
((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146))))
((*1 *2 *3)
- (-12 (-4 *2 (-13 (-311) (-755))) (-5 *1 (-155 *2 *3))
- (-4 *3 (-1153 (-142 *2)))))
+ (-12 (-4 *2 (-13 (-311) (-756))) (-5 *1 (-155 *2 *3))
+ (-4 *3 (-1154 (-142 *2)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-830)) (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317))))
+ (-12 (-5 *2 (-831)) (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317))))
((*1 *2 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-311))))
- ((*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-1153 *2)) (-4 *2 (-146))))
+ ((*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-1154 *2)) (-4 *2 (-146))))
((*1 *2 *1)
- (-12 (-4 *4 (-1153 *2)) (-4 *2 (-904 *3)) (-5 *1 (-353 *3 *2 *4 *5))
- (-4 *3 (-257)) (-4 *5 (-13 (-350 *2 *4) (-950 *2)))))
+ (-12 (-4 *4 (-1154 *2)) (-4 *2 (-905 *3)) (-5 *1 (-353 *3 *2 *4 *5))
+ (-4 *3 (-257)) (-4 *5 (-13 (-350 *2 *4) (-951 *2)))))
((*1 *2 *1)
- (-12 (-4 *4 (-1153 *2)) (-4 *2 (-904 *3)) (-5 *1 (-355 *3 *2 *4 *5 *6))
- (-4 *3 (-257)) (-4 *5 (-350 *2 *4)) (-14 *6 (-1177 *5))))
+ (-12 (-4 *4 (-1154 *2)) (-4 *2 (-905 *3)) (-5 *1 (-355 *3 *2 *4 *5 *6))
+ (-4 *3 (-257)) (-4 *5 (-350 *2 *4)) (-14 *6 (-1178 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-830)) (-4 *5 (-961))
- (-4 *2 (-13 (-344) (-950 *5) (-311) (-1113) (-239))) (-5 *1 (-380 *5 *3 *2))
- (-4 *3 (-1153 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-550 (-432)))) (-5 *1 (-432))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-550 (-432))) (-5 *1 (-432))))
+ (-12 (-5 *4 (-831)) (-4 *5 (-962))
+ (-4 *2 (-13 (-344) (-951 *5) (-311) (-1114) (-239))) (-5 *1 (-380 *5 *3 *2))
+ (-4 *3 (-1154 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-551 (-432)))) (-5 *1 (-432))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-551 (-432))) (-5 *1 (-432))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1083 (-432))) (-5 *3 (-583 (-550 (-432)))) (-5 *1 (-432))))
+ (-12 (-5 *2 (-1084 (-432))) (-5 *3 (-584 (-551 (-432)))) (-5 *1 (-432))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1083 (-432))) (-5 *3 (-550 (-432))) (-5 *1 (-432))))
+ (-12 (-5 *2 (-1084 (-432))) (-5 *3 (-551 (-432))) (-5 *1 (-432))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1177 *4)) (-5 *3 (-830)) (-4 *4 (-298)) (-5 *1 (-465 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-389)) (-4 *5 (-661 *4 *2)) (-4 *2 (-1153 *4))
- (-5 *1 (-698 *4 *2 *5 *3)) (-4 *3 (-1153 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146))))
- ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146))))
- ((*1 *1 *1) (-4 *1 (-972))))
-(((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494)) (-4 *2 (-482))))
- ((*1 *1 *1) (-4 *1 (-972))))
-(((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494)) (-4 *2 (-482))))
- ((*1 *1 *1) (-4 *1 (-972))))
+ (-12 (-5 *2 (-1178 *4)) (-5 *3 (-831)) (-4 *4 (-298)) (-5 *1 (-466 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-389)) (-4 *5 (-662 *4 *2)) (-4 *2 (-1154 *4))
+ (-5 *1 (-699 *4 *2 *5 *3)) (-4 *3 (-1154 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146))))
+ ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146))))
+ ((*1 *1 *1) (-4 *1 (-973))))
+(((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495)) (-4 *2 (-483))))
+ ((*1 *1 *1) (-4 *1 (-973))))
+(((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495)) (-4 *2 (-483))))
+ ((*1 *1 *1) (-4 *1 (-973))))
(((*1 *2 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-257))))
- ((*1 *2 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-257))))
- ((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494)) (-4 *2 (-257))))
- ((*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-483)))))
-(((*1 *2 *1) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-77))))
- ((*1 *2 *1) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-171))))
- ((*1 *2 *1) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-424))))
- ((*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494)) (-4 *2 (-257))))
- ((*1 *2 *1) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-917 *3)) (-14 *3 (-483))))
- ((*1 *1 *1) (-4 *1 (-972))))
-(((*1 *1 *1) (-4 *1 (-972))))
+ ((*1 *2 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-257))))
+ ((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495)) (-4 *2 (-257))))
+ ((*1 *2 *1) (-12 (-4 *1 (-973)) (-5 *2 (-484)))))
+(((*1 *2 *1) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-77))))
+ ((*1 *2 *1) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-171))))
+ ((*1 *2 *1) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-424))))
+ ((*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495)) (-4 *2 (-257))))
+ ((*1 *2 *1) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-918 *3)) (-14 *3 (-484))))
+ ((*1 *1 *1) (-4 *1 (-973))))
+(((*1 *1 *1) (-4 *1 (-973))))
(((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4))))
+ (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4))))
((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1127)) (-5 *2 (-694)) (-5 *1 (-195 *3 *4 *5))
+ (-12 (-14 *4 *2) (-4 *5 (-1128)) (-5 *2 (-695)) (-5 *1 (-195 *3 *4 *5))
(-4 *3 (-196 *4 *5))))
((*1 *2)
- (-12 (-4 *4 (-1012)) (-5 *2 (-694)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4))))
- ((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-481 *3)) (-4 *3 (-482))))
- ((*1 *2) (-12 (-4 *1 (-687)) (-5 *2 (-694))))
+ (-12 (-4 *4 (-1013)) (-5 *2 (-695)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4))))
+ ((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-482 *3)) (-4 *3 (-483))))
+ ((*1 *2) (-12 (-4 *1 (-688)) (-5 *2 (-695))))
((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-719 *3 *4)) (-4 *3 (-720 *4))))
+ (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-720 *3 *4)) (-4 *3 (-721 *4))))
((*1 *2)
- (-12 (-4 *4 (-494)) (-5 *2 (-694)) (-5 *1 (-903 *3 *4)) (-4 *3 (-904 *4))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-695)) (-5 *1 (-904 *3 *4)) (-4 *3 (-905 *4))))
((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-910 *3 *4)) (-4 *3 (-911 *4))))
- ((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-924 *3)) (-4 *3 (-925))))
- ((*1 *2) (-12 (-4 *1 (-961)) (-5 *2 (-694))))
- ((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-971 *3)) (-4 *3 (-972)))))
+ (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-911 *3 *4)) (-4 *3 (-912 *4))))
+ ((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-925 *3)) (-4 *3 (-926))))
+ ((*1 *2) (-12 (-4 *1 (-962)) (-5 *2 (-695))))
+ ((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-972 *3)) (-4 *3 (-973)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-630 *5)) (-4 *5 (-961)) (-5 *1 (-966 *3 *4 *5)) (-14 *3 (-694))
- (-14 *4 (-694)))))
+ (-12 (-5 *2 (-631 *5)) (-4 *5 (-962)) (-5 *1 (-967 *3 *4 *5)) (-14 *3 (-695))
+ (-14 *4 (-695)))))
(((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-694)) (-5 *3 (-1 *4 (-483) (-483))) (-4 *4 (-961))
- (-4 *1 (-627 *4 *5 *6)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4))))
+ (-12 (-5 *2 (-695)) (-5 *3 (-1 *4 (-484) (-484))) (-4 *4 (-962))
+ (-4 *1 (-628 *4 *5 *6)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5))
+ (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5))
(-4 *4 (-321 *3)) (-4 *5 (-321 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-772)))) (-5 *1 (-772))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-773)))) (-5 *1 (-773))))
((*1 *2 *1)
- (-12 (-5 *2 (-1054 *3 *4)) (-5 *1 (-906 *3 *4)) (-14 *3 (-830))
+ (-12 (-5 *2 (-1055 *3 *4)) (-5 *1 (-907 *3 *4)) (-14 *3 (-831))
(-4 *4 (-311))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 (-583 *5))) (-4 *5 (-961)) (-4 *1 (-965 *3 *4 *5 *6 *7))
+ (-12 (-5 *2 (-584 (-584 *5))) (-4 *5 (-962)) (-4 *1 (-966 *3 *4 *5 *6 *7))
(-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3))
+ (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3))
(-4 *5 (-321 *3)) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
+ (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
(-4 *7 (-196 *3 *5)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3))
+ (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3))
(-4 *5 (-321 *3)) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
+ (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
(-4 *7 (-196 *3 *5)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3))
+ (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3))
(-4 *5 (-321 *3)) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
+ (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
(-4 *7 (-196 *3 *5)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3))
+ (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3))
(-4 *5 (-321 *3)) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
+ (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
(-4 *7 (-196 *3 *5)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3))
- (-4 *5 (-321 *3)) (-5 *2 (-483))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3))
+ (-4 *5 (-321 *3)) (-5 *2 (-484))))
((*1 *2 *1)
- (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
- (-4 *7 (-196 *3 *5)) (-5 *2 (-483)))))
+ (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
+ (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3))
- (-4 *5 (-321 *3)) (-5 *2 (-483))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3))
+ (-4 *5 (-321 *3)) (-5 *2 (-484))))
((*1 *2 *1)
- (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
- (-4 *7 (-196 *3 *5)) (-5 *2 (-483)))))
+ (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
+ (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3))
- (-4 *5 (-321 *3)) (-5 *2 (-483))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3))
+ (-4 *5 (-321 *3)) (-5 *2 (-484))))
((*1 *2 *1)
- (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
- (-4 *7 (-196 *3 *5)) (-5 *2 (-483)))))
+ (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
+ (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3))
- (-4 *5 (-321 *3)) (-5 *2 (-483))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3))
+ (-4 *5 (-321 *3)) (-5 *2 (-484))))
((*1 *2 *1)
- (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
- (-4 *7 (-196 *3 *5)) (-5 *2 (-483)))))
+ (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
+ (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3))
- (-4 *5 (-321 *3)) (-5 *2 (-694))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3))
+ (-4 *5 (-321 *3)) (-5 *2 (-695))))
((*1 *2 *1)
- (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
- (-4 *7 (-196 *3 *5)) (-5 *2 (-694)))))
+ (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
+ (-4 *7 (-196 *3 *5)) (-5 *2 (-695)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3))
- (-4 *5 (-321 *3)) (-5 *2 (-694))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3))
+ (-4 *5 (-321 *3)) (-5 *2 (-695))))
((*1 *2 *1)
- (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
- (-4 *7 (-196 *3 *5)) (-5 *2 (-694)))))
+ (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
+ (-4 *7 (-196 *3 *5)) (-5 *2 (-695)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-483)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-321 *2))
- (-4 *5 (-321 *2)) (-4 *2 (-1127))))
+ (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-321 *2))
+ (-4 *5 (-321 *2)) (-4 *2 (-1128))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-694)) (-4 *2 (-1012)) (-5 *1 (-166 *4 *2)) (-14 *4 (-830))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1127))))
+ (-12 (-5 *3 (-695)) (-4 *2 (-1013)) (-5 *1 (-166 *4 *2)) (-14 *4 (-831))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1128))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-483)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2))
- (-4 *7 (-196 *4 *2)) (-4 *2 (-961)))))
+ (-12 (-5 *3 (-484)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2))
+ (-4 *7 (-196 *4 *2)) (-4 *2 (-962)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-483)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1127)) (-4 *5 (-321 *4))
+ (-12 (-5 *3 (-484)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1128)) (-4 *5 (-321 *4))
(-4 *2 (-321 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-483)) (-4 *1 (-965 *4 *5 *6 *2 *7)) (-4 *6 (-961))
+ (-12 (-5 *3 (-484)) (-4 *1 (-966 *4 *5 *6 *2 *7)) (-4 *6 (-962))
(-4 *7 (-196 *4 *6)) (-4 *2 (-196 *5 *6)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-483)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1127)) (-4 *5 (-321 *4))
+ (-12 (-5 *3 (-484)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1128)) (-4 *5 (-321 *4))
(-4 *2 (-321 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-483)) (-4 *1 (-965 *4 *5 *6 *7 *2)) (-4 *6 (-961))
+ (-12 (-5 *3 (-484)) (-4 *1 (-966 *4 *5 *6 *7 *2)) (-4 *6 (-962))
(-4 *7 (-196 *5 *6)) (-4 *2 (-196 *4 *6)))))
(((*1 *2 *2)
(-12 (-4 *3 (-311)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3))
- (-5 *1 (-458 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))
+ (-5 *1 (-459 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-4 *7 (-904 *4))
- (-4 *2 (-627 *7 *8 *9)) (-5 *1 (-459 *4 *5 *6 *3 *7 *8 *9 *2))
- (-4 *3 (-627 *4 *5 *6)) (-4 *8 (-321 *7)) (-4 *9 (-321 *7))))
+ (-12 (-4 *4 (-495)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-4 *7 (-905 *4))
+ (-4 *2 (-628 *7 *8 *9)) (-5 *1 (-460 *4 *5 *6 *3 *7 *8 *9 *2))
+ (-4 *3 (-628 *4 *5 *6)) (-4 *8 (-321 *7)) (-4 *9 (-321 *7))))
((*1 *1 *1)
- (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2))
+ (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2))
(-4 *4 (-321 *2)) (-4 *2 (-257))))
((*1 *2 *2)
(-12 (-4 *3 (-257)) (-4 *3 (-146)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3))
- (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))
- ((*1 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-257)) (-5 *1 (-638 *3))))
+ (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))
+ ((*1 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-257)) (-5 *1 (-639 *3))))
((*1 *1 *1)
- (-12 (-4 *1 (-965 *2 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4))
+ (-12 (-4 *1 (-966 *2 *3 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4))
(-4 *6 (-196 *2 *4)) (-4 *4 (-257)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-694)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-483)) (-14 *4 *2)
+ (-12 (-5 *2 (-695)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) (-14 *4 *2)
(-4 *5 (-146))))
((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-830)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4))))
- ((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-830))))
+ (-12 (-4 *4 (-146)) (-5 *2 (-831)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4))))
+ ((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-831))))
((*1 *2)
- (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1153 *3)) (-5 *2 (-830))))
+ (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3)) (-5 *2 (-831))))
((*1 *2 *3)
- (-12 (-4 *4 (-311)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-694))
- (-5 *1 (-458 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6))))
+ (-12 (-4 *4 (-311)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-695))
+ (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-311)) (-4 *6 (-13 (-321 *5) (-10 -7 (-6 -3990))))
- (-4 *4 (-13 (-321 *5) (-10 -7 (-6 -3990)))) (-5 *2 (-694))
- (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4))))
+ (-12 (-4 *5 (-311)) (-4 *6 (-13 (-321 *5) (-10 -7 (-6 -3992))))
+ (-4 *4 (-13 (-321 *5) (-10 -7 (-6 -3992)))) (-5 *2 (-695))
+ (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 *5)) (-5 *4 (-1177 *5)) (-4 *5 (-311)) (-5 *2 (-694))
- (-5 *1 (-610 *5))))
+ (-12 (-5 *3 (-631 *5)) (-5 *4 (-1178 *5)) (-4 *5 (-311)) (-5 *2 (-695))
+ (-5 *1 (-611 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3))
- (-4 *5 (-321 *3)) (-4 *3 (-494)) (-5 *2 (-694))))
+ (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3))
+ (-4 *5 (-321 *3)) (-4 *3 (-495)) (-5 *2 (-695))))
((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4))
- (-5 *2 (-694)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6))))
+ (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4))
+ (-5 *2 (-695)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
- (-4 *7 (-196 *3 *5)) (-4 *5 (-494)) (-5 *2 (-694)))))
+ (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
+ (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-695)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-311)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-694))
- (-5 *1 (-458 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6))))
+ (-12 (-4 *4 (-311)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)) (-5 *2 (-695))
+ (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3))
- (-4 *5 (-321 *3)) (-4 *3 (-494)) (-5 *2 (-694))))
+ (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3))
+ (-4 *5 (-321 *3)) (-4 *3 (-495)) (-5 *2 (-695))))
((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4))
- (-5 *2 (-694)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6))))
+ (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4))
+ (-5 *2 (-695)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
- (-4 *7 (-196 *3 *5)) (-4 *5 (-494)) (-5 *2 (-694)))))
+ (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
+ (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-695)))))
(((*1 *2 *3)
- (-12 (|has| *6 (-6 -3990)) (-4 *4 (-311)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4))
- (-5 *2 (-583 *6)) (-5 *1 (-458 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6))))
+ (-12 (|has| *6 (-6 -3992)) (-4 *4 (-311)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4))
+ (-5 *2 (-584 *6)) (-5 *1 (-459 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6))))
((*1 *2 *3)
- (-12 (|has| *9 (-6 -3990)) (-4 *4 (-494)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4))
- (-4 *7 (-904 *4)) (-4 *8 (-321 *7)) (-4 *9 (-321 *7)) (-5 *2 (-583 *6))
- (-5 *1 (-459 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-627 *4 *5 *6))
- (-4 *10 (-627 *7 *8 *9))))
+ (-12 (|has| *9 (-6 -3992)) (-4 *4 (-495)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4))
+ (-4 *7 (-905 *4)) (-4 *8 (-321 *7)) (-4 *9 (-321 *7)) (-5 *2 (-584 *6))
+ (-5 *1 (-460 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-628 *4 *5 *6))
+ (-4 *10 (-628 *7 *8 *9))))
((*1 *2 *1)
- (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3))
- (-4 *5 (-321 *3)) (-4 *3 (-494)) (-5 *2 (-583 *5))))
+ (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3))
+ (-4 *5 (-321 *3)) (-4 *3 (-495)) (-5 *2 (-584 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4))
- (-5 *2 (-583 *6)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6))))
+ (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4))
+ (-5 *2 (-584 *6)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
- (-4 *7 (-196 *3 *5)) (-4 *5 (-494)) (-5 *2 (-583 *7)))))
+ (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
+ (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-584 *7)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1146 *4 *5)) (-5 *3 (-583 *5)) (-14 *4 (-1088)) (-4 *5 (-311))
- (-5 *1 (-833 *4 *5))))
+ (-12 (-5 *2 (-1147 *4 *5)) (-5 *3 (-584 *5)) (-14 *4 (-1089)) (-4 *5 (-311))
+ (-5 *1 (-834 *4 *5))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *5)) (-4 *5 (-311)) (-5 *2 (-1083 *5)) (-5 *1 (-833 *4 *5))
- (-14 *4 (-1088))))
+ (-12 (-5 *3 (-584 *5)) (-4 *5 (-311)) (-5 *2 (-1084 *5)) (-5 *1 (-834 *4 *5))
+ (-14 *4 (-1089))))
((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-583 *6)) (-5 *4 (-694)) (-4 *6 (-311)) (-5 *2 (-347 (-857 *6)))
- (-5 *1 (-962 *5 *6)) (-14 *5 (-1088)))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-959)))))
-(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-483))) (-5 *1 (-959)))))
-(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-483))) (-5 *1 (-959)))))
+ (-12 (-5 *3 (-584 *6)) (-5 *4 (-695)) (-4 *6 (-311)) (-5 *2 (-347 (-858 *6)))
+ (-5 *1 (-963 *5 *6)) (-14 *5 (-1089)))))
+(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-960)))))
+(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-960)))))
+(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-960)))))
(((*1 *1 *1 *1) (-4 *1 (-116)))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482))))
- ((*1 *1 *1 *1) (-5 *1 (-772)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-483))) (-5 *1 (-959))
- (-5 *3 (-483)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1008 *4)) (-4 *4 (-1012)) (-5 *2 (-1 *4)) (-5 *1 (-930 *4))))
- ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-327))) (-5 *1 (-953)) (-5 *3 (-327))))
- ((*1 *2 *3) (-12 (-5 *3 (-1000 (-483))) (-5 *2 (-1 (-483))) (-5 *1 (-959)))))
-(((*1 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))))
-(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23)))))
-(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23)))))
-(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23)))))
-(((*1 *2) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-257)) (-5 *2 (-347 (-345 (-857 *4))))
- (-5 *1 (-955 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-327))) (-5 *1 (-953)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-327))) (-5 *1 (-953)))))
-(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-327))) (-5 *1 (-953)))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483))))
+ ((*1 *1 *1 *1) (-5 *1 (-773)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-960))
+ (-5 *3 (-484)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1009 *4)) (-4 *4 (-1013)) (-5 *2 (-1 *4)) (-5 *1 (-931 *4))))
+ ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-327))) (-5 *1 (-954)) (-5 *3 (-327))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1001 (-484))) (-5 *2 (-1 (-484))) (-5 *1 (-960)))))
+(((*1 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23)))))
+(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))))
+(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))))
+(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))))
+(((*1 *2) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-257)) (-5 *2 (-347 (-345 (-858 *4))))
+ (-5 *1 (-956 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-327))) (-5 *1 (-954)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-327))) (-5 *1 (-954)))))
+(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-327))) (-5 *1 (-954)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1158 *3 *4 *5)) (-4 *3 (-311)) (-14 *4 (-1088)) (-14 *5 *3)
+ (-12 (-5 *2 (-1159 *3 *4 *5)) (-4 *3 (-311)) (-14 *4 (-1089)) (-14 *5 *3)
(-5 *1 (-269 *3 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 (-327))) (-5 *1 (-953)) (-5 *3 (-327)))))
-(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-327))) (-5 *1 (-953)) (-5 *3 (-327)))))
-(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-327)) (-5 *1 (-953)))))
-(((*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-953)))))
-(((*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-953)))))
-(((*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-953)))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 (-327))) (-5 *1 (-954)) (-5 *3 (-327)))))
+(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-327))) (-5 *1 (-954)) (-5 *3 (-327)))))
+(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-327)) (-5 *1 (-954)))))
+(((*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-954)))))
+(((*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-954)))))
+(((*1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-954)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1083 (-347 (-1083 *2)))) (-5 *4 (-550 *2))
- (-4 *2 (-13 (-361 *5) (-27) (-1113)))
- (-4 *5 (-13 (-389) (-950 (-483)) (-120) (-580 (-483))))
- (-5 *1 (-497 *5 *2 *6)) (-4 *6 (-1012))))
+ (-12 (-5 *3 (-1084 (-347 (-1084 *2)))) (-5 *4 (-551 *2))
+ (-4 *2 (-13 (-361 *5) (-27) (-1114)))
+ (-4 *5 (-13 (-389) (-951 (-484)) (-120) (-581 (-484))))
+ (-5 *1 (-498 *5 *2 *6)) (-4 *6 (-1013))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1083 *1)) (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717))
- (-4 *3 (-756))))
+ (-12 (-5 *2 (-1084 *1)) (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718))
+ (-4 *3 (-757))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1083 *4)) (-4 *4 (-961)) (-4 *1 (-861 *4 *5 *3)) (-4 *5 (-717))
- (-4 *3 (-756))))
+ (-12 (-5 *2 (-1084 *4)) (-4 *4 (-962)) (-4 *1 (-862 *4 *5 *3)) (-4 *5 (-718))
+ (-4 *3 (-757))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-347 (-1083 *2))) (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961))
+ (-12 (-5 *3 (-347 (-1084 *2))) (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962))
(-4 *2
(-13 (-311)
- (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $)))))
- (-5 *1 (-862 *5 *4 *6 *7 *2)) (-4 *7 (-861 *6 *5 *4))))
+ (-10 -8 (-15 -3942 ($ *7)) (-15 -2996 (*7 $)) (-15 -2995 (*7 $)))))
+ (-5 *1 (-863 *5 *4 *6 *7 *2)) (-4 *7 (-862 *6 *5 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-347 (-1083 (-347 (-857 *5))))) (-5 *4 (-1088))
- (-5 *2 (-347 (-857 *5))) (-5 *1 (-952 *5)) (-4 *5 (-494)))))
+ (-12 (-5 *3 (-347 (-1084 (-347 (-858 *5))))) (-5 *4 (-1089))
+ (-5 *2 (-347 (-858 *5))) (-5 *1 (-953 *5)) (-4 *5 (-495)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-550 *1)) (-4 *1 (-361 *4)) (-4 *4 (-1012)) (-4 *4 (-494))
- (-5 *2 (-347 (-1083 *1)))))
+ (-12 (-5 *3 (-551 *1)) (-4 *1 (-361 *4)) (-4 *4 (-1013)) (-4 *4 (-495))
+ (-5 *2 (-347 (-1084 *1)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-361 *6) (-27) (-1113)))
- (-4 *6 (-13 (-389) (-950 (-483)) (-120) (-580 (-483))))
- (-5 *2 (-1083 (-347 (-1083 *3)))) (-5 *1 (-497 *6 *3 *7)) (-5 *5 (-1083 *3))
- (-4 *7 (-1012))))
+ (-12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-361 *6) (-27) (-1114)))
+ (-4 *6 (-13 (-389) (-951 (-484)) (-120) (-581 (-484))))
+ (-5 *2 (-1084 (-347 (-1084 *3)))) (-5 *1 (-498 *6 *3 *7)) (-5 *5 (-1084 *3))
+ (-4 *7 (-1013))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1174 *5)) (-14 *5 (-1088)) (-4 *6 (-961))
- (-5 *2 (-1146 *5 (-857 *6))) (-5 *1 (-859 *5 *6)) (-5 *3 (-857 *6))))
+ (-12 (-5 *4 (-1175 *5)) (-14 *5 (-1089)) (-4 *6 (-962))
+ (-5 *2 (-1147 *5 (-858 *6))) (-5 *1 (-860 *5 *6)) (-5 *3 (-858 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-5 *2 (-1083 *3))))
+ (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-5 *2 (-1084 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-1083 *1))
- (-4 *1 (-861 *4 *5 *3))))
+ (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-1084 *1))
+ (-4 *1 (-862 *4 *5 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *5 *4))
- (-5 *2 (-347 (-1083 *3))) (-5 *1 (-862 *5 *4 *6 *7 *3))
+ (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *5 *4))
+ (-5 *2 (-347 (-1084 *3))) (-5 *1 (-863 *5 *4 *6 *7 *3))
(-4 *3
(-13 (-311)
- (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $)))))))
+ (-10 -8 (-15 -3942 ($ *7)) (-15 -2996 (*7 $)) (-15 -2995 (*7 $)))))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1083 *3))
+ (-12 (-5 *2 (-1084 *3))
(-4 *3
(-13 (-311)
- (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $)))))
- (-4 *7 (-861 *6 *5 *4)) (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961))
- (-5 *1 (-862 *5 *4 *6 *7 *3))))
+ (-10 -8 (-15 -3942 ($ *7)) (-15 -2996 (*7 $)) (-15 -2995 (*7 $)))))
+ (-4 *7 (-862 *6 *5 *4)) (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962))
+ (-5 *1 (-863 *5 *4 *6 *7 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1088)) (-4 *5 (-494)) (-5 *2 (-347 (-1083 (-347 (-857 *5)))))
- (-5 *1 (-952 *5)) (-5 *3 (-347 (-857 *5))))))
+ (-12 (-5 *4 (-1089)) (-4 *5 (-495)) (-5 *2 (-347 (-1084 (-347 (-858 *5)))))
+ (-5 *1 (-953 *5)) (-5 *3 (-347 (-858 *5))))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717))
- (-4 *2 (-756))))
+ (|partial| -12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718))
+ (-4 *2 (-757))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-717)) (-4 *5 (-961)) (-4 *6 (-861 *5 *4 *2))
- (-4 *2 (-756)) (-5 *1 (-862 *4 *2 *5 *6 *3))
+ (|partial| -12 (-4 *4 (-718)) (-4 *5 (-962)) (-4 *6 (-862 *5 *4 *2))
+ (-4 *2 (-757)) (-5 *1 (-863 *4 *2 *5 *6 *3))
(-4 *3
(-13 (-311)
- (-10 -8 (-15 -3940 ($ *6)) (-15 -2994 (*6 $)) (-15 -2993 (*6 $)))))))
+ (-10 -8 (-15 -3942 ($ *6)) (-15 -2996 (*6 $)) (-15 -2995 (*6 $)))))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-494)) (-5 *2 (-1088))
- (-5 *1 (-952 *4)))))
+ (|partial| -12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-495)) (-5 *2 (-1089))
+ (-5 *1 (-953 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1083 *7)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-961)) (-5 *2 (-583 *5)) (-5 *1 (-271 *4 *5 *6 *7))))
- ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-1012)) (-5 *2 (-583 (-1088)))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1012))))
+ (-12 (-5 *3 (-1084 *7)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-962)) (-5 *2 (-584 *5)) (-5 *1 (-271 *4 *5 *6 *7))))
+ ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-1013)) (-5 *2 (-584 (-1089)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1013))))
((*1 *2 *1)
- (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-5 *2 (-583 *5))))
+ (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-5 *2 (-584 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5))
- (-5 *2 (-583 *5)) (-5 *1 (-862 *4 *5 *6 *7 *3))
+ (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5))
+ (-5 *2 (-584 *5)) (-5 *1 (-863 *4 *5 *6 *7 *3))
(-4 *3
(-13 (-311)
- (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $)))))))
+ (-10 -8 (-15 -3942 ($ *7)) (-15 -2996 (*7 $)) (-15 -2995 (*7 $)))))))
((*1 *2 *1)
- (-12 (-4 *1 (-886 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-716)) (-4 *5 (-756))
- (-5 *2 (-583 *5))))
+ (-12 (-4 *1 (-887 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *5 (-757))
+ (-5 *2 (-584 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-583 *5))))
+ (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-584 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-494)) (-5 *2 (-583 (-1088)))
- (-5 *1 (-952 *4)))))
+ (-12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-495)) (-5 *2 (-584 (-1089)))
+ (-5 *1 (-953 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1088)))
- (-4 *6 (-13 (-494) (-950 *5))) (-4 *5 (-494))
- (-5 *2 (-583 (-583 (-248 (-347 (-857 *6)))))) (-5 *1 (-951 *5 *6)))))
+ (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1089)))
+ (-4 *6 (-13 (-495) (-951 *5))) (-4 *5 (-495))
+ (-5 *2 (-584 (-584 (-248 (-347 (-858 *6)))))) (-5 *1 (-952 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-550 *6)) (-4 *6 (-13 (-361 *5) (-27) (-1113)))
- (-4 *5 (-13 (-389) (-950 (-483)) (-120) (-580 (-483))))
- (-5 *2 (-1083 (-347 (-1083 *6)))) (-5 *1 (-497 *5 *6 *7)) (-5 *3 (-1083 *6))
- (-4 *7 (-1012))))
- ((*1 *2 *1) (-12 (-4 *2 (-1153 *3)) (-5 *1 (-649 *3 *2)) (-4 *3 (-961))))
- ((*1 *2 *1) (-12 (-4 *1 (-661 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1153 *3))))
+ (-12 (-5 *4 (-551 *6)) (-4 *6 (-13 (-361 *5) (-27) (-1114)))
+ (-4 *5 (-13 (-389) (-951 (-484)) (-120) (-581 (-484))))
+ (-5 *2 (-1084 (-347 (-1084 *6)))) (-5 *1 (-498 *5 *6 *7)) (-5 *3 (-1084 *6))
+ (-4 *7 (-1013))))
+ ((*1 *2 *1) (-12 (-4 *2 (-1154 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-962))))
+ ((*1 *2 *1) (-12 (-4 *1 (-662 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1154 *3))))
((*1 *2 *3 *4 *4 *5 *6 *7 *8)
- (|partial| -12 (-5 *4 (-1083 *11)) (-5 *6 (-583 *10)) (-5 *7 (-583 (-694)))
- (-5 *8 (-583 *11)) (-4 *10 (-756)) (-4 *11 (-257)) (-4 *9 (-717))
- (-4 *5 (-861 *11 *9 *10)) (-5 *2 (-583 (-1083 *5)))
- (-5 *1 (-681 *9 *10 *11 *5)) (-5 *3 (-1083 *5))))
+ (|partial| -12 (-5 *4 (-1084 *11)) (-5 *6 (-584 *10)) (-5 *7 (-584 (-695)))
+ (-5 *8 (-584 *11)) (-4 *10 (-757)) (-4 *11 (-257)) (-4 *9 (-718))
+ (-4 *5 (-862 *11 *9 *10)) (-5 *2 (-584 (-1084 *5)))
+ (-5 *1 (-682 *9 *10 *11 *5)) (-5 *3 (-1084 *5))))
((*1 *2 *1)
- (-12 (-4 *2 (-861 *3 *4 *5)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *3 (-311))
- (-4 *4 (-717)) (-4 *5 (-756)) (-14 *6 (-583 *2)))))
+ (-12 (-4 *2 (-862 *3 *4 *5)) (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *3 (-311))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-14 *6 (-584 *2)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-830)) (-5 *1 (-945 *2))
- (-4 *2 (-13 (-1012) (-10 -8 (-15 * ($ $ $))))))))
+ (-12 (-5 *3 (-831)) (-5 *1 (-946 *2))
+ (-4 *2 (-13 (-1013) (-10 -8 (-15 * ($ $ $))))))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-830)) (-5 *1 (-944 *2))
- (-4 *2 (-13 (-1012) (-10 -8 (-15 -3833 ($ $ $))))))))
+ (-12 (-5 *3 (-831)) (-5 *1 (-945 *2))
+ (-4 *2 (-13 (-1013) (-10 -8 (-15 -3835 ($ $ $))))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-1177 *5))) (-5 *4 (-483)) (-5 *2 (-1177 *5))
- (-5 *1 (-943 *5)) (-4 *5 (-311)) (-4 *5 (-317)) (-4 *5 (-961)))))
+ (-12 (-5 *3 (-584 (-1178 *5))) (-5 *4 (-484)) (-5 *2 (-1178 *5))
+ (-5 *1 (-944 *5)) (-4 *5 (-311)) (-4 *5 (-317)) (-4 *5 (-962)))))
(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-85)) (-5 *5 (-483)) (-4 *6 (-311)) (-4 *6 (-317))
- (-4 *6 (-961)) (-5 *2 (-583 (-583 (-630 *6)))) (-5 *1 (-943 *6))
- (-5 *3 (-583 (-630 *6)))))
+ (-12 (-5 *4 (-85)) (-5 *5 (-484)) (-4 *6 (-311)) (-4 *6 (-317))
+ (-4 *6 (-962)) (-5 *2 (-584 (-584 (-631 *6)))) (-5 *1 (-944 *6))
+ (-5 *3 (-584 (-631 *6)))))
((*1 *2 *3)
- (-12 (-4 *4 (-311)) (-4 *4 (-317)) (-4 *4 (-961))
- (-5 *2 (-583 (-583 (-630 *4)))) (-5 *1 (-943 *4)) (-5 *3 (-583 (-630 *4)))))
+ (-12 (-4 *4 (-311)) (-4 *4 (-317)) (-4 *4 (-962))
+ (-5 *2 (-584 (-584 (-631 *4)))) (-5 *1 (-944 *4)) (-5 *3 (-584 (-631 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-311)) (-4 *5 (-317)) (-4 *5 (-961))
- (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5)))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-311)) (-4 *5 (-317)) (-4 *5 (-962))
+ (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-830)) (-4 *5 (-311)) (-4 *5 (-317)) (-4 *5 (-961))
- (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))))
+ (-12 (-5 *4 (-831)) (-4 *5 (-311)) (-4 *5 (-317)) (-4 *5 (-962))
+ (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-483)) (-4 *5 (-311)) (-4 *5 (-961))
- (-5 *2 (-85)) (-5 *1 (-943 *5))))
+ (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-484)) (-4 *5 (-311)) (-4 *5 (-962))
+ (-5 *2 (-85)) (-5 *1 (-944 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-630 *4))) (-4 *4 (-311)) (-4 *4 (-961)) (-5 *2 (-85))
- (-5 *1 (-943 *4)))))
+ (-12 (-5 *3 (-584 (-631 *4))) (-4 *4 (-311)) (-4 *4 (-962)) (-5 *2 (-85))
+ (-5 *1 (-944 *4)))))
(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-583 (-630 *6))) (-5 *4 (-85)) (-5 *5 (-483)) (-5 *2 (-630 *6))
- (-5 *1 (-943 *6)) (-4 *6 (-311)) (-4 *6 (-961))))
+ (-12 (-5 *3 (-584 (-631 *6))) (-5 *4 (-85)) (-5 *5 (-484)) (-5 *2 (-631 *6))
+ (-5 *1 (-944 *6)) (-4 *6 (-311)) (-4 *6 (-962))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 (-630 *4))) (-5 *2 (-630 *4)) (-5 *1 (-943 *4))
- (-4 *4 (-311)) (-4 *4 (-961))))
+ (-12 (-5 *3 (-584 (-631 *4))) (-5 *2 (-631 *4)) (-5 *1 (-944 *4))
+ (-4 *4 (-311)) (-4 *4 (-962))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-483)) (-5 *2 (-630 *5))
- (-5 *1 (-943 *5)) (-4 *5 (-311)) (-4 *5 (-961)))))
+ (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-484)) (-5 *2 (-631 *5))
+ (-5 *1 (-944 *5)) (-4 *5 (-311)) (-4 *5 (-962)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-1177 *5)) (-4 *5 (-257))
- (-4 *5 (-961)) (-5 *2 (-630 *5)) (-5 *1 (-943 *5)))))
+ (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-1178 *5)) (-4 *5 (-257))
+ (-4 *5 (-962)) (-5 *2 (-631 *5)) (-5 *1 (-944 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-630 *5))) (-4 *5 (-257)) (-4 *5 (-961))
- (-5 *2 (-1177 (-1177 *5))) (-5 *1 (-943 *5)) (-5 *4 (-1177 *5)))))
+ (-12 (-5 *3 (-584 (-631 *5))) (-4 *5 (-257)) (-4 *5 (-962))
+ (-5 *2 (-1178 (-1178 *5))) (-5 *1 (-944 *5)) (-5 *4 (-1178 *5)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-583 (-630 *4))) (-5 *2 (-630 *4)) (-4 *4 (-961))
- (-5 *1 (-943 *4)))))
+ (-12 (-5 *3 (-584 (-631 *4))) (-5 *2 (-631 *4)) (-4 *4 (-962))
+ (-5 *1 (-944 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1177 (-1177 *4))) (-4 *4 (-961)) (-5 *2 (-630 *4))
- (-5 *1 (-943 *4)))))
+ (-12 (-5 *3 (-1178 (-1178 *4))) (-4 *4 (-962)) (-5 *2 (-631 *4))
+ (-5 *1 (-944 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-813 (-483))) (-5 *4 (-483)) (-5 *2 (-630 *4)) (-5 *1 (-942 *5))
- (-4 *5 (-961))))
+ (-12 (-5 *3 (-814 (-484))) (-5 *4 (-484)) (-5 *2 (-631 *4)) (-5 *1 (-943 *5))
+ (-4 *5 (-962))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-483))) (-5 *2 (-630 (-483))) (-5 *1 (-942 *4))
- (-4 *4 (-961))))
+ (-12 (-5 *3 (-584 (-484))) (-5 *2 (-631 (-484))) (-5 *1 (-943 *4))
+ (-4 *4 (-962))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-813 (-483)))) (-5 *4 (-483)) (-5 *2 (-583 (-630 *4)))
- (-5 *1 (-942 *5)) (-4 *5 (-961))))
+ (-12 (-5 *3 (-584 (-814 (-484)))) (-5 *4 (-484)) (-5 *2 (-584 (-631 *4)))
+ (-5 *1 (-943 *5)) (-4 *5 (-962))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-583 (-483)))) (-5 *2 (-583 (-630 (-483))))
- (-5 *1 (-942 *4)) (-4 *4 (-961)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-942 *3))))
+ (-12 (-5 *3 (-584 (-584 (-484)))) (-5 *2 (-584 (-631 (-484))))
+ (-5 *1 (-943 *4)) (-4 *4 (-962)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-943 *3))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-583 (-630 *3))) (-4 *3 (-961)) (-5 *1 (-942 *3))))
- ((*1 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-942 *3))))
- ((*1 *2 *2) (-12 (-5 *2 (-583 (-630 *3))) (-4 *3 (-961)) (-5 *1 (-942 *3)))))
+ (-12 (-5 *2 (-584 (-631 *3))) (-4 *3 (-962)) (-5 *1 (-943 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-943 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-584 (-631 *3))) (-4 *3 (-962)) (-5 *1 (-943 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-630 *4)) (-5 *3 (-830)) (-4 *4 (-961)) (-5 *1 (-942 *4))))
+ (-12 (-5 *2 (-631 *4)) (-5 *3 (-831)) (-4 *4 (-962)) (-5 *1 (-943 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-583 (-630 *4))) (-5 *3 (-830)) (-4 *4 (-961))
- (-5 *1 (-942 *4)))))
+ (-12 (-5 *2 (-584 (-631 *4))) (-5 *3 (-831)) (-4 *4 (-962))
+ (-5 *1 (-943 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-694)) (-5 *2 (-630 (-857 *4))) (-5 *1 (-942 *4))
- (-4 *4 (-961)))))
+ (-12 (-5 *3 (-695)) (-5 *2 (-631 (-858 *4))) (-5 *1 (-943 *4))
+ (-4 *4 (-962)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-630 *4)) (-5 *3 (-830)) (|has| *4 (-6 (-3991 "*")))
- (-4 *4 (-961)) (-5 *1 (-942 *4))))
+ (-12 (-5 *2 (-631 *4)) (-5 *3 (-831)) (|has| *4 (-6 (-3993 "*")))
+ (-4 *4 (-962)) (-5 *1 (-943 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-583 (-630 *4))) (-5 *3 (-830)) (|has| *4 (-6 (-3991 "*")))
- (-4 *4 (-961)) (-5 *1 (-942 *4)))))
+ (-12 (-5 *2 (-584 (-631 *4))) (-5 *3 (-831)) (|has| *4 (-6 (-3993 "*")))
+ (-4 *4 (-962)) (-5 *1 (-943 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-630 (-347 (-857 (-483))))) (-5 *2 (-583 (-630 (-264 (-483)))))
- (-5 *1 (-941)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 (-630 (-264 (-483))))) (-5 *1 (-941)))))
-(((*1 *2 *2) (-12 (-5 *2 (-630 (-264 (-483)))) (-5 *1 (-941)))))
+ (-12 (-5 *3 (-631 (-347 (-858 (-484))))) (-5 *2 (-584 (-631 (-264 (-484)))))
+ (-5 *1 (-942)))))
+(((*1 *2 *2) (-12 (-5 *2 (-584 (-631 (-264 (-484))))) (-5 *1 (-942)))))
+(((*1 *2 *2) (-12 (-5 *2 (-631 (-264 (-484)))) (-5 *1 (-942)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-630 (-347 (-857 (-483)))))
- (-5 *2 (-630 (-264 (-483)))) (-5 *1 (-941)))))
+ (|partial| -12 (-5 *3 (-631 (-347 (-858 (-484)))))
+ (-5 *2 (-631 (-264 (-484)))) (-5 *1 (-942)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-630 (-347 (-857 (-483))))) (-5 *2 (-583 (-264 (-483))))
- (-5 *1 (-941)))))
+ (-12 (-5 *3 (-631 (-347 (-858 (-484))))) (-5 *2 (-584 (-264 (-484))))
+ (-5 *1 (-942)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-630 (-347 (-857 (-483))))) (-5 *2 (-583 (-630 (-264 (-483)))))
- (-5 *1 (-941)) (-5 *3 (-264 (-483))))))
+ (-12 (-5 *4 (-631 (-347 (-858 (-484))))) (-5 *2 (-584 (-631 (-264 (-484)))))
+ (-5 *1 (-942)) (-5 *3 (-264 (-484))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-630 (-347 (-857 (-483)))))
+ (-12 (-5 *3 (-631 (-347 (-858 (-484)))))
(-5 *2
- (-583
- (-2 (|:| |radval| (-264 (-483))) (|:| |radmult| (-483))
- (|:| |radvect| (-583 (-630 (-264 (-483))))))))
- (-5 *1 (-941)))))
+ (-584
+ (-2 (|:| |radval| (-264 (-484))) (|:| |radmult| (-484))
+ (|:| |radvect| (-584 (-631 (-264 (-484))))))))
+ (-5 *1 (-942)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1127))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1128))))
((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374))))
- ((*1 *1 *1 *1) (-5 *1 (-772)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-939 *3)) (-4 *3 (-1127)))))
-(((*1 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *1) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-938 *3 *2)) (-4 *2 (-600 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-311)) (-5 *2 (-2 (|:| -3261 *3) (|:| -2509 (-583 *5))))
- (-5 *1 (-938 *5 *3)) (-5 *4 (-583 *5)) (-4 *3 (-600 *5)))))
+ ((*1 *1 *1 *1) (-5 *1 (-773)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-940 *3)) (-4 *3 (-1128)))))
+(((*1 *1 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-939 *3 *2)) (-4 *2 (-601 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-311)) (-5 *2 (-2 (|:| -3263 *3) (|:| -2511 (-584 *5))))
+ (-5 *1 (-939 *5 *3)) (-5 *4 (-584 *5)) (-4 *3 (-601 *5)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-973 (-937 *4) (-1083 (-937 *4)))) (-5 *3 (-772))
- (-5 *1 (-937 *4)) (-4 *4 (-13 (-755) (-311) (-933))))))
+ (-12 (-5 *2 (-974 (-938 *4) (-1084 (-938 *4)))) (-5 *3 (-773))
+ (-5 *1 (-938 *4)) (-4 *4 (-13 (-756) (-311) (-934))))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-973 (-937 *3) (-1083 (-937 *3)))) (-5 *1 (-937 *3))
- (-4 *3 (-13 (-755) (-311) (-933))))))
+ (|partial| -12 (-5 *2 (-974 (-938 *3) (-1084 (-938 *3)))) (-5 *1 (-938 *3))
+ (-4 *3 (-13 (-756) (-311) (-934))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))))
- (-5 *1 (-934 *3)) (-4 *3 (-1153 (-483)))))
+ (-12 (-5 *2 (-584 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))))
+ (-5 *1 (-935 *3)) (-4 *3 (-1154 (-484)))))
((*1 *2 *3 *4)
- (-12 (-5 *2 (-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))))
- (-5 *1 (-934 *3)) (-4 *3 (-1153 (-483)))
- (-5 *4 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))))
+ (-12 (-5 *2 (-584 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))))
+ (-5 *1 (-935 *3)) (-4 *3 (-1154 (-484)))
+ (-5 *4 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))))))
((*1 *2 *3 *4)
- (-12 (-5 *2 (-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))))
- (-5 *1 (-934 *3)) (-4 *3 (-1153 (-483))) (-5 *4 (-347 (-483)))))
+ (-12 (-5 *2 (-584 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))))
+ (-5 *1 (-935 *3)) (-4 *3 (-1154 (-484))) (-5 *4 (-347 (-484)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-347 (-483))) (-5 *2 (-583 (-2 (|:| -3133 *5) (|:| -3132 *5))))
- (-5 *1 (-934 *3)) (-4 *3 (-1153 (-483)))
- (-5 *4 (-2 (|:| -3133 *5) (|:| -3132 *5)))))
+ (-12 (-5 *5 (-347 (-484))) (-5 *2 (-584 (-2 (|:| -3135 *5) (|:| -3134 *5))))
+ (-5 *1 (-935 *3)) (-4 *3 (-1154 (-484)))
+ (-5 *4 (-2 (|:| -3135 *5) (|:| -3134 *5)))))
((*1 *2 *3)
- (-12 (-5 *2 (-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))))
- (-5 *1 (-935 *3)) (-4 *3 (-1153 (-347 (-483))))))
+ (-12 (-5 *2 (-584 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))))
+ (-5 *1 (-936 *3)) (-4 *3 (-1154 (-347 (-484))))))
((*1 *2 *3 *4)
- (-12 (-5 *2 (-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))))
- (-5 *1 (-935 *3)) (-4 *3 (-1153 (-347 (-483))))
- (-5 *4 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))))
+ (-12 (-5 *2 (-584 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))))
+ (-5 *1 (-936 *3)) (-4 *3 (-1154 (-347 (-484))))
+ (-5 *4 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-347 (-483))) (-5 *2 (-583 (-2 (|:| -3133 *4) (|:| -3132 *4))))
- (-5 *1 (-935 *3)) (-4 *3 (-1153 *4))))
+ (-12 (-5 *4 (-347 (-484))) (-5 *2 (-584 (-2 (|:| -3135 *4) (|:| -3134 *4))))
+ (-5 *1 (-936 *3)) (-4 *3 (-1154 *4))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-347 (-483))) (-5 *2 (-583 (-2 (|:| -3133 *5) (|:| -3132 *5))))
- (-5 *1 (-935 *3)) (-4 *3 (-1153 *5))
- (-5 *4 (-2 (|:| -3133 *5) (|:| -3132 *5))))))
+ (-12 (-5 *5 (-347 (-484))) (-5 *2 (-584 (-2 (|:| -3135 *5) (|:| -3134 *5))))
+ (-5 *1 (-936 *3)) (-4 *3 (-1154 *5))
+ (-5 *4 (-2 (|:| -3135 *5) (|:| -3134 *5))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483))))))
- (-5 *2 (-583 (-347 (-483)))) (-5 *1 (-934 *4)) (-4 *4 (-1153 (-483))))))
+ (-12 (-5 *3 (-584 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484))))))
+ (-5 *2 (-584 (-347 (-484)))) (-5 *1 (-935 *4)) (-4 *4 (-1154 (-484))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| -3133 (-347 (-483))) (|:| -3132 (-347 (-483)))))
- (-5 *2 (-347 (-483))) (-5 *1 (-934 *4)) (-4 *4 (-1153 (-483))))))
+ (-12 (-5 *3 (-2 (|:| -3135 (-347 (-484))) (|:| -3134 (-347 (-484)))))
+ (-5 *2 (-347 (-484))) (-5 *1 (-935 *4)) (-4 *4 (-1154 (-484))))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1177 *6)) (-5 *4 (-1177 (-483))) (-5 *5 (-483)) (-4 *6 (-1012))
- (-5 *2 (-1 *6)) (-5 *1 (-930 *6)))))
+ (-12 (-5 *3 (-1178 *6)) (-5 *4 (-1178 (-484))) (-5 *5 (-484)) (-4 *6 (-1013))
+ (-5 *2 (-1 *6)) (-5 *1 (-931 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-2 (|:| -3396 *4) (|:| -1519 (-483))))) (-4 *4 (-1012))
- (-5 *2 (-1 *4)) (-5 *1 (-930 *4)))))
+ (-12 (-5 *3 (-584 (-2 (|:| -3398 *4) (|:| -1520 (-484))))) (-4 *4 (-1013))
+ (-5 *2 (-1 *4)) (-5 *1 (-931 *4)))))
(((*1 *2 *3 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-311) (-120) (-950 (-483)))) (-4 *5 (-1153 *4))
- (-5 *2 (-583 (-347 *5))) (-5 *1 (-929 *4 *5)) (-5 *3 (-347 *5)))))
+ (|partial| -12 (-4 *4 (-13 (-311) (-120) (-951 (-484)))) (-4 *5 (-1154 *4))
+ (-5 *2 (-584 (-347 *5))) (-5 *1 (-930 *4 *5)) (-5 *3 (-347 *5)))))
(((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5))
- (-4 *5 (-13 (-311) (-120) (-950 (-483))))
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5))
+ (-4 *5 (-13 (-311) (-120) (-951 (-484))))
(-5 *2
(-2 (|:| |a| *6) (|:| |b| (-347 *6)) (|:| |h| *6) (|:| |c1| (-347 *6))
- (|:| |c2| (-347 *6)) (|:| -3089 *6)))
- (-5 *1 (-929 *5 *6)) (-5 *3 (-347 *6)))))
+ (|:| |c2| (-347 *6)) (|:| -3091 *6)))
+ (-5 *1 (-930 *5 *6)) (-5 *3 (-347 *6)))))
(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1153 *6))
- (-4 *6 (-13 (-311) (-120) (-950 *4))) (-5 *4 (-483))
+ (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1154 *6))
+ (-4 *6 (-13 (-311) (-120) (-951 *4))) (-5 *4 (-484))
(-5 *2
(-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-85))))
- (|:| -3261
+ (|:| -3263
(-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
(|:| |beta| *3)))))
- (-5 *1 (-928 *6 *3)))))
+ (-5 *1 (-929 *6 *3)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-311) (-120) (-950 (-483)))) (-4 *5 (-1153 *4))
- (-5 *2 (-2 (|:| |ans| (-347 *5)) (|:| |nosol| (-85)))) (-5 *1 (-928 *4 *5))
+ (-12 (-4 *4 (-13 (-311) (-120) (-951 (-484)))) (-4 *5 (-1154 *4))
+ (-5 *2 (-2 (|:| |ans| (-347 *5)) (|:| |nosol| (-85)))) (-5 *1 (-929 *4 *5))
(-5 *3 (-347 *5)))))
(((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5))
- (-4 *5 (-13 (-311) (-120) (-950 (-483))))
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5))
+ (-4 *5 (-13 (-311) (-120) (-951 (-484))))
(-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-347 *6)) (|:| |c| (-347 *6)) (|:| -3089 *6)))
- (-5 *1 (-928 *5 *6)) (-5 *3 (-347 *6)))))
+ (-2 (|:| |a| *6) (|:| |b| (-347 *6)) (|:| |c| (-347 *6)) (|:| -3091 *6)))
+ (-5 *1 (-929 *5 *6)) (-5 *3 (-347 *6)))))
(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
- (|partial| -12 (-5 *5 (-1088))
+ (|partial| -12 (-5 *5 (-1089))
(-5 *6
(-1
(-3
(-2 (|:| |mainpart| *4)
- (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
"failed")
- *4 (-583 *4)))
- (-5 *7 (-1 (-3 (-2 (|:| -2132 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1113) (-27) (-361 *8)))
- (-4 *8 (-13 (-389) (-120) (-950 *3) (-580 *3))) (-5 *3 (-483))
- (-5 *2 (-583 *4)) (-5 *1 (-927 *8 *4)))))
+ *4 (-584 *4)))
+ (-5 *7 (-1 (-3 (-2 (|:| -2134 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1114) (-27) (-361 *8)))
+ (-4 *8 (-13 (-389) (-120) (-951 *3) (-581 *3))) (-5 *3 (-484))
+ (-5 *2 (-584 *4)) (-5 *1 (-928 *8 *4)))))
(((*1 *2 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *5 (-1088))
+ (-12 (-5 *5 (-1089))
(-5 *6
(-1
(-3
(-2 (|:| |mainpart| *4)
- (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
"failed")
- *4 (-583 *4)))
- (-5 *7 (-1 (-3 (-2 (|:| -2132 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1113) (-27) (-361 *8)))
- (-4 *8 (-13 (-389) (-120) (-950 *3) (-580 *3))) (-5 *3 (-483))
- (-5 *2 (-2 (|:| |ans| *4) (|:| -3132 *4) (|:| |sol?| (-85))))
- (-5 *1 (-926 *8 *4)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-483))))
- ((*1 *1 *1) (-4 *1 (-915))) ((*1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-925))))
- ((*1 *1 *2) (-12 (-5 *2 (-347 (-483))) (-4 *1 (-925))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-830))))
- ((*1 *1 *1) (-4 *1 (-925))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-925)) (-5 *2 (-772)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1083 *1)) (-4 *1 (-925)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1083 *1)) (-4 *1 (-925)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-772)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-772)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1127)) (-5 *2 (-583 *1)) (-4 *1 (-923 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1127)) (-5 *2 (-583 *3)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1127)) (-5 *2 (-483)))))
+ *4 (-584 *4)))
+ (-5 *7 (-1 (-3 (-2 (|:| -2134 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1114) (-27) (-361 *8)))
+ (-4 *8 (-13 (-389) (-120) (-951 *3) (-581 *3))) (-5 *3 (-484))
+ (-5 *2 (-2 (|:| |ans| *4) (|:| -3134 *4) (|:| |sol?| (-85))))
+ (-5 *1 (-927 *8 *4)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-484))))
+ ((*1 *1 *1) (-4 *1 (-916))) ((*1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-926))))
+ ((*1 *1 *2) (-12 (-5 *2 (-347 (-484))) (-4 *1 (-926))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-831))))
+ ((*1 *1 *1) (-4 *1 (-926))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-926)) (-5 *2 (-773)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1084 *1)) (-4 *1 (-926)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1084 *1)) (-4 *1 (-926)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-773)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-773)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1128)) (-5 *2 (-584 *1)) (-4 *1 (-924 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1128)) (-5 *2 (-584 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1128)) (-5 *2 (-484)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-923 *3)) (-4 *3 (-1127)) (-4 *3 (-1012)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-924 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-85)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-923 *3)) (-4 *3 (-1127)) (-4 *3 (-1012)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-924 *3)) (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-85)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 *1)) (|has| *1 (-6 -3990)) (-4 *1 (-923 *3))
- (-4 *3 (-1127)))))
-(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-923 *2)) (-4 *2 (-1127)))))
+ (-12 (-5 *2 (-584 *1)) (|has| *1 (-6 -3992)) (-4 *1 (-924 *3))
+ (-4 *3 (-1128)))))
+(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-924 *2)) (-4 *2 (-1128)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-482))
- (-5 *2 (-347 (-483)))))
+ (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483))
+ (-5 *2 (-347 (-484)))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-347 (-483))) (-5 *1 (-345 *3)) (-4 *3 (-482))
- (-4 *3 (-494))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-482)) (-5 *2 (-347 (-483)))))
+ (|partial| -12 (-5 *2 (-347 (-484))) (-5 *1 (-345 *3)) (-4 *3 (-483))
+ (-4 *3 (-495))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-483)) (-5 *2 (-347 (-484)))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-482))
- (-5 *2 (-347 (-483)))))
+ (|partial| -12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-483))
+ (-5 *2 (-347 (-484)))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-347 (-483))) (-5 *1 (-743 *3)) (-4 *3 (-482))
- (-4 *3 (-1012))))
+ (|partial| -12 (-5 *2 (-347 (-484))) (-5 *1 (-744 *3)) (-4 *3 (-483))
+ (-4 *3 (-1013))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-347 (-483))) (-5 *1 (-750 *3)) (-4 *3 (-482))
- (-4 *3 (-1012))))
+ (|partial| -12 (-5 *2 (-347 (-484))) (-5 *1 (-751 *3)) (-4 *3 (-483))
+ (-4 *3 (-1013))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-482))
- (-5 *2 (-347 (-483)))))
+ (|partial| -12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-483))
+ (-5 *2 (-347 (-484)))))
((*1 *2 *3)
- (|partial| -12 (-5 *2 (-347 (-483))) (-5 *1 (-921 *3)) (-4 *3 (-950 *2)))))
+ (|partial| -12 (-5 *2 (-347 (-484))) (-5 *1 (-922 *3)) (-4 *3 (-951 *2)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-345 *3)) (-4 *3 (-482)) (-4 *3 (-494))))
- ((*1 *2 *1) (-12 (-4 *1 (-482)) (-5 *2 (-85))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-345 *3)) (-4 *3 (-483)) (-4 *3 (-495))))
+ ((*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-482)) (-4 *3 (-1012))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-483)) (-4 *3 (-1013))))
((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-482)) (-4 *3 (-1012))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-483)) (-4 *3 (-1013))))
((*1 *2 *1)
- (-12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85))))
((*1 *2 *3)
- (-12 (-5 *2 (-85)) (-5 *1 (-921 *3)) (-4 *3 (-950 (-347 (-483)))))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-922 *3)) (-4 *3 (-951 (-347 (-484)))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-347 (-483)))))
+ (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-347 (-484)))))
((*1 *2 *1)
- (-12 (-5 *2 (-347 (-483))) (-5 *1 (-345 *3)) (-4 *3 (-482)) (-4 *3 (-494))))
- ((*1 *2 *1) (-12 (-4 *1 (-482)) (-5 *2 (-347 (-483)))))
+ (-12 (-5 *2 (-347 (-484))) (-5 *1 (-345 *3)) (-4 *3 (-483)) (-4 *3 (-495))))
+ ((*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-347 (-484)))))
((*1 *2 *1)
- (-12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-347 (-483)))))
+ (-12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-347 (-484)))))
((*1 *2 *1)
- (-12 (-5 *2 (-347 (-483))) (-5 *1 (-743 *3)) (-4 *3 (-482)) (-4 *3 (-1012))))
+ (-12 (-5 *2 (-347 (-484))) (-5 *1 (-744 *3)) (-4 *3 (-483)) (-4 *3 (-1013))))
((*1 *2 *1)
- (-12 (-5 *2 (-347 (-483))) (-5 *1 (-750 *3)) (-4 *3 (-482)) (-4 *3 (-1012))))
+ (-12 (-5 *2 (-347 (-484))) (-5 *1 (-751 *3)) (-4 *3 (-483)) (-4 *3 (-1013))))
((*1 *2 *1)
- (-12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-482)) (-5 *2 (-347 (-483)))))
- ((*1 *2 *3) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-921 *3)) (-4 *3 (-950 *2)))))
-(((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-919)))))
-(((*1 *2 *3) (-12 (-5 *3 (-483)) (-5 *2 (-1183)) (-5 *1 (-919)))))
-(((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-919))))
- ((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-919)))))
+ (-12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-347 (-484)))))
+ ((*1 *2 *3) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-922 *3)) (-4 *3 (-951 *2)))))
+(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-920)))))
+(((*1 *2 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-920)))))
+(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-920))))
+ ((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-920)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-347 (-483))) (-5 *4 (-483)) (-5 *2 (-51)) (-5 *1 (-918)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-917 *3)) (-14 *3 (-483)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1067 (-483))) (-5 *1 (-917 *3)) (-14 *3 (-483)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-917 *3)) (-14 *3 (-483)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-917 *3)) (-14 *3 (-483)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-917 *3)) (-14 *3 (-483)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-917 *3)) (-14 *3 (-483)))))
+ (-12 (-5 *3 (-347 (-484))) (-5 *4 (-484)) (-5 *2 (-51)) (-5 *1 (-919)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-918 *3)) (-14 *3 (-484)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1068 (-484))) (-5 *1 (-918 *3)) (-14 *3 (-484)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-918 *3)) (-14 *3 (-484)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-918 *3)) (-14 *3 (-484)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-918 *3)) (-14 *3 (-484)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-918 *3)) (-14 *3 (-484)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-345 *5)) (-4 *5 (-494))
- (-5 *2 (-2 (|:| -2397 (-694)) (|:| -3948 *5) (|:| |radicand| (-583 *5))))
- (-5 *1 (-270 *5)) (-5 *4 (-694))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-915)) (-5 *2 (-483)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-5 *1 (-913 *3)))))
+ (-12 (-5 *3 (-345 *5)) (-4 *5 (-495))
+ (-5 *2 (-2 (|:| -2399 (-695)) (|:| -3950 *5) (|:| |radicand| (-584 *5))))
+ (-5 *1 (-270 *5)) (-5 *4 (-695))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-916)) (-5 *2 (-484)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-5 *1 (-914 *3)))))
(((*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146))))
((*1 *1 *1 *1) (-4 *1 (-410)))
- ((*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146))))
- ((*1 *2 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-793))))
- ((*1 *1 *1) (-5 *1 (-884)))
- ((*1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))))
-(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146))))
- ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))))
-(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146))))
- ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))))
-(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146))))
- ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1127)))))
-(((*1 *1 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1127)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146))))
+ ((*1 *2 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-794))))
+ ((*1 *1 *1) (-5 *1 (-885)))
+ ((*1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))))
+(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146))))
+ ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))))
+(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146))))
+ ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))))
+(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146))))
+ ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1128)))))
+(((*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1128)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1054 *3 *4)) (-14 *3 (-830)) (-4 *4 (-311))
- (-5 *1 (-906 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1037 (-483) (-550 (-48)))) (-5 *1 (-48))))
+ (-12 (-5 *2 (-1055 *3 *4)) (-14 *3 (-831)) (-4 *4 (-311))
+ (-5 *1 (-907 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1038 (-484) (-551 (-48)))) (-5 *1 (-48))))
((*1 *2 *1)
- (-12 (-4 *3 (-257)) (-4 *4 (-904 *3)) (-4 *5 (-1153 *4)) (-5 *2 (-1177 *6))
- (-5 *1 (-353 *3 *4 *5 *6)) (-4 *6 (-13 (-350 *4 *5) (-950 *4)))))
+ (-12 (-4 *3 (-257)) (-4 *4 (-905 *3)) (-4 *5 (-1154 *4)) (-5 *2 (-1178 *6))
+ (-5 *1 (-353 *3 *4 *5 *6)) (-4 *6 (-13 (-350 *4 *5) (-951 *4)))))
((*1 *2 *1)
- (-12 (-4 *3 (-961)) (-4 *3 (-1012)) (-5 *2 (-1037 *3 (-550 *1)))
+ (-12 (-4 *3 (-962)) (-4 *3 (-1013)) (-5 *2 (-1038 *3 (-551 *1)))
(-4 *1 (-361 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1037 (-483) (-550 (-432)))) (-5 *1 (-432))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1038 (-484) (-551 (-432)))) (-5 *1 (-432))))
((*1 *2 *1)
- (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-558 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-663) *3))))
+ (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-559 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-664) *3))))
((*1 *2 *1)
- (-12 (-4 *3 (-146)) (-4 *2 (-654 *3)) (-5 *1 (-594 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-663) *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1037 (-483) (-550 (-48)))) (-5 *1 (-48))))
+ (-12 (-4 *3 (-146)) (-4 *2 (-655 *3)) (-5 *1 (-595 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-664) *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1038 (-484) (-551 (-48)))) (-5 *1 (-48))))
((*1 *2 *1)
- (-12 (-4 *3 (-904 *2)) (-4 *4 (-1153 *3)) (-4 *2 (-257))
- (-5 *1 (-353 *2 *3 *4 *5)) (-4 *5 (-13 (-350 *3 *4) (-950 *3)))))
+ (-12 (-4 *3 (-905 *2)) (-4 *4 (-1154 *3)) (-4 *2 (-257))
+ (-5 *1 (-353 *2 *3 *4 *5)) (-4 *5 (-13 (-350 *3 *4) (-951 *3)))))
((*1 *2 *1)
- (-12 (-4 *3 (-494)) (-4 *3 (-1012)) (-5 *2 (-1037 *3 (-550 *1)))
+ (-12 (-4 *3 (-495)) (-4 *3 (-1013)) (-5 *2 (-1038 *3 (-551 *1)))
(-4 *1 (-361 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1037 (-483) (-550 (-432)))) (-5 *1 (-432))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1038 (-484) (-551 (-432)))) (-5 *1 (-432))))
((*1 *2 *1)
- (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-663) *4))
- (-5 *1 (-558 *3 *4 *2)) (-4 *3 (-38 *4))))
+ (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-664) *4))
+ (-5 *1 (-559 *3 *4 *2)) (-4 *3 (-38 *4))))
((*1 *2 *1)
- (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-663) *4))
- (-5 *1 (-594 *3 *4 *2)) (-4 *3 (-654 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494)))))
-(((*1 *1 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-1012)) (-4 *2 (-961))))
- ((*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494)))))
-(((*1 *1 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-1012)) (-4 *2 (-494))))
- ((*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-494)))))
+ (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-664) *4))
+ (-5 *1 (-595 *3 *4 *2)) (-4 *3 (-655 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495)))))
+(((*1 *1 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-1013)) (-4 *2 (-962))))
+ ((*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495)))))
+(((*1 *1 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-1013)) (-4 *2 (-495))))
+ ((*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-495)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-830)) (-5 *2 (-1083 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298))))
+ (-12 (-5 *3 (-831)) (-5 *2 (-1084 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-830)) (-5 *2 (-1083 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298))))
+ (-12 (-5 *3 (-831)) (-5 *2 (-1084 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298))))
((*1 *1) (-4 *1 (-317)))
((*1 *2 *3)
- (-12 (-5 *3 (-830)) (-5 *2 (-1177 *4)) (-5 *1 (-465 *4)) (-4 *4 (-298))))
- ((*1 *1 *1) (-4 *1 (-482))) ((*1 *1) (-4 *1 (-482)))
- ((*1 *1 *1) (-5 *1 (-694)))
- ((*1 *2 *1) (-12 (-5 *2 (-813 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1012))))
+ (-12 (-5 *3 (-831)) (-5 *2 (-1178 *4)) (-5 *1 (-466 *4)) (-4 *4 (-298))))
+ ((*1 *1 *1) (-4 *1 (-483))) ((*1 *1) (-4 *1 (-483)))
+ ((*1 *1 *1) (-5 *1 (-695)))
+ ((*1 *2 *1) (-12 (-5 *2 (-814 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1013))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-483)) (-5 *2 (-813 *4)) (-5 *1 (-816 *4)) (-4 *4 (-1012))))
- ((*1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-482)) (-4 *2 (-494)))))
+ (-12 (-5 *3 (-484)) (-5 *2 (-814 *4)) (-5 *1 (-817 *4)) (-4 *4 (-1013))))
+ ((*1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-483)) (-4 *2 (-495)))))
(((*1 *2 *2)
(-12
(-5 *2
- (-899 (-347 (-483)) (-773 *3) (-197 *4 (-694)) (-206 *3 (-347 (-483)))))
- (-14 *3 (-583 (-1088))) (-14 *4 (-694)) (-5 *1 (-900 *3 *4)))))
+ (-900 (-347 (-484)) (-774 *3) (-197 *4 (-695)) (-206 *3 (-347 (-484)))))
+ (-14 *3 (-584 (-1089))) (-14 *4 (-695)) (-5 *1 (-901 *3 *4)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-583 *3)) (-4 *3 (-861 *4 *6 *5)) (-4 *4 (-389)) (-4 *5 (-756))
- (-4 *6 (-717)) (-5 *1 (-899 *4 *5 *6 *3)))))
+ (-12 (-5 *2 (-584 *3)) (-4 *3 (-862 *4 *6 *5)) (-4 *4 (-389)) (-4 *5 (-757))
+ (-4 *6 (-718)) (-5 *1 (-900 *4 *5 *6 *3)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-389)) (-4 *4 (-756)) (-4 *5 (-717))
- (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))))
+ (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-389)) (-4 *4 (-757)) (-4 *5 (-718))
+ (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-389)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-583 *6))
- (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))))
+ (-12 (-4 *3 (-389)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-584 *6))
+ (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-861 *3 *5 *4)) (-5 *1 (-899 *3 *4 *5 *2)) (-4 *3 (-389))
- (-4 *4 (-756)) (-4 *5 (-717)))))
+ (-12 (-4 *2 (-862 *3 *5 *4)) (-5 *1 (-900 *3 *4 *5 *2)) (-4 *3 (-389))
+ (-4 *4 (-757)) (-4 *5 (-718)))))
(((*1 *1 *1)
- (-12 (-4 *2 (-389)) (-4 *3 (-756)) (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5))
- (-4 *5 (-861 *2 *4 *3)))))
+ (-12 (-4 *2 (-389)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5))
+ (-4 *5 (-862 *2 *4 *3)))))
(((*1 *2 *3)
- (-12 (-4 *3 (-1153 *2)) (-4 *2 (-1153 *4)) (-5 *1 (-898 *4 *2 *3 *5))
- (-4 *4 (-298)) (-4 *5 (-661 *2 *3)))))
+ (-12 (-4 *3 (-1154 *2)) (-4 *2 (-1154 *4)) (-5 *1 (-899 *4 *2 *3 *5))
+ (-4 *4 (-298)) (-4 *5 (-662 *2 *3)))))
(((*1 *2 *2 *3)
- (-12 (-4 *4 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $)))))
- (-4 *5 (-494)) (-5 *1 (-671 *4 *3 *5 *2))
- (-4 *2 (-861 (-347 (-857 *5)) *4 *3))))
+ (-12 (-4 *4 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3968 ((-1089) $)))))
+ (-4 *5 (-495)) (-5 *1 (-672 *4 *3 *5 *2))
+ (-4 *2 (-862 (-347 (-858 *5)) *4 *3))))
((*1 *2 *2 *3)
- (-12 (-4 *4 (-961)) (-4 *5 (-717))
+ (-12 (-4 *4 (-962)) (-4 *5 (-718))
(-4 *3
- (-13 (-756)
- (-10 -8 (-15 -3966 ((-1088) $))
- (-15 -3825 ((-3 $ #1="failed") (-1088))))))
- (-5 *1 (-897 *4 *5 *3 *2)) (-4 *2 (-861 (-857 *4) *5 *3))))
+ (-13 (-757)
+ (-10 -8 (-15 -3968 ((-1089) $))
+ (-15 -3827 ((-3 $ #1="failed") (-1089))))))
+ (-5 *1 (-898 *4 *5 *3 *2)) (-4 *2 (-862 (-858 *4) *5 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 *6))
+ (-12 (-5 *3 (-584 *6))
(-4 *6
- (-13 (-756)
- (-10 -8 (-15 -3966 ((-1088) $)) (-15 -3825 ((-3 $ #1#) (-1088))))))
- (-4 *4 (-961)) (-4 *5 (-717)) (-5 *1 (-897 *4 *5 *6 *2))
- (-4 *2 (-861 (-857 *4) *5 *6)))))
+ (-13 (-757)
+ (-10 -8 (-15 -3968 ((-1089) $)) (-15 -3827 ((-3 $ #1#) (-1089))))))
+ (-4 *4 (-962)) (-4 *5 (-718)) (-5 *1 (-898 *4 *5 *6 *2))
+ (-4 *2 (-862 (-858 *4) *5 *6)))))
(((*1 *2 *2 *3)
- (-12 (-4 *4 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $)))))
- (-4 *5 (-494)) (-5 *1 (-671 *4 *3 *5 *2))
- (-4 *2 (-861 (-347 (-857 *5)) *4 *3))))
+ (-12 (-4 *4 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3968 ((-1089) $)))))
+ (-4 *5 (-495)) (-5 *1 (-672 *4 *3 *5 *2))
+ (-4 *2 (-862 (-347 (-858 *5)) *4 *3))))
((*1 *2 *2 *3)
- (-12 (-4 *4 (-961)) (-4 *5 (-717))
+ (-12 (-4 *4 (-962)) (-4 *5 (-718))
(-4 *3
- (-13 (-756)
- (-10 -8 (-15 -3966 ((-1088) $))
- (-15 -3825 ((-3 $ #1="failed") (-1088))))))
- (-5 *1 (-897 *4 *5 *3 *2)) (-4 *2 (-861 (-857 *4) *5 *3))))
+ (-13 (-757)
+ (-10 -8 (-15 -3968 ((-1089) $))
+ (-15 -3827 ((-3 $ #1="failed") (-1089))))))
+ (-5 *1 (-898 *4 *5 *3 *2)) (-4 *2 (-862 (-858 *4) *5 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 *6))
+ (-12 (-5 *3 (-584 *6))
(-4 *6
- (-13 (-756)
- (-10 -8 (-15 -3966 ((-1088) $)) (-15 -3825 ((-3 $ #1#) (-1088))))))
- (-4 *4 (-961)) (-4 *5 (-717)) (-5 *1 (-897 *4 *5 *6 *2))
- (-4 *2 (-861 (-857 *4) *5 *6)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1113)))))
+ (-13 (-757)
+ (-10 -8 (-15 -3968 ((-1089) $)) (-15 -3827 ((-3 $ #1#) (-1089))))))
+ (-4 *4 (-962)) (-4 *5 (-718)) (-5 *1 (-898 *4 *5 *6 *2))
+ (-4 *2 (-862 (-858 *4) *5 *6)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1114)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-694)) (-4 *1 (-896 *2)) (-4 *2 (-1113)))))
-(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-783))))
- ((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))))
-(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-130))))
- ((*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-783))))
- ((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))))
-(((*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-130))))
- ((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))))
-(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))))
+ (|partial| -12 (-5 *3 (-695)) (-4 *1 (-897 *2)) (-4 *2 (-1114)))))
+(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-784))))
+ ((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
+(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-130))))
+ ((*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-784))))
+ ((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
+(((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-130))))
+ ((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
+(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
+(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
+(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
+(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
+(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
+(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
(((*1 *2 *3 *4)
(-12 (-4 *5 (-311))
- (-5 *2 (-583 (-2 (|:| C (-630 *5)) (|:| |g| (-1177 *5))))) (-5 *1 (-891 *5))
- (-5 *3 (-630 *5)) (-5 *4 (-1177 *5)))))
+ (-5 *2 (-584 (-2 (|:| C (-631 *5)) (|:| |g| (-1178 *5))))) (-5 *1 (-892 *5))
+ (-5 *3 (-631 *5)) (-5 *4 (-1178 *5)))))
(((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *2 (-630 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-311))
- (-5 *1 (-891 *5)))))
+ (-12 (-5 *2 (-631 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-311))
+ (-5 *1 (-892 *5)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-311)) (-4 *4 (-389))
- (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-384 *4 *5 *6 *2))))
+ (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-311)) (-4 *4 (-389))
+ (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-384 *4 *5 *6 *2))))
((*1 *2 *3 *4 *5)
(-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-311))
- (-5 *2 (-2 (|:| R (-630 *6)) (|:| A (-630 *6)) (|:| |Ainv| (-630 *6))))
- (-5 *1 (-891 *6)) (-5 *3 (-630 *6)))))
+ (-5 *2 (-2 (|:| R (-631 *6)) (|:| A (-631 *6)) (|:| |Ainv| (-631 *6))))
+ (-5 *1 (-892 *6)) (-5 *3 (-631 *6)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-257))
- (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-257))
+ (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-257))
- (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-257))
+ (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-257))
- (-4 *3 (-494)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-257))
+ (-4 *3 (-495)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-389)) (-4 *3 (-494))
- (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-389)) (-4 *3 (-495))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-389)) (-4 *3 (-494))
- (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-389)) (-4 *3 (-495))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-389)) (-4 *3 (-494))
- (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-389)) (-4 *3 (-495))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-389)) (-4 *3 (-494))
- (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-389)) (-4 *3 (-495))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-583 *7)) (-5 *3 (-85)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-389))
- (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-584 *7)) (-5 *3 (-85)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-389))
+ (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-389)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756))
- (-5 *2 (-583 *3)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))))
+ (-12 (-4 *4 (-389)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-5 *2 (-584 *3)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))))
(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8))
- (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-717)) (-4 *7 (-756))
- (-5 *1 (-890 *5 *6 *7 *8)))))
+ (-12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8))
+ (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-718)) (-4 *7 (-757))
+ (-5 *1 (-891 *5 *6 *7 *8)))))
(((*1 *2 *2 *3 *4 *5)
- (-12 (-5 *2 (-583 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9))
- (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-976 *6 *7 *8)) (-4 *6 (-494)) (-4 *7 (-717))
- (-4 *8 (-756)) (-5 *1 (-890 *6 *7 *8 *9)))))
+ (-12 (-5 *2 (-584 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9))
+ (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-718))
+ (-4 *8 (-757)) (-5 *1 (-891 *6 *7 *8 *9)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-717))
- (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *7 (-976 *4 *5 *6))
- (-5 *2 (-2 (|:| |bas| (-413 *4 *5 *6 *7)) (|:| -3318 (-583 *7))))
- (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+ (|partial| -12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *7 (-977 *4 *5 *6))
+ (-5 *2 (-2 (|:| |bas| (-413 *4 *5 *6 *7)) (|:| -3320 (-584 *7))))
+ (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-717))
- (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *2)))))
+ (-12 (-5 *3 (-584 *2)) (-4 *2 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *2)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-717))
- (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))
((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-583 *7)) (-5 *3 (-85)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494))
- (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-584 *7)) (-5 *3 (-85)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495))
+ (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7))))
- (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+ (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7))))
+ (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85))
- (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))))
+ (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85))
+ (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7))))
- (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+ (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7))))
+ (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85))
- (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))))
+ (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85))
+ (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7))))
- (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+ (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7))))
+ (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85))
- (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))))
+ (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85))
+ (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-976 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7))))
- (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+ (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-977 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7))))
+ (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-1 (-85) *8))) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494))
- (-4 *6 (-717)) (-4 *7 (-756))
- (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8))))
- (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
+ (-12 (-5 *3 (-584 (-1 (-85) *8))) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495))
+ (-4 *6 (-718)) (-4 *7 (-757))
+ (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8))))
+ (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-1 (-85) *8))) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494))
- (-4 *6 (-717)) (-4 *7 (-756))
- (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8))))
- (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
+ (-12 (-5 *3 (-584 (-1 (-85) *8))) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495))
+ (-4 *6 (-718)) (-4 *7 (-757))
+ (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8))))
+ (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-976 *5 *6 *7)) (-4 *5 (-494))
- (-4 *6 (-717)) (-4 *7 (-756))
- (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8))))
- (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
+ (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495))
+ (-4 *6 (-718)) (-4 *7 (-757))
+ (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8))))
+ (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-976 *5 *6 *7))
- (-4 *5 (-494)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-85))
- (-5 *1 (-890 *5 *6 *7 *8)))))
+ (-12 (-5 *4 (-584 (-584 *8))) (-5 *3 (-584 *8)) (-4 *8 (-977 *5 *6 *7))
+ (-4 *5 (-495)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-85))
+ (-5 *1 (-891 *5 *6 *7 *8)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *7)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-717))
- (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *3))
- (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6))))
+ (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3))
+ (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-583 *3)) (-4 *3 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *3))))
+ (-12 (-5 *2 (-584 *3)) (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *3))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-717))
- (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))
((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 (-583 *7) (-583 *7))) (-5 *2 (-583 *7))
- (-4 *7 (-976 *4 *5 *6)) (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756))
- (-5 *1 (-890 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-1 (-584 *7) (-584 *7))) (-5 *2 (-584 *7))
+ (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-5 *1 (-891 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-494)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *3))
- (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-976 *4 *5 *6)))))
+ (-12 (-4 *4 (-495)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3))
+ (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-4 *4 (-717))
- (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-583 *5)))))
+ (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-584 *5)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-889 *4 *5 *3 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756))
- (-4 *6 (-976 *4 *5 *3)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-890 *4 *5 *3 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757))
+ (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-85)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))
- (-4 *5 (-976 *3 *4 *2)))))
+ (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))
+ (-4 *5 (-977 *3 *4 *2)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))
- (-4 *5 (-976 *3 *4 *2)))))
+ (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))
+ (-4 *5 (-977 *3 *4 *2)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))
- (-4 *5 (-976 *3 *4 *2)))))
-(((*1 *1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-1127)) (-4 *2 (-756))))
+ (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))
+ (-4 *5 (-977 *3 *4 *2)))))
+(((*1 *1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-1128)) (-4 *2 (-757))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-321 *3)) (-4 *3 (-1127))))
- ((*1 *2 *2) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-813 *3)) (-4 *3 (-1012))))
+ (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-321 *3)) (-4 *3 (-1128))))
+ ((*1 *2 *2) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1013))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-4 *6 (-976 *4 *5 *3))
- (-5 *2 (-2 (|:| |under| *1) (|:| -3125 *1) (|:| |upper| *1)))
- (-4 *1 (-889 *4 *5 *3 *6)))))
+ (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *6 (-977 *4 *5 *3))
+ (-5 *2 (-2 (|:| |under| *1) (|:| -3127 *1) (|:| |upper| *1)))
+ (-4 *1 (-890 *4 *5 *3 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-976 *3 *4 *5)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-889 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *3 (-976 *4 *5 *6)) (-4 *4 (-494))
+ (-12 (-4 *1 (-890 *4 *5 *6 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495))
(-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-889 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *3 (-976 *4 *5 *6)) (-4 *4 (-494))
+ (-12 (-4 *1 (-890 *4 *5 *6 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495))
(-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
(((*1 *2 *2 *1)
- (-12 (-5 *2 (-583 *6)) (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961))
- (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)))))
+ (-12 (-5 *2 (-584 *6)) (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)))))
(((*1 *2 *2 *1)
- (-12 (-5 *2 (-583 *6)) (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961))
- (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-976 *3 *4 *5)) (-4 *3 (-494)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-583 (-583 (-854 (-179)))))))
- ((*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-583 (-583 (-854 (-179))))))))
-(((*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-1000 (-179)))))
- ((*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1000 (-179))))))
-(((*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-1000 (-179)))))
- ((*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1000 (-179))))))
-(((*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1000 (-179))))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716))))
- ((*1 *2 *1) (-12 (-4 *1 (-332 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1012))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-583 (-1088))) (-4 *4 (-146)) (-4 *6 (-196 (-3951 *3) (-694)))
+ (-12 (-5 *2 (-584 *6)) (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-584 (-584 (-855 (-179)))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-584 (-584 (-855 (-179))))))))
+(((*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-1001 (-179)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1001 (-179))))))
+(((*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-1001 (-179)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1001 (-179))))))
+(((*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1001 (-179))))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717))))
+ ((*1 *2 *1) (-12 (-4 *1 (-332 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1013))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-584 (-1089))) (-4 *4 (-146)) (-4 *6 (-196 (-3953 *3) (-695)))
(-14 *7
- (-1 (-85) (-2 (|:| -2396 *5) (|:| -2397 *6))
- (-2 (|:| -2396 *5) (|:| -2397 *6))))
- (-5 *2 (-650 *5 *6 *7)) (-5 *1 (-398 *3 *4 *5 *6 *7 *8)) (-4 *5 (-756))
- (-4 *8 (-861 *4 *6 (-773 *3)))))
+ (-1 (-85) (-2 (|:| -2398 *5) (|:| -2399 *6))
+ (-2 (|:| -2398 *5) (|:| -2399 *6))))
+ (-5 *2 (-651 *5 *6 *7)) (-5 *1 (-398 *3 *4 *5 *6 *7 *8)) (-4 *5 (-757))
+ (-4 *8 (-862 *4 *6 (-774 *3)))))
((*1 *2 *1)
- (-12 (-4 *2 (-663)) (-4 *2 (-756)) (-5 *1 (-674 *3 *2)) (-4 *3 (-961))))
+ (-12 (-4 *2 (-664)) (-4 *2 (-757)) (-5 *1 (-675 *3 *2)) (-4 *3 (-962))))
((*1 *1 *1)
- (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *4 (-756)))))
-(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716))))
+ (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *4 (-757)))))
+(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-583 (-830))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-830))
- (-4 *2 (-311)) (-14 *5 (-906 *4 *2))))
+ (-12 (-5 *3 (-584 (-831))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-831))
+ (-4 *2 (-311)) (-14 *5 (-907 *4 *2))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-650 *5 *6 *7)) (-4 *5 (-756)) (-4 *6 (-196 (-3951 *4) (-694)))
+ (-12 (-5 *3 (-651 *5 *6 *7)) (-4 *5 (-757)) (-4 *6 (-196 (-3953 *4) (-695)))
(-14 *7
- (-1 (-85) (-2 (|:| -2396 *5) (|:| -2397 *6))
- (-2 (|:| -2396 *5) (|:| -2397 *6))))
- (-14 *4 (-583 (-1088))) (-4 *2 (-146)) (-5 *1 (-398 *4 *2 *5 *6 *7 *8))
- (-4 *8 (-861 *2 *6 (-773 *4)))))
- ((*1 *1 *2 *3) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-72)) (-4 *3 (-759))))
+ (-1 (-85) (-2 (|:| -2398 *5) (|:| -2399 *6))
+ (-2 (|:| -2398 *5) (|:| -2399 *6))))
+ (-14 *4 (-584 (-1089))) (-4 *2 (-146)) (-5 *1 (-398 *4 *2 *5 *6 *7 *8))
+ (-4 *8 (-862 *2 *6 (-774 *4)))))
+ ((*1 *1 *2 *3) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-72)) (-4 *3 (-760))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-483)) (-4 *2 (-494)) (-5 *1 (-562 *2 *4)) (-4 *4 (-1153 *2))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-645 *2)) (-4 *2 (-961))))
