/* * Copyright (c) 2004, 2011, Oracle and/or its affiliates. All rights reserved. * */ /* crypto/engine/hw_pk11.c */ /* * This product includes software developed by the OpenSSL Project for * use in the OpenSSL Toolkit (http://www.openssl.org/). * * This project also referenced hw_pkcs11-0.9.7b.patch written by * Afchine Madjlessi. */ /* * ==================================================================== * Copyright (c) 2000-2001 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef OPENSSL_NO_RSA #include #endif #ifndef OPENSSL_NO_DSA #include #endif #ifndef OPENSSL_NO_DH #include #endif #include #include #include #include #include #include #include #ifndef OPENSSL_NO_HW #ifndef OPENSSL_NO_HW_PK11 /* label for debug messages printed on stderr */ #define PK11_DBG "PKCS#11 ENGINE DEBUG" /* prints a lot of debug messages on stderr about slot selection process */ #undef DEBUG_SLOT_SELECTION /* * Solaris specific code. See comment at check_hw_mechanisms() for more * information. */ #if defined(__SVR4) && defined(__sun) #define SOLARIS_HW_SLOT_SELECTION #endif /* * AES counter mode is not supported in the OpenSSL EVP API yet and neither * there are official OIDs for mechanisms based on this mode. With our changes, * an application can define its own EVP calls for AES counter mode and then * it can make use of hardware acceleration through this engine. However, it's * better if we keep AES CTR support code under ifdef's. */ #define SOLARIS_AES_CTR #include #include #include "hw_pk11.h" #include "hw_pk11_uri.h" #define PK11_ENGINE_LIB_NAME "PKCS#11 engine" #include "hw_pk11_err.c" #ifdef SOLARIS_AES_CTR /* * NIDs for AES counter mode that will be defined during the engine * initialization. */ int NID_aes_128_ctr = NID_undef; int NID_aes_192_ctr = NID_undef; int NID_aes_256_ctr = NID_undef; #endif /* SOLARIS_AES_CTR */ /* * We use this lock to prevent multiple C_Login()s, guard getpassphrase(), * uri_struct manipulation, and static token info. All of that is used by the * RSA keys by reference feature. */ pthread_mutex_t *uri_lock; #ifdef SOLARIS_HW_SLOT_SELECTION /* * Tables for symmetric ciphers and digest mechs found in the pkcs11_kernel * library. See comment at check_hw_mechanisms() for more information. */ int *hw_cnids; int *hw_dnids; #endif /* SOLARIS_HW_SLOT_SELECTION */ /* PKCS#11 session caches and their locks for all operation types */ static PK11_CACHE session_cache[OP_MAX]; /* * We cache the flags so that we do not have to run C_GetTokenInfo() again when * logging into the token. */ CK_FLAGS pubkey_token_flags; /* * As stated in v2.20, 11.7 Object Management Function, in section for * C_FindObjectsInit(), at most one search operation may be active at a given * time in a given session. Therefore, C_Find{,Init,Final}Objects() should be * grouped together to form one atomic search operation. This is already * ensured by the property of unique PKCS#11 session handle used for each * PK11_SESSION object. * * This is however not the biggest concern - maintaining consistency of the * underlying object store is more important. The same section of the spec also * says that one thread can be in the middle of a search operation while another * thread destroys the object matching the search template which would result in * invalid handle returned from the search operation. * * Hence, the following locks are used for both protection of the object stores. * They are also used for active list protection. */ pthread_mutex_t *find_lock[OP_MAX] = { NULL }; /* * lists of asymmetric key handles which are active (referenced by at least one * PK11_SESSION structure, either held by a thread or present in free_session * list) for given algorithm type */ PK11_active *active_list[OP_MAX] = { NULL }; /* * Create all secret key objects in a global session so that they are available * to use for other sessions. These other sessions may be opened or closed * without losing the secret key objects. */ static CK_SESSION_HANDLE global_session = CK_INVALID_HANDLE; /* ENGINE level stuff */ static int pk11_init(ENGINE *e); static int pk11_library_init(ENGINE *e); static int pk11_finish(ENGINE *e); static int pk11_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)()); static int pk11_destroy(ENGINE *e); /* RAND stuff */ static void pk11_rand_seed(const void *buf, int num); static void pk11_rand_add(const void *buf, int num, double add_entropy); static void pk11_rand_cleanup(void); static int pk11_rand_bytes(unsigned char *buf, int num); static int pk11_rand_status(void); /* These functions are also used in other files */ PK11_SESSION *pk11_get_session(PK11_OPTYPE optype); void pk11_return_session(PK11_SESSION *sp, PK11_OPTYPE optype); /* active list manipulation functions used in this file */ extern int pk11_active_delete(CK_OBJECT_HANDLE h, PK11_OPTYPE type); extern void pk11_free_active_list(PK11_OPTYPE type); #ifndef OPENSSL_NO_RSA int pk11_destroy_rsa_key_objects(PK11_SESSION *session); int pk11_destroy_rsa_object_pub(PK11_SESSION *sp, CK_BBOOL uselock); int pk11_destroy_rsa_object_priv(PK11_SESSION *sp, CK_BBOOL uselock); #endif #ifndef OPENSSL_NO_DSA int pk11_destroy_dsa_key_objects(PK11_SESSION *session); int pk11_destroy_dsa_object_pub(PK11_SESSION *sp, CK_BBOOL uselock); int pk11_destroy_dsa_object_priv(PK11_SESSION *sp, CK_BBOOL uselock); #endif #ifndef OPENSSL_NO_DH int pk11_destroy_dh_key_objects(PK11_SESSION *session); int pk11_destroy_dh_object(PK11_SESSION *session, CK_BBOOL uselock); #endif /* Local helper functions */ static int pk11_free_all_sessions(void); static int pk11_free_session_list(PK11_OPTYPE optype); static int pk11_setup_session(PK11_SESSION *sp, PK11_OPTYPE optype); static int pk11_destroy_cipher_key_objects(PK11_SESSION *session); static int pk11_destroy_object(CK_SESSION_HANDLE handle, CK_OBJECT_HANDLE oh, CK_BBOOL persistent); static const char *get_PK11_LIBNAME(void); static void free_PK11_LIBNAME(void); static long set_PK11_LIBNAME(const char *name); /* Symmetric cipher and digest support functions */ static int cipher_nid_to_pk11(int nid); #ifdef SOLARIS_AES_CTR static int pk11_add_NID(char *sn, char *ln); static int pk11_add_aes_ctr_NIDs(void); #endif /* SOLARIS_AES_CTR */ static int pk11_usable_ciphers(const int **nids); static int pk11_usable_digests(const int **nids); static int pk11_cipher_init(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc); static int pk11_cipher_final(PK11_SESSION *sp); static int pk11_cipher_do_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, unsigned int inl); static int pk11_cipher_cleanup(EVP_CIPHER_CTX *ctx); static int pk11_engine_ciphers(ENGINE *e, const EVP_CIPHER **cipher, const int **nids, int nid); static int pk11_engine_digests(ENGINE *e, const EVP_MD **digest, const int **nids, int nid); static CK_OBJECT_HANDLE pk11_get_cipher_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, CK_KEY_TYPE key_type, PK11_SESSION *sp); static int check_new_cipher_key(PK11_SESSION *sp, const unsigned char *key, int key_len); static int md_nid_to_pk11(int nid); static int pk11_digest_init(EVP_MD_CTX *ctx); static int pk11_digest_update(EVP_MD_CTX *ctx, const void *data, size_t count); static int pk11_digest_final(EVP_MD_CTX *ctx, unsigned char *md); static int pk11_digest_copy(EVP_MD_CTX *to, const EVP_MD_CTX *from); static int pk11_digest_cleanup(EVP_MD_CTX *ctx); static int pk11_choose_slots(int *any_slot_found); static void pk11_find_symmetric_ciphers(CK_FUNCTION_LIST_PTR pflist, CK_SLOT_ID current_slot, int *current_slot_n_cipher, int *local_cipher_nids); static void pk11_find_digests(CK_FUNCTION_LIST_PTR pflist, CK_SLOT_ID current_slot, int *current_slot_n_digest, int *local_digest_nids); static void pk11_get_symmetric_cipher(CK_FUNCTION_LIST_PTR, int slot_id, CK_MECHANISM_TYPE mech, int *current_slot_n_cipher, int *local_cipher_nids, int id); static void pk11_get_digest(CK_FUNCTION_LIST_PTR pflist, int slot_id, CK_MECHANISM_TYPE mech, int *current_slot_n_digest, int *local_digest_nids, int id); static int pk11_init_all_locks(void); static void pk11_free_all_locks(void); #ifdef SOLARIS_HW_SLOT_SELECTION static int check_hw_mechanisms(void); static int nid_in_table(int nid, int *nid_table); #endif /* SOLARIS_HW_SLOT_SELECTION */ /* Index for the supported ciphers */ enum pk11_cipher_id { PK11_DES_CBC, PK11_DES3_CBC, PK11_DES_ECB, PK11_DES3_ECB, PK11_RC4, PK11_AES_128_CBC, PK11_AES_192_CBC, PK11_AES_256_CBC, PK11_AES_128_ECB, PK11_AES_192_ECB, PK11_AES_256_ECB, PK11_BLOWFISH_CBC, #ifdef SOLARIS_AES_CTR PK11_AES_128_CTR, PK11_AES_192_CTR, PK11_AES_256_CTR, #endif /* SOLARIS_AES_CTR */ PK11_CIPHER_MAX }; /* Index for the supported digests */ enum pk11_digest_id { PK11_MD5, PK11_SHA1, PK11_SHA224, PK11_SHA256, PK11_SHA384, PK11_SHA512, PK11_DIGEST_MAX }; #define TRY_OBJ_DESTROY(sp, obj_hdl, retval, uselock, alg_type) \ { \ if (uselock) \ LOCK_OBJSTORE(alg_type); \ if (pk11_active_delete(obj_hdl, alg_type) == 1) \ { \ retval = pk11_destroy_object(sp->session, obj_hdl, \ sp->persistent); \ } \ if (uselock) \ UNLOCK_OBJSTORE(alg_type); \ } static int cipher_nids[PK11_CIPHER_MAX]; static int digest_nids[PK11_DIGEST_MAX]; static int cipher_count = 0; static int digest_count = 0; static CK_BBOOL pk11_have_rsa = CK_FALSE; static CK_BBOOL pk11_have_dsa = CK_FALSE; static CK_BBOOL pk11_have_dh = CK_FALSE; static CK_BBOOL pk11_have_random = CK_FALSE; typedef struct PK11_CIPHER_st { enum pk11_cipher_id id; int nid; int iv_len; int min_key_len; int max_key_len; CK_KEY_TYPE key_type; CK_MECHANISM_TYPE mech_type; } PK11_CIPHER; static PK11_CIPHER ciphers[] = { { PK11_DES_CBC, NID_des_cbc, 8, 8, 8, CKK_DES, CKM_DES_CBC, }, { PK11_DES3_CBC, NID_des_ede3_cbc, 8, 24, 24, CKK_DES3, CKM_DES3_CBC, }, { PK11_DES_ECB, NID_des_ecb, 0, 8, 8, CKK_DES, CKM_DES_ECB, }, { PK11_DES3_ECB, NID_des_ede3_ecb, 0, 24, 24, CKK_DES3, CKM_DES3_ECB, }, { PK11_RC4, NID_rc4, 0, 16, 256, CKK_RC4, CKM_RC4, }, { PK11_AES_128_CBC, NID_aes_128_cbc, 16, 16, 16, CKK_AES, CKM_AES_CBC, }, { PK11_AES_192_CBC, NID_aes_192_cbc, 16, 24, 24, CKK_AES, CKM_AES_CBC, }, { PK11_AES_256_CBC, NID_aes_256_cbc, 16, 32, 32, CKK_AES, CKM_AES_CBC, }, { PK11_AES_128_ECB, NID_aes_128_ecb, 0, 16, 16, CKK_AES, CKM_AES_ECB, }, { PK11_AES_192_ECB, NID_aes_192_ecb, 0, 24, 24, CKK_AES, CKM_AES_ECB, }, { PK11_AES_256_ECB, NID_aes_256_ecb, 0, 32, 32, CKK_AES, CKM_AES_ECB, }, { PK11_BLOWFISH_CBC, NID_bf_cbc, 8, 16, 16, CKK_BLOWFISH, CKM_BLOWFISH_CBC, }, #ifdef SOLARIS_AES_CTR /* we don't know the correct NIDs until the engine is initialized */ { PK11_AES_128_CTR, NID_undef, 16, 16, 16, CKK_AES, CKM_AES_CTR, }, { PK11_AES_192_CTR, NID_undef, 16, 24, 24, CKK_AES, CKM_AES_CTR, }, { PK11_AES_256_CTR, NID_undef, 16, 32, 32, CKK_AES, CKM_AES_CTR, }, #endif /* SOLARIS_AES_CTR */ }; typedef struct PK11_DIGEST_st { enum pk11_digest_id id; int nid; CK_MECHANISM_TYPE mech_type; } PK11_DIGEST; static PK11_DIGEST digests[] = { {PK11_MD5, NID_md5, CKM_MD5, }, {PK11_SHA1, NID_sha1, CKM_SHA_1, }, {PK11_SHA224, NID_sha224, CKM_SHA224, }, {PK11_SHA256, NID_sha256, CKM_SHA256, }, {PK11_SHA384, NID_sha384, CKM_SHA384, }, {PK11_SHA512, NID_sha512, CKM_SHA512, }, {0, NID_undef, 