% Pandoc math demos

$a^2 + b^2 = c^2$

$v(t) = v_0 + \frac{1}{2}at^2$

$\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}$  

$\exists x \forall y (Rxy \equiv Ryx)$

$p \wedge q \models p$

$\Box\diamond p\equiv\diamond p$

$\int_{0}^{1} x dx = \left[ \frac{1}{2}x^2 \right]_{0}^{1} = \frac{1}{2}$

$e^x = \sum_{n=0}^\infty \frac{x^n}{n!} = \lim_{n\rightarrow\infty} (1+x/n)^n$