- ((*1 *1 *2 *3) (-12 (-5 *1 (-674 *2 *3)) (-4 *2 (-961)) (-4 *3 (-663))))
+ (-12 (-5 *3 (-484)) (-4 *2 (-495)) (-5 *1 (-563 *2 *4)) (-4 *4 (-1154 *2))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-646 *2)) (-4 *2 (-962))))
+ ((*1 *1 *2 *3) (-12 (-5 *1 (-675 *2 *3)) (-4 *2 (-962)) (-4 *3 (-664))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-694))) (-4 *1 (-679 *4 *5))
- (-4 *4 (-961)) (-4 *5 (-756))))
+ (-12 (-5 *2 (-584 *5)) (-5 *3 (-584 (-695))) (-4 *1 (-680 *4 *5))
+ (-4 *4 (-962)) (-4 *5 (-757))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *2)) (-4 *4 (-961)) (-4 *2 (-756))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-761 *2)) (-4 *2 (-961))))
+ (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *2)) (-4 *4 (-962)) (-4 *2 (-757))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-762 *2)) (-4 *2 (-962))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-694))) (-4 *1 (-861 *4 *5 *6))
- (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756))))
+ (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 (-695))) (-4 *1 (-862 *4 *5 *6))
+ (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-694)) (-4 *1 (-861 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-717))
- (-4 *2 (-756))))
+ (-12 (-5 *3 (-695)) (-4 *1 (-862 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-718))
+ (-4 *2 (-757))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 *5)) (-4 *1 (-886 *4 *5 *6))
- (-4 *4 (-961)) (-4 *5 (-716)) (-4 *6 (-756))))
+ (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 *5)) (-4 *1 (-887 *4 *5 *6))
+ (-4 *4 (-962)) (-4 *5 (-717)) (-4 *6 (-757))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-886 *4 *3 *2)) (-4 *4 (-961)) (-4 *3 (-716)) (-4 *2 (-756)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-530 *3)) (-4 *3 (-961))))
+ (-12 (-4 *1 (-887 *4 *3 *2)) (-4 *4 (-962)) (-4 *3 (-717)) (-4 *2 (-757)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-531 *3)) (-4 *3 (-962))))
((*1 *2 *1)
- (-12 (-4 *1 (-886 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-716)) (-4 *5 (-756))
+ (-12 (-4 *1 (-887 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *5 (-757))
(-5 *2 (-85)))))
(((*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-257))))
- ((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164))))
- ((*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1127))))
- ((*1 *1 *1) (-4 *1 (-779 *2)))
+ ((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164))))
+ ((*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *1) (-4 *1 (-780 *2)))
((*1 *1 *1)
- (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *4 (-756)))))
-(((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-884)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-321 *3))
- (-4 *5 (-321 *3)) (-5 *2 (-583 *3))))
- ((*1 *2 *1)
- (-12 (|has| *1 (-6 -3989)) (-4 *1 (-426 *3)) (-4 *3 (-1127))
- (-5 *2 (-583 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-884)))))
-(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1067 (-884))) (-5 *1 (-884)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-782 (-830) (-830)))) (-5 *1 (-884)))))
-(((*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-884)))))
+ (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *4 (-757)))))
+(((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-885)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128)) (-4 *4 (-321 *3))
+ (-4 *5 (-321 *3)) (-5 *2 (-584 *3))))
+ ((*1 *2 *1)
+ (-12 (|has| *1 (-6 -3991)) (-4 *1 (-426 *3)) (-4 *3 (-1128))
+ (-5 *2 (-584 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-885)))))
+(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1068 (-885))) (-5 *1 (-885)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-783 (-831) (-831)))) (-5 *1 (-885)))))
+(((*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-885)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3750 *4)))
- (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3752 *4)))
+ (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-494))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3750 *4)))
- (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))))
-(((*1 *2 *3 *3) (-12 (-4 *2 (-494)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1153 *2)))))
+ (-12 (-4 *4 (-495))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3752 *4)))
+ (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))))
+(((*1 *2 *3 *3) (-12 (-4 *2 (-495)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1154 *2)))))
(((*1 *2 *2 *2 *2 *3)
- (-12 (-4 *3 (-494)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1153 *3)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1154 *3)))))
(((*1 *2 *2 *3 *3 *4)
- (-12 (-5 *4 (-694)) (-4 *3 (-494)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1153 *3)))))
+ (-12 (-5 *4 (-695)) (-4 *3 (-495)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1154 *3)))))
(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-694)) (-4 *2 (-494)) (-5 *1 (-882 *2 *4)) (-4 *4 (-1153 *2)))))
+ (-12 (-5 *3 (-695)) (-4 *2 (-495)) (-5 *1 (-883 *2 *4)) (-4 *4 (-1154 *2)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1))) (-4 *1 (-257))))
+ (-12 (-5 *2 (-2 (|:| -1971 *1) (|:| -2900 *1))) (-4 *1 (-257))))
((*1 *2 *1 *1)
- (|partial| -12 (-4 *3 (-1012)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1)))
+ (|partial| -12 (-4 *3 (-1013)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1)))
(-4 *1 (-333 *3))))
((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -1970 (-694)) (|:| -2898 (-694)))) (-5 *1 (-694))))
+ (-12 (-5 *2 (-2 (|:| -1971 (-695)) (|:| -2900 (-695)))) (-5 *1 (-695))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3)))
- (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -1971 *3) (|:| -2900 *3)))
+ (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-389)) (-4 *4 (-494))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| -2872 *4))) (-5 *1 (-882 *4 *3))
- (-4 *3 (-1153 *4)))))
+ (-12 (-4 *4 (-389)) (-4 *4 (-495))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| -2874 *4))) (-5 *1 (-883 *4 *3))
+ (-4 *3 (-1154 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-389)) (-4 *4 (-494))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2872 *4)))
- (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))))
+ (-12 (-4 *4 (-389)) (-4 *4 (-495))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2874 *4)))
+ (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *2 (-494)) (-4 *2 (-389)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1153 *2)))))
+ (-12 (-4 *2 (-495)) (-4 *2 (-389)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1154 *2)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-494)) (-5 *2 (-583 (-694))) (-5 *1 (-882 *4 *3))
- (-4 *3 (-1153 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-584 (-695))) (-5 *1 (-883 *4 *3))
+ (-4 *3 (-1154 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-494)) (-5 *2 (-583 *3)) (-5 *1 (-882 *4 *3))
- (-4 *3 (-1153 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-584 *3)) (-5 *1 (-883 *4 *3))
+ (-4 *3 (-1154 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3751 *4)))
- (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3753 *4)))
+ (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-494))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3751 *4)))
- (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))))
+ (-12 (-4 *4 (-495))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3753 *4)))
+ (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3139 *3)))
- (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3141 *3)))
+ (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3139 *3)))
- (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3141 *3)))
+ (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-494))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3139 *3)))
- (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))))
+ (-12 (-4 *4 (-495))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3141 *3)))
+ (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-494))
+ (-12 (-4 *4 (-495))
(-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))))
+ (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))))
(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-694)) (-4 *5 (-494))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3))
- (-4 *3 (-1153 *5)))))
+ (-12 (-5 *4 (-695)) (-4 *5 (-495))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3))
+ (-4 *3 (-1154 *5)))))
(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-694)) (-4 *5 (-494))
+ (-12 (-5 *4 (-695)) (-4 *5 (-495))
(-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-882 *5 *3)) (-4 *3 (-1153 *5)))))
+ (-5 *1 (-883 *5 *3)) (-4 *3 (-1154 *5)))))
(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-694)) (-4 *4 (-494)) (-5 *1 (-882 *4 *2)) (-4 *2 (-1153 *4)))))
+ (-12 (-5 *3 (-695)) (-4 *4 (-495)) (-5 *1 (-883 *4 *2)) (-4 *2 (-1154 *4)))))
(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-694)) (-4 *5 (-494))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3))
- (-4 *3 (-1153 *5)))))
+ (-12 (-5 *4 (-695)) (-4 *5 (-495))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3))
+ (-4 *3 (-1154 *5)))))
(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-694)) (-4 *5 (-494))
+ (-12 (-5 *4 (-695)) (-4 *5 (-495))
(-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-882 *5 *3)) (-4 *3 (-1153 *5)))))
+ (-5 *1 (-883 *5 *3)) (-4 *3 (-1154 *5)))))
(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-694)) (-4 *4 (-494)) (-5 *1 (-882 *4 *2)) (-4 *2 (-1153 *4)))))
+ (-12 (-5 *3 (-695)) (-4 *4 (-495)) (-5 *1 (-883 *4 *2)) (-4 *2 (-1154 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3750 *4)))
- (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3752 *4)))
+ (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-494)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3750 *4)))
- (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3752 *4)))
+ (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-494))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3750 *4)))
- (-5 *1 (-882 *4 *3)) (-4 *3 (-1153 *4)))))
+ (-12 (-4 *4 (-495))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3752 *4)))
+ (-5 *1 (-883 *4 *3)) (-4 *3 (-1154 *4)))))
(((*1 *1)
- (-12 (-4 *1 (-344)) (-2556 (|has| *1 (-6 -3980)))
- (-2556 (|has| *1 (-6 -3972)))))
- ((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1012)) (-4 *2 (-756))))
- ((*1 *1) (-4 *1 (-752))) ((*1 *1 *1 *1) (-4 *1 (-759)))
- ((*1 *2 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1127)) (-4 *2 (-756))))
+ (-12 (-4 *1 (-344)) (-2558 (|has| *1 (-6 -3982)))
+ (-2558 (|has| *1 (-6 -3974)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1013)) (-4 *2 (-757))))
+ ((*1 *1) (-4 *1 (-753))) ((*1 *1 *1 *1) (-4 *1 (-760)))
+ ((*1 *2 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)) (-4 *2 (-757))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-237 *3)) (-4 *3 (-1127))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756)))))
-(((*1 *1) (-4 *1 (-880))))
-(((*1 *1) (-4 *1 (-880))))
-(((*1 *1 *1 *1) (-4 *1 (-880))))
-(((*1 *1 *1 *1) (-4 *1 (-880))))
-(((*1 *1 *2) (-12 (-5 *2 (-577 *3)) (-14 *3 (-583 (-1088))) (-5 *1 (-168 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-583 (-1088))) (-5 *1 (-577 *3))))
- ((*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-1012)) (-5 *1 (-878 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1012)) (-5 *2 (-798 *3 *4)) (-5 *1 (-795 *3 *4 *5))
- (-4 *3 (-1012)) (-4 *5 (-608 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-877 *4)) (-4 *4 (-1012)) (-5 *2 (-1008 *4)) (-5 *1 (-878 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-632 *3)) (-5 *1 (-877 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *1) (-12 (-5 *2 (-632 (-877 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3))
- (-4 *3 (-1012)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3))
- (-4 *3 (-1012)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3))
- (-4 *3 (-1012)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3))
- (-4 *3 (-1012)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1012)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1012)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-444)) (-5 *2 (-632 (-696))) (-5 *1 (-86))))
- ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1071)) (-5 *2 (-696)) (-5 *1 (-86))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-1014)) (-5 *1 (-876)))))
-(((*1 *1 *2 *3) (-12 (-5 *1 (-875 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))))
-(((*1 *2 *1) (-12 (-4 *2 (-1012)) (-5 *1 (-875 *2 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *1) (-12 (-4 *2 (-1012)) (-5 *1 (-875 *3 *2)) (-4 *3 (-1012)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-772))))
- ((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1183)) (-5 *1 (-874)))))
-(((*1 *2 *3 *3) (-12 (-5 *2 (-583 *3)) (-5 *1 (-873 *3)) (-4 *3 (-482)))))
-(((*1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-482)))))
-(((*1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-482)))))
+ (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-237 *3)) (-4 *3 (-1128))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757)))))
+(((*1 *1) (-4 *1 (-881))))
+(((*1 *1) (-4 *1 (-881))))
+(((*1 *1 *1 *1) (-4 *1 (-881))))
+(((*1 *1 *1 *1) (-4 *1 (-881))))
+(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-14 *3 (-584 (-1089))) (-5 *1 (-168 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-584 (-1089))) (-5 *1 (-578 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-1013)) (-5 *1 (-879 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1013)) (-5 *2 (-799 *3 *4)) (-5 *1 (-796 *3 *4 *5))
+ (-4 *3 (-1013)) (-4 *5 (-609 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-878 *4)) (-4 *4 (-1013)) (-5 *2 (-1009 *4)) (-5 *1 (-879 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-633 *3)) (-5 *1 (-878 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-633 (-878 *3))) (-5 *1 (-878 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3))
+ (-4 *3 (-1013)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3))
+ (-4 *3 (-1013)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3))
+ (-4 *3 (-1013)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3))
+ (-4 *3 (-1013)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1013)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1013)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-444)) (-5 *2 (-633 (-697))) (-5 *1 (-86))))
+ ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1072)) (-5 *2 (-697)) (-5 *1 (-86))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-1015)) (-5 *1 (-877)))))
+(((*1 *1 *2 *3) (-12 (-5 *1 (-876 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-876 *3 *2)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-773))))
+ ((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1184)) (-5 *1 (-875)))))
+(((*1 *2 *3 *3) (-12 (-5 *2 (-584 *3)) (-5 *1 (-874 *3)) (-4 *3 (-483)))))
+(((*1 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-483)))))
+(((*1 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-483)))))
(((*1 *1) (-4 *1 (-298)))
((*1 *2 *3)
- (-12 (-5 *3 (-583 *5)) (-4 *5 (-361 *4)) (-4 *4 (-13 (-494) (-120)))
+ (-12 (-5 *3 (-584 *5)) (-4 *5 (-361 *4)) (-4 *4 (-13 (-495) (-120)))
(-5 *2
- (-2 (|:| |primelt| *5) (|:| |poly| (-583 (-1083 *5)))
- (|:| |prim| (-1083 *5))))
+ (-2 (|:| |primelt| *5) (|:| |poly| (-584 (-1084 *5)))
+ (|:| |prim| (-1084 *5))))
(-5 *1 (-372 *4 *5))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-494) (-120)))
+ (-12 (-4 *4 (-13 (-495) (-120)))
(-5 *2
- (-2 (|:| |primelt| *3) (|:| |pol1| (-1083 *3)) (|:| |pol2| (-1083 *3))
- (|:| |prim| (-1083 *3))))
+ (-2 (|:| |primelt| *3) (|:| |pol1| (-1084 *3)) (|:| |pol2| (-1084 *3))
+ (|:| |prim| (-1084 *3))))
(-5 *1 (-372 *4 *3)) (-4 *3 (-27)) (-4 *3 (-361 *4))))
((*1 *2 *3 *4 *3 *4)
- (-12 (-5 *3 (-857 *5)) (-5 *4 (-1088)) (-4 *5 (-13 (-311) (-120)))
+ (-12 (-5 *3 (-858 *5)) (-5 *4 (-1089)) (-4 *5 (-13 (-311) (-120)))
(-5 *2
- (-2 (|:| |coef1| (-483)) (|:| |coef2| (-483)) (|:| |prim| (-1083 *5))))
- (-5 *1 (-872 *5))))
+ (-2 (|:| |coef1| (-484)) (|:| |coef2| (-484)) (|:| |prim| (-1084 *5))))
+ (-5 *1 (-873 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1088)))
+ (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1089)))
(-4 *5 (-13 (-311) (-120)))
(-5 *2
- (-2 (|:| -3948 (-583 (-483))) (|:| |poly| (-583 (-1083 *5)))
- (|:| |prim| (-1083 *5))))
- (-5 *1 (-872 *5))))
+ (-2 (|:| -3950 (-584 (-484))) (|:| |poly| (-584 (-1084 *5)))
+ (|:| |prim| (-1084 *5))))
+ (-5 *1 (-873 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1088))) (-5 *5 (-1088))
+ (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1089))) (-5 *5 (-1089))
(-4 *6 (-13 (-311) (-120)))
(-5 *2
- (-2 (|:| -3948 (-583 (-483))) (|:| |poly| (-583 (-1083 *6)))
- (|:| |prim| (-1083 *6))))
- (-5 *1 (-872 *6)))))
+ (-2 (|:| -3950 (-584 (-484))) (|:| |poly| (-584 (-1084 *6)))
+ (|:| |prim| (-1084 *6))))
+ (-5 *1 (-873 *6)))))
(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1088)) (-5 *1 (-518 *2)) (-4 *2 (-950 *3)) (-4 *2 (-311))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-518 *2)) (-4 *2 (-311))))
+ (-12 (-5 *3 (-1089)) (-5 *1 (-519 *2)) (-4 *2 (-951 *3)) (-4 *2 (-311))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-519 *2)) (-4 *2 (-311))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *1 (-568 *4 *2))
- (-4 *2 (-13 (-361 *4) (-915) (-1113)))))
+ (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-569 *4 *2))
+ (-4 *2 (-13 (-361 *4) (-916) (-1114)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1003 *2)) (-4 *2 (-13 (-361 *4) (-915) (-1113))) (-4 *4 (-494))
- (-5 *1 (-568 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-871)) (-5 *2 (-1088))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1003 *1)) (-4 *1 (-871)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-830)) (-4 *5 (-494)) (-5 *2 (-630 *5))
- (-5 *1 (-868 *5 *3)) (-4 *3 (-600 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-865)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-494)) (-4 *3 (-861 *7 *5 *6))
- (-5 *2 (-2 (|:| -2397 (-694)) (|:| -3948 *3) (|:| |radicand| (-583 *3))))
- (-5 *1 (-864 *5 *6 *7 *3 *8)) (-5 *4 (-694))
+ (-12 (-5 *3 (-1004 *2)) (-4 *2 (-13 (-361 *4) (-916) (-1114))) (-4 *4 (-495))
+ (-5 *1 (-569 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-872)) (-5 *2 (-1089))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-872)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-831)) (-4 *5 (-495)) (-5 *2 (-631 *5))
+ (-5 *1 (-869 *5 *3)) (-4 *3 (-601 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1033)) (-5 *1 (-866)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-495)) (-4 *3 (-862 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2399 (-695)) (|:| -3950 *3) (|:| |radicand| (-584 *3))))
+ (-5 *1 (-865 *5 *6 *7 *3 *8)) (-5 *4 (-695))
(-4 *8
(-13 (-311)
- (-10 -8 (-15 -3940 ($ *3)) (-15 -2994 (*3 $)) (-15 -2993 (*3 $))))))))
+ (-10 -8 (-15 -3942 ($ *3)) (-15 -2996 (*3 $)) (-15 -2995 (*3 $))))))))
(((*1 *2 *3 *4)
- (-12 (-4 *7 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-494))
- (-4 *8 (-861 *7 *5 *6))
- (-5 *2 (-2 (|:| -2397 (-694)) (|:| -3948 *3) (|:| |radicand| *3)))
- (-5 *1 (-864 *5 *6 *7 *8 *3)) (-5 *4 (-694))
+ (-12 (-4 *7 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-495))
+ (-4 *8 (-862 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2399 (-695)) (|:| -3950 *3) (|:| |radicand| *3)))
+ (-5 *1 (-865 *5 *6 *7 *8 *3)) (-5 *4 (-695))
(-4 *3
(-13 (-311)
- (-10 -8 (-15 -3940 ($ *8)) (-15 -2994 (*8 $)) (-15 -2993 (*8 $))))))))
+ (-10 -8 (-15 -3942 ($ *8)) (-15 -2996 (*8 $)) (-15 -2995 (*8 $))))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-347 (-483))) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-494))
- (-4 *8 (-861 *7 *5 *6))
- (-5 *2 (-2 (|:| -2397 (-694)) (|:| -3948 *9) (|:| |radicand| *9)))
- (-5 *1 (-864 *5 *6 *7 *8 *9)) (-5 *4 (-694))
+ (-12 (-5 *3 (-347 (-484))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-495))
+ (-4 *8 (-862 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2399 (-695)) (|:| -3950 *9) (|:| |radicand| *9)))
+ (-5 *1 (-865 *5 *6 *7 *8 *9)) (-5 *4 (-695))
(-4 *9
(-13 (-311)
- (-10 -8 (-15 -3940 ($ *8)) (-15 -2994 (*8 $)) (-15 -2993 (*8 $))))))))
+ (-10 -8 (-15 -3942 ($ *8)) (-15 -2996 (*8 $)) (-15 -2995 (*8 $))))))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-494)) (-4 *7 (-861 *3 *5 *6))
- (-5 *2 (-2 (|:| -2397 (-694)) (|:| -3948 *8) (|:| |radicand| *8)))
- (-5 *1 (-864 *5 *6 *3 *7 *8)) (-5 *4 (-694))
+ (-12 (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-495)) (-4 *7 (-862 *3 *5 *6))
+ (-5 *2 (-2 (|:| -2399 (-695)) (|:| -3950 *8) (|:| |radicand| *8)))
+ (-5 *1 (-865 *5 *6 *3 *7 *8)) (-5 *4 (-695))
(-4 *8
(-13 (-311)
- (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $))))))))
+ (-10 -8 (-15 -3942 ($ *7)) (-15 -2996 (*7 $)) (-15 -2995 (*7 $))))))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-961)) (-4 *3 (-1012))
- (-5 *2 (-2 (|:| |val| *1) (|:| -2397 (-483)))) (-4 *1 (-361 *3))))
+ (|partial| -12 (-4 *3 (-962)) (-4 *3 (-1013))
+ (-5 *2 (-2 (|:| |val| *1) (|:| -2399 (-484)))) (-4 *1 (-361 *3))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |val| (-800 *3)) (|:| -2397 (-800 *3))))
- (-5 *1 (-800 *3)) (-4 *3 (-1012))))
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-801 *3)) (|:| -2399 (-801 *3))))
+ (-5 *1 (-801 *3)) (-4 *3 (-1013))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961))
- (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2397 (-483))))
- (-5 *1 (-862 *4 *5 *6 *7 *3))
+ (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962))
+ (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2399 (-484))))
+ (-5 *1 (-863 *4 *5 *6 *7 *3))
(-4 *3
(-13 (-311)
- (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $))))))))
+ (-10 -8 (-15 -3942 ($ *7)) (-15 -2996 (*7 $)) (-15 -2995 (*7 $))))))))
(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1088)) (-4 *4 (-961)) (-4 *4 (-1012))
- (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2397 (-483)))) (-4 *1 (-361 *4))))
+ (|partial| -12 (-5 *3 (-1089)) (-4 *4 (-962)) (-4 *4 (-1013))
+ (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2399 (-484)))) (-4 *1 (-361 *4))))
((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-86)) (-4 *4 (-961)) (-4 *4 (-1012))
- (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2397 (-483)))) (-4 *1 (-361 *4))))
+ (|partial| -12 (-5 *3 (-86)) (-4 *4 (-962)) (-4 *4 (-1013))
+ (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2399 (-484)))) (-4 *1 (-361 *4))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1024)) (-4 *3 (-1012))
- (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2397 (-483)))) (-4 *1 (-361 *3))))
+ (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-1013))
+ (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2399 (-484)))) (-4 *1 (-361 *3))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |val| (-800 *3)) (|:| -2397 (-694))))
- (-5 *1 (-800 *3)) (-4 *3 (-1012))))
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-801 *3)) (|:| -2399 (-695))))
+ (-5 *1 (-801 *3)) (-4 *3 (-1013))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717))
- (-4 *5 (-756)) (-5 *2 (-2 (|:| |var| *5) (|:| -2397 (-694))))))
+ (|partial| -12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-5 *2 (-2 (|:| |var| *5) (|:| -2399 (-695))))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961))
- (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2397 (-483))))
- (-5 *1 (-862 *4 *5 *6 *7 *3))
+ (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962))
+ (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2399 (-484))))
+ (-5 *1 (-863 *4 *5 *6 *7 *3))
(-4 *3
(-13 (-311)
- (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $))))))))
+ (-10 -8 (-15 -3942 ($ *7)) (-15 -2996 (*7 $)) (-15 -2995 (*7 $))))))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1024)) (-4 *3 (-1012)) (-5 *2 (-583 *1))
+ (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-1013)) (-5 *2 (-584 *1))
(-4 *1 (-361 *3))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1012))))
+ (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1013))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1))
- (-4 *1 (-861 *3 *4 *5))))
+ (|partial| -12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1))
+ (-4 *1 (-862 *3 *4 *5))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961))
- (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-862 *4 *5 *6 *7 *3))
+ (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962))
+ (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *3)) (-5 *1 (-863 *4 *5 *6 *7 *3))
(-4 *3
(-13 (-311)
- (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $))))))))
+ (-10 -8 (-15 -3942 ($ *7)) (-15 -2996 (*7 $)) (-15 -2995 (*7 $))))))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1012)) (-5 *2 (-583 *1))
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1013)) (-5 *2 (-584 *1))
(-4 *1 (-361 *3))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1012))))
+ (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1013))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1))
- (-4 *1 (-861 *3 *4 *5))))
+ (|partial| -12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1))
+ (-4 *1 (-862 *3 *4 *5))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961))
- (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-862 *4 *5 *6 *7 *3))
+ (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962))
+ (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *3)) (-5 *1 (-863 *4 *5 *6 *7 *3))
(-4 *3
(-13 (-311)
- (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $))))))))
+ (-10 -8 (-15 -3942 ($ *7)) (-15 -2996 (*7 $)) (-15 -2995 (*7 $))))))))
(((*1 *2 *1)
- (-12 (-4 *3 (-961)) (-4 *4 (-1012)) (-5 *2 (-583 *1)) (-4 *1 (-332 *3 *4))))
+ (-12 (-4 *3 (-962)) (-4 *4 (-1013)) (-5 *2 (-584 *1)) (-4 *1 (-332 *3 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-583 (-674 *3 *4))) (-5 *1 (-674 *3 *4)) (-4 *3 (-961))
- (-4 *4 (-663))))
+ (-12 (-5 *2 (-584 (-675 *3 *4))) (-5 *1 (-675 *3 *4)) (-4 *3 (-962))
+ (-4 *4 (-664))))
((*1 *2 *1)
- (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1))
- (-4 *1 (-861 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-276 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716))))
- ((*1 *2 *1) (-12 (-4 *1 (-645 *3)) (-4 *3 (-961)) (-5 *2 (-694))))
- ((*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-694))))
+ (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1))
+ (-4 *1 (-862 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-276 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717))))
+ ((*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-962)) (-5 *2 (-695))))
+ ((*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-695))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-583 (-694)))))
+ (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-584 (-695)))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756))
- (-5 *2 (-694)))))
+ (-12 (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757))
+ (-5 *2 (-695)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-694))))
+ (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-695))))
((*1 *2 *1)
- (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-5 *2 (-694)))))
+ (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-5 *2 (-695)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1))
- (-4 *1 (-861 *3 *4 *5)))))
+ (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1))
+ (-4 *1 (-862 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-276 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)) (-4 *2 (-389))))
+ (-12 (-4 *1 (-276 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)) (-4 *2 (-389))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 *4)) (-4 *4 (-1153 (-483))) (-5 *2 (-583 (-483)))
+ (-12 (-5 *3 (-584 *4)) (-4 *4 (-1154 (-484))) (-5 *2 (-584 (-484)))
(-5 *1 (-423 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-389))))
+ ((*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-389))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))
+ (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))
(-4 *3 (-389)))))
(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-583 *5)) (-5 *4 (-483)) (-4 *5 (-755)) (-4 *5 (-311))
- (-5 *2 (-694)) (-5 *1 (-856 *5 *6)) (-4 *6 (-1153 *5)))))
+ (-12 (-5 *3 (-584 *5)) (-5 *4 (-484)) (-4 *5 (-756)) (-4 *5 (-311))
+ (-5 *2 (-695)) (-5 *1 (-857 *5 *6)) (-4 *6 (-1154 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *4)) (-4 *4 (-755)) (-4 *4 (-311)) (-5 *2 (-694))
- (-5 *1 (-856 *4 *5)) (-4 *5 (-1153 *4)))))
+ (-12 (-5 *3 (-584 *4)) (-4 *4 (-756)) (-4 *4 (-311)) (-5 *2 (-695))
+ (-5 *1 (-857 *4 *5)) (-4 *5 (-1154 *4)))))
(((*1 *2 *3)
- (-12 (-4 *2 (-311)) (-4 *2 (-755)) (-5 *1 (-856 *2 *3)) (-4 *3 (-1153 *2)))))
+ (-12 (-4 *2 (-311)) (-4 *2 (-756)) (-5 *1 (-857 *2 *3)) (-4 *3 (-1154 *2)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-311)) (-5 *2 (-583 *3)) (-5 *1 (-856 *4 *3))
- (-4 *3 (-1153 *4)))))
+ (-12 (-4 *4 (-311)) (-5 *2 (-584 *3)) (-5 *1 (-857 *4 *3))
+ (-4 *3 (-1154 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-311)) (-5 *2 (-583 *3)) (-5 *1 (-856 *4 *3))
- (-4 *3 (-1153 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-857 *5)) (-4 *5 (-961)) (-5 *2 (-206 *4 *5))
- (-5 *1 (-855 *4 *5)) (-14 *4 (-583 (-1088))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1088))) (-4 *5 (-961))
- (-5 *2 (-857 *5)) (-5 *1 (-855 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-418 *4 *5)) (-14 *4 (-583 (-1088))) (-4 *5 (-961))
- (-5 *2 (-857 *5)) (-5 *1 (-855 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-857 *5)) (-4 *5 (-961)) (-5 *2 (-418 *4 *5))
- (-5 *1 (-855 *4 *5)) (-14 *4 (-583 (-1088))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-418 *4 *5)) (-14 *4 (-583 (-1088))) (-4 *5 (-961))
- (-5 *2 (-206 *4 *5)) (-5 *1 (-855 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1088))) (-4 *5 (-961))
- (-5 *2 (-418 *4 *5)) (-5 *1 (-855 *4 *5)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498))))
- ((*1 *2 *3) (-12 (-5 *2 (-1083 (-347 (-483)))) (-5 *1 (-853)) (-5 *3 (-483)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-853)) (-5 *3 (-483)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1083 (-483))) (-5 *2 (-483)) (-5 *1 (-853)))))
-(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498))))
- ((*1 *2 *3) (-12 (-5 *2 (-1083 (-347 (-483)))) (-5 *1 (-853)) (-5 *3 (-483)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-165)) (-5 *3 (-483))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-146))))
- ((*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-853)) (-5 *3 (-483)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146))))
- ((*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-853)) (-5 *3 (-483)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146))))
- ((*1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *1 (-853)) (-5 *3 (-483)))))
-(((*1 *2 *3) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-498)) (-5 *3 (-483))))
- ((*1 *2 *3) (-12 (-5 *2 (-1083 (-347 (-483)))) (-5 *1 (-853)) (-5 *3 (-483)))))
+ (-12 (-4 *4 (-311)) (-5 *2 (-584 *3)) (-5 *1 (-857 *4 *3))
+ (-4 *3 (-1154 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-858 *5)) (-4 *5 (-962)) (-5 *2 (-206 *4 *5))
+ (-5 *1 (-856 *4 *5)) (-14 *4 (-584 (-1089))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1089))) (-4 *5 (-962))
+ (-5 *2 (-858 *5)) (-5 *1 (-856 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-418 *4 *5)) (-14 *4 (-584 (-1089))) (-4 *5 (-962))
+ (-5 *2 (-858 *5)) (-5 *1 (-856 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-858 *5)) (-4 *5 (-962)) (-5 *2 (-418 *4 *5))
+ (-5 *1 (-856 *4 *5)) (-14 *4 (-584 (-1089))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-418 *4 *5)) (-14 *4 (-584 (-1089))) (-4 *5 (-962))
+ (-5 *2 (-206 *4 *5)) (-5 *1 (-856 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1089))) (-4 *5 (-962))
+ (-5 *2 (-418 *4 *5)) (-5 *1 (-856 *4 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1084 (-347 (-484)))) (-5 *1 (-854)) (-5 *3 (-484)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-854)) (-5 *3 (-484)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1084 (-484))) (-5 *2 (-484)) (-5 *1 (-854)))))
+(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1084 (-347 (-484)))) (-5 *1 (-854)) (-5 *3 (-484)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-165)) (-5 *3 (-484))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-146))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-854)) (-5 *3 (-484)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-854)) (-5 *3 (-484)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *1 (-854)) (-5 *3 (-484)))))
+(((*1 *2 *3) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-499)) (-5 *3 (-484))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1084 (-347 (-484)))) (-5 *1 (-854)) (-5 *3 (-484)))))
(((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-800 *6)))
- (-5 *5 (-1 (-798 *6 *8) *8 (-800 *6) (-798 *6 *8))) (-4 *6 (-1012))
- (-4 *8 (-13 (-961) (-553 (-800 *6)) (-950 *7))) (-5 *2 (-798 *6 *8))
- (-4 *7 (-961)) (-5 *1 (-852 *6 *7 *8)))))
+ (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 (-801 *6)))
+ (-5 *5 (-1 (-799 *6 *8) *8 (-801 *6) (-799 *6 *8))) (-4 *6 (-1013))
+ (-4 *8 (-13 (-962) (-554 (-801 *6)) (-951 *7))) (-5 *2 (-799 *6 *8))
+ (-4 *7 (-962)) (-5 *1 (-853 *6 *7 *8)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-798 *5 *3)) (-5 *4 (-800 *5)) (-4 *5 (-1012)) (-4 *3 (-139 *6))
- (-4 (-857 *6) (-796 *5)) (-4 *6 (-13 (-796 *5) (-146)))
+ (-12 (-5 *2 (-799 *5 *3)) (-5 *4 (-801 *5)) (-4 *5 (-1013)) (-4 *3 (-139 *6))
+ (-4 (-858 *6) (-797 *5)) (-4 *6 (-13 (-797 *5) (-146)))
(-5 *1 (-152 *5 *6 *3))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-798 *4 *1)) (-5 *3 (-800 *4)) (-4 *1 (-796 *4))
- (-4 *4 (-1012))))
+ (-12 (-5 *2 (-799 *4 *1)) (-5 *3 (-801 *4)) (-4 *1 (-797 *4))
+ (-4 *4 (-1013))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-798 *5 *6)) (-5 *4 (-800 *5)) (-4 *5 (-1012))
- (-4 *6 (-13 (-1012) (-950 *3))) (-4 *3 (-796 *5)) (-5 *1 (-842 *5 *3 *6))))
+ (-12 (-5 *2 (-799 *5 *6)) (-5 *4 (-801 *5)) (-4 *5 (-1013))
+ (-4 *6 (-13 (-1013) (-951 *3))) (-4 *3 (-797 *5)) (-5 *1 (-843 *5 *3 *6))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1012))
- (-4 *3 (-13 (-361 *6) (-553 *4) (-796 *5) (-950 (-550 $))))
- (-5 *4 (-800 *5)) (-4 *6 (-13 (-494) (-796 *5))) (-5 *1 (-843 *5 *6 *3))))
+ (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1013))
+ (-4 *3 (-13 (-361 *6) (-554 *4) (-797 *5) (-951 (-551 $))))
+ (-5 *4 (-801 *5)) (-4 *6 (-13 (-495) (-797 *5))) (-5 *1 (-844 *5 *6 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-798 (-483) *3)) (-5 *4 (-800 (-483))) (-4 *3 (-482))
- (-5 *1 (-844 *3))))
+ (-12 (-5 *2 (-799 (-484) *3)) (-5 *4 (-801 (-484))) (-4 *3 (-483))
+ (-5 *1 (-845 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-798 *5 *6)) (-5 *3 (-550 *6)) (-4 *5 (-1012))
- (-4 *6 (-13 (-1012) (-950 (-550 $)) (-553 *4) (-796 *5))) (-5 *4 (-800 *5))
- (-5 *1 (-845 *5 *6))))
+ (-12 (-5 *2 (-799 *5 *6)) (-5 *3 (-551 *6)) (-4 *5 (-1013))
+ (-4 *6 (-13 (-1013) (-951 (-551 $)) (-554 *4) (-797 *5))) (-5 *4 (-801 *5))
+ (-5 *1 (-846 *5 *6))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-795 *5 *6 *3)) (-5 *4 (-800 *5)) (-4 *5 (-1012))
- (-4 *6 (-796 *5)) (-4 *3 (-608 *6)) (-5 *1 (-846 *5 *6 *3))))
+ (-12 (-5 *2 (-796 *5 *6 *3)) (-5 *4 (-801 *5)) (-4 *5 (-1013))
+ (-4 *6 (-797 *5)) (-4 *3 (-609 *6)) (-5 *1 (-847 *5 *6 *3))))
((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *5 (-1 (-798 *6 *3) *8 (-800 *6) (-798 *6 *3))) (-4 *8 (-756))
- (-5 *2 (-798 *6 *3)) (-5 *4 (-800 *6)) (-4 *6 (-1012))
- (-4 *3 (-13 (-861 *9 *7 *8) (-553 *4))) (-4 *7 (-717))
- (-4 *9 (-13 (-961) (-796 *6))) (-5 *1 (-847 *6 *7 *8 *9 *3))))
+ (-12 (-5 *5 (-1 (-799 *6 *3) *8 (-801 *6) (-799 *6 *3))) (-4 *8 (-757))
+ (-5 *2 (-799 *6 *3)) (-5 *4 (-801 *6)) (-4 *6 (-1013))
+ (-4 *3 (-13 (-862 *9 *7 *8) (-554 *4))) (-4 *7 (-718))
+ (-4 *9 (-13 (-962) (-797 *6))) (-5 *1 (-848 *6 *7 *8 *9 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1012))
- (-4 *3 (-13 (-861 *8 *6 *7) (-553 *4))) (-5 *4 (-800 *5)) (-4 *7 (-796 *5))
- (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-13 (-961) (-796 *5)))
- (-5 *1 (-847 *5 *6 *7 *8 *3))))
+ (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1013))
+ (-4 *3 (-13 (-862 *8 *6 *7) (-554 *4))) (-5 *4 (-801 *5)) (-4 *7 (-797 *5))
+ (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-13 (-962) (-797 *5)))
+ (-5 *1 (-848 *5 *6 *7 *8 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1012)) (-4 *3 (-904 *6))
- (-4 *6 (-13 (-494) (-796 *5) (-553 *4))) (-5 *4 (-800 *5))
- (-5 *1 (-850 *5 *6 *3))))
+ (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1013)) (-4 *3 (-905 *6))
+ (-4 *6 (-13 (-495) (-797 *5) (-554 *4))) (-5 *4 (-801 *5))
+ (-5 *1 (-851 *5 *6 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-798 *5 (-1088))) (-5 *3 (-1088)) (-5 *4 (-800 *5))
- (-4 *5 (-1012)) (-5 *1 (-851 *5))))
+ (-12 (-5 *2 (-799 *5 (-1089))) (-5 *3 (-1089)) (-5 *4 (-801 *5))
+ (-4 *5 (-1013)) (-5 *1 (-852 *5))))
((*1 *2 *3 *4 *5 *2 *6)
- (-12 (-5 *4 (-583 (-800 *7))) (-5 *5 (-1 *9 (-583 *9)))
- (-5 *6 (-1 (-798 *7 *9) *9 (-800 *7) (-798 *7 *9))) (-4 *7 (-1012))
- (-4 *9 (-13 (-961) (-553 (-800 *7)) (-950 *8))) (-5 *2 (-798 *7 *9))
- (-5 *3 (-583 *9)) (-4 *8 (-961)) (-5 *1 (-852 *7 *8 *9)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1012) (-950 *5))) (-4 *5 (-796 *4))
- (-4 *4 (-1012)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-842 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-264 (-483))) (-5 *1 (-840))))
- ((*1 *2 *2) (-12 (-4 *3 (-1012)) (-5 *1 (-841 *3 *2)) (-4 *2 (-361 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1088)) (-5 *2 (-264 (-483))) (-5 *1 (-840))))
- ((*1 *2 *2) (-12 (-4 *3 (-1012)) (-5 *1 (-841 *3 *2)) (-4 *2 (-361 *3)))))
+ (-12 (-5 *4 (-584 (-801 *7))) (-5 *5 (-1 *9 (-584 *9)))
+ (-5 *6 (-1 (-799 *7 *9) *9 (-801 *7) (-799 *7 *9))) (-4 *7 (-1013))
+ (-4 *9 (-13 (-962) (-554 (-801 *7)) (-951 *8))) (-5 *2 (-799 *7 *9))
+ (-5 *3 (-584 *9)) (-4 *8 (-962)) (-5 *1 (-853 *7 *8 *9)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1013) (-951 *5))) (-4 *5 (-797 *4))
+ (-4 *4 (-1013)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-843 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-264 (-484))) (-5 *1 (-841))))
+ ((*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-842 *3 *2)) (-4 *2 (-361 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1089)) (-5 *2 (-264 (-484))) (-5 *1 (-841))))
+ ((*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-842 *3 *2)) (-4 *2 (-361 *3)))))
(((*1 *1 *1 *2) (-12 (-5 *2 (-444)) (-5 *1 (-86))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1088)) (-5 *4 (-444)) (-5 *2 (-264 (-483))) (-5 *1 (-840))))
+ (-12 (-5 *3 (-1089)) (-5 *4 (-444)) (-5 *2 (-264 (-484))) (-5 *1 (-841))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-444)) (-4 *4 (-1012)) (-5 *1 (-841 *4 *2)) (-4 *2 (-361 *4)))))
+ (-12 (-5 *3 (-444)) (-4 *4 (-1013)) (-5 *1 (-842 *4 *2)) (-4 *2 (-361 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-583 (-1000 (-179))))
- (-5 *1 (-839)))))
+ (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-584 (-1001 (-179))))
+ (-5 *1 (-840)))))
(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1000 (-179)))
- (-5 *1 (-836))))
+ (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1001 (-179)))
+ (-5 *1 (-837))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1000 (-179)))
- (-5 *1 (-836))))
+ (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1001 (-179)))
+ (-5 *1 (-837))))
((*1 *1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1000 (-179)))
- (-5 *1 (-838))))
+ (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1001 (-179)))
+ (-5 *1 (-839))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1000 (-179)))
- (-5 *1 (-838)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-836))))
+ (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1001 (-179)))
+ (-5 *1 (-839)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-837))))
((*1 *1 *2 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-836))))
+ (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-837))))
((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-836))))
+ (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-837))))
((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-583 (-1 (-179) (-179)))) (-5 *3 (-1000 (-179)))
- (-5 *1 (-836))))
+ (-12 (-5 *2 (-584 (-1 (-179) (-179)))) (-5 *3 (-1001 (-179)))
+ (-5 *1 (-837))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-1 (-179) (-179)))) (-5 *3 (-1000 (-179)))
- (-5 *1 (-836))))
+ (-12 (-5 *2 (-584 (-1 (-179) (-179)))) (-5 *3 (-1001 (-179)))
+ (-5 *1 (-837))))
((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-836))))
+ (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-837))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-836))))
+ (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-837))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1088)) (-5 *5 (-1000 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3))
- (-4 *3 (-553 (-472)))))
+ (-12 (-5 *4 (-1089)) (-5 *5 (-1001 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3))
+ (-4 *3 (-554 (-473)))))
((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *4 (-1088)) (-5 *5 (-1000 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3))
- (-4 *3 (-553 (-472)))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-838))))
+ (-12 (-5 *4 (-1089)) (-5 *5 (-1001 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3))
+ (-4 *3 (-554 (-473)))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-839))))
((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-838))))
+ (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-839))))
((*1 *1 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-838)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-836))))
- ((*1 *2 *1) (-12 (-5 *2 (-1000 (-179))) (-5 *1 (-838)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-179)))) (-5 *1 (-838)))))
-(((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-838)))))
-(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-838)))))
-(((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-838)))))
-(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-838)))))
-(((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-838)))))
-(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-838)))))
-(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838)))))
-(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838)))))
-(((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-838)))))
-(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-836))))
+ (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-839)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-837))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-839)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-179)))) (-5 *1 (-839)))))
+(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-839)))))
+(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-839)))))
+(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-839)))))
+(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-839)))))
+(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-839)))))
+(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-839)))))
+(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839)))))
+(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839)))))
+(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-839)))))
+(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-837))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1000 (-179))) (-5 *1 (-836))))
+ (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-837))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1088)) (-5 *5 (-1000 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3))
- (-4 *3 (-553 (-472)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1088)) (-5 *2 (-836)) (-5 *1 (-837 *3)) (-4 *3 (-553 (-472))))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-836)))))
-(((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-404))))
- ((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-404))))
- ((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-836)))))
-(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-836)))))
-(((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-404))))
- ((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-404))))
- ((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-836)))))
-(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-836)))))
-(((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-404))))
- ((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-404))))
- ((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-836)))))
-(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-836)))))
-(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836)))))
-(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836)))))
-(((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-836)))))
-(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-257) (-120)))
- (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 (-85))
- (-5 *1 (-835 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-257) (-120)))
- (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 (-85))
- (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-257) (-120))) (-4 *4 (-13 (-756) (-553 (-1088))))
- (-4 *5 (-717)) (-5 *1 (-835 *3 *4 *5 *2)) (-4 *2 (-861 *3 *5 *4)))))
+ (-12 (-5 *4 (-1089)) (-5 *5 (-1001 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3))
+ (-4 *3 (-554 (-473)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1089)) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-473))))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-837)))))
+(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-404))))
+ ((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-404))))
+ ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-837)))))
+(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-837)))))
+(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-404))))
+ ((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-404))))
+ ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-837)))))
+(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-837)))))
+(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-404))))
+ ((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-404))))
+ ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-837)))))
+(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-837)))))
+(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837)))))
+(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837)))))
+(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-837)))))
+(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-257) (-120)))
+ (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *2 (-85))
+ (-5 *1 (-836 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-257) (-120)))
+ (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *2 (-85))
+ (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-257) (-120))) (-4 *4 (-13 (-757) (-554 (-1089))))
+ (-4 *5 (-718)) (-5 *1 (-836 *3 *4 *5 *2)) (-4 *2 (-862 *3 *5 *4)))))
(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
(-12
(-5 *3
- (-2 (|:| |det| *12) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483)))))
- (-5 *4 (-630 *12)) (-5 *5 (-583 (-347 (-857 *9)))) (-5 *6 (-583 (-583 *12)))
- (-5 *7 (-694)) (-5 *8 (-483)) (-4 *9 (-13 (-257) (-120)))
- (-4 *12 (-861 *9 *11 *10)) (-4 *10 (-13 (-756) (-553 (-1088))))
- (-4 *11 (-717))
- (-5 *2
- (-2 (|:| |eqzro| (-583 *12)) (|:| |neqzro| (-583 *12))
- (|:| |wcond| (-583 (-857 *9)))
+ (-2 (|:| |det| *12) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484)))))
+ (-5 *4 (-631 *12)) (-5 *5 (-584 (-347 (-858 *9)))) (-5 *6 (-584 (-584 *12)))
+ (-5 *7 (-695)) (-5 *8 (-484)) (-4 *9 (-13 (-257) (-120)))
+ (-4 *12 (-862 *9 *11 *10)) (-4 *10 (-13 (-757) (-554 (-1089))))
+ (-4 *11 (-718))
+ (-5 *2
+ (-2 (|:| |eqzro| (-584 *12)) (|:| |neqzro| (-584 *12))
+ (|:| |wcond| (-584 (-858 *9)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1177 (-347 (-857 *9))))
- (|:| -2008 (-583 (-1177 (-347 (-857 *9)))))))))
- (-5 *1 (-835 *9 *10 *11 *12)))))
+ (-2 (|:| |partsol| (-1178 (-347 (-858 *9))))
+ (|:| -2010 (-584 (-1178 (-347 (-858 *9)))))))))
+ (-5 *1 (-836 *9 *10 *11 *12)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-630 *7)) (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5))
- (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088))))
- (-4 *6 (-717)) (-5 *1 (-835 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 *8)) (-5 *4 (-694)) (-4 *8 (-861 *5 *7 *6))
- (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-756) (-553 (-1088))))
- (-4 *7 (-717))
- (-5 *2
- (-583
- (-2 (|:| |det| *8) (|:| |rows| (-583 (-483)))
- (|:| |cols| (-583 (-483))))))
- (-5 *1 (-835 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-861 *5 *7 *6))
- (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-756) (-553 (-1088))))
- (-4 *7 (-717)) (-5 *2 (-85)) (-5 *1 (-835 *5 *6 *7 *8)))))
+ (-12 (-5 *2 (-631 *7)) (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5))
+ (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089))))
+ (-4 *6 (-718)) (-5 *1 (-836 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-631 *8)) (-5 *4 (-695)) (-4 *8 (-862 *5 *7 *6))
+ (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-757) (-554 (-1089))))
+ (-4 *7 (-718))
+ (-5 *2
+ (-584
+ (-2 (|:| |det| *8) (|:| |rows| (-584 (-484)))
+ (|:| |cols| (-584 (-484))))))
+ (-5 *1 (-836 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-584 (-584 *8))) (-5 *3 (-584 *8)) (-4 *8 (-862 *5 *7 *6))
+ (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-757) (-554 (-1089))))
+ (-4 *7 (-718)) (-5 *2 (-85)) (-5 *1 (-836 *5 *6 *7 *8)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088))))
- (-4 *6 (-717)) (-5 *2 (-583 (-583 (-483)))) (-5 *1 (-835 *4 *5 *6 *7))
- (-5 *3 (-483)) (-4 *7 (-861 *4 *6 *5)))))
+ (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089))))
+ (-4 *6 (-718)) (-5 *2 (-584 (-584 (-484)))) (-5 *1 (-836 *4 *5 *6 *7))
+ (-5 *3 (-484)) (-4 *7 (-862 *4 *6 *5)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 (-583 *6))) (-4 *6 (-861 *3 *5 *4))
- (-4 *3 (-13 (-257) (-120))) (-4 *4 (-13 (-756) (-553 (-1088))))
- (-4 *5 (-717)) (-5 *1 (-835 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-584 (-584 *6))) (-4 *6 (-862 *3 *5 *4))
+ (-4 *3 (-13 (-257) (-120))) (-4 *4 (-13 (-757) (-554 (-1089))))
+ (-4 *5 (-718)) (-5 *1 (-836 *3 *4 *5 *6)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-583
- (-2 (|:| -3104 (-694))
+ (-584
+ (-2 (|:| -3106 (-695))
(|:| |eqns|
- (-583
- (-2 (|:| |det| *7) (|:| |rows| (-583 (-483)))
- (|:| |cols| (-583 (-483))))))
- (|:| |fgb| (-583 *7)))))
- (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-257) (-120)))
- (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 (-694))
- (-5 *1 (-835 *4 *5 *6 *7)))))
+ (-584
+ (-2 (|:| |det| *7) (|:| |rows| (-584 (-484)))
+ (|:| |cols| (-584 (-484))))))
+ (|:| |fgb| (-584 *7)))))
+ (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-257) (-120)))
+ (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *2 (-695))
+ (-5 *1 (-836 *4 *5 *6 *7)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-583
- (-2 (|:| -3104 (-694))
+ (-584
+ (-2 (|:| -3106 (-695))
(|:| |eqns|
- (-583
- (-2 (|:| |det| *7) (|:| |rows| (-583 (-483)))
- (|:| |cols| (-583 (-483))))))
- (|:| |fgb| (-583 *7)))))
- (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-257) (-120)))
- (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717)) (-5 *2 (-694))
- (-5 *1 (-835 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088))))
- (-4 *6 (-717)) (-5 *2 (-583 *3)) (-5 *1 (-835 *4 *5 *6 *3))
- (-4 *3 (-861 *4 *6 *5)))))
+ (-584
+ (-2 (|:| |det| *7) (|:| |rows| (-584 (-484)))
+ (|:| |cols| (-584 (-484))))))
+ (|:| |fgb| (-584 *7)))))
+ (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-257) (-120)))
+ (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718)) (-5 *2 (-695))
+ (-5 *1 (-836 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089))))
+ (-4 *6 (-718)) (-5 *2 (-584 *3)) (-5 *1 (-836 *4 *5 *6 *3))
+ (-4 *3 (-862 *4 *6 *5)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |mat| (-630 (-347 (-857 *4)))) (|:| |vec| (-583 (-347 (-857 *4))))
- (|:| -3104 (-694)) (|:| |rows| (-583 (-483))) (|:| |cols| (-583 (-483)))))
- (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088))))
- (-4 *6 (-717))
- (-5 *2
- (-2 (|:| |partsol| (-1177 (-347 (-857 *4))))
- (|:| -2008 (-583 (-1177 (-347 (-857 *4)))))))
- (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5)))))
+ (-2 (|:| |mat| (-631 (-347 (-858 *4)))) (|:| |vec| (-584 (-347 (-858 *4))))
+ (|:| -3106 (-695)) (|:| |rows| (-584 (-484))) (|:| |cols| (-584 (-484)))))
+ (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089))))
+ (-4 *6 (-718))
+ (-5 *2
+ (-2 (|:| |partsol| (-1178 (-347 (-858 *4))))
+ (|:| -2010 (-584 (-1178 (-347 (-858 *4)))))))
+ (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))))
(((*1 *2 *2 *3)
(-12
(-5 *2
- (-2 (|:| |partsol| (-1177 (-347 (-857 *4))))
- (|:| -2008 (-583 (-1177 (-347 (-857 *4)))))))
- (-5 *3 (-583 *7)) (-4 *4 (-13 (-257) (-120))) (-4 *7 (-861 *4 *6 *5))
- (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717))
- (-5 *1 (-835 *4 *5 *6 *7)))))
+ (-2 (|:| |partsol| (-1178 (-347 (-858 *4))))
+ (|:| -2010 (-584 (-1178 (-347 (-858 *4)))))))
+ (-5 *3 (-584 *7)) (-4 *4 (-13 (-257) (-120))) (-4 *7 (-862 *4 *6 *5))
+ (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718))
+ (-5 *1 (-836 *4 *5 *6 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 *8)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-257) (-120)))
- (-4 *6 (-13 (-756) (-553 (-1088)))) (-4 *7 (-717))
+ (-12 (-5 *3 (-631 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-257) (-120)))
+ (-4 *6 (-13 (-757) (-554 (-1089)))) (-4 *7 (-718))
(-5 *2
- (-583
- (-2 (|:| -3104 (-694))
+ (-584
+ (-2 (|:| -3106 (-695))
(|:| |eqns|
- (-583
- (-2 (|:| |det| *8) (|:| |rows| (-583 (-483)))
- (|:| |cols| (-583 (-483))))))
- (|:| |fgb| (-583 *8)))))
- (-5 *1 (-835 *5 *6 *7 *8)) (-5 *4 (-694)))))
+ (-584
+ (-2 (|:| |det| *8) (|:| |rows| (-584 (-484)))
+ (|:| |cols| (-584 (-484))))))
+ (|:| |fgb| (-584 *8)))))
+ (-5 *1 (-836 *5 *6 *7 *8)) (-5 *4 (-695)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088))))
- (-4 *6 (-717)) (-4 *7 (-861 *4 *6 *5))
- (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-583 *7)) (|:| |n0| (-583 *7))))
- (-5 *1 (-835 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-857 *4)) (-4 *4 (-13 (-257) (-120))) (-4 *2 (-861 *4 *6 *5))
- (-5 *1 (-835 *4 *5 *6 *2)) (-4 *5 (-13 (-756) (-553 (-1088))))
- (-4 *6 (-717)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-1088))) (-4 *4 (-13 (-257) (-120)))
- (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717))
- (-5 *2 (-583 (-347 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7))
- (-4 *7 (-861 *4 *6 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-756) (-553 (-1088))))
- (-4 *6 (-717)) (-5 *2 (-347 (-857 *4))) (-5 *1 (-835 *4 *5 *6 *3))
- (-4 *3 (-861 *4 *6 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-630 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-257) (-120)))
- (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717))
- (-5 *2 (-630 (-347 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-257) (-120)))
- (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717))
- (-5 *2 (-583 (-347 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7)))))
+ (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089))))
+ (-4 *6 (-718)) (-4 *7 (-862 *4 *6 *5))
+ (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-584 *7)) (|:| |n0| (-584 *7))))
+ (-5 *1 (-836 *4 *5 *6 *7)) (-5 *3 (-584 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-858 *4)) (-4 *4 (-13 (-257) (-120))) (-4 *2 (-862 *4 *6 *5))
+ (-5 *1 (-836 *4 *5 *6 *2)) (-4 *5 (-13 (-757) (-554 (-1089))))
+ (-4 *6 (-718)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-584 (-1089))) (-4 *4 (-13 (-257) (-120)))
+ (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718))
+ (-5 *2 (-584 (-347 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7))
+ (-4 *7 (-862 *4 *6 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-13 (-757) (-554 (-1089))))
+ (-4 *6 (-718)) (-5 *2 (-347 (-858 *4))) (-5 *1 (-836 *4 *5 *6 *3))
+ (-4 *3 (-862 *4 *6 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-631 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-257) (-120)))
+ (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718))
+ (-5 *2 (-631 (-347 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-257) (-120)))
+ (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718))
+ (-5 *2 (-584 (-347 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7)))))
(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-630 *11)) (-5 *4 (-583 (-347 (-857 *8)))) (-5 *5 (-694))
- (-5 *6 (-1071)) (-4 *8 (-13 (-257) (-120))) (-4 *11 (-861 *8 *10 *9))
- (-4 *9 (-13 (-756) (-553 (-1088)))) (-4 *10 (-717))
+ (-12 (-5 *3 (-631 *11)) (-5 *4 (-584 (-347 (-858 *8)))) (-5 *5 (-695))
+ (-5 *6 (-1072)) (-4 *8 (-13 (-257) (-120))) (-4 *11 (-862 *8 *10 *9))
+ (-4 *9 (-13 (-757) (-554 (-1089)))) (-4 *10 (-718))
(-5 *2
(-2
(|:| |rgl|
- (-583
- (-2 (|:| |eqzro| (-583 *11)) (|:| |neqzro| (-583 *11))
- (|:| |wcond| (-583 (-857 *8)))
+ (-584
+ (-2 (|:| |eqzro| (-584 *11)) (|:| |neqzro| (-584 *11))
+ (|:| |wcond| (-584 (-858 *8)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1177 (-347 (-857 *8))))
- (|:| -2008 (-583 (-1177 (-347 (-857 *8))))))))))
- (|:| |rgsz| (-483))))
- (-5 *1 (-835 *8 *9 *10 *11)) (-5 *7 (-483)))))
+ (-2 (|:| |partsol| (-1178 (-347 (-858 *8))))
+ (|:| -2010 (-584 (-1178 (-347 (-858 *8))))))))))
+ (|:| |rgsz| (-484))))
+ (-5 *1 (-836 *8 *9 *10 *11)) (-5 *7 (-484)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1071)) (-4 *4 (-13 (-257) (-120)))
- (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717))
+ (-12 (-5 *3 (-1072)) (-4 *4 (-13 (-257) (-120)))
+ (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718))
(-5 *2
- (-583
- (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7))
- (|:| |wcond| (-583 (-857 *4)))
+ (-584
+ (-2 (|:| |eqzro| (-584 *7)) (|:| |neqzro| (-584 *7))
+ (|:| |wcond| (-584 (-858 *4)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1177 (-347 (-857 *4))))
- (|:| -2008 (-583 (-1177 (-347 (-857 *4))))))))))
- (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5)))))
+ (-2 (|:| |partsol| (-1178 (-347 (-858 *4))))
+ (|:| -2010 (-584 (-1178 (-347 (-858 *4))))))))))
+ (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))))
(((*1 *2 *3 *4)
(-12
(-5 *3
- (-583
- (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8))
- (|:| |wcond| (-583 (-857 *5)))
+ (-584
+ (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8))
+ (|:| |wcond| (-584 (-858 *5)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1177 (-347 (-857 *5))))
- (|:| -2008 (-583 (-1177 (-347 (-857 *5))))))))))
- (-5 *4 (-1071)) (-4 *5 (-13 (-257) (-120))) (-4 *8 (-861 *5 *7 *6))
- (-4 *6 (-13 (-756) (-553 (-1088)))) (-4 *7 (-717)) (-5 *2 (-483))
- (-5 *1 (-835 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 *8)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-257) (-120)))
- (-4 *6 (-13 (-756) (-553 (-1088)))) (-4 *7 (-717))
- (-5 *2
- (-583
- (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8))
- (|:| |wcond| (-583 (-857 *5)))
+ (-2 (|:| |partsol| (-1178 (-347 (-858 *5))))
+ (|:| -2010 (-584 (-1178 (-347 (-858 *5))))))))))
+ (-5 *4 (-1072)) (-4 *5 (-13 (-257) (-120))) (-4 *8 (-862 *5 *7 *6))
+ (-4 *6 (-13 (-757) (-554 (-1089)))) (-4 *7 (-718)) (-5 *2 (-484))
+ (-5 *1 (-836 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-631 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-257) (-120)))
+ (-4 *6 (-13 (-757) (-554 (-1089)))) (-4 *7 (-718))
+ (-5 *2
+ (-584
+ (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8))
+ (|:| |wcond| (-584 (-858 *5)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1177 (-347 (-857 *5))))
- (|:| -2008 (-583 (-1177 (-347 (-857 *5))))))))))
- (-5 *1 (-835 *5 *6 *7 *8)) (-5 *4 (-583 *8))))
+ (-2 (|:| |partsol| (-1178 (-347 (-858 *5))))
+ (|:| -2010 (-584 (-1178 (-347 (-858 *5))))))))))
+ (-5 *1 (-836 *5 *6 *7 *8)) (-5 *4 (-584 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 *8)) (-5 *4 (-583 (-1088))) (-4 *8 (-861 *5 *7 *6))
- (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-756) (-553 (-1088))))
- (-4 *7 (-717))
+ (-12 (-5 *3 (-631 *8)) (-5 *4 (-584 (-1089))) (-4 *8 (-862 *5 *7 *6))
+ (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-757) (-554 (-1089))))
+ (-4 *7 (-718))
(-5 *2
- (-583
- (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8))
- (|:| |wcond| (-583 (-857 *5)))
+ (-584
+ (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8))
+ (|:| |wcond| (-584 (-858 *5)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1177 (-347 (-857 *5))))
- (|:| -2008 (-583 (-1177 (-347 (-857 *5))))))))))
- (-5 *1 (-835 *5 *6 *7 *8))))
+ (-2 (|:| |partsol| (-1178 (-347 (-858 *5))))
+ (|:| -2010 (-584 (-1178 (-347 (-858 *5))))))))))
+ (-5 *1 (-836 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-5 *3 (-630 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-257) (-120)))
- (-4 *5 (-13 (-756) (-553 (-1088)))) (-4 *6 (-717))
+ (-12 (-5 *3 (-631 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-257) (-120)))
+ (-4 *5 (-13 (-757) (-554 (-1089)))) (-4 *6 (-718))
(-5 *2
- (-583
- (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7))
- (|:| |wcond| (-583 (-857 *4)))
+ (-584
+ (-2 (|:| |eqzro| (-584 *7)) (|:| |neqzro| (-584 *7))
+ (|:| |wcond| (-584 (-858 *4)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1177 (-347 (-857 *4))))
- (|:| -2008 (-583 (-1177 (-347 (-857 *4))))))))))
- (-5 *1 (-835 *4 *5 *6 *7))))
+ (-2 (|:| |partsol| (-1178 (-347 (-858 *4))))
+ (|:| -2010 (-584 (-1178 (-347 (-858 *4))))))))))
+ (-5 *1 (-836 *4 *5 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-630 *9)) (-5 *5 (-830)) (-4 *9 (-861 *6 *8 *7))
- (-4 *6 (-13 (-257) (-120))) (-4 *7 (-13 (-756) (-553 (-1088))))
- (-4 *8 (-717))
+ (-12 (-5 *3 (-631 *9)) (-5 *5 (-831)) (-4 *9 (-862 *6 *8 *7))
+ (-4 *6 (-13 (-257) (-120))) (-4 *7 (-13 (-757) (-554 (-1089))))
+ (-4 *8 (-718))
(-5 *2
- (-583
- (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9))
- (|:| |wcond| (-583 (-857 *6)))
+ (-584
+ (-2 (|:| |eqzro| (-584 *9)) (|:| |neqzro| (-584 *9))
+ (|:| |wcond| (-584 (-858 *6)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1177 (-347 (-857 *6))))
- (|:| -2008 (-583 (-1177 (-347 (-857 *6))))))))))
- (-5 *1 (-835 *6 *7 *8 *9)) (-5 *4 (-583 *9))))
+ (-2 (|:| |partsol| (-1178 (-347 (-858 *6))))
+ (|:| -2010 (-584 (-1178 (-347 (-858 *6))))))))))
+ (-5 *1 (-836 *6 *7 *8 *9)) (-5 *4 (-584 *9))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 (-1088))) (-5 *5 (-830))
- (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-257) (-120)))
- (-4 *7 (-13 (-756) (-553 (-1088)))) (-4 *8 (-717))
+ (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 (-1089))) (-5 *5 (-831))
+ (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-257) (-120)))
+ (-4 *7 (-13 (-757) (-554 (-1089)))) (-4 *8 (-718))
(-5 *2
- (-583
- (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9))
- (|:| |wcond| (-583 (-857 *6)))
+ (-584
+ (-2 (|:| |eqzro| (-584 *9)) (|:| |neqzro| (-584 *9))
+ (|:| |wcond| (-584 (-858 *6)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1177 (-347 (-857 *6))))
- (|:| -2008 (-583 (-1177 (-347 (-857 *6))))))))))
- (-5 *1 (-835 *6 *7 *8 *9))))
+ (-2 (|:| |partsol| (-1178 (-347 (-858 *6))))
+ (|:| -2010 (-584 (-1178 (-347 (-858 *6))))))))))
+ (-5 *1 (-836 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 *8)) (-5 *4 (-830)) (-4 *8 (-861 *5 *7 *6))
- (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-756) (-553 (-1088))))
- (-4 *7 (-717))
+ (-12 (-5 *3 (-631 *8)) (-5 *4 (-831)) (-4 *8 (-862 *5 *7 *6))
+ (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-757) (-554 (-1089))))
+ (-4 *7 (-718))
(-5 *2
- (-583
- (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8))
- (|:| |wcond| (-583 (-857 *5)))
+ (-584
+ (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8))
+ (|:| |wcond| (-584 (-858 *5)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1177 (-347 (-857 *5))))
- (|:| -2008 (-583 (-1177 (-347 (-857 *5))))))))))
- (-5 *1 (-835 *5 *6 *7 *8))))
+ (-2 (|:| |partsol| (-1178 (-347 (-858 *5))))
+ (|:| -2010 (-584 (-1178 (-347 (-858 *5))))))))))
+ (-5 *1 (-836 *5 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 *9)) (-5 *5 (-1071))
- (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-257) (-120)))
- (-4 *7 (-13 (-756) (-553 (-1088)))) (-4 *8 (-717)) (-5 *2 (-483))
- (-5 *1 (-835 *6 *7 *8 *9))))
+ (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 *9)) (-5 *5 (-1072))
+ (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-257) (-120)))
+ (-4 *7 (-13 (-757) (-554 (-1089)))) (-4 *8 (-718)) (-5 *2 (-484))
+ (-5 *1 (-836 *6 *7 *8 *9))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 (-1088))) (-5 *5 (-1071))
- (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-257) (-120)))
- (-4 *7 (-13 (-756) (-553 (-1088)))) (-4 *8 (-717)) (-5 *2 (-483))
- (-5 *1 (-835 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 *8)) (-5 *4 (-1071)) (-4 *8 (-861 *5 *7 *6))
- (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-756) (-553 (-1088))))
- (-4 *7 (-717)) (-5 *2 (-483)) (-5 *1 (-835 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 (-1089))) (-5 *5 (-1072))
+ (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-257) (-120)))
+ (-4 *7 (-13 (-757) (-554 (-1089)))) (-4 *8 (-718)) (-5 *2 (-484))
+ (-5 *1 (-836 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-631 *8)) (-5 *4 (-1072)) (-4 *8 (-862 *5 *7 *6))
+ (-4 *5 (-13 (-257) (-120))) (-4 *6 (-13 (-757) (-554 (-1089))))
+ (-4 *7 (-718)) (-5 *2 (-484)) (-5 *1 (-836 *5 *6 *7 *8))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-630 *10)) (-5 *4 (-583 *10)) (-5 *5 (-830)) (-5 *6 (-1071))
- (-4 *10 (-861 *7 *9 *8)) (-4 *7 (-13 (-257) (-120)))
- (-4 *8 (-13 (-756) (-553 (-1088)))) (-4 *9 (-717)) (-5 *2 (-483))
- (-5 *1 (-835 *7 *8 *9 *10))))
+ (-12 (-5 *3 (-631 *10)) (-5 *4 (-584 *10)) (-5 *5 (-831)) (-5 *6 (-1072))
+ (-4 *10 (-862 *7 *9 *8)) (-4 *7 (-13 (-257) (-120)))
+ (-4 *8 (-13 (-757) (-554 (-1089)))) (-4 *9 (-718)) (-5 *2 (-484))
+ (-5 *1 (-836 *7 *8 *9 *10))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-630 *10)) (-5 *4 (-583 (-1088))) (-5 *5 (-830)) (-5 *6 (-1071))
- (-4 *10 (-861 *7 *9 *8)) (-4 *7 (-13 (-257) (-120)))
- (-4 *8 (-13 (-756) (-553 (-1088)))) (-4 *9 (-717)) (-5 *2 (-483))
- (-5 *1 (-835 *7 *8 *9 *10))))
+ (-12 (-5 *3 (-631 *10)) (-5 *4 (-584 (-1089))) (-5 *5 (-831)) (-5 *6 (-1072))
+ (-4 *10 (-862 *7 *9 *8)) (-4 *7 (-13 (-257) (-120)))
+ (-4 *8 (-13 (-757) (-554 (-1089)))) (-4 *9 (-718)) (-5 *2 (-484))
+ (-5 *1 (-836 *7 *8 *9 *10))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-630 *9)) (-5 *4 (-830)) (-5 *5 (-1071)) (-4 *9 (-861 *6 *8 *7))
- (-4 *6 (-13 (-257) (-120))) (-4 *7 (-13 (-756) (-553 (-1088))))
- (-4 *8 (-717)) (-5 *2 (-483)) (-5 *1 (-835 *6 *7 *8 *9)))))
+ (-12 (-5 *3 (-631 *9)) (-5 *4 (-831)) (-5 *5 (-1072)) (-4 *9 (-862 *6 *8 *7))
+ (-4 *6 (-13 (-257) (-120))) (-4 *7 (-13 (-757) (-554 (-1089))))
+ (-4 *8 (-718)) (-5 *2 (-484)) (-5 *1 (-836 *6 *7 *8 *9)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 *4)) (-4 *4 (-311)) (-4 *2 (-1153 *4))
- (-5 *1 (-834 *4 *2)))))
+ (-12 (-5 *3 (-584 *4)) (-4 *4 (-311)) (-4 *2 (-1154 *4))
+ (-5 *1 (-835 *4 *2)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-832)) (-5 *2 (-2 (|:| -3948 (-583 *1)) (|:| -2405 *1)))
- (-5 *3 (-583 *1)))))
+ (-12 (-4 *1 (-833)) (-5 *2 (-2 (|:| -3950 (-584 *1)) (|:| -2407 *1)))
+ (-5 *3 (-584 *1)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-832)) (-5 *2 (-632 (-583 *1))) (-5 *3 (-583 *1)))))
+ (-12 (-4 *1 (-833)) (-5 *2 (-633 (-584 *1))) (-5 *3 (-584 *1)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-583 (-857 *4))) (-5 *3 (-583 (-1088))) (-4 *4 (-389))
- (-5 *1 (-829 *4)))))
+ (-12 (-5 *2 (-584 (-858 *4))) (-5 *3 (-584 (-1089))) (-4 *4 (-389))
+ (-5 *1 (-830 *4)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-583 (-857 *4))) (-5 *3 (-583 (-1088))) (-4 *4 (-389))
- (-5 *1 (-829 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828))))
- ((*1 *2 *3) (-12 (-5 *3 (-884)) (-5 *2 (-816 (-483))) (-5 *1 (-828)))))
-(((*1 *2) (-12 (-5 *2 (-816 (-483))) (-5 *1 (-828)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828))))
- ((*1 *2) (-12 (-5 *2 (-816 (-483))) (-5 *1 (-828)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828))))
- ((*1 *2) (-12 (-5 *2 (-816 (-483))) (-5 *1 (-828)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828))))
- ((*1 *2) (-12 (-5 *2 (-816 (-483))) (-5 *1 (-828)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828))))
- ((*1 *2) (-12 (-5 *2 (-816 (-483))) (-5 *1 (-828)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828))))
- ((*1 *2) (-12 (-5 *2 (-816 (-483))) (-5 *1 (-828)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828))))
- ((*1 *2) (-12 (-5 *2 (-816 (-483))) (-5 *1 (-828)))))
-(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-483))) (-5 *1 (-828))))
- ((*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))))
-(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-483))) (-5 *1 (-828))))
- ((*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))))
-(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-483))) (-5 *1 (-828))))
- ((*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))))
-(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-483))) (-5 *1 (-828))))
- ((*1 *2 *3) (-12 (-5 *3 (-583 (-483))) (-5 *2 (-816 (-483))) (-5 *1 (-828)))))
+ (-12 (-5 *2 (-584 (-858 *4))) (-5 *3 (-584 (-1089))) (-4 *4 (-389))
+ (-5 *1 (-830 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829))))
+ ((*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-817 (-484))) (-5 *1 (-829)))))
+(((*1 *2) (-12 (-5 *2 (-817 (-484))) (-5 *1 (-829)))))
+(((*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829))))
+ ((*1 *2) (-12 (-5 *2 (-817 (-484))) (-5 *1 (-829)))))
+(((*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829))))
+ ((*1 *2) (-12 (-5 *2 (-817 (-484))) (-5 *1 (-829)))))
+(((*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829))))
+ ((*1 *2) (-12 (-5 *2 (-817 (-484))) (-5 *1 (-829)))))
+(((*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829))))
+ ((*1 *2) (-12 (-5 *2 (-817 (-484))) (-5 *1 (-829)))))
+(((*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829))))
+ ((*1 *2) (-12 (-5 *2 (-817 (-484))) (-5 *1 (-829)))))
+(((*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829))))
+ ((*1 *2) (-12 (-5 *2 (-817 (-484))) (-5 *1 (-829)))))
+(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-484))) (-5 *1 (-829))))
+ ((*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))))
+(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-484))) (-5 *1 (-829))))
+ ((*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))))
+(((*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))))
+(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-484))) (-5 *1 (-829))))
+ ((*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))))
+(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-484))) (-5 *1 (-829))))
+ ((*1 *2 *3) (-12 (-5 *3 (-584 (-484))) (-5 *2 (-817 (-484))) (-5 *1 (-829)))))
(((*1 *2 *2 *2)
- (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-257)) (-5 *1 (-827 *3 *4 *5 *2))
- (-4 *2 (-861 *5 *3 *4))))
+ (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-257)) (-5 *1 (-828 *3 *4 *5 *2))
+ (-4 *2 (-862 *5 *3 *4))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1083 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *5 (-257)) (-5 *1 (-827 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-1084 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *5 (-257)) (-5 *1 (-828 *3 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *6 *4 *5)) (-5 *1 (-827 *4 *5 *6 *2))
- (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-257)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-345 *2)) (-4 *2 (-257)) (-5 *1 (-825 *2))))
+ (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *6 *4 *5)) (-5 *1 (-828 *4 *5 *6 *2))
+ (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-345 *2)) (-4 *2 (-257)) (-5 *1 (-826 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-120)))
- (-5 *2 (-51)) (-5 *1 (-826 *5))))
+ (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-120)))
+ (-5 *2 (-51)) (-5 *1 (-827 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-345 (-857 *6))) (-5 *5 (-1088)) (-5 *3 (-857 *6))
- (-4 *6 (-13 (-257) (-120))) (-5 *2 (-51)) (-5 *1 (-826 *6)))))
-(((*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-257)))))
-(((*1 *2 *1) (-12 (-5 *2 (-345 *3)) (-5 *1 (-825 *3)) (-4 *3 (-257)))))
-(((*1 *2 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-257)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-825 *3)) (-4 *3 (-257)))))
-(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-825 *3)) (-4 *3 (-257)))))
-(((*1 *2 *3 *3) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-825 *3)) (-4 *3 (-257)))))
-(((*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-257)))))
+ (-12 (-5 *4 (-345 (-858 *6))) (-5 *5 (-1089)) (-5 *3 (-858 *6))
+ (-4 *6 (-13 (-257) (-120))) (-5 *2 (-51)) (-5 *1 (-827 *6)))))
+(((*1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-257)))))
+(((*1 *2 *1) (-12 (-5 *2 (-345 *3)) (-5 *1 (-826 *3)) (-4 *3 (-257)))))
+(((*1 *2 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-257)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-826 *3)) (-4 *3 (-257)))))
+(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-826 *3)) (-4 *3 (-257)))))
+(((*1 *2 *3 *3) (-12 (-5 *2 (-1084 *3)) (-5 *1 (-826 *3)) (-4 *3 (-257)))))
+(((*1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-257)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-1153 (-347 (-483)))) (-5 *1 (-824 *3 *2))
- (-4 *2 (-1153 (-347 *3))))))
+ (-12 (-4 *3 (-1154 (-347 (-484)))) (-5 *1 (-825 *3 *2))
+ (-4 *2 (-1154 (-347 *3))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1153 (-347 *2))) (-5 *2 (-483)) (-5 *1 (-824 *4 *3))
- (-4 *3 (-1153 (-347 *4))))))
+ (-12 (-4 *4 (-1154 (-347 *2))) (-5 *2 (-484)) (-5 *1 (-825 *4 *3))
+ (-4 *3 (-1154 (-347 *4))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-2 (|:| |den| (-483)) (|:| |gcdnum| (-483)))))
- (-4 *4 (-1153 (-347 *2))) (-5 *2 (-483)) (-5 *1 (-824 *4 *5))
- (-4 *5 (-1153 (-347 *4))))))
+ (-12 (-5 *3 (-584 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484)))))
+ (-4 *4 (-1154 (-347 *2))) (-5 *2 (-484)) (-5 *1 (-825 *4 *5))
+ (-4 *5 (-1154 (-347 *4))))))
(((*1 *2 *3)
- (-12 (-4 *3 (-1153 (-347 (-483))))
- (-5 *2 (-2 (|:| |den| (-483)) (|:| |gcdnum| (-483)))) (-5 *1 (-824 *3 *4))
- (-4 *4 (-1153 (-347 *3)))))
+ (-12 (-4 *3 (-1154 (-347 (-484))))
+ (-5 *2 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484)))) (-5 *1 (-825 *3 *4))
+ (-4 *4 (-1154 (-347 *3)))))
((*1 *2 *3)
- (-12 (-4 *4 (-1153 (-347 *2))) (-5 *2 (-483)) (-5 *1 (-824 *4 *3))
- (-4 *3 (-1153 (-347 *4))))))
+ (-12 (-4 *4 (-1154 (-347 *2))) (-5 *2 (-484)) (-5 *1 (-825 *4 *3))
+ (-4 *3 (-1154 (-347 *4))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-483)) (-4 *4 (-1153 (-347 *3))) (-5 *2 (-830))
- (-5 *1 (-824 *4 *5)) (-4 *5 (-1153 (-347 *4))))))
+ (-12 (-5 *3 (-484)) (-4 *4 (-1154 (-347 *3))) (-5 *2 (-831))
+ (-5 *1 (-825 *4 *5)) (-4 *5 (-1154 (-347 *4))))))
(((*1 *2 *3)
(|partial| -12 (-5 *3 (-282 *5 *6 *7 *8)) (-4 *5 (-361 *4))
- (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-347 *6))) (-4 *8 (-290 *5 *6 *7))
- (-4 *4 (-13 (-494) (-950 (-483))))
- (-5 *2 (-2 (|:| -3766 (-694)) (|:| -2379 *8)))
- (-5 *1 (-822 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-282 (-347 (-483)) *4 *5 *6))
- (-4 *4 (-1153 (-347 (-483)))) (-4 *5 (-1153 (-347 *4)))
- (-4 *6 (-290 (-347 (-483)) *4 *5))
- (-5 *2 (-2 (|:| -3766 (-694)) (|:| -2379 *6))) (-5 *1 (-823 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-282 *5 *6 *7 *8)) (-4 *5 (-361 *4)) (-4 *6 (-1153 *5))
- (-4 *7 (-1153 (-347 *6))) (-4 *8 (-290 *5 *6 *7))
- (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *2 (-85))
- (-5 *1 (-822 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-282 (-347 (-483)) *4 *5 *6)) (-4 *4 (-1153 (-347 (-483))))
- (-4 *5 (-1153 (-347 *4))) (-4 *6 (-290 (-347 (-483)) *4 *5)) (-5 *2 (-85))
- (-5 *1 (-823 *4 *5 *6)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-389))))
+ (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-347 *6))) (-4 *8 (-290 *5 *6 *7))
+ (-4 *4 (-13 (-495) (-951 (-484))))
+ (-5 *2 (-2 (|:| -3768 (-695)) (|:| -2381 *8)))
+ (-5 *1 (-823 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-282 (-347 (-484)) *4 *5 *6))
+ (-4 *4 (-1154 (-347 (-484)))) (-4 *5 (-1154 (-347 *4)))
+ (-4 *6 (-290 (-347 (-484)) *4 *5))
+ (-5 *2 (-2 (|:| -3768 (-695)) (|:| -2381 *6))) (-5 *1 (-824 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-282 *5 *6 *7 *8)) (-4 *5 (-361 *4)) (-4 *6 (-1154 *5))
+ (-4 *7 (-1154 (-347 *6))) (-4 *8 (-290 *5 *6 *7))
+ (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *2 (-85))
+ (-5 *1 (-823 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-282 (-347 (-484)) *4 *5 *6)) (-4 *4 (-1154 (-347 (-484))))
+ (-4 *5 (-1154 (-347 *4))) (-4 *6 (-290 (-347 (-484)) *4 *5)) (-5 *2 (-85))
+ (-5 *1 (-824 *4 *5 *6)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-389))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1083 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756))
- (-4 *5 (-821)) (-5 *1 (-394 *3 *4 *5 *6))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-821)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-345 (-1083 *1))) (-5 *1 (-264 *4)) (-5 *3 (-1083 *1))
- (-4 *4 (-389)) (-4 *4 (-494)) (-4 *4 (-1012))))
- ((*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-345 (-1083 *1))) (-5 *3 (-1083 *1)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-345 (-1083 *1))) (-5 *1 (-264 *4)) (-5 *3 (-1083 *1))
- (-4 *4 (-389)) (-4 *4 (-494)) (-4 *4 (-1012))))
- ((*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-345 (-1083 *1))) (-5 *3 (-1083 *1)))))
-(((*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-345 (-1083 *1))) (-5 *3 (-1083 *1)))))
+ (-12 (-5 *2 (-1084 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-4 *5 (-822)) (-5 *1 (-394 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-822)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-345 (-1084 *1))) (-5 *1 (-264 *4)) (-5 *3 (-1084 *1))
+ (-4 *4 (-389)) (-4 *4 (-495)) (-4 *4 (-1013))))
+ ((*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-345 (-1084 *1))) (-5 *3 (-1084 *1)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-345 (-1084 *1))) (-5 *1 (-264 *4)) (-5 *3 (-1084 *1))
+ (-4 *4 (-389)) (-4 *4 (-495)) (-4 *4 (-1013))))
+ ((*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-345 (-1084 *1))) (-5 *3 (-1084 *1)))))
+(((*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-345 (-1084 *1))) (-5 *3 (-1084 *1)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-583 (-1083 *5))) (-5 *3 (-1083 *5)) (-4 *5 (-139 *4))
- (-4 *4 (-482)) (-5 *1 (-122 *4 *5))))
+ (|partial| -12 (-5 *2 (-584 (-1084 *5))) (-5 *3 (-1084 *5)) (-4 *5 (-139 *4))
+ (-4 *4 (-483)) (-5 *1 (-122 *4 *5))))
((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-583 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-1153 *4))
+ (|partial| -12 (-5 *2 (-584 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-1154 *4))
(-4 *4 (-298)) (-5 *1 (-306 *4 *5 *3))))
((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-583 (-1083 (-483)))) (-5 *3 (-1083 (-483)))
- (-5 *1 (-507))))
+ (|partial| -12 (-5 *2 (-584 (-1084 (-484)))) (-5 *3 (-1084 (-484)))
+ (-5 *1 (-508))))
((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-583 (-1083 *1))) (-5 *3 (-1083 *1)) (-4 *1 (-821)))))
+ (|partial| -12 (-5 *2 (-584 (-1084 *1))) (-5 *3 (-1084 *1)) (-4 *1 (-822)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-630 *1)) (-4 *1 (-298)) (-5 *2 (-1177 *1))))
+ (|partial| -12 (-5 *3 (-631 *1)) (-4 *1 (-298)) (-5 *2 (-1178 *1))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-630 *1)) (-4 *1 (-118)) (-4 *1 (-821))
- (-5 *2 (-1177 *1)))))
-(((*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-118))))
+ (|partial| -12 (-5 *3 (-631 *1)) (-4 *1 (-118)) (-4 *1 (-822))
+ (-5 *2 (-1178 *1)))))
+(((*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-118))))
((*1 *1 *1) (-4 *1 (-298)))
- ((*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-118)) (-4 *1 (-821)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-118)) (-4 *1 (-822)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-756)) (-4 *5 (-821)) (-4 *6 (-717))
- (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-345 (-1083 *8))) (-5 *1 (-818 *5 *6 *7 *8))
- (-5 *4 (-1083 *8))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-757)) (-4 *5 (-822)) (-4 *6 (-718))
+ (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-345 (-1084 *8))) (-5 *1 (-819 *5 *6 *7 *8))
+ (-5 *4 (-1084 *8))))
((*1 *2 *3)
- (-12 (-4 *4 (-821)) (-4 *5 (-1153 *4)) (-5 *2 (-345 (-1083 *5)))
- (-5 *1 (-819 *4 *5)) (-5 *3 (-1083 *5)))))
+ (-12 (-4 *4 (-822)) (-4 *5 (-1154 *4)) (-5 *2 (-345 (-1084 *5)))
+ (-5 *1 (-820 *4 *5)) (-5 *3 (-1084 *5)))))
(((*1 *2)
- (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-821)) (-5 *1 (-394 *3 *4 *2 *5))
- (-4 *5 (-861 *2 *3 *4))))
+ (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-822)) (-5 *1 (-394 *3 *4 *2 *5))
+ (-4 *5 (-862 *2 *3 *4))))
((*1 *2)
- (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-821)) (-5 *1 (-818 *2 *3 *4 *5))
- (-4 *5 (-861 *2 *3 *4))))
- ((*1 *2) (-12 (-4 *2 (-821)) (-5 *1 (-819 *2 *3)) (-4 *3 (-1153 *2)))))
+ (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-822)) (-5 *1 (-819 *2 *3 *4 *5))
+ (-4 *5 (-862 *2 *3 *4))))
+ ((*1 *2) (-12 (-4 *2 (-822)) (-5 *1 (-820 *2 *3)) (-4 *3 (-1154 *2)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6))
- (-5 *2 (-345 (-1083 *7))) (-5 *1 (-818 *4 *5 *6 *7)) (-5 *3 (-1083 *7))))
+ (-12 (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6))
+ (-5 *2 (-345 (-1084 *7))) (-5 *1 (-819 *4 *5 *6 *7)) (-5 *3 (-1084 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-821)) (-4 *5 (-1153 *4)) (-5 *2 (-345 (-1083 *5)))
- (-5 *1 (-819 *4 *5)) (-5 *3 (-1083 *5)))))
+ (-12 (-4 *4 (-822)) (-4 *5 (-1154 *4)) (-5 *2 (-345 (-1084 *5)))
+ (-5 *1 (-820 *4 *5)) (-5 *3 (-1084 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6))
- (-5 *2 (-345 (-1083 *7))) (-5 *1 (-818 *4 *5 *6 *7)) (-5 *3 (-1083 *7))))
+ (-12 (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6))
+ (-5 *2 (-345 (-1084 *7))) (-5 *1 (-819 *4 *5 *6 *7)) (-5 *3 (-1084 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-821)) (-4 *5 (-1153 *4)) (-5 *2 (-345 (-1083 *5)))
- (-5 *1 (-819 *4 *5)) (-5 *3 (-1083 *5)))))
+ (-12 (-4 *4 (-822)) (-4 *5 (-1154 *4)) (-5 *2 (-345 (-1084 *5)))
+ (-5 *1 (-820 *4 *5)) (-5 *3 (-1084 *5)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-583 (-1083 *7))) (-5 *3 (-1083 *7))
- (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756))
- (-5 *1 (-818 *4 *5 *6 *7))))
+ (|partial| -12 (-5 *2 (-584 (-1084 *7))) (-5 *3 (-1084 *7))
+ (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-5 *1 (-819 *4 *5 *6 *7))))
((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-583 (-1083 *5))) (-5 *3 (-1083 *5))
- (-4 *5 (-1153 *4)) (-4 *4 (-821)) (-5 *1 (-819 *4 *5)))))
+ (|partial| -12 (-5 *2 (-584 (-1084 *5))) (-5 *3 (-1084 *5))
+ (-4 *5 (-1154 *4)) (-4 *4 (-822)) (-5 *1 (-820 *4 *5)))))
(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *2 (-583 (-1083 *7))) (-5 *3 (-1083 *7))
- (-4 *7 (-861 *5 *6 *4)) (-4 *5 (-821)) (-4 *6 (-717)) (-4 *4 (-756))
- (-5 *1 (-818 *5 *6 *4 *7)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *6))
- (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-31))))
- ((*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-830)))) ((*1 *1) (-4 *1 (-482)))
- ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-583 (-694)))) (-5 *1 (-816 *3)) (-4 *3 (-1012)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-813 *3))) (-4 *3 (-1012)) (-5 *1 (-816 *3)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1012)) (-5 *2 (-1008 *3))))
+ (|partial| -12 (-5 *2 (-584 (-1084 *7))) (-5 *3 (-1084 *7))
+ (-4 *7 (-862 *5 *6 *4)) (-4 *5 (-822)) (-4 *6 (-718)) (-4 *4 (-757))
+ (-5 *1 (-819 *5 *6 *4 *7)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *6))
+ (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-31))))
+ ((*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-831)))) ((*1 *1) (-4 *1 (-483)))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-584 (-584 (-695)))) (-5 *1 (-817 *3)) (-4 *3 (-1013)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-814 *3))) (-4 *3 (-1013)) (-5 *1 (-817 *3)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1013)) (-5 *2 (-1009 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-1012)) (-5 *2 (-1008 (-583 *4))) (-5 *1 (-816 *4))