0xFFFF, }, }; /* * Structure to be used for the cipher_data/md_data in * EVP_CIPHER_CTX/EVP_MD_CTX structures in order to use the same pk11 * session in multiple cipher_update calls */ typedef struct PK11_CIPHER_STATE_st { PK11_SESSION *sp; } PK11_CIPHER_STATE; /* * libcrypto EVP stuff - this is how we get wired to EVP so the engine gets * called when libcrypto requests a cipher NID. * * Note how the PK11_CIPHER_STATE is used here. */ /* DES CBC EVP */ static const EVP_CIPHER pk11_des_cbc = { NID_des_cbc, 8, 8, 8, EVP_CIPH_CBC_MODE, pk11_cipher_init, pk11_cipher_do_cipher, pk11_cipher_cleanup, sizeof (PK11_CIPHER_STATE), EVP_CIPHER_set_asn1_iv, EVP_CIPHER_get_asn1_iv, NULL }; /* 3DES CBC EVP */ static const EVP_CIPHER pk11_3des_cbc = { NID_des_ede3_cbc, 8, 24, 8, EVP_CIPH_CBC_MODE, pk11_cipher_init, pk11_cipher_do_cipher, pk11_cipher_cleanup, sizeof (PK11_CIPHER_STATE), EVP_CIPHER_set_asn1_iv, EVP_CIPHER_get_asn1_iv, NULL }; /* * ECB modes don't use an Initial Vector so that's why set_asn1_parameters and * get_asn1_parameters fields are set to NULL. */ static const EVP_CIPHER pk11_des_ecb = { NID_des_ecb, 8, 8, 8, EVP_CIPH_ECB_MODE, pk11_cipher_init, pk11_cipher_do_cipher, pk11_cipher_cleanup, sizeof (PK11_CIPHER_STATE), NULL, NULL, NULL }; static const EVP_CIPHER pk11_3des_ecb = { NID_des_ede3_ecb, 8, 24, 8, EVP_CIPH_ECB_MODE, pk11_cipher_init, pk11_cipher_do_cipher, pk11_cipher_cleanup, sizeof (PK11_CIPHER_STATE), NULL, NULL, NULL }; static const EVP_CIPHER pk11_aes_128_cbc = { NID_aes_128_cbc, 16, 16, 16, EVP_CIPH_CBC_MODE, pk11_cipher_init, pk11_cipher_do_cipher, pk11_cipher_cleanup, sizeof (PK11_CIPHER_STATE), EVP_CIPHER_set_asn1_iv, EVP_CIPHER_get_asn1_iv, NULL }; static const EVP_CIPHER pk11_aes_192_cbc = { NID_aes_192_cbc, 16, 24, 16, EVP_CIPH_CBC_MODE, pk11_cipher_init, pk11_cipher_do_cipher, pk11_cipher_cleanup, sizeof (PK11_CIPHER_STATE), EVP_CIPHER_set_asn1_iv, EVP_CIPHER_get_asn1_iv, NULL }; static const EVP_CIPHER pk11_aes_256_cbc = { NID_aes_256_cbc, 16, 32, 16, EVP_CIPH_CBC_MODE, pk11_cipher_init, pk11_cipher_do_cipher, pk11_cipher_cleanup, sizeof (PK11_CIPHER_STATE), EVP_CIPHER_set_asn1_iv, EVP_CIPHER_get_asn1_iv, NULL }; /* * ECB modes don't use IV so that's why set_asn1_parameters and * get_asn1_parameters are set to NULL. */ static const EVP_CIPHER pk11_aes_128_ecb = { NID_aes_128_ecb, 16, 16, 0, EVP_CIPH_ECB_MODE, pk11_cipher_init, pk11_cipher_do_cipher, pk11_cipher_cleanup, sizeof (PK11_CIPHER_STATE), NULL, NULL, NULL }; static const EVP_CIPHER pk11_aes_192_ecb = { NID_aes_192_ecb, 16, 24, 0, EVP_CIPH_ECB_MODE, pk11_cipher_init, pk11_cipher_do_cipher, pk11_cipher_cleanup, sizeof (PK11_CIPHER_STATE), NULL, NULL, NULL }; static const EVP_CIPHER pk11_aes_256_ecb = { NID_aes_256_ecb, 16, 32, 0, EVP_CIPH_ECB_MODE, pk11_cipher_init, pk11_cipher_do_cipher, pk11_cipher_cleanup, sizeof (PK11_CIPHER_STATE), NULL, NULL, NULL }; #ifdef SOLARIS_AES_CTR /* * NID_undef's will be changed to the AES counter mode NIDs as soon they are * created in pk11_library_init(). Note that the need to change these structures * is the reason why we don't define them with the const keyword. */ static EVP_CIPHER pk11_aes_128_ctr = { NID_undef, 16, 16, 16, EVP_CIPH_CBC_MODE, pk11_cipher_init, pk11_cipher_do_cipher, pk11_cipher_cleanup, sizeof (PK11_CIPHER_STATE), EVP_CIPHER_set_asn1_iv, EVP_CIPHER_get_asn1_iv, NULL }; static EVP_CIPHER pk11_aes_192_ctr = { NID_undef, 16, 24, 16, EVP_CIPH_CBC_MODE, pk11_cipher_init, pk11_cipher_do_cipher, pk11_cipher_cleanup, sizeof (PK11_CIPHER_STATE), EVP_CIPHER_set_asn1_iv, EVP_CIPHER_get_asn1_iv, NULL }; static EVP_CIPHER pk11_aes_256_ctr = { NID_undef, 16, 32, 16, EVP_CIPH_CBC_MODE, pk11_cipher_init, pk11_cipher_do_cipher, pk11_cipher_cleanup, sizeof (PK11_CIPHER_STATE), EVP_CIPHER_set_asn1_iv, EVP_CIPHER_get_asn1_iv, NULL }; #endif /* SOLARIS_AES_CTR */ static const EVP_CIPHER pk11_bf_cbc = { NID_bf_cbc, 8, 16, 8, EVP_CIPH_VARIABLE_LENGTH, pk11_cipher_init, pk11_cipher_do_cipher, pk11_cipher_cleanup, sizeof (PK11_CIPHER_STATE), EVP_CIPHER_set_asn1_iv, EVP_CIPHER_get_asn1_iv, NULL }; static const EVP_CIPHER pk11_rc4 = { NID_rc4, 1, 16, 0, EVP_CIPH_VARIABLE_LENGTH, pk11_cipher_init, pk11_cipher_do_cipher, pk11_cipher_cleanup, sizeof (PK11_CIPHER_STATE), NULL, NULL, NULL }; static const EVP_MD pk11_md5 = { NID_md5, NID_md5WithRSAEncryption, MD5_DIGEST_LENGTH, 0, pk11_digest_init, pk11_digest_update, pk11_digest_final, pk11_digest_copy, pk11_digest_cleanup, EVP_PKEY_RSA_method, MD5_CBLOCK, sizeof (PK11_CIPHER_STATE), }; static const EVP_MD pk11_sha1 = { NID_sha1, NID_sha1WithRSAEncryption, SHA_DIGEST_LENGTH, 0, pk11_digest_init, pk11_digest_update, pk11_digest_final, pk11_digest_copy, pk11_digest_cleanup, EVP_PKEY_RSA_method, SHA_CBLOCK, sizeof (PK11_CIPHER_STATE), }; static const EVP_MD pk11_sha224 = { NID_sha224, NID_sha224WithRSAEncryption, SHA224_DIGEST_LENGTH, 0, pk11_digest_init, pk11_digest_update, pk11_digest_final, pk11_digest_copy, pk11_digest_cleanup, EVP_PKEY_RSA_method, /* SHA-224 uses the same cblock size as SHA-256 */ SHA256_CBLOCK, sizeof (PK11_CIPHER_STATE), }; static const EVP_MD pk11_sha256 = { NID_sha256, NID_sha256WithRSAEncryption, SHA256_DIGEST_LENGTH, 0, pk11_digest_init, pk11_digest_update, pk11_digest_final, pk11_digest_copy, pk11_digest_cleanup, EVP_PKEY_RSA_method, SHA256_CBLOCK, sizeof (PK11_CIPHER_STATE), }; static const EVP_MD pk11_sha384 = { NID_sha384, NID_sha384WithRSAEncryption, SHA384_DIGEST_LENGTH, 0, pk11_digest_init, pk11_digest_update, pk11_digest_final, pk11_digest_copy, pk11_digest_cleanup, EVP_PKEY_RSA_method, /* SHA-384 uses the same cblock size as SHA-512 */ SHA512_CBLOCK, sizeof (PK11_CIPHER_STATE), }; static const EVP_MD pk11_sha512 = { NID_sha512, NID_sha512WithRSAEncryption, SHA512_DIGEST_LENGTH, 0, pk11_digest_init, pk11_digest_update, pk11_digest_final, pk11_digest_copy, pk11_digest_cleanup, EVP_PKEY_RSA_method, SHA512_CBLOCK, sizeof (PK11_CIPHER_STATE), }; /* * Initialization function. Sets up various PKCS#11 library components. * The definitions for control commands specific to this engine */ #define PK11_CMD_SO_PATH ENGINE_CMD_BASE static const ENGINE_CMD_DEFN pk11_cmd_defns[] = { { PK11_CMD_SO_PATH, "SO_PATH", "Specifies the path to the 'pkcs#11' shared library", ENGINE_CMD_FLAG_STRING }, {0, NULL, NULL, 0} }; static RAND_METHOD pk11_random = { pk11_rand_seed, pk11_rand_bytes, pk11_rand_cleanup, pk11_rand_add, pk11_rand_bytes, pk11_rand_status }; /* Constants used when creating the ENGINE */ static const char *engine_pk11_id = "pkcs11"; static const char *engine_pk11_name = "PKCS #11 engine support"; CK_FUNCTION_LIST_PTR pFuncList = NULL; static const char PK11_GET_FUNCTION_LIST[] = "C_GetFunctionList"; /* * This is a static string constant for the DSO file name and the function * symbol names to bind to. We set it in the Configure script based on whether * this is 32 or 64 bit build. */ static const char def_PK11_LIBNAME[] = PK11_LIB_LOCATION; static CK_BBOOL pk11_true = CK_TRUE; static CK_BBOOL pk11_false = CK_FALSE; /* Needed in hw_pk11_pub.c as well so that's why it is not static. */ CK_SLOT_ID pubkey_SLOTID = 0; static CK_SLOT_ID rand_SLOTID = 0; static CK_SLOT_ID SLOTID = 0; static CK_BBOOL pk11_library_initialized = CK_FALSE; static CK_BBOOL pk11_atfork_initialized = CK_FALSE; static int pk11_pid = 0; static DSO *pk11_dso = NULL; /* allocate and initialize all locks used by the engine itself */ static int pk11_init_all_locks(void) { int type; #ifndef OPENSSL_NO_RSA find_lock[OP_RSA] = OPENSSL_malloc(sizeof (pthread_mutex_t)); if (find_lock[OP_RSA] == NULL) goto malloc_err; (void) pthread_mutex_init(find_lock[OP_RSA], NULL); #endif /* OPENSSL_NO_RSA */ if ((uri_lock = OPENSSL_malloc(sizeof (pthread_mutex_t))) == NULL) goto malloc_err; (void) pthread_mutex_init(uri_lock, NULL); #ifndef OPENSSL_NO_DSA find_lock[OP_DSA] = OPENSSL_malloc(sizeof (pthread_mutex_t)); if (find_lock[OP_DSA] == NULL) goto malloc_err; (void) pthread_mutex_init(find_lock[OP_DSA], NULL); #endif /* OPENSSL_NO_DSA */ #ifndef OPENSSL_NO_DH find_lock[OP_DH] = OPENSSL_malloc(sizeof (pthread_mutex_t)); if (find_lock[OP_DH] == NULL) goto malloc_err; (void) pthread_mutex_init(find_lock[OP_DH], NULL); #endif /* OPENSSL_NO_DH */ for (type = 0; type < OP_MAX; type++) { session_cache[type].lock = OPENSSL_malloc(sizeof (pthread_mutex_t)); if (session_cache[type].lock == NULL) goto malloc_err; (void) pthread_mutex_init(session_cache[type].lock, NULL); } return (1); malloc_err: pk11_free_all_locks(); PK11err(PK11_F_INIT_ALL_LOCKS, PK11_R_MALLOC_FAILURE); return (0); } static void pk11_free_all_locks(void) { int type; #ifndef OPENSSL_NO_RSA if (find_lock[OP_RSA] != NULL) { (void) pthread_mutex_destroy(find_lock[OP_RSA]); OPENSSL_free(find_lock[OP_RSA]); find_lock[OP_RSA] = NULL; } #endif /* OPENSSL_NO_RSA */ #ifndef OPENSSL_NO_DSA if (find_lock[OP_DSA] != NULL) { (void) pthread_mutex_destroy(find_lock[OP_DSA]); OPENSSL_free(find_lock[OP_DSA]); find_lock[OP_DSA] = NULL; } #endif /* OPENSSL_NO_DSA */ #ifndef OPENSSL_NO_DH if (find_lock[OP_DH] != NULL) { (void) pthread_mutex_destroy(find_lock[OP_DH]); OPENSSL_free(find_lock[OP_DH]); find_lock[OP_DH] = NULL; } #endif /* OPENSSL_NO_DH */ for (type = 0; type < OP_MAX; type++) { if (session_cache[type].lock != NULL) { (void) pthread_mutex_destroy(session_cache[type].lock); OPENSSL_free(session_cache[type].lock); session_cache[type].lock = NULL; } } } /* * This internal function is used by ENGINE_pk11() and "dynamic" ENGINE support. */ static int bind_pk11(ENGINE *e) { #ifndef OPENSSL_NO_RSA const RSA_METHOD *rsa = NULL; RSA_METHOD *pk11_rsa = PK11_RSA(); #endif /* OPENSSL_NO_RSA */ if (!pk11_library_initialized) if (!pk11_library_init(e)) return (0); if (!ENGINE_set_id(e, engine_pk11_id) || !ENGINE_set_name(e, engine_pk11_name) || !ENGINE_set_ciphers(e, pk11_engine_ciphers) || !ENGINE_set_digests(e, pk11_engine_digests)) return (0); #ifndef OPENSSL_NO_RSA if (pk11_have_rsa == CK_TRUE) { if (!ENGINE_set_RSA(e, PK11_RSA()) || !ENGINE_set_load_privkey_function(e, pk11_load_privkey) || !ENGINE_set_load_pubkey_function(e, pk11_load_pubkey)) return (0); #ifdef DEBUG_SLOT_SELECTION fprintf(stderr, "%s: registered RSA\n", PK11_DBG); #endif /* DEBUG_SLOT_SELECTION */ } #endif /* OPENSSL_NO_RSA */ #ifndef OPENSSL_NO_DSA if (pk11_have_dsa == CK_TRUE) { if (!ENGINE_set_DSA(e, PK11_DSA())) return (0); #ifdef DEBUG_SLOT_SELECTION fprintf(stderr, "%s: registered DSA\n", PK11_DBG); #endif /* DEBUG_SLOT_SELECTION */ } #endif /* OPENSSL_NO_DSA */ #ifndef OPENSSL_NO_DH if (pk11_have_dh == CK_TRUE) { if (!ENGINE_set_DH(e, PK11_DH())) return (0); #ifdef DEBUG_SLOT_SELECTION fprintf(stderr, "%s: registered DH\n", PK11_DBG); #endif /* DEBUG_SLOT_SELECTION */ } #endif /* OPENSSL_NO_DH */ if (pk11_have_random) { if (!ENGINE_set_RAND(e, &pk11_random)) return (0); #ifdef DEBUG_SLOT_SELECTION fprintf(stderr, "%s: registered random\n", PK11_DBG); #endif /* DEBUG_SLOT_SELECTION */ } if (!ENGINE_set_init_function(e, pk11_init) || !ENGINE_set_destroy_function(e, pk11_destroy) || !ENGINE_set_finish_function(e, pk11_finish) || !ENGINE_set_ctrl_function(e, pk11_ctrl) || !ENGINE_set_cmd_defns(e, pk11_cmd_defns)) return (0); /* * Apache calls OpenSSL function RSA_blinding_on() once during startup * which in turn calls bn_mod_exp. Since we do not implement bn_mod_exp * here, we wire it back to the OpenSSL software implementation. * Since it is used only once, performance is not a concern. */ #ifndef OPENSSL_NO_RSA rsa = RSA_PKCS1_SSLeay(); pk11_rsa->rsa_mod_exp = rsa->rsa_mod_exp; pk11_rsa->bn_mod_exp = rsa->bn_mod_exp; #endif /* OPENSSL_NO_RSA */ /* Ensure the pk11 error handling is set up */ ERR_load_pk11_strings(); return (1); } /* Dynamic engine support is disabled at a higher level for Solaris */ #ifdef ENGINE_DYNAMIC_SUPPORT static int bind_helper(ENGINE *e, const char *id) { if (id && (strcmp(id, engine_pk11_id) != 0)) return (0); if (!bind_pk11(e)) return (0); return (1); } IMPLEMENT_DYNAMIC_CHECK_FN() IMPLEMENT_DYNAMIC_BIND_FN(bind_helper) #else static ENGINE *engine_pk11(void) { ENGINE *ret = ENGINE_new(); if (!ret) return (NULL); if (!bind_pk11(ret)) { ENGINE_free(ret); return (NULL); } return (ret); } void ENGINE_load_pk11(void) { ENGINE *e_pk11 = NULL; /* * Do not use dynamic PKCS#11 library on Solaris due to * security reasons. We will link it in statically. */ /* Attempt to load PKCS#11 library */ if (!pk11_dso) pk11_dso = DSO_load(NULL, get_PK11_LIBNAME(), NULL, 0); if (pk11_dso == NULL) { PK11err(PK11_F_LOAD, PK11_R_DSO_FAILURE); return; } e_pk11 = engine_pk11(); if (!e_pk11) { DSO_free(pk11_dso); pk11_dso = NULL; return; } /* * At this point, the pk11 shared library is either dynamically * loaded or statically linked in. So, initialize the pk11 * library before calling ENGINE_set_default since the latter * needs cipher and digest algorithm information */ if (!pk11_library_init(e_pk11)) { DSO_free(pk11_dso); pk11_dso = NULL; ENGINE_free(e_pk11); return; } ENGINE_add(e_pk11); ENGINE_free(e_pk11); ERR_clear_error(); } #endif /* ENGINE_DYNAMIC_SUPPORT */ /* * These are the static string constants for the DSO file name and * the function symbol names to bind to. */ static const char *PK11_LIBNAME = NULL; static const char *get_PK11_LIBNAME(void) { if (PK11_LIBNAME) return (PK11_LIBNAME); return (def_PK11_LIBNAME); } static void free_PK11_LIBNAME(void) { if (PK11_LIBNAME) OPENSSL_free((void*)PK11_LIBNAME); PK11_LIBNAME = NULL; } static long set_PK11_LIBNAME(const char *name) { free_PK11_LIBNAME(); return ((PK11_LIBNAME = BUF_strdup(name)) != NULL ? 1 : 0); } /* acquire all engine specific mutexes before fork */ static void pk11_fork_prepare(void) { int i; if (!pk11_library_initialized) return; LOCK_OBJSTORE(OP_RSA); LOCK_OBJSTORE(OP_DSA); LOCK_OBJSTORE(OP_DH); (void) pthread_mutex_lock(uri_lock); for (i = 0; i < OP_MAX; i++) { (void) pthread_mutex_lock(session_cache[i].lock); } } /* release all engine specific mutexes */ static void pk11_fork_parent(void) { int i; if (!pk11_library_initialized) return; for (i = OP_MAX - 1; i >= 0; i--) { (void) pthread_mutex_unlock(session_cache[i].lock); } UNLOCK_OBJSTORE(OP_DH); UNLOCK_OBJSTORE(OP_DSA); UNLOCK_OBJSTORE(OP_RSA); (void) pthread_mutex_unlock(uri_lock); } /* * same situation as in parent - we need to unlock all locks to make them * accessible to all threads. */ static void pk11_fork_child(void) { int i; if (!pk11_library_initialized) return; for (i = OP_MAX - 1; i >= 0; i--) { (void) pthread_mutex_unlock(session_cache[i].lock); } UNLOCK_OBJSTORE(OP_DH); UNLOCK_OBJSTORE(OP_DSA); UNLOCK_OBJSTORE(OP_RSA); (void) pthread_mutex_unlock(uri_lock); } /* Initialization function for the pk11 engine */ static int pk11_init(ENGINE *e) { return (pk11_library_init(e)); } /* * Initialization function. Sets up various PKCS#11 library components. * It selects a slot based on predefined critiera. In the process, it also * count how many ciphers and digests to support. Since the cipher and * digest information is needed when setting default engine, this function * needs to be called before calling ENGINE_set_default. */ /* ARGSUSED */ static int pk11_library_init(ENGINE *e) { CK_C_GetFunctionList p; CK_RV rv = CKR_OK; CK_INFO info; CK_ULONG ul_state_len; int any_slot_found; int i; /* * pk11_library_initialized is set to 0 in pk11_finish() which is called * from ENGINE_finish(). However, if there is still at least one * existing functional reference to the engine (see engine(3) for more * information), pk11_finish() is skipped. For example, this can happen * if an application forgets to clear one cipher context. In case of a * fork() when the application is finishing the engine so that it can be * reinitialized in the child, forgotten functional reference causes * pk11_library_initialized to stay 1. In that case we need the PID * check so that we properly initialize the engine again. */ if (pk11_library_initialized) { if (pk11_pid == getpid()) { return (1); } else { global_session = CK_INVALID_HANDLE; /* * free the locks first to prevent memory leak in case * the application calls fork() without finishing the * engine first. */ pk11_free_all_locks(); } } if (pk11_dso == NULL) { PK11err(PK11_F_LIBRARY_INIT, PK11_R_DSO_FAILURE); goto err; } #ifdef SOLARIS_AES_CTR /* * We must do this before we start working with slots since we need all * NIDs there. */ if (pk11_add_aes_ctr_NIDs() == 0) goto err; #endif /* SOLARIS_AES_CTR */ #ifdef SOLARIS_HW_SLOT_SELECTION if (check_hw_mechanisms() == 0) goto err; #endif /* SOLARIS_HW_SLOT_SELECTION */ /* get the C_GetFunctionList function from the loaded library */ p = (CK_C_GetFunctionList)DSO_bind_func(pk11_dso, PK11_GET_FUNCTION_LIST); if (!p) { PK11err(PK11_F_LIBRARY_INIT, PK11_R_DSO_FAILURE); goto err; } /* get the full function list from the loaded library */ rv = p(&pFuncList); if (rv != CKR_OK) { PK11err_add_data(PK11_F_LIBRARY_INIT, PK11_R_DSO_FAILURE, rv); goto err; } rv = pFuncList->C_Initialize(NULL_PTR); if ((rv != CKR_OK) && (rv != CKR_CRYPTOKI_ALREADY_INITIALIZED)) { PK11err_add_data(PK11_F_LIBRARY_INIT, PK11_R_INITIALIZE, rv); goto err; } rv = pFuncList->C_GetInfo(&info); if (rv != CKR_OK) { PK11err_add_data(PK11_F_LIBRARY_INIT, PK11_R_GETINFO, rv); goto err; } if (pk11_choose_slots(&any_slot_found) == 0) goto err; /* * The library we use, set in def_PK11_LIBNAME, may not offer any * slot(s). In that case, we must not proceed but we must not return an * error. The reason is that applications that try to set up the PKCS#11 * engine don't exit on error during the engine initialization just * because no slot was present. */ if (any_slot_found == 0) return (1); if (global_session == CK_INVALID_HANDLE) { /* Open the global_session for the new process */ rv = pFuncList->C_OpenSession(SLOTID, CKF_SERIAL_SESSION, NULL_PTR, NULL_PTR, &global_session); if (rv != CKR_OK) { PK11err_add_data(PK11_F_LIBRARY_INIT, PK11_R_OPENSESSION, rv); goto err; } } /* * Disable digest if C_GetOperationState is not supported since * this function is required by OpenSSL digest copy function */ if (pFuncList->C_GetOperationState(global_session, NULL, &ul_state_len) == CKR_FUNCTION_NOT_SUPPORTED) { #ifdef DEBUG_SLOT_SELECTION fprintf(stderr, "%s: C_GetOperationState() not supported, " "setting digest_count to 0\n", PK11_DBG); #endif /* DEBUG_SLOT_SELECTION */ digest_count = 0; } pk11_library_initialized = CK_TRUE; pk11_pid = getpid(); /* * if initialization of the locks fails pk11_init_all_locks() * will do the cleanup. */ if (!pk11_init_all_locks()) goto err; for (i = 0; i < OP_MAX; i++) session_cache[i].head = NULL; /* * initialize active lists. We only use active lists * for asymmetric ciphers. */ for (i = 0; i < OP_MAX; i++) active_list[i] = NULL; if (!pk11_atfork_initialized) { if (pthread_atfork(pk11_fork_prepare, pk11_fork_parent, pk11_fork_child) != 0) { PK11err(PK11_F_LIBRARY_INIT, PK11_R_ATFORK_FAILED); goto err; } pk11_atfork_initialized = CK_TRUE; } return (1); err: return (0); } /* Destructor (complements the "ENGINE_pk11()" constructor) */ /* ARGSUSED */ static int pk11_destroy(ENGINE *e) { free_PK11_LIBNAME(); ERR_unload_pk11_strings(); return (1); } /* * Termination function to clean up the session, the token, and the pk11 * library. */ /* ARGSUSED */ static int pk11_finish(ENGINE *e) { int i; if (pk11_dso == NULL) { PK11err(PK11_F_FINISH, PK11_R_NOT_LOADED); goto err; } OPENSSL_assert(pFuncList != NULL); if (pk11_free_all_sessions() == 0) goto err; /* free all active lists */ for (i = 0; i < OP_MAX; i++) pk11_free_active_list(i); pFuncList->C_CloseSession(global_session); global_session = CK_INVALID_HANDLE; /* * Since we are part of a library (libcrypto.so), calling this function * may have side-effects. */ #if 0 pFuncList->C_Finalize(NULL); #endif #ifdef SOLARIS_AES_CTR { ASN1_OBJECT *ob = NULL; if (NID_aes_128_ctr != NID_undef) { ob = OBJ_nid2obj(NID_aes_128_ctr); if (ob != NULL) ASN1_OBJECT_free(ob); } if (NID_aes_192_ctr != NID_undef) { ob = OBJ_nid2obj(NID_aes_192_ctr); if (ob != NULL) ASN1_OBJECT_free(ob); } if (NID_aes_256_ctr != NID_undef) { ob = OBJ_nid2obj(NID_aes_256_ctr); if (ob != NULL) ASN1_OBJECT_free(ob); } } #endif if (!DSO_free(pk11_dso)) { PK11err(PK11_F_FINISH, PK11_R_DSO_FAILURE); goto err; } pk11_dso = NULL; pFuncList = NULL; pk11_library_initialized = CK_FALSE; pk11_pid = 0; /* * There is no way how to unregister atfork handlers (other than * unloading the library) so we just free the locks. For this reason * the atfork handlers check if the engine is initialized and bail out * immediately if not. This is necessary in case a process finishes * the engine before calling fork(). */ pk11_free_all_locks(); return (1); err: return (0); } /* Standard engine interface function to set the dynamic library path */ /* ARGSUSED */ static int pk11_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)()) { int initialized = ((pk11_dso == NULL) ? 