Image Recognition Engine ======================== This is sample HTTP service for object detection using the [YOLO](https://pjreddie.com/darknet/yolo/) model. It comes with simple Web interface. Requirements ============ IRE is written in Haskell with [GHC](http://www.haskell.org/ghc/). All required Haskell libraries are listed in [ire.cabal](ire.cabal). Use [cabal-install](http://www.haskell.org/haskellwiki/Cabal-Install) to fetch and build all pre-requisites automatically. It also uses modified [Darknet library](https://github.com/ip1981/darknet), which you have to build and install separately. Installation ============ $ git clone https://github.com/ip1981/ire.git $ cd ire $ cabal install --dependencies-only $ cabal install --ghc-options="-optl=-Wl,-rpath,$darknet/lib" --extra-include-dirs "$darknet/include" --extra-lib-dirs "$darknet/lib" Usage ===== Type `ire --help` to see usage summary: Usage: ire [options] Options: -c, --config=FILE Configuration file [default: ire.yml] -r, --rootdir=DIR Web root directory with static files [default: ] -h, --help Show this message Note: The default configuration file is loaded if found, otherwise default built-in settings are used. Configuration ============= You have to provide network configuration file, weights file and class names. See [example configuration file](./ire.example.yml) and Darknet source code. Running ======= ``` $ ire layer filters size input output 0 conv 32 3 x 3 / 1 416 x 416 x 3 -> 416 x 416 x 32 1 max 2 x 2 / 2 416 x 416 x 32 -> 208 x 208 x 32 2 conv 64 3 x 3 / 1 208 x 208 x 32 -> 208 x 208 x 64 3 max 2 x 2 / 2 208 x 208 x 64 -> 104 x 104 x 64 4 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128 5 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64 6 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128 7 max 2 x 2 / 2 104 x 104 x 128 -> 52 x 52 x 128 8 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 9 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 10 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 11 max 2 x 2 / 2 52 x 52 x 256 -> 26 x 26 x 256 12 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 13 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 14 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 15 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 16 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 17 max 2 x 2 / 2 26 x 26 x 512 -> 13 x 13 x 512 18 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 19 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 20 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 21 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 22 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 23 conv 1024 3 x 3 / 1 13 x 13 x1024 -> 13 x 13 x1024 24 conv 1024 3 x 3 / 1 13 x 13 x1024 -> 13 x 13 x1024 25 route 16 26 reorg / 2 26 x 26 x 512 -> 13 x 13 x2048 27 route 26 24 28 conv 1024 3 x 3 / 1 13 x 13 x3072 -> 13 x 13 x1024 29 conv 425 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 425 30 detection Loading weights from yolo.weights...Done! INFO: Listening on localhost:8080 DEBUG: [Item {itemClass = 0, itemName = "person", itemConfidence = 0.8008945, itemBox = (0.3574012,0.42719698,0.6506731,0.24371791)},Item {itemClass = 16, itemName = "dog", itemConfidence = 0.6505284, itemBox = (0.6375929,0.5701367,0.21318695,0.15970974)}] ... ``` ![Web interface](./screenshots/wire.png)