- (-5 *3 (-583 *4))))
+ (-12 (-4 *4 (-1013)) (-5 *2 (-1009 (-584 *4))) (-5 *1 (-817 *4))
+ (-5 *3 (-584 *4))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-1012)) (-5 *2 (-1008 (-1008 *4))) (-5 *1 (-816 *4))
- (-5 *3 (-1008 *4))))
- ((*1 *2 *1 *3) (-12 (-5 *2 (-1008 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1012)))))
+ (-12 (-4 *4 (-1013)) (-5 *2 (-1009 (-1009 *4))) (-5 *1 (-817 *4))
+ (-5 *3 (-1009 *4))))
+ ((*1 *2 *1 *3) (-12 (-5 *2 (-1009 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1013)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1008 (-1008 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1012)))))
+ (-12 (-5 *2 (-1009 (-1009 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1013)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-813 *4)) (-4 *4 (-1012)) (-5 *2 (-583 (-694)))
- (-5 *1 (-816 *4)))))
+ (-12 (-5 *3 (-814 *4)) (-4 *4 (-1013)) (-5 *2 (-584 (-695)))
+ (-5 *1 (-817 *4)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-813 *4)) (-4 *4 (-1012)) (-5 *2 (-583 (-694)))
- (-5 *1 (-816 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1012)) (-5 *2 (-1008 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1008 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85))))
- ((*1 *1 *1 *1) (-5 *1 (-772)))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1012)) (-5 *2 (-85))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-816 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85))))
- ((*1 *1 *1 *1) (-5 *1 (-772)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-816 *3)) (-4 *3 (-1012)))))
+ (-12 (-5 *3 (-814 *4)) (-4 *4 (-1013)) (-5 *2 (-584 (-695)))
+ (-5 *1 (-817 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1013)) (-5 *2 (-1009 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1009 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85))))
+ ((*1 *1 *1 *1) (-5 *1 (-773)))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1013)) (-5 *2 (-85))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-817 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85))))
+ ((*1 *1 *1 *1) (-5 *1 (-773)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-817 *3)) (-4 *3 (-1013)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-483)) (-5 *2 (-1183)) (-5 *1 (-816 *4)) (-4 *4 (-1012))))
- ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-816 *3)) (-4 *3 (-1012)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-4 *1 (-815 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1012)) (-4 *1 (-815 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1054 *4 *2)) (-14 *4 (-830))
- (-4 *2 (-13 (-961) (-10 -7 (-6 (-3991 "*"))))) (-5 *1 (-814 *4 *2)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |preimage| (-583 *3)) (|:| |image| (-583 *3))))
- (-5 *1 (-813 *3)) (-4 *3 (-1012)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1012)) (-5 *1 (-813 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1012)) (-5 *1 (-813 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-884)) (-5 *1 (-813 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *1) (-12 (-4 *1 (-950 (-483))) (-4 *1 (-253)) (-5 *2 (-85))))
- ((*1 *2 *1) (-12 (-4 *1 (-482)) (-5 *2 (-85))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-813 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *1) (-12 (-4 *1 (-950 (-483))) (-4 *1 (-253)) (-5 *2 (-85))))
- ((*1 *2 *1) (-12 (-4 *1 (-482)) (-5 *2 (-85))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-813 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1008 *3)) (-5 *1 (-813 *3)) (-4 *3 (-317)) (-4 *3 (-1012)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-5 *1 (-813 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1012))))
- ((*1 *1 *2) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1012)))))
-(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1127))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-694))))
+ (-12 (-5 *3 (-484)) (-5 *2 (-1184)) (-5 *1 (-817 *4)) (-4 *4 (-1013))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-817 *3)) (-4 *3 (-1013)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-4 *1 (-816 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1013)) (-4 *1 (-816 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1055 *4 *2)) (-14 *4 (-831))
+ (-4 *2 (-13 (-962) (-10 -7 (-6 (-3993 "*"))))) (-5 *1 (-815 *4 *2)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |preimage| (-584 *3)) (|:| |image| (-584 *3))))
+ (-5 *1 (-814 *3)) (-4 *3 (-1013)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1013)) (-5 *1 (-814 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1013)) (-5 *1 (-814 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-814 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-4 *1 (-951 (-484))) (-4 *1 (-253)) (-5 *2 (-85))))
+ ((*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-814 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-4 *1 (-951 (-484))) (-4 *1 (-253)) (-5 *2 (-85))))
+ ((*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-814 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1009 *3)) (-5 *1 (-814 *3)) (-4 *3 (-317)) (-4 *3 (-1013)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-5 *1 (-814 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *2) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1013)))))
+(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-695))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *1 (-225 *4)) (-4 *4 (-1127))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1127))))
- ((*1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-806 *2 *3)) (-4 *3 (-1127)) (-4 *2 (-1127))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *1 (-225 *4)) (-4 *4 (-1128))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1128))))
+ ((*1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-807 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1128))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-694))) (-4 *1 (-811 *4))
- (-4 *4 (-1012))))
- ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-811 *2)) (-4 *2 (-1012))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-811 *3)) (-4 *3 (-1012)))))
+ (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 (-695))) (-4 *1 (-812 *4))
+ (-4 *4 (-1013))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-812 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-812 *3)) (-4 *3 (-1013)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-694)) (-4 *4 (-311)) (-5 *1 (-807 *2 *4)) (-4 *2 (-1153 *4)))))
+ (-12 (-5 *3 (-695)) (-4 *4 (-311)) (-5 *1 (-808 *2 *4)) (-4 *2 (-1154 *4)))))
(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-311)) (-5 *1 (-807 *2 *3)) (-4 *2 (-1153 *3)))))
+ (|partial| -12 (-4 *3 (-311)) (-5 *1 (-808 *2 *3)) (-4 *2 (-1154 *3)))))
(((*1 *1) (-12 (-4 *1 (-402 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-472))) ((*1 *1) (-4 *1 (-659))) ((*1 *1) (-4 *1 (-663)))
- ((*1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1012))))
- ((*1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756)))))
+ ((*1 *1) (-5 *1 (-473))) ((*1 *1) (-4 *1 (-660))) ((*1 *1) (-4 *1 (-664)))
+ ((*1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1013))))
+ ((*1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1012))
- (-5 *2 (-583 (-2 (|:| |k| *4) (|:| |c| *3))))))
+ (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1013))
+ (-5 *2 (-584 (-2 (|:| |k| *4) (|:| |c| *3))))))
((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| |k| (-803 *3)) (|:| |c| *4))))
- (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756))
- (-4 *4 (-13 (-146) (-654 (-347 (-483))))) (-14 *5 (-830))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-614 *3))) (-5 *1 (-803 *3)) (-4 *3 (-756)))))
+ (-12 (-5 *2 (-584 (-2 (|:| |k| (-804 *3)) (|:| |c| *4))))
+ (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757))
+ (-4 *4 (-13 (-146) (-655 (-347 (-484))))) (-14 *5 (-831))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-615 *3))) (-5 *1 (-804 *3)) (-4 *3 (-757)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961))
- (-14 *4 (-583 (-1088)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962))
+ (-14 *4 (-584 (-1089)))))
((*1 *2 *3)
- (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1127))))
+ (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1128))))
((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756)))
- (-14 *4 (-583 (-1088)))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-614 *3)) (-4 *3 (-756))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-618 *3)) (-4 *3 (-756))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-803 *3)) (-4 *3 (-756)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757)))
+ (-14 *4 (-584 (-1089)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-615 *3)) (-4 *3 (-757))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-619 *3)) (-4 *3 (-757))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-804 *3)) (-4 *3 (-757)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-800 *4)) (-4 *4 (-1012)) (-5 *2 (-583 *5)) (-5 *1 (-801 *4 *5))
- (-4 *5 (-1127)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-800 *3)) (-4 *3 (-1012))))
+ (-12 (-5 *3 (-801 *4)) (-4 *4 (-1013)) (-5 *2 (-584 *5)) (-5 *1 (-802 *4 *5))
+ (-4 *5 (-1128)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-801 *3)) (-4 *3 (-1013))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-800 *4)) (-4 *4 (-1012)) (-5 *1 (-801 *4 *3)) (-4 *3 (-1127)))))
+ (-12 (-5 *2 (-801 *4)) (-4 *4 (-1013)) (-5 *1 (-802 *4 *3)) (-4 *3 (-1128)))))
(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-800 *4)) (-4 *4 (-1012)) (-5 *2 (-85))
- (-5 *1 (-798 *4 *5)) (-4 *5 (-1012))))
+ (|partial| -12 (-5 *3 (-801 *4)) (-4 *4 (-1013)) (-5 *2 (-85))
+ (-5 *1 (-799 *4 *5)) (-4 *5 (-1013))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-800 *5)) (-4 *5 (-1012)) (-5 *2 (-85)) (-5 *1 (-801 *5 *3))
- (-4 *3 (-1127))))
+ (-12 (-5 *4 (-801 *5)) (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-802 *5 *3))
+ (-4 *3 (-1128))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *6)) (-5 *4 (-800 *5)) (-4 *5 (-1012)) (-4 *6 (-1127))
- (-5 *2 (-85)) (-5 *1 (-801 *5 *6)))))
+ (-12 (-5 *3 (-584 *6)) (-5 *4 (-801 *5)) (-4 *5 (-1013)) (-4 *6 (-1128))
+ (-5 *2 (-85)) (-5 *1 (-802 *5 *6)))))
(((*1 *1) (-4 *1 (-23)))
((*1 *1) (-12 (-4 *1 (-407 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-472))) ((*1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1012)))))
+ ((*1 *1) (-5 *1 (-473))) ((*1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1013)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| -2509 (-86)) (|:| |arg| (-583 (-800 *3)))))
- (-5 *1 (-800 *3)) (-4 *3 (-1012))))
+ (|partial| -12 (-5 *2 (-2 (|:| -2511 (-86)) (|:| |arg| (-584 (-801 *3)))))
+ (-5 *1 (-801 *3)) (-4 *3 (-1013))))
((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-86)) (-5 *2 (-583 (-800 *4))) (-5 *1 (-800 *4))
- (-4 *4 (-1012)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |num| (-800 *3)) (|:| |den| (-800 *3))))
- (-5 *1 (-800 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))))
+ (|partial| -12 (-5 *3 (-86)) (-5 *2 (-584 (-801 *4))) (-5 *1 (-801 *4))
+ (-4 *4 (-1013)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |num| (-801 *3)) (|:| |den| (-801 *3))))
+ (-5 *1 (-801 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))))
(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1088)) (-5 *3 (-85)) (-5 *1 (-800 *4)) (-4 *4 (-1012)))))
+ (-12 (-5 *2 (-1089)) (-5 *3 (-85)) (-5 *1 (-801 *4)) (-4 *4 (-1013)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-1088))) (-5 *3 (-51)) (-5 *1 (-800 *4)) (-4 *4 (-1012)))))
+ (-12 (-5 *2 (-584 (-1089))) (-5 *3 (-51)) (-5 *1 (-801 *4)) (-4 *4 (-1013)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |var| (-583 (-1088))) (|:| |pred| (-51))))
- (-5 *1 (-800 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1012)))))
-(((*1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1012)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))))
+ (-12 (-5 *2 (-2 (|:| |var| (-584 (-1089))) (|:| |pred| (-51))))
+ (-5 *1 (-801 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1013)))))
+(((*1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1012)))))
+ (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1013)))))
(((*1 *2 *1)
- (-12 (-4 *4 (-1012)) (-5 *2 (-85)) (-5 *1 (-795 *3 *4 *5)) (-4 *3 (-1012))
- (-4 *5 (-608 *4))))
+ (-12 (-4 *4 (-1013)) (-5 *2 (-85)) (-5 *1 (-796 *3 *4 *5)) (-4 *3 (-1013))
+ (-4 *5 (-609 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-798 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-799 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
(((*1 *1)
- (-12 (-4 *3 (-1012)) (-5 *1 (-795 *2 *3 *4)) (-4 *2 (-1012))
- (-4 *4 (-608 *3))))
- ((*1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))))
+ (-12 (-4 *3 (-1013)) (-5 *1 (-796 *2 *3 *4)) (-4 *2 (-1013))
+ (-4 *4 (-609 *3))))
+ ((*1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-800 *4)) (-4 *4 (-1012)) (-4 *2 (-1012))
- (-5 *1 (-798 *4 *2)))))
+ (|partial| -12 (-5 *3 (-801 *4)) (-4 *4 (-1013)) (-4 *2 (-1013))
+ (-5 *1 (-799 *4 *2)))))
(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-800 *4)) (-4 *4 (-1012)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1012)))))
+ (-12 (-5 *2 (-801 *4)) (-4 *4 (-1013)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1013)))))
(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-800 *4)) (-4 *4 (-1012)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1012)))))
+ (-12 (-5 *2 (-801 *4)) (-4 *4 (-1013)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1013)))))
(((*1 *1 *2 *3 *1 *3)
- (-12 (-5 *2 (-800 *4)) (-4 *4 (-1012)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1012)))))
+ (-12 (-5 *2 (-801 *4)) (-4 *4 (-1013)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1013)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1012)) (-4 *6 (-796 *5)) (-5 *2 (-795 *5 *6 (-583 *6)))
- (-5 *1 (-797 *5 *6 *4)) (-5 *3 (-583 *6)) (-4 *4 (-553 (-800 *5)))))
+ (-12 (-4 *5 (-1013)) (-4 *6 (-797 *5)) (-5 *2 (-796 *5 *6 (-584 *6)))
+ (-5 *1 (-798 *5 *6 *4)) (-5 *3 (-584 *6)) (-4 *4 (-554 (-801 *5)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1012)) (-5 *2 (-583 (-248 *3))) (-5 *1 (-797 *5 *3 *4))
- (-4 *3 (-950 (-1088))) (-4 *3 (-796 *5)) (-4 *4 (-553 (-800 *5)))))
+ (-12 (-4 *5 (-1013)) (-5 *2 (-584 (-248 *3))) (-5 *1 (-798 *5 *3 *4))
+ (-4 *3 (-951 (-1089))) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1012)) (-5 *2 (-583 (-248 (-857 *3)))) (-5 *1 (-797 *5 *3 *4))
- (-4 *3 (-961)) (-2556 (-4 *3 (-950 (-1088)))) (-4 *3 (-796 *5))
- (-4 *4 (-553 (-800 *5)))))
+ (-12 (-4 *5 (-1013)) (-5 *2 (-584 (-248 (-858 *3)))) (-5 *1 (-798 *5 *3 *4))
+ (-4 *3 (-962)) (-2558 (-4 *3 (-951 (-1089)))) (-4 *3 (-797 *5))
+ (-4 *4 (-554 (-801 *5)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1012)) (-5 *2 (-798 *5 *3)) (-5 *1 (-797 *5 *3 *4))
- (-2556 (-4 *3 (-950 (-1088)))) (-2556 (-4 *3 (-961))) (-4 *3 (-796 *5))
- (-4 *4 (-553 (-800 *5))))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-253)) (-5 *3 (-1088)) (-5 *2 (-85))))
+ (-12 (-4 *5 (-1013)) (-5 *2 (-799 *5 *3)) (-5 *1 (-798 *5 *3 *4))
+ (-2558 (-4 *3 (-951 (-1089)))) (-2558 (-4 *3 (-962))) (-4 *3 (-797 *5))
+ (-4 *4 (-554 (-801 *5))))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-253)) (-5 *3 (-1089)) (-5 *2 (-85))))
((*1 *2 *1 *3) (-12 (-4 *1 (-253)) (-5 *3 (-86)) (-5 *2 (-85))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1088)) (-5 *2 (-85)) (-5 *1 (-550 *4)) (-4 *4 (-1012))))
+ (-12 (-5 *3 (-1089)) (-5 *2 (-85)) (-5 *1 (-551 *4)) (-4 *4 (-1013))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-550 *4)) (-4 *4 (-1012))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-747 *3)) (-4 *3 (-1012)) (-5 *2 (-85))))
+ (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-551 *4)) (-4 *4 (-1013))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-748 *3)) (-4 *3 (-1013)) (-5 *2 (-85))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1012)) (-5 *2 (-85)) (-5 *1 (-797 *5 *3 *4)) (-4 *3 (-796 *5))
- (-4 *4 (-553 (-800 *5)))))
+ (-12 (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-798 *5 *3 *4)) (-4 *3 (-797 *5))
+ (-4 *4 (-554 (-801 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *6)) (-4 *6 (-796 *5)) (-4 *5 (-1012)) (-5 *2 (-85))
- (-5 *1 (-797 *5 *6 *4)) (-4 *4 (-553 (-800 *5))))))
+ (-12 (-5 *3 (-584 *6)) (-4 *6 (-797 *5)) (-4 *5 (-1013)) (-5 *2 (-85))
+ (-5 *1 (-798 *5 *6 *4)) (-4 *4 (-554 (-801 *5))))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-798 *4 *5)) (-5 *3 (-798 *4 *6)) (-4 *4 (-1012))
- (-4 *5 (-1012)) (-4 *6 (-608 *5)) (-5 *1 (-795 *4 *5 *6)))))
+ (-12 (-5 *2 (-799 *4 *5)) (-5 *3 (-799 *4 *6)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-609 *5)) (-5 *1 (-796 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *4 (-1012)) (-5 *2 (-798 *3 *5)) (-5 *1 (-795 *3 *4 *5))
- (-4 *3 (-1012)) (-4 *5 (-608 *4)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1067 (-583 (-483)))) (-5 *1 (-793)) (-5 *3 (-483)))))
+ (-12 (-4 *4 (-1013)) (-5 *2 (-799 *3 *5)) (-5 *1 (-796 *3 *4 *5))
+ (-4 *3 (-1013)) (-4 *5 (-609 *4)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1068 (-584 (-484)))) (-5 *1 (-794)) (-5 *3 (-484)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1067 (-583 (-483)))) (-5 *1 (-793)) (-5 *3 (-583 (-483)))))
+ (-12 (-5 *2 (-1068 (-584 (-484)))) (-5 *1 (-794)) (-5 *3 (-584 (-484)))))
((*1 *2 *3)
- (-12 (-5 *2 (-1067 (-583 (-483)))) (-5 *1 (-793)) (-5 *3 (-583 (-483))))))
+ (-12 (-5 *2 (-1068 (-584 (-484)))) (-5 *1 (-794)) (-5 *3 (-584 (-484))))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1067 (-583 (-483)))) (-5 *3 (-583 (-483))) (-5 *1 (-793)))))
+ (-12 (-5 *2 (-1068 (-584 (-484)))) (-5 *3 (-584 (-484))) (-5 *1 (-794)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1067 (-583 (-483)))) (-5 *1 (-793)) (-5 *3 (-583 (-483))))))
-(((*1 *2 *2) (-12 (-5 *2 (-1067 (-583 (-830)))) (-5 *1 (-793)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-787 *2)) (-4 *2 (-1127))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-789 *2)) (-4 *2 (-1127))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-792 *2)) (-4 *2 (-1127)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-583 (-1093))) (-5 *1 (-790)))))
-(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))))
-(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))))
-(((*1 *2 *3) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-199)) (-5 *3 (-1071))))
- ((*1 *2 *2) (-12 (-5 *2 (-583 (-1071))) (-5 *1 (-199))))
- ((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))))
-(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))))
-(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))))
-(((*1 *1 *2 *3) (-12 (-5 *1 (-782 *2 *3)) (-4 *2 (-1127)) (-4 *3 (-1127)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-148 (-347 (-483)))) (-5 *1 (-90 *3)) (-14 *3 (-483))))
- ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1067 *2)) (-4 *2 (-257)) (-5 *1 (-148 *2))))
+ (-12 (-5 *2 (-1068 (-584 (-484)))) (-5 *1 (-794)) (-5 *3 (-584 (-484))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1068 (-584 (-831)))) (-5 *1 (-794)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-788 *2)) (-4 *2 (-1128))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-790 *2)) (-4 *2 (-1128))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-793 *2)) (-4 *2 (-1128)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-584 (-1094))) (-5 *1 (-791)))))
+(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))))
+(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))))
+(((*1 *2 *3) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-199)) (-5 *3 (-1072))))
+ ((*1 *2 *2) (-12 (-5 *2 (-584 (-1072))) (-5 *1 (-199))))
+ ((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))))
+(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))))
+(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))))
+(((*1 *1 *2 *3) (-12 (-5 *1 (-783 *2 *3)) (-4 *2 (-1128)) (-4 *3 (-1128)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-148 (-347 (-484)))) (-5 *1 (-90 *3)) (-14 *3 (-484))))
+ ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1068 *2)) (-4 *2 (-257)) (-5 *1 (-148 *2))))
((*1 *1 *2) (-12 (-5 *2 (-347 *3)) (-4 *3 (-257)) (-5 *1 (-148 *3))))
- ((*1 *2 *3) (-12 (-5 *2 (-148 (-483))) (-5 *1 (-689 *3)) (-4 *3 (-344))))
+ ((*1 *2 *3) (-12 (-5 *2 (-148 (-484))) (-5 *1 (-690 *3)) (-4 *3 (-344))))
((*1 *2 *1)
- (-12 (-5 *2 (-148 (-347 (-483)))) (-5 *1 (-780 *3)) (-14 *3 (-483))))
+ (-12 (-5 *2 (-148 (-347 (-484)))) (-5 *1 (-781 *3)) (-14 *3 (-484))))
((*1 *2 *1)
- (-12 (-14 *3 (-483)) (-5 *2 (-148 (-347 (-483)))) (-5 *1 (-781 *3 *4))
- (-4 *4 (-779 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-343 *3)) (-4 *3 (-344))))
- ((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-343 *3)) (-4 *3 (-344))))
- ((*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3980)) (-4 *1 (-344))))
- ((*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-830))))
- ((*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-1067 (-483))))))
+ (-12 (-14 *3 (-484)) (-5 *2 (-148 (-347 (-484)))) (-5 *1 (-782 *3 *4))
+ (-4 *4 (-780 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-343 *3)) (-4 *3 (-344))))
+ ((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-343 *3)) (-4 *3 (-344))))
+ ((*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3982)) (-4 *1 (-344))))
+ ((*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-831))))
+ ((*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-1068 (-484))))))
(((*1 *2 *1)
(-12 (-4 *3 (-146)) (-4 *2 (-23)) (-5 *1 (-244 *3 *4 *2 *5 *6 *7))
- (-4 *4 (-1153 *3)) (-14 *5 (-1 *4 *4 *2))
+ (-4 *4 (-1154 *3)) (-14 *5 (-1 *4 *4 *2))
(-14 *6 (-1 (-3 *2 "failed") *2 *2))
(-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-146))
+ (-12 (-4 *2 (-23)) (-5 *1 (-649 *3 *2 *4 *5 *6)) (-4 *3 (-146))
(-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
(-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *2 (-1153 *3)) (-5 *1 (-649 *3 *2)) (-4 *3 (-961))))
+ ((*1 *2) (-12 (-4 *2 (-1154 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-962))))
((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-652 *3 *2 *4 *5 *6)) (-4 *3 (-146))
+ (-12 (-4 *2 (-23)) (-5 *1 (-653 *3 *2 *4 *5 *6)) (-4 *3 (-146))
(-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
(-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-483)))))
-(((*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-483)))))
-(((*1 *1 *1) (-4 *1 (-779 *2))))
-(((*1 *1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1) (-5 *1 (-772)))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1083 (-483))) (-5 *3 (-483)) (-4 *1 (-779 *4)))))
+ ((*1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-484)))))
+(((*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-484)))))
+(((*1 *1 *1) (-4 *1 (-780 *2))))
+(((*1 *1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1) (-5 *1 (-773)))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1084 (-484))) (-5 *3 (-484)) (-4 *1 (-780 *4)))))
(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-694)) (-4 *5 (-311)) (-5 *2 (-347 *6))
- (-5 *1 (-776 *5 *4 *6)) (-4 *4 (-1170 *5)) (-4 *6 (-1153 *5))))
+ (|partial| -12 (-5 *3 (-695)) (-4 *5 (-311)) (-5 *2 (-347 *6))
+ (-5 *1 (-777 *5 *4 *6)) (-4 *4 (-1171 *5)) (-4 *6 (-1154 *5))))
((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-694)) (-5 *4 (-1167 *5 *6 *7)) (-4 *5 (-311))
- (-14 *6 (-1088)) (-14 *7 *5) (-5 *2 (-347 (-1146 *6 *5)))
- (-5 *1 (-777 *5 *6 *7))))
+ (|partial| -12 (-5 *3 (-695)) (-5 *4 (-1168 *5 *6 *7)) (-4 *5 (-311))
+ (-14 *6 (-1089)) (-14 *7 *5) (-5 *2 (-347 (-1147 *6 *5)))
+ (-5 *1 (-778 *5 *6 *7))))
((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-694)) (-5 *4 (-1167 *5 *6 *7)) (-4 *5 (-311))
- (-14 *6 (-1088)) (-14 *7 *5) (-5 *2 (-347 (-1146 *6 *5)))
- (-5 *1 (-777 *5 *6 *7)))))
+ (|partial| -12 (-5 *3 (-695)) (-5 *4 (-1168 *5 *6 *7)) (-4 *5 (-311))
+ (-14 *6 (-1089)) (-14 *7 *5) (-5 *2 (-347 (-1147 *6 *5)))
+ (-5 *1 (-778 *5 *6 *7)))))
(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-694)) (-4 *5 (-311)) (-5 *2 (-148 *6))
- (-5 *1 (-776 *5 *4 *6)) (-4 *4 (-1170 *5)) (-4 *6 (-1153 *5)))))
-(((*1 *2 *1)
- (-12 (|has| *1 (-6 -3989)) (-4 *1 (-426 *3)) (-4 *3 (-1127))
- (-5 *2 (-583 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-675 *3)) (-4 *3 (-1012))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-378))) (-5 *1 (-774)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-772)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-772)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-772)))))
-(((*1 *2 *1) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-344) (-1113)))))
- ((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772))))
- ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-772)))))
-(((*1 *2 *1) (-12 (-4 *1 (-214 *3)) (-4 *3 (-1127)) (-5 *2 (-694))))
- ((*1 *2 *1) (-12 (-4 *1 (-253)) (-5 *2 (-694))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-961)) (-4 *2 (-13 (-344) (-950 *4) (-311) (-1113) (-239)))
- (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1153 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-550 *3)) (-4 *3 (-1012))))
- ((*1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772))))
- ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-772)))))
-(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-772)))))
-(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-772)))))
-(((*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772)))))
-(((*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-772)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))
- ((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))
- ((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-772)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))))
-(((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-772)))))
-(((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-253))))
- ((*1 *1 *1) (-4 *1 (-253))) ((*1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))))
-(((*1 *1) (-5 *1 (-117))) ((*1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772))))
- ((*1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1 *1) (-5 *1 (-772)))
- ((*1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))
- ((*1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-253))))
+ (|partial| -12 (-5 *3 (-695)) (-4 *5 (-311)) (-5 *2 (-148 *6))
+ (-5 *1 (-777 *5 *4 *6)) (-4 *4 (-1171 *5)) (-4 *6 (-1154 *5)))))
+(((*1 *2 *1)
+ (-12 (|has| *1 (-6 -3991)) (-4 *1 (-426 *3)) (-4 *3 (-1128))
+ (-5 *2 (-584 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-676 *3)) (-4 *3 (-1013))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-378))) (-5 *1 (-775)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-773)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-773)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-773)))))
+(((*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-344) (-1114)))))
+ ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773))))
+ ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-773)))))
+(((*1 *2 *1) (-12 (-4 *1 (-214 *3)) (-4 *3 (-1128)) (-5 *2 (-695))))
+ ((*1 *2 *1) (-12 (-4 *1 (-253)) (-5 *2 (-695))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-962)) (-4 *2 (-13 (-344) (-951 *4) (-311) (-1114) (-239)))
+ (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1154 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-551 *3)) (-4 *3 (-1013))))
+ ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773))))
+ ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-773)))))
+(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-773)))))
+(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-773)))))
+(((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773)))))
+(((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-773)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))
+ ((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))
+ ((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-773)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))))
+(((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-773)))))
+(((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-253))))
+ ((*1 *1 *1) (-4 *1 (-253))) ((*1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))))
+(((*1 *1) (-5 *1 (-117))) ((*1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773))))
+ ((*1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773)))
+ ((*1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))
+ ((*1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-253))))
((*1 *1 *1) (-4 *1 (-253)))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))
- ((*1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))
+ ((*1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85))))
- ((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85))))
- ((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85))))
- ((*1 *1 *1 *1) (-5 *1 (-772))))
+ ((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85))))
+ ((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85))))
+ ((*1 *1 *1 *1) (-5 *1 (-773))))
(((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-739 *3)) (|:| |rm| (-739 *3))))
- (-5 *1 (-739 *3)) (-4 *3 (-756))))
- ((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *1) (-4 *1 (-257))) ((*1 *1 *1 *1) (-5 *1 (-694)))
- ((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *1) (-4 *1 (-257))) ((*1 *1 *1 *1) (-5 *1 (-694)))
- ((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1) (-5 *1 (-772))))
-(((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-771))))
- ((*1 *1 *2) (-12 (-5 *2 (-335)) (-5 *1 (-771)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-466))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-512))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-771)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-101))) (-5 *3 (-101)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-487))) (-5 *3 (-487)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-1136))) (-5 *3 (-1136)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *3 (-102)) (-5 *2 (-694)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-51))) (-5 *2 (-1183)) (-5 *1 (-768)))))
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-740 *3)) (|:| |rm| (-740 *3))))
+ (-5 *1 (-740 *3)) (-4 *3 (-757))))
+ ((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *1) (-4 *1 (-257))) ((*1 *1 *1 *1) (-5 *1 (-695)))
+ ((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *1) (-4 *1 (-257))) ((*1 *1 *1 *1) (-5 *1 (-695)))
+ ((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1) (-5 *1 (-773))))
+(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-772))))
+ ((*1 *1 *2) (-12 (-5 *2 (-335)) (-5 *1 (-772)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-467))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-513))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-772)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-101))) (-5 *3 (-101)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-488))) (-5 *3 (-488)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-1137))) (-5 *3 (-1137)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *3 (-102)) (-5 *2 (-695)))))
+(((*1 *2 *3) (-12 (-5 *3 (-584 (-51))) (-5 *2 (-1184)) (-5 *1 (-769)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-38 (-347 (-483))))
+ (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-38 (-347 (-484))))
(-4 *2 (-146)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146))))
- ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146))))
+ ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-311)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1)))
- (-4 *1 (-761 *3))))
+ (-12 (-4 *3 (-311)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2900 *1)))
+ (-4 *1 (-762 *3))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-69 *5)) (-4 *5 (-311)) (-4 *5 (-961))
- (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3))) (-5 *1 (-762 *5 *3))
- (-4 *3 (-761 *5)))))
+ (-12 (-5 *4 (-69 *5)) (-4 *5 (-311)) (-4 *5 (-962))
+ (-5 *2 (-2 (|:| -1971 *3) (|:| -2900 *3))) (-5 *1 (-763 *5 *3))
+ (-4 *3 (-762 *5)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-311)) (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3)))
- (-5 *1 (-690 *3 *4)) (-4 *3 (-645 *4))))
+ (-12 (-4 *4 (-311)) (-5 *2 (-2 (|:| -1971 *3) (|:| -2900 *3)))
+ (-5 *1 (-691 *3 *4)) (-4 *3 (-646 *4))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-311)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1)))
- (-4 *1 (-761 *3))))
+ (-12 (-4 *3 (-311)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2900 *1)))
+ (-4 *1 (-762 *3))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-69 *5)) (-4 *5 (-311)) (-4 *5 (-961))
- (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3))) (-5 *1 (-762 *5 *3))
- (-4 *3 (-761 *5)))))
+ (-12 (-5 *4 (-69 *5)) (-4 *5 (-311)) (-4 *5 (-962))
+ (-5 *2 (-2 (|:| -1971 *3) (|:| -2900 *3))) (-5 *1 (-763 *5 *3))
+ (-4 *3 (-762 *5)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-494)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1)))
- (-4 *1 (-761 *3))))
+ (-12 (-4 *3 (-495)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2900 *1)))
+ (-4 *1 (-762 *3))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-69 *5)) (-4 *5 (-494)) (-4 *5 (-961))
- (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3))) (-5 *1 (-762 *5 *3))
- (-4 *3 (-761 *5)))))
+ (-12 (-5 *4 (-69 *5)) (-4 *5 (-495)) (-4 *5 (-962))
+ (-5 *2 (-2 (|:| -1971 *3) (|:| -2900 *3))) (-5 *1 (-763 *5 *3))
+ (-4 *3 (-762 *5)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-494)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1970 *1) (|:| -2898 *1)))
- (-4 *1 (-761 *3))))
+ (-12 (-4 *3 (-495)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1971 *1) (|:| -2900 *1)))
+ (-4 *1 (-762 *3))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-69 *5)) (-4 *5 (-494)) (-4 *5 (-961))
- (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3))) (-5 *1 (-762 *5 *3))
- (-4 *3 (-761 *5)))))
+ (-12 (-5 *4 (-69 *5)) (-4 *5 (-495)) (-4 *5 (-962))
+ (-5 *2 (-2 (|:| -1971 *3) (|:| -2900 *3))) (-5 *1 (-763 *5 *3))
+ (-4 *3 (-762 *5)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-590 *5)) (-4 *5 (-961))
- (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-761 *5))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-630 *3)) (-4 *1 (-358 *3)) (-4 *3 (-146))))
- ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961))))
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-591 *5)) (-4 *5 (-962))
+ (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-762 *5))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-631 *3)) (-4 *1 (-358 *3)) (-4 *3 (-146))))
+ ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962))))
((*1 *2 *3 *2 *2 *4 *5)
- (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-961)) (-5 *1 (-762 *2 *3))
- (-4 *3 (-761 *2)))))
+ (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-962)) (-5 *1 (-763 *2 *3))
+ (-4 *3 (-762 *2)))))
(((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-961)) (-5 *1 (-762 *5 *2))
- (-4 *2 (-761 *5)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-311)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-311)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311)))))
+ (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-962)) (-5 *1 (-763 *5 *2))
+ (-4 *2 (-762 *5)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-311)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-311)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))))
(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-311)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3))))
+ (|partial| -12 (-4 *3 (-311)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3))))
((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-311)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311)))))
+ (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-311)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-311)) (-4 *3 (-961))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2405 *1)))
- (-4 *1 (-761 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311)))))
+ (-12 (-4 *3 (-311)) (-4 *3 (-962))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2407 *1)))
+ (-4 *1 (-762 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))))
(((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311)))))
+ (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-311)) (-4 *3 (-961))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2405 *1)))
- (-4 *1 (-761 *3)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-311)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-311)))))
+ (-12 (-4 *3 (-311)) (-4 *3 (-962))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2407 *1)))
+ (-4 *1 (-762 *3)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-311)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-311)))))
(((*1 *1)
- (-12 (-4 *1 (-344)) (-2556 (|has| *1 (-6 -3980)))
- (-2556 (|has| *1 (-6 -3972)))))
- ((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1012)) (-4 *2 (-756))))
- ((*1 *2 *1) (-12 (-4 *1 (-742 *2)) (-4 *2 (-756)))) ((*1 *1) (-4 *1 (-752)))
- ((*1 *1 *1 *1) (-4 *1 (-759))))
+ (-12 (-4 *1 (-344)) (-2558 (|has| *1 (-6 -3982)))
+ (-2558 (|has| *1 (-6 -3974)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1013)) (-4 *2 (-757))))
+ ((*1 *2 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-757)))) ((*1 *1) (-4 *1 (-753)))
+ ((*1 *1 *1 *1) (-4 *1 (-760))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1177 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5))
- (-14 *4 (-694)))))
+ (-12 (-5 *3 (-1178 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5))
+ (-14 *4 (-695)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1177 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5))
- (-14 *4 (-694)))))
+ (-12 (-5 *3 (-1178 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5))
+ (-14 *4 (-695)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1177 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5))
- (-14 *4 (-694)))))
-(((*1 *2) (-12 (-5 *2 (-750 (-483))) (-5 *1 (-471))))
- ((*1 *1) (-12 (-5 *1 (-750 *2)) (-4 *2 (-1012)))))
-(((*1 *2) (-12 (-5 *2 (-750 (-483))) (-5 *1 (-471))))
- ((*1 *1) (-12 (-5 *1 (-750 *2)) (-4 *2 (-1012)))))
+ (-12 (-5 *3 (-1178 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5))
+ (-14 *4 (-695)))))
+(((*1 *2) (-12 (-5 *2 (-751 (-484))) (-5 *1 (-472))))
+ ((*1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-1013)))))
+(((*1 *2) (-12 (-5 *2 (-751 (-484))) (-5 *1 (-472))))
+ ((*1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-1013)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-1012))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-1012))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1032)) (-5 *1 (-750 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-167 (-439))) (-5 *1 (-748)))))
-(((*1 *2 *1) (-12 (-4 *1 (-747 *3)) (-4 *3 (-1012)) (-5 *2 (-55)))))
-(((*1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4))
- (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-629 *4 *5 *6 *3))
- (-4 *3 (-627 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-1013))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-1013))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1033)) (-5 *1 (-751 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-167 (-439))) (-5 *1 (-749)))))
+(((*1 *2 *1) (-12 (-4 *1 (-748 *3)) (-4 *3 (-1013)) (-5 *2 (-55)))))
+(((*1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4))
+ (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-630 *4 *5 *6 *3))
+ (-4 *3 (-628 *4 *5 *6))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2))))
+ (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2))))
((*1 *1 *1)
- (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961))))
- ((*1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961)))))
+ (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962))))
+ ((*1 *1 *1) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962)))))
(((*1 *2 *2)
- (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2))))
- ((*1 *2 *2) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961)))))
+ (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2))))
+ ((*1 *2 *2) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-86)) (-5 *4 (-583 *2)) (-5 *1 (-87 *2))
- (-4 *2 (-1012))))
+ (|partial| -12 (-5 *3 (-86)) (-5 *4 (-584 *2)) (-5 *1 (-87 *2))
+ (-4 *2 (-1013))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-583 *4))) (-4 *4 (-1012))
+ (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-584 *4))) (-4 *4 (-1013))
(-5 *1 (-87 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1012)) (-5 *1 (-87 *4))))
+ (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1013)) (-5 *1 (-87 *4))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-583 *4))) (-5 *1 (-87 *4))
- (-4 *4 (-1012))))
+ (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-584 *4))) (-5 *1 (-87 *4))
+ (-4 *4 (-1013))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-590 *3)) (-4 *3 (-961))
- (-5 *1 (-651 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-745 *3)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-962))
+ (-5 *1 (-652 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-746 *3)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-590 *3)) (-4 *3 (-961))
- (-5 *1 (-651 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-745 *3)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-962))
+ (-5 *1 (-652 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-746 *3)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-86)) (-4 *4 (-961)) (-5 *1 (-651 *4 *2)) (-4 *2 (-590 *4))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-745 *2)) (-4 *2 (-961)))))
+ (-12 (-5 *3 (-86)) (-4 *4 (-962)) (-5 *1 (-652 *4 *2)) (-4 *2 (-591 *4))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-746 *2)) (-4 *2 (-962)))))
(((*1 *1 *2 *3)
- (-12 (-5 *3 (-309 (-86))) (-4 *2 (-961)) (-5 *1 (-651 *2 *4))
- (-4 *4 (-590 *2))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-309 (-86))) (-5 *1 (-745 *2)) (-4 *2 (-961)))))
-(((*1 *2) (-12 (-5 *2 (-743 (-483))) (-5 *1 (-471))))
- ((*1 *1) (-12 (-5 *1 (-743 *2)) (-4 *2 (-1012)))))
-(((*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-741 *2 *3)) (-4 *2 (-645 *3)))))
-(((*1 *2 *1) (-12 (-4 *2 (-645 *3)) (-5 *1 (-741 *2 *3)) (-4 *3 (-961)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-614 *3)) (-4 *3 (-756))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-618 *3)) (-4 *3 (-756))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-739 *3)) (-4 *3 (-756)))))
+ (-12 (-5 *3 (-309 (-86))) (-4 *2 (-962)) (-5 *1 (-652 *2 *4))
+ (-4 *4 (-591 *2))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-309 (-86))) (-5 *1 (-746 *2)) (-4 *2 (-962)))))
+(((*1 *2) (-12 (-5 *2 (-744 (-484))) (-5 *1 (-472))))
+ ((*1 *1) (-12 (-5 *1 (-744 *2)) (-4 *2 (-1013)))))
+(((*1 *1 *2) (-12 (-4 *3 (-962)) (-5 *1 (-742 *2 *3)) (-4 *2 (-646 *3)))))
+(((*1 *2 *1) (-12 (-4 *2 (-646 *3)) (-5 *1 (-742 *2 *3)) (-4 *3 (-962)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-615 *3)) (-4 *3 (-757))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-619 *3)) (-4 *3 (-757))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-740 *3)) (-4 *3 (-757)))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-583 *4)) (-4 *4 (-311)) (-5 *2 (-1177 *4))
- (-5 *1 (-734 *4 *3)) (-4 *3 (-600 *4)))))
+ (|partial| -12 (-5 *5 (-584 *4)) (-4 *4 (-311)) (-5 *2 (-1178 *4))
+ (-5 *1 (-735 *4 *3)) (-4 *3 (-601 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *4)) (-4 *4 (-311)) (-5 *2 (-630 *4)) (-5 *1 (-734 *4 *5))
- (-4 *5 (-600 *4))))
+ (-12 (-5 *3 (-584 *4)) (-4 *4 (-311)) (-5 *2 (-631 *4)) (-5 *1 (-735 *4 *5))
+ (-4 *5 (-601 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *5)) (-5 *4 (-694)) (-4 *5 (-311)) (-5 *2 (-630 *5))
- (-5 *1 (-734 *5 *6)) (-4 *6 (-600 *5)))))
+ (-12 (-5 *3 (-584 *5)) (-5 *4 (-695)) (-4 *5 (-311)) (-5 *2 (-631 *5))
+ (-5 *1 (-735 *5 *6)) (-4 *6 (-601 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1088))) (-4 *5 (-494))
- (-5 *2 (-583 (-583 (-248 (-347 (-857 *5)))))) (-5 *1 (-693 *5))))
+ (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1089))) (-4 *5 (-495))
+ (-5 *2 (-584 (-584 (-248 (-347 (-858 *5)))))) (-5 *1 (-694 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-494))
- (-5 *2 (-583 (-583 (-248 (-347 (-857 *4)))))) (-5 *1 (-693 *4))))
+ (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-495))
+ (-5 *2 (-584 (-584 (-248 (-347 (-858 *4)))))) (-5 *1 (-694 *4))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-630 *7))
+ (-12 (-5 *3 (-631 *7))
(-5 *5
- (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2008 (-583 *6))) *7 *6))
- (-4 *6 (-311)) (-4 *7 (-600 *6))
+ (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2010 (-584 *6))) *7 *6))
+ (-4 *6 (-311)) (-4 *7 (-601 *6))
(-5 *2
- (-2 (|:| |particular| (-3 (-1177 *6) "failed"))
- (|:| -2008 (-583 (-1177 *6)))))
- (-5 *1 (-733 *6 *7)) (-5 *4 (-1177 *6)))))
+ (-2 (|:| |particular| (-3 (-1178 *6) "failed"))
+ (|:| -2010 (-584 (-1178 *6)))))
+ (-5 *1 (-734 *6 *7)) (-5 *4 (-1178 *6)))))
(((*1 *2 *3 *4)
(-12 (-4 *5 (-311))
(-5 *2
- (-2 (|:| A (-630 *5))
+ (-2 (|:| A (-631 *5))
(|:| |eqs|
- (-583
- (-2 (|:| C (-630 *5)) (|:| |g| (-1177 *5)) (|:| -3261 *6)
+ (-584
+ (-2 (|:| C (-631 *5)) (|:| |g| (-1178 *5)) (|:| -3263 *6)
(|:| |rh| *5))))))
- (-5 *1 (-733 *5 *6)) (-5 *3 (-630 *5)) (-5 *4 (-1177 *5))
- (-4 *6 (-600 *5))))
+ (-5 *1 (-734 *5 *6)) (-5 *3 (-631 *5)) (-5 *4 (-1178 *5))
+ (-4 *6 (-601 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-311)) (-4 *6 (-600 *5))
- (-5 *2 (-2 (|:| |mat| (-630 *6)) (|:| |vec| (-1177 *5))))
- (-5 *1 (-733 *5 *6)) (-5 *3 (-630 *6)) (-5 *4 (-1177 *5)))))
+ (-12 (-4 *5 (-311)) (-4 *6 (-601 *5))
+ (-5 *2 (-2 (|:| |mat| (-631 *6)) (|:| |vec| (-1178 *5))))
+ (-5 *1 (-734 *5 *6)) (-5 *3 (-631 *6)) (-5 *4 (-1178 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-347 *6))) (-5 *4 (-1 (-583 *5) *6))
- (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483)))))
- (-4 *6 (-1153 *5)) (-5 *2 (-583 (-347 *6))) (-5 *1 (-732 *5 *6))))
+ (-12 (-5 *3 (-598 (-347 *6))) (-5 *4 (-1 (-584 *5) *6))
+ (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484)))))
+ (-4 *6 (-1154 *5)) (-5 *2 (-584 (-347 *6))) (-5 *1 (-733 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-597 (-347 *7))) (-5 *4 (-1 (-583 *6) *7))
+ (-12 (-5 *3 (-598 (-347 *7))) (-5 *4 (-1 (-584 *6) *7))
(-5 *5 (-1 (-345 *7) *7))
- (-4 *6 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483)))))
- (-4 *7 (-1153 *6)) (-5 *2 (-583 (-347 *7))) (-5 *1 (-732 *6 *7))))
+ (-4 *6 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484)))))
+ (-4 *7 (-1154 *6)) (-5 *2 (-584 (-347 *7))) (-5 *1 (-733 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-598 *6 (-347 *6))) (-5 *4 (-1 (-583 *5) *6))
- (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483)))))
- (-4 *6 (-1153 *5)) (-5 *2 (-583 (-347 *6))) (-5 *1 (-732 *5 *6))))
+ (-12 (-5 *3 (-599 *6 (-347 *6))) (-5 *4 (-1 (-584 *5) *6))
+ (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484)))))
+ (-4 *6 (-1154 *5)) (-5 *2 (-584 (-347 *6))) (-5 *1 (-733 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-598 *7 (-347 *7))) (-5 *4 (-1 (-583 *6) *7))
+ (-12 (-5 *3 (-599 *7 (-347 *7))) (-5 *4 (-1 (-584 *6) *7))
(-5 *5 (-1 (-345 *7) *7))
- (-4 *6 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483)))))
- (-4 *7 (-1153 *6)) (-5 *2 (-583 (-347 *7))) (-5 *1 (-732 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-347 *5))) (-4 *5 (-1153 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483)))))
- (-5 *2 (-583 (-347 *5))) (-5 *1 (-732 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-347 *6))) (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1153 *5))
- (-4 *5 (-27)) (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483)))))
- (-5 *2 (-583 (-347 *6))) (-5 *1 (-732 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-598 *5 (-347 *5))) (-4 *5 (-1153 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483)))))
- (-5 *2 (-583 (-347 *5))) (-5 *1 (-732 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-598 *6 (-347 *6))) (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1153 *5))
- (-4 *5 (-27)) (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483)))))
- (-5 *2 (-583 (-347 *6))) (-5 *1 (-732 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-583 *5) *6))
- (-4 *5 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *6 (-1153 *5))
- (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3261 *3))))
- (-5 *1 (-729 *5 *6 *3 *7)) (-4 *3 (-600 *6)) (-4 *7 (-600 (-347 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-583 *5) *6))
- (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483)))))
- (-4 *6 (-1153 *5))
- (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3261 (-598 *6 (-347 *6))))))
- (-5 *1 (-732 *5 *6)) (-5 *3 (-598 *6 (-347 *6))))))
+ (-4 *6 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484)))))
+ (-4 *7 (-1154 *6)) (-5 *2 (-584 (-347 *7))) (-5 *1 (-733 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-347 *5))) (-4 *5 (-1154 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484)))))
+ (-5 *2 (-584 (-347 *5))) (-5 *1 (-733 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-347 *6))) (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1154 *5))
+ (-4 *5 (-27)) (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484)))))
+ (-5 *2 (-584 (-347 *6))) (-5 *1 (-733 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-599 *5 (-347 *5))) (-4 *5 (-1154 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484)))))
+ (-5 *2 (-584 (-347 *5))) (-5 *1 (-733 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-599 *6 (-347 *6))) (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1154 *5))
+ (-4 *5 (-27)) (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484)))))
+ (-5 *2 (-584 (-347 *6))) (-5 *1 (-733 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-584 *5) *6))
+ (-4 *5 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *6 (-1154 *5))
+ (-5 *2 (-584 (-2 (|:| |poly| *6) (|:| -3263 *3))))
+ (-5 *1 (-730 *5 *6 *3 *7)) (-4 *3 (-601 *6)) (-4 *7 (-601 (-347 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-584 *5) *6))
+ (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484)))))
+ (-4 *6 (-1154 *5))
+ (-5 *2 (-584 (-2 (|:| |poly| *6) (|:| -3263 (-599 *6 (-347 *6))))))
+ (-5 *1 (-733 *5 *6)) (-5 *3 (-599 *6 (-347 *6))))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 (-583 *7) *7 (-1083 *7))) (-5 *5 (-1 (-345 *7) *7))
- (-4 *7 (-1153 *6)) (-4 *6 (-13 (-311) (-120) (-950 (-347 (-483)))))
- (-5 *2 (-583 (-2 (|:| |frac| (-347 *7)) (|:| -3261 *3))))
- (-5 *1 (-729 *6 *7 *3 *8)) (-4 *3 (-600 *7)) (-4 *8 (-600 (-347 *7)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1153 *5))
- (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483)))))
- (-5 *2 (-583 (-2 (|:| |frac| (-347 *6)) (|:| -3261 (-598 *6 (-347 *6))))))
- (-5 *1 (-732 *5 *6)) (-5 *3 (-598 *6 (-347 *6))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-311)) (-4 *7 (-1153 *5)) (-4 *4 (-661 *5 *7))
- (-5 *2 (-2 (|:| |mat| (-630 *6)) (|:| |vec| (-1177 *5))))
- (-5 *1 (-731 *5 *6 *7 *4 *3)) (-4 *6 (-600 *5)) (-4 *3 (-600 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-347 *2))) (-4 *2 (-1153 *4)) (-5 *1 (-730 *4 *2))
- (-4 *4 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-598 *2 (-347 *2))) (-4 *2 (-1153 *4)) (-5 *1 (-730 *4 *2))
- (-4 *4 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483))))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-347 *6))) (-5 *4 (-347 *6)) (-4 *6 (-1153 *5))
- (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483)))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2008 (-583 *4))))
- (-5 *1 (-730 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-347 *6))) (-4 *6 (-1153 *5))
- (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483)))))
- (-5 *2 (-2 (|:| -2008 (-583 (-347 *6))) (|:| |mat| (-630 *5))))
- (-5 *1 (-730 *5 *6)) (-5 *4 (-583 (-347 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-598 *6 (-347 *6))) (-5 *4 (-347 *6)) (-4 *6 (-1153 *5))
- (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483)))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2008 (-583 *4))))
- (-5 *1 (-730 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-598 *6 (-347 *6))) (-4 *6 (-1153 *5))
- (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483)))))
- (-5 *2 (-2 (|:| -2008 (-583 (-347 *6))) (|:| |mat| (-630 *5))))
- (-5 *1 (-730 *5 *6)) (-5 *4 (-583 (-347 *6))))))
+ (-12 (-5 *4 (-1 (-584 *7) *7 (-1084 *7))) (-5 *5 (-1 (-345 *7) *7))
+ (-4 *7 (-1154 *6)) (-4 *6 (-13 (-311) (-120) (-951 (-347 (-484)))))
+ (-5 *2 (-584 (-2 (|:| |frac| (-347 *7)) (|:| -3263 *3))))
+ (-5 *1 (-730 *6 *7 *3 *8)) (-4 *3 (-601 *7)) (-4 *8 (-601 (-347 *7)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1154 *5))
+ (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484)))))
+ (-5 *2 (-584 (-2 (|:| |frac| (-347 *6)) (|:| -3263 (-599 *6 (-347 *6))))))
+ (-5 *1 (-733 *5 *6)) (-5 *3 (-599 *6 (-347 *6))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-311)) (-4 *7 (-1154 *5)) (-4 *4 (-662 *5 *7))
+ (-5 *2 (-2 (|:| |mat| (-631 *6)) (|:| |vec| (-1178 *5))))
+ (-5 *1 (-732 *5 *6 *7 *4 *3)) (-4 *6 (-601 *5)) (-4 *3 (-601 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-347 *2))) (-4 *2 (-1154 *4)) (-5 *1 (-731 *4 *2))
+ (-4 *4 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-599 *2 (-347 *2))) (-4 *2 (-1154 *4)) (-5 *1 (-731 *4 *2))
+ (-4 *4 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-347 *6))) (-5 *4 (-347 *6)) (-4 *6 (-1154 *5))
+ (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484)))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2010 (-584 *4))))
+ (-5 *1 (-731 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-347 *6))) (-4 *6 (-1154 *5))
+ (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484)))))
+ (-5 *2 (-2 (|:| -2010 (-584 (-347 *6))) (|:| |mat| (-631 *5))))
+ (-5 *1 (-731 *5 *6)) (-5 *4 (-584 (-347 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-599 *6 (-347 *6))) (-5 *4 (-347 *6)) (-4 *6 (-1154 *5))
+ (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484)))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2010 (-584 *4))))
+ (-5 *1 (-731 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-599 *6 (-347 *6))) (-4 *6 (-1154 *5))
+ (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484)))))
+ (-5 *2 (-2 (|:| -2010 (-584 (-347 *6))) (|:| |mat| (-631 *5))))
+ (-5 *1 (-731 *5 *6)) (-5 *4 (-584 (-347 *6))))))
(((*1 *2 *2 *3)
- (-12 (-4 *4 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *3 (-1153 *4))
- (-5 *1 (-729 *4 *3 *2 *5)) (-4 *2 (-600 *3)) (-4 *5 (-600 (-347 *3)))))
+ (-12 (-4 *4 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *3 (-1154 *4))
+ (-5 *1 (-730 *4 *3 *2 *5)) (-4 *2 (-601 *3)) (-4 *5 (-601 (-347 *3)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-347 *5)) (-4 *4 (-13 (-311) (-120) (-950 (-347 (-483)))))
- (-4 *5 (-1153 *4)) (-5 *1 (-729 *4 *5 *2 *6)) (-4 *2 (-600 *5))
- (-4 *6 (-600 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-583 *5) *6))
- (-4 *5 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *6 (-1153 *5))
- (-5 *2 (-583 (-2 (|:| -3946 *5) (|:| -3261 *3)))) (-5 *1 (-729 *5 *6 *3 *7))
- (-4 *3 (-600 *6)) (-4 *7 (-600 (-347 *6))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *5 (-1153 *4))
- (-5 *2 (-583 (-2 (|:| |deg| (-694)) (|:| -3261 *5))))
- (-5 *1 (-729 *4 *5 *3 *6)) (-4 *3 (-600 *5)) (-4 *6 (-600 (-347 *5))))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-1153 *4)) (-5 *1 (-729 *4 *2 *3 *5))
- (-4 *4 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *3 (-600 *2))
- (-4 *5 (-600 (-347 *2))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *2 (-1153 *4)) (-5 *1 (-728 *4 *2 *3 *5))
- (-4 *4 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *3 (-600 *2))
- (-4 *5 (-600 (-347 *2)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *2 (-1153 *4)) (-5 *1 (-728 *4 *2 *5 *3))
- (-4 *4 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *5 (-600 *2))
- (-4 *3 (-600 (-347 *2))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *5 (-1153 *4))
- (-5 *2 (-583 (-2 (|:| -3767 *5) (|:| -3221 *5)))) (-5 *1 (-728 *4 *5 *3 *6))
- (-4 *3 (-600 *5)) (-4 *6 (-600 (-347 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *4 (-1153 *5))
- (-5 *2 (-583 (-2 (|:| -3767 *4) (|:| -3221 *4)))) (-5 *1 (-728 *5 *4 *3 *6))
- (-4 *3 (-600 *4)) (-4 *6 (-600 (-347 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *5 (-1153 *4))
- (-5 *2 (-583 (-2 (|:| -3767 *5) (|:| -3221 *5)))) (-5 *1 (-728 *4 *5 *6 *3))
- (-4 *6 (-600 *5)) (-4 *3 (-600 (-347 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *4 (-1153 *5))
- (-5 *2 (-583 (-2 (|:| -3767 *4) (|:| -3221 *4)))) (-5 *1 (-728 *5 *4 *6 *3))
- (-4 *6 (-600 *4)) (-4 *3 (-600 (-347 *4))))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-347 *2)) (-4 *2 (-1153 *5))
- (-5 *1 (-728 *5 *2 *3 *6)) (-4 *5 (-13 (-311) (-120) (-950 (-347 (-483)))))
- (-4 *3 (-600 *2)) (-4 *6 (-600 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-347 *2))) (-4 *2 (-1153 *5)) (-5 *1 (-728 *5 *2 *3 *6))
- (-4 *5 (-13 (-311) (-120) (-950 (-347 (-483))))) (-4 *3 (-600 *2))
- (-4 *6 (-600 (-347 *2))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *4)) (-4 *4 (-290 *5 *6 *7))
- (-4 *5 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483)))))
- (-4 *6 (-1153 *5)) (-4 *7 (-1153 (-347 *6)))
- (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2008 (-583 *4))))
- (-5 *1 (-727 *5 *6 *7 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120)))
- (-5 *2 (-1 *5 *5)) (-5 *1 (-726 *4 *5))
- (-4 *5 (-13 (-29 *4) (-1113) (-871))))))
+ (-12 (-5 *3 (-347 *5)) (-4 *4 (-13 (-311) (-120) (-951 (-347 (-484)))))
+ (-4 *5 (-1154 *4)) (-5 *1 (-730 *4 *5 *2 *6)) (-4 *2 (-601 *5))
+ (-4 *6 (-601 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-584 *5) *6))
+ (-4 *5 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *6 (-1154 *5))
+ (-5 *2 (-584 (-2 (|:| -3948 *5) (|:| -3263 *3)))) (-5 *1 (-730 *5 *6 *3 *7))
+ (-4 *3 (-601 *6)) (-4 *7 (-601 (-347 *6))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *5 (-1154 *4))
+ (-5 *2 (-584 (-2 (|:| |deg| (-695)) (|:| -3263 *5))))
+ (-5 *1 (-730 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-601 (-347 *5))))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-1154 *4)) (-5 *1 (-730 *4 *2 *3 *5))
+ (-4 *4 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *3 (-601 *2))
+ (-4 *5 (-601 (-347 *2))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1154 *4)) (-5 *1 (-729 *4 *2 *3 *5))
+ (-4 *4 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *3 (-601 *2))
+ (-4 *5 (-601 (-347 *2)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1154 *4)) (-5 *1 (-729 *4 *2 *5 *3))
+ (-4 *4 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *5 (-601 *2))
+ (-4 *3 (-601 (-347 *2))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *5 (-1154 *4))
+ (-5 *2 (-584 (-2 (|:| -3769 *5) (|:| -3223 *5)))) (-5 *1 (-729 *4 *5 *3 *6))
+ (-4 *3 (-601 *5)) (-4 *6 (-601 (-347 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *4 (-1154 *5))
+ (-5 *2 (-584 (-2 (|:| -3769 *4) (|:| -3223 *4)))) (-5 *1 (-729 *5 *4 *3 *6))
+ (-4 *3 (-601 *4)) (-4 *6 (-601 (-347 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *5 (-1154 *4))
+ (-5 *2 (-584 (-2 (|:| -3769 *5) (|:| -3223 *5)))) (-5 *1 (-729 *4 *5 *6 *3))
+ (-4 *6 (-601 *5)) (-4 *3 (-601 (-347 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *4 (-1154 *5))
+ (-5 *2 (-584 (-2 (|:| -3769 *4) (|:| -3223 *4)))) (-5 *1 (-729 *5 *4 *6 *3))
+ (-4 *6 (-601 *4)) (-4 *3 (-601 (-347 *4))))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-347 *2)) (-4 *2 (-1154 *5))
+ (-5 *1 (-729 *5 *2 *3 *6)) (-4 *5 (-13 (-311) (-120) (-951 (-347 (-484)))))
+ (-4 *3 (-601 *2)) (-4 *6 (-601 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-584 (-347 *2))) (-4 *2 (-1154 *5)) (-5 *1 (-729 *5 *2 *3 *6))
+ (-4 *5 (-13 (-311) (-120) (-951 (-347 (-484))))) (-4 *3 (-601 *2))
+ (-4 *6 (-601 (-347 *2))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 *4)) (-4 *4 (-290 *5 *6 *7))
+ (-4 *5 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484)))))
+ (-4 *6 (-1154 *5)) (-4 *7 (-1154 (-347 *6)))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2010 (-584 *4))))
+ (-5 *1 (-728 *5 *6 *7 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120)))
+ (-5 *2 (-1 *5 *5)) (-5 *1 (-727 *4 *5))
+ (-4 *5 (-13 (-29 *4) (-1114) (-872))))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120)))
- (-5 *1 (-726 *4 *2)) (-4 *2 (-13 (-29 *4) (-1113) (-871))))))
+ (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120)))
+ (-5 *1 (-727 *4 *2)) (-4 *2 (-13 (-29 *4) (-1114) (-872))))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1088)) (-4 *6 (-13 (-257) (-950 (-483)) (-580 (-483)) (-120)))
- (-4 *4 (-13 (-29 *6) (-1113) (-871)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -2008 (-583 *4))))
- (-5 *1 (-724 *6 *4 *3)) (-4 *3 (-600 *4)))))
-(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-909 *3)) (-4 *3 (-146)) (-5 *1 (-722 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))))
-(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))))
-(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))))
-(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))))
+ (-12 (-5 *5 (-1089)) (-4 *6 (-13 (-257) (-951 (-484)) (-581 (-484)) (-120)))
+ (-4 *4 (-13 (-29 *6) (-1114) (-872)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -2010 (-584 *4))))
+ (-5 *1 (-725 *6 *4 *3)) (-4 *3 (-601 *4)))))
+(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-910 *3)) (-4 *3 (-146)) (-5 *1 (-723 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))))
+(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))))
+(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))))
+(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))))
(((*1 *1 *1) (-4 *1 (-201)))
((*1 *1 *1)
- (-12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1153 *2))
+ (-12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1154 *2))
(-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
((*1 *1 *1)
- (OR (-12 (-5 *1 (-248 *2)) (-4 *2 (-311)) (-4 *2 (-1127)))
- (-12 (-5 *1 (-248 *2)) (-4 *2 (-410)) (-4 *2 (-1127)))))
+ (OR (-12 (-5 *1 (-248 *2)) (-4 *2 (-311)) (-4 *2 (-1128)))
+ (-12 (-5 *1 (-248 *2)) (-4 *2 (-410)) (-4 *2 (-1128)))))
((*1 *1 *1) (-4 *1 (-410)))
- ((*1 *2 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-298)) (-5 *1 (-465 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-298)) (-5 *1 (-466 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
+ (-12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)) (-4 *2 (-311)))))
-(((*1 *2 *1) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-344) (-1113)))))
- ((*1 *1 *1 *1) (-4 *1 (-717))))
+ ((*1 *1 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)) (-4 *2 (-311)))))
+(((*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-344) (-1114)))))
+ ((*1 *1 *1 *1) (-4 *1 (-718))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
(-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327))
(-5 *2
- (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483))
+ (-2 (|:| -3398 *4) (|:| -1594 *4) (|:| |totalpts| (-484))
(|:| |success| (-85))))
- (-5 *1 (-711)) (-5 *5 (-483)))))
+ (-5 *1 (-712)) (-5 *5 (-484)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
(-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327))
(-5 *2
- (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483))
+ (-2 (|:| -3398 *4) (|:| -1594 *4) (|:| |totalpts| (-484))
(|:| |success| (-85))))
- (-5 *1 (-711)) (-5 *5 (-483)))))
+ (-5 *1 (-712)) (-5 *5 (-484)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
(-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327))
(-5 *2
- (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483))
+ (-2 (|:| -3398 *4) (|:| -1594 *4) (|:| |totalpts| (-484))
(|:| |success| (-85))))
- (-5 *1 (-711)) (-5 *5 (-483)))))
+ (-5 *1 (-712)) (-5 *5 (-484)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
(-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327))
(-5 *2
- (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483))
+ (-2 (|:| -3398 *4) (|:| -1594 *4) (|:| |totalpts| (-484))
(|:| |success| (-85))))
- (-5 *1 (-711)) (-5 *5 (-483)))))
+ (-5 *1 (-712)) (-5 *5 (-484)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
(-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327))
(-5 *2
- (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483))
+ (-2 (|:| -3398 *4) (|:| -1594 *4) (|:| |totalpts| (-484))
(|:| |success| (-85))))
- (-5 *1 (-711)) (-5 *5 (-483)))))
+ (-5 *1 (-712)) (-5 *5 (-484)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
(-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327))
(-5 *2
- (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483))
+ (-2 (|:| -3398 *4) (|:| -1594 *4) (|:| |totalpts| (-484))
(|:| |success| (-85))))
- (-5 *1 (-711)) (-5 *5 (-483)))))
+ (-5 *1 (-712)) (-5 *5 (-484)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
(-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327))
(-5 *2
- (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483))
+ (-2 (|:| -3398 *4) (|:| -1594 *4) (|:| |totalpts| (-484))
(|:| |success| (-85))))
- (-5 *1 (-711)) (-5 *5 (-483)))))
+ (-5 *1 (-712)) (-5 *5 (-484)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
(-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327))
(-5 *2
- (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483))
+ (-2 (|:| -3398 *4) (|:| -1594 *4) (|:| |totalpts| (-484))
(|:| |success| (-85))))
- (-5 *1 (-711)) (-5 *5 (-483)))))
+ (-5 *1 (-712)) (-5 *5 (-484)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
(-12 (-5 *3 (-1 (-327) (-327))) (-5 *4 (-327))
(-5 *2
- (-2 (|:| -3396 *4) (|:| -1593 *4) (|:| |totalpts| (-483))
+ (-2 (|:| -3398 *4) (|:| -1594 *4) (|:| |totalpts| (-484))
(|:| |success| (-85))))
- (-5 *1 (-711)) (-5 *5 (-483)))))
+ (-5 *1 (-712)) (-5 *5 (-484)))))
(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *4 (-483)) (-5 *6 (-1 (-1183) (-1177 *5) (-1177 *5) (-327)))
- (-5 *3 (-1177 (-327))) (-5 *5 (-327)) (-5 *2 (-1183)) (-5 *1 (-710)))))
+ (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1184) (-1178 *5) (-1178 *5) (-327)))
+ (-5 *3 (-1178 (-327))) (-5 *5 (-327)) (-5 *2 (-1184)) (-5 *1 (-711)))))
(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
- (-12 (-5 *4 (-483))
- (-5 *6 (-2 (|:| |tryValue| (-327)) (|:| |did| (-327)) (|:| -1472 (-327))))
- (-5 *7 (-1 (-1183) (-1177 *5) (-1177 *5) (-327))) (-5 *3 (-1177 (-327)))
- (-5 *5 (-327)) (-5 *2 (-1183)) (-5 *1 (-710))))
+ (-12 (-5 *4 (-484))
+ (-5 *6 (-2 (|:| |tryValue| (-327)) (|:| |did| (-327)) (|:| -1473 (-327))))
+ (-5 *7 (-1 (-1184) (-1178 *5) (-1178 *5) (-327))) (-5 *3 (-1178 (-327)))
+ (-5 *5 (-327)) (-5 *2 (-1184)) (-5 *1 (-711))))
((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
- (-12 (-5 *4 (-483))
- (-5 *6 (-2 (|:| |tryValue| (-327)) (|:| |did| (-327)) (|:| -1472 (-327))))
- (-5 *7 (-1 (-1183) (-1177 *5) (-1177 *5) (-327))) (-5 *3 (-1177 (-327)))
- (-5 *5 (-327)) (-5 *2 (-1183)) (-5 *1 (-710)))))
+ (-12 (-5 *4 (-484))
+ (-5 *6 (-2 (|:| |tryValue| (-327)) (|:| |did| (-327)) (|:| -1473 (-327))))
+ (-5 *7 (-1 (-1184) (-1178 *5) (-1178 *5) (-327))) (-5 *3 (-1178 (-327)))
+ (-5 *5 (-327)) (-5 *2 (-1184)) (-5 *1 (-711)))))
(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
- (-12 (-5 *4 (-483)) (-5 *6 (-1 (-1183) (-1177 *5) (-1177 *5) (-327)))
- (-5 *3 (-1177 (-327))) (-5 *5 (-327)) (-5 *2 (-1183)) (-5 *1 (-710)))))
+ (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1184) (-1178 *5) (-1178 *5) (-327)))
+ (-5 *3 (-1178 (-327))) (-5 *5 (-327)) (-5 *2 (-1184)) (-5 *1 (-711)))))
(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-483)) (-5 *6 (-1 (-1183) (-1177 *5) (-1177 *5) (-327)))
- (-5 *3 (-1177 (-327))) (-5 *5 (-327)) (-5 *2 (-1183)) (-5 *1 (-710))))
+ (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1184) (-1178 *5) (-1178 *5) (-327)))
+ (-5 *3 (-1178 (-327))) (-5 *5 (-327)) (-5 *2 (-1184)) (-5 *1 (-711))))
((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
- (-12 (-5 *4 (-483)) (-5 *6 (-1 (-1183) (-1177 *5) (-1177 *5) (-327)))
- (-5 *3 (-1177 (-327))) (-5 *5 (-327)) (-5 *2 (-1183)) (-5 *1 (-710)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-1071)) (-5 *2 (-327)) (-5 *1 (-709)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-327)) (-5 *1 (-709)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-830)) (-5 *1 (-709)))))
-(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1071)) (-5 *1 (-709)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-830)) (-5 *1 (-709)))))
-(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1071)) (-5 *1 (-709)))))
+ (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1184) (-1178 *5) (-1178 *5) (-327)))
+ (-5 *3 (-1178 (-327))) (-5 *5 (-327)) (-5 *2 (-1184)) (-5 *1 (-711)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-1072)) (-5 *2 (-327)) (-5 *1 (-710)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-327)) (-5 *1 (-710)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-831)) (-5 *1 (-710)))))
+(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1072)) (-5 *1 (-710)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-831)) (-5 *1 (-710)))))
+(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1072)) (-5 *1 (-710)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-857 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-553 (-327)))
- (-5 *2 (-142 (-327))) (-5 *1 (-708 *4))))
+ (|partial| -12 (-5 *3 (-858 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-554 (-327)))
+ (-5 *2 (-142 (-327))) (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-857 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-146))
- (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5))))
+ (|partial| -12 (-5 *3 (-858 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-146))
+ (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 (-327)))
- (-5 *2 (-142 (-327))) (-5 *1 (-708 *4))))
+ (|partial| -12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 (-327)))
+ (-5 *2 (-142 (-327))) (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961))
- (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5))))
+ (|partial| -12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962))
+ (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-494)) (-4 *4 (-553 (-327)))
- (-5 *2 (-142 (-327))) (-5 *1 (-708 *4))))
+ (|partial| -12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-495)) (-4 *4 (-554 (-327)))
+ (-5 *2 (-142 (-327))) (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-494))
- (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5))))
+ (|partial| -12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-495))
+ (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-347 (-857 (-142 *4)))) (-4 *4 (-494))
- (-4 *4 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *4))))
+ (|partial| -12 (-5 *3 (-347 (-858 (-142 *4)))) (-4 *4 (-495))
+ (-4 *4 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-347 (-857 (-142 *5)))) (-5 *4 (-830)) (-4 *5 (-494))
- (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5))))
+ (|partial| -12 (-5 *3 (-347 (-858 (-142 *5)))) (-5 *4 (-831)) (-4 *5 (-495))
+ (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-264 *4)) (-4 *4 (-494)) (-4 *4 (-756))
- (-4 *4 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *4))))
+ (|partial| -12 (-5 *3 (-264 *4)) (-4 *4 (-495)) (-4 *4 (-757))
+ (-4 *4 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-264 *5)) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-756))
- (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5))))
+ (|partial| -12 (-5 *3 (-264 *5)) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-757))
+ (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-264 (-142 *4))) (-4 *4 (-494)) (-4 *4 (-756))
- (-4 *4 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *4))))
+ (|partial| -12 (-5 *3 (-264 (-142 *4))) (-4 *4 (-495)) (-4 *4 (-757))
+ (-4 *4 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-264 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-494))
- (-4 *5 (-756)) (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327)))
- (-5 *1 (-708 *5)))))
+ (|partial| -12 (-5 *3 (-264 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-495))
+ (-4 *5 (-757)) (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327)))
+ (-5 *1 (-709 *5)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 *2))
- (-5 *2 (-327)) (-5 *1 (-708 *4))))
+ (|partial| -12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 *2))
+ (-5 *2 (-327)) (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961))
- (-4 *5 (-553 *2)) (-5 *2 (-327)) (-5 *1 (-708 *5))))
+ (|partial| -12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962))
+ (-4 *5 (-554 *2)) (-5 *2 (-327)) (-5 *1 (-709 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-494)) (-4 *4 (-553 *2))
- (-5 *2 (-327)) (-5 *1 (-708 *4))))
+ (|partial| -12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-495)) (-4 *4 (-554 *2))
+ (-5 *2 (-327)) (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-494))
- (-4 *5 (-553 *2)) (-5 *2 (-327)) (-5 *1 (-708 *5))))
+ (|partial| -12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-495))
+ (-4 *5 (-554 *2)) (-5 *2 (-327)) (-5 *1 (-709 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-264 *4)) (-4 *4 (-494)) (-4 *4 (-756))
- (-4 *4 (-553 *2)) (-5 *2 (-327)) (-5 *1 (-708 *4))))
+ (|partial| -12 (-5 *3 (-264 *4)) (-4 *4 (-495)) (-4 *4 (-757))
+ (-4 *4 (-554 *2)) (-5 *2 (-327)) (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-264 *5)) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-756))
- (-4 *5 (-553 *2)) (-5 *2 (-327)) (-5 *1 (-708 *5)))))
+ (|partial| -12 (-5 *3 (-264 *5)) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-757))
+ (-4 *5 (-554 *2)) (-5 *2 (-327)) (-5 *1 (-709 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-142 (-327))) (-5 *1 (-708 *3)) (-4 *3 (-553 (-327)))))
+ (-12 (-5 *2 (-142 (-327))) (-5 *1 (-709 *3)) (-4 *3 (-554 (-327)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-830)) (-5 *2 (-142 (-327))) (-5 *1 (-708 *3))
- (-4 *3 (-553 (-327)))))
+ (-12 (-5 *4 (-831)) (-5 *2 (-142 (-327))) (-5 *1 (-709 *3))
+ (-4 *3 (-554 (-327)))))
((*1 *2 *3)
- (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-553 (-327)))
- (-5 *2 (-142 (-327))) (-5 *1 (-708 *4))))
+ (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-554 (-327)))
+ (-5 *2 (-142 (-327))) (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-142 *5)) (-5 *4 (-830)) (-4 *5 (-146)) (-4 *5 (-553 (-327)))
- (-5 *2 (-142 (-327))) (-5 *1 (-708 *5))))
+ (-12 (-5 *3 (-142 *5)) (-5 *4 (-831)) (-4 *5 (-146)) (-4 *5 (-554 (-327)))
+ (-5 *2 (-142 (-327))) (-5 *1 (-709 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-857 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-553 (-327)))
- (-5 *2 (-142 (-327))) (-5 *1 (-708 *4))))
+ (-12 (-5 *3 (-858 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-554 (-327)))
+ (-5 *2 (-142 (-327))) (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-857 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-146))
- (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5))))
+ (-12 (-5 *3 (-858 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-146))
+ (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 (-327)))
- (-5 *2 (-142 (-327))) (-5 *1 (-708 *4))))
+ (-12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 (-327)))
+ (-5 *2 (-142 (-327))) (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 (-327)))
- (-5 *2 (-142 (-327))) (-5 *1 (-708 *5))))
+ (-12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 (-327)))
+ (-5 *2 (-142 (-327))) (-5 *1 (-709 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-494)) (-4 *4 (-553 (-327)))
- (-5 *2 (-142 (-327))) (-5 *1 (-708 *4))))
+ (-12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-495)) (-4 *4 (-554 (-327)))
+ (-5 *2 (-142 (-327))) (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-494))
- (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5))))
+ (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-495))
+ (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-347 (-857 (-142 *4)))) (-4 *4 (-494)) (-4 *4 (-553 (-327)))
- (-5 *2 (-142 (-327))) (-5 *1 (-708 *4))))
+ (-12 (-5 *3 (-347 (-858 (-142 *4)))) (-4 *4 (-495)) (-4 *4 (-554 (-327)))
+ (-5 *2 (-142 (-327))) (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-347 (-857 (-142 *5)))) (-5 *4 (-830)) (-4 *5 (-494))
- (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5))))
+ (-12 (-5 *3 (-347 (-858 (-142 *5)))) (-5 *4 (-831)) (-4 *5 (-495))
+ (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-264 *4)) (-4 *4 (-494)) (-4 *4 (-756)) (-4 *4 (-553 (-327)))
- (-5 *2 (-142 (-327))) (-5 *1 (-708 *4))))
+ (-12 (-5 *3 (-264 *4)) (-4 *4 (-495)) (-4 *4 (-757)) (-4 *4 (-554 (-327)))
+ (-5 *2 (-142 (-327))) (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-264 *5)) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-756))
- (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5))))
+ (-12 (-5 *3 (-264 *5)) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-757))
+ (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-264 (-142 *4))) (-4 *4 (-494)) (-4 *4 (-756))
- (-4 *4 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *4))))
+ (-12 (-5 *3 (-264 (-142 *4))) (-4 *4 (-495)) (-4 *4 (-757))
+ (-4 *4 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-264 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-756))
- (-4 *5 (-553 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-708 *5)))))
-(((*1 *2 *3) (-12 (-5 *2 (-327)) (-5 *1 (-708 *3)) (-4 *3 (-553 *2))))
+ (-12 (-5 *3 (-264 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-757))
+ (-4 *5 (-554 (-327))) (-5 *2 (-142 (-327))) (-5 *1 (-709 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-327)) (-5 *1 (-709 *3)) (-4 *3 (-554 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-830)) (-5 *2 (-327)) (-5 *1 (-708 *3)) (-4 *3 (-553 *2))))
+ (-12 (-5 *4 (-831)) (-5 *2 (-327)) (-5 *1 (-709 *3)) (-4 *3 (-554 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 *2)) (-5 *2 (-327))
- (-5 *1 (-708 *4))))
+ (-12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 *2)) (-5 *2 (-327))
+ (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 *2))
- (-5 *2 (-327)) (-5 *1 (-708 *5))))
+ (-12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 *2))
+ (-5 *2 (-327)) (-5 *1 (-709 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-347 (-857 *4))) (-4 *4 (-494)) (-4 *4 (-553 *2)) (-5 *2 (-327))
- (-5 *1 (-708 *4))))
+ (-12 (-5 *3 (-347 (-858 *4))) (-4 *4 (-495)) (-4 *4 (-554 *2)) (-5 *2 (-327))
+ (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-553 *2))
- (-5 *2 (-327)) (-5 *1 (-708 *5))))
+ (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-554 *2))
+ (-5 *2 (-327)) (-5 *1 (-709 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-264 *4)) (-4 *4 (-494)) (-4 *4 (-756)) (-4 *4 (-553 *2))
- (-5 *2 (-327)) (-5 *1 (-708 *4))))
+ (-12 (-5 *3 (-264 *4)) (-4 *4 (-495)) (-4 *4 (-757)) (-4 *4 (-554 *2))
+ (-5 *2 (-327)) (-5 *1 (-709 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-264 *5)) (-5 *4 (-830)) (-4 *5 (-494)) (-4 *5 (-756))
- (-4 *5 (-553 *2)) (-5 *2 (-327)) (-5 *1 (-708 *5)))))
+ (-12 (-5 *3 (-264 *5)) (-5 *4 (-831)) (-4 *5 (-495)) (-4 *5 (-757))
+ (-4 *5 (-554 *2)) (-5 *2 (-327)) (-5 *1 (-709 *5)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-38 (-347 (-483))))
+ (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-38 (-347 (-484))))
(-4 *2 (-146)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-38 (-347 (-483))))
+ (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-38 (-347 (-484))))
(-4 *2 (-146)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-583 (-704 *3))) (-5 *1 (-704 *3)) (-4 *3 (-494))
- (-4 *3 (-961)))))
+ (-12 (-5 *2 (-584 (-705 *3))) (-5 *1 (-705 *3)) (-4 *3 (-495))
+ (-4 *3 (-962)))))
(((*1 *2 *1 *1)
(-12
- (-5 *2 (-2 (|:| -3750 *3) (|:| |coef1| (-704 *3)) (|:| |coef2| (-704 *3))))
- (-5 *1 (-704 *3)) (-4 *3 (-494)) (-4 *3 (-961)))))
+ (-5 *2 (-2 (|:| -3752 *3) (|:| |coef1| (-705 *3)) (|:| |coef2| (-705 *3))))
+ (-5 *1 (-705 *3)) (-4 *3 (-495)) (-4 *3 (-962)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3750 *3) (|:| |coef1| (-704 *3)))) (-5 *1 (-704 *3))
- (-4 *3 (-494)) (-4 *3 (-961)))))
+ (-12 (-5 *2 (-2 (|:| -3752 *3) (|:| |coef1| (-705 *3)))) (-5 *1 (-705 *3))
+ (-4 *3 (-495)) (-4 *3 (-962)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3750 *3) (|:| |coef2| (-704 *3)))) (-5 *1 (-704 *3))
- (-4 *3 (-494)) (-4 *3 (-961)))))
+ (-12 (-5 *2 (-2 (|:| -3752 *3) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3))
+ (-4 *3 (-495)) (-4 *3 (-962)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 (-347 (-483))))
+ (-12 (-5 *3 (-631 (-347 (-484))))
(-5 *2
- (-583
- (-2 (|:| |outval| *4) (|:| |outmult| (-483))
- (|:| |outvect| (-583 (-630 *4))))))
- (-5 *1 (-702 *4)) (-4 *4 (-13 (-311) (-755))))))
+ (-584
+ (-2 (|:| |outval| *4) (|:| |outmult| (-484))
+ (|:| |outvect| (-584 (-631 *4))))))
+ (-5 *1 (-703 *4)) (-4 *4 (-13 (-311) (-756))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 (-347 (-483)))) (-5 *2 (-583 *4)) (-5 *1 (-702 *4))
- (-4 *4 (-13 (-311) (-755))))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-630 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2))))
+ (-12 (-5 *3 (-631 (-347 (-484)))) (-5 *2 (-584 *4)) (-5 *1 (-703 *4))
+ (-4 *4 (-13 (-311) (-756))))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-631 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2))))
((*1 *2 *3)
- (-12 (-4 *4 (-146)) (-4 *2 (-1153 *4)) (-5 *1 (-151 *4 *2 *3))
- (-4 *3 (-661 *4 *2))))
+ (-12 (-4 *4 (-146)) (-4 *2 (-1154 *4)) (-5 *1 (-151 *4 *2 *3))
+ (-4 *3 (-662 *4 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 (-347 (-857 *5)))) (-5 *4 (-1088)) (-5 *2 (-857 *5))
+ (-12 (-5 *3 (-631 (-347 (-858 *5)))) (-5 *4 (-1089)) (-5 *2 (-858 *5))
(-5 *1 (-247 *5)) (-4 *5 (-389))))
((*1 *2 *3)
- (-12 (-5 *3 (-630 (-347 (-857 *4)))) (-5 *2 (-857 *4)) (-5 *1 (-247 *4))
+ (-12 (-5 *3 (-631 (-347 (-858 *4)))) (-5 *2 (-858 *4)) (-5 *1 (-247 *4))
(-4 *4 (-389))))
- ((*1 *2 *1) (-12 (-4 *1 (-319 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1153 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-319 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1154 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-630 (-142 (-347 (-483))))) (-5 *2 (-857 (-142 (-347 (-483)))))
- (-5 *1 (-688 *4)) (-4 *4 (-13 (-311) (-755)))))
+ (-12 (-5 *3 (-631 (-142 (-347 (-484))))) (-5 *2 (-858 (-142 (-347 (-484)))))
+ (-5 *1 (-689 *4)) (-4 *4 (-13 (-311) (-756)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 (-142 (-347 (-483))))) (-5 *4 (-1088))
- (-5 *2 (-857 (-142 (-347 (-483))))) (-5 *1 (-688 *5))
- (-4 *5 (-13 (-311) (-755)))))
+ (-12 (-5 *3 (-631 (-142 (-347 (-484))))) (-5 *4 (-1089))
+ (-5 *2 (-858 (-142 (-347 (-484))))) (-5 *1 (-689 *5))
+ (-4 *5 (-13 (-311) (-756)))))
((*1 *2 *3)
- (-12 (-5 *3 (-630 (-347 (-483)))) (-5 *2 (-857 (-347 (-483))))
- (-5 *1 (-702 *4)) (-4 *4 (-13 (-311) (-755)))))
+ (-12 (-5 *3 (-631 (-347 (-484)))) (-5 *2 (-858 (-347 (-484))))
+ (-5 *1 (-703 *4)) (-4 *4 (-13 (-311) (-756)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 (-347 (-483)))) (-5 *4 (-1088))
- (-5 *2 (-857 (-347 (-483)))) (-5 *1 (-702 *5)) (-4 *5 (-13 (-311) (-755))))))
+ (-12 (-5 *3 (-631 (-347 (-484)))) (-5 *4 (-1089))
+ (-5 *2 (-858 (-347 (-484)))) (-5 *1 (-703 *5)) (-4 *5 (-13 (-311) (-756))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-257)) (-5 *2 (-583 (-694)))
- (-5 *1 (-701 *3 *4 *5 *6 *7)) (-4 *3 (-1153 *6)) (-4 *7 (-861 *6 *4 *5)))))
+ (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)) (-5 *2 (-584 (-695)))
+ (-5 *1 (-702 *3 *4 *5 *6 *7)) (-4 *3 (-1154 *6)) (-4 *7 (-862 *6 *4 *5)))))
(((*1 *2 *3 *4 *5)
- (-12 (-4 *6 (-1153 *9)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-257))
- (-4 *10 (-861 *9 *7 *8))
+ (-12 (-4 *6 (-1154 *9)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-257))
+ (-4 *10 (-862 *9 *7 *8))
(-5 *2
- (-2 (|:| |deter| (-583 (-1083 *10)))
- (|:| |dterm| (-583 (-583 (-2 (|:| -3074 (-694)) (|:| |pcoef| *10)))))
- (|:| |nfacts| (-583 *6)) (|:| |nlead| (-583 *10))))
- (-5 *1 (-701 *6 *7 *8 *9 *10)) (-5 *3 (-1083 *10)) (-5 *4 (-583 *6))
- (-5 *5 (-583 *10)))))
+ (-2 (|:| |deter| (-584 (-1084 *10)))
+ (|:| |dterm| (-584 (-584 (-2 (|:| -3076 (-695)) (|:| |pcoef| *10)))))
+ (|:| |nfacts| (-584 *6)) (|:| |nlead| (-584 *10))))
+ (-5 *1 (-702 *6 *7 *8 *9 *10)) (-5 *3 (-1084 *10)) (-5 *4 (-584 *6))
+ (-5 *5 (-584 *10)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-298)) (-4 *5 (-279 *4)) (-4 *6 (-1153 *5)) (-5 *2 (-583 *3))
- (-5 *1 (-700 *4 *5 *6 *3 *7)) (-4 *3 (-1153 *6)) (-14 *7 (-830)))))