0 : 1); switch (cmd) { case PK11_CMD_SO_PATH: if (p == NULL) { PK11err(PK11_F_CTRL, ERR_R_PASSED_NULL_PARAMETER); return (0); } if (initialized) { PK11err(PK11_F_CTRL, PK11_R_ALREADY_LOADED); return (0); } return (set_PK11_LIBNAME((const char *)p)); default: break; } PK11err(PK11_F_CTRL, PK11_R_CTRL_COMMAND_NOT_IMPLEMENTED); return (0); } /* Required function by the engine random interface. It does nothing here */ static void pk11_rand_cleanup(void) { return; } /* ARGSUSED */ static void pk11_rand_add(const void *buf, int num, double add) { PK11_SESSION *sp; if ((sp = pk11_get_session(OP_RAND)) == NULL) return; /* * Ignore any errors (e.g. CKR_RANDOM_SEED_NOT_SUPPORTED) since * the calling functions do not care anyway */ pFuncList->C_SeedRandom(sp->session, (unsigned char *) buf, num); pk11_return_session(sp, OP_RAND); return; } static void pk11_rand_seed(const void *buf, int num) { pk11_rand_add(buf, num, 0); } static int pk11_rand_bytes(unsigned char *buf, int num) { CK_RV rv; PK11_SESSION *sp; if ((sp = pk11_get_session(OP_RAND)) == NULL) return (0); rv = pFuncList->C_GenerateRandom(sp->session, buf, num); if (rv != CKR_OK) { PK11err_add_data(PK11_F_RAND_BYTES, PK11_R_GENERATERANDOM, rv); pk11_return_session(sp, OP_RAND); return (0); } pk11_return_session(sp, OP_RAND); return (1); } /* Required function by the engine random interface. It does nothing here */ static int pk11_rand_status(void) { return (1); } /* Free all BIGNUM structures from PK11_SESSION. */ static void pk11_free_nums(PK11_SESSION *sp, PK11_OPTYPE optype) { switch (optype) { #ifndef OPENSSL_NO_RSA case OP_RSA: if (sp->opdata_rsa_n_num != NULL) { BN_free(sp->opdata_rsa_n_num); sp->opdata_rsa_n_num = NULL; } if (sp->opdata_rsa_e_num != NULL) { BN_free(sp->opdata_rsa_e_num); sp->opdata_rsa_e_num = NULL; } if (sp->opdata_rsa_d_num != NULL) { BN_free(sp->opdata_rsa_d_num); sp->opdata_rsa_d_num = NULL; } break; #endif #ifndef OPENSSL_NO_DSA case OP_DSA: if (sp->opdata_dsa_pub_num != NULL) { BN_free(sp->opdata_dsa_pub_num); sp->opdata_dsa_pub_num = NULL; } if (sp->opdata_dsa_priv_num != NULL) { BN_free(sp->opdata_dsa_priv_num); sp->opdata_dsa_priv_num = NULL; } break; #endif #ifndef OPENSSL_NO_DH case OP_DH: if (sp->opdata_dh_priv_num != NULL) { BN_free(sp->opdata_dh_priv_num); sp->opdata_dh_priv_num = NULL; } break; #endif default: break; } } /* * Get new PK11_SESSION structure ready for use. Every process must have * its own freelist of PK11_SESSION structures so handle fork() here * by destroying the old and creating new freelist. * The returned PK11_SESSION structure is disconnected from the freelist. */ PK11_SESSION * pk11_get_session(PK11_OPTYPE optype) { PK11_SESSION *sp = NULL, *sp1, *freelist; pthread_mutex_t *freelist_lock; static pid_t pid = 0; pid_t new_pid; CK_RV rv; switch (optype) { case OP_RSA: case OP_DSA: case OP_DH: case OP_RAND: case OP_DIGEST: case OP_CIPHER: freelist_lock = session_cache[optype].lock; break; default: PK11err(PK11_F_GET_SESSION, PK11_R_INVALID_OPERATION_TYPE); return (NULL); } (void) pthread_mutex_lock(freelist_lock); /* * Will use it to find out if we forked. We cannot use the PID field in * the session structure because we could get a newly allocated session * here, with no PID information. */ if (pid == 0) pid = getpid(); freelist = session_cache[optype].head; sp = freelist; /* * If the free list is empty, allocate new unitialized (filled * with zeroes) PK11_SESSION structure otherwise return first * structure from the freelist. */ if (sp == NULL) { if ((sp = OPENSSL_malloc(sizeof (PK11_SESSION))) == NULL) { PK11err(PK11_F_GET_SESSION, PK11_R_MALLOC_FAILURE); goto err; } (void) memset(sp, 0, sizeof (PK11_SESSION)); /* * It is a new session so it will look like a cache miss to the * code below. So, we must not try to to destroy its members so * mark them as unused. */ sp->opdata_rsa_priv_key = CK_INVALID_HANDLE; sp->opdata_rsa_pub_key = CK_INVALID_HANDLE; } else freelist = sp->next; /* * Check whether we have forked. In that case, we must get rid of all * inherited sessions and start allocating new ones. */ if (pid != (new_pid = getpid())) { pid = new_pid; /* * We are a new process and thus need to free any inherited * PK11_SESSION objects aside from the first session (sp) which * is the only PK11_SESSION structure we will reuse (for the * head of the list). */ while ((sp1 = freelist) != NULL) { freelist = sp1->next; /* * NOTE: we do not want to call pk11_free_all_sessions() * here because it would close underlying PKCS#11 * sessions and destroy all objects. */ pk11_free_nums(sp1, optype); OPENSSL_free(sp1); } /* we have to free the active list as well. */ pk11_free_active_list(optype); /* Initialize the process */ rv = pFuncList->C_Initialize(NULL_PTR); if ((rv != CKR_OK) && (rv != CKR_CRYPTOKI_ALREADY_INITIALIZED)) { PK11err_add_data(PK11_F_GET_SESSION, PK11_R_INITIALIZE, rv); OPENSSL_free(sp); sp = NULL; goto err; } /* * Choose slot here since the slot table is different on this * process. If we are here then we must have found at least one * usable slot before so we don't need to check any_slot_found. * See pk11_library_init()'s usage of this function for more * information. */ #ifdef SOLARIS_HW_SLOT_SELECTION if (check_hw_mechanisms() == 0) goto err; #endif /* SOLARIS_HW_SLOT_SELECTION */ if (pk11_choose_slots(NULL) == 0) goto err; /* Open the global_session for the new process */ rv = pFuncList->C_OpenSession(SLOTID, CKF_SERIAL_SESSION, NULL_PTR, NULL_PTR, &global_session); if (rv != CKR_OK) { PK11err_add_data(PK11_F_GET_SESSION, PK11_R_OPENSESSION, rv); OPENSSL_free(sp); sp = NULL; goto err; } /* * It is an inherited session from our parent so it needs * re-initialization. */ if (pk11_setup_session(sp, optype) == 0) { OPENSSL_free(sp); sp = NULL; goto err; } if (pk11_token_relogin(sp->session) == 0) { /* * We will keep the session in the cache list and let * the caller cope with the situation. */ freelist = sp; sp = NULL; goto err; } } if (sp->pid == 0) { /* It is a new session and needs initialization. */ if (pk11_setup_session(sp, optype) == 0) { OPENSSL_free(sp); sp = NULL; } } /* set new head for the list of PK11_SESSION objects */ session_cache[optype].head = freelist; err: if (sp != NULL) sp->next = NULL; (void) pthread_mutex_unlock(freelist_lock); return (sp); } void pk11_return_session(PK11_SESSION *sp, PK11_OPTYPE optype) { pthread_mutex_t *freelist_lock; PK11_SESSION *freelist; /* * If this is a session from the parent it will be taken care of and * freed in pk11_get_session() as part of the post-fork clean up the * next time we will ask for a new session. */ if (sp == NULL || sp->pid != getpid()) return; switch (optype) { case OP_RSA: case OP_DSA: case OP_DH: case OP_RAND: case OP_DIGEST: case OP_CIPHER: freelist_lock = session_cache[optype].lock; break; default: PK11err(PK11_F_RETURN_SESSION, PK11_R_INVALID_OPERATION_TYPE); return; } (void) pthread_mutex_lock(freelist_lock); freelist = session_cache[optype].head; sp->next = freelist; session_cache[optype].head = sp; (void) pthread_mutex_unlock(freelist_lock); } /* Destroy all objects. This function is called when the engine is finished */ static int pk11_free_all_sessions() { int ret = 1; int type; #ifndef OPENSSL_NO_RSA (void) pk11_destroy_rsa_key_objects(NULL); #endif /* OPENSSL_NO_RSA */ #ifndef OPENSSL_NO_DSA (void) pk11_destroy_dsa_key_objects(NULL); #endif /* OPENSSL_NO_DSA */ #ifndef OPENSSL_NO_DH (void) pk11_destroy_dh_key_objects(NULL); #endif /* OPENSSL_NO_DH */ (void) pk11_destroy_cipher_key_objects(NULL); /* * We try to release as much as we can but any error means that we will * return 0 on exit. */ for (type = 0; type < OP_MAX; type++) { if (pk11_free_session_list(type) == 0) ret = 0; } return (ret); } /* * Destroy session structures from the linked list specified. Free as many * sessions as possible but any failure in C_CloseSession() means that we * return an error on return. */ static int pk11_free_session_list(PK11_OPTYPE optype) { CK_RV rv; PK11_SESSION *sp = NULL; PK11_SESSION *freelist = NULL; pid_t mypid = getpid(); pthread_mutex_t *freelist_lock; int ret = 1; switch (optype) { case OP_RSA: case OP_DSA: case OP_DH: case OP_RAND: case OP_DIGEST: case OP_CIPHER: freelist_lock = session_cache[optype].lock; break; default: PK11err(PK11_F_FREE_ALL_SESSIONS, PK11_R_INVALID_OPERATION_TYPE); return (0); } (void) pthread_mutex_lock(freelist_lock); freelist = session_cache[optype].head; while ((sp = freelist) != NULL) { if (sp->session != CK_INVALID_HANDLE && sp->pid == mypid) { rv = pFuncList->C_CloseSession(sp->session); if (rv != CKR_OK) { PK11err_add_data(PK11_F_FREE_ALL_SESSIONS, PK11_R_CLOSESESSION, rv); ret = 0; } } freelist = sp->next; pk11_free_nums(sp, optype); OPENSSL_free(sp); } (void) pthread_mutex_unlock(freelist_lock); return (ret); } static int pk11_setup_session(PK11_SESSION *sp, PK11_OPTYPE optype) { CK_RV rv; CK_SLOT_ID myslot; switch (optype) { case OP_RSA: case OP_DSA: case OP_DH: myslot = pubkey_SLOTID; break; case OP_RAND: myslot = rand_SLOTID; break; case OP_DIGEST: case OP_CIPHER: myslot = SLOTID; break; default: PK11err(PK11_F_SETUP_SESSION, PK11_R_INVALID_OPERATION_TYPE); return (0); } sp->session = CK_INVALID_HANDLE; #ifdef DEBUG_SLOT_SELECTION fprintf(stderr, "%s: myslot=%d optype=%d\n", PK11_DBG, myslot, optype); #endif /* DEBUG_SLOT_SELECTION */ rv = pFuncList->C_OpenSession(myslot, CKF_SERIAL_SESSION, NULL_PTR, NULL_PTR, &sp->session); if (rv == CKR_CRYPTOKI_NOT_INITIALIZED) { /* * We are probably a child process so force the * reinitialize of the session */ pk11_library_initialized = CK_FALSE; if (!pk11_library_init(NULL)) return (0); rv = pFuncList->C_OpenSession(myslot, CKF_SERIAL_SESSION, NULL_PTR, NULL_PTR, &sp->session); } if (rv != CKR_OK) { PK11err_add_data(PK11_F_SETUP_SESSION, PK11_R_OPENSESSION, rv); return (0); } sp->pid = getpid(); switch (optype) { #ifndef OPENSSL_NO_RSA case OP_RSA: sp->opdata_rsa_pub_key = CK_INVALID_HANDLE; sp->opdata_rsa_priv_key = CK_INVALID_HANDLE; sp->opdata_rsa_pub = NULL; sp->opdata_rsa_n_num = NULL; sp->opdata_rsa_e_num = NULL; sp->opdata_rsa_priv = NULL; sp->opdata_rsa_d_num = NULL; break; #endif /* OPENSSL_NO_RSA */ #ifndef OPENSSL_NO_DSA case OP_DSA: sp->opdata_dsa_pub_key = CK_INVALID_HANDLE; sp->opdata_dsa_priv_key = CK_INVALID_HANDLE; sp->opdata_dsa_pub = NULL; sp->opdata_dsa_pub_num = NULL; sp->opdata_dsa_priv = NULL; sp->opdata_dsa_priv_num = NULL; break; #endif /* OPENSSL_NO_DSA */ #ifndef OPENSSL_NO_DH case OP_DH: sp->opdata_dh_key = CK_INVALID_HANDLE; sp->opdata_dh = NULL; sp->opdata_dh_priv_num = NULL; break; #endif /* OPENSSL_NO_DH */ case OP_CIPHER: sp->opdata_cipher_key = CK_INVALID_HANDLE; sp->opdata_encrypt = -1; break; } /* * We always initialize the session as containing a non-persistent * object. The key load functions set it to persistent if that is so. */ sp->persistent = CK_FALSE; return (1); } #ifndef OPENSSL_NO_RSA /* * Destroy all non-NULL RSA parameters. For the RSA keys by reference code, * public components 'n'/'e' are the key components we use to check for the * cache hit even for the private keys. So, no matter whether we are destroying * a public or a private key, we always free what we can. */ static void destroy_all_rsa_params(PK11_SESSION *sp) { if (sp->opdata_rsa_n_num != NULL) { BN_free(sp->opdata_rsa_n_num); sp->opdata_rsa_n_num = NULL; } if (sp->opdata_rsa_e_num != NULL) { BN_free(sp->opdata_rsa_e_num); sp->opdata_rsa_e_num = NULL; } if (sp->opdata_rsa_d_num != NULL) { BN_free(sp->opdata_rsa_d_num); sp->opdata_rsa_d_num = NULL; } } /* Destroy RSA public key from single session. */ int pk11_destroy_rsa_object_pub(PK11_SESSION *sp, CK_BBOOL uselock) { int ret = 0; if (sp->opdata_rsa_pub_key != CK_INVALID_HANDLE) { TRY_OBJ_DESTROY(sp, sp->opdata_rsa_pub_key, ret, uselock, OP_RSA); sp->opdata_rsa_pub_key = CK_INVALID_HANDLE; sp->opdata_rsa_pub = NULL; destroy_all_rsa_params(sp); } return (ret); } /* Destroy RSA private key from single session. */ int pk11_destroy_rsa_object_priv(PK11_SESSION *sp, CK_BBOOL uselock) { int ret = 0; if (sp->opdata_rsa_priv_key != CK_INVALID_HANDLE) { TRY_OBJ_DESTROY(sp, sp->opdata_rsa_priv_key, ret, uselock, OP_RSA); sp->opdata_rsa_priv_key = CK_INVALID_HANDLE; sp->opdata_rsa_priv = NULL; destroy_all_rsa_params(sp); } return (ret); } /* * Destroy RSA key object wrapper. If session