+ (-12 (-4 *4 (-298)) (-4 *5 (-279 *4)) (-4 *6 (-1154 *5)) (-5 *2 (-584 *3))
+ (-5 *1 (-701 *4 *5 *6 *3 *7)) (-4 *3 (-1154 *6)) (-14 *7 (-831)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1597 *4))))
- (-5 *1 (-699 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1598 *4))))
+ (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-1071)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756))
- (-4 *4 (-976 *6 *7 *8)) (-5 *2 (-1183)) (-5 *1 (-699 *6 *7 *8 *4 *5))
- (-4 *5 (-982 *6 *7 *8 *4)))))
+ (-12 (-5 *3 (-1072)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757))
+ (-4 *4 (-977 *6 *7 *8)) (-5 *2 (-1184)) (-5 *1 (-700 *6 *7 *8 *4 *5))
+ (-4 *5 (-983 *6 *7 *8 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *1 (-231 *3 *2))
- (-4 *2 (-13 (-27) (-1113) (-361 *3)))))
+ (-12 (-4 *3 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *1 (-231 *3 *2))
+ (-4 *2 (-13 (-27) (-1114) (-361 *3)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-494) (-950 (-483)) (-580 (-483))))
- (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *4)))))
+ (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-951 (-484)) (-581 (-484))))
+ (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *4)))))
((*1 *1 *1) (-5 *1 (-327)))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-976 *5 *6 *7))
- (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1597 *4))))
- (-5 *1 (-699 *5 *6 *7 *3 *4)) (-4 *4 (-982 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1598 *4))))
+ (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *2 *3)
- (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *2 (-976 *4 *5 *6))
- (-5 *1 (-699 *4 *5 *6 *2 *3)) (-4 *3 (-982 *4 *5 *6 *2)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-327))))
- ((*1 *1 *1 *1) (-4 *1 (-482)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-311))))
- ((*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-311))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-694)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-428)) (-5 *4 (-865)) (-5 *2 (-632 (-470))) (-5 *1 (-470))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-865)) (-4 *3 (-1012)) (-5 *2 (-632 *1)) (-4 *1 (-691 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-691 *3)) (-4 *3 (-1012)) (-5 *2 (-85)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 (-142 (-347 (-483)))))
- (-5 *2
- (-583
- (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-483))
- (|:| |outvect| (-583 (-630 (-142 *4)))))))
- (-5 *1 (-688 *4)) (-4 *4 (-13 (-311) (-755))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 (-142 (-347 (-483))))) (-5 *2 (-583 (-142 *4)))
- (-5 *1 (-688 *4)) (-4 *4 (-13 (-311) (-755))))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-685))))
-(((*1 *1 *1 *1) (-4 *1 (-410))) ((*1 *1 *1 *1) (-4 *1 (-685))))
-(((*1 *1 *1 *1) (-4 *1 (-685))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-683 *3)) (-4 *3 (-146)))))
+ (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *2 (-977 *4 *5 *6))
+ (-5 *1 (-700 *4 *5 *6 *2 *3)) (-4 *3 (-983 *4 *5 *6 *2)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-327))))
+ ((*1 *1 *1 *1) (-4 *1 (-483)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-311))))
+ ((*1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-311))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-695)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-428)) (-5 *4 (-866)) (-5 *2 (-633 (-471))) (-5 *1 (-471))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-866)) (-4 *3 (-1013)) (-5 *2 (-633 *1)) (-4 *1 (-692 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-692 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-631 (-142 (-347 (-484)))))
+ (-5 *2
+ (-584
+ (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-484))
+ (|:| |outvect| (-584 (-631 (-142 *4)))))))
+ (-5 *1 (-689 *4)) (-4 *4 (-13 (-311) (-756))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-631 (-142 (-347 (-484))))) (-5 *2 (-584 (-142 *4)))
+ (-5 *1 (-689 *4)) (-4 *4 (-13 (-311) (-756))))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-686))))
+(((*1 *1 *1 *1) (-4 *1 (-410))) ((*1 *1 *1 *1) (-4 *1 (-686))))
+(((*1 *1 *1 *1) (-4 *1 (-686))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-684 *3)) (-4 *3 (-146)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1083 *6)) (-5 *3 (-483)) (-4 *6 (-257)) (-4 *4 (-717))
- (-4 *5 (-756)) (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))))
+ (-12 (-5 *2 (-1084 *6)) (-5 *3 (-484)) (-4 *6 (-257)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1083 *9)) (-5 *4 (-583 *7)) (-4 *7 (-756))
- (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717)) (-4 *8 (-257)) (-5 *2 (-583 (-694)))
- (-5 *1 (-681 *6 *7 *8 *9)) (-5 *5 (-694)))))
+ (-12 (-5 *3 (-1084 *9)) (-5 *4 (-584 *7)) (-4 *7 (-757))
+ (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-4 *8 (-257)) (-5 *2 (-584 (-695)))
+ (-5 *1 (-682 *6 *7 *8 *9)) (-5 *5 (-695)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-483)) (-5 *4 (-345 *2)) (-4 *2 (-861 *7 *5 *6))
- (-5 *1 (-681 *5 *6 *7 *2)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-257)))))
+ (-12 (-5 *3 (-484)) (-5 *4 (-345 *2)) (-4 *2 (-862 *7 *5 *6))
+ (-5 *1 (-682 *5 *6 *7 *2)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-257)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1083 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8)))
- (-4 *7 (-756)) (-4 *8 (-257)) (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717))
+ (-12 (-5 *3 (-1084 *9)) (-5 *4 (-584 *7)) (-5 *5 (-584 (-584 *8)))
+ (-4 *7 (-757)) (-4 *8 (-257)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718))
(-5 *2
- (-2 (|:| |upol| (-1083 *8)) (|:| |Lval| (-583 *8))
- (|:| |Lfact| (-583 (-2 (|:| -3726 (-1083 *8)) (|:| -2397 (-483)))))
+ (-2 (|:| |upol| (-1084 *8)) (|:| |Lval| (-584 *8))
+ (|:| |Lfact| (-584 (-2 (|:| -3728 (-1084 *8)) (|:| -2399 (-484)))))
(|:| |ctpol| *8)))
- (-5 *1 (-681 *6 *7 *8 *9)))))
+ (-5 *1 (-682 *6 *7 *8 *9)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-756)) (-4 *8 (-257))
- (-4 *6 (-717)) (-4 *9 (-861 *8 *6 *7))
+ (-12 (-5 *4 (-584 *7)) (-5 *5 (-584 (-584 *8))) (-4 *7 (-757)) (-4 *8 (-257))
+ (-4 *6 (-718)) (-4 *9 (-862 *8 *6 *7))
(-5 *2
(-2 (|:| |unitPart| *9)
- (|:| |suPart| (-583 (-2 (|:| -3726 (-1083 *9)) (|:| -2397 (-483)))))))
- (-5 *1 (-681 *6 *7 *8 *9)) (-5 *3 (-1083 *9)))))
+ (|:| |suPart| (-584 (-2 (|:| -3728 (-1084 *9)) (|:| -2399 (-484)))))))
+ (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1084 *9)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-483)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-257))
- (-4 *9 (-861 *8 *6 *7))
- (-5 *2 (-2 (|:| -2000 (-1083 *9)) (|:| |polval| (-1083 *8))))
- (-5 *1 (-681 *6 *7 *8 *9)) (-5 *3 (-1083 *9)) (-5 *4 (-1083 *8)))))
+ (-12 (-5 *5 (-484)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-257))
+ (-4 *9 (-862 *8 *6 *7))
+ (-5 *2 (-2 (|:| -2002 (-1084 *9)) (|:| |polval| (-1084 *8))))
+ (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1084 *9)) (-5 *4 (-1084 *8)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-257)) (-5 *2 (-345 *3))
- (-5 *1 (-681 *5 *4 *6 *3)) (-4 *3 (-861 *6 *5 *4)))))
+ (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-257)) (-5 *2 (-345 *3))
+ (-5 *1 (-682 *5 *4 *6 *3)) (-4 *3 (-862 *6 *5 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-2 (|:| -3726 (-1083 *6)) (|:| -2397 (-483)))))
- (-4 *6 (-257)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-483))
- (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))))
+ (-12 (-5 *3 (-584 (-2 (|:| -3728 (-1084 *6)) (|:| -2399 (-484)))))
+ (-4 *6 (-257)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-484))
+ (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-257)) (-5 *2 (-345 *3))
- (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-861 *6 *4 *5)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-678 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-677)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-5 *1 (-675 *3))))
- ((*1 *1 *2) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1012))))
- ((*1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1012)))))
+ (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-257)) (-5 *2 (-345 *3))
+ (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-862 *6 *4 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-679 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-678)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-5 *1 (-676 *3))))
+ ((*1 *1 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-1013))))
+ ((*1 *1) (-12 (-5 *1 (-676 *2)) (-4 *2 (-1013)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-276 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-694))))
+ (-12 (-4 *1 (-276 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-695))))
((*1 *2 *1)
- (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1012)) (-5 *2 (-694))))
+ (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1013)) (-5 *2 (-695))))
((*1 *2 *1)
- (-12 (-5 *2 (-694)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))))
+ (-12 (-5 *2 (-695)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))))
(((*1 *2 *3 *4)
- (-12 (-4 *6 (-494)) (-4 *2 (-861 *3 *5 *4)) (-5 *1 (-671 *5 *4 *6 *2))
- (-5 *3 (-347 (-857 *6))) (-4 *5 (-717))
- (-4 *4 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $))))))))
+ (-12 (-4 *6 (-495)) (-4 *2 (-862 *3 *5 *4)) (-5 *1 (-672 *5 *4 *6 *2))
+ (-5 *3 (-347 (-858 *6))) (-4 *5 (-718))
+ (-4 *4 (-13 (-757) (-10 -8 (-15 -3968 ((-1089) $))))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1083 (-857 *6))) (-4 *6 (-494))
- (-4 *2 (-861 (-347 (-857 *6)) *5 *4)) (-5 *1 (-671 *5 *4 *6 *2))
- (-4 *5 (-717)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $))))))))
+ (-12 (-5 *3 (-1084 (-858 *6))) (-4 *6 (-495))
+ (-4 *2 (-862 (-347 (-858 *6)) *5 *4)) (-5 *1 (-672 *5 *4 *6 *2))
+ (-4 *5 (-718)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3968 ((-1089) $))))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1083 *2)) (-4 *2 (-861 (-347 (-857 *6)) *5 *4))
- (-5 *1 (-671 *5 *4 *6 *2)) (-4 *5 (-717))
- (-4 *4 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $))))) (-4 *6 (-494)))))
+ (-12 (-5 *3 (-1084 *2)) (-4 *2 (-862 (-347 (-858 *6)) *5 *4))
+ (-5 *1 (-672 *5 *4 *6 *2)) (-4 *5 (-718))
+ (-4 *4 (-13 (-757) (-10 -8 (-15 -3968 ((-1089) $))))) (-4 *6 (-495)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-717)) (-4 *5 (-13 (-756) (-10 -8 (-15 -3966 ((-1088) $)))))
- (-4 *6 (-494)) (-5 *2 (-2 (|:| -2479 (-857 *6)) (|:| -2054 (-857 *6))))
- (-5 *1 (-671 *4 *5 *6 *3)) (-4 *3 (-861 (-347 (-857 *6)) *4 *5)))))
+ (-12 (-4 *4 (-718)) (-4 *5 (-13 (-757) (-10 -8 (-15 -3968 ((-1089) $)))))
+ (-4 *6 (-495)) (-5 *2 (-2 (|:| -2481 (-858 *6)) (|:| -2056 (-858 *6))))
+ (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-862 (-347 (-858 *6)) *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-483))
- (-14 *6 (-694)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8))
+ (-12 (-5 *3 (-584 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-484))
+ (-14 *6 (-695)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8))
(-5 *1 (-109 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *9)) (-4 *9 (-961)) (-4 *5 (-756)) (-4 *6 (-717))
- (-4 *8 (-961)) (-4 *2 (-861 *9 *7 *5)) (-5 *1 (-667 *5 *6 *7 *8 *9 *4 *2))
- (-4 *7 (-717)) (-4 *4 (-861 *8 *6 *5)))))
+ (-12 (-5 *3 (-584 *9)) (-4 *9 (-962)) (-4 *5 (-757)) (-4 *6 (-718))
+ (-4 *8 (-962)) (-4 *2 (-862 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2))
+ (-4 *7 (-718)) (-4 *4 (-862 *8 *6 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-347 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1153 *5))
- (-5 *1 (-666 *5 *2)) (-4 *5 (-311)))))
+ (-12 (-5 *3 (-347 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1154 *5))
+ (-5 *1 (-667 *5 *2)) (-4 *5 (-311)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-311))
- (-5 *2 (-2 (|:| -3085 (-345 *3)) (|:| |special| (-345 *3))))
- (-5 *1 (-666 *5 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-72)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-664 *3)))))
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-311))
+ (-5 *2 (-2 (|:| -3087 (-345 *3)) (|:| |special| (-345 *3))))
+ (-5 *1 (-667 *5 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-72)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-665 *3)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55))))
((*1 *2 *1)
- (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85))
- (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-85))))
- ((*1 *2 *1) (-12 (-4 *1 (-663)) (-5 *2 (-85)))))
+ (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85))
+ (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-660)) (-5 *2 (-85))))
+ ((*1 *2 *1) (-12 (-4 *1 (-664)) (-5 *2 (-85)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-694)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961))
- (-14 *4 (-583 (-1088)))))
+ (-12 (-5 *2 (-695)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962))
+ (-14 *4 (-584 (-1089)))))
((*1 *1 *2)
- (-12 (-5 *2 (-694)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756)))
- (-14 *4 (-583 (-1088)))))
+ (-12 (-5 *2 (-695)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757)))
+ (-14 *4 (-584 (-1089)))))
((*1 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-317)) (-4 *2 (-311))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-285 *3 *4 *5 *2)) (-4 *3 (-311)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-347 *4))) (-4 *2 (-290 *3 *4 *5))))
+ (|partial| -12 (-4 *1 (-285 *3 *4 *5 *2)) (-4 *3 (-311)) (-4 *4 (-1154 *3))
+ (-4 *5 (-1154 (-347 *4))) (-4 *2 (-290 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-694)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-12 (-5 *2 (-695)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
(-4 *5 (-146))))
- ((*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-661 *2 *3)) (-4 *3 (-1153 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1177 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-311))
- (-4 *1 (-661 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1153 *5)) (-5 *2 (-630 *5)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694)))))
-(((*1 *1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-146)) (-4 *2 (-494))))
- ((*1 *1 *1) (|partial| -4 *1 (-659))))
-(((*1 *1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-146)) (-4 *2 (-494))))
- ((*1 *1 *1) (|partial| -4 *1 (-659))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-311)))))
+ ((*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-662 *2 *3)) (-4 *3 (-1154 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1178 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-311))
+ (-4 *1 (-662 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1154 *5)) (-5 *2 (-631 *5)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695)))))
+(((*1 *1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-146)) (-4 *2 (-495))))
+ ((*1 *1 *1) (|partial| -4 *1 (-660))))
+(((*1 *1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-146)) (-4 *2 (-495))))
+ ((*1 *1 *1) (|partial| -4 *1 (-660))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-311)))))
(((*1 *1 *1 *1)
(|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1153 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-4 *3 (-1154 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
+ (|partial| -12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
+ (|partial| -12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1158 *3 *4 *5)) (-5 *1 (-269 *3 *4 *5)) (-4 *3 (-311))
- (-14 *4 (-1088)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-483))))
- ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-345 *3)) (-4 *3 (-494))))
+ (-12 (-5 *2 (-1159 *3 *4 *5)) (-5 *1 (-269 *3 *4 *5)) (-4 *3 (-311))
+ (-14 *4 (-1089)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-484))))
+ ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-345 *3)) (-4 *3 (-495))))
((*1 *2 *1)
- (-12 (-4 *2 (-1012)) (-5 *1 (-650 *3 *2 *4)) (-4 *3 (-756))
+ (-12 (-4 *2 (-1013)) (-5 *1 (-651 *3 *2 *4)) (-4 *3 (-757))
(-14 *4
- (-1 (-85) (-2 (|:| -2396 *3) (|:| -2397 *2))
- (-2 (|:| -2396 *3) (|:| -2397 *2)))))))
-(((*1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-317))))
+ (-1 (-85) (-2 (|:| -2398 *3) (|:| -2399 *2))
+ (-2 (|:| -2398 *3) (|:| -2399 *2)))))))
+(((*1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-317))))
+ ((*1 *2 *1) (-12 (-4 *2 (-760)) (-5 *1 (-451 *3 *2)) (-4 *3 (-72))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-830)) (-5 *2 (-1177 *4)) (-5 *1 (-465 *4)) (-4 *4 (-298))))
+ (-12 (-5 *3 (-831)) (-5 *2 (-1178 *4)) (-5 *1 (-466 *4)) (-4 *4 (-298))))
((*1 *2 *1)
- (-12 (-4 *2 (-756)) (-5 *1 (-650 *2 *3 *4)) (-4 *3 (-1012))
+ (-12 (-4 *2 (-757)) (-5 *1 (-651 *2 *3 *4)) (-4 *3 (-1013))
(-14 *4
- (-1 (-85) (-2 (|:| -2396 *2) (|:| -2397 *3))
- (-2 (|:| -2396 *2) (|:| -2397 *3)))))))
-(((*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1153 *3)))))
+ (-1 (-85) (-2 (|:| -2398 *2) (|:| -2399 *3))
+ (-2 (|:| -2398 *2) (|:| -2399 *3)))))))
+(((*1 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1154 *3)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-961)) (-5 *2 (-1177 *3)) (-5 *1 (-649 *3 *4))
- (-4 *4 (-1153 *3)))))
+ (-12 (-4 *3 (-962)) (-5 *2 (-1178 *3)) (-5 *1 (-650 *3 *4))
+ (-4 *4 (-1154 *3)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1177 *3)) (-4 *3 (-961)) (-5 *1 (-649 *3 *4))
- (-4 *4 (-1153 *3)))))
+ (-12 (-5 *2 (-1178 *3)) (-4 *3 (-962)) (-5 *1 (-650 *3 *4))
+ (-4 *4 (-1154 *3)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-961)) (-5 *2 (-1177 *3)) (-5 *1 (-649 *3 *4))
- (-4 *4 (-1153 *3)))))
+ (-12 (-4 *3 (-962)) (-5 *2 (-1178 *3)) (-5 *1 (-650 *3 *4))
+ (-4 *4 (-1154 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-961)) (-5 *2 (-869 (-649 *3 *4))) (-5 *1 (-649 *3 *4))
- (-4 *4 (-1153 *3)))))
+ (-12 (-4 *3 (-962)) (-5 *2 (-870 (-650 *3 *4))) (-5 *1 (-650 *3 *4))
+ (-4 *4 (-1154 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-961)) (-5 *2 (-869 (-649 *3 *4))) (-5 *1 (-649 *3 *4))
- (-4 *4 (-1153 *3)))))
+ (-12 (-4 *3 (-962)) (-5 *2 (-870 (-650 *3 *4))) (-5 *1 (-650 *3 *4))
+ (-4 *4 (-1154 *3)))))
(((*1 *1 *1)
- (-12 (-4 *2 (-298)) (-4 *2 (-961)) (-5 *1 (-649 *2 *3)) (-4 *3 (-1153 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1071)) (-5 *1 (-647)))))
-(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1071)) (-5 *1 (-647)))))
-(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1071)) (-5 *1 (-647)))))
+ (-12 (-4 *2 (-298)) (-4 *2 (-962)) (-5 *1 (-650 *2 *3)) (-4 *3 (-1154 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1072)) (-5 *1 (-648)))))
+(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1072)) (-5 *1 (-648)))))
+(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1072)) (-5 *1 (-648)))))
(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
- (|partial| -12 (-5 *2 (-583 (-1083 *13))) (-5 *3 (-1083 *13))
- (-5 *4 (-583 *12)) (-5 *5 (-583 *10)) (-5 *6 (-583 *13))
- (-5 *7 (-583 (-583 (-2 (|:| -3074 (-694)) (|:| |pcoef| *13)))))
- (-5 *8 (-583 (-694))) (-5 *9 (-1177 (-583 (-1083 *10)))) (-4 *12 (-756))
- (-4 *10 (-257)) (-4 *13 (-861 *10 *11 *12)) (-4 *11 (-717))
- (-5 *1 (-644 *11 *12 *10 *13)))))
+ (|partial| -12 (-5 *2 (-584 (-1084 *13))) (-5 *3 (-1084 *13))
+ (-5 *4 (-584 *12)) (-5 *5 (-584 *10)) (-5 *6 (-584 *13))
+ (-5 *7 (-584 (-584 (-2 (|:| -3076 (-695)) (|:| |pcoef| *13)))))
+ (-5 *8 (-584 (-695))) (-5 *9 (-1178 (-584 (-1084 *10)))) (-4 *12 (-757))
+ (-4 *10 (-257)) (-4 *13 (-862 *10 *11 *12)) (-4 *11 (-718))
+ (-5 *1 (-645 *11 *12 *10 *13)))))
(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
- (|partial| -12 (-5 *4 (-583 *11)) (-5 *5 (-583 (-1083 *9))) (-5 *6 (-583 *9))
- (-5 *7 (-583 *12)) (-5 *8 (-583 (-694))) (-4 *11 (-756)) (-4 *9 (-257))
- (-4 *12 (-861 *9 *10 *11)) (-4 *10 (-717)) (-5 *2 (-583 (-1083 *12)))
- (-5 *1 (-644 *10 *11 *9 *12)) (-5 *3 (-1083 *12)))))
+ (|partial| -12 (-5 *4 (-584 *11)) (-5 *5 (-584 (-1084 *9))) (-5 *6 (-584 *9))
+ (-5 *7 (-584 *12)) (-5 *8 (-584 (-695))) (-4 *11 (-757)) (-4 *9 (-257))
+ (-4 *12 (-862 *9 *10 *11)) (-4 *10 (-718)) (-5 *2 (-584 (-1084 *12)))
+ (-5 *1 (-645 *10 *11 *9 *12)) (-5 *3 (-1084 *12)))))
(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
- (|partial| -12 (-5 *2 (-583 (-1083 *11))) (-5 *3 (-1083 *11))
- (-5 *4 (-583 *10)) (-5 *5 (-583 *8)) (-5 *6 (-583 (-694)))
- (-5 *7 (-1177 (-583 (-1083 *8)))) (-4 *10 (-756)) (-4 *8 (-257))
- (-4 *11 (-861 *8 *9 *10)) (-4 *9 (-717)) (-5 *1 (-644 *9 *10 *8 *11)))))
+ (|partial| -12 (-5 *2 (-584 (-1084 *11))) (-5 *3 (-1084 *11))
+ (-5 *4 (-584 *10)) (-5 *5 (-584 *8)) (-5 *6 (-584 (-695)))
+ (-5 *7 (-1178 (-584 (-1084 *8)))) (-4 *10 (-757)) (-4 *8 (-257))
+ (-4 *11 (-862 *8 *9 *10)) (-4 *9 (-718)) (-5 *1 (-645 *9 *10 *8 *11)))))
(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1088)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-639 *3 *5 *6 *7))
- (-4 *3 (-553 (-472))) (-4 *5 (-1127)) (-4 *6 (-1127)) (-4 *7 (-1127))))
+ (-12 (-5 *4 (-1089)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *3 *5 *6 *7))
+ (-4 *3 (-554 (-473))) (-4 *5 (-1128)) (-4 *6 (-1128)) (-4 *7 (-1128))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1088)) (-5 *2 (-1 *6 *5)) (-5 *1 (-643 *3 *5 *6))
- (-4 *3 (-553 (-472))) (-4 *5 (-1127)) (-4 *6 (-1127)))))
+ (-12 (-5 *4 (-1089)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *3 *5 *6))
+ (-4 *3 (-554 (-473))) (-4 *5 (-1128)) (-4 *6 (-1128)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1088)) (-5 *2 (-1 *6 *5)) (-5 *1 (-643 *4 *5 *6))
- (-4 *4 (-553 (-472))) (-4 *5 (-1127)) (-4 *6 (-1127)))))
+ (-12 (-5 *3 (-1089)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *4 *5 *6))
+ (-4 *4 (-554 (-473))) (-4 *5 (-1128)) (-4 *6 (-1128)))))
(((*1 *2 *3 *4)
- (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-642 *3 *4))
- (-4 *3 (-1127)) (-4 *4 (-1127)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1088))) (-5 *3 (-1088)) (-5 *1 (-472))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-472)))))
+ (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-643 *3 *4))
+ (-4 *3 (-1128)) (-4 *4 (-1128)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1089))) (-5 *3 (-1089)) (-5 *1 (-473))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-473)))))
((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-1088)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-472)))))
+ (-12 (-5 *2 (-1089)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-473)))))
((*1 *2 *3 *2 *2 *2)
- (-12 (-5 *2 (-1088)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-472)))))
+ (-12 (-5 *2 (-1089)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-473)))))
((*1 *2 *3 *2 *4)
- (-12 (-5 *4 (-583 (-1088))) (-5 *2 (-1088)) (-5 *1 (-641 *3))
- (-4 *3 (-553 (-472))))))
+ (-12 (-5 *4 (-584 (-1089))) (-5 *2 (-1089)) (-5 *1 (-642 *3))
+ (-4 *3 (-554 (-473))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1088)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-640 *3))
- (-4 *3 (-553 (-472)))))
+ (-12 (-5 *4 (-1089)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-641 *3))
+ (-4 *3 (-554 (-473)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1088)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-640 *3))
- (-4 *3 (-553 (-472))))))
+ (-12 (-5 *4 (-1089)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-641 *3))
+ (-4 *3 (-554 (-473))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1088)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-639 *4 *5 *6 *7))
- (-4 *4 (-553 (-472))) (-4 *5 (-1127)) (-4 *6 (-1127)) (-4 *7 (-1127)))))
+ (-12 (-5 *3 (-1089)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *4 *5 *6 *7))
+ (-4 *4 (-554 (-473))) (-4 *5 (-1128)) (-4 *6 (-1128)) (-4 *7 (-1128)))))
(((*1 *2 *3 *3)
(-12 (-4 *3 (-257)) (-4 *3 (-146)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3))
- (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3))) (-5 *1 (-629 *3 *4 *5 *6))
- (-4 *6 (-627 *3 *4 *5))))
+ (-5 *2 (-2 (|:| -1971 *3) (|:| -2900 *3))) (-5 *1 (-630 *3 *4 *5 *6))
+ (-4 *6 (-628 *3 *4 *5))))
((*1 *2 *3 *3)
- (-12 (-5 *2 (-2 (|:| -1970 *3) (|:| -2898 *3))) (-5 *1 (-638 *3))
+ (-12 (-5 *2 (-2 (|:| -1971 *3) (|:| -2900 *3))) (-5 *1 (-639 *3))
(-4 *3 (-257)))))
-(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-257)) (-5 *1 (-638 *3)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-257)) (-5 *1 (-638 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-257)) (-5 *1 (-638 *3)))))
+(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-257)) (-5 *1 (-639 *3)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-257)) (-5 *1 (-639 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-257)) (-5 *1 (-639 *3)))))
(((*1 *2 *3 *3 *3 *4)
(-12 (-5 *3 (-1 (-179) (-179) (-179)))
(-5 *4 (-1 (-179) (-179) (-179) (-179)))
- (-5 *2 (-1 (-854 (-179)) (-179) (-179))) (-5 *1 (-636)))))
+ (-5 *2 (-1 (-855 (-179)) (-179) (-179))) (-5 *1 (-637)))))
(((*1 *2 *3 *3 *3 *4 *5 *6)
- (-12 (-5 *3 (-264 (-483))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1000 (-179)))
- (-5 *6 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-636)))))
+ (-12 (-5 *3 (-264 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179)))
+ (-5 *6 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-637)))))
(((*1 *2 *3 *4 *5 *5 *6)
(-12 (-5 *3 (-1 (-179) (-179) (-179)))
(-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) "undefined"))
- (-5 *5 (-1000 (-179))) (-5 *6 (-583 (-221))) (-5 *2 (-1045 (-179)))
- (-5 *1 (-636)))))
+ (-5 *5 (-1001 (-179))) (-5 *6 (-584 (-221))) (-5 *2 (-1046 (-179)))
+ (-5 *1 (-637)))))
(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
(-12 (-5 *3 (-1 (-179) (-179) (-179)))
(-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) "undefined"))
- (-5 *5 (-1000 (-179))) (-5 *6 (-583 (-221))) (-5 *2 (-1045 (-179)))
- (-5 *1 (-636))))
+ (-5 *5 (-1001 (-179))) (-5 *6 (-584 (-221))) (-5 *2 (-1046 (-179)))
+ (-5 *1 (-637))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1000 (-179)))
- (-5 *5 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-636))))
+ (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1001 (-179)))
+ (-5 *5 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-637))))
((*1 *2 *2 *3 *4 *4 *5)
- (-12 (-5 *2 (-1045 (-179))) (-5 *3 (-1 (-854 (-179)) (-179) (-179)))
- (-5 *4 (-1000 (-179))) (-5 *5 (-583 (-221))) (-5 *1 (-636)))))
+ (-12 (-5 *2 (-1046 (-179))) (-5 *3 (-1 (-855 (-179)) (-179) (-179)))
+ (-5 *4 (-1001 (-179))) (-5 *5 (-584 (-221))) (-5 *1 (-637)))))
(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-694)) (-4 *4 (-298)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1153 *4))))
+ (-12 (-5 *3 (-695)) (-4 *4 (-298)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1154 *4))))
((*1 *2 *2 *3 *2 *3)
- (-12 (-5 *3 (-483)) (-5 *1 (-635 *2)) (-4 *2 (-1153 *3)))))
+ (-12 (-5 *3 (-484)) (-5 *1 (-636 *2)) (-4 *2 (-1154 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-2 (|:| |deg| (-694)) (|:| -2571 *5)))) (-4 *5 (-1153 *4))
- (-4 *4 (-298)) (-5 *2 (-583 *5)) (-5 *1 (-170 *4 *5))))
+ (-12 (-5 *3 (-584 (-2 (|:| |deg| (-695)) (|:| -2573 *5)))) (-4 *5 (-1154 *4))
+ (-4 *4 (-298)) (-5 *2 (-584 *5)) (-5 *1 (-170 *4 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-2 (|:| -3726 *5) (|:| -3942 (-483))))) (-5 *4 (-483))
- (-4 *5 (-1153 *4)) (-5 *2 (-583 *5)) (-5 *1 (-635 *5)))))
+ (-12 (-5 *3 (-584 (-2 (|:| -3728 *5) (|:| -3944 (-484))))) (-5 *4 (-484))
+ (-4 *5 (-1154 *4)) (-5 *2 (-584 *5)) (-5 *1 (-636 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-483)) (-5 *2 (-583 (-2 (|:| -3726 *3) (|:| -3942 *4))))
- (-5 *1 (-635 *3)) (-4 *3 (-1153 *4)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-635 *2)) (-4 *2 (-1153 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1127)) (-4 *2 (-1012))))
- ((*1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1012)))))
+ (-12 (-5 *4 (-484)) (-5 *2 (-584 (-2 (|:| -3728 *3) (|:| -3944 *4))))
+ (-5 *1 (-636 *3)) (-4 *3 (-1154 *4)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-636 *2)) (-4 *2 (-1154 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1128)) (-4 *2 (-1013))))
+ ((*1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1013)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-634 *3)) (-4 *3 (-1012))
- (-5 *2 (-583 (-2 (|:| |entry| *3) (|:| -1943 (-694))))))))
-(((*1 *1 *2) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772))))))
-(((*1 *1) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772))))))
+ (-12 (-4 *1 (-635 *3)) (-4 *3 (-1013))
+ (-5 *2 (-584 (-2 (|:| |entry| *3) (|:| -1944 (-695))))))))
+(((*1 *1 *2) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773))))))
+(((*1 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773))))))
(((*1 *2 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-630 *4)) (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-631 *4)))))
-(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3))))
- ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))))
-(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-494)) (-4 *3 (-146)) (-4 *4 (-321 *3))
- (-4 *5 (-321 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-4 *3 (-146)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3))
- (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))))
+ (-12 (-5 *2 (-631 *4)) (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-632 *4)))))
+(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))))
+(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3))))
+ ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))))
+(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146)) (-4 *4 (-321 *3))
+ (-4 *5 (-321 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-495)) (-4 *3 (-146)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3))
+ (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-483)) (-4 *3 (-146)) (-4 *5 (-321 *3)) (-4 *6 (-321 *3))
- (-5 *1 (-629 *3 *5 *6 *2)) (-4 *2 (-627 *3 *5 *6)))))
+ (-12 (-5 *4 (-484)) (-4 *3 (-146)) (-4 *5 (-321 *3)) (-4 *6 (-321 *3))
+ (-5 *1 (-630 *3 *5 *6 *2)) (-4 *2 (-628 *3 *5 *6)))))
(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-483)) (-4 *3 (-146)) (-4 *5 (-321 *3)) (-4 *6 (-321 *3))
- (-5 *1 (-629 *3 *5 *6 *2)) (-4 *2 (-627 *3 *5 *6)))))
+ (-12 (-5 *4 (-484)) (-4 *3 (-146)) (-4 *5 (-321 *3)) (-4 *6 (-321 *3))
+ (-5 *1 (-630 *3 *5 *6 *2)) (-4 *2 (-628 *3 *5 *6)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-483)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4))
- (-5 *1 (-629 *4 *5 *6 *2)) (-4 *2 (-627 *4 *5 *6)))))
+ (-12 (-5 *3 (-484)) (-4 *4 (-146)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4))
+ (-5 *1 (-630 *4 *5 *6 *2)) (-4 *2 (-628 *4 *5 *6)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2))
+ (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2))
(-4 *4 (-321 *2)))))
(((*1 *1 *1 *1)
- (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2))
+ (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2))
(-4 *4 (-321 *2)))))
(((*1 *1 *1 *1)
- (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-321 *2))
+ (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-321 *2))
(-4 *4 (-321 *2)))))
(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-483)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3))
+ (-12 (-5 *2 (-484)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3))
(-4 *5 (-321 *3)))))
(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-483)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3))
+ (-12 (-5 *2 (-484)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3))
(-4 *5 (-321 *3)))))
(((*1 *1 *1 *2 *2 *2 *2)
- (-12 (-5 *2 (-483)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3))
+ (-12 (-5 *2 (-484)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3))
(-4 *5 (-321 *3)))))
(((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-483)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-321 *3))
+ (-12 (-5 *2 (-484)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-321 *3))
(-4 *5 (-321 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012))
- (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-625 *4 *5 *6)))))
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013))
+ (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-626 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *2 (-1 *6 *4 *5))
- (-5 *1 (-625 *4 *5 *6)) (-4 *4 (-1012)))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *4 *5))
+ (-5 *1 (-626 *4 *5 *6)) (-4 *4 (-1013)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1012)) (-4 *6 (-1012)) (-5 *2 (-1 *6 *4 *5))
- (-5 *1 (-625 *4 *5 *6)) (-4 *5 (-1012)))))
+ (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *4 *5))
+ (-5 *1 (-626 *4 *5 *6)) (-4 *5 (-1013)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012))
- (-5 *2 (-1 *6 *5)) (-5 *1 (-625 *4 *5 *6)))))
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013))
+ (-5 *2 (-1 *6 *5)) (-5 *1 (-626 *4 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1012)) (-4 *4 (-1012)) (-4 *6 (-1012))
- (-5 *2 (-1 *6 *5)) (-5 *1 (-625 *5 *4 *6)))))
+ (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1013)) (-4 *4 (-1013)) (-4 *6 (-1013))
+ (-5 *2 (-1 *6 *5)) (-5 *1 (-626 *5 *4 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-5 *2 (-1 *5 *4))
- (-5 *1 (-624 *4 *5)))))
+ (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-5 *2 (-1 *5 *4))
+ (-5 *1 (-625 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-5 *2 (-1 *5))
- (-5 *1 (-624 *4 *5)))))
+ (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-5 *2 (-1 *5))
+ (-5 *1 (-625 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-624 *4 *3)) (-4 *4 (-1012))
- (-4 *3 (-1012)))))
+ (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-625 *4 *3)) (-4 *4 (-1013))
+ (-4 *3 (-1013)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 (-694) *2)) (-5 *4 (-694)) (-4 *2 (-1012))
- (-5 *1 (-619 *2))))
- ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-694) *3)) (-4 *3 (-1012)) (-5 *1 (-623 *3)))))
-(((*1 *2 *2) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1012)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-623 *2)) (-4 *2 (-1012))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-583 *5) (-583 *5))) (-5 *4 (-483)) (-5 *2 (-583 *5))
- (-5 *1 (-623 *5)) (-4 *5 (-1012)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-623 *3)) (-4 *3 (-1012)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1128))) (-5 *3 (-1128)) (-5 *1 (-622)))))
+ (-12 (-5 *3 (-1 *2 (-695) *2)) (-5 *4 (-695)) (-4 *2 (-1013))
+ (-5 *1 (-620 *2))))
+ ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-695) *3)) (-4 *3 (-1013)) (-5 *1 (-624 *3)))))
+(((*1 *2 *2) (-12 (-5 *1 (-624 *2)) (-4 *2 (-1013)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-624 *2)) (-4 *2 (-1013))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-584 *5) (-584 *5))) (-5 *4 (-484)) (-5 *2 (-584 *5))
+ (-5 *1 (-624 *5)) (-4 *5 (-1013)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1013)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-584 (-1129))) (-5 *3 (-1129)) (-5 *1 (-623)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1012)) (-4 *6 (-1012))
- (-4 *2 (-1012)) (-5 *1 (-621 *5 *6 *2)))))
-(((*1 *2 *3 *2) (-12 (-5 *1 (-620 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012)))))
-(((*1 *2 *2 *3) (-12 (-5 *1 (-620 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))))
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013))
+ (-4 *2 (-1013)) (-5 *1 (-622 *5 *6 *2)))))
+(((*1 *2 *3 *2) (-12 (-5 *1 (-621 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))))
+(((*1 *2 *2 *3) (-12 (-5 *1 (-621 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-694)) (-4 *2 (-1012)) (-5 *1 (-619 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1127)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1127)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1127)) (-5 *2 (-85)))))
-(((*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1127)))))
-(((*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1127)) (-5 *2 (-694)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-739 *4)) (-4 *4 (-756)) (-5 *2 (-85)) (-5 *1 (-614 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-739 *3)) (-4 *3 (-756)) (-5 *1 (-614 *3)))))
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-695)) (-4 *2 (-1013)) (-5 *1 (-620 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1128)) (-5 *2 (-85)))))
+(((*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1128)))))
+(((*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1128)) (-5 *2 (-695)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-740 *4)) (-4 *4 (-757)) (-5 *2 (-85)) (-5 *1 (-615 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-740 *3)) (-4 *3 (-757)) (-5 *1 (-615 *3)))))
(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-739 *3)) (-4 *3 (-756)) (-5 *1 (-614 *3)))))
+ (|partial| -12 (-5 *2 (-740 *3)) (-4 *3 (-757)) (-5 *1 (-615 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *5)) (-5 *4 (-830)) (-4 *5 (-756))
- (-5 *2 (-58 (-583 (-614 *5)))) (-5 *1 (-614 *5)))))
+ (-12 (-5 *3 (-584 *5)) (-5 *4 (-831)) (-4 *5 (-757))
+ (-5 *2 (-58 (-584 (-615 *5)))) (-5 *1 (-615 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *5)) (-5 *4 (-830)) (-4 *5 (-756)) (-5 *2 (-583 (-614 *5)))
- (-5 *1 (-614 *5)))))
+ (-12 (-5 *3 (-584 *5)) (-5 *4 (-831)) (-4 *5 (-757)) (-5 *2 (-584 (-615 *5)))
+ (-5 *1 (-615 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *7)) (-4 *7 (-756))
- (-4 *8 (-861 *5 *6 *7)) (-4 *5 (-494)) (-4 *6 (-717))
+ (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *7)) (-4 *7 (-757))
+ (-4 *8 (-862 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-718))
(-5 *2
- (-2 (|:| |particular| (-3 (-1177 (-347 *8)) "failed"))
- (|:| -2008 (-583 (-1177 (-347 *8))))))
- (-5 *1 (-611 *5 *6 *7 *8)))))
+ (-2 (|:| |particular| (-3 (-1178 (-347 *8)) "failed"))
+ (|:| -2010 (-584 (-1178 (-347 *8))))))
+ (-5 *1 (-612 *5 *6 *7 *8)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-311)) (-4 *6 (-13 (-321 *5) (-10 -7 (-6 -3990))))
- (-4 *4 (-13 (-321 *5) (-10 -7 (-6 -3990)))) (-5 *2 (-85))
- (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4))))
+ (-12 (-4 *5 (-311)) (-4 *6 (-13 (-321 *5) (-10 -7 (-6 -3992))))
+ (-4 *4 (-13 (-321 *5) (-10 -7 (-6 -3992)))) (-5 *2 (-85))
+ (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 *5)) (-5 *4 (-1177 *5)) (-4 *5 (-311)) (-5 *2 (-85))
- (-5 *1 (-610 *5)))))
+ (-12 (-5 *3 (-631 *5)) (-5 *4 (-1178 *5)) (-4 *5 (-311)) (-5 *2 (-85))
+ (-5 *1 (-611 *5)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-583 (-1083 *4))) (-5 *3 (-1083 *4)) (-4 *4 (-821))
- (-5 *1 (-605 *4)))))
-(((*1 *1 *1) (-4 *1 (-604))))
-(((*1 *1 *1 *1) (-4 *1 (-604))))
-(((*1 *1 *1 *1) (-4 *1 (-604))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-311))))
+ (|partial| -12 (-5 *2 (-584 (-1084 *4))) (-5 *3 (-1084 *4)) (-4 *4 (-822))
+ (-5 *1 (-606 *4)))))
+(((*1 *1 *1) (-4 *1 (-605))))
+(((*1 *1 *1 *1) (-4 *1 (-605))))
+(((*1 *1 *1 *1) (-4 *1 (-605))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-311))))
((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-311)) (-5 *1 (-602 *4 *2))
- (-4 *2 (-600 *4)))))
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-311)) (-5 *1 (-603 *4 *2))
+ (-4 *2 (-601 *4)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-694)) (-4 *1 (-600 *3)) (-4 *3 (-961)) (-4 *3 (-311))))
+ (-12 (-5 *2 (-695)) (-4 *1 (-601 *3)) (-4 *3 (-962)) (-4 *3 (-311))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-694)) (-5 *4 (-1 *5 *5)) (-4 *5 (-311)) (-5 *1 (-602 *5 *2))
- (-4 *2 (-600 *5)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-311))))
+ (-12 (-5 *3 (-695)) (-5 *4 (-1 *5 *5)) (-4 *5 (-311)) (-5 *1 (-603 *5 *2))
+ (-4 *2 (-601 *5)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-311))))
((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-311)) (-5 *1 (-602 *4 *2))
- (-4 *2 (-600 *4)))))
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-311)) (-5 *1 (-603 *4 *2))
+ (-4 *2 (-601 *4)))))
(((*1 *2 *3)
(-12 (-4 *4 (-27))
- (-4 *4 (-13 (-311) (-120) (-950 (-483)) (-950 (-347 (-483)))))
- (-4 *5 (-1153 *4)) (-5 *2 (-583 (-597 (-347 *5)))) (-5 *1 (-601 *4 *5))
- (-5 *3 (-597 (-347 *5))))))
-(((*1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-311)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1144 (-483))) (-4 *1 (-593 *3)) (-4 *3 (-1127))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-593 *3)) (-4 *3 (-1127)))))
-(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-593 *3)) (-4 *3 (-1127))))
- ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-593 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3937 *4))))
- (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1012)) (-4 *4 (-23)) (-14 *5 *4))))
+ (-4 *4 (-13 (-311) (-120) (-951 (-484)) (-951 (-347 (-484)))))
+ (-4 *5 (-1154 *4)) (-5 *2 (-584 (-598 (-347 *5)))) (-5 *1 (-602 *4 *5))
+ (-5 *3 (-598 (-347 *5))))))
+(((*1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-311)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1145 (-484))) (-4 *1 (-594 *3)) (-4 *3 (-1128))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-594 *3)) (-4 *3 (-1128)))))
+(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-594 *3)) (-4 *3 (-1128))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-594 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3939 *4))))
+ (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4))))
(((*1 *1 *2 *3)
- (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))))
+ (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))))
(((*1 *1 *2)
- (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3937 *4)))) (-4 *3 (-1012))
- (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-591 *3 *4 *5)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-309 *3)) (-4 *3 (-1012))))
+ (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3939 *4)))) (-4 *3 (-1013))
+ (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-592 *3 *4 *5)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-309 *3)) (-4 *3 (-1013))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-483)) (-4 *1 (-333 *4)) (-4 *4 (-1012)) (-5 *2 (-694))))
+ (-12 (-5 *3 (-484)) (-4 *1 (-333 *4)) (-4 *4 (-1013)) (-5 *2 (-695))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-483)) (-4 *2 (-23)) (-5 *1 (-591 *4 *2 *5)) (-4 *4 (-1012))
+ (-12 (-5 *3 (-484)) (-4 *2 (-23)) (-5 *1 (-592 *4 *2 *5)) (-4 *4 (-1013))
(-14 *5 *2))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-483)) (-4 *1 (-273 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1012))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *1 (-309 *2)) (-4 *2 (-1012))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-4 *1 (-333 *2)) (-4 *2 (-1012))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-483)) (-5 *1 (-345 *2)) (-4 *2 (-494))))
+ (-12 (-5 *3 (-484)) (-4 *1 (-273 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1013))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-309 *2)) (-4 *2 (-1013))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-333 *2)) (-4 *2 (-1013))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-345 *2)) (-4 *2 (-495))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-483)) (-4 *2 (-1012)) (-5 *1 (-591 *2 *4 *5)) (-4 *4 (-23))
+ (-12 (-5 *3 (-484)) (-4 *2 (-1013)) (-5 *1 (-592 *2 *4 *5)) (-4 *4 (-23))
(-14 *5 *4))))
-(((*1 *1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-1127))))
- ((*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-381 *3 *2)) (-4 *2 (-1153 *3))))
+(((*1 *1 *1) (-12 (-4 *1 (-321 *2)) (-4 *2 (-1128))))
+ ((*1 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-381 *3 *2)) (-4 *2 (-1154 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))))
-(((*1 *1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127))))
- ((*1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-321 *2)) (-4 *2 (-1127))))
+ (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128))))
+ ((*1 *1 *1) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-321 *2)) (-4 *2 (-1128))))
((*1 *1 *1)
- (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))))
+ (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))))
(((*1 *1)
- (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))))
+ (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))))
(((*1 *1 *1 *2)
- (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))))
+ (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))))
(((*1 *1 *2 *1)
- (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))))
+ (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))))
(((*1 *1 *1 *1)
- (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3)))
+ (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3)))
((*1 *1 *2 *3 *1)
- (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))))
+ (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1012)) (-4 *4 (-23))
+ (-12 (-5 *2 (-85)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23))
(-14 *5 *4))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-483) (-483))) (-5 *1 (-309 *3)) (-4 *3 (-1012))))
+ (-12 (-5 *2 (-1 (-484) (-484))) (-5 *1 (-309 *3)) (-4 *3 (-1013))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-694) (-694))) (-4 *1 (-333 *3)) (-4 *3 (-1012))))
+ (-12 (-5 *2 (-1 (-695) (-695))) (-4 *1 (-333 *3)) (-4 *3 (-1013))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-591 *3 *4 *5))
- (-4 *3 (-1012)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-592 *3 *4 *5))
+ (-4 *3 (-1013)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-273 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-104))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1012)) (-5 *1 (-309 *3))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3)) (-4 *3 (-1012))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-273 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-309 *3))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3)) (-4 *3 (-1013))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1012)) (-5 *1 (-591 *3 *4 *5)) (-4 *4 (-23))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-592 *3 *4 *5)) (-4 *4 (-23))
(-14 *5 *4))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-589 *3)) (-4 *3 (-1012)))))
-(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1012)))))
-(((*1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-583 *3)) (-4 *3 (-1127)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1127)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1012)) (-4 *2 (-1127)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1012)) (-4 *2 (-1127)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1012)) (-4 *2 (-1127)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-590 *3)) (-4 *3 (-1013)))))
+(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-590 *2)) (-4 *2 (-1013)))))
+(((*1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-584 *3)) (-4 *3 (-1128)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1128)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1013)) (-4 *2 (-1128)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1013)) (-4 *2 (-1128)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1013)) (-4 *2 (-1128)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-583 *3)) (-4 *3 (-311)) (-5 *1 (-581 *3 *4))
- (-14 *4 (-583 (-1088))))))
+ (-12 (-5 *2 (-584 *3)) (-4 *3 (-311)) (-5 *1 (-582 *3 *4))
+ (-14 *4 (-584 (-1089))))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1177 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961))
- (-5 *2 (-2 (|:| |mat| (-630 *4)) (|:| |vec| (-1177 *4))))))
+ (-12 (-5 *3 (-1178 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962))
+ (-5 *2 (-2 (|:| |mat| (-631 *4)) (|:| |vec| (-1178 *4))))))
((*1 *2 *3)
- (-12 (-5 *3 (-1177 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961)) (-5 *2 (-630 *4)))))
+ (-12 (-5 *3 (-1178 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-631 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-630 *1)) (-5 *4 (-1177 *1)) (-4 *1 (-580 *5)) (-4 *5 (-961))
- (-5 *2 (-2 (|:| |mat| (-630 *5)) (|:| |vec| (-1177 *5))))))
+ (-12 (-5 *3 (-631 *1)) (-5 *4 (-1178 *1)) (-4 *1 (-581 *5)) (-4 *5 (-962))
+ (-5 *2 (-2 (|:| |mat| (-631 *5)) (|:| |vec| (-1178 *5))))))
((*1 *2 *3)
- (-12 (-5 *3 (-630 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961)) (-5 *2 (-630 *4)))))
+ (-12 (-5 *3 (-631 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-631 *4)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-583 *3)) (-4 *3 (-311)) (-5 *1 (-579 *3 *4))
- (-14 *4 (-583 (-1088))))))
+ (-12 (-5 *2 (-584 *3)) (-4 *3 (-311)) (-5 *1 (-580 *3 *4))
+ (-14 *4 (-584 (-1089))))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1177 *4)) (-4 *4 (-13 (-961) (-580 *5)))
- (-4 *5 (-311)) (-4 *5 (-494)) (-5 *2 (-1177 *5)) (-5 *1 (-578 *5 *4))))
+ (|partial| -12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-962) (-581 *5)))
+ (-4 *5 (-311)) (-4 *5 (-495)) (-5 *2 (-1178 *5)) (-5 *1 (-579 *5 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1177 *4)) (-4 *4 (-13 (-961) (-580 *5)))
- (-2556 (-4 *5 (-311))) (-4 *5 (-494)) (-5 *2 (-1177 (-347 *5)))
- (-5 *1 (-578 *5 *4)))))
+ (|partial| -12 (-5 *3 (-1178 *4)) (-4 *4 (-13 (-962) (-581 *5)))
+ (-2558 (-4 *5 (-311))) (-4 *5 (-495)) (-5 *2 (-1178 (-347 *5)))
+ (-5 *1 (-579 *5 *4)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1177 *5)) (-4 *5 (-13 (-961) (-580 *4)))
- (-4 *4 (-494)) (-5 *2 (-1177 *4)) (-5 *1 (-578 *4 *5)))))
+ (|partial| -12 (-5 *3 (-1178 *5)) (-4 *5 (-13 (-962) (-581 *4)))
+ (-4 *4 (-495)) (-5 *2 (-1178 *4)) (-5 *1 (-579 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1177 *5)) (-4 *5 (-13 (-961) (-580 *4))) (-4 *4 (-494))
- (-5 *2 (-85)) (-5 *1 (-578 *4 *5)))))
+ (-12 (-5 *3 (-1178 *5)) (-4 *5 (-13 (-962) (-581 *4))) (-4 *4 (-495))
+ (-5 *2 (-85)) (-5 *1 (-579 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-248 (-750 *3))) (-4 *3 (-13 (-27) (-1113) (-361 *5)))
- (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483))))
+ (-12 (-5 *4 (-248 (-751 *3))) (-4 *3 (-13 (-27) (-1114) (-361 *5)))
+ (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484))))
(-5 *2
- (-3 (-750 *3)
- (-2 (|:| |leftHandLimit| (-3 (-750 *3) #1="failed"))
- (|:| |rightHandLimit| (-3 (-750 *3) #1#)))
+ (-3 (-751 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-751 *3) #1="failed"))
+ (|:| |rightHandLimit| (-3 (-751 *3) #1#)))
"failed"))
- (-5 *1 (-575 *5 *3))))
+ (-5 *1 (-576 *5 *3))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-248 *3)) (-5 *5 (-1071))
- (-4 *3 (-13 (-27) (-1113) (-361 *6)))
- (-4 *6 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-750 *3))
- (-5 *1 (-575 *6 *3))))
+ (|partial| -12 (-5 *4 (-248 *3)) (-5 *5 (-1072))
+ (-4 *3 (-13 (-27) (-1114) (-361 *6)))
+ (-4 *6 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-751 *3))
+ (-5 *1 (-576 *6 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-248 (-750 (-857 *5)))) (-4 *5 (-389))
+ (-12 (-5 *4 (-248 (-751 (-858 *5)))) (-4 *5 (-389))
(-5 *2
- (-3 (-750 (-347 (-857 *5)))
- (-2 (|:| |leftHandLimit| (-3 (-750 (-347 (-857 *5))) #2="failed"))
- (|:| |rightHandLimit| (-3 (-750 (-347 (-857 *5))) #2#)))
+ (-3 (-751 (-347 (-858 *5)))
+ (-2 (|:| |leftHandLimit| (-3 (-751 (-347 (-858 *5))) #2="failed"))
+ (|:| |rightHandLimit| (-3 (-751 (-347 (-858 *5))) #2#)))
#3="failed"))
- (-5 *1 (-576 *5)) (-5 *3 (-347 (-857 *5)))))
+ (-5 *1 (-577 *5)) (-5 *3 (-347 (-858 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-248 (-347 (-857 *5)))) (-5 *3 (-347 (-857 *5))) (-4 *5 (-389))
+ (-12 (-5 *4 (-248 (-347 (-858 *5)))) (-5 *3 (-347 (-858 *5))) (-4 *5 (-389))
(-5 *2
- (-3 (-750 *3)
- (-2 (|:| |leftHandLimit| (-3 (-750 *3) #2#))
- (|:| |rightHandLimit| (-3 (-750 *3) #2#)))
+ (-3 (-751 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-751 *3) #2#))
+ (|:| |rightHandLimit| (-3 (-751 *3) #2#)))
#3#))
- (-5 *1 (-576 *5))))
+ (-5 *1 (-577 *5))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-248 (-347 (-857 *6)))) (-5 *5 (-1071))
- (-5 *3 (-347 (-857 *6))) (-4 *6 (-389)) (-5 *2 (-750 *3))
- (-5 *1 (-576 *6)))))
+ (|partial| -12 (-5 *4 (-248 (-347 (-858 *6)))) (-5 *5 (-1072))
+ (-5 *3 (-347 (-858 *6))) (-4 *6 (-389)) (-5 *2 (-751 *3))
+ (-5 *1 (-577 *6)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-248 (-743 *3)))
- (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-743 *3))
- (-5 *1 (-575 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5)))))
+ (|partial| -12 (-5 *4 (-248 (-744 *3)))
+ (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-744 *3))
+ (-5 *1 (-576 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-248 (-743 (-857 *5)))) (-4 *5 (-389))
- (-5 *2 (-743 (-347 (-857 *5)))) (-5 *1 (-576 *5)) (-5 *3 (-347 (-857 *5)))))
+ (-12 (-5 *4 (-248 (-744 (-858 *5)))) (-4 *5 (-389))
+ (-5 *2 (-744 (-347 (-858 *5)))) (-5 *1 (-577 *5)) (-5 *3 (-347 (-858 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-248 (-347 (-857 *5)))) (-5 *3 (-347 (-857 *5))) (-4 *5 (-389))
- (-5 *2 (-743 *3)) (-5 *1 (-576 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-335)) (-5 *1 (-571)))))
-(((*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-1012))))
- ((*1 *1 *1) (-5 *1 (-571))))
+ (-12 (-5 *4 (-248 (-347 (-858 *5)))) (-5 *3 (-347 (-858 *5))) (-4 *5 (-389))
+ (-5 *2 (-744 *3)) (-5 *1 (-577 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-335)) (-5 *1 (-572)))))
+(((*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *1) (-5 *1 (-572))))
(((*1 *2 *3)
- (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1088))) (-4 *5 (-389))
- (-5 *2 (-418 *4 *5)) (-5 *1 (-570 *4 *5)))))
+ (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1089))) (-4 *5 (-389))
+ (-5 *2 (-418 *4 *5)) (-5 *1 (-571 *4 *5)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 (-206 *4 *5))) (-5 *2 (-206 *4 *5)) (-14 *4 (-583 (-1088)))
- (-4 *5 (-389)) (-5 *1 (-570 *4 *5)))))
+ (-12 (-5 *3 (-584 (-206 *4 *5))) (-5 *2 (-206 *4 *5)) (-14 *4 (-584 (-1089)))
+ (-4 *5 (-389)) (-5 *1 (-571 *4 *5)))))
(((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-583 (-418 *4 *5))) (-5 *3 (-773 *4)) (-14 *4 (-583 (-1088)))
- (-4 *5 (-389)) (-5 *1 (-570 *4 *5)))))
+ (-12 (-5 *2 (-584 (-418 *4 *5))) (-5 *3 (-774 *4)) (-14 *4 (-584 (-1089)))
+ (-4 *5 (-389)) (-5 *1 (-571 *4 *5)))))
(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-206 *5 *6))) (-4 *6 (-389))
- (-5 *2 (-206 *5 *6)) (-14 *5 (-583 (-1088))) (-5 *1 (-570 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *1 (-221))))
+ (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-206 *5 *6))) (-4 *6 (-389))
+ (-5 *2 (-206 *5 *6)) (-14 *5 (-584 (-1089))) (-5 *1 (-571 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *1 (-221))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *3 (-583 (-221)))
+ (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *3 (-584 (-221)))
(-5 *1 (-222))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-418 *5 *6))) (-5 *3 (-418 *5 *6)) (-14 *5 (-583 (-1088)))
- (-4 *6 (-389)) (-5 *2 (-1177 *6)) (-5 *1 (-570 *5 *6)))))
+ (-12 (-5 *4 (-584 (-418 *5 *6))) (-5 *3 (-418 *5 *6)) (-14 *5 (-584 (-1089)))
+ (-4 *6 (-389)) (-5 *2 (-1178 *6)) (-5 *1 (-571 *5 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 (-418 *3 *4))) (-14 *3 (-583 (-1088))) (-4 *4 (-389))
- (-5 *1 (-570 *3 *4)))))
+ (-12 (-5 *2 (-584 (-418 *3 *4))) (-14 *3 (-584 (-1089))) (-4 *4 (-389))
+ (-5 *1 (-571 *3 *4)))))
(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-583 (-418 *5 *6))) (-5 *4 (-773 *5)) (-14 *5 (-583 (-1088)))
- (-5 *2 (-418 *5 *6)) (-5 *1 (-570 *5 *6)) (-4 *6 (-389))))
+ (-12 (-5 *3 (-584 (-418 *5 *6))) (-5 *4 (-774 *5)) (-14 *5 (-584 (-1089)))
+ (-5 *2 (-418 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-389))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-418 *5 *6))) (-5 *4 (-773 *5)) (-14 *5 (-583 (-1088)))
- (-5 *2 (-418 *5 *6)) (-5 *1 (-570 *5 *6)) (-4 *6 (-389)))))
+ (-12 (-5 *3 (-584 (-418 *5 *6))) (-5 *4 (-774 *5)) (-14 *5 (-584 (-1089)))
+ (-5 *2 (-418 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-389)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-418 *4 *5))) (-14 *4 (-583 (-1088))) (-4 *5 (-389))
- (-5 *2 (-583 (-206 *4 *5))) (-5 *1 (-570 *4 *5)))))
+ (-12 (-5 *3 (-584 (-418 *4 *5))) (-14 *4 (-584 (-1089))) (-4 *5 (-389))
+ (-5 *2 (-584 (-206 *4 *5))) (-5 *1 (-571 *4 *5)))))
(((*1 *2 *3)
- (-12 (-14 *4 (-583 (-1088))) (-4 *5 (-389))
- (-5 *2 (-2 (|:| |glbase| (-583 (-206 *4 *5))) (|:| |glval| (-583 (-483)))))
- (-5 *1 (-570 *4 *5)) (-5 *3 (-583 (-206 *4 *5))))))
+ (-12 (-14 *4 (-584 (-1089))) (-4 *5 (-389))
+ (-5 *2 (-2 (|:| |glbase| (-584 (-206 *4 *5))) (|:| |glval| (-584 (-484)))))
+ (-5 *1 (-571 *4 *5)) (-5 *3 (-584 (-206 *4 *5))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-418 *4 *5))) (-14 *4 (-583 (-1088))) (-4 *5 (-389))
- (-5 *2 (-2 (|:| |gblist| (-583 (-206 *4 *5))) (|:| |gvlist| (-583 (-483)))))
- (-5 *1 (-570 *4 *5)))))
+ (-12 (-5 *3 (-584 (-418 *4 *5))) (-14 *4 (-584 (-1089))) (-4 *5 (-389))
+ (-5 *2 (-2 (|:| |gblist| (-584 (-206 *4 *5))) (|:| |gvlist| (-584 (-484)))))
+ (-5 *1 (-571 *4 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-568 *3 *2))
- (-4 *2 (-13 (-361 *3) (-915) (-1113)))))
- ((*1 *1 *1) (-4 *1 (-569))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-569 *3 *2))
+ (-4 *2 (-13 (-361 *3) (-916) (-1114)))))
+ ((*1 *1 *1) (-4 *1 (-570))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-568 *3 *2))
- (-4 *2 (-13 (-361 *3) (-915) (-1113)))))
- ((*1 *1 *1) (-4 *1 (-569))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-569 *3 *2))
+ (-4 *2 (-13 (-361 *3) (-916) (-1114)))))
+ ((*1 *1 *1) (-4 *1 (-570))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-568 *3 *2))
- (-4 *2 (-13 (-361 *3) (-915) (-1113)))))
- ((*1 *1 *1) (-4 *1 (-569))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-569 *3 *2))
+ (-4 *2 (-13 (-361 *3) (-916) (-1114)))))
+ ((*1 *1 *1) (-4 *1 (-570))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-568 *3 *2))
- (-4 *2 (-13 (-361 *3) (-915) (-1113)))))
- ((*1 *1 *1) (-4 *1 (-569))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-569 *3 *2))
+ (-4 *2 (-13 (-361 *3) (-916) (-1114)))))
+ ((*1 *1 *1) (-4 *1 (-570))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-568 *3 *2))
- (-4 *2 (-13 (-361 *3) (-915) (-1113)))))
- ((*1 *1 *1) (-4 *1 (-569))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-569 *3 *2))
+ (-4 *2 (-13 (-361 *3) (-916) (-1114)))))
+ ((*1 *1 *1) (-4 *1 (-570))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-568 *3 *2))
- (-4 *2 (-13 (-361 *3) (-915) (-1113)))))
- ((*1 *1 *1) (-4 *1 (-569))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-569 *3 *2))
+ (-4 *2 (-13 (-361 *3) (-916) (-1114)))))
+ ((*1 *1 *1) (-4 *1 (-570))))
(((*1 *2 *3)
- (-12 (-5 *3 (-86)) (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5))
+ (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5))
(-4 *5 (-361 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-86)) (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5))
+ (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5))
(-4 *5 (-361 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-86)) (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-230 *4 *5))
- (-4 *5 (-13 (-361 *4) (-915)))))
+ (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-230 *4 *5))
+ (-4 *5 (-13 (-361 *4) (-916)))))
((*1 *2 *3)
(-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-252 *4)) (-4 *4 (-253))))
((*1 *2 *3) (-12 (-4 *1 (-253)) (-5 *3 (-86)) (-5 *2 (-85))))
((*1 *2 *3)
- (-12 (-5 *3 (-86)) (-4 *5 (-1012)) (-5 *2 (-85)) (-5 *1 (-360 *4 *5))
+ (-12 (-5 *3 (-86)) (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-360 *4 *5))
(-4 *4 (-361 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-86)) (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-371 *4 *5))
+ (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-371 *4 *5))
(-4 *5 (-361 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-86)) (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-568 *4 *5))
- (-4 *5 (-13 (-361 *4) (-915) (-1113))))))
+ (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-569 *4 *5))
+ (-4 *5 (-13 (-361 *4) (-916) (-1114))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-389))
- (-14 *6 (-583 (-1088)))
- (-5 *2 (-583 (-1058 *5 (-468 (-773 *6)) (-773 *6) (-703 *5 (-773 *6)))))
- (-5 *1 (-567 *5 *6)))))
+ (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-389))
+ (-14 *6 (-584 (-1089)))
+ (-5 *2 (-584 (-1059 *5 (-469 (-774 *6)) (-774 *6) (-704 *5 (-774 *6)))))
+ (-5 *1 (-568 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-389))
- (-14 *6 (-583 (-1088))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-567 *5 *6)))))
+ (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-389))
+ (-14 *6 (-584 (-1089))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-568 *5 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 (-857 *3))) (-4 *3 (-389)) (-5 *1 (-308 *3 *4))
- (-14 *4 (-583 (-1088)))))
+ (-12 (-5 *2 (-584 (-858 *3))) (-4 *3 (-389)) (-5 *1 (-308 *3 *4))
+ (-14 *4 (-584 (-1089)))))
((*1 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-389)) (-4 *4 (-717))
- (-4 *5 (-756)) (-5 *1 (-384 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-389)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-5 *1 (-384 *3 *4 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-583 *7)) (-5 *3 (-1071)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-389))
- (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-384 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-584 *7)) (-5 *3 (-1072)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-389))
+ (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-384 *4 *5 *6 *7))))
((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-583 *7)) (-5 *3 (-1071)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-389))
- (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-384 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-584 *7)) (-5 *3 (-1072)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-389))
+ (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-384 *4 *5 *6 *7))))
((*1 *1 *1)
- (-12 (-4 *2 (-311)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-441 *2 *3 *4 *5))
- (-4 *5 (-861 *2 *3 *4))))
+ (-12 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-441 *2 *3 *4 *5))
+ (-4 *5 (-862 *2 *3 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-583 (-703 *3 (-773 *4)))) (-4 *3 (-389))
- (-14 *4 (-583 (-1088))) (-5 *1 (-567 *3 *4)))))
+ (-12 (-5 *2 (-584 (-704 *3 (-774 *4)))) (-4 *3 (-389))
+ (-14 *4 (-584 (-1089))) (-5 *1 (-568 *3 *4)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-583 (-857 *3))) (-4 *3 (-389)) (-5 *1 (-308 *3 *4))
- (-14 *4 (-583 (-1088)))))
+ (|partial| -12 (-5 *2 (-584 (-858 *3))) (-4 *3 (-389)) (-5 *1 (-308 *3 *4))
+ (-14 *4 (-584 (-1089)))))
((*1 *2 *2)
- (|partial| -12 (-5 *2 (-583 (-703 *3 (-773 *4)))) (-4 *3 (-389))
- (-14 *4 (-583 (-1088))) (-5 *1 (-567 *3 *4)))))
+ (|partial| -12 (-5 *2 (-584 (-704 *3 (-774 *4)))) (-4 *3 (-389))
+ (-14 *4 (-584 (-1089))) (-5 *1 (-568 *3 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-389)) (-5 *2 (-85))
- (-5 *1 (-308 *4 *5)) (-14 *5 (-583 (-1088)))))
+ (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-389)) (-5 *2 (-85))
+ (-5 *1 (-308 *4 *5)) (-14 *5 (-584 (-1089)))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-703 *4 (-773 *5)))) (-4 *4 (-389))
- (-14 *5 (-583 (-1088))) (-5 *2 (-85)) (-5 *1 (-567 *4 *5)))))
+ (-12 (-5 *3 (-584 (-704 *4 (-774 *5)))) (-4 *4 (-389))
+ (-14 *5 (-584 (-1089))) (-5 *2 (-85)) (-5 *1 (-568 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *4)) (-4 *4 (-756)) (-5 *2 (-583 (-606 *4 *5)))
- (-5 *1 (-566 *4 *5 *6)) (-4 *5 (-13 (-146) (-654 (-347 (-483)))))
- (-14 *6 (-830)))))
+ (-12 (-5 *3 (-584 *4)) (-4 *4 (-757)) (-5 *2 (-584 (-607 *4 *5)))
+ (-5 *1 (-567 *4 *5 *6)) (-4 *5 (-13 (-146) (-655 (-347 (-484)))))
+ (-14 *6 (-831)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| |k| (-614 *3)) (|:| |c| *4))))
- (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756))
- (-4 *4 (-13 (-146) (-654 (-347 (-483))))) (-14 *5 (-830)))))
+ (-12 (-5 *2 (-584 (-2 (|:| |k| (-615 *3)) (|:| |c| *4))))
+ (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757))
+ (-4 *4 (-13 (-146) (-655 (-347 (-484))))) (-14 *5 (-831)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-583 (-248 *4))) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756))
- (-4 *4 (-13 (-146) (-654 (-347 (-483))))) (-14 *5 (-830)))))
+ (-12 (-5 *2 (-584 (-248 *4))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757))
+ (-4 *4 (-13 (-146) (-655 (-347 (-484))))) (-14 *5 (-831)))))
(((*1 *2 *3 *4 *5 *6 *7 *6)
(|partial| -12
(-5 *5
(-2 (|:| |contp| *3)
- (|:| -1776 (-583 (-2 (|:| |irr| *10) (|:| -2391 (-483)))))))
- (-5 *6 (-583 *3)) (-5 *7 (-583 *8)) (-4 *8 (-756)) (-4 *3 (-257))
- (-4 *10 (-861 *3 *9 *8)) (-4 *9 (-717))
+ (|:| -1777 (-584 (-2 (|:| |irr| *10) (|:| -2393 (-484)))))))
+ (-5 *6 (-584 *3)) (-5 *7 (-584 *8)) (-4 *8 (-757)) (-4 *3 (-257))
+ (-4 *10 (-862 *3 *9 *8)) (-4 *9 (-718))
(-5 *2
- (-2 (|:| |polfac| (-583 *10)) (|:| |correct| *3)
- (|:| |corrfact| (-583 (-1083 *3)))))
- (-5 *1 (-564 *8 *9 *3 *10)) (-5 *4 (-583 (-1083 *3))))))
+ (-2 (|:| |polfac| (-584 *10)) (|:| |correct| *3)
+ (|:| |corrfact| (-584 (-1084 *3)))))
+ (-5 *1 (-565 *8 *9 *3 *10)) (-5 *4 (-584 (-1084 *3))))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-694)) (-5 *5 (-583 *3)) (-4 *3 (-257)) (-4 *6 (-756))
- (-4 *7 (-717)) (-5 *2 (-85)) (-5 *1 (-564 *6 *7 *3 *8))
- (-4 *8 (-861 *3 *7 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-976 *3 *4 *5))
- (-5 *1 (-563 *3 *4 *5 *6 *7 *2)) (-4 *7 (-982 *3 *4 *5 *6))
- (-4 *2 (-1019 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *2 (-494)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1153 *2)))))
+ (-12 (-5 *4 (-695)) (-5 *5 (-584 *3)) (-4 *3 (-257)) (-4 *6 (-757))
+ (-4 *7 (-718)) (-5 *2 (-85)) (-5 *1 (-565 *6 *7 *3 *8))
+ (-4 *8 (-862 *3 *7 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-977 *3 *4 *5))
+ (-5 *1 (-564 *3 *4 *5 *6 *7 *2)) (-4 *7 (-983 *3 *4 *5 *6))
+ (-4 *2 (-1020 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *2 (-495)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1154 *2)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-257) (-120) (-950 (-483)) (-580 (-483))))
- (-5 *1 (-561 *4 *2)) (-4 *2 (-13 (-1113) (-871) (-29 *4))))))
-(((*1 *1) (-5 *1 (-556))))
+ (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-257) (-120) (-951 (-484)) (-581 (-484))))
+ (-5 *1 (-562 *4 *2)) (-4 *2 (-13 (-1114) (-872) (-29 *4))))))
+(((*1 *1) (-5 *1 (-557))))
(((*1 *2 *3 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-120) (-27) (-950 (-483)) (-950 (-347 (-483)))))
- (-4 *5 (-1153 *4)) (-5 *2 (-1083 (-347 *5))) (-5 *1 (-554 *4 *5))
+ (|partial| -12 (-4 *4 (-13 (-120) (-27) (-951 (-484)) (-951 (-347 (-484)))))
+ (-4 *5 (-1154 *4)) (-5 *2 (-1084 (-347 *5))) (-5 *1 (-555 *4 *5))
(-5 *3 (-347 *5))))
((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1153 *5))
- (-4 *5 (-13 (-120) (-27) (-950 (-483)) (-950 (-347 (-483)))))
- (-5 *2 (-1083 (-347 *6))) (-5 *1 (-554 *5 *6)) (-5 *3 (-347 *6)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-550 *4)) (-4 *4 (-1012)) (-4 *2 (-1012))
- (-5 *1 (-551 *2 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-550 *4)) (-5 *1 (-551 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))))
-(((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1113))))
- ((*1 *2 *1) (-12 (-5 *1 (-280 *2)) (-4 *2 (-756))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-550 *3)) (-4 *3 (-1012)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 *1)) (-4 *1 (-253))))
+ (|partial| -12 (-5 *4 (-1 (-345 *6) *6)) (-4 *6 (-1154 *5))
+ (-4 *5 (-13 (-120) (-27) (-951 (-484)) (-951 (-347 (-484)))))
+ (-5 *2 (-1084 (-347 *6))) (-5 *1 (-555 *5 *6)) (-5 *3 (-347 *6)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-551 *4)) (-4 *4 (-1013)) (-4 *2 (-1013))
+ (-5 *1 (-552 *2 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-551 *4)) (-5 *1 (-552 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
+(((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1114))))
+ ((*1 *2 *1) (-12 (-5 *1 (-280 *2)) (-4 *2 (-757))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-551 *3)) (-4 *3 (-1013)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 *1)) (-4 *1 (-253))))
((*1 *1 *2 *1) (-12 (-4 *1 (-253)) (-5 *2 (-86))))
- ((*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-550 *3)) (-4 *3 (-1012))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1089)) (-5 *1 (-551 *3)) (-4 *3 (-1013))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-86)) (-5 *3 (-583 *5)) (-5 *4 (-694)) (-4 *5 (-1012))
- (-5 *1 (-550 *5)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1088)) (-5 *1 (-550 *3)) (-4 *3 (-1012)))))
+ (-12 (-5 *2 (-86)) (-5 *3 (-584 *5)) (-5 *4 (-695)) (-4 *5 (-1013))
+ (-5 *1 (-551 *5)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1089)) (-5 *1 (-551 *3)) (-4 *3 (-1013)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-549 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-549 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-5 *2 (-583 *3)))))
+ (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-584 *3)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-549 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012)))))
-(((*1 *1) (-5 *1 (-542))) ((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-545))))
-(((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-545))))
-(((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-545))))
-(((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-545))))
-(((*1 *1) (-5 *1 (-542))) ((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-545))))
-(((*1 *1) (-5 *1 (-545))))
+ (|partial| -12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))))
+(((*1 *1) (-5 *1 (-543))) ((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546))))
+(((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546))))
+(((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546))))
+(((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546))))
+(((*1 *1) (-5 *1 (-543))) ((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546))))
+(((*1 *1) (-5 *1 (-546))))
+(((*1 *1) (-5 *1 (-546))))
+(((*1 *1) (-5 *1 (-543))) ((*1 *1) (-5 *1 (-546))))
+(((*1 *1) (-5 *1 (-546))))
(((*1 *1) (-5 *1 (-545))))
-(((*1 *1) (-5 *1 (-542))) ((*1 *1) (-5 *1 (-545))))
(((*1 *1) (-5 *1 (-545))))
(((*1 *1) (-5 *1 (-544))))
(((*1 *1) (-5 *1 (-544))))
+(((*1 *1) (-5 *1 (-544))))
+(((*1 *1) (-5 *1 (-544))))
+(((*1 *1) (-5 *1 (-544))))
+(((*1 *1) (-5 *1 (-544))))
+(((*1 *1) (-5 *1 (-544))))
+(((*1 *1) (-5 *1 (-544))))
+(((*1 *1) (-5 *1 (-544))))
+(((*1 *1) (-5 *1 (-544))))
+(((*1 *1) (-5 *1 (-544))))
(((*1 *1) (-5 *1 (-543))))
(((*1 *1) (-5 *1 (-543))))
-(((*1 *1) (-5 *1 (-543))))
-(((*1 *1) (-5 *1 (-543))))
-(((*1 *1) (-5 *1 (-543))))
-(((*1 *1) (-5 *1 (-543))))
-(((*1 *1) (-5 *1 (-543))))
-(((*1 *1) (-5 *1 (-543))))
-(((*1 *1) (-5 *1 (-543))))
-(((*1 *1) (-5 *1 (-543))))
-(((*1 *1) (-5 *1 (-543))))
-(((*1 *1) (-5 *1 (-542))))
-(((*1 *1) (-5 *1 (-542))))
-(((*1 *2 *1) (-12 (-5 *2 (-869 (-158 (-112)))) (-5 *1 (-281))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-1128))) (-5 *1 (-539)))))
+(((*1 *2 *1) (-12 (-5 *2 (-870 (-158 (-112)))) (-5 *1 (-281))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-1129))) (-5 *1 (-540)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1127)) (-5 *2 (-583 *4)))))
+ (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1128)) (-5 *2 (-584 *4)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1127)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1128)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1127)) (-5 *2 (-583 *3)))))
+ (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1128)) (-5 *2 (-584 *3)))))
(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -3989)) (-4 *1 (-538 *4 *3)) (-4 *4 (-1012))
- (-4 *3 (-1127)) (-4 *3 (-1012)) (-5 *2 (-85)))))
+ (-12 (|has| *1 (-6 -3991)) (-4 *1 (-539 *4 *3)) (-4 *4 (-1013))
+ (-4 *3 (-1128)) (-4 *3 (-1013)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-538 *2 *3)) (-4 *3 (-1127)) (-4 *2 (-1012)) (-4 *2 (-756)))))
+ (-12 (-4 *1 (-539 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1013)) (-4 *2 (-757)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-538 *2 *3)) (-4 *3 (-1127)) (-4 *2 (-1012)) (-4 *2 (-756)))))
+ (-12 (-4 *1 (-539 *2 *3)) (-4 *3 (-1128)) (-4 *2 (-1013)) (-4 *2 (-757)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1127)) (-4 *3 (-321 *2))
+ (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1128)) (-4 *3 (-321 *2))
(-4 *4 (-321 *2))))
((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -3990)) (-4 *1 (-538 *3 *2)) (-4 *3 (-1012))
- (-4 *2 (-1127)))))
+ (-12 (|has| *1 (-6 -3992)) (-4 *1 (-539 *3 *2)) (-4 *3 (-1013))
+ (-4 *2 (-1128)))))
(((*1 *2 *1 *3 *3)
- (-12 (|has| *1 (-6 -3990)) (-4 *1 (-538 *3 *4)) (-4 *3 (-1012))
- (-4 *4 (-1127)) (-5 *2 (-1183)))))
+ (-12 (|has| *1 (-6 -3992)) (-4 *1 (-539 *3 *4)) (-4 *3 (-1013))
+ (-4 *4 (-1128)) (-5 *2 (-1184)))))
(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-583 (-550 *2))) (-5 *4 (-583 (-1088)))
- (-4 *2 (-13 (-361 (-142 *5)) (-915) (-1113))) (-4 *5 (-494))
- (-5 *1 (-534 *5 *6 *2)) (-4 *6 (-13 (-361 *5) (-915) (-1113))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-5 *2 (-142 *5)) (-5 *1 (-534 *4 *5 *3))
- (-4 *5 (-13 (-361 *4) (-915) (-1113)))
- (-4 *3 (-13 (-361 (-142 *4)) (-915) (-1113))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-4 *2 (-13 (-361 (-142 *4)) (-915) (-1113)))
- (-5 *1 (-534 *4 *3 *2)) (-4 *3 (-13 (-361 *4) (-915) (-1113))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-4 *2 (-13 (-361 *4) (-915) (-1113)))
- (-5 *1 (-534 *4 *2 *3)) (-4 *3 (-13 (-361 (-142 *4)) (-915) (-1113))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-361 *4) (-915) (-1113))) (-4 *4 (-494))
- (-4 *2 (-13 (-361 (-142 *4)) (-915) (-1113))) (-5 *1 (-534 *4 *5 *2)))))
-(((*1 *1) (-5 *1 (-531))))
-(((*1 *1) (-5 *1 (-531))))
-(((*1 *1) (-5 *1 (-531))))
-(((*1 *1) (-5 *1 (-531))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-531))) (-5 *1 (-531)))))
+ (-12 (-5 *3 (-584 (-551 *2))) (-5 *4 (-584 (-1089)))
+ (-4 *2 (-13 (-361 (-142 *5)) (-916) (-1114))) (-4 *5 (-495))
+ (-5 *1 (-535 *5 *6 *2)) (-4 *6 (-13 (-361 *5) (-916) (-1114))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-495)) (-5 *2 (-142 *5)) (-5 *1 (-535 *4 *5 *3))
+ (-4 *5 (-13 (-361 *4) (-916) (-1114)))
+ (-4 *3 (-13 (-361 (-142 *4)) (-916) (-1114))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-495)) (-4 *2 (-13 (-361 (-142 *4)) (-916) (-1114)))
+ (-5 *1 (-535 *4 *3 *2)) (-4 *3 (-13 (-361 *4) (-916) (-1114))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-495)) (-4 *2 (-13 (-361 *4) (-916) (-1114)))
+ (-5 *1 (-535 *4 *2 *3)) (-4 *3 (-13 (-361 (-142 *4)) (-916) (-1114))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-361 *4) (-916) (-1114))) (-4 *4 (-495))
+ (-4 *2 (-13 (-361 (-142 *4)) (-916) (-1114))) (-5 *1 (-535 *4 *5 *2)))))
+(((*1 *1) (-5 *1 (-532))))
+(((*1 *1) (-5 *1 (-532))))
+(((*1 *1) (-5 *1 (-532))))
+(((*1 *1) (-5 *1 (-532))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-532))) (-5 *1 (-532)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-939 (-750 (-483))))
- (-5 *3 (-1067 (-2 (|:| |k| (-483)) (|:| |c| *4)))) (-4 *4 (-961))
- (-5 *1 (-529 *4)))))
+ (-12 (-5 *2 (-940 (-751 (-484))))
+ (-5 *3 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *4)))) (-4 *4 (-962))
+ (-5 *1 (-530 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-939 (-750 (-483)))) (-5 *1 (-529 *3)) (-4 *3 (-961)))))
+ (-12 (-5 *2 (-940 (-751 (-484)))) (-5 *1 (-530 *3)) (-4 *3 (-962)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1067 (-2 (|:| |k| (-483)) (|:| |c| *3)))) (-5 *1 (-529 *3))
- (-4 *3 (-961)))))
+ (-12 (-5 *2 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-5 *1 (-530 *3))
+ (-4 *3 (-962)))))
(((*1 *1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-85)) (-5 *1 (-529 *3)) (-4 *3 (-961)))))
-(((*1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-961)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-529 *2)) (-4 *2 (-961)))))
+ (|partial| -12 (-5 *2 (-85)) (-5 *1 (-530 *3)) (-4 *3 (-962)))))
+(((*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-962)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-962)))))
(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-1067 (-2 (|:| |k| (-483)) (|:| |c| *6))))
- (-5 *4 (-939 (-750 (-483)))) (-5 *5 (-1088)) (-5 *7 (-347 (-483)))
- (-4 *6 (-961)) (-5 *2 (-772)) (-5 *1 (-529 *6)))))
+ (-12 (-5 *3 (-1068 (-2 (|:| |k| (-484)) (|:| |c| *6))))
+ (-5 *4 (-940 (-751 (-484)))) (-5 *5 (-1089)) (-5 *7 (-347 (-484)))
+ (-4 *6 (-962)) (-5 *2 (-773)) (-5 *1 (-530 *6)))))
(((*1 *1 *1 *2)
- (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-347 (-483))) (-5 *1 (-529 *3)) (-4 *3 (-38 *2))
- (-4 *3 (-961)))))
+ (-12 (-5 *2 (-347 (-484))) (-5 *1 (-530 *3)) (-4 *3 (-38 *2))
+ (-4 *3 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-529 *2)) (-4 *2 (-38 (-347 (-483)))) (-4 *2 (-961)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-347 (-484)))) (-4 *2 (-962)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 *3)) (-4 *3 (-1019 *5 *6 *7 *8))
- (-4 *5 (-13 (-257) (-120))) (-4 *6 (-717)) (-4 *7 (-756))
- (-4 *8 (-976 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-526 *5 *6 *7 *8 *3)))))
+ (-12 (-5 *4 (-584 *3)) (-4 *3 (-1020 *5 *6 *7 *8))
+ (-4 *5 (-13 (-257) (-120))) (-4 *6 (-718)) (-4 *7 (-757))
+ (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-527 *5 *6 *7 *8 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-830))) (-5 *4 (-813 (-483))) (-5 *2 (-630 (-483)))
- (-5 *1 (-525))))
+ (-12 (-5 *3 (-584 (-831))) (-5 *4 (-814 (-484))) (-5 *2 (-631 (-484)))
+ (-5 *1 (-526))))
((*1 *2 *3)
- (-12 (-5 *3 (-583 (-830))) (-5 *2 (-583 (-630 (-483)))) (-5 *1 (-525))))
+ (-12 (-5 *3 (-584 (-831))) (-5 *2 (-584 (-631 (-484)))) (-5 *1 (-526))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-830))) (-5 *4 (-583 (-813 (-483))))
- (-5 *2 (-583 (-630 (-483)))) (-5 *1 (-525)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-694)) (-5 *1 (-525)))))
+ (-12 (-5 *3 (-584 (-831))) (-5 *4 (-584 (-814 (-484))))
+ (-5 *2 (-584 (-631 (-484)))) (-5 *1 (-526)))))
+(((*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-695)) (-5 *1 (-526)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-257) (-120) (-950 (-483)) (-580 (-483))))
- (-5 *1 (-368 *4 *2)) (-4 *2 (-13 (-1113) (-29 *4)))))
+ (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-257) (-120) (-951 (-484)) (-581 (-484))))
+ (-5 *1 (-368 *4 *2)) (-4 *2 (-13 (-1114) (-29 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-347 (-857 *5))) (-5 *4 (-1088)) (-4 *5 (-120))
- (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-264 *5))
- (-5 *1 (-524 *5)))))
+ (-12 (-5 *3 (-347 (-858 *5))) (-5 *4 (-1089)) (-4 *5 (-120))
+ (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-264 *5))
+ (-5 *1 (-525 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-518 *2)) (-4 *2 (-13 (-29 *4) (-1113))) (-5 *1 (-520 *4 *2))
- (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483))))))
+ (-12 (-5 *3 (-519 *2)) (-4 *2 (-13 (-29 *4) (-1114))) (-5 *1 (-521 *4 *2))
+ (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484))))))
((*1 *2 *3)
- (-12 (-5 *3 (-518 (-347 (-857 *4))))
- (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *2 (-264 *4))
- (-5 *1 (-524 *4)))))
+ (-12 (-5 *3 (-519 (-347 (-858 *4))))
+ (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *2 (-264 *4))
+ (-5 *1 (-525 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-830)) (-5 *2 (-1083 *4)) (-5 *1 (-523 *4)) (-4 *4 (-298)))))
-(((*1 *2 *2) (-12 (-5 *1 (-522 *2)) (-4 *2 (-482)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-522 *2)) (-4 *2 (-482)))))
-(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-522 *3)) (-4 *3 (-482)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-694)) (-5 *1 (-522 *2)) (-4 *2 (-482)))))
+ (-12 (-5 *3 (-831)) (-5 *2 (-1084 *4)) (-5 *1 (-524 *4)) (-4 *4 (-298)))))
+(((*1 *2 *2) (-12 (-5 *1 (-523 *2)) (-4 *2 (-483)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-523 *2)) (-4 *2 (-483)))))
+(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-523 *3)) (-4 *3 (-483)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-695)) (-5 *1 (-523 *2)) (-4 *2 (-483)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-694)) (-5 *1 (-522 *2)) (-4 *2 (-482))))
+ (|partial| -12 (-5 *3 (-695)) (-5 *1 (-523 *2)) (-4 *2 (-483))))
((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -2690 *3) (|:| -2397 (-694)))) (-5 *1 (-522 *3))
- (-4 *3 (-482)))))
+ (-12 (-5 *2 (-2 (|:| -2692 *3) (|:| -2399 (-695)))) (-5 *1 (-523 *3))
+ (-4 *3 (-483)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-694)) (-5 *2 (-85)) (-5 *1 (-522 *3)) (-4 *3 (-482)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-531)) (-5 *1 (-521)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-531)) (-5 *1 (-521)))))
-(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-444)) (-5 *3 (-531)) (-5 *1 (-521)))))
+ (-12 (-5 *4 (-695)) (-5 *2 (-85)) (-5 *1 (-523 *3)) (-4 *3 (-483)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-532)) (-5 *1 (-522)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-532)) (-5 *1 (-522)))))
+(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-444)) (-5 *3 (-532)) (-5 *1 (-522)))))
(((*1 *1 *2 *3 *4)
(-12
(-5 *3
- (-583
- (-2 (|:| |scalar| (-347 (-483))) (|:| |coeff| (-1083 *2))
- (|:| |logand| (-1083 *2)))))
- (-5 *4 (-583 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-311))
- (-5 *1 (-518 *2)))))
-(((*1 *2 *1) (-12 (-5 *1 (-518 *2)) (-4 *2 (-311)))))
+ (-584
+ (-2 (|:| |scalar| (-347 (-484))) (|:| |coeff| (-1084 *2))
+ (|:| |logand| (-1084 *2)))))
+ (-5 *4 (-584 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-311))
+ (-5 *1 (-519 *2)))))
+(((*1 *2 *1) (-12 (-5 *1 (-519 *2)) (-4 *2 (-311)))))
(((*1 *2 *1)
(-12
(-5 *2
- (-583
- (-2 (|:| |scalar| (-347 (-483))) (|:| |coeff| (-1083 *3))
- (|:| |logand| (-1083 *3)))))
- (-5 *1 (-518 *3)) (-4 *3 (-311)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
- (-5 *1 (-518 *3)) (-4 *3 (-311)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-518 *3)) (-4 *3 (-311)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-517)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-514)))))
-(((*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-514)))))
-(((*1 *2 *3) (-12 (-5 *3 (-428)) (-5 *2 (-632 (-514))) (-5 *1 (-514)))))
-(((*1 *2 *1) (-12 (-5 *2 (-632 (-1 (-472) (-583 (-472))))) (-5 *1 (-86))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-472) (-583 (-472)))) (-5 *1 (-86))))
- ((*1 *1) (-5 *1 (-513))))
-(((*1 *1) (-5 *1 (-513))))
-(((*1 *1) (-5 *1 (-513))))
-(((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-512))))
- ((*1 *1 *2) (-12 (-5 *2 (-335)) (-5 *1 (-512)))))
+ (-584
+ (-2 (|:| |scalar| (-347 (-484))) (|:| |coeff| (-1084 *3))
+ (|:| |logand| (-1084 *3)))))
+ (-5 *1 (-519 *3)) (-4 *3 (-311)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-584 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
+ (-5 *1 (-519 *3)) (-4 *3 (-311)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-519 *3)) (-4 *3 (-311)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-518)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-515)))))
+(((*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-515)))))
+(((*1 *2 *3) (-12 (-5 *3 (-428)) (-5 *2 (-633 (-515))) (-5 *1 (-515)))))
+(((*1 *2 *1) (-12 (-5 *2 (-633 (-1 (-473) (-584 (-473))))) (-5 *1 (-86))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-473) (-584 (-473)))) (-5 *1 (-86))))
+ ((*1 *1) (-5 *1 (-514))))
+(((*1 *1) (-5 *1 (-514))))
+(((*1 *1) (-5 *1 (-514))))
+(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-513))))
+ ((*1 *1 *2) (-12 (-5 *2 (-335)) (-5 *1 (-513)))))
(((*1 *2 *2 *3 *3)
- (|partial| -12 (-5 *3 (-1088))
- (-4 *4 (-13 (-257) (-120) (-950 (-483)) (-580 (-483)))) (-5 *1 (-510 *4 *2))
- (-4 *2 (-13 (-1113) (-871) (-1051) (-29 *4))))))
+ (|partial| -12 (-5 *3 (-1089))
+ (-4 *4 (-13 (-257) (-120) (-951 (-484)) (-581 (-484)))) (-5 *1 (-511 *4 *2))
+ (-4 *2 (-13 (-1114) (-872) (-1052) (-29 *4))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-311))
- (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-509 *5 *3)))))
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-311))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-510 *5 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-311))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-311))
(-5 *2
- (-2 (|:| |ir| (-518 (-347 *6))) (|:| |specpart| (-347 *6))
+ (-2 (|:| |ir| (-519 (-347 *6))) (|:| |specpart| (-347 *6))
(|:| |polypart| *6)))
- (-5 *1 (-509 *5 *6)) (-5 *3 (-347 *6)))))
+ (-5 *1 (-510 *5 *6)) (-5 *3 (-347 *6)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-562 *4 *5))
- (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3132 *4) (|:| |sol?| (-85))) (-483) *4))
- (-4 *4 (-311)) (-4 *5 (-1153 *4)) (-5 *1 (-509 *4 *5)))))
+ (|partial| -12 (-5 *2 (-563 *4 *5))
+ (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3134 *4) (|:| |sol?| (-85))) (-484) *4))
+ (-4 *4 (-311)) (-4 *5 (-1154 *4)) (-5 *1 (-510 *4 *5)))))