is NULL, try to destroy all * objects in the free list. */ int pk11_destroy_rsa_key_objects(PK11_SESSION *session) { int ret = 1; PK11_SESSION *sp = NULL; PK11_SESSION *local_free_session; CK_BBOOL uselock = CK_TRUE; if (session != NULL) local_free_session = session; else { (void) pthread_mutex_lock(session_cache[OP_RSA].lock); local_free_session = session_cache[OP_RSA].head; uselock = CK_FALSE; } /* * go through the list of sessions and delete key objects */ while ((sp = local_free_session) != NULL) { local_free_session = sp->next; /* * Do not terminate list traversal if one of the * destroy operations fails. */ if (pk11_destroy_rsa_object_pub(sp, uselock) == 0) { ret = 0; continue; } if (pk11_destroy_rsa_object_priv(sp, uselock) == 0) { ret = 0; continue; } } if (session == NULL) (void) pthread_mutex_unlock(session_cache[OP_RSA].lock); return (ret); } #endif /* OPENSSL_NO_RSA */ #ifndef OPENSSL_NO_DSA /* Destroy DSA public key from single session. */ int pk11_destroy_dsa_object_pub(PK11_SESSION *sp, CK_BBOOL uselock) { int ret = 0; if (sp->opdata_dsa_pub_key != CK_INVALID_HANDLE) { TRY_OBJ_DESTROY(sp, sp->opdata_dsa_pub_key, ret, uselock, OP_DSA); sp->opdata_dsa_pub_key = CK_INVALID_HANDLE; sp->opdata_dsa_pub = NULL; if (sp->opdata_dsa_pub_num != NULL) { BN_free(sp->opdata_dsa_pub_num); sp->opdata_dsa_pub_num = NULL; } } return (ret); } /* Destroy DSA private key from single session. */ int pk11_destroy_dsa_object_priv(PK11_SESSION *sp, CK_BBOOL uselock) { int ret = 0; if (sp->opdata_dsa_priv_key != CK_INVALID_HANDLE) { TRY_OBJ_DESTROY(sp, sp->opdata_dsa_priv_key, ret, uselock, OP_DSA); sp->opdata_dsa_priv_key = CK_INVALID_HANDLE; sp->opdata_dsa_priv = NULL; if (sp->opdata_dsa_priv_num != NULL) { BN_free(sp->opdata_dsa_priv_num); sp->opdata_dsa_priv_num = NULL; } } return (ret); } /* * Destroy DSA key object wrapper. If session is NULL, try to destroy all * objects in the free list. */ int pk11_destroy_dsa_key_objects(PK11_SESSION *session) { int ret = 1; PK11_SESSION *sp = NULL; PK11_SESSION *local_free_session; CK_BBOOL uselock = CK_TRUE; if (session != NULL) local_free_session = session; else { (void) pthread_mutex_lock(session_cache[OP_DSA].lock); local_free_session = session_cache[OP_DSA].head; uselock = CK_FALSE; } /* * go through the list of sessions and delete key objects */ while ((sp = local_free_session) != NULL) { local_free_session = sp->next; /* * Do not terminate list traversal if one of the * destroy operations fails. */ if (pk11_destroy_dsa_object_pub(sp, uselock) == 0) { ret = 0; continue; } if (pk11_destroy_dsa_object_priv(sp, uselock) == 0) { ret = 0; continue; } } if (session == NULL) (void) pthread_mutex_unlock(session_cache[OP_DSA].lock); return (ret); } #endif /* OPENSSL_NO_DSA */ #ifndef OPENSSL_NO_DH /* Destroy DH key from single session. */ int pk11_destroy_dh_object(PK11_SESSION *sp, CK_BBOOL uselock) { int ret = 0; if (sp->opdata_dh_key != CK_INVALID_HANDLE) { TRY_OBJ_DESTROY(sp, sp->opdata_dh_key, ret, uselock, OP_DH); sp->opdata_dh_key = CK_INVALID_HANDLE; sp->opdata_dh = NULL; if (sp->opdata_dh_priv_num != NULL) { BN_free(sp->opdata_dh_priv_num); sp->opdata_dh_priv_num = NULL; } } return (ret); } /* * Destroy DH key object wrapper. * * arg0: pointer to PKCS#11 engine session structure * if session is NULL, try to destroy all objects in the free list */ int pk11_destroy_dh_key_objects(PK11_SESSION *session) { int ret = 1; PK11_SESSION *sp = NULL; PK11_SESSION *local_free_session; CK_BBOOL uselock = CK_TRUE; if (session != NULL) local_free_session = session; else { (void) pthread_mutex_lock(session_cache[OP_DH].lock); local_free_session = session_cache[OP_DH].head; uselock = CK_FALSE; } while ((sp = local_free_session) != NULL) { local_free_session = sp->next; /* * Do not terminate list traversal if one of the * destroy operations fails. */ if (pk11_destroy_dh_object(sp, uselock) == 0) { ret = 0; continue; } } err: if (session == NULL) (void) pthread_mutex_unlock(session_cache[OP_DH].lock); return (ret); } #endif /* OPENSSL_NO_DH */ static int pk11_destroy_object(CK_SESSION_HANDLE session, CK_OBJECT_HANDLE oh, CK_BBOOL persistent) { CK_RV rv; /* * We never try to destroy persistent objects which are the objects * stored in the keystore. Also, we always use read-only sessions so * C_DestroyObject() would be returning CKR_SESSION_READ_ONLY here. */ if (persistent == CK_TRUE) return (1); rv = pFuncList->C_DestroyObject(session, oh); if (rv != CKR_OK) { PK11err_add_data(PK11_F_DESTROY_OBJECT, PK11_R_DESTROYOBJECT, rv); return (0); } return (1); } /* Symmetric ciphers and digests support functions */ static int cipher_nid_to_pk11(int nid) { int i; for (i = 0; i < PK11_CIPHER_MAX; i++) if (ciphers[i].nid == nid) return (ciphers[i].id); return (-1); } static int pk11_usable_ciphers(const int **nids) { if (cipher_count > 0) *nids = cipher_nids; else *nids = NULL; return (cipher_count); } static int pk11_usable_digests(const int **nids) { if (digest_count > 0) *nids = digest_nids; else *nids = NULL; return (digest_count); } /* * Init context for encryption or decryption using a symmetric key. */ static int pk11_init_symmetric(EVP_CIPHER_CTX *ctx, PK11_CIPHER *pcipher, PK11_SESSION *sp, CK_MECHANISM_PTR pmech) { CK_RV rv; #ifdef SOLARIS_AES_CTR CK_AES_CTR_PARAMS ctr_params; #endif /* SOLARIS_AES_CTR */ /* * We expect pmech->mechanism to be already set and * pParameter/ulParameterLen initialized to NULL/0 before * pk11_init_symetric() is called. */ OPENSSL_assert(pmech->mechanism != NULL); OPENSSL_assert(pmech->pParameter == NULL); OPENSSL_assert(pmech->ulParameterLen == 0); #ifdef SOLARIS_AES_CTR if (ctx->cipher->nid == NID_aes_128_ctr || ctx->cipher->nid == NID_aes_192_ctr || ctx->cipher->nid == NID_aes_256_ctr) { pmech->pParameter = (void *)(&ctr_params); pmech->ulParameterLen = sizeof (ctr_params); /* * For now, we are limited to the fixed length of the counter, * it covers the whole counter block. That's what RFC 4344 * needs. For more information on internal structure of the * counter block, see RFC 3686. If needed in the future, we can * add code so that the counter length can be set via * ENGINE_ctrl() function. */ ctr_params.ulCounterBits = AES_BLOCK_SIZE * 8; OPENSSL_assert(pcipher->iv_len == AES_BLOCK_SIZE); (void) memcpy(ctr_params.cb, ctx->iv, AES_BLOCK_SIZE); } else #endif /* SOLARIS_AES_CTR */ { if (pcipher->iv_len > 0) { pmech->pParameter = (void *)ctx->iv; pmech->ulParameterLen = pcipher->iv_len; } } /* if we get here, the encryption needs to be reinitialized */ if (ctx->encrypt) rv = pFuncList->C_EncryptInit(sp->session, pmech, sp->opdata_cipher_key); else rv = pFuncList->C_DecryptInit(sp->session, pmech, sp->opdata_cipher_key); if (rv != CKR_OK) { PK11err_add_data(PK11_F_CIPHER_INIT, ctx->encrypt ? PK11_R_ENCRYPTINIT : PK11_R_DECRYPTINIT, rv); pk11_return_session(sp, OP_CIPHER); return (0); } return (1); } /* ARGSUSED */ static int pk11_cipher_init(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { CK_MECHANISM mech; int index; PK11_CIPHER_STATE *state = (PK11_CIPHER_STATE *) ctx->cipher_data; PK11_SESSION *sp; PK11_CIPHER *p_ciph_table_row; state->sp = NULL; index = cipher_nid_to_pk11(ctx->cipher->nid); if (index < 0 || index >= PK11_CIPHER_MAX) return (0); p_ciph_table_row = &ciphers[index]; /* * iv_len in the ctx->cipher structure is the maximum IV length for the * current cipher and it must be less or equal to the IV length in our * ciphers table. The key length must be in the allowed interval. From * all cipher modes that the PKCS#11 engine supports only RC4 allows a * key length to be in some range, all other NIDs have a precise key * length. Every application can define its own EVP functions so this * code serves as a sanity check. * * Note that the reason why the IV length in ctx->cipher might be * greater than the actual length is that OpenSSL uses BLOCK_CIPHER_defs * macro to define functions that return EVP structures for all DES * modes. So, even ECB modes get 8 byte IV. */ if (ctx->cipher->iv_len < p_ciph_table_row->iv_len || ctx->key_len < p_ciph_table_row->min_key_len || ctx->key_len > p_ciph_table_row->max_key_len) { PK11err(PK11_F_CIPHER_INIT, PK11_R_KEY_OR_IV_LEN_PROBLEM); return (0); } if ((sp = pk11_get_session(OP_CIPHER)) == NULL) return (0); /* if applicable, the mechanism parameter is used for IV */ mech.mechanism = p_ciph_table_row->mech_type; mech.pParameter = NULL; mech.ulParameterLen = 0; /* The key object is destroyed here if it is not the current key. */ (void) check_new_cipher_key(sp, key, ctx->key_len); /* * If the key is the same and the encryption is also the same, then * just reuse it. However, we must not forget to reinitialize the * context that was finalized in pk11_cipher_cleanup(). */ if (sp->opdata_cipher_key != CK_INVALID_HANDLE && sp->opdata_encrypt == ctx->encrypt) { state->sp = sp; if (pk11_init_symmetric(ctx, p_ciph_table_row, sp, &mech) == 0) return (0); return (1); } /* * Check if the key has been invalidated. If so, a new key object * needs to be created. */ if (sp->opdata_cipher_key == CK_INVALID_HANDLE) { sp->opdata_cipher_key = pk11_get_cipher_key( ctx, key, p_ciph_table_row->key_type, sp); } if (sp->opdata_encrypt != ctx->encrypt && sp->opdata_encrypt != -1) { /* * The previous encryption/decryption is different. Need to * terminate the previous * active encryption/decryption here. */ if (!pk11_cipher_final(sp)) { pk11_return_session(sp, OP_CIPHER); return (0); } } if (sp->opdata_cipher_key == CK_INVALID_HANDLE) { pk11_return_session(sp, OP_CIPHER); return (0); } /* now initialize the context with a new key */ if (pk11_init_symmetric(ctx, p_ciph_table_row, sp, &mech) == 0) return (0); sp->opdata_encrypt = ctx->encrypt; state->sp = sp; return (1); } /* * When reusing the same key in an encryption/decryption session for a * decryption/encryption session, we need to close the active session * and recreate a new one. Note that the key is in the global session so * that it needs not be recreated. * * It is more appropriate to use C_En/DecryptFinish here. At the time of this * development, these two functions in the PKCS#11 libraries used return * unexpected errors when passing in 0 length output. It may be a good * idea to try them again if performance is a problem here and fix * C_En/DecryptFinial if there are bugs there causing the problem. */ static int pk11_cipher_final(PK11_SESSION *sp) { CK_RV rv; rv = pFuncList->C_CloseSession(sp->session); if (rv != CKR_OK) { PK11err_add_data(PK11_F_CIPHER_FINAL, PK11_R_CLOSESESSION, rv); return (0); } rv = pFuncList->C_OpenSession(SLOTID, CKF_SERIAL_SESSION, NULL_PTR, NULL_PTR, &sp->session); if (rv != CKR_OK) { PK11err_add_data(PK11_F_CIPHER_FINAL, PK11_R_OPENSESSION, rv); return (0); } return (1); } /* * An engine interface function. The calling function allocates sufficient * memory for the output buffer "out" to hold the results. */ static int pk11_cipher_do_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, unsigned int inl) { PK11_CIPHER_STATE *state = (PK11_CIPHER_STATE *) ctx->cipher_data; PK11_SESSION *sp; CK_RV rv; unsigned long