(((*1 *2 *2 *3 *4)
(|partial| -12
- (-5 *3 (-1 (-3 (-2 (|:| -2132 *4) (|:| |coeff| *4)) "failed") *4))
- (-4 *4 (-311)) (-5 *1 (-509 *4 *2)) (-4 *2 (-1153 *4)))))
+ (-5 *3 (-1 (-3 (-2 (|:| -2134 *4) (|:| |coeff| *4)) "failed") *4))
+ (-4 *4 (-311)) (-5 *1 (-510 *4 *2)) (-4 *2 (-1154 *4)))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-583 (-347 *7))) (-4 *7 (-1153 *6))
+ (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-584 (-347 *7))) (-4 *7 (-1154 *6))
(-5 *3 (-347 *7)) (-4 *6 (-311))
(-5 *2
(-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-509 *6 *7)))))
+ (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-510 *6 *7)))))
(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-311))
- (-5 *2 (-2 (|:| -2132 (-347 *6)) (|:| |coeff| (-347 *6))))
- (-5 *1 (-509 *5 *6)) (-5 *3 (-347 *6)))))
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-311))
+ (-5 *2 (-2 (|:| -2134 (-347 *6)) (|:| |coeff| (-347 *6))))
+ (-5 *1 (-510 *5 *6)) (-5 *3 (-347 *6)))))
(((*1 *2 *3 *4 *5 *6)
(|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3132 *7) (|:| |sol?| (-85))) (-483) *7))
- (-5 *6 (-583 (-347 *8))) (-4 *7 (-311)) (-4 *8 (-1153 *7)) (-5 *3 (-347 *8))
+ (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3134 *7) (|:| |sol?| (-85))) (-484) *7))
+ (-5 *6 (-584 (-347 *8))) (-4 *7 (-311)) (-4 *8 (-1154 *7)) (-5 *3 (-347 *8))
(-5 *2
(-2
(|:| |answer|
(-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
(|:| |a0| *7)))
- (-5 *1 (-509 *7 *8)))))
+ (-5 *1 (-510 *7 *8)))))
(((*1 *2 *3 *4 *5 *6)
(|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5 (-1 (-3 (-2 (|:| -2132 *7) (|:| |coeff| *7)) "failed") *7))
- (-5 *6 (-583 (-347 *8))) (-4 *7 (-311)) (-4 *8 (-1153 *7)) (-5 *3 (-347 *8))
+ (-5 *5 (-1 (-3 (-2 (|:| -2134 *7) (|:| |coeff| *7)) "failed") *7))
+ (-5 *6 (-584 (-347 *8))) (-4 *7 (-311)) (-4 *8 (-1154 *7)) (-5 *3 (-347 *8))
(-5 *2
(-2
(|:| |answer|
(-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
(|:| |a0| *7)))
- (-5 *1 (-509 *7 *8)))))
+ (-5 *1 (-510 *7 *8)))))
(((*1 *2 *3 *4 *5 *3)
(-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3132 *6) (|:| |sol?| (-85))) (-483) *6))
- (-4 *6 (-311)) (-4 *7 (-1153 *6))
+ (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3134 *6) (|:| |sol?| (-85))) (-484) *6))
+ (-4 *6 (-311)) (-4 *7 (-1154 *6))
(-5 *2
(-3 (-2 (|:| |answer| (-347 *7)) (|:| |a0| *6))
- (-2 (|:| -2132 (-347 *7)) (|:| |coeff| (-347 *7))) "failed"))
- (-5 *1 (-509 *6 *7)) (-5 *3 (-347 *7)))))
+ (-2 (|:| -2134 (-347 *7)) (|:| |coeff| (-347 *7))) "failed"))
+ (-5 *1 (-510 *6 *7)) (-5 *3 (-347 *7)))))
(((*1 *2 *3 *4 *5 *3)
(-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2132 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-311)) (-4 *7 (-1153 *6))
+ (-5 *5 (-1 (-3 (-2 (|:| -2134 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-311)) (-4 *7 (-1154 *6))
(-5 *2
(-3 (-2 (|:| |answer| (-347 *7)) (|:| |a0| *6))
- (-2 (|:| -2132 (-347 *7)) (|:| |coeff| (-347 *7))) "failed"))
- (-5 *1 (-509 *6 *7)) (-5 *3 (-347 *7)))))
+ (-2 (|:| -2134 (-347 *7)) (|:| |coeff| (-347 *7))) "failed"))
+ (-5 *1 (-510 *6 *7)) (-5 *3 (-347 *7)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-583 *6) "failed") (-483) *6 *6))
- (-4 *6 (-311)) (-4 *7 (-1153 *6))
- (-5 *2 (-2 (|:| |answer| (-518 (-347 *7))) (|:| |a0| *6)))
- (-5 *1 (-509 *6 *7)) (-5 *3 (-347 *7)))))
+ (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-584 *6) "failed") (-484) *6 *6))
+ (-4 *6 (-311)) (-4 *7 (-1154 *6))
+ (-5 *2 (-2 (|:| |answer| (-519 (-347 *7))) (|:| |a0| *6)))
+ (-5 *1 (-510 *6 *7)) (-5 *3 (-347 *7)))))
(((*1 *2 *3 *4 *5)
(-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3132 *6) (|:| |sol?| (-85))) (-483) *6))
- (-4 *6 (-311)) (-4 *7 (-1153 *6))
- (-5 *2 (-2 (|:| |answer| (-518 (-347 *7))) (|:| |a0| *6)))
- (-5 *1 (-509 *6 *7)) (-5 *3 (-347 *7)))))
+ (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3134 *6) (|:| |sol?| (-85))) (-484) *6))
+ (-4 *6 (-311)) (-4 *7 (-1154 *6))
+ (-5 *2 (-2 (|:| |answer| (-519 (-347 *7))) (|:| |a0| *6)))
+ (-5 *1 (-510 *6 *7)) (-5 *3 (-347 *7)))))
(((*1 *2 *3 *4 *5)
(-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2132 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-311)) (-4 *7 (-1153 *6))
- (-5 *2 (-2 (|:| |answer| (-518 (-347 *7))) (|:| |a0| *6)))
- (-5 *1 (-509 *6 *7)) (-5 *3 (-347 *7)))))
+ (-5 *5 (-1 (-3 (-2 (|:| -2134 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-311)) (-4 *7 (-1154 *6))
+ (-5 *2 (-2 (|:| |answer| (-519 (-347 *7))) (|:| |a0| *6)))
+ (-5 *1 (-510 *6 *7)) (-5 *3 (-347 *7)))))
(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-1 (-518 *3) *3 (-1088)))
+ (-12 (-5 *5 (-1 (-519 *3) *3 (-1089)))
(-5 *6
- (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1088)))
- (-4 *3 (-239)) (-4 *3 (-569)) (-4 *3 (-950 *4)) (-4 *3 (-361 *7))
- (-5 *4 (-1088)) (-4 *7 (-553 (-800 (-483)))) (-4 *7 (-389))
- (-4 *7 (-796 (-483))) (-4 *7 (-1012)) (-5 *2 (-518 *3))
- (-5 *1 (-508 *7 *3)))))
+ (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1089)))
+ (-4 *3 (-239)) (-4 *3 (-570)) (-4 *3 (-951 *4)) (-4 *3 (-361 *7))
+ (-5 *4 (-1089)) (-4 *7 (-554 (-801 (-484)))) (-4 *7 (-389))
+ (-4 *7 (-797 (-484))) (-4 *7 (-1013)) (-5 *2 (-519 *3))
+ (-5 *1 (-509 *7 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1088)) (-4 *4 (-389)) (-4 *4 (-1012)) (-5 *1 (-508 *4 *2))
+ (-12 (-5 *3 (-1089)) (-4 *4 (-389)) (-4 *4 (-1013)) (-5 *1 (-509 *4 *2))
(-4 *2 (-239)) (-4 *2 (-361 *4)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-4 *4 (-1012)) (-5 *1 (-508 *4 *2))
+ (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-4 *4 (-1013)) (-5 *1 (-509 *4 *2))
(-4 *2 (-361 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *6)) (-5 *4 (-1088)) (-4 *6 (-361 *5)) (-4 *5 (-1012))
- (-5 *2 (-583 (-550 *6))) (-5 *1 (-508 *5 *6)))))
+ (-12 (-5 *3 (-584 *6)) (-5 *4 (-1089)) (-4 *6 (-361 *5)) (-4 *5 (-1013))
+ (-5 *2 (-584 (-551 *6))) (-5 *1 (-509 *5 *6)))))
(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-583 (-550 *6))) (-5 *4 (-1088)) (-5 *2 (-550 *6))
- (-4 *6 (-361 *5)) (-4 *5 (-1012)) (-5 *1 (-508 *5 *6)))))
+ (-12 (-5 *3 (-584 (-551 *6))) (-5 *4 (-1089)) (-5 *2 (-551 *6))
+ (-4 *6 (-361 *5)) (-4 *5 (-1013)) (-5 *1 (-509 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-550 *5))) (-4 *4 (-1012)) (-5 *2 (-550 *5))
- (-5 *1 (-508 *4 *5)) (-4 *5 (-361 *4)))))
+ (-12 (-5 *3 (-584 (-551 *5))) (-4 *4 (-1013)) (-5 *2 (-551 *5))
+ (-5 *1 (-509 *4 *5)) (-4 *5 (-361 *4)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-583 (-550 *5))) (-5 *3 (-1088)) (-4 *5 (-361 *4))
- (-4 *4 (-1012)) (-5 *1 (-508 *4 *5)))))
+ (-12 (-5 *2 (-584 (-551 *5))) (-5 *3 (-1089)) (-4 *5 (-361 *4))
+ (-4 *4 (-1013)) (-5 *1 (-509 *4 *5)))))
(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1088)) (-4 *5 (-13 (-494) (-950 (-483)) (-120)))
- (-5 *2 (-2 (|:| -2132 (-347 (-857 *5))) (|:| |coeff| (-347 (-857 *5)))))
- (-5 *1 (-505 *5)) (-5 *3 (-347 (-857 *5))))))
+ (|partial| -12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-951 (-484)) (-120)))
+ (-5 *2 (-2 (|:| -2134 (-347 (-858 *5))) (|:| |coeff| (-347 (-858 *5)))))
+ (-5 *1 (-506 *5)) (-5 *3 (-347 (-858 *5))))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-583 (-347 (-857 *6))))
- (-5 *3 (-347 (-857 *6))) (-4 *6 (-13 (-494) (-950 (-483)) (-120)))
+ (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-584 (-347 (-858 *6))))
+ (-5 *3 (-347 (-858 *6))) (-4 *6 (-13 (-495) (-951 (-484)) (-120)))
(-5 *2
(-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-505 *6)))))
+ (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-506 *6)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-347 (-857 *4))) (-5 *3 (-1088))
- (-4 *4 (-13 (-494) (-950 (-483)) (-120))) (-5 *1 (-505 *4)))))
+ (|partial| -12 (-5 *2 (-347 (-858 *4))) (-5 *3 (-1089))
+ (-4 *4 (-13 (-495) (-951 (-484)) (-120))) (-5 *1 (-506 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-120) (-950 (-483)) (-580 (-483))))
- (-5 *2 (-518 *3)) (-5 *1 (-368 *5 *3)) (-4 *3 (-13 (-1113) (-29 *5)))))
+ (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-120) (-951 (-484)) (-581 (-484))))
+ (-5 *2 (-519 *3)) (-5 *1 (-368 *5 *3)) (-4 *3 (-13 (-1114) (-29 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-494) (-950 (-483)) (-120)))
- (-5 *2 (-518 (-347 (-857 *5)))) (-5 *1 (-505 *5)) (-5 *3 (-347 (-857 *5))))))
+ (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-951 (-484)) (-120)))
+ (-5 *2 (-519 (-347 (-858 *5)))) (-5 *1 (-506 *5)) (-5 *3 (-347 (-858 *5))))))
(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-483)) (-5 *1 (-504 *3)) (-4 *3 (-950 *2)))))
+ (|partial| -12 (-5 *2 (-484)) (-5 *1 (-505 *3)) (-4 *3 (-951 *2)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-583 (-347 *6))) (-5 *3 (-347 *6)) (-4 *6 (-1153 *5))
- (-4 *5 (-13 (-311) (-120) (-950 (-483))))
+ (|partial| -12 (-5 *4 (-584 (-347 *6))) (-5 *3 (-347 *6)) (-4 *6 (-1154 *5))
+ (-4 *5 (-13 (-311) (-120) (-951 (-484))))
(-5 *2
(-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-503 *5 *6)))))
+ (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-504 *5 *6)))))
(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-311) (-120) (-950 (-483)))) (-4 *5 (-1153 *4))
- (-5 *2 (-2 (|:| -2132 (-347 *5)) (|:| |coeff| (-347 *5))))
- (-5 *1 (-503 *4 *5)) (-5 *3 (-347 *5)))))
+ (|partial| -12 (-4 *4 (-13 (-311) (-120) (-951 (-484)))) (-4 *5 (-1154 *4))
+ (-5 *2 (-2 (|:| -2134 (-347 *5)) (|:| |coeff| (-347 *5))))
+ (-5 *1 (-504 *4 *5)) (-5 *3 (-347 *5)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-347 *4)) (-4 *4 (-1153 *3))
- (-4 *3 (-13 (-311) (-120) (-950 (-483)))) (-5 *1 (-503 *3 *4)))))
+ (|partial| -12 (-5 *2 (-347 *4)) (-4 *4 (-1154 *3))
+ (-4 *3 (-13 (-311) (-120) (-951 (-484)))) (-5 *1 (-504 *3 *4)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1088)) (-4 *5 (-553 (-800 (-483))))
- (-4 *5 (-796 (-483))) (-4 *5 (-13 (-950 (-483)) (-389) (-580 (-483))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-502 *5 *3))
- (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1113) (-361 *5)))))
+ (|partial| -12 (-5 *4 (-1089)) (-4 *5 (-554 (-801 (-484))))
+ (-4 *5 (-797 (-484))) (-4 *5 (-13 (-951 (-484)) (-389) (-581 (-484))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-503 *5 *3))
+ (-4 *3 (-570)) (-4 *3 (-13 (-27) (-1114) (-361 *5)))))
((*1 *2 *2 *3 *4 *4)
- (|partial| -12 (-5 *3 (-1088)) (-5 *4 (-750 *2)) (-4 *2 (-1051))
- (-4 *2 (-13 (-27) (-1113) (-361 *5))) (-4 *5 (-553 (-800 (-483))))
- (-4 *5 (-796 (-483))) (-4 *5 (-13 (-950 (-483)) (-389) (-580 (-483))))
- (-5 *1 (-502 *5 *2)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1088)) (-4 *5 (-553 (-800 (-483))))
- (-4 *5 (-796 (-483))) (-4 *5 (-13 (-950 (-483)) (-389) (-580 (-483))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-502 *5 *3))
- (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1113) (-361 *5))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-950 (-483)) (-389) (-580 (-483))))
- (-5 *2 (-2 (|:| -2334 *3) (|:| |nconst| *3))) (-5 *1 (-502 *5 *3))
- (-4 *3 (-13 (-27) (-1113) (-361 *5))))))
+ (|partial| -12 (-5 *3 (-1089)) (-5 *4 (-751 *2)) (-4 *2 (-1052))
+ (-4 *2 (-13 (-27) (-1114) (-361 *5))) (-4 *5 (-554 (-801 (-484))))
+ (-4 *5 (-797 (-484))) (-4 *5 (-13 (-951 (-484)) (-389) (-581 (-484))))
+ (-5 *1 (-503 *5 *2)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1089)) (-4 *5 (-554 (-801 (-484))))
+ (-4 *5 (-797 (-484))) (-4 *5 (-13 (-951 (-484)) (-389) (-581 (-484))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-503 *5 *3))
+ (-4 *3 (-570)) (-4 *3 (-13 (-27) (-1114) (-361 *5))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-951 (-484)) (-389) (-581 (-484))))
+ (-5 *2 (-2 (|:| -2336 *3) (|:| |nconst| *3))) (-5 *1 (-503 *5 *3))
+ (-4 *3 (-13 (-27) (-1114) (-361 *5))))))
(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *5 (-550 *4)) (-5 *6 (-1088)) (-4 *4 (-13 (-361 *7) (-27) (-1113)))
- (-4 *7 (-13 (-389) (-950 (-483)) (-120) (-580 (-483))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2008 (-583 *4))))
- (-5 *1 (-501 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1012)))))
+ (-12 (-5 *5 (-551 *4)) (-5 *6 (-1089)) (-4 *4 (-13 (-361 *7) (-27) (-1114)))
+ (-4 *7 (-13 (-389) (-951 (-484)) (-120) (-581 (-484))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2010 (-584 *4))))
+ (-5 *1 (-502 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1013)))))
(((*1 *2 *2 *2 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-550 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1088)))
- (-4 *2 (-13 (-361 *5) (-27) (-1113)))
- (-4 *5 (-13 (-389) (-950 (-483)) (-120) (-580 (-483))))
- (-5 *1 (-501 *5 *2 *6)) (-4 *6 (-1012)))))
+ (|partial| -12 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1089)))
+ (-4 *2 (-13 (-361 *5) (-27) (-1114)))
+ (-4 *5 (-13 (-389) (-951 (-484)) (-120) (-581 (-484))))
+ (-5 *1 (-502 *5 *2 *6)) (-4 *6 (-1013)))))
(((*1 *2 *3 *4 *4 *5)
- (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3))
- (-4 *3 (-13 (-361 *6) (-27) (-1113)))
- (-4 *6 (-13 (-389) (-950 (-483)) (-120) (-580 (-483))))
+ (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3))
+ (-4 *3 (-13 (-361 *6) (-27) (-1114)))
+ (-4 *6 (-13 (-389) (-951 (-484)) (-120) (-581 (-484))))
(-5 *2
(-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-501 *6 *3 *7)) (-4 *7 (-1012)))))
+ (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-502 *6 *3 *7)) (-4 *7 (-1013)))))
(((*1 *2 *3 *4 *4 *3)
- (|partial| -12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-361 *5) (-27) (-1113)))
- (-4 *5 (-13 (-389) (-950 (-483)) (-120) (-580 (-483))))
- (-5 *2 (-2 (|:| -2132 *3) (|:| |coeff| *3))) (-5 *1 (-501 *5 *3 *6))
- (-4 *6 (-1012)))))
+ (|partial| -12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-361 *5) (-27) (-1114)))
+ (-4 *5 (-13 (-389) (-951 (-484)) (-120) (-581 (-484))))
+ (-5 *2 (-2 (|:| -2134 *3) (|:| |coeff| *3))) (-5 *1 (-502 *5 *3 *6))
+ (-4 *6 (-1013)))))
(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-361 *5) (-27) (-1113)))
- (-4 *5 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-518 *3))
- (-5 *1 (-501 *5 *3 *6)) (-4 *6 (-1012)))))
+ (-12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-361 *5) (-27) (-1114)))
+ (-4 *5 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *2 (-519 *3))
+ (-5 *1 (-502 *5 *3 *6)) (-4 *6 (-1013)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-311))
- (-4 *7 (-1153 (-347 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2131 *3)))
- (-5 *1 (-499 *5 *6 *7 *3)) (-4 *3 (-290 *5 *6 *7))))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-311))
+ (-4 *7 (-1154 (-347 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2133 *3)))
+ (-5 *1 (-500 *5 *6 *7 *3)) (-4 *3 (-290 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-311))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-311))
(-5 *2
- (-2 (|:| |answer| (-347 *6)) (|:| -2131 (-347 *6))
+ (-2 (|:| |answer| (-347 *6)) (|:| -2133 (-347 *6))
(|:| |specpart| (-347 *6)) (|:| |polypart| *6)))
- (-5 *1 (-500 *5 *6)) (-5 *3 (-347 *6)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-483)) (-5 *3 (-694)) (-5 *1 (-498)))))
-(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))))
-(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))))
-(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))))
-(((*1 *2 *3) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-498)) (-5 *3 (-483)))))
-(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))))
-(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))))
-(((*1 *2 *3) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-498)) (-5 *3 (-483)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-153 *2)) (-4 *2 (-257))))
+ (-5 *1 (-501 *5 *6)) (-5 *3 (-347 *6)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-484)) (-5 *3 (-695)) (-5 *1 (-499)))))
+(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))))
+(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))))
+(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))))
+(((*1 *2 *3) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-499)) (-5 *3 (-484)))))
+(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))))
+(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))))
+(((*1 *2 *3) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-499)) (-5 *3 (-484)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-153 *2)) (-4 *2 (-257))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-583 (-583 *4))) (-5 *2 (-583 *4)) (-4 *4 (-257))
+ (-12 (-5 *3 (-584 (-584 *4))) (-5 *2 (-584 *4)) (-4 *4 (-257))
(-5 *1 (-153 *4))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-583 *8))
+ (-12 (-5 *3 (-584 *8))
(-5 *4
- (-583
- (-2 (|:| -2008 (-630 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-630 *7)))))
- (-5 *5 (-694)) (-4 *8 (-1153 *7)) (-4 *7 (-1153 *6)) (-4 *6 (-298))
+ (-584
+ (-2 (|:| -2010 (-631 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-631 *7)))))
+ (-5 *5 (-695)) (-4 *8 (-1154 *7)) (-4 *7 (-1154 *6)) (-4 *6 (-298))
(-5 *2
- (-2 (|:| -2008 (-630 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-630 *7))))
+ (-2 (|:| -2010 (-631 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-631 *7))))
(-5 *1 (-435 *6 *7 *8))))
- ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-498)))))
+ ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))))
(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *5 (-550 *4)) (-5 *6 (-1083 *4))
- (-4 *4 (-13 (-361 *7) (-27) (-1113)))
- (-4 *7 (-13 (-389) (-950 (-483)) (-120) (-580 (-483))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2008 (-583 *4))))
- (-5 *1 (-497 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1012))))
+ (-12 (-5 *5 (-551 *4)) (-5 *6 (-1084 *4))
+ (-4 *4 (-13 (-361 *7) (-27) (-1114)))
+ (-4 *7 (-13 (-389) (-951 (-484)) (-120) (-581 (-484))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2010 (-584 *4))))
+ (-5 *1 (-498 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1013))))
((*1 *2 *3 *4 *5 *5 *5 *4 *6)
- (-12 (-5 *5 (-550 *4)) (-5 *6 (-347 (-1083 *4)))
- (-4 *4 (-13 (-361 *7) (-27) (-1113)))
- (-4 *7 (-13 (-389) (-950 (-483)) (-120) (-580 (-483))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2008 (-583 *4))))
- (-5 *1 (-497 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1012)))))
+ (-12 (-5 *5 (-551 *4)) (-5 *6 (-347 (-1084 *4)))
+ (-4 *4 (-13 (-361 *7) (-27) (-1114)))
+ (-4 *7 (-13 (-389) (-951 (-484)) (-120) (-581 (-484))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2010 (-584 *4))))
+ (-5 *1 (-498 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1013)))))
(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
- (|partial| -12 (-5 *3 (-550 *2))
- (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1088))) (-5 *5 (-1083 *2))
- (-4 *2 (-13 (-361 *6) (-27) (-1113)))
- (-4 *6 (-13 (-389) (-950 (-483)) (-120) (-580 (-483))))
- (-5 *1 (-497 *6 *2 *7)) (-4 *7 (-1012))))
+ (|partial| -12 (-5 *3 (-551 *2))
+ (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1089))) (-5 *5 (-1084 *2))
+ (-4 *2 (-13 (-361 *6) (-27) (-1114)))
+ (-4 *6 (-13 (-389) (-951 (-484)) (-120) (-581 (-484))))
+ (-5 *1 (-498 *6 *2 *7)) (-4 *7 (-1013))))
((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
- (|partial| -12 (-5 *3 (-550 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1088)))
- (-5 *5 (-347 (-1083 *2))) (-4 *2 (-13 (-361 *6) (-27) (-1113)))
- (-4 *6 (-13 (-389) (-950 (-483)) (-120) (-580 (-483))))
- (-5 *1 (-497 *6 *2 *7)) (-4 *7 (-1012)))))
+ (|partial| -12 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1089)))
+ (-5 *5 (-347 (-1084 *2))) (-4 *2 (-13 (-361 *6) (-27) (-1114)))
+ (-4 *6 (-13 (-389) (-951 (-484)) (-120) (-581 (-484))))
+ (-5 *1 (-498 *6 *2 *7)) (-4 *7 (-1013)))))
(((*1 *2 *3 *4 *4 *5 *3 *6)
- (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3)) (-5 *6 (-1083 *3))
- (-4 *3 (-13 (-361 *7) (-27) (-1113)))
- (-4 *7 (-13 (-389) (-950 (-483)) (-120) (-580 (-483))))
+ (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-5 *6 (-1084 *3))
+ (-4 *3 (-13 (-361 *7) (-27) (-1114)))
+ (-4 *7 (-13 (-389) (-951 (-484)) (-120) (-581 (-484))))
(-5 *2
(-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-497 *7 *3 *8)) (-4 *8 (-1012))))
+ (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-498 *7 *3 *8)) (-4 *8 (-1013))))
((*1 *2 *3 *4 *4 *5 *4 *3 *6)
- (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3)) (-5 *6 (-347 (-1083 *3)))
- (-4 *3 (-13 (-361 *7) (-27) (-1113)))
- (-4 *7 (-13 (-389) (-950 (-483)) (-120) (-580 (-483))))
+ (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-5 *6 (-347 (-1084 *3)))
+ (-4 *3 (-13 (-361 *7) (-27) (-1114)))
+ (-4 *7 (-13 (-389) (-951 (-484)) (-120) (-581 (-484))))
(-5 *2
(-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-497 *7 *3 *8)) (-4 *8 (-1012)))))
+ (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-498 *7 *3 *8)) (-4 *8 (-1013)))))
(((*1 *2 *3 *4 *4 *3 *3 *5)
- (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-1083 *3))
- (-4 *3 (-13 (-361 *6) (-27) (-1113)))
- (-4 *6 (-13 (-389) (-950 (-483)) (-120) (-580 (-483))))
- (-5 *2 (-2 (|:| -2132 *3) (|:| |coeff| *3))) (-5 *1 (-497 *6 *3 *7))
- (-4 *7 (-1012))))
+ (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-1084 *3))
+ (-4 *3 (-13 (-361 *6) (-27) (-1114)))
+ (-4 *6 (-13 (-389) (-951 (-484)) (-120) (-581 (-484))))
+ (-5 *2 (-2 (|:| -2134 *3) (|:| |coeff| *3))) (-5 *1 (-498 *6 *3 *7))
+ (-4 *7 (-1013))))
((*1 *2 *3 *4 *4 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-347 (-1083 *3)))
- (-4 *3 (-13 (-361 *6) (-27) (-1113)))
- (-4 *6 (-13 (-389) (-950 (-483)) (-120) (-580 (-483))))
- (-5 *2 (-2 (|:| -2132 *3) (|:| |coeff| *3))) (-5 *1 (-497 *6 *3 *7))
- (-4 *7 (-1012)))))
+ (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-347 (-1084 *3)))
+ (-4 *3 (-13 (-361 *6) (-27) (-1114)))
+ (-4 *6 (-13 (-389) (-951 (-484)) (-120) (-581 (-484))))
+ (-5 *2 (-2 (|:| -2134 *3) (|:| |coeff| *3))) (-5 *1 (-498 *6 *3 *7))
+ (-4 *7 (-1013)))))
(((*1 *2 *3 *4 *4 *3 *5)
- (-12 (-5 *4 (-550 *3)) (-5 *5 (-1083 *3))
- (-4 *3 (-13 (-361 *6) (-27) (-1113)))
- (-4 *6 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-518 *3))
- (-5 *1 (-497 *6 *3 *7)) (-4 *7 (-1012))))
+ (-12 (-5 *4 (-551 *3)) (-5 *5 (-1084 *3))
+ (-4 *3 (-13 (-361 *6) (-27) (-1114)))
+ (-4 *6 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *2 (-519 *3))
+ (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013))))
((*1 *2 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *4 (-550 *3)) (-5 *5 (-347 (-1083 *3)))
- (-4 *3 (-13 (-361 *6) (-27) (-1113)))
- (-4 *6 (-13 (-389) (-950 (-483)) (-120) (-580 (-483)))) (-5 *2 (-518 *3))
- (-5 *1 (-497 *6 *3 *7)) (-4 *7 (-1012)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-496 *2)) (-4 *2 (-482)))))
-(((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-496 *3)) (-4 *3 (-482)))))
+ (-12 (-5 *4 (-551 *3)) (-5 *5 (-347 (-1084 *3)))
+ (-4 *3 (-13 (-361 *6) (-27) (-1114)))
+ (-4 *6 (-13 (-389) (-951 (-484)) (-120) (-581 (-484)))) (-5 *2 (-519 *3))
+ (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-497 *2)) (-4 *2 (-483)))))
+(((*1 *2 *3) (-12 (-5 *2 (-345 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483)))))
(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1088)) (-5 *6 (-583 (-550 *3))) (-5 *5 (-550 *3))
- (-4 *3 (-13 (-27) (-1113) (-361 *7)))
- (-4 *7 (-13 (-389) (-120) (-950 (-483)) (-580 (-483))))
- (-5 *2 (-2 (|:| -2132 *3) (|:| |coeff| *3))) (-5 *1 (-495 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-389) (-120) (-950 (-483)) (-580 (-483))))
- (-5 *2 (-518 *3)) (-5 *1 (-495 *5 *3))
- (-4 *3 (-13 (-27) (-1113) (-361 *5))))))
+ (|partial| -12 (-5 *4 (-1089)) (-5 *6 (-584 (-551 *3))) (-5 *5 (-551 *3))
+ (-4 *3 (-13 (-27) (-1114) (-361 *7)))
+ (-4 *7 (-13 (-389) (-120) (-951 (-484)) (-581 (-484))))
+ (-5 *2 (-2 (|:| -2134 *3) (|:| |coeff| *3))) (-5 *1 (-496 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-389) (-120) (-951 (-484)) (-581 (-484))))
+ (-5 *2 (-519 *3)) (-5 *1 (-496 *5 *3))
+ (-4 *3 (-13 (-27) (-1114) (-361 *5))))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1088))
- (-4 *4 (-13 (-389) (-120) (-950 (-483)) (-580 (-483)))) (-5 *1 (-495 *4 *2))
- (-4 *2 (-13 (-27) (-1113) (-361 *4))))))
+ (|partial| -12 (-5 *3 (-1089))
+ (-4 *4 (-13 (-389) (-120) (-951 (-484)) (-581 (-484)))) (-5 *1 (-496 *4 *2))
+ (-4 *2 (-13 (-27) (-1114) (-361 *4))))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1088)) (-5 *5 (-583 *3))
- (-4 *3 (-13 (-27) (-1113) (-361 *6)))
- (-4 *6 (-13 (-389) (-120) (-950 (-483)) (-580 (-483))))
+ (|partial| -12 (-5 *4 (-1089)) (-5 *5 (-584 *3))
+ (-4 *3 (-13 (-27) (-1114) (-361 *6)))
+ (-4 *6 (-13 (-389) (-120) (-951 (-484)) (-581 (-484))))
(-5 *2
(-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-495 *6 *3)))))
+ (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-496 *6 *3)))))
(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1088))
- (-4 *5 (-13 (-389) (-120) (-950 (-483)) (-580 (-483))))
- (-5 *2 (-2 (|:| -2132 *3) (|:| |coeff| *3))) (-5 *1 (-495 *5 *3))
- (-4 *3 (-13 (-27) (-1113) (-361 *5))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -1769 *1) (|:| -3976 *1) (|:| |associate| *1)))
- (-4 *1 (-494)))))
-(((*1 *1 *1) (-4 *1 (-494))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-494)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-494)) (-5 *2 (-85)))))
+ (|partial| -12 (-5 *4 (-1089))
+ (-4 *5 (-13 (-389) (-120) (-951 (-484)) (-581 (-484))))
+ (-5 *2 (-2 (|:| -2134 *3) (|:| |coeff| *3))) (-5 *1 (-496 *5 *3))
+ (-4 *3 (-13 (-27) (-1114) (-361 *5))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| -1770 *1) (|:| -3978 *1) (|:| |associate| *1)))
+ (-4 *1 (-495)))))
+(((*1 *1 *1) (-4 *1 (-495))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-495)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-495)) (-5 *2 (-85)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-347 (-483))) (-4 *1 (-492 *3)) (-4 *3 (-13 (-344) (-1113)))))
- ((*1 *1 *2) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-344) (-1113)))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-344) (-1113))))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-344) (-1113))))))
-(((*1 *2 *1) (-12 (-4 *1 (-492 *2)) (-4 *2 (-13 (-344) (-1113))))))
+ (-12 (-5 *2 (-347 (-484))) (-4 *1 (-493 *3)) (-4 *3 (-13 (-344) (-1114)))))
+ ((*1 *1 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-344) (-1114)))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-344) (-1114))))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-344) (-1114))))))
+(((*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-344) (-1114))))))
(((*1 *2 *1 *3)
- (-12 (-4 *1 (-492 *3)) (-4 *3 (-13 (-344) (-1113))) (-5 *2 (-85)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-483)) (-5 *2 (-85)) (-5 *1 (-491)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-491)))))
-(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-491)))))
+ (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-344) (-1114))) (-5 *2 (-85)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-85)) (-5 *1 (-492)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-492)))))
+(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-492)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1153 *5))
- (-4 *5 (-13 (-27) (-361 *4))) (-4 *4 (-13 (-494) (-950 (-483))))
- (-4 *7 (-1153 (-347 *6))) (-5 *1 (-490 *4 *5 *6 *7 *2))
+ (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1154 *5))
+ (-4 *5 (-13 (-27) (-361 *4))) (-4 *4 (-13 (-495) (-951 (-484))))
+ (-4 *7 (-1154 (-347 *6))) (-5 *1 (-491 *4 *5 *6 *7 *2))
(-4 *2 (-290 *5 *6 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1153 *6)) (-4 *6 (-13 (-27) (-361 *5)))
- (-4 *5 (-13 (-494) (-950 (-483)))) (-4 *8 (-1153 (-347 *7)))
- (-5 *2 (-518 *3)) (-5 *1 (-490 *5 *6 *7 *8 *3)) (-4 *3 (-290 *6 *7 *8)))))
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1154 *6)) (-4 *6 (-13 (-27) (-361 *5)))
+ (-4 *5 (-13 (-495) (-951 (-484)))) (-4 *8 (-1154 (-347 *7)))
+ (-5 *2 (-519 *3)) (-5 *1 (-491 *5 *6 *7 *8 *3)) (-4 *3 (-290 *6 *7 *8)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1153 *6)) (-4 *6 (-13 (-27) (-361 *5)))
- (-4 *5 (-13 (-494) (-950 (-483)))) (-4 *8 (-1153 (-347 *7)))
- (-5 *2 (-518 *3)) (-5 *1 (-490 *5 *6 *7 *8 *3)) (-4 *3 (-290 *6 *7 *8)))))
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1154 *6)) (-4 *6 (-13 (-27) (-361 *5)))
+ (-4 *5 (-13 (-495) (-951 (-484)))) (-4 *8 (-1154 (-347 *7)))
+ (-5 *2 (-519 *3)) (-5 *1 (-491 *5 *6 *7 *8 *3)) (-4 *3 (-290 *6 *7 *8)))))
(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-550 *3)) (-5 *5 (-1 (-1083 *3) (-1083 *3)))
- (-4 *3 (-13 (-27) (-361 *6))) (-4 *6 (-494)) (-5 *2 (-518 *3))
- (-5 *1 (-489 *6 *3)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-482)) (-5 *2 (-85)))))
-(((*1 *1 *1 *1) (-4 *1 (-482))))
-(((*1 *1 *1 *1) (-4 *1 (-482))))
-(((*1 *1 *1) (-4 *1 (-482))))
-(((*1 *1 *1) (-4 *1 (-482))))
-(((*1 *1 *1) (-4 *1 (-482))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-482))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-482))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-482))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-482))))
-(((*1 *1 *1 *1) (-4 *1 (-482))))
+ (-12 (-5 *4 (-551 *3)) (-5 *5 (-1 (-1084 *3) (-1084 *3)))
+ (-4 *3 (-13 (-27) (-361 *6))) (-4 *6 (-495)) (-5 *2 (-519 *3))
+ (-5 *1 (-490 *6 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))))
+(((*1 *1 *1 *1) (-4 *1 (-483))))
+(((*1 *1 *1 *1) (-4 *1 (-483))))
+(((*1 *1 *1) (-4 *1 (-483))))
+(((*1 *1 *1) (-4 *1 (-483))))
+(((*1 *1 *1) (-4 *1 (-483))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-483))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-483))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-483))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-483))))
+(((*1 *1 *1 *1) (-4 *1 (-483))))
(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *4 (-1 (-3 (-483) #1="failed") *5)) (-4 *5 (-961))
- (-5 *2 (-483)) (-5 *1 (-480 *5 *3)) (-4 *3 (-1153 *5))))
+ (|partial| -12 (-5 *4 (-1 (-3 (-484) #1="failed") *5)) (-4 *5 (-962))
+ (-5 *2 (-484)) (-5 *1 (-481 *5 *3)) (-4 *3 (-1154 *5))))
((*1 *2 *3 *4 *2 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-483) #1#) *4)) (-4 *4 (-961)) (-5 *2 (-483))
- (-5 *1 (-480 *4 *3)) (-4 *3 (-1153 *4))))
+ (|partial| -12 (-5 *5 (-1 (-3 (-484) #1#) *4)) (-4 *4 (-962)) (-5 *2 (-484))
+ (-5 *1 (-481 *4 *3)) (-4 *3 (-1154 *4))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-483) #1#) *4)) (-4 *4 (-961)) (-5 *2 (-483))
- (-5 *1 (-480 *4 *3)) (-4 *3 (-1153 *4)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-257)) (-5 *1 (-392 *3 *2)) (-4 *2 (-1153 *3))))
- ((*1 *2 *2 *3) (-12 (-4 *3 (-257)) (-5 *1 (-397 *3 *2)) (-4 *2 (-1153 *3))))
+ (|partial| -12 (-5 *5 (-1 (-3 (-484) #1#) *4)) (-4 *4 (-962)) (-5 *2 (-484))
+ (-5 *1 (-481 *4 *3)) (-4 *3 (-1154 *4)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-257)) (-5 *1 (-392 *3 *2)) (-4 *2 (-1154 *3))))
+ ((*1 *2 *2 *3) (-12 (-4 *3 (-257)) (-5 *1 (-397 *3 *2)) (-4 *2 (-1154 *3))))
((*1 *2 *2 *3)
- (-12 (-4 *3 (-257)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-694)))
- (-5 *1 (-476 *3 *2 *4 *5)) (-4 *2 (-1153 *3)))))
+ (-12 (-4 *3 (-257)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-695)))
+ (-5 *1 (-477 *3 *2 *4 *5)) (-4 *2 (-1154 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-1153 *4)) (-5 *1 (-476 *4 *2 *5 *6))
- (-4 *4 (-257)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-694))))))
+ (-12 (-5 *3 (-584 *2)) (-4 *2 (-1154 *4)) (-5 *1 (-477 *4 *2 *5 *6))
+ (-4 *4 (-257)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-695))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-1153 *4)) (-5 *1 (-476 *4 *2 *5 *6))
- (-4 *4 (-257)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-694))))))
+ (-12 (-5 *3 (-584 *2)) (-4 *2 (-1154 *4)) (-5 *1 (-477 *4 *2 *5 *6))
+ (-4 *4 (-257)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-695))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1088))) (-4 *6 (-311))
- (-5 *2 (-583 (-248 (-857 *6)))) (-5 *1 (-475 *5 *6 *7)) (-4 *5 (-389))
- (-4 *7 (-13 (-311) (-755))))))
+ (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-1089))) (-4 *6 (-311))
+ (-5 *2 (-584 (-248 (-858 *6)))) (-5 *1 (-476 *5 *6 *7)) (-4 *5 (-389))
+ (-4 *7 (-13 (-311) (-756))))))
(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1088))) (-4 *6 (-389))
- (-5 *2 (-583 (-583 *7))) (-5 *1 (-475 *6 *7 *5)) (-4 *7 (-311))
- (-4 *5 (-13 (-311) (-755))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1083 *5)) (-4 *5 (-389)) (-5 *2 (-583 *6))
- (-5 *1 (-475 *5 *6 *4)) (-4 *6 (-311)) (-4 *4 (-13 (-311) (-755)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-857 *5)) (-4 *5 (-389)) (-5 *2 (-583 *6))
- (-5 *1 (-475 *5 *6 *4)) (-4 *6 (-311)) (-4 *4 (-13 (-311) (-755))))))
-(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-472))))
- ((*1 *2 *3) (-12 (-5 *3 (-472)) (-5 *1 (-473 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1088)) (-5 *2 (-472)) (-5 *1 (-473 *4)) (-4 *4 (-1127)))))
-(((*1 *1 *2) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-77))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-472))) (-5 *1 (-472)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1088))) (-5 *1 (-472)))))
-(((*1 *1 *1) (-5 *1 (-472))))
-(((*1 *2 *1) (-12 (-5 *2 (-1071)) (-5 *1 (-472)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-472)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 (-472))) (-5 *2 (-1088)) (-5 *1 (-472)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1088)) (-5 *3 (-583 (-472))) (-5 *1 (-472)))))
+ (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1089))) (-4 *6 (-389))
+ (-5 *2 (-584 (-584 *7))) (-5 *1 (-476 *6 *7 *5)) (-4 *7 (-311))
+ (-4 *5 (-13 (-311) (-756))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1084 *5)) (-4 *5 (-389)) (-5 *2 (-584 *6))
+ (-5 *1 (-476 *5 *6 *4)) (-4 *6 (-311)) (-4 *4 (-13 (-311) (-756)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-858 *5)) (-4 *5 (-389)) (-5 *2 (-584 *6))
+ (-5 *1 (-476 *5 *6 *4)) (-4 *6 (-311)) (-4 *4 (-13 (-311) (-756))))))
+(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-473))))
+ ((*1 *2 *3) (-12 (-5 *3 (-473)) (-5 *1 (-474 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1089)) (-5 *2 (-473)) (-5 *1 (-474 *4)) (-4 *4 (-1128)))))
+(((*1 *1 *2) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-77))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-473))) (-5 *1 (-473)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-1089))) (-5 *1 (-473)))))
+(((*1 *1 *1) (-5 *1 (-473))))
+(((*1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-473)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-473)))))
+(((*1 *2 *3) (-12 (-5 *3 (-584 (-473))) (-5 *2 (-1089)) (-5 *1 (-473)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-1089)) (-5 *3 (-584 (-473))) (-5 *1 (-473)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-630 *6)) (-5 *5 (-1 (-345 (-1083 *6)) (-1083 *6)))
+ (-12 (-5 *3 (-631 *6)) (-5 *5 (-1 (-345 (-1084 *6)) (-1084 *6)))
(-4 *6 (-311))
(-5 *2
- (-583
- (-2 (|:| |outval| *7) (|:| |outmult| (-483))
- (|:| |outvect| (-583 (-630 *7))))))
- (-5 *1 (-469 *6 *7 *4)) (-4 *7 (-311)) (-4 *4 (-13 (-311) (-755))))))
+ (-584
+ (-2 (|:| |outval| *7) (|:| |outmult| (-484))
+ (|:| |outvect| (-584 (-631 *7))))))
+ (-5 *1 (-470 *6 *7 *4)) (-4 *7 (-311)) (-4 *4 (-13 (-311) (-756))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1083 *5)) (-4 *5 (-311)) (-5 *2 (-583 *6))
- (-5 *1 (-469 *5 *6 *4)) (-4 *6 (-311)) (-4 *4 (-13 (-311) (-755))))))
+ (-12 (-5 *3 (-1084 *5)) (-4 *5 (-311)) (-5 *2 (-584 *6))
+ (-5 *1 (-470 *5 *6 *4)) (-4 *6 (-311)) (-4 *4 (-13 (-311) (-756))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-630 *4)) (-4 *4 (-311)) (-5 *2 (-1083 *4))
- (-5 *1 (-469 *4 *5 *6)) (-4 *5 (-311)) (-4 *6 (-13 (-311) (-755))))))
+ (-12 (-5 *3 (-631 *4)) (-4 *4 (-311)) (-5 *2 (-1084 *4))
+ (-5 *1 (-470 *4 *5 *6)) (-4 *5 (-311)) (-4 *6 (-13 (-311) (-756))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-467 *3)) (-4 *3 (-13 (-663) (-25))))))
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-468 *3)) (-4 *3 (-13 (-664) (-25))))))
(((*1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-467 *3)) (-4 *3 (-13 (-663) (-25))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-466))))
- ((*1 *1 *2) (-12 (-5 *2 (-335)) (-5 *1 (-466)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-466)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-466)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-468 *3)) (-4 *3 (-13 (-664) (-25))))))
+(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-467))))
+ ((*1 *1 *2) (-12 (-5 *2 (-335)) (-5 *1 (-467)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-467)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-1033)) (-5 *1 (-467)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-830)) (-4 *4 (-317)) (-4 *4 (-311)) (-5 *2 (-1083 *1))
+ (-12 (-5 *3 (-831)) (-4 *4 (-317)) (-4 *4 (-311)) (-5 *2 (-1084 *1))
(-4 *1 (-279 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-1083 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-5 *2 (-1084 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-319 *3 *2)) (-4 *3 (-146)) (-4 *3 (-311)) (-4 *2 (-1153 *3))))
+ (-12 (-4 *1 (-319 *3 *2)) (-4 *3 (-146)) (-4 *3 (-311)) (-4 *2 (-1154 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1177 *4)) (-4 *4 (-298)) (-5 *2 (-1083 *4)) (-5 *1 (-465 *4)))))
+ (-12 (-5 *3 (-1178 *4)) (-4 *4 (-298)) (-5 *2 (-1084 *4)) (-5 *1 (-466 *4)))))
(((*1 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-317)) (-4 *2 (-311))))
((*1 *2 *3)
- (-12 (-5 *3 (-830)) (-5 *2 (-1177 *4)) (-5 *1 (-465 *4)) (-4 *4 (-298)))))
+ (-12 (-5 *3 (-831)) (-5 *2 (-1178 *4)) (-5 *1 (-466 *4)) (-4 *4 (-298)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1177 *4)) (-4 *4 (-358 *3)) (-4 *3 (-257)) (-4 *3 (-494))
+ (-12 (-5 *2 (-1178 *4)) (-4 *4 (-358 *3)) (-4 *3 (-257)) (-4 *3 (-495))
(-5 *1 (-43 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-830)) (-4 *4 (-311)) (-5 *2 (-1177 *1)) (-4 *1 (-279 *4))))
- ((*1 *2) (-12 (-4 *3 (-311)) (-5 *2 (-1177 *1)) (-4 *1 (-279 *3))))
+ (-12 (-5 *3 (-831)) (-4 *4 (-311)) (-5 *2 (-1178 *1)) (-4 *1 (-279 *4))))
+ ((*1 *2) (-12 (-4 *3 (-311)) (-5 *2 (-1178 *1)) (-4 *1 (-279 *3))))
((*1 *2)
- (-12 (-4 *3 (-146)) (-4 *4 (-1153 *3)) (-5 *2 (-1177 *1))
+ (-12 (-4 *3 (-146)) (-4 *4 (-1154 *3)) (-5 *2 (-1178 *1))
(-4 *1 (-350 *3 *4))))
((*1 *2 *1)
- (-12 (-4 *3 (-257)) (-4 *4 (-904 *3)) (-4 *5 (-1153 *4)) (-5 *2 (-1177 *6))
- (-5 *1 (-353 *3 *4 *5 *6)) (-4 *6 (-13 (-350 *4 *5) (-950 *4)))))
+ (-12 (-4 *3 (-257)) (-4 *4 (-905 *3)) (-4 *5 (-1154 *4)) (-5 *2 (-1178 *6))
+ (-5 *1 (-353 *3 *4 *5 *6)) (-4 *6 (-13 (-350 *4 *5) (-951 *4)))))
((*1 *2 *1)
- (-12 (-4 *3 (-257)) (-4 *4 (-904 *3)) (-4 *5 (-1153 *4)) (-5 *2 (-1177 *6))
+ (-12 (-4 *3 (-257)) (-4 *4 (-905 *3)) (-4 *5 (-1154 *4)) (-5 *2 (-1178 *6))
(-5 *1 (-355 *3 *4 *5 *6 *7)) (-4 *6 (-350 *4 *5)) (-14 *7 *2)))
- ((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1177 *1)) (-4 *1 (-358 *3))))
+ ((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1178 *1)) (-4 *1 (-358 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-830)) (-5 *2 (-1177 (-1177 *4))) (-5 *1 (-465 *4))
+ (-12 (-5 *3 (-831)) (-5 *2 (-1178 (-1178 *4))) (-5 *1 (-466 *4))
(-4 *4 (-298)))))
(((*1 *2 *1)
(-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)) (-5 *2 (-85))))
((*1 *2 *3)
- (-12 (-5 *3 (-1083 *4)) (-4 *4 (-298)) (-5 *2 (-85)) (-5 *1 (-304 *4))))
+ (-12 (-5 *3 (-1084 *4)) (-4 *4 (-298)) (-5 *2 (-85)) (-5 *1 (-304 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1177 *4)) (-4 *4 (-298)) (-5 *2 (-85)) (-5 *1 (-465 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-317)) (-5 *2 (-830))))
+ (-12 (-5 *3 (-1178 *4)) (-4 *4 (-298)) (-5 *2 (-85)) (-5 *1 (-466 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-317)) (-5 *2 (-831))))
((*1 *2 *3)
- (-12 (-5 *3 (-1177 *4)) (-4 *4 (-298)) (-5 *2 (-830)) (-5 *1 (-465 *4)))))
+ (-12 (-5 *3 (-1178 *4)) (-4 *4 (-298)) (-5 *2 (-831)) (-5 *1 (-466 *4)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1177 *4)) (-5 *3 (-483)) (-4 *4 (-298)) (-5 *1 (-465 *4)))))
+ (-12 (-5 *2 (-1178 *4)) (-5 *3 (-484)) (-4 *4 (-298)) (-5 *1 (-466 *4)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1177 *4)) (-5 *3 (-1032)) (-4 *4 (-298)) (-5 *1 (-465 *4)))))
+ (-12 (-5 *2 (-1178 *4)) (-5 *3 (-1033)) (-4 *4 (-298)) (-5 *1 (-466 *4)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1177 *4)) (-5 *3 (-694)) (-4 *4 (-298)) (-5 *1 (-465 *4)))))
+ (-12 (-5 *2 (-1178 *4)) (-5 *3 (-695)) (-4 *4 (-298)) (-5 *1 (-466 *4)))))
(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-1177 *5)) (-5 *3 (-694)) (-5 *4 (-1032)) (-4 *5 (-298))
- (-5 *1 (-465 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-694)) (-5 *2 (-1083 *4)) (-5 *1 (-465 *4)) (-4 *4 (-298)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1177 *4)) (-4 *4 (-298)) (-5 *2 (-1083 *4)) (-5 *1 (-465 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1177 (-583 (-2 (|:| -3396 *4) (|:| -2396 (-1032))))))
- (-4 *4 (-298)) (-5 *2 (-1183)) (-5 *1 (-465 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-632 (-101))))))
-(((*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-632 (-487))))))
-(((*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-632 (-1136))))))
-(((*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-632 (-484))))))
-(((*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-632 (-1133))))))
-(((*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-632 (-485))))))
-(((*1 *2 *1) (-12 (-4 *1 (-464)) (-5 *2 (-632 (-1134))))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-464)) (-5 *3 (-102)) (-5 *2 (-694)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-462)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1128))) (-5 *1 (-461)))))
+ (-12 (-5 *2 (-1178 *5)) (-5 *3 (-695)) (-5 *4 (-1033)) (-4 *5 (-298))
+ (-5 *1 (-466 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-695)) (-5 *2 (-1084 *4)) (-5 *1 (-466 *4)) (-4 *4 (-298)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1178 *4)) (-4 *4 (-298)) (-5 *2 (-1084 *4)) (-5 *1 (-466 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1178 (-584 (-2 (|:| -3398 *4) (|:| -2398 (-1033))))))
+ (-4 *4 (-298)) (-5 *2 (-1184)) (-5 *1 (-466 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-633 (-101))))))
+(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-633 (-488))))))
+(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-633 (-1137))))))
+(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-633 (-485))))))
+(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-633 (-1134))))))
+(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-633 (-486))))))
+(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-633 (-1135))))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-465)) (-5 *3 (-102)) (-5 *2 (-695)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-463)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-1129))) (-5 *1 (-462)))))
(((*1 *2 *2)
(-12 (-4 *3 (-311)) (-4 *4 (-321 *3)) (-4 *5 (-321 *3))
- (-5 *1 (-458 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-455)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1047)) (-5 *1 (-455)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-5 *1 (-277 *3))))
+ (-5 *1 (-459 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-456)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1048)) (-5 *1 (-456)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-5 *1 (-277 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-5 *1 (-454 *3 *4)) (-14 *4 (-483)))))
-(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-277 *3)) (-4 *3 (-1127))))
+ (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-5 *1 (-455 *3 *4)) (-14 *4 (-484)))))
+(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-277 *3)) (-4 *3 (-1128))))
((*1 *2 *1)
- (-12 (-5 *2 (-694)) (-5 *1 (-454 *3 *4)) (-4 *3 (-1127)) (-14 *4 (-483)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-277 *3)) (-4 *3 (-1127))))
+ (-12 (-5 *2 (-695)) (-5 *1 (-455 *3 *4)) (-4 *3 (-1128)) (-14 *4 (-484)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-277 *3)) (-4 *3 (-1128))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-483)) (-5 *1 (-454 *3 *4)) (-4 *3 (-1127)) (-14 *4 *2))))
-(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-277 *3)) (-4 *3 (-1127))))
+ (-12 (-5 *2 (-484)) (-5 *1 (-455 *3 *4)) (-4 *3 (-1128)) (-14 *4 *2))))
+(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-277 *3)) (-4 *3 (-1128))))
((*1 *2 *2)
- (-12 (-5 *2 (-85)) (-5 *1 (-454 *3 *4)) (-4 *3 (-1127)) (-14 *4 (-483)))))
-(((*1 *2 *1) (-12 (-4 *1 (-447 *3 *2)) (-4 *3 (-72)) (-4 *2 (-759)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-455 *3 *4)) (-4 *3 (-1128)) (-14 *4 (-484)))))
+(((*1 *1 *2 *3) (-12 (-5 *1 (-451 *3 *2)) (-4 *3 (-72)) (-4 *2 (-760)))))
+(((*1 *2 *1) (-12 (-4 *1 (-447 *3 *2)) (-4 *3 (-72)) (-4 *2 (-760)))))
(((*1 *1) (-5 *1 (-444))))
(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-483)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694))
+ (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695))
(-4 *5 (-146))))
((*1 *1 *1 *2 *1 *2)
- (-12 (-5 *2 (-483)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694))
+ (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695))
(-4 *5 (-146))))
((*1 *2 *2 *3)
(-12
(-5 *2
- (-441 (-347 (-483)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-347 (-483)))))
- (-5 *3 (-583 (-773 *4))) (-14 *4 (-583 (-1088))) (-14 *5 (-694))
+ (-441 (-347 (-484)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-347 (-484)))))
+ (-5 *3 (-584 (-774 *4))) (-14 *4 (-584 (-1089))) (-14 *5 (-695))
(-5 *1 (-442 *4 *5)))))
(((*1 *2 *3)
- (-12 (-14 *4 (-583 (-1088))) (-14 *5 (-694))
+ (-12 (-14 *4 (-584 (-1089))) (-14 *5 (-695))
(-5 *2
- (-583
- (-441 (-347 (-483)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-347 (-483))))))
+ (-584
+ (-441 (-347 (-484)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-347 (-484))))))
(-5 *1 (-442 *4 *5))
(-5 *3
- (-441 (-347 (-483)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-347 (-483))))))))
+ (-441 (-347 (-484)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-347 (-484))))))))
(((*1 *2 *2)
(-12
(-5 *2
- (-441 (-347 (-483)) (-197 *4 (-694)) (-773 *3) (-206 *3 (-347 (-483)))))
- (-14 *3 (-583 (-1088))) (-14 *4 (-694)) (-5 *1 (-442 *3 *4)))))
+ (-441 (-347 (-484)) (-197 *4 (-695)) (-774 *3) (-206 *3 (-347 (-484)))))
+ (-14 *3 (-584 (-1089))) (-14 *4 (-695)) (-5 *1 (-442 *3 *4)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-441 (-347 (-483)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-347 (-483)))))
- (-14 *4 (-583 (-1088))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-442 *4 *5)))))
+ (-441 (-347 (-484)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-347 (-484)))))
+ (-14 *4 (-584 (-1089))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-442 *4 *5)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-441 (-347 (-483)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-347 (-483)))))
- (-14 *4 (-583 (-1088))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-442 *4 *5)))))
+ (-441 (-347 (-484)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-347 (-484)))))
+ (-14 *4 (-584 (-1089))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-442 *4 *5)))))
(((*1 *2 *3 *1)
- (-12 (-4 *4 (-311)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85))
- (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))))
+ (-12 (-4 *4 (-311)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85))
+ (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85))
- (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))))
+ (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85))
+ (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))))
(((*1 *2 *3 *1)
- (-12 (-4 *4 (-311)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85))
- (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))))
+ (-12 (-4 *4 (-311)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85))
+ (-5 *1 (-441 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85))
- (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5))))
+ (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85))
+ (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-311)) (-4 *5 (-717))
- (-5 *2 (-85)) (-5 *1 (-441 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))))
+ (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-311)) (-4 *5 (-718))
+ (-5 *2 (-85)) (-5 *1 (-441 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))))
(((*1 *1 *1 *2)
- (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-441 *3 *4 *5 *2))
- (-4 *2 (-861 *3 *4 *5))))
+ (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-441 *3 *4 *5 *2))
+ (-4 *2 (-862 *3 *4 *5))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-311)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-441 *2 *3 *4 *5))
- (-4 *5 (-861 *2 *3 *4)))))
+ (-12 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-441 *2 *3 *4 *5))
+ (-4 *5 (-862 *2 *3 *4)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-311)) (-4 *5 (-717))
+ (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-311)) (-4 *5 (-718))
(-5 *2
- (-2 (|:| |mval| (-630 *4)) (|:| |invmval| (-630 *4))
+ (-2 (|:| |mval| (-631 *4)) (|:| |invmval| (-631 *4))
(|:| |genIdeal| (-441 *4 *5 *6 *7))))
- (-5 *1 (-441 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))))
+ (-5 *1 (-441 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))))
(((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |mval| (-630 *3)) (|:| |invmval| (-630 *3))
+ (-2 (|:| |mval| (-631 *3)) (|:| |invmval| (-631 *3))
(|:| |genIdeal| (-441 *3 *4 *5 *6))))
- (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-441 *3 *4 *5 *6))
- (-4 *6 (-861 *3 *4 *5)))))
+ (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-441 *3 *4 *5 *6))
+ (-4 *6 (-862 *3 *4 *5)))))
(((*1 *1 *1)
- (-12 (-4 *2 (-311)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-441 *2 *3 *4 *5))
- (-4 *5 (-861 *2 *3 *4)))))
+ (-12 (-4 *2 (-311)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-441 *2 *3 *4 *5))
+ (-4 *5 (-862 *2 *3 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-285 *3 *4 *5 *6)) (-4 *3 (-311)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-347 *4))) (-4 *6 (-290 *3 *4 *5))
+ (-12 (-4 *1 (-285 *3 *4 *5 *6)) (-4 *3 (-311)) (-4 *4 (-1154 *3))
+ (-4 *5 (-1154 (-347 *4))) (-4 *6 (-290 *3 *4 *5))
(-5 *2 (-353 *4 (-347 *4) *5 *6))))
((*1 *1 *2)
- (-12 (-5 *2 (-1177 *6)) (-4 *6 (-13 (-350 *4 *5) (-950 *4)))
- (-4 *4 (-904 *3)) (-4 *5 (-1153 *4)) (-4 *3 (-257))
+ (-12 (-5 *2 (-1178 *6)) (-4 *6 (-13 (-350 *4 *5) (-951 *4)))
+ (-4 *4 (-905 *3)) (-4 *5 (-1154 *4)) (-4 *3 (-257))
(-5 *1 (-353 *3 *4 *5 *6))))
((*1 *1 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-311)) (-4 *4 (-717))
- (-4 *5 (-756)) (-5 *1 (-441 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-311)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-5 *1 (-441 *3 *4 *5 *6)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-311)) (-4 *4 (-717))
- (-4 *5 (-756)) (-5 *1 (-441 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-311)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-5 *1 (-441 *3 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85))
- (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))))
+ (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85))
+ (-5 *1 (-441 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-311)) (-4 *5 (-717))
- (-5 *1 (-441 *4 *5 *6 *2)) (-4 *2 (-861 *4 *5 *6))))
+ (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-311)) (-4 *5 (-718))
+ (-5 *1 (-441 *4 *5 *6 *2)) (-4 *2 (-862 *4 *5 *6))))
((*1 *1 *1 *2)
- (-12 (-4 *3 (-311)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-441 *3 *4 *5 *2))
- (-4 *2 (-861 *3 *4 *5)))))
+ (-12 (-4 *3 (-311)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-441 *3 *4 *5 *2))
+ (-4 *2 (-862 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *5 *6)) (-4 *6 (-553 (-1088)))
- (-4 *4 (-311)) (-4 *5 (-717)) (-4 *6 (-756))
- (-5 *2 (-1078 (-583 (-857 *4)) (-583 (-248 (-857 *4)))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *6 (-554 (-1089)))
+ (-4 *4 (-311)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-5 *2 (-1079 (-584 (-858 *4)) (-584 (-248 (-858 *4)))))
(-5 *1 (-441 *4 *5 *6 *7)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-830)) (-5 *2 (-1183)) (-5 *1 (-167 *4))
+ (-12 (-5 *3 (-831)) (-5 *2 (-1184)) (-5 *1 (-167 *4))
(-4 *4
- (-13 (-756)
- (-10 -8 (-15 -3794 ((-1071) $ (-1088))) (-15 -3611 (*2 $))
- (-15 -1961 (*2 $)))))))
+ (-13 (-757)
+ (-10 -8 (-15 -3796 ((-1072) $ (-1089))) (-15 -3613 (*2 $))
+ (-15 -1962 (*2 $)))))))
((*1 *2 *1)
- (-12 (-5 *2 (-1183)) (-5 *1 (-167 *3))
+ (-12 (-5 *2 (-1184)) (-5 *1 (-167 *3))
(-4 *3
- (-13 (-756)
- (-10 -8 (-15 -3794 ((-1071) $ (-1088))) (-15 -3611 (*2 $))
- (-15 -1961 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-439)))))
+ (-13 (-757)
+ (-10 -8 (-15 -3796 ((-1072) $ (-1089))) (-15 -3613 (*2 $))
+ (-15 -1962 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-439)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *6 (-1153 *5))
- (-5 *2 (-1083 (-1083 *7))) (-5 *1 (-438 *5 *6 *4 *7)) (-4 *4 (-1153 *6)))))
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *6 (-1154 *5))
+ (-5 *2 (-1084 (-1084 *7))) (-5 *1 (-438 *5 *6 *4 *7)) (-4 *4 (-1154 *6)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-630 (-1083 *8)))
- (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-1153 *5)) (-5 *2 (-630 *6))
- (-5 *1 (-438 *5 *6 *7 *8)) (-4 *7 (-1153 *6)))))
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-631 (-1084 *8)))
+ (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-1154 *5)) (-5 *2 (-631 *6))
+ (-5 *1 (-438 *5 *6 *7 *8)) (-4 *7 (-1154 *6)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1083 *7))
- (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1153 *5)) (-5 *1 (-438 *5 *2 *6 *7))
- (-4 *6 (-1153 *2)))))
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1084 *7))
+ (-4 *5 (-962)) (-4 *7 (-962)) (-4 *2 (-1154 *5)) (-5 *1 (-438 *5 *2 *6 *7))
+ (-4 *6 (-1154 *2)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1083 *7)) (-4 *5 (-961)) (-4 *7 (-961))
- (-4 *2 (-1153 *5)) (-5 *1 (-438 *5 *2 *6 *7)) (-4 *6 (-1153 *2))))
+ (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1084 *7)) (-4 *5 (-962)) (-4 *7 (-962))
+ (-4 *2 (-1154 *5)) (-5 *1 (-438 *5 *2 *6 *7)) (-4 *6 (-1154 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *4 (-1153 *5))
- (-5 *2 (-1083 *7)) (-5 *1 (-438 *5 *4 *6 *7)) (-4 *6 (-1153 *4)))))
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *4 (-1154 *5))
+ (-5 *2 (-1084 *7)) (-5 *1 (-438 *5 *4 *6 *7)) (-4 *6 (-1154 *4)))))
(((*1 *2 *2 *2)
(-12
(-5 *2
- (-2 (|:| -2008 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3))))
- (-4 *3 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $))))) (-4 *4 (-1153 *3))
+ (-2 (|:| -2010 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3))))
+ (-4 *3 (-13 (-257) (-10 -8 (-15 -3967 ((-345 $) $))))) (-4 *4 (-1154 *3))
(-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $)))))
- (-4 *4 (-1153 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4)))))
+ (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-257) (-10 -8 (-15 -3967 ((-345 $) $)))))
+ (-4 *4 (-1154 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $)))))
- (-4 *4 (-1153 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4))))
+ (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-257) (-10 -8 (-15 -3967 ((-345 $) $)))))
+ (-4 *4 (-1154 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4))))
((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $)))))
- (-4 *4 (-1153 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4)))))
+ (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-257) (-10 -8 (-15 -3967 ((-345 $) $)))))
+ (-4 *4 (-1154 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-694)) (-4 *3 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $)))))
- (-4 *4 (-1153 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4)))))
+ (-12 (-5 *2 (-695)) (-4 *3 (-13 (-257) (-10 -8 (-15 -3967 ((-345 $) $)))))
+ (-4 *4 (-1154 *3)) (-5 *1 (-436 *3 *4 *5)) (-4 *5 (-350 *3 *4)))))
(((*1 *2 *3 *3 *2 *4)
- (-12 (-5 *3 (-630 *2)) (-5 *4 (-483))
- (-4 *2 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $))))) (-4 *5 (-1153 *2))
+ (-12 (-5 *3 (-631 *2)) (-5 *4 (-484))
+ (-4 *2 (-13 (-257) (-10 -8 (-15 -3967 ((-345 $) $))))) (-4 *5 (-1154 *2))
(-5 *1 (-436 *2 *5 *6)) (-4 *6 (-350 *2 *5)))))
(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-630 *2)) (-5 *4 (-694))
- (-4 *2 (-13 (-257) (-10 -8 (-15 -3965 ((-345 $) $))))) (-4 *5 (-1153 *2))
+ (-12 (-5 *3 (-631 *2)) (-5 *4 (-695))
+ (-4 *2 (-13 (-257) (-10 -8 (-15 -3967 ((-345 $) $))))) (-4 *5 (-1154 *2))
(-5 *1 (-436 *2 *5 *6)) (-4 *6 (-350 *2 *5)))))
(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-694)) (-4 *5 (-298)) (-4 *6 (-1153 *5))
+ (-12 (-5 *4 (-695)) (-4 *5 (-298)) (-4 *6 (-1154 *5))
(-5 *2
- (-583
- (-2 (|:| -2008 (-630 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-630 *6)))))
+ (-584
+ (-2 (|:| -2010 (-631 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-631 *6)))))
(-5 *1 (-435 *5 *6 *7))
(-5 *3
- (-2 (|:| -2008 (-630 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-630 *6))))
- (-4 *7 (-1153 *6)))))
+ (-2 (|:| -2010 (-631 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-631 *6))))
+ (-4 *7 (-1154 *6)))))
(((*1 *2 *1)
(-12
(-5 *2
- (-583
+ (-584
(-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
- (|:| |xpnt| (-483)))))
- (-5 *1 (-345 *3)) (-4 *3 (-494))))
+ (|:| |xpnt| (-484)))))
+ (-5 *1 (-345 *3)) (-4 *3 (-495))))
((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-694)) (-4 *3 (-298)) (-4 *5 (-1153 *3))
- (-5 *2 (-583 (-1083 *3))) (-5 *1 (-435 *3 *5 *6)) (-4 *6 (-1153 *5)))))
+ (-12 (-5 *4 (-695)) (-4 *3 (-298)) (-4 *5 (-1154 *3))
+ (-5 *2 (-584 (-1084 *3))) (-5 *1 (-435 *3 *5 *6)) (-4 *6 (-1154 *5)))))
(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-432)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-428)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-428)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1127))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1128))
(-4 *4 (-321 *3)) (-4 *5 (-321 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -3990)) (-4 *1 (-426 *3))
- (-4 *3 (-1127)))))
+ (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -3992)) (-4 *1 (-426 *3))
+ (-4 *3 (-1128)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3989)) (-4 *1 (-426 *4))
- (-4 *4 (-1127)) (-5 *2 (-85)))))
+ (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3991)) (-4 *1 (-426 *4))
+ (-4 *4 (-1128)) (-5 *2 (-85)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3989)) (-4 *1 (-426 *4))
- (-4 *4 (-1127)) (-5 *2 (-85)))))
+ (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3991)) (-4 *1 (-426 *4))
+ (-4 *4 (-1128)) (-5 *2 (-85)))))
(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -3989)) (-4 *1 (-426 *3)) (-4 *3 (-1127)) (-4 *3 (-1012))
- (-5 *2 (-694))))
+ (-12 (|has| *1 (-6 -3991)) (-4 *1 (-426 *3)) (-4 *3 (-1128)) (-4 *3 (-1013))
+ (-5 *2 (-695))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3989)) (-4 *1 (-426 *4))
- (-4 *4 (-1127)) (-5 *2 (-694)))))
-(((*1 *1 *2) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-424)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-483))) (-5 *2 (-483)) (-5 *1 (-423 *4))
- (-4 *4 (-1153 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1153 (-483))) (-5 *1 (-423 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1153 (-483))) (-5 *1 (-423 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-423 *2)) (-4 *2 (-1153 (-483))))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-421 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-583 (-785))) (-5 *1 (-420)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-444))) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-785))) (-5 *1 (-420)))))
+ (-12 (-5 *3 (-1 (-85) *4)) (|has| *1 (-6 -3991)) (-4 *1 (-426 *4))
+ (-4 *4 (-1128)) (-5 *2 (-695)))))
+(((*1 *1 *2) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-424)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-584 (-484))) (-5 *2 (-484)) (-5 *1 (-423 *4))
+ (-4 *4 (-1154 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1154 (-484))) (-5 *1 (-423 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1154 (-484))) (-5 *1 (-423 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-423 *2)) (-4 *2 (-1154 (-484))))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-421 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-584 (-786))) (-5 *1 (-420)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-444))) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-786))) (-5 *1 (-420)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-483))) (-5 *1 (-206 *3 *4)) (-14 *3 (-583 (-1088)))
- (-4 *4 (-961))))
+ (-12 (-5 *2 (-584 (-484))) (-5 *1 (-206 *3 *4)) (-14 *3 (-584 (-1089)))
+ (-4 *4 (-962))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-483))) (-14 *3 (-583 (-1088))) (-5 *1 (-391 *3 *4 *5))
- (-4 *4 (-961)) (-4 *5 (-196 (-3951 *3) (-694)))))
+ (-12 (-5 *2 (-584 (-484))) (-14 *3 (-584 (-1089))) (-5 *1 (-391 *3 *4 *5))
+ (-4 *4 (-962)) (-4 *5 (-196 (-3953 *3) (-695)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-483))) (-5 *1 (-418 *3 *4)) (-14 *3 (-583 (-1088)))
- (-4 *4 (-961)))))
-(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-483)) (-5 *2 (-85)) (-5 *1 (-417)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-417)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-773 *5))) (-14 *5 (-583 (-1088))) (-4 *6 (-389))
- (-5 *2 (-2 (|:| |dpolys| (-583 (-206 *5 *6))) (|:| |coords| (-583 (-483)))))
- (-5 *1 (-408 *5 *6 *7)) (-5 *3 (-583 (-206 *5 *6))) (-4 *7 (-389)))))
+ (-12 (-5 *2 (-584 (-484))) (-5 *1 (-418 *3 *4)) (-14 *3 (-584 (-1089)))
+ (-4 *4 (-962)))))
+(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-85)) (-5 *1 (-417)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-417)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-584 (-774 *5))) (-14 *5 (-584 (-1089))) (-4 *6 (-389))
+ (-5 *2 (-2 (|:| |dpolys| (-584 (-206 *5 *6))) (|:| |coords| (-584 (-484)))))
+ (-5 *1 (-408 *5 *6 *7)) (-5 *3 (-584 (-206 *5 *6))) (-4 *7 (-389)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-583 (-418 *4 *5))) (-5 *3 (-583 (-773 *4)))
- (-14 *4 (-583 (-1088))) (-4 *5 (-389)) (-5 *1 (-408 *4 *5 *6))
+ (|partial| -12 (-5 *2 (-584 (-418 *4 *5))) (-5 *3 (-584 (-774 *4)))
+ (-14 *4 (-584 (-1089))) (-4 *5 (-389)) (-5 *1 (-408 *4 *5 *6))
(-4 *6 (-389)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-773 *5))) (-14 *5 (-583 (-1088))) (-4 *6 (-389))
- (-5 *2 (-583 (-583 (-206 *5 *6)))) (-5 *1 (-408 *5 *6 *7))
- (-5 *3 (-583 (-206 *5 *6))) (-4 *7 (-389)))))
+ (-12 (-5 *4 (-584 (-774 *5))) (-14 *5 (-584 (-1089))) (-4 *6 (-389))
+ (-5 *2 (-584 (-584 (-206 *5 *6)))) (-5 *1 (-408 *5 *6 *7))
+ (-5 *3 (-584 (-206 *5 *6))) (-4 *7 (-389)))))
(((*1 *1) (-5 *1 (-405))))
(((*1 *1 *2 *3 *3 *4 *5)
- (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783)))
- (-5 *4 (-583 (-830))) (-5 *5 (-583 (-221))) (-5 *1 (-405))))
+ (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784)))
+ (-5 *4 (-584 (-831))) (-5 *5 (-584 (-221))) (-5 *1 (-405))))
((*1 *1 *2 *3 *3 *4)
- (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783)))
- (-5 *4 (-583 (-830))) (-5 *1 (-405))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-405))))
+ (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784)))
+ (-5 *4 (-584 (-831))) (-5 *1 (-405))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-405))))
((*1 *1 *1) (-5 *1 (-405))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-405)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-1000 (-327)))) (-5 *1 (-221))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-405)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-1001 (-327)))) (-5 *1 (-221))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-583 (-1000 (-327)))) (-5 *3 (-583 (-221))) (-5 *1 (-222))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1000 (-327)))) (-5 *1 (-405))))
- ((*1 *2 *1) (-12 (-5 *2 (-583 (-1000 (-327)))) (-5 *1 (-405)))))
+ (-12 (-5 *2 (-584 (-1001 (-327)))) (-5 *3 (-584 (-221))) (-5 *1 (-222))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1001 (-327)))) (-5 *1 (-405))))
+ ((*1 *2 *1) (-12 (-5 *2 (-584 (-1001 (-327)))) (-5 *1 (-405)))))
(((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-854 (-179))) (-5 *4 (-783)) (-5 *5 (-830)) (-5 *2 (-1183))
+ (-12 (-5 *3 (-855 (-179))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *2 (-1184))
(-5 *1 (-405))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-1183)) (-5 *1 (-405))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-1184)) (-5 *1 (-405))))
((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *4 (-783)) (-5 *5 (-830))
- (-5 *2 (-1183)) (-5 *1 (-405)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-1183)) (-5 *1 (-405)))))
+ (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *4 (-784)) (-5 *5 (-831))
+ (-5 *2 (-1184)) (-5 *1 (-405)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-1184)) (-5 *1 (-405)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783)))
+ (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784)))
(-5 *1 (-405)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-583 (-179)))
+ (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-584 (-179)))
(-5 *1 (-405)))))
(((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))
((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404))))
((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404)))))
(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404))))
@@ -11180,440 +11183,440 @@
(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404))))
((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-404)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-830)) (-5 *2 (-1177 (-1177 (-483)))) (-5 *1 (-403)))))
+ (-12 (-5 *3 (-831)) (-5 *2 (-1178 (-1178 (-484)))) (-5 *1 (-403)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1177 (-1177 (-483)))) (-5 *3 (-830)) (-5 *1 (-403)))))
+ (-12 (-5 *2 (-1178 (-1178 (-484)))) (-5 *3 (-831)) (-5 *1 (-403)))))
(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-756)) (-4 *5 (-717)) (-4 *6 (-494))
- (-4 *7 (-861 *6 *5 *3)) (-5 *1 (-399 *5 *3 *6 *7 *2))
+ (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-757)) (-4 *5 (-718)) (-4 *6 (-495))
+ (-4 *7 (-862 *6 *5 *3)) (-5 *1 (-399 *5 *3 *6 *7 *2))
(-4 *2
- (-13 (-950 (-347 (-483))) (-311)
- (-10 -8 (-15 -3940 ($ *7)) (-15 -2994 (*7 $)) (-15 -2993 (*7 $))))))))
+ (-13 (-951 (-347 (-484))) (-311)
+ (-10 -8 (-15 -3942 ($ *7)) (-15 -2996 (*7 $)) (-15 -2995 (*7 $))))))))
(((*1 *2 *1)
- (-12 (-14 *3 (-583 (-1088))) (-4 *4 (-146))
+ (-12 (-14 *3 (-584 (-1089))) (-4 *4 (-146))
(-14 *6
- (-1 (-85) (-2 (|:| -2396 *5) (|:| -2397 *2))
- (-2 (|:| -2396 *5) (|:| -2397 *2))))
- (-4 *2 (-196 (-3951 *3) (-694))) (-5 *1 (-398 *3 *4 *5 *2 *6 *7))
- (-4 *5 (-756)) (-4 *7 (-861 *4 *2 (-773 *3))))))
+ (-1 (-85) (-2 (|:| -2398 *5) (|:| -2399 *2))
+ (-2 (|:| -2398 *5) (|:| -2399 *2))))
+ (-4 *2 (-196 (-3953 *3) (-695))) (-5 *1 (-398 *3 *4 *5 *2 *6 *7))
+ (-4 *5 (-757)) (-4 *7 (-862 *4 *2 (-774 *3))))))
(((*1 *2 *1)
- (-12 (-14 *3 (-583 (-1088))) (-4 *4 (-146)) (-4 *5 (-196 (-3951 *3) (-694)))
+ (-12 (-14 *3 (-584 (-1089))) (-4 *4 (-146)) (-4 *5 (-196 (-3953 *3) (-695)))
(-14 *6
- (-1 (-85) (-2 (|:| -2396 *2) (|:| -2397 *5))
- (-2 (|:| -2396 *2) (|:| -2397 *5))))
- (-4 *2 (-756)) (-5 *1 (-398 *3 *4 *2 *5 *6 *7))
- (-4 *7 (-861 *4 *5 (-773 *3))))))
+ (-1 (-85) (-2 (|:| -2398 *2) (|:| -2399 *5))
+ (-2 (|:| -2398 *2) (|:| -2399 *5))))
+ (-4 *2 (-757)) (-5 *1 (-398 *3 *4 *2 *5 *6 *7))
+ (-4 *7 (-862 *4 *5 (-774 *3))))))
(((*1 *1 *2 *3 *4)
- (-12 (-14 *5 (-583 (-1088))) (-4 *2 (-146)) (-4 *4 (-196 (-3951 *5) (-694)))
+ (-12 (-14 *5 (-584 (-1089))) (-4 *2 (-146)) (-4 *4 (-196 (-3953 *5) (-695)))
(-14 *6
- (-1 (-85) (-2 (|:| -2396 *3) (|:| -2397 *4))
- (-2 (|:| -2396 *3) (|:| -2397 *4))))
- (-5 *1 (-398 *5 *2 *3 *4 *6 *7)) (-4 *3 (-756))
- (-4 *7 (-861 *2 *4 (-773 *5))))))
+ (-1 (-85) (-2 (|:| -2398 *3) (|:| -2399 *4))
+ (-2 (|:| -2398 *3) (|:| -2399 *4))))
+ (-5 *1 (-398 *5 *2 *3 *4 *6 *7)) (-4 *3 (-757))
+ (-4 *7 (-862 *2 *4 (-774 *5))))))
(((*1 *1 *2 *3 *1)
- (-12 (-14 *4 (-583 (-1088))) (-4 *2 (-146)) (-4 *3 (-196 (-3951 *4) (-694)))
+ (-12 (-14 *4 (-584 (-1089))) (-4 *2 (-146)) (-4 *3 (-196 (-3953 *4) (-695)))
(-14 *6
- (-1 (-85) (-2 (|:| -2396 *5) (|:| -2397 *3))
- (-2 (|:| -2396 *5) (|:| -2397 *3))))
- (-5 *1 (-398 *4 *2 *5 *3 *6 *7)) (-4 *5 (-756))
- (-4 *7 (-861 *2 *3 (-773 *4))))))
+ (-1 (-85) (-2 (|:| -2398 *5) (|:| -2399 *3))
+ (-2 (|:| -2398 *5) (|:| -2399 *3))))
+ (-5 *1 (-398 *4 *2 *5 *3 *6 *7)) (-4 *5 (-757))
+ (-4 *7 (-862 *2 *3 (-774 *4))))))
(((*1 *2 *3 *2 *4 *5)
- (-12 (-5 *2 (-583 *3)) (-5 *5 (-830)) (-4 *3 (-1153 *4)) (-4 *4 (-257))
+ (-12 (-5 *2 (-584 *3)) (-5 *5 (-831)) (-4 *3 (-1154 *4)) (-4 *4 (-257))
(-5 *1 (-397 *4 *3)))))
(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *6 (-830)) (-4 *5 (-257)) (-4 *3 (-1153 *5))
- (-5 *2 (-2 (|:| |plist| (-583 *3)) (|:| |modulo| *5))) (-5 *1 (-397 *5 *3))
- (-5 *4 (-583 *3)))))
+ (-12 (-5 *6 (-831)) (-4 *5 (-257)) (-4 *3 (-1154 *5))
+ (-5 *2 (-2 (|:| |plist| (-584 *3)) (|:| |modulo| *5))) (-5 *1 (-397 *5 *3))
+ (-5 *4 (-584 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 *5)) (-4 *5 (-1153 *3)) (-4 *3 (-257)) (-5 *2 (-85))
+ (-12 (-5 *4 (-584 *5)) (-4 *5 (-1154 *3)) (-4 *3 (-257)) (-5 *2 (-85))
(-5 *1 (-392 *3 *5)))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1177 (-583 *3))) (-4 *4 (-257)) (-5 *2 (-583 *3))
- (-5 *1 (-392 *4 *3)) (-4 *3 (-1153 *4)))))
+ (|partial| -12 (-5 *5 (-1178 (-584 *3))) (-4 *4 (-257)) (-5 *2 (-584 *3))
+ (-5 *1 (-392 *4 *3)) (-4 *3 (-1154 *4)))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-694)) (-4 *4 (-257)) (-4 *6 (-1153 *4))
- (-5 *2 (-1177 (-583 *6))) (-5 *1 (-392 *4 *6)) (-5 *5 (-583 *6)))))
+ (|partial| -12 (-5 *3 (-695)) (-4 *4 (-257)) (-4 *6 (-1154 *4))
+ (-5 *2 (-1178 (-584 *6))) (-5 *1 (-392 *4 *6)) (-5 *5 (-584 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-257)) (-5 *2 (-694))
+ (-12 (-5 *4 (-584 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-257)) (-5 *2 (-695))
(-5 *1 (-392 *5 *3)))))
(((*1 *2)
- (|partial| -12 (-4 *3 (-494)) (-4 *3 (-146))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -2008 (-583 *1)))) (-4 *1 (-315 *3))))
+ (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -2010 (-584 *1)))) (-4 *1 (-315 *3))))
((*1 *2)
(|partial| -12
(-5 *2
(-2 (|:| |particular| (-390 *3 *4 *5 *6))
- (|:| -2008 (-583 (-390 *3 *4 *5 *6)))))
- (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830))
- (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))))
+ (|:| -2010 (-584 (-390 *3 *4 *5 *6)))))
+ (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831))
+ (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))))
(((*1 *2)
- (|partial| -12 (-4 *3 (-494)) (-4 *3 (-146))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -2008 (-583 *1)))) (-4 *1 (-315 *3))))
+ (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -2010 (-584 *1)))) (-4 *1 (-315 *3))))
((*1 *2)
(|partial| -12
(-5 *2
(-2 (|:| |particular| (-390 *3 *4 *5 *6))
- (|:| -2008 (-583 (-390 *3 *4 *5 *6)))))
- (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830))
- (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3))))))
+ (|:| -2010 (-584 (-390 *3 *4 *5 *6)))))
+ (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831))
+ (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3))))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1177 (-1088))) (-5 *3 (-1177 (-390 *4 *5 *6 *7)))
- (-5 *1 (-390 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-830))
- (-14 *6 (-583 (-1088))) (-14 *7 (-1177 (-630 *4)))))
+ (-12 (-5 *2 (-1178 (-1089))) (-5 *3 (-1178 (-390 *4 *5 *6 *7)))
+ (-5 *1 (-390 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-831))
+ (-14 *6 (-584 (-1089))) (-14 *7 (-1178 (-631 *4)))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1088)) (-5 *3 (-1177 (-390 *4 *5 *6 *7)))
- (-5 *1 (-390 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-830)) (-14 *6 (-583 *2))
- (-14 *7 (-1177 (-630 *4)))))
+ (-12 (-5 *2 (-1089)) (-5 *3 (-1178 (-390 *4 *5 *6 *7)))
+ (-5 *1 (-390 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-831)) (-14 *6 (-584 *2))
+ (-14 *7 (-1178 (-631 *4)))))
((*1 *1 *2)
- (-12 (-5 *2 (-1177 (-390 *3 *4 *5 *6))) (-5 *1 (-390 *3 *4 *5 *6))
- (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088)))
- (-14 *6 (-1177 (-630 *3)))))
+ (-12 (-5 *2 (-1178 (-390 *3 *4 *5 *6))) (-5 *1 (-390 *3 *4 *5 *6))
+ (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089)))
+ (-14 *6 (-1178 (-631 *3)))))
((*1 *1 *2)
- (-12 (-5 *2 (-1177 (-1088))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146))
- (-14 *4 (-830)) (-14 *5 (-583 (-1088))) (-14 *6 (-1177 (-630 *3)))))
+ (-12 (-5 *2 (-1178 (-1089))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146))
+ (-14 *4 (-831)) (-14 *5 (-584 (-1089))) (-14 *6 (-1178 (-631 *3)))))
((*1 *1 *2)
- (-12 (-5 *2 (-1088)) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146))
- (-14 *4 (-830)) (-14 *5 (-583 *2)) (-14 *6 (-1177 (-630 *3)))))
+ (-12 (-5 *2 (-1089)) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-146))
+ (-14 *4 (-831)) (-14 *5 (-584 *2)) (-14 *6 (-1178 (-631 *3)))))
((*1 *1)
- (-12 (-5 *1 (-390 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-830))
- (-14 *4 (-583 (-1088))) (-14 *5 (-1177 (-630 *2))))))
+ (-12 (-5 *1 (-390 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-831))
+ (-14 *4 (-584 (-1089))) (-14 *5 (-1178 (-631 *2))))))
(((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-1083 (-857 *4))) (-5 *1 (-357 *3 *4))
+ (-12 (-4 *4 (-146)) (-5 *2 (-1084 (-858 *4))) (-5 *1 (-357 *3 *4))
(-4 *3 (-358 *4))))
((*1 *2)
(-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-4 *3 (-311))
- (-5 *2 (-1083 (-857 *3)))))
+ (-5 *2 (-1084 (-858 *3)))))
((*1 *2)
- (-12 (-5 *2 (-1083 (-347 (-857 *3)))) (-5 *1 (-390 *3 *4 *5 *6))
- (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088)))
- (-14 *6 (-1177 (-630 *3))))))
+ (-12 (-5 *2 (-1084 (-347 (-858 *3)))) (-5 *1 (-390 *3 *4 *5 *6))
+ (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089)))
+ (-14 *6 (-1178 (-631 *3))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1083 (-347 (-857 *3)))) (-5 *1 (-390 *3 *4 *5 *6))
- (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088)))
- (-14 *6 (-1177 (-630 *3))))))
+ (-12 (-5 *2 (-1084 (-347 (-858 *3)))) (-5 *1 (-390 *3 *4 *5 *6))
+ (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089)))
+ (-14 *6 (-1178 (-631 *3))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494))
- (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088)))
- (-14 *6 (-1177 (-630 *3))))))
+ (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495))
+ (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089)))
+ (-14 *6 (-1178 (-631 *3))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494))
- (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088)))
- (-14 *6 (-1177 (-630 *3))))))
+ (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495))
+ (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089)))
+ (-14 *6 (-1178 (-631 *3))))))
(((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-1083 (-857 *4))) (-5 *1 (-357 *3 *4))
+ (-12 (-4 *4 (-146)) (-5 *2 (-1084 (-858 *4))) (-5 *1 (-357 *3 *4))
(-4 *3 (-358 *4))))
((*1 *2)
(-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-4 *3 (-311))
- (-5 *2 (-1083 (-857 *3)))))
+ (-5 *2 (-1084 (-858 *3)))))
((*1 *2)
- (-12 (-5 *2 (-1083 (-347 (-857 *3)))) (-5 *1 (-390 *3 *4 *5 *6))
- (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088)))
- (-14 *6 (-1177 (-630 *3))))))
+ (-12 (-5 *2 (-1084 (-347 (-858 *3)))) (-5 *1 (-390 *3 *4 *5 *6))
+ (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089)))
+ (-14 *6 (-1178 (-631 *3))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1083 (-347 (-857 *3)))) (-5 *1 (-390 *3 *4 *5 *6))
- (-4 *3 (-494)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088)))
- (-14 *6 (-1177 (-630 *3))))))
+ (-12 (-5 *2 (-1084 (-347 (-858 *3)))) (-5 *1 (-390 *3 *4 *5 *6))
+ (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089)))
+ (-14 *6 (-1178 (-631 *3))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494))
- (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088)))
- (-14 *6 (-1177 (-630 *3))))))
+ (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495))
+ (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089)))
+ (-14 *6 (-1178 (-631 *3))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494))
- (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088)))
- (-14 *6 (-1177 (-630 *3))))))
+ (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495))
+ (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089)))
+ (-14 *6 (-1178 (-631 *3))))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494))
- (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088)))
- (-14 *6 (-1177 (-630 *3))))))
+ (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495))
+ (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089)))
+ (-14 *6 (-1178 (-631 *3))))))
(((*1 *2)
- (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494))
- (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088)))
- (-14 *6 (-1177 (-630 *3))))))
+ (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495))
+ (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089)))
+ (-14 *6 (-1178 (-631 *3))))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494))
- (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088)))
- (-14 *6 (-1177 (-630 *3))))))
+ (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495))
+ (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089)))
+ (-14 *6 (-1178 (-631 *3))))))
(((*1 *2)
- (-12 (-5 *2 (-347 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494))
- (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088)))
- (-14 *6 (-1177 (-630 *3))))))
+ (-12 (-5 *2 (-347 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495))
+ (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089)))
+ (-14 *6 (-1178 (-631 *3))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146))
- (-5 *2 (-583 (-857 *4)))))
+ (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146))
+ (-5 *2 (-584 (-858 *4)))))
((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-583 (-857 *4))) (-5 *1 (-357 *3 *4))
+ (-12 (-4 *4 (-146)) (-5 *2 (-584 (-858 *4))) (-5 *1 (-357 *3 *4))
(-4 *3 (-358 *4))))
- ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-583 (-857 *3)))))
+ ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-584 (-858 *3)))))
((*1 *2)
- (-12 (-5 *2 (-583 (-857 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-494))
- (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1088)))
- (-14 *6 (-1177 (-630 *3)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1177 (-390 *4 *5 *6 *7))) (-5 *2 (-583 (-857 *4)))
- (-5 *1 (-390 *4 *5 *6 *7)) (-4 *4 (-494)) (-4 *4 (-146)) (-14 *5 (-830))
- (-14 *6 (-583 (-1088))) (-14 *7 (-1177 (-630 *4))))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-389))))
+ (-12 (-5 *2 (-584 (-858 *3))) (-5 *1 (-390 *3 *4 *5 *6)) (-4 *3 (-495))
+ (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1089)))
+ (-14 *6 (-1178 (-631 *3)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1178 (-390 *4 *5 *6 *7))) (-5 *2 (-584 (-858 *4)))
+ (-5 *1 (-390 *4 *5 *6 *7)) (-4 *4 (-495)) (-4 *4 (-146)) (-14 *5 (-831))
+ (-14 *6 (-584 (-1089))) (-14 *7 (-1178 (-631 *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-389))))
((*1 *1 *1 *1) (-4 *1 (-389))))
(((*1 *2 *3)
- (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-694))
- (-5 *1 (-387 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))))
+ (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-695))
+ (-5 *1 (-387 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-2 (|:| |totdeg| (-694)) (|:| -2000 *4))) (-5 *5 (-694))
- (-4 *4 (-861 *6 *7 *8)) (-4 *6 (-389)) (-4 *7 (-717)) (-4 *8 (-756))
+ (-12 (-5 *3 (-2 (|:| |totdeg| (-695)) (|:| -2002 *4))) (-5 *5 (-695))
+ (-4 *4 (-862 *6 *7 *8)) (-4 *6 (-389)) (-4 *7 (-718)) (-4 *8 (-757))
(-5 *2
(-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4)))
(-5 *1 (-387 *6 *7 *8 *4)))))
(((*1 *2 *3 *3)
(-12
(-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *7)
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *7)
(|:| |polj| *7)))
- (-4 *5 (-717)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-389)) (-4 *6 (-756))
+ (-4 *5 (-718)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-389)) (-4 *6 (-757))
(-5 *2 (-85)) (-5 *1 (-387 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-483)) (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756))
- (-5 *2 (-1183)) (-5 *1 (-387 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))))
+ (-12 (-5 *3 (-484)) (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757))
+ (-5 *2 (-1184)) (-5 *1 (-387 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *2 (-1183)) (-5 *1 (-387 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *2 (-1184)) (-5 *1 (-387 *4 *5 *6 *7)))))
(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
- (-12 (-5 *2 (-483))
+ (-12 (-5 *2 (-484))
(-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-694)) (|:| |poli| *4)
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-695)) (|:| |poli| *4)
(|:| |polj| *4)))
- (-4 *6 (-717)) (-4 *4 (-861 *5 *6 *7)) (-4 *5 (-389)) (-4 *7 (-756))
+ (-4 *6 (-718)) (-4 *4 (-862 *5 *6 *7)) (-4 *5 (-389)) (-4 *7 (-757))
(-5 *1 (-387 *5 *6 *7 *4)))))
(((*1 *2 *3 *4 *4 *2 *2 *2)
- (-12 (-5 *2 (-483))
+ (-12 (-5 *2 (-484))
(-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-694)) (|:| |poli| *4)
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-695)) (|:| |poli| *4)
(|:| |polj| *4)))
- (-4 *6 (-717)) (-4 *4 (-861 *5 *6 *7)) (-4 *5 (-389)) (-4 *7 (-756))
+ (-4 *6 (-718)) (-4 *4 (-862 *5 *6 *7)) (-4 *5 (-389)) (-4 *7 (-757))
(-5 *1 (-387 *5 *6 *7 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1183))
- (-5 *1 (-387 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))))
+ (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1184))
+ (-5 *1 (-387 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-389)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-483))
- (-5 *1 (-387 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))))
+ (-12 (-4 *4 (-389)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-484))
+ (-5 *1 (-387 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-389)) (-4 *4 (-717))
- (-4 *5 (-756)) (-5 *1 (-387 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-389)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-5 *1 (-387 *3 *4 *5 *6)))))
(((*1 *2 *2 *2)
(-12
(-5 *2
- (-583
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-694)) (|:| |poli| *6)
+ (-584
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-695)) (|:| |poli| *6)
(|:| |polj| *6))))
- (-4 *4 (-717)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-389)) (-4 *5 (-756))
+ (-4 *4 (-718)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-389)) (-4 *5 (-757))
(-5 *1 (-387 *3 *4 *5 *6)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *2)
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *2)
(|:| |polj| *2)))
- (-4 *5 (-717)) (-4 *2 (-861 *4 *5 *6)) (-5 *1 (-387 *4 *5 *6 *2))
- (-4 *4 (-389)) (-4 *6 (-756)))))
+ (-4 *5 (-718)) (-4 *2 (-862 *4 *5 *6)) (-5 *1 (-387 *4 *5 *6 *2))
+ (-4 *4 (-389)) (-4 *6 (-757)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-583 (-2 (|:| |totdeg| (-694)) (|:| -2000 *3)))) (-5 *4 (-694))
- (-4 *3 (-861 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-717)) (-4 *7 (-756))
+ (-12 (-5 *2 (-584 (-2 (|:| |totdeg| (-695)) (|:| -2002 *3)))) (-5 *4 (-695))
+ (-4 *3 (-862 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-718)) (-4 *7 (-757))
(-5 *1 (-387 *5 *6 *7 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-389)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-387 *3 *4 *5 *2))
- (-4 *2 (-861 *3 *4 *5)))))
+ (-12 (-4 *3 (-389)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-387 *3 *4 *5 *2))
+ (-4 *2 (-862 *3 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 *3)) (-4 *3 (-861 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-717))
- (-4 *7 (-756)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
+ (-12 (-5 *4 (-584 *3)) (-4 *3 (-862 *5 *6 *7)) (-4 *5 (-389)) (-4 *6 (-718))
+ (-4 *7 (-757)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
(-5 *1 (-387 *5 *6 *7 *3)))))
(((*1 *2 *3 *2)
(-12
(-5 *2
- (-583
- (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-694)) (|:| |poli| *6)
+ (-584
+ (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-695)) (|:| |poli| *6)
(|:| |polj| *6))))
- (-4 *3 (-717)) (-4 *6 (-861 *4 *3 *5)) (-4 *4 (-389)) (-4 *5 (-756))
+ (-4 *3 (-718)) (-4 *6 (-862 *4 *3 *5)) (-4 *4 (-389)) (-4 *5 (-757))
(-5 *1 (-387 *4 *3 *5 *6)))))
(((*1 *2 *2)
(-12
(-5 *2
- (-583
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-694)) (|:| |poli| *6)
+ (-584
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-695)) (|:| |poli| *6)
(|:| |polj| *6))))