outl = inl; if (state == NULL || state->sp == NULL) return (0); sp = (PK11_SESSION *) state->sp; if (!inl) return (1); /* RC4 is the only stream cipher we support */ if (ctx->cipher->nid != NID_rc4 && (inl % ctx->cipher->block_size) != 0) return (0); if (ctx->encrypt) { rv = pFuncList->C_EncryptUpdate(sp->session, (unsigned char *)in, inl, out, &outl); if (rv != CKR_OK) { PK11err_add_data(PK11_F_CIPHER_DO_CIPHER, PK11_R_ENCRYPTUPDATE, rv); return (0); } } else { rv = pFuncList->C_DecryptUpdate(sp->session, (unsigned char *)in, inl, out, &outl); if (rv != CKR_OK) { PK11err_add_data(PK11_F_CIPHER_DO_CIPHER, PK11_R_DECRYPTUPDATE, rv); return (0); } } /* * For DES_CBC, DES3_CBC, AES_CBC, and RC4, the output size is always * the same size of input. * The application has guaranteed to call the block ciphers with * correctly aligned buffers. */ if (inl != outl) return (0); return (1); } /* * Return the session to the pool. Calling C_EncryptFinal() and C_DecryptFinal() * here is the right thing because in EVP_DecryptFinal_ex(), engine's * do_cipher() is not even called, and in EVP_EncryptFinal_ex() it is called but * the engine can't find out that it's the finalizing call. We wouldn't * necessarily have to finalize the context here since reinitializing it with * C_(Encrypt|Decrypt)Init() should be fine but for the sake of correctness, * let's do it. Some implementations might leak memory if the previously used * context is initialized without finalizing it first. */ static int pk11_cipher_cleanup(EVP_CIPHER_CTX *ctx) { CK_RV rv; CK_ULONG len = EVP_MAX_BLOCK_LENGTH; CK_BYTE buf[EVP_MAX_BLOCK_LENGTH]; PK11_CIPHER_STATE *state = ctx->cipher_data; if (state != NULL && state->sp != NULL) { /* * We are not interested in the data here, we just need to get * rid of the context. */ if (ctx->encrypt) rv = pFuncList->C_EncryptFinal( state->sp->session, buf, &len); else rv = pFuncList->C_DecryptFinal( state->sp->session, buf, &len); if (rv != CKR_OK) { PK11err_add_data(PK11_F_CIPHER_CLEANUP, ctx->encrypt ? PK11_R_ENCRYPTFINAL : PK11_R_DECRYPTFINAL, rv); pk11_return_session(state->sp, OP_CIPHER); return (0); } pk11_return_session(state->sp, OP_CIPHER); state->sp = NULL; } return (1); } /* * Registered by the ENGINE when used to find out how to deal with * a particular NID in the ENGINE. This says what we'll do at the * top level - note, that list is restricted by what we answer with */ /* ARGSUSED */ static int pk11_engine_ciphers(ENGINE *e, const EVP_CIPHER **cipher, const int **nids, int nid) { if (!cipher) return (pk11_usable_ciphers(nids)); switch (nid) { case NID_des_ede3_cbc: *cipher = &pk11_3des_cbc; break; case NID_des_cbc: *cipher = &pk11_des_cbc; break; case NID_des_ede3_ecb: *cipher = &pk11_3des_ecb; break; case NID_des_ecb: *cipher = &pk11_des_ecb; break; case NID_aes_128_cbc: *cipher = &pk11_aes_128_cbc; break; case NID_aes_192_cbc: *cipher = &pk11_aes_192_cbc; break; case NID_aes_256_cbc: *cipher = &pk11_aes_256_cbc; break; case NID_aes_128_ecb: *cipher = &pk11_aes_128_ecb; break; case NID_aes_192_ecb: *cipher = &pk11_aes_192_ecb; break; case NID_aes_256_ecb: *cipher = &pk11_aes_256_ecb; break; case NID_bf_cbc: *cipher = &pk11_bf_cbc; break; case NID_rc4: *cipher = &pk11_rc4; break; default: #ifdef SOLARIS_AES_CTR /* * These can't be in separated cases because the NIDs * here are not constants. */ if (nid == NID_aes_128_ctr) *cipher = &pk11_aes_128_ctr; else if (nid == NID_aes_192_ctr) *cipher = &pk11_aes_192_ctr; else if (nid == NID_aes_256_ctr) *cipher = &pk11_aes_256_ctr; else #endif /* SOLARIS_AES_CTR */ *cipher = NULL; break; } return (*cipher != NULL); } /* ARGSUSED */ static int pk11_engine_digests(ENGINE *e, const EVP_MD **digest, const int **nids, int nid) { if (!digest) return (pk11_usable_digests(nids)); switch (nid) { case NID_md5: *digest = &pk11_md5; break; case NID_sha1: *digest = &pk11_sha1; break; case NID_sha224: *digest = &pk11_sha224; break; case NID_sha256: *digest = &pk11_sha256; break; case NID_sha384: *digest = &pk11_sha384; break; case NID_sha512: *digest = &pk11_sha512; break; default: *digest = NULL; break; } return (*digest != NULL); } /* Create a secret key object in a PKCS#11 session */ static CK_OBJECT_HANDLE pk11_get_cipher_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, CK_KEY_TYPE key_type, PK11_SESSION *sp) { CK_RV rv; CK_OBJECT_HANDLE h_key = CK_INVALID_HANDLE; CK_OBJECT_CLASS obj_key = CKO_SECRET_KEY; CK_ULONG ul_key_attr_count = 6; CK_ATTRIBUTE a_key_template[] = { {CKA_CLASS, (void*) NULL, sizeof (CK_OBJECT_CLASS)}, {CKA_KEY_TYPE, (void*) NULL, sizeof (CK_KEY_TYPE)}, {CKA_TOKEN, &pk11_false, sizeof (pk11_false)}, {CKA_ENCRYPT, &pk11_true, sizeof (pk11_true)}, {CKA_DECRYPT, &pk11_true, sizeof (pk11_true)}, {CKA_VALUE, (void*) NULL, 0}, }; /* * Create secret key object in global_session. All other sessions * can use the key handles. Here is why: * OpenSSL will call EncryptInit and EncryptUpdate using a secret key. * It may then call DecryptInit and DecryptUpdate using the same key. * To use the same key object, we need to call EncryptFinal with * a 0 length message. Currently, this does not work for 3DES * mechanism. To get around this problem, we close the session and * then create a new session to use the same key object. When a session * is closed, all the object handles will be invalid. Thus, create key * objects in a global session, an individual session may be closed to * terminate the active operation. */ CK_SESSION_HANDLE session = global_session; a_key_template[0].pValue = &obj_key; a_key_template[1].pValue = &key_type; a_key_template[5].pValue = (void *) key; a_key_template[5].ulValueLen = (unsigned long) ctx->key_len; rv = pFuncList->C_CreateObject(session, a_key_template, ul_key_attr_count, &h_key); if (rv != CKR_OK) { PK11err_add_data(PK11_F_GET_CIPHER_KEY, PK11_R_CREATEOBJECT, rv); goto err; } /* * Save the key information used in this session. * The max can be saved is PK11_KEY_LEN_MAX. */ sp->opdata_key_len = ctx->key_len > PK11_KEY_LEN_MAX ? PK11_KEY_LEN_MAX : ctx->key_len; (void) memcpy(sp->opdata_key, key, sp->opdata_key_len); err: return (h_key); } static int md_nid_to_pk11(int nid) { int i; for (i = 0; i < PK11_DIGEST_MAX; i++) if (digests[i].nid == nid) return (digests[i].id); return (-1); } static int pk11_digest_init(EVP_MD_CTX *ctx) { CK_RV rv; CK_MECHANISM mech; int index; PK11_SESSION *sp; PK11_DIGEST *pdp; PK11_CIPHER_STATE *state = (PK11_CIPHER_STATE *) ctx->md_data; state->sp = NULL; index = md_nid_to_pk11(ctx->digest->type); if (index < 0 || index >= PK11_DIGEST_MAX) return (0); pdp = &digests[index]; if ((sp = pk11_get_session(OP_DIGEST)) == NULL) return (0); /* at present, no parameter is needed for supported digests */ mech.mechanism = pdp->mech_type; mech.pParameter = NULL; mech.ulParameterLen = 0; rv = pFuncList->C_DigestInit(sp->session, &mech); if (rv != CKR_OK) { PK11err_add_data(PK11_F_DIGEST_INIT, PK11_R_DIGESTINIT, rv); pk11_return_session(sp, OP_DIGEST); return (0); } state->sp = sp; return (1); } static int pk11_digest_update(EVP_MD_CTX *ctx, const void *data, size_t count) { CK_RV rv; PK11_CIPHER_STATE *state = (PK11_CIPHER_STATE *) ctx->md_data; /* 0 length message will cause a failure in C_DigestFinal */ if (count == 0) return (1); if (state == NULL || state->sp == NULL) return (0); rv = pFuncList->C_DigestUpdate(state->sp->session, (CK_BYTE *) data, count); if (rv != CKR_OK) { PK11err_add_data(PK11_F_DIGEST_UPDATE, PK11_R_DIGESTUPDATE, rv); pk11_return_session(state->sp, OP_DIGEST); state->sp = NULL; return (0); } return (1); } static int pk11_digest_final(EVP_MD_CTX *ctx, unsigned char *md) { CK_RV rv; unsigned long len; PK11_CIPHER_STATE *state = (PK11_CIPHER_STATE *) ctx->md_data; len = ctx->digest->md_size; if (state == NULL || state->sp == NULL) return (0); rv = pFuncList->C_DigestFinal(state->sp->session, md, &len); if (rv != CKR_OK) { PK11err_add_data(PK11_F_DIGEST_FINAL, PK11_R_DIGESTFINAL, rv); pk11_return_session(state->sp, OP_DIGEST); state->sp = NULL; return (0); } if (ctx->digest->md_size != len) return (0); /* * Final is called and digest is returned, so return the session * to the pool */ pk11_return_session(state->sp, OP_DIGEST); state->sp = NULL; return (1); } static int pk11_digest_copy(EVP_MD_CTX *to, const EVP_MD_CTX *from) { CK_RV rv; int ret = 0; PK11_CIPHER_STATE *state, *state_to; CK_BYTE_PTR pstate = NULL; CK_ULONG ul_state_len; /* The copy-from state */ state = (PK11_CIPHER_STATE *) from->md_data; if (state == NULL || state->sp == NULL) goto err; /* Initialize the copy-to state */ if (!pk11_digest_init(to)) goto err; state_to = (PK11_CIPHER_STATE *) to->md_data; /* Get the size of the operation state of the copy-from session */ rv = pFuncList->C_GetOperationState(state->sp->session, NULL, &ul_state_len); if (rv != CKR_OK) { PK11err_add_data(PK11_F_DIGEST_COPY, PK11_R_GET_OPERATION_STATE, rv); goto err; } if (ul_state_len == 0) { goto err; } pstate = OPENSSL_malloc(ul_state_len); if (pstate == NULL) { PK11err(PK11_F_DIGEST_COPY, PK11_R_MALLOC_FAILURE); goto err; } /* Get the operation state of the copy-from session */ rv = pFuncList->C_GetOperationState(state->sp->session, pstate, &ul_state_len); if (rv != CKR_OK) { PK11err_add_data(PK11_F_DIGEST_COPY, PK11_R_GET_OPERATION_STATE, rv); goto err; } /* Set the operation state of the copy-to session */ rv = pFuncList->C_SetOperationState(state_to->sp->session, pstate, ul_state_len, 0, 0); if (rv != CKR_OK) { PK11err_add_data(PK11_F_DIGEST_COPY, PK11_R_SET_OPERATION_STATE, rv); goto err; } ret = 1; err: if (pstate != NULL) OPENSSL_free(pstate); return (ret); } /* Return any pending session state to the pool */ static int pk11_digest_cleanup(EVP_MD_CTX *ctx) { PK11_CIPHER_STATE *state = ctx->md_data; unsigned char buf[EVP_MAX_MD_SIZE]; if (state != NULL && state->sp != NULL) { /* * If state->sp is not NULL then pk11_digest_final() has not * been called yet. We must call it now to free any memory * that might have been allocated in the token when * pk11_digest_init() was called. pk11_digest_final() * will return the session to the cache. */ if (!pk11_digest_final(ctx, buf)) return (0); } return (1); } /* * Check if the new key is the same as the key object in the session. If the key * is the same, no need to create a new key object. Otherwise, the old key * object needs to be destroyed and a new one will be created. Return 1 for * cache hit, 0 for cache miss. Note that we must check the key length first * otherwise we could end up reusing a different, longer key with the same * prefix. */ static int check_new_cipher_key(PK11_SESSION *sp, const unsigned char *key, int key_len) { if (sp->opdata_key_len != key_len || memcmp(sp->opdata_key, key, key_len) != 0) { (void) pk11_destroy_cipher_key_objects(sp); return (0); } return (1); } /* Destroy one or more secret key objects. */ static int pk11_destroy_cipher_key_objects(PK11_SESSION *session) { int ret = 0; PK11_SESSION *sp = NULL; PK11_SESSION *local_free_session; if (session != NULL) local_free_session = session; else { (void) pthread_mutex_lock(session_cache[OP_CIPHER].lock); local_free_session = session_cache[OP_CIPHER].head; } while ((sp = local_free_session) != NULL) { local_free_session = sp->next; if (sp->opdata_cipher_key != CK_INVALID_HANDLE) { /* * The secret key object is created in the * global_session. See pk11_get_cipher_key(). */ if (pk11_destroy_object(global_session, sp->opdata_cipher_key, CK_FALSE) == 0) goto err; sp->opdata_cipher_key = CK_INVALID_HANDLE; } } ret = 1; err: if (session == NULL) (void) pthread_mutex_unlock(session_cache[OP_CIPHER].lock); return (ret); } /* * Public key mechanisms optionally supported * * CKM_RSA_X_509 * CKM_RSA_PKCS * CKM_DSA * * The first slot that supports at least one of those mechanisms is chosen as a * public key slot. * * Symmetric ciphers optionally supported * * CKM_DES3_CBC * CKM_DES_CBC * CKM_AES_CBC * CKM_DES3_ECB * CKM_DES_ECB * CKM_AES_ECB * CKM_AES_CTR * CKM_RC4 * CKM_BLOWFISH_CBC * * Digests optionally supported * * CKM_MD5 * CKM_SHA_1 * CKM_SHA224 * CKM_SHA256 * CKM_SHA384 * CKM_SHA512 * * The output of this function is a set of global variables indicating which * mechanisms from RSA, DSA, DH and RAND are present, and also two arrays of * mechanisms, one for symmetric ciphers and one for digests. Also, 3 global * variables carry information about which slot was chosen for (a) public key * mechanisms, (b) random operations, and (c) symmetric ciphers and digests. */ static int pk11_choose_slots(int *any_slot_found) { CK_SLOT_ID_PTR pSlotList = NULL_PTR; CK_ULONG ulSlotCount = 0; CK_MECHANISM_INFO mech_info; CK_TOKEN_INFO token_info; int i; CK_RV rv; CK_SLOT_ID best_slot_sofar; CK_BBOOL found_candidate_slot = CK_FALSE; int slot_n_cipher = 0; int slot_n_digest = 0; CK_SLOT_ID current_slot = 0; int current_slot_n_cipher = 0; int current_slot_n_digest = 0; int local_cipher_nids[PK11_CIPHER_MAX]; int local_digest_nids[PK11_DIGEST_MAX]; /* let's initialize the output parameter */ if (any_slot_found != NULL) *any_slot_found = 0; /* Get slot list for memory allocation */ rv = pFuncList->C_GetSlotList(CK_FALSE, NULL_PTR, &ulSlotCount); if (rv != CKR_OK) { PK11err_add_data(PK11_F_CHOOSE_SLOT, PK11_R_GETSLOTLIST, rv); return (0); } /* it's not an error if we didn't find any providers */ if (ulSlotCount == 0) { #ifdef DEBUG_SLOT_SELECTION fprintf(stderr, "%s: no crypto providers found\n", PK11_DBG); #endif /* DEBUG_SLOT_SELECTION */ return (1); } pSlotList = OPENSSL_malloc(ulSlotCount * sizeof (CK_SLOT_ID)); if (pSlotList == NULL) { PK11err(PK11_F_CHOOSE_SLOT, PK11_R_MALLOC_FAILURE); return (0); } /* Get the slot list for processing */ rv = pFuncList->C_GetSlotList(CK_FALSE, pSlotList, &ulSlotCount); if (rv != CKR_OK) { PK11err_add_data(PK11_F_CHOOSE_SLOT, PK11_R_GETSLOTLIST, rv); OPENSSL_free(pSlotList); return (0); } #ifdef DEBUG_SLOT_SELECTION fprintf(stderr, "%s: provider: %s\n", PK11_DBG, def_PK11_LIBNAME); fprintf(stderr, "%s: number of slots: %d\n", PK11_DBG, ulSlotCount); fprintf(stderr, "%s: == checking rand slots ==\n", PK11_DBG); #endif /* DEBUG_SLOT_SELECTION */ for (i = 0; i < ulSlotCount; i++) { current_slot = pSlotList[i]; #ifdef DEBUG_SLOT_SELECTION fprintf(stderr, "%s: checking slot: %d\n", PK11_DBG, i); #endif /* DEBUG_SLOT_SELECTION */ /* Check if slot has random support. */ rv = pFuncList->C_GetTokenInfo(current_slot, &token_info); if (rv != CKR_OK) continue; #ifdef DEBUG_SLOT_SELECTION fprintf(stderr, "%s: token label: %.32s\n", PK11_DBG, token_info.label); #endif /* DEBUG_SLOT_SELECTION */ if (token_info.flags & CKF_RNG) { #ifdef DEBUG_SLOT_SELECTION fprintf(stderr, "%s: this token has CKF_RNG flag\n", PK11_DBG); #endif /* DEBUG_SLOT_SELECTION */ pk11_have_random = CK_TRUE; rand_SLOTID = current_slot; break; } } #ifdef DEBUG_SLOT_SELECTION fprintf(stderr, "%s: == checking pubkey slots ==\n", PK11_DBG); #endif /* DEBUG_SLOT_SELECTION */ pubkey_SLOTID = pSlotList[0]; for (i = 0; i < ulSlotCount; i++) { CK_BBOOL slot_has_rsa = CK_FALSE; CK_BBOOL slot_has_dsa = CK_FALSE; CK_BBOOL slot_has_dh = CK_FALSE; current_slot = pSlotList[i]; #ifdef DEBUG_SLOT_SELECTION fprintf(stderr, "%s: checking slot: %d\n", PK11_DBG, i); #endif /* DEBUG_SLOT_SELECTION */ rv = pFuncList->C_GetTokenInfo(current_slot, &token_info); if (rv != CKR_OK) continue; #ifdef DEBUG_SLOT_SELECTION fprintf(stderr, "%s: token label: %.32s\n", PK11_DBG, token_info.label); #endif /* DEBUG_SLOT_SELECTION */ #ifndef OPENSSL_NO_RSA /* * Check if this slot is capable of signing and * verifying with CKM_RSA_PKCS. */ rv = pFuncList->C_GetMechanismInfo(current_slot, CKM_RSA_PKCS, &mech_info); if (rv == CKR_OK && ((mech_info.flags & CKF_SIGN) && (mech_info.flags & CKF_VERIFY))) { /* * Check if this slot is capable of encryption, * decryption, sign, and verify with CKM_RSA_X_509. */ rv = pFuncList->C_GetMechanismInfo(current_slot, CKM_RSA_X_509, &mech_info); if (rv == CKR_OK && ((mech_info.flags & CKF_SIGN) && (mech_info.flags & CKF_VERIFY) && (mech_info.flags & CKF_ENCRYPT) && (mech_info.flags & CKF_VERIFY_RECOVER) && (mech_info.flags & CKF_DECRYPT))) { slot_has_rsa = CK_TRUE; } } #endif /* OPENSSL_NO_RSA */ #ifndef OPENSSL_NO_DSA /* * Check if this slot is capable of signing and * verifying with CKM_DSA. */ rv = pFuncList->C_GetMechanismInfo(current_slot, CKM_DSA, &mech_info); if (rv == CKR_OK && ((mech_info.flags & CKF_SIGN) && (mech_info.flags & CKF_VERIFY))) { slot_has_dsa = CK_TRUE; } #endif /* OPENSSL_NO_DSA */ #ifndef OPENSSL_NO_DH /* * Check if this slot is capable of DH key generataion and * derivation. */ rv = pFuncList->C_GetMechanismInfo(current_slot, CKM_DH_PKCS_KEY_PAIR_GEN, &mech_info); if (rv == CKR_OK && (mech_info.flags & CKF_GENERATE_KEY_PAIR)) { rv = pFuncList->C_GetMechanismInfo(current_slot, CKM_DH_PKCS_DERIVE, &mech_info); if (rv == CKR_OK && (mech_info.flags & CKF_DERIVE)) { slot_has_dh = CK_TRUE; } } #endif /* OPENSSL_NO_DH */ if (!found_candidate_slot && (slot_has_rsa || slot_has_dsa || slot_has_dh)) { #ifdef DEBUG_SLOT_SELECTION fprintf(stderr, "%s: potential slot: %d\n", PK11_DBG, current_slot); #endif /* DEBUG_SLOT_SELECTION */ best_slot_sofar = current_slot; pk11_have_rsa = slot_has_rsa; pk11_have_dsa = slot_has_dsa; pk11_have_dh = slot_has_dh; found_candidate_slot = CK_TRUE; /* * Cache the flags for later use. We might need those if * RSA keys by reference feature is used. */ pubkey_token_flags = token_info.flags; #ifdef DEBUG_SLOT_SELECTION fprintf(stderr, "%s: setting found_candidate_slot to CK_TRUE\n", PK11_DBG); fprintf(stderr, "%s: best so far slot: %d\n", PK11_DBG, best_slot_sofar); fprintf(stderr, "%s: pubkey flags changed to " "%lu.\n", PK11_DBG, pubkey_token_flags); } else { fprintf(stderr, "%s: no rsa/dsa/dh\n", PK11_DBG); } #else } /* if */ #endif /* DEBUG_SLOT_SELECTION */ } /* for */ if (found_candidate_slot == CK_TRUE) { pubkey_SLOTID = best_slot_sofar; } found_candidate_slot = CK_FALSE; best_slot_sofar = 0; #ifdef DEBUG_SLOT_SELECTION fprintf(stderr, "%s: == checking cipher/digest ==\n", PK11_DBG); #endif /* DEBUG_SLOT_SELECTION */ SLOTID = pSlotList[0]; for (i = 0; i < ulSlotCount; i++) { #ifdef DEBUG_SLOT_SELECTION fprintf(stderr, "%s: checking slot: %d\n", PK11_DBG, i); #endif /* DEBUG_SLOT_SELECTION */ current_slot = pSlotList[i]; current_slot_n_cipher = 0; current_slot_n_digest = 0; (void) memset(local_cipher_nids, 0, sizeof (local_cipher_nids)); (void) memset(local_digest_nids, 0, sizeof (local_digest_nids)); pk11_find_symmetric_ciphers(pFuncList, current_slot, ¤t_slot_n_cipher, local_cipher_nids); pk11_find_digests(pFuncList, current_slot, ¤t_slot_n_digest, local_digest_nids); #ifdef DEBUG_SLOT_SELECTION fprintf(stderr, "%s: current_slot_n_cipher %d\n", PK11_DBG, current_slot_n_cipher); fprintf(stderr, "%s: current_slot_n_digest %d\n", PK11_DBG, current_slot_n_digest); fprintf(stderr, "%s: best so far cipher/digest slot: %d\n", PK11_DBG, best_slot_sofar); #endif /* DEBUG_SLOT_SELECTION */ /* * If the current slot supports more ciphers/digests than * the previous best one we change the current best to this one, * otherwise leave it where it is. */ if ((current_slot_n_cipher + current_slot_n_digest) > (slot_n_cipher + slot_n_digest)) { #ifdef DEBUG_SLOT_SELECTION fprintf(stderr, "%s: changing best so far slot to %d\n", PK11_DBG, current_slot); #endif /* DEBUG_SLOT_SELECTION */ best_slot_sofar = SLOTID = current_slot; cipher_count = slot_n_cipher = current_slot_n_cipher; digest_count = slot_n_digest = current_slot_n_digest; (void) memcpy(cipher_nids, local_cipher_nids, sizeof (local_cipher_nids)); (void) memcpy(digest_nids, local_digest_nids, sizeof (local_digest_nids)); } } #ifdef DEBUG_SLOT_SELECTION fprintf(stderr, "%s: chosen pubkey slot: %d\n", PK11_DBG, pubkey_SLOTID); fprintf(stderr, "%s: chosen rand slot: %d\n", PK11_DBG, rand_SLOTID); fprintf(stderr, "%s: chosen cipher/digest slot: %d\n", PK11_DBG, SLOTID); fprintf(stderr, "%s: pk11_have_rsa %d\n", PK11_DBG, pk11_have_rsa); fprintf(stderr, "%s: pk11_have_dsa %d\n", PK11_DBG, pk11_have_dsa); fprintf(stderr, "%s: pk11_have_dh %d\n", PK11_DBG, pk11_have_dh); fprintf(stderr, "%s: pk11_have_random %d\n", PK11_DBG, pk11_have_random); fprintf(stderr, "%s: cipher_count %d\n", PK11_DBG, cipher_count); fprintf(stderr, "%s: digest_count %d\n", PK11_DBG, digest_count); #endif /* DEBUG_SLOT_SELECTION */ if (pSlotList != NULL) OPENSSL_free(pSlotList); #ifdef SOLARIS_HW_SLOT_SELECTION OPENSSL_free(hw_cnids); OPENSSL_free(hw_dnids); #endif /* SOLARIS_HW_SLOT_SELECTION */ if (any_slot_found != NULL) *any_slot_found = 1; return (1); } static void pk11_get_symmetric_cipher(CK_FUNCTION_LIST_PTR pflist, int slot_id, CK_MECHANISM_TYPE mech, int *current_slot_n_cipher, int *local_cipher_nids, int id) { CK_MECHANISM_INFO mech_info; CK_RV rv; #ifdef DEBUG_SLOT_SELECTION fprintf(stderr, "%s: checking mech: %x", PK11_DBG, mech); #endif /* DEBUG_SLOT_SELECTION */ rv = pflist->C_GetMechanismInfo(slot_id, mech, &mech_info); if (rv != CKR_OK) { #ifdef DEBUG_SLOT_SELECTION fprintf(stderr, " not found\n"); #endif /* DEBUG_SLOT_SELECTION */ return; } if ((mech_info.flags & CKF_ENCRYPT) && (mech_info.flags & CKF_DECRYPT)) { #ifdef SOLARIS_HW_SLOT_SELECTION if (nid_in_table(ciphers[id].nid, hw_cnids)) #endif /* SOLARIS_HW_SLOT_SELECTION */ { #ifdef DEBUG_SLOT_SELECTION fprintf(stderr, " usable\n"); #endif /* DEBUG_SLOT_SELECTION */ local_cipher_nids[(*current_slot_n_cipher)++] = ciphers[id].nid; } #ifdef SOLARIS_HW_SLOT_SELECTION #ifdef DEBUG_SLOT_SELECTION else { fprintf(stderr, " rejected, software implementation only\n"); } #endif /* DEBUG_SLOT_SELECTION */ #endif /* SOLARIS_HW_SLOT_SELECTION */ } #ifdef DEBUG_SLOT_SELECTION else { fprintf(stderr, " unusable\n"); } #endif /* DEBUG_SLOT_SELECTION */ return; } static void pk11_get_digest(CK_FUNCTION_LIST_PTR pflist, int slot_id, CK_MECHANISM_TYPE mech, int *current_slot_n_digest, int *local_digest_nids, int id) { CK_MECHANISM_INFO mech_info; CK_RV rv; #ifdef DEBUG_SLOT_SELECTION fprintf(stderr, "%s: checking mech: %x", PK11_DBG, mech); #endif /* DEBUG_SLOT_SELECTION */ rv = pflist->C_GetMechanismInfo(slot_id, mech, &mech_info); if (rv != CKR_OK) { #ifdef DEBUG_SLOT_SELECTION fprintf(stderr, " not