- (-4 *4 (-717)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-389)) (-4 *5 (-756))
+ (-4 *4 (-718)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-389)) (-4 *5 (-757))
(-5 *1 (-387 *3 *4 *5 *6)))))
(((*1 *2 *3 *2)
(-12
(-5 *2
- (-583
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *3)
+ (-584
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *3)
(|:| |polj| *3))))
- (-4 *5 (-717)) (-4 *3 (-861 *4 *5 *6)) (-4 *4 (-389)) (-4 *6 (-756))
+ (-4 *5 (-718)) (-4 *3 (-862 *4 *5 *6)) (-4 *4 (-389)) (-4 *6 (-757))
(-5 *1 (-387 *4 *5 *6 *3)))))
(((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *4 (-389)) (-4 *3 (-717)) (-4 *5 (-756)) (-5 *2 (-85))
- (-5 *1 (-387 *4 *3 *5 *6)) (-4 *6 (-861 *4 *3 *5)))))
+ (-12 (-4 *4 (-389)) (-4 *3 (-718)) (-4 *5 (-757)) (-5 *2 (-85))
+ (-5 *1 (-387 *4 *3 *5 *6)) (-4 *6 (-862 *4 *3 *5)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-389)) (-4 *3 (-717)) (-4 *5 (-756)) (-5 *2 (-85))
- (-5 *1 (-387 *4 *3 *5 *6)) (-4 *6 (-861 *4 *3 *5)))))
+ (-12 (-4 *4 (-389)) (-4 *3 (-718)) (-4 *5 (-757)) (-5 *2 (-85))
+ (-5 *1 (-387 *4 *3 *5 *6)) (-4 *6 (-862 *4 *3 *5)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *7)
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *7)
(|:| |polj| *7)))
- (-4 *5 (-717)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-389)) (-4 *6 (-756))
+ (-4 *5 (-718)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-389)) (-4 *6 (-757))
(-5 *2 (-85)) (-5 *1 (-387 *4 *5 *6 *7)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-583 *7)) (-5 *3 (-483)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-389))
- (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-584 *7)) (-5 *3 (-484)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-389))
+ (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *7)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *2)))))
+ (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *2)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *2)))))
+ (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-389)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *2)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-386 *4 *5 *6 *7))
- (-5 *3 (-583 *7))))
+ (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-386 *4 *5 *6 *7))
+ (-5 *3 (-584 *7))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-717)) (-4 *7 (-756))
- (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-386 *5 *6 *7 *8))
- (-5 *3 (-583 *8))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-718)) (-4 *7 (-757))
+ (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-386 *5 *6 *7 *8))
+ (-5 *3 (-584 *8))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-386 *4 *5 *6 *7))
- (-5 *3 (-583 *7))))
+ (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-386 *4 *5 *6 *7))
+ (-5 *3 (-584 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-717)) (-4 *7 (-756))
- (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-386 *5 *6 *7 *8))
- (-5 *3 (-583 *8)))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-718)) (-4 *7 (-757))
+ (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-386 *5 *6 *7 *8))
+ (-5 *3 (-584 *8)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-717)) (-4 *6 (-756))
- (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-386 *4 *5 *6 *7))
- (-5 *3 (-583 *7))))
+ (-12 (-4 *4 (-13 (-257) (-120))) (-4 *5 (-718)) (-4 *6 (-757))
+ (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-386 *4 *5 *6 *7))
+ (-5 *3 (-584 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-717)) (-4 *7 (-756))
- (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-386 *5 *6 *7 *8))
- (-5 *3 (-583 *8)))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-13 (-257) (-120))) (-4 *6 (-718)) (-4 *7 (-757))
+ (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-386 *5 *6 *7 *8))
+ (-5 *3 (-584 *8)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-257)) (-4 *4 (-717))
- (-4 *5 (-756)) (-5 *1 (-385 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-257)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-5 *1 (-385 *3 *4 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-583 *7)) (-5 *3 (-1071)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-257))
- (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-385 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-584 *7)) (-5 *3 (-1072)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-257))
+ (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-385 *4 *5 *6 *7))))
((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-583 *7)) (-5 *3 (-1071)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-257))
- (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-385 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-584 *7)) (-5 *3 (-1072)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-257))
+ (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-385 *4 *5 *6 *7)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-257)) (-4 *5 (-717))
- (-4 *6 (-756)) (-5 *1 (-385 *4 *5 *6 *2)))))
-(((*1 *2 *3) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-383)) (-5 *3 (-483)))))
+ (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-257)) (-4 *5 (-718))
+ (-4 *6 (-757)) (-5 *1 (-385 *4 *5 *6 *2)))))
+(((*1 *2 *3) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-383)) (-5 *3 (-484)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-694)) (-5 *1 (-382 *3)) (-4 *3 (-344)) (-4 *3 (-961))))
- ((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-382 *3)) (-4 *3 (-344)) (-4 *3 (-961)))))
+ (-12 (-5 *2 (-695)) (-5 *1 (-382 *3)) (-4 *3 (-344)) (-4 *3 (-962))))
+ ((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-382 *3)) (-4 *3 (-344)) (-4 *3 (-962)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-483)) (-5 *1 (-382 *3)) (-4 *3 (-344)) (-4 *3 (-961)))))
+ (-12 (-5 *2 (-484)) (-5 *1 (-382 *3)) (-4 *3 (-344)) (-4 *3 (-962)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-483)) (-5 *1 (-382 *3)) (-4 *3 (-344)) (-4 *3 (-961)))))
-(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-382 *3)) (-4 *3 (-961)))))
-(((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-382 *3)) (-4 *3 (-961)))))
-(((*1 *2 *2) (-12 (-5 *2 (-694)) (-5 *1 (-382 *3)) (-4 *3 (-961))))
- ((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-382 *3)) (-4 *3 (-961)))))
+ (-12 (-5 *2 (-484)) (-5 *1 (-382 *3)) (-4 *3 (-344)) (-4 *3 (-962)))))
+(((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-382 *3)) (-4 *3 (-962)))))
+(((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-382 *3)) (-4 *3 (-962)))))
+(((*1 *2 *2) (-12 (-5 *2 (-695)) (-5 *1 (-382 *3)) (-4 *3 (-962))))
+ ((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-382 *3)) (-4 *3 (-962)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-694)) (-5 *4 (-483)) (-5 *1 (-382 *2)) (-4 *2 (-961)))))
+ (-12 (-5 *3 (-695)) (-5 *4 (-484)) (-5 *1 (-382 *2)) (-4 *2 (-962)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-830)) (-5 *4 (-345 *6)) (-4 *6 (-1153 *5)) (-4 *5 (-961))
- (-5 *2 (-583 *6)) (-5 *1 (-381 *5 *6)))))
+ (-12 (-5 *3 (-831)) (-5 *4 (-345 *6)) (-4 *6 (-1154 *5)) (-4 *5 (-962))
+ (-5 *2 (-584 *6)) (-5 *1 (-381 *5 *6)))))
(((*1 *2 *3 *2)
- (|partial| -12 (-5 *3 (-830)) (-5 *1 (-379 *2)) (-4 *2 (-1153 (-483)))))
+ (|partial| -12 (-5 *3 (-831)) (-5 *1 (-379 *2)) (-4 *2 (-1154 (-484)))))
((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-830)) (-5 *4 (-694)) (-5 *1 (-379 *2))
- (-4 *2 (-1153 (-483)))))
+ (|partial| -12 (-5 *3 (-831)) (-5 *4 (-695)) (-5 *1 (-379 *2))
+ (-4 *2 (-1154 (-484)))))
((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *1 (-379 *2))
- (-4 *2 (-1153 (-483)))))
+ (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *1 (-379 *2))
+ (-4 *2 (-1154 (-484)))))
((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *5 (-694))
- (-5 *1 (-379 *2)) (-4 *2 (-1153 (-483)))))
+ (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *5 (-695))
+ (-5 *1 (-379 *2)) (-4 *2 (-1154 (-484)))))
((*1 *2 *3 *2 *4 *5 *6)
- (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *5 (-694))
- (-5 *6 (-85)) (-5 *1 (-379 *2)) (-4 *2 (-1153 (-483)))))
+ (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *5 (-695))
+ (-5 *6 (-85)) (-5 *1 (-379 *2)) (-4 *2 (-1154 (-484)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-830)) (-5 *4 (-345 *2)) (-4 *2 (-1153 *5)) (-5 *1 (-381 *5 *2))
- (-4 *5 (-961)))))
+ (-12 (-5 *3 (-831)) (-5 *4 (-345 *2)) (-4 *2 (-1154 *5)) (-5 *1 (-381 *5 *2))
+ (-4 *5 (-962)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-2 (|:| -3726 *4) (|:| -3942 (-483)))))
- (-4 *4 (-1153 (-483))) (-5 *2 (-675 (-694))) (-5 *1 (-379 *4))))
+ (-12 (-5 *3 (-584 (-2 (|:| -3728 *4) (|:| -3944 (-484)))))
+ (-4 *4 (-1154 (-484))) (-5 *2 (-676 (-695))) (-5 *1 (-379 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-345 *5)) (-4 *5 (-1153 *4)) (-4 *4 (-961))
- (-5 *2 (-675 (-694))) (-5 *1 (-381 *4 *5)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-381 *3 *2)) (-4 *2 (-1153 *3)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-381 *3 *2)) (-4 *2 (-1153 *3)))))
+ (-12 (-5 *3 (-345 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-962))
+ (-5 *2 (-676 (-695))) (-5 *1 (-381 *4 *5)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-962)) (-5 *1 (-381 *3 *2)) (-4 *2 (-1154 *3)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-962)) (-5 *1 (-381 *3 *2)) (-4 *2 (-1154 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-961)) (-4 *2 (-13 (-344) (-950 *4) (-311) (-1113) (-239)))
- (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1153 *4)))))
+ (-12 (-4 *4 (-962)) (-4 *2 (-13 (-344) (-951 *4) (-311) (-1114) (-239)))
+ (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1154 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-961)) (-4 *2 (-13 (-344) (-950 *4) (-311) (-1113) (-239)))
- (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1153 *4)))))
+ (-12 (-4 *4 (-962)) (-4 *2 (-13 (-344) (-951 *4) (-311) (-1114) (-239)))
+ (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1154 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-694)) (-4 *5 (-961)) (-5 *2 (-483)) (-5 *1 (-380 *5 *3 *6))
- (-4 *3 (-1153 *5)) (-4 *6 (-13 (-344) (-950 *5) (-311) (-1113) (-239)))))
+ (-12 (-5 *4 (-695)) (-4 *5 (-962)) (-5 *2 (-484)) (-5 *1 (-380 *5 *3 *6))
+ (-4 *3 (-1154 *5)) (-4 *6 (-13 (-344) (-951 *5) (-311) (-1114) (-239)))))
((*1 *2 *3)
- (-12 (-4 *4 (-961)) (-5 *2 (-483)) (-5 *1 (-380 *4 *3 *5)) (-4 *3 (-1153 *4))
- (-4 *5 (-13 (-344) (-950 *4) (-311) (-1113) (-239))))))
+ (-12 (-4 *4 (-962)) (-5 *2 (-484)) (-5 *1 (-380 *4 *3 *5)) (-4 *3 (-1154 *4))
+ (-4 *5 (-13 (-344) (-951 *4) (-311) (-1114) (-239))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-961)) (-5 *2 (-483)) (-5 *1 (-380 *4 *3 *5)) (-4 *3 (-1153 *4))
- (-4 *5 (-13 (-344) (-950 *4) (-311) (-1113) (-239))))))
+ (-12 (-4 *4 (-962)) (-5 *2 (-484)) (-5 *1 (-380 *4 *3 *5)) (-4 *3 (-1154 *4))
+ (-4 *5 (-13 (-344) (-951 *4) (-311) (-1114) (-239))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-961)) (-4 *2 (-13 (-344) (-950 *4) (-311) (-1113) (-239)))
- (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1153 *4))))
+ (-12 (-4 *4 (-962)) (-4 *2 (-13 (-344) (-951 *4) (-311) (-1114) (-239)))
+ (-5 *1 (-380 *4 *3 *2)) (-4 *3 (-1154 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-830)) (-4 *5 (-961))
- (-4 *2 (-13 (-344) (-950 *5) (-311) (-1113) (-239))) (-5 *1 (-380 *5 *3 *2))
- (-4 *3 (-1153 *5)))))
+ (-12 (-5 *4 (-831)) (-4 *5 (-962))
+ (-4 *2 (-13 (-344) (-951 *5) (-311) (-1114) (-239))) (-5 *1 (-380 *5 *3 *2))
+ (-4 *3 (-1154 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-961)) (-5 *2 (-483)) (-5 *1 (-380 *4 *3 *5)) (-4 *3 (-1153 *4))
- (-4 *5 (-13 (-344) (-950 *4) (-311) (-1113) (-239))))))
+ (-12 (-4 *4 (-962)) (-5 *2 (-484)) (-5 *1 (-380 *4 *3 *5)) (-4 *3 (-1154 *4))
+ (-4 *5 (-13 (-344) (-951 *4) (-311) (-1114) (-239))))))
(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-85)) (-5 *5 (-1008 (-694))) (-5 *6 (-694))
- (-5 *2
- (-2 (|:| |contp| (-483))
- (|:| -1776 (-583 (-2 (|:| |irr| *3) (|:| -2391 (-483)))))))
- (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))))
-(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))))
-(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))))
-(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))))
-(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))))
-(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))))
-(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))))
-(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -2574 (-483)) (|:| -1776 (-583 *3)))) (-5 *1 (-379 *3))
- (-4 *3 (-1153 (-483))))))
-(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-345 *3)) (-4 *3 (-494))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-583 (-2 (|:| -3726 *4) (|:| -3942 (-483)))))
- (-4 *4 (-1153 (-483))) (-5 *2 (-694)) (-5 *1 (-379 *4)))))
-(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483)))))
- ((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))))
-(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483)))))
- ((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-379 *3)) (-4 *3 (-1153 (-483))))))
+ (-12 (-5 *4 (-85)) (-5 *5 (-1009 (-695))) (-5 *6 (-695))
+ (-5 *2
+ (-2 (|:| |contp| (-484))
+ (|:| -1777 (-584 (-2 (|:| |irr| *3) (|:| -2393 (-484)))))))
+ (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))))
+(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))))
+(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))))
+(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))))
+(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))))
+(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))))
+(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))))
+(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -2576 (-484)) (|:| -1777 (-584 *3)))) (-5 *1 (-379 *3))
+ (-4 *3 (-1154 (-484))))))
+(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-345 *3)) (-4 *3 (-495))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-584 (-2 (|:| -3728 *4) (|:| -3944 (-484)))))
+ (-4 *4 (-1154 (-484))) (-5 *2 (-695)) (-5 *1 (-379 *4)))))
+(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))))
+(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-379 *3)) (-4 *3 (-1154 (-484))))))
(((*1 *1 *2 *3)
(-12
(-5 *3
- (-583
+ (-584
(-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
- (|:| |xpnt| (-483)))))
- (-4 *2 (-494)) (-5 *1 (-345 *2))))
+ (|:| |xpnt| (-484)))))
+ (-4 *2 (-495)) (-5 *1 (-345 *2))))
((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |contp| (-483))
- (|:| -1776 (-583 (-2 (|:| |irr| *4) (|:| -2391 (-483)))))))
- (-4 *4 (-1153 (-483))) (-5 *2 (-345 *4)) (-5 *1 (-379 *4)))))
+ (-2 (|:| |contp| (-484))
+ (|:| -1777 (-584 (-2 (|:| |irr| *4) (|:| -2393 (-484)))))))
+ (-4 *4 (-1154 (-484))) (-5 *2 (-345 *4)) (-5 *1 (-379 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-3 (|:| |fst| (-374)) (|:| -3904 "void"))) (-5 *1 (-376)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-857 (-483)))) (-5 *1 (-376)))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-374)) (|:| -3906 "void"))) (-5 *1 (-376)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-858 (-484)))) (-5 *1 (-376)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-376)))))
(((*1 *1) (-5 *1 (-376))))
(((*1 *1) (-5 *1 (-376))))
@@ -11623,319 +11626,319 @@
(((*1 *1) (-5 *1 (-376))))
(((*1 *1) (-5 *1 (-376))))
(((*1 *2 *3)
- (|partial| -12 (-4 *5 (-950 (-48))) (-4 *4 (-13 (-494) (-950 (-483))))
- (-4 *5 (-361 *4)) (-5 *2 (-345 (-1083 (-48)))) (-5 *1 (-375 *4 *5 *3))
- (-4 *3 (-1153 *5)))))
+ (|partial| -12 (-4 *5 (-951 (-48))) (-4 *4 (-13 (-495) (-951 (-484))))
+ (-4 *5 (-361 *4)) (-5 *2 (-345 (-1084 (-48)))) (-5 *1 (-375 *4 *5 *3))
+ (-4 *3 (-1154 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-494) (-950 (-483)))) (-4 *5 (-361 *4))
+ (-12 (-4 *4 (-13 (-495) (-951 (-484)))) (-4 *5 (-361 *4))
(-5 *2
- (-3 (|:| |overq| (-1083 (-347 (-483)))) (|:| |overan| (-1083 (-48)))
- (|:| -2635 (-85))))
- (-5 *1 (-375 *4 *5 *3)) (-4 *3 (-1153 *5)))))
+ (-3 (|:| |overq| (-1084 (-347 (-484)))) (|:| |overan| (-1084 (-48)))
+ (|:| -2637 (-85))))
+ (-5 *1 (-375 *4 *5 *3)) (-4 *3 (-1154 *5)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-494) (-950 (-483)))) (-4 *5 (-361 *4))
- (-5 *2 (-345 (-1083 (-347 (-483))))) (-5 *1 (-375 *4 *5 *3))
- (-4 *3 (-1153 *5)))))
+ (|partial| -12 (-4 *4 (-13 (-495) (-951 (-484)))) (-4 *5 (-361 *4))
+ (-5 *2 (-345 (-1084 (-347 (-484))))) (-5 *1 (-375 *4 *5 *3))
+ (-4 *3 (-1154 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-494) (-950 (-483)))) (-4 *5 (-361 *4)) (-5 *2 (-345 *3))
- (-5 *1 (-375 *4 *5 *3)) (-4 *3 (-1153 *5)))))
+ (-12 (-4 *4 (-13 (-495) (-951 (-484)))) (-4 *5 (-361 *4)) (-5 *2 (-345 *3))
+ (-5 *1 (-375 *4 *5 *3)) (-4 *3 (-1154 *5)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-374)))))
(((*1 *2)
- (-12 (-4 *3 (-13 (-494) (-950 (-483)))) (-5 *2 (-1183)) (-5 *1 (-373 *3 *4))
+ (-12 (-4 *3 (-13 (-495) (-951 (-484)))) (-5 *2 (-1184)) (-5 *1 (-373 *3 *4))
(-4 *4 (-361 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-494) (-950 (-483)))) (-5 *2 (-347 (-483)))
+ (-12 (-4 *4 (-13 (-495) (-951 (-484)))) (-5 *2 (-347 (-484)))
(-5 *1 (-373 *4 *3)) (-4 *3 (-361 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-550 *3)) (-4 *3 (-361 *5)) (-4 *5 (-13 (-494) (-950 (-483))))
- (-5 *2 (-1083 (-347 (-483)))) (-5 *1 (-373 *5 *3)))))
-(((*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))))
-(((*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))))
+ (-12 (-5 *4 (-551 *3)) (-4 *3 (-361 *5)) (-4 *5 (-13 (-495) (-951 (-484))))
+ (-5 *2 (-1084 (-347 (-484)))) (-5 *1 (-373 *5 *3)))))
+(((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))))
+(((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-371 *3 *2)) (-4 *2 (-361 *3)))))
(((*1 *1 *2 *3)
- (-12 (-5 *1 (-369 *3 *2)) (-4 *3 (-13 (-146) (-38 (-347 (-483)))))
- (-4 *2 (-13 (-756) (-21))))))
+ (-12 (-5 *1 (-369 *3 *2)) (-4 *3 (-13 (-146) (-38 (-347 (-484)))))
+ (-4 *2 (-13 (-757) (-21))))))
(((*1 *1 *2 *3)
- (-12 (-5 *1 (-369 *3 *2)) (-4 *3 (-13 (-146) (-38 (-347 (-483)))))
- (-4 *2 (-13 (-756) (-21))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-257) (-120) (-950 (-483)) (-580 (-483))))
- (-5 *2 (-518 *3)) (-5 *1 (-368 *5 *3)) (-4 *3 (-13 (-1113) (-29 *5))))))
-(((*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-1012)) (-5 *2 (-694)))))
-(((*1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1012)) (-4 *2 (-317)))))
-(((*1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-317)) (-4 *2 (-1012)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483))))
- (-5 *1 (-363 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1113) (-361 *3)))
- (-14 *4 (-1088)) (-14 *5 *2)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-389) (-950 (-483)) (-580 (-483))))
- (-4 *2 (-13 (-27) (-1113) (-361 *3) (-10 -8 (-15 -3940 ($ *4)))))
- (-4 *4 (-755))
+ (-12 (-5 *1 (-369 *3 *2)) (-4 *3 (-13 (-146) (-38 (-347 (-484)))))
+ (-4 *2 (-13 (-757) (-21))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-257) (-120) (-951 (-484)) (-581 (-484))))
+ (-5 *2 (-519 *3)) (-5 *1 (-368 *5 *3)) (-4 *3 (-13 (-1114) (-29 *5))))))
+(((*1 *2 *1) (-12 (-4 *1 (-366 *3)) (-4 *3 (-1013)) (-5 *2 (-695)))))
+(((*1 *1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-1013)) (-4 *2 (-317)))))
+(((*1 *1) (-12 (-4 *1 (-366 *2)) (-4 *2 (-317)) (-4 *2 (-1013)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484))))
+ (-5 *1 (-363 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1114) (-361 *3)))
+ (-14 *4 (-1089)) (-14 *5 *2)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-389) (-951 (-484)) (-581 (-484))))
+ (-4 *2 (-13 (-27) (-1114) (-361 *3) (-10 -8 (-15 -3942 ($ *4)))))
+ (-4 *4 (-756))
(-4 *5
- (-13 (-1156 *2 *4) (-311) (-1113)
- (-10 -8 (-15 -3752 ($ $)) (-15 -3806 ($ $)))))
- (-5 *1 (-364 *3 *2 *4 *5 *6 *7)) (-4 *6 (-896 *5)) (-14 *7 (-1088)))))
+ (-13 (-1157 *2 *4) (-311) (-1114)
+ (-10 -8 (-15 -3754 ($ $)) (-15 -3808 ($ $)))))
+ (-5 *1 (-364 *3 *2 *4 *5 *6 *7)) (-4 *6 (-897 *5)) (-14 *7 (-1089)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-85)) (-4 *6 (-13 (-389) (-950 (-483)) (-580 (-483))))
- (-4 *3 (-13 (-27) (-1113) (-361 *6) (-10 -8 (-15 -3940 ($ *7)))))
- (-4 *7 (-755))
+ (-12 (-5 *4 (-85)) (-4 *6 (-13 (-389) (-951 (-484)) (-581 (-484))))
+ (-4 *3 (-13 (-27) (-1114) (-361 *6) (-10 -8 (-15 -3942 ($ *7)))))
+ (-4 *7 (-756))
(-4 *8
- (-13 (-1156 *3 *7) (-311) (-1113)
- (-10 -8 (-15 -3752 ($ $)) (-15 -3806 ($ $)))))
+ (-13 (-1157 *3 *7) (-311) (-1114)
+ (-10 -8 (-15 -3754 ($ $)) (-15 -3808 ($ $)))))
(-5 *2
(-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071))))))
- (-5 *1 (-364 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1071)) (-4 *9 (-896 *8))
- (-14 *10 (-1088)))))
+ (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))))
+ (-5 *1 (-364 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1072)) (-4 *9 (-897 *8))
+ (-14 *10 (-1089)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-85)) (-4 *6 (-13 (-389) (-950 (-483)) (-580 (-483))))
- (-4 *3 (-13 (-27) (-1113) (-361 *6) (-10 -8 (-15 -3940 ($ *7)))))
- (-4 *7 (-755))
+ (-12 (-5 *4 (-85)) (-4 *6 (-13 (-389) (-951 (-484)) (-581 (-484))))
+ (-4 *3 (-13 (-27) (-1114) (-361 *6) (-10 -8 (-15 -3942 ($ *7)))))
+ (-4 *7 (-756))
(-4 *8
- (-13 (-1156 *3 *7) (-311) (-1113)
- (-10 -8 (-15 -3752 ($ $)) (-15 -3806 ($ $)))))
+ (-13 (-1157 *3 *7) (-311) (-1114)
+ (-10 -8 (-15 -3754 ($ $)) (-15 -3808 ($ $)))))
(-5 *2
(-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071))))))
- (-5 *1 (-364 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1071)) (-4 *9 (-896 *8))
- (-14 *10 (-1088)))))
+ (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))))
+ (-5 *1 (-364 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1072)) (-4 *9 (-897 *8))
+ (-14 *10 (-1089)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484))))
(-5 *2
(-3 (|:| |%expansion| (-263 *5 *3 *6 *7))
- (|:| |%problem| (-2 (|:| |func| (-1071)) (|:| |prob| (-1071))))))
- (-5 *1 (-363 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1113) (-361 *5)))
- (-14 *6 (-1088)) (-14 *7 *3))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-276 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-85))))
- ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-1012)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-276 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961))))
- ((*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-1012)))))
+ (|:| |%problem| (-2 (|:| |func| (-1072)) (|:| |prob| (-1072))))))
+ (-5 *1 (-363 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1114) (-361 *5)))
+ (-14 *6 (-1089)) (-14 *7 *3))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-276 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-85))))
+ ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-276 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962))))
+ ((*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-1013)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1088)) (-5 *3 (-583 *1)) (-4 *1 (-361 *4)) (-4 *4 (-1012))))
+ (-12 (-5 *2 (-1089)) (-5 *3 (-584 *1)) (-4 *1 (-361 *4)) (-4 *4 (-1013))))
((*1 *1 *2 *1 *1 *1 *1)
- (-12 (-5 *2 (-1088)) (-4 *1 (-361 *3)) (-4 *3 (-1012))))
- ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1088)) (-4 *1 (-361 *3)) (-4 *3 (-1012))))
- ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1088)) (-4 *1 (-361 *3)) (-4 *3 (-1012))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1088)) (-4 *1 (-361 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1012))
- (-5 *2 (-2 (|:| -3948 (-483)) (|:| |var| (-550 *1)))) (-4 *1 (-361 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-345 *3)) (-4 *3 (-494)) (-5 *1 (-359 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-311)) (-4 *1 (-279 *3))))
+ (-12 (-5 *2 (-1089)) (-4 *1 (-361 *3)) (-4 *3 (-1013))))
+ ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1089)) (-4 *1 (-361 *3)) (-4 *3 (-1013))))
+ ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1089)) (-4 *1 (-361 *3)) (-4 *3 (-1013))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1089)) (-4 *1 (-361 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1013))
+ (-5 *2 (-2 (|:| -3950 (-484)) (|:| |var| (-551 *1)))) (-4 *1 (-361 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-345 *3)) (-4 *3 (-495)) (-5 *1 (-359 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-311)) (-4 *1 (-279 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1153 *4)) (-4 *4 (-1132))
- (-4 *1 (-290 *4 *3 *5)) (-4 *5 (-1153 (-347 *3)))))
+ (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1154 *4)) (-4 *4 (-1133))
+ (-4 *1 (-290 *4 *3 *5)) (-4 *5 (-1154 (-347 *3)))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1177 *4)) (-5 *3 (-1177 *1)) (-4 *4 (-146)) (-4 *1 (-315 *4))))
+ (-12 (-5 *2 (-1178 *4)) (-5 *3 (-1178 *1)) (-4 *4 (-146)) (-4 *1 (-315 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1177 *4)) (-5 *3 (-1177 *1)) (-4 *4 (-146))
- (-4 *1 (-319 *4 *5)) (-4 *5 (-1153 *4))))
+ (-12 (-5 *2 (-1178 *4)) (-5 *3 (-1178 *1)) (-4 *4 (-146))
+ (-4 *1 (-319 *4 *5)) (-4 *5 (-1154 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1177 *3)) (-4 *3 (-146)) (-4 *1 (-350 *3 *4))
- (-4 *4 (-1153 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-4 *3 (-146)) (-4 *1 (-358 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *2)) (-4 *2 (-146))))
+ (-12 (-5 *2 (-1178 *3)) (-4 *3 (-146)) (-4 *1 (-350 *3 *4))
+ (-4 *4 (-1154 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1178 *3)) (-4 *3 (-146)) (-4 *1 (-358 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *2)) (-4 *2 (-146))))
((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-357 *3 *2)) (-4 *3 (-358 *2))))
((*1 *2) (-12 (-4 *1 (-358 *2)) (-4 *2 (-146)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *2)) (-4 *2 (-146))))
+(((*1 *2 *3) (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *2)) (-4 *2 (-146))))
((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-357 *3 *2)) (-4 *3 (-358 *2))))
((*1 *2) (-12 (-4 *1 (-358 *2)) (-4 *2 (-146)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4))))
+ (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4))))
((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-630 *4)) (-5 *1 (-357 *3 *4))
+ (-12 (-4 *4 (-146)) (-5 *2 (-631 *4)) (-5 *1 (-357 *3 *4))
(-4 *3 (-358 *4))))
- ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))))
+ ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4))))
+ (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4))))
((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-630 *4)) (-5 *1 (-357 *3 *4))
+ (-12 (-4 *4 (-146)) (-5 *2 (-631 *4)) (-5 *1 (-357 *3 *4))
(-4 *3 (-358 *4))))
- ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))))
+ ((*1 *2) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))))
+ (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1177 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))))
+ (-12 (-5 *3 (-1178 *1)) (-4 *1 (-315 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-353 *3 *4 *5 *6)) (-4 *6 (-950 *4)) (-4 *3 (-257))
- (-4 *4 (-904 *3)) (-4 *5 (-1153 *4)) (-4 *6 (-350 *4 *5))
- (-14 *7 (-1177 *6)) (-5 *1 (-355 *3 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-353 *3 *4 *5 *6)) (-4 *6 (-951 *4)) (-4 *3 (-257))
+ (-4 *4 (-905 *3)) (-4 *5 (-1154 *4)) (-4 *6 (-350 *4 *5))
+ (-14 *7 (-1178 *6)) (-5 *1 (-355 *3 *4 *5 *6 *7))))
((*1 *1 *2)
- (-12 (-5 *2 (-1177 *6)) (-4 *6 (-350 *4 *5)) (-4 *4 (-904 *3))
- (-4 *5 (-1153 *4)) (-4 *3 (-257)) (-5 *1 (-355 *3 *4 *5 *6 *7))
+ (-12 (-5 *2 (-1178 *6)) (-4 *6 (-350 *4 *5)) (-4 *4 (-905 *3))
+ (-4 *5 (-1154 *4)) (-4 *3 (-257)) (-5 *1 (-355 *3 *4 *5 *6 *7))
(-14 *7 *2))))
(((*1 *1 *1)
- (-12 (-4 *2 (-257)) (-4 *3 (-904 *2)) (-4 *4 (-1153 *3))
- (-5 *1 (-353 *2 *3 *4 *5)) (-4 *5 (-13 (-350 *3 *4) (-950 *3))))))
+ (-12 (-4 *2 (-257)) (-4 *3 (-905 *2)) (-4 *4 (-1154 *3))
+ (-5 *1 (-353 *2 *3 *4 *5)) (-4 *5 (-13 (-350 *3 *4) (-951 *3))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-694)) (-5 *4 (-1177 *2)) (-4 *5 (-257)) (-4 *6 (-904 *5))
- (-4 *2 (-13 (-350 *6 *7) (-950 *6))) (-5 *1 (-353 *5 *6 *7 *2))
- (-4 *7 (-1153 *6)))))
+ (-12 (-5 *3 (-695)) (-5 *4 (-1178 *2)) (-4 *5 (-257)) (-4 *6 (-905 *5))
+ (-4 *2 (-13 (-350 *6 *7) (-951 *6))) (-5 *1 (-353 *5 *6 *7 *2))
+ (-4 *7 (-1154 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1177 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-146))
- (-4 *5 (-1153 *4)) (-5 *2 (-630 *4))))
+ (-12 (-5 *3 (-1178 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-146))
+ (-4 *5 (-1154 *4)) (-5 *2 (-631 *4))))
((*1 *2)
- (-12 (-4 *4 (-146)) (-4 *5 (-1153 *4)) (-5 *2 (-630 *4))
+ (-12 (-4 *4 (-146)) (-4 *5 (-1154 *4)) (-5 *2 (-631 *4))
(-5 *1 (-349 *3 *4 *5)) (-4 *3 (-350 *4 *5))))
((*1 *2)
- (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1153 *3))
- (-5 *2 (-630 *3)))))
+ (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3))
+ (-5 *2 (-631 *3)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1177 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-146))
- (-4 *5 (-1153 *4)) (-5 *2 (-630 *4))))
+ (-12 (-5 *3 (-1178 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-146))
+ (-4 *5 (-1154 *4)) (-5 *2 (-631 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1153 *3))
- (-5 *2 (-630 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-345 *2)) (-4 *2 (-494)))))
+ (-12 (-4 *1 (-350 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1154 *3))
+ (-5 *2 (-631 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-345 *2)) (-4 *2 (-495)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3937 (-483))))) (-5 *1 (-309 *3))
- (-4 *3 (-1012))))
+ (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3939 (-484))))) (-5 *1 (-309 *3))
+ (-4 *3 (-1013))))
((*1 *2 *1)
- (-12 (-4 *1 (-333 *3)) (-4 *3 (-1012))
- (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3937 (-694)))))))
+ (-12 (-4 *1 (-333 *3)) (-4 *3 (-1013))
+ (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3939 (-695)))))))
((*1 *2 *1)
- (-12 (-5 *2 (-583 (-2 (|:| -3726 *3) (|:| -2397 (-483))))) (-5 *1 (-345 *3))
- (-4 *3 (-494)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-345 *2)) (-4 *2 (-494)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-345 *3)) (-4 *3 (-494)))))
+ (-12 (-5 *2 (-584 (-2 (|:| -3728 *3) (|:| -2399 (-484))))) (-5 *1 (-345 *3))
+ (-4 *3 (-495)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-345 *2)) (-4 *2 (-495)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-345 *3)) (-4 *3 (-495)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-483)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-345 *4)) (-4 *4 (-494)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-345 *2)) (-4 *2 (-494)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-483)) (-5 *1 (-345 *2)) (-4 *2 (-494)))))
+ (-12 (-5 *3 (-484)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-345 *4)) (-4 *4 (-495)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-345 *2)) (-4 *2 (-495)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-345 *2)) (-4 *2 (-495)))))
(((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-483)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-345 *2)) (-4 *2 (-494)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-327))) (-5 *1 (-221))))
- ((*1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-494)) (-4 *2 (-146))))
- ((*1 *2 *1) (-12 (-5 *1 (-345 *2)) (-4 *2 (-494)))))
-(((*1 *1 *1) (-12 (-5 *1 (-345 *2)) (-4 *2 (-494)))))
-(((*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-483)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-85)) (-5 *1 (-81))))
- ((*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3980)) (-4 *1 (-344))))
- ((*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-830)))))
-(((*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3980)) (-4 *1 (-344))))
- ((*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-830)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-483)) (|has| *1 (-6 -3980)) (-4 *1 (-344)) (-5 *2 (-830)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-483)) (|has| *1 (-6 -3980)) (-4 *1 (-344)) (-5 *2 (-830)))))
-(((*1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-694))))
- ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-342)) (-5 *2 (-694)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-342)) (-5 *2 (-694))))
+ (-12 (-5 *3 (-484)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-345 *2)) (-4 *2 (-495)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-327))) (-5 *1 (-221))))
+ ((*1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-495)) (-4 *2 (-146))))
+ ((*1 *2 *1) (-12 (-5 *1 (-345 *2)) (-4 *2 (-495)))))
+(((*1 *1 *1) (-12 (-5 *1 (-345 *2)) (-4 *2 (-495)))))
+(((*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-484)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-85)) (-5 *1 (-81))))
+ ((*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3982)) (-4 *1 (-344))))
+ ((*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-831)))))
+(((*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3982)) (-4 *1 (-344))))
+ ((*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-831)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-484)) (|has| *1 (-6 -3982)) (-4 *1 (-344)) (-5 *2 (-831)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-484)) (|has| *1 (-6 -3982)) (-4 *1 (-344)) (-5 *2 (-831)))))
+(((*1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-695))))
+ ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-342)) (-5 *2 (-695)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-342)) (-5 *2 (-695))))
((*1 *1 *1) (-4 *1 (-342))))
(((*1 *1 *2)
- (-12 (-5 *2 (-347 *4)) (-4 *4 (-1153 *3)) (-4 *3 (-13 (-311) (-120)))
+ (-12 (-5 *2 (-347 *4)) (-4 *4 (-1154 *3)) (-4 *3 (-13 (-311) (-120)))
(-5 *1 (-339 *3 *4)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1153 *3)) (-5 *1 (-339 *3 *2)) (-4 *3 (-13 (-311) (-120))))))
+ (-12 (-4 *2 (-1154 *3)) (-5 *1 (-339 *3 *2)) (-4 *3 (-13 (-311) (-120))))))
(((*1 *2 *1)
(-12 (-4 *3 (-13 (-311) (-120)))
- (-5 *2 (-583 (-2 (|:| -2397 (-694)) (|:| -3767 *4) (|:| |num| *4))))
- (-5 *1 (-339 *3 *4)) (-4 *4 (-1153 *3)))))
+ (-5 *2 (-584 (-2 (|:| -2399 (-695)) (|:| -3769 *4) (|:| |num| *4))))
+ (-5 *1 (-339 *3 *4)) (-4 *4 (-1154 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-772)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 (-694)) (-14 *4 (-694))
+ (-12 (-5 *2 (-773)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 (-695)) (-14 *4 (-695))
(-4 *5 (-146)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-772)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 (-694)) (-14 *4 (-694))
+ (-12 (-5 *2 (-773)) (-5 *1 (-337 *3 *4 *5)) (-14 *3 (-695)) (-14 *4 (-695))
(-4 *5 (-146)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1071)) (-4 *1 (-336)))))
-(((*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-1071)))))
-(((*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-1071)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1072)) (-4 *1 (-336)))))
+(((*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-1072)))))
+(((*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-1072)))))
(((*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-85)))))
(((*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-85)))))
(((*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-85)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-1012)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-1012)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-1013)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-1013)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-1012)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1)))
+ (-12 (-4 *3 (-1013)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1)))
(-4 *1 (-333 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1012))
+ (-12 (-4 *1 (-332 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1013))
(-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-583 (-347 (-857 (-483))))) (-5 *4 (-583 (-1088)))
- (-5 *2 (-583 (-583 *5))) (-5 *1 (-329 *5)) (-4 *5 (-13 (-755) (-311)))))
+ (-12 (-5 *3 (-584 (-347 (-858 (-484))))) (-5 *4 (-584 (-1089)))
+ (-5 *2 (-584 (-584 *5))) (-5 *1 (-329 *5)) (-4 *5 (-13 (-756) (-311)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-347 (-857 (-483)))) (-5 *2 (-583 *4)) (-5 *1 (-329 *4))
- (-4 *4 (-13 (-755) (-311))))))
+ (-12 (-5 *3 (-347 (-858 (-484)))) (-5 *2 (-584 *4)) (-5 *1 (-329 *4))
+ (-4 *4 (-13 (-756) (-311))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-347 (-857 (-142 (-483))))) (-5 *2 (-583 (-142 *4)))
- (-5 *1 (-328 *4)) (-4 *4 (-13 (-311) (-755)))))
+ (-12 (-5 *3 (-347 (-858 (-142 (-484))))) (-5 *2 (-584 (-142 *4)))
+ (-5 *1 (-328 *4)) (-4 *4 (-13 (-311) (-756)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-583 (-347 (-857 (-142 (-483)))))) (-5 *4 (-583 (-1088)))
- (-5 *2 (-583 (-583 (-142 *5)))) (-5 *1 (-328 *5))
- (-4 *5 (-13 (-311) (-755))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-347 (-857 (-142 (-483))))))
- (-5 *2 (-583 (-583 (-248 (-857 (-142 *4)))))) (-5 *1 (-328 *4))
- (-4 *4 (-13 (-311) (-755)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-248 (-347 (-857 (-142 (-483)))))))
- (-5 *2 (-583 (-583 (-248 (-857 (-142 *4)))))) (-5 *1 (-328 *4))
- (-4 *4 (-13 (-311) (-755)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-347 (-857 (-142 (-483)))))
- (-5 *2 (-583 (-248 (-857 (-142 *4))))) (-5 *1 (-328 *4))
- (-4 *4 (-13 (-311) (-755)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-248 (-347 (-857 (-142 (-483))))))
- (-5 *2 (-583 (-248 (-857 (-142 *4))))) (-5 *1 (-328 *4))
- (-4 *4 (-13 (-311) (-755))))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-483)) (-5 *1 (-327)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-347 (-483))) (-5 *1 (-179))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-347 (-483))) (-5 *1 (-179))))
- ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-347 (-483))) (-5 *1 (-327))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-347 (-483))) (-5 *1 (-327)))))
+ (-12 (-5 *3 (-584 (-347 (-858 (-142 (-484)))))) (-5 *4 (-584 (-1089)))
+ (-5 *2 (-584 (-584 (-142 *5)))) (-5 *1 (-328 *5))
+ (-4 *5 (-13 (-311) (-756))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-584 (-347 (-858 (-142 (-484))))))
+ (-5 *2 (-584 (-584 (-248 (-858 (-142 *4)))))) (-5 *1 (-328 *4))
+ (-4 *4 (-13 (-311) (-756)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-584 (-248 (-347 (-858 (-142 (-484)))))))
+ (-5 *2 (-584 (-584 (-248 (-858 (-142 *4)))))) (-5 *1 (-328 *4))
+ (-4 *4 (-13 (-311) (-756)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-347 (-858 (-142 (-484)))))
+ (-5 *2 (-584 (-248 (-858 (-142 *4))))) (-5 *1 (-328 *4))
+ (-4 *4 (-13 (-311) (-756)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-248 (-347 (-858 (-142 (-484))))))
+ (-5 *2 (-584 (-248 (-858 (-142 *4))))) (-5 *1 (-328 *4))
+ (-4 *4 (-13 (-311) (-756))))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-484)) (-5 *1 (-327)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-347 (-484))) (-5 *1 (-179))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-347 (-484))) (-5 *1 (-179))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-347 (-484))) (-5 *1 (-327))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-347 (-484))) (-5 *1 (-327)))))
(((*1 *1 *1) (-5 *1 (-179))) ((*1 *1 *1) (-5 *1 (-327)))
((*1 *1) (-5 *1 (-327))))
(((*1 *1 *1) (-5 *1 (-179))) ((*1 *1 *1) (-5 *1 (-327)))
((*1 *1) (-5 *1 (-327))))
(((*1 *1) (-5 *1 (-179))) ((*1 *1) (-5 *1 (-327))))
-(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1183)) (-5 *1 (-327))))
- ((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-327)))))
-(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1183)) (-5 *1 (-327))))
- ((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-327)))))
-(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1183)) (-5 *1 (-327))))
- ((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-327)))))
-(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1183)) (-5 *1 (-327)))))
+(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1184)) (-5 *1 (-327))))
+ ((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-327)))))
+(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1184)) (-5 *1 (-327))))
+ ((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-327)))))
+(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1184)) (-5 *1 (-327))))
+ ((*1 *2) (-12 (-5 *2 (-1184)) (-5 *1 (-327)))))
+(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1184)) (-5 *1 (-327)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-324 *4 *2))
- (-4 *2 (-13 (-321 *4) (-10 -7 (-6 -3990)))))))
+ (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-324 *4 *2))
+ (-4 *2 (-13 (-321 *4) (-10 -7 (-6 -3992)))))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-324 *4 *2))
- (-4 *2 (-13 (-321 *4) (-10 -7 (-6 -3990)))))))
+ (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-324 *4 *2))
+ (-4 *2 (-13 (-321 *4) (-10 -7 (-6 -3992)))))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-324 *4 *2))
- (-4 *2 (-13 (-321 *4) (-10 -7 (-6 -3990)))))))
+ (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1128)) (-5 *1 (-324 *4 *2))
+ (-4 *2 (-13 (-321 *4) (-10 -7 (-6 -3992)))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-4 *1 (-323 *3 *4)) (-4 *4 (-146)))))
+ (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-4 *1 (-323 *3 *4)) (-4 *4 (-146)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-321 *3)) (-4 *3 (-1127)) (-4 *3 (-756)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-321 *3)) (-4 *3 (-1128)) (-4 *3 (-757)) (-5 *2 (-85))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-321 *4)) (-4 *4 (-1127))
+ (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-321 *4)) (-4 *4 (-1128))
(-5 *2 (-85)))))
(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-483)) (|has| *1 (-6 -3990)) (-4 *1 (-321 *3)) (-4 *3 (-1127)))))
+ (-12 (-5 *2 (-484)) (|has| *1 (-6 -3992)) (-4 *1 (-321 *3)) (-4 *3 (-1128)))))
(((*1 *1 *1)
- (-12 (|has| *1 (-6 -3990)) (-4 *1 (-321 *2)) (-4 *2 (-1127)) (-4 *2 (-756))))
+ (-12 (|has| *1 (-6 -3992)) (-4 *1 (-321 *2)) (-4 *2 (-1128)) (-4 *2 (-757))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-85) *3 *3)) (|has| *1 (-6 -3990)) (-4 *1 (-321 *3))
- (-4 *3 (-1127)))))
-(((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1177 *1)) (-4 *1 (-315 *3)))))
+ (-12 (-5 *2 (-1 (-85) *3 *3)) (|has| *1 (-6 -3992)) (-4 *1 (-321 *3))
+ (-4 *3 (-1128)))))
+(((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1178 *1)) (-4 *1 (-315 *3)))))
(((*1 *2 *1) (-12 (-4 *1 (-315 *2)) (-4 *2 (-146)))))
(((*1 *2 *1) (-12 (-4 *1 (-315 *2)) (-4 *2 (-146)))))
(((*1 *2 *1) (-12 (-4 *1 (-315 *2)) (-4 *2 (-146)))))
(((*1 *2 *1) (-12 (-4 *1 (-315 *2)) (-4 *2 (-146)))))
-(((*1 *2 *1) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-1083 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-1083 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-1084 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-1084 *3)))))
(((*1 *2)
(-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4))))
((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))))
@@ -11980,1176 +11983,1176 @@
(-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-314 *3 *4)) (-4 *3 (-315 *4))))
((*1 *2) (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-5 *2 (-85)))))
(((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-583 (-1177 *4))) (-5 *1 (-314 *3 *4))
+ (-12 (-4 *4 (-146)) (-5 *2 (-584 (-1178 *4))) (-5 *1 (-314 *3 *4))
(-4 *3 (-315 *4))))
((*1 *2)
- (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-4 *3 (-494))
- (-5 *2 (-583 (-1177 *3))))))
+ (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-4 *3 (-495))
+ (-5 *2 (-584 (-1178 *3))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-4 *3 (-494)) (-5 *2 (-1083 *3)))))
+ (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-4 *3 (-495)) (-5 *2 (-1084 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-4 *3 (-494)) (-5 *2 (-1083 *3)))))
-(((*1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-494)) (-4 *2 (-146)))))
-(((*1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-494)) (-4 *2 (-146)))))
+ (-12 (-4 *1 (-315 *3)) (-4 *3 (-146)) (-4 *3 (-495)) (-5 *2 (-1084 *3)))))
+(((*1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-495)) (-4 *2 (-146)))))
+(((*1 *1) (|partial| -12 (-4 *1 (-315 *2)) (-4 *2 (-495)) (-4 *2 (-146)))))
(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1071)) (-4 *1 (-313 *2 *4)) (-4 *2 (-1012)) (-4 *4 (-1012))))
- ((*1 *1 *2) (-12 (-4 *1 (-313 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))))
+ (-12 (-5 *3 (-1072)) (-4 *1 (-313 *2 *4)) (-4 *2 (-1013)) (-4 *4 (-1013))))
+ ((*1 *1 *2) (-12 (-4 *1 (-313 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1071)) (-4 *1 (-313 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))))
+ (-12 (-5 *2 (-1072)) (-4 *1 (-313 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
(((*1 *1 *1) (-4 *1 (-147)))
- ((*1 *1 *1) (-12 (-4 *1 (-313 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-313 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-313 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-5 *2 (-1071)))))
-(((*1 *2 *1) (-12 (-4 *1 (-313 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012)))))
-(((*1 *2 *1 *2) (-12 (-4 *1 (-313 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012)))))
+ (-12 (-4 *1 (-313 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-1072)))))
+(((*1 *2 *1) (-12 (-4 *1 (-313 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))))
+(((*1 *2 *1 *2) (-12 (-4 *1 (-313 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1083 *4)) (-4 *4 (-298))
+ (-12 (-5 *3 (-1084 *4)) (-4 *4 (-298))
(-4 *2
(-13 (-342)
- (-10 -7 (-15 -3940 (*2 *4)) (-15 -2006 ((-830) *2))
- (-15 -2008 ((-1177 *2) (-830))) (-15 -3922 (*2 *2)))))
+ (-10 -7 (-15 -3942 (*2 *4)) (-15 -2008 ((-831) *2))
+ (-15 -2010 ((-1178 *2) (-831))) (-15 -3924 (*2 *2)))))
(-5 *1 (-305 *2 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-298)) (-5 *2 (-869 (-1083 *4))) (-5 *1 (-304 *4))
- (-5 *3 (-1083 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))))
+ (-12 (-4 *4 (-298)) (-5 *2 (-870 (-1084 *4))) (-5 *1 (-304 *4))
+ (-5 *3 (-1084 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1084 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))))
+ (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))))
+ (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))))
+ (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))))
+ (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))))
+ (|partial| -12 (-5 *2 (-1084 *3)) (-4 *3 (-298)) (-5 *1 (-304 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-830)) (-5 *2 (-1083 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))))
+ (-12 (-5 *3 (-831)) (-5 *2 (-1084 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-830)) (-5 *2 (-1083 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))))
+ (-12 (-5 *3 (-831)) (-5 *2 (-1084 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-830)) (-5 *2 (-1083 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))))
+ (-12 (-5 *3 (-831)) (-5 *2 (-1084 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-830)) (-5 *2 (-1083 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))))
+ (-12 (-5 *3 (-831)) (-5 *2 (-1084 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-830)) (-5 *2 (-1083 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))))
-(((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-304 *3)) (-4 *3 (-298)))))
-(((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-304 *3)) (-4 *3 (-298)))))
-(((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-304 *3)) (-4 *3 (-298)))))
+ (-12 (-5 *3 (-831)) (-5 *2 (-1084 *4)) (-5 *1 (-304 *4)) (-4 *4 (-298)))))
+(((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-304 *3)) (-4 *3 (-298)))))
+(((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-304 *3)) (-4 *3 (-298)))))
+(((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-304 *3)) (-4 *3 (-298)))))
(((*1 *2 *1) (-12 (-4 *1 (-298)) (-5 *2 (-85))))
((*1 *2 *3)
- (-12 (-5 *3 (-1083 *4)) (-4 *4 (-298)) (-5 *2 (-85)) (-5 *1 (-304 *4)))))
+ (-12 (-5 *3 (-1084 *4)) (-4 *4 (-298)) (-5 *2 (-85)) (-5 *1 (-304 *4)))))
(((*1 *2)
- (-12 (-5 *2 (-1177 (-583 (-2 (|:| -3396 (-817 *3)) (|:| -2396 (-1032))))))
- (-5 *1 (-300 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830))))
+ (-12 (-5 *2 (-1178 (-584 (-2 (|:| -3398 (-818 *3)) (|:| -2398 (-1033))))))
+ (-5 *1 (-300 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831))))
((*1 *2)
- (-12 (-5 *2 (-1177 (-583 (-2 (|:| -3396 *3) (|:| -2396 (-1032))))))
- (-5 *1 (-301 *3 *4)) (-4 *3 (-298)) (-14 *4 (-3 (-1083 *3) *2))))
+ (-12 (-5 *2 (-1178 (-584 (-2 (|:| -3398 *3) (|:| -2398 (-1033))))))
+ (-5 *1 (-301 *3 *4)) (-4 *3 (-298)) (-14 *4 (-3 (-1084 *3) *2))))
((*1 *2)
- (-12 (-5 *2 (-1177 (-583 (-2 (|:| -3396 *3) (|:| -2396 (-1032))))))
- (-5 *1 (-302 *3 *4)) (-4 *3 (-298)) (-14 *4 (-830)))))
+ (-12 (-5 *2 (-1178 (-584 (-2 (|:| -3398 *3) (|:| -2398 (-1033))))))
+ (-5 *1 (-302 *3 *4)) (-4 *3 (-298)) (-14 *4 (-831)))))
(((*1 *2)
- (-12 (-5 *2 (-630 (-817 *3))) (-5 *1 (-300 *3 *4)) (-14 *3 (-830))
- (-14 *4 (-830))))
+ (-12 (-5 *2 (-631 (-818 *3))) (-5 *1 (-300 *3 *4)) (-14 *3 (-831))
+ (-14 *4 (-831))))
((*1 *2)
- (-12 (-5 *2 (-630 *3)) (-5 *1 (-301 *3 *4)) (-4 *3 (-298))
+ (-12 (-5 *2 (-631 *3)) (-5 *1 (-301 *3 *4)) (-4 *3 (-298))
(-14 *4
- (-3 (-1083 *3) (-1177 (-583 (-2 (|:| -3396 *3) (|:| -2396 (-1032)))))))))
+ (-3 (-1084 *3) (-1178 (-584 (-2 (|:| -3398 *3) (|:| -2398 (-1033)))))))))
((*1 *2)
- (-12 (-5 *2 (-630 *3)) (-5 *1 (-302 *3 *4)) (-4 *3 (-298)) (-14 *4 (-830)))))
+ (-12 (-5 *2 (-631 *3)) (-5 *1 (-302 *3 *4)) (-4 *3 (-298)) (-14 *4 (-831)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1177 (-583 (-2 (|:| -3396 *4) (|:| -2396 (-1032))))))
- (-4 *4 (-298)) (-5 *2 (-694)) (-5 *1 (-295 *4))))
+ (-12 (-5 *3 (-1178 (-584 (-2 (|:| -3398 *4) (|:| -2398 (-1033))))))
+ (-4 *4 (-298)) (-5 *2 (-695)) (-5 *1 (-295 *4))))
((*1 *2)
- (-12 (-5 *2 (-694)) (-5 *1 (-300 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830))))
+ (-12 (-5 *2 (-695)) (-5 *1 (-300 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831))))
((*1 *2)
- (-12 (-5 *2 (-694)) (-5 *1 (-301 *3 *4)) (-4 *3 (-298))
+ (-12 (-5 *2 (-695)) (-5 *1 (-301 *3 *4)) (-4 *3 (-298))
(-14 *4
- (-3 (-1083 *3) (-1177 (-583 (-2 (|:| -3396 *3) (|:| -2396 (-1032)))))))))
+ (-3 (-1084 *3) (-1178 (-584 (-2 (|:| -3398 *3) (|:| -2398 (-1033)))))))))
((*1 *2)
- (-12 (-5 *2 (-694)) (-5 *1 (-302 *3 *4)) (-4 *3 (-298)) (-14 *4 (-830)))))
+ (-12 (-5 *2 (-695)) (-5 *1 (-302 *3 *4)) (-4 *3 (-298)) (-14 *4 (-831)))))
(((*1 *2)
(-12 (-4 *1 (-298))
- (-5 *2 (-583 (-2 (|:| -3726 (-483)) (|:| -2397 (-483))))))))
-(((*1 *2 *3) (-12 (-4 *1 (-298)) (-5 *3 (-483)) (-5 *2 (-1100 (-830) (-694))))))
+ (-5 *2 (-584 (-2 (|:| -3728 (-484)) (|:| -2399 (-484))))))))
+(((*1 *2 *3) (-12 (-4 *1 (-298)) (-5 *3 (-484)) (-5 *2 (-1101 (-831) (-695))))))
(((*1 *1) (-4 *1 (-298))))
(((*1 *2)
(-12 (-4 *1 (-298)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
(((*1 *2 *3)
- (-12 (-5 *3 (-830))
+ (-12 (-5 *3 (-831))
(-5 *2
- (-3 (-1083 *4) (-1177 (-583 (-2 (|:| -3396 *4) (|:| -2396 (-1032)))))))
+ (-3 (-1084 *4) (-1178 (-584 (-2 (|:| -3398 *4) (|:| -2398 (-1033)))))))
(-5 *1 (-295 *4)) (-4 *4 (-298)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-830))
- (-5 *2 (-1177 (-583 (-2 (|:| -3396 *4) (|:| -2396 (-1032))))))
+ (|partial| -12 (-5 *3 (-831))
+ (-5 *2 (-1178 (-584 (-2 (|:| -3398 *4) (|:| -2398 (-1033))))))
(-5 *1 (-295 *4)) (-4 *4 (-298)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1177 (-583 (-2 (|:| -3396 *4) (|:| -2396 (-1032))))))
- (-4 *4 (-298)) (-5 *2 (-630 *4)) (-5 *1 (-295 *4)))))
+ (-12 (-5 *3 (-1178 (-584 (-2 (|:| -3398 *4) (|:| -2398 (-1033))))))
+ (-4 *4 (-298)) (-5 *2 (-631 *4)) (-5 *1 (-295 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1083 *4)) (-4 *4 (-298))
- (-5 *2 (-1177 (-583 (-2 (|:| -3396 *4) (|:| -2396 (-1032))))))
+ (-12 (-5 *3 (-1084 *4)) (-4 *4 (-298))
+ (-5 *2 (-1178 (-584 (-2 (|:| -3398 *4) (|:| -2398 (-1033))))))
(-5 *1 (-295 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1083 *4)) (-4 *4 (-298)) (-5 *2 (-869 (-1032)))
+ (-12 (-5 *3 (-1084 *4)) (-4 *4 (-298)) (-5 *2 (-870 (-1033)))
(-5 *1 (-295 *4)))))
(((*1 *2)
- (-12 (-5 *2 (-869 (-1032))) (-5 *1 (-292 *3 *4)) (-14 *3 (-830))
- (-14 *4 (-830))))
+ (-12 (-5 *2 (-870 (-1033))) (-5 *1 (-292 *3 *4)) (-14 *3 (-831))
+ (-14 *4 (-831))))
((*1 *2)
- (-12 (-5 *2 (-869 (-1032))) (-5 *1 (-293 *3 *4)) (-4 *3 (-298))
- (-14 *4 (-1083 *3))))
+ (-12 (-5 *2 (-870 (-1033))) (-5 *1 (-293 *3 *4)) (-4 *3 (-298))
+ (-14 *4 (-1084 *3))))
((*1 *2)
- (-12 (-5 *2 (-869 (-1032))) (-5 *1 (-294 *3 *4)) (-4 *3 (-298))
- (-14 *4 (-830)))))
+ (-12 (-5 *2 (-870 (-1033))) (-5 *1 (-294 *3 *4)) (-4 *3 (-298))
+ (-14 *4 (-831)))))
(((*1 *2)
- (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-347 *5)))
- (-5 *2 (-694)) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *3 (-290 *4 *5 *6))))
+ (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-347 *5)))
+ (-5 *2 (-695)) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *3 (-290 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-347 *4))) (-5 *2 (-694)))))
+ (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
+ (-4 *5 (-1154 (-347 *4))) (-5 *2 (-695)))))
(((*1 *2)
- (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-347 *5)))
+ (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-347 *5)))
(-5 *2 (-85)) (-5 *1 (-289 *3 *4 *5 *6)) (-4 *3 (-290 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
+ (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85)))))
(((*1 *2 *3 *3)
- (-12 (-4 *3 (-1132)) (-4 *5 (-1153 *3)) (-4 *6 (-1153 (-347 *5)))
+ (-12 (-4 *3 (-1133)) (-4 *5 (-1154 *3)) (-4 *6 (-1154 (-347 *5)))
(-5 *2 (-85)) (-5 *1 (-289 *4 *3 *5 *6)) (-4 *4 (-290 *3 *5 *6))))
((*1 *2 *3 *3)
- (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
+ (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85)))))
(((*1 *2)
- (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
+ (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1153 *4))
- (-4 *5 (-1153 (-347 *3))) (-5 *2 (-85))))
+ (-12 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1133)) (-4 *3 (-1154 *4))
+ (-4 *5 (-1154 (-347 *3))) (-5 *2 (-85))))
((*1 *2 *3)
- (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
+ (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85)))))
(((*1 *2)
- (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
+ (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1153 *4))
- (-4 *5 (-1153 (-347 *3))) (-5 *2 (-85))))
+ (-12 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1133)) (-4 *3 (-1154 *4))
+ (-4 *5 (-1154 (-347 *3))) (-5 *2 (-85))))
((*1 *2 *3)
- (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
+ (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85)))))
(((*1 *2)
- (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
+ (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1153 *4))
- (-4 *5 (-1153 (-347 *3))) (-5 *2 (-85))))
+ (-12 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1133)) (-4 *3 (-1154 *4))
+ (-4 *5 (-1154 (-347 *3))) (-5 *2 (-85))))
((*1 *2 *3)
- (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
+ (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85)))))
(((*1 *2)
- (-12 (-4 *3 (-1132)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4)))
- (-5 *2 (-1177 *1)) (-4 *1 (-290 *3 *4 *5)))))
+ (-12 (-4 *3 (-1133)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4)))
+ (-5 *2 (-1178 *1)) (-4 *1 (-290 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
+ (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85)))))
(((*1 *2 *1 *3)
- (-12 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1132)) (-4 *3 (-1153 *4))
- (-4 *5 (-1153 (-347 *3))) (-5 *2 (-85))))
+ (-12 (-4 *1 (-290 *4 *3 *5)) (-4 *4 (-1133)) (-4 *3 (-1154 *4))
+ (-4 *5 (-1154 (-347 *3))) (-5 *2 (-85))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85))))
+ (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
+ (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-347 *4))) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
+ (-4 *5 (-1154 (-347 *4))) (-5 *2 (-85)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1177 *1)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132))
- (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))))))
+ (-12 (-5 *2 (-1178 *1)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133))
+ (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1177 *1)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132))
- (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))))))
+ (-12 (-5 *2 (-1178 *1)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133))
+ (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1177 *1)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132))
- (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4))))))
+ (-12 (-5 *2 (-1178 *1)) (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133))
+ (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4))))))
(((*1 *2)
- (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-347 *4))) (-5 *2 (-630 (-347 *4))))))
+ (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
+ (-4 *5 (-1154 (-347 *4))) (-5 *2 (-631 (-347 *4))))))
(((*1 *2)
- (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-347 *4))) (-5 *2 (-630 (-347 *4))))))
+ (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
+ (-4 *5 (-1154 (-347 *4))) (-5 *2 (-631 (-347 *4))))))
(((*1 *2)
- (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-347 *4))) (-5 *2 (-630 (-347 *4))))))
+ (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
+ (-4 *5 (-1154 (-347 *4))) (-5 *2 (-631 (-347 *4))))))
(((*1 *2)
- (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-347 *4))) (-5 *2 (-630 (-347 *4))))))
+ (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
+ (-4 *5 (-1154 (-347 *4))) (-5 *2 (-631 (-347 *4))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-347 *4)))
- (-5 *2 (-2 (|:| |num| (-1177 *4)) (|:| |den| *4))))))
+ (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
+ (-4 *5 (-1154 (-347 *4)))
+ (-5 *2 (-2 (|:| |num| (-1178 *4)) (|:| |den| *4))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-347 *4)))
- (-5 *2 (-2 (|:| |num| (-1177 *4)) (|:| |den| *4))))))
+ (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
+ (-4 *5 (-1154 (-347 *4)))
+ (-5 *2 (-2 (|:| |num| (-1178 *4)) (|:| |den| *4))))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1177 *3)) (-4 *3 (-1153 *4)) (-4 *4 (-1132))
- (-4 *1 (-290 *4 *3 *5)) (-4 *5 (-1153 (-347 *3))))))
+ (-12 (-5 *2 (-1178 *3)) (-4 *3 (-1154 *4)) (-4 *4 (-1133))
+ (-4 *1 (-290 *4 *3 *5)) (-4 *5 (-1154 (-347 *3))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-290 *4 *5 *6)) (-4 *4 (-1132))
- (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-347 *5)))
- (-5 *2 (-2 (|:| |num| (-630 *5)) (|:| |den| *5))))))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-290 *4 *5 *6)) (-4 *4 (-1133))
+ (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-347 *5)))
+ (-5 *2 (-2 (|:| |num| (-631 *5)) (|:| |den| *5))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3))
- (-4 *3 (-13 (-311) (-1113) (-915)))))
+ (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3))
+ (-4 *3 (-13 (-311) (-1114) (-916)))))
((*1 *2)
- (|partial| -12 (-4 *4 (-1132)) (-4 *5 (-1153 (-347 *2))) (-4 *2 (-1153 *4))
+ (|partial| -12 (-4 *4 (-1133)) (-4 *5 (-1154 (-347 *2))) (-4 *2 (-1154 *4))
(-5 *1 (-289 *3 *4 *2 *5)) (-4 *3 (-290 *4 *2 *5))))
((*1 *2)
- (|partial| -12 (-4 *1 (-290 *3 *2 *4)) (-4 *3 (-1132))
- (-4 *4 (-1153 (-347 *2))) (-4 *2 (-1153 *3)))))
+ (|partial| -12 (-4 *1 (-290 *3 *2 *4)) (-4 *3 (-1133))
+ (-4 *4 (-1154 (-347 *2))) (-4 *2 (-1154 *3)))))
(((*1 *2)
- (|partial| -12 (-4 *4 (-1132)) (-4 *5 (-1153 (-347 *2))) (-4 *2 (-1153 *4))
+ (|partial| -12 (-4 *4 (-1133)) (-4 *5 (-1154 (-347 *2))) (-4 *2 (-1154 *4))
(-5 *1 (-289 *3 *4 *2 *5)) (-4 *3 (-290 *4 *2 *5))))
((*1 *2)
- (|partial| -12 (-4 *1 (-290 *3 *2 *4)) (-4 *3 (-1132))
- (-4 *4 (-1153 (-347 *2))) (-4 *2 (-1153 *3)))))
+ (|partial| -12 (-4 *1 (-290 *3 *2 *4)) (-4 *3 (-1133))
+ (-4 *4 (-1154 (-347 *2))) (-4 *2 (-1154 *3)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1153 *4)) (-4 *4 (-1132))
- (-4 *6 (-1153 (-347 *5)))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1154 *4)) (-4 *4 (-1133))
+ (-4 *6 (-1154 (-347 *5)))
(-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5)))
(-4 *1 (-290 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1088)) (-4 *5 (-1132)) (-4 *6 (-1153 *5))
- (-4 *7 (-1153 (-347 *6))) (-5 *2 (-583 (-857 *5)))
+ (-12 (-5 *3 (-1089)) (-4 *5 (-1133)) (-4 *6 (-1154 *5))
+ (-4 *7 (-1154 (-347 *6))) (-5 *2 (-584 (-858 *5)))
(-5 *1 (-289 *4 *5 *6 *7)) (-4 *4 (-290 *5 *6 *7))))
((*1 *2 *3)
- (-12 (-5 *3 (-1088)) (-4 *1 (-290 *4 *5 *6)) (-4 *4 (-1132))
- (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-347 *5))) (-4 *4 (-311))
- (-5 *2 (-583 (-857 *4))))))
+ (-12 (-5 *3 (-1089)) (-4 *1 (-290 *4 *5 *6)) (-4 *4 (-1133))
+ (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-347 *5))) (-4 *4 (-311))
+ (-5 *2 (-584 (-858 *4))))))
(((*1 *2)
- (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4)) (-4 *6 (-1153 (-347 *5)))
- (-5 *2 (-583 (-583 *4))) (-5 *1 (-289 *3 *4 *5 *6))
+ (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4)) (-4 *6 (-1154 (-347 *5)))
+ (-5 *2 (-584 (-584 *4))) (-5 *1 (-289 *3 *4 *5 *6))
(-4 *3 (-290 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-347 *4))) (-4 *3 (-317)) (-5 *2 (-583 (-583 *3))))))
+ (-12 (-4 *1 (-290 *3 *4 *5)) (-4 *3 (-1133)) (-4 *4 (-1154 *3))
+ (-4 *5 (-1154 (-347 *4))) (-4 *3 (-317)) (-5 *2 (-584 (-584 *3))))))
(((*1 *1 *2 *3 *3 *3 *4)
- (-12 (-4 *4 (-311)) (-4 *3 (-1153 *4)) (-4 *5 (-1153 (-347 *3)))
+ (-12 (-4 *4 (-311)) (-4 *3 (-1154 *4)) (-4 *5 (-1154 (-347 *3)))
(-4 *1 (-285 *4 *3 *5 *2)) (-4 *2 (-290 *4 *3 *5))))
((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-483)) (-4 *2 (-311)) (-4 *4 (-1153 *2))
- (-4 *5 (-1153 (-347 *4))) (-4 *1 (-285 *2 *4 *5 *6))
+ (-12 (-5 *3 (-484)) (-4 *2 (-311)) (-4 *4 (-1154 *2))
+ (-4 *5 (-1154 (-347 *4))) (-4 *1 (-285 *2 *4 *5 *6))
(-4 *6 (-290 *2 *4 *5))))
((*1 *1 *2 *2)
- (-12 (-4 *2 (-311)) (-4 *3 (-1153 *2)) (-4 *4 (-1153 (-347 *3)))
+ (-12 (-4 *2 (-311)) (-4 *3 (-1154 *2)) (-4 *4 (-1154 (-347 *3)))
(-4 *1 (-285 *2 *3 *4 *5)) (-4 *5 (-290 *2 *3 *4))))
((*1 *1 *2)
- (-12 (-4 *3 (-311)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4)))
+ (-12 (-4 *3 (-311)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4)))
(-4 *1 (-285 *3 *4 *5 *2)) (-4 *2 (-290 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-353 *4 (-347 *4) *5 *6)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-347 *4))) (-4 *6 (-290 *3 *4 *5)) (-4 *3 (-311))
+ (-12 (-5 *2 (-353 *4 (-347 *4) *5 *6)) (-4 *4 (-1154 *3))
+ (-4 *5 (-1154 (-347 *4))) (-4 *6 (-290 *3 *4 *5)) (-4 *3 (-311))
(-4 *1 (-285 *3 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-285 *3 *4 *5 *6)) (-4 *3 (-311)) (-4 *4 (-1153 *3))
- (-4 *5 (-1153 (-347 *4))) (-4 *6 (-290 *3 *4 *5)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-285 *3 *4 *5 *6)) (-4 *3 (-311)) (-4 *4 (-1154 *3))
+ (-4 *5 (-1154 (-347 *4))) (-4 *6 (-290 *3 *4 *5)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-311)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4)))
- (-5 *2 (-1177 *6)) (-5 *1 (-282 *3 *4 *5 *6)) (-4 *6 (-290 *3 *4 *5)))))
+ (-12 (-4 *3 (-311)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4)))
+ (-5 *2 (-1178 *6)) (-5 *1 (-282 *3 *4 *5 *6)) (-4 *6 (-290 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-311)) (-4 *4 (-1153 *3)) (-4 *5 (-1153 (-347 *4)))
- (-5 *2 (-1177 *6)) (-5 *1 (-282 *3 *4 *5 *6)) (-4 *6 (-290 *3 *4 *5)))))
+ (-12 (-4 *3 (-311)) (-4 *4 (-1154 *3)) (-4 *5 (-1154 (-347 *4)))
+ (-5 *2 (-1178 *6)) (-5 *1 (-282 *3 *4 *5 *6)) (-4 *6 (-290 *3 *4 *5)))))
(((*1 *2 *1) (-12 (-5 *2 (-209)) (-5 *1 (-281)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-782 (-1093) (-694)))) (-5 *1 (-281)))))
-(((*1 *2 *1) (-12 (-5 *2 (-869 (-694))) (-5 *1 (-281)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-783 (-1094) (-695)))) (-5 *1 (-281)))))
+(((*1 *2 *1) (-12 (-5 *2 (-870 (-695))) (-5 *1 (-281)))))
(((*1 *2 *1) (-12 (-5 *2 (-444)) (-5 *1 (-281)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-280 *3)) (-4 *3 (-756)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-280 *3)) (-4 *3 (-757)))))
(((*1 *1) (-12 (-4 *1 (-279 *2)) (-4 *2 (-317)) (-4 *2 (-311)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1083 *3)) (-4 *3 (-317)) (-4 *1 (-279 *3)) (-4 *3 (-311)))))
+ (-12 (-5 *2 (-1084 *3)) (-4 *3 (-317)) (-4 *1 (-279 *3)) (-4 *3 (-311)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)) (-5 *2 (-1083 *3)))))
+ (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)) (-5 *2 (-1084 *3)))))
(((*1 *2 *1 *1)
(|partial| -12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317))
- (-5 *2 (-1083 *3))))
+ (-5 *2 (-1084 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)) (-5 *2 (-1083 *3)))))
+ (-12 (-4 *1 (-279 *3)) (-4 *3 (-311)) (-4 *3 (-317)) (-5 *2 (-1084 *3)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-276 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)))))
-(((*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-276 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-276 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)))))
+(((*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-276 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))))
(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-694)) (-4 *1 (-276 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716))
+ (-12 (-5 *2 (-695)) (-4 *1 (-276 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717))
(-4 *3 (-146)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-483)) (-4 *1 (-273 *4 *2)) (-4 *4 (-1012)) (-4 *2 (-104)))))
+ (-12 (-5 *3 (-484)) (-4 *1 (-273 *4 *2)) (-4 *4 (-1013)) (-4 *2 (-104)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-273 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-104)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-273 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)))))
(((*1 *1 *1 *1)
- (-12 (-4 *1 (-273 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-104)) (-4 *3 (-716)))))
+ (-12 (-4 *1 (-273 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-104)) (-4 *3 (-717)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-483)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-961))
- (-5 *1 (-271 *4 *5 *2 *6)) (-4 *6 (-861 *2 *4 *5)))))
+ (-12 (-5 *3 (-484)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-962))
+ (-5 *1 (-271 *4 *5 *2 *6)) (-4 *6 (-862 *2 *4 *5)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1083 *7)) (-5 *3 (-483)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717))
- (-4 *5 (-756)) (-4 *6 (-961)) (-5 *1 (-271 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-1084 *7)) (-5 *3 (-484)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718))
+ (-4 *5 (-757)) (-4 *6 (-962)) (-5 *1 (-271 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1083 *6)) (-4 *6 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
- (-5 *2 (-1083 *7)) (-5 *1 (-271 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))))
+ (-12 (-5 *3 (-1084 *6)) (-4 *6 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-5 *2 (-1084 *7)) (-5 *1 (-271 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1083 *7)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))
- (-4 *6 (-961)) (-5 *2 (-1083 *6)) (-5 *1 (-271 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-1084 *7)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-4 *6 (-962)) (-5 *2 (-1084 *6)) (-5 *1 (-271 *4 *5 *6 *7)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1083 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 *8)) (-4 *7 (-756))
- (-4 *8 (-961)) (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717)) (-5 *2 (-1083 *8))
+ (-12 (-5 *3 (-1084 *9)) (-5 *4 (-584 *7)) (-5 *5 (-584 *8)) (-4 *7 (-757))
+ (-4 *8 (-962)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-5 *2 (-1084 *8))
(-5 *1 (-271 *6 *7 *8 *9)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-347 (-483))) (-5 *1 (-269 *3 *4 *5)) (-4 *3 (-311))
- (-14 *4 (-1088)) (-14 *5 *3))))
+ (-12 (-5 *2 (-347 (-484))) (-5 *1 (-269 *3 *4 *5)) (-4 *3 (-311))
+ (-14 *4 (-1089)) (-14 *5 *3))))
(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
- (-12 (-5 *3 (-264 (-483))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1000 (-179)))
- (-5 *6 (-483)) (-5 *2 (-1123 (-838))) (-5 *1 (-268))))
+ (-12 (-5 *3 (-264 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179)))
+ (-5 *6 (-484)) (-5 *2 (-1124 (-839))) (-5 *1 (-268))))
((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-264 (-483))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1000 (-179)))
- (-5 *6 (-483)) (-5 *7 (-1071)) (-5 *2 (-1123 (-838))) (-5 *1 (-268))))
+ (-12 (-5 *3 (-264 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179)))
+ (-5 *6 (-484)) (-5 *7 (-1072)) (-5 *2 (-1124 (-839))) (-5 *1 (-268))))
((*1 *2 *3 *3 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-264 (-483))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1000 (-179)))
- (-5 *6 (-179)) (-5 *7 (-483)) (-5 *2 (-1123 (-838))) (-5 *1 (-268))))
+ (-12 (-5 *3 (-264 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179)))
+ (-5 *6 (-179)) (-5 *7 (-484)) (-5 *2 (-1124 (-839))) (-5 *1 (-268))))
((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
- (-12 (-5 *3 (-264 (-483))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1000 (-179)))
- (-5 *6 (-179)) (-5 *7 (-483)) (-5 *8 (-1071)) (-5 *2 (-1123 (-838)))
+ (-12 (-5 *3 (-264 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179)))
+ (-5 *6 (-179)) (-5 *7 (-484)) (-5 *8 (-1072)) (-5 *2 (-1124 (-839)))
(-5 *1 (-268)))))
(((*1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-268)) (-5 *3 (-179)))))
(((*1 *2 *3 *4 *3 *3)
(-12 (-5 *3 (-248 *6)) (-5 *4 (-86)) (-4 *6 (-361 *5))
- (-4 *5 (-13 (-494) (-553 (-472)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *6))))
+ (-4 *5 (-13 (-495) (-554 (-473)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *6))))
((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-248 *7)) (-5 *4 (-86)) (-5 *5 (-583 *7)) (-4 *7 (-361 *6))
- (-4 *6 (-13 (-494) (-553 (-472)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *7))))
+ (-12 (-5 *3 (-248 *7)) (-5 *4 (-86)) (-5 *5 (-584 *7)) (-4 *7 (-361 *6))
+ (-4 *6 (-13 (-495) (-554 (-473)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *7))))
((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-583 (-248 *7))) (-5 *4 (-583 (-86))) (-5 *5 (-248 *7))
- (-4 *7 (-361 *6)) (-4 *6 (-13 (-494) (-553 (-472)))) (-5 *2 (-51))
+ (-12 (-5 *3 (-584 (-248 *7))) (-5 *4 (-584 (-86))) (-5 *5 (-248 *7))
+ (-4 *7 (-361 *6)) (-4 *6 (-13 (-495) (-554 (-473)))) (-5 *2 (-51))
(-5 *1 (-267 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-583 (-248 *8))) (-5 *4 (-583 (-86))) (-5 *5 (-248 *8))
- (-5 *6 (-583 *8)) (-4 *8 (-361 *7)) (-4 *7 (-13 (-494) (-553 (-472))))
+ (-12 (-5 *3 (-584 (-248 *8))) (-5 *4 (-584 (-86))) (-5 *5 (-248 *8))
+ (-5 *6 (-584 *8)) (-4 *8 (-361 *7)) (-4 *7 (-13 (-495) (-554 (-473))))
(-5 *2 (-51)) (-5 *1 (-267 *7 *8))))
((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-86))) (-5 *5 (-248 *7))
- (-4 *7 (-361 *6)) (-4 *6 (-13 (-494) (-553 (-472)))) (-5 *2 (-51))
+ (-12 (-5 *3 (-584 *7)) (-5 *4 (-584 (-86))) (-5 *5 (-248 *7))
+ (-4 *7 (-361 *6)) (-4 *6 (-13 (-495) (-554 (-473)))) (-5 *2 (-51))
(-5 *1 (-267 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-86))) (-5 *6 (-583 (-248 *8)))
- (-4 *8 (-361 *7)) (-5 *5 (-248 *8)) (-4 *7 (-13 (-494) (-553 (-472))))
+ (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 (-86))) (-5 *6 (-584 (-248 *8)))
+ (-4 *8 (-361 *7)) (-5 *5 (-248 *8)) (-4 *7 (-13 (-495) (-554 (-473))))
(-5 *2 (-51)) (-5 *1 (-267 *7 *8))))
((*1 *2 *3 *4 *3 *5)
(-12 (-5 *3 (-248 *5)) (-5 *4 (-86)) (-4 *5 (-361 *6))
- (-4 *6 (-13 (-494) (-553 (-472)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *5))))
+ (-4 *6 (-13 (-495) (-554 (-473)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *5))))
((*1 *2 *3 *4 *5 *3)
(-12 (-5 *4 (-86)) (-5 *5 (-248 *3)) (-4 *3 (-361 *6))
- (-4 *6 (-13 (-494) (-553 (-472)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3))))
+ (-4 *6 (-13 (-495) (-554 (-473)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3))))
((*1 *2 *3 *4 *5 *5)
(-12 (-5 *4 (-86)) (-5 *5 (-248 *3)) (-4 *3 (-361 *6))
- (-4 *6 (-13 (-494) (-553 (-472)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3))))
+ (-4 *6 (-13 (-495) (-554 (-473)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-86)) (-5 *5 (-248 *3)) (-5 *6 (-583 *3)) (-4 *3 (-361 *7))
- (-4 *7 (-13 (-494) (-553 (-472)))) (-5 *2 (-51)) (-5 *1 (-267 *7 *3)))))
+ (-12 (-5 *4 (-86)) (-5 *5 (-248 *3)) (-5 *6 (-584 *3)) (-4 *3 (-361 *7))
+ (-4 *7 (-13 (-495) (-554 (-473)))) (-5 *2 (-51)) (-5 *1 (-267 *7 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-264 *3)) (-4 *3 (-494)) (-4 *3 (-1012)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-264 *3)) (-4 *3 (-495)) (-4 *3 (-1013)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-483)) (-5 *1 (-264 *3)) (-4 *3 (-494)) (-4 *3 (-1012)))))
+ (-12 (-5 *2 (-484)) (-5 *1 (-264 *3)) (-4 *3 (-495)) (-4 *3 (-1013)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-257)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-257)) (-5 *2 (-694)))))
+(((*1 *2 *1) (-12 (-4 *1 (-257)) (-5 *2 (-695)))))
(((*1 *2 *1 *1 *1)
(|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
(-4 *1 (-257))))
((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2405 *1)))
+ (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2407 *1)))
(-4 *1 (-257)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-257)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-253)) (-4 *2 (-1127))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-584 *1)) (-4 *1 (-257)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-253)) (-4 *2 (-1128))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-583 (-550 *1))) (-5 *3 (-583 *1)) (-4 *1 (-253))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-248 *1))) (-4 *1 (-253))))
+ (-12 (-5 *2 (-584 (-551 *1))) (-5 *3 (-584 *1)) (-4 *1 (-253))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-248 *1))) (-4 *1 (-253))))
((*1 *1 *1 *2) (-12 (-5 *2 (-248 *1)) (-4 *1 (-253)))))
(((*1 *1 *1 *1) (-4 *1 (-253))) ((*1 *1 *1) (-4 *1 (-253))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-550 *1)) (-4 *1 (-253)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-550 *1))) (-4 *1 (-253)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-550 *1))) (-4 *1 (-253)))))
-(((*1 *2 *1) (-12 (-4 *1 (-253)) (-5 *2 (-583 (-86))))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-253)) (-5 *3 (-1088)) (-5 *2 (-85))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-551 *1)) (-4 *1 (-253)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-551 *1))) (-4 *1 (-253)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-551 *1))) (-4 *1 (-253)))))
+(((*1 *2 *1) (-12 (-4 *1 (-253)) (-5 *2 (-584 (-86))))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-253)) (-5 *3 (-1089)) (-5 *2 (-85))))
((*1 *2 *1 *1) (-12 (-4 *1 (-253)) (-5 *2 (-85)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-550 *5)) (-4 *5 (-361 *4)) (-4 *4 (-950 (-483))) (-4 *4 (-494))
- (-5 *2 (-1083 *5)) (-5 *1 (-32 *4 *5))))
+ (-12 (-5 *3 (-551 *5)) (-4 *5 (-361 *4)) (-4 *4 (-951 (-484))) (-4 *4 (-495))
+ (-5 *2 (-1084 *5)) (-5 *1 (-32 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-550 *1)) (-4 *1 (-961)) (-4 *1 (-253)) (-5 *2 (-1083 *1)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-261)) (-5 *1 (-251))))
- ((*1 *2 *3) (-12 (-5 *3 (-583 (-1071))) (-5 *2 (-261)) (-5 *1 (-251))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-261)) (-5 *1 (-251))))
+ (-12 (-5 *3 (-551 *1)) (-4 *1 (-962)) (-4 *1 (-253)) (-5 *2 (-1084 *1)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-261)) (-5 *1 (-251))))
+ ((*1 *2 *3) (-12 (-5 *3 (-584 (-1072))) (-5 *2 (-261)) (-5 *1 (-251))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-261)) (-5 *1 (-251))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 (-1071))) (-5 *3 (-1071)) (-5 *2 (-261)) (-5 *1 (-251)))))
+ (-12 (-5 *4 (-584 (-1072))) (-5 *3 (-1072)) (-5 *2 (-261)) (-5 *1 (-251)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-961)) (-4 *4 (-1153 *3)) (-5 *1 (-137 *3 *4 *2))
- (-4 *2 (-1153 *4))))
- ((*1 *1 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1127)))))
-(((*1 *1 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-21)) (-4 *2 (-1127)))))
-(((*1 *1 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-21)) (-4 *2 (-1127)))))
-(((*1 *1 *1) (|partial| -12 (-5 *1 (-248 *2)) (-4 *2 (-663)) (-4 *2 (-1127)))))
-(((*1 *1 *1) (|partial| -12 (-5 *1 (-248 *2)) (-4 *2 (-663)) (-4 *2 (-1127)))))
+ (-12 (-4 *3 (-962)) (-4 *4 (-1154 *3)) (-5 *1 (-137 *3 *4 *2))
+ (-4 *2 (-1154 *4))))
+ ((*1 *1 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-1128)))))
+(((*1 *1 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))))
+(((*1 *1 *1) (-12 (-5 *1 (-248 *2)) (-4 *2 (-21)) (-4 *2 (-1128)))))
+(((*1 *1 *1) (|partial| -12 (-5 *1 (-248 *2)) (-4 *2 (-664)) (-4 *2 (-1128)))))
+(((*1 *1 *1) (|partial| -12 (-5 *1 (-248 *2)) (-4 *2 (-664)) (-4 *2 (-1128)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-583 (-248 *3))) (-5 *1 (-248 *3)) (-4 *3 (-494))
- (-4 *3 (-1127)))))
+ (-12 (-5 *2 (-584 (-248 *3))) (-5 *1 (-248 *3)) (-4 *3 (-495))
+ (-4 *3 (-1128)))))
(((*1 *2 *3)
(-12 (-4 *4 (-389))
(-5 *2
- (-583
- (-2 (|:| |eigval| (-3 (-347 (-857 *4)) (-1078 (-1088) (-857 *4))))
- (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-347 (-857 *4))))))))
- (-5 *1 (-247 *4)) (-5 *3 (-630 (-347 (-857 *4)))))))
+ (-584
+ (-2 (|:| |eigval| (-3 (-347 (-858 *4)) (-1079 (-1089) (-858 *4))))
+ (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-347 (-858 *4))))))))
+ (-5 *1 (-247 *4)) (-5 *3 (-631 (-347 (-858 *4)))))))
(((*1 *2 *3)
(-12 (-4 *4 (-389))
(-5 *2
- (-583
- (-2 (|:| |eigval| (-3 (-347 (-857 *4)) (-1078 (-1088) (-857 *4))))
- (|:| |geneigvec| (-583 (-630 (-347 (-857 *4))))))))
- (-5 *1 (-247 *4)) (-5 *3 (-630 (-347 (-857 *4)))))))
+ (-584
+ (-2 (|:| |eigval| (-3 (-347 (-858 *4)) (-1079 (-1089) (-858 *4))))
+ (|:| |geneigvec| (-584 (-631 (-347 (-858 *4))))))))
+ (-5 *1 (-247 *4)) (-5 *3 (-631 (-347 (-858 *4)))))))
(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-3 (-347 (-857 *6)) (-1078 (-1088) (-857 *6)))) (-5 *5 (-694))
- (-4 *6 (-389)) (-5 *2 (-583 (-630 (-347 (-857 *6))))) (-5 *1 (-247 *6))
- (-5 *4 (-630 (-347 (-857 *6))))))
+ (-12 (-5 *3 (-3 (-347 (-858 *6)) (-1079 (-1089) (-858 *6)))) (-5 *5 (-695))
+ (-4 *6 (-389)) (-5 *2 (-584 (-631 (-347 (-858 *6))))) (-5 *1 (-247 *6))
+ (-5 *4 (-631 (-347 (-858 *6))))))
((*1 *2 *3 *4)
(-12
(-5 *3
- (-2 (|:| |eigval| (-3 (-347 (-857 *5)) (-1078 (-1088) (-857 *5))))
- (|:| |eigmult| (-694)) (|:| |eigvec| (-583 *4))))
- (-4 *5 (-389)) (-5 *2 (-583 (-630 (-347 (-857 *5))))) (-5 *1 (-247 *5))
- (-5 *4 (-630 (-347 (-857 *5)))))))
+ (-2 (|:| |eigval| (-3 (-347 (-858 *5)) (-1079 (-1089) (-858 *5))))
+ (|:| |eigmult| (-695)) (|:| |eigvec| (-584 *4))))
+ (-4 *5 (-389)) (-5 *2 (-584 (-631 (-347 (-858 *5))))) (-5 *1 (-247 *5))
+ (-5 *4 (-631 (-347 (-858 *5)))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-3 (-347 (-857 *5)) (-1078 (-1088) (-857 *5)))) (-4 *5 (-389))
- (-5 *2 (-583 (-630 (-347 (-857 *5))))) (-5 *1 (-247 *5))
- (-5 *4 (-630 (-347 (-857 *5)))))))
+ (-12 (-5 *3 (-3 (-347 (-858 *5)) (-1079 (-1089) (-858 *5)))) (-4 *5 (-389))
+ (-5 *2 (-584 (-631 (-347 (-858 *5))))) (-5 *1 (-247 *5))
+ (-5 *4 (-631 (-347 (-858 *5)))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-630 (-347 (-857 *4)))) (-4 *4 (-389))
- (-5 *2 (-583 (-3 (-347 (-857 *4)) (-1078 (-1088) (-857 *4)))))
+ (-12 (-5 *3 (-631 (-347 (-858 *4)))) (-4 *4 (-389))
+ (-5 *2 (-584 (-3 (-347 (-858 *4)) (-1079 (-1089) (-858 *4)))))
(-5 *1 (-247 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-996))) (-5 *1 (-246)))))
-(((*1 *2 *3 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-632 (-1014))) (-5 *1 (-246)))))
-(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-444)) (-5 *3 (-1014)) (-5 *1 (-246)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-583 (-876))) (-5 *1 (-246)))))
-(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-444)) (-5 *3 (-583 (-876))) (-5 *1 (-246)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-997))) (-5 *1 (-246)))))
+(((*1 *2 *3 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-633 (-1015))) (-5 *1 (-246)))))
+(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-444)) (-5 *3 (-1015)) (-5 *1 (-246)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-444)) (-5 *2 (-584 (-877))) (-5 *1 (-246)))))
+(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-444)) (-5 *3 (-584 (-877))) (-5 *1 (-246)))))
(((*1 *1) (-5 *1 (-246))))
(((*1 *1) (-5 *1 (-246))))
(((*1 *1) (-5 *1 (-246))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-483)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1127)) (-4 *4 (-321 *2))
+ (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1128)) (-4 *4 (-321 *2))
(-4 *5 (-321 *2))))
((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -3990)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1012))
- (-4 *2 (-1127)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *4 (-311)) (-5 *2 (-583 (-1067 *4))) (-5 *1 (-240 *4 *5))
- (-5 *3 (-1067 *4)) (-4 *5 (-1170 *4)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1170 *3)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1170 *3)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1170 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1144 (-483))) (-4 *1 (-237 *3)) (-4 *3 (-1127))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-483)) (-4 *1 (-237 *3)) (-4 *3 (-1127)))))
+ (-12 (|has| *1 (-6 -3992)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1013))
+ (-4 *2 (-1128)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *4 (-311)) (-5 *2 (-584 (-1068 *4))) (-5 *1 (-240 *4 *5))
+ (-5 *3 (-1068 *4)) (-4 *5 (-1171 *4)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1171 *3)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1171 *3)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1171 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1145 (-484))) (-4 *1 (-237 *3)) (-4 *3 (-1128))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-237 *3)) (-4 *3 (-1128)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3989)) (-4 *1 (-193 *3))
- (-4 *3 (-1012))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1127)))))
+ (-12 (-5 *2 (-1 (-85) *3)) (|has| *1 (-6 -3991)) (-4 *1 (-193 *3))
+ (-4 *3 (-1013))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1128)))))
(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-521)) (-5 *3 (-531)) (-5 *4 (-246)) (-5 *1 (-235)))))
-(((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-235)))))
-(((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-235)))))
+ (-12 (-5 *2 (-522)) (-5 *3 (-532)) (-5 *4 (-246)) (-5 *1 (-235)))))
+(((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-235)))))
+(((*1 *2 *1) (-12 (-5 *2 (-532)) (-5 *1 (-235)))))
(((*1 *2 *1) (-12 (-5 *2 (-246)) (-5 *1 (-235)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-234)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1014)) (-5 *1 (-234)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-234)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1015)) (-5 *1 (-234)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))))
(((*1 *2 *1) (|partial| -12 (-5 *2 (-444)) (-5 *1 (-234)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-347 (-483))) (-4 *4 (-13 (-494) (-950 (-483)) (-580 (-483))))
- (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *4))))))
+ (-12 (-5 *3 (-347 (-484))) (-4 *4 (-13 (-495) (-951 (-484)) (-581 (-484))))
+ (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *4))))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-550 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *4)))
- (-4 *4 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *1 (-231 *4 *2)))))
+ (-12 (-5 *3 (-551 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *4)))
+ (-4 *4 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *1 (-231 *4 *2)))))
(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-583 (-550 *2))) (-5 *4 (-1088))
- (-4 *2 (-13 (-27) (-1113) (-361 *5)))
- (-4 *5 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *1 (-231 *5 *2)))))
+ (|partial| -12 (-5 *3 (-584 (-551 *2))) (-5 *4 (-1089))
+ (-4 *2 (-13 (-27) (-1114) (-361 *5)))
+ (-4 *5 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *1 (-231 *5 *2)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-494) (-950 (-483)) (-580 (-483)))) (-5 *1 (-231 *3 *2))
- (-4 *2 (-13 (-27) (-1113) (-361 *3)))))
+ (-12 (-4 *3 (-13 (-495) (-951 (-484)) (-581 (-484)))) (-5 *1 (-231 *3 *2))
+ (-4 *2 (-13 (-27) (-1114) (-361 *3)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1088)) (-4 *4 (-13 (-494) (-950 (-483)) (-580 (-483))))
- (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-361 *4))))))
+ (-12 (-5 *3 (-1089)) (-4 *4 (-13 (-495) (-951 (-484)) (-581 (-484))))
+ (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1114) (-361 *4))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1088)) (-4 *5 (-13 (-494) (-950 (-483)) (-580 (-483))))
+ (-12 (-5 *4 (-1089)) (-4 *5 (-13 (-495) (-951 (-484)) (-581 (-484))))
(-5 *2
- (-2 (|:| |func| *3) (|:| |kers| (-583 (-550 *3))) (|:| |vals| (-583 *3))))
- (-5 *1 (-231 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-361 *5))))))
+ (-2 (|:| |func| *3) (|:| |kers| (-584 (-551 *3))) (|:| |vals| (-584 *3))))
+ (-5 *1 (-231 *5 *3)) (-4 *3 (-13 (-27) (-1114) (-361 *5))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-5 *2 (-85)) (-5 *1 (-230 *4 *3))
- (-4 *3 (-13 (-361 *4) (-915))))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-230 *4 *3))
+ (-4 *3 (-13 (-361 *4) (-916))))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-583 (-2 (|:| |func| *2) (|:| |pole| (-85)))))
- (-4 *2 (-13 (-361 *4) (-915))) (-4 *4 (-494)) (-5 *1 (-230 *4 *2)))))
+ (|partial| -12 (-5 *3 (-584 (-2 (|:| |func| *2) (|:| |pole| (-85)))))
+ (-4 *2 (-13 (-361 *4) (-916))) (-4 *4 (-495)) (-5 *1 (-230 *4 *2)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-915))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-361 *3) (-916))))))
(((*1 *2)
- (-12 (-4 *2 (-13 (-361 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-494)))))
+ (-12 (-4 *2 (-13 (-361 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495)))))
(((*1 *2)
- (-12 (-4 *2 (-13 (-361 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-494)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-483))) (-5 *1 (-229)))))
-(((*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-229)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-190)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4))
- (-4 *6 (-717)) (-5 *2 (-1 *1 (-694))) (-4 *1 (-213 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717))
- (-5 *2 (-1 *1 (-694))) (-4 *1 (-213 *4 *3 *5 *6))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-228 *2)) (-4 *2 (-756)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-86))))
- ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-86))))
+ (-12 (-4 *2 (-13 (-361 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-484))) (-5 *1 (-229)))))
+(((*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-229)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-190)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4))
+ (-4 *6 (-718)) (-5 *2 (-1 *1 (-695))) (-4 *1 (-213 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718))
+ (-5 *2 (-1 *1 (-695))) (-4 *1 (-213 *4 *3 *5 *6))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-228 *2)) (-4 *2 (-757)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-86))))
+ ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-86))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756))
- (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694))))
+ (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757))
+ (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695))))
((*1 *2 *1)
- (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756))
- (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-694))))
- ((*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-756)) (-5 *2 (-694)))))
+ (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757))
+ (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-695))))
+ ((*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-757)) (-5 *2 (-695)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-583 (-221))) (-5 *4 (-1088)) (-5 *2 (-51))
+ (|partial| -12 (-5 *3 (-584 (-221))) (-5 *4 (-1089)) (-5 *2 (-51))
(-5 *1 (-221))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-583 (-221))) (-5 *4 (-1088)) (-5 *1 (-223 *2))
- (-4 *2 (-1127)))))
+ (|partial| -12 (-5 *3 (-584 (-221))) (-5 *4 (-1089)) (-5 *1 (-223 *2))
+ (-4 *2 (-1128)))))
(((*1 *1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-221))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-327)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))))
-(((*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-327)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))))
+(((*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))))
(((*1 *1) (-5 *1 (-117)))
- ((*1 *1 *2) (-12 (-5 *2 (-1045 (-179))) (-5 *1 (-221))))
- ((*1 *2 *3) (-12 (-5 *3 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-222)))))
-(((*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))))
-(((*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-783)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-783)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1046 (-179))) (-5 *1 (-221))))
+ ((*1 *2 *3) (-12 (-5 *3 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-222)))))
+(((*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))))
+(((*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-784)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-784)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))))
(((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-221))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-1071)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-221))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-836))
+ (-12 (-5 *3 (-837))
(-5 *2
- (-2 (|:| |brans| (-583 (-583 (-854 (-179)))))
- (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))))
+ (-2 (|:| |brans| (-584 (-584 (-855 (-179)))))
+ (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))))
(-5 *1 (-126))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-836)) (-5 *4 (-347 (-483)))
+ (-12 (-5 *3 (-837)) (-5 *4 (-347 (-484)))
(-5 *2
- (-2 (|:| |brans| (-583 (-583 (-854 (-179)))))
- (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))))
+ (-2 (|:| |brans| (-584 (-584 (-855 (-179)))))
+ (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))))
(-5 *1 (-126))))
((*1 *2 *3)
(-12
(-5 *2
- (-2 (|:| |brans| (-583 (-583 (-854 (-179)))))
- (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))))
- (-5 *1 (-126)) (-5 *3 (-583 (-854 (-179))))))
+ (-2 (|:| |brans| (-584 (-584 (-855 (-179)))))
+ (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))))
+ (-5 *1 (-126)) (-5 *3 (-584 (-855 (-179))))))
((*1 *2 *3)
(-12
(-5 *2
- (-2 (|:| |brans| (-583 (-583 (-854 (-179)))))
- (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))))
- (-5 *1 (-126)) (-5 *3 (-583 (-583 (-854 (-179)))))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-1000 (-327)))) (-5 *1 (-221))))
+ (-2 (|:| |brans| (-584 (-584 (-855 (-179)))))
+ (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))))
+ (-5 *1 (-126)) (-5 *3 (-584 (-584 (-855 (-179)))))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 (-1001 (-327)))) (-5 *1 (-221))))
((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))))
-(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-221))))
+(((*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-221))))
((*1 *1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-221)))))
-(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-221))))
+(((*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-221))))
((*1 *1 *2) (-12 (-5 *2 (-327)) (-5 *1 (-221)))))
(((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-221))))
((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-221))))
((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-221)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-1000 (-347 (-483))))) (-5 *1 (-221))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 (-1000 (-327)))) (-5 *1 (-221)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-1001 (-347 (-484))))) (-5 *1 (-221))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 (-1001 (-327)))) (-5 *1 (-221)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-221))) (-5 *4 (-1088)) (-5 *2 (-85)) (-5 *1 (-221)))))
+ (-12 (-5 *3 (-584 (-221))) (-5 *4 (-1089)) (-5 *2 (-85)) (-5 *1 (-221)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1003 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1180))
- (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-472)) (-1012)))))
+ (-12 (-5 *4 (-1004 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1181))
+ (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-473)) (-1013)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1003 (-327))) (-5 *2 (-1180)) (-5 *1 (-215 *3))
- (-4 *3 (-13 (-553 (-472)) (-1012)))))
+ (-12 (-5 *4 (-1004 (-327))) (-5 *2 (-1181)) (-5 *1 (-215 *3))
+ (-4 *3 (-13 (-554 (-473)) (-1013)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-787 *6)) (-5 *4 (-1003 (-327))) (-5 *5 (-583 (-221)))
- (-4 *6 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1180)) (-5 *1 (-215 *6))))
+ (-12 (-5 *3 (-788 *6)) (-5 *4 (-1004 (-327))) (-5 *5 (-584 (-221)))
+ (-4 *6 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1181)) (-5 *1 (-215 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-787 *5)) (-5 *4 (-1003 (-327)))
- (-4 *5 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1180)) (-5 *1 (-215 *5))))
+ (-12 (-5 *3 (-788 *5)) (-5 *4 (-1004 (-327)))
+ (-4 *5 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1181)) (-5 *1 (-215 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-789 *6)) (-5 *4 (-1003 (-327))) (-5 *5 (-583 (-221)))
- (-4 *6 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1181)) (-5 *1 (-215 *6))))
+ (-12 (-5 *3 (-790 *6)) (-5 *4 (-1004 (-327))) (-5 *5 (-584 (-221)))
+ (-4 *6 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-789 *5)) (-5 *4 (-1003 (-327)))
- (-4 *5 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1181)) (-5 *1 (-215 *5))))
+ (-12 (-5 *3 (-790 *5)) (-5 *4 (-1004 (-327)))
+ (-4 *5 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1003 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1181))
- (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-472)) (-1012)))))
+ (-12 (-5 *4 (-1004 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1182))
+ (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-473)) (-1013)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1003 (-327))) (-5 *2 (-1181)) (-5 *1 (-215 *3))
- (-4 *3 (-13 (-553 (-472)) (-1012)))))
+ (-12 (-5 *4 (-1004 (-327))) (-5 *2 (-1182)) (-5 *1 (-215 *3))
+ (-4 *3 (-13 (-554 (-473)) (-1013)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-792 *6)) (-5 *4 (-1003 (-327))) (-5 *5 (-583 (-221)))
- (-4 *6 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1181)) (-5 *1 (-215 *6))))
+ (-12 (-5 *3 (-793 *6)) (-5 *4 (-1004 (-327))) (-5 *5 (-584 (-221)))
+ (-4 *6 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *6))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-792 *5)) (-5 *4 (-1003 (-327)))
- (-4 *5 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1181)) (-5 *1 (-215 *5))))
+ (-12 (-5 *3 (-793 *5)) (-5 *4 (-1004 (-327)))
+ (-4 *5 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1000 (-327))) (-5 *5 (-583 (-221)))
- (-5 *2 (-1180)) (-5 *1 (-216))))
+ (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1001 (-327))) (-5 *5 (-584 (-221)))
+ (-5 *2 (-1181)) (-5 *1 (-216))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1000 (-327))) (-5 *2 (-1180))
+ (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1001 (-327))) (-5 *2 (-1181))
(-5 *1 (-216))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-787 (-1 (-179) (-179)))) (-5 *4 (-1000 (-327)))
- (-5 *5 (-583 (-221))) (-5 *2 (-1180)) (-5 *1 (-216))))
+ (-12 (-5 *3 (-788 (-1 (-179) (-179)))) (-5 *4 (-1001 (-327)))
+ (-5 *5 (-584 (-221))) (-5 *2 (-1181)) (-5 *1 (-216))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-787 (-1 (-179) (-179)))) (-5 *4 (-1000 (-327))) (-5 *2 (-1180))
+ (-12 (-5 *3 (-788 (-1 (-179) (-179)))) (-5 *4 (-1001 (-327))) (-5 *2 (-1181))
(-5 *1 (-216))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1000 (-327)))
- (-5 *5 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-216))))
+ (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1001 (-327)))
+ (-5 *5 (-584 (-221))) (-5 *2 (-1182)) (-5 *1 (-216))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1000 (-327))) (-5 *2 (-1181))
+ (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1001 (-327))) (-5 *2 (-1182))
(-5 *1 (-216))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1000 (-327)))
- (-5 *5 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-216))))
+ (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1001 (-327)))
+ (-5 *5 (-584 (-221))) (-5 *2 (-1182)) (-5 *1 (-216))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1000 (-327))) (-5 *2 (-1181))
+ (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1001 (-327))) (-5 *2 (-1182))
(-5 *1 (-216))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1000 (-327)))
- (-5 *5 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-216))))
+ (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-327)))
+ (-5 *5 (-584 (-221))) (-5 *2 (-1182)) (-5 *1 (-216))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1000 (-327))) (-5 *2 (-1181))
+ (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-327))) (-5 *2 (-1182))
(-5 *1 (-216))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1000 (-327)))
- (-5 *5 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-216))))
+ (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1001 (-327)))
+ (-5 *5 (-584 (-221))) (-5 *2 (-1182)) (-5 *1 (-216))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1000 (-327)))
- (-5 *2 (-1181)) (-5 *1 (-216))))
+ (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1001 (-327)))
+ (-5 *2 (-1182)) (-5 *1 (-216))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1000 (-327)))
- (-5 *5 (-583 (-221))) (-5 *2 (-1181)) (-5 *1 (-216))))
+ (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-327)))
+ (-5 *5 (-584 (-221))) (-5 *2 (-1182)) (-5 *1 (-216))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1000 (-327)))
- (-5 *2 (-1181)) (-5 *1 (-216))))
+ (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-327)))
+ (-5 *2 (-1182)) (-5 *1 (-216))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-248 *7)) (-5 *4 (-1088)) (-5 *5 (-583 (-221)))
- (-4 *7 (-361 *6)) (-4 *6 (-13 (-494) (-756) (-950 (-483)))) (-5 *2 (-1180))
+ (-12 (-5 *3 (-248 *7)) (-5 *4 (-1089)) (-5 *5 (-584 (-221)))
+ (-4 *7 (-361 *6)) (-4 *6 (-13 (-495) (-757) (-951 (-484)))) (-5 *2 (-1181))
(-5 *1 (-217 *6 *7))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-179))) (-5 *2 (-1180)) (-5 *1 (-220))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-584 (-179))) (-5 *2 (-1181)) (-5 *1 (-220))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-583 (-179))) (-5 *4 (-583 (-221))) (-5 *2 (-1180))
+ (-12 (-5 *3 (-584 (-179))) (-5 *4 (-584 (-221))) (-5 *2 (-1181))
(-5 *1 (-220))))
- ((*1 *2 *3) (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *2 (-1180)) (-5 *1 (-220))))
+ ((*1 *2 *3) (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *2 (-1181)) (-5 *1 (-220))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *4 (-583 (-221))) (-5 *2 (-1180))
+ (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *4 (-584 (-221))) (-5 *2 (-1181))
(-5 *1 (-220))))
- ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-179))) (-5 *2 (-1181)) (-5 *1 (-220))))
+ ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-584 (-179))) (-5 *2 (-1182)) (-5 *1 (-220))))
((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-583 (-179))) (-5 *4 (-583 (-221))) (-5 *2 (-1181))
+ (-12 (-5 *3 (-584 (-179))) (-5 *4 (-584 (-221))) (-5 *2 (-1182))
(-5 *1 (-220)))))
(((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-218)))))
-(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-218)))))
-(((*1 *2 *2) (-12 (-5 *2 (-483)) (-5 *1 (-218)))))
+(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-218)))))
+(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-218)))))
(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1000 (-179)))
- (-5 *2 (-1181)) (-5 *1 (-218)))))
+ (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1001 (-179)))
+ (-5 *2 (-1182)) (-5 *1 (-218)))))
(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1000 (-179)))
- (-5 *5 (-85)) (-5 *2 (-1181)) (-5 *1 (-218)))))
+ (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1001 (-179)))
+ (-5 *5 (-85)) (-5 *2 (-1182)) (-5 *1 (-218)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-854 (-179)) (-179) (-179)))
+ (-12 (-5 *2 (-1 (-855 (-179)) (-179) (-179)))
(-5 *3 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-216)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-789 *6)) (-5 *4 (-1003 (-327))) (-5 *5 (-583 (-221)))
- (-4 *6 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1045 (-179)))
+ (-12 (-5 *3 (-790 *6)) (-5 *4 (-1004 (-327))) (-5 *5 (-584 (-221)))
+ (-4 *6 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1046 (-179)))
(-5 *1 (-215 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-789 *5)) (-5 *4 (-1003 (-327)))
- (-4 *5 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1045 (-179)))
+ (-12 (-5 *3 (-790 *5)) (-5 *4 (-1004 (-327)))
+ (-4 *5 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1046 (-179)))
(-5 *1 (-215 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1003 (-327))) (-5 *5 (-583 (-221))) (-5 *2 (-1045 (-179)))
- (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-472)) (-1012)))))
+ (-12 (-5 *4 (-1004 (-327))) (-5 *5 (-584 (-221))) (-5 *2 (-1046 (-179)))
+ (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-473)) (-1013)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1003 (-327))) (-5 *2 (-1045 (-179))) (-5 *1 (-215 *3))
- (-4 *3 (-13 (-553 (-472)) (-1012)))))
+ (-12 (-5 *4 (-1004 (-327))) (-5 *2 (-1046 (-179))) (-5 *1 (-215 *3))
+ (-4 *3 (-13 (-554 (-473)) (-1013)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-792 *6)) (-5 *4 (-1003 (-327))) (-5 *5 (-583 (-221)))
- (-4 *6 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1045 (-179)))
+ (-12 (-5 *3 (-793 *6)) (-5 *4 (-1004 (-327))) (-5 *5 (-584 (-221)))
+ (-4 *6 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1046 (-179)))
(-5 *1 (-215 *6))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-792 *5)) (-5 *4 (-1003 (-327)))
- (-4 *5 (-13 (-553 (-472)) (-1012))) (-5 *2 (-1045 (-179)))
+ (-12 (-5 *3 (-793 *5)) (-5 *4 (-1004 (-327)))
+ (-4 *5 (-13 (-554 (-473)) (-1013))) (-5 *2 (-1046 (-179)))
(-5 *1 (-215 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1000 (-327)))
- (-5 *5 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-216))))
+ (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1001 (-327)))
+ (-5 *5 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1000 (-327)))
- (-5 *2 (-1045 (-179))) (-5 *1 (-216))))
+ (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1001 (-327)))
+ (-5 *2 (-1046 (-179))) (-5 *1 (-216))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1000 (-327)))
- (-5 *5 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-216))))
+ (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1001 (-327)))
+ (-5 *5 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1000 (-327)))
- (-5 *2 (-1045 (-179))) (-5 *1 (-216))))
+ (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1001 (-327)))
+ (-5 *2 (-1046 (-179))) (-5 *1 (-216))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1000 (-327)))
- (-5 *5 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-216))))
+ (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-327)))
+ (-5 *5 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1000 (-327)))
- (-5 *2 (-1045 (-179))) (-5 *1 (-216))))
+ (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-327)))
+ (-5 *2 (-1046 (-179))) (-5 *1 (-216))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1000 (-327)))
- (-5 *5 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-216))))
+ (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1001 (-327)))
+ (-5 *5 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1000 (-327)))
- (-5 *2 (-1045 (-179))) (-5 *1 (-216))))
+ (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1001 (-327)))
+ (-5 *2 (-1046 (-179))) (-5 *1 (-216))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1000 (-327)))
- (-5 *5 (-583 (-221))) (-5 *2 (-1045 (-179))) (-5 *1 (-216))))
+ (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-327)))
+ (-5 *5 (-584 (-221))) (-5 *2 (-1046 (-179))) (-5 *1 (-216))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1000 (-327)))
- (-5 *2 (-1045 (-179))) (-5 *1 (-216)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-5 *1 (-176 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-4 *1 (-214 *3))))
- ((*1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756))
- (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-583 *4)))))
+ (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-327)))
+ (-5 *2 (-1046 (-179))) (-5 *1 (-216)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-5 *1 (-176 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-4 *1 (-214 *3))))
+ ((*1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757))
+ (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-584 *4)))))
(((*1 *2 *1 *3)
- (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756))
- (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-583 (-694)))))
+ (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757))
+ (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-584 (-695)))))
((*1 *2 *1)
- (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756))
- (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-583 (-694))))))
+ (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757))
+ (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-584 (-695))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756))
- (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757))
+ (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-213 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-717))
+ (-12 (-4 *1 (-213 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-718))
(-4 *2 (-228 *4)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-756))
- (-4 *4 (-228 *3)) (-4 *5 (-717)))))
+ (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-962)) (-4 *3 (-757))
+ (-4 *4 (-228 *3)) (-4 *5 (-718)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-756))
- (-4 *4 (-228 *3)) (-4 *5 (-717)))))
+ (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-962)) (-4 *3 (-757))
+ (-4 *4 (-228 *3)) (-4 *5 (-718)))))
(((*1 *2 *1) (-12 (-5 *2 (-281)) (-5 *1 (-208)))))
(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113))))
((*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-160))))
((*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-207)))))
(((*1 *2 *1) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))))
(((*1 *1 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-207)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-207)))))
(((*1 *2 *3 *3 *2)
- (|partial| -12 (-5 *2 (-694))
- (-4 *3 (-13 (-663) (-317) (-10 -7 (-15 ** (*3 *3 (-483))))))
+ (|partial| -12 (-5 *2 (-695))
+ (-4 *3 (-13 (-664) (-317) (-10 -7 (-15 ** (*3 *3 (-484))))))
(-5 *1 (-204 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-203 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1127)))))
-(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1127)))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-202 *2)) (-4 *2 (-1127)))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-202 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-483)) (-5 *1 (-199))))
- ((*1 *2 *3) (-12 (-5 *3 (-583 (-1071))) (-5 *2 (-483)) (-5 *1 (-199)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-1183)) (-5 *1 (-199))))
- ((*1 *2 *3) (-12 (-5 *3 (-583 (-1071))) (-5 *2 (-1183)) (-5 *1 (-199)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1071)) (-5 *3 (-483)) (-5 *1 (-199)))))
-(((*1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-199)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-4 *4 (-1127)) (-4 *1 (-196 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-248 (-857 (-483))))
- (-5 *2
- (-2 (|:| |varOrder| (-583 (-1088)))
- (|:| |inhom| (-3 (-583 (-1177 (-694))) "failed"))
- (|:| |hom| (-583 (-1177 (-694))))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-203 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128)))))
+(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1128)))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-202 *2)) (-4 *2 (-1128)))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-202 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-484)) (-5 *1 (-199))))
+ ((*1 *2 *3) (-12 (-5 *3 (-584 (-1072))) (-5 *2 (-484)) (-5 *1 (-199)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-1184)) (-5 *1 (-199))))
+ ((*1 *2 *3) (-12 (-5 *3 (-584 (-1072))) (-5 *2 (-1184)) (-5 *1 (-199)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1072)) (-5 *3 (-484)) (-5 *1 (-199)))))
+(((*1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-199)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1178 *4)) (-4 *4 (-1128)) (-4 *1 (-196 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-248 (-858 (-484))))
+ (-5 *2
+ (-2 (|:| |varOrder| (-584 (-1089)))
+ (|:| |inhom| (-3 (-584 (-1178 (-695))) "failed"))
+ (|:| |hom| (-584 (-1178 (-695))))))
(-5 *1 (-194)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-4 *1 (-193 *3))))
- ((*1 *1) (-12 (-4 *1 (-193 *2)) (-4 *2 (-1012)))))
-(((*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1113))))))
-(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1113))))))
-(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1113))))))
-(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1113))))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-4 *1 (-193 *3))))
+ ((*1 *1) (-12 (-4 *1 (-193 *2)) (-4 *2 (-1013)))))
+(((*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1114))))))
+(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1114))))))
+(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1114))))))
+(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-311) (-1114))))))
(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))
((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))))
(((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))
((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-179)))))
(((*1 *2 *3 *4 *5 *5 *2)
- (|partial| -12 (-5 *2 (-85)) (-5 *3 (-857 *6)) (-5 *4 (-1088))
- (-5 *5 (-750 *7)) (-4 *6 (-13 (-389) (-950 (-483)) (-580 (-483))))
- (-4 *7 (-13 (-1113) (-29 *6))) (-5 *1 (-178 *6 *7))))
+ (|partial| -12 (-5 *2 (-85)) (-5 *3 (-858 *6)) (-5 *4 (-1089))
+ (-5 *5 (-751 *7)) (-4 *6 (-13 (-389) (-951 (-484)) (-581 (-484))))
+ (-4 *7 (-13 (-1114) (-29 *6))) (-5 *1 (-178 *6 *7))))
((*1 *2 *3 *4 *4 *2)
- (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1083 *6)) (-5 *4 (-750 *6))
- (-4 *6 (-13 (-1113) (-29 *5)))
- (-4 *5 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-178 *5 *6)))))
+ (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1084 *6)) (-5 *4 (-751 *6))
+ (-4 *6 (-13 (-1114) (-29 *5)))
+ (-4 *5 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-178 *5 *6)))))
(((*1 *2 *3 *4 *2 *2 *5)
- (|partial| -12 (-5 *2 (-750 *4)) (-5 *3 (-550 *4)) (-5 *5 (-85))
- (-4 *4 (-13 (-1113) (-29 *6)))
- (-4 *6 (-13 (-389) (-950 (-483)) (-580 (-483)))) (-5 *1 (-178 *6 *4)))))
+ (|partial| -12 (-5 *2 (-751 *4)) (-5 *3 (-551 *4)) (-5 *5 (-85))
+ (-4 *4 (-13 (-1114) (-29 *6)))
+ (-4 *6 (-13 (-389) (-951 (-484)) (-581 (-484)))) (-5 *1 (-178 *6 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1071)) (-4 *4 (-13 (-389) (-950 (-483)) (-580 (-483))))
- (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1113) (-29 *4))))))
-(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1088)))))
+ (-12 (-5 *3 (-1072)) (-4 *4 (-13 (-389) (-951 (-484)) (-581 (-484))))
+ (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1114) (-29 *4))))))
+(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-962)) (-14 *3 (-584 (-1089)))))
((*1 *1 *1)
- (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756)))
- (-14 *3 (-583 (-1088))))))
+ (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757)))
+ (-14 *3 (-584 (-1089))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961))
- (-14 *4 (-583 (-1088)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962))
+ (-14 *4 (-584 (-1089)))))
((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756)))
- (-14 *4 (-583 (-1088))))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757)))
+ (-14 *4 (-584 (-1089))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-264 *3)) (-4 *3 (-13 (-961) (-756))) (-5 *1 (-177 *3 *4))
- (-14 *4 (-583 (-1088))))))
+ (-12 (-5 *2 (-264 *3)) (-4 *3 (-13 (-962) (-757))) (-5 *1 (-177 *3 *4))
+ (-14 *4 (-584 (-1089))))))
(((*1 *1 *1)
- (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756)))
- (-14 *3 (-583 (-1088))))))
+ (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757)))
+ (-14 *3 (-584 (-1089))))))
(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-1088)) (-5 *6 (-85))
- (-4 *7 (-13 (-257) (-120) (-950 (-483)) (-580 (-483))))
- (-4 *3 (-13 (-1113) (-871) (-29 *7)))
+ (-12 (-5 *4 (-1089)) (-5 *6 (-85))
+ (-4 *7 (-13 (-257) (-120) (-951 (-484)) (-581 (-484))))
+ (-4 *3 (-13 (-1114) (-872) (-29 *7)))
(-5 *2
- (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3))) (|:| |fail| "failed")
+ (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| "failed")
(|:| |pole| "potentialPole")))
- (-5 *1 (-173 *7 *3)) (-5 *5 (-750 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-347 (-483))) (-5 *1 (-171)))))
+ (-5 *1 (-173 *7 *3)) (-5 *5 (-751 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-347 (-484))) (-5 *1 (-171)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-298)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1153 *4)))))
+ (-12 (-4 *4 (-298)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1154 *4)))))
(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-694)) (-4 *4 (-298)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1153 *4)))))
+ (-12 (-5 *3 (-695)) (-4 *4 (-298)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1154 *4)))))
(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-694)) (-4 *4 (-298)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1153 *4)))))
+ (-12 (-5 *3 (-695)) (-4 *4 (-298)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1154 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-298)) (-5 *2 (-583 (-2 (|:| |deg| (-694)) (|:| -2571 *3))))
- (-5 *1 (-170 *4 *3)) (-4 *3 (-1153 *4)))))
+ (-12 (-4 *4 (-298)) (-5 *2 (-584 (-2 (|:| |deg| (-695)) (|:| -2573 *3))))
+ (-5 *1 (-170 *4 *3)) (-4 *3 (-1154 *4)))))
(((*1 *2 *3 *4)
(-12 (-5 *4 (-85)) (-4 *5 (-298))
(-5 *2
(-2 (|:| |cont| *5)
- (|:| -1776 (-583 (-2 (|:| |irr| *3) (|:| -2391 (-483)))))))
- (-5 *1 (-170 *5 *3)) (-4 *3 (-1153 *5)))))
+ (|:| -1777 (-584 (-2 (|:| |irr| *3) (|:| -2393 (-484)))))))
+ (-5 *1 (-170 *5 *3)) (-4 *3 (-1154 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-311)) (-4 *6 (-1153 (-347 *2)))
- (-4 *2 (-1153 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-290 *5 *2 *6)))))
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-311)) (-4 *6 (-1154 (-347 *2)))
+ (-4 *2 (-1154 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-290 *5 *2 *6)))))
(((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-694)) (-5 *1 (-166 *4 *2)) (-14 *4 (-830)) (-4 *2 (-1012)))))
-(((*1 *2 *3) (-12 (-5 *2 (-345 (-1083 (-483)))) (-5 *1 (-165)) (-5 *3 (-483)))))
-(((*1 *2 *3) (-12 (-5 *2 (-583 (-1083 (-483)))) (-5 *1 (-165)) (-5 *3 (-483)))))
+ (-12 (-5 *3 (-695)) (-5 *1 (-166 *4 *2)) (-14 *4 (-831)) (-4 *2 (-1013)))))
+(((*1 *2 *3) (-12 (-5 *2 (-345 (-1084 (-484)))) (-5 *1 (-165)) (-5 *3 (-484)))))
+(((*1 *2 *3) (-12 (-5 *2 (-584 (-1084 (-484)))) (-5 *1 (-165)) (-5 *3 (-484)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-583 (-483))) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164)))))
+ (-12 (-5 *3 (-584 (-484))) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 (-830))) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164)))))
+ (-12 (-5 *3 (-584 (-831))) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1090 (-347 (-483)))) (-5 *2 (-347 (-483))) (-5 *1 (-164)))))
-(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164)))))
-(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164)))))
-(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164)))))
-(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164)))))
-(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1090 (-347 (-483)))) (-5 *1 (-164)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1177 (-630 *4))) (-4 *4 (-146))
- (-5 *2 (-1177 (-630 (-857 *4)))) (-5 *1 (-163 *4)))))
+ (-12 (-5 *3 (-1091 (-347 (-484)))) (-5 *2 (-347 (-484))) (-5 *1 (-164)))))
+(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164)))))
+(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164)))))
+(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164)))))
+(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164)))))
+(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1091 (-347 (-484)))) (-5 *1 (-164)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1178 (-631 *4))) (-4 *4 (-146))
+ (-5 *2 (-1178 (-631 (-858 *4)))) (-5 *1 (-163 *4)))))
(((*1 *1) (-5 *1 (-161))))
(((*1 *1) (-5 *1 (-161))))
(((*1 *1) (-5 *1 (-161))))
(((*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-111))))
((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-161)))))
-(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-583 (-85))))))
-(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-583 (-774))))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-1093))) (-5 *1 (-158 *3)) (-4 *3 (-160)))))
-(((*1 *2 *3) (-12 (-5 *3 (-444)) (-5 *2 (-632 (-157))) (-5 *1 (-157)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-1127)) (-5 *1 (-156 *3 *2)) (-4 *2 (-616 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-584 (-85))))))
+(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-584 (-775))))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-1094))) (-5 *1 (-158 *3)) (-4 *3 (-160)))))
+(((*1 *2 *3) (-12 (-5 *3 (-444)) (-5 *2 (-633 (-157))) (-5 *1 (-157)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-1128)) (-5 *1 (-156 *3 *2)) (-4 *2 (-617 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1127)) (-5 *2 (-694)) (-5 *1 (-156 *4 *3)) (-4 *3 (-616 *4)))))
+ (-12 (-4 *4 (-1128)) (-5 *2 (-695)) (-5 *1 (-156 *4 *3)) (-4 *3 (-617 *4)))))
(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-1127)) (-5 *1 (-156 *3 *2)) (-4 *2 (-616 *3)))))
+ (|partial| -12 (-4 *3 (-1128)) (-5 *1 (-156 *3 *2)) (-4 *2 (-617 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-311) (-755)))
- (-5 *2 (-2 (|:| |start| *3) (|:| -1776 (-345 *3)))) (-5 *1 (-155 *4 *3))
- (-4 *3 (-1153 (-142 *4))))))
+ (-12 (-4 *4 (-13 (-311) (-756)))
+ (-5 *2 (-2 (|:| |start| *3) (|:| -1777 (-345 *3)))) (-5 *1 (-155 *4 *3))
+ (-4 *3 (-1154 (-142 *4))))))
(((*1 *2 *2)
- (-12 (-4 *2 (-13 (-311) (-755))) (-5 *1 (-155 *2 *3))
- (-4 *3 (-1153 (-142 *2))))))
+ (-12 (-4 *2 (-13 (-311) (-756))) (-5 *1 (-155 *2 *3))
+ (-4 *3 (-1154 (-142 *2))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-311) (-755)))
- (-4 *3 (-1153 *2)))))
+ (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-311) (-756)))
+ (-4 *3 (-1154 *2)))))
(((*1 *2 *3 *2)
- (-12 (-4 *2 (-13 (-311) (-755))) (-5 *1 (-155 *2 *3))
- (-4 *3 (-1153 (-142 *2)))))
+ (-12 (-4 *2 (-13 (-311) (-756))) (-5 *1 (-155 *2 *3))
+ (-4 *3 (-1154 (-142 *2)))))
((*1 *2 *3)
- (-12 (-4 *2 (-13 (-311) (-755))) (-5 *1 (-155 *2 *3))
- (-4 *3 (-1153 (-142 *2))))))
+ (-12 (-4 *2 (-13 (-311) (-756))) (-5 *1 (-155 *2 *3))
+ (-4 *3 (-1154 (-142 *2))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-311) (-755))) (-5 *1 (-155 *3 *2))
- (-4 *2 (-1153 (-142 *3))))))
+ (-12 (-4 *3 (-13 (-311) (-756))) (-5 *1 (-155 *3 *2))
+ (-4 *2 (-1154 (-142 *3))))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-85)) (-4 *4 (-13 (-311) (-755))) (-5 *2 (-345 *3))
- (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4)))))
+ (-12 (-5 *5 (-85)) (-4 *4 (-13 (-311) (-756))) (-5 *2 (-345 *3))
+ (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4)))))
((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-311) (-755))) (-5 *2 (-345 *3)) (-5 *1 (-155 *4 *3))
- (-4 *3 (-1153 (-142 *4))))))
+ (-12 (-4 *4 (-13 (-311) (-756))) (-5 *2 (-345 *3)) (-5 *1 (-155 *4 *3))
+ (-4 *3 (-1154 (-142 *4))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-311) (-755))) (-5 *1 (-155 *3 *2))
- (-4 *2 (-1153 (-142 *3))))))
+ (-12 (-4 *3 (-13 (-311) (-756))) (-5 *1 (-155 *3 *2))
+ (-4 *2 (-1154 (-142 *3))))))
(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-13 (-311) (-755)))
- (-5 *2 (-583 (-2 (|:| -1776 (-583 *3)) (|:| -1593 *5))))
- (-5 *1 (-155 *5 *3)) (-4 *3 (-1153 (-142 *5)))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-13 (-311) (-756)))
+ (-5 *2 (-584 (-2 (|:| -1777 (-584 *3)) (|:| -1594 *5))))
+ (-5 *1 (-155 *5 *3)) (-4 *3 (-1154 (-142 *5)))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-311) (-755)))
- (-5 *2 (-583 (-2 (|:| -1776 (-583 *3)) (|:| -1593 *4))))
- (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4))))))
+ (-12 (-4 *4 (-13 (-311) (-756)))
+ (-5 *2 (-584 (-2 (|:| -1777 (-584 *3)) (|:| -1594 *4))))
+ (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))))
(((*1 *2 *3 *4)
- (-12 (-5 *2 (-583 (-142 *4))) (-5 *1 (-128 *3 *4))
- (-4 *3 (-1153 (-142 (-483)))) (-4 *4 (-13 (-311) (-755)))))
+ (-12 (-5 *2 (-584 (-142 *4))) (-5 *1 (-128 *3 *4))
+ (-4 *3 (-1154 (-142 (-484)))) (-4 *4 (-13 (-311) (-756)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-311) (-755))) (-5 *2 (-583 (-142 *4)))
- (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4)))))
+ (-12 (-4 *4 (-13 (-311) (-756))) (-5 *2 (-584 (-142 *4)))
+ (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4)))))
((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-311) (-755))) (-5 *2 (-583 (-142 *4)))
- (-5 *1 (-155 *4 *3)) (-4 *3 (-1153 (-142 *4))))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-257)) (-5 *1 (-153 *3)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-257)) (-5 *1 (-153 *3)))))
+ (-12 (-4 *4 (-13 (-311) (-756))) (-5 *2 (-584 (-142 *4)))
+ (-5 *1 (-155 *4 *3)) (-4 *3 (-1154 (-142 *4))))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-584 *3)) (-4 *3 (-257)) (-5 *1 (-153 *3)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-257)) (-5 *1 (-153 *3)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3))
- (-4 *3 (-13 (-311) (-1113) (-915))))))
+ (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3))
+ (-4 *3 (-13 (-311) (-1114) (-916))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3))
- (-4 *3 (-13 (-311) (-1113) (-915))))))
+ (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3))
+ (-4 *3 (-13 (-311) (-1114) (-916))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3))
- (-4 *3 (-13 (-311) (-1113) (-915))))))
+ (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3))
+ (-4 *3 (-13 (-311) (-1114) (-916))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3))
- (-4 *3 (-13 (-311) (-1113) (-915))))))
+ (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3))
+ (-4 *3 (-13 (-311) (-1114) (-916))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3))
- (-4 *3 (-13 (-311) (-1113) (-915))))))
+ (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3))
+ (-4 *3 (-13 (-311) (-1114) (-916))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3))
- (-4 *3 (-13 (-311) (-1113) (-915))))))
+ (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3))
+ (-4 *3 (-13 (-311) (-1114) (-916))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3))
- (-4 *3 (-13 (-311) (-1113) (-915))))))
+ (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3))
+ (-4 *3 (-13 (-311) (-1114) (-916))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-311) (-1113) (-915)))
+ (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-311) (-1114) (-916)))
(-5 *1 (-150 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-311) (-1113) (-915)))
+ (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-311) (-1114) (-916)))
(-5 *1 (-150 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-311) (-1113) (-915)))
+ (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-311) (-1114) (-916)))
(-5 *1 (-150 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-311) (-1113) (-915)))
+ (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-311) (-1114) (-916)))
(-5 *1 (-150 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-311) (-1113) (-915)))
+ (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-311) (-1114) (-916)))
(-5 *1 (-150 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-311) (-1113) (-915)))
+ (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-311) (-1114) (-916)))
(-5 *1 (-150 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-311) (-1113) (-915)))
+ (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-311) (-1114) (-916)))
(-5 *1 (-150 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-78))) (-5 *1 (-149)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-78))) (-5 *1 (-149)))))
(((*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-149)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-1067 *2)) (-4 *2 (-257)) (-5 *1 (-148 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-1068 *2)) (-4 *2 (-257)) (-5 *1 (-148 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257)))))
(((*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-257)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1067 (-347 *3))) (-5 *1 (-148 *3)) (-4 *3 (-257)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1067 (-347 *3))) (-5 *1 (-148 *3)) (-4 *3 (-257)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1068 (-347 *3))) (-5 *1 (-148 *3)) (-4 *3 (-257)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1068 (-347 *3))) (-5 *1 (-148 *3)) (-4 *3 (-257)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-148 *3)) (-4 *3 (-257)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))))
(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1047)) (-5 *3 (-246)) (-5 *1 (-141)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1047)) (-5 *2 (-632 (-235))) (-5 *1 (-141)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1071)) (-5 *2 (-583 (-632 (-235)))) (-5 *1 (-141)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-1048)) (-5 *3 (-246)) (-5 *1 (-141)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1048)) (-5 *2 (-633 (-235))) (-5 *1 (-141)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1072)) (-5 *2 (-584 (-633 (-235)))) (-5 *1 (-141)))))
(((*1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))))
(((*1 *1 *2 *2) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-972)) (-4 *3 (-1113))
+ (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-973)) (-4 *3 (-1114))
(-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
(((*1 *1 *1 *1) (-5 *1 (-134)))
- ((*1 *1 *2) (-12 (-5 *2 (-483)) (-5 *1 (-134)))))
-(((*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-134)))))
+(((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *1 (-131 *4 *2)) (-4 *2 (-361 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1088))))
+ (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-361 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1089))))
((*1 *1 *1) (-4 *1 (-133))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *1 (-131 *4 *2)) (-4 *2 (-361 *4))))
+ (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-361 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1003 *2)) (-4 *2 (-361 *4)) (-4 *4 (-494))
+ (-12 (-5 *3 (-1004 *2)) (-4 *2 (-361 *4)) (-4 *4 (-495))
(-5 *1 (-131 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1003 *1)) (-4 *1 (-133))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1088)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482)))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-133))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1089)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))))
(((*1 *1 *1 *1) (-4 *1 (-116)))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-482)) (-5 *1 (-132 *2)))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-483)) (-5 *1 (-132 *2)))))
(((*1 *1 *1) (-4 *1 (-116)))
- ((*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3))))
- ((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-482)))))
+ ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3))))
+ ((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2))
- (-4 *4 (-494)))))
+ (-12 (-5 *3 (-584 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2))
+ (-4 *4 (-495)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2))
- (-4 *4 (-494)))))
+ (-12 (-5 *3 (-584 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2))
+ (-4 *4 (-495)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2))
- (-4 *4 (-494)))))
+ (-12 (-5 *3 (-584 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2))
+ (-4 *4 (-495)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2))
- (-4 *4 (-494)))))
+ (-12 (-5 *3 (-584 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2))
+ (-4 *4 (-495)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2))
- (-4 *4 (-494)))))
+ (-12 (-5 *3 (-584 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2))
+ (-4 *4 (-495)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2))
- (-4 *4 (-494)))))
-(((*1 *2 *2) (-12 (-4 *3 (-494)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))))
+ (-12 (-5 *3 (-584 *2)) (-4 *2 (-361 *4)) (-5 *1 (-131 *4 *2))
+ (-4 *4 (-495)))))
+(((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-361 *3)))))
(((*1 *1) (-5 *1 (-130))))
-(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-130)))))
+(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-130)))))
(((*1 *2 *3 *4 *4 *4 *4)
(-12 (-5 *4 (-179))
(-5 *2
- (-2 (|:| |brans| (-583 (-583 (-854 *4)))) (|:| |xValues| (-1000 *4))
- (|:| |yValues| (-1000 *4))))
- (-5 *1 (-126)) (-5 *3 (-583 (-583 (-854 *4)))))))
+ (-2 (|:| |brans| (-584 (-584 (-855 *4)))) (|:| |xValues| (-1001 *4))
+ (|:| |yValues| (-1001 *4))))
+ (-5 *1 (-126)) (-5 *3 (-584 (-584 (-855 *4)))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-836))
+ (-12 (-5 *3 (-837))
(-5 *2
- (-2 (|:| |brans| (-583 (-583 (-854 (-179)))))
- (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))))
+ (-2 (|:| |brans| (-584 (-584 (-855 (-179)))))
+ (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))))
(-5 *1 (-126))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-836)) (-5 *4 (-347 (-483)))
+ (-12 (-5 *3 (-837)) (-5 *4 (-347 (-484)))
(-5 *2
- (-2 (|:| |brans| (-583 (-583 (-854 (-179)))))
- (|:| |xValues| (-1000 (-179))) (|:| |yValues| (-1000 (-179)))))
+ (-2 (|:| |brans| (-584 (-584 (-855 (-179)))))
+ (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))))
(-5 *1 (-126)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-830)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-311))
- (-14 *5 (-906 *3 *4)))))
+ (-12 (-5 *2 (-831)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-311))
+ (-14 *5 (-907 *3 *4)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-124 *2)) (-4 *2 (-1127)))))
+ (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-124 *2)) (-4 *2 (-1128)))))
(((*1 *1 *1)
- (-12 (|has| *1 (-6 -3989)) (-4 *1 (-124 *2)) (-4 *2 (-1127))
- (-4 *2 (-1012)))))
+ (-12 (|has| *1 (-6 -3991)) (-4 *1 (-124 *2)) (-4 *2 (-1128))
+ (-4 *2 (-1013)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4))
+ (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4))
(-5 *2
(-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-347 *5))
- (|:| |c2| (-347 *5)) (|:| |deg| (-694))))
- (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1153 (-347 *5))))))
+ (|:| |c2| (-347 *5)) (|:| |deg| (-695))))
+ (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1154 (-347 *5))))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1153 *2)) (-4 *2 (-1132)) (-5 *1 (-121 *2 *4 *3))
- (-4 *3 (-1153 (-347 *4))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-347 *6)) (-4 *5 (-1132)) (-4 *6 (-1153 *5))
- (-5 *2 (-2 (|:| -2397 (-694)) (|:| -3948 *3) (|:| |radicand| *6)))
- (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-694)) (-4 *7 (-1153 *3)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-1132)) (-4 *5 (-1153 *4))
- (-5 *2 (-2 (|:| |radicand| (-347 *5)) (|:| |deg| (-694))))
- (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1153 (-347 *5))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1132)) (-4 *5 (-1153 *4))
- (-5 *2 (-2 (|:| -3948 (-347 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3))
- (-4 *3 (-1153 (-347 *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-117)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-117))))
- ((*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-117)))))
+ (-12 (-4 *4 (-1154 *2)) (-4 *2 (-1133)) (-5 *1 (-121 *2 *4 *3))
+ (-4 *3 (-1154 (-347 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-347 *6)) (-4 *5 (-1133)) (-4 *6 (-1154 *5))
+ (-5 *2 (-2 (|:| -2399 (-695)) (|:| -3950 *3) (|:| |radicand| *6)))
+ (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-695)) (-4 *7 (-1154 *3)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-1133)) (-4 *5 (-1154 *4))
+ (-5 *2 (-2 (|:| |radicand| (-347 *5)) (|:| |deg| (-695))))
+ (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1154 (-347 *5))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1133)) (-4 *5 (-1154 *4))
+ (-5 *2 (-2 (|:| -3950 (-347 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3))
+ (-4 *3 (-1154 (-347 *5))))))
+(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-117)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-117))))
+ ((*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-117)))))
(((*1 *1) (-5 *1 (-117))))
(((*1 *1) (-5 *1 (-117))))
(((*1 *1) (-5 *1 (-117))))
@@ -13165,71 +13168,71 @@
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 (-117))) (-5 *1 (-114))))
- ((*1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-114)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 (-117))) (-5 *1 (-114))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-114)))))
(((*1 *1) (-5 *1 (-114))))
(((*1 *1) (-5 *1 (-114))))
(((*1 *1) (-5 *1 (-114))))
(((*1 *1) (-5 *1 (-114))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-749))) (-5 *1 (-113)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-158 (-112)))) (-5 *1 (-113)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-158 (-112)))) (-5 *1 (-113)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-750))) (-5 *1 (-113)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-158 (-112)))) (-5 *1 (-113)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-158 (-112)))) (-5 *1 (-113)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-583 (-483))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-483))
- (-14 *4 (-694)) (-4 *5 (-146)))))
+ (-12 (-5 *2 (-584 (-484))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484))
+ (-14 *4 (-695)) (-4 *5 (-146)))))
(((*1 *1)
- (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-694)) (-4 *4 (-146)))))
+ (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-695)) (-4 *4 (-146)))))
(((*1 *1)
- (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-483)) (-14 *3 (-694)) (-4 *4 (-146)))))
+ (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-695)) (-4 *4 (-146)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-583 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-483))
- (-14 *4 (-694)) (-4 *5 (-146)))))
+ (-12 (-5 *2 (-584 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484))
+ (-14 *4 (-695)) (-4 *5 (-146)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-583 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-483))
- (-14 *4 (-694)))))
-(((*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-107)))))
+ (-12 (-5 *2 (-584 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484))
+ (-14 *4 (-695)))))
+(((*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-107)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))))
(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107)))))
(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-694)) (-5 *2 (-1183)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-695)) (-5 *2 (-1184)))))
(((*1 *1 *1 *1) (|partial| -4 *1 (-104))))
(((*1 *1) (-5 *1 (-103))))
(((*1 *1) (-5 *1 (-103))))
(((*1 *1) (-5 *1 (-103))))
-(((*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-102)))))
-(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-102)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-102)))))
-(((*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-101)))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1012))))
- ((*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1012)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-99 *3)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1012)))))
+(((*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-102)))))
+(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-102)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-102)))))
+(((*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-101)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1013)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-99 *3)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1013)))))
(((*1 *1 *1 *1) (-5 *1 (-85))) ((*1 *1 *1 *1) (-4 *1 (-96))))
(((*1 *1 *1 *1) (-5 *1 (-85))) ((*1 *1 *1 *1) (-4 *1 (-96))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-94 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-756)))))
-(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1153 (-483))))))
-(((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-93 *3)) (-4 *3 (-1153 (-483)))))
- ((*1 *2 *2) (-12 (-5 *2 (-694)) (-5 *1 (-93 *3)) (-4 *3 (-1153 (-483))))))
-(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1153 (-483)))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1153 (-483))))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-92 *2)) (-4 *2 (-1127)))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3990)) (-4 *1 (-92 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-311) (-950 (-347 *2)))) (-5 *2 (-483)) (-5 *1 (-88 *4 *3))
- (-4 *3 (-1153 *4)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1012)))))
-(((*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1012)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-94 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-757)))))
+(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484))))))
+(((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-695)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484))))))
+(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484)))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1154 (-484))))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-92 *2)) (-4 *2 (-1128)))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3992)) (-4 *1 (-92 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-311) (-951 (-347 *2)))) (-5 *2 (-484)) (-5 *1 (-88 *4 *3))
+ (-4 *3 (-1154 *4)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1013)))))
+(((*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1013)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-86)) (-5 *3 (-583 (-1 *4 (-583 *4)))) (-4 *4 (-1012))
+ (-12 (-5 *2 (-86)) (-5 *3 (-584 (-1 *4 (-584 *4)))) (-4 *4 (-1013))
(-5 *1 (-87 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1012)) (-5 *1 (-87 *4))))
+ (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1013)) (-5 *1 (-87 *4))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-86)) (-5 *2 (-583 (-1 *4 (-583 *4))))
- (-5 *1 (-87 *4)) (-4 *4 (-1012)))))
-(((*1 *2 *1) (-12 (-5 *2 (-583 (-876))) (-5 *1 (-78))))
- ((*1 *2 *1) (-12 (-5 *2 (-45 (-1071) (-696))) (-5 *1 (-86)))))
+ (|partial| -12 (-5 *3 (-86)) (-5 *2 (-584 (-1 *4 (-584 *4))))
+ (-5 *1 (-87 *4)) (-4 *4 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-584 (-877))) (-5 *1 (-78))))
+ ((*1 *2 *1) (-12 (-5 *2 (-45 (-1072) (-697))) (-5 *1 (-86)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))))
@@ -13237,923 +13240,924 @@
(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))))
(((*1 *2 *1 *3) (-12 (-5 *3 (-444)) (-5 *2 (-85)) (-5 *1 (-86)))))
(((*1 *1 *1 *2) (-12 (-5 *2 (-444)) (-5 *1 (-86))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1071)) (-5 *1 (-86)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-696)) (-5 *1 (-86))))
- ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1071)) (-5 *3 (-696)) (-5 *1 (-86)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1071) (-696))) (-5 *1 (-86)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-79 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-583 (-876))) (-5 *1 (-78)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-4 *1 (-76 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1127)))))
-(((*1 *2 *3)
- (-12 (|has| *2 (-6 (-3991 "*"))) (-4 *5 (-321 *2)) (-4 *6 (-321 *2))
- (-4 *2 (-961)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1153 *2))
- (-4 *4 (-627 *2 *5 *6)))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1072)) (-5 *1 (-86)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-697)) (-5 *1 (-86))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1072)) (-5 *3 (-697)) (-5 *1 (-86)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1072) (-697))) (-5 *1 (-86)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1128)) (-5 *1 (-79 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-444)) (-5 *3 (-584 (-877))) (-5 *1 (-78)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-4 *1 (-76 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1128)))))
+(((*1 *2 *3)
+ (-12 (|has| *2 (-6 (-3993 "*"))) (-4 *5 (-321 *2)) (-4 *6 (-321 *2))
+ (-4 *2 (-962)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1154 *2))
+ (-4 *4 (-628 *2 *5 *6)))))
(((*1 *2 *3 *3)
- (-12 (|has| *2 (-6 (-3991 "*"))) (-4 *5 (-321 *2)) (-4 *6 (-321 *2))
- (-4 *2 (-961)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1153 *2))
- (-4 *4 (-627 *2 *5 *6)))))
+ (-12 (|has| *2 (-6 (-3993 "*"))) (-4 *5 (-321 *2)) (-4 *6 (-321 *2))
+ (-4 *2 (-962)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1154 *2))
+ (-4 *4 (-628 *2 *5 *6)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-961)) (-4 *2 (-627 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6))
- (-4 *3 (-1153 *4)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)))))
+ (-12 (-4 *4 (-962)) (-4 *2 (-628 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6))
+ (-4 *3 (-1154 *4)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-961)) (-4 *2 (-627 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6))
- (-4 *3 (-1153 *4)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *1 (-73 *3)) (-4 *3 (-1012)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-5 *1 (-73 *3)))))
+ (-12 (-4 *4 (-962)) (-4 *2 (-628 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6))
+ (-4 *3 (-1154 *4)) (-4 *5 (-321 *4)) (-4 *6 (-321 *4)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *1 (-73 *3)) (-4 *3 (-1013)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-5 *1 (-73 *3)))))
(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1012)) (-5 *1 (-73 *3))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1012)))))
+ (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-73 *3))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1013)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 (-583 *2) *2 *2 *2)) (-4 *2 (-1012)) (-5 *1 (-73 *2))))
+ (-12 (-5 *3 (-1 (-584 *2) *2 *2 *2)) (-4 *2 (-1013)) (-5 *1 (-73 *2))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1012)) (-5 *1 (-73 *2)))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1013)) (-5 *1 (-73 *2)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))))
(((*1 *2 *3 *3)
(-12 (-4 *4 (-13 (-389) (-120))) (-5 *2 (-345 *3)) (-5 *1 (-70 *4 *3))
- (-4 *3 (-1153 *4))))
+ (-4 *3 (-1154 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-583 *3)) (-4 *3 (-1153 *5)) (-4 *5 (-13 (-389) (-120)))
+ (-12 (-5 *4 (-584 *3)) (-4 *3 (-1154 *5)) (-4 *5 (-13 (-389) (-120)))
(-5 *2 (-345 *3)) (-5 *1 (-70 *5 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-483))) (-4 *3 (-961)) (-5 *1 (-69 *3))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-69 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-69 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1012)) (-5 *1 (-62 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-484))) (-4 *3 (-962)) (-5 *1 (-69 *3))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-69 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-69 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1013)) (-5 *1 (-62 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-311)) (-4 *5 (-494))
+ (-12 (-4 *5 (-311)) (-4 *5 (-495))
(-5 *2
- (-2 (|:| |minor| (-583 (-830))) (|:| -3261 *3)
- (|:| |minors| (-583 (-583 (-830)))) (|:| |ops| (-583 *3))))
- (-5 *1 (-61 *5 *3)) (-5 *4 (-830)) (-4 *3 (-600 *5)))))
+ (-2 (|:| |minor| (-584 (-831))) (|:| -3263 *3)
+ (|:| |minors| (-584 (-584 (-831)))) (|:| |ops| (-584 *3))))
+ (-5 *1 (-61 *5 *3)) (-5 *4 (-831)) (-4 *3 (-601 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-5 *2 (-1177 (-630 *4))) (-5 *1 (-61 *4 *5))
- (-5 *3 (-630 *4)) (-4 *5 (-600 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-1178 (-631 *4))) (-5 *1 (-61 *4 *5))
+ (-5 *3 (-631 *4)) (-4 *5 (-601 *4)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-494))
- (-5 *2 (-2 (|:| |mat| (-630 *5)) (|:| |vec| (-1177 (-583 (-830))))))
- (-5 *1 (-61 *5 *3)) (-5 *4 (-830)) (-4 *3 (-600 *5)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *1 (-58 *3)) (-4 *3 (-1127))))
- ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1127)) (-5 *1 (-58 *3)))))
+ (-12 (-4 *5 (-495))
+ (-5 *2 (-2 (|:| |mat| (-631 *5)) (|:| |vec| (-1178 (-584 (-831))))))
+ (-5 *1 (-61 *5 *3)) (-5 *4 (-831)) (-4 *3 (-601 *5)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *1 (-58 *3)) (-4 *3 (-1128))))
+ ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1128)) (-5 *1 (-58 *3)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-483)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1127)) (-4 *3 (-321 *4))
+ (-12 (-5 *2 (-484)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1128)) (-4 *3 (-321 *4))
(-4 *5 (-321 *4)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-483)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1127)) (-4 *5 (-321 *4))
+ (-12 (-5 *2 (-484)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1128)) (-4 *5 (-321 *4))
(-4 *3 (-321 *4)))))
(((*1 *1) (-5 *1 (-55))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 (-1088))) (-4 *4 (-1012))
- (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-54 *4 *5 *2))
- (-4 *2 (-13 (-361 *5) (-796 *4) (-553 (-800 *4)))))))
+ (-12 (-5 *3 (-584 (-1089))) (-4 *4 (-1013))
+ (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-54 *4 *5 *2))
+ (-4 *2 (-13 (-361 *5) (-797 *4) (-554 (-801 *4)))))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-583 (-986 *4 *5 *2))) (-4 *4 (-1012))
- (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4))))
- (-4 *2 (-13 (-361 *5) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-54 *4 *5 *2))))
+ (-12 (-5 *3 (-584 (-987 *4 *5 *2))) (-4 *4 (-1013))
+ (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4))))
+ (-4 *2 (-13 (-361 *5) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-54 *4 *5 *2))))
((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-583 (-986 *5 *6 *2))) (-5 *4 (-830)) (-4 *5 (-1012))
- (-4 *6 (-13 (-961) (-796 *5) (-553 (-800 *5))))
- (-4 *2 (-13 (-361 *6) (-796 *5) (-553 (-800 *5)))) (-5 *1 (-54 *5 *6 *2)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1014)) (-5 *3 (-696)) (-5 *1 (-51)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1014)) (-5 *1 (-51)))))
-(((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-51)))))
+ (-12 (-5 *3 (-584 (-987 *5 *6 *2))) (-5 *4 (-831)) (-4 *5 (-1013))
+ (-4 *6 (-13 (-962) (-797 *5) (-554 (-801 *5))))
+ (-4 *2 (-13 (-361 *6) (-797 *5) (-554 (-801 *5)))) (-5 *1 (-54 *5 *6 *2)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1015)) (-5 *3 (-697)) (-5 *1 (-51)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-51)))))
+(((*1 *2 *1) (-12 (-5 *2 (-697)) (-5 *1 (-51)))))
(((*1 *2)
- (-12 (-4 *3 (-494)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))))
+ (-12 (-4 *3 (-495)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-494)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4))
+ (-12 (-4 *3 (-495)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4))
(-4 *4 (-358 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-494)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4))
+ (-12 (-4 *3 (-495)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4))
(-4 *4 (-358 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-494)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4))
+ (-12 (-4 *3 (-495)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4))
(-4 *4 (-358 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-494)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))))
+ (-12 (-4 *3 (-495)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-494)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))))
+ (-12 (-4 *3 (-495)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-494)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))))
+ (-12 (-4 *3 (-495)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-494)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))))
+ (-12 (-4 *3 (-495)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-494)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))))
+ (-12 (-4 *3 (-495)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-5 *2 (-583 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-584 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-5 *2 (-583 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-584 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))))
(((*1 *2)
- (-12 (-4 *3 (-494)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))))
+ (-12 (-4 *3 (-495)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-358 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-358 *4)))))
(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-86)) (-5 *4 (-694)) (-4 *5 (-13 (-389) (-950 (-483))))
- (-4 *5 (-494)) (-5 *1 (-41 *5 *2)) (-4 *2 (-361 *5))
+ (-12 (-5 *3 (-86)) (-5 *4 (-695)) (-4 *5 (-13 (-389) (-951 (-484))))
+ (-4 *5 (-495)) (-5 *1 (-41 *5 *2)) (-4 *2 (-361 *5))
(-4 *2
(-13 (-311) (-253)
- (-10 -8 (-15 -2994 ((-1037 *5 (-550 $)) $))
- (-15 -2993 ((-1037 *5 (-550 $)) $))
- (-15 -3940 ($ (-1037 *5 (-550 $))))))))))
+ (-10 -8 (-15 -2996 ((-1038 *5 (-551 $)) $))
+ (-15 -2995 ((-1038 *5 (-551 $)) $))
+ (-15 -3942 ($ (-1038 *5 (-551 $))))))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-389) (-950 (-483)))) (-4 *3 (-494)) (-5 *1 (-41 *3 *2))
+ (-12 (-4 *3 (-13 (-389) (-951 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2))
(-4 *2 (-361 *3))
(-4 *2
(-13 (-311) (-253)
- (-10 -8 (-15 -2994 ((-1037 *3 (-550 $)) $))
- (-15 -2993 ((-1037 *3 (-550 $)) $))
- (-15 -3940 ($ (-1037 *3 (-550 $))))))))))
+ (-10 -8 (-15 -2996 ((-1038 *3 (-551 $)) $))
+ (-15 -2995 ((-1038 *3 (-551 $)) $))
+ (-15 -3942 ($ (-1038 *3 (-551 $))))))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-389) (-950 (-483)))) (-4 *3 (-494)) (-5 *1 (-41 *3 *2))
+ (-12 (-4 *3 (-13 (-389) (-951 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2))
(-4 *2 (-361 *3))
(-4 *2
(-13 (-311) (-253)
- (-10 -8 (-15 -2994 ((-1037 *3 (-550 $)) $))
- (-15 -2993 ((-1037 *3 (-550 $)) $))
- (-15 -3940 ($ (-1037 *3 (-550 $))))))))))
+ (-10 -8 (-15 -2996 ((-1038 *3 (-551 $)) $))
+ (-15 -2995 ((-1038 *3 (-551 $)) $))
+ (-15 -3942 ($ (-1038 *3 (-551 $))))))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-389) (-950 (-483)))) (-4 *3 (-494)) (-5 *1 (-41 *3 *2))
+ (-12 (-4 *3 (-13 (-389) (-951 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2))
(-4 *2 (-361 *3))
(-4 *2
(-13 (-311) (-253)
- (-10 -8 (-15 -2994 ((-1037 *3 (-550 $)) $))
- (-15 -2993 ((-1037 *3 (-550 $)) $))
- (-15 -3940 ($ (-1037 *3 (-550 $))))))))))
+ (-10 -8 (-15 -2996 ((-1038 *3 (-551 $)) $))
+ (-15 -2995 ((-1038 *3 (-551 $)) $))
+ (-15 -3942 ($ (-1038 *3 (-551 $))))))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-494)) (-5 *2 (-1083 *3)) (-5 *1 (-41 *4 *3))
+ (-12 (-4 *4 (-495)) (-5 *2 (-1084 *3)) (-5 *1 (-41 *4 *3))
(-4 *3
(-13 (-311) (-253)
- (-10 -8 (-15 -2994 ((-1037 *4 (-550 $)) $))
- (-15 -2993 ((-1037 *4 (-550 $)) $))
- (-15 -3940 ($ (-1037 *4 (-550 $))))))))))
+ (-10 -8 (-15 -2996 ((-1038 *4 (-551 $)) $))
+ (-15 -2995 ((-1038 *4 (-551 $)) $))
+ (-15 -3942 ($ (-1038 *4 (-551 $))))))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-41 *3 *2))
+ (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2))
(-4 *2
(-13 (-311) (-253)
- (-10 -8 (-15 -2994 ((-1037 *3 (-550 $)) $))
- (-15 -2993 ((-1037 *3 (-550 $)) $))
- (-15 -3940 ($ (-1037 *3 (-550 $)))))))))
+ (-10 -8 (-15 -2996 ((-1038 *3 (-551 $)) $))
+ (-15 -2995 ((-1038 *3 (-551 $)) $))
+ (-15 -3942 ($ (-1038 *3 (-551 $)))))))))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-41 *3 *2))
+ (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2))
(-4 *2
(-13 (-311) (-253)
- (-10 -8 (-15 -2994 ((-1037 *3 (-550 $)) $))
- (-15 -2993 ((-1037 *3 (-550 $)) $))
- (-15 -3940 ($ (-1037 *3 (-550 $)))))))))
+ (-10 -8 (-15 -2996 ((-1038 *3 (-551 $)) $))
+ (-15 -2995 ((-1038 *3 (-551 $)) $))
+ (-15 -3942 ($ (-1038 *3 (-551 $)))))))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 *2))
+ (-12 (-5 *3 (-584 *2))
(-4 *2
(-13 (-311) (-253)
- (-10 -8 (-15 -2994 ((-1037 *4 (-550 $)) $))
- (-15 -2993 ((-1037 *4 (-550 $)) $))
- (-15 -3940 ($ (-1037 *4 (-550 $)))))))
- (-4 *4 (-494)) (-5 *1 (-41 *4 *2))))
+ (-10 -8 (-15 -2996 ((-1038 *4 (-551 $)) $))
+ (-15 -2995 ((-1038 *4 (-551 $)) $))
+ (-15 -3942 ($ (-1038 *4 (-551 $)))))))
+ (-4 *4 (-495)) (-5 *1 (-41 *4 *2))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-583 (-550 *2)))
+ (-12 (-5 *3 (-584 (-551 *2)))
(-4 *2
(-13 (-311) (-253)
- (-10 -8 (-15 -2994 ((-1037 *4 (-550 $)) $))
- (-15 -2993 ((-1037 *4 (-550 $)) $))
- (-15 -3940 ($ (-1037 *4 (-550 $)))))))
- (-4 *4 (-494)) (-5 *1 (-41 *4 *2)))))
+ (-10 -8 (-15 -2996 ((-1038 *4 (-551 $)) $))
+ (-15 -2995 ((-1038 *4 (-551 $)) $))
+ (-15 -3942 ($ (-1038 *4 (-551 $)))))))
+ (-4 *4 (-495)) (-5 *1 (-41 *4 *2)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-494)) (-5 *1 (-41 *3 *2))
+ (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2))
(-4 *2
(-13 (-311) (-253)
- (-10 -8 (-15 -2994 ((-1037 *3 (-550 $)) $))
- (-15 -2993 ((-1037 *3 (-550 $)) $))
- (-15 -3940 ($ (-1037 *3 (-550 $))))))))))
+ (-10 -8 (-15 -2996 ((-1038 *3 (-551 $)) $))
+ (-15 -2995 ((-1038 *3 (-551 $)) $))
+ (-15 -3942 ($ (-1038 *3 (-551 $))))))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-694)) (-4 *4 (-311)) (-4 *5 (-1153 *4)) (-5 *2 (-1183))
- (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1153 (-347 *5))) (-14 *7 *6))))
-(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1153 (-48))))))
+ (-12 (-5 *3 (-695)) (-4 *4 (-311)) (-4 *5 (-1154 *4)) (-5 *2 (-1184))
+ (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1154 (-347 *5))) (-14 *7 *6))))
+(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1154 (-48))))))
(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-5 *2 (-2 (|:| -3854 *3) (|:| |entry| *4))))))
+ (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-5 *2 (-2 (|:| -3856 *3) (|:| |entry| *4))))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-483)) (-4 *2 (-361 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-950 *4))
- (-4 *3 (-494)))))
+ (-12 (-5 *4 (-484)) (-4 *2 (-361 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-951 *4))
+ (-4 *3 (-495)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-583 *5)) (-4 *5 (-361 *4)) (-4 *4 (-494)) (-5 *2 (-772))
+ (-12 (-5 *3 (-584 *5)) (-4 *5 (-361 *4)) (-4 *4 (-495)) (-5 *2 (-773))
(-5 *1 (-32 *4 *5)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1083 *2)) (-4 *2 (-361 *4)) (-4 *4 (-494))
+ (-12 (-5 *3 (-1084 *2)) (-4 *2 (-361 *4)) (-4 *4 (-495))
(-5 *1 (-32 *4 *2)))))
(((*1 *1 *2 *3 *3 *4 *4)
- (-12 (-5 *2 (-857 (-483))) (-5 *3 (-1088)) (-5 *4 (-1000 (-347 (-483))))
+ (-12 (-5 *2 (-858 (-484))) (-5 *3 (-1089)) (-5 *4 (-1001 (-347 (-484))))
(-5 *1 (-30)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1083 *1)) (-5 *4 (-1088)) (-4 *1 (-27)) (-5 *2 (-583 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1))))
+ (-12 (-5 *3 (-1084 *1)) (-5 *4 (-1089)) (-4 *1 (-27)) (-5 *2 (-584 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1084 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *2 (-583 *1)) (-4 *1 (-29 *4))))
- ((*1 *2 *1) (-12 (-4 *3 (-494)) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1083 *1)) (-5 *3 (-1088)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1083 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-857 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1088)) (-4 *1 (-29 *3)) (-4 *3 (-494))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-494)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1083 *1)) (-5 *4 (-1088)) (-4 *1 (-27)) (-5 *2 (-583 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1083 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1))))
+ (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *2 (-584 *1)) (-4 *1 (-29 *4))))
+ ((*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-584 *1)) (-4 *1 (-29 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1084 *1)) (-5 *3 (-1089)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1084 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-858 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1089)) (-4 *1 (-29 *3)) (-4 *3 (-495))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-495)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1084 *1)) (-5 *4 (-1089)) (-4 *1 (-27)) (-5 *2 (-584 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1084 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1088)) (-4 *4 (-494)) (-5 *2 (-583 *1)) (-4 *1 (-29 *4))))
- ((*1 *2 *1) (-12 (-4 *3 (-494)) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))))
-((-1212 . 630207) (-1213 . 629905) (-1214 . 629509) (-1215 . 629388)
- (-1216 . 629286) (-1217 . 629173) (-1218 . 629057) (-1219 . 629004)
- (-1220 . 628867) (-1221 . 628792) (-1222 . 628636) (-1223 . 628408)
- (-1224 . 627444) (-1225 . 627197) (-1226 . 626913) (-1227 . 626629)
- (-1228 . 626345) (-1229 . 626026) (-1230 . 625934) (-1231 . 625842)
- (-1232 . 625750) (-1233 . 625658) (-1234 . 625566) (-1235 . 625474)
- (-1236 . 625379) (-1237 . 625284) (-1238 . 625192) (-1239 . 625100)
- (-1240 . 625008) (-1241 . 624916) (-1242 . 624824) (-1243 . 624722)
- (-1244 . 624620) (-1245 . 624518) (-1246 . 624426) (-1247 . 624375)
- (-1248 . 624323) (-1249 . 624253) (-1250 . 623833) (-1251 . 623639)
- (-1252 . 623612) (-1253 . 623489) (-1254 . 623366) (-1255 . 623222)
- (-1256 . 623052) (-1257 . 622928) (-1258 . 622689) (-1259 . 622616)
- (-1260 . 622391) (-1261 . 622145) (-1262 . 622092) (-1263 . 621914)
- (-1264 . 621745) (-1265 . 621669) (-1266 . 621596) (-1267 . 621443)
- (-1268 . 621290) (-1269 . 621106) (-1270 . 620925) (-1271 . 620870)
- (-1272 . 620815) (-1273 . 620742) (-1274 . 620666) (-1275 . 620589)
- (-1276 . 620521) (-1277 . 620378) (-1278 . 620271) (-1279 . 620203)
- (-1280 . 620133) (-1281 . 620063) (-1282 . 620013) (-1283 . 619963)
- (-1284 . 619913) (-1285 . 619792) (-1286 . 619476) (-1287 . 619407)
- (-1288 . 619328) (-1289 . 619209) (-1290 . 619129) (-1291 . 619049)
- (-1292 . 618896) (-1293 . 618747) (-1294 . 618671) (-1295 . 618614)
- (-1296 . 618542) (-1297 . 618479) (-1298 . 618416) (-1299 . 618355)
- (-1300 . 618283) (-1301 . 618167) (-1302 . 618115) (-1303 . 618060)
- (-1304 . 618008) (-1305 . 617956) (-1306 . 617928) (-1307 . 617900)
- (-1308 . 617872) (-1309 . 617828) (-1310 . 617757) (-1311 . 617706)
- (-1312 . 617658) (-1313 . 617607) (-1314 . 617555) (-1315 . 617439)
- (-1316 . 617323) (-1317 . 617231) (-1318 . 617139) (-1319 . 617016)
- (-1320 . 616950) (-1321 . 616884) (-1322 . 616825) (-1323 . 616797)
- (-1324 . 616769) (-1325 . 616741) (-1326 . 616713) (-1327 . 616603)
- (-1328 . 616552) (-1329 . 616501) (-1330 . 616450) (-1331 . 616399)
- (-1332 . 616348) (-1333 . 616297) (-1334 . 616269) (-1335 . 616241)
- (-1336 . 616213) (-1337 . 616185) (-1338 . 616157) (-1339 . 616129)
- (-1340 . 616101) (-1341 . 616073) (-1342 . 616045) (-1343 . 615942)
- (-1344 . 615890) (-1345 . 615724) (-1346 . 615540) (-1347 . 615329)
- (-1348 . 615214) (-1349 . 614981) (-1350 . 614882) (-1351 . 614789)
- (-1352 . 614674) (-1353 . 614276) (-1354 . 614058) (-1355 . 614009)
- (-1356 . 613981) (-1357 . 613905) (-1358 . 613806) (-1359 . 613707)
- (-1360 . 613608) (-1361 . 613509) (-1362 . 613410) (-1363 . 613311)
- (-1364 . 613153) (-1365 . 613077) (-1366 . 612910) (-1367 . 612852)
- (-1368 . 612794) (-1369 . 612485) (-1370 . 612231) (-1371 . 612147)
- (-1372 . 612015) (-1373 . 611957) (-1374 . 611905) (-1375 . 611823)
- (-1376 . 611748) (-1377 . 611677) (-1378 . 611623) (-1379 . 611572)
- (-1380 . 611498) (-1381 . 611424) (-1382 . 611343) (-1383 . 611262)
- (-1384 . 611207) (-1385 . 611133) (-1386 . 611059) (-1387 . 610985)
- (-1388 . 610908) (-1389 . 610854) (-1390 . 610796) (-1391 . 610697)
- (-1392 . 610598) (-1393 . 610499) (-1394 . 610400) (-1395 . 610301)
- (-1396 . 610202) (-1397 . 610103) (-1398 . 609989) (-1399 . 609875)
- (-1400 . 609761) (-1401 . 609647) (-1402 . 609533) (-1403 . 609419)
- (-1404 . 609302) (-1405 . 609226) (-1406 . 609150) (-1407 . 608763)
- (-1408 . 608418) (-1409 . 608316) (-1410 . 608055) (-1411 . 607953)
- (-1412 . 607748) (-1413 . 607635) (-1414 . 607533) (-1415 . 607376)
- (-1416 . 607287) (-1417 . 607193) (-1418 . 607113) (-1419 . 607039)
- (-1420 . 606961) (-1421 . 606902) (-1422 . 606844) (-1423 . 606742)
- (-7 . 606714) (-8 . 606686) (-9 . 606658) (-1427 . 606539) (-1428 . 606457)
- (-1429 . 606375) (-1430 . 606293) (-1431 . 606211) (-1432 . 606129)
- (-1433 . 606035) (-1434 . 605965) (-1435 . 605895) (-1436 . 605804)
- (-1437 . 605710) (-1438 . 605628) (-1439 . 605546) (-1440 . 605448)
- (-1441 . 605288) (-1442 . 605090) (-1443 . 604954) (-1444 . 604854)
- (-1445 . 604754) (-1446 . 604661) (-1447 . 604602) (-1448 . 604269)
- (-1449 . 604169) (-1450 . 604051) (-1451 . 603839) (-1452 . 603660)
- (-1453 . 603502) (-1454 . 603299) (-1455 . 602881) (-1456 . 602830)
- (-1457 . 602721) (-1458 . 602606) (-1459 . 602537) (-1460 . 602468)
- (-1461 . 602399) (-1462 . 602333) (-1463 . 602208) (-1464 . 601991)
- (-1465 . 601913) (-1466 . 601863) (-1467 . 601792) (-1468 . 601649)
- (-1469 . 601508) (-1470 . 601427) (-1471 . 601346) (-1472 . 601290)
- (-1473 . 601234) (-1474 . 601161) (-1475 . 601021) (-1476 . 600968)
- (-1477 . 600909) (-1478 . 600850) (-1479 . 600695) (-1480 . 600643)
- (-1481 . 600526) (-1482 . 600409) (-1483 . 600292) (-1484 . 600161)
- (-1485 . 599882) (-1486 . 599747) (-1487 . 599691) (-1488 . 599635)
- (-1489 . 599576) (-1490 . 599517) (-1491 . 599461) (-1492 . 599405)
- (-1493 . 599208) (-1494 . 596866) (-1495 . 596739) (-1496 . 596594)
- (-1497 . 596466) (-1498 . 596414) (-1499 . 596362) (-1500 . 596310)
- (-1501 . 592272) (-1502 . 592178) (-1503 . 592039) (-1504 . 591830)
- (-1505 . 591728) (-1506 . 591626) (-1507 . 590711) (-1508 . 590635)
- (-1509 . 590506) (-1510 . 590381) (-1511 . 590304) (-1512 . 590227)
- (-1513 . 590100) (-1514 . 589973) (-1515 . 589807) (-1516 . 589680)
- (-1517 . 589553) (-1518 . 589336) (-1519 . 588902) (-1520 . 588538)
- (-1521 . 588486) (-1522 . 588427) (-1523 . 588339) (-1524 . 588251)
- (-1525 . 588160) (-1526 . 588069) (-1527 . 587978) (-1528 . 587887)
- (-1529 . 587796) (-1530 . 587705) (-1531 . 587614) (-1532 . 587523)
- (-1533 . 587432) (-1534 . 587341) (-1535 . 587250) (-1536 . 587159)
- (-1537 . 587068) (-1538 . 586977) (-1539 . 586886) (-1540 . 586795)
- (-1541 . 586704) (-1542 . 586613) (-1543 . 586522) (-1544 . 586431)
- (-1545 . 586340) (-1546 . 586249) (-1547 . 586158) (-1548 . 586067)
- (-1549 . 585976) (-1550 . 585885) (-1551 . 585723) (-1552 . 585615)
- (-1553 . 585372) (-1554 . 585085) (-1555 . 584890) (-1556 . 584734)
- (-1557 . 584574) (-1558 . 584523) (-1559 . 584461) (-1560 . 584410)
- (-1561 . 584347) (-1562 . 584294) (-1563 . 584242) (-1564 . 584190)
- (-1565 . 584138) (-1566 . 584048) (-1567 . 583861) (-1568 . 583707)
- (-1569 . 583627) (-1570 . 583547) (-1571 . 583467) (-1572 . 583337)
- (-1573 . 583105) (-1574 . 583077) (-1575 . 583049) (-1576 . 583021)
- (-1577 . 582941) (-1578 . 582864) (-1579 . 582787) (-1580 . 582706)
- (-1581 . 582647) (-1582 . 582489) (-1583 . 582296) (-1584 . 581811)
- (-1585 . 581569) (-1586 . 581307) (-1587 . 581206) (-1588 . 581125)
- (-1589 . 581044) (-1590 . 580974) (-1591 . 580904) (-1592 . 580746)
- (-1593 . 580442) (-1594 . 580214) (-1595 . 580092) (-1596 . 580034)
- (-1597 . 579972) (-1598 . 579910) (-1599 . 579845) (-1600 . 579783)
- (-1601 . 579504) (-1602 . 579436) (-1603 . 579226) (-1604 . 579174)
- (-1605 . 579120) (-1606 . 579029) (-1607 . 578942) (-1608 . 577195)
- (-1609 . 577116) (-1610 . 576371) (-1611 . 576254) (-1612 . 576048)
- (-1613 . 575887) (-1614 . 575726) (-1615 . 575566) (-1616 . 575428)
- (-1617 . 575334) (-1618 . 575236) (-1619 . 575142) (-1620 . 575028)
- (-1621 . 574946) (-1622 . 574849) (-1623 . 574653) (-1624 . 574562)
- (-1625 . 574468) (-1626 . 574401) (-1627 . 574332) (-1628 . 574280)
- (-1629 . 574221) (-1630 . 574147) (-1631 . 574095) (-1632 . 573938)
- (-1633 . 573781) (-1634 . 573629) (-1635 . 572871) (-1636 . 572560)
- (-1637 . 572208) (-1638 . 571991) (-1639 . 571728) (-1640 . 571353)
- (-1641 . 571169) (-1642 . 571035) (-1643 . 570869) (-1644 . 570703)
- (-1645 . 570569) (-1646 . 570435) (-1647 . 570301) (-1648 . 570167)
- (-1649 . 570036) (-1650 . 569905) (-1651 . 569774) (-1652 . 569394)
- (-1653 . 569268) (-1654 . 569140) (-1655 . 568890) (-1656 . 568767)
- (-1657 . 568517) (-1658 . 568394) (-1659 . 568144) (-1660 . 568021)
- (-1661 . 567738) (-1662 . 567467) (-1663 . 567194) (-1664 . 566896)
- (-1665 . 566794) (-1666 . 566649) (-1667 . 566508) (-1668 . 566357)
- (-1669 . 566196) (-1670 . 566108) (-1671 . 566080) (-1672 . 565998)
- (-1673 . 565901) (-1674 . 565433) (-1675 . 565082) (-1676 . 564649)
- (-1677 . 564510) (-1678 . 564440) (-1679 . 564370) (-1680 . 564300)
- (-1681 . 564209) (-1682 . 564118) (-1683 . 564027) (-1684 . 563936)
- (-1685 . 563845) (-1686 . 563759) (-1687 . 563673) (-1688 . 563587)
- (-1689 . 563501) (-1690 . 563415) (-1691 . 563341) (-1692 . 563236)
- (-1693 . 563010) (-1694 . 562932) (-1695 . 562857) (-1696 . 562764)
- (-1697 . 562660) (-1698 . 562564) (-1699 . 562395) (-1700 . 562318)
- (-1701 . 562241) (-1702 . 562150) (-1703 . 562059) (-1704 . 561859)
- (-1705 . 561706) (-1706 . 561553) (-1707 . 561400) (-1708 . 561247)
- (-1709 . 561094) (-1710 . 560941) (-1711 . 560875) (-1712 . 560722)
- (-1713 . 560569) (-1714 . 560416) (-1715 . 560263) (-1716 . 560110)
- (-1717 . 559957) (-1718 . 559804) (-1719 . 559651) (-1720 . 559577)
- (-1721 . 559503) (-1722 . 559448) (-1723 . 559393) (-1724 . 559338)
- (-1725 . 559283) (-1726 . 559212) (-1727 . 559008) (-1728 . 558907)
- (-1729 . 558719) (-1730 . 558626) (-1731 . 558490) (-1732 . 558354)
- (-1733 . 558218) (-1734 . 558150) (-1735 . 558034) (-1736 . 557918)
- (-1737 . 557802) (-1738 . 557749) (-1739 . 557664) (-1740 . 557579)
- (-1741 . 557271) (-1742 . 557216) (-1743 . 556564) (-1744 . 556249)
- (-1745 . 555965) (-1746 . 555847) (-1747 . 555728) (-1748 . 555669)
- (-1749 . 555610) (-1750 . 555559) (-1751 . 555508) (-1752 . 555457)
- (-1753 . 555404) (-1754 . 555351) (-1755 . 555292) (-1756 . 555179)
- (-1757 . 555066) (-1758 . 554899) (-1759 . 554807) (-1760 . 554694)
- (-1761 . 554610) (-1762 . 554495) (-1763 . 554404) (-1764 . 554313)
- (-1765 . 554192) (-1766 . 554005) (-1767 . 553953) (-1768 . 553898)
- (-1769 . 553711) (-1770 . 553588) (-1771 . 553515) (-1772 . 553442)
- (-1773 . 553322) (-1774 . 553249) (-1775 . 553176) (-1776 . 552836)
- (-1777 . 552763) (-1778 . 552543) (-1779 . 552210) (-1780 . 552027)
- (-1781 . 551884) (-1782 . 551524) (-1783 . 551356) (-1784 . 551188)
- (-1785 . 550932) (-1786 . 550676) (-1787 . 550481) (-1788 . 550286)
- (-1789 . 549692) (-1790 . 549616) (-1791 . 549477) (-1792 . 549070)
- (-1793 . 548943) (-1794 . 548786) (-1795 . 548469) (-1796 . 547989)
- (-1797 . 547509) (-1798 . 547007) (-1799 . 546939) (-1800 . 546868)
- (-1801 . 546797) (-1802 . 546625) (-1803 . 546506) (-1804 . 546387)
- (-1805 . 546311) (-1806 . 546235) (-1807 . 545962) (-1808 . 545848)
- (-1809 . 545797) (-1810 . 545746) (-1811 . 545695) (-1812 . 545644)
- (-1813 . 545593) (-1814 . 545452) (-1815 . 545279) (-1816 . 545048)
- (-1817 . 544862) (-1818 . 544834) (-1819 . 544806) (-1820 . 544778)
- (-1821 . 544750) (-1822 . 544722) (-1823 . 544694) (-1824 . 544666)
- (-1825 . 544615) (-1826 . 544549) (-1827 . 544459) (-1828 . 544088)
- (-1829 . 543937) (-1830 . 543786) (-1831 . 543581) (-1832 . 543459)
- (-1833 . 543385) (-1834 . 543308) (-1835 . 543234) (-1836 . 543157)
- (-1837 . 543080) (-1838 . 543006) (-1839 . 542929) (-1840 . 542696)
- (-1841 . 542543) (-1842 . 542248) (-1843 . 542095) (-1844 . 541773)