found\n"); #endif /* DEBUG_SLOT_SELECTION */ return; } if (mech_info.flags & CKF_DIGEST) { #ifdef SOLARIS_HW_SLOT_SELECTION if (nid_in_table(digests[id].nid, hw_dnids)) #endif /* SOLARIS_HW_SLOT_SELECTION */ { #ifdef DEBUG_SLOT_SELECTION fprintf(stderr, " usable\n"); #endif /* DEBUG_SLOT_SELECTION */ local_digest_nids[(*current_slot_n_digest)++] = digests[id].nid; } #ifdef SOLARIS_HW_SLOT_SELECTION #ifdef DEBUG_SLOT_SELECTION else { fprintf(stderr, " rejected, software implementation only\n"); } #endif /* DEBUG_SLOT_SELECTION */ #endif /* SOLARIS_HW_SLOT_SELECTION */ } #ifdef DEBUG_SLOT_SELECTION else { fprintf(stderr, " unusable\n"); } #endif /* DEBUG_SLOT_SELECTION */ return; } #ifdef SOLARIS_AES_CTR /* create a new NID when we have no OID for that mechanism */ static int pk11_add_NID(char *sn, char *ln) { ASN1_OBJECT *o; int nid; if ((o = ASN1_OBJECT_create(OBJ_new_nid(1), (unsigned char *)"", 1, sn, ln)) == NULL) { return (0); } /* will return NID_undef on error */ nid = OBJ_add_object(o); ASN1_OBJECT_free(o); return (nid); } /* * Create new NIDs for AES counter mode. OpenSSL doesn't support them now so we * have to help ourselves here. */ static int pk11_add_aes_ctr_NIDs(void) { /* are we already set? */ if (NID_aes_256_ctr != NID_undef) return (1); /* * There are no official names for AES counter modes yet so we just * follow the format of those that exist. */ if ((NID_aes_128_ctr = pk11_add_NID("AES-128-CTR", "aes-128-ctr")) == NID_undef) goto err; ciphers[PK11_AES_128_CTR].nid = pk11_aes_128_ctr.nid = NID_aes_128_ctr; if ((NID_aes_192_ctr = pk11_add_NID("AES-192-CTR", "aes-192-ctr")) == NID_undef) goto err; ciphers[PK11_AES_192_CTR].nid = pk11_aes_192_ctr.nid = NID_aes_192_ctr; if ((NID_aes_256_ctr = pk11_add_NID("AES-256-CTR", "aes-256-ctr")) == NID_undef) goto err; ciphers[PK11_AES_256_CTR].nid = pk11_aes_256_ctr.nid = NID_aes_256_ctr; return (1); err: PK11err(PK11_F_ADD_AES_CTR_NIDS, PK11_R_ADD_NID_FAILED); return (0); } #endif /* SOLARIS_AES_CTR */ /* Find what symmetric ciphers this slot supports. */ static void pk11_find_symmetric_ciphers(CK_FUNCTION_LIST_PTR pflist, CK_SLOT_ID current_slot, int *current_slot_n_cipher, int *local_cipher_nids) { int i; for (i = 0; i < PK11_CIPHER_MAX; ++i) { pk11_get_symmetric_cipher(pflist, current_slot, ciphers[i].mech_type, current_slot_n_cipher, local_cipher_nids, ciphers[i].id); } } /* Find what digest algorithms this slot supports. */ static void pk11_find_digests(CK_FUNCTION_LIST_PTR pflist, CK_SLOT_ID current_slot, int *current_slot_n_digest, int *local_digest_nids) { int i; for (i = 0; i < PK11_DIGEST_MAX; ++i) { pk11_get_digest(pflist, current_slot, digests[i].mech_type, current_slot_n_digest, local_digest_nids, digests[i].id); } } #ifdef SOLARIS_HW_SLOT_SELECTION /* * It would be great if we could use pkcs11_kernel directly since this library * offers hardware slots only. That's the easiest way to achieve the situation * where we use the hardware accelerators when present and OpenSSL native code * otherwise. That presumes the fact that OpenSSL native code is faster than the * code in the soft token. It's a logical assumption - Crypto Framework has some * inherent overhead so going there for the software implementation of a * mechanism should be logically slower in contrast to the OpenSSL native code, * presuming that both implementations are of similar speed. For example, the * soft token for AES is roughly three times slower than OpenSSL for 64 byte * blocks and still 20% slower for 8KB blocks. So, if we want to ship products * that use the PKCS#11 engine by default, we must somehow avoid that regression * on machines without hardware acceleration. That's why switching to the * pkcs11_kernel library seems like a very good idea. * * The problem is that OpenSSL built with SunStudio is roughly 2x slower for * asymmetric operations (RSA/DSA/DH) than the soft token built with the same * compiler. That means that if we switched to pkcs11_kernel from the libpkcs11 * library, we would have had a performance regression on machines without * hardware acceleration for asymmetric operations for all applications that use * the PKCS#11 engine. There is one such application - Apache web server since * it's shipped configured to use the PKCS#11 engine by default. Having said * that, we can't switch to the pkcs11_kernel library now and have to come with * a solution that, on non-accelerated machines, uses the OpenSSL native code * for all symmetric ciphers and digests while it uses the soft token for * asymmetric operations. * * This is the idea: dlopen() pkcs11_kernel directly and find out what * mechanisms are there. We don't care about duplications (more slots can * support the same mechanism), we just want to know what mechanisms can be * possibly supported in hardware on that particular machine. As said before, * pkcs11_kernel will show you hardware providers only. * * Then, we rely on the fact that since we use libpkcs11 library we will find * the metaslot. When we go through the metaslot's mechanisms for symmetric * ciphers and digests, we check that any found mechanism is in the table * created using the pkcs11_kernel library. So, as a result we have two arrays * of mechanisms that were advertised as supported in hardware which was the * goal of that whole excercise. Thus, we can use libpkcs11 but avoid soft token * code for symmetric ciphers and digests. See pk11_choose_slots() for more * information. * * This is Solaris specific code, if SOLARIS_HW_SLOT_SELECTION is not defined * the code won't be used. */ #if defined(__sparcv9) || defined(__x86_64) || defined(__amd64) static const char pkcs11_kernel[] = "/usr/lib/security/64/pkcs11_kernel.so.1"; #else static const char pkcs11_kernel[] = "/usr/lib/security/pkcs11_kernel.so.1"; #endif /* * Check hardware capabilities of the machines. The output are two lists, * hw_cnids and hw_dnids, that contain hardware mechanisms found in all hardware * providers together. They are not sorted and may contain duplicate mechanisms. */ static int check_hw_mechanisms(void) { int i; CK_RV rv; void *handle; CK_C_GetFunctionList p; CK_TOKEN_INFO token_info; CK_ULONG ulSlotCount = 0; int n_cipher = 0, n_digest = 0; CK_FUNCTION_LIST_PTR pflist = NULL; CK_SLOT_ID_PTR pSlotList = NULL_PTR; int *tmp_hw_cnids = NULL, *tmp_hw_dnids = NULL; int hw_ctable_size, hw_dtable_size; #ifdef DEBUG_SLOT_SELECTION fprintf(stderr, "%s: SOLARIS_HW_SLOT_SELECTION code running\n", PK11_DBG); #endif /* * Use RTLD_GROUP to limit the pkcs11_kernel provider to its own * symbols, which prevents it from mistakenly accessing C_* functions * from the top-level PKCS#11 library. */ if ((handle = dlopen(pkcs11_kernel, RTLD_LAZY | RTLD_GROUP)) == NULL) { PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_DSO_FAILURE); goto err; } if ((p = (CK_C_GetFunctionList)dlsym(handle, PK11_GET_FUNCTION_LIST)) == NULL) { PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_DSO_FAILURE); goto err; } /* get the full function list from the loaded library */ if (p(&pflist) != CKR_OK) { PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_DSO_FAILURE); goto err; } rv = pflist->C_Initialize(NULL_PTR); if ((rv != CKR_OK) && (rv != CKR_CRYPTOKI_ALREADY_INITIALIZED)) { PK11err_add_data(PK11_F_CHECK_HW_MECHANISMS, PK11_R_INITIALIZE, rv); goto err; } if (pflist->C_GetSlotList(0, NULL_PTR, &ulSlotCount) != CKR_OK) { PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_GETSLOTLIST); goto err; } /* no slots, set the hw mechanism tables as empty */ if (ulSlotCount == 0) { #ifdef DEBUG_SLOT_SELECTION fprintf(stderr, "%s: no hardware mechanisms found\n", PK11_DBG); #endif hw_cnids = OPENSSL_malloc(sizeof (int)); hw_dnids = OPENSSL_malloc(sizeof (int)); if (hw_cnids == NULL || hw_dnids == NULL) { PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_MALLOC_FAILURE); return (0); } /* this means empty tables */ hw_cnids[0] = NID_undef; hw_dnids[0] = NID_undef; return (1); } pSlotList = OPENSSL_malloc(ulSlotCount * sizeof (CK_SLOT_ID)); if (pSlotList == NULL) { PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_MALLOC_FAILURE); goto err; } /* Get the slot list for processing */ if (pflist->C_GetSlotList(0, pSlotList, &ulSlotCount) != CKR_OK) { PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_GETSLOTLIST); goto err; } /* * We don't care about duplicit mechanisms in multiple slots and also * reserve one slot for the terminal NID_undef which we use to stop the * search. */ hw_ctable_size = ulSlotCount * PK11_CIPHER_MAX + 1; hw_dtable_size = ulSlotCount * PK11_DIGEST_MAX + 1; tmp_hw_cnids = OPENSSL_malloc(hw_ctable_size * sizeof (int)); tmp_hw_dnids = OPENSSL_malloc(hw_dtable_size * sizeof (int)); if (tmp_hw_cnids == NULL || tmp_hw_dnids == NULL) { PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_MALLOC_FAILURE); goto err; } /* * Do not use memset since we should not rely on the fact that NID_undef * is zero now. */ for (i = 0; i < hw_ctable_size; ++i) tmp_hw_cnids[i] = NID_undef; for (i = 0; i < hw_dtable_size; ++i) tmp_hw_dnids[i] = NID_undef; #ifdef DEBUG_SLOT_SELECTION fprintf(stderr, "%s: provider: %s\n", PK11_DBG, pkcs11_kernel); fprintf(stderr, "%s: found %d hardware slots\n", PK11_DBG, ulSlotCount); fprintf(stderr, "%s: now looking for mechs supported in hw\n", PK11_DBG); #endif /* DEBUG_SLOT_SELECTION */ for (i = 0; i < ulSlotCount; i++) { if (pflist->C_GetTokenInfo(pSlotList[i], &token_info) != CKR_OK) continue; #ifdef DEBUG_SLOT_SELECTION fprintf(stderr, "%s: token label: %.32s\n", PK11_DBG, token_info.label); #endif /* DEBUG_SLOT_SELECTION */ /* * We are filling the hw mech tables here. Global tables are * still NULL so all mechanisms are put into tmp tables. */ pk11_find_symmetric_ciphers(pflist, pSlotList[i], &n_cipher, tmp_hw_cnids); pk11_find_digests(pflist, pSlotList[i], &n_digest, tmp_hw_dnids); } /* * Since we are part of a library (libcrypto.so), calling this function * may have side-effects. Also, C_Finalize() is triggered by * dlclose(3C). */ #if 0 pflist->C_Finalize(NULL); #endif OPENSSL_free(pSlotList); (void) dlclose(handle); hw_cnids = tmp_hw_cnids; hw_dnids = tmp_hw_dnids; #ifdef DEBUG_SLOT_SELECTION fprintf(stderr, "%s: hw mechs check complete\n", PK11_DBG); #endif /* DEBUG_SLOT_SELECTION */ return (1); err: if (pSlotList != NULL) OPENSSL_free(pSlotList); if (tmp_hw_cnids != NULL) OPENSSL_free(tmp_hw_cnids); if (tmp_hw_dnids != NULL) OPENSSL_free(tmp_hw_dnids); return (0); } /* * Check presence of a NID in the table of NIDs. The table may be NULL (i.e., * non-existent). */ static int nid_in_table(int nid, int *nid_table) { int i = 0; /* * a special case. NULL means that we are initializing a new * table. */ if (nid_table == NULL) return (1); /* * the table is never full, there is always at least one * NID_undef. */ while (nid_table[i] != NID_undef) { if (nid_table[i++] == nid) { #ifdef DEBUG_SLOT_SELECTION fprintf(stderr, " (NID %d in hw table, idx %d)", nid, i); #endif /* DEBUG_SLOT_SELECTION */ return (1); } } return (0); } #endif /* SOLARIS_HW_SLOT_SELECTION */ #endif /* OPENSSL_NO_HW_PK11 */ #endif /* OPENSSL_NO_HW */