- (-1845 . 541635) (-1846 . 541497) (-1847 . 541417) (-1848 . 541337)
- (-1849 . 541073) (-1850 . 540342) (-1851 . 540206) (-1852 . 540116)
- (-1853 . 539981) (-1854 . 539914) (-1855 . 539846) (-1856 . 539759)
- (-1857 . 539672) (-1858 . 539505) (-1859 . 539431) (-1860 . 539287)
- (-1861 . 538827) (-1862 . 538448) (-1863 . 537686) (-1864 . 537542)
- (-1865 . 537398) (-1866 . 537236) (-1867 . 536999) (-1868 . 536859)
- (-1869 . 536713) (-1870 . 536474) (-1871 . 536238) (-1872 . 535999)
- (-1873 . 535807) (-1874 . 535684) (-1875 . 535480) (-1876 . 535257)
- (-1877 . 535018) (-1878 . 534877) (-1879 . 534739) (-1880 . 534600)
- (-1881 . 534347) (-1882 . 534091) (-1883 . 533934) (-1884 . 533780)
- (-1885 . 533540) (-1886 . 533255) (-1887 . 533117) (-1888 . 533030)
- (-1889 . 532364) (-1890 . 532188) (-1891 . 532006) (-1892 . 531830)
- (-1893 . 531648) (-1894 . 531469) (-1895 . 531290) (-1896 . 531103)
- (-1897 . 530721) (-1898 . 530542) (-1899 . 530363) (-1900 . 530176)
- (-1901 . 529794) (-1902 . 528801) (-1903 . 528417) (-1904 . 528033)
- (-1905 . 527915) (-1906 . 527758) (-1907 . 527616) (-1908 . 527499)
- (-1909 . 527317) (-1910 . 527193) (-1911 . 526904) (-1912 . 526615)
- (-1913 . 526332) (-1914 . 526049) (-1915 . 525771) (-1916 . 525683)
- (-1917 . 525598) (-1918 . 525501) (-1919 . 525404) (-1920 . 525184)
- (-1921 . 525084) (-1922 . 524981) (-1923 . 524903) (-1924 . 524578)
- (-1925 . 524286) (-1926 . 524213) (-1927 . 523828) (-1928 . 523800)
- (-1929 . 523601) (-1930 . 523427) (-1931 . 523186) (-1932 . 523131)
- (-1933 . 523056) (-1934 . 522688) (-1935 . 522573) (-1936 . 522496)
- (-1937 . 522423) (-1938 . 522342) (-1939 . 522261) (-1940 . 522180)
- (-1941 . 522079) (-1942 . 522020) (-1943 . 521782) (-1944 . 521660)
- (-1945 . 521538) (-1946 . 521311) (-1947 . 521258) (-1948 . 521204)
- (-1949 . 520872) (-1950 . 520548) (-1951 . 520360) (-1952 . 520169)
- (-1953 . 520005) (-1954 . 519670) (-1955 . 519503) (-1956 . 519262)
- (-1957 . 518938) (-1958 . 518748) (-1959 . 518533) (-1960 . 518362)
- (-1961 . 517940) (-1962 . 517713) (-1963 . 517442) (-1964 . 517305)
- (-1965 . 517164) (-1966 . 516687) (-1967 . 516564) (-1968 . 516328)
- (-1969 . 516074) (-1970 . 515824) (-1971 . 515531) (-1972 . 515391)
- (-1973 . 515251) (-1974 . 515111) (-1975 . 514922) (-1976 . 514733)
- (-1977 . 514558) (-1978 . 514284) (-1979 . 513849) (-1980 . 513821)
- (-1981 . 513749) (-1982 . 513590) (-1983 . 513427) (-1984 . 513266)
- (-1985 . 513099) (-1986 . 513046) (-1987 . 512993) (-1988 . 512864)
- (-1989 . 512804) (-1990 . 512751) (-1991 . 512681) (-1992 . 512621)
- (-1993 . 512562) (-1994 . 512502) (-1995 . 512443) (-1996 . 512383)
- (-1997 . 512324) (-1998 . 512265) (-1999 . 512123) (-2000 . 512028)
- (-2001 . 511937) (-2002 . 511821) (-2003 . 511727) (-2004 . 511629)
- (-2005 . 511535) (-2006 . 511394) (-2007 . 511132) (-2008 . 510276)
- (-2009 . 510120) (-2010 . 509751) (-2011 . 509695) (-2012 . 509644)
- (-2013 . 509541) (-2014 . 509456) (-2015 . 509368) (-2016 . 509222)
- (-2017 . 509073) (-2018 . 508783) (-2019 . 508705) (-2020 . 508630)
- (-2021 . 508577) (-2022 . 508524) (-2023 . 508493) (-2024 . 508430)
- (-2025 . 508312) (-2026 . 508223) (-2027 . 508103) (-2028 . 507808)
- (-2029 . 507614) (-2030 . 507426) (-2031 . 507281) (-2032 . 507136)
- (-2033 . 506850) (-2034 . 506408) (-2035 . 506374) (-2036 . 506337)
- (-2037 . 506300) (-2038 . 506263) (-2039 . 506226) (-2040 . 506195)
- (-2041 . 506164) (-2042 . 506133) (-2043 . 506099) (-2044 . 506065)
- (-2045 . 506011) (-2046 . 505835) (-2047 . 505601) (-2048 . 505367)
- (-2049 . 505138) (-2050 . 505086) (-2051 . 505031) (-2052 . 504962)
- (-2053 . 504874) (-2054 . 504805) (-2055 . 504733) (-2056 . 504503)
- (-2057 . 504452) (-2058 . 504398) (-2059 . 504367) (-2060 . 504261)
- (-2061 . 504036) (-2062 . 503726) (-2063 . 503552) (-2064 . 503370)
- (-2065 . 503099) (-2066 . 503026) (-2067 . 502961) (-2068 . 502485)
- (-2069 . 501923) (-2070 . 501197) (-2071 . 500636) (-2072 . 500008)
- (-2073 . 499429) (-2074 . 499355) (-2075 . 499303) (-2076 . 499251)
- (-2077 . 499177) (-2078 . 499122) (-2079 . 499070) (-2080 . 499018)
- (-2081 . 498966) (-2082 . 498896) (-2083 . 498448) (-2084 . 498242)
- (-2085 . 497993) (-2086 . 497659) (-2087 . 497405) (-2088 . 497103)
- (-2089 . 496900) (-2090 . 496611) (-2091 . 496063) (-2092 . 495926)
- (-2093 . 495724) (-2094 . 495444) (-2095 . 495359) (-2096 . 495026)
- (-2097 . 494885) (-2098 . 494594) (-2099 . 494374) (-2100 . 494248)
- (-2101 . 494123) (-2102 . 493976) (-2103 . 493832) (-2104 . 493716)
- (-2105 . 493585) (-2106 . 493213) (-2107 . 492953) (-2108 . 492683)
- (-2109 . 492443) (-2110 . 492113) (-2111 . 491773) (-2112 . 491365)
- (-2113 . 490947) (-2114 . 490750) (-2115 . 490475) (-2116 . 490307)
- (-2117 . 490111) (-2118 . 489889) (-2119 . 489734) (-2120 . 489549)
- (-2121 . 489446) (-2122 . 489418) (-2123 . 489390) (-2124 . 489216)
- (-2125 . 489142) (-2126 . 489081) (-2127 . 489028) (-2128 . 488959)
- (-2129 . 488890) (-2130 . 488771) (-2131 . 488593) (-2132 . 488538)
- (-2133 . 488292) (-2134 . 488219) (-2135 . 488149) (-2136 . 488079)
- (-2137 . 487990) (-2138 . 487800) (-2139 . 487727) (-2140 . 487658)
- (-2141 . 487593) (-2142 . 487538) (-2143 . 487447) (-2144 . 487156)
- (-2145 . 486830) (-2146 . 486756) (-2147 . 486434) (-2148 . 486229)
- (-2149 . 486144) (-2150 . 486059) (-2151 . 485974) (-2152 . 485889)
- (-2153 . 485804) (-2154 . 485719) (-2155 . 485634) (-2156 . 485549)
- (-2157 . 485464) (-2158 . 485379) (-2159 . 485294) (-2160 . 485209)
- (-2161 . 485124) (-2162 . 485039) (-2163 . 484954) (-2164 . 484869)
- (-2165 . 484784) (-2166 . 484699) (-2167 . 484614) (-2168 . 484529)
- (-2169 . 484444) (-2170 . 484359) (-2171 . 484274) (-2172 . 484189)
- (-2173 . 484104) (-2174 . 484019) (-2175 . 483917) (-2176 . 483829)
- (-2177 . 483621) (-2178 . 483563) (-2179 . 483508) (-2180 . 483421)
- (-2181 . 483310) (-2182 . 483224) (-2183 . 483078) (-2184 . 483016)
- (-2185 . 482988) (-2186 . 482960) (-2187 . 482932) (-2188 . 482904)
- (-2189 . 482735) (-2190 . 482584) (-2191 . 482433) (-2192 . 482261)
- (-2193 . 482053) (-2194 . 481929) (-2195 . 481721) (-2196 . 481629)
- (-2197 . 481537) (-2198 . 481402) (-2199 . 481307) (-2200 . 481213)
- (-2201 . 481118) (-2202 . 480994) (-2203 . 480966) (-2204 . 480938)
- (-2205 . 480910) (-2206 . 480882) (-2207 . 480854) (-2208 . 480826)
- (-2209 . 480798) (-2210 . 480770) (-2211 . 480742) (-2212 . 480714)
- (-2213 . 480686) (-2214 . 480658) (-2215 . 480630) (-2216 . 480602)
- (-2217 . 480574) (-2218 . 480546) (-2219 . 480493) (-2220 . 480465)
- (-2221 . 480437) (-2222 . 480359) (-2223 . 480306) (-2224 . 480253)
- (-2225 . 480200) (-2226 . 480122) (-2227 . 480032) (-2228 . 479937)
- (-2229 . 479843) (-2230 . 479761) (-2231 . 479455) (-2232 . 479259)
- (-2233 . 479164) (-2234 . 479056) (-2235 . 478645) (-2236 . 478617)
- (-2237 . 478453) (-2238 . 478376) (-2239 . 478189) (-2240 . 478010)
- (-2241 . 477586) (-2242 . 477434) (-2243 . 477254) (-2244 . 477081)
- (-2245 . 476821) (-2246 . 476569) (-2247 . 475758) (-2248 . 475591)
- (-2249 . 475373) (-2250 . 474549) (-2251 . 474418) (-2252 . 474287)
- (-2253 . 474156) (-2254 . 474025) (-2255 . 473894) (-2256 . 473763)
- (-2257 . 473568) (-2258 . 473374) (-2259 . 473231) (-2260 . 472916)
- (-2261 . 472801) (-2262 . 472461) (-2263 . 472301) (-2264 . 472162)
- (-2265 . 472023) (-2266 . 471894) (-2267 . 471809) (-2268 . 471757)
- (-2269 . 471277) (-2270 . 470015) (-2271 . 469888) (-2272 . 469746)
- (-2273 . 469410) (-2274 . 469305) (-2275 . 469056) (-2276 . 468824)
- (-2277 . 468719) (-2278 . 468644) (-2279 . 468569) (-2280 . 468494)
- (-2281 . 468435) (-2282 . 468365) (-2283 . 468312) (-2284 . 468250)
- (-2285 . 468180) (-2286 . 467817) (-2287 . 467530) (-2288 . 467420)
- (-2289 . 467233) (-2290 . 467140) (-2291 . 467047) (-2292 . 466960)
- (-2293 . 466740) (-2294 . 466521) (-2295 . 466103) (-2296 . 465831)
- (-2297 . 465688) (-2298 . 465595) (-2299 . 465452) (-2300 . 465300)
- (-2301 . 465146) (-2302 . 465076) (-2303 . 464869) (-2304 . 464692)
- (-2305 . 464483) (-2306 . 464306) (-2307 . 464272) (-2308 . 464238)
- (-2309 . 464207) (-2310 . 464089) (-2311 . 463776) (-2312 . 463498)
- (-2313 . 463377) (-2314 . 463250) (-2315 . 463165) (-2316 . 463092)
- (-2317 . 463003) (-2318 . 462932) (-2319 . 462876) (-2320 . 462820)
- (-2321 . 462764) (-2322 . 462694) (-2323 . 462624) (-2324 . 462554)
- (-2325 . 462456) (-2326 . 462378) (-2327 . 462300) (-2328 . 462157)
- (-2329 . 462078) (-2330 . 462006) (-2331 . 461803) (-2332 . 461747)
- (-2333 . 461559) (-2334 . 461460) (-2335 . 461342) (-2336 . 461221)
- (-2337 . 461078) (-2338 . 460935) (-2339 . 460795) (-2340 . 460655)
- (-2341 . 460512) (-2342 . 460386) (-2343 . 460257) (-2344 . 460134)
- (-2345 . 460011) (-2346 . 459906) (-2347 . 459801) (-2348 . 459699)
- (-2349 . 459549) (-2350 . 459396) (-2351 . 459243) (-2352 . 459099)
- (-2353 . 458945) (-2354 . 458869) (-2355 . 458790) (-2356 . 458637)
- (-2357 . 458558) (-2358 . 458479) (-2359 . 458400) (-2360 . 458298)
- (-2361 . 458239) (-2362 . 458177) (-2363 . 458060) (-2364 . 457934)
- (-2365 . 457857) (-2366 . 457725) (-2367 . 457419) (-2368 . 457236)
- (-2369 . 456691) (-2370 . 456471) (-2371 . 456297) (-2372 . 456127)
- (-2373 . 456054) (-2374 . 455978) (-2375 . 455899) (-2376 . 455602)
- (-2377 . 455440) (-2378 . 455206) (-2379 . 454764) (-2380 . 454634)
- (-2381 . 454494) (-2382 . 454185) (-2383 . 453883) (-2384 . 453567)
- (-2385 . 453161) (-2386 . 453093) (-2387 . 453025) (-2388 . 452957)
- (-2389 . 452863) (-2390 . 452756) (-2391 . 452649) (-2392 . 452548)
- (-2393 . 452447) (-2394 . 452346) (-2395 . 452269) (-2396 . 451946)
- (-2397 . 451529) (-2398 . 450902) (-2399 . 450838) (-2400 . 450719)
- (-2401 . 450600) (-2402 . 450492) (-2403 . 450384) (-2404 . 450228)
- (-2405 . 449628) (-2406 . 449345) (-2407 . 449266) (-2408 . 449212)
- (-2409 . 449044) (-2410 . 448922) (-2411 . 448526) (-2412 . 448290)
- (-2413 . 448089) (-2414 . 447881) (-2415 . 447688) (-2416 . 447421)
- (-2417 . 447242) (-2418 . 447173) (-2419 . 447097) (-2420 . 446956)
- (-2421 . 446753) (-2422 . 446609) (-2423 . 446359) (-2424 . 446051)
- (-2425 . 445695) (-2426 . 445536) (-2427 . 445330) (-2428 . 445170)
- (-2429 . 445097) (-2430 . 445063) (-2431 . 444998) (-2432 . 444961)
- (-2433 . 444824) (-2434 . 444586) (-2435 . 444516) (-2436 . 444330)
- (-2437 . 444081) (-2438 . 443925) (-2439 . 443402) (-2440 . 443205)
- (-2441 . 442993) (-2442 . 442831) (-2443 . 442432) (-2444 . 442265)
- (-2445 . 441190) (-2446 . 441067) (-2447 . 440850) (-2448 . 440720)
- (-2449 . 440590) (-2450 . 440433) (-2451 . 440330) (-2452 . 440272)
- (-2453 . 440214) (-2454 . 440108) (-2455 . 440002) (-2456 . 439086)
- (-2457 . 436959) (-2458 . 436145) (-2459 . 434342) (-2460 . 434274)
- (-2461 . 434206) (-2462 . 434138) (-2463 . 434070) (-2464 . 434002)
- (-2465 . 433924) (-2466 . 433568) (-2467 . 433386) (-2468 . 432847)
- (-2469 . 432671) (-2470 . 432450) (-2471 . 432229) (-2472 . 432008)
- (-2473 . 431790) (-2474 . 431572) (-2475 . 431354) (-2476 . 431136)
- (-2477 . 430918) (-2478 . 430700) (-2479 . 430599) (-2480 . 429866)
- (-2481 . 429811) (-2482 . 429756) (-2483 . 429701) (-2484 . 429646)
- (-2485 . 429496) (-2486 . 429248) (-2487 . 429087) (-2488 . 428907)
- (-2489 . 428620) (-2490 . 428234) (-2491 . 427362) (-2492 . 427022)
- (-2493 . 426854) (-2494 . 426632) (-2495 . 426382) (-2496 . 426034)
- (-2497 . 425024) (-2498 . 424713) (-2499 . 424501) (-2500 . 423937)
- (-2501 . 423424) (-2502 . 421668) (-2503 . 421196) (-2504 . 420597)
- (-2505 . 420347) (-2506 . 420213) (-2507 . 420001) (-2508 . 419925)
- (-2509 . 419849) (-2510 . 419742) (-2511 . 419560) (-2512 . 419395)
- (-2513 . 419217) (-2514 . 418636) (-2515 . 418475) (-2516 . 417902)
- (-2517 . 417832) (-2518 . 417757) (-2519 . 417685) (-2520 . 417547)
- (-2521 . 417360) (-2522 . 417253) (-2523 . 417146) (-2524 . 417031)
- (-2525 . 416916) (-2526 . 416801) (-2527 . 416523) (-2528 . 416373)
- (-2529 . 416230) (-2530 . 416157) (-2531 . 416072) (-2532 . 415999)
- (-2533 . 415926) (-2534 . 415853) (-2535 . 415710) (-2536 . 415560)
- (-2537 . 415386) (-2538 . 415236) (-2539 . 415086) (-2540 . 414960)
- (-2541 . 414574) (-2542 . 414290) (-2543 . 414006) (-2544 . 413597)
- (-2545 . 413313) (-2546 . 413240) (-2547 . 413093) (-2548 . 412987)
- (-2549 . 412913) (-2550 . 412843) (-2551 . 412764) (-2552 . 412687)
- (-2553 . 412610) (-2554 . 412461) (-2555 . 412358) (-2556 . 412300)
- (-2557 . 412236) (-2558 . 412172) (-2559 . 412075) (-2560 . 411978)
- (-2561 . 411818) (-2562 . 411732) (-2563 . 411646) (-2564 . 411561)
- (-2565 . 411502) (-2566 . 411443) (-2567 . 411384) (-2568 . 411325)
- (-2569 . 411155) (-2570 . 411067) (-2571 . 410970) (-2572 . 410936)
- (-2573 . 410905) (-2574 . 410821) (-2575 . 410765) (-2576 . 410703)
- (-2577 . 410669) (-2578 . 410635) (-2579 . 410601) (-2580 . 410567)
- (-2581 . 410533) (-2582 . 410499) (-2583 . 410465) (-2584 . 410431)
- (-2585 . 410397) (-2586 . 410285) (-2587 . 410251) (-2588 . 410200)
- (-2589 . 410166) (-2590 . 410069) (-2591 . 410007) (-2592 . 409916)
- (-2593 . 409825) (-2594 . 409770) (-2595 . 409718) (-2596 . 409666)
- (-2597 . 409614) (-2598 . 409562) (-2599 . 409139) (-2600 . 408973)
- (-2601 . 408920) (-2602 . 408851) (-2603 . 408798) (-2604 . 408568)
- (-2605 . 408412) (-2606 . 407891) (-2607 . 407750) (-2608 . 407716)
- (-2609 . 407661) (-2610 . 406951) (-2611 . 406636) (-2612 . 406132)
- (-2613 . 406054) (-2614 . 406002) (-2615 . 405950) (-2616 . 405766)
- (-2617 . 405714) (-2618 . 405662) (-2619 . 405586) (-2620 . 405524)
- (-2621 . 405306) (-2622 . 405239) (-2623 . 405145) (-2624 . 405051)
- (-2625 . 404868) (-2626 . 404786) (-2627 . 404664) (-2628 . 404518)
- (-2629 . 403867) (-2630 . 403165) (-2631 . 403061) (-2632 . 402960)
- (-2633 . 402859) (-2634 . 402748) (-2635 . 402580) (-2636 . 402376)
- (-2637 . 402283) (-2638 . 402206) (-2639 . 402150) (-2640 . 402080)
- (-2641 . 401960) (-2642 . 401859) (-2643 . 401762) (-2644 . 401682)
- (-2645 . 401602) (-2646 . 401525) (-2647 . 401455) (-2648 . 401385)
- (-2649 . 401315) (-2650 . 401245) (-2651 . 401175) (-2652 . 401105)
- (-2653 . 401012) (-2654 . 400884) (-2655 . 400642) (-2656 . 400472)
- (-2657 . 400103) (-2658 . 399934) (-2659 . 399818) (-2660 . 399322)
- (-2661 . 398941) (-2662 . 398695) (-2663 . 398603) (-2664 . 398506)
- (-2665 . 397844) (-2666 . 397731) (-2667 . 397657) (-2668 . 397565)
- (-2669 . 397375) (-2670 . 397185) (-2671 . 397114) (-2672 . 397043)
- (-2673 . 396962) (-2674 . 396881) (-2675 . 396756) (-2676 . 396623)
- (-2677 . 396542) (-2678 . 396468) (-2679 . 396303) (-2680 . 396146)
- (-2681 . 395918) (-2682 . 395770) (-2683 . 395666) (-2684 . 395562)
- (-2685 . 395477) (-2686 . 395109) (-2687 . 395028) (-2688 . 394941)
- (-2689 . 394860) (-2690 . 394664) (-2691 . 394444) (-2692 . 394257)
- (-2693 . 393935) (-2694 . 393642) (-2695 . 393349) (-2696 . 393039)
- (-2697 . 392722) (-2698 . 392570) (-2699 . 392382) (-2700 . 391909)
- (-2701 . 391827) (-2702 . 391611) (-2703 . 391395) (-2704 . 391136)
- (-2705 . 390715) (-2706 . 390202) (-2707 . 390072) (-2708 . 389798)
- (-2709 . 389619) (-2710 . 389504) (-2711 . 389400) (-2712 . 389345)
- (-2713 . 389268) (-2714 . 389198) (-2715 . 389125) (-2716 . 389070)
- (-2717 . 388997) (-2718 . 388942) (-2719 . 388587) (-2720 . 388179)
- (-2721 . 388026) (-2722 . 387873) (-2723 . 387792) (-2724 . 387639)
- (-2725 . 387486) (-2726 . 387351) (-2727 . 387216) (-2728 . 387081)
- (-2729 . 386946) (-2730 . 386811) (-2731 . 386676) (-2732 . 386620)
- (-2733 . 386467) (-2734 . 386356) (-2735 . 386245) (-2736 . 386160)
- (-2737 . 386050) (-2738 . 385947) (-2739 . 381796) (-2740 . 381348)
- (-2741 . 380921) (-2742 . 380304) (-2743 . 379703) (-2744 . 379485)
- (-2745 . 379307) (-2746 . 379048) (-2747 . 378637) (-2748 . 378343)
- (-2749 . 377900) (-2750 . 377722) (-2751 . 377329) (-2752 . 376936)
- (-2753 . 376751) (-2754 . 376544) (-2755 . 376324) (-2756 . 376018)
- (-2757 . 375819) (-2758 . 375190) (-2759 . 375033) (-2760 . 374644)
- (-2761 . 374593) (-2762 . 374544) (-2763 . 374493) (-2764 . 374445)
- (-2765 . 374393) (-2766 . 374247) (-2767 . 374195) (-2768 . 374049)
- (-2769 . 373997) (-2770 . 373851) (-2771 . 373800) (-2772 . 373425)
- (-2773 . 373374) (-2774 . 373325) (-2775 . 373274) (-2776 . 373226)
- (-2777 . 373174) (-2778 . 373125) (-2779 . 373073) (-2780 . 373024)
- (-2781 . 372972) (-2782 . 372923) (-2783 . 372857) (-2784 . 372739)
- (-2785 . 371577) (-2786 . 371160) (-2787 . 371052) (-2788 . 370810)
- (-2789 . 370660) (-2790 . 370510) (-2791 . 370349) (-2792 . 368142)
- (-2793 . 367881) (-2794 . 367727) (-2795 . 367581) (-2796 . 367435)
- (-2797 . 367216) (-2798 . 367084) (-2799 . 367009) (-2800 . 366934)
- (-2801 . 366799) (-2802 . 366670) (-2803 . 366541) (-2804 . 366415)
- (-2805 . 366289) (-2806 . 366163) (-2807 . 366037) (-2808 . 365934)
- (-2809 . 365834) (-2810 . 365740) (-2811 . 365610) (-2812 . 365459)
- (-2813 . 365083) (-2814 . 364969) (-2815 . 364728) (-2816 . 364270)
- (-2817 . 363960) (-2818 . 363393) (-2819 . 362824) (-2820 . 361814)
- (-2821 . 361272) (-2822 . 360959) (-2823 . 360621) (-2824 . 360290)
- (-2825 . 359970) (-2826 . 359917) (-2827 . 359790) (-2828 . 359288)
- (-2829 . 358145) (-2830 . 358090) (-2831 . 358035) (-2832 . 357959)
- (-2833 . 357840) (-2834 . 357765) (-2835 . 357690) (-2836 . 357612)
- (-2837 . 357389) (-2838 . 357330) (-2839 . 357271) (-2840 . 357168)
- (-2841 . 357065) (-2842 . 356962) (-2843 . 356859) (-2844 . 356778)
- (-2845 . 356704) (-2846 . 356489) (-2847 . 356255) (-2848 . 356221)
- (-2849 . 356187) (-2850 . 356159) (-2851 . 356131) (-2852 . 355914)
- (-2853 . 355636) (-2854 . 355486) (-2855 . 355356) (-2856 . 355226)
- (-2857 . 355126) (-2858 . 354949) (-2859 . 354789) (-2860 . 354689)
- (-2861 . 354512) (-2862 . 354352) (-2863 . 354193) (-2864 . 354054)
- (-2865 . 353904) (-2866 . 353774) (-2867 . 353644) (-2868 . 353497)
- (-2869 . 353370) (-2870 . 353267) (-2871 . 353160) (-2872 . 353063)
- (-2873 . 352898) (-2874 . 352750) (-2875 . 352335) (-2876 . 352235)
- (-2877 . 352132) (-2878 . 352044) (-2879 . 351964) (-2880 . 351814)
- (-2881 . 351684) (-2882 . 351632) (-2883 . 351559) (-2884 . 351484)
- (-2885 . 351208) (-2886 . 351096) (-2887 . 350784) (-2888 . 350607)
- (-2889 . 349009) (-2890 . 348381) (-2891 . 348321) (-2892 . 348203)
- (-2893 . 348085) (-2894 . 347941) (-2895 . 347789) (-2896 . 347630)
- (-2897 . 347471) (-2898 . 347265) (-2899 . 347078) (-2900 . 346926)
- (-2901 . 346771) (-2902 . 346616) (-2903 . 346464) (-2904 . 346327)
- (-2905 . 345904) (-2906 . 345778) (-2907 . 345652) (-2908 . 345526)
- (-2909 . 345386) (-2910 . 345245) (-2911 . 345104) (-2912 . 344960)
- (-2913 . 344212) (-2914 . 344054) (-2915 . 343868) (-2916 . 343713)
- (-2917 . 343475) (-2918 . 343230) (-2919 . 342985) (-2920 . 342775)
- (-2921 . 342638) (-2922 . 342428) (-2923 . 342291) (-2924 . 342081)
- (-2925 . 341944) (-2926 . 341734) (-2927 . 341431) (-2928 . 341287)
- (-2929 . 341146) (-2930 . 340923) (-2931 . 340782) (-2932 . 340560)
- (-2933 . 340363) (-2934 . 340207) (-2935 . 339880) (-2936 . 339721)
- (-2937 . 339562) (-2938 . 339403) (-2939 . 339232) (-2940 . 339061)
- (-2941 . 338887) (-2942 . 338535) (-2943 . 338412) (-2944 . 338250)
- (-2945 . 338177) (-2946 . 338104) (-2947 . 338031) (-2948 . 337958)
- (-2949 . 337885) (-2950 . 337812) (-2951 . 337689) (-2952 . 337516)
- (-2953 . 337393) (-2954 . 337307) (-2955 . 337241) (-2956 . 337175)
- (-2957 . 337109) (-2958 . 337043) (-2959 . 336977) (-2960 . 336911)
- (-2961 . 336845) (-2962 . 336779) (-2963 . 336713) (-2964 . 336647)
- (-2965 . 336581) (-2966 . 336515) (-2967 . 336449) (-2968 . 336383)
- (-2969 . 336317) (-2970 . 336251) (-2971 . 336185) (-2972 . 336119)
- (-2973 . 336053) (-2974 . 335987) (-2975 . 335921) (-2976 . 335855)
- (-2977 . 335789) (-2978 . 335723) (-2979 . 335657) (-2980 . 335591)
- (-2981 . 334944) (-2982 . 334297) (-2983 . 334169) (-2984 . 334046)
- (-2985 . 333923) (-2986 . 333782) (-2987 . 333628) (-2988 . 333484)
- (-2989 . 333309) (-2990 . 332699) (-2991 . 332575) (-2992 . 332451)
- (-2993 . 331773) (-2994 . 331076) (-2995 . 330975) (-2996 . 330919)
- (-2997 . 330863) (-2998 . 330807) (-2999 . 330751) (-3000 . 330692)
- (-3001 . 330628) (-3002 . 330520) (-3003 . 330412) (-3004 . 330304)
- (-3005 . 330025) (-3006 . 329951) (-3007 . 329725) (-3008 . 329644)
- (-3009 . 329566) (-3010 . 329488) (-3011 . 329410) (-3012 . 329331)
- (-3013 . 329253) (-3014 . 329160) (-3015 . 329061) (-3016 . 328993)
- (-3017 . 328944) (-3018 . 328253) (-3019 . 327613) (-3020 . 326822)
- (-3021 . 326741) (-3022 . 326637) (-3023 . 326546) (-3024 . 326455)
- (-3025 . 326381) (-3026 . 326307) (-3027 . 326233) (-3028 . 326178)
- (-3029 . 326123) (-3030 . 326057) (-3031 . 325991) (-3032 . 325929)
- (-3033 . 325654) (-3034 . 325162) (-3035 . 324704) (-3036 . 324451)
- (-3037 . 324263) (-3038 . 323922) (-3039 . 323626) (-3040 . 323458)
- (-3041 . 323327) (-3042 . 323187) (-3043 . 323032) (-3044 . 322863)
- (-3045 . 321477) (-3046 . 321344) (-3047 . 321203) (-3048 . 320974)
- (-3049 . 320915) (-3050 . 320859) (-3051 . 320803) (-3052 . 320538)
- (-3053 . 320326) (-3054 . 320187) (-3055 . 320080) (-3056 . 319963)
- (-3057 . 319897) (-3058 . 319824) (-3059 . 319710) (-3060 . 319457)
- (-3061 . 319357) (-3062 . 319163) (-3063 . 318855) (-3064 . 318389)
- (-3065 . 318284) (-3066 . 318178) (-3067 . 318029) (-3068 . 317889)
- (-3069 . 317477) (-3070 . 317233) (-3071 . 316575) (-3072 . 316422)
- (-3073 . 316308) (-3074 . 316198) (-3075 . 315378) (-3076 . 315184)
- (-3077 . 314158) (-3078 . 313710) (-3079 . 312321) (-3080 . 311470)
- (-3081 . 311421) (-3082 . 311372) (-3083 . 311323) (-3084 . 311256)
- (-3085 . 311181) (-3086 . 310991) (-3087 . 310919) (-3088 . 310844)
- (-3089 . 310772) (-3090 . 310655) (-3091 . 310604) (-3092 . 310525)
- (-3093 . 310446) (-3094 . 310367) (-3095 . 310316) (-3096 . 310072)
- (-3097 . 309770) (-3098 . 309688) (-3099 . 309606) (-3100 . 309545)
- (-3101 . 309156) (-3102 . 308284) (-3103 . 307711) (-3104 . 306476)
- (-3105 . 305669) (-3106 . 305419) (-3107 . 305169) (-3108 . 304744)
- (-3109 . 304500) (-3110 . 304256) (-3111 . 304012) (-3112 . 303768)
- (-3113 . 303524) (-3114 . 303280) (-3115 . 303038) (-3116 . 302796)
- (-3117 . 302554) (-3118 . 302312) (-3119 . 301734) (-3120 . 301618)
- (-3121 . 300776) (-3122 . 300745) (-3123 . 300400) (-3124 . 300174)
- (-3125 . 300075) (-3126 . 299976) (-3127 . 298210) (-3128 . 298098)
- (-3129 . 297048) (-3130 . 296956) (-3131 . 296034) (-3132 . 295701)
- (-3133 . 295368) (-3134 . 295265) (-3135 . 295154) (-3136 . 295043)
- (-3137 . 294932) (-3138 . 294821) (-3139 . 293734) (-3140 . 293614)
- (-3141 . 293479) (-3142 . 293347) (-3143 . 293215) (-3144 . 292921)
- (-3145 . 292627) (-3146 . 292282) (-3147 . 292056) (-3148 . 291830)
- (-3149 . 291719) (-3150 . 291608) (-3151 . 290146) (-3152 . 288442)
- (-3153 . 288133) (-3154 . 287981) (-3155 . 287458) (-3156 . 287129)
- (-3157 . 286936) (-3158 . 286743) (-3159 . 286550) (-3160 . 286357)
- (-3161 . 286244) (-3162 . 286121) (-3163 . 286007) (-3164 . 285893)
- (-3165 . 285800) (-3166 . 285707) (-3167 . 285597) (-3168 . 285396)
- (-3169 . 284252) (-3170 . 284159) (-3171 . 284045) (-3172 . 283952)
- (-3173 . 283705) (-3174 . 283594) (-3175 . 283380) (-3176 . 283262)
- (-3177 . 282965) (-3178 . 282237) (-3179 . 281661) (-3180 . 281183)
- (-3181 . 280939) (-3182 . 280695) (-3183 . 280352) (-3184 . 279746)
- (-3185 . 279303) (-3186 . 279148) (-3187 . 279004) (-3188 . 278684)
- (-3189 . 278529) (-3190 . 278389) (-3191 . 278249) (-3192 . 278109)
- (-3193 . 277834) (-3194 . 277615) (-3195 . 277096) (-3196 . 276884)
- (-3197 . 276672) (-3198 . 276292) (-3199 . 276118) (-3200 . 275909)
- (-3201 . 275601) (-3202 . 275409) (-3203 . 275236) (-3204 . 274100)
- (-3205 . 273735) (-3206 . 273535) (-3207 . 273335) (-3208 . 272499)
- (-3209 . 272471) (-3210 . 272403) (-3211 . 272333) (-3212 . 272169)
- (-3213 . 272141) (-3214 . 272113) (-3215 . 272059) (-3216 . 271909)
- (-3217 . 271850) (-3218 . 271157) (-3219 . 269772) (-3220 . 269711)
- (-3221 . 269387) (-3222 . 269315) (-3223 . 269258) (-3224 . 269201)
- (-3225 . 269144) (-3226 . 269087) (-3227 . 269012) (-3228 . 268422)
- (-3229 . 268062) (-3230 . 267988) (-3231 . 267928) (-3232 . 267810)
- (-3233 . 266867) (-3234 . 266740) (-3235 . 266527) (-3236 . 266453)
- (-3237 . 266399) (-3238 . 266345) (-3239 . 266236) (-3240 . 265926)
- (-3241 . 265818) (-3242 . 265715) (-3243 . 265554) (-3244 . 265453)
- (-3245 . 265355) (-3246 . 265217) (-3247 . 265079) (-3248 . 264941)
- (-3249 . 264679) (-3250 . 264470) (-3251 . 264332) (-3252 . 264041)
- (-3253 . 263889) (-3254 . 263614) (-3255 . 263394) (-3256 . 263242)
- (-3257 . 263090) (-3258 . 262938) (-3259 . 262786) (-3260 . 262634)
- (-3261 . 262427) (-3262 . 262040) (-3263 . 261709) (-3264 . 261370)
- (-3265 . 261023) (-3266 . 260684) (-3267 . 260345) (-3268 . 259964)
- (-3269 . 259583) (-3270 . 259202) (-3271 . 258837) (-3272 . 258119)
- (-3273 . 257772) (-3274 . 257327) (-3275 . 256902) (-3276 . 256291)
- (-3277 . 255699) (-3278 . 255312) (-3279 . 254981) (-3280 . 254594)
- (-3281 . 254263) (-3282 . 254043) (-3283 . 253522) (-3284 . 253309)
- (-3285 . 253096) (-3286 . 252883) (-3287 . 252705) (-3288 . 252492)
- (-3289 . 252314) (-3290 . 251932) (-3291 . 251754) (-3292 . 251544)
- (-3293 . 251454) (-3294 . 251364) (-3295 . 251273) (-3296 . 251161)
- (-3297 . 251071) (-3298 . 250964) (-3299 . 250775) (-3300 . 250719)
- (-3301 . 250638) (-3302 . 250557) (-3303 . 250476) (-3304 . 250399)
- (-3305 . 250264) (-3306 . 250129) (-3307 . 250005) (-3308 . 249884)
- (-3309 . 249766) (-3310 . 249630) (-3311 . 249497) (-3312 . 249378)
- (-3313 . 249120) (-3314 . 248835) (-3315 . 248763) (-3316 . 248667)
- (-3317 . 248526) (-3318 . 248469) (-3319 . 248412) (-3320 . 248352)
- (-3321 . 247957) (-3322 . 247435) (-3323 . 247158) (-3324 . 246738)
- (-3325 . 246626) (-3326 . 246188) (-3327 . 245958) (-3328 . 245755)
- (-3329 . 245573) (-3330 . 245443) (-3331 . 245237) (-3332 . 245030)
- (-3333 . 244840) (-3334 . 244275) (-3335 . 244019) (-3336 . 243728)
- (-3337 . 243434) (-3338 . 243137) (-3339 . 242837) (-3340 . 242707)
- (-3341 . 242574) (-3342 . 242438) (-3343 . 242299) (-3344 . 241082)
- (-3345 . 240774) (-3346 . 240410) (-3347 . 240313) (-3348 . 240073)
- (-3349 . 239778) (-3350 . 239483) (-3351 . 239224) (-3352 . 239050)
- (-3353 . 238972) (-3354 . 238885) (-3355 . 238785) (-3356 . 238691)
- (-3357 . 238610) (-3358 . 238540) (-3359 . 237749) (-3360 . 237679)
- (-3361 . 237351) (-3362 . 237281) (-3363 . 236953) (-3364 . 236883)
- (-3365 . 236438) (-3366 . 236368) (-3367 . 236264) (-3368 . 236190)
- (-3369 . 236116) (-3370 . 236045) (-3371 . 235703) (-3372 . 235575)
- (-3373 . 235498) (-3374 . 235267) (-3375 . 235124) (-3376 . 234981)
- (-3377 . 234642) (-3378 . 234312) (-3379 . 234099) (-3380 . 233844)
- (-3381 . 233494) (-3382 . 233269) (-3383 . 233044) (-3384 . 232819)
- (-3385 . 232594) (-3386 . 232381) (-3387 . 232168) (-3388 . 232018)
- (-3389 . 231837) (-3390 . 231732) (-3391 . 231610) (-3392 . 231502)
- (-3393 . 231394) (-3394 . 231069) (-3395 . 230805) (-3396 . 230494)
- (-3397 . 230192) (-3398 . 229883) (-3399 . 229154) (-3400 . 228565)
- (-3401 . 228390) (-3402 . 228246) (-3403 . 228091) (-3404 . 227968)
- (-3405 . 227863) (-3406 . 227748) (-3407 . 227653) (-3408 . 227172)
- (-3409 . 227062) (-3410 . 226952) (-3411 . 226842) (-3412 . 225770)
- (-3413 . 225259) (-3414 . 225192) (-3415 . 225119) (-3416 . 224246)
- (-3417 . 224173) (-3418 . 224118) (-3419 . 224063) (-3420 . 224031)
- (-3421 . 223945) (-3422 . 223913) (-3423 . 223827) (-3424 . 223407)
- (-3425 . 222987) (-3426 . 222435) (-3427 . 221331) (-3428 . 219621)
- (-3429 . 218071) (-3430 . 217279) (-3431 . 216779) (-3432 . 216293)
- (-3433 . 215891) (-3434 . 215241) (-3435 . 215166) (-3436 . 215075)
- (-3437 . 215004) (-3438 . 214933) (-3439 . 214877) (-3440 . 214757)
- (-3441 . 214703) (-3442 . 214642) (-3443 . 214588) (-3444 . 214485)
- (-3445 . 214045) (-3446 . 213605) (-3447 . 213165) (-3448 . 212643)
- (-3449 . 212482) (-3450 . 212321) (-3451 . 212010) (-3452 . 211924)
- (-3453 . 211834) (-3454 . 211476) (-3455 . 211359) (-3456 . 211278)
- (-3457 . 211120) (-3458 . 211007) (-3459 . 210932) (-3460 . 210086)
- (-3461 . 208904) (-3462 . 208805) (-3463 . 208706) (-3464 . 208377)
- (-3465 . 208299) (-3466 . 208224) (-3467 . 208118) (-3468 . 207962)
- (-3469 . 207855) (-3470 . 207720) (-3471 . 207585) (-3472 . 207463)
- (-3473 . 207368) (-3474 . 207220) (-3475 . 207125) (-3476 . 206970)
- (-3477 . 206815) (-3478 . 206263) (-3479 . 205711) (-3480 . 205096)
- (-3481 . 204544) (-3482 . 203992) (-3483 . 203440) (-3484 . 202887)
- (-3485 . 202334) (-3486 . 201781) (-3487 . 201228) (-3488 . 200675)
- (-3489 . 200122) (-3490 . 199570) (-3491 . 199018) (-3492 . 198466)
- (-3493 . 197914) (-3494 . 197362) (-3495 . 196810) (-3496 . 196706)
- (-3497 . 196121) (-3498 . 196016) (-3499 . 195941) (-3500 . 195799)
- (-3501 . 195707) (-3502 . 195616) (-3503 . 195524) (-3504 . 195429)
- (-3505 . 195324) (-3506 . 195201) (-3507 . 195079) (-3508 . 194715)
- (-3509 . 194593) (-3510 . 194495) (-3511 . 194134) (-3512 . 193605)
- (-3513 . 193530) (-3514 . 193455) (-3515 . 193363) (-3516 . 193182)
- (-3517 . 193087) (-3518 . 193012) (-3519 . 192921) (-3520 . 192830)
- (-3521 . 192671) (-3522 . 192122) (-3523 . 191573) (-3524 . 188866)
- (-3525 . 188694) (-3526 . 187284) (-3527 . 186724) (-3528 . 186609)
- (-3529 . 186237) (-3530 . 186174) (-3531 . 186111) (-3532 . 186048)
- (-3533 . 185770) (-3534 . 185503) (-3535 . 185451) (-3536 . 184810)
- (-3537 . 184759) (-3538 . 184571) (-3539 . 184498) (-3540 . 184418)
- (-3541 . 184305) (-3542 . 184115) (-3543 . 183751) (-3544 . 183479)
- (-3545 . 183428) (-3546 . 183377) (-3547 . 183307) (-3548 . 183188)
- (-3549 . 183159) (-3550 . 183055) (-3551 . 182933) (-3552 . 182879)
- (-3553 . 182702) (-3554 . 182641) (-3555 . 182460) (-3556 . 182399)
- (-3557 . 182327) (-3558 . 181852) (-3559 . 181478) (-3560 . 177946)
- (-3561 . 177894) (-3562 . 177766) (-3563 . 177616) (-3564 . 177564)
- (-3565 . 177423) (-3566 . 175365) (-3567 . 167722) (-3568 . 167571)
- (-3569 . 167501) (-3570 . 167450) (-3571 . 167400) (-3572 . 167349)
- (-3573 . 167298) (-3574 . 167102) (-3575 . 166960) (-3576 . 166846)
- (-3577 . 166725) (-3578 . 166607) (-3579 . 166495) (-3580 . 166377)
- (-3581 . 166272) (-3582 . 166191) (-3583 . 166087) (-3584 . 165153)
- (-3585 . 164933) (-3586 . 164696) (-3587 . 164614) (-3588 . 164270)
- (-3589 . 163131) (-3590 . 163057) (-3591 . 162962) (-3592 . 162888)
- (-3593 . 162684) (-3594 . 162593) (-3595 . 162477) (-3596 . 162364)
- (-3597 . 162273) (-3598 . 162182) (-3599 . 162093) (-3600 . 162004)
- (-3601 . 161915) (-3602 . 161827) (-3603 . 161339) (-3604 . 161275)
- (-3605 . 161211) (-3606 . 161147) (-3607 . 161086) (-3608 . 160346)
- (-3609 . 160285) (-3610 . 160224) (-3611 . 159598) (-3612 . 159546)
- (-3613 . 159418) (-3614 . 159354) (-3615 . 159300) (-3616 . 159191)
- (-3617 . 157894) (-3618 . 157813) (-3619 . 157724) (-3620 . 157666)
- (-3621 . 157526) (-3622 . 157441) (-3623 . 157367) (-3624 . 157282)
- (-3625 . 157225) (-3626 . 157009) (-3627 . 156870) (-3628 . 156263)
- (-3629 . 155709) (-3630 . 155155) (-3631 . 154601) (-3632 . 153994)
- (-3633 . 153440) (-3634 . 152880) (-3635 . 152320) (-3636 . 152058)
- (-3637 . 151619) (-3638 . 151286) (-3639 . 150947) (-3640 . 150642)
- (-3641 . 150509) (-3642 . 150376) (-3643 . 149988) (-3644 . 149895)
- (-3645 . 149802) (-3646 . 149709) (-3647 . 149616) (-3648 . 149523)
- (-3649 . 149430) (-3650 . 149337) (-3651 . 149244) (-3652 . 149151)
- (-3653 . 149058) (-3654 . 148965) (-3655 . 148872) (-3656 . 148779)
- (-3657 . 148686) (-3658 . 148593) (-3659 . 148500) (-3660 . 148407)
- (-3661 . 148314) (-3662 . 148221) (-3663 . 148128) (-3664 . 148035)
- (-3665 . 147942) (-3666 . 147849) (-3667 . 147756) (-3668 . 147663)
- (-3669 . 147478) (-3670 . 147168) (-3671 . 145610) (-3672 . 145456)
- (-3673 . 145319) (-3674 . 145177) (-3675 . 144975) (-3676 . 143048)
- (-3677 . 142921) (-3678 . 142797) (-3679 . 142670) (-3680 . 142449)
- (-3681 . 142228) (-3682 . 142101) (-3683 . 141900) (-3684 . 141724)
- (-3685 . 141207) (-3686 . 140690) (-3687 . 140413) (-3688 . 140004)
- (-3689 . 139487) (-3690 . 139303) (-3691 . 139161) (-3692 . 138666)
- (-3693 . 138035) (-3694 . 137979) (-3695 . 137885) (-3696 . 137766)
- (-3697 . 137696) (-3698 . 137623) (-3699 . 137393) (-3700 . 136774)
- (-3701 . 136344) (-3702 . 136262) (-3703 . 136120) (-3704 . 135646)
- (-3705 . 135524) (-3706 . 135402) (-3707 . 135262) (-3708 . 135075)
- (-3709 . 134959) (-3710 . 134679) (-3711 . 134611) (-3712 . 134413)
- (-3713 . 134233) (-3714 . 134078) (-3715 . 133971) (-3716 . 133920)
- (-3717 . 133543) (-3718 . 133015) (-3719 . 132793) (-3720 . 132571)
- (-3721 . 132332) (-3722 . 132242) (-3723 . 130500) (-3724 . 129918)
- (-3725 . 129840) (-3726 . 124380) (-3727 . 123590) (-3728 . 123213)
- (-3729 . 123142) (-3730 . 122877) (-3731 . 122702) (-3732 . 122217)
- (-3733 . 121795) (-3734 . 121355) (-3735 . 120492) (-3736 . 120368)
- (-3737 . 120241) (-3738 . 120132) (-3739 . 119980) (-3740 . 119866)
- (-3741 . 119727) (-3742 . 119646) (-3743 . 119565) (-3744 . 119461)
- (-3745 . 119043) (-3746 . 118622) (-3747 . 118548) (-3748 . 118285)
- (-3749 . 118021) (-3750 . 117642) (-3751 . 116943) (-3752 . 115900)
- (-3753 . 115841) (-3754 . 115767) (-3755 . 115693) (-3756 . 115571)
- (-3757 . 115321) (-3758 . 115235) (-3759 . 115160) (-3760 . 115085)
- (-3761 . 114990) (-3762 . 111215) (-3763 . 110045) (-3764 . 109385)
- (-3765 . 109201) (-3766 . 106996) (-3767 . 106671) (-3768 . 106189)
- (-3769 . 105748) (-3770 . 105513) (-3771 . 105268) (-3772 . 105178)
- (-3773 . 103743) (-3774 . 103665) (-3775 . 103560) (-3776 . 102084)
- (-3777 . 101679) (-3778 . 101278) (-3779 . 101176) (-3780 . 101094)
- (-3781 . 100936) (-3782 . 99702) (-3783 . 99620) (-3784 . 99541)
- (-3785 . 99186) (-3786 . 99129) (-3787 . 99057) (-3788 . 99000)
- (-3789 . 98943) (-3790 . 98813) (-3791 . 98611) (-3792 . 98243)
- (-3793 . 97822) (-3794 . 94012) (-3795 . 93410) (-3796 . 92943)
- (-3797 . 92730) (-3798 . 92517) (-3799 . 92351) (-3800 . 92138)
- (-3801 . 91972) (-3802 . 91806) (-3803 . 91640) (-3804 . 91474)
- (-3805 . 91204) (-3806 . 85790) (** . 82837) (-3808 . 82421) (-3809 . 82180)
- (-3810 . 82124) (-3811 . 81632) (-3812 . 78824) (-3813 . 78674)
- (-3814 . 78510) (-3815 . 78346) (-3816 . 78250) (-3817 . 78132)
- (-3818 . 78008) (-3819 . 77865) (-3820 . 77694) (-3821 . 77568)
- (-3822 . 77424) (-3823 . 77272) (-3824 . 77113) (-3825 . 76600)
- (-3826 . 76511) (-3827 . 75846) (-3828 . 75654) (-3829 . 75559)
- (-3830 . 75251) (-3831 . 74079) (-3832 . 73873) (-3833 . 72698)
- (-3834 . 72623) (-3835 . 71442) (-3836 . 67861) (-3837 . 67497)
- (-3838 . 67220) (-3839 . 67128) (-3840 . 67035) (-3841 . 66758)
- (-3842 . 66665) (-3843 . 66572) (-3844 . 66479) (-3845 . 66095)
- (-3846 . 66024) (-3847 . 65932) (-3848 . 65774) (-3849 . 65420)
- (-3850 . 65262) (-3851 . 65154) (-3852 . 65125) (-3853 . 65058)
- (-3854 . 64904) (-3855 . 64746) (-3856 . 64352) (-3857 . 64277)
- (-3858 . 64171) (-3859 . 64099) (-3860 . 64021) (-3861 . 63948)
- (-3862 . 63875) (-3863 . 63802) (-3864 . 63730) (-3865 . 63658)
- (-3866 . 63585) (-3867 . 63344) (-3868 . 63004) (-3869 . 62856)
- (-3870 . 62783) (-3871 . 62710) (-3872 . 62637) (-3873 . 62383)
- (-3874 . 62239) (-3875 . 60903) (-3876 . 60709) (-3877 . 60438)
- (-3878 . 60290) (-3879 . 60142) (-3880 . 59902) (-3881 . 59708)
- (-3882 . 59440) (-3883 . 59244) (-3884 . 59215) (-3885 . 59114)
- (-3886 . 59013) (-3887 . 58912) (-3888 . 58811) (-3889 . 58710)
- (-3890 . 58609) (-3891 . 58508) (-3892 . 58407) (-3893 . 58306)
- (-3894 . 58205) (-3895 . 58090) (-3896 . 57975) (-3897 . 57924)
- (-3898 . 57807) (-3899 . 57749) (-3900 . 57648) (-3901 . 57547)
- (-3902 . 57446) (-3903 . 57330) (-3904 . 57301) (-3905 . 56570)
- (-3906 . 56445) (-3907 . 56320) (-3908 . 56180) (-3909 . 56062)
- (-3910 . 55937) (-3911 . 55782) (-3912 . 54799) (-3913 . 53940)
- (-3914 . 53886) (-3915 . 53832) (-3916 . 53624) (-3917 . 53252)
- (-3918 . 52841) (-3919 . 52483) (-3920 . 52125) (-3921 . 51973)
- (-3922 . 51671) (-3923 . 51515) (-3924 . 51189) (-3925 . 51119)
- (-3926 . 51049) (-3927 . 50840) (-3928 . 50231) (-3929 . 50027)
- (-3930 . 49654) (-3931 . 49145) (-3932 . 48880) (-3933 . 48399)
- (-3934 . 47918) (-3935 . 47793) (-3936 . 46693) (-3937 . 45617)
- (-3938 . 45044) (-3939 . 44826) (-3940 . 36500) (-3941 . 36315)
- (-3942 . 34232) (-3943 . 32064) (-3944 . 31918) (-3945 . 31740)
- (-3946 . 31333) (-3947 . 31038) (-3948 . 30690) (-3949 . 30524)
- (-3950 . 30358) (-3951 . 29945) (-3952 . 16071) (-3953 . 14964) (* . 10917)
- (-3955 . 10663) (-3956 . 10479) (-3957 . 9522) (-3958 . 9469) (-3959 . 9409)
- (-3960 . 9140) (-3961 . 8513) (-3962 . 7240) (-3963 . 5996) (-3964 . 5127)
- (-3965 . 3864) (-3966 . 420) (-3967 . 306) (-3968 . 173) (-3969 . 30)) \ No newline at end of file
+ (-12 (-5 *3 (-1089)) (-4 *4 (-495)) (-5 *2 (-584 *1)) (-4 *1 (-29 *4))))
+ ((*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-584 *1)) (-4 *1 (-29 *3)))))
+((-1213 . 630422) (-1214 . 630120) (-1215 . 629724) (-1216 . 629603)
+ (-1217 . 629501) (-1218 . 629388) (-1219 . 629272) (-1220 . 629219)
+ (-1221 . 629082) (-1222 . 629007) (-1223 . 628851) (-1224 . 628623)
+ (-1225 . 627659) (-1226 . 627412) (-1227 . 627128) (-1228 . 626844)
+ (-1229 . 626560) (-1230 . 626241) (-1231 . 626149) (-1232 . 626057)
+ (-1233 . 625965) (-1234 . 625873) (-1235 . 625781) (-1236 . 625689)
+ (-1237 . 625594) (-1238 . 625499) (-1239 . 625407) (-1240 . 625315)
+ (-1241 . 625223) (-1242 . 625131) (-1243 . 625039) (-1244 . 624937)
+ (-1245 . 624835) (-1246 . 624733) (-1247 . 624641) (-1248 . 624590)
+ (-1249 . 624538) (-1250 . 624468) (-1251 . 624048) (-1252 . 623854)
+ (-1253 . 623827) (-1254 . 623704) (-1255 . 623581) (-1256 . 623437)
+ (-1257 . 623267) (-1258 . 623143) (-1259 . 622904) (-1260 . 622831)
+ (-1261 . 622606) (-1262 . 622360) (-1263 . 622307) (-1264 . 622129)
+ (-1265 . 621960) (-1266 . 621884) (-1267 . 621811) (-1268 . 621658)
+ (-1269 . 621505) (-1270 . 621321) (-1271 . 621140) (-1272 . 621085)
+ (-1273 . 621030) (-1274 . 620957) (-1275 . 620881) (-1276 . 620804)
+ (-1277 . 620736) (-1278 . 620593) (-1279 . 620486) (-1280 . 620418)
+ (-1281 . 620348) (-1282 . 620278) (-1283 . 620228) (-1284 . 620178)
+ (-1285 . 620128) (-1286 . 620007) (-1287 . 619691) (-1288 . 619622)
+ (-1289 . 619543) (-1290 . 619424) (-1291 . 619344) (-1292 . 619264)
+ (-1293 . 619111) (-1294 . 618962) (-1295 . 618886) (-1296 . 618829)
+ (-1297 . 618757) (-1298 . 618694) (-1299 . 618631) (-1300 . 618570)
+ (-1301 . 618498) (-1302 . 618382) (-1303 . 618330) (-1304 . 618275)
+ (-1305 . 618223) (-1306 . 618171) (-1307 . 618143) (-1308 . 618115)
+ (-1309 . 618087) (-1310 . 618043) (-1311 . 617972) (-1312 . 617921)
+ (-1313 . 617873) (-1314 . 617822) (-1315 . 617770) (-1316 . 617654)
+ (-1317 . 617538) (-1318 . 617446) (-1319 . 617354) (-1320 . 617231)
+ (-1321 . 617165) (-1322 . 617099) (-1323 . 617040) (-1324 . 617012)
+ (-1325 . 616984) (-1326 . 616956) (-1327 . 616928) (-1328 . 616818)
+ (-1329 . 616767) (-1330 . 616716) (-1331 . 616665) (-1332 . 616614)
+ (-1333 . 616563) (-1334 . 616512) (-1335 . 616484) (-1336 . 616456)
+ (-1337 . 616428) (-1338 . 616400) (-1339 . 616372) (-1340 . 616344)
+ (-1341 . 616316) (-1342 . 616288) (-1343 . 616260) (-1344 . 616157)
+ (-1345 . 616105) (-1346 . 615939) (-1347 . 615755) (-1348 . 615544)
+ (-1349 . 615429) (-1350 . 615196) (-1351 . 615097) (-1352 . 615004)
+ (-1353 . 614889) (-1354 . 614491) (-1355 . 614273) (-1356 . 614224)
+ (-1357 . 614196) (-1358 . 614120) (-1359 . 614021) (-1360 . 613922)
+ (-1361 . 613823) (-1362 . 613724) (-1363 . 613625) (-1364 . 613526)
+ (-1365 . 613368) (-1366 . 613292) (-1367 . 613125) (-1368 . 613067)
+ (-1369 . 613009) (-1370 . 612700) (-1371 . 612446) (-1372 . 612362)
+ (-1373 . 612230) (-1374 . 612172) (-1375 . 612120) (-1376 . 612038)
+ (-1377 . 611963) (-1378 . 611892) (-1379 . 611838) (-1380 . 611787)
+ (-1381 . 611713) (-1382 . 611639) (-1383 . 611558) (-1384 . 611477)
+ (-1385 . 611422) (-1386 . 611348) (-1387 . 611274) (-1388 . 611200)
+ (-1389 . 611123) (-1390 . 611069) (-1391 . 611011) (-1392 . 610912)
+ (-1393 . 610813) (-1394 . 610714) (-1395 . 610615) (-1396 . 610516)
+ (-1397 . 610417) (-1398 . 610318) (-1399 . 610204) (-1400 . 610090)
+ (-1401 . 609976) (-1402 . 609862) (-1403 . 609748) (-1404 . 609634)
+ (-1405 . 609517) (-1406 . 609441) (-1407 . 609365) (-1408 . 608978)
+ (-1409 . 608633) (-1410 . 608531) (-1411 . 608270) (-1412 . 608168)
+ (-1413 . 607963) (-1414 . 607850) (-1415 . 607748) (-1416 . 607591)
+ (-1417 . 607502) (-1418 . 607408) (-1419 . 607328) (-1420 . 607254)
+ (-1421 . 607176) (-1422 . 607117) (-1423 . 607059) (-1424 . 606957)
+ (-7 . 606929) (-8 . 606901) (-9 . 606873) (-1428 . 606754) (-1429 . 606672)
+ (-1430 . 606590) (-1431 . 606508) (-1432 . 606426) (-1433 . 606344)
+ (-1434 . 606250) (-1435 . 606180) (-1436 . 606110) (-1437 . 606019)
+ (-1438 . 605925) (-1439 . 605843) (-1440 . 605761) (-1441 . 605663)
+ (-1442 . 605503) (-1443 . 605305) (-1444 . 605169) (-1445 . 605069)
+ (-1446 . 604969) (-1447 . 604876) (-1448 . 604817) (-1449 . 604484)
+ (-1450 . 604384) (-1451 . 604266) (-1452 . 604054) (-1453 . 603875)
+ (-1454 . 603717) (-1455 . 603514) (-1456 . 603096) (-1457 . 603045)
+ (-1458 . 602936) (-1459 . 602821) (-1460 . 602752) (-1461 . 602683)
+ (-1462 . 602614) (-1463 . 602548) (-1464 . 602423) (-1465 . 602206)
+ (-1466 . 602128) (-1467 . 602078) (-1468 . 602007) (-1469 . 601864)
+ (-1470 . 601723) (-1471 . 601642) (-1472 . 601561) (-1473 . 601505)
+ (-1474 . 601449) (-1475 . 601376) (-1476 . 601236) (-1477 . 601183)
+ (-1478 . 601124) (-1479 . 601065) (-1480 . 600910) (-1481 . 600858)
+ (-1482 . 600741) (-1483 . 600624) (-1484 . 600507) (-1485 . 600376)
+ (-1486 . 600097) (-1487 . 599962) (-1488 . 599906) (-1489 . 599850)
+ (-1490 . 599791) (-1491 . 599732) (-1492 . 599676) (-1493 . 599620)
+ (-1494 . 599423) (-1495 . 597081) (-1496 . 596954) (-1497 . 596809)
+ (-1498 . 596681) (-1499 . 596629) (-1500 . 596577) (-1501 . 596525)
+ (-1502 . 592487) (-1503 . 592393) (-1504 . 592254) (-1505 . 592045)
+ (-1506 . 591943) (-1507 . 591841) (-1508 . 590926) (-1509 . 590850)
+ (-1510 . 590721) (-1511 . 590596) (-1512 . 590519) (-1513 . 590442)
+ (-1514 . 590315) (-1515 . 590188) (-1516 . 590022) (-1517 . 589895)
+ (-1518 . 589768) (-1519 . 589551) (-1520 . 589117) (-1521 . 588753)
+ (-1522 . 588701) (-1523 . 588642) (-1524 . 588554) (-1525 . 588466)
+ (-1526 . 588375) (-1527 . 588284) (-1528 . 588193) (-1529 . 588102)
+ (-1530 . 588011) (-1531 . 587920) (-1532 . 587829) (-1533 . 587738)
+ (-1534 . 587647) (-1535 . 587556) (-1536 . 587465) (-1537 . 587374)
+ (-1538 . 587283) (-1539 . 587192) (-1540 . 587101) (-1541 . 587010)
+ (-1542 . 586919) (-1543 . 586828) (-1544 . 586737) (-1545 . 586646)
+ (-1546 . 586555) (-1547 . 586464) (-1548 . 586373) (-1549 . 586282)
+ (-1550 . 586191) (-1551 . 586100) (-1552 . 585938) (-1553 . 585830)
+ (-1554 . 585587) (-1555 . 585300) (-1556 . 585105) (-1557 . 584949)
+ (-1558 . 584789) (-1559 . 584738) (-1560 . 584676) (-1561 . 584625)
+ (-1562 . 584562) (-1563 . 584509) (-1564 . 584457) (-1565 . 584405)
+ (-1566 . 584353) (-1567 . 584263) (-1568 . 584076) (-1569 . 583922)
+ (-1570 . 583842) (-1571 . 583762) (-1572 . 583682) (-1573 . 583552)
+ (-1574 . 583320) (-1575 . 583292) (-1576 . 583264) (-1577 . 583236)
+ (-1578 . 583156) (-1579 . 583079) (-1580 . 583002) (-1581 . 582921)
+ (-1582 . 582862) (-1583 . 582704) (-1584 . 582511) (-1585 . 582026)
+ (-1586 . 581784) (-1587 . 581522) (-1588 . 581421) (-1589 . 581340)
+ (-1590 . 581259) (-1591 . 581189) (-1592 . 581119) (-1593 . 580961)
+ (-1594 . 580657) (-1595 . 580429) (-1596 . 580307) (-1597 . 580249)
+ (-1598 . 580187) (-1599 . 580125) (-1600 . 580060) (-1601 . 579998)
+ (-1602 . 579719) (-1603 . 579651) (-1604 . 579441) (-1605 . 579389)
+ (-1606 . 579335) (-1607 . 579244) (-1608 . 579157) (-1609 . 577410)
+ (-1610 . 577331) (-1611 . 576586) (-1612 . 576469) (-1613 . 576263)
+ (-1614 . 576102) (-1615 . 575941) (-1616 . 575781) (-1617 . 575643)
+ (-1618 . 575549) (-1619 . 575451) (-1620 . 575357) (-1621 . 575243)
+ (-1622 . 575161) (-1623 . 575064) (-1624 . 574868) (-1625 . 574777)
+ (-1626 . 574683) (-1627 . 574616) (-1628 . 574547) (-1629 . 574495)
+ (-1630 . 574436) (-1631 . 574362) (-1632 . 574310) (-1633 . 574153)
+ (-1634 . 573996) (-1635 . 573844) (-1636 . 573086) (-1637 . 572775)
+ (-1638 . 572423) (-1639 . 572206) (-1640 . 571943) (-1641 . 571568)
+ (-1642 . 571384) (-1643 . 571250) (-1644 . 571084) (-1645 . 570918)
+ (-1646 . 570784) (-1647 . 570650) (-1648 . 570516) (-1649 . 570382)
+ (-1650 . 570251) (-1651 . 570120) (-1652 . 569989) (-1653 . 569609)
+ (-1654 . 569483) (-1655 . 569355) (-1656 . 569105) (-1657 . 568982)
+ (-1658 . 568732) (-1659 . 568609) (-1660 . 568359) (-1661 . 568236)
+ (-1662 . 567953) (-1663 . 567682) (-1664 . 567409) (-1665 . 567111)
+ (-1666 . 567009) (-1667 . 566864) (-1668 . 566723) (-1669 . 566572)
+ (-1670 . 566411) (-1671 . 566323) (-1672 . 566295) (-1673 . 566213)
+ (-1674 . 566116) (-1675 . 565648) (-1676 . 565297) (-1677 . 564864)
+ (-1678 . 564725) (-1679 . 564655) (-1680 . 564585) (-1681 . 564515)
+ (-1682 . 564424) (-1683 . 564333) (-1684 . 564242) (-1685 . 564151)
+ (-1686 . 564060) (-1687 . 563974) (-1688 . 563888) (-1689 . 563802)
+ (-1690 . 563716) (-1691 . 563630) (-1692 . 563556) (-1693 . 563451)
+ (-1694 . 563225) (-1695 . 563147) (-1696 . 563072) (-1697 . 562979)
+ (-1698 . 562875) (-1699 . 562779) (-1700 . 562610) (-1701 . 562533)
+ (-1702 . 562456) (-1703 . 562365) (-1704 . 562274) (-1705 . 562074)
+ (-1706 . 561921) (-1707 . 561768) (-1708 . 561615) (-1709 . 561462)
+ (-1710 . 561309) (-1711 . 561156) (-1712 . 561090) (-1713 . 560937)
+ (-1714 . 560784) (-1715 . 560631) (-1716 . 560478) (-1717 . 560325)
+ (-1718 . 560172) (-1719 . 560019) (-1720 . 559866) (-1721 . 559792)
+ (-1722 . 559718) (-1723 . 559663) (-1724 . 559608) (-1725 . 559553)
+ (-1726 . 559498) (-1727 . 559427) (-1728 . 559223) (-1729 . 559122)
+ (-1730 . 558934) (-1731 . 558841) (-1732 . 558705) (-1733 . 558569)
+ (-1734 . 558433) (-1735 . 558365) (-1736 . 558249) (-1737 . 558133)
+ (-1738 . 558017) (-1739 . 557964) (-1740 . 557879) (-1741 . 557794)
+ (-1742 . 557486) (-1743 . 557431) (-1744 . 556779) (-1745 . 556464)
+ (-1746 . 556180) (-1747 . 556062) (-1748 . 555943) (-1749 . 555884)
+ (-1750 . 555825) (-1751 . 555774) (-1752 . 555723) (-1753 . 555672)
+ (-1754 . 555619) (-1755 . 555566) (-1756 . 555507) (-1757 . 555394)
+ (-1758 . 555281) (-1759 . 555114) (-1760 . 555022) (-1761 . 554909)
+ (-1762 . 554825) (-1763 . 554710) (-1764 . 554619) (-1765 . 554528)
+ (-1766 . 554407) (-1767 . 554220) (-1768 . 554168) (-1769 . 554113)
+ (-1770 . 553926) (-1771 . 553803) (-1772 . 553730) (-1773 . 553657)
+ (-1774 . 553537) (-1775 . 553464) (-1776 . 553391) (-1777 . 553051)
+ (-1778 . 552978) (-1779 . 552758) (-1780 . 552425) (-1781 . 552242)
+ (-1782 . 552099) (-1783 . 551739) (-1784 . 551571) (-1785 . 551403)
+ (-1786 . 551147) (-1787 . 550891) (-1788 . 550696) (-1789 . 550501)
+ (-1790 . 549907) (-1791 . 549831) (-1792 . 549692) (-1793 . 549285)
+ (-1794 . 549158) (-1795 . 549001) (-1796 . 548684) (-1797 . 548204)
+ (-1798 . 547724) (-1799 . 547222) (-1800 . 547154) (-1801 . 547083)
+ (-1802 . 547012) (-1803 . 546840) (-1804 . 546721) (-1805 . 546602)
+ (-1806 . 546526) (-1807 . 546450) (-1808 . 546177) (-1809 . 546063)
+ (-1810 . 546012) (-1811 . 545961) (-1812 . 545910) (-1813 . 545859)
+ (-1814 . 545808) (-1815 . 545667) (-1816 . 545494) (-1817 . 545263)
+ (-1818 . 545077) (-1819 . 545049) (-1820 . 545021) (-1821 . 544993)
+ (-1822 . 544965) (-1823 . 544937) (-1824 . 544909) (-1825 . 544881)
+ (-1826 . 544830) (-1827 . 544764) (-1828 . 544674) (-1829 . 544303)
+ (-1830 . 544152) (-1831 . 544001) (-1832 . 543796) (-1833 . 543674)
+ (-1834 . 543600) (-1835 . 543523) (-1836 . 543449) (-1837 . 543372)
+ (-1838 . 543295) (-1839 . 543221) (-1840 . 543144) (-1841 . 542911)
+ (-1842 . 542758) (-1843 . 542463) (-1844 . 542310) (-1845 . 541988)
+ (-1846 . 541850) (-1847 . 541712) (-1848 . 541632) (-1849 . 541552)
+ (-1850 . 541288) (-1851 . 540557) (-1852 . 540421) (-1853 . 540331)
+ (-1854 . 540196) (-1855 . 540129) (-1856 . 540061) (-1857 . 539974)
+ (-1858 . 539887) (-1859 . 539720) (-1860 . 539646) (-1861 . 539502)
+ (-1862 . 539042) (-1863 . 538663) (-1864 . 537901) (-1865 . 537757)
+ (-1866 . 537613) (-1867 . 537451) (-1868 . 537214) (-1869 . 537074)
+ (-1870 . 536928) (-1871 . 536689) (-1872 . 536453) (-1873 . 536214)
+ (-1874 . 536022) (-1875 . 535899) (-1876 . 535695) (-1877 . 535472)
+ (-1878 . 535233) (-1879 . 535092) (-1880 . 534954) (-1881 . 534815)
+ (-1882 . 534562) (-1883 . 534306) (-1884 . 534149) (-1885 . 533995)
+ (-1886 . 533755) (-1887 . 533470) (-1888 . 533332) (-1889 . 533245)
+ (-1890 . 532579) (-1891 . 532403) (-1892 . 532221) (-1893 . 532045)
+ (-1894 . 531863) (-1895 . 531684) (-1896 . 531505) (-1897 . 531318)
+ (-1898 . 530936) (-1899 . 530757) (-1900 . 530578) (-1901 . 530391)
+ (-1902 . 530009) (-1903 . 529016) (-1904 . 528632) (-1905 . 528248)
+ (-1906 . 528130) (-1907 . 527973) (-1908 . 527831) (-1909 . 527714)
+ (-1910 . 527532) (-1911 . 527408) (-1912 . 527119) (-1913 . 526830)
+ (-1914 . 526547) (-1915 . 526264) (-1916 . 525986) (-1917 . 525898)
+ (-1918 . 525813) (-1919 . 525716) (-1920 . 525619) (-1921 . 525399)
+ (-1922 . 525299) (-1923 . 525196) (-1924 . 525118) (-1925 . 524793)
+ (-1926 . 524501) (-1927 . 524428) (-1928 . 524043) (-1929 . 524015)
+ (-1930 . 523816) (-1931 . 523642) (-1932 . 523401) (-1933 . 523346)
+ (-1934 . 523271) (-1935 . 522903) (-1936 . 522788) (-1937 . 522711)
+ (-1938 . 522638) (-1939 . 522557) (-1940 . 522476) (-1941 . 522395)
+ (-1942 . 522294) (-1943 . 522235) (-1944 . 521997) (-1945 . 521875)
+ (-1946 . 521753) (-1947 . 521526) (-1948 . 521473) (-1949 . 521419)
+ (-1950 . 521087) (-1951 . 520763) (-1952 . 520575) (-1953 . 520384)
+ (-1954 . 520220) (-1955 . 519885) (-1956 . 519718) (-1957 . 519477)
+ (-1958 . 519153) (-1959 . 518963) (-1960 . 518748) (-1961 . 518577)
+ (-1962 . 518155) (-1963 . 517928) (-1964 . 517657) (-1965 . 517520)
+ (-1966 . 517379) (-1967 . 516902) (-1968 . 516779) (-1969 . 516543)
+ (-1970 . 516289) (-1971 . 516039) (-1972 . 515746) (-1973 . 515606)
+ (-1974 . 515466) (-1975 . 515326) (-1976 . 515137) (-1977 . 514948)
+ (-1978 . 514773) (-1979 . 514499) (-1980 . 514064) (-1981 . 514036)
+ (-1982 . 513964) (-1983 . 513889) (-1984 . 513730) (-1985 . 513567)
+ (-1986 . 513406) (-1987 . 513239) (-1988 . 513186) (-1989 . 513133)
+ (-1990 . 513004) (-1991 . 512944) (-1992 . 512891) (-1993 . 512821)
+ (-1994 . 512761) (-1995 . 512702) (-1996 . 512642) (-1997 . 512583)
+ (-1998 . 512523) (-1999 . 512464) (-2000 . 512405) (-2001 . 512263)
+ (-2002 . 512168) (-2003 . 512077) (-2004 . 511961) (-2005 . 511867)
+ (-2006 . 511769) (-2007 . 511675) (-2008 . 511534) (-2009 . 511272)
+ (-2010 . 510416) (-2011 . 510260) (-2012 . 509891) (-2013 . 509835)
+ (-2014 . 509784) (-2015 . 509681) (-2016 . 509596) (-2017 . 509508)
+ (-2018 . 509362) (-2019 . 509213) (-2020 . 508923) (-2021 . 508845)
+ (-2022 . 508770) (-2023 . 508717) (-2024 . 508664) (-2025 . 508633)
+ (-2026 . 508570) (-2027 . 508452) (-2028 . 508363) (-2029 . 508243)
+ (-2030 . 507948) (-2031 . 507754) (-2032 . 507566) (-2033 . 507421)
+ (-2034 . 507276) (-2035 . 506990) (-2036 . 506548) (-2037 . 506514)
+ (-2038 . 506477) (-2039 . 506440) (-2040 . 506403) (-2041 . 506366)
+ (-2042 . 506335) (-2043 . 506304) (-2044 . 506273) (-2045 . 506239)
+ (-2046 . 506205) (-2047 . 506151) (-2048 . 505975) (-2049 . 505741)
+ (-2050 . 505507) (-2051 . 505278) (-2052 . 505226) (-2053 . 505171)
+ (-2054 . 505102) (-2055 . 505014) (-2056 . 504945) (-2057 . 504873)
+ (-2058 . 504643) (-2059 . 504592) (-2060 . 504538) (-2061 . 504507)
+ (-2062 . 504401) (-2063 . 504176) (-2064 . 503866) (-2065 . 503692)
+ (-2066 . 503510) (-2067 . 503239) (-2068 . 503166) (-2069 . 503101)
+ (-2070 . 502625) (-2071 . 502063) (-2072 . 501337) (-2073 . 500776)
+ (-2074 . 500148) (-2075 . 499569) (-2076 . 499495) (-2077 . 499443)
+ (-2078 . 499391) (-2079 . 499317) (-2080 . 499262) (-2081 . 499210)
+ (-2082 . 499158) (-2083 . 499106) (-2084 . 499036) (-2085 . 498588)
+ (-2086 . 498382) (-2087 . 498133) (-2088 . 497799) (-2089 . 497545)
+ (-2090 . 497243) (-2091 . 497040) (-2092 . 496751) (-2093 . 496203)
+ (-2094 . 496066) (-2095 . 495864) (-2096 . 495584) (-2097 . 495499)
+ (-2098 . 495166) (-2099 . 495025) (-2100 . 494734) (-2101 . 494514)
+ (-2102 . 494388) (-2103 . 494263) (-2104 . 494116) (-2105 . 493972)
+ (-2106 . 493856) (-2107 . 493725) (-2108 . 493353) (-2109 . 493093)
+ (-2110 . 492823) (-2111 . 492583) (-2112 . 492253) (-2113 . 491913)
+ (-2114 . 491505) (-2115 . 491087) (-2116 . 490890) (-2117 . 490615)
+ (-2118 . 490447) (-2119 . 490251) (-2120 . 490029) (-2121 . 489874)
+ (-2122 . 489689) (-2123 . 489586) (-2124 . 489558) (-2125 . 489530)
+ (-2126 . 489356) (-2127 . 489282) (-2128 . 489221) (-2129 . 489168)
+ (-2130 . 489099) (-2131 . 489030) (-2132 . 488911) (-2133 . 488733)
+ (-2134 . 488678) (-2135 . 488432) (-2136 . 488359) (-2137 . 488289)
+ (-2138 . 488219) (-2139 . 488130) (-2140 . 487940) (-2141 . 487867)
+ (-2142 . 487798) (-2143 . 487733) (-2144 . 487678) (-2145 . 487587)
+ (-2146 . 487296) (-2147 . 486970) (-2148 . 486896) (-2149 . 486574)
+ (-2150 . 486369) (-2151 . 486284) (-2152 . 486199) (-2153 . 486114)
+ (-2154 . 486029) (-2155 . 485944) (-2156 . 485859) (-2157 . 485774)
+ (-2158 . 485689) (-2159 . 485604) (-2160 . 485519) (-2161 . 485434)
+ (-2162 . 485349) (-2163 . 485264) (-2164 . 485179) (-2165 . 485094)
+ (-2166 . 485009) (-2167 . 484924) (-2168 . 484839) (-2169 . 484754)
+ (-2170 . 484669) (-2171 . 484584) (-2172 . 484499) (-2173 . 484414)
+ (-2174 . 484329) (-2175 . 484244) (-2176 . 484159) (-2177 . 484057)
+ (-2178 . 483969) (-2179 . 483761) (-2180 . 483703) (-2181 . 483648)
+ (-2182 . 483561) (-2183 . 483450) (-2184 . 483364) (-2185 . 483218)
+ (-2186 . 483156) (-2187 . 483128) (-2188 . 483100) (-2189 . 483072)
+ (-2190 . 483044) (-2191 . 482875) (-2192 . 482724) (-2193 . 482573)
+ (-2194 . 482401) (-2195 . 482193) (-2196 . 482069) (-2197 . 481861)
+ (-2198 . 481769) (-2199 . 481677) (-2200 . 481542) (-2201 . 481447)
+ (-2202 . 481353) (-2203 . 481258) (-2204 . 481134) (-2205 . 481106)
+ (-2206 . 481078) (-2207 . 481050) (-2208 . 481022) (-2209 . 480994)
+ (-2210 . 480966) (-2211 . 480938) (-2212 . 480910) (-2213 . 480882)
+ (-2214 . 480854) (-2215 . 480826) (-2216 . 480798) (-2217 . 480770)
+ (-2218 . 480742) (-2219 . 480714) (-2220 . 480686) (-2221 . 480633)
+ (-2222 . 480605) (-2223 . 480577) (-2224 . 480499) (-2225 . 480446)
+ (-2226 . 480393) (-2227 . 480340) (-2228 . 480262) (-2229 . 480172)
+ (-2230 . 480077) (-2231 . 479983) (-2232 . 479901) (-2233 . 479595)
+ (-2234 . 479399) (-2235 . 479304) (-2236 . 479196) (-2237 . 478785)
+ (-2238 . 478757) (-2239 . 478593) (-2240 . 478516) (-2241 . 478329)
+ (-2242 . 478150) (-2243 . 477726) (-2244 . 477574) (-2245 . 477394)
+ (-2246 . 477221) (-2247 . 476961) (-2248 . 476709) (-2249 . 475898)
+ (-2250 . 475731) (-2251 . 475513) (-2252 . 474689) (-2253 . 474558)
+ (-2254 . 474427) (-2255 . 474296) (-2256 . 474165) (-2257 . 474034)
+ (-2258 . 473903) (-2259 . 473708) (-2260 . 473514) (-2261 . 473371)
+ (-2262 . 473056) (-2263 . 472941) (-2264 . 472601) (-2265 . 472441)
+ (-2266 . 472302) (-2267 . 472163) (-2268 . 472034) (-2269 . 471949)
+ (-2270 . 471897) (-2271 . 471417) (-2272 . 470155) (-2273 . 470028)
+ (-2274 . 469886) (-2275 . 469550) (-2276 . 469445) (-2277 . 469196)
+ (-2278 . 468964) (-2279 . 468859) (-2280 . 468784) (-2281 . 468709)
+ (-2282 . 468634) (-2283 . 468575) (-2284 . 468505) (-2285 . 468452)
+ (-2286 . 468390) (-2287 . 468320) (-2288 . 467957) (-2289 . 467670)
+ (-2290 . 467560) (-2291 . 467373) (-2292 . 467280) (-2293 . 467187)
+ (-2294 . 467100) (-2295 . 466880) (-2296 . 466661) (-2297 . 466243)
+ (-2298 . 465971) (-2299 . 465828) (-2300 . 465735) (-2301 . 465592)
+ (-2302 . 465440) (-2303 . 465286) (-2304 . 465216) (-2305 . 465009)
+ (-2306 . 464832) (-2307 . 464623) (-2308 . 464446) (-2309 . 464412)
+ (-2310 . 464378) (-2311 . 464347) (-2312 . 464229) (-2313 . 463916)
+ (-2314 . 463638) (-2315 . 463517) (-2316 . 463390) (-2317 . 463305)
+ (-2318 . 463232) (-2319 . 463143) (-2320 . 463072) (-2321 . 463016)
+ (-2322 . 462960) (-2323 . 462904) (-2324 . 462834) (-2325 . 462764)
+ (-2326 . 462694) (-2327 . 462596) (-2328 . 462518) (-2329 . 462440)
+ (-2330 . 462297) (-2331 . 462218) (-2332 . 462146) (-2333 . 461943)
+ (-2334 . 461887) (-2335 . 461699) (-2336 . 461600) (-2337 . 461482)
+ (-2338 . 461361) (-2339 . 461218) (-2340 . 461075) (-2341 . 460935)
+ (-2342 . 460795) (-2343 . 460652) (-2344 . 460526) (-2345 . 460397)
+ (-2346 . 460274) (-2347 . 460151) (-2348 . 460046) (-2349 . 459941)
+ (-2350 . 459839) (-2351 . 459689) (-2352 . 459536) (-2353 . 459383)
+ (-2354 . 459239) (-2355 . 459085) (-2356 . 459009) (-2357 . 458930)
+ (-2358 . 458777) (-2359 . 458698) (-2360 . 458619) (-2361 . 458540)
+ (-2362 . 458438) (-2363 . 458379) (-2364 . 458317) (-2365 . 458200)
+ (-2366 . 458074) (-2367 . 457997) (-2368 . 457865) (-2369 . 457559)
+ (-2370 . 457376) (-2371 . 456831) (-2372 . 456611) (-2373 . 456437)
+ (-2374 . 456267) (-2375 . 456194) (-2376 . 456118) (-2377 . 456039)
+ (-2378 . 455742) (-2379 . 455580) (-2380 . 455346) (-2381 . 454904)
+ (-2382 . 454774) (-2383 . 454634) (-2384 . 454325) (-2385 . 454023)
+ (-2386 . 453707) (-2387 . 453301) (-2388 . 453233) (-2389 . 453165)
+ (-2390 . 453097) (-2391 . 453003) (-2392 . 452896) (-2393 . 452789)
+ (-2394 . 452688) (-2395 . 452587) (-2396 . 452486) (-2397 . 452409)
+ (-2398 . 452016) (-2399 . 451599) (-2400 . 450972) (-2401 . 450908)
+ (-2402 . 450789) (-2403 . 450670) (-2404 . 450562) (-2405 . 450454)
+ (-2406 . 450298) (-2407 . 449698) (-2408 . 449415) (-2409 . 449336)
+ (-2410 . 449282) (-2411 . 449114) (-2412 . 448992) (-2413 . 448596)
+ (-2414 . 448360) (-2415 . 448159) (-2416 . 447951) (-2417 . 447758)
+ (-2418 . 447491) (-2419 . 447312) (-2420 . 447243) (-2421 . 447167)
+ (-2422 . 447026) (-2423 . 446823) (-2424 . 446679) (-2425 . 446429)
+ (-2426 . 446121) (-2427 . 445765) (-2428 . 445606) (-2429 . 445400)
+ (-2430 . 445240) (-2431 . 445167) (-2432 . 445133) (-2433 . 445068)
+ (-2434 . 445031) (-2435 . 444894) (-2436 . 444656) (-2437 . 444586)
+ (-2438 . 444400) (-2439 . 444151) (-2440 . 443995) (-2441 . 443472)
+ (-2442 . 443275) (-2443 . 443063) (-2444 . 442901) (-2445 . 442502)
+ (-2446 . 442335) (-2447 . 441260) (-2448 . 441137) (-2449 . 440920)
+ (-2450 . 440790) (-2451 . 440660) (-2452 . 440503) (-2453 . 440400)
+ (-2454 . 440342) (-2455 . 440284) (-2456 . 440178) (-2457 . 440072)
+ (-2458 . 439156) (-2459 . 437029) (-2460 . 436215) (-2461 . 434412)
+ (-2462 . 434344) (-2463 . 434276) (-2464 . 434208) (-2465 . 434140)
+ (-2466 . 434072) (-2467 . 433994) (-2468 . 433638) (-2469 . 433456)
+ (-2470 . 432917) (-2471 . 432741) (-2472 . 432520) (-2473 . 432299)
+ (-2474 . 432078) (-2475 . 431860) (-2476 . 431642) (-2477 . 431424)
+ (-2478 . 431206) (-2479 . 430988) (-2480 . 430770) (-2481 . 430669)
+ (-2482 . 429936) (-2483 . 429881) (-2484 . 429826) (-2485 . 429771)
+ (-2486 . 429716) (-2487 . 429566) (-2488 . 429318) (-2489 . 429157)
+ (-2490 . 428977) (-2491 . 428690) (-2492 . 428304) (-2493 . 427432)
+ (-2494 . 427092) (-2495 . 426924) (-2496 . 426702) (-2497 . 426452)
+ (-2498 . 426104) (-2499 . 425094) (-2500 . 424783) (-2501 . 424571)
+ (-2502 . 424007) (-2503 . 423494) (-2504 . 421738) (-2505 . 421266)
+ (-2506 . 420667) (-2507 . 420417) (-2508 . 420283) (-2509 . 420071)
+ (-2510 . 419995) (-2511 . 419919) (-2512 . 419812) (-2513 . 419630)
+ (-2514 . 419465) (-2515 . 419287) (-2516 . 418706) (-2517 . 418545)
+ (-2518 . 417972) (-2519 . 417902) (-2520 . 417827) (-2521 . 417755)
+ (-2522 . 417617) (-2523 . 417430) (-2524 . 417323) (-2525 . 417216)
+ (-2526 . 417101) (-2527 . 416986) (-2528 . 416871) (-2529 . 416593)
+ (-2530 . 416443) (-2531 . 416300) (-2532 . 416227) (-2533 . 416142)
+ (-2534 . 416069) (-2535 . 415996) (-2536 . 415923) (-2537 . 415780)
+ (-2538 . 415630) (-2539 . 415456) (-2540 . 415306) (-2541 . 415156)
+ (-2542 . 415030) (-2543 . 414644) (-2544 . 414360) (-2545 . 414076)
+ (-2546 . 413667) (-2547 . 413383) (-2548 . 413310) (-2549 . 413163)
+ (-2550 . 413057) (-2551 . 412983) (-2552 . 412913) (-2553 . 412834)
+ (-2554 . 412757) (-2555 . 412680) (-2556 . 412531) (-2557 . 412428)
+ (-2558 . 412370) (-2559 . 412306) (-2560 . 412242) (-2561 . 412145)
+ (-2562 . 412048) (-2563 . 411888) (-2564 . 411802) (-2565 . 411716)
+ (-2566 . 411631) (-2567 . 411572) (-2568 . 411513) (-2569 . 411454)
+ (-2570 . 411395) (-2571 . 411225) (-2572 . 411137) (-2573 . 411040)
+ (-2574 . 411006) (-2575 . 410975) (-2576 . 410891) (-2577 . 410835)
+ (-2578 . 410773) (-2579 . 410739) (-2580 . 410705) (-2581 . 410671)
+ (-2582 . 410637) (-2583 . 410603) (-2584 . 410569) (-2585 . 410535)
+ (-2586 . 410501) (-2587 . 410467) (-2588 . 410355) (-2589 . 410321)
+ (-2590 . 410270) (-2591 . 410236) (-2592 . 410139) (-2593 . 410077)
+ (-2594 . 409986) (-2595 . 409895) (-2596 . 409840) (-2597 . 409788)
+ (-2598 . 409736) (-2599 . 409684) (-2600 . 409632) (-2601 . 409209)
+ (-2602 . 409043) (-2603 . 408990) (-2604 . 408921) (-2605 . 408868)
+ (-2606 . 408638) (-2607 . 408482) (-2608 . 407961) (-2609 . 407820)
+ (-2610 . 407786) (-2611 . 407731) (-2612 . 407021) (-2613 . 406706)
+ (-2614 . 406202) (-2615 . 406124) (-2616 . 406072) (-2617 . 406020)
+ (-2618 . 405836) (-2619 . 405784) (-2620 . 405732) (-2621 . 405656)
+ (-2622 . 405594) (-2623 . 405376) (-2624 . 405309) (-2625 . 405215)
+ (-2626 . 405121) (-2627 . 404938) (-2628 . 404856) (-2629 . 404734)
+ (-2630 . 404588) (-2631 . 403937) (-2632 . 403235) (-2633 . 403131)
+ (-2634 . 403030) (-2635 . 402929) (-2636 . 402818) (-2637 . 402650)
+ (-2638 . 402446) (-2639 . 402353) (-2640 . 402276) (-2641 . 402220)
+ (-2642 . 402150) (-2643 . 402030) (-2644 . 401929) (-2645 . 401832)
+ (-2646 . 401752) (-2647 . 401672) (-2648 . 401595) (-2649 . 401525)
+ (-2650 . 401455) (-2651 . 401385) (-2652 . 401315) (-2653 . 401245)
+ (-2654 . 401175) (-2655 . 401082) (-2656 . 400954) (-2657 . 400712)
+ (-2658 . 400542) (-2659 . 400173) (-2660 . 400004) (-2661 . 399888)
+ (-2662 . 399392) (-2663 . 399011) (-2664 . 398765) (-2665 . 398673)
+ (-2666 . 398576) (-2667 . 397914) (-2668 . 397801) (-2669 . 397727)
+ (-2670 . 397635) (-2671 . 397445) (-2672 . 397255) (-2673 . 397184)
+ (-2674 . 397113) (-2675 . 397032) (-2676 . 396951) (-2677 . 396826)
+ (-2678 . 396693) (-2679 . 396612) (-2680 . 396538) (-2681 . 396373)
+ (-2682 . 396216) (-2683 . 395988) (-2684 . 395840) (-2685 . 395736)
+ (-2686 . 395632) (-2687 . 395547) (-2688 . 395179) (-2689 . 395098)
+ (-2690 . 395011) (-2691 . 394930) (-2692 . 394734) (-2693 . 394514)
+ (-2694 . 394327) (-2695 . 394005) (-2696 . 393712) (-2697 . 393419)
+ (-2698 . 393109) (-2699 . 392792) (-2700 . 392640) (-2701 . 392452)
+ (-2702 . 391979) (-2703 . 391897) (-2704 . 391681) (-2705 . 391465)
+ (-2706 . 391206) (-2707 . 390785) (-2708 . 390272) (-2709 . 390142)
+ (-2710 . 389868) (-2711 . 389689) (-2712 . 389574) (-2713 . 389470)
+ (-2714 . 389415) (-2715 . 389338) (-2716 . 389268) (-2717 . 389195)
+ (-2718 . 389140) (-2719 . 389067) (-2720 . 389012) (-2721 . 388657)
+ (-2722 . 388249) (-2723 . 388096) (-2724 . 387943) (-2725 . 387862)
+ (-2726 . 387709) (-2727 . 387556) (-2728 . 387421) (-2729 . 387286)
+ (-2730 . 387151) (-2731 . 387016) (-2732 . 386881) (-2733 . 386746)
+ (-2734 . 386690) (-2735 . 386537) (-2736 . 386426) (-2737 . 386315)
+ (-2738 . 386230) (-2739 . 386120) (-2740 . 386017) (-2741 . 381866)
+ (-2742 . 381418) (-2743 . 380991) (-2744 . 380374) (-2745 . 379773)
+ (-2746 . 379555) (-2747 . 379377) (-2748 . 379118) (-2749 . 378707)
+ (-2750 . 378413) (-2751 . 377970) (-2752 . 377792) (-2753 . 377399)
+ (-2754 . 377006) (-2755 . 376821) (-2756 . 376614) (-2757 . 376394)
+ (-2758 . 376088) (-2759 . 375889) (-2760 . 375260) (-2761 . 375103)
+ (-2762 . 374714) (-2763 . 374663) (-2764 . 374614) (-2765 . 374563)
+ (-2766 . 374515) (-2767 . 374463) (-2768 . 374317) (-2769 . 374265)
+ (-2770 . 374119) (-2771 . 374067) (-2772 . 373921) (-2773 . 373870)
+ (-2774 . 373495) (-2775 . 373444) (-2776 . 373395) (-2777 . 373344)
+ (-2778 . 373296) (-2779 . 373244) (-2780 . 373195) (-2781 . 373143)
+ (-2782 . 373094) (-2783 . 373042) (-2784 . 372993) (-2785 . 372927)
+ (-2786 . 372809) (-2787 . 371647) (-2788 . 371230) (-2789 . 371122)
+ (-2790 . 370880) (-2791 . 370730) (-2792 . 370580) (-2793 . 370419)
+ (-2794 . 368212) (-2795 . 367951) (-2796 . 367797) (-2797 . 367651)
+ (-2798 . 367505) (-2799 . 367286) (-2800 . 367154) (-2801 . 367079)
+ (-2802 . 367004) (-2803 . 366869) (-2804 . 366740) (-2805 . 366611)
+ (-2806 . 366485) (-2807 . 366359) (-2808 . 366233) (-2809 . 366107)
+ (-2810 . 366004) (-2811 . 365904) (-2812 . 365810) (-2813 . 365680)
+ (-2814 . 365529) (-2815 . 365153) (-2816 . 365039) (-2817 . 364798)
+ (-2818 . 364340) (-2819 . 364030) (-2820 . 363463) (-2821 . 362894)
+ (-2822 . 361884) (-2823 . 361342) (-2824 . 361029) (-2825 . 360691)
+ (-2826 . 360360) (-2827 . 360040) (-2828 . 359987) (-2829 . 359860)
+ (-2830 . 359358) (-2831 . 358215) (-2832 . 358160) (-2833 . 358105)
+ (-2834 . 358029) (-2835 . 357910) (-2836 . 357835) (-2837 . 357760)
+ (-2838 . 357682) (-2839 . 357459) (-2840 . 357400) (-2841 . 357341)
+ (-2842 . 357238) (-2843 . 357135) (-2844 . 357032) (-2845 . 356929)
+ (-2846 . 356848) (-2847 . 356774) (-2848 . 356559) (-2849 . 356325)
+ (-2850 . 356291) (-2851 . 356257) (-2852 . 356229) (-2853 . 356201)
+ (-2854 . 355984) (-2855 . 355706) (-2856 . 355556) (-2857 . 355426)
+ (-2858 . 355296) (-2859 . 355196) (-2860 . 355019) (-2861 . 354859)
+ (-2862 . 354759) (-2863 . 354582) (-2864 . 354422) (-2865 . 354263)
+ (-2866 . 354124) (-2867 . 353974) (-2868 . 353844) (-2869 . 353714)
+ (-2870 . 353567) (-2871 . 353440) (-2872 . 353337) (-2873 . 353230)
+ (-2874 . 353133) (-2875 . 352968) (-2876 . 352820) (-2877 . 352405)
+ (-2878 . 352305) (-2879 . 352202) (-2880 . 352114) (-2881 . 352034)
+ (-2882 . 351884) (-2883 . 351754) (-2884 . 351702) (-2885 . 351629)
+ (-2886 . 351554) (-2887 . 351278) (-2888 . 351166) (-2889 . 350854)
+ (-2890 . 350677) (-2891 . 349079) (-2892 . 348451) (-2893 . 348391)
+ (-2894 . 348273) (-2895 . 348155) (-2896 . 348011) (-2897 . 347859)
+ (-2898 . 347700) (-2899 . 347541) (-2900 . 347335) (-2901 . 347148)
+ (-2902 . 346996) (-2903 . 346841) (-2904 . 346686) (-2905 . 346534)
+ (-2906 . 346397) (-2907 . 345974) (-2908 . 345848) (-2909 . 345722)
+ (-2910 . 345596) (-2911 . 345456) (-2912 . 345315) (-2913 . 345174)
+ (-2914 . 345030) (-2915 . 344282) (-2916 . 344124) (-2917 . 343938)
+ (-2918 . 343783) (-2919 . 343545) (-2920 . 343300) (-2921 . 343055)
+ (-2922 . 342845) (-2923 . 342708) (-2924 . 342498) (-2925 . 342361)
+ (-2926 . 342151) (-2927 . 342014) (-2928 . 341804) (-2929 . 341501)
+ (-2930 . 341357) (-2931 . 341216) (-2932 . 340993) (-2933 . 340852)
+ (-2934 . 340630) (-2935 . 340433) (-2936 . 340277) (-2937 . 339950)
+ (-2938 . 339791) (-2939 . 339632) (-2940 . 339473) (-2941 . 339302)
+ (-2942 . 339131) (-2943 . 338957) (-2944 . 338605) (-2945 . 338482)
+ (-2946 . 338320) (-2947 . 338247) (-2948 . 338174) (-2949 . 338101)
+ (-2950 . 338028) (-2951 . 337955) (-2952 . 337882) (-2953 . 337759)
+ (-2954 . 337586) (-2955 . 337463) (-2956 . 337377) (-2957 . 337311)
+ (-2958 . 337245) (-2959 . 337179) (-2960 . 337113) (-2961 . 337047)
+ (-2962 . 336981) (-2963 . 336915) (-2964 . 336849) (-2965 . 336783)
+ (-2966 . 336717) (-2967 . 336651) (-2968 . 336585) (-2969 . 336519)
+ (-2970 . 336453) (-2971 . 336387) (-2972 . 336321) (-2973 . 336255)
+ (-2974 . 336189) (-2975 . 336123) (-2976 . 336057) (-2977 . 335991)
+ (-2978 . 335925) (-2979 . 335859) (-2980 . 335793) (-2981 . 335727)
+ (-2982 . 335661) (-2983 . 335014) (-2984 . 334367) (-2985 . 334239)
+ (-2986 . 334116) (-2987 . 333993) (-2988 . 333852) (-2989 . 333698)
+ (-2990 . 333554) (-2991 . 333379) (-2992 . 332769) (-2993 . 332645)
+ (-2994 . 332521) (-2995 . 331843) (-2996 . 331146) (-2997 . 331045)
+ (-2998 . 330989) (-2999 . 330933) (-3000 . 330877) (-3001 . 330821)
+ (-3002 . 330762) (-3003 . 330698) (-3004 . 330590) (-3005 . 330482)
+ (-3006 . 330374) (-3007 . 330095) (-3008 . 330021) (-3009 . 329795)
+ (-3010 . 329714) (-3011 . 329636) (-3012 . 329558) (-3013 . 329480)
+ (-3014 . 329401) (-3015 . 329323) (-3016 . 329230) (-3017 . 329131)
+ (-3018 . 329063) (-3019 . 329014) (-3020 . 328323) (-3021 . 327683)
+ (-3022 . 326892) (-3023 . 326811) (-3024 . 326707) (-3025 . 326616)
+ (-3026 . 326525) (-3027 . 326451) (-3028 . 326377) (-3029 . 326303)
+ (-3030 . 326248) (-3031 . 326193) (-3032 . 326127) (-3033 . 326061)
+ (-3034 . 325999) (-3035 . 325724) (-3036 . 325232) (-3037 . 324774)
+ (-3038 . 324521) (-3039 . 324333) (-3040 . 323992) (-3041 . 323696)
+ (-3042 . 323528) (-3043 . 323397) (-3044 . 323257) (-3045 . 323102)
+ (-3046 . 322933) (-3047 . 321547) (-3048 . 321414) (-3049 . 321273)
+ (-3050 . 321044) (-3051 . 320985) (-3052 . 320929) (-3053 . 320873)
+ (-3054 . 320608) (-3055 . 320396) (-3056 . 320257) (-3057 . 320150)
+ (-3058 . 320033) (-3059 . 319967) (-3060 . 319894) (-3061 . 319780)
+ (-3062 . 319527) (-3063 . 319427) (-3064 . 319233) (-3065 . 318925)
+ (-3066 . 318459) (-3067 . 318354) (-3068 . 318248) (-3069 . 318099)
+ (-3070 . 317959) (-3071 . 317547) (-3072 . 317303) (-3073 . 316645)
+ (-3074 . 316492) (-3075 . 316378) (-3076 . 316268) (-3077 . 315448)
+ (-3078 . 315254) (-3079 . 314228) (-3080 . 313780) (-3081 . 312391)
+ (-3082 . 311540) (-3083 . 311491) (-3084 . 311442) (-3085 . 311393)
+ (-3086 . 311326) (-3087 . 311251) (-3088 . 311061) (-3089 . 310989)
+ (-3090 . 310914) (-3091 . 310842) (-3092 . 310725) (-3093 . 310674)
+ (-3094 . 310595) (-3095 . 310516) (-3096 . 310437) (-3097 . 310386)
+ (-3098 . 310142) (-3099 . 309840) (-3100 . 309758) (-3101 . 309676)
+ (-3102 . 309615) (-3103 . 309226) (-3104 . 308354) (-3105 . 307781)
+ (-3106 . 306546) (-3107 . 305739) (-3108 . 305489) (-3109 . 305239)
+ (-3110 . 304814) (-3111 . 304570) (-3112 . 304326) (-3113 . 304082)
+ (-3114 . 303838) (-3115 . 303594) (-3116 . 303350) (-3117 . 303108)
+ (-3118 . 302866) (-3119 . 302624) (-3120 . 302382) (-3121 . 301804)
+ (-3122 . 301688) (-3123 . 300846) (-3124 . 300815) (-3125 . 300470)
+ (-3126 . 300244) (-3127 . 300145) (-3128 . 300046) (-3129 . 298280)
+ (-3130 . 298168) (-3131 . 297118) (-3132 . 297026) (-3133 . 296104)
+ (-3134 . 295771) (-3135 . 295438) (-3136 . 295335) (-3137 . 295224)
+ (-3138 . 295113) (-3139 . 295002) (-3140 . 294891) (-3141 . 293804)
+ (-3142 . 293684) (-3143 . 293549) (-3144 . 293417) (-3145 . 293285)
+ (-3146 . 292991) (-3147 . 292697) (-3148 . 292352) (-3149 . 292126)
+ (-3150 . 291900) (-3151 . 291789) (-3152 . 291678) (-3153 . 290216)
+ (-3154 . 288512) (-3155 . 288203) (-3156 . 288051) (-3157 . 287528)
+ (-3158 . 287199) (-3159 . 287006) (-3160 . 286813) (-3161 . 286620)
+ (-3162 . 286427) (-3163 . 286314) (-3164 . 286191) (-3165 . 286077)
+ (-3166 . 285963) (-3167 . 285870) (-3168 . 285777) (-3169 . 285667)
+ (-3170 . 285466) (-3171 . 284322) (-3172 . 284229) (-3173 . 284115)
+ (-3174 . 284022) (-3175 . 283775) (-3176 . 283664) (-3177 . 283450)
+ (-3178 . 283332) (-3179 . 283035) (-3180 . 282307) (-3181 . 281731)
+ (-3182 . 281253) (-3183 . 281009) (-3184 . 280765) (-3185 . 280422)
+ (-3186 . 279816) (-3187 . 279373) (-3188 . 279218) (-3189 . 279074)
+ (-3190 . 278754) (-3191 . 278599) (-3192 . 278459) (-3193 . 278319)
+ (-3194 . 278179) (-3195 . 277904) (-3196 . 277685) (-3197 . 277166)
+ (-3198 . 276954) (-3199 . 276742) (-3200 . 276362) (-3201 . 276188)
+ (-3202 . 275979) (-3203 . 275671) (-3204 . 275479) (-3205 . 275306)
+ (-3206 . 274170) (-3207 . 273805) (-3208 . 273605) (-3209 . 273405)
+ (-3210 . 272569) (-3211 . 272541) (-3212 . 272473) (-3213 . 272403)
+ (-3214 . 272239) (-3215 . 272211) (-3216 . 272183) (-3217 . 272129)
+ (-3218 . 271979) (-3219 . 271920) (-3220 . 271227) (-3221 . 269842)
+ (-3222 . 269781) (-3223 . 269457) (-3224 . 269385) (-3225 . 269328)
+ (-3226 . 269271) (-3227 . 269214) (-3228 . 269157) (-3229 . 269082)
+ (-3230 . 268492) (-3231 . 268132) (-3232 . 268058) (-3233 . 267998)
+ (-3234 . 267880) (-3235 . 266937) (-3236 . 266810) (-3237 . 266597)
+ (-3238 . 266523) (-3239 . 266469) (-3240 . 266415) (-3241 . 266306)
+ (-3242 . 265996) (-3243 . 265888) (-3244 . 265785) (-3245 . 265624)
+ (-3246 . 265523) (-3247 . 265425) (-3248 . 265287) (-3249 . 265149)
+ (-3250 . 265011) (-3251 . 264749) (-3252 . 264540) (-3253 . 264402)
+ (-3254 . 264111) (-3255 . 263959) (-3256 . 263684) (-3257 . 263464)
+ (-3258 . 263312) (-3259 . 263160) (-3260 . 263008) (-3261 . 262856)
+ (-3262 . 262704) (-3263 . 262497) (-3264 . 262110) (-3265 . 261779)
+ (-3266 . 261440) (-3267 . 261093) (-3268 . 260754) (-3269 . 260415)
+ (-3270 . 260034) (-3271 . 259653) (-3272 . 259272) (-3273 . 258907)
+ (-3274 . 258189) (-3275 . 257842) (-3276 . 257397) (-3277 . 256972)
+ (-3278 . 256361) (-3279 . 255769) (-3280 . 255382) (-3281 . 255051)
+ (-3282 . 254664) (-3283 . 254333) (-3284 . 254113) (-3285 . 253592)
+ (-3286 . 253379) (-3287 . 253166) (-3288 . 252953) (-3289 . 252775)
+ (-3290 . 252562) (-3291 . 252384) (-3292 . 252002) (-3293 . 251824)
+ (-3294 . 251614) (-3295 . 251524) (-3296 . 251434) (-3297 . 251343)
+ (-3298 . 251231) (-3299 . 251141) (-3300 . 251034) (-3301 . 250845)
+ (-3302 . 250789) (-3303 . 250708) (-3304 . 250627) (-3305 . 250546)
+ (-3306 . 250469) (-3307 . 250334) (-3308 . 250199) (-3309 . 250075)
+ (-3310 . 249954) (-3311 . 249836) (-3312 . 249700) (-3313 . 249567)
+ (-3314 . 249448) (-3315 . 249190) (-3316 . 248905) (-3317 . 248833)
+ (-3318 . 248737) (-3319 . 248596) (-3320 . 248539) (-3321 . 248482)
+ (-3322 . 248422) (-3323 . 248027) (-3324 . 247505) (-3325 . 247228)
+ (-3326 . 246808) (-3327 . 246696) (-3328 . 246258) (-3329 . 246028)
+ (-3330 . 245825) (-3331 . 245643) (-3332 . 245513) (-3333 . 245307)
+ (-3334 . 245100) (-3335 . 244910) (-3336 . 244345) (-3337 . 244089)
+ (-3338 . 243798) (-3339 . 243504) (-3340 . 243207) (-3341 . 242907)
+ (-3342 . 242777) (-3343 . 242644) (-3344 . 242508) (-3345 . 242369)
+ (-3346 . 241152) (-3347 . 240844) (-3348 . 240480) (-3349 . 240383)
+ (-3350 . 240143) (-3351 . 239848) (-3352 . 239553) (-3353 . 239294)
+ (-3354 . 239120) (-3355 . 239042) (-3356 . 238955) (-3357 . 238855)
+ (-3358 . 238761) (-3359 . 238680) (-3360 . 238610) (-3361 . 237819)
+ (-3362 . 237749) (-3363 . 237421) (-3364 . 237351) (-3365 . 237023)
+ (-3366 . 236953) (-3367 . 236508) (-3368 . 236438) (-3369 . 236334)
+ (-3370 . 236260) (-3371 . 236186) (-3372 . 236115) (-3373 . 235773)
+ (-3374 . 235645) (-3375 . 235568) (-3376 . 235337) (-3377 . 235194)
+ (-3378 . 235051) (-3379 . 234712) (-3380 . 234382) (-3381 . 234169)
+ (-3382 . 233914) (-3383 . 233564) (-3384 . 233339) (-3385 . 233114)
+ (-3386 . 232889) (-3387 . 232664) (-3388 . 232451) (-3389 . 232238)
+ (-3390 . 232088) (-3391 . 231907) (-3392 . 231802) (-3393 . 231680)
+ (-3394 . 231572) (-3395 . 231464) (-3396 . 231139) (-3397 . 230875)
+ (-3398 . 230564) (-3399 . 230262) (-3400 . 229953) (-3401 . 229224)
+ (-3402 . 228635) (-3403 . 228460) (-3404 . 228316) (-3405 . 228161)
+ (-3406 . 228038) (-3407 . 227933) (-3408 . 227818) (-3409 . 227723)
+ (-3410 . 227242) (-3411 . 227132) (-3412 . 227022) (-3413 . 226912)
+ (-3414 . 225840) (-3415 . 225329) (-3416 . 225262) (-3417 . 225189)
+ (-3418 . 224316) (-3419 . 224243) (-3420 . 224188) (-3421 . 224133)
+ (-3422 . 224101) (-3423 . 224015) (-3424 . 223983) (-3425 . 223897)
+ (-3426 . 223477) (-3427 . 223057) (-3428 . 222505) (-3429 . 221401)
+ (-3430 . 219691) (-3431 . 218141) (-3432 . 217349) (-3433 . 216849)
+ (-3434 . 216363) (-3435 . 215961) (-3436 . 215311) (-3437 . 215236)
+ (-3438 . 215145) (-3439 . 215074) (-3440 . 215003) (-3441 . 214947)
+ (-3442 . 214827) (-3443 . 214773) (-3444 . 214712) (-3445 . 214658)
+ (-3446 . 214555) (-3447 . 214115) (-3448 . 213675) (-3449 . 213235)
+ (-3450 . 212713) (-3451 . 212552) (-3452 . 212391) (-3453 . 212080)
+ (-3454 . 211994) (-3455 . 211904) (-3456 . 211546) (-3457 . 211429)
+ (-3458 . 211348) (-3459 . 211190) (-3460 . 211077) (-3461 . 211002)
+ (-3462 . 210156) (-3463 . 208974) (-3464 . 208875) (-3465 . 208776)
+ (-3466 . 208447) (-3467 . 208369) (-3468 . 208294) (-3469 . 208188)
+ (-3470 . 208032) (-3471 . 207925) (-3472 . 207790) (-3473 . 207655)
+ (-3474 . 207533) (-3475 . 207438) (-3476 . 207290) (-3477 . 207195)
+ (-3478 . 207040) (-3479 . 206885) (-3480 . 206333) (-3481 . 205781)
+ (-3482 . 205166) (-3483 . 204614) (-3484 . 204062) (-3485 . 203510)
+ (-3486 . 202957) (-3487 . 202404) (-3488 . 201851) (-3489 . 201298)
+ (-3490 . 200745) (-3491 . 200192) (-3492 . 199640) (-3493 . 199088)
+ (-3494 . 198536) (-3495 . 197984) (-3496 . 197432) (-3497 . 196880)
+ (-3498 . 196776) (-3499 . 196191) (-3500 . 196086) (-3501 . 196011)
+ (-3502 . 195869) (-3503 . 195777) (-3504 . 195686) (-3505 . 195594)
+ (-3506 . 195499) (-3507 . 195394) (-3508 . 195271) (-3509 . 195149)
+ (-3510 . 194785) (-3511 . 194663) (-3512 . 194565) (-3513 . 194204)
+ (-3514 . 193675) (-3515 . 193600) (-3516 . 193525) (-3517 . 193433)
+ (-3518 . 193252) (-3519 . 193157) (-3520 . 193082) (-3521 . 192991)
+ (-3522 . 192900) (-3523 . 192741) (-3524 . 192192) (-3525 . 191643)
+ (-3526 . 188936) (-3527 . 188764) (-3528 . 187354) (-3529 . 186794)
+ (-3530 . 186679) (-3531 . 186307) (-3532 . 186244) (-3533 . 186181)
+ (-3534 . 186118) (-3535 . 185840) (-3536 . 185573) (-3537 . 185521)
+ (-3538 . 184880) (-3539 . 184829) (-3540 . 184641) (-3541 . 184568)
+ (-3542 . 184488) (-3543 . 184375) (-3544 . 184185) (-3545 . 183821)
+ (-3546 . 183549) (-3547 . 183498) (-3548 . 183447) (-3549 . 183377)
+ (-3550 . 183258) (-3551 . 183229) (-3552 . 183125) (-3553 . 183003)
+ (-3554 . 182949) (-3555 . 182772) (-3556 . 182711) (-3557 . 182530)
+ (-3558 . 182469) (-3559 . 182397) (-3560 . 181922) (-3561 . 181548)
+ (-3562 . 178016) (-3563 . 177964) (-3564 . 177836) (-3565 . 177686)
+ (-3566 . 177634) (-3567 . 177493) (-3568 . 175435) (-3569 . 167792)
+ (-3570 . 167641) (-3571 . 167571) (-3572 . 167520) (-3573 . 167470)
+ (-3574 . 167419) (-3575 . 167368) (-3576 . 167172) (-3577 . 167030)
+ (-3578 . 166916) (-3579 . 166795) (-3580 . 166677) (-3581 . 166565)
+ (-3582 . 166447) (-3583 . 166342) (-3584 . 166261) (-3585 . 166157)
+ (-3586 . 165223) (-3587 . 165003) (-3588 . 164766) (-3589 . 164684)
+ (-3590 . 164340) (-3591 . 163201) (-3592 . 163127) (-3593 . 163032)
+ (-3594 . 162958) (-3595 . 162754) (-3596 . 162663) (-3597 . 162547)
+ (-3598 . 162434) (-3599 . 162343) (-3600 . 162252) (-3601 . 162163)
+ (-3602 . 162074) (-3603 . 161985) (-3604 . 161897) (-3605 . 161409)
+ (-3606 . 161345) (-3607 . 161281) (-3608 . 161217) (-3609 . 161156)
+ (-3610 . 160416) (-3611 . 160355) (-3612 . 160294) (-3613 . 159668)
+ (-3614 . 159616) (-3615 . 159488) (-3616 . 159424) (-3617 . 159370)
+ (-3618 . 159261) (-3619 . 157964) (-3620 . 157883) (-3621 . 157794)
+ (-3622 . 157736) (-3623 . 157596) (-3624 . 157511) (-3625 . 157437)
+ (-3626 . 157352) (-3627 . 157295) (-3628 . 157079) (-3629 . 156940)
+ (-3630 . 156333) (-3631 . 155779) (-3632 . 155225) (-3633 . 154671)
+ (-3634 . 154064) (-3635 . 153510) (-3636 . 152950) (-3637 . 152390)
+ (-3638 . 152128) (-3639 . 151689) (-3640 . 151356) (-3641 . 151017)
+ (-3642 . 150712) (-3643 . 150579) (-3644 . 150446) (-3645 . 150058)
+ (-3646 . 149965) (-3647 . 149872) (-3648 . 149779) (-3649 . 149686)
+ (-3650 . 149593) (-3651 . 149500) (-3652 . 149407) (-3653 . 149314)
+ (-3654 . 149221) (-3655 . 149128) (-3656 . 149035) (-3657 . 148942)
+ (-3658 . 148849) (-3659 . 148756) (-3660 . 148663) (-3661 . 148570)
+ (-3662 . 148477) (-3663 . 148384) (-3664 . 148291) (-3665 . 148198)
+ (-3666 . 148105) (-3667 . 148012) (-3668 . 147919) (-3669 . 147826)
+ (-3670 . 147733) (-3671 . 147548) (-3672 . 147238) (-3673 . 145610)
+ (-3674 . 145456) (-3675 . 145319) (-3676 . 145177) (-3677 . 144975)
+ (-3678 . 143048) (-3679 . 142921) (-3680 . 142797) (-3681 . 142670)
+ (-3682 . 142449) (-3683 . 142228) (-3684 . 142101) (-3685 . 141900)
+ (-3686 . 141724) (-3687 . 141207) (-3688 . 140690) (-3689 . 140413)
+ (-3690 . 140004) (-3691 . 139487) (-3692 . 139303) (-3693 . 139161)
+ (-3694 . 138666) (-3695 . 138035) (-3696 . 137979) (-3697 . 137885)
+ (-3698 . 137766) (-3699 . 137696) (-3700 . 137623) (-3701 . 137393)
+ (-3702 . 136774) (-3703 . 136344) (-3704 . 136262) (-3705 . 136120)
+ (-3706 . 135646) (-3707 . 135524) (-3708 . 135402) (-3709 . 135262)
+ (-3710 . 135075) (-3711 . 134959) (-3712 . 134679) (-3713 . 134611)
+ (-3714 . 134413) (-3715 . 134233) (-3716 . 134078) (-3717 . 133971)
+ (-3718 . 133920) (-3719 . 133543) (-3720 . 133015) (-3721 . 132793)
+ (-3722 . 132571) (-3723 . 132332) (-3724 . 132242) (-3725 . 130500)
+ (-3726 . 129918) (-3727 . 129840) (-3728 . 124380) (-3729 . 123590)
+ (-3730 . 123213) (-3731 . 123142) (-3732 . 122877) (-3733 . 122702)
+ (-3734 . 122217) (-3735 . 121795) (-3736 . 121355) (-3737 . 120492)
+ (-3738 . 120368) (-3739 . 120241) (-3740 . 120132) (-3741 . 119980)
+ (-3742 . 119866) (-3743 . 119727) (-3744 . 119646) (-3745 . 119565)
+ (-3746 . 119461) (-3747 . 119043) (-3748 . 118622) (-3749 . 118548)
+ (-3750 . 118285) (-3751 . 118021) (-3752 . 117642) (-3753 . 116943)
+ (-3754 . 115900) (-3755 . 115841) (-3756 . 115767) (-3757 . 115693)
+ (-3758 . 115571) (-3759 . 115321) (-3760 . 115235) (-3761 . 115160)
+ (-3762 . 115085) (-3763 . 114990) (-3764 . 111215) (-3765 . 110045)
+ (-3766 . 109385) (-3767 . 109201) (-3768 . 106996) (-3769 . 106671)
+ (-3770 . 106189) (-3771 . 105748) (-3772 . 105513) (-3773 . 105268)
+ (-3774 . 105178) (-3775 . 103743) (-3776 . 103665) (-3777 . 103560)
+ (-3778 . 102084) (-3779 . 101679) (-3780 . 101278) (-3781 . 101176)
+ (-3782 . 101094) (-3783 . 100936) (-3784 . 99702) (-3785 . 99620)
+ (-3786 . 99541) (-3787 . 99186) (-3788 . 99129) (-3789 . 99057)
+ (-3790 . 99000) (-3791 . 98943) (-3792 . 98813) (-3793 . 98611)
+ (-3794 . 98243) (-3795 . 97822) (-3796 . 94012) (-3797 . 93410)
+ (-3798 . 92943) (-3799 . 92730) (-3800 . 92517) (-3801 . 92351)
+ (-3802 . 92138) (-3803 . 91972) (-3804 . 91806) (-3805 . 91640)
+ (-3806 . 91474) (-3807 . 91204) (-3808 . 85790) (** . 82837) (-3810 . 82421)
+ (-3811 . 82180) (-3812 . 82124) (-3813 . 81632) (-3814 . 78824)
+ (-3815 . 78674) (-3816 . 78510) (-3817 . 78346) (-3818 . 78250)
+ (-3819 . 78132) (-3820 . 78008) (-3821 . 77865) (-3822 . 77694)
+ (-3823 . 77568) (-3824 . 77424) (-3825 . 77272) (-3826 . 77113)
+ (-3827 . 76600) (-3828 . 76511) (-3829 . 75846) (-3830 . 75654)
+ (-3831 . 75559) (-3832 . 75251) (-3833 . 74079) (-3834 . 73873)
+ (-3835 . 72698) (-3836 . 72623) (-3837 . 71442) (-3838 . 67861)
+ (-3839 . 67497) (-3840 . 67220) (-3841 . 67128) (-3842 . 67035)
+ (-3843 . 66758) (-3844 . 66665) (-3845 . 66572) (-3846 . 66479)
+ (-3847 . 66095) (-3848 . 66024) (-3849 . 65932) (-3850 . 65774)
+ (-3851 . 65420) (-3852 . 65262) (-3853 . 65154) (-3854 . 65125)
+ (-3855 . 65058) (-3856 . 64904) (-3857 . 64746) (-3858 . 64352)
+ (-3859 . 64277) (-3860 . 64171) (-3861 . 64099) (-3862 . 64021)
+ (-3863 . 63948) (-3864 . 63875) (-3865 . 63802) (-3866 . 63730)
+ (-3867 . 63658) (-3868 . 63585) (-3869 . 63344) (-3870 . 63004)
+ (-3871 . 62856) (-3872 . 62783) (-3873 . 62710) (-3874 . 62637)
+ (-3875 . 62383) (-3876 . 62239) (-3877 . 60903) (-3878 . 60709)
+ (-3879 . 60438) (-3880 . 60290) (-3881 . 60142) (-3882 . 59902)
+ (-3883 . 59708) (-3884 . 59440) (-3885 . 59244) (-3886 . 59215)
+ (-3887 . 59114) (-3888 . 59013) (-3889 . 58912) (-3890 . 58811)
+ (-3891 . 58710) (-3892 . 58609) (-3893 . 58508) (-3894 . 58407)
+ (-3895 . 58306) (-3896 . 58205) (-3897 . 58090) (-3898 . 57975)
+ (-3899 . 57924) (-3900 . 57807) (-3901 . 57749) (-3902 . 57648)
+ (-3903 . 57547) (-3904 . 57446) (-3905 . 57330) (-3906 . 57301)
+ (-3907 . 56570) (-3908 . 56445) (-3909 . 56320) (-3910 . 56180)
+ (-3911 . 56062) (-3912 . 55937) (-3913 . 55782) (-3914 . 54799)
+ (-3915 . 53940) (-3916 . 53886) (-3917 . 53832) (-3918 . 53624)
+ (-3919 . 53252) (-3920 . 52841) (-3921 . 52483) (-3922 . 52125)
+ (-3923 . 51973) (-3924 . 51671) (-3925 . 51515) (-3926 . 51189)
+ (-3927 . 51119) (-3928 . 51049) (-3929 . 50840) (-3930 . 50231)
+ (-3931 . 50027) (-3932 . 49654) (-3933 . 49145) (-3934 . 48880)
+ (-3935 . 48399) (-3936 . 47918) (-3937 . 47793) (-3938 . 46693)
+ (-3939 . 45617) (-3940 . 45044) (-3941 . 44826) (-3942 . 36500)
+ (-3943 . 36315) (-3944 . 34232) (-3945 . 32064) (-3946 . 31918)
+ (-3947 . 31740) (-3948 . 31333) (-3949 . 31038) (-3950 . 30690)
+ (-3951 . 30524) (-3952 . 30358) (-3953 . 29945) (-3954 . 16071)
+ (-3955 . 14964) (* . 10917) (-3957 . 10663) (-3958 . 10479) (-3959 . 9522)
+ (-3960 . 9469) (-3961 . 9409) (-3962 . 9140) (-3963 . 8513) (-3964 . 7240)
+ (-3965 . 5996) (-3966 . 5127) (-3967 . 3864) (-3968 . 420) (-3969 . 306)
+ (-3970 . 173) (-3971 . 30)) \ No